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Introduction

The Second Conference on Machine Translation (WMT 2017) took place on Thursday and Friday,
September 7-8, 2017 in Copenhagen, Denmark, immediately preceding the Conference on Empirical
Methods in Natural Language Processing (EMNLP 2017).

This is the second time WMT has been held as a conference. The first time WMT was held as a
conference was at ACL 2016 in Berlin, Germany. Prior to being a conference, WMT was held 10 times
as a workshop. WMT was held for the first time at HLT-NAACL 2006 in New York City, USA. In the
following years the Workshop on Statistical Machine Translation was held at ACL 2007 in Prague, Czech
Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala,
Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia,
Bulgaria, ACL 2014 in Baltimore, USA, and EMNLP 2015 in Lisbon, Portugal.

The focus of our conference was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of MT systems varies greatly with the source language. In this
conference we encouraged researchers to investigate ways to improve the performance of MT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 8 shared tasks. This consisted of three translation tasks: Machine Translation of News,
Biomedical Translation, and Multimodal Machine Translation, two evaluation tasks: Metrics and Quality
Estimation, as well as the Automatic Post-Editing, Neural MT Training, and the Bandit Learning
tasks. Two of these tasks were run at WMT for the first time. The Neural MT Training task provide
comparable conditions and encouraging researchers to explore training methods that lead to improved
and more robust translation quality and help speed up the training. The Bandit Learning Task encourages
participants to train and improve MT systems by learning from weak or partial feedback instead of the
commonly used gold-standard human-generated translations.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. This year we have received 40 full research paper submissions. In total, WMT 2017
featured 16 full paper oral presentations and 59 shared task poster presentations.

Holger Schwenk gave the invited on “Multilingual Representions and Applications in NLP”.

We would like to thank the members of the Program Committee for their timely reviews. We also would
like to thank the participants of the shared task and all volunteers who helped with the evaluations.

Ondrej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Yvette Graham Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Julia Kreutzer, Varvara Logacheva Christof
Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Stefan Riezler, Raphael Rubino, Artem
Sokolov, Lucia Specia, Marco Turchi, and Karin Verspoor

Co-Organizers
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Sense-Aware Statistical Machine Translation using
Adaptive Context-Dependent Clustering

Xiao Pu
EPFL & Idiap Research Inst.
Martigny, Switzerland
xiao.pu@idiap.ch

Abstract

Statistical machine translation (SMT) sys-
tems use local cues from n-gram trans-
lation and language models to select the
translation of each source word. Such
systems do not explicitly perform word
sense disambiguation (WSD), although
this would enable them to select transla-
tions depending on the hypothesized sense
of each word. Previous attempts to con-
strain word translations based on the re-
sults of generic WSD systems have suf-
fered from their limited accuracy. We
demonstrate that WSD systems can be
adapted to help SMT, thanks to three key
achievements: (1) we consider a larger
context for WSD than SMT can afford
to consider; (2) we adapt the number of
senses per word to the ones observed in the
training data using clustering-based WSD
with K-means; and (3) we initialize sense-
clustering with definitions or examples ex-
tracted from WordNet. Our WSD system
is competitive, and in combination with a
factored SMT system improves noun and
verb translation from English to Chinese,
Dutch, French, German, and Spanish.

1 Introduction

Selecting the correct translation of polysemous
words remains an important challenge for ma-
chine translation (MT). While some translation
options may be interchangeable, substantially dif-
ferent senses of source words must generally be
rendered by different words in the target language.
In this case, an MT system should identify — im-
plicitly or explicitly — the correct sense conveyed
by each occurrence in order to select the appropri-
ate translation.

Nikolaos Pappas
Idiap Research Institute
Martigny, Switzerland
nikolaos.pappas @idiap.ch

1

Andrei Popescu-Belis
Idiap Research Institute
Martigny, Switzerland
apbelis@idiap.ch

Source: And I do really like this shot, be-
cause it shows all the detritus that’s sort
of embedded in the sole of the sneakers.

Baseline SMT: Und ich mag dieses Bild ...

Online NMT: Und ich mag diesen Schuss
wirklich, ...

Sense-aware MT: Und ich mag diese Auf-
nahme wirklich, . ..

Reference translation: Ich mag diese Auf-
nahme wirklich, ...

Figure 1: Example of sense-aware translation that
is closer to a reference translation than a baseline
statistical MT system or an online neural one.

Current statistical or neural MT systems per-
form word sense disambiguation (WSD) implic-
itly, for instance through the n-gram frequency in-
formation stored in the translation and language
models. However, the context taken into account
by an MT system when performing implicit WSD
is limited. For instance, in the case of phrase-
based SMT, it is the order of the language model
(often between 3 and 5) and the length of n-grams
in the phrase table (seldom above 5). In attention-
based neural MT systems, the context extends to
the entire sentence, but is not specifically trained
to be used for WSD.

For instance, Figure 1 shows an English sen-
tence translated into German by a baseline statisti-
cal MT, an online neural MT, and the sense-aware
MT system proposed in this paper. The word shot
is respectively translated as Schuss (gun shot), Bild
(drawing) and Aufnahme (picture) by the online
NMT, the baseline system, and our sense-aware
system. The latter selects a correct sense, which is
identical to the reference translation, while the first
two are incorrect (especially the online NMT).

Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 1-10
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics
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Figure 2: Adaptive WSD for MT: vectors from WordNet definitions (or examples) are clustered with
context vectors of each occurrence (here of ‘rock’), resulting in sense labels used as factors for MT.

In this paper, we introduce a sense-aware statis-
tical MT system that performs explicit WSD, and
uses for this task a larger context than is accessi-
ble to state-of-the-art SMT. Our WSD system per-
forms context-dependent clustering of word oc-
currences and is initialized with knowledge from
WordNet, in the form of vector representations of
definitions or examples for each sense. The la-
bels of the resulting clusters are used as abstract
source-side sense labels within a factored phrase-
based SMT system. The stages of our method are
presented in Figure 2, and will be explained in de-
tail in Section 3.

Our results, presented in Section 5, show first
that our WSD system is competitive on the Se-
mEval 2010 WSD task, but especially that it helps
SMT to increase its BLEU scores and to improve
the translation of polysemous nouns and verbs,
when translating from English into Chinese, Ger-
man, French, Spanish or Dutch, in comparison to
an SMT baseline that is not aware of word senses.

With respect to previous work that used WSD
for MT, discussed in Section 2, we innovate on the
following points:

e we design a sense clustering method with ex-
plicit knowledge (WordNet definitions or ex-
amples) to disambiguate polysemous nouns
and verbs;

e we represent each token by its context vec-
tor, obtained from word2vec word vectors in
a large window surrounding the token;

e we adapt the possible number of senses per
word to the ones observed in the training data
rather than constraining them by the full list
of senses from WordNet;

e we use the abstract sense labels for each ana-
lyzed word as factors in an SMT system.

2 Related Work

Word sense disambiguation aims to identify the
sense of a word appearing in a given context
(Agirre and Edmonds, 2007). Resolving word
sense ambiguities should be useful, in particular,
for lexical choice in MT.

An initial investigation found that an SMT sys-
tem which makes use of off-the-shelf WSD does
not yield significantly better quality translations
than a SMT system not using it (Carpuat and Wu,
2005). However, another study (Vickrey et al.,
2005) reformulated the task of WSD for SMT as
predicting possible target translations rather than
senses of ambiguous source words, and showed
that WSD improved such a simplified word trans-
lation task. Subsequent studies which adopted
this formulation (Cabezas and Resnik, 2005; Chan
et al., 2007; Carpuat and Wu, 2007), successfully
integrated WSD to hierarchical or phrase-based
SMT. These systems yielded slightly better trans-
lations compared to SMT baselines in most cases
(0.15-0.30 BLEU).

Although the WSD reformulation above proved
helpful for SMT, it did not determine whether ac-
tual source-side senses are helpful or not for end-
to-end SMT. Xiong and Zhang (2014) attempted
to answer this question by performing word sense
induction for large scale data. In particular, they
proposed a topic model that automatically learned
sense clusters for words in the source language.
In this way, on the one hand, they avoided using
a pre-specified inventory of word senses as tradi-
tional WSD does, but on the other hand, they cre-
ated the risk of discovering sense clusters which
do not correspond to the common senses of words
needed for MT. Hence, this study left open an im-
portant question, namely whether WSD based on



semantic resources such as WordNet (Fellbaum,
1998) can be successfully integrated with SMT.

Neale et al. (2016) attempted such an integra-
tion, by using a WSD system based on a sense
graph from WordNet (Agirre and Soroa, 2009).
This system detects the senses of words in con-
text using a random walk algorithm over the sense
graph. The authors used it to specify the senses
of the source words and integrate them as con-
textual features with a MaxEnt-based translation
model for English-Portuguese MT. Similarly, Su
et al. (2015) built a large weighted graph model
of both source and target word dependencies and
integrated them as features to a SMT model. How-
ever, apart from the sense graph, WordNet pro-
vides also textual information such as sense def-
initions and examples, which should be useful for
disambiguating senses, but were not used in the
above studies. Here, we aim to exploit this in-
formation to perform word sense induction from
large scale monolingual data (in a first phase), thus
combining the benefits of semantic ontologies and
word sense induction for WSD.

Several other studies integrated additional infor-
mation from a larger context using factored-based
MT models (Koehn and Hoang, 2007). Birch et al.
(2007) used supertags from a Combinatorial Cat-
egorial Grammar as factors in phrase-based trans-
lation model. Avramidis and Koehn (2008) added
source-side syntactic information for each word
for translating from a morphologically poorer lan-
guage to a richer one (English-Greek). The lev-
els of improvement achieved with factored mod-
els such as the ones above range from 0.15 to 0.50
BLEU points. Here, we also observe improve-
ments in the upper part of this range, and they are
consistent across several language pairs.

3 Adaptive Sense Clustering for SMT

In this section, we describe our adaptive WSD
method and show how we integrate it with SMT,
as represented in Figure 2 above. In a nutshell, we
consider all source words that have more than one
sense (synset) in WordNet, and extract from Word-
Net the definition of each sense and, if available,
the example. We associate to them word embed-
dings built using word2vec. For each occurrence
of these words in the training data, we also build
vectors for their contexts (i.e. neighboring words)
using the same model. All the vectors are passed
to a clustering algorithm, resulting in the labeling

of each occurrence with a cluster number that will
be used as a factor in statistical MT.

Our method answers several limitations of pre-
vious supervised or unsupervised WSD methods.
Supervised methods require data with manually
sense-annotated labels and are therefore often lim-
ited to a small number of word types: for instance,
only 50 nouns and 50 verbs were targeted in Se-
mEval 2010' (Manandhar et al., 2010). On the
contrary, our method does not require labeled texts
for training, and applies to all word types appear-
ing with multiple senses in WordNet.

Unsupervised methods often pre-define the
number of possible senses for each ambiguous
word before clustering the various occurrences ac-
cording to the senses. If these numbers come from
WordNet, the senses may be too fine-grained for
the needs of translation, especially when a spe-
cific domain is targeted. In contrast, as we explain
below, our WSD method initializes a context-
dependent clustering algorithm with information
from WordNet senses for each word (nouns and
verbs), but then adapts the number of clusters to
the observed training data for MT.

3.1 Representing Definitions, Examples and
Contexts of Word Occurrences

For each noun or verb rype Wy appearing in the
training data, as identified by the Stanford POS
tagger,2 we extract the senses associated to it
in WordNet®> by using NLTK.* Specifically, we
extract the set of definitions Dy = {dy|j =
1,...,m;} and the set of examples of use £, =
{e+jl7 = 1,...,n}, each of them containing mul-
tiple words. While most of the senses are ac-
companied by a definition, only a smaller subset
also include an example of use, as it appears from
the four last columns of Table 1. Less frequently,
some senses contain examples without definitions.

Each definition d;; and example e;; is repre-
sented by a vector, which is the average of the
word embeddings over all the words constitut-
ing them (except stopwords). Formally, these are
dij = (Zwledw wp)/my and respectively e7; =
(>, ee), wp)/ng. While the entire definition dy;
is used to build the vector, we do not consider
all words in the example e;;, but limit the sum to

'www.cs.york.ac.uk/semeval2010_WSI
http://nlp.stanford.edu/software/
*https://wordnet.princeton.edu/

4See www.nltk.org/howto/wordnet .html



ey;i-e. we consider only a window of size ¢ cen-
tered around the noun or verb of type W (simi-
larly to the window used for context representation
below) to avoid noise from long examples.

All the word vectors wj; above are word2vec
pre-trained embeddings from Google’ (Mikolov
et al., 2013). If d is the dimensionality of the word
vector space, then all vectors wj, d;j, and ef; are
in R%. Each definition vector d;j or example vec-
tor ez; for a word type W; will be considered as a
center vector for each sense during the clustering
procedure.

Similarly, each word token w; in a source sen-
tence is represented by the average vector w; of the
words in its context, which is defined as a window
of ¢ words centered in w;. The value c of the con-
text size is even, since we calculate the vector ;
for w; by averaging vectors from ¢/2 words before
w; and from ¢/2 words after it. We stop neverthe-
less at the sentence boundaries, and filter out stop
words before averaging.

We will now explain how to cluster according to
their senses all vectors #; for the occurrences w;
of a given word type W, using as initial centers
either the definition or the example vectors.

3.2 Clustering Word Occurrences According
to their Senses

We aim to group all occurrences w; of a given
word type W, into clusters according to the sim-
ilarity of their senses, which we will model as the
similarity of their context vectors. The correctness
of this hypothesis will be supported by the empiri-
cal results. We will modify the k-means algorithm
in several ways to achieve an optimal clustering of
word senses for MT.

The original k-means algorithm (MacQueen,
1967) aims to partition a set of items, which
are here tokens wi, wo, ..., w, of a same word
type W;, represented through their embeddings
@1, o, ..., U, where @; € R The goal of
k-means is to partition (or cluster) them into k
sets S = {S1,59,...,Sk} so as to minimize the
within-cluster sum of squares, as follows:

k
S:argmgnzz i@ — iii||?, (1)
i=1 %eS;

where fi; is the centroid of each set S;. At the
first iteration, when there are no clusters yet, the

Scode.google.com/archive/p/word2vec/

algorithm selects k random points to be the cen-
troids of the & clusters. Then, at each subsequent
iteration ¢, k-means calculates for each candidate
cluster a new point to be the centroid of the obser-
vations, defined as their average vector, as follows:

1

e | .

it = 5 Z i )
(2

ﬁjGSE

We make the following modifications to the
original k-means algorithm, to make it adaptive to
the word senses observed in the training data.

1. We define the initial number of clusters k;
for each ambiguous word type W; in the
data as the number of its senses in Word-
Net (but this number may be reduced by the
final re-clustering described below at point
3). Specifically, we run two series of experi-
ments (the results of which will be compared
in Section 5.1.1): one in which each k; is set
to my, i.e. the number of senses that possess
a definition in WordNet, and another one in
which we consider only senses that are illus-
trated with an example, hence setting each k;
to n¢. These settings avoid fixing the number
of clusters k; arbitrarily for each ambiguous
word type.

2. We initialize the centroids of the clusters
to the vectors representing the senses from
WordNet, either using their definition vectors
cftj in one series of experiments, or their ex-
ample vectors €;; in the other one. This sec-
ond modification attempts to provide a rea-
sonably accurate starting point for the clus-
tering process.

3. After running the k-means algorithm, we re-
duce the number of clusters for each word
type by merging the clusters which contain
fewer than 10 tokens with the nearest larger
cluster. This is done by calculating the co-
sine similarity between each token vector u;
and the centroids of the larger clusters and
assigning the tokens to the closest large clus-
ter. This re-clustering adapts the final number
of clusters to the observed occurrences in the
training data. Indeed, when there are few oc-
currences of a sense for a given ambiguous
word type in the data, the SMT is likely not
able to translate them properly due to the lack
of training samples.



Finally, after clustering the training data, we use
the centroids to assign each new token from the
test data to a cluster, i.e. an abstract sense label,
by selecting the closest centroid to it in terms of
cosine distance in the embedding space.

3.3 Integration with Machine Translation

Our adaptive WSD system assigns a sense number
for each ambiguous word token in the source-side
of a parallel corpus. To pass this information to
an SMT system, we use a factored phrase-based
translation model (Koehn and Hoang, 2007). The
factored model offers a principled way to supple-
ment words with additional information — such as,
traditionally, part-of-speech tags — without requir-
ing any intervention in the translation tables. The
features are combined in a log-linear way with
those of a standard phrase-based decoder, and the
goal remains to find the most probable target sen-
tence for a given source sentence. To each source
noun or verb token, we add a sense label obtained
from our adaptive WSD system. To all the other
words, we add a NULL label.® The translation sys-
tem will thus take the source-side sense labels into
consideration during the training and the decoding
processes.

4 Datasets, Preparation and Settings

We evaluate our sense-aware SMT on the UN Cor-
pus’ (Rafalovitch and Dale, 2009) and on the Eu-
roparl Corpus® (Koehn, 2005). We select 0.5 mil-
lion parallel sentences for each language pair from
Europarl, as shown in Table 1. We also use the
smaller WIT3 Corpus9 (Cettolo et al., 2012), a col-
lection of transcripts of TED talks, to evaluate the
impact of costly model choices, namely the type of
the resource (definition vs. examples), the length
of the context window, and the k-means method
(adaptive vs. original).

Before assigning sense labels, we first tokenize
all the texts and identify the parts of speech (POS)
using the Stanford POS tagger!?. Then, we fil-
ter out the stopwords and the nouns which are
proper names according to the Stanford Name En-

tity Recognizer'”. Furthermore, we convert the

SIn practice, these labels are simply appended to the to-
kens in the data following a vertical bar, e.g. ‘rock|1” or
‘great|NULL’.

"http://www.uncorpora.org/

8http://www.statmt.org/europarl/

‘http://wit3.fbk.eu/

“http://nlp.stanford.edu/software/

plural forms of nouns to their singular form and
the verb forms to infinitive using the stemmer and
lemmatizer from NLTK'!, which is essential be-
cause WordNet has description entries only for
singular nouns and infinitive form of verbs. The
pre-processed text is used for assigning sense la-
bels to each occurrence of a noun or verb which
has more than one sense in WordNet.

For translation, we train and tune baseline
and factored phrase-based models with Moses'?
(Koehn et al., 2007). We also carried out pilot ex-
periments with neural machine translation (NMT).
However, due to the large datasets NMT requires
for training, its performance was below SMT on
the datasets above, and sense labels did not im-
prove it. We thus focus on SMT in what follows,
and leave WSD for NMT for future studies.

We select the optimal model configuration
based on the MT performance, measured with the
traditional BLEU score (Papineni et al., 2002), on
the WIT3 corpus for EN/ZH and EN/DE. Unless
otherwise stated, we use the following settings
in the k-means algorithm, starting from the im-
plementation provided in Scikit-learn (Pedregosa
etal., 2011):

e we use the definition of each sense for initial-
izing the centroids in the adaptive k-means
methods (and compare this later with using
the examples);

e we set k; equal to my, i.e. the number of
senses of an ambiguous word type Wy;

o the window size for the context surrounding
each occurrence is set to ¢ = 8.

For the evaluation of intrinsic WSD perfor-
mance, we use the V-metric, the Fj-metric, and
their average, as used for instance at SemEval
2010 (Manandhar et al., 2010). To measure the
impact of WSD on MT, besides BLEU, we also
measure the actual impact on the nouns and verbs
that appear in WordNet with several senses, by
comparing how many of them are translated as
in the reference translation, by our system vs. the
baseline. For a certain set of tokens in the source
data, we note as Nimproved the number of tokens
which are translated by our system as in the ref-
erence translation, but whose baseline translation
differs from it. Conversely, we note as Ngegraded
the number of tokens which are translated by the

Uhttp://www.nltk.org/
Phttp://www.statmt.org/moses/



Training Development Testing Definitions Examples
#lines | # tokens | # lines | # tokens | # lines | # tokens | # nouns | # verbs | # nouns | # verbs

EN/ZH WIT3 | 150,000 M 10,000 | 0.3M | 50,000 M 6,052 | 2,435 | 2,049 | 1,932
UN 500,000 [ 13M 5,000 | 0.14M |50,000 | 1.5M 8,165 | 3,382 | 2,810 | 2,716

EN/DE WIT3 | 140,000 | 2.8M | 5,000 | 0.16M | 50,000 M 8,308 | 2,384 | 3,662 | 2,042
Europarl | 500,000 | 14M 5,000 | 0.14M [50,000 | 1.4M 6,373 | 3,323 | 2,608 | 2,668

EN/FR | Europarl ~ ~ ~ ~ ~ ~ 8,279 | 4,022 | 2,276 | 2,054
EN/ES | Europarl ~ ~ ~ ~ ~ ~ 8,716 | 4,048 | 2,478 | 2,359
EN/NL | Europarl ~ ~ ~ ~ ~ ~ 8,667 | 4,023 | 2,439 | 2,318

Table 1: Statistics of the corpora used for machine translation: ‘~’ indicates a similar size, though
not identical texts, because the English source texts for the different language pairs from Europarl are
different. Hence, the number of words found in WordNet differ as well.

baseline system as in the reference, but differently
by our system. We will use the normalized coef-
ficient p = (Nimproved - Ndegraded)/Ta where T'
is the total number of tokens, as a metric focusing
explicitly on the words submitted to WSD.!3

5 Results

Using the data, settings, and metrics above, we
investigate first the impact of two model choices
on the performance: centroid initialization for k-
means (definition or examples vs. random), and
the length of the context window for each word.
Then, we evaluate our adaptive clustering method
on the WSD task, to estimate its intrinsic quality,
and finally measure WSD+MT performance.

5.1 Optimal Values of the Parameters
5.1.1 Initialization of Adaptive k-means

We examine first the impact of the initialization
of the sense clusters, on the WIT3 Corpus. In
Table 2, we present the BLEU scores of our
WSD+MT system in two conditions: when the k-
means clusters are initialized with vectors from the
definitions vs. from the examples provided in the
WordNet synsets of ambiguous words. Moreover,
we provide BLEU scores of baseline systems and
oracle ones (i.e. using correct senses as factors),
as well as the p score indicating the relative im-
provement of ambiguous words in our system wrt.
the baseline. The use of definitions outperforms
the use of examples, probably because there are
more words with definitions than with examples
in WordNet (twice as many, as shown in Table 1 in
Section 4), but also because definitions may pro-
vide more helpful words to build the initial vec-
tors, as they are more explicit than the examples.

"The values of Nimproved and Ngegradea are obtained
using automatic word alignment. They do not capture, of
course, the absolute correctness of a candidate translation, but
only its identity or not with one reference translation.

All the values of p show clear improvements over
the baseline, with up to 4% for DE/EN. As for the
oracle scores, they outperform the baseline by a
factor of 2-3 compared to our system.

BLEU

Pair | Resource Baseline | Factored | Oracle | © (%)
Definitions 15.54 | 16.24 |+2.25
ENZH e mples | P 1541 [15.85 [+1.60
Definitions 20.23 | 20.99 [+3.96
ENDE g mples | 1272 [19.98 [2045 [+2.15

Table 2: Performance of our WSD+MT factored
system for two language pairs from WIT3, with
two initialization conditions for the k-means clus-
ters, i.e. definitions or examples for each sense.

In addition, we compare the two initialization
options above with random initializations of k-
means clusters, in Table 3. To offer a fair compar-
ison, we set the number of clusters, in the case of
random initializations, respectively to the number
of synsets with definitions or examples, for each
word type. Clearly, our adaptive, informed initial-
izations of clusters are beneficial to MT.

Resource k—mqans initialization
Specific Random
Definitions 15.54 15.34
Examples 15.41 15.27

Table 3: Performance of our WSD+MT factored
system for EN-ZH from WIT3, comparing the two
initialization conditions for the k-means clusters,
i.e. definitions or examples for each sense, with
random initializations.

5.1.2 Length of the Context Window

We investigate the effect of the size of the context
window surrounding each ambiguous token, i.e.
the number of words surrounding it that are con-
sidered for building its vector representation. Fig-
ure 3 displays the BLEU score of our WSD+MT



System V-score F-score Average
’ All |Nouns | Verbs| All |Nouns|Verbs| All |Nouns | Verbs || #clusters
5 MES 0 0 0 |64.85|57.00 [72.70]32.42| 29.50 |25.40 1.00
2 | Random 440 | 4.60 | 4.20 [32.35] 30.60 |34.10|18.45| 17.60 | 19.30 4.00
A [TClusterPerIns 31.70] 35.80 | 25.60| 0.12 | 0.11 | 0.12 [15.40] 17.90 {1290 89.15
Hermit (Jurgens and Stevens, 2010) 16.20| 16.70 | 15.60|25.55| 26.70 |24.40|20.85| 21.70 [20.00|| 10.78
" UoY (Korkontzelos and Manandhar, 2010) | 15.70 | 20.60 | 8.50 [49.80| 38.20 [ 66.60 |32.75] 29.40 |37.50|| 11.54
g | KSU KDD (Elshamy et al., 2010) 15.70] 18.00 [ 12.40[36.90 | 24.60 | 54.70|26.30| 21.30 [33.50|| 17.50
2 [Duluth-WSI (Pedersen, 2010) 9.00 | 11.40 | 5.70 [41.10| 37.10 |46.70[25.05| 24.20 |26.20 4.15
z Duluth-WSI-SVD-Gap (Pedersen, 2010) 0.00 | 0.00 | 0.10 [63.30] 57.00 |72.40|31.65| 28.50 |36.20 1.02
é‘ KCDC-PT (Kern et al., 2010) 1.90 | 1.00 | 3.10 [61.80| 56.40 {69.70|31.85| 28.70 |36.40 1.50
KCDC-GD (Kern et al., 2010) 6.90 | 590 | 8.50 [59.20] 51.60 |70.00 | 33.05| 28.70 [39.20 2.78
Duluth-Mix-Gap (Pedersen, 2010) 3.00 | 2.90 | 3.00 [59.10| 54.50 |65.80|31.05] 29.70 | 34.40 1.61
« | Adaptive k-means + definition 13.65| 14.70 [ 12.60|56.70 | 53.70 | 59.60 | 35.20 | 34.20 | 36.10 4.45
5 Adaptive k-means + example 11.35] 11.00 | 11.70 {53.25| 47.70 {58.80 | 32.28 | 29.30 | 35.25 3.58

Table 4: WSD results from the SemEval 2010 shared task in terms of V-score, F; score and their
average. Our adaptive k-means using definitions (last but one line) outperforms all the other systems on
the average of V' and F, when considering both nouns and verbs, or nouns only.

factored system when varying this size, on EN/ZH
translation in the WIT3 Corpus, along with the
(constant) score of the baseline. The performance
of our system improves with the size of the win-
dow, reaching a peak around 8-10. This result
highlights the importance of a longer context com-
pared to the typical settings of SMT systems,
which generally do not go beyond 6. It also sug-
gests that MT systems which exploit effectively
longer context, as we show here with a sense-
aware factored MT system for ambiguous nouns
and verbs, can significantly improve their lexical
choice and their overall translation quality.

20.1 20.06
19.95
Qo
o)
®
a 19.8
- 19
m
19.65 — Factored MT
Baseline MT
19.5
2 4 6 8 10 12 14

Context window (#words)

Figure 3: BLEU scores of our WSD+MT factored
system on EN/ZH WIT3 data, along with the base-
line score (constant), when the size of the context
window around each ambiguous token (for build-
ing its context vector) varies from 2 to 14.

5.2 Word Sense Disambiguation Results

We evaluate in this section our WSD system on the
dataset from the SemEval 2010 shared task (Man-

andhar et al., 2010), to assess how competitive it
is, while acknowledging that our system uses ex-
ternal knowledge not available to SemEval partic-
ipants.

Table 4 shows the WSD results in terms of V-
score and F-score, comparing our method (bot-
tom two lines) with other WSD systems that par-
ticipated in SemEval 2010 (top four systems for
each metric). We add three baselines provided
by the task organizers for comparison: (1) Most
Frequent Sense (MFS), which groups all occur-
rences of a word into one cluster, (2) 1Cluster-
PerInstance, which produces one cluster for each
occurrence of a word, and (3) Random, which ran-
domly assigns an occurrence to 1 out of 4 clus-
ters (4 is the average number of senses from the
ground-truth).

The V-score is biased towards systems generat-
ing a higher number of clusters than the number
of gold standard senses. F}-score measures the
classification performance, i.e. how well a method
assigns two occurrences of a word belonging to
the same gold standard class. Hence, this metric
favors systems that generate fewer clusters (for in-
stance, if all instances were grouped into 1 cluster,
the F'i-score would be high). As these two metrics
are biased towards either small or large numbers
of clusters, their average is a useful metric as well.

Table 4 shows that k-means initialized with
definitions achieves high performance and ranks
among the top systems for each metric individu-
ally, outperforming all other systems on the aver-
aged metric (especially over nouns or all words).
Moreover, the adaptive k-means method finds an



. BLEU
Language pair | Corpus Baseline | Factored | Oracle | * (%)
EN/ZH UN 23.25 23.69 24.44 | +2.26
EN/DE Europarl 20.78 21.32 21.95 | +1.57
EN/FR Europarl 31.96 32.20 3298 | +1.21
EN/ES Europarl 39.95 40.37 41.06 | +1.04
EN/NL Europarl 23.56 23.84 2479 | +1.38

Table 5: BLEU scores of our WSD+MT factored system, with both noun and verb senses, along with
baseline MT and oracle WSD+MT, on five language pairs.

Factored (Nouns) Factored (Verbs)
Language pair | Baseline nouns nouns + verbs Oracle verbs nouns + verbs Oracle
BLEU[p (%) __p (%) BLEU[p (%)| _p (%)
EN/ZH 2325 |23.61 |+1.78 +1.93 24.05 | 23.35 | +3.30 +3.14 24.17
EN/DE 20.78 | 21.31 |+1.65 +1.48 21.45 | 21.30 | +1.81 +1.79 21.87
EN/FR 31.96 | 32.08 [+0.90 +0.82 32.36 | 32.15 | +2.03 +2.13 32.98
EN/ES 39.95 | 40.28 |+1.05 +0.96 40.59 | 40.24 |+2.08 +1.15 41.06
EN/NL 23.56 |23.79 [+1.13 +0.87 24.05 | 23.70 |+2.58 +2.71 24.46

Table 6: BLEU scores of our WSD+MT factored system, trained separately on disambiguated nouns vs.
verbs, and tested separately or jointly, along with baseline MT and oracle WSD+MT, on five language

pairs.

average number of senses of 4, which is close
to the ground-truth value provided by SemEval
(4.46). These results show that our method,
despite its simplicity, is effective and provides
competitive performance against prior art, partly
thanks to additional knowledge not available to the
shared task systems.

5.3

Table 5 displays the performance of our factored
MT systems trained with noun and verb senses
on five language pairs by using the dataset men-
tioned in Table 1. Our system performs consis-
tently better than the MT baseline on all pairs, with
the largest improvements achieved on EN/ZH and
EN/DE. To better understand the improvements
over the baseline MT, we also provide the BLEU
score of an oracle system which has access to
the reference translation of the ambiguous words
through the alignment provided by GIZA++. Ac-
cording to the results, our factored MT system
bridges around 40% of the gap between the base-
line MT system and the oracle system on EN/DE
and 30% on EN/ZH.

As shown in Table 6, the translation quality of
our factored MT outperforms the baseline when
trained with either noun senses or verb senses sep-
arately. However, in some cases, our factored MT
system trained with both noun and verb senses per-
forms worse than with noun and verb senses sep-
arately. This may be due to the lack of sufficient
training data to learn reliably using all the addi-

Machine Translation Results

tional factors — as we observed when training on
the smaller WIT3 Corpus.

Lastly, Table 7 shows the confusion matrix for
our factored MT and the baseline MT systems
when comparing the reference translation of nouns
and verbs separately, using GIZA++ alignment. In
particular, the confusion matrix displays the num-
ber of labeled tokens which are translated as in
the reference or not (‘Correct’ vs. ‘Incorrect’). As
we can observe, the number of tokens that our
factored MT system translates correctly while the
baseline MT does not, is two times largers than
the number of tokens that the baseline MT system
finds correctly while our factored MT does not.

6 Conclusion

We presented a sense-aware statistical MT system
which uses a larger context than standard ones,
through an adaptive context-dependent k-means
clustering algorithm for WSD. The algorithm uti-
lizes semantic information from WordNet to iden-
tify the dominant clusters, which correspond to
senses in the source side of a parallel corpus. The
proposed adaptive k-means method is straightfor-
ward, yet it provides competitive WSD perfor-
mance on data from the SemEval 2010 shared
task. For MT, our experiments with five language
pairs show that our sense-aware MT system con-
sistently improves over the baseline. As future
work, we plan to integrate sense information for
ambiguous words to neural MT and investigate



Factored (Nouns) Factored (Verbs)
nouns nouns + verbs verbs nouns + verbs
Correct | Incorrect | Correct | Incorrect | Correct | Incorrect | Correct | Incorrect
EN/ZH Correct 138,876 4,402 138,264 5,075 37,132 1,166 36,647 1,527
Baseline | Incorrect 8,454 75,690 9,472 74,541 3,939 41,728 4,149 41,077
EN/DE Correct 91,966 1,473 91,376 2,035 18,370 664 18,214 812
Baseline | Incorrect 4,268 71,037 4,525 69,931 1,892 47,105 2,029 46,795

Table 7: Detailed confusion matrix of our factored MT system and the baseline MT system with respect
to the reference on the EN/DE pair from Europarl corpus and the EN/ZH from UN corpus.

other effective ways to enable access to longer
context.
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Abstract

Word sense disambiguation is necessary in
translation because different word senses
often have different translations. Neural
machine translation models learn differ-
ent senses of words as part of an end-
to-end translation task, and their capabil-
ity to perform word sense disambiguation
has so far not been quantified. We ex-
ploit the fact that neural translation models
can score arbitrary translations to design
a novel cross-lingual word sense disam-
biguation task that is tailored towards eval-
uating neural machine translation models.
We present a test set of 7,200 lexical am-
biguities for German—English, and 6,700
for German—French, and report baseline
results. With 70% of lexical ambiguities
correctly disambiguated, we find that word
sense disambiguation remains a challeng-
ing problem for neural machine transla-
tion, especially for rare word senses. To
improve word sense disambiguation in
neural machine translation, we experiment
with two methods to integrate sense em-
beddings. In a first approach we pass
sense embeddings as additional input to
the neural machine translation system. For
the second experiment, we extract lexical
chains based on sense embeddings from
the document and integrate this informa-
tion into the NMT model. While a base-
line NMT system disambiguates frequent
word senses quite reliably, the annotation
with both sense labels and lexical chains
improves the neural models’ performance
on rare word senses.

11

1 Introduction

Semantically ambiguous words present a special
challenge to machine translation systems: in or-
der to produce a correct sentence in the target lan-
guage, the system has to decide which meaning
is accurate in the given context. Errors in lexical
choice can lead to wrong or even incomprehensi-
ble translations. However, quantitatively assessing
errors of this type is challenging, since automatic
metrics such as BLEU (Papineni et al., 2002) do
not provide a sufficiently detailed analysis.
Several ways of evaluating lexical choice for
machine translation have been proposed in pre-
vious work. Cross-lingual lexical choice tasks
have been created for the evaluation of word sense
disambiguation (WSD) systems (Mihalcea et al.,
2010; Lefever and Hoste, 2013), and have been ap-
plied to the evaluation of MT systems (Carpuat,
2013). Vickrey et al. (2005) evaluate lexical
choice in a blank-filling task, where the translation
of an ambiguous source word is blanked from the
reference translation, and an MT system is tested
as to whether it can predict it. In all these tasks,
a word-level translation (or set of translations) is
defined as the gold label. A major problem is that
an MT system will be punished for producing a
synonym, paraphrase, or inflected variant of the
predefined gold label. We thus propose a more
constrained task where an MT system has to se-
lect one out of a predefined set of translations.
Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015) has recently
emerged as the new state of the art in machine
translation, producing top-ranked systems in re-
cent shared tasks (Luong and Manning, 2015; Sen-
nrich et al., 2016a; Neubig, 2016). The strengths
and weaknesses of NMT have been the subject of
recent research, and previous studies involving hu-
man analysis have consistently found NMT to be
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more fluent than phrase-based SMT (Neubig et al.,
2015; Bojar et al., 2016; Bentivogli et al., 2016),
but results in terms of adequacy are more mixed.
Bentivogli et al. (2016) report improvements in
lexical choice based on HTER matches on the
lemma-level, while Bojar et al. (2016) found no
clear improvement in a direct assessment of ade-
quacy. Neubig et al. (2015) perform an error an-
notation in which the number of lexical choice er-
rors even increases slightly by reranking a syntax-
based statistical machine translation system with
an NMT model.

We aim to allow for a large-scale, reproducible
method of assessing the capability of an NMT
model to perform lexical disambiguation. NMT
systems can not only be used to generate trans-
lations of a source sentence, but also to assign a
probability P(T'|.S) for any given pair of a source
sentence S and a target sentence 7'. We use this
feature to create a test set with artificially intro-
duced lexical disambiguation errors. Comparing
the scores of an NMT model on these contrastive
translations to the score of the reference allows us
to assess how well the model can distinguish dif-
ferent senses in ambiguous words.

We have created two test sets for the lan-
guage pairs German-English and German-French
with about 6,500 and 6,700 sentence pairs respec-
tively.! Based on the performance of state-of-the-
art NMT systems on these test sets, we discuss the
capability of NMT to perform lexical disambigua-
tion.

Furthermore, we present two methods to im-
prove word sense disambiguation in neural ma-
chine translation by allowing the model to learn
sense-specific word embeddings. Both methods
are based on an external word sense disambigua-
tion. While the first method passes sense labels as
additional input to an NMT system, the second is
motivated by the hypothesis that document-level
context is valuable for disambiguation. We model
this context via lexical chains, i.e. sequences of
semantically-similar words in a given text that ex-
press the topic of the segment they cover in a con-
densed form. Our method is inspired by Galley
and McKeown (2003), who present an approach
to build English lexical chains automatically us-
ing WordNet (Miller, 1995) and evaluate its per-
formance on a sense disambiguation task. Instead

The test set is available from https://github.
com/a-rios/ContraWsD.
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of WordNet, we use sense embeddings in order to
determine the similarity between the words in a
document and thus find and annotate the lexical
chains. Experimental results show the potential of
lexical chains at disambiguating word senses.

2 Contrastive Translations

The test set consists of sentence pairs that contain
at least one ambiguous German word. In order
to produce contrastive translation pairs, we create
an automatically modified version of the reference
translation where we replace the original transla-
tion of a given ambiguous word with the transla-
tion of one of its other meanings. We cluster dif-
ferent translations that overlap in meaning, i.e. that
are (at least sometimes) used interchangeably. We
do not produce any contrastive translations that be-
long to the same cluster as the reference transla-
tion.

As an example, we show the sense clusters that
we consider for two ambiguous German words:

Schlange:
serpent, snake
line, queue

Abzug:

withdrawal, departure
trigger

discount, subtraction

rétraction, sortie

gachette

déduction, soustraction
Table 1 shows an example of source, reference,
and contrastive sentences.

Our approach is inspired by Sennrich (2017),
who use contrastive translation pairs to evaluate
various error types, including morpho-syntactic
agreement and polarity errors. Apart from focus-
ing on another error type, namely word sense er-
rors, our approach differs in that we pair a human
reference translation not just with one contrastive
example, but a set of contrastive examples, i.e.
a set of incorrect translations of the semantically
ambiguous source word. The model is considered
correct if it scores the human reference translation
higher than all of the contrastive translations. Note
that this evaluation does not directly assess the
translation output of a system, which might be dif-
ferent from the set of translations that are scored,
or the search performance of a system. Instead, its
focus is to identify specific model errors.

3 Lexical Choice Errors

In a first step, we compile a list of German nouns
that have semantically distinct translations in En-
glish and French from the lexical translation tables



of existing German-English and German-French
phrase-based MT systems, and we clean these lists
manually. We then extract sentence pairs from par-
allel corpora for all ambiguous words in our lists.
Since for most ambiguous words, one or more of
their meanings are relatively rare, a large amount
of parallel text is necessary to extract a sufficiently
balanced number of examples.>

When creating the test set, our goal is to pro-
duce contrastive translations that cannot be eas-
ily identified as wrong based on grammatical or
phonological features. We do not consider ambi-
guities across word classes (Flucht - *flight, es-
cape’ vs. flucht - "he/she curses’). Furthermore,
we do not consider German words with different
meanings distinguished by gender (der Leiter (m.)
- ’leader’ vs. die Leiter (f.) - ’ladder’).

Contrastive translations are produced automat-
ically based on a replacement of the target word
with the specified contrastive variants. We en-
sure that contrastive translations match the orig-
inal translation in number; in French, we also
limit replacements to those that match the original
translation in gender, and take into account elision
for vowel-initial words.

We consider both plural and singular forms in
German, but exclude word forms that are unam-
biguous. For instance, the German singular word
Schuld can refer to debt or guilt, however, the plu-
ral form Schulden can only be translated as debts.

Furthermore, we exclude a small number of
cases where the context in either source or tar-
get sentence clearly indicates the meaning: For in-
stance, if the German word Absatz (Cheel’, ’sales’,
"paragraph’) is followed by a number, the transla-

ZSentence pairs have been extracted from the following
corpora:

o WMT test and development sets 2006-2016 (de-en) and
2006-2013 (de-fr)

e Crédit Suisse News Corpus https://pub.cl.
uzh.ch/projects/bdc/de/

e corpora from OPUS ((Tiedemann, 2012)):

— Global Voices (http://opus.lingfil.
uu.se/GlobalVoices.php)

Books (http://opus.lingfil.uu.se/
Books.php)

EU Bookshop Corpus (http://opus.
lingfil.uu.se/EUbookshop.php)
OpenSubtitles 2016 (German-French)
(http://opus.lingfil.uu.se/
OpenSubtitles2016.php)

e MultiUN (Ziemski et al., 2016)
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tion is in all likelihood *paragraph’ and contrastive
sentences with "heel’ or ’sales’ will not present a
challenge for the model.

Following our strategy of focusing on diffi-
cult cases, we oversample the less frequent word
senses for the test set to reduce the performance
of a simple most frequent sense baseline to that
of random guessing. Specifically, we include 100
test instances per word sense, or the total amount
of available sentence pairs if less than 100 were
found in the parallel data.

For German-English, the test set contains 84
word senses, with on average 3.5 contrastive trans-
lations per reference; for German-French, it con-
tains 71 word senses, with an average of 2.2 con-
trastive translations per reference. A full list of
word senses can be found in the appendix.

We include the location of the sentence in the
original corpus in our metadata to allow future ex-
periments with document-level information.?

4 Sense Embeddings in Neural Machine
Translation

In addition to the evaluation of a standard
NMT model on the word sense disambigua-
tion task detailed in the previous section, we
present two experiments on German—English and
German—French to improve lexical choice using
methods from WSD. In a first approach, we com-
pute sense embeddings and include the resulting
sense labels into the NMT model as additional in-
put features (Alexandrescu and Kirchhoff, 2006;
Sennrich and Haddow, 2016). For our second
experiment, instead of adding the labels directly
to the input, we use them to build lexical chains
of similar words in the given document. These
lexical chains contain information about the topic
and/or domain of the document, and we include
them as additional features into our NMT model.

4.1 Sense Embeddings

Sense embeddings are vector representations of
word senses in a vector space, but unlike word em-
beddings, where every word form receives a vector
representation, with sense embeddings we obtain
separate vector representations for each sense of a
given word. To compute the sense embeddings we

3A snapshot of the corpora used to extract the ex-
amples can be found at http://data.statmt.org/
ContraWsD/.



source:

Also nahm ich meinen amerikanischen Reisepass und stellte mich in die Schlange fiir Extranjeros.

reference: So I took my U.S. passport and got in the line for Extranjeros.
contrastive:  So I took my U.S. passport and got in the snake for Extranjeros.
contrastive:  So I took my U.S. passport and got in the serpent for Extranjeros.
source: Er hat zwar schnell den Finger am Abzug, aber er ist eben neu.
reference: 1l a la gdchette facile mais c’est parce qu’il débute.

contrastive: Il a la soustraction facile mais c’est parce qu’il débute.
contrastive: Il a la déduction facile mais c’est parce qu’il débute.

contrastive: Il a la sortie facile mais c’est parce qu’il débute.

contrastive: Il a la rétraction facile mais c’est parce qu’il débute.

Table 1: Contrastive Translations

use SenseGram® (Pelevina et al., 2016), which
has been shown to perform as good as stat-of-the-
art unsupervised WSD systems.

The method to learn the sense embeddings
using SenseGram consists of four steps that
we briefly summarise here. First, the method
learns word embeddings using the word2vec
toolkit (Mikolov et al., 2013).° It then uses these
word embeddings to build a word similarity graph,
where each word is linked to its 200 nearest neigh-
bours. Next, it induces a sense inventory, where
each sense is represented by a cluster of words
(e.g. the sense of table-furniture is represented
with the word cluster desk, bench, dining ta-
ble, surface, and board). The sense inventory of
each word is obtained through clustering the ego-
networks of its related words. Finally, the method
computes the sense embedding of each word sense
by averaging the vectors of the words in the corre-
sponding cluster.

Once the sense embeddings are learned, we la-
bel all content words in the data with their cor-
responding sense and include this information as
additional features.

4.2 Lexical Chains

As described above, SenseGram allows us to dis-
ambiguate a word based on the context in which
it occurs. Based on the disambiguated words,
we can detect the lexical chains, i.e. chains of

*https://github.com/tudarmstadt-1t/
sensegram

>Embeddings for our models were learned on the follow-
ing corpora:

o SdeWaC (Faal} and Eckart, 2013) (~768M words)

e Common Crawls (~775M words)

e Europarl (~47M words)

e News Commentary (~6M words)
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semantically similar words within a given docu-
ment. To compute the semantic similarity between
two word senses, we calculate the cosine similar-
ity between their sense embeddings.® The closer
to 1.0 the resulting value is, the higher their se-
mantic similarity. To distinguish between simi-
lar and non-similar senses, we set a threshold of
0.85 that we manually picked by looking at how
different values affect the resulting lexical chains:
a lower threshold builds lexical chains contain-
ing sense words that are not sufficiently related,
whereas a higher threshold results in semantically
strong, but possibly incomplete lexical chains that
do not cover all words belonging to the chain.

We use the method proposed by Mascarell
(2017) to detect lexical chains in a document. This
method is inspired by Morris and Hirst (1991)’s
approach, which manually finds lexical chains in
a document using a thesaurus to obtain the simi-
larity between words. As detailed in Section 4.1,
we use sense embeddings instead of a dictionary
to compute the semantic similarity.

Given a document as input, our method pro-
cesses sentences and their content words sequen-
tially. For each sentence, it computes the semantic
similarity between the current content word ¢ and
each previous content word ¢’ in the previous five
sentences, based on the approach by Morris and
Hirst (1991). If ¢ and ¢’ are semantically similar,
our method proceeds as follows:

e If c and ¢’ are not part of a chain, create a new
chain with ¢ and ¢’

e If ¢’ is in a chain ch;, append c to ch;.

8Using sense embeddings instead of word embeddings for
this task ensures that we can recognize similar words even
if they are polysemic and not all of their senses are related.
For instance, mouse and rat are related if mouse refers to the
animal, but not if mouse refers to the computer device.



e If ¢ and ¢’ are in two different chains, merge
both chains.

Since every linked word in the chain provides
context for disambiguation, the method creates
as many links as possible between similar words.
Therefore, it also preserves one-transitive links:
¢; links to c¢;4; by transitivity if ¢; links to ¢; 1k
and c¢;y to ¢;y;, where i<k<l (Morris and Hirst,
1991).

As Morris and Hirst (1991) indicate, words
linked by one-transitive links are semantically re-
lated, but words further apart in the chain might
not be: In their paper, they point to the lexical
chain {cow, sheep, wool, scarf, boots, hat, snow}.
While consecutive words in the chain such as wool
and scarf are semantically related, cow and snow
are not.

To provide the NMT model with the detected
lexical chains in the source, we represent this dis-
course knowledge in the input as a combination
of features. Accordingly, each word in the lex-
ical chain is annotated with its linked words as
factors. For example, if the German word Ab-
satz is linked in the lexical chain to Wirtschaft
(Ceconomy’) and Verkauf (’sale’), it is represented
as Absatz|Wirtschaft|Verkauf. The resulting vector
representation of Absatz is the vector concatena-
tion of each individual feature’s embeddings.

Since all words in the input must have the same
number of factors, each word that is not part of
a lexical chain is annotated with itself as factors.
Similarly, words linked to only one word are an-
notated with the corresponding linked word in the
chain and the word itself.

5 Evaluation

We present an evaluation with two basic neu-
ral MT systems, trained with Nematus (Sennrich
et al., 2017), using byte pair encoding (BPE)
on both source and target side (Sennrich et al.,
2016b). For both the German-English and the
German-French experiments, we train a model on
2.1 million sentence pairs from Europarl (v7) and
News Commentary (v11).” We use these corpora
because they contain document boundaries, which
is arequirement for the lexical chains experiments.

We present further results for models that use
additional source-side features, a) the sense labels
themselves and b) lexical chains. The feature is

7
http://opus.lingfil.uu.se/News-Commentaryll.php
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system accuracy
de-en (N = 7243)

NMT baseline 0.7095
NMT sense labels 0.7138
NMT lexical chains 0.7034
human ~0.96
de-fr (N = 6746)

NMT baseline 0.7023
NMT sense labels 0.6998
NMT lexical chains 0.7083
human ~0.93

Table 2: Word sense disambiguation accuracy

Sehen Sie die Muster?
Do you see the patterns?
Do you see the examples ?

German
reference
contrastive

Table 4: Ambiguous sentence pair

given its own embedding space, and the model can
thus learn sense-specific embeddings. If a word is
segmented into multiple subword units by BPE,
the additional input feature of the word is repeated
for each unit. Vocabulary size for all models is
90,000.

We train the models for a week, using
Adam (Kingma and Ba, 2015) to update the model
parameters on minibatches of the size 80. Every
10,000 minibatches, we validate our model on a
held out development set via BLEU and perplex-
ity. The maximum length of the sentences is 50.
The total size of the embedding layer is 500 for
both the baseline and the system trained with addi-
tional input features, and the dimension of the hid-
den layer is 1024. For the experiments with addi-
tional input features, we divide the embedding size
equally among the features. Conceivably, keeping
the dimensionality of the word embedding con-
stant and adding more parameters for additional
features would result in better performance, but
we wanted to rule out that any performance im-
provements are solely due to an increase in model
size.

To assess a model’s capability to distinguish dif-
ferent meanings of ambiguous words, we let it as-
sign a score to the reference translation and to the
artificially created contrastive translations. If the
score of the reference translation is higher than the
scores of all contrastive translations, this counts as
a correct decision.
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Figure 1: Word sense disambiguation accuracy by word sense frequency in training set (absolute, or

relative to source word frequency).

de-en de-fr
baseline  sense labels lexical chains baseline  sense labels lexical chains
frequency senses™  accuracy accuracy accuracy senses”  accuracy accuracy accuracy
>10000 2 0.9840 0.9840 0.9840 2 0.9900 0.9900 0.9900
>5000 7 0.9639 0.9534 0.9459 1 1.0000 1.0000 0.9900
>2000 4 0.9386 0.9284 0.9284 3 0.7375 0.7725 0.7150
>1000 6 0.8598 0.8632 0.8427 3 0.9333 0.9367 0.9167
>500 8 0.7410 0.7308 0.7090 6 0.8260 0.8260 0.8361
>200 17 0.7800 0.7734 0.7900 16 0.8444 0.8475 0.8406
>100 9 0.6058 0.6095 0.6156 9 0.7544 0.7456 0.6933
>50 8 0.7899 0.7645 0.7630 6 0.5160 0.5200 0.6420
>20 9 0.4055 0.4521 0.3945 8 0.5276 0.5430 0.5469
0-20 14 0.3127 0.3664 0.3237 17 0.4924 0.4611 0.5156

Table 3: Accuracy of word sense prediction by frequency of word sense in training set (* number of senses

in frequency range).

baseline sense labels lexical chains
de-en 17.1 16.9 17.1
de-fr 14.6 14.6 14.7

Table 5: Average BLEU scores on newstest 2009-
2013

As Table 2 shows, both the German—French
and the German—English baseline model achieve
an accuracy of 0.70 on the test set. We also re-
port accuracy of a smaller-scale human evaluation,
in which two human annotators (one per language
pair) were asked to identify the correct translation
for a random sample of the test set (N=100-150).
The annotation was performed purely on sentence-
level, without any document context, and shows
that some ambiguities are even hard for a human
to resolve without context. Consider the sentence
pairs in Table 4 for such an example. We specu-
late that both humans and MT systems should be
able to resolve more ambiguities with wider con-
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text. Even with only sentence-level information,
the gap between human and NMT performance is
sizeable, between 23 and 26 percentage points.

An important indicator of how well a word
sense is translated by NMT is its frequency in
the training data. Figure 1 illustrates the relation-
ship between the frequency of a word sense in the
training data (both absolute and relative to the fre-
quency of the source word) and the accuracy the
model achieves on the test set.

There is a high correlation between word sense
frequency and accuracy: for German— English,
Spearman’s p is 0.75 for the correlation between
accuracy and absolute frequency, and 0.77 for
the correlation between accuracy and relative fre-
quency. For German—French, p is 0.58 for both.
It is unsurprising that the most frequent word sense
is preferred by the model, and that accuracy for it
is high. We hence want to highlight performance
on rarer word senses. Table 3 shows the word
sense accuracy of the NMT models grouped by
frequency classes and the number of senses in each



class. All models achieve close to 100% accu-
racy on words that occur more than 10,000 times
in the training data. For the rare senses however,
the NMT models are much less reliable: for word
senses seen 0-20 times in training, the baseline ac-
curacy is between 31-49%.

The annotation of the source side with sense
labels improves the accuracy on the test set by
0.43% for German—English, while the lexical
chains does not improve the model on average.
On the other hand for German—French, the lex-
ical chains result in an improvement of 0.6%, but
the annotation with sense labels does not lead to a
better score on the test set on average. As shown
in Table 3, there is little room for improvement for
frequent word senses, and sense labels and lexical
chains show the strongest improvements over the
baseline for the less frequent word senses. Table 5
contains the average BLEU scores on the newstest
2009-2013 test sets.

6 Conclusions

This paper introduces a novel lexical decision task
for the evaluation of NMT models, and presents
test sets for German-English and German-French.
This task allows for the automatic and quantitative
analysis of the ability of NMT models to perform
lexical disambiguation, a phenomenon that has
previously been remarked to be challenging for
NMT. First evaluations with NMT models show
that lexical choice is resolved well for frequent
word senses, but not for infrequent word senses.
Additional experiments to add a) sense labels to
content words and b) topic knowledge in the form
of lexical chains to the NMT model shows that se-
mantic information improves lexical choice espe-
cially for word senses that do not occur frequently
in the training data. We find that the inclusion of
sense labels improves lexical choice on our test
set 0.43% for German—English. Furthermore, we
gain a small increase of 0.6% in accuracy with lex-
ical chains for German—French.

We consider the performance of the baseline
NMT systems respectable, given that the test set
was created to be challenging, and has a strong fo-
cus on difficult cases. Our experiments indicate
that NMT models perform poorly for rare word
senses, and we observe moderate improvements
for these rare word senses by using methods from
WSD to complement the disambiguation capabil-
ity of the main NMT model. Still, the problem is
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far from solved, and there is a sizeable difference
of 23-26 percentage points between NMT perfor-
mance and human performance. We hope that the
release of our test set will inspire and support fu-
ture research on the problem of word sense disam-
biguation for machine translation. In our human
experiments, we also found evidence that wider
document context is necessary to solve this task.
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Abstract

Translation into a morphologically rich
language requires a large output vocabu-
lary to model various morphological phe-
nomena, which is a challenge for neu-
ral machine translation architectures. To
address this issue, the present paper in-
vestigates the impact of having two out-
put factors with a system able to generate
separately two distinct representations of
the target words. Within this framework,
we investigate several word representa-
tions that correspond to different distri-
butions of morpho-syntactic information
across both factors. We report experiments
for translation from English into two mor-
phologically rich languages, Czech and
Latvian, and show the importance of ex-
plicitly modeling target morphology.

1 Introduction

Open vocabularies remain a challenge for Neu-
ral Machine Translation (NMT) (Cho et al., 2014;
Bahdanau et al., 2015), both for linguistic and
computational reasons. From a linguistic stand-
point, morphological variation and lexical produc-
tivity cause word forms unseen in training to oc-
cur in source texts, which may also require to gen-
erate novel target word forms. Using very large
input/output vocabularies partially mitigates these
issues, yet may cause serious instability (when
computing embeddings of rare or unseen words)
and complexity issues (when dealing with large
softmax layers).

Several proposals have been put forward to ad-
dress these problems, which are particularly harm-
ful when one language is a morphologically rich

*Both authors have contributed equally to this work.
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language (MRL), exhibiting larger token/type ra-
tio than is observed for English. One strategy is to
improve NMT’s internal procedures: for instance
by using a structured output layer (Mnih and Hin-
ton, 2008) or by altering the training or decoding
criteria (Jean et al., 2015). An alternative approach
is to work with representations designed to remove
some variations via source-side or target-side nor-
malization procedures; or more radically to con-
sider character-based representations (Ling et al.,
2015; Luong and Manning, 2016; Costa-jussa and
Fonollosa, 2016), which are however much more
costly to train, and make long distance dependen-
cies even longer.

None has however been as successful as the re-
cent proposal of Sennrich et al. (2016b) which
seems to achieve a right balance between a lim-
ited vocabulary size and an ability to translate a
fully open vocabulary. In a nutshell, this approach
decomposes source and target tokens into smaller
units of variable length (using what is now termed
as a “Byte Pair Encoding” or BPE in short): this
means that (a) all source tokens can be represented
as a sequence of such units, which crucially are all
seen in training; (b) all possible target words can
also be generated; (c) the size of the output layer
can be set to remain within tractable limits; (d)
most frequent words are kept as BPE units, which
preserves the locality of many dependencies.

In this work, we consider possible ways to ex-
tend this approach by also supplying target-side
linguistic information in order to help the system
generate correct target word forms. Our proposal
relies on two distinct components (a) linguistically
or data-driven normalization procedures manipu-
lating various source and target word segmenta-
tions, as well as eg. multiple factors on the tar-
get side (see § 4), and (b) a neural architecture
equipped with a dual output layer to predict the
target in two simpler tasks generating the lexi-
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cal unit and the morphological information (§ 3).
These components are assessed separately and in
conjunction using translation from English into
two MRLs: Czech and Latvian. Our experiments
show improvement over a strong (Denkowski and
Neubig, 2017) BPE-to-BPE baseline, incorporat-
ing ensemble of models and backtranslated data
(§ 5). Overall, they suggest that BPE repre-
sentations, which loosely simulates concatena-
tive morphological processes, is complementary to
feature-based morphological representations.

2 Related Work

Translating from and into MRLs has recently at-
tracted some attention from the research commu-
nity, as these languages compound a number of
difficulties for automatic translation, such as the
need to analyze or generate word forms unseen in
training, or to handle variation in word order.

To mitigate the unknown word problem, a first
approach consists in translating into target stems
(Minkov et al., 2007; Toutanova et al., 2008); the
right form is then selected from the full paradigms
in a second step using a classifier. Target words
may also be represented as lemmas complemented
with side information. Bojar (2007); Bojar and
Kos (2010); Bojar et al. (2012) use such a rep-
resentation for two statistical MT systems: the
first one translates from English into Czech lem-
mas decorated with source-side information and
the second one performs a monotone translation
into fully inflected Czech.

Fraser et al. (2012) propose a target morphol-
ogy normalization for German words represented
as lemmas followed by a sequence of morpholog-
ical tags and introduce a linguistically motivated
selection of these when translating from English.
The selection step consists in predicting the tags
that have been removed during normalization, us-
ing a specific Conditional Random Field (CRF)
model for each morphological attribute to predict.
Finally, word forms are produced via look-up in
a morphological dictionary. This approach is ex-
tended by Weller et al. (2013), who takes verbal
subcategorization frames into account, thus en-
abling the CRFs to make better predictions. Note
that Burlot et al. (2016) and El Kholy and Habash
(2012b,a) propose related approaches respectively
for translating into Czech and Arabic.

Factored word representations have also been
considered in neural language models (Niehues
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et al., 2016; Alexandrescu and Kirchhoff, 2006;
Wu et al., 2012), and more recently in a neural
machine translation architecture as input features
(Sennrich and Haddow, 2016) and in the output
by separating the lemma and morphological fac-
tors (Garcia-Martinez et al., 2016). One contri-
bution of the current paper is the investigation of
new variants of the latter architecture. There have
been other attempts with dual training objectives
in NMT. In (Chen et al., 2016), a guided alignment
training using topic information of the sentence as
a second objective helps the decoder to improve
the translation. Multi-task and multilingual learn-
ing in NMT have also been considered in several
papers (Luong et al., 2015; Dong et al., 2015; Firat
et al., 2016), where training batches have to care-
fully balance tasks and language pairs. In contrast
to these approaches, our factored NMT (FNMT)
system produces several outputs simultaneously.

3 Model Architectures

The baseline NMT system used in this paper
is an implementation of a standard NMT model
with attention mechanism (Bahdanau et al., 2015).
It consists of a sequence to sequence encoder-
decoder of two recurrent neural networks (RNN),
one used by the encoder and the other by the de-
coder. This architecture integrates a bidirectional
RNN encoder (see bottom left part with green
background of Figure 1). Each input sentence
word z; (+ € 1... N with N the source sequence
length) is encoded into an annotation a; by con-
catenating the hidden states of a forward and a
backward RNN. Each annotation aq ...ay thus
represents the whole sentence with a focus on the
word(s) being processed. The decoder is based on
a conditional gated recurrent unit (GRU) (Firat and
Cho, 2016) made of two GRUs interleaved with
the attention mechanism. The attention mech-
anism computes a context vector C; as a con-
vex combination of annotation vectors, where the
weights of each annotation are computed locally
using a feed-forward network. The decoder RNN
takes as input the embedding of the previous out-
put word in the first GRU, the context vector C; in
the second GRU and its hidden state. The softmax
output layer is connected to the network through a
non-linear layer which takes as input the embed-
ding of the previous output word as well as the
context vector and the output of the decoder from
the second GRU (both adapted with a linear trans-



formation, respectively, Lo and Lg). Finally, the
output probabilities for each word in the target vo-
cabulary are computed with a softmax. The word
with the highest probability is the translation out-
put at each time step. The encoder and the de-
coder are trained jointly to maximize the condi-
tional probability of the reference translation.

The Factored NMT system of Garcia-Martinez
et al. (2016) is an extension of the standard NMT
architecture that allows the system to generate sev-
eral output symbols at the same time, as presented
in Figure 1.

ENCODER

I
I
| Bidirectional RNN Annotations

”

Figure 1: Factored NMT system.

The encoder and the attention mechanism of the
Factored NMT are the same as the standard NMT
model. However, the decoder has been modified
to produce multiple outputs. The two outputs are
constrained to have the same length. The decoder
feedback is also modified to use information from
the multiple output streams. The concatenation of
the embeddings of the pair of generated symbols is
used to feed the decoder’s cGRU at each timestep.

Two types of FNMT models have been used for
this work. Their architecture differ after the gener-
ation of the decoder state. The first model contains
a single hidden-to-output (h20) layer which is used
by the two separate softmax. This layer uses the
context vector, the decoder’s hidden state and the
concatenation of the embeddings of the previous
generated tokens. The second model is one contri-
bution of the current work. As shown in Figure 1),
it contains two separated h20 layers. They are sim-
ilar to the h20 layer in the first model except that
instead of using the concatenation of the embed-
dings of the previously generated factors, each h20
layer receives only the embedding of the factor it
is generating. The two separated h2o layers allow
the system to have more weights specialized for
each output.

DECODER |
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4 Word Representations

This paper focuses on the question of word repre-
sentations, which we understand not only in terms
of word segmentation, but also as the quantity of
morpho-syntactic information encoded in a word.
We introduce three representations varying in the
quantity of grammatical information they contain:

o fully inflected words: this is a baseline setup
where all the lexical and grammatical infor-
mation is encoded in a single factor.

normalized words: only a well chosen sub-
set of morphological features is kept in the
first factor; the second factor corresponds to
the Part of Speech (PoS).

lemmas: the output splits the lexical con-
tent of the word (first factor: lemma) and its
grammatical content (second factor: PoS).

These differences are illustrated in Table 1.

4.1 Normalizing Word Forms

Translating from English into a MRL is made dif-
ficult by linguistic divergences, as English lacks
many of the morphological contrasts that exist in
the MRL. Normalization is needed to reduce the
morphological variability on the MRL side so as
to limit the number of types in the target, and to
mitigate sparsity issues. This strategy is used for
instance by Burlot et al. (2016) who remove the
case mark from Czech nouns, which is not pre-
dictable from their English counterpart(s).

Normalization is usually performed using hand-
crafted rules and requires expert knowledge for
each language pair. In this paper, normalized
words are obtained with an automatic data-driven
method! introduced in (Burlot and Yvon, 2017b).

In a nutshell, this method performs a cluster-
ing of the MRL vocabulary by grouping together
words that tend to share the same translation(s) in
English. This translational similarity is based on
the conditional entropy of lexical translation mod-
els estimated, for each MRL word form, using
automatic word alignments. The clustering pro-
cedure merges two words whenever the resulting
cluster does not increase the conditional entropy,
which ensures a minimal loss of information dur-
ing the whole process.

'The source code is available at github.com/
franckbrl/bilingual_morph_normalizer



The actual normalization algorithm is delexi-
calized and operates at the level of PoS. Each
word is represented as a lemma, a coarse PoS
and a sequence of morphological tags (e.g.
kocka+Noun+Sing+Accusative).  Translational
similarities are computed on such words and are
combined to provide a PoS-level similarity be-
tween two tag sequences. Successive merge op-
erations group into one cluster different such tag
sequences. As a result of this procedure, we rep-
resent words as a lemma and a cluster identifica-
tor (ID) taking the form of a coarse PoS and an
arbitrary integer, such as kocka+Noun+7 in Ta-
ble 1. In this example, the cluster ID Noun+7
stands for a set of fine-grained PoS, such as
{Sing+Nominative, Sing+Accusative, ... }.

This representation introduces a direct corre-
spondence between the first and the second factor
in our architecture, since the former (the cluster
ID) constraints the set of possible values of the lat-
ter (the fine-grained PoS), which is notably used in
our constrained decoding procedure (§ 5.4).

4.2 Word Representation Setup

The example of Table 1 shows that words are also
varying along a second dimension: in addition to
considering unsegmented lexical units (be it fully
inflected words, normalized words or lemmas), we
also investigate the impact of a segmentation of
these units using BPE (Sennrich et al., 2016b).

In this scenario, BPE segmentation is performed
on fully inflected words and lemmas. For its ap-
plication to normalized words, the cluster ID was
considered as a minimal unit that cannot be seg-
mented (just like any other character), in order to
avoid segmentations like kocka+No- un+7. For
these setups, the PoS information (second factor)
is replicated for all subparts of a word.

We finally use an alternative representation with
normalized words to which BPE segmentation is
applied and cluster IDs are systematically split
from the lemma. Whenever the FNMT system
predicts a lemma in the first factor, it is forced to
predict a null PoS in the second factor. On the
other hand, when a split cluster ID is predicted, the
second factor should output an actual PoS. This
specific treatment of the second factor is expected
to give the system a better ability to map a word
to a compatible PoS, thus avoiding, for instance,
the prediction of a verbal PoS for the Czech noun
kocka (cat).
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These different word representations imply a
progressive reduction of the target vocabulary. We
computed the vocabulary size of Czech on the par-
allel data used to train the systems (§ 5.1) over
unsegmented words. We thus have 2.1M fully
inflected words, 1.9M normalized words, 1.5M
normalized words with split clusters (lemmas and
clusters), and 1.4M lemmas.

5 Experiments

We introduce here the experimental setup for all
the reported systems translating from English into
Czech and Latvian.

5.1 Data and Preprocessing

Our experimental setting follows the guidelines
of the WMT’17? news translation task. The pre-
processing of English data relies on in-house tools
(Déchelotte et al., 2008). All the Czech data
were tokenized and truecased the Moses toolkit
(Koehn et al., 2007). PoS-tagging was performed
with Morphodita (Strakova et al., 2014). The
pre-processing of Latvian was provided by Tilde.?
Latvian PoS-tags were obtained with the LU MII
Tagger (Paikens et al., 2013).

For English-to-Czech, the parallel data used
consisted in nearly 20M sentences from a subset
of WMT data relevant to the news domain: News-
commentary, Europarl and specific categories of
the Czeng corpus (news, paraweb, EU, fiction).
Newstest-2015 was used for validation and the
systems are tested on Newstest-2016 and 2017.
The normalization of the Czech data was trained
on the parallel data used to train the MT sys-
tems, except Czeng fiction and paraweb subcor-
pora, which amounts to over 10M sentences.

A part of these systems was also trained on syn-
thetic parallel data (Sennrich et al., 2016a) (see
§ 6). The Czech monolingual corpus News-2016
was backtranslated to English using the single best
system provided by the University of Edinburgh
from WMT’16.* In order to prevent learning from
being too biased towards the synthetic source of
this set, we used initial bitext parallel data as well.
We added five copies® of News-commentary and

2
3

www.statmt.org/wmt17
www.tilde.com
*http://data.statmt.org/rsennrich/
wmt16_systems/
5 Adding multiple copies of the same corpus into the train-
ing set can be seen as a coarse way to weight different corpora
and favor in-domain bibtext.



fully infl. norm. words lemmas
Single factor | factor 1 factor 2 factor 1  factor 2
plain kocky kocka+N+7 N+Pl+Nom kocka N+Pl+Nom
BPE ko- ¢ky ko- ¢ka+N+7  N+Pl+Nom N+Pl+Nom | ko-¢ka  N+Pl+Nom N+Pl+Nom
+ split cls ko- ¢ka- N+7  null null N+Pl+Nom

Table 1: Multiple representations for the Czech word kocky (cats). N stands for noun, P/ for plural and

Nom for nominative case.

the news subcorpus from Czeng, as well as SM
sentences from the Czeng EU corpus randomly se-
lected after running modified Moore-Lewis filter-
ing with XenC (Rousseau, 2013).

The English-to-Latvian systems used all the
parallel data provided at WMT’17. The DCEP
corpus was filtered with the Microsoft sentence
aligner® and using modified Moore-Lewis. We
kept the best 1M sentences, which led to a to-
tal of almost 2M parallel sentences. The systems
were validated on 2k sentences held out from the
LETA corpus and we report results on Newsdev-
2017 and newstest-2017. The normalization of
Latvian data was trained on the same parallel sen-
tences used to train the MT systems.

Training was carried out for a part of these sys-
tems on synthetic parallel data. We used a back-
translation of the monolingual corpora news-2015
and 2016 provided by the University of Edinburgh
(Moses system). To these corpora were added 10
copies of the LETA corpus, as well as 2 copies of
Europarl and Rapid.

Bilingual BPE models for each language pair
and system setup were learned on the bitext paral-
lel data. 90k merge operations were performed to
obtain the final vocabularies. For (F)NMT models,
the vocabulary size of the second factors is only
1.5k for Czech and 376 for Latvian. The num-
ber of parameters in (F)NMT systems increases
around 2.5% for Czech and 7% in Latvian.

5.2 System Setup

Only sentences with a maximum length of 50 were
kept in the training data, except for the setup where
cluster IDs were split in normalized words. In this
case, we set the maximum length to 100. For the
training of all models, we used NMTPY, a Python
toolkit based on Theano (Caglayan et al., 2017)
and available as free software’. We used the stan-
dard NMT system on fully inflected words and the

*https://www.microsoft.com/en-us/
download/details.aspx?id=52608
"nttps://github.com/lium-1st/nmtpy
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FNMT architecture described in § 3 on all other
word representations.

All systems (F)NMT systems have an embed-
ding dimension of 512 and hidden states of di-
mension 1024 for both the encoder and the de-
coder. Dropout is enabled on source embeddings,
context vector, as well as output layers. When
training starts, all parameters are initialized with
Xavier (Glorot and Bengio, 2010). In order to
slightly speed up the training on the actual parallel
data, the learning rate was set to 0.0004, patience
to 30 with validation every 20k updates. On the
synthetic data, we finally set the learning rate to
0.0001 and performed validation every 5k updates.
These systems were tuned with Adam optimizer
(Kingma and Ba, 2014) and have been training for
approximately 1 month.

5.3 Reinflection

The factored systems predict at each time step a
lexical unit and a PoS-tag, which requires a non-
trivial additional step producing sentences in a
fully inflected language. We refer to this process
as reinflection.

Given a lexical unit and a PoS-tag, word forms
are retrieved with a dictionary look-up. In the
context of MRL, deterministic mappings from a
lemma and a PoS to a form are very rare. Instead,
the dictionary often contains several word forms
corresponding to the same lexical unit and mor-
phological analysis.

A first way to solve this ambiguity is to simply
compute unigram frequencies of each word form,
which was done over all the monolingual data
available at WMT’17 for both Czech and Latvian.
During a dictionary look-up, ambiguities can then
be solved by taking the most frequent word form.
The downside of this procedure is that it ignores
important information given by the target mono-
lingual context. For instance, the Czech preposi-
tion s (with) will have different forms according
to the right-side context: s tebou (with you), but se
mnou (with me). A solution is to let an inflected-



word-based system select the correct word form
from the dictionary. To this end, k-best hypotheses
from the dictionary are generated. Given a sen-
tence containing lemmas and PoS, we perform a
beam search going through each word and keep-
ing at each step the k-best reinflection hypotheses
according to the unigram model mentioned above.
For Czech reinflection, we used the Morphodita
generator (Strakova et al., 2014). Since we had no
such tool for Latvian, all monolingual data avail-
able at WMT’ 17 were automatically tagged using
the LU MII Tagger (Paikens et al., 2013) and we
gathered the result in a look-up table. As one could
expect, we obtained a large table (nearly 2.5M
forms) in which we observed a lot of noise.

5.4 Constrained Decoding

The factored system described in § 3 outputs a
lexical unit and a PoS-tag at each time step. A
peculiarity of this system is that the predictions
of both factors are independent. There is only a
weak dependency due to the fact that both share
the same decoder state and context vector. As a
consequence, the best hypothesis for the first fac-
tor can well be incompatible with the best hypoth-
esis for the second factor, and the risks of such
mismatches only get worse when top-n hypothe-
ses are considered, as in beam search.

Our constrained decoding procedure aims at
enforcing a strong consistency between factors.
Each word in the target vocabulary is first associ-
ated with a specific set of PoS-tags. The decoding
procedure is modified as follows: for each can-
didate target word, we only retain the compatible
PoS tags, and select the top-n hypotheses to be
kept in the beam from this filtered list. This con-
straint ensures that the beam search does not eval-
uate incompatible pairs of factors. (e.g. the PoS
Preposition and the word cat).

With a dictionary, creating such a mapping is
trivial for full lemmas, but less obvious in the case
of BPE units. Since the latter can be generated
from different words having different grammati-
cal classes, the size of the set of possible PoS can
grow quickly. For normalized words, things are
much easier and do not even require a dictionary,
as the mapping between cluster IDs and compati-
ble PoS is learnt during the normalization process
(see § 4.1). Thus constrained decoding was only
performed for (a) unsegmented lemmas, and (b)
unsegmented and segmented normalized words.
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6 Automatic Evaluation

Results are reported using the following automatic
metrics: BLEU (Papineni et al., 2002), BEER
(Stanojevi¢ and Sima’an, 2014) which tunes a
large number of features to maximize the human
ranking correlation at sentence level and Charac-
TER (Wang et al., 2016), a character-level version
of TER which has shown a high correlation with
human rankings (Bojar et al., 2016). Each score on
fully inflected word systems is averaged from two
independent runs (for both single and ensembled
models).

6.1 Experiments with Bitext

The results using the bitext provided at the
WMT’17 the evaluation campaign are presented
in Table 2 for English-to-Czech 8 and in Table 3
for English-to-Latvian.

We can observe that using the constrained de-
coding consistently improves the results, except
when using split clusters. In this last case, the
system is forced to predict a PoS in the second
factor whenever it has generated a cluster ID in
the first factor. Since there is a reduced quantity
of such cluster IDs, the model has no difficulty to
learn the constraints by itself and therefore to map
a cluster ID exclusively to a specific subset of PoS.
In the Latvian lemma setup, we observe that the
improvement using constrained decoding is lower
than for Czech (see Table 3), which is probably
due to the quality of the noisy look-up table we
have created for Latvian (see § 5.1). Note that we
have no such dependency on the lexical resources
at decoding time for the normalized word setups,
where improvements are comparable across both
language pairs.

The systems using BPE tokens significantly
outperform word-level systems, which confirms
the analysis of Sennrich et al. (2016b). The results
show that BPE units are even more efficient when
applied to normalized words, providing significant
improvements over segmented inflected words of
1.79 and 1.85 BLEU points for Czech, and 0.78
and 1.06 for Latvian.

The lemma representation was tested with the
two FNMT models presented in § 3, one model
using a single hidden-to-output layer (single h2o
layer) and the other model using two separated
hidden-to-output layers (separated h2o layers).

8 At decoding time, Czech systems performed better with
a beam size of 2, which was used to provide these results.



Newstest-2016
BLEU1 BEERtT CTER] BLEUtT BEER?T CTERJ|

Newstest-2017

word-to-word

fully inflected w. 15.74 47.29 74.79 12.76 44.81 78.90
factored norm

sep. h2o layers 16.63 49.78 68.02 13.70 47.13 72.81
+ constrained dec. 17.71 50.38 66.94 14.88 47.81 71.44
factored lemmas

single h2o0 layer 16.73 50.50 65.51 14.09 48.15 69.85
+ constrained dec. 17.42 50.94 64.95 14.93 48.76 69.26
sep. h2o layers 16.54 50.12 66.35 13.89 47.78 70.63
+ constrained dec. 17.56 50.73 65.48 14.66 48.26 69.96

BPE-to-BPE

fully inflected w. 18.24 52.29 60.05 15.08 49.54 65.38
factored norm

sep. h20 layers 18.59 53.01 59.95 15.89 50.49 66.75
+ constrained dec. 20.03 53.96 58.90 16.93 51.14 64.13
split clusters 19.74 53.90 59.95 16.31 50.73 64.49
+ constrained dec. 19.71 53.96 59.85 16.38 50.83 64.35
factored lemmas

single h2o0 layer 17.30 51.82 61.19 14.19 48.98 66.28
sep. h2o0 layers 17.34 52.22 60.62 14.73 49.61 65.34

Table 2: Scores for English-to-Czech systems trained on official bitext data

We observe mixed results, here: the system with
the single h2o0 layer has slightly better results for
the word-to-word systems, but the BPE-to-BPE
factored lemma system obtains better performance
with the separated h2o0 layers architecture. For
that reason, we decided to only use the separated
h2o layers architecture for the next set of experi-
ments involving synthetic data which is the aim of
the next section.

6.1.1 Experiments with Selected Bitext and
Synthetic Data

Table 4 and 5 show the results of using selected
parts of bitext and synthetic parallel data (see sec-
tion 5.1) for both language pairs. Each model
trained with a selection of bitext and synthetic data
was initialized with the parameters of its counter-
part trained on bitext. The BPE vocabulary used
was the same as in the model used for initializa-
tion, which led the systems to generate unknown
words. In our experiments, we forced the decoder
to avoid unknown token generation.

By using synthetic data, we are able to obtain
a large improvement for all systems, which is in
line with (Sennrich et al., 2016a). We notice that
the contrasts present in the previous section be-
tween the various word representations are less
clear now. The baseline system (first two rows) is
the system which benefits the most from the addi-
tional data with +5.7 and +6.9 BLEU for Czech
and Latvian. The performance of factored sys-
tems has also increased, but to a lesser extent,
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leading to slightly worse results compared to the
baseline system. This situation changes when the
reinflected hypotheses are rescored. We are then
able to surpass the baseline system with normal-
ized words.

The two language pairs react differently to k-
best hypotheses rescoring (+k-best rescored in the
tables). For Czech, this has nearly no impact
on translation quality according to the metrics,
whereas it provides an important improvement in
Latvian: +2.03 and +0.84 BLEU in the split clus-
ter setup. Note that this specific setup gives the
best score we could achieve on newsdev-2017,
without n-best rescoring or model ensembling. We
interpret this situation as a result of the differ-
ence in quality observed for the Czech and Latvian
dictionaries used for reinflection. Indeed, since
Morphodita contains exclusively useful Czech re-
inflection candidates, a simple unigram model is
sufficient to select the right word forms, making
the generation of 10-best reinflection hypotheses
useless.” On the other hand, the hypotheses re-
turned by the look-up table we have used to gen-
erate Latvian word forms were noisy and required
a rescoring from an MT system based on fully in-
flected words.!® We obtained the best results for

°Our experiments with 50-best and 100-best reinflections
did not show any improvement.

%We assume that the word form generation at this step re-
quires information from the monolingual context only, and
could be modeled with a simple target language model, al-
though this needs to be confirmed empirically.



Newsdev-2017
BLEU1 BEERtT CTER] BLEUtT BEER?T CTERJ|

Newstest-2017

words-to-words

fully inflected w. 15.15 48.18 76.97 10.61 43.44 85.67
factored norm

sep. h2o layers 14.91 50.56 69.49 10.42 45.94 78.83
+ constrained dec. 15.57 50.78 69.65 11.38 46.28 78.93
factored lemmas

single h2o0 layer 13.96 49.53 68.36 9.68 45.24 77.07
+ constrained dec. 14.02 49.48 69.97 9.94 45.21 78.11
sep. h2o layers 13.92 49.93 68.45 9.71 45.10 77.51
+ constrained dec. 14.38 49.74 70.04 10.07 45.26 78.08

BPEs-to-BPEs

fully inflected w. 16.22 51.63 64.44 11.29 47.02 71.95
factored norm

sep. h20 layers 15.69 52.35 64.14 10.94 47.80 73.51
+ constrained dec. 16.81 52.72 64.02 12.16 48.25 72.93
split clusters 16.99 52.95 64.65 12.35 48.64 72.40
+ constrained dec. 17.00 52.96 64.61 12.35 48.65 72.32
factored lemmas

single h2o0 layer 14.45 50.86 67.14 10.45 46.36 72.25
sep. h2o0 layers 14.39 50.72 66.05 10.69 46.44 72.96

Table 3: Scores for English-to-Latvian systems trained on official bitext.

Newstest-2016
BLEU1 BEER? CTER| BLEUt BEERT CTER]

Newstest-2017

fully inflected w. 23.94 57.30 52.77 20.00 54.45 58.40
+ ensemble 24.34 57.51 52.48 20.16 54.62 58.22
factored norm

sep. h2o0 layers 22.26 56.49 53.43 18.74 53.76 59.18
+ constrained dec. 23.02 56.76 53.29 19.34 54.03 58.67
split clusters 23.37 57.44 52.66 19.77 54.58 58.44
+ constrained dec. 23.39 57.43 52.71 19.76 54.59 58.51
+ k-best rescored 23.43 57.45 52.64 19.79 54.60 58.49
+ n-best rescored 24.19 57.88 52.19 20.56 54.99 57.96
+ ensemble 24.55 58.00 51.97 20.68 55.08 57.93
factored lemmas

sep. h20 layers 22.30 56.63 53.46 19.34 54.16 58.76
+ k-best rescored 22.35 56.60 53.49 19.36 54.17 58.71
+ n-best rescored 23.39 57.25 52.73 19.83 54.57 58.35
+ ensemble 24.05 57.59 52.27 20.22 54.80 57.89

Table 4: Scores for English-to-Czech systems (BPE-to-BPE) trained on selected bitext and synthetic

parallel data.

this Latvian setup by generating the 100-best re-
inflection hypotheses, which provides less depen-
dency on the quality of the dictionary and relies
more on the knowledge learned by a word-form-
aware system. Despite the fact that such a rescor-
ing procedure is costly in terms of computational
time, we observe that it can be a helpful solution
when no resources of quality are available.

Czech n-best reinflection, as opposed to k-
best, turned out to be efficient, bringing the
lemma-based systems to the level of the baselines
and even above for the normalized word setups.
Whereas it does not improve with Latvian normal-
ized words, we observe a positive impact on the
lemma-based systems. We assume that rescoring
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the n-best list is a way to rely on an inflected-
word-based system to make important decisions
related to translation, as opposed to the much
simpler monolingual process of reinflection men-
tioned above. Latvian split-cluster models seem to
have nothing to learn from such systems.

Factored norm performs best among all the
presented models, showing consistent BLEU im-
provements over the baselines of 0.25 and 0.56
for Czech, and 0.57 and 0.89 for Latvian. We fi-
nally notice that ensembling two models slightly
reduces those contrasts, and lemma-based systems
are the ones that benefit the most from model en-
sembling. Conclusions are not easy to draw, since
across the different setups, the level of indepen-



Newsdev-2017
BLEU1 BEERtT CTER] BLEUtT BEER?T CTERJ|

Newstest-2017

fully inflected w. 22.05 57.34 53.32 14.84 51.78 63.08
+ ensemble 22.41 57.78 52.67 15.12 52.11 62.64
factored norm

sep. h2o layers 18.81 55.65 56.07 13.57 50.94 64.24
+ constrained dec. 20.05 56.14 56.13 14.44 51.26 63.60
split clusters 20.85 56.77 54.13 14.50 51.84 63.04
+ constrained dec. 20.86 56.80 54.02 14.57 51.87 62.96
+ k-best rescored 22.89 57.88 52.77 15.41 52.39 62.40
+ n-best rescored 22.62 57.43 53.66 15.73 52.77 61.78
+ ensemble 22.69 57.61 52.91 16.04 52.99 61.41
factored lemmas

sep. h2o layers 18.93 56.01 54.36 13.98 51.26 63.9
+ k-best rescored 20.56 56.94 53.42 14.80 51.78 63.19
+ n-best rescored 21.59 57.62 52.83 15.31 52.34 62.64
+ ensemble 21.90 57.83 52.38 15.35 52.31 62.46

Table 5: Scores for English-to-Latvian systems (BPEs-to-BPEs) trained on selected bitext and synthetic

parallel data.

dence of the two ensembled models is suspected
to be quite different. !

It is important to note that automatic metrics
may not do justice to the lexical and grammatical
choices made by the factored systems. In an at-
tempt to focus on the grammaticality of the FNMT
systems, we conducted a qualitative analysis of the
outputs.

7 Qualitative Evaluation

7.1 Attention in Factored Systems

In a factored NMT setup, the attention mechanism
distributes weights across all positions in the input
sentence in order to make two predictions, one for
each factor, which is an important difference from
single-objective NMT. An illustration of the im-
pact of this difference is shown in Figure 2 for the
ensembles of two English-to-Czech models intro-
duced in § 6.

In this sentence, the system based on fully in-
flected words (translation on the top) erroneously
predicts the verbal present tense in nevyhybd (does
not avoid). We can see that the target subword unit
nevy@ @ 1is rather strongly linked to the source
didn’t, which allowed the system to correctly pre-
dict negative polarity. On the other hand, the end-
ing of the verb 4 is not linked by attention to this
same source word, from which the morphological
feature of past should have been conveyed. We ob-
serve in (a) that the lemma-based system attention
aligns the target position to both the source auxil-

"performing independently two system runs for ensem-
bling would have given results easier to analyze, which we
were not able to provide due to the cost of such practice.
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iary didn’t and the lexical verb’s first subword unit
shir@ @, which enables the successful prediction
of the right lemma and morphology, i.e. negation
(N) and past (R). The normalized word based sys-
tem in (b) shows an even more explicit modeliza-
tion of this morphological phenomenon. While
the lemma nevyhybat @ @ is strongly related to the
same English segment shir@ @, it is only slightly
linked to the English auxiliary. didn’t is instead
clearly associated to the cluster ID V+20 that gath-
ers negative past tense PoS-tags, enabling the right
prediction in the second factor. In this last setup,
the system has to deal, at each time step in the out-
put sentence, with either a lexical phenomenon or
a grammatical one.

Target-side grammatical phenomena being
more explicitly modeled in factored NMT, it is
generally easier for the attention mechanism to
spot an English grammatical word (auxiliary,
preposition, negative particle, etc.), which enables
a better prediction in the second factor output.
We assume that this peculiarity ensures a better
source-to-target grammatical adequacy.

7.2 Measuring Morphological Consistency

We provide here an attempt to understand more
systematically whether an a priori intuition of fac-
tored NMT systems is verified. The intuition is
that dividing the task of translating a sentence into
two easier joint tasks, namely the prediction of a
lexical unit and of a set of morphological features,
should encourage the system to produce a higher
level of grammaticality.

To this end, we have used a part of the test suite



nouns adjectives verbs mean
target system case | gender number case | number person tense polarity
fully inflected w. 208 .295 272 310 .125 .070 .086 .061 178
Czech factored norm. 165 .308 236 273 105 059 067 042 157
factored lemmas 206 278 240 269 125 074 .090 .067 .169
fully inflected w. 263 .640 .623 .669 .140 233 142 387
Latvian | factored norm. 220 .580 577 617 108 170 A11 340
factored lemmas | .213 .608 .606 .643 .099 .163 092 .346
Table 6: Morphological prediction consistency (Entropy).

(a)

new@@ hjp@@

didn't shire@ K

didnt
)

/ :
/
a

2
wyhybat
VpYS-—-XR-NA

shre@ K

se ten
P7-Xderroer PDZS3--- Ziewonere

(b)

hpe@

se@@

+P165 +P471
P7-Xdorres PPXP3-3-

Figure 2: An example of attention weight distribution in FNMT (bottom) and fully inflected words (top)
output systems aligned to the source sentence (middle) for English-to-Czech. (a) corresponds to the
factored lemmas system and (b) factored norm system

provided by Burlot and Yvon (2017a), who pro-
pose an evaluation of the morphological compe-
tence of a machine translation system performed
on an automatically produced test suite. For each
source test sentence from a monolingual corpus
(the base), several variants are generated, contain-
ing exactly one difference with the base, and fo-
cusing on a specific target lexeme of the base. We
took the part of the test labeled as “C-set” that fo-
cuses on a word in the base sentence and produces
variants containing synonyms and antonyms of
this word. Thus the consistency of morphological
choices is tested over lexical variation (eg. syn-
onyms and antonyms all having the same tense)
and the success is measured based on the average
normalized entropy of morphological features in
the set of target sentences. The systems used are
the ensembles of two models introduced in § 6 (the
inflected word system is our best system for each
language pair).

The results of this procedure are shown in Ta-
ble 6. Entropy demonstrates how confident a sys-
tem is wrt. a specific morphological feature across
synonyms and antonyms. While NMT systems on
fully inflected words are well-known to produce
fluent outputs, we always observe a lower entropy
with the factored systems over all features, except
for the lemma-based system on Czech verbs. This
tends to show that the prediction of any morpho-
logical feature is more confident when it is explic-
itly modeled by a separate objective focused on
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morphology, disregarding lexical variations.

8 Conclusion

In this paper, we have presented various mod-
els integrating factored word representations for
neural machine translation systems. Addition-
ally to results with automatic metrics reporting
significant improvements over a strong baseline,
we provided a qualitative analysis focusing on
the grammatical competence of FNTM systems
that showed the benefits of explicitly modeling
morpho-syntactic information.

Our experiments have shown that the cluster
ID from the morphological normalization of target
words brings useful information to the system by
enabling a better correspondence of both factors’
predictions. This specificity, as well as the im-
provements given by constrained decoding, brings
us to future work focusing on the modelization of a
stronger dependency of the second factor towards
the first one in the FNMT architecture.
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Abstract

NMT systems have problems with large
vocabulary sizes.  Byte-pair encoding
(BPE) is a popular approach to solving
this problem, but while BPE allows the
system to generate any target-side word,
it does not enable effective generalization
over the rich vocabulary in morpholog-
ically rich languages with strong inflec-
tional phenomena. We introduce a sim-
ple approach to overcome this problem by
training a system to produce the lemma of
a word and its morphologically rich POS
tag, which is then followed by a deter-
ministic generation step. We apply this
strategy for English—Czech and English—
German translation scenarios, obtaining
improvements in both settings. We fur-
thermore show that the improvement is not
due to only adding explicit morphological
information.

1 Introduction

Neural machine translation (NMT) has recently
become the new state of the art. Despite a large
body of recent research, NMT still remains a rela-
tively unexplored territory.

In this work, we focus on one of these less stud-
ied areas, namely target-side morphology. NMT
systems typically produce outputs word-by-word
and at each step, they evaluate the probability of
all possible target words. When translating to
morphologically rich languages, due to the large
size of target-side vocabularies, NMT systems run
into scalability issues and struggle with vocabu-
lary coverage.

Byte-pair encoding (BPE, Sennrich et al.
(2016b)) is currently perhaps the most success-
ful approach to addressing these problems. How-
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ever, while BPE allows the system to generate
any target-side word (possibly as a concatenation
of smaller segments), it does not enable effec-
tive generalization over the many different surface
forms possible for a single lemma, which had been
shown to be useful in phrase-based SMT (Bojar
and Kos, 2010).

We see three main problems associated with
rich target-side morphology in NMT: (i) NMT sys-
tems have no explicit connection between differ-
ent surface forms of a single target-side lexeme
(lemma), leading to data sparsity, (ii) there is no
explicit information about morphological features
of target-side words, and (iii) NMT systems can-
not systematically generate unseen surface forms
of known lemmas: while the combination of sub-
word segments obtained with BPE splitting can
technically generate new forms, this is not a lin-
guistically informed way to generate new words,
and is furthermore restricted to “simple” concate-
native word formation processes.

We propose a simple two-step approach to
achieve morphological generalization in NMT. In
the first step, we use an encoder-decoder NMT
system with attention and BPE (Bahdanau et al.,
2014; Sennrich et al., 2016b) to generate a se-
quence of interleaving morphological tags and
lemmas. In the second step, we use a morpholog-
ical generator to produce the final inflected out-
put. This decomposition addresses all three of the
problems outlined above:

e the presence of lemmas allows the system to
model different inflections jointly and bet-
ter capture lexical correspondence with the
source,

e morphological information is explicit and al-
lows the system to easily learn target-side
morpho-syntactic patterns including agree-
ment,

Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 32-42
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e unseen surface forms can be generated sim-
ply by combining a known lemma and a
known tag.

While simple, the approach is very effective and
leads to significant improvements in translation
quality in a medium-resource setting for English-
Czech translation. Similarly, experiments in an
English—German setting lead to improved transla-
tion results and also show that the proposed strat-
egy can be applied to other language pairs.

2 Two-Step NMT

We work within the standard encoder-decoder
framework with an attention mechanism as pro-
posed by Bahdanau et al. (2014), using the Ne-
matus implementation (Sennrich et al., 2017).
To model target-side morphology, the system is
trained on an intermediate representation consist-
ing of interleaved lemmas and morphological tags
providing the full set of relevant inflection fea-
tures. Decoding is followed by a second step
which is fully deterministic. We use the predicted
pairs of (tag+features, lemma) as input to a mor-
phological generator which outputs the final in-
flected surface forms. In the rare cases where the
generator fails to output any surface form, we sim-
ply output the lemma.

Our approach is inspired by the successful re-
sults of Nadejde et al. (2017), where the authors
interleave target-side words and CCG supertags
and observe improvements by learning to also pre-
dict the target-side syntax. Our experiments in
the English—Czech translation task will, however,
show that the improvement we obtain is not a
similar effect, but instead requires the improved
generalization obtained through mapping inflected
forms to their lemmas and the ability to generate
correct surface forms.

In this paper, we first apply our tag lemma strat-
egy to an English—Czech translation setting. We
show that it is effective and also investigate po-
tential effects of tag prediction interacting with
morphological generalization. A second set of ex-
periments concerns English—-German translation:
here, the focus is rather put on modeling linguis-
tic phenomena, including German word forma-
tion. While Czech has a more complex morphol-
ogy than German, German has the additional prob-
lem of compounds that make translation challeng-
ing; one system variant thus includes simple com-
pound handling.
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3 Modeling Czech Morphology

Czech is a Slavic language with a rich inflectional
morphology. There are seven cases for nouns
and adjectives, four genders and two grammatical
numbers. Surface forms of verbs follow complex
rules as well, as they encode number, person, tense
and several other phenomena. Due to its fusional
nature, there is a degree of syncretism in Czech —
words with different morphological features may
share the same surface form.

As such, Czech is a suitable example for evalu-
ating our approach. We use the Czech positional
tagset in our work (Haji¢ and Vidova-Hladka,
1998). Figure 1 illustrates the input and output to
our network and the baseline. Figure 2 illustrates
the tagset on an example. For Czech morpho-
logical analysis, tagging and generation, we use
the MorphoDiTa toolkit (Strakovd et al., 2014),
which achieves state-of-the-art results in lemmati-
zation and tagging and its coverage in morpholog-
ical generation is very high. Morphological gen-
eration is based on a lexicon of lemmas and their
paradigms and it is fully deterministic.

4 Modeling German Morphology

To obtain the representation of interleaved lemmas
and tag+feature sequences for German, we apply
a slightly different pipeline than for the English—
Czech setting. Instead of representing a word by a
simple lemma and a morphological tag, we use a
morphological analyzer covering also productive
formation processes — the morphologically com-
plex analyses of the lemma (“stem”) allow us to
easily handle compounds, which pose a consider-
able challenge when translating into German.

4.1 Linguistic Resources

The key linguistic knowledge sources to model
German morphology are the constituency parser
BitPar (Schmid, 2004) to obtain morphological
analyses in the sentence context, and the morpho-
logical tool SMOR (Schmid et al., 2004) to ana-
lyze and generate inflected German surface forms.

SMOR is a a morphological analyzer for Ger-
man inflection and word formation processes im-
plemented in finite state technology. In particu-
lar, it also covers productive word formation pro-
cesses such as compounding or derivation. SMOR
functions in two directions: surface form —
stem+features and stem+features — surface form.
Thus, when preparing the target-side training data,



input: there are a million different kinds of pizza .

baseline: existuji miliony druht piz@ @ zy .

morphgen: VB-P—3P-AA— existovat NNIP1—A—- milién NNIP2—A—- druh NNFS2—A—- pizza Z:— .

Figure 1: Examples of input and output training sequences for the baseline and the proposed system.

BPE splits are denoted by “@ @

Category | Value Description
POS | A adjective
sub-POS | A adjective, general
gender | I masculine inanimate
number | P plural
case | 7 instrumental
possgender | — (possessor’s gender)
possnumber | — (possessor’s number)
person (person, verbs)
tense | — (tense, verbs)
grade | 2 comparative degree
negation | A affirmative (not negated)
voice | — (voice, verbs)
reservel | — (unused)
reserve2 | — (unused)
var | — (style, variant)
Figure 2: Czech positional tagset. Fea-

ture values for the word kulatéjsimi, tag
AAIP7-———2A————.

each inflected surface form is analyzed, and then
replaced by its stem and respective morphological
features, as illustrated for the verb trifft below:

trifft

treffen<+V><3><Sg><Pres><Ind>

surface
stem

For the inflection process after translation, SMOR
is used in the reverse direction to output an in-
flected form when given a stem-+feature sequence.

4.2 German Inflectional Features

German has a rich nominal and verbal morphol-
ogy, and even though it exhibits a relatively high
degree of syncretism, it has a high lemma—to—
inflected forms ratio. For example, adjectives can
have up to 6 different inflected forms, such as blau,
blaue, blaues, blauer, blauen, blauem (’blue’).

Nominal Inflection Unlike in English, where
only the feature number is expressed for nouns,
German nominal inflection is applied to determin-
ers, adjectives and nouns. The following four fea-
tures are relevant for nominal inflection:

case nominative, accusative, dative, genitive
gender feminine, masculine, neuter

number singular, plural

str/wk strong, weak

To efficiently handle syncretism, SMOR has the
artificial value NoGend, that is used when a sur-
face form is the same for all three values of gen-
der; this is typical for plural forms. Similarly, the
feature strong/weak' does not need to be specified
if the surface forms are the same; we thus add the
dummy-value <na> to always have a sequence of
four values. Words that are subject to nominal in-
flection are replaced by their SMOR analysis that
is split into stem and the tag-feature sequence:
STEM <+Tag><Gend><Case><Num><St/Wk>

Verbal Morphology  German verbal morphol-
ogy requires the modeling of these features:
person  [,2,3
number singular, plural
tense present, past
mood indicative, subjunctive

These features refer to morphologically expressed
properties in a single word; further instances of the
feature tense, in particular future tense, are real-
ized as compound tenses. Our modeling of verbal
inflection, is restricted to the word-level, and the
decision how to combine auxiliaries and full verbs
is left to the translation model. Verb forms are rep-
resented as follows in the stemmed format:

finite STEM <+V><Pers><Num><Tense><Mood>
participle STEM <+V><PPast>
infinitive ~ STEM <+V><Inf>

4.3 Building the stemmed representation

Table 1 illustrates the process of deriving the fully
specified stemmed representation by combining
morphological analyses and rich parse tags; the
column infl indicates whether a word is inflected.
As a German surface form can have many possible
analyses (cf. below), the parse tags are needed to

!Strong/weak inflection is determined by the setting of
definite/indefinite articles in combination with the other fea-
ture: for example, the NP das blaue Auto (’the blue car’) is
inflected differently when occurring with an indefinite article
(ein blaues Auto) in the function of subject or direct object.



English | and what you ’re seeing here is a cloud of densely packed , hydrogen-sulfide-rich water coming
sentence | out of a volcanic axis on the sea floor
EN gloss DE surface parse-tags infl. | fully specified stemmed representation
and und KON 0 | und[KON]
here hier ADV 1 hier [ADV]
sees sieht VVFIN-Sg 1 sehen||<+V><3><Sg><Pres><Ind>
one man PIS-Nom.Sg 0 | man[PIS]
a eine ART-Acc.Sg.Fem 1 eine<Indef>||<+ART><Fem><Acc><Sg><St>
cloud Wolke NN-Acc.Sg.Fem 1 | Wolke||<+NN><Fem><Acc><Sg><NA>
of von APPR-Dat 0 | von[APPR-Dat]
dense dichtem ADJA-Dat.Sg.Neut 1 dicht<Pos>||<+ADJ><Neut><Dat><Sg><St>
hydrogen- hydrogensulfid- | ADJA-Dat.Sg.Neut 1 Hydrogen<NN>Sul fid<NN>
sulfide-rich | reichem reich<Pos>||<+ADJ><Neut><Dat><Sg><St>
water Wasser NN-Dat.Sg.Neut 1 Wasser||<+NN><Neut><Dat><Sg><NA>
, ; $, 0 |,1%]
that das PRELS-Nom.Sg.Neut | 0 | das[PRELS]
from aus APPR-Dat 0 | aus[APPR-Dat]
a einer ART-Dat.Sg.Fem 1 eine<Indef>||<+ART><Fem><Dat><Sg><St>
volcanic vulkanischen ADJA-Dat.Sg.Fem 1 vulkanisch||<+ADJ><Pos>
<NoGend><Dat><Sg><Wk>
longitudinal | Lingsachse NN-Dat.Sg.Fem 1 1l4dngs<ADJ>Achse||<+NN><Fem><Dat><Sg><NA>
axis
on an APPR-Dat 0 | an[APPR-Dat]
the dem ART-Dat.Sg.Masc 1 die<Def>||<+ART><Masc><Dat><Sg><St>
sea floor Meeresboden NN-Dat.Sg.Masc 1 | Meer<NN>Boden||<+NN><Masc><Dat><Sg><NA>
oozes tritt VVFIN-Sg 1 treten||<+V><3><Sg><Pres><Ind>
$. 0 | .[5]

Table 1: Example for the fully specified representation used in the NMT system. The double-pipe symbol
|| indicates the boundary between the word(stem) and the tag with the full set of inflectional features.

disambiguate the morphological analyses.

vulkanischen

vulkanisch<+ADJ><Pos><Neut><Gen><Sg>

vulkanisch<+ADJ><Pos><Masc><Acc><Sg>

vulkanisch<+ADJ><Pos><Masc><Gen><Sg>

vulkanisch<+ADJ><Pos><NoGend><Acc><P1><Wk>

vulkanisch<+ADJ><Pos><NoGend><Dat><P1>

vulkanisch<+ADJ><Pos><NoGend><Dat><Sg><Wk>

vulkanisch<+ADJ><Pos><NoGend><Gen><P1><Wk>

vulkanisch<+ADJ><Pos><NoGend><Nom><P1><Wk>

vulkanisch<+ADJ><Pos><Fem><Gen><Sg><Wk>

The stem and the tag-feature sequence (or the bare
tag for non-inflected words) are separated, allow-
ing the model to learn lexical relations between
source- and target-side separately from target-
side morpho-syntactic patterns. As the addition
of tags effectively doubles the length of German
sentences, we also add tags (obtained with tree-
tagger, Schmid (1994)) on the source-side to bal-
ance the source/target side sentence lengths.
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4.4 Reduction of Vocabulary Size

One of the main objectives of the two-step ap-
proach is to reduce the target-side vocabulary size.
Table 2 shows the most frequent fragments on the
end of words obtained through BPE splitting on
the German surface data — while it is difficult to
generalize without the actual context, most tend to
be inflectional suffixes. While this type of split-
ting does make sense, it also seems that there is
some redundancy, and a systematic generalization
is impossible. Furthermore, a mere segmentation
of surface forms does not cover non-concatenative
phenomena such as “Umlautung”: for example,
the concatenation of Haus- (lemma: "house’) and
-er (typical plural suffix) does not result in the
correct plural form (Hduser) — thus, two “lem-
mas” are required to guarantee correct inflections
of words that undergo Umlautung when working
with surface forms. Table 3 shows the reduction
of vocabulary in the stemmed representation: re-
placing inflected forms with their stems leads to



freq part | freq part freq part
2469 ten 1257  sten 1077 ern
2157 te 1214  es 1077 -
1738 en 1169 ter 1058 den
1607 er 1148 gen 1040 s
1474 ung | 1078 ischen | 1015 ungen
Table 2: The most frequent fragments on word
ends after BPE from the German surface data.
vocabulary vocabulary
size size w/ BPE
DE surface data 121.892 22712
DE morph 97.587 21.663
DE morph-split 68.533 21.892

Table 3: Overview of vocabulary size in the Ger-
man TED data (BPE: Byte Pair Encoding).

a considerable reduction of the vocabulary size;
compound splitting leads to a further reduction.

4.5 Simple Compound Handling

Another factor contributing to a high vocabu-
lary size is the productivity of German com-
pounds; in SMT, compound handling has been
found to improve translation quality, e.g. Stymne
et al. (2011) and Cap et al. (2014). In addi-
tion to inflectional morphology, SMOR also pro-
vides a derivational analysis, including splitting
into compound parts: for example, the com-
pound Hdiuser|markt ("house market’) is analyzed
as Haus<NN>Markt<+NN><...>. In particular, the
modifier is represented by its base form Haus, cov-
ering the non-concatenative process of “Umlau-
tung” (Haus <+ Hduser).

In the stemmed representation, this may already
present an indirect advantage, as compounds frag-
mented through BPE splitting can match other
stemmed occurrences of that word. An obvious
idea at this point is to go a step further and add
compound splitting to the pre-processing of the
German data. Using the SMOR annotation, com-
pounds are split at mid-word adjective and noun
borders. For example, the word Meeres|boden
(’sea bottom’) from table 1 is split into two sub-
words separated by the modifier’s tag:

Meer §§<NN>§§ Boden <+NN><...>
This notation separates lexical parts from SMOR
markup, thus allowing the model to learn com-
pound patterns. After translation, the compound
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corpus | sents src tokens tgt tokens
train 114k 2309k 1908k
test2012 | 1385 25150 20682
test2013 | 1327 28454 24107

Table 4: Sizes of English-Czech corpora.

stems are concatenated and then inflected.

On the English side, it is assumed that the
equivalents of compounds are already separate
words. For this system variant, however, the En-
glish side was slightly simplified by aggressive hy-
phen splitting, and replacing nouns and verbs by
their lemma form, accompanied by a tag indicat-
ing the type of inflection. Our hope is that this rep-
resentation will be more parallel to the compound-
split representation in German.

5 Experimental Evaluation

In this section, we describe our experiments with
English-Czech and English-German translation.

5.1 Czech

We use the IWSLT training and test sets in
English-Czech experiments’. The training set
consists of transcribed TED talks as collected in
the WIT3 corpus (Cettolo et al., 2012). We use
IWSLT test set 2012 as the held-out set and the
2013 test set for evaluation. Table 4 summarizes
the basic data statistics.

We use the Nematus toolkit for training the
NMT systems (Sennrich et al., 2017). We run
BPE training on both sides of the training data
with 49500 splits. We set the vocabulary size to
50000 word types. The embedding size is set to
500, the dimension of the hidden layer is 1024.
We optimize the model using Adam (Kingma and
Ba, 2014) and we use the default early stopping
criterion in Nematus. We do not apply drop-out
anywhere in the model. Following Nadejde et al.
(2017), we set the maximum sequence length to
50 for the baseline and to 100 for systems which
produce interleaved outputs.

Our baseline system is a standard Nematus
setup with the parameters described above. We re-
fer to our two-step setup as morphgen from now
on. For comparison, we also evaluate a third set-
ting where we train the system to output sequences
of morphological tags interleaved with the surface

nttp://workshop2016.iwslt.org



system ‘ BLEU (dev) BLEU (test)
baseline 12.60 12.89
morphgen 14.05 14.57
serialization 11.49 12.07

Table 5: English-Czech: BLEU scores of NMT
system variants.

forms. We refer to this contrastive experiment as
serialization — our aim is to tease apart the possible
benefit of explicitly predicting target-side morpho-
logical tags from the improvements due to mor-
phological generalization.

Note that BPE is applied in all system variants.
However, due to a reduced vocabulary size in the
morphgen setting, the splits are uncommon and
morphological tags are never split (this is an effect
of BPE, not a hard constraint).

Because NMT system results can vary signif-
icantly due to randomness in initialization and
training, we run system training end-to-end for
each variant three times. We then select the best
run based on BLEU as measured on the develop-
ment set (test2012) and then evaluate it on the final
test set (test2013).

Importantly, the network was able to learn the
correct structure for both morphgen and serial-
ization systems. The outputs are well-formed se-
quences of interleaving tags and lemmas/forms.

Table 5 shows the obtained results. In our main
experiment, our two-step system achieves a sub-
stantial improvement of roughly 1.7 BLEU points,
showing that two-step in the neural context works
for English to Czech translation for this data size.

In the serialization experiment, we see that, sur-
prisingly, the serialization system does not out-
perform the baseline setup. This stands in con-
trast to the use of CCG supertags by Nadejde et al.
(2017), which was effective in this framework.
The result there showed that using CCG supertags
which handle syntactic generalization helps pro-
duce a better sequence of surface forms. We at-
tribute our result to the trade-off between provid-
ing the system with explicit morpho-syntactic in-
formation (which is weaker information than CCG
supertags) and increasing the sequence length
(which complicates training). It is possible that
with larger training data, serialization might still
outperform the baseline, but our main result has
shown that morphological generalization on this
data size is beneficial.
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baseline morphgen A
IWSLT | 12.89 14.57 1.68
250k | 14.87 17.51 2.64
500k | 16.96 20.05 3.09
IM | 18.07 20.95 2.88
2M | 20.04 22.31 2.27

Table 6: English-Czech: BLEU scores of systems
with larger parallel training data.

Scaling to Larger Data The observed im-
provements are certainly at least partially due to
reduced data sparsity: because Czech is a morpho-
logically rich language, there is a high number of
distinct surface forms. We help the system gener-
alize by essentially dividing the information that
surface forms carry into two different “streams”:
one for morpho-syntax (tags) and the other for se-
mantics (lemmas).

One possible concern with the proposed ap-
proach is the ability to scale to larger training data.
Data sparsity could be such a major issue only
when training data are small and once we scale up,
the observed benefits might disappear as the sys-
tem gets more robust statistical estimates for the
individual surface forms.

We run a targeted experiment with larger sizes
of parallel training data to determine whether the
improvements hold. We always use the main train-
ing set described above but additionally, we add a
random sample from the CzEng 1.0 parallel cor-
pus (Bojar et al., 2012) to achieve training data
sizes of 250 thousand up to 2 million parallel sen-
tences (total).

Table 6 shows the results. We observe the high-
est difference in the 500k setting (over 3 BLEU
points absolute) and while the improvement de-
creases slightly as we add more data, the differ-
ence is still around 2.3 BLEU points even in the
largest evaluated setting, which is an encouraging
result.

Note that due to the increased computational
cost, scores for larger system variants are only
based on a single training run.

Analysis and Discussion We now further
analyze our two-step system, morphgen, in the
IWSLT data setting. We first look at cases where
the generator failed to produce the surface form.
We found only a handful of cases; these mostly in-
volved unknown proper names (Braper, Hvanda).



In just four cases, the tag proposed by the network
was not compatible with the lemma (i.e., the net-
work made an error).

In order to determine where the improvement
comes from, we analyze the number of novel sur-
face forms produced by the system. We find that
indeed, unseen word forms are generated by the
system but not nearly as many as we expected:
only 125 novel tokens were found in the test set
(114 word types). Out of these, 14 forms are con-
firmed by the reference sentences (note that the
unconfirmed words may still be correct within the
system output).

It seems that the system mostly benefits from
the decomposition that we proposed — Czech lem-
mas are more easily mapped to source-side En-
glish words than the many inflected forms associ-
ated with each lemma. The interleaving tags then
help explicitly train the morpho-syntactic structure
of the sentences and allow the second step to deter-
ministically generate the final translations. While
morphological generalization does indeed occur, it
is not the source of most of the observed improve-
ment. When we use surface forms together with
the annotations (in our serialization experiment),
we see no improvement.

Finally, we report the results of a blind man-
ual annotation contrasting outputs of baseline and
morphgen. For each instance, the annotator had
access to the reference translation and both out-
puts. The task was to rank which translation is
better or to mark both as equal quality. The an-
notator analyzed 200 sentences. In 130 cases, the
translations were judged as equal. Out of the re-
maining 70 sentences, the morphgen system was
marked as better in 48 cases and the baseline won
in 22 cases.

5.2 German

The initial English—-German experiments are eval-
uated on IWSLT training and test data, which con-
sists of transcribed TED talks. The system is op-
timized on the 2012 dev-set (1165 sentences), and
tested on the 2013 test-set (1363 sentences) and
the 2014 test-set (1305 sentences). The training
data consists of 184.879 parallel sentences, after
filtering out sentences shorter than 5 or longer than
50 words, as well as sentences that could not be
parsed. Prior to training the NMT system, the
(stemmed) source- and target-data undergo BPE
splitting (29500 splits), in order to keep the vo-
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TED’13 run-1 run-2 | avg.
baseline 19.87 20.15 | 20.01
morph-gen 20.73  20.98 | 20.86
morph-gen-split | 20.88 21.18 | 21.03
TED’14 run-1 run-2 | avg.
baseline 19.02 18.68 | 18.85
morph-gen 20.01 19.93 | 19.97
morph-gen-split | 20.07 20.76 | 20.42

Table 7: English—-German: lowercased BLEU for
two test sests (1363 and 1305 sentences).

‘ baseline morph-gen morph-gen-split
18.75 20.55 20.51
21.39 22.79 23.00

250k
500k

Table 8: English—-German: lowercased BLEU for
newstest’ 16 (2169 sentences) trained on 250k and
500k sentences news-mix data.

cabulary within the predefined limit.

The translation experiments are carried out with
the Nematus toolkit (Sennrich et al., 2017), us-
ing the training parameters as displayed below, in
combination with the default early stopping crite-
rion in Nematus:

vocab 30k dropout yes
dim_word 500 dropout_emb 0.2
dim 1024 dropout_hid 0.2
Irate 0.0001 dropout_src 0.1
opt adam dropout_trg 0.1
maxlen 50(100)

The sentence length is set to 50 for the baseline
system, and extended to 100 for the morph-gen
systems, because the addition of the morpholog-
ical tags doubles the sentence length.

Table 7 shows the results for the English—
German translation experiments, averaged over
two training runs: on both test sets, the system
generating inflected forms based on stems and fea-
tures is better than the baseline.

Despite SMOR'’s complicated structure, the re-
sulting stems are generally well-formed; for un-
inflectable stems (mostly made-up words such
as Parunelogramm<+NN><Neut><Gen><Sg>), the
markup is simply removed.

The addition of compound splitting leads to a
minor further improvement. We consider this a
promising result, indicating that segmentation us-
ing the rich information provided by SMOR can
be helpful; we plan to explore this further in fu-
ture work.



Generation of novel words A closer look at the
translation output reveals that there are indeed new
word forms generated by the morph-gen system.
For the TED’13 set, for example, the morph-gen
system output a total of 261 words that are not in
the training data or the English input sentence. Of
these, 112 are names or nonsense words produced
by concatenating BPE segments. The other 149
words are morphologically well-formed, though
not necessarily semantically sound (e.g. Schoko-
ladenredakteur: ’chocolate editor’ as proposed
translation for *smart-ass editor’) or appropriate in
the translation context. Thus, we compared the
novel words with the reference translations: 23
words (21 nouns, 2 adjectives) were found in the
reference of the respective sentence. Of course,
this under-estimates the number of useful new cre-
ations, as a valid translation does not necessarily
need to match exactly with the reference. For the
morph-gen-split system, only 27 matches with the
reference were found in a set of 328 unseen forms.

Different Domain and Larger Corpus  To as-
sess the influence of domain and corpus size, we
also evaluate the approach to model German mor-
phology in a larger news corpus setting. To obtain
a training corpus that is diverse, but still restricted
in size, we combined randomly selected sentences
(between 5-50 words) from the 4 parallel corpora
provided for EN-DE translation at the WMT’ 17
shared task* (selected in equal parts from Eu-
roparl, CommonCrawl, News-Commentary and
RapidCorpus), resulting in a set of 250k and
500k sentences The model is optimized on new-
stest’15 and evaluated on newstest’16; table 8
shows the results for the surface form baseline and
the morphological generation systems with and
without compound handling. As for the TED data
set, the morphological generation systems outper-
forms the systems trained on surface data, but the
improvement for the system trained on 500k sen-
tences is slightly lower than for the system trained
on 250k sentences. The systems with additional
compound splitting obtained the same result as the
basis morphological generation system (250k), or
were slightly better (500k). With regard to the ef-
fectiveness of compound handling, it is difficult to
draw a clear conclusion, but, looking also at the

3Into this category, we also count non-wellformed gener-
ations by SMOR caused by incorrect transitional elements
in compounds, e.g. Oszillationengenerator vs. Oszilla-

tionsgenerator.
*http://www.statmt.org/wmt17/translation-task html
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results obtained in the TED setting, it seems that
there is a tendency that compound handling leads
to a slight improvement. As compounding is a pro-
ductive word formation process that is challenging
to cover even in large corpora, compound handling
might be useful also when using larger data train-
ing corpora.

6 Related Work

Generation of unseen morphological variants has
been tackled in various ways in the context of
phrase-based models and other SMT approaches.
Notably, two-step SMT was proposed to address
this problem (Toutanova et al., 2008; Bojar and
Kos, 2010; Fraser et al., 2012). In two-step SMT,
a separate prediction model (such as a linear-chain
CREF) is used to either directly predict the surface
form (as in Toutanova et al. (2008)) or used to
predict the grammatical features, following which
morphological generation is performed (as in Bo-
jar and Kos (2010); Fraser et al. (2012)). Our work
differs from their work in that we do not use a sep-
arate prediction model, but instead rely on predict-
ing the lemmas and surface-forms as a single se-
quence in a neural machine translation model.

Huck et al. (2017b) recently proposed an ap-
proach related to two-step MT where the unseen
surface forms are added as synthetic phrases di-
rectly in the system phrase table and a context-
aware discriminative model is applied to score the
unseen variants. Unlike our work, the authors re-
port diminishing improvements as training data
grows larger. Our approach learns a more robust
underlying model thanks to the reduced data spar-
sity. Unlike Huck et al. (2017b), our improve-
ments are therefore not only due to the ability to
generate words which were not seen in the train-
ing data.

Factored translation models (Koehn and Hoang,
2007) can deal with unseen word forms thanks to
generation steps. One of the original goals of fac-
tored MT was in fact the scenario where the sys-
tem produces lemmas and tags and then a gener-
ation step could be used to produce the inflected
forms. Factored models failed to achieve this goal
due to lemmas and tags being predicted indepen-
dently, leading to many invalid combinations, and
due to the involved combinatorial explosion.

Garcia-Martinez et al. (2016) attempt to include
target-side factors in neural MT. Unlike our simple
technique, their approach requires modifications



to the network architecture. The authors work with
English-French translation and they report mixed
results.

Another successful attempt to learn novel in-
flections in SMT is back-translation (Bojar and
Tamchyna, 2011). By using an MT system trained
to translate lemmas in the opposite direction, it
is possible to create synthetic parallel data which
contain unseen word forms of known lemmas on
the target side. There are two main downsides to
this approach. The first is that the source language
contains translation errors, which may affect trans-
lation quality. The second is that the substitu-
tion of different surface forms for the same target
language lemma may result in incoherent trans-
lations, where the context no longer agrees with
the chosen surface form. Sennrich et al. (2016a)
propose to use back-translation in NMT to include
language modeling data, but the “inverse” NMT
system is not able to translate unseen target word
forms (no lemmatization is done) and therefore
this method does not learn novel inflections. Ap-
plying BPE splitting can technically lead to new
inflected word forms, but this requires an appro-
priate segmentation into base form and inflectional
suffixes which might not always be the case, in
particular for infrequent words.

A very similar method to our two-step setting
was independently proposed for use in a natural
language generation (NLG) pipeline for morpho-
logically rich languages (Dusek, 2017). However,
in this scenario, the approach was not better than a
baseline which operated on surface forms.

Finally, there has been further more recent work
on alternatives to using BPE segmentation for
NMT. Ataman et al. (2017) looked at segmenta-
tion for Turkish, which is an agglutinative lan-
guage. Huck et al. (2017a) presents an approach
for segmenting German with a focus on compound
splitting and splitting suffixes off of stems using
a stemmer, which may allow generalization in a
similar way to our work. It would be interesting to
compare with these approaches in future work.

7 Conclusion

In this work we showed that a simple setup, inter-
spersing lemmas and rich morphological tags, fol-
lowed by deterministic generation of the resulting
surface form, results in impressive gains in NMT
of English to Czech. Applying the technique to an
English to German system also resulted in consid-
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erable improvements. For English-German, the
addition of compound handling yielded promis-
ing results. Furthermore, among the novel word
forms for German, most were compounds — as
compounding is a very productive process, this is
also a challenging problem when using larger cor-
pora. Exploring strategies for better segmentation
and compound handling is an interesting task that
we plan to investigate further.

We believe that while simple, this technique ef-
fectively addresses the fundamental problems of
rich target-side morphology: (i) sparse data and
lack of connection between different forms of a
single target lexeme, (ii) lack of explicit morpho-
logical information, and (iii) inability to generate
unseen forms of known lexemes. Our results indi-
cate that most of the improvement comes from the
first two properties.

Perhaps a modified training criterion could be
used to encourage the system to generalize more;
in the standard setting, the system probably learns
to strongly condition the lemma on the tag and
avoids the risk of generating new pairs. In the sit-
uations where a novel form is required, the sys-
tem may either bypass this by producing a syn-
onymous word or paraphrase, or it might sim-
ply produce an ungrammatical form of the correct
lemma. This phenomenon deserves more exami-
nation which we leave to future work.

We further analyzed the serialization scenario,
showing that the effect here is not due to train-
ing the system to also predict morphological tags,
which is in contrast with the result of Nadejde
et al. (2017). It is likely that the two approaches
are complementary, the rich information in CCG
supertags could bring additional benefit to the
morphological generalization that we perform. We
plan to investigate this in future work.
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Abstract

While recent changes in Machine Trans-
lation state-of-the-art brought translation
quality a step further, it is regularly ac-
knowledged that the standard automatic
metrics do not provide enough insights to
fully measure the impact of neural models.
This paper proposes a new type of evalu-
ation focused specifically on the morpho-
logical competence of a system with re-
spect to various grammatical phenomena.
Our approach uses automatically gener-
ated pairs of source sentences, where each
pair tests one morphological contrast. This
methodology is used to compare several
systems submitted at WMT’ 17 for English
into Czech and Latvian.

1 Introduction

It is nowadays unanimously recognized that Ma-
chine Translation (MT) engines based on the neu-
ral encoder-decoder architecture with attention
(Cho et al., 2014; Bahdanau et al., 2014) constitute
the new state-of-the-art in statistical MT, at least
for open-domain tasks (Sennrich et al., 2016a).
The previous phrase-based (PBMT) architectures
were complex (Koehn, 2010) and hard to diag-
nose, and Neural MT (NMT) systems, which dis-
pense with any sort of symbolic representation of
the learned knowledge, are probably worse in this
respect. Furthermore, the steady progress of MT
engines makes automatic metrics such as BLEU
(Papineni et al., 2002) or METEOR (Banerjee and
Lavie, 2005) less appropriate to evaluate and com-
pare modern NMT systems. To better understand
the strength and weaknesses of these new architec-
tures, it is thus necessary to investigate new, more
focused, evaluation procedures.

Error analysis protocols, as proposed eg. by
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Vilar et al. (2006); Popovi¢ and Ney (2011) for
PBMT, are obvious candidates for such studies
and have been used eg. in (Bentivogli et al., 2016).
Recently, various new proposals have been put for-
ward to better diagnose neural models, notably by
Linzen et al. (2016); Sennrich (2017), who focus
respectively on the syntactic competence of Neu-
ral Language Models (NLMs) or of NMT; and by
Isabelle et al. (2017); Burchardt et al. (2017), who
resuscitate an old tradition of designing test suites.

Inspired by these (and other) works (see § 4),
we propose in this paper a new evaluation scheme
aimed at specifically assessing the morphologi-
cal competence of MT engines translating from
English into a Morphologically Rich Language
(MRL). Morphology poses two main types of
problems in MT: (a) morphological variation in
the source increases the occurrence of Out-of-
Vocabulary (OOV) source tokens, the translation
of which is difficult to coin; (b) morphological
variation in the target forces the MT to generate
forms that have not been seen in training. Morpho-
logical complexity is alo often associated to more
flexible word orderings, which is mostly a prob-
lem when translating from a MRL (Bisazza and
Federico, 2016). Reducing these issues is a legiti-
mate and important goal for many language pairs.

Our method for measuring the morphological
competence of MT systems (detailed in § 2) is
mainly based on the analysis of minimal pairs,
each representing a contrast that is expressed syn-
tactically in English and morphologically in the
MRL. By comparing the automatic translations of
these pairs, it is then possible to approximately as-
sess whether a given MT system has succeeded
in generating the correct word form, carrying the
proper morphological marks. In § 3, we illus-
trate the potential of our evaluation protocol in
a large-scale comparison of multiple MT engines
having participated to the WMT’ 17 News Transla-
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tion tasks for the pairs English-Czech and English-
Latvian.! We finally relate our protocol to conven-
tional metrics (§ 4), and conclude in § 5 by dis-
cussing possible extensions of this methodology,
for instance to other (sets of) language pairs.

2 Evaluation Protocol

2.1 Morphological competence and its
assessment

In traditional linguistics, morphology is “the
branch of the grammar that deals with the inter-
nal structure of words” (Matthews, 1974, p. 9);
the “structure of words” being further subdivided
into inflections, derivations (word formation) and
compounds. Languages exhibit a large variety of
formal processes to express morphological/lexical
relatedness of a set of word forms: alternations
in suffix/prefix are the most common processes in
Indo-European languages, where other language
families recourse to circumfixation, reduplication,
transfixation, or tonal alternations. They also
greatly differ in the phenomena that are expressed
through morphological alternations versus gram-
matical constructions.

Our evaluation protocol is designed to assess the
robustness of MT in the presence of morphologi-
cal variation in the source and target, looking how
source alternations (possibly implying to translate
source OOVs) are reproduced in the target (possi-
bly implying to generate target OOVs).

The general principle is as follows: for each
source test sentence (the base), we generate one
(or several) variant(s) containing exactly one dif-
ference with the base, focusing on a specific tfarget
lexeme of the base; the variant differs on a fea-
ture that is expressed morphologically in the tar-
get, such as the person, number or tense of a verb;
or the number or case of a noun or an adjective.
This configuration is illustrated in Table 1, where
the first pair is an example of the fense contrast and
the second pair an instance of the polarity contrast.

We consider that a system behaves correctly
with respect to a given contrast if the translation
of the base and the variant reproduce the targeted
contrast: for the first example in Table 1, we ex-
pect to see in the translation of (1.a) and (1.b) dif-
ferent word forms accounting for the difference of
verb tense: the translation of the variant should
have a past form and any other case is considered
as an error. Other modifications between the two

"http://statmt.org/wmt17/.

translations, such as the selection of different lem-
mas for both forms or any modification of the con-
text, are considered irrelevant with respect to the
specific morphological feature at study, and are
therefore ignored. In the following sections, we
detail and justify our strategy for generating con-
trastive pairs.

2.2 Sentence selection and morphological
contrasts

We consider the set of contrasts listed in Table 2.
We distinguish three subsets (denoted A, B, and
C), which slightly differ in their generation and
scoring procedures.

Our choice for selecting this particular set of
tests was dictated by a mixture of linguistic and
also more practical reasons. From a linguistic
standpoint, we were looking to cover a large vari-
ety of morphological phenomena in the target lan-
guage, in particular we wished to include test in-
stances for all open domain word classes (noun,
verbs, adjectives). Our first set of tests (set A)
is akin to paradigm completion tasks, adopting
here a rather loose sense of “paradigm” which also
includes simple derivational phenomena such as
the formation of comparative for adjectives and
mostly checks whether the morphological feature
inserted in the source sentence has been translated.
Tests in the set B look at various agreement phe-
nomena, while tests in set C are more focused on
the consistency of morphological choices. These
three categories of tests slightly differ in their gen-
eration and scoring procedures.

For each contrast in the A and B sets, sentence
generation takes the following steps:>

1. collect a sufficiently large number of short
sentences (length < 15) containing a source
word of interest for at least one morphologi-
cal variation;

2. generate a variant as prescribed by the con-
trast (see below);

3. compute an average language model (LM)
score for the pair (base, variant);

4. remove the 33% worst pairs based on their
LM score;

5. randomly select 500 pairs for inclusion into
the final test.

2Examples of test pairs are given as supplementary mate-
rial in the appendix.



base

(1.a) The thing that horrifies me is the forgetfulness.

variant  (1.b) The thing that horrified me is the forgetfulness.
base (2.a) Traffic deaths fall as gas prices climb.
variant  (2.b) Traffic deaths do not fall as gas prices climb.

Table 1: Generating minimal contrastive pairs

name contrast target description

A-1 number noun base contains a singular noun, variant contains the plural form

A-2  number pronoun base contains a singular pronoun, variant contains the plural
form

A-3  gender pronoun base contains a masculine pronoun, variant contains the femi-
nine form

A-4  tense:future verb base and variant only differ in the tense of the main verb -
present in the base, future in the variant

A-5  tense:past verb base and variant only differ in the tense of the main verb -
present in the base, past in the variant

A-6  comparative adjective base contains the bare adjective, variant the comparative form

A-7  polarity verb base and variant only differ in the polarity of the main verb -
affirmative in the base, negative in the variant

B-1 complex NP pronoun base contains a pronoun, variant contains a complex NP of the
form adj noun

B-2  coordinated noun pronoun base contains a pronoun, variant contains a coordinated NP of
the form noun and noun

B-3 coordinated verbs  verbs base contain a simple verb, variant contains a coordinated VP
of the form verb and verb

B-4  prep-case preposition  base and variant differ in one preposition which implies a dif-
ferent case in the target (eg. during vs. before, with vs. without)

C-1 hyponyms adjective base contains an adjective, (4) variants with hyponyms

C-2  hyponyms noun base contains a noun, (4) variants with hyponyms

C-3  hyponyms verb base contains a verb, (4) variants with hyponyms

Table 2: A set of morphological contrasts. See text for details.

For set A, the creation of the variant (step 2)
consists in replacing a word according to the mor-
phological phenomenon to evaluate (see examples
Table 1). This word is selected in such a way that
its modification does not require a modification of
any other word in the sentence. For instance, a
singular subject noun is not replaced by its plural
form, since the verb agreeing with it would also
need to be replaced accordingly. Indeed, more
than one modification would go against our initial
idea of generating minimal pairs reflecting exactly
one single contrast.

For B-1 (complex NPs), we spot a personal pro-
noun that we changed into an NP consisting in an
adjective and a noun. Both words are generated
randomly with the only constraint that the noun
should refer to a human subject and the adjective
to a psychological state, yielding NPs such as “the
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happy linguist” or “the gloomy philosopher”. In
order to ensure that the context corresponds to a
human subject, we selected pronouns that unam-
biguously refer to humans, such as “him”, “her”,
“we” (avoiding “them”). For B-2 (coordinated
NPs) the pronoun in the base sentence is trans-
formed into a complex NP consisting of two co-
ordinated nouns. Note that adjectives associated
to these nouns, as well as adverbs, have been ran-
domly inserted in order to produce some varia-
tion in the constructions. The B-3 contrasts are
produced in a similar fashion, targeting verbs in-
stead of nouns, with an additional random genera-
tion of a discourse marker that should not interfere
with the translation, yielding variants like “he said
and, as a matter of fact, shouted”.?> Those inser-

3The coordinated verbs are in bold, the discourse marker
is underlined.



tions were performed in order to increase the dis-
tance between the two verbs, making agreement
between them harder. Finally, the B-4 contrasts
are produced in the same way as for the A-set and
simply consist in modifying a preposition.

The C-set variants select a noun, an adjective
or a verb and replace it with a random hyponym,
producing an arbitrary number of sentences. Sen-
tence selection slightly differs from the description
above: during step 2, we generate as many vari-
ants as possible. Each variant is then scored with a
language model and only the top four variants are
kept, leading to buckets of five sentences. Those
buckets are finally filtered in the same way as for
the A and B sets, removing the 33% worst buckets
based on their LM score (step 3).

All the sentences were selected from the En-
glish News-2008 corpus provided at WMT. The
choice of the news domain was dictated by our in-
tention to evaluate systems submitted at WMT’17*
News Translation task. Sentences longer than 15
tokens were removed in order to ensure a bet-
ter focus on a specific part of the sentence in the
MT output. The modifications of English sen-
tences were based on a morpho-syntactic analy-
sis produced with the TreeTagger (Schmid, 1994)
and using the Pymorphy morphological genera-
tor’ to change the inflection of a word. Hy-
ponyms (synonyms and/or antonyms) were gen-
erated with WordNet (Miller, 1995). The 5-gram
language model used for sentence selection was
learned with KenLM (Heafield, 2011) on all En-
glish monolingual data available at WMT’15.

2.3 Scoring Procedures

Regarding the scoring procedure, we again distin-
guish three cases (examples are in Table 3).

e set A: we compare the translations of base
and variant and search for the word(s) in vari-
ant that are not in base. If one of these
words contains the morphological feature as-
sociated with the source sentence modifica-
tion, we report a success. Accuracy of each
morphological feature is averaged over all the
samples. In this set, we thus evaluate mor-
phological information that should be con-
veyed from the source sentence, which leads
to an assessment on the grammatical ade-
quacy of the output towards the source.

‘www.statmt.org/wmt17/

‘http://pymorphy.readthedocs.io/
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e set B: we compare the translations of base
and variant and check that (a) a pronoun in
the former is replaced by a NP in the latter (b)
the adjective and the noun in the NP share the
same gender, number and case. A distinct ac-
curacy rate per feature can then be reported;
note that the situation is different in the com-
plex and coordinated tests, as in the latter
case some agreement properties may differ
in the base and variant (eg. the NP gender
agreement depends on the noun gender that
may be different from the pronoun gender in
base). For the test triggered by prepositions
(B-4), we check whether the first noun on the
right of a preposition carries the required case
mark. Moreover, since we have prepositions
associated to nouns in both base and vari-
ant, we performed this test on both sentences.
This evaluation set checks for agreement and
provides an insight about the morphological
fluency of the produced translations.

set C : in this set of tests, we wish to as-
sess the consistency of morphological fea-
tures with respect to lexical variation in a
fixed context; accordingly, we measure the
success based on the average normalized en-
tropy of morphological features in the set of
target sentences. Such scores can be com-
puted either globally or on a per feature ba-
sis. The entropy is null when all variants
have the same morphological features, the
highest possible consistency; conversely, the
normalized entropy is 1 when the five sen-
tences contain different morphological fea-
tures. For each set C-1, C-2 and C-3, we re-
port average scores over 500 samples. In this
setup, we measure the degree of certainty to
which a system predicts morphological fea-
tures across small lexical variations.

Our scoring procedure needs access to morpho-
logical information in the target. For A and B sets,
the translated sentences are passed through a mor-
phological analysis, where several PoS can be as-
sociated with a word. This makes the evaluation
less dependent on the tagger’s accuracy. There-
fore, when checking whether a specific morpho-
logical feature appears in the output (eg. negation
of a verb), we look for at least one PoS tag indi-
cating negation, ignoring all the others.

For Czech, we used the Morphodita analyzer
(Strakova et al., 2014). We had no such resource



Base& Variant(s) Output

Result

A-set

mam hlad
nemam hlad

I am hungry
I am not hungry

negation found

B-set

I see him vidim ho

I see a crazy researcher

vidim blaznivého vyzkumnika

noun and adjective both
have accusative form

C-set

I agree with the president
I agree with the director
I agree with the minister
I agree with the driver

I agree with the painter

souhlasim s prezidentem
souhlasim s Feditelem
souhlasim s ministrem
souhlasim s Fidi¢em
souhlasim s maliifem

all nouns bear
the same
intrumental case

(Entropy = 0.0)

Table 3: Examples of sentences that pass the tests.

for Latvian and therefore used the LU MII Tagger
(Paikens et al., 2013) to parse all Latvian monolin-
gual data available at WMT’17. We then extracted
a dictionary consisting of words and associated
PoS from the automatic parses. We finally per-
formed a coarse cleaning of this dictionary by re-
moving the PoS that were predicted less than 100
times for a specific word. To run the morpholog-
ical analysis of Latvian, we parsed the translated
sentences with the tagger, then augmented the tag-
ger predictions with our dictionary, producing the
desired ambiguous analysis of the Latvian outputs.

For the C-set, the translated sentence analyses
are disambiguated: each word is mapped to a sin-
gle PoS. This was required to compute the entropy.
Indeed, we need to select only one morphologi-
cal value for each base and variant sentence, given
that the entropy is normalized according the total
number of sentences in the bucket.

3 Experiments

We have run the presented morphological evalua-
tion® on several systems among which some were
submitted at WMT’17. The description of the lat-
ter can be found in the proceedings of the Second
Conference on Machine Translation (2017a). We
briefly summarize the types of systems included in
the English-to-Czech study:

e Phrase-based systems: The Moses baseline
was trained on WMT’17 data and was not
submitted at WMT’17. UFAL Chimera’
was submitted at WMT’16 and is described
in (Tamchyna et al., 2016).

SThe test suite and the scripts used for evaluation can be
downloaded at github.com/franckbrl/morpheval.

"Chimera (Bojar et al., 2013) consists in a phrase-based
factored system (Moses), a deep-syntactic transfer-based sys-
tem (TectoMT) and a rule-based post-processing system.
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e Word based NMT: NMT words is a system
trained on WMT’17 parallel data with a tar-
get vocabulary of 80k tokens. It was not sub-
mitted at WMT’ 17 and is used for contrast.

BPE-based NMT: LIMSI NMT (Burlot
et al., 2017) is based on NMTPY (Caglayan
et al., 2017), UEDIN NMT (Sennrich et al.,
2017a) on Nematus (Sennrich et al., 2017b)
and UFAL NMT (Bojar et al., 2017b) on
Neural Monkey (Helcl and Libovicky, 2017).

NMT modeling target morphology: LIMSI
FNMT (Burlot et al., 2017) and LIUM
FNMT (Garcia-Martinez et al., 2017) use a
factored output predicting words and PoS,
and UFAL NMT Chim. (Bojar et al., 2017b)
uses Chimera (Bojar et al., 2013). All these
models also use BPE segmentation.

These systems are representative of different
models across statistical MT history. Phrase-based
systems are a former state of the art that word-
based NMT struggled to improve. The new state
of the art is an NMT setup with an open vocab-
ulary provided by byte pair encoding (BPE) seg-
mentation (Sennrich et al., 2016b). Finally, we
have a set of systems that are optimized in order to
improve target morphology. The automatic scores
of the systems submitted at WMT’ 178 are in Ta-
ble 4 where we report BLEU, BEER (Stanojevi¢
and Sima’an, 2014) and CharacTER (Wang et al.,
2016).> We also computed a morphology accu-
racy for these systems. Using output-to-reference
alignments produced by METEOR on lemmas, we

8We were not able to provide such scores for the other
systems, since we did not have access to their translations of
WMT’17 official test sets.

Outputs were taken from matrix.statmt.org. The
scores are computed on tokenized and truecased outputs.



System BLEUT BEERT CIERJ]  Acc.
LIMSI NMT 19.81 54.50 5840 8559
UFAL NMT 19.78 54.52 5762 8531
UEDIN NMT 23.06 56.52 5604 8698
LIMSI FNMT 2045 54.98 5800 8542
LIUM FNTM 20.14 54.81 57.91 84.98
UFAL NMT Chim. | 21.00 55.04 5939 8528

Table 4: Scores of the English-to-Czech WMT’ 17
submissions on the official test set.

checked whether aligned words shared the same
form. Our assumption is that two different forms
associated to the same lemma correspond to two
different inflections of the same lexeme, which al-
lows us to locate positions that likely correspond
to morphological errors.

Table 5 lists the results for the A-set tests, which
evaluate the morphological adequacy of the out-
put wrt. the source sentence. The last column pro-
vides the mean of all scores for one system. We
can note that all BPE-based NMT systems have
a much higher performance than the phrase-based
systems.!” We explain the poor performance of
the word-based NMT system by the use of a too
small closed vocabulary: over the 18,500 sen-
tences of the test suite, 12,016 unknown words
were produced by this system. However, when
it comes to predicting the morphology of closed
class words, this systems performs much better:
the accuracy computed for pronoun gender and
number is similar to the ones of best BPE-based
systems. As opposed to nouns and verbs (open
classes), the set of pronouns in Czech is quite
small; having observed all their inflections, the
word-based system is in a better position to con-
vey the target form.

Despite important differences in automatic met-
ric scores between UEDIN NMT system and
LIMSI FNMT, we see that the latter always out-
performs the former, except for the feminine pro-
noun prediction. The overall morphological ac-
curacies (Table 4) show that UEDIN NMT pro-
vides more similar word forms with the reference
translation, but these global scores fail to show the
higher adequacy performance of LIMSI FNMT
highlighted in the A-set.

The results of the B-set evaluation for Czech are
in Table 6 and are an estimate of the morpholog-
ical fluency of the output. We observe here again

19The prediction quality of future tense by PBMT systems
is however comparable to that of NMT systems. We assume
that this is due to the possibility to generate an analytic form
of this tense (auxiliary + infinitive) that is easier to form well
than its synthetic form (morphological phenomenon).
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that morphological phenomena such as agreement
are better modeled by sequence-to-sequence mod-
els using BPE segmentation than phrase-based or
word-based NMT systems. The overall best per-
formance of UEDIN and UFAL NMT has to be
noted, since both outperform systems that explic-
itly model target morphology.

The results for the C-set for English-to-Czech
are shown in Table 7. We now observe that fac-
tored systems are less sensitive to lexical varia-
tions and make more stable morphological pre-
dictions. The differences with the entropy values
computed for the phrase-based systems are spec-
tacular, especially for verbal morphology. We un-
derstand this poor performance for phrase-based
systems as a consequence of the initial assump-
tion those systems rely on: the concatenation of
phrases to constitute an output sentence does not
help to provide a single morphological prediction
in slightly various contexts.

As an attempt to evaluate the error margin of our
evaluation results, we have run a manual check of
our evaluation measures. For this, we have taken
all 500 sentence pairs reflecting past tense (A-set),
as well as case (pronouns to nouns in B-set), and
took translations from different systems randomly.
We report on cases where the modification of the
source created a “bad” (meaningless or ungram-
matical) variant, as well as sample translations er-
roneously considered successful or unsuccessful.
For past tense, we observe a low quantity of false
positive (1.6%) and false negative (0.4%). The ra-
tio of bad sources is quite low as well (3%), and is
mostly related to cases where a word was given the
wrong analysis in the first place, such as a noun la-
beled by the PoS-tagger as a verb, which was then
turned into a past form. For pronouns to nouns,
there are nearly no bad source sentences (0.2%):
the transformation of pronouns into noun phrases
is quite easy and safe. While false positive la-
bels are lower (0.2%), there is a higher amount of
false positive (4.4%), which was mainly due to our
word-based NMT system that generates many un-
known words and presents important differences
between base and variant: several adjectives and
nouns, not corresponding to the ones we generated
in the source sentence, could then be considered
during the evaluation.

For English-to-Latvian, we have represented
the same types of systems as for Czech, with an
additional hybrid system. The scores and mor-



verbs pronouns others mean
System past future neg. fem. plur. noun nb.  compar.
Moses baseline 61.0% 872% 73.8% | 91.6% 78.0% 72.6% 70.9% 76.4%
UFAL PBMT 922% 88.6% 78.8% | 75.6%  79.8% 86.0% 72.2% 81.9%
NMT words 74.6% 60.6% 91.6% | 89.2% 71.6% 44.0% 47.8% 68.5%
UFAL NMT 91.0% 90.4% 950% | 924% 80.8% | 96.6% 70.6% 88.1%
LIMSI NMT 92.6% 862% 96.0% | 91.4% 792% 94.6% 76.2% 88.0%
UEDIN NMT 924%  81.0% 942% | 93.0% 78.0% 95.8% 73.8% 87.7%
LIMSI FNMT 942% 88.0% 954% | 912%  80.0% 96.2% 75.0% 88.6%
LIUM FNTM 934% 84.0% 94.6% | 91.6% 80.2% 96.2% 73.4% 87.6%
UFAL NMT Chim. | 92.6% 86.6% 88.2% | 854% 80.2% 89.2% 70.6% 84.7%
Table 5: Sentence pair evaluation for English-to-Czech (A-set).
coordinated verbs coord.n pronouns to nouns prep. mean
System number  person tense case gender number case case
Moses baseline 532%  53.6% 47.6% | 92.6% | 68.0% 694% 69.4% | 86.2% 67.5%
UFAL PBMT 674%  692% 592% | 932% | 924% 924% 91.8% | 89.6% 81.9%
NMT words 60.0% 58.8% 51.8% | 64.0% | 228% 232% 22.6% | 62.2% 45.7%
LIMSI NMT 76.6%  77.0% 692% | 904% | 90.8%  92.6%  92.2% | 95.3% 85.5%
UFAL NMT 814%  80.0% 74.0% | 942% | 944% 94.6% 94.8% | 97.0% 88.8%
UEDIN NMT 83.6% 842% 77.6% | 928% | 93.6% 944%  94.0% | 95.8% || 89.5%
LIMSI FNMT 77.6%  77.4%  70.6% 89.0% | 91.4% 90.8%  91.6% | 96.1% 85.6%
LIUM FNTM 80.8%  79.6% 71.8% 89.6% | 90.6% 904%  90.8% | 95.8% 86.2%
UFAL NMT Chim. | 758% 74.6% 68.0% | 92.6% | 87.8% 87.8% 882% | 92.9% 83.5%

Table 6: Sentence pair evaluation for English-to-Czech (B-set).

phological accuracies of the systems submitted at
WMT’17 are in Table 8.

e Phrase-based systems: The Moses baseline
was trained on WMT’17 data and TILDE
PBMT was provided by TILDE!! and is de-
scribed in (Peter et al., 2017). These systems
did not take part in the official WMT’17 eval-
uation campaign.

e Word-based NMT: NMT words is a system
trained on WMT’ 17 parallel data with a 80K
target vocabulary. It was not submitted at
WMT’17 and is used here as a contrast.

e BPE-based NMT: LIMSI NMT (Burlot
etal., 2017) is based on NMTPY and UEDIN
NMT (Sennrich et al., 2017a) on Nematus.

e NMT modeling target morphology: LIMSI
FNMT (Burlot et al.,, 2017) and LIUM
FNMT (Garcia-Martinez et al., 2017) use a
factored output predicting words and PoS.

e Hybrid system: TILDE hybrid is an ensem-
ble of NMT models using a PBMT to process
rare and unknown words. It was submitted at
WMT’17 (Pinnis et al., 2017).

"nttp://www.tilde.com/mt

The results for the A-set evaluation are in Ta-
ble 9. Compared to the previous Czech eval-
uation, there is a less clear difference between
phrase-based and NMT systems based on BPE.
Indeed, TILDE hybrid has the best mean per-
formance and is only 5 points above our Moses
baseline. A possible reason for that situation is
the lower amount of parallel data available for
English-Latvian, compared to English-Czech. We
notice that there is no significant difference be-
tween the two NMT systems and LIMSI FNMT.
With this language pair, word-based NMT per-
forms significantly worse than all other systems
on all morphological features, which is confirmed
by the fluency evaluation in Table 10. Here, the
factored systems tend to have a better verbal flu-
ency, whereas NMT systems perform better on
nominal agreement: LIMSI FNMT has the best
mean score, but is only 0.2 points above UEDIN
NMT. The best system, TILDE hybrid, is now
21.1 points above the Moses baseline, which again
seems to be the main reason for such high overall
morphological accuracy in Table 8.

Table 11 confirms the higher performance of
NMT and factored NMT systems, with a clear ad-
vantage for TILDE hybrid, which has the best ac-
curacy in terms of fluency, like in the previous Ta-
ble 10, which tends to show some correlation be-
tween both types of tests.
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nouns adjectives verbs mean
System case | gender number case | number person tense negation
Moses baseline 381 482 420 453 415 .300 354 269 384
UFAL PBMT 272 376 331 .376 .198 134 150 105 243
NMT words 419 561 537 460 513 477 491 467 491
UFAL NMT 193 325 271 317 154 .084 .105 .075 191
LIMSI NMT 205 303 262 .301 138 .068 .082 .054 177
UEDIN NMT 217 302 276 .300 124 .065 .086 054 178
LIMSI FNMT 197 287 255 292 110 .062 .081 .056 .168
LIUM FNTM .206 278 240 269 125 .074 .090 .067 .169
UFAL NMT Chim. 214 353 .302 359 185 114 129 .097 219
Table 7: Sentence group evaluation for English-to-Czech with Entropy (C-set).
verbs pronouns nouns mean
System BLEUT BEERT CTERJ Acc. System past future fem. plur. number
LIMSI NMT 1591 5291 61.56 85.36 Moses baseline 67.0% 83.2% 68.6% 83.6% 63.6% 73.2%
UEDIN NMT 1720 5377 6560 8599 TILDE PBMT | 688%  704% | 56.0% 718% | 65.0% 66.4%
LIMSI FNMT 16.93 53.73 60.57 85.57 NMT words 56.8% 64.0% 38.6% 71.4% 59.2% 58.0%
LIUM FNTM 16.13 5281 6100 8405 UEDIN NMT 74.6%  83.6% | 57.0%  88.6% | 69.4% 74.6%
TILDE hybrid 2028 5546 5746 8795 LIMSI NMT 68.8%  84.6% | 642%  86.8% | 73.0% 75.5%
LIMSIFNMT | 69.6% 82.8% | 62.0% 89.0% | 70.6% 74.8%
. . LIUMFNMT | 73.0% 812% | 768% 86.6% | 73.2% 78.2%
Table 8: Scores of the English-to-Latvian TILDE hybrid | 79.6% 92.0% | 49.4% 87.2% | 712% || 75.9%

WMT’ 17 submissions on the official test
set.

Table 9: Sentence pair evaluation for English-to-Latvian

(A-set).

When it comes to morphological correction of
the output, our evaluation clearly shows the supe-
riority of BPE-based NMT systems over phrase-
based ones. On the other hand, while we observed
that factored models obtain a higher performance
in terms of adequacy, NMT models are still very
close to them in terms of fluency. Finally, factored
models, as well as TILDE hybrid, clearly showed
more confidence in their predictions through slight
lexical variations.

4 Related work: evaluating morphology

Automatic metrics Despite their well-known
flaws, “general purpose” automatic metrics such
as BLEU (Papineni et al., 2002), TER (Snover
et al., 2006) or METEOR (Banerjee and Lavie,
2005) remain the preferred way to measure
progress in Machine Translation. Evaluation cam-
paigns aimed at comparing systems have long
abandoned these measures and resort to human
judgments, such as ranking (Callison-Burch et al.,
2007) or direct assessment (Bojar et al., 2016). To
compensate for the inability of eg. BLEU to de-
tect improvements targeting specific difficulties of
MT, several problem-specific measures have been
introduced over the years such as the LR-Score
(Birch and Osborne, 2010) to measure the cor-
rectness of reordering decisions, MEANT (Lo and
Wu, 2011) to measure the transfer of entailment
relationships, or CharacTER (Wang et al., 2016)
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to better assess the success of translation into a
MRL. Stanojevi¢ and Sima’an (2014)’s BEER is
a nice example of a sophisticated metric, based
on a trainable mixture of multiple metrics: for
MRLs, the inclusion of character n-gram matches
and of reordering scores proves critical to reach
good correlation with human judgments. In com-
parison, the proposal of Wang et al. (2016) simply
computes a TER-like score at the character level,
thereby partially crediting a system for predicting
the right lemma with the wrong morphology.

Error typologies Error analysis protocols, as
proposed by Vilar et al. (2006); Popovi¢ and Ney
(2011); Stymne (2011) for PBMT systems are ob-
vious candidates for running diagnosis studies and
have been used eg. by Bentivogli et al. (2016);
Toral Ruiz and Sdnchez-Cartagena (2017); Costa-
jussa (2017); Klubicka et al. (2017). These works
differ in the language pairs and in the error ty-
pology considered. Bentivogli et al. (2016) only
recognizes three main error types which are au-
tomatically recognized based on aligning the hy-
potheses and references — for instance a morpho-
logical error is detected when the word form is
wrong, whereas the lemma is correct; this defini-
tion is also adopted in (Toral Ruiz and Sénchez-
Cartagena, 2017), and decomposed at the level
of morphological features in (Peter et al., 2016);
(Klubicka et al., 2017) use a more detailed ty-



coordinated verbs coord.n pronouns to nouns prep. mean
System number person  tense case gender number case case
Moses baseline | 50.2%  37.4% 50.6% | 422% | 21.4% 24.0% 14.8% | 45.1% || 35.7%
TILDE PBMT | 49.6% 32.8% 502% | 47.6% | 24.0% 254% 19.0% | 48.5% || 37.1%
NMT words 43.0%  36.0% 43.6% 15.6% 7.8% 8.0% 78% | 44.1% || 25.7%
UEDIN NMT 70.6%  60.8% 72.0% | 302% | 464% 448% 434% | 56.7% || 53.1%
LIMSI NMT 692%  57.6% 704% | 41.8% | 40.0% 40.8%  358% | 54.6% || 51.3%
LIMSIFNMT | 724% 63.4% 732% | 348% | 43.0% 422% 41.4% | 55.5% || 53.2%
LIUM FNMT 780% 67.0% 78.6% | 372% | 38.6% 38.0% 35.6% | 56.1% || 53.6%
TILDE hybrid | 69.0% 61.8% 694% | 354% | 54.6% 53.0% 53.2% | 58.3% || 56.8%
Table 10: Sentence pair evaluation for English-to-Latvian (B-set).
nouns adjectives verbs mean
System case gender number case | number person tense
Moses baseline 467 738 17 153 271 .352 285 512
TILDE PBMT 436 755 735 768 254 337 258 .506
NMT words .385 751 732 764 .329 353 337 522
UEDIN NMT 234 .598 .596 .628 115 .190 114 354
LIMSI NMT 255 .616 .610 .644 139 221 134 374
LIMSI FNMT 233 587 582 .612 117 182 113 .346
LIUM FNMT 213 .608 .606 .643 .099 .163 .092 346
TILDE hybrid .198 587 581 .608 .088 123 .090 325

Table 11: Sentence group evaluation for English-to-Latvian with Entropy (C-set).

pology derived from the MQM proposal!? and

adapted to the English:Croatian pair — morpho-
logical errors mostly correspond to “word form”
errors and are too subtle to be automatically de-
tected. A common finding of these studies is that
NMT generates better agreements than alterna-
tives such as PBMT or Hierarchical MT.

Test suites The work of Isabelle et al. (2017);
Burchardt et al. (2017) resuscitates an old tradi-
tion of using carefully designed test suites King
and Falkedal (1990); Lehmann et al. (1996) to
explore the ability of NMT to handle specific
classes of difficulties. Test suites typically in-
clude a small set of handcrafted sentences for
each targeted type of difficulty. For instance, Is-
abelle et al. (2017) focuses on translating from
English into French and is based on a set of 108
short sentences illustrating situations of morpho-
syntactic, lexico-syntactic and syntactical diver-
gences between these two languages. Assessing
a system’s ability to handle these difficulties re-
quires a human judge to decide whether the au-
tomated translation has successfully “crossed” the
bridge between languages.'®> A similar methodol-
ogy is used in the work of Burchardt et al. (2017),
who use a test suite of approximately 800 seg-
ments covering a wide array of translation diffi-

Phttp://www.qt21l.eu/mgm-definition
3Note that this is a local evaluation — a system can produce
a bad overall translation, yet pass the test.
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culties for the pair English-German. Test suites
enable to directly evaluate and compare specific
abilities of MT Engines, including morphological
competences: again, both studies found that NMT
is markedly better than PBMT when it comes to
phenomena such as word agreement. The down-
side is the requirement to have expert linguists pre-
pare the data as well as evaluate the success of the
MT system, which is a rather expensive price to
pay to get a diagnostic evaluation.

Automatic test suites The work by Linzen et al.
(2016) specifically looks at the prediction of the
correct agreement features in increasingly com-
plex contexts generated by augmenting the dis-
tance between the head and its dependent and the
number of intervening distractors. A language
model is deemed correct if it scores the correct
agreement higher than any wrong one. One in-
triguing finding of this study is the very good per-
formance of RNNs, provided that they receive the
right kind of feedback in training. A similar ap-
proach is adapted for MT by Sennrich (2017), who
looks at a wider range of phenomena. Contrastive
pairs as automatically produced as follows: given
a correct (source, target) pair p = (f,e), intro-
duce one error in e yielding an alternative couple
p’ = (f,€e'). A system is deemed to perform cor-
rectly wrt. this contrastive pair if it scores p higher
than p’. This approach is fully automatic, looks
at a wide range of contexts and phenomena and



also enables to focus on specific errors types; a
downside is the fact that the evaluation never con-
siders whether e is the system’s best choice given
source f. Regarding specifically morphology, this
study mostly considers (subject-verb, as well as
modifier-head noun) agreement errors, but only
compares error rates of variants of NMT systems.

A typology of evaluation protocols The variety
of evaluation protocols found in the literature can
be categorized along the following dimensions:

e holistic vs analytic: a holistic metric provides
a global sentence- or document-level score,
of which the morphological ability is only
one part; an analytic metric focuses on spe-

cific difficulties;

coarse Vs fine-grain: a coarse (analytic) met-
ric only provides global appreciation of mor-
phological competence; while a fine-grain
metric distinguishes various types of errors;

natural vs hand-crafted vs artificial: for the
sake of this study, this distinction relates to
the design of the test sentences — were they
invented for the purpose of the evaluation or
found in a corpus, or even generated using
automatic processing ?

automatic vs human-judgment: 1is scoring
fully automatic or is a human judge in-
volved ?

scores can be distance-based, such as a global
comparison with a reference translation, or a
Boolean value that denotes success or failure
wrt. a local test, or based on a comparison of
model scores;

Based on this analysis, the work reported here
is analytic/fine-grain, uses artificial data, and com-
putes automatic scores based on a local compari-
son with an expected value (mostly). This is the
only one of that kind we are aware of.

5 Conclusion and Outlook

In this paper, we have presented a new proto-
col for evaluating the morphological competence
of a Machine Translation system, with the aim
to measure progresses in handling complex mor-
phological phenomena in the source or the target
language. We have presented preliminary exper-
iments for two language pairs, which show that
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NMT systems with BPE outperform in many ways
the phrase-based MT systems. Interestingly, they
also reveal subtle differences among NMT sys-
tems and indicate specific areas where improve-
ments are still needed. This work will be devel-
oped in three main directions:

e improve the generation and scoring algo-
rithms: our procedure for generating sen-
tences relies on automatic morphological
analysis, which can be error prone, and on
crude heuristics. While these two sources of
noise likely have a small impact on the fi-
nal results, which represent an average over a
large number of sentences, we would like to
better evaluate these effects, and, if needed,
apply the necessary fixes;

refine our analysis of automatic scores: the
numbers reported in § 3 are averages over
multiple sentences, and could be subjected
to more analyses such as looking more pre-
cisely at OOVs, or taking frequency effects
in considerations. This would allow to as-
sess a system’s ability to generate the right
form for frequent vs rare vs unseen lemmas
or morphological features. Frequency is also
often correlated with regularity, and we also
would like to assess morphological compe-
tence along those lines. Likewise, analyz-
ing performance in agreement tests with re-
spect to the distance between two coordi-
nated nouns or verbs might also be revealing.

increase the set of tests: we have focused
on translating English into two MRLs having
similar properties. Future work includes the
generation of additional inflectional contrasts
(introducing for instance mood or aspect,
which are morphologically marked in many
languages) as well as derivational contrasts
(such as diminutives for nouns, or antonyms
for adjectives). Again, this implies to im-
prove our scoring and generation algorithms,
and to adapt them to new languages.

Acknowledgements

The authors thank the participants to the WMT’ 17
News Translation task who kindly translated our
test sets into Latvian and Czech. This work has
been partly funded by the European Union’s Hori-
zon 2020 research and innovation programme un-
der grant agreement No. 645452 (QT21).



References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. =~ CoRR
abs/1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion. Ann Arbor, Michigan, pages 65-72.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and
Marcello Federico. 2016. Neural versus phrase-
based machine translation quality: a case study. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin,
Texas, pages 257-267.

Alexandra Birch and Miles Osborne. 2010. LRscore
for evaluating lexical and reordering quality in MT.
In Proceedings of the Joint Fifth Workshop on Sta-
tistical Machine Translation and MetricsMATR. As-
sociation for Computational Linguistics, WMT ’10,
pages 327-332.

Arianna Bisazza and Marcello Federico. 2016. A sur-
vey of word reordering in statistical machine trans-
lation: Computational and language phenomena.
Computational Linguistics 42(2):163-205.

Ondrej Bojar, Christian Buck, Rajen Chatterjee, Chris-
tian Federmann, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, Julia Kreutzer, Varvara Logacheva, Christof
Monz, Matteo Negri, Aurélie Névéol, Mariana
Neves, Matt Post, Stefan Riezler, Artem Sokolov,
Lucia Specia, Marco Turchi, and Karin Verspoor.
2017a. Proceedings of the second conference on
machine translation, WMT 2017. The Association
for Computational Linguistics, Copenhagen, Den-
mark.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the First
Conference on Machine Translation. Association for
Computational Linguistics, Berlin, Germany, pages
131-198.

Ondrej Bojar, Tom Kocmi, David Marecek, Roman Su-
darikov, and Dusan Varis. 2017b. CUNI submission
in WMT17: Chimera goes neural. In Proceedings
of the Second Conference on Machine Translation
(WMT’17). Copenhagen, Denmark.

53

Ondfej Bojar, Rudolf Rosa, and Tamchyna Ales. 2013.
Chimera — three heads for English-to-Czech transla-
tion. In Proceedings of the Eight Workshop on Sta-
tistical Machine Translation. Sofia, Bulgaria, pages
92-98.

Aljoscha Burchardt, Vivien Macketanz, Jon Dehdari,
Georg Heigold, Jan-Thorsten Peter, and Philip
Williams. 2017. A Linguistic Evaluation of
Rule-Based, Phrase-Based, and Neural MT En-
gines. In Proceedings of the European Conference
on Machine Translation. Prague, Czech Republic,
EAMT’17, pages 159-170.

Franck Burlot, Pooyan Safari, Matthieu Labeau,
Alexandre Allauzen, and Francois Yvon. 2017.
LIMSI@QWMT’17. In Proceedings of the Sec-
ond Conference on Machine Translation (WMT’17).
Copenhagen, Denmark.

Ozan Caglayan, Mercedes Garcfa-Martinez, Adrien
Bardet, Walid Aransa, Fethi Bougares, and Loic
Barrault. 2017. NMTPY: A Flexible Toolkit for Ad-
vanced Neural Machine Translation Systems. arXiv
preprint arXiv:1706.00457 .

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2007.
(meta-) evaluation of machine translation. In Pro-
ceedings of the Second Workshop on Statistical Ma-
chine Translation. Prague, Czech Republic, pages
136-158.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder—decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation. Doha, Qatar, pages 103—111.

Marta. R Costa-jussa. 2017. Why Catalan-Spanish
neural machine translation ? analysis, compari-
son and combination with standard rule and phrase-
based technologies. In Proceedings of the Fourth
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial). Association for Computa-
tional Linguistics, pages 55-62.

Mercedes Garcia-Martinez, Ozan Caglayan, Walid
Aransa, Adrien Bardet, Fethi Bougares, and Loic
Barrault. 2017. Lium machine translation systems
for wmt17 news translation task. In Proceedings
of the Second Conference on Machine Translation.
Copenhagen, Denmark.

Kenneth Heafield. 2011. KenLM: Faster and Smaller
Language Model Queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation.
Edinburgh, Scotland, pages 187-197.

Jindrich Helcl and Jindfich Libovicky. 2017. Neural
monkey: An open-source tool for sequence learning.
Prague Bulletin of Mathematical Linguistics 107:1—
11.



Pierre Isabelle, Colin Cherry, and George Foster. 2017.
A challenge set approach to evaluating machine
translation. ArXiv e-prints .

Margaret King and Kirsten Falkedal. 1990. Using test
suites in evaluation of machine translation systems.
In COLNG 1990 Volume 2: Papers presented to
the 13th International Conference on Computational
Linguistics.

Filip Klubi¢ka, Antonio Toral Ruiz, and Victor M.
Sanchez-Cartagena. 2017.  Fine-grained human
evaluation of neural versus phrase-based machine
translation. In Proceedings of the European Con-

ference on Machine Translation. Prague, Czech Re-
public, EAMT’17, pages 121—-132.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

Sabine Lehmann, Stephan Oepen, Sylvie Regnier-
prost, Klaus Netter, Veronika Lux, Judith Klein,
Kirsten Falkedal, Frederik Fouvry, Dominique Esti-
val, Eva Dauphin, Hervé Compagnion, Judith Baur,
Lorna Balkan, and Doug Arnold. 1996. TSLNP
— test suites for natural language processing. In
Proceedings of the 16th International Conference
on Computational Linguistics (COLING 96). pages
711-716.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics 4:521—
535.

Chi-kiu Lo and Dekai Wu. 2011. MEANT: an inexpen-
sive, high-accuracy, semi-automatic metric for eval-
uating translation utility based on semantic roles. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, pages 220-229.

Peter H. Matthews. 1974. Morphology. Cambridge
University Press.

George A. Miller. 1995. Wordnet: A lexical
database for english. Communications of the ACM
38(11):39-41.

Peteris Paikens, Laura Rituma, and Lauma Pretkalnina.
2013.  Morphological analysis with limited re-
sources: Latvian example. In Proc. NODALIDA.
pages 267-2717.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 311-318.

Jan-Thorsten Peter, Tamer Alkhouli, Hermann Ney,
Matthias Huck, Fabienne Braune, Alexander Fraser,
Ale§ Tamchyna, Ondfej Bojar, Barry Haddow,

Rico Sennrich, Frédéric Blain, Lucia Specia, Jan
Niehues, Alex Waibel, Alexandre Allauzen, Lau-
riane Aufrant, Franck Burlot, Flena Knyazeva,
Thomas Lavergne, Francois Yvon, Marcis Pinnis,
and Stella Frank. 2016. The QT21/HimL combined
machine translation system. In Proceedings of the
First Conference on Machine Translation. Associ-
ation for Computational Linguistics, Berlin, Ger-
many, pages 344-355.

Jan-Thorsten Peter, Hermann Ney, Ondfej Bojar,
Ngoc-Quan Pham, Jan Niehues, Alex Waibel,
Franck Burlot, Frangois Yvon, Marcis Pinnis, Val-
ters gics, Joost Bastings, Miguel Rios, Wilker Aziz,
Philip Williams, Frédéric Blain, and Lucia Specia.
2017. The QT21 Combined Machine Translation
System for English to Latvian. In Proceedings
of the Second Conference on Machine Translation
(WMT’17). Copenhagen, Denmark.

Marcis Pinnis, Rihards Krislauks, Toms Miks, Daiga
Deksne, and Valters Sics. 2017. Tilde’s Machine
Translation Systems for WMT 2017. In Proceed-
ings of the Second Conference on Machine Transla-
tion (WMT 2017), Volume 2: Shared Task Papers.
Copenhagen, Denmark.

Maja Popovi¢ and Hermann Ney. 2011. Towards au-
tomatic error analysis of machine translation output.
Computational Linguistics 37(4):657-688.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proceedings of
International Conference on New Methods in Lan-
guage Processing. Manchester, UK.

Rico Sennrich. 2017. How grammatical is character-
level neural machine translation? assessing mt qual-
ity with contrastive translation pairs. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers. Association for Computational
Linguistics, pages 376-382.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Antonio Valerio Miceli
Barone, and Philip Williams. 2017a. The University
of Edinburgh’s Neural MT Systems for WMT17. In
Proceedings of the Second Conference on Machine
Translation, Volume 2: Shared Task Papers. Copen-
hagen, Denmark.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Ldubli, Antonio Vale-
rio Miceli Barone, Jozef Mokry, and Maria Nade-
jde. 2017b. Nematus: a toolkit for neural machine
translation. In Proceedings of the Software Demon-
strations of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Valencia, Spain, pages 65-68.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh Neural Machine Translation Sys-



tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation. Berlin, Germany,
pages 371-376.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1715-1725.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the seventh conference of the
Association for Machine Translation in the America
(AMTA). Boston, Massachusetts, USA, pages 223—
231.

Milo§ Stanojevi¢ and Khalil Sima’an. 2014.  Fit-
ting sentence level translation evaluation with many
dense features. In Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language
Processing. Doha, Qatar, EMNLP, pages 202-206.

Jana Strakova, Milan Straka, and Jan Haji¢. 2014.
Open-Source Tools for Morphology, Lemmatiza-
tion, POS Tagging and Named Entity Recognition.
In Proc. ACL: System Demos. Baltimore, MA, pages
13-18.

Sara Stymne. 2011. Blast: A tool for error analy-
sis of machine translation output. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies: Systems Demonstrations. Association for
Computational Linguistics, HLT 11, pages 56-61.

Ale§ Tamchyna, Roman Sudarikov, Ondfej Bojar, and
Alexander Fraser. 2016. Cuni-Imu submissions in
wmt2016: Chimera constrained and beaten. In Pro-
ceedings of the First Conference on Machine Trans-
lation. Berlin, Germany, pages 385-390.

Antonio Toral Ruiz and M. Victor Sanchez-Cartagena.
2017. A multifaceted evaluation of neural versus
phrase-based machine translation for 9 language di-
rections. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers. As-
sociation for Computational Linguistics (ACL), Va-
lencia, Spain, pages 1063—-1073.

David Vilar, J. Xu, D.H. Luis Fernando, and Hermann
Ney. 2006. Error analysis of statistical machine
translation output. In Proceedings of the Fifth In-

ternational Conference on Language Resources and
Evaluation. Genoa, Italy, LREC’06.

Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl,
and Hermann Ney. 2016. CharacTer: Translation
Edit Rate on Character Level. In Proceedings of the
First Conference on Machine Translation. Berlin,
Germany, WMT, pages 505-510.

55



Target-side Word Segmentation Strategies
for Neural Machine Translation

Matthias Huck, Simon Riess, Alexander Fraser

Center for Information and Language Processing
LMU Munich
Munich, Germany

{mhuck, fraser}@cis.Ilmu.de, riess.simon@campus.lmu.de

Abstract

For efficiency considerations, state-of-the-
art neural machine translation (NMT) re-
quires the vocabulary to be restricted to a
limited-size set of several thousand sym-
bols. This is highly problematic when
translating into inflected or compounding
languages. A typical remedy is the use
of subword units, where words are seg-
mented into smaller components. Byte
pair encoding, a purely corpus-based ap-
proach, has proved effective recently.

In this paper, we investigate word segmen-
tation strategies that incorporate more lin-
guistic knowledge. We demonstrate that
linguistically informed target word seg-
mentation is better suited for NMT, lead-
ing to improved translation quality on
the order of magnitude of 40.5 BLEU
and —0.9 TER for a medium-scale
English—German translation task.

Our work is important in that it shows that
linguistic knowledge can be used to im-
prove NMT results over results based only
on the language-agnostic byte pair encod-
ing vocabulary reduction technique.

1 Introduction

Inflection and nominal composition are morpho-
logical processes which exist in many natural lan-
guages. Machine translation into an inflected lan-
guage or into a compounding language must be
capable of generating words from a large vocabu-
lary of valid word surface forms, or ideally even be
open-vocabulary. In NMT, though, dealing with a
very large number of target symbols is expensive
in practice.

While, for instance, a standard dictionary of
German, a compounding language, may cover
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140000 vocabulary entries,’” NMT on off-the-
shelf GPU hardware is nowadays typically only
tractable with target vocabularies below 100 000
symbols.

This issue is made worse by the fact that com-
pound words are not a closed set. More frequently
occurring compound words may be covered in
a standard dictionary (e.g., “Finanztransaktions-
steuer”, English: “financial transaction tax”), but
the compounding process allows for words to be
freely joined to form new ones (e.g., “Finanztrans-
aktionssteuerzahler”, English: “financial transac-
tion tax payer”), and compounding is highly pro-
ductive in a language like German.

Furthermore, a dictionary lists canonical word
forms, many of which can have many inflected
variants, with morphological variation depending
on case, number, gender, tense, aspect, mood, and
so on. The German language has four cases, three
grammatical genders, and two numbers. Ger-
man exhibits a rich amount of morphological word
variations also in the verbal system. A machine
translation system should ideally be able to pro-
duce any permissible compound word, and all in-
flections for each canonical form of all words (in-
cluding compound words).

Previous work has drawn on byte pair encod-
ing to obtain a fixed-sized vocabulary of subword
units. In this paper, we investigate word segmen-
tation strategies for NMT which are linguistically
more informed. Specifically, we explore and em-
pirically compare:

* Compound splitting.

* Suffix splitting.

* Prefix splitting.

* Byte pair encoding (BPE).

* Cascaded applications of the above.

"Duden, 26" ed., 2013, cf. http://www.duden.de/
ueber_duden/auflagengeschichte.

Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 56-67
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics



Our empirical evaluation focuses on
target-language  side  segmentation, with
English—German translation as the applica-
tion task. Our proposed approaches improve
machine translation quality by up to +0.5 BLEU
and —0.9 TER, respectively, compared with using
plain BPE.

Advantages of linguistically-informed target
word segmentation in NMT are:

1. Better vocabulary reduction for practical
tractability of NMT, as motivated above.

2. Reduction of data sparsity. Learning lexi-
cal choice is more difficult for rare words
that appear in few training samples (e.g., rare
compounds), or when a single form from a
source language with little inflection (such
as English) has many target-side translation
options which are morphological variants.
Splitting compounds and separating affixes
from stems can ease lexical selection.

3. Better open vocabulary translation. With
target-side word segmentation, the NMT sys-
tem can generate sequences of word pieces
at test time that have not been seen in this
combination in training. It may produce new
compounds, or valid morphological variants
that were not present in the training corpus,
e.g. by piecing together a stem with an inflec-
tional suffix in a new, but linguistically ad-
missible way. Using a linguistically informed
segmentation should better allow the system
to try to learn the linguistic processes of word
formation.

2 Word Segmentation Strategies
2.1 Byte Pair Encoding

A technique in the manner of the Byte Pair Encod-
ing (BPE) compression algorithm (Gage, 1994)
can be adopted in order to segment words into
smaller subword units, as suggested by Sennrich
et al. (2016b). The BPE word segmenter con-
ceptionally proceeds by first splitting all words in
the whole corpus into individual characters. The
most frequent adjacent pairs of symbols are then
consecutively merged, until a specified limit of
merge operations has been reached. Merge opera-
tions are not applied across word boundaries. The
merge operations learned on a training corpus can
be stored and applied to other data, such as test
sets.
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suffixes

-e, -em, -en, -end, -enheit, -enlich, -er, -erheit, -erlich,
-ern, -es, -est, -heit, -ig, -igend, -igkeit, -igung, -ik, -isch,
-keit, -lich, -lichkeit, -s, -se, -sen, -ses, -st, -ung

prefixes

ab-, an-, anti-, auf-, aus-, auseinander-, aufler-, be-,
bei-, binnen-, bitter-, blut-, brand-, dar-, des-, dis-,
durch-, ein-, empor-, endo-, ent-, entgegen-, entlang-,
entzwei-, epi-, er-, extra-, fehl-, fern-, fest-, fort-, frei-,
fiir-, ge-, gegen-, gegeniiber-, grund-, heim-, her-, hetero-,
hin-, hinter-, hinterher-, hoch-, homo-, homdoo-, hyper-,
hypo-, inter-, intra-, iso-, kreuz-, los-, miss-, mit-, mono-,
multi-, nach-, neben-, nieder-, non-, pan-, para-, peri-,
poly-, post-, pro-, pri-, pseudo-, quasi-, schein-, semi-,
stock-, sub-, super-, supra-, tief-, tod-, trans-, ultra-,
um-, un-, unab-, unan-, unauf-, unaus-, unbe-, unbei-,
undar-, undis-, undurch-, unein-, unent-, uner-, unfehl-,
unfort-, unfrei-, unge-, unher-, unhin-, unhinter-, unhoch-,
unmiss-, unmit-, unnach-, unter-, untief-, unum-, ununter-,
unver-, unvor-, unweg-, unwider-, unzer-, unzu-, uniiber-,
ur-, ver-, voll-, vor-, voran-, voraus-, voriiber-, weg-,
weiter-, wider-, wieder-, zer-, zu-, zurecht-, zuriick-,
zusammen-, zuwider-, iiber-

Table 1: German affixes which our suffix splitter
and prefix splitter separate from the word stem.

An advantage of BPE word segmentation is that
it allows for a reduction of the amount of distinct
symbols to a desired order of magnitude. The
technique is purely frequency-based. Frequent se-
quences of characters will be joined through the
merge operations, resulting in common words not
being segmented. Words containing rare combina-
tions of characters will not be fully merged from
the character splitting all the way back to their
original form. They will remain split into two or
more subword units in the BPE-segmented data.
On the downside, the BPE algorithm has no no-
tion of morphosyntax, narrowing down its capa-
bilities at modeling inflection and compounding.
BPE also has no guidelines for splitting words into
syllables. This way no phonetic or semantic sub-
structures are taken into account. Therefore BPE
splits often appear arbitrary to the human reader,
since it appears frequently that subword units ig-
nore syllable boundaries entirely.

Nevertheless, NMT systems incorporating BPE
word segmentation have achieved top translation
quality in recent shared tasks (Sennrich et al.,
2016a; Bojar et al., 2016). We designed our
linguistically-informed segmentation techniques
by looking at the shortcomings of BPE segmen-
tations.



2.2 Compound Splitting

BPE word segmentation operates bottom-up from
characters to larger units. Koehn and Knight
(2003) have proposed a frequency-based word
segmentation method that starts from the other
end, top-down inspecting full words and looking
into whether they are composed of parts which are
proper words themselves. Any composed word is
segmented into parts such that the geometric mean
of word frequencies of its parts (counted in the
original corpus) is maximized. This technique rep-
resents a suitable approach for compound splitting
in natural language processing applications. It has
been successfully applied in numerous statistical
machine translation systems, mostly on the source
language side, but sometimes also on the target
side (Sennrich et al., 2015).

The difference in nature between BPE word
segmentation and frequency-based compound
splitting (bottom-up and top-down) leads to quite
different results. While BPE tends to generate un-
intuitive splits, compound splitting nearly always
comes up with reasonable word splits. On the
other hand there are many possible intuitive word
splits that compound splitting does not catch.

2.3 Suffix Splitting

Morphological variation in natural languages is of-
ten realized to a large extent through affixation.
In the German language there are several suf-
fixes that unambiguously mark a word as an adjec-
tive, noun, or verb. By splitting these telling suf-
fixes, we can automatically include syntactic in-
formation. Even though this underlying relation-
ship between suffix and morphological function
is sometimes ambiguous—especially for verbs—
reasonable guesses about the POS of a word with
which we are not familiar are only possible by
considering its suffix.

Information retrieval systems take advantage
of this observation and reduce search queries to
stemmed forms by means of simply removing
common suffixes, prefixes, or both. The Porter
stemming algorithm is a well-known affix strip-
ping method (Porter, 1980). In such algorithms,
some basic linguistic knowledge about the mor-
phology of a particular language is taken into
account in order to come up with a few hand-
written rules which would detect common affixes
and delete them. We can benefit from the same
idea for the segmentation of word surface forms.
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We have modified the Python implementation
of the German Snowball stemming algorithm from
NLTK? for our purposes. The Snowball stem-
mer removes German suffixes via some language-
specific heuristics. In order to obtain a segmenter,
we have altered the code to not drop suffixes, but
to write them out separately from the stem. Our
Snowball segmenter splits off the German suffixes
that are shown in Table 1. Some of them are in-
flectional, others are used for nominalization or
adjectivization. The suffix segmenter also splits
sequential appearances of suffixes into multiple
parts according to the Snowball algorithm’s split-
ting steps, but always retaining a stem with a min-
imum length of at least three characters.

Table 2 shows some relationships between Ger-
man suffixes and their English translations. Espe-
cially nominalizations and participles are partic-
ularly consistent, which makes translation rather
unambiguous. Even though an exact translation
from every German suffix to one specific English
suffix cannot be established, this shows that a set
of German suffixes translates into a set of English
suffixes. Some suffixes indeed have an unambigu-
ous translation like German -/os to English -less or
German -end to English -ing. These relationships
might be due to the shared roots of the German and
English language. Especially for other Germanic
languages this promises transferability of our re-
sults.

It seems to be a reasonable assumption that
other languages also have a certain set of possible
suffixes which correspond to each type of word.
For these relationships our approach may be able
to automatically and cheaply add (weak) POS in-
formation, which might improve translation qual-
ity, but this will require further investigation in fu-
ture work.

We would also like to study the relationship be-
tween stemming quality and resulting NMT trans-
lation quality. Weissweiler and Fraser (2017) have
introduced a new stemmer of German and showed
that it performs better than Snowball using com-
parison with gold standards. This may serve as an
interesting starting point.

2.4 Prefix Splitting

Similarly to our Snowball suffix segmenter, we
have written a small script to split off prefixes.

http://www.nltk.org/_modules/nltk/
stem/snowball.html



German suffixes unambiguously marking
nouns
-ung, -heit, -nis, -keit, -sal, -schafft, -ling, -tum

English nominalizations with -ness are trans-
lated consistently by adding one of these suf-

fixes The common German verb prefix ver- shows no
busyness — Geschdiftigkeit obvious pattern in English translations
abstractness — Abstraktheit verstehen — to understand

kindness — Freundlichkeit sich verirren — to get lost

coziness — Behaglichkeit vergehen — to vanish

giftedness — Begabung sich versprechen — to misspeak oneself
sadness — Traurigkeit verfehlen — to miss

tiredness — Miidigkeit aus Versehen — unintentionally

laziness — Faulheit verbieten — to prohibit

But a simple mapping between German and En- vergessen — to forget

glish noun suffixes does not exist Another common German verb prefix, be-, also
Abholzung — deforestation shows no obvious pattern

Segmentierung — segmentation behaupten — to claim

Trockenheit — aridity beschuldigen — to accuse

Obrigkeit — autority bewerben — to apply for

Genauigkeit — precision beladen — to load

Biindnis — alliance betonen — to emphasize

Gefingnis — prison bewahren — to preserve

Verhdltnis — relationship The common German prefix auf- (English: on,
German suffixes typical for adjectives up) has relatively consistent pattern in English
-ig, -lig, -isch, -sam, -bar, -haft, -los translation

Adjective derivation using these suffixes aufstellen — to put up

achtsam — mindful aufsetzen — to sit up

wendig — agile aufgehen — to give up

begehbar — accessible aufstehen — to stand up

sichtbar — visible aufblasen — to blow up

nahrhaft — nutricious aufgeben — to give up

essbar — edible aufbauen — to set up

fettig — greasy aufhoren — to stop

ethisch — ethical German verb setzen (English: to sit down) with
moralisch — morally different prefixes

laienhaft — unprofessional absetzen — to drop off

-los with consistent English counterpart -less besetzen — to occupy

taktlos — tactless ersetzen — 1o replace

reglos — motionless zersetzen — to decompose

rastlos — restless umsetzen — to realize

schamlos — shameless widersetzen — to defy

German participles ending with -end Table 3: Examples illustrating the use of German

hingend — hanging prefixes.
stehend — standing

schlafend — sleeping

lachend — laughing

Table 2: Examples illustrating the use of German
suffixes.
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Here, we specifically target verb and adjective pre-
fixes and thus only segment lowercase words, ex-
cluding nouns which are written in uppercase in
German text. We consider the prefixes as shown
in Table 1. We sort them descending by length,
checking for longer prefix matches first. Nega-
tional prefixes (beginning with un-, but not unter-)
are additionally segmented after un-; e.g., unab-
becomes un- ab-. In case the remaining part starts
with either of the two verb infixes -zu- or -ge-, we
also segment after that infix. We require the final
stem to be at least three characters long.

While suffixes tend to contain morpholog-
ical information, German prefixes change—
sometimes radically—the semantics of the word
stem. Some prefixes, especially those indicating
local relationships, have a relatively clear and con-
sistent translation. On the other hand, certain pre-
fixes change the meaning more subtly and also
more ambiguously. Therefore some prefixes lead
to a simple translation while others change the
meaning too radically.

Table 3 shows how the meaning of German
verbs can change by adding different prefixes to
a common stem. The example for setzen — fo sit
down illustrates that each of the combinations is
semantically so different from the others that their
translations have to be learned separately. This
also means that splitting the prefix might not ben-
efit the machine translation system, since general-
ization is hardly possible.

The examples given in Table 3 also suggest that
a single verb prefix may affect the semantics of the
word in ambiguous ways when applied to differ-
ent verb stems. The very common German prefix
ver-, for instance, which often indicates an incor-
rectly performed action (like sich versprechen — to
misspeak oneself or verfehlen — to miss), still has
a lot of different applications. This variety shows
that prefixes clearly carry information, but still it is
highly ambiguous and therefore might not benefit
the translation process.

The German prefix auf — up, on has a rela-
tively unambiguous translation, though, and hence
splitting it might support the machine transla-
tion system. A possible improvement might be
only splitting these unambiguously translatable
prefixes (which in general are prepositions indi-
cating the direction of the altered verb), but this
remains to be investigated in future research.
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2.5 Cascaded Application of Segmenters

Affix splitting and compound splitting can be ap-
plied in combination, by cascading the segmenters
and preprocessing the data first with the suffix
splitter, then optionally with the prefix splitter, and
then with the compound splitter. In a cascaded ap-
plication, the compound splitter is applied to word
stems only, and the counts for computing the ge-
ometric means of word frequencies for compound
splitting are collected after affix splitting.

When cascading the compound splitter with af-
fix splitting, we introduce a minor modification.
Our standalone compound splitter takes the filler
letter “s” and “es” into account, which often ap-
pear in between word parts in German noun com-
pounding. For better consistency of the compound
splitting component with affix splitting, we addi-
tionally allow for more fillers, namely: suffixes,

suffixes followed by “s”, and “zu”.

The methods for compound splitting, suffix
splitting, and prefix splitting provide linguistically
more sound approaches for word segmentation,
but they do not arbitrarily reduce the amount of
distinct symbols. For a further reduction of the
number of target-side symbols, we may want to
apply a final BPE segmentation step on top of the
other segmenters. BPE will not re-merge words
that have been segmented before. It can ben-
efit from the prior segmentation provided to it
and come up with a potentially better sequence
of merge operations. Affixes will be learned as
subwords but not joined with the stem. This im-
proves the quality of resulting BPE splits. BPE
no longer combines arbitrary second to last sylla-
bles with their suffixes, which makes learning the
other—non affix—syllables easier.

We deliberately decided against joint/bilingual
BPE, for multiple reasons. (1.) In cascaded
segmentations, BPE operations are learned from
training data after previous splitters in the pipeline
have been applied. With joint BPE, the source
would be affected, being preprocessed slightly dif-
ferently in different setups. Instead, we opted
for conducting BPE-50K separately over English.
The source is hence equal in all setups, which we
believe renders the evaluation more sound. (2.)
When tying source+target in joint-BPE, vocabu-
lary sizes cannot be controlled independently on
each side. Joint-BPE with 59500 operations for
instance yields 46K German types in the data,
but an English corpus containing only 26K types.



BPE

sie alle versch ## icken vorsdtzlich irrefiihrende Dokumente an
Kleinunternehmen in ganz Europa .

compound + BPE sie alle verschicken vorsdtzlich #L irre @@ fiihrende Doku-
mente an #U klein @ @ unter @ @ nehmen in ganz Europa .
suffix + BPE sie all $8e verschick $$en vorsiitz $$lich irrefiihr $$end 3$$e

Dokument $$e an Kleinunternehm $$en in ganz Europa .

suffix + compound + BPE

sie all $%e verschick $%en vorsdtz $$lich #L Irre @ @ fiihr $$end
$8e Dokument $$e an #U klein @ @ Unternehm $$en in ganz
Europa .

suffix + prefix + compound + BPE

sie all $%e vers$ schick $$en vor§$§ scitz $8lich #L Irre @ @ fiihr
$8end $8e Dokument $3e an #U klein @ @ Unternehm $$en in
ganz Europa .

English

they all mail deliberately deceptive documents to small busi-

nesses across Europe .

Table 4: Different word segmentation strategies applied to a training sentence. ## is a BPE split-point,
ver§§ is prefix ver, $$en is the suffix en, #U and #L are upper and lower case indicators for compounds,
@ @ indicates a compound merge-point, @s@ would indicate a compound merged with the letter s

between the parts, etc.

(3.) Joint-BPE may boost transliteration capabili-
ties. Generally, we would however recommend
to extract BPE operations monolingually to bet-
ter capture the properties of the individual lan-
guage. We argue that well justified segmentation
cannot be language-independent. (4.) We would
not expect fundamentally different findings when
switching to joint-BPE everywhere.

2.6 Reversibility

Target-side word segmentation needs to be re-
versible in postprocessing. We introduce special
markers to enable reversibility of word splits. For
suffixes, we attach a marker to the beginning of
each suffix token; for prefixes to the end of each
split prefix.

Fillers within segmented compounds receive at-
tached markers on either side. When a compound
is segmented into parts with no filler between
them, we place a separate special marker token
in the middle which is not attached to any of the
parts. It indicates the segmentation and has two
advantages over attaching it to any of the parts:
(1. The tokens of the parts are exactly the same
as when they appear as words outside of a com-
pound. The NMT system does not perceive them
as different symbols. (2.) There is more flexibility
at producing new compounds that have not been
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seen in the training corpus. The NMT system can
decide to place any symbol into a token sequence
that would form a compound, even the ones which
were never part of a compound in training. The
vocabulary is more open in that respect.

We adhere to the same rationale for split mark-
ers in BPE word segmentation. A special marker
token is placed separately between subword units,
with whitespace around it. In our experience, at-
taching the marker to BPE subword units does not
improve translation quality over our practice.

The compound splitter alters the casing of com-
pound parts to the variants that appears most fre-
quently in the corpus. When merging compounds
in postprocessing, we need to know whether to
lowercase or to uppercase the compound. We let
the translation system decide and introduce an-
other special annotation in order to allow for this.
When we segment compounds, we always place
an indicator symbol before the initial part of the
split compound token sequence, which can be ei-
ther #L or #U. It specifies the original casing of the
compound (lower or upper).

The effect of different segmentation strategies
on the word splits in an example sentence is shown
in Table 4.



Preprocessing #types | #tokens
tokenized 303K 39M
compound 139K 45M
suffix 217K 54M
suffix + compound 98K 60 M
suffix + prefix + compound 88K 63M
BPE 46K 42M
compound + BPE 46K 46 M
suffix + BPE 45K 56 M
suffix + compound + BPE 43K 60M
suffix + prefix + compound + BPE 43K 64 M

Table 5: Target-side training corpus statistics.

System test2007 | test2008
BLEU| TER [BLEU| TER
top 50K voc. (source & target) 25.5160.9252|60.9
BPE 25.8 160.7|25.6 | 60.9
compound + BPE 25.9 160.3 | 25.5 | 60.6
suffix + BPE 26.3 |60.0 | 26.0 | 60.1
suffix + compound + BPE 26.2 159.8|25.8 |60.2
suffix + prefix + compound + BPE | 26.1 | 59.8 | 25.9 | 60.6
suffix + prefix + compound, 50K | 25.9 {59.9| 25.5 | 60.3
phrase-based (Huck et al., 2015) | 22.6 | - |[22.1| -

Table 6: English—German experimental results
on Europarl (case-sensitive BLEU and TER).

3 Machine Translation Experiments

3.1 Experimental Setup

We conduct an empirical evaluation using
encoder-decoder NMT with attention and gated
recurrent units as implemented in Nematus
(Sennrich et al., 2017). We train and test on
English-German Europarl data (Koehn, 2005).
The data is tokenized and frequent-cased using
scripts from the Moses toolkit (Koehn et al.,
2007). Sentences with length >50 after tokeniza-
tion are excluded from the training corpus, all
other sentences (1.7 M) are considered in training
under every word segmentation scheme. We
set the amount of merge operations for BPE to
50K. Corpus statistics of the German data after
different preprocessings are given in Table 5. On
the English source side, we apply BPE separately,
also with 50K merge operations.

For comparison, we build a setup denoted as top
50K voc. (source & target) where we train on the
tokenized corpus without any segmentation, limit-
ing the vocabulary to the SOK most frequent words
on each side and replacing rare words by “UNK”.
In a setup denoted as suffix + prefix + compound,
50K, we furthermore examine whether BPE can be
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omitted in a cascaded application of target word
segmenters. Here, we use the top 50K target sym-
bols after suffix, prefix, and compound splitting,
but still apply BPE to the English source.

It is important to note that the amount of dis-
tinct target symbols in the setups ranges between
43K-46K; 50K for top-50K-voc systems. There
are no massive vocabulary size differences. We
always apply 50K BPE operations. Minor di-
vergences in the number of types naturally occur
amongst the various cascaded segmentations. The
linguistically-informed splitters segment more, re-
sulting in more tokens. We chose BPE-50K be-
cause the vocabulary is reasonably large while
training fits onto GPUs with 8 GB of RAM. Larger
vocabularies come at the cost of either more RAM
or adjustment of other parameters (e.g., batch size
or sentence length limit). From hyperparameter
search over reduced vocabulary sizes we would
not expect important insights, so we do not do this.

In all setups the training samples are always
the same. We removed long sentences after to-
kenization but before segmentation, which affects
all setups equally. No sentences are discarded after
that stage (Nematus’ maxlen > longest sequence in
data).

We configure dimensions of 500 for the embed-
dings and 1024 for the hidden layer. We train
with the Adam optimizer (Kingma and Ba, 2015),
a learning rate of 0.0001, batch size of 50, and
dropout with probability 0.2 applied to the hidden
layer.> We validate on the test2006 set after ev-
ery 10000 updates and do early stopping when the
validation cost has not decreased for ten epochs.

We evaluate case-sensitive with BLEU (Pa-
pineni et al.,, 2002) and TER (Snover et al.,
2006), computed over postprocessed hypotheses
against the raw references with mteval-v13a
and tercom. 7. 25, respectively.

3.2 Experimental Results

The translation results are reported in Table 6.
Cascading compound splitting and BPE slightly
improves translation quality as measured in TER.
Cascading suffix splitting with BPE or with
compound splitting plus BPE considerably im-
proves translation quality by up to +0.5 BLEU or
—0.9 TER over pure BPE. Adding in prefix split-
ting is less effective. We conjecture that prefix

3In preliminary experiments, we found dropout for
source, target, and embeddings did not yield additional gains.



Words in output BPE-merged compound-merged |  suffix-merged prefix-merged
System tokens types tokens  types tokens types tokens  types
BPE 1075 1032 - - - - - -
(1.9%) (13.4 %) - - - - - _
compound + BPE 271 255 2766 1738 - - - -
05%) (B3%) | 49%) (22.6%) - - - -
suffix + BPE 443 427 - - 19152 4915 - -
(0.8%) (5.6%) - - (33.7%) (64.0%) - -
suffix + compound + BPE 111 106 2568 1597 19028 5022 - -
02%) (1.4%) | 45%) (20.4%) | (33.7%) (64.1%) - -
suffix + prefix + compound + BPE 100 95 2566 1577 19063 4990 4601 1667
02%) (12%) | 45%) ((20.2%) | (33.5%) (64.0%) | (8.1%) (21.4%)

Table 7: Statistics over words in system outputs for fest2008, after desegmentation.

Words in output overall
System tokens types ratio
BPE 57334 7700 0.134
compound + BPE 56827 7692 0.135
suffix + BPE 56849 7674 0.135
suffix + compound + BPE 56461 7839 0.139
suffix + prefix + compound + BPE | 56875 7797 0.137
| reference [57073 8975 0.157

Table 8: Overall types and tokens, measured on
test2008 after desegmentation (hypotheses trans-
lations) or after tokenization (reference).

System avg. sent. length
BPE 28.7
compound + BPE 28.4
suffix + BPE 28.4
suffix + compound + BPE 28.2
suffix + prefix + compound + BPE 28.4
reference 28.5

Table 9: Average sentence lengths on test2008.

Words in output | unseen vocabulary
System tokens  types
BPE 197 194
03%) (2.5%)
compound + BPE 280 257
0.5%) (3.3%)
suffix + BPE 139 138
02%) (1.8%)
suffix + compound + BPE 262 238
0.5%) (3.0%)
suffix + prefix + compound + BPE 265 234
0.5%) (3.0%)

Table 10: Productivity at open vocabulary transla-
tion, measured on fest2008 system outputs (after
desegmentation) against the vocabulary of the to-
kenized training data.

63

splitting does not help because German verb pre-
fixes often radically modify the meaning. When
prefixes are split off, the decoder’s embeddings
layer may therefore become less effective (as the
stem may be confusable with a completely differ-
ent word).

We also evaluated casing manually. Manual
inspection of the first fifty #L / #U occurrences
in one of the hyptheses reveals that none is mis-
placed, and casing is always correctly indicated.

3.3 Analysis

In order to better understand the impact of the dif-
ferent target-side segmentation strategies, we an-
alyze and compare the output of our main setups.
Particularly, we turn our attention on the words in
the translation outputs for the rest2008 set. For the
analysis, in order to achieve comparable vocabu-
laries in the various outputs, we apply desegmen-
tation to all of the plain hypotheses produced by
the systems. However, we do not run the full post-
processing pipeline: detruecasing and detokeniza-
tion are omitted.

First, we count the number of words in the de-
segmented translations that have been merged to-
gether from subword components in the plain sys-
tem outputs. Table 7 shows the statistics. The ta-
ble rows contain the absolute amounts and rela-
tive frequencies of words with subword unit parts
in the desegmented hypotheses, for running words
in the text (types) and in terms of the vocabulary
in the fest2008 translation output. The frequen-
cies are relative to all words in the respective out-
put. Note that when cascaded word segmentation
was applied, a single desegmented word may be
composed of multiple subword units that originate
from different word splitters. We find that com-
pared to the pure BPE system, many more words



ooV 4 B C D E

types

N 0 1621 | 1583 | 1584 | 1626

21.1%) | (20.6%) | (20.6 %) | (21.1 %)

5 | 1612 . 1580 | 1469 | 1434
(21.0%) (20.7 %) | (19.1 %) | (18.7 %)

o | 155 | 1574 o 1451 | 1456
(203 %) | (20.5 %) (18.9%) | (19.0%)

b | 1726 | 1620 | 1617 o 1435
(22.0%) | (20.7%) | (20.6 %) (18.3 %)

5| 1725 | asaa | as7o | 1302 0
(22.1%) | (19.8%) | (20.3%) | (17.9 %)

| 3041 [ 3676 [ 3624 [ 3604 [ 3634
(40.6 %) | (41.0%) | (40.4 %) | (40.2 %) | (40.5 %)

Table 11: Systems compared against each other in
terms of types found in test2008 hypothesis trans-
lations, after desegmentation. (OOV words of out-
put of vertical system wrt. vocabulary present in
output of horizontal system.) A: BPE. B: com-
pound + BPE. C: suffix + BPE. D: suffix + com-
pound + BPE. E: suffix + prefix + compound +
BPE. R: reference translation.

oov | B c D E
tokens
A 0 1804 1763 1801 1826
3.1%)|(3.1%)|3.1%)|(3.2%)
B 1814 0 1793 1663 1612
3.2%) B2%)|129%)|(2.8%)
C 1741 1768 0 1647 1648
3.1%)|(3.1%) 2.9%)|(2.9 %)
D 1942 1803 1801 0 1565
(4%)|(32%) | (3.2%) (2.8%)
E 1958 1734 1794 1554 0
(3.4%) | (3.0%) | (3.2%) | (2.7 %)
R 4506 | 4582 | 4484 | 4484 | 4520
(7.9%) | (8.0%) | (7.9 %) | (7.9 %) | (7.9 %)

Table 12: Systems compared against each other
in terms of tokens found in test2008 hypothesis
translations, after desegmentation.

si?nl;ltall);;:y AlB c|Db E
A 100 [ 61.6 |61.3]60.4 | 60.1
B 61.6| 100 |61.4|62.0|62.1
C 61.3|61.4] 100 |62.5]62.9
D 60.5(62.0]62.5| 100 | 63.0
E 60.1(62.1]62.9|63.0| 100
Table 13: System outputs (after desegmenta-

tion) evaluated against each other with BLEU.
(Hypothesis translation of vertical system against
output of horizontal system as the reference in
multi-bleu.perl.)
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are merged from subword unit parts in the other
systems.

Table 8 presents the overall amount of types and
tokens in the hypothesis translations and in the ref-
erence. The pure BPE system exhibits the low-
est type/token ratio, whereas the type/token ratio
in the reference is higher than in all the machine
translation outputs.

Average sentence lengths are given in Table 9.
The pure BPE system produces sentences that are
slightly longer than the ones in the reference. All
other setups tend to be below the average reference
sentence length, the shortest sentences being pro-
duced by the suffix + compound + BPE system.

Next, we look into how often the open vocab-
ulary capabilities of the systems lead to the gen-
eration of words which are not present in the to-
kenized training corpus. We denote these words
as “unseen”. Table 10 reveals that only small
fractions of the words formed from subword unit
parts (as counted before, Table 7) are unseen. The
relative frequency of produced unseen words is
smaller than—or equal to—half a percent in the
running text. The setups trained with compound-
split target data produce unseen words a bit more
often. While at first glance it might seem dis-
appointing that the systems’ open vocabulary ca-
pabilities do not come into effect more heavily,
this observation however emphasizes that we have
succeeded at training neural models that adhere
to word formation processes which lead to valid
forms.

A straightforward follow-up question is how
lexically dissimilar the various system outputs are.
In Tables 11 and 12, we compare all hypotheses
pairwise against each other, measuring the amount
of words in one hypothesis that does not appear
in the vocabulary present in a translation from
another system. We basically calculate cross-
hypothesis out-of-vocabulary (OOV) rates. Ta-
ble 11 shows the results on type level, Table 12 on
token level. We furthermore compare against the
reference. The system outputs are lexically quite
dissimilar, but much closer to each other than to
the reference.

We can finally follow the very same rationale by
evaluating the system outputs against each other
with BLEU, calculating the BLEU score of one
hypothesis against another hypothesis rather than
against a reference translation. The result, pre-
sented in Table 13, reaffirms that the different sys-



tems have each learned to translate in different
ways, based on the respective segmentation of the
training data.

Our cascaded suffix + compound + BPE tar-
get word segmentation strategy was employed
for LMU Munich’s participation in the WMT17
shared tasks on machine translation of news and
of biomedical texts. We refer the reader to the sys-
tem description paper (Huck et al., 2017a), where
we include some interesting translation examples
from the news translation task. We note that our
system was ranked first in the human evaluation of
the news task, despite having a lower BLEU score
than Edinburgh’s submission. BLEU, which tries
to automatically predict how humans will evalu-
ate quality, may unfairly penalize approaches like
ours, but more study is needed.

4 Related Work

The SMT literature has a wide diversity of ap-
proaches in dealing with translation to morpholog-
ically rich languages. One common theme is mod-
eling the relationship between lemmas and sur-
face forms using morphological knowledge, e.g.,
(Toutanova and Suzuki, 2007; Koehn and Hoang,
2007; Bojar and Kos, 2010; Fraser et al., 2012;
Weller et al., 2013; Tamchyna et al., 2016; Huck
et al., 2017b). This problem has been studied for
NMT by Tamchyna et al. (2017), and it would be
interesting to compare with their approach.

Our work is closer in spirit to previous work
on integrating morphological segmentation into
SMT. Some examples of early work here in-
clude work on Arabic (Lee et al.,, 2003) and
Czech (Goldwater and McClosky, 2005). More
recent work includes work on Arabic, such as
(Habash, 2007), and work on Turkish (Oflazer and
Durgar El-Kahlout, 2007; Yeniterzi and Oflazer,
2010). Unsupervised morphological splitting, us-
ing, e.g., Morfessor has also been tried, particu-
larly for dealing with agglutinative languages (Vir-
pioja et al., 2007). Our work is motivated by the
same linguistic observations as theirs.

Other studies, e.g., (Popovi¢ et al., 2006;
Stymne, 2008; Cap et al., 2014), model German
compounds by splitting them into single simple
words in the SMT training data, and then pre-
dicting where to merge simple words as a post-
processing step (after SMT decoding). This has
similarities to our use of compound splitting and
markers in NMT.
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There is also starting to be interest in alterna-
tives to BPE in NMT. The Google NMT system
(Wu et al., 2016) used wordpiece splitting, which
is similar to but different from BPE and would
be interesting to evaluate in future work. Ataman
etal. (2017) considered both supervised and unsu-
pervised splitting of agglutinative morphemes in
Turkish, which is closely related to our ideas. An
important difference here is that Turkish is an ag-
glutinative language, while German has fusional
inflection and very productive compounding.

We are also excited about early work on
character-based NMT such as (Lee et al., 2016),
which may eventually replace segmentation mod-
els like those in our work (or also replace BPE
when linguistically aware segmentation is not
available). However, at the current stage of re-
search character-based approaches require very
long training times and extensive optimization of
hyperparameters to make them work, and still
do not seem to be able to produce state-of-the-
art translation quality on a wide range of tasks.
More research is needed in making character-
based NMT robust and accessible to many re-
search groups.

5 Conclusion

Linguistically motivated target-side word segmen-
tation improves neural machine translation into an
inflected and compounding language. The sys-
tem can learn linguistic word formation processes
from the segmented data. For German, we have
shown that cascading of suffix splitting—or suf-
fix splitting and compound splitting—with BPE
yields the best results. In future work we will con-
sider alternative sources of linguistic knowledge
about morphological processes and also evaluate
high performance unsupervised segmentation.
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Abstract

Neural machine translation (NMT) mod-
els are able to partially learn syntactic in-
formation from sequential lexical informa-
tion. Still, some complex syntactic phe-
nomena such as prepositional phrase at-
tachment are poorly modeled. This work
aims to answer two questions: 1) Does
explicitly modeling target language syntax
help NMT? 2) Is tight integration of words
and syntax better than multitask training?
We introduce syntactic information in the
form of CCG supertags in the decoder,
by interleaving the target supertags with
the word sequence. Our results on WMT
data show that explicitly modeling target-
syntax improves machine translation qual-
ity for German—English, a high-resource
pair, and for Romanian—English, a low-
resource pair and also several syntactic
phenomena including prepositional phrase
attachment. Furthermore, a tight cou-
pling of words and syntax improves trans-
lation quality more than multitask training.
By combining target-syntax with adding
source-side dependency labels in the em-
bedding layer, we obtain a total improve-
ment of 0.9 BLEU for German— English
and 1.2 BLEU for Romanian—English.

1 Introduction

Sequence-to-sequence neural machine translation
(NMT) models (Sutskever et al., 2014; Cho et al.,
2014b; Bahdanau et al., 2015) are state-of-the-art
on a multitude of language-pairs (Sennrich et al.,
2016a; Junczys-Dowmunt et al., 2016). Part of the
appeal of neural models is that they can learn to
implicitly model phenomena which underlie high
quality output, and some syntax is indeed cap-
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tured by these models. In a detailed analysis,
Bentivogli et al. (2016) show that NMT signifi-
cantly improves over phrase-based SMT, in par-
ticular with respect to morphology and word or-
der, but that results can still be improved for longer
sentences and complex syntactic phenomena such
as prepositional phrase (PP) attachment. Another
study by Shi et al. (2016) shows that the encoder
layer of NMT partially learns syntactic informa-
tion about the source language, however complex
syntactic phenomena such as coordination or PP
attachment are poorly modeled.

Recent work which incorporates additional
source-side linguistic information in NMT mod-
els (Luong et al., 2016; Sennrich and Haddow,
2016) show that even though neural models have
strong learning capabilities, explicit features can
still improve translation quality. In this work, we
examine the benefit of incorporating global syn-
tactic information on the target-side. We also ad-
dress the question of how best to incorporate this
information. For language pairs where syntac-
tic resources are available on both the source and
target-side, we show that approaches to incorpo-
rate source syntax and target syntax are comple-
mentary.

We propose a method for tightly coupling words
and syntax by interleaving the target syntactic rep-
resentation with the word sequence. We compare
this to loosely coupling words and syntax using a
multitask solution, where the shared parts of the
model are trained to produce either a target se-
quence of words or supertags in a similar fashion
to Luong et al. (2016).

We use CCG syntactic categories (Steedman,
2000), also known as supertags, to represent syn-
tax explicitly. Supertags provide global syntac-
tic information locally at the lexical level. They
encode subcategorization information, capturing
short and long range dependencies and attach-
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ments, and also tense and morphological as-
pects of the word in a given context. Consider
the sentence in Figure 1. This sentence con-
tains two PP attachments and could lead to sev-
eral disambiguation possibilities (“in” can attach
to “Netanyahu” or ‘“receives”, and “of” can at-
tach to ‘“capital”, “Netanyahu” or ‘receives”).
These alternatives may lead to different trans-
lations in other languages. However the su-
pertag ((S[dcl]\NP)/PP)/NP of “receives” indi-
cates that the preposition “in” attaches to the verb,
and the supertag (NP\NP)/NP of “of” indicates
that it attaches to “capital”, thereby resolving the
ambiguity.
Our research contributions are as follows:

We propose a novel approach to integrating tar-
get syntax at word level in the decoder, by in-
terleaving CCG supertags in the target word se-
quence.

We show that the target language syntax im-
proves translation quality for German—English
and Romanian—English as measured by
BLEU. Our results suggest that a tight coupling
of target words and syntax (by interleaving)
improves translation quality more than the
decoupled signal from multitask training.

We show that incorporating source-side linguis-
tic information is complimentary to our method,
further improving the translation quality.

We present a fine-grained analysis of SNMT
and show consistent gains for different linguis-
tic phenomena and sentence lengths.

2 Related work

Syntax has helped in statistical machine trans-
lation (SMT) to capture dependencies between
distant words that impact morphological agree-
ment, subcategorisation and word order (Galley
et al., 2004; Menezes and Quirk, 2007; Williams
and Koehn, 2012; Nadejde et al., 2013; Sennrich,
2015; Nadejde et al., 2016a,b; Chiang, 2007).
There has been some work in NMT on modeling
source-side syntax implicitly or explicitly. Kalch-
brenner and Blunsom (2013); Cho et al. (2014a)
capture the hierarchical aspects of language im-
plicitly by using convolutional neural networks,
while Eriguchi et al. (2016) use the parse tree of
the source sentence to guide the recurrence and
attention model in tree-to-sequence NMT. Luong
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et al. (2016) co-train a translation model and a
source-side syntactic parser which share the en-
coder. Our multitask models extend their work
to attention-based NMT models and to predict-
ing target-side syntax as the secondary task. Sen-
nrich and Haddow (2016) generalize the embed-
ding layer of NMT to include explicit linguistic
features such as dependency relations and part-of-
speech tags and we use their framework to show
source and target syntax provide complementary
information.

Applying more tightly coupled linguistic fac-
tors on the target for NMT has been previously
investigated. Niehues et al. (2016) proposed a fac-
tored RNN-based language model for re-scoring
an n-best list produced by a phrase-based MT sys-
tem. In recent work, Martinez et al. (2016) im-
plemented a factored NMT decoder which gener-
ated both lemmas and morphological tags. The
two factors were then post-processed to gener-
ate the word form. Unfortunately no real gain
was reported for these experiments. Concurrently
with our work, Aharoni and Goldberg (2017) pro-
posed serializing the target constituency trees and
Eriguchi et al. (2017) model target dependency re-
lations by augmenting the NMT decoder with a
RNN grammar (Dyer et al., 2016). In our work,
we use CCG supertags which are a more compact
representation of global syntax. Furthermore, we
do not focus on model architectures, and instead
we explore the more general problem of includ-
ing target syntax in NMT: comparing tightly and
loosely coupled syntactic information and show-
ing source and target syntax are complementary.

Previous work on integrating CCG supertags in
factored phrase-based models (Birch et al., 2007)
made strong independence assumptions between
the target word sequence and the CCG categories.
In this work we take advantage of the expressive
power of recurrent neural networks to learn repre-
sentations that generate both words and CCG su-
pertags, conditioned on the entire lexical and syn-
tactic target history.

3 Modeling Syntax in NMT

CCGiis a lexicalised formalism in which words are
assigned with syntactic categories, i.e., supertags,
that indicate context-sensitive morpho-syntactic
properties of a word in a sentence. The com-
binators of CCG allow the supertags to capture
global syntactic constraints locally. Though NMT



Source-side

BPE: Obama receives Net+ an+ yahu
10B: (6} (0] B I E
CCG: NP ((S[dcI]\NP)/PP)/NP NP NP NP

Target-side

in the  capital of USA
O O O O O
PP/NP NP/N N (NP\NP)/NP NP

NP Obama ((S[dcl]\NP)/PP)/NP receives NP Net+ an+ yahu PP/NP in NP/N the N capital (NP\NP)/NP of NP USA

Figure 1: Source and target representation of syntactic information in syntax-aware NMT.

captures long range dependencies using long-term
memory, short-term memory is cheap and reliable.
Supertags can help by allowing the model to rely
more on local information (short-term) and not
having to rely heavily on long-term memory.

Consider a decoder that has to generate the fol-
lowing sentences:

1. What(sjwg)/(s[q)/NP)/N  City 1S(s[q/PP)/NP
the Taj Mahal in?

2. Wheregq)/(siq/NP) 15(s[q/npP)/NP the Taj
Mahal?

If the decoding starts with predicting “What”, it
is ungrammatical to omit the preposition “in”, and
if the decoding starts with predicting “Where”, it
is ungrammatical to predict the preposition. Here
the decision to predict “in” depends on the first
word, a long range dependency. However if we
rely on CCG supertags, the supertags of both
these sequences look very different. The supertag
(S[a]/PP)/NP for the verb “is” in the first sen-
tence indicates that a preposition is expected in fu-
ture context. Furthermore it is likely to see this
particular supertag of the verb in the context of
(S[wq]/(S[q]/NP))/N but it is unlikely in the con-
text of S[wq]/(S[q]/NP). Therefore a succession
of local decisions based on CCG supertags will
result in the correct prediction of the preposition
in the first sentence, and omitting the preposition
in the second sentence. Since the vocabulary of
CCG supertags is much smaller than that of possi-
ble words, the NMT model will do a better job at
generalizing over and predicting the correct CCG
supertags sequence.

CCG supertags also help during encoding if
they are given in the input, as we saw with the
case of PP attachment in Figure 1. Translation
of the correct verb form and agreement can be
improved with CCG since supertags also encode
tense, morphology and agreements. For exam-
ple, in the sentence “It is going to rain”, the su-
pertag (S[ng]\NP[expl])/(S[to]\NP) of “going”

indicates the current word is a verb in continuous
form looking for an infinitive construction on the
right, and an expletive pronoun on the left.

We explore the effect of target-side syntax by
using CCG supertags in the decoder and by com-
bining these with source-side syntax in the en-
coder, as follows.

Baseline decoder The baseline decoder archi-
tecture is a conditional GRU with attention
(cGRU4ttn) as implemented in the Nematus
toolkit (Sennrich et al., 2017). The decoder is a
recursive function computing a hidden state s; at
each time step j € [1, 7] of the target recurrence.
This function takes as input the previous hidden
state s;_1, the embedding of the previous target
word y;_1 and the output of the attention model
c;. The attention model computes a weighted sum

over the hidden states h; = [E), E] of the bi-
directional RNN encoder. The function g com-
putes the intermediate representation ¢; and passes
this to a softmax layer which first applies a linear
transformation (W,) and then computes the prob-
ability distribution over the target vocabulary. The
training objective for the entire architecture is min-
imizing the discrete cross-entropy, therefore the
loss [ is the negative log-probability of the refer-
ence sentence.

s = GRU1(yj-1,5j-1) M
8 = CGRUattn(yj*b Sj—1, Cj) (3)
tj = g(yj-1,55,¢5) @

T T
Py = Hp(yj‘xvylzj—l) = H softmax(t;W,)

j=1
6))
(6)

J=1

[ = —log(py)

Target-side syntax When modeling the target-
side syntactic information we consider different
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NP Obama  ((S\NP)/PP)/NP  receives NP

\%\ BN

a)

((S\NP)/PP)/NP Obama receives

b)

Figure 2: Integrating target syntax in the NMT decoder: a) interleaving and b) multitasking.

strategies of coupling the CCG supertags with the
translated words in the decoder: interleaving and
multitasking with shared encoder. In Figure 2 we
represent graphically the differences between the
two strategies and in the next paragraphs we for-
malize them.

o Interleaving In this paper we propose a tight
integration in the decoder of the syntactic rep-
resentation and the surface forms. Before each
word of the target sequence we include its su-
pertag as an extra token. The new target se-
quence y' will have the length 27", where T is
the number of target words. With this represen-
tation, a single decoder learns to predict both
the target supertags and the target words con-
ditioned on previous syntactic and lexical con-
text. We do not make changes to the baseline
NMT decoder architecture, keeping equations
(1) - (6) and the corresponding set of parame-
ters unchanged. Instead, we augment the tar-
get vocabulary to include both words and CCG
supertags. This results in a shared embedding
space and the following probability of the target
sequence 3/, where yg- can be either a word or a
tag:

y _ ywiag7 yword’ 7y§:19’ yword (7)
2T
Dy = Hp(y;‘$7y{l]—l) (8)

J

At training time we pre-process the target se-
quence to add the syntactic annotation and then
split only the words into byte-pair-encoding
(BPE) (Sennrich et al., 2016b) sub-units. At
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testing time we delete the predicted CCG su-
pertags to obtain the final translation. Figure 1
gives an example of the target-side representa-
tion in the case of interleaving. The supertag
NP corresponding to the word Netanyahu is in-
cluded only once before the three BPE subunits
Net+ an+ yahu.

Multitasking — shared encoder A loose cou-
pling of the syntactic representation and the sur-
face forms can be achieved by co-training a
translation model with a secondary prediction
task, in our case CCG supertagging. In the mul-
titask framework (Luong et al., 2016) the en-
coder part is shared while the decoder is dif-
ferent for each of the prediction tasks: transla-
tion and tagging. In contrast to Luong et al.,
we train a separate attention model for each
task and perform multitask learning with tar-
get syntax. The two decoders take as input
the same source context, represented by the en-
coder’s hidden states h; = [h;; h;]. However,
each task has its own set of parameters associ-
ated with the five components of the decoder:
GRUy, ATT, cGRU4, g, softmax. Further-
more, the two decoders may predict a different
number of target symbols, resulting in target se-
quences of different lengths 77 and T5. This re-
sults in two probability distributions over sep-
arate target vocabularies for the words and the
tags:

P Hp (e yigt) O

tag—Hp Yleyi) a0



The final loss is the sum of the losses for the two
decoders:

) (11

We use EasySRL to label the English side of
the parallel corpus with CCG supertags' instead
of using a corpus with gold annotations as in
Luong et al. (2016).

I = —(log(py°™?) + log(ply"

Source-side syntax — shared embedding While
our focus is on target-side syntax, we also exper-
iment with including source-side syntax to show
that the two approaches are complementary.

Sennrich and Haddow propose a framework for
including source-side syntax as extra features in
the NMT encoder. They extend the model of Bah-
danau et al. by learning a separate embedding for
several source-side features such as the word itself
or its part-of-speech. All feature embeddings are
concatenated into one embedding vector which is
used in all parts of the encoder model instead of
the word embedding. When modeling the source-
side syntactic information, we include the CCG
supertags or dependency labels as extra features.
The baseline features are the subword units ob-
tained using BPE together with the annotation of
the subword structure using IOB format by mark-
ing if a symbol in the text forms the beginning (B),
inside (I), or end (E) of a word. A separate tag (O)
is used if a symbol corresponds to the full word.
The word level supertag is replicated for each BPE
unit. Figure 1 gives an example of the source-side
feature representation.

4 Experimental Setup and Evaluation

4.1 Data and methods

We train the neural MT systems on all the parallel
data available at WMT16 (Bojar et al., 2016) for
the German<«>English and Romanian<+English
language pairs. The English side of the train-
ing data is annotated with CCG lexical tags” us-
ing EasySRL (Lewis et al., 2015) and the avail-
able pre-trained model®>. Some longer sentences
cannot be processed by the parser and therefore
we eliminate them from our training and test data.
We report the sentence counts for the filtered data

"'We use the same data and annotations for the interleav-
ing approach.

>The CCG tags include features such as the verb tense
(e.g. [ng] for continuous form) or the sentence type (e.g. [pss]
for passive).

*https://github.com/uwnlp/EasySRL
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‘ train ‘ dev ‘ test
DE-EN | 4,468,314 | 2,986 | 2,994
RO-EN 605,885 | 1,984 | 1,984

Table 1: Number of sentences in the training, de-
velopment and test sets.

sets in Table 1. Dependency labels are annotated
with ParZU (Sennrich et al., 2013) for German and
SyntaxNet (Andor et al., 2016) for Romanian.

All the neural MT systems are attentional
encoder-decoder networks (Bahdanau et al., 2015)
as implemented in the Nematus toolkit (Sennrich
etal., 2017).* We use similar hyper-parameters to
those reported by (Sennrich et al., 2016a; Sennrich
and Haddow, 2016) with minor modifications: we
used mini-batches of size 60 and Adam optimizer
(Kingma and Ba, 2014). We select the best single
models according to BLEU on the development set
and use the four best single models for the ensem-
bles.

To show that we report results over strong base-
lines, table 2 compares the scores obtained by our
baseline system to the ones reported in Sennrich
et al. (2016a). We normalize diacritics® for the
English—Romanian test set. We did not remove
or normalize Romanian diacritics for the other ex-
periments reported in this paper. Our baseline sys-
tems are generally stronger than Sennrich et al.
(2016a) due to training with a different optimizer
for more iterations.

‘ This work ‘ Sennrich et. al

DE—EN 31.0 28.5
EN—DE 27.8 26.8
RO—EN 28.0 27.8
EN—RO! 25.6 23.9

Table 2: Comparison of baseline systems in

this work and in Sennrich et al. (2016a). Case-
sensitive BLEU scores reported over newstest2016
with mteval-13a.perl. 'Normalized diacritics.

During training we validate our models with
BLEU (Papineni et al., 2002) on development sets:
newstest2013 for German<+English and news-
dev2016 for Romanian<+>English. We evaluate the
systems on newstest2016 test sets for both lan-

*https://github.com/rsennrich/nematus

SThere are different encodings for letters with
cedilla (s,t) used interchangeably throughout the corpus.
https://en.wikipedia.org/wiki/Romanian_
alphabet#IS0_8859



guage pairs and use bootstrap resampling (Riezler
and Maxwell, 2005) to test statistical significance.
We compute BLEU with multi-bleu.perl over tok-
enized sentences both on the development sets, for
early stopping, and on the test sets for evaluating
our systems.

Words are segmented into sub-units that are
learned jointly for source and target using BPE
(Sennrich et al., 2016b), resulting in a vocabulary
size of 85,000. The vocabulary size for CCG su-
pertags was 500.

For the experiments with source-side features
we use the BPE sub-units and the IOB tags as
baseline features. We keep the total word em-
bedding size fixed to 500 dimensions. We allo-
cate 10 dimensions for dependency labels when
using these as source-side features and when us-
ing source-side CCG supertags we allocate 135 di-
mensions.

The interleaving approach to integrating target
syntax increases the length of the target sequence.
Therefore, at training time, when adding the CCG
supertags in the target sequence we increase the
maximum length of sentences from 50 to 100. On
average, the length of English sentences for new-
stest2013 in BPE representation is 22.7, while the
average length when adding the CCG supertags is
44. Increasing the length of the target recurrence
results in larger memory consumption and slower
training.5. At test time, we obtain the final trans-
lation by post-processing the predicted target se-
quence to remove the CCG supertags.

4.2 Results

In this section, we first evaluate the syntax-aware
NMT model (SNMT) with target-side CCG su-
pertags as compared to the baseline NMT model
described in the previous section (Bahdanau et al.,
2015; Sennrich et al., 2016a). We show that our
proposed method for tightly coupling target syn-
tax via interleaving, improves translation for both
German—English and Romanian—English while
the multitasking framework does not. Next, we
show that SNMT with target-side CCG supertags
can be complemented with source-side dependen-
cies, and that combining both types of syntax
brings the most improvement. Finally, our exper-
iments with source-side CCG supertags confirm
that global syntax can improve translation either

SRoughly 10h30 per 100,000 sentences (20,000 batches)
for SNMT compared to 6h for NMT.
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as extra information in the encoder or in the de-
coder.

Target-side syntax We first evaluate the impact
of target-side CCG supertags on overall transla-
tion quality. In Table 3 we report results for
German—English, a high-resource language pair,
and for Romanian—English, a low-resource lan-
guage pair. We report BLEU scores for both the
best single models and ensemble models. How-
ever, we will only refer to the results with ensem-
ble models since these are generally better.

The SNMT system with target-side
syntax  improves BLEU scores by 0.9
for Romanian—English and by 0.6 for

German—English. Although the training data for
German—English is large, the CCG supertags
still improve translation quality. These results
suggest that the baseline NMT decoder benefits
from modeling the global syntactic information
locally via supertags.

Next, we evaluate whether there is a benefit to
tight coupling between the target word sequence
and syntax, as apposed to loose coupling. We
compare our method of interleaving the CCG su-
pertags with multitasking, which predicts target
CCG supertags as a secondary task. The results
in Table 3 show that the multitask approach does
not improve BLEU scores for German—English,
which exhibits long distance word reordering. For
Romanian—English, which exhibits more local
word reordering, multitasking improves BLEU by
0.6 relative to the baseline. In contrast, the infer-
leaving approach improves translation quality for
both language pairs and to a larger extent. There-
fore, we conclude that a tight integration of the tar-
get syntax and word sequence is important. Con-
ditioning the prediction of words on their corre-
sponding CCG supertags is what sets SNMT apart
from the multitasking approach.

Source-side and target-side syntax We now
show that our method for integrating target-side
syntax can be combined with the framework
of Sennrich and Haddow (2016) for integrating
source-side linguistic information, leading to fur-
ther improvement in translation quality. We evalu-
ate the syntax-aware NMT system, with CCG su-
pertags as target-syntax and dependency labels as
source-syntax. While the dependency labels do
not encode global syntactic information, they dis-
ambiguate the grammatical function of words. Ini-



German—English || Romanian—English
model syntax strategy single | ensemble || single | ensemble
NMT - - 31.0 32.1 28.1 28.4
SNMT target — CCG interleaving 32.0 32.7* 29.2 29.3%*
Multitasking | target — CCG shared encoder 314 32.0 28.4 29.0*
SNMT source — dep shared embedding | 31.4 322 28.2 28.9

+ target —- CCG | + interleaving 32.1 33.0%* 29.1 29.6**

Table 3: Experiments with target-side syntax for German—English and Romanian—English. BLEU
scores reported for baseline NMT, syntax-aware NMT (SNMT) and multitasking. The SNMT system is
also combined with source dependencies. Statistical significance is indicated with * p < 0.05 and **

p < 0.01, when comparing against the NMT baseline.

tially, we had intended to use global syntax on the
source-side as well for German—English, how-
ever the German CCG tree-bank is still under de-
velopment.

From the results in Table 3 we first ob-
serve that for German—English the source-side
dependency labels improve BLEU by only 0.1,
while Romanian—English sees an improvement
of 0.5. Source-syntax may help more for
Romanian—English because the training data is
smaller and the word order is more similar be-
tween the source and target languages than it is
for German—English.

For both language pairs, target-syntax im-
proves translation quality more than source-
syntax. However, target-syntax is complemented
by source-syntax when used together, leading
to a final improvement of 0.9 BLEU points
for German—English and 1.2 BLEU points for
Romanian—English.

Finally, we show that CCG supertags are also
an effective representation of global-syntax when
used in the encoder. In Table 4 we present re-
sults for using CCG supertags as source-syntax
in the embedding layer. Because we have CCG
annotations only for English, we reverse the
translation directions and report BLEU scores for
English—German and English—Romanian. The
BLEU scores reported are for the ensemble models
over newstest2016.

For English—German BLEU increases by 0.7
points and for English—Romanian by 0.5 points.
In contrast, Sennrich and Haddow (2016) obtain
an improvement of only 0.2 for English—German
using dependency labels which encode only the
grammatical function of words. These results con-
firm that representing global syntax in the en-
coder provides complementary information that
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model | syntax | EN—DE | EN—RO

NMT | - 28.3 25.6
SNMT | source - CCG | 29.0% 26.1%
Table 4:  Results for English—German and

English—Romanian with source-side syntax. The
SNMT system uses the CCG supertags of the
source words in the embedding layer. *p < 0.05.

the baseline NMT model is not able to learn from
the source word sequence alone.

4.3 Analyses by sentence type

In this section, we make a finer grained analysis
of the impact of target-side syntax by looking at a
breakdown of BLEU scores with respect to differ-
ent linguistic constructions and sentence lengths’.

We classify sentences into different linguis-
tic constructions based on the CCG supertags
that appear in them, e.g., the presence of cate-
gory (NP\NP)/(S/NP) indicates a subordinate
construction. Figure 3 a) shows the difference
in BLEU points between the syntax-aware NMT
system and the baseline NMT system for the
following linguistic constructions: coordination
(conj), control and raising (control), prepositional
phrase attachment (pp), questions and subordinate
clauses (subordinate). In the figure we use the
symbol “*” to indicate that syntactic information
is used on the target (eg. de-en*), or both on the
source and target (eg. *de-en*). We report the
number of sentences for each category in Table 5.

With target-syntax, we see consistent im-
provements across all linguistic constructions for
Romanian—English and across all but control and
raising for German—English. In particular, the in-

"Document-level BLEU is computed over each subset of
sentences.
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Figure 3: Difference in BLEU points between SNMT and NMT, relative to baseline NMT scores, with
respect to a) linguistic constructs and b) sentence lengths. The numbers attached to the bars represent
the BLEU score for the baseline NMT system. The symbol * indicates that syntactic information is used
on the target (eg. de-en*), or both on the source and target (eg. *de-en*)

‘ sub. ‘ qu. PP ‘ contr. ‘ conj
RO<EN | 742 | 90 | 1,572 | 415 845
DE+~EN | 936 | 114 | 2,321 | 546 | 1,129

Table 5: Sentence counts for different linguistic
constructions.

crease in BLEU scores for the prepositional phrase
and subordinate constructions suggests that target
word order is improved.

For German—English, there is a small de-
crease in BLEU for the control and raising con-
structions when using target-syntax alone. How-
ever, source-syntax adds complementary informa-
tion to target-syntax, resulting in a small improve-
ment for this category as well. Moreover, com-
bining source and target-syntax increases trans-
lation quality across all linguistic constructions
as compared to NMT and SNMT with target-
syntax alone. For Romanian—English, combin-
ing source and target-syntax brings an additional
improvement of 0.7 for subordinate constructs
and 0.4 for prepositional phrase attachment. For
German—English, on the same categories, there is
an additional improvement of 0.4 and 0.3 respec-
tively. Overall, BLEU scores improve by more than
1 BLEU point for most linguistic constructs and for
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both language pairs.

Next, we compare the systems with respect to
sentence length. Figure 3 b) shows the difference
in BLEU points between the syntax-aware NMT
system and the baseline NMT system with respect
to the length of the source sentence measured in
BPE sub-units. We report the number of sentences
for each category in Table 6.

| <15 | 15-25 | 25-35 | >35
RO-EN | 491 [ 540 | 433 | 520
DE+EN | 918 | 934 | 582 | 560

Table 6: Sentence counts for different sentence
lengths.

consistent
lengths

With target-syntax, we see
improvements across all sentence
for Romanian—English and across all but
short sentences for German—English. For
German—English there is a decrease in BLEU
for sentences up to 15 words. Since the
German—English training data is large, the base-
line NMT system learns a good model for short
sentences with local dependencies and without
subordinate or coordinate clauses. Including extra
CCG supertags increases the target sequence
without adding information about complex lin-



DE - EN Question

Source Oder wollen Sie herausfinden , iiber was andere reden ?

Ref. Or do you want to find out what others are talking about ?

NMT  Or would you like to find out about what others are talking about ?

SNMT  Or do you want to find out whaty p/(s(aci)/ v p) Others are(s(dap\ N P) /(S[ng)\N P) talKing(sing\nP)/pp aboutpp,np ?
DE - EN Subordinate

Source ...dass die Polizei jetzt sagt , ..., und dass Lamb in seinem Notruf Prentiss zwar als seine Frau bezeichnete ...

Ref. ...that police are now saying ..., and that while Lamb referred to Prentiss as his wife in the 911 call ...

NMT  ...police are now saying ..., and that in his emergency call Prentiss he called his wife ...

SNMT  ...police are now saying ..., and that lamb , in his emergency call , described(siq)\ v P), PP)/ v p Prentiss as his wife ...

Figure 4: Comparison of baseline NMT and SNMT with target syntax for German—English.

guistic phenomena. However, when using both
source and target syntax, the effect on short sen-
tences disappears. For Romanian—English there
is also a large improvement on short sentences
when combining source and target syntax: 2.9
BLEU points compared to the NMT baseline
and 1.2 BLEU points compared to SNMT with
target-syntax alone.

With both source and target-syntax, translation
quality increases across all sentence lengths as
compared to NMT and SNMT with target-syntax
alone. For German—English sentences that are
more than 35 words, we see again the effect of
increasing the target sequence by adding CCG
supertags. Target-syntax helps, however BLEU
improves by only 0.4, compared to 0.9 for sen-
tences between 15 and 35 words. With both
source and target syntax, BLEU improves by 0.8
for sentences with more than 35 words. For
Romanian—English we see a similar result for
sentences with more than 35 words: target-syntax
improves BLEU by 0.6, while combining source
and target syntax improves BLEU by 0.8. These
results confirm as well that source-syntax adds
complementary information to target-syntax and
mitigates the problem of increasing the target se-
quence.

4.4 Discussion

Our experiments demonstrate that target-syntax
improves translation for two translation directions:
German—English and Romanian—English. Our
proposed method predicts the target words to-
gether with their CCG supertags.

Although the focus of this paper is not im-
proving CCG tagging, we can also measure that
SNMT is accurate at predicting CCG supertags.
We compare the CCG sequence predicted by the
SNMT models with that predicted by EasySRL
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and obtain the following accuracies: 93.2 for
Romanian—English, 95.6 for German—English,
95.8 for German—English with both source and
target syntax.®

We conclude by giving a couple of examples in
Figure 4 for which the SNMT system with tar-
get syntax produced more grammatical transla-
tions than the baseline NMT system.

In the example DE-EN Question the baseline
NMT system translates the preposition “iiber”
twice as “about”. The SNMT system with tar-
get syntax predicts the correct CCG supertag for
“what” which expects to be followed by a sen-
tence and not a preposition: NP/(S[dcl]/NP).
Therefore the SNMT correctly re-orders the
preposition “about” at the end of the question.

In the example DE-EN Subordinate the base-
line NMT system fails to correctly attach “Pren-
tiss” as an object and “his wife” as a modifier
to the verb “called (bezeichnete)” in the subor-
dinate clause. In contrast the SNMT system pre-
dicts the correct sub-categorization frame of the
verb “described” and correctly translates the en-
tire predicate-argument structure.

5 Conclusions

This work introduces a method for modeling ex-
plicit target-syntax in a neural machine transla-
tion system, by interleaving target words with their
corresponding CCG supertags. Earlier work on
syntax-aware NMT mainly modeled syntax in the
encoder, while our experiments suggest model-
ing syntax in the decoder is also useful. Our re-
sults show that a tight integration of syntax in
the decoder improves translation quality for both

8The multitasking model predicts a different number of
CCG supertags than the number of target words. For the sen-
tences where these numbers match, the CCG supetagging ac-
curacy is 73.2.



German—English and Romanian—English lan-
guage pairs, more so than a loose coupling of tar-
get words and syntax as in multitask learning. Fi-
nally, by combining our method for integrating
target-syntax with the framework of Sennrich and
Haddow (2016) for source-syntax we obtain the
most improvement over the baseline NMT system:
0.9 BLEU for German—English and 1.2 BLEU for
Romanian—English. In particular, we see large
improvements for longer sentences involving syn-
tactic phenomena such as subordinate and coordi-
nate clauses and prepositional phrase attachment.
In future work, we plan to evaluate the impact
of target-syntax when translating into a morpho-
logically rich language, for example by using the
Hindi CCGBank (Ambati et al., 2016).
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Abstract

Linguistic resources such as part-of-
speech (POS) tags have been extensively
used in statistical machine translation
(SMT) frameworks and have yielded bet-
ter performances. However, usage of such
linguistic annotations in neural machine
translation (NMT) systems has been left
under-explored.

In this work, we show that multi-task
learning is a successful and a easy ap-
proach to introduce an additional knowl-
edge into an end-to-end neural attentional
model. By jointly training several natu-
ral language processing (NLP) tasks in one
system, we are able to leverage common
information and improve the performance
of the individual task.

We analyze the impact of three design de-
cisions in multi-task learning: the tasks
used in training, the training schedule, and
the degree of parameter sharing across the
tasks, which is defined by the network ar-
chitecture. The experiments are conducted
for an German to English translation task.
As additional linguistic resources, we ex-
ploit POS information and named-entities
(NE). Experiments show that the transla-
tion quality can be improved by up to 1.5
BLEU points under the low-resource con-
dition. The performance of the POS tag-
ger is also improved using the multi-task
learning scheme.

1 Introduction

Recently, there has been a dramatic change in the
state-of-the-art techniques for machine translation
(MT). In a traditional method, often the best per-

80

formance is achieved by using a complicated com-
bination of several statistical models, which are in-
dividually trained. For example, POS information
was shown to be very helpful to model word re-
ordering between languages, as shown in Niehues
and Kolss (2009). While the recent development
of end-to-end trained neural models (Bahdanau
et al., 2014) showed significant gains over tradi-
tional approaches, they are often trained only on
the parallel data in an end-to-end fashion. In most
cases, therefore, they do not facilitate other knowl-
edge sources.

When parallel data is sparse, exploiting other
knowledge sources can be crucial for perfor-
mance. Two techniques to integrate the additional
resources are well studied. In one technique, we
train a tool on the additional resources (e.g. POS
tagger) and then annotate the parallel data using
this tool. This technique has been applied exten-
sively in SMT systems (e.g. Niehues and Kolss
(2009)) as well as in some NMT systems (e.g.
Sennrich and Haddow (2016)). The second tech-
nique would be to use the annotated data directly
to train the model.

The goal of this work is to integrate the ad-
ditional linguistic resources directly into neural
models, in order to achieve better performance. To
do so, we build a multi-task model and train sev-
eral NLP tasks jointly.

We wuse an attention-based sequence-to-
sequence model for all tasks. Experiments show
that we are able to improve the performance on
the German to English machine translation task
measured in BLEU, BEER and CharacTER. Fur-
thermore, we analyze three important decisions
when designing multi-task models. First, we in-
vestigated the influence of secondary tasks. Also,
we analyze the influence of training schedule, e.g.
whether we need to adjust it in order to get the
best performance on the target task. And finally,
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we evaluated the amount of parameter sharing
enforced by different model architectures.

The main contributions of this paper are
(1) that we show multi-task learning is possi-
ble within attention-based sequence-to-sequence
models, which are state-of-the-art in machine
translation and (2) that we analyze the influence
of three main design decisions.

2 Related Work

Motivated by the success of using features learned
from linguistic resources in various NLP tasks,
there have been several approaches including ex-
ternal information into neural network-based sys-
tems.

The POS-based information has been integrated
for language models in Wu et al. (2012); Niehues
et al. (2016). In the neural machine translation,
using additional word factors like POS-tags has
shown to be beneficial (Sennrich and Haddow,
2016).

The initial approach for multi-task learning for
neural networks was presented in Collobert et al.
(2011). The authors used convolutional and feed
forward networks for several tasks such as seman-
tic parsing and POS tagging. This idea was ex-
tended to sequence to sequence models in Luong
et al. (2015).

A special case of multi-task learning for atten-
tion based models has been explored. In multi-
lingual machine translation, for example, the tasks
are still machine translation tasks but they need
to consider different language pairs. In this case,
a system with an individual encoder and decoder
(Firat et al., 2016b) as well as a system with a
shared encoder-decoder (Ha et al., 2016; Johnson
et al., 2016) has been proposed.

2.1 Attention Models

Recently, state-of-the art performance in machine
translation was significantly improved by using
neural machine translation. In this approach, a
recurrent neural network (RNN)-based encoder-
decoder architecture is used to transform the
source sentence into the target sentence.

In the encoder, an RNN is used to encode
the source sentence into a fixed size of continu-
ous space representation by inserting the source
sentence word-by-word into the network. First,
source words are encoded into a one-hot encoding.
Then a linear transformation of this into a con-

81

tinuous space, referred to as word embeddings, is
learned. An RNN model will learn the source sen-
tence representation over these word embeddings.
In a second step, the decoder is initialized by the
representation of the source sentence and is then
generating the target sequence one word after the
other using the last generated word as input for the
RNN. In order to get the output probability at each
target position, a softmax layer that get the hidden
state of the RNN as input is used (Sutskever et al.,
2014).

The main drawback of this approach is that the
whole source sentence has to be stored in a fixed-
size context vector. To overcome this problem,
Bahdanau et al. (2014) introduced the soft atten-
tion mechanism. Instead of only considering the
last state of the encoder RNN, they use a weighted
sum of all hidden states. Using these weights, the
model is able to put attention on different parts of
the source sentence depending on the current sta-
tus of the decoder RNN. In addition, they extended
the encoder RNN to a bi-directional one to be able
to get information from the whole sentence at ev-
ery position of the encoder RNN. A detailed de-
scription of the NMT framework can be found in
Bahdanau et al. (2014).

3 Multi-task Learning

In a traditional NLP pipeline, a named entity
recognition or machine translation system employ
POS information by using the POS tags as addi-
tional features. For example, the system will learn
that the probability of a word being a named en-
tity is higher if the word is marked as a noun.
First, a POS tagger is used to annotate the input
data. Combining the statistical models used for
POS tagging and named entity recognition might
not be straightforward.

Recent advances in deep learning approaches,
e.g. CNN or RNN-based models (Labeau and
Loser K., 2015), made it straightforward to use
very similar techniques throughout different NLP
tasks. Therefore, there are new methods to com-
bine the tasks. Instead of using the output of a
model as input for another one, for example, we
can build one model for all tasks. The model is
then automatically able to learn to share as much
information across the tasks as necessary.

For building a model that can learn three NLP
tasks, we use the attention-based encoder-decoder
model, which is a standard in state-of-the-art ma-



chine translation systems. The two non-MT tasks
can also be modeled by converting them into a
translation problem. Instead of translating the
source words into the target language, we trans-
late the words into labels, either POS-tags or NE-
labels.

In this work, we study several crucial design
aspects when applying attention-based encoder-
decoder model for a multi-task learning scenario.
First, we consider different architectures of the
network in order to assess how much parameter
sharing is useful between the tasks. In general,
sharing more information across the tasks is pre-
ferred. However, if the tasks differ from each other
greatly, it might be helpful to restrict the degree of
sharing. In addition, the training schedule of each
task has to be addressed. While all three tasks are
handled as a form of translation, certain distinc-
tions and special processes needed to be asserted.
In Section 3.3 we address this issue.

3.1 Architecture

The general attentional encoder-decoder model
consists of three main parts: the encoder F, the
attention model A and the decoder D. Figure 1
gives an overview of this layout.

Our baseline considers the scenario where we
have separate models for each task. Therefore,
all three parts (encoder, attention model, and de-
coder) stand separately for each task. We will
have nine components Eyrr, Epos, ENE, Ay,
Apos, ANE, Dy, Dpos, Dy g in total.

The one main design decision for a multi-
task learning architecture is the degree of sharing
across the tasks. Motivated by architectures pro-
posed for multi-lingual machine translation (Dong
etal., 2015; Firat et al., 2016a; Ha et al., 2016), we
analyze the impact of different degrees of sharing
in the output quality. When sharing more parame-
ters between the tasks, the models are able to learn
more from the training data of other tasks. If the
tasks are very distant, on the other hand, it might
be harmful to share the parameters.

Shared encoder (shrd Enc) One promising way
is to share components that handle the same type
of data. Since all our tasks share English as input
here is the encoder.

In this architecture, we therefore use one en-
coder for all tasks. This is the minimal degree of
sharing we consider in our experiments. A com-
mon encoder F 4, is used for all tasks, but sepa-
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rate attention models Ay, Apos, Ang and de-
coders Dy, Dpos, DnE are used.

Shared attention (shrd A#t) The next compo-
nent is the attention model which connects the en-
coder and decoder. While the output should be
different for the addressed tasks, the type of input
is the same. Therefore, it might be helpful to share
more information between the models.

In a second architecture, we also share the at-
tention model in addition to the encoder. So in
this setup, we have one encoder E' 411, one atten-
tion model A 4,1, and three decoder D71, Dpos,

DyEg.

Shared decoder (shrd Dec) Finally, we explore
whether it is possible to share all information
across the tasks and let the model learn how to rep-
resent the different tasks. Thus, in this scheme, we
aim to share the decoder partially. The only thing
that is not shared is the final softmax layer.

In this architecture, the decoder RNN has to
model the generation of target words as well as
that of labels. Therefore, we have only one en-
coder E 41,1, one attention model A 47,7, and one
decoder D 4;,;,. In the decoder, however, we have
separated output layers for each task.

Figure 1 depicts which layers are shared de-
pending on the architecture.

3.2 Training Schedule

In this section, we discuss the influence of the
training schedule on the quality of the model.

Throughout our experiments we used a mini-
batch size of 512 tokens. The weight updates were
determined using the Adam algorithm.

The training has to be adapted to the multi-task
scenario. The main decision is how to present the
training examples to the training algorithm. We
only consider one task in each mini-batch. Al-
though the model structure is the same for all
tasks, the models for the individual tasks have dif-
ferent weights. Therefore, parallelization on the
GPU would be less efficient when using different
tasks within one batch. In order to train our model
on all tasks in parallel, we randomly shuffle the
mini-batches from all tasks. This is our default
training schedule. One issue in the multi-task sce-
nario is that the data size might vary. In this case,
the model will mainly concentrate on the task with
the most data and not achieve the best performance
on each task.



Figure 1: Overview on the different architectures used for multi-task learning
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This challenge is strongly related with the prob-
lem of domain adaptation in machine translation,
where a large out-of-domain data is available but
only a small amount of in-domain data. For this
scenario, first training on all data and then fine-
tuning on the in-domain data was very successful
(Lavergne et al., 2011; Cho et al., 2016). There-
fore, we adapt this approach to the multi-task sce-
nario. In this case, we first trained the model on
all tasks and then continued training only on the
main task. We will refer to this training schedule
as adapted.

3.3 Target Length

While all tasks are modeled as a translation prob-
lem in this work, the nature of each task is largely
different. One main difference between the trans-
lation task and the other two tasks is the length of
the target sequence. While it is unknown in the
translation task, it is known and fixed for the other
two cases. During training this does not matter as
the target sequence is given. For testing the sys-
tem, however, this issue is crucial to address.

In our initial experiment, it was shown that
the POS tagger was able to learn the correct tar-
get length in most of the cases. For some sen-
tences, however, the estimated target length was
not correct. Therefore, the prior knowledge of se-
quence length is used during decoding so that la-
bel sequences are generated with the correct tar-
get length. It is worth to mention that the desired
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length of the labels is not exactly the length of the
input to the model itself. Our model uses inputs
with subwords units generated by byte-pair encod-
ing (Sennrich et al., 2016).

4 Experimental Setup

We conduct experiments using the multi-task ap-
proach on three different tasks: machine trans-
lation from German to English, German fine-
grained POS tagging and German NE tagging.
As briefly mentioned in Section 1, multi-task ap-
proach can be helpful when data is sparse. In or-
der to simulate this, we deploy only German to
English TED data for the translation task.

4.1 Data

For the translation task, we used 4M tokens of the
WIT corpus (Cettolo et al., 2012) for German to
English as training data. We used dev2010 for val-
idation and #s:2013 and tst2014 for testing, pro-
vided by the IWSLT. We only used training exam-
ples shorter than 60 words per sentence.

The POS tagger was trained on 720K tokens the
Tiger Corpus (Brants et al., 2004). This corpus
contains German newspaper text. Consequently, it
is out-of-domain data for the machine translation
task. The development and the test data are also
from this corpus. The POS tag set consists of 54
tags and the fine-grained POS tags with morpho-
logical annotations has 774 labels.

Finally, we trained the German named-entity



tagger on 450K tokens of the GermEval 2014 NER
Shared Task data (Benikova et al., 2014). The cor-
pus is extracted from Wikipedia and the training
data consists of 24K sentences.

We preprocess the parallel data by tokenizing
and true-casing. In addition, we trained a byte-pair
encoding (Sennrich et al., 2016) with 40K sub-
words on the source and target side of the TED
corpus jointly. We then applied the subwords to
all German and English corpora.

4.2 System Architecture

For all our experiments, we use an attentional
encoder-decoder model. The baseline systems use
this architecture as well. The encoder uses word
embeddings of size 256 and a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) with 256 hidden layers for each di-
rection. For the attention, we use a multi-layer
perceptron with 512 hidden units and tanh activa-
tion function. The decoder uses conditional GRU
units with 512 hidden units. The models are all
trained with Adam, where we restarted the algo-
rithm twice and early stopping is applied using
log-likelihood of the concatenated validation sets
from the considered tasks. For the adapted sched-
ule, Adam is started once again when training only
on the target task. The model is implemented in
lamtram (Neubig, 2015)".

4.3 Evaluation

The machine translation output is evaluated with
BLEU (Papineni et al., 2002), BEER (Stanojevic
and Sima’an, 2014) and CharacTER (Wang et al.,
2016). For the POS tags, we report error rates on
the small label set as well as on the large label set.

5 Results

In this section, we present the results from our ex-
periments and analysis.

5.1 Initial experiments on the architecture

The results of the initial experiments on the ma-
chine translation tasks are shown in Table 1. The
table displays the performance on the validation
set and on both test sets. For all experiments, we
first show the BLEU score, then the BEER score
and finally the characTER.

!The extension to handle multi-task training can be down-
loaded https://github.com/isl-mt/lamtram
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First, we show the results of the baseline neu-
ral MT system trained on the parallel data (single
task). As mentioned in the beginning, we sim-
ulated a low-resource condition in these experi-
ments by only using the data from TED, which are
roughly 185K sentences.

We evaluated models that are trained both on
the translation and POS tagging task. Although
the POS data is out-of-domain and significantly
smaller than the parallel training data for the trans-
lation task (ca. 20% of the size), we see improve-
ments for all three architectures consistently in
three metrics. The BLEU scores is improved by
more than 1 point and the characTER is reduced
by more than 1.5 points. The BEER metric score
is improved by more than a half point on both sets.

In a more detailed look at this task, we see that
the model sharing the most (shrd Dec) performs
better than the baseline, but worse than the other
two. Therefore, we can conclude that it is helpful
to separate the tasks when the components work
on different types of data. Whether it is helpful
to share the attention layer (shrd Att) or not (shrd
Enc) is not clear from this experiment. Therefore,
we concentrate on these two architectures in the
following experiments.

5.2 Impact of design decisions

Following the initial experiment, we address the
following three design questions:

e What kind of influence does the secondary
task have?

e How do the different architectures perform?
e Do we need to adapt the training schedule?

In order to clarify the impact of the three hyper-
parameters (the architectures, the tasks and the
training) we performed experiments based on pos-
sible combinations. We used two most promising
architectures, shrd Enc and shrd Att as discussed
in Section 5.1. We use three task combinations,
POS+MT, NE+MT and NE+POS+MT. Two train-
ing strategies are applied with and without adapta-
tion as described in Section 3.2. These 12 systems
are evaluated on the two test sets using three dif-
ferent metrics. Consequently, in total we have 72
measurements for the 12 systems.

Since a first view on the results did not clearly
reveal a best performing system, we conducted
a more detailed analysis by averaging the results



Task(s) Arch. Valid Test
dev 2010 tst2013 tst2014
MT - 29.91/62.16/51.06 | 30.85/62.27/51.16 | 26.12/58.73/55.17
shrd Enc | 30.62/62.77/48.35 | 31.97/62.72/49.69 | 27.08/58.99/54.50
POS + MT shrd Att | 30.51/62.27/49.09 | 31.76/62.68/49.59 | 26.86/58.84/53.88
shrd Dec | 30.36/62.34/49.28 | 31.26/62.31/50.35 | 26.52/58.48/54.00
Adapted NE + POS + MT | shrd Enc | 30.70/62.96/48.60 | 32.30/63.25/49.22 | 27.78/59.74/53.49

Table 1: Results of
(BLEU/BEER/characTER)

over several configurations. First, we analyze the
influence of adapting the training schedule by fine-
tuning on the MT task. Out of the 12 systems, six
systems used an adapted training schedule.

As shown in the first line of Table 2 (All), when
averaging over the six systems using the adapted
training schedule and tested both test sets, we see
improvements in all considered metrics compare
to the systems using the default training schedule.
The BLEU score improved by 0.4 BLEU points,
BEER by 0.2 and characTER by 0.4. Further-
more, we compared each of the 36 measurements
using the adapted schedule with the correspond-
ing measurement using the default training sched-
ule. Thus, the scores are calculated on same test
set, based on the same metric. The model differs
whether it is trained using the default or adapted
training schedule. How often the system with an
adapted schedule performs better is shown in the
last column of Table 2. When directly comparing
these systems, in 25 out of 36 cases the ones with
the adapted schedule perform better.

We analyzed the influence of the architecture as
well as tasks considered in training in the same
way. The influence of both aspects, however, was
not as clear as the one from the training schedule.
In order to get a deeper understanding, we ana-
lyzed in which cases it is more helpful to adapt the
training schedule. As a first step, we looked at the
correlation between the training schedule and the
two different architectures. The results are shown
in the next lines of Table 2.

Compared to the systems using the shrd Enc
layout, we observe even bigger improvements
when applying the adapted schedule. The av-
eraged BLEU score is improved by 0.7 BLEU
points. Furthermore, the system with the adapted
training schedule performs better, in almost all
cases. For the shrd At model, in contrast, we gain
nearly no improvements from the adapted sched-
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ule. We also observed that the system with the
default schedule performs better in 10 out of 18
cases.

One reason for this can be that the default train-
ing schedule may not perform as well any more
when only a few parameters are observed in every
batch. In this case, continuing and concentrating
on one task seems to be very important.

In addition, we evaluate the correlation between
the tasks involved and the training schedule. The
results are shown in the same table. The adapted
training schedule has no effect when training on
named entities and machine translation. The ef-
fect when training on POS tagging and MT is also
relatively small. When training the three tasks
together, however, the system with an adapted
schedule performs always better than the system
with the default one. The average BLEU is im-
proved by 0.7. The BEER score and characTER
are also improved by 0.5 and 1.2 points.

Inspired by the results, we build the adapted
shrd Enc model trained on all three tasks, as shown
in Table 1. This model improved the performance
by 1.5 BLEU points over the baseline system.
Also the BEER score is improved by 1 and the
characTER score reduced by 1.8 to 2 points.

5.3 POS Tagging Performance

In addition to the results on the task of translation,
we also evaluated the performance on the task of
POS tagging. The results are shown in Table 3.

For the validation and test data, we show the
error rate on the small tag sets as well as the error
rate on the morpho-syntactic tag set. In the table,
we always first show the results for the small test
set.

The baseline system trained only on the Tiger
corpus achieves an error rate of 5.49, for the POS
tags in the validation set. For the morpho-syntactic
tag of the validation set, it achieves 11.36. The



Systems Default Schedule | Adapted Schedule | Adapted better
All 29.48/60.89/52.05 | 29.89/61.08/51.64 25/36
shrd Enc 29.34/60.85/52.31 | 30.00/61.25/51.50 17/18
shrd Att 29.62/61.93/51.78 | 29.78/60.93/51.79 8/18
POS + MT 29.41/60.81/51.92 | 29.78/61.00/51.90 8/12
NE + MT 29.60/61.00/51.76 | 29.79/60.96/51.77 5/12
NE + POS + MT | 29.42/60.87/52.46 | 30.09/61.46/51.25 12/12

Table 2: Impact of the training schedule in the machine translation task (BLEU/BEER/characTER)

Task(s) Model Default schedule Adaptation schedule
Valid Test Valid Test
POS - 5.49/11.36 | 10.13/17.27 - -
shrd Enc | 3.99/9.98 | 7.55/14.98 | 3.57/8.82 | 6.24/13.24
POS + MT shrd Att | 3.86/9.55 | 6.98/14.17 | 3.16/8.23 | 5.52/12.25
shrd Dec | 3.57/9.28 | 7.40/14.62 | 3.53/8.94 | 5.81/12.56
shrd Enc | 3.42/9.00 | 5.86/12.87 | 3.00/8.00 | 5.06/11.62
NE +POS + MT shrd Att | 3.08/8.45 | 6.23/13.28 | 2.78/7.87 | 5.49/12.10

Table 3: Results of different multi-task architectures on the POS task

performance on the test data is 10.13 and 17.27
for both tag sets. In all systems we used one sys-
tem the generate the both tag sets. The small tags
were evaluated by removing the morhpo-syntactic
information from the output

It is clear that all models outperform the base-
line. It seems to be very helpful for the POS task
to jointly train the model along with the translation
task. The MT data is significantly larger than the
POS data, which is beneficial for this task.

A more detailed look shows that model adap-
tation is beneficial for a good performance. In all
cases the performance is improved by adapting the
model to the POS task. Therefore, when the data
of the main task is small compared to the overall
training data, adapting on the main task is even
more important.

Furthermore, we see improvements when using
a third task in all cases. Facilitating this combina-
tion of tasks is also helpful for POS tagging.

As we observed in the MT task, the impact and
differences brought from each architecture are not
huge. The architectures considered in this work
perform similar. Even the system sharing all com-
ponents achieves a comparable performance on
this task.

The best performing model, however, is the
shred Enc model, trained on all three tasks and
adapted to the task. This model achieved an er-
ror of 5.06 on the small tag set. Compared to the
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baseline performance of 10.13, we can see that the
error rate is halved. On the fine-grained tag set, we
see an improvement from 17.27 to 11.62, which is
a more than 30% reduction in error rate.

5.4 Analysis and Examples

In order to show the influence of the other tasks,
we show translation examples in Table 4. For the
examples we use the multi-task system trained on
all three tasks with the shrd Enc architecture.

A common problem of many neural MT sys-
tems is that they do not translate parts of the source
sentence, or that parts of the source sentence are
translated twice. The baseline system suffers from
this, as shown in the first two examples. The trans-
lation of the multi-task system is improved com-
pared to the baseline in several aspects. In the first
example, the baseline system is not translating the
German compound Geburtsfehler into birth defect
correctly, but into birth. Although the multi-task
system does not generate the translation that ex-
actly matches the reference the translation is un-
derstandable. In the second example, the phrase of
10 is not repeated. One explanation for this could
be that the additional information from the POS
data leads to a better encoding of the structure of
the source sentence.

The influence of the named-entity training ex-
amples on the translation quality is clearer. In sev-
eral cases, the model is able to handle named enti-



German sie ist kein Geburtsfehler.

Reference | it’s not a birth defect.

Baseline she’s not born.

Multi-task | it’s not a birth error.

German das bedeutet, dass 8 von 10 Entscheidungen...

Reference | that means that eight out of 10 of the decisions...

Baseline that means that eight of 10 of 10 choices...

Multi-task | that means that eight of 10 decisions...

German ...[“Benjamin Franklin” von Walter Isaacson][“John Adams” von David McCullough]...

Reference | ...[“Benjamin Franklin” by Walter Isaacson][“John Adams” by David McCullough]...

Baseline ...[Benjamin Franklin, from Walter Franklin”][The “John Adams”]...

Multi-task | ...[“Benjamin Franklin” from Walter Isaacson],[“John Adams” from David McCul-
lough...

German darum habe ich infantile Zerebralparese, ...

Reference | as a result, I have cerebral palsy,

Baseline that’s why I have the infantile,

Multi-task | I have infantile cerebral palsy,

German Prousts Freunde hitten das Land verlassen miissen, ..

Reference | you know, Proust’s boyfriends would have to leave the country ...

Baseline Prolled friends had to have left the country ...

Multi-task | Prouless friends have to leave the country ...

Table 4: Translation examples

ties better. As shown in the third and fourth exam-
ple, the NMT system is not able to copy a named
entity from the source to the target, nor to translate
rare words. In the third example, the baseline sys-
tem is not able to generate the correct last name of
the first author Isaacson, but is generating the last
name from the book title. In the second part of the
example, the baseline system completely deletes
the author. In contrast, the multi-task system is
able to generate the correct sequence. In the fourth
example the multi-task example is able to translate
Zerebralparese (cerebral palsy), while the base-
line system is not able to do it.

We would like to note that as shown in the last
example, there are also several cases where the
NMT system is not able to translate names or rare
words correctly.

6 Conclusion

In this paper we proposed the use of multi-
task learning for attention-based encoder-decoder
models in order to exploit linguistic resourced for
NMT. By training the models not only on the
machine translation task, but also on other NLP
tasks, we yielded clear improvements on the trans-
lation performance. Results show that multi-task
learning improves the translation up to 1.5 BLEU
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points and 2 characTER points. As a by product,
we were also able to improved the performance of
the POS tagging by 30% to 50% relatively. This is
especially helpful since data annotation for many
NLP tasks is very time-consuming and expensive.
It suggests that multi-task learning is a promising
approach to exploit any linguistic annotated data,
which is especially important if we have a low-
resource condition.

We addressed the influence of three design de-
cisions: the involved tasks, the training schedule
and the architecture of the model. The largest in-
fluence on the final performance was given by the
training schedule . By adapting the system on the
individual tasks, we were able to make most use
of available additional resources. In this case, we
showed that both additional resources, the data for
POS tagging as well as the named entity-annotated
corpus, were beneficial for the translation qual-
ity. It is worth mentioning that this was achieved
using corpora from a different domain, i.g. spo-
ken TED talks versus written style. Furthermore,
these corpora were significantly smaller than the
available parallel data. Finally, the amount of pa-
rameter sharing defined by the architecture of the
model has less influence on the final performance.
Although, the best performance on both tasks was



achieved with a model sharing only the encoder
between the tasks.

In this work, the performance of machine trans-
lation task was improved by adopting multi-task
training with other source language NLP tasks. In
future work, we will also investigate methods to
include target-language NLP tasks into the joint
framework.
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Abstract

Pivot translation is a useful method for
translating between languages with little or
no parallel data by utilizing parallel data
in an intermediate language such as En-
glish. A popular approach for pivot trans-
lation used in phrase-based or tree-based
translation models combines source-pivot
and pivot-target translation models into a
source-target model, as known as triangu-
lation. However, this combination is based
on the constituent words’ surface forms
and often produces incorrect source-target
phrase pairs due to semantic ambiguity in
the pivot language, and interlingual differ-
ences. This degrades translation accuracy.
In this paper, we propose a approach for
the triangulation using syntactic subtrees
in the pivot language to distinguish pivot
language words by their syntactic roles to
avoid incorrect phrase combinations. Ex-
perimental results on the United Nations
Parallel Corpus show the proposed method
gains in all tested combinations of lan-
guage, up to 2.3 BLEU points.!

1 Introduction

In statistical machine translation (SMT) (Brown
et al., 1993), it is known that translation with mod-
els trained on larger parallel corpora can achieve
greater accuracy (Dyer et al.,, 2008). Unfor-
tunately, large bilingual corpora are not readily
available for many language pairs, particularly
those that do not include English. One effective so-
lution to overcome the scarceness of bilingual data
is to introduce a pivot language for which paral-

!Code to replicate the experiments can be found at
https://github.com/akivajp/wmt2017
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[X1] enregistrer [X2] [X1]1E83% [X2]

[X1] record [X2]
[X1] dossier [X2] [X2] [X1] ic&

(a) Standard triangulation method matching phrases

VP

[X1] enregistrer [X2] [X1] i25% [X2]

VP
TO VB NP
| | |
[X1] record [X2]

[X1] dossier [X2] [X2] [X1] 125§

NP
DT NN NP
| | |
[X1] record [X2]

(b) Proposed triangulation method matching subtrees

Figure 1: Example of disambiguation by parse
subtree matching (Fr-En-Zh), [X1] and [X2] are
non-terminals for sub-phrases.

lel data with the source and target languages exists
(de Gispert and Marifio, 2006).

Among various methods using pivot languages,
one popular and effective method is the triangu-
lation method (Utiyama and Isahara, 2007; Cohn
and Lapata, 2007), which first combines source-
pivot and pivot-target translation models (TMs)
into a source-target model, then translates using
this combined model. The procedure of triangu-
lating two TMs into one has been examined for
different frameworks of SMT and its effectiveness
has been confirmed both in Phrase-Based SMT
(PBMT) (Koehn et al., 2003; Utiyama and Isahara,
2007) and in Hierarchical Phrase-Based SMT (Hi-
ero) (Chiang, 2007; Miura et al., 2015). How-
ever, word sense ambiguity and interlingual dif-
ferences of word usage cause difficulty in accu-
rately learning correspondences between source
and target phrases, and thus the accuracy obtained
by triangulated models lags behind that of models

Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 90-98
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics



trained on direct parallel corpora.

In the triangulation method, source-pivot and
pivot-target phrase pairs are connected as a source-
target phrase pair when a common pivot-side
phrase exists. In Figure 1 (a), we show an example
of standard triangulation on Hiero TMs that com-
bines hierarchical rules of phrase pairs by match-
ing pivot phrases with equivalent surface forms.
This example also demonstrates problems of am-
biguity: the English word “record” can corre-
spond to several different parts-of-speech accord-
ing to the context. More broadly, phrases includ-
ing this word also have different possible gram-
matical structures, but it is impossible to uniquely
identify this structure unless information about the
surrounding context is given.

This varying syntactic structure will affect trans-
lation. For example, the French verb “enreg-
istrer” corresponds to the English verb “record”,
but the French noun “dossier” also corresponds to
“record” — as a noun. As a more extreme ex-
ample, Chinese is a languages that does not have
inflections according to the part-of-speech of the
word. As a result, even in the contexts where
“record” is used with different parts-of-speech, the
Chinese word “i 5¢” will be used, although the
word order will change. These facts might result in
an incorrect connection of “[X1] enregistrer [X2]”
and “[X2] [X1] iC5%” even though proper corre-
spondence of “[X1] enregistrer [X2]” and “[X1]
dossier [X2]” would be “[X1] i ¢ [X2]” and
“[X2] [X1] ic 5. Hence a superficial phrase
matching method based solely on the surface form
of the pivot will often combine incorrect phrase
pairs, causing translation errors if their translation
scores are estimated to be higher than the proper
correspondences.

Given this background, we hypothesize that dis-
ambiguation of these cases would be easier if the
necessary syntactic information such as phrase
structures are considered during pivoting. To in-
corporate this intuition into our models, we pro-
pose a method that considers syntactic information
of the pivot phrase, as shown in Figure 1 (b). In this
way, the model will distinguish translation rules
extracted in contexts in which the English sym-
bol string “[X1] record [X2]” behaves as a verbal
phrase, from contexts in which the same string acts
as nominal phrase.

Specifically, we propose a method based on
Synchronous Context-Free Grammars (SCFGs)
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(Aho and Ullman, 1969; Chiang, 2007), which
are widely used in tree-based machine translation
frameworks (§2). After describing the baseline tri-
angulation method (§3), which uses only the sur-
face forms for performing triangulation, we pro-
pose two methods for triangulation based on syn-
tactic matching (§4). The first places a hard re-
striction on exact matching of parse trees (§4.1)
included in translation rules, while the second
places a softer restriction allowing partial matches
(§4.2). To investigate the effect of our proposed
method on pivot translation quality, we perform
experiments of pivot translation on the United Na-
tions Parallel Corpus (Ziemski et al., 2016), which
shows that our method indeed provide significant
gains in accuracy (ofup to 2.3 BLEU points), in al-
most all combinations of 5 languages with English
as a pivot language (§5). In addition, as an auxil-
iary result, we compare pivot translation using the
proposed method with zero-shot neural machine
translation, and find that triangulation of symbolic
translation models still significantly outperforms
neural MT in the zero-resource scenario.

2 Translation Framework

2.1 Synchronous Context-Free Grammars

In this section, first we cover SCFGs, which are
widely used in machine translation, particularly hi-
erarchical phrase-based translation (Hiero) (Chi-
ang, 2007). In SCFGs, the elementary structures
used in translation are synchronous rewrite rules
with aligned pairs of source and target symbols on
the right-hand side:

X = (5 1) (1)
where X is the head symbol of the rewrite rule,
and 5 and ¢ are both strings of terminals and non-
terminals on the source and target side respec-
tively. Each string in the right side pair has the
same number of indexed non-terminals, and iden-
tically indexed non-terminals correspond to each-
other. For example, a synchronous rule could take
the form of:

X — (Xo of X1, X1 I Xo). (2)

Synchronous rules can be extracted based on
parallel sentences and automatically obtained
word alignments. Each extracted rule is scored
with phrase translation probabilities in both direc-
tions ¢(5|t) and ¢(1]s), lexical translation proba-
bilities in both directions ¢, (5|t) and ¢ye. (¢[3),



a word penalty counting the terminals in ¢, and a
constant phrase penalty of 1.

At translation time, the decoder searches for the
target sentence that maximizes the derivation prob-
ability, which is defined as the sum of the scores of
the rules used in the derivation, and the log of the
language model (LM) probability over the target
strings. When not considering an LM, it is possi-
ble to efficiently find the best translation for an in-
put sentence using the CKY+ algorithm (Chappe-
lier et al., 1998). When using an LM, the expanded
search space is further reduced based on a limit on
expanded edges, or total states per span, through a
procedure such as cube pruning (Chiang, 2007).

2.2 Hierarchical Rules

In this section, we specifically cover the rules used
in Hiero. Hierarchical rules are composed of initial
head symbol S, and synchronous rules containing
terminals and single kind of non-terminals X > Hi-
erarchical rules are extracted using the same phrase
extraction procedure used in phrase-based trans-
lation (Koehn et al., 2003) based on word align-
ments, followed by a step that performs recursive
extraction of hierarchical phrases (Chiang, 2007).

For example, hierarchical rules could take the
form of:

X — (Officers, EfFEH] &) 3)
X — (the Committee, Z H143) @)
X — <X0 Ole, X1 E[/J X0> . (5)

From these rules, we can translate the input sen-
tence by derivation:

S — (Xo, Xo)
= (Xjof Xo, Xo 1y X1)
= (Officers of Xo, Xo FfEH &)
= (Officers of the Committee,

TRz i FREERE)

The advantage of Hiero is that it is able to
achieve relatively high word re-ordering accu-
racy (compared to other symbolic SMT alterna-
tives such as standard phrase-based MT) with-
out language-dependent processing. On the other
hand, since it does not use syntactic information
and tries to extract all possible combinations of

21t is also standard to include a glue rule S — (Xo, Xo),
S — <So )(17 So X1>, S — <So X17 X1 So> to fall back
on when standard rules cannot result in a proper derivation.
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rules, it has the tendency to extract very large trans-
lation rule tables and also tends to be less syntac-
tically faithful in its derivations.

2.3 Explicitly Syntactic Rules

An alternative to Hiero rules is the use of syn-
chronous context-free grammar or synchronous
tree-substitution grammar (Graehl and Knight,
2004) rules that explicitly take into account the
syntax of the source side (tree-to-string rules), tar-
get side (string-to-tree rules), or both (tree-to-tree
rules). Taking the example of tree-to-string (T2S)
rules, these use parse trees on the source language
side, and the head symbols of the synchronous
rules are not limited to S or X, but instead use
non-terminal symbols corresponding to the phrase
structure tags of a given parse tree. For example,
T2S rules could take the form of:

Xnp —+ (NP (NNS Officers)), M E)  (6)
XNp — ((NP (DT the) (NNP Committee)), Z51%) (7)

Xpp — ((PP (IN o) Xypy), Xo i) ()

XNP — <(NP XNP,O XPP,I)’ X4 X0> (9)

Here, parse subtrees of the source language rules

are given in the form of S-expressions.
From these rules, we can translate from the parse
tree of the input sentence by derivation:

Xroor — <XNP,07 X0>

= <(NP XNP,I XPP,2)7 X2 X1>
= <(NP (NP (NN Officers) Xpp1)), X2 LR b&z,é:>
(NP
(NP (NNS Officers))
= (PP (IN of) , BRE YRR A
(NP (DT the)
(NNP Committee))))

In this way, it is possible in T2S translation to
obtain a result conforming to the source language’s
grammar. This method also has the advantage the
number of less-useful synchronous rules extracted
by syntax-agnostic methods such as Hiero are re-
duced, making it possible to learn more compact
rule tables and allowing for faster translation.

3 Standard Triangulation Method

In the triangulation method by Cohn and Lapata
(2007), we first train source-pivot and pivot-target
rule tables as T'sp and Tpr respectively. Then we
search Tsp and Tpr for source-pivot and pivot-
target rules having a common pivot phrase, and



synthesize them into source-target rules to create
rule table Tg7:

X — (5, t) € Tsr

L= . (10)

st. X = (3,p)€Tsp N X — <p,t> € Tpr.

For all the combined source-target rules, phrase

translation probability ¢(-) and lexical translation

probability ¢, (-) are estimated according to the
following equations:

o (fs) = > e@p)e®s), A
peTspNTpr

o) = Y eGRe@EDH, 12
pETspNTpT

d)lex (ﬂg) = Z lee:c (ﬂﬁ) ¢lex (p\?) 7(13)
peTspNTpr

brea (5]) = > Grew (31P) drew (DIF) - (14)
peETspNTpT

The equations (11)-(14) are based on the mem-
oryless channel model, which assumes:
¢ (tp,5) = ¢ (tlp) ,
¢ (slp.t) = ¢ (s/p)

(15)
(16)

For example, in equation (15), it is assumed that
the translation probability of target phrase given
pivot and source phrases is never affected by the
source phrase. However, it is easy to come up with
examples where this assumption does not hold.
Specifically, if there are multiple interpretations of
the pivot phrase as shown in the example of Figure
1, source and target phrases that do not correspond
to each other semantically might be connected, and
over-estimation by summing products of the trans-
lation probabilities is likely to cause failed transla-
tions.

4 Triangulation with Syntactic Matching

In the previous section, we explained about the
standard triangulation method and mentioned that
the pivot-side ambiguity causes incorrect estima-
tion of translation probability and the translation
accuracy might decrease. To address this prob-
lem, it is desirable to be able to distinguish pivot-
side phrases that have different syntactic roles or
meanings, even if the symbol strings are exactly
equivalent. In the following two sections, we de-
scribe two methods to distinguish pivot phrases
that have syntactically different roles, one based
on exact matching of parse trees, and one based on
soft matching.

93

4.1 Exact Matching of Parse Subtrees

In the exact matching method, we first train pivot-
source and pivot-target T2S TMs by parsing the
pivot side of parallel corpora, and store them into
rule tables as Tpg and Tpr respectively. Syn-
chronous rules of Tpg and Tpp take the form of
X — (p,s) and X — (p,t) respectively, where
P is a symbol string that expresses pivot-side parse
subtree (S-expression), s and ¢ express source and
target symbol strings. The procedure of synthesiz-
ing source-target synchronous rules essentially fol-
lows equations (11)-(14), except using T'pg instead
of Tsp (direction of probability features is re-
versed) and pivot subtree p instead of pivot phrase
p. Here 5 and ¢ do not have syntactic information,
therefore the synthesized synchronous rules should
be hierarchical rules explained in §2.2.

The matching condition of this method has
harder constraints than matching of superficial
symbols in standard triangulation, and has the po-
tential to reduce incorrect connections of phrase
pairs, resulting in a more reliable triangulated TM.
On the other hand, the number of connected rules
decreases as well in this restricted triangulation,
and the coverage of the triangulated model might
be reduced. Therefore it is important to create TMs
that are both reliabile and have high coverage.

4.2 Partial Matching of Parse Subtrees

To prevent the problem of the reduction of cover-
age in the exact matching method, we also propose
a partial matching method that keeps coverage just
like standard triangulation by allowing connection
of incompletely equivalent pivot subtrees. To esti-
mate translation probabilities in partial matching,
we first define weighted triangulation generaliz-
ing the equations (11)-(14) of standard triangula-
tion with weight function (+):

o (t5) =>_ > ¢ (tpr) ¥ (Frlps) ¢ (Fs]s) ,
o (3[)) = > ¢ Gls) ¢ (slpr) ¢ (wrlE) ,
Ps pPT
d)lez (Zlg) = Z Z d)lez (leAT) w (pAT|pAS) ¢)lez (pAslg) ) (19)
PT PS

(blez (Eﬁ) = Z Z ¢lea: (glpAS) 11) (pAS ‘pa") ¢lez (pATlg) (20)

Ps PT

a7

(18)

where ps € Tsp and pr € Ppr are pivot
parse subtrees of source-pivot and pivot-target
synchronous rules respectively. By adjusting (+),
we can control the magnitude of the penalty for the
case of incompletely matched connections. If we



define ¢ (pr|ps) = 1 when pr is equal to pg and
Y(pr|ps) = 0 otherwise, equations (17)-(20) are
equivalent with equations (11)-(14).

Better estimating () is not trivial, and co-
occurrence counts of pg and pr are not avail-
able. Therefore we introduce a heuristic estimation
method as follows:

w (pAS ) pAT)

Y(prlps) = S on WS, ) 5oia w(ps,p) (21
VRIP) = o w2, BT G2
0 lat(px lat(ps
(s, pr) = (flat(ps) # fla (p.T)) 23)
exp (—d (Ps,pr)) (otherwise)
d(ps,pr) = TreeEditDistance(ps, pr) 24)
where  flat(p) returns  the  symbol
string of p keeping non-terminals, and

TreeEditDistance(pg, pr) is minimum cost
of a sequence of operations (contract an edge,
uncontract an edge, modify the label of an edge)
needed to transform pyg into pp (Klein, 1998).

According to equations (21)-(24), we can as-
sure that incomplete match of pivot subtrees leads
d(-) > 1 and penalizes such that ¢(-) < 1/e? <
1/e, while exact match of subtrees leads to a value
of ¢(-) at least e ~ 2.718 times larger than when
using partially matched subtrees.

S Experiments

5.1 Experimental Set-Up

To investigate the effect of our proposed approach,
we evaluate the translation accuracy through pivot
translation experiments on the United Nations Par-
allel Corpus (UN6Way) (Ziemski et al., 2016).
UN6Way is a line-aligned multilingual parallel
corpus that includes data in English (En), Arabic
(Ar), Spanish (Es), French (Fr), Russian (Ru) and
Chinese (Zh), covering different families of lan-
guages. It contains more than 11M sentences for
each language pair, and is therefore suitable for
multilingual translation tasks such as pivot transla-
tion. In these experiments, we fixed English as the
pivot language considering that it is the language
most frequently used as a pivot language. This has
the positive side-effect that accurate phrase struc-
ture parsers are available in the pivot language,
which is good for our proposed method. We per-
form pivot translation on all the combinations of
the other 5 languages, and compared the accuracy
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of each method. For tokenization, we adopt Sen-
tencePiece,’ an unsupervised text tokenizer and
detokenizer, that is although designed mainly for
neural MT, we confirmed that it also helps to re-
duce training time and even improves translation
accuracy in our Hiero model as well. We first
trained a single shared tokenization model by feed-
ing a total of 10M sentences from the data of all
the 6 languages, set the maximum shared vocabu-
lary size to be 16k, and tokenized all available text
with the trained model. We used English raw text
without tokenization for phrase structure analysis
and for training Hiero and T2S TMs on the pivot
side. To generate parse trees, we used the Cky-
lark PCFG-LA parser (Oda et al., 2015), and fil-
tered out lines of length over 60 tokens from all
the parallel data to ensure accuracy of parsing and
alignment. About 7.6M lines remained. Since Hi-
ero requires a large amount of computational re-
sources for training and decoding, so we decided
not to use all available training data but first 1M
lines for training each TM. As a decoder, we use
Travatar (Neubig, 2013), and train Hiero and T2S
TMs with its rule extraction code. We train 5-gram
LMs over the target side of the same parallel data
used for training TMs using KenLM (Heafield,
2011). For testing and parameter tuning, we used
the first 1,000 lines of the 4,000 lines test and dev
sets respectively. For the evaluation of transla-
tion results, we first detokenize with the Senten-
cePiece model and re-tokenized with the tokenizer
of the Moses toolkit (Koehn et al., 2007) for Ara-
bic, Spanish, French and Russian and re-tokenized
Chinese text with Kytea tokenizer (Neubig et al.,
2011), then evaluated using case-sensitive BLEU-
4 (Papineni et al., 2002).
We evaluate 6 translation methods:

Direct:
Translating with a Hiero TM directly trained
on the source-target parallel corpus without
using pivot language (as an oracle).

Tri. Hiero:
Triangulating source-pivot and pivot-target
Hiero TMs into a source-target Hiero TM us-
ing the traditional method (baseline, §3).

Tri. TreeExact
Triangulating pivot-source and pivot-target
T2S TMs into a source-target Hiero TM using

3https://github.com/google/sentencepiece



BLEU Score [%]
Source | Target Direct Tri. Hiero Tri. TreeExact Tri. TreePartial
(baseline)  (proposed 1) (proposed 2)
Es 38.49 34.20 134.97 135.94
Ar Fr 33.34 29.93 130.68 130.83
Ru 24.63 22.94 123.94 124.15
Zh 27.27 22.78 12517 125.07
Ar 27.18 22.97 124.09 124.45
Es Fr 43.24 38.74 139.62 140.12
Ru 28.83 26.35 127.25 127.41
Zh 27.08 24.54 25.00 T 25.16
Ar 25.10 21.65 21.40 12213
Fr Es 45.20 40.16 141.03 1 41.99
Ru 27.42 24.71 12524 1 25.64
Zh 25.84 23.16 23.56 23.53
Ar 22.53 19.82 19.86 20.35
Ru Es 37.60 34.56 34.96 1 35.62
Fr 34.05 30.75 131.43 1 31.67
Zh 28.03 24.88 25.07 25.12
Ar 20.09 16.66 17.01 117.73
7h Es 30.66 27.84 27.99 28.05
Fr 25.97 23.82 24.34 T 24.35
Ru 21.16 18.63 119.58 119.59

Table 1: Comparison of each triangulation methods. Bold face indicates the highest BLEU score in pivot
translation, and daggers indicate statistically significant gains over Tri. Hiero (} : p < 0.05,1 : p < 0.01).

the proposed exact matching of pivot subtrees
(proposed 1, §4.1).

Tri. TreePartial
Triangulating pivot-source and pivot-target
T2S TMs into a source-target Hiero TM using
the proposed partial matching of pivot sub-
trees (proposed 2, §4.2).

5.2 Experimental Results

The result of experiments using all combinations
of pivot translation tasks for 5 languages via En-
glish is shown in Table 1. From the results,
we can see that the proposed partial matching
method of pivot subtrees in triangulation outper-
forms the standard triangulation method for all lan-
guage pairs and achieves higher or almost equal
scores than proposed exact matching method. The
exact matching method also outperforms the stan-
dard triangulation method in the majority of the
language pairs, but has a lesser improvement than
partial matching method. In Table 2 we show the
comparison of coverage of each proposed triangu-
lated method. From this table, we can see that the

exact matching method reduces several percent in
number of unique phrases while the partial match-
ing method keeps the same coverage with surface-
form matching. We can consider that it is one of
the reasons of the difference in improvement sta-
bility between the partial and exact matching meth-
ods.

We show an example of a translated sentences
for which pivot-side ambiguity is resolved in the
the syntactic matching methods:

Source Sentence in French:
La Suisse encourage tous les Etats parties

a soutenir le travail conceptuel que fait

Corresponding Sentence in English:
Switzerland encourages all parties to support
the current conceptual work of the secretariat.

Reference in Spanish:
Suiza alienta a todos los Estados partes a

ue apoyen la actual labor conceptual de la
Secretaria .
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Number of source-side unique phrases/words

Tri. TreePartial

2.646M /5,077
2.658M /5,071
2.406M / 5,088
2.386M / 5,040

2.013M /5,188
2.129M /5,210
2.037M /5,197
1.986M / 5,180

2.233M /5,316
2.366M /5,342
2.266M /5,318
2.215M /5,321

2.505M/ 5,644
2.536M /5,682
2.531M /5,665
2.515M/ 5,688

Source | Target Tri. TreeExact
Es 2.580M /5,072

Ar Fr 2.589M / 5,067
Ru 2.347M / 5,085

Zh 2.324M /5,034

Ar 1.942M /5,182

Es Fr 2.062M / 5,205
Ru 1,978M /5,191

Zh 1,920M /5,175

Ar 2.176M /5,310

Fr Es 2.302M / 5,337
Ru 2.203M /5.311

Zh 2.162M / 5.313

Ar 2.437M / 5,637

Ru Es 2.478M / 5.677
Fr 2.479M / 5,661

Zh 2.466M / 5,682

Ar 1.480M /9,428

7h Es 1.504M /9,523
Fr 1.499M /9,490

Ru 1.518M /9,457

1.556M /9,474
1.570M /9,555
1,568M /9,520
1.593M /9,487

Table 2: Comparison of rule table coverage in proposed triangulation methods.

Direct:
Suiza alienta a todos los Estados partes a que
apoyen el trabajo conceptual que se examinan
en la Secretaria . (BLEU+1: 55.99)

Tri. Hiero:
Suiza conceptuales para apoyar la labor que
en_estos momentos la_Secretaria alienta a
todos los Estados Partes . (BLEU+1: 29.74)

Tri. TreeExact:
Suiza alienta a todos los Estados Partes a
apoyar la labor conceptual que actualmente la
Secretaria . (BLEU+1: 43.08)

Tri. TreePartial:
Suiza alienta a todos los Estados Partes a
apoyar la labor conceptual que actualmente la
Secretaria . (BLEU+1: 43.08)

The results of Tri.TreeExact and Tri.TreePartial

are same in this example. We find that
the derivation in Tri.Hiero wuses rule
X — (X parties X1, X; Xy Partes)*

*The words emphasized with underline and wavy-
underline in the example correspond to X and X respec-
tively.
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causing incorrect re-ordering of phrases
followed by steps of incorrect word se-
lection.’ On the other hand, derivation in

Tri.TreeExact and Tri.TreePartial uses rule X —
( tous les Xy parties, todos Xy Partes)®
synthesized from T2S rules with common pivot
subtree (NP (DT all) (NP” Xyp (NNS parties)).
We can confirm that the derivation improves
word-selection and word-reordering by using this
rule.

5.3 Comparison with Neural MT:

Recent results (Firat et al., 2016; Johnson et al.,
2016) have found that neural machine translation
systems can gain the ability to perform translation
with zero parallel resources by training on multiple
sets of bilingual data. However, previous work has
not examined the competitiveness of these meth-
ods with pivot-based symbolic SMT frameworks
such as PBMT or Hiero. In this section, we com-
pare a zero-shot NMT model (detailed parameters
in Table 3) with our pivot-based Hiero models.

SFor example, the word “conceptuales” with italic face in
Tri.Hiero takes the wrong form and position.

The words emphasized in bold face in the example cor-
respond to the rule.



vocabulary size: 16k (shared)
source embedding size: 512
target embedding size: 512
output embedding size: 512
encoder hidden size: 512
decoder hidden size: 512

LSTM layers: 1

attention type: MLP
attention hidden size: 512

optimizer type: Adam

loss integration type: mean

batch size: 2048

max iteration: 200k
dropout rate: 0.3

decoder type: Luong+ 2015

Table 3: Main parameters of NMT training

Direct NMT is trained with the same data of Di-
rect Hiero, Cascade NMT translates by bridging
source-pivot and pivot-target NMT models, and
Zero-Shot NMT is trained on single shared model
with pvt <> {src,target} parallel data according to
Johnson et al. (2016). To train and evaluate NMT
models, we adopt NMTKit.” From the results
we see the tendency of NMT that directly trained
model achieves high translation accuracy even for
translation between languages of different fami-
lies, on the other hand, the accuracy is drastically
reduced in the situation when there is no source-
target parallel corpora for training. Cascade is
one immediate method connecting two TMs, and
NMT cascade translation shows the medium per-
formance in this experiment. In our setting, while
bilingually trained NMT systems were competi-
tive or outperformed Hiero-based models, zero-
shot translation is uniformly weaker. This may
be because we used only 1 LSTM layer for en-
coder/decoder, or because the amount of paral-
lel corpora or language pairs were not sufficient.
Thus, we can posit that while zero-shot translation
has demonstrated reasonable results in some set-
tings, successful zero-shot translation systems are
far from trivial to build, and pivot-based symbolic
MT systems such as PBMT or Hiero may still be a
competitive alternative.

"https://github.com/odashi/nmtkit

97

6 Conclusion

In this paper, we have proposed a method of pivot
translation using triangulation with exact or par-
tial matching method of pivot-side parse subtrees.
In experiments, we found that these triangulated
models are effective in particular when allowing
partial matching. To estimate translation probabil-
ities, we introduced heuristic that has no guarantee
to be optimal. Therefore in the future, we plan to
explore more refined estimation methods that uti-
lize machine learning.
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Abstract

It has been shown that increasing model
depth improves the quality of neural ma-
chine translation. = However, different
architectural variants to increase model
depth have been proposed, and so far, there
has been no thorough comparative study.

In this work, we describe and evaluate
several existing approaches to introduce
depth in neural machine translation. Ad-
ditionally, we explore novel architectural
variants, including deep transition RNNs,
and we vary how attention is used in
the deep decoder. We introduce a novel
"BiDeep" RNN architecture that combines
deep transition RNNs and stacked RNNs.

Our evaluation is carried out on the En-
glish to German WMT news translation
dataset, using a single-GPU machine for
both training and inference. We find that
several of our proposed architectures im-
prove upon existing approaches in terms
of speed and translation quality. We obtain
best improvements with a BiDeep RNN of
combined depth 8, obtaining an average
improvement of 1.5 BLEU over a strong
shallow baseline.

We release our code for ease of adoption.

1 Introduction

Neural machine translation (NMT) is a well-
established approach that yields the best results
on most language pairs (Bojar et al., 2016; Cet-
tolo et al., 2016). Most systems are based on the
sequence-to-sequence model with attention (Bah-
danau et al., 2015) which employs single-layer re-
current neural networks both in the encoder and in
the decoder.
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Unlike feed-forward networks where depth is
straightforwardly defined as the number of non-
input layers, recurrent neural network architec-
tures with multiple layers allow different connec-
tion schemes (Pascanu et al., 2014) that give rise to
different, orthogonal, definitions of depth (Zhang
et al., 2016) which can affect the model perfor-
mance depending on a given task. This is fur-
ther complicated in sequence-to-sequence models
as they contain multiple sub-networks, recurrent
or feed-forward, each of which can be deep in dif-
ferent ways, giving rise to a large number of pos-
sible configurations.

In this work we focus on stacked and deep tran-
sition recurrent architectures as defined by Pas-
canu et al. (2014). Different types of stacked ar-
chitectures have been successfully used for NMT
(Zhou et al., 2016; Wu et al., 2016). However,
there is a lack of empirical comparisons of dif-
ferent deep architectures. Deep transition archi-
tectures have been successfully used for language
modeling (Zilly et al., 2016), but not for NMT
so far. We evaluate these architectures, both
alone and in combination, varying the connec-
tion scheme between the different components and
their depth over the different dimensions, measur-
ing the performance of the different configurations
on the WMT news translation task.!

Related work includes that of Britz et al. (2017),
who have performed an exploration of NMT ar-
chitectures in parallel to our work. Their ex-
periments, which are largely orthogonal to ours,
focus on embedding size, RNN cell type (GRU
vs. LSTM), network depth (defined according
to the architecture of Wu et al. (2016)), atten-
tion mechanism and beam size. Gehring et al.
(2017) recently proposed a NMT architecture
based on convolutions over fixed-sized windows

'nttp://www.statmt .org/wmt17/
translation—-task.html
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rather than RNNs, and they reported results for
different model depths and attention mechanism
configurations. A similar feedforward architec-
ture which uses multiple pervasive attention mech-
anisms rather than convolutions was proposed by
Vaswani et al. (2017), who also report results for
different model depths.

2 NMT Architectures

All the architectures that we consider in this work
are GRU (Cho et al., 2014a) sequence-to-sequence
transducers (Sutskever et al., 2014; Cho et al.,
2014b) with attention (Bahdanau et al., 2015). In
this section we describe the baseline system and
the variants that we evaluated.

2.1 Baseline Architecture

As our baseline, we use the NMT architecture im-
plemented in Nematus, which is described in more
depth by Sennrich et al. (2017b). We augment it
with layer normalization (Ba et al., 2016), which
we have found to both improve translation quality
and make training considerably faster.

For our discussion, it is relevant that the base-
line architecture already exhibits two types of
depth:

e recurrence transition depth in the decoder
RNN which consists of two GRU transitions
per output word with an attention mechanism
in between, as described in Firat and Cho
(2016).

e feed-forward depth in the attention network
that computes the alignment scores and in the
output network that predicts the target words.
Both these networks are multi-layer percep-
trons with one tanh hidden layer.

2.2 Deep Transition Architectures

In a deep transition RNN (DT-RNN), at each time
step the next state is computed by the sequen-
tial application of multiple transition layers, effec-
tively using a feed-forward network embedded in-
side the recurrent cell. In our experiments, these
layers are GRU transition blocks with indepen-
dently trainable parameters, connected such that
the "state" output of one of them is used as the
"state" input of the next one. Note that each of
these GRU transition is not individually recurrent,
recurrence only occurs at the level of the whole
multi-layer cell, as the "state" output of the last
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Figure 1: Deep transition decoder

GRU transition for the current time step is carried
over as the "state" input of the first GRU transition
for the next time step.

Applying this architecture to NMT is a novel
contribution.

2.2.1 Deep Transition Encoder

As in a baseline shallow Nematus system, the en-
coder is a bidirectional recurrent neural network.
Let Ls be the encoder recurrence depth, then for
the ¢-th source word in the forward direction the
forward source word state h; = h,, is com-

puted as:
i—l,Ls)

(o 7,;7,H> forl < k < L,

(2

_>
h i1 = GRU1 (.7}

_)
h i = GRU

where the input to the first GRU transition is the
word embedding x;, while the other GRU transi-
tions have no external inputs. Recurrence occurs
as the previous word state ﬁi,L ., enters the com-
putation in the first GRU transition for the current
word.

The reverse source word states are computed sim-
ilarly and concatenated to the forward ones to
forn_1> the(loidirectional source word states C

hirshirg| ¢

2.2.2 Deep Transition Decoder

The deep transition decoder is obtained by extend-
ing the baseline decoder in a similar way. Recall
that the baseline decoder of Nematus already has
a transition depth of two, with the first GRU tran-
sition receiving as input the embedding of the pre-
vious target word and the second GRU transition
receiving as input a context vector computed by
the attention mechanism. We extend this decoder



architecture to an arbitrary transition depth L, as
follows:

sj1 = GRU1 (yj-1,5j-1,1,)
sj,2 = GRU3 (ATT(C, sj71), st)
sjk = GRU (0,55 5—1)for2 < k < Ly

where 1,1 is the embedding of the previous target
word and ATT(C, s; 1) is the context vector com-
puted by the attention mechanism. GRU transi-
tions other than the first two do not have external
inputs. The target word state vector s; = s;r, i8
then used by the feed-forward output network to
predict the current target word. A diagram of this
architecture is shown in Figure 1.

The output network can be also made deeper by
adding more feed-forward hidden layers.

2.3 Stacked architectures

A stacked RNN is obtained by having multiple
RNNs (GRUs in our experiments) run for the same
number of time steps, connected such that at each
step the bottom RNN takes "external" inputs from
the outside, while each of the higher RNN takes
as its "external” input the "state" output of the one
below it. Residual connections between states at
different depth (He et al., 2016) are also used to
improve information flow. Note that unlike deep
transition GRUs, here each GRU transition block
constitutes a cell that is individually recurrent, as it
has its own state that is carried over between time
steps.

2.3.1 Stacked Encoder

In this work we consider two types of bidirectional
stacked encoders: an architecture similar to Zhou
et al. (2016) which we denote here as alternating
encoder (Figure 2), and one similar to Wu et al.
(2016) which we denote as biunidirectional en-
coder (Figure 3).

Our contribution is the empirical comparison of
these architectures, both in isolation and in combi-
nation with the deep transition architecture.

We do not consider stacked unidirectional en-
coders (Sutskever et al., 2014) as bidirectional en-
coders have been shown to outperform them (e.g.
Britz et al. (2017)).

Alternating Stacked Encoder The forward part
of the encoder consists of a stack of GRU recurrent
neural networks, the first one processing words in
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E1E

Figure 2: Alternating stacked encoder (Zhou et al.,
2016).

the forward direction, the second one in the back-
ward direction, and so on, in alternating direc-
tions. For an encoder stack depth D;, and a source
sentence length N, the forward source word state
ﬁi = ﬁLDS is computed as:

— —
Wz‘,l = h;1 = GRU; (361', hi—l,l)
— —
h ;21 = GRUgy (wmk—h hi+1,2k)
for 1 < 2k < Dy
— —
I i 2k+1 = GRUgg 41 (E?i,Qk; hi—1,2k+l>

forl < 2k+1< Dy
%
Wij= Hij+ Wi
forl < j < Dy

where we assume that ﬁg}k and ﬁ) N+1,k are Zero
vectors. Note the residual connections: at each
level above the first one, the word state of the pre-
vious level E?m,l 1s added to the recurrent state

of the GRU cell % ; ; to compute the the word state
for the current level ;. e

The backward part of the encoder has the same
structure, except that the first level of the stack
processes the words in the backward direction and
the subsequent levels alternate directions.

The forward and backward word states are then
concatenated to form bidirectional word states
C = {[Wip,Wip,]}. A diagram of this archi-
tecture is shown in Figure 2.

Biunidirectional Stacked Encoder In this en-
coder the forward and backward parts are shal-
low, as in the baseline architecture. Their word
states are concatenated to form shallow bidirec-
tional word states w; = [?M %i,ﬂ that are then
used as inputs for subsequent stacked GRUs which
operate only in the forward sentence direction,
hence the name "biunidirectional”. Since resid-
ual connections are also present, the higher depth



Figure 3: Biunidirectional stacked encoder (Wu
etal., 2016).

Figure 4: Stacked RNN decoder

GRUs have a state size twice that of the base
ones. This architecture has shorter maximum in-
formation propagation paths than the alternating
encoder, suggesting that it may be less expressive,
but it has the advantage of enabling implementa-
tions with higher model parallelism. A diagram of
this architecture is shown in Figure 3.

In principle, alternating and biunidirectional
stacked encoders can be combined by having Dy,
alternating layers followed by Dy, unidirectional
layers.

2.3.2 Stacked Decoder

A stacked decoder can be obtained by stacking
RNNs which operate in the forward sentence di-
rection. A diagram of this architecture is shown in
Figure 4.

Note that the base RNN is always a conditional
GRU (cGRU, Firat and Cho, 2016) which has tran-
sition depth at least two due to the way that the
context vectors generated by the attention mecha-
nism are used in Nematus. This opens up the pos-
sibility of several architectural variants which we
evaluated in this work:

Stacked GRU The higher RNNs are simple
GRUs which receive as input the state from the
previous level of the stack, with residual connec-
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tions between the levels.

sj1,1 = GRU11 (yj-1,85-1,1,2)
Cj,l = ATT(C, Sj7171)
sj1,2 = GRU 2 (¢j1,55,1,1)
i1 = S$51,2
sjk,1 = GRUg (7561, 5j-1,k,1)
Tik = Sjk1+tTjk-1
forl < k < Dy

Note that the higher levels have transition depth
one, unlike the base level which has two.

Stacked rGRU The higher RNNs are GRUs
whose "external” input is the concatenation of the
state below and the context vector from the base
RNN. Formally, the states s;jx 1 of the higher
RNNs are computed as:

sjk1 = GRU ([1j6—1,¢j1], Sj—1,k,1)
forl < k<D,

This is similar to the deep decoder by Wu et al.
(2016).

Stacked cGRU The higher RNNs are condi-
tional GRUs, each with an independent attention
mechanism. Each level has two GRU transitions
per step j, with a new context vector c;  computed
in between:

8jk,1 = GRUg 1 (7jk—1,8j-1k,1)
cik = ATT(C, 55 1.1)
sjk2 = GRUg 2 (¢jk, 55,1,1)
forl < k < Dy

Note that unlike the stacked GRU and rGRU, the
higher levels have transition depth two.

Stacked crGRU The higher RNNs are condi-
tional GRUs but they reuse the context vectors
from the base RNN. Like the cGRU there are two
GRU transition per step, but they reuse the context
vector c; 1 computed at the first level of the stack:

sik1 = GRUL 1 (75 k-1, Sj—1,k,1)
sjk2 = GRUg2 (¢j1,85,1,1)
forl < k < Dy



2.4 BiDeep architectures

We introduce the BiDeep RNN, a novel architec-
ture obtained by combining deep transitions with
stacking.

A BiDeep encoder is obtained by replacing the
Dy individually recurrent GRU cells of a stacked
encoder with multi-layer deep transition cells each
composed by L GRU transition blocks.

For instance, the BiDeep alternating encoder is
defined as follows:

i—l,l)

i+1,2k)

%
@it = K i1 = DTGRU; (a:
_>
h ; 21, = DTGRUy (wi,%—la

for 1 < 2k < Dy
— —
I ;2141 = DTGRU2441 (ﬁmk, h ze1,2k+1)

forl <2k+1< Dy
%
Wiy = hij+ Wi
forl <j <D

where each multi-layer cell DTGRUj, is defined
as:

vg,1 = GRUy 1 (iny, statey,)
Vgt = GRUk,t (O, Ukt—l) forl < k < Ly
DTGRUY, (ink, statek) = VgL,

It is also possible to have different transition
depths at each stacking level.

BiDeep decoders are similarly defined, replac-
ing the recurrent cells (GRU, rGRU, cGRU or cr-
GRU) with deep transition multi-layer cells.

3 Experiments

All experiments were performed with Nematus
(Sennrich et al., 2017b), following Sennrich et al.
(2017a) in their choice of preprocessing and hy-
perparameters. For experiments with deep mod-
els, we increase the depth by a factor of 4 com-
pared to the baseline for most experiments; in pre-
liminary experiments, we observed diminishing
returns for deeper models.

We trained on the parallel English-German
training data of WMT-2017 news translation task,
using newstest2013 as validation set. We used
early-stopping on the validation cross-entropy and
selected the best model based on validation BLEU.

We report cross-entropy (CE) on newstest2013,
training speed (on a single Titan X (Pascal) GPU),
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and the number of parameters. For transla-
tion quality, we report case-sensitive, detokenized
BLEU, measured with mteval-vl3a.pl, on new-
stest2014, newstest2015, and newstest2016.

We release the code under an open source li-
cense, including it in the official Nematus reposi-
tory.> The configuration files needed to replicate
our experiments are available in a separate reposi-
tory.3

3.1 Layer Normalization

Our first experiment is concerned with layer nor-
malization. We are interested to see how essen-
tial layer normalization is for our deep architec-
tures, and compare the effect of layer normaliza-
tion on a baseline system, and a system with an
alternating encoder with stacked depth 4. Results
are shown in Table 1. We find that layer normal-
ization is similarly effective for both the shallow
baseline model and the deep encoder, yielding an
average improvement of 0.8—1 BLEU, and reduc-
ing training time substantially. Therefore we use
it for all the subsequent experiments.

3.2 Deep Encoders

In Table 2 we report experimental results for dif-
ferent architectures of deep encoders, while the
decoder is kept shallow.

We find that all the deep encoders perform sub-
stantially better than baseline (+0.5—+1.2 BLEU),
with no consistent quality differences between
each other. In terms of number of parameters and
training speed, the deep transition encoder per-
forms best, followed by the alternating stacked
encoder and finally the biunidirectional encoder
(note that we trained on a single GPU, the biu-
nidirectional encoder may be comparatively faster
on multiple GPUs due to its higher model paral-
lelism).

3.3 Deep Decoders

Table 3 shows results for different decoder archi-
tectures, while the encoder is shallow. We find that
the deep decoders all improve the cross-entropy,
but the BLEU results are more varied: deep output*
decreases BLEU scores (but note that the baseline

https://github.com/EdinburghNLP/
nematus

*https://github.com/Avmb/
deep—-nmt—-architectures

“deep feed-forward output with shallow RNNs in both the
encoder and decoder



encoder CE BLEU parameters (M) | training speed early stop
2014 2015 2016 (words/s) | (10" minibatches)

baseline 4998 | 21.2 238 284 98.0 3350 44

+layer normalization | 47.53 | 21.9 247 29.3 98.1 2900 29

alternating (depth 4) | 49.25 | 21.8 24.6 289 135.8 2150 46

+layer normalization | 46.29 | 22.6 25.2 305 1359 1600 29

Table 1: Layer normalization results. English—German WMT17 data.
encoder depth CE BLEU parameters (M) | training speed
s. bidir.  s. forw.  trans. 2014 2015 2016 (words/s)
shallow 1 - 1 4753 | 21.9 247 293 98.1 2900
alternating 4 1 46.29 | 226 252 305 135.9 1600
biunidirectional 1 3 1 46.79 | 224 254  30.0 173.7 1500
deep transition 1 - 4 46.54 | 229 254 302 117.0 1900

Table 2: Deep encoder results. English—German WMT17 data.

for the deep recurrent models.

has already some depth), stacked GRU performs
similarly to the baseline (-0.1-+0.2 BLEU) and
stacked rGRU possibly slightly better (+0.1—+0.2
BLEU).

Other deep RNN decoders achieve higher gains.
The best results (+0.6 BLEU on average) are
achieved by the stacked conditional GRU with in-
dependent multi-step attention (cGRU). This de-
coder, however, is the slowest one and has the most
parameters.

The deep transition decoder performs well (+0.5
BLEU on average) in terms of quality and is the
fastest and smallest of all the deep decoders that
have shown quality improvements.

The stacked conditional GRU with reused at-
tention (crGRU) achieves smaller improvements
(+0.3 BLEU on average) and has speed and
size intermediate between the deep transition and
stacked cGRU decoders.

3.4 Deep Encoders and Decoders

Table 4 shows results for models where both the
encoder and the decoder are deep, in addition to
the results of the best deep encoder (the deep tran-
sition encoder) + shallow decoder reported here
for ease of comparison.

Compared to deep transition encoder alone, we
generally see improvements in cross-entropy, but
not in BLEU. We evaluate architectures similar to
Zhou et al. (2016) (alternating encoder + stacked
GRU decoder) and (Wu et al., 2016) (biunidirec-
tional encoder + stacked rGRU decoder), though
they are not straight replications since we used
GRU cells rather than LSTMs and the implemen-
tation details are different. We find that the for-
mer architecture performs better in terms of BLEU

Parameters and speed are highlighted

scores, model size and training speed.

The other variants of alternating encoder +
stacked or deep transition decoder perform simi-
larly to alternating encoder + stacked rGRU de-
coder, but do not improve BLEU scores over the
best deep encoder with shallow decoder. Ap-
plying the BiDeep architecture while keeping the
total depth the same yields small improvements
over the best deep encoder (+0.2 BLEU on aver-
age), while the improvement in cross-entropy is
stronger. We conjecture that deep decoders may be
better at handling subtle target-side linguistic phe-
nomena that are not well captured by the 4-gram
precision-based BLEU evaluation.

Finally, we evaluate a subset of architectures
with a combined depth that is 8 times that of the
baseline. Among the large models, the BiDeep
model yields substantial improvements (average
+0.6 BLEU over the best deep encoder, +1.5
BLEU over the shallow baseline), in addition to
cross-entropy improvements. The stacked-only
model, on the other hand, performs similarly to the
smaller models, despite having even more param-
eters than the BiDeep model. This shows that it is
useful to combine deep transitions with stacking,
as they provide two orthogonal kinds of depth that
are both beneficial for neural machine translation.

3.5 Error Analysis

One theoretical difference between a stacked RNN
and a deep transition RNN is that the distance in
the computation graph between timesteps is in-
creased for deep transition RNNs. While this al-
lows for arguably more expressive computations
to be represented, in principle it could reduce the
ability to remember information over long dis-
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decoder high RNN | decoder RNN depth  output CE BLEU params. training speed
stacked trans. type depth 2014 2015 2016 M) (words/s)
shallow - 1 1 1 4753 | 21.9 247 293 98.1 2900
stacked GRU 4 1 1 46.73 | 21.8 246 295 117.0 2250
stacked rGRU 4 1 1 46.72 | 22.1 250 294 135.9 2150
stacked cGRU 4 1 1 44.76 | 22.8 255 29.6 164.3 1300
stacked crGRU 4 1 1 45.88 | 225 247 297 145.4 1750
deep transition - 1 8 1 4598 | 224 249  30.0 117.0 2200
deep output - 1 1 4 4721 | 215 242 287 98.9 2850

Table 3: Deep decoder results. English—German WMT17 data. Parameters and speed are highlighted

for the deep recurrent models.

encoder decoder decoder high encoder depth decoder depth CE BLEU params. | training speed
RNN type bidir. forw. trans. stacked trans. 2014 2015 2016 M) (words/s)
shallow shallow - 1 1 1 1 47.53 219 24.7 29.3 98.1 2900
deep tran. shallow - 1 4 1 1 46.54 | 229 254 30.2 117.0 1900
(Zhou et al., 2016) (ours)
alternating stacked GRU 4 1 4 1 4589 | 229 25.3 30.1 154.9 1480
(Wu et al., 2016) (ours)
biunidir. stacked rGRU 1 3 1 4 1 46.15 22.4 24.7 29.6 211.5 1280
alternating stacked rGRU 4 - 1 4 1 46.00 | 23.0 25.7 30.5 173.7 1400
alternating stacked c¢GRU 4 1 4 1 4432 | 229 25.7 29.8 202.1 970
deep tran. deep tran. - 1 4 1 8 45.52 22.7 25.7 30.1 136.0 1570
BiDeep altern. ~ BiDeep rGRU 2 2 2 4/2 43.52 | 231 25.5 30.6 145.4 1480
BiDeep altern. ~ BiDeep rGRU 4 2 4 42 4326 | 234 26.0 31.0 214.7 980
alternating stacked rGRU 8 1 8 1 44.32 229 25.5 30.5 274.6 880

Table 4: Deep encoder—decoder results. English—German WMT17 data. Transition depth 4/2 means 4
in the base RNN of the stack and 2 in the higher RNNs. The last two models are large and their results

are highlighted separately.

tances, since each layer may lose information dur-
ing forward computation or backpropagation. This
may not be a significant issue in the encoder,
as the attention mechanism provides short paths
from any source word state to the decoder, but
the decoder contains no such shortcuts between its
states, therefore it might be possible that this nega-
tively affects its ability to model long-distance re-
lationships in the target text, such as subject—verb
agreement.

Here, we seek to answer this question by test-
ing our models on Lingeval97 (Sennrich, 2017),
a test set which provides contrastive translation
pairs for different types of errors. For the exam-
ple of subject-verb agreement, contrastive transla-
tions are created from a reference translation by
changing the grammatical number of the verb, and
we can measure how often the NMT model prefers
the correct reference over the contrastive variant.

In Figure 5, we show accuracy as a function of
the distance between subject and verb. We find
that information is successfully passed over long
distances by the deep recurrent transition network.
Even for decisions that require information to be
carried over 16 or more words, or at least 128 GRU
transitions®, the deep recurrent transition network

Ssome decisions may not require the information to be
passed on the target side because the decisions may be possi-
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Figure 5: Subject-verb agreement accuracy as a
function of distance between subject and verb.

achieves an accuracy of over 92.5% (N = 560),
higher than the shallow decoder (91.6%), and sim-
ilar to the stacked GRU (92.7%). The highest ac-
curacy (94.3%) is achieved by the BiDeep net-
work.

4 Conclusions

In this work we presented and evaluated multiple
architectures to increase the model depth of neural
machine translation systems.

We showed that alternating stacked encoders
(Zhou et al., 2016) outperform biunidirectional

ble based on source-side information.



stacked encoders (Wu et al., 2016), both in ac-
curacy and (single-GPU) speed. We showed that
deep transition architectures, which we first ap-
plied to NMT, perform comparably to the stacked
ones in terms of accuracy (BLEU, cross-entropy
and long-distance syntactic agreement), and better
in terms of speed and number of parameters.

We found that depth improves BLEU scores es-
pecially in the encoder. Decoder depth, however,
still improves cross-entropy if not strongly BLEU
scores.

The best results are obtained by our BiDeep
architecture which combines both stacked depth
and transition depth in both the (alternating) en-
coder and the decoder, yielding better accuracy for
the same number of parameters than systems with
only one kind of depth.

We recommend to use combined architectures
when maximum accuracy is the goal, or use deep
transition architectures when speed or model size
are a concern, as deep transition performs very
positively in the quality/speed and quality/size
trade-off.

While this paper only reports results for one
translation direction, the effectiveness of the pre-
sented architectures across different data condi-
tions and language pairs was confirmed in follow-
up work. For the shared news translation task
of this year’s Conference on Machine Translation
(WMT17), we built deep models for 12 transla-
tion directions, using a deep transition architecture
or a stacked architecture (alternating encoder and
rGRU decoder), and observe improvements for the
majority of translation directions (Sennrich et al.,
2017a).
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Abstract

This work explores extending attention-
based neural models to include alignment
information as input. We modify the at-
tention component to have dependence
on the current source position. The at-
tention model is then used as a lexical
model together with an additional align-
ment model to generate translation. The
attention model is trained using external
alignment information, and it is applied
in decoding by performing beam search
over the lexical and alignment hypothe-
ses. The alignment model is used to score
these alignment candidates. We demon-
strate that the attention layer is capable
of using the alignment information to im-
prove over the baseline attention model
that uses no such alignments. Our experi-
ments are performed on two tasks: WMT
2016 English—Romanian and WMT 2017
German—English.

1 Introduction

Neural machine translation (NMT) has emerged
recently as a successful end-to-end statistical ma-
chine translation approach. The best performing
NMT systems use an attention mechanism that fo-
cuses the attention of the decoder on parts of the
source sentence (Bahdanau et al., 2015). The at-
tention component is computed as an intermedi-
ate part of the model, and is trained jointly with
the rest of the model. The approach is appeal-
ing because (1) it is end-to-end, where the neural
model is trained from scratch without assistance
from other trained models, and (2) the attention
component is trained jointly with the rest of the
model, requiring no pre-computed alignments.

In this work, we raise the question whether the
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attention component is self-sufficient to attend to
the source side, and if it can still benefit from ex-
plicit dependence on the alignment information.
To this end, we modify the attention model to bias
the attention layer towards the alignment informa-
tion, and evaluate the model in a generative frame-
work consisting of two steps: alignment prediction
followed by lexical translation.

Two decades ago, (Vogel et al., 1996) applied
hidden Markov models to machine translation.
The idea was based on introducing word align-
ments as hidden variables, while using the first-
order Markov assumption to simplify the depen-
dencies of the alignment sequence. The approach
decomposed the translation process using a lexi-
cal model and an alignment model. These mod-
els were simple tables enumerating all possible
translation and alignment combinations. Nowa-
days, HMM is used with IBM models to gener-
ate word alignments, which are needed to train
phrase-based systems.

Alkhouli et al. (2016) and Wang et al. (2017)
apply the hidden Markov model decomposition
using feedforward lexical and alignment neural
network models. In this work, we are interested in
using more expressive models. Namely, we lever-
age attention models as lexical models and use
them with bidirectional recurrent alignment mod-
els. These recurrent models are able to encode un-
bounded source and target context in comparison
to feedforward networks.

The attention-based translation model is condi-
tioned on the full source sentence, but it has no ex-
plicit dependence on alignments as input. We pro-
pose to bias the attention mechanism using align-
ment information, while still allowing the model
to compute attention weights dynamically. Condi-
tioning the model on the alignment information as
such makes it possible to combine with an align-
ment model in a generative story. We demonstrate
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that the attention model can benefit from such ex-
ternal alignment information on two WMT tasks:
the 2016 English—Romanian task and the 2017
German—English task.

2 Related Work

Alignment-based neural models have explicit de-
pendence on the alignment information either at
the input or at the output of the network. They
have been extensively and successfully applied in
the literature on top of conventional phrase-based
systems (Sundermeyer et al., 2014a; Tamura et al.,
2014; Devlin et al., 2014). In this work, we focus
on using the models directly to perform standalone
neural machine translation.

Alignment-based neural models were proposed
in (Alkhouli et al., 2016) to perform neural ma-
chine translation. They mainly used feedforward
alignment and lexical models in decoding. In this
work, we investigate recurrent models instead. We
use a modified attention model as a lexical model
and apply it together with a recurrent alignment
neural model.

Deriving neural models for translation based on
the HMM framework can also be found in (Yang
et al., 2013; Yu et al., 2017). Alignment-based
neural models were also applied to perform sum-
marization and morphological inflection (Yu et al.,
2016). The work used a monotonous alignment
model, where training was done by marginaliz-
ing over the alignment hidden variables, which is
computationally expensive. In this work, we use
non-monotonous alignment models. In addition,
we train using pre-computed Viterbi alignments
which speeds up neural training. In (Yu et al.,
2017), alignment-based neural models were used
to model alignment and translation from the tar-
get to the source side (inverse direction), and a
language model was included in addition. They
showed results on a small translation task. In this
work, we present results on translation tasks con-
taining tens of millions of words. We do not in-
clude a language model in any of our systems.

There is plenty of work on modifying attention
models to capture more complex dependencies.
(Cohn et al., 2016) introduces structural biases
from word-based alignment concepts like fertility
and Markov conditioning. These are internal mod-
ifications that leave the model self-contained. Our
modifications introduce alignments as external in-
formation to the model. (Arthur et al., 2016) in-

clude lexical probabilities to bias attention. (Chen
et al., 2016; Mi et al., 2016) add an extra term
dependent on the alignments to the training ob-
jective function to guide neural training. This is
only applied during training but not during decod-
ing. Our work modifies the attention component
directly, and we can choose whether to apply the
alignment bias during decoding or not. We show
that using alignment bias during search alongside
an alignment model improves translation.

3 Alignment-Based Translation

Given a source sentence f{ = fi...fj...fs, atar-
get sentence e{ = ej...6;...e7, and an alignment
sequence b{ = by...b;...b;, where j = b; is the
source position aligned to the target position i, we
model translation using an alignment model and a

lexical model:

plefl ) = plel, bl ) (1)
bI

I
~ i—1 _i—1 pJ
Nm?'XHp(ei“)iabl ;€ >f1)'
1 4=1 N
lexical model

pbilbi" e, £)

TV
alignment model

Both the lexical model and the alignment model
have rich dependencies including the full source
context fi, the full alignment history bifl, and
the full target history ei‘l. The lexical model has
an extra dependence on the current source position
b;. First-order HMMs simplify the dependence
on the alignment history and limit it to the pre-
decessor alignment point b;_;. This allows an ef-
ficient computation of the sum over the alignment
sequence given in Eq. (1) using dynamic program-
ming. In this work, we stick to the maximum ap-
proximation, and keep the full dependence on the
alignment history b’i_l. We use recurrent neural
networks to model the unbounded source, target
and alignment context. Nevertheless, the models
we describe can be simplified easily to drop the
full dependence on the alignment history, in which
case integrated training using the sum can be per-
formed as suggested by Wang et al. (2017).

4 Attention-Based Translation Model

The standard attention-based translation model
has three main components: The encoder, the de-
coder, and the attention component. The model
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Figure 1: Attention model architecture.

architecture is illustrated in Fig. (1). We use
long short-term memory (LSTM) recurrent layers
throughout this work (Hochreiter and Schmidhu-
ber, 1997; Gers et al., 2000, 2003). We include a
bidirectional encoder where we sum the forward
and backward source state representations:

— —

hj = LSTM( hj1, F'f;)

— —

by = LSTM(hy1, F )

— -

hj=Y h;+Zh; )
where Y and Z are weight matrices, F'
is the source word embedding matrix, and

fi € {0,1}1Vs¥1 is the one-hot vector of the
source word at position j. |Vy| is the size of the
source vocabulary. The parameterization of the re-
current layer is abstracted away using the LSTM
notation for simplicity. We use an LSTM layer to
represent the state of the target sequence:

ti_1 = LSTM(Q;Q, Eez;l) 3)

where F is the target word embedding matrix, and
ei-1 € {0, 1}‘Ve\x1 is the one-hot vector of the
target word at position i — 1. |V;] is the size of
the target vocabulary. The attention weights are
normalized using the softmax function according
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to the following equations:

exp(si;)
>y exp(sij)
sij = vl tanh(Wh; + Mr;_1 + a)

Oéij =

ri-1 = Roj—1 + Lt; 1 4)
0j—1 = Ad;—1 + Bt;_»
di—1 = LSTM(d;—2, m;—1) 5)

J
m; = Z aijhj
j=1

where «;; denotes the normalized attention
weights, s;; denotes the unnormalized attention
scores, ;1 1s the translation state computed using
the decoder state at the previous step o;—1 and the
target state ¢;_1 which in turn is computed using
the target word e;_;. The decoder state d; is com-
puted using an LSTM over the attended source po-
sitions m;. v and a are vectors, and A, B, W, M,
R, and L are weight matrices.

The final target word probability is computed
as a softmax function of the decoder state o, €

RIVelx1.
exp(0iw)

Ve
‘v:‘l exp(0iv)

p(ei = w|e§_1, flJ) =

2
5 Alignment-Biased Attention

In order to use the attention model as an
alignment-dependent lexical model, we introduce
a dependence on the alignment information b;. We
modify the attention mechanism according to the
following equation:

Sij = thanh(Whj +Mri_1+a+ (5]',1)1. C) (6)

where cis a vector, and 9, 5, is the Kronecker delta:

0jb; = {

We also experiment with a bias term that in-
cludes the aligned source state hy,:

1’
0,

if j=0b

otherwise.

sij = v tanh(Wh; + Mri_y + a+ 6;4, Dhy,)
)

which we refer to as source alignment bias. D is
an additional weight matrix. Note that the model
will have full dependence on the alignment history
due to Eq. (5) and Eq. (4) (cf. Fig. (1)). This de-
pendency can be simplified by removing both the



i—1
1 ’

p(AbT e ) |

selection basedon b; _1 = j
\

bidirectional encoder

target states

embeddings

€i—1

Figure 2: Bidirectional alignment model (BAM).

recurrency in Eq. (5), and the recurrent input 0;_1
that feeds r;—1 in Eq. (4). In this work, however,
we stick to the richer representation and keep the
full dependence on the alignment history.

If the alignment information is pre-computed,
e.g. through IBM/HMM training, using it as an
alignment bias might risk that the original at-
tention part will learn nothing and that it be-
comes completely dependent on the alignment in-
formation. To alleviate this problem, we include
the alignment bias term during training for some
batches and drop it for others. In our experiments,
we randomly include the bias term for 50% of the
training batches.

6 Recurrent Alignment Model

We use a recurrent alignment model to score
alignments. The model architecture is shown in
Fig. (2). Following (Alkhouli et al., 2016), the
alignment model predicts the relative jump A; =
b; — bj—1 from the previous source position b;_1
to the current source position b;. This model has a
bidirectional source encoder consisting of two re-
current layers (yellow), and a recurrent layer main-
taining the target state (red). The most recent tar-
get state computed including word e;_; is paired
with the source states at position b;_;, which is a
hard alignment obtained externally and not com-
puted by the model. We pair the source state h; at
position j = b;_1 with the target state ¢;_1 at posi-
tion ¢ — 1 to predict the jump A; to the next source
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position b; according to the following equations:

¢ =Uti-1+ hp,_,
2 = LSTM (21, ¢;) (8)
where U is a weight matrix, g; is the paired source
and target states, and z; is the decoder state used
to predict the jump from b;_1 to b;. hy, |, and t;_q
are defined in Eq. (2), and Eq. (3), respectively.
Removing the recurrency in Eq. (8) results in a
first-order model over the alignment sequence.

7 Training

In this work, we train the attention and the align-
ment model separately. We obtain the alignments
using IBM/HMM training. While this breaks up
the simplicity of end-to-end training of attention
models, we want to note that this is not central to
the proposed approach. Integrated training using
the sum instead of the maximum approximation in
Eq. (1) can be performed using the Baum-Welch
algorithm similar to (Yu et al., 2017; Wang et al.,
2017), but the models need to give up the recur-
rency over the alignment information. Alterna-
tively, the maximum approximation can be used
to find the Viterbi alignments without changing
the models, where training proceeds by alternat-
ing between aligning the training data and model
estimation. In this work, however, we focus on
the modeling aspect and leave integrated training
to future work.

8 Alignment-Based Decoding

Similar to (Alkhouli et al., 2016), we combine the
lexical and alignment neural models in a beam-
based decoder. Since the models depend on the
alignment information, we also have to hypothe-
size alignments during decoding. In training, we
assume that each target position is aligned to ex-
actly one source position. During decoding, we
hypothesize all source positions for each target po-
sition. We assign the models separate weights and
obtain the best translation as follows:

I
e} = arg max
I,e{

I
1 i e
{In}y?x{;)\logp(eibuel lvflj)
i} ©

where A is the lexical model weight, which we
tune on the development set using grid search.

+(1— N log p(Aqlby ! ei



WMT 2016

WMT 2017

English Romanian German English

Sentences 604K 3.55M

Running Words 15.5M 15.8M 85M 86M
Vocabulary 92.3K 128.3K 671K 587K
Neural Network Vocabulary  56.1K 80.9K 188K 131K

Table 1: Corpora and NN statistics.

9 Experiments

9.1 Setup

This section presents experiments on two
WMT shared translation tasks: the 2016
English—Romanian task! and the 2017

German—English task.”>  The corpora statis-
tics are shown in Tab. (1). We use the full
bilingual data of the English—+Romanian task.
For the German—English task, we choose the
common crawl, news commentary and European
parliament bilingual data. The data is filtered
by removing sentences longer than 100 words.
We also remove sentences where five or more
consecutive source words are unaligned according
to IBM1/HMM/IBM4 training. This is to remove
noisy sentence pairs that are frequent in the
common crawl corpus. We do not use any kind of
synthetic or back-translated data in this work.

We reduce the vocabulary size by replac-
ing singletons with the unknown token for
both English and Romanian corpora in the
English—Romanian task. Since we have more
data in the German—English task, we replace
words occurring less than 6 times in the German
corpus and less than 4 times in the English cor-
pus by the unknown token. The reduced vocabu-
laries are what we refer to as the neural network
vocabulary in Tab. (1). To handle the large out-
put vocabularies, all lexical models use a class-
factored output layer, with 1000 singleton classes
dedicated to the most frequent words, and 1000
classes shared among the rest of the words. The
classes are trained using a separate tool to opti-
mize the maximum likelihood training criterion
with the bigram assumption. The alignment model
uses a small output layer of 201 nodes, determined
by a maximum jump length of 100 (forward and
backward). We train using stochastic gradient de-
scent and halve the learning rate when the devel-
opment perplexity increases.

'http://www.statmt.org/wnt16/
http://www.statmt.org/wmt17/
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We train feedforward models to compare to
(Alkhouli et al., 2016). The models have two hid-
den layers, the first has 1000 nodes and the second
has 500 nodes. We use a 9-word source window,
and a 5-gram target history. 100 nodes are used
for word embeddings. The bidirectional alignment
models have 4 LSTM layers as shown in Fig. (2).
We use 200-node source and target word embed-
dings and 200 nodes in each LSTM layer.

The attention models also use 200-node LSTM
layers, and 200-node source and target embed-
dings. The internal dimension of the atten-
tion component is also set to 200 nodes, i.e.
v,a,c € R200x1,

Each model is trained on 4-12 CPU cores using
the Intel MKL library, and takes about 2—4 days
on average to converge.

We apply attention models with alignment bias
and feedforward models in decoding using a de-
coder similar to that proposed in (Alkhouli et al.,
2016). The decoder hypothesizes each source po-
sition for every target position being translated.
Beam search is applied where the search nodes
consist of both lexical and alignment hypothe-
ses. When the attention model is applied with-
out the alignment bias term, the decoder simpli-
fies to hypothesizing lexical translations only. To
speed up decoding of long sentences, we limit
alignment hypotheses to the source positions j €
{i —20,...,7 + 20}, where i is the current target
position being translated. We use a beam size of
16 in all experiments. The alignments used during
training are a result of IBM1/HMM/IBM4 training
using GIZA++ (Och and Ney, 2003).

We use grid search to optimize the lexical
model weights (cf. Eq. (9)). We find that
the attention model receives a weight of 0.8,
while the alignment model is assigned a weight
of 0.2. We tune this on the development set
of each task. We use 1000 sentence pairs of
newsdev2016 as the development set of the
English—+Romanian task, and newstest2015
for tuning the German—English model weights.



These same datasets are used to halve the learning
rate during model training.

All translation experiments are performed us-
ing an extension of the Jane toolkit (Vilar et al.,
2010; Wuebker et al., 2012). The neural net-
works are trained using an extension of the rwthim
toolkit (Sundermeyer et al., 2014b). All results are
measured in case-insensitive BLEU [%] (Papineni
et al., 2002) using mteval from the Moses toolkit
(Koehn et al., 2007). Case-insensitive TER [%]
scores are computed with TERCom (Snover et al.,
2006). Word classes are trained using an in-house
tool (Botros et al., 2015) similar to mkcls.

9.2 Results

We compare our proposed system to three baseline
systems on the WMT 2016 English—Romanian
task and the WMT 2017 German—English task.
The results are shown in Tab. (2). We set up a
baseline system using a feedforward lexical model
and a feedforward alignment model, to compare to
the models used in (Alkhouli et al., 2016). This is
shown in row 1. We first check the effect of us-
ing a recurrent alignment model (row 2) instead of
the feedforward model. This brings an improve-
ment of up to 1.6% BLEU. The attention baseline
(row 3) performs much better in comparison, scor-
ing up to 3.1% BLEU better than the feedforward
system. This model has no alignment bias com-
ponent. We note here that the German—English
training data size is about 5.7 times more than that
of the English—Romanian task, which can explain
the small gap in performance between the systems
in row 2 and row 3 on the German—English task,
as the feeforward networks have large hidden lay-
ers of 1000 and 500 nodes, while the recurrent
models use hidden layers of size 200.

We train an attention model by adding the align-
ment bias term in Eq. (6). We bias the attention
model randomly during training for 50% of the
training batches. During decoding, we include a
bidirectional alignment model to score the align-
ment hypotheses (rows 4, 5). The combination of
the alignment-biased attention model and the bidi-
rectional alignment model (row 4) outperforms the
standard attention model (row 3). This shows that
the model learns to use the alignment information.
We also compare to adding source alignment bias
as given by Eq. (7) (row 5). We observe no differ-
ence to the case of constant alignment bias (row
4) on these tasks. Overall, we improve BLEU by
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1.7% and 1.1% on the English—Romanian and
the German—English task, respectively.

9.3 Alignment Model

In Tab. (3), we analyze the effect of the alignment
model on the system. We observe that if the align-
ment model is dropped, the attention model is un-
able to score the alignments hypothesized during
decoding on its own (row 4). If we drop the align-
ment model in decoding, we also have to exclude
the alignment bias term when computing attention
weights during decoding (row 3) (the bias term is
still included in training). In this case, the transla-
tion degrades to the baseline performance.

9.4 Block out

In Tab. (3) we also investigate the effect of
block out. On the English—Romanian task
which has less training data in comparison to
German—English, we observe that block out
helps improve the system (row 2 vs. 5). This is
because it avoids overfitting the alignment infor-
mation, allowing the attention component to learn
to attend on its own. This can be verified when
comparing row 3 to row 6: When block out is
used in training, and the attention model is used
afterwards in decoding alone without an alignment
model, it is able to perform close to the baseline at-
tention performance if block out is used. Without
using block out, the model fails to attend to the
source side properly on its own.

9.5 Alignment Quality

We analyze the word alignment quality using 504
manually word-aligned German-English sentence
pairs that were extracted from the Europarl cor-
pus (Vilar et al., 2006). In Tab. (4), we com-
pare the baseline attention system to the proposed
alignment-based system. The alignments of the
baseline attention system are generated by align-
ing each target word to the source position hav-
ing the maximum attention weight. We observe
that the baseline attention system has a high AER
in comparison to the proposed system, which re-
duces AER from 44.9% to 29.7%. This corre-
sponds to 1.1% BLEU improvement. It is worth
noting that the high AER of the baseline system
is likely because the model is not trained to align,
and that the attention weights it produces are soft
alignments. In comparison, our system uses an
alignment model that explicitly learns to model
alignments.



Table 2: Translation results on the WMT 2016 English—Romanian task and the WMT 2017

WMT En—Ro | WMT De—En
newstest2016 newstest2017
lexical alignment bias

#|  model model term |BLEU" TER"™|BLEU" TER"
1 |feedforward | feedforward - 20.0 64.2 24.2 58.6
2 |feedforward | bidirectional - 21.6 62.7 25.5 57.6
3| attention - - 23.1 60.6 25.7 57.6
4| attention |bidirectional| 9, ;¢ 24.8 58.1 26.8 55.6
5| attention |bidirectional|d;; D hy,| 24.8 58.1 26.8 55.5

German— English task.

WMT En—Ro | WMT De—En
newstest2016 newstest2017
lexical alignment |decode w/| train w/
# model model align bias |block out| BLEU " tER™ |BLEU™ TER™
1 |attention baseline - - - 23.1 60.6 25.7 57.6
2 bidirectional|  yes 24.8 58.1 26.8 55.6
3 - no yes 23.1 60.6 25.7 59.4
4| + alignment bias - yes degenerate degenerate
5 bidirectional|  yes o 23.7 59.2 26.7 55.8
6 - no degenerate degenerate

Table 3: The effect of using the alignment model in decoding and block out in training . The alignment
bias term used here is d;; c. Rows 1 and 2 are the same as rows 3 and 4 in Tab. (2). Block out means
including the alignment bias term for 50% of the training batches.

newstest2017|Europarl

BLEU" | AER"
attention baseline 25.7 44.9
proposed system 26.8 29.7

Table 4: A comparison between the WMT
German—English proposed system and the base-
line attention system in terms of the alignment er-
ror rate (AER). The attention baseline and the pro-
posed system are the same ones shown in Tab. (2),
rows 3 and 4, respectively.

To illustrate what happens when we include
the source alignment bias term, we take a
sample from the translation hypotheses of the
German—English system in Tab. (2, row 5), and
compare it to the output of the standard attention
model Tab. (2, row 3). The sample is chosen from
the development set newstest2015. The Ger-
man sentence “diese schreckliche Erfahrung wird
uns immer verfolgen .” has the reference transla-
tion “ this horrible experience will stay with us .”

In Fig. (3), we illustrate the best translation hy-
pothesis and the corresponding attention weights
produced by the standard attention model. Fig. (4)
shows the same thing for the attention model using
source alignment bias. We observe that the latter
is able to generate a good translation while being
able to attend to the source sentence in a proper
order. On the other hand, the standard attention
model has a problem in the first half of the hy-
pothesis, where it attends to the second half of the
source sentence instead. It ends up confusing the
object and the subject. A more acceptable, though
inaccurate, translation of ‘verfolgen’ under such
reordering would be ‘followed by’, but the system
fails to generate this translation.

Fig. (5) shows the curve of tuning the lexical
model weight. We observe that the weight is ro-
bust against small changes. The best results in
terms of BLEU are achieved when A = 0.8.
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EOS B
experience
terrible
this
pursuing
always
are
we [
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Y % oo T o)% %,
A
/()6 © 7]
©

Figure 3: A translation example produced by the
standard attention system in Tab. (2), row 3. EOS
denotes the sentence end symbol. The shading de-
gree corresponds to the attention weight.

EOS
us
follow
always
will
experience
terrible
this
% %o Sty 9% k. &
%, %% 0 2 %
Y e %
6,2, @
C %0 K4
%

Figure 4: A translation example produced by our
best system using source alignment bias, given in
Tab. (2), row 5. EOS denotes the sentence end
symbol. The shading degree corresponds to the
attention weight.

10 Conclusion

We presented a modification of the attention
model to bias it using external alignment infor-
mation. We also presented a bidirectional recur-
rent neural network alignment model to be used
alongside the proposed attention model. We used
the two models in a generative scheme of align-
ment generation followed by lexical translation.
We demonstrated improvements over the standard
attention model on two WMT tasks. We provided
evidence that enabling the alignment bias term for
all training samples makes the attention mecha-
nism overfit the alignments on non-large datasets.
To remedy this, we proposed to apply the align-
ment bias on half of the training samples, which
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Figure 5: Grid search tuning of the lexical weight
of the system in Tab. (2, row 4). The re-
sults are computed on the development set of the
English—Romanian task.

yielded our best system.

While this work depends on pre-computed
alignments to train the attention and alignment
models, this is not central to our approach. In
future work, we plan to perform integrated train-
ing by alternating between alignment generation
and model estimation. Alignment generation can
be performed using forced alignment where beam
search is performed over the alignment positions,
while fixing the lexical translations to the refer-
ence translation. This can eliminate the need for
pre-computing alignments using ad hoc methods
like IBM1/ HMM/IBM4 training.
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Abstract

Neural Machine Translation (NMT)
models are often trained on hetero-
geneous mixtures of domains, from
news to parliamentary proceedings,
each with unique distributions and lan-
guage. In this work we show that train-
ing NMT systems on naively mixed
data can degrade performance versus
models fit to each constituent domain.
We demonstrate that this problem can
be circumvented, and propose three
models that do so by jointly learn-
ing domain discrimination and transla-
tion. We demonstrate the efficacy of
these techniques by merging pairs of
domains in three languages: Chinese,
French, and Japanese. After training
on composite data, each approach out-
performs its domain-specific counter-
parts, with a model based on a discrim-
inator network doing so most reliably.
We obtain consistent performance im-
provements and an average increase of

1.1 BLEU.

1 Introduction

Neural Machine Translation (NMT) (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014) is an end-to-end ap-
proach for automated translation. NMT has
shown impressive results (Bahdanau et al.,
2015; Luong et al., 2015a; Wu et al., 2016)
often surpassing those of phrase-based sys-
tems while addressing shortcomings such as
the need for hand-engineered features.

In many translation settings (e.g. web
translation, assistant translators), input may

“Equal Contribution.
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come from more than one domain. Each do-
main has unique properties that could con-
found models not explicitly fitted to it. Thus,
an important problem is to effectively mix a
diversity of training data in a multi-domain
setting.

Our problem space is as follows: how can
we train a translation model on multi-domain
data to improve test-time performance in each
constituent domain? This setting differs from
the majority of work in domain adaptation,
which explores how models trained on some
source domain can be effectively applied to
outside target domains. This setting is impor-
tant, because previous research has shown that
both standard NMT and adaptation methods
degrade performance on the original source do-
main(s) (Farajian et al., 2017; Haddow and
Koehn, 2012). We seek to prove that this prob-
lem can be overcome, and hypothesize that
leveraging the heterogeneity of composite data
rather than dampening it will allow us to do
S0.

To this extent, we propose three new models
for multi-domain machine translation. These
models are based on discriminator networks,
adversarial learning, and target-side domain
tokens. We evaluate on pairs of linguisti-
cally disparate corpora in three translation
tasks (EN-JA, EN-ZH, EN-FR), and observe
that unlike naively training on mixed data (as
per current best practices), the proposed tech-
niques consistently improve translation quality
in each individual setting. The most signifi-
cant of these tasks is EN-JA, where we obtain
state-of-the-art performance in the process of
examining the ASPEC corpus (Nakazawa
et al., 2016) of scientific papers and Sub-
Crawl, a new corpus based on an anonymous
manuscript (Anonymous, 2017). In summary,

Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 118-126
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics



our contributions are as follows:

e We show that mixing data from heteroge-
nous domains leads to suboptimal re-
sults compared to the single-domain set-
ting, and that the more distant these do-
mains are, the more their merger degrades
downstream translation quality.

We demonstrate that this problem can be
circumvented and propose novel, general-
purpose techniques that do so.

2 Neural Machine Translation

Neural machine translation (Sutskever et al.,
2014) directly models the conditional log prob-
ability logp(y|z) of producing some trans-
lation y = wv1,...,ym of a source sentence
T T1,...,Tn. It models this probability
through the encoder-decoder framework.
this approach, an encoder network encodes
the source into a series of vector representa-
tions H = hq,...,h,. The decoder network
uses this encoding to generate a translation
one target token at a time. At each step, the
decoder casts an attentional distribution over
source encodings (Luong et al., 2015b; Bah-
danau et al., 2014). This allows the model to
focus on parts of the input before producing
each translated token. In this way the decoder
is decomposing the conditional log probability
into

In

logp(yle) =Y logp(yly<i, H) (1)
t=1

In practice, stacked networks with recurrent
Long Short-Term Memory (LSTM) units are
used for both the encoder and decoder. Such
units can effectively distill structure from se-
quential data (Elman, 1990).

The cross-entropy training objective in
NMT is formulated as,

£gen_ Z _Ing(Y|X)

(x,y)eD

(2)

Where D is a set of (source, target) sequence
pairs (x, y).
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Figure 1: The novel mixing paradigms un-
der consideration. Discriminative mixing (A),
adversarial discriminative mixing (B), and
target-side token mixing (C) are depicted.

3 Models

We now describe three models we are propos-
ing that leverage the diversity of information
in heterogeneous corpora. They are summa-
rized in Figure 1. We assume dataset D con-
sists of source sequences X, target sequences
Y and domain class labels D that are only
known at training time.

3.1 Discriminative Mixing

In the Discriminative Mixing approach, we
add a discriminator network on top of the
source encoder that takes a single vector en-
coding of the source c as input. This network
maximizes P(d|H), the predicted probability
of the correct domain class label d conditioned
on the hidden states of the encoder H. It does
so by minimizing the negative cross-entropy
loss Lgise = —logp(d|H). In other words, the
discriminator uses the encoded representation
of the source sequence to predict the correct
domain. Intuitively, this forces the encoder
to encode domain-related information into the
features it generates. We hypothesize that this
information will be useful during the decoding
process.



The encoder can employ an arbitrary mech-
anism to distill the source into a single-vector
representation c. In this work, we use an at-
tention mechanism over the encoder states H,
followed by a fully connected layer. We set ¢
to be the attention context, and calculate it
according to Bahdanau et al. (2015):

C — Zajhj
J

a = softmax(a)

&i = ’Ug tanh(Wahi)

The discriminator can be an arbitrary neu-
ral network. For this work, we fed c into a fully
connected layer with a tanh nonlinearity, then
passed the result through a softmax to obtain
probabilities for each domain class label.

The discriminator is optimized jointly with
the rest of the Sequence-to-Sequence network.
If Lgen is the standard sequence generator loss
described in Section 2, then the final loss we
are optimizing is the sum of the generator and
discriminator loss £ = Lgen, + Lisc-

3.2 Adversarial Discriminative Mixing

We also experiment with an adversarial ap-
proach to domain mixing. This approach is
similar to that of 3.1, except that when back-
propagating from the discriminator network to
the encoder, we reverse the gradients by multi-
plying them by —1. Though the discriminator
is still using V.Ly;s. to update its parameters,
with the inclusion of the reversal layer, we are
implicitly directing the encoder to optimize
with —V Ly;sc. This has the opposite effect
of what we described above. The discrimina-
tor still learns to distinguish between domains,
but the encoder is forced to compute domain-
invariant representations that are not useful to
the discriminator. We hope that such repre-
sentations lead to better generalization across
domains.

Note the connections between this tech-
nique and that of the Generative Adversarial
Network (GAN) paradigm (Goodfellow et al.,
2014). GANSs optimize two networks with two
objective functions (one being the negation of
the other) and periodically freeze the param-
eters of each network during training. We are
training a single network without freezing any
of its components. Furthermore, we reverse
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gradients in lieu of explicitly defining a sec-
ond, negated loss function. Last, the adver-
sarial parts of this model are trained jointly
with translation in a multitask setting.

Note also that the representations computed
by this model are likely to be applicable to un-
seen, outside domains. However, this setting
is outside the scope of this paper and we leave
its exploration to future work. For our setting,
we hypothesize that the domain-agnostic en-
codings encouraged by the discriminator may
yield improvements in mixed-domain settings
as well.

3.3 Target Token Mixing

A simpler alternative to adding a discrimina-
tor network is to prepend a domain token to
the target sequence. Such a technique can be
readily incorporated into any existing NMT
pipeline and does not require changes to the
model. In particular, we add a single special
vocabulary word such as “domain=subtitles”,
per domain and prepend this token to each
target sequence therein.

The decoder must learn, similar to the more
complex discriminator above, to predict the
correct domain token based on the source rep-
resentation at the first step of decoding. We
hypothesize that this technique has a similar
regularizing effect as adding a discriminator
network. During inference, we remove the first
predicted token corresponding to the domain.

The advantage of this approach verses the
similar techniques discussed in related work
(Section 5) is that in our proposed method,
the model must learn to predict the domain
based on the source sequence alone. It does
not need to know the domain a-priori.

4 Experiments

4.1 Datasets

For the Japanese translation task we eval-
uate our domain mixing techniques on the
standard ASPEC corpus (Nakazawa et al.,
2016) consisting of 3M scientific document
sentence pairs, and the SubCrawl corpus, con-
sisting of 3.2M colloquial sentence pairs har-
vested from freely available subtitle reposito-
ries on the World Wide Web. We use standard
train/dev/test splits (3M, 1.8k, and 1.8k ex-
amples, respectively) and preprocess the data



using subword units! (Sennrich et al., 2015) to
learn a shared English-Japanese vocabulary of
size 32,000. To allow for fair comparisons, we
use the same vocabulary and sentence segmen-
tation for all experiments, including single-
domain models.

To prove its generality, we also evaluate our
techniques on a small set of about 200k/1k/1k
training/dev/test examples of English Chinese
(EN-ZH) and English-French (EN-FR) lan-
guage pairs. For EN-ZH, we use a news com-
mentary corpus from WMT’172 and a 2012
database dump of TED talk subtitles (Tiede-
mann, 2012). For EN-FR, we use professional
translations of European Parliament Proceed-
ings (Koehn, 2005) and a 2016 dump of the
OpenSubtitles database (Lison and Tiede-
mann, 2016).

The premise of evaluating on mixed-domain
data is that the domains undergoing mixing
are in fact disparate. We need to quantifi-
ably measure the disparity therein to obtain
fair, valid, and explainable results. Thus,
we measured the distances between the do-
mains of each language pair with A-distance,
an important part of the upper generalization
bounds for domain adaptation (Ben-David
et al., 2007). Due to the intractability of
computing A-distances, we instead compute a
proxy for A-distance, d A, which is given theo-
retical justification in Ben-David et al. (2007)
and used to measure domain distance in Gani
et al. (2015); Glorot et al. (2011). The proxy
A-distance is obtained by measuring the gener-
alization error € of a linear bag-of-words SVM
classifier trained to discriminate between the
two domains, and setting dy = 2(1—2¢). Note
that by nature of its formulation, dy is only
useful in comparative settings, and means lit-
tle in isolation (Ben-David et al., 2007). How-
ever, it has a minimum value of 1, implying
exact domain match, and a maximum of 2,
implying that domains are polar opposites.

4.2 Experimental Protocol

All models are implemented using the Tensor-
flow framework and based on the Sequence-
to-Sequence implementation of Britz et al.

1Using https://github.com/google/sentencepiece
*http://www.statmt.org/wmt17/translation-
task.html
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(2017)3. We use a 4-layer bidirectional LSTM
encoder with 512 units, and a 4-layer LSTM
decoder. Recall from Section 3 that we use
Bahdanau-style attention Bahdanau et al.
(2015). Dropout of 0.2 (0.8 keep probability)
is applied to the input of each cell. We opti-
mize using Adam and a learning rate of 0.0001
(Kingma and Ba, 2014; Abadi et al., 2016).
Each model is trained on 8 Nvidia K40m
GPUs with a batch size of 128. The combined
Japanese dataset took approximately a week
to reach convergence.

During training, we save model checkpoints
every hour and choose the best one using the
BLEU score on the validation set. To cal-
culate BLEU scores for the EN-JA task, we
follow the instruction from WAT 4 and use
the KyTea tokenizer (Neubig et al., 2011).
For the EN-FR and EN-ZH tasks, we follow
the WMT ’16 guidlines and tokenize with the
Moses tokenizer.perl script (Koehn et al.,
2007).

4.3 Results

The results of our proxy-A distance experi-
ment are given in Table 1. da is a purely
comparative metric that has little meaning in
isolation (Ben-David et al., 2007), so it is evi-
dent that the EN-JA and EN-ZH domains are
more disparate, while the EN-FR domains are
more similar.

’ Lanuage ‘ Domain 1 ‘ Domain 2 ‘ da ‘

Japanese | ASPEC SubCrawl 1.89
Chinese News TED 1.73
French Europarl OpenSubs 1.23

Table 1: Proxy A-distances (d4) for each do-
main pair.

To understand the interactions between
these models and mixed-domain data, we train
and test on ASPEC, SubCrawl, and their con-
We do the same for the French
and Chinese baselines.

In general, our results support the hypoth-
esis that the naive concatenation of data from
disparate domains can degrade in-domain
translation quality (Table 2). In both the EN-
JA and EN-FR settings, the domains under-
going mixing are disparate enough to degrade

catenation.

Shttps://github.com/google/seq2seq
*http://lotus.kuee.kyoto-u.ac.jp/ WAT /evaluation/



2.0

1.8
9 10 L0 Lo
8 o 8 L ]
g = S 14
6 D 6 3}
/5] 5 ° £ 12 °
= ° & 4 g 10 °
=2 2 S 08
=] o) ] ' °
B %00 12 14 16 g18 20 2 %10 12 14 1o 1s, 20 B 06
=2 s = 9 e = 04
aa) 4 ° m ° m v
. o -4 0.2
-6 -6 0.0 o
8 8 10 12 14 16 18 20
Proxy A-distance (d4) Proxy A-distance (d) Proxy A-distance (da)
(a) Comparing the mixed-domain  (b) Comparing the proposed dis-  (c) Comparing the pro-
and individual-domain baselines criminator and individual-domain posed  discriminator  approach
(BLEUsnigzeda — BLEUindividuat) baseline  (BLEUgiscriminator — and mixed-domain baseline
while varying domain distance. BLEUindividuat) while varying (BLEUg;scriminator — BLEUmized)
The more different two domains domain distance. Compared while varying domain distance.
are, the more their mixture to Figure 2a, performance is The discriminator always improves
degrades performance. less degraded when wusing the  over the baseline, and this is
discriminator. accentuated when the merged

domains are more distant.

Figure 2: Comparative performance and domain distance. Trends corresponding to a least-

squares fit are indicated with dashed lines.

performance when mixed, and the proposed
techniques recover some of this performance
drop. In the EN-ZH setting, we observe that
even when similar domains are mixed perfor-
mance can drop. Notably, in this setting, the
proposed techniques successfully improve per-
formance over single-domain training.

For a more detailed perspective on
this result, Figure 2a depicts the mixed-
domain/individual-domain performance
differential as a function of domain distance.
The two share a negative association, suggest-
ing that the most distant two domains are,
the more their merger degrades performance.
This degradation is particularly strong in
Japanese due the vast structural differences
between formal and casual language. The
vocabularies, conjugational patterns, and
word attachments all follow different rules in

this case (Hori, 1986).

We then trained and tested our proposed
methods on the same mixed data (Table 2).
Our results generally agree with the hypoth-
esis that the diversity of information in het-
erogeneous data can be leveraged to improve
in-domain translation. Overall, we find that
all of the proposed methods outperform their
respective baselines in most settings, but that
the discriminator appears the most reliable. It
bested its counterparts in 4 of 6 trials, and was
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EN-JA Model ASPEC SubCrawl
ASPEC 38.87 3.85
SubCrawl 2.74 16.91
ASPEC + SubCrawl 33.85 14.34
Discriminator 35.01 15.38
Adv. Discriminator 29.87 13.31
Target Token 35.05 14.92
EN-FR Model Europarl | OpenSubs
Europarl 34.51 13.36
OpenSubtitles 13.12 15.2
Europarl + OpenSubs | 38.26 27.9
Discriminator 39.03 27.91
Adv. Discriminator 38.38 25.67
Target Token 39.1 25.32
EN-ZH Model News TED
News 12.75 3.12
TED 2.79 8.41
News + TED 11.36 6.67
Discriminator 12.88 8.64
Adv. Discriminator 12.15 8.16
Target Token 11.98 7.69

Table 2: BLEU scores for models trained on
various domains and languages (both mixed
and unmixed). Rows correspond to train-
ing domains and columns correspond to test
domains. Note that our single-domain AS-
PEC results are state-of-the-art, indicating the
strength of these baselines.



the only approach that outperformed both in-
dividually fit and naively mixed baselines in
every trial.

Figure 2c¢ depicts the dynamics of the dis-
criminator approach. More specifically, this
figure shows the discriminator/naive-mixing
performance differential as a function of do-
main distance. The two share a positive asso-
ciation, suggesting that the more distant two
domains are, the more the discriminator helps
performance. This may be because it is easier
to classify distant domains, so the discrimina-
tor can fit the data better and its gradients en-
courage the upstream encoder to include more
useful domain-related structure.

The adversarial discriminator architecture
yielded improvements on the small datasets,
but underperformed on EN-JA. It is possible
that the grammatical differences inherent to
casual and polite domains are such that se-
mantic information was lost in the process of
forcing their encoded distributions to match.
Additionally, adversarial objective functions
are notoriously difficult to optimize on, and
this model was prone to falling into poor local
optimum during training.

The simpler target token approach also
yields improvement over the baselines, just
barely surpassing that of the Discriminator for
ASPEC. This approach has the practical ben-
efit of requiring no architectural changes to an
off-the-shelf NMT system.

Our EN-FR results are particularly interest-
ing. Though the data seem like they should
come from sufficiently distant domains (par-
liament proceedings and subtitles), the do-
mains are actually quite close according to da
(Table 1). Since these domains are so close,
their merger is able to improve baseline per-
formance. Thus, if the source and target do-
main are sufficiently close, then their merger
does indeed help.

Next, we investigated the optimization dy-
namics of these models by examining their
learning curves. Curves for the baselines and
discriminative models trained on EN-JA data
are depicted in Figure 3a.
training clearly outperforms mixed training,
and it appears that adding a discriminative
strategy provides additional gains. From Fig-
ure 3b we can see that the discriminator ap-
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proach (not reversing gradients), learns to fit
the domain distribution quickly, implying that
the Japanese domains were in fact quite dis-
tant and easily classifiable.

5 Related Work

Our work builds on a recent literature on do-
main adaptation strategies in Neural Machine
Translation. Prior work in this space has pro-
posed two general categories of methods.

The first proposed method is to take mod-
els trained on the source domain and finetune
on target-domain data. Luong and Manning
(2015); Zoph et al. (2016) explores how to im-
prove transfer learning for a low-resource lan-
guage pair by finetuning only parts of the net-
work.  Chu et al. (2017) empirically evalu-
ate domain adaptation methods and propose
mixing source and target domain data during
finetuning.  Freitag and Al-Onaizan (2016)
explored finetuning using only a small subset
of target domain data. Note that we did not
compare directly against these techniques be-
cause they are intended to transfer knowledge
to a new domain and perform well on only
the target domain. We are concerned with
multi-domain settings, where performance on
all constituent domains is important.

A second strain of “multi-domain” thought
in NMT involves appending a domain indi-
cator token to each source sequence (Kobus
et al., 2016). Similarly, Johnson et al. (2016)
use a token for cross-lingual translation in-
stead of domain identification. This idea was
further refined by Chu et al. (2017), who in-
tegrated source-tokenization into the domain
finetuning paradigm. While it requires no
changes to the NMT architecture, these ap-
proaches are inherently limited because they
stipulate that domain information for unseen
test examples be known. For example, if us-
ing a trained model to translate user-generated
sentences, we do not know the domain a-priori,
and this approach cannot be used.

Apart from the recent progress in do-
main adaptation for NMT, we draw on work
that transfers knowledge between domains in
semisupervised settings. Our strongest influ-
ence is adversarial domain adaptation (Ganin
et al., 2015), where feature distributions in
the source and target domains are matched
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(a) Log perplexity evaluated on the ASPEC valida-
tion set. Single-domain training outperforms com-
bined training. The discriminator and target token
approaches improve over the naive combined data.
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(b) Discriminator training loss over time on the EN-JA
data. The discriminator learns to fit the data almost
perfectly after a few hundred thousand iterations

Figure 3: Training curves for domain mixing and discriminator loss.

with a Domain-Adversarial Neural Network
(DANN). Another approach to this problem is
that of Long et al. (2015), which measures and
minimizes the distance between domain distri-
bution