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Despite the remarkable progress made in the field of Machine Translation (MT), current systems
still struggle when translating ambiguous words, especially when these express infrequent
meanings. In order to investigate and analyze the impact of lexical ambiguity on automatic
translations, several tasks and evaluation benchmarks have been proposed over the course of
the last few years. However, work in this research direction suffers from critical shortcomings.
Indeed, existing evaluation datasets are not entirely manually curated, which significantly com-
promises their reliability. Furthermore, current literature fails to provide detailed insights into
the nature of the errors produced by models translating ambiguous words, lacking a thorough
manual analysis across languages.

With a view to overcoming these limitations, we propose Disambiguation Biases in MT
(DiBiMT), an entirely manually curated evaluation benchmark for investigating disambiguation
biases in eight language combinations and assessing the ability of both commercial and non-
commercial systems to handle ambiguous words. We also examine and detail the errors produced
by models in this scenario by carrying out a manual error analysis in all language pairs.
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Additionally, we perform an extensive array of experiments aimed at studying the behavior of
models when dealing with ambiguous words. Finally, we show the ineffectiveness of standard
MT evaluation settings for assessing the disambiguation capabilities of systems and highlight
the need for additional efforts in this research direction and ad-hoc testbeds such as DiBiMT.
Our benchmark is available at: https: / / nlp. uniroma1. it/ dibimt/ .

1. Introduction

Over the course of the last few decades, the field of Machine Translation (MT) has
witnessed remarkable advances in terms of fluency and idiomaticity of output trans-
lations as well as model efficiency, largely due to the development of the Transformer
architecture and the attention mechanism (Vaswani et al. 2017). Recently, with the
scaling of model size and the increased availability of data, Large Language Models
(LLMs) are bringing a breeze of change to virtually all Natural Language Processing
(NLP) tasks, by combining the extraordinary representational power of modern lan-
guage modeling techniques with in-context learning (Dong et al. 2024). Specifically, in
MT, LLMs have demonstrated remarkable translation capabilities in several language
combinations (Brown et al. 2020; Zhu et al. 2024), despite weaker performance on less-
represented languages (Kocmi et al. 2023).

Notwithstanding such advancements, current systems still struggle when dealing
with specific linguistic phenomena, among which lexical ambiguity poses one of the
greatest challenges (Emelin, Titov, and Sennrich 2020; Campolungo et al. 2022; Iyer
et al. 2023). Considered one of the hardest problems in NLP, lexical ambiguity is a
pervasive linguistic phenomenon in which a given word can express different meanings
depending on the context in which it occurs (Krovetz and Croft 1992). Unlike other
forms of linguistic ambiguity that can arise at different levels (e.g., the morphological,
syntactic, or pragmatic ones), lexical ambiguity affects individual words or expressions
and their meanings.

Dealing with this problem properly is of vital importance to ensure high-quality
output translations. In order to illustrate the impact of lexical ambiguity on the trans-
lation process, let us consider the examples reported in Table 1, in which we show the
automatic translations of two source sentences from English into four target languages,
namely, German (DE), Italian (IT), Russian (RU), and Spanish (ES), obtained with two
different systems: DeepL,1 a state-of-the-art commercial MT system, and ChatGPT,2

a popular chatbot based on GPT-3.5.3 Both source sentences contain an ambiguous
word highlighted in violet, namely, the noun agency and the verb bark, respectively.
We identify the corresponding translations of the ambiguous source words and mark
them in green with a straight underline or red with a wavy underline, depending on
whether they are to be considered correct or not. For instance, the first source sentence
An example is the best agency of instruction is translated into Italian with Un esempio è
la migliore agenzia di istruzione. In this context, the ambiguous word agency indicates
how a specific goal is achieved, while the Italian word agenzia does not express the
same meaning, resulting in an incorrect translation. In this case, correct choices would
instead be maniera, mezzo, or modo. Similarly, the second source sentence Bark the roof

1 https://www.deepl.com/translator.
2 https://openai.com/chatgpt/.
3 The translations were generated in February 2023.
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Table 1
Examples of correct and

:::::::
incorrect translations of two sentences in English, each containing an

ambiguous word, namely the noun agency and the verb bark, respectively. The first input
sentence was translated using DeepL, whereas the second input sentence was translated using
ChatGPT (based on GPT-3.5).

of a hut could be translated as Rivestire il tetto di una capanna. Instead, this source text
is incorrectly rendered with Sbucciare la corteccia del tetto di una capanna, in which the
expression sbucciare la corteccia literally means peel the bark.

In order to produce high-quality translations, MT systems must be able to deter-
mine the correct meaning of ambiguous source words and translate them with the
corresponding senses into a given target language (Marvin and Koehn 2018). When sys-
tems fail to select the correct sense and, instead, choose a wrong one, a disambiguation
error is produced (see Table 1). According to recent research work, these errors can be
related to artifacts located in the training data, which lead to disambiguation biases.
These can be described as the tendency of systems to translate a given ambiguous
word used with an infrequent meaning into a target language with an incorrect, often
predominant, sense (Emelin, Titov, and Sennrich 2020; Campolungo et al. 2022). In this
scenario, investigating the disambiguation capabilities of systems involves studying the
quantity and nature of semantic errors produced and, consequently, detecting the pres-
ence of disambiguation biases. However, despite the work proposed so far, we still lack
a comprehensive study of this phenomenon and its impact on automatic translations
across different languages. To fill this gap, the present article aims to provide insightful
answers to the following research questions:

• RQ1 What is the impact of lexical ambiguity on state-of-the-art MT
models and LLMs?

• RQ2 What error patterns can be identified, when analyzing the errors
produced by models in translating ambiguous words?

• RQ3 Given an encoder-decoder architecture trained for MT, to what
extent does the encoder contribute to distinguishing word senses? Does
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the encoder learn representations suitable for disambiguating ambiguous
words?

• RQ4 What is the relation between the capacity of an architecture and its
ability to represent different senses of ambiguous words?

• RQ5 Do multilingual models sacrifice their disambiguation capabilities
so as to be able to handle multiple languages?

• RQ6 What is the impact of the beam search decoding strategy on the
disambiguation capabilities of MT models?

• RQ7 How effective are standard evaluation settings in assessing the
disambiguation ability of MT systems?

This article extends Campolungo et al. (2022), who proposed a manually curated
benchmark for investigating disambiguation biases in five language pairs. In our work,
we address the aforementioned research questions by bringing about the following
novel contributions:

• We extend the benchmark from five to eight languages: Bulgarian,
Chinese, Dutch, German, Italian, Russian, Slovene, and Spanish. These
languages cover four subgroupings of the Indo-European and
Sino-Tibetan language families: Balto-Slavic, Germanic, Italic, and Sinitic.

• We significantly increase the coverage of the benchmark by manually
expanding and refining the sets of good and bad translations.

• Compared with Campolungo et al. (2022) who tested only seven MT
systems, we include four additional state-of-the-art MT systems and
eight LLMs.

• We carry out a novel manual error analysis to identify and describe the
error patterns shown by the tested systems when dealing with lexical
ambiguity.

• We propose an extensive array of experiments:

(i) We investigate the impact of MT systems’ encoder module on
their disambiguation capabilities, thereby studying the
effectiveness of the representations learned by the encoder for
Word Sense Disambiguation (WSD).

(ii) We inspect the extent to which the capacity of a model is related
to its WSD capabilities, and whether multilingual MT systems
sacrifice their ability to disambiguate rarer senses in order to be
able to deal with multiple languages.

(iii) We study the role of the beam search algorithm in dealing with
lexical ambiguity, and whether systems are inherently biased
toward (more common) senses of ambiguous words.

(iv) We explore the suitability of standard MT evaluation settings for
detecting disambiguation errors, thus highlighting the need for
a manually curated benchmark such as DIBIMT.
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2. Related Work

One of the first contributions aimed at assessing the ability of MT models to handle
lexical ambiguity is proposed by Mihalcea, Sinha, and McCarthy (2010), who introduce
the Cross-Lingual Lexical Substitution (CLLS) task. Inspired by McCarthy and Navigli
(2007), who put forward the English Lexical Substitution task at SemEval-2007, CLLS
requires systems to provide a substitute for a focus word in context in a given target
language. For example, a candidate system for English-to-Italian cross-lingual lexical
substitution provided with the sentence He removed the top of the carton would be
expected to suggest the substitutes coperchio and parte superiore for the focus word top.
Instead, if the system is provided with the sentence Put a top on the toothpaste tube, such
system would be expected to propose the word tappo as a substitute for top. Although
the focus word is the same in both sentences, the two substitutes differ. Crucially,
CLLS does not rely on any sense inventory, which presents a significant limitation
when it comes to assessing the disambiguation capabilities of MT models. In fact, since
focus words, which can be ambiguous, are not associated with a semantic tag, it is
not possible to determine their meaning. As a result, the nature of potential semantic
errors and biases cannot be investigated effectively. Furthermore, the task focuses solely
on one language pair, namely, English-Spanish, and provides only a development set
composed of 30 words and a test set of 100 words.

The aforementioned limitations are partially addressed by Lefever and Hoste (2010,
2013) who propose the Cross-Lingual Word Sense Disambiguation (CLWSD) task. Here,
systems are required to choose the most appropriate translations from a set of possible
candidates, for a given word in context. For instance, a system provided with the sen-
tence He removed the top of the carton and candidate translations for top, that is, coperchio,
tappo, and parte superiore, among others, should select only coperchio and parte superiore as
correct translations. This approach addresses the well-known drawbacks of traditional
WSD (Navigli 2009; Bevilacqua et al. 2021), such as the fine granularity and static nature
of sense distinctions, and even the need for a wide coverage sense inventory. However,
while some characteristics of the aforementioned task formulation are advantageous
from a WSD standpoint, these might prove detrimental to the detection of semantic
biases in MT. In fact, similarly to the CLWSD task, the lack of wide-coverage sense inven-
tories hampers the study of the nature of disambiguation biases, making it impossible
to determine whether a given incorrect sense chosen by an MT model is more frequent
than the corresponding correct one. Moreover, the test dataset focuses on 20 ambiguous
focus words, covering only one part of speech, namely, nouns. Finally, CLWSD relies on
an automatically built sense inventory to select translation candidates. This inventory
is derived from Europarl (Koehn 2005), which mostly covers the political domain; the
test sentences are drawn from the American National Corpus (Ide and Suderman 2004),
which, instead, encompasses different topics, thus introducing potential coverage issues
in the sense inventory due to the topic mismatch.

Focused on investigating the disambiguation capabilities of MT systems, Gonzales,
Mascarell, and Sennrich (2017, ContraWSD) propose a new contrastive evaluation
dataset, in which every instance is composed of three elements: (i) a source sentence
s containing a focus word; (ii) its reference translation t, and (iii) a set of contrastive
examples C = {c1, . . . , cn}, where the translation for the focus word is replaced with
the translation of one of its other meanings. For each instance, a candidate MT system
is required to assign a probability score to the pairs composed of s and t as well as s
and all other contrastive sentences in C. Given a function ρ which assigns a probability
score to a given (source, translation) pair, an instance is considered correctly classified if
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ρ(t|s) > ρ(ci|s) ∀ci ∈ C, in other words, the pair containing the reference translation is as-
signed a higher score. ContraWSD includes 7,200 instances for German→ English, and
6,700 for German→ French. While the contrastive formulation simplifies the process of
evaluating models by requiring only a scoring function, such a formulation exhibits a
number of significant drawbacks. First, this evaluation disregards the fact that a given
MT system might never generate either the translation labeled as correct or the con-
trastive ones, which exposes the evaluation to the degree to which a given translation is
in-distribution compared to the training data. Moreover, while the authors enforce that
the correct and incorrect translations agree in number and gender (depending on the
target language), models could assign lower scores due to poor fluency of the artificially
created sentences, rather than actual semantic errors, thanks to the strong language
modeling capabilities exhibited by MT models (Voita, Sennrich, and Titov 2021).

Building upon this work, Rios, Müller, and Sennrich (2018) present the Word Sense
Disambiguation Test Suite, that is, a denoised version of ContraWSD focused on the
German → English language combination. Here, rather than scoring translations, the
WSD Test Suite evaluates the MT output directly. Importantly, this new dataset in-
troduces a crucial constraint that enables straightforward disambiguation of the sense
chosen by candidate models, by including only sentences in which the translation of
the ambiguous source word cannot refer to different meanings. In order to illustrate
this constraint, let us consider the example provided by the authors: The German
ambiguous word Stelle can refer to two different senses, namely, job and place, intended
as a paid position of regular employment and as a particular position, point, or area in space;
a location, respectively; however, since both of these senses could be translated into En-
glish with position, the authors remove the word Stelle from the dataset. WSD Test Suite
represents a significant leap toward a reliable evaluation of semantic biases in automatic
translations, with 3,249 sentence pairs, each targeting one of the 20 ambiguous German
words in the dataset, and totaling 45 distinct word senses. Despite the aforementioned
improvements, the WSD Test Suite displays limited coverage in terms of words and
senses, and features only one translation direction, namely from English to German,
while still exhibiting the significant drawbacks that the contrastive formulation suffers
from, as illustrated above.

The first effort to create a large-scale contrastive dataset for detecting disambigua-
tion biases is made by Raganato, Scherrer, and Tiedemann (2019), who propose the
Multilingual Contrastive WSD benchmark (MUCOW). Inspired by both ContraWSD
and the WSD Test Suite, MUCOW is an automatically created test suite available in
two variants, namely, the scoring and the translation variant. While the former con-
tains more than 200,000 sentence pairs derived from word-aligned parallel corpora
in 16 translation directions, the latter includes 9 language pairs with a total of 15,600
sentences. The MUCOW dataset is created in three steps. First, an alignment tool is
used to obtain aligned word pairs occurring more than 10 times in parallel corpora
from the OPUS collection (Tiedemann 2012), each connected to at least two distinct
focus words. Second, the authors cluster the translations by relying on BABELNET
(Navigli and Ponzetto 2010; Navigli et al. 2021) and sense embedding similarity, so
as to address BABELNET’s fine granularity. Third, random sentences are selected for
a given word pair and the target word is replaced with a lexicalization pertaining to
a synset other than that associated with the focus ambiguous word, thus constructing
several contrastive instances for a given pair (scoring variant only). Despite the afore-
mentioned advantages, we highlight two key limitations in MUCOW over and beyond
the contrastive formulation itself, whose drawbacks have been illustrated above. First,
due to its entirely automatic construction, MUCOW is prone to contain errors and
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noise derived from the underlying semi-automatic sense inventory. Second, such a
benchmark relies on the problematic assumption that the synonyms associated with
a specific synset can be used interchangeably for translating a given focus word.

Moving in a different direction from previous works, Emelin, Titov, and Sennrich
(2020) take a step toward model analysis, thoroughly exploring the correlation be-
tween biases picked up by MT models and the distribution of their training data.
Interestingly, the authors leverage this correlation to create two challenge sets: (i) a
WSD bias challenge set, built to quantify the intrinsic bias caused by an ambiguous
word’s context; and (ii) an adversarial challenge set, built to measure models’ suscepti-
bility to adversarial injection of terms usually associated with meanings other than the
target one. Both challenge sets rely on manually refined sense clusters, initially built
by automatically merging together BABELNET synsets. Each sense cluster contains an
ambiguous English word and a set of monosemous German words, such that, consid-
ered jointly, they uniquely identify a specific meaning. Crucially, this work requires the
availability of training data which are not always accessible. Furthermore, it focuses on
just one language combination, namely, English→ German. The approach relies solely
on the accuracy score to evaluate models, and this can only provide partial information
regarding the biases exhibited by models.

Based on the findings, drawbacks, and open research questions discussed in pre-
vious works, Campolungo et al. (2022) propose DIBIMT as a framework aimed at
investigating not only the presence but also the nature and properties of semantic biases
in MT in multiple language combinations, covering both nominal and verbal senses. In
this article, we consolidate and extend the aforementioned framework and put forward
a thorough study of the impact of lexical ambiguity on MT.

3. The DIBIMT Benchmark

We now introduce Disambiguation Biases in MT (DIBIMT), an entirely manually cu-
rated benchmark aimed at studying the ability of MT systems to choose the correct
sense when translating an ambiguous source word occurring in a given context. Our
benchmark requires a model to translate a sentence containing an ambiguous source
word and evaluates the correctness of its translation.

We first illustrate the composition of the benchmark as well as its creation process
consisting of both automatic and manual steps. Subsequently, we detail the evaluation
procedure and the metrics used in the DIBIMT benchmark.

3.1 Composition of the Benchmark

Each instance in the benchmark is defined as a tuple i = (s, w,σ,G,B) composed of the
following elements:

i. one source sentence s containing an ambiguous source word w which is
associated with a given meaning σ. In our benchmark, due to its
predominance in MT, we pivot on the English language and use it as the
reference language for all our source sentences. The meaning σ
corresponds to a synset in BABELNET4 (Navigli and Ponzetto 2010;
Navigli et al. 2021), the largest multilingual encyclopedic dictionary

4 https://babelnet.org.
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He poured a shot of whiskey.

Gläschen
Schlückchen

Schlag
Injektion

German
bicchierino

goccio
sparo

iniezione

Italian

chupito
trago tiro

inyección

Spanish

стрелба
сачма

Bulgarian

glaasje 
 scheut 

Dutch
kozarček 

šilce poskus
fotografija

Slovene

杯
小杯

射击
尝试

Chinese

шот
рюмкa

выстрел
стрелок

Russian

шот 
чашка

spuit
prik

Figure 1
Example of a benchmark instance. The focus word is shot, in its meaning of a “small drink of
liquor.” We expect correct translations to be, for example, in Italian goccio (small quantity), but
not, for example, in German, Injektion (injection).

which follows and extends the WordNet synset model, where a given
concept is represented through a set of lexicalizations which are used in
different languages to express such concept.

ii. a set of good translations5 G for the ambiguous word w in the context of s.

iii. a set of bad translations6 B for the ambiguous word w in the context of s.

We note that the ambiguous source word w, and both GOOD and BAD translations,
can be multi-word expressions and compounds. Furthermore, translations can have a
different part of speech than the corresponding source word. As target languages, that
is, the languages of the GOOD and BAD translations for each source word, DIBIMT covers:
Bulgarian, Chinese, Dutch, German, Italian, Russian, Slovene, and Spanish. Figure 1
illustrates examples of GOOD and BAD translations for the instance (he poured a shot of
whiskey, shot, bn:00057755n7, {tragoES, chupitoES, goccioIT, . . . , glaasjeNL}, {SchlagDE,
sparoIT, prikNL, . . . , }).

3.2 Creation Process
3.2.1 Automatic Extraction of Instance Candidates. A candidate instance i = (s, w,σ,G,B)
of our benchmark is extracted from two lexical-semantic resources, namely, WordNet

5 We refer to these translations with the tag GOOD.
6 We refer to these translations with the tag BAD.
7 BABELNET synset id corresponding to the meaning of a small drink of liquor,
https://babelnet.org/synset?id=bn:00057755n&lang=EN.
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(Miller 1995) and the English Wiktionary.8 As far as WordNet is concerned, we consider
each sentence s from the Princeton WordNet Gloss Corpus (Langone, Haskell, and
Miller 2004) that is a usage example of a word w manually tagged with a specific Word-
Net synset. For Wiktionary, we extract every usage example s of a word w, excluding
archaic usages and slang. We use the linkage between WordNet synsets (or Wiktionary
definitions) and BABELNET synsets to provide a synset annotation σ for our instance i.

We are now left with the task of populating the set of GOOD and BAD translations G
and B for each instance i in all eight target languages. Given the BABELNET synset σ in
instance i, we define ΛL(σ) as the set of lexicalizations of σ in language L contained
within synset σ. For instance, let us consider the synset σ̃ of duck defined as broad-
billed swimming bird. σ̃ contains lexicalizations in different languages such as: Ente in
German, anatra in Italian, in Russian, and pato in Spanish. Hence, ΛEN(σ̃) = {duck},
while ΛIT(σ̃) = {anatra, anitra}. We then define GL and BL as the set of GOOD and BAD

translations in the target language L. We pre-populate these two sets automatically as
follows. We assign GL = ΛL(σ), that is, the set of senses in language L derived from the
BABELNET synset σ. Instead, we consider as BAD translations all the lexicalizations in
language L of any other synset containing w, except those in GL.

In order to create challenging instances, we adopt the following sentence filtering
procedure. First, we retain only instances including an ambiguous word. Second, we
retain at most one sentence per sense per source (WordNet or Wiktionary), so as to allow
for semantic heterogeneity in the resulting dataset. Third, given the set of languages
considered Sl, we retain instances (s, w,σ,G,B) which satisfy the following constraint:

∀L ∈ Sl,∀g ∈ GL@ σ′s.t. σ 6= σ′, w ∈ ΛEN(σ′), g ∈ ΛL(σ′) (1)

For example, consider an instance with w = bank and σ defined as a flight maneuver.
ΛIT(σ) includes the lexicalization avvitamento, which is ambiguous in Italian, as it can
refer either to the laying of a screw or a downward spiral (e.g., the downward spiral of costs),
among other meanings. Therefore, to satisfy our third requirement, we ensure that no
other possible senses of avvitamento (i.e., found in a different synset σ′) can be translated
with bank into English according to BABELNET.

3.2.2 Manual Validation of the Extracted Instances. As a result of the aforementioned
automatic process, we extract 948 candidate sentences. We now proceed to manually
validate the entire dataset resulting from the previous procedure. To this end, we
employ six annotators with proven experience in lexical semantics and MT.9

Annotators are asked to validate both GL and BL, which contain the set of GOOD

and BAD translations for the ambiguous source word w, respectively. Concerning GOOD

translations, annotators are asked not only to validate the candidates proposed auto-
matically, but also to include additional translations. Instead, regarding BAD translations,
annotators are only required to establish the incorrectness of the automatically extracted
translations. To determine the correctness of a candidate translation for w, annotators
are required to evaluate its suitability to the context provided, regardless of whether this
translation pertains to a part of speech other than that of w. Furthermore, annotators are

8 We use WordNet 3.0 and the Wiktionary dump of September 2021.
9 Annotators are either native speakers, hold C2-level certifications, or work as professional translators in

the given language combinations. All annotators were either hired to carry out this task or are co-authors
of the present article.
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Table 2
Annotation statistics: %OG corresponds to the average percentage of Good lemmas which are
Original (i.e., added by our annotators); %RG is the average percentage of Good lemmas that
were Removed (i.e., lemmas derived from BABELNET that our annotators deemed incorrect in
the context of the given instance).

DE ES IT RU ZH BG NL SL Mean
%OG 59.7 45.3 58.9 70.7 53.0 91.7 54.6 97.2 66.4
%RG 44.4 21.8 47.1 49.8 62.9 91.3 64.5 95.3 59.6

instructed to analyze the automatically collected sentences as well as the ambiguous
source words and verify compliance with the requirements, among which we highlight
that: (i) each sentence must provide a semantic context such that the meaning of the
ambiguous source word w can be determined unequivocally; (ii) w cannot be part
of a complex lexical unit such as an idiomatic expression; and (iii) the sentence is
complete (e.g., not just a phrase). We report the complete annotation guidelines adopted
in Appendix A.

As a result of the aforementioned manual process, approximately 30% of the 948
instances are discarded due to non-compliance with the guidelines, resulting in 667
instances. As shown in Table 2, on average, 66.4% of the correct translations are added
manually by the annotators, whereas only 33.6% are derived automatically from BA-
BELNET. Moreover, on average, almost 60% of the synset lexicalizations in a given
language cannot be considered as GOOD translations for the corresponding ambiguous
word in each instance. On the one hand, these statistics confirm that synonyms cannot
be used interchangeably in translation. On the other hand, they are evidence of the noise
contained in automatic lexical semantic resources such as BABELNET. This suggests that
high quality in benchmarks such as DIBIMT cannot be achieved by merely relying on
automatic resources and without manual intervention.

The summary statistics of the annotated dataset are reported in Table 3. DIBIMT
covers 525 different synsets and 358 English lemmas, constituting a total of 667 manu-
ally curated instances. The benchmark is available in eight language combinations, that
is, from English to each of the following languages: Bulgarian, Chinese, Dutch, German,
Italian, Russian, Slovene, and Spanish. Furthermore, we compute the distribution of
BABELNET domains over the synsets included in our instance set. As shown in Figure 2,
DIBIMT is a heterogeneous benchmark, covering a wide range of domains.

Table 3
General statistics of our annotated dataset. POS-specific lemmas do not sum to “All” as they can
overlap across POS tags (e.g., run). Poly. Deg. and Sense Freq. represent the average polysemy
degree (i.e., number of meanings a word can have) and sense frequency index (i.e., how frequent
a meaning is for a given word) of each DIBIMT instance.

All Nouns Verbs
# items 667 350 317
# lemmas 358 219 175
# synsets 525 284 241
Poly. Deg. 10.56 9.87 11.33
Sense Freq. 5.38 4.08 6.03
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0 10 20 30 40 50 60
Count

Heraldry, honors, and vexillology
Possession

Smell and perfume
Vision and visual

Tasks, jobs, routine and evaluation
Numismatics and currencies

History
Education and science

Art, architecture, and archaeology
Navigation and aviation

Solid, liquid and gas matter
Communication and telecommunication

Religion, mysticism and mythology
Farming, fishing and hunting

Sex
Emotions and feelings

Environment and meteorology
Media and press

Literature and theatre
Politics, government and nobility

Mathematics and statistics
Physics and astronomy

Chemistry and mineralogy
Computing

Food, drink and taste
Biology

Time
Geography, geology and places

Language and linguistics
Culture, anthropology and society

Music, sound and dancing
Warfare, violence and defense

Law and crime
Textile, fashion and clothing

Health and medicine
Space and touch

Transport and travel
Sport, games and recreation

Business, industry and finance
Craft, engineering and technology

Philosophy, psychology and behavior

Figure 2
Coverage of domains in DIBIMT calculated as the absolute frequency of BABELNET
domains (Camacho-Collados and Navigli 2017, and further extended in
https://www.babelnet.org/how-to-use) associated with the synsets of the focus words
occurring in all source sentences.

3.3 Evaluation Procedure

We now describe the automatic procedure that we adopt to determine the correctness
of a translation provided by a candidate MT model according to DIBIMT. Given a
DIBIMT instance i and a translation τ of sentence s produced by a candidate model
into language L, we use Stanza (Qi et al. 2020) to perform tokenization, part-of-speech
tagging, and lemmatization of τ. The analysis procedure computes the lexical overlap
between the set of lemmas in τ and the two sets of manually validated translations, that
is, GL and BL. When dealing with multi-word expressions in GOOD or BAD translations,
annotators are allowed to use wildcards so as to enable matching of non-contiguous
spans (e.g., auf * Wünsche eingehen which means to attend to somebody’s wishes, where
* represents any sequence of words). Additionally, since Stanza features multi-word
expansion tokenization for some of the languages considered, whenever possible, we
perform matching on both the list of words and tokens in the translated sentence.
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Finally, we label a given instance as: (i) MISS if no match is found; (ii) UNK in the case
that both GOOD and BAD translation sets match; and (iii) GOOD or BAD depending on which
set matches a given lemma contained in the translation produced by the MT model.

3.3.1 Improving the Benchmark Matching Capability. By manually inspecting misclas-
sified instances, we notice that one of the main causes is to be found in textual
pre-processing steps such as tokenization, lemmatization, and part-of-speech tagging.
In order to minimize pre-processing errors and reduce MISS tags, we apply multiple
Stanza models whenever available for the same language,10 owing to the fact that each
model is trained on a specific treebank from Universal Dependencies (Nivre et al. 2016),
and each treebank adopts its own domain and annotation guidelines. Specifically, we
use the following packages: GSD and HDT for German; AnCora and GSD for Spanish;
Combined,11 ISDT, ParTUT, VIT, TWITTIRO, and PoSTWITA for Italian; SyntagRus,
GSD, and Taiga for Russian; GSDSimp12 for Chinese; BTB for Bulgarian; Alpino and
LassySmall for Dutch; and SSJ, SST, and, additionally, CLASSLA for Slovene (Ljubešić
and Dobrovoljc 2019).

3.3.2 Language-specific Rules. In addition to the aforementioned improvements, we en-
rich our analysis procedure with auxiliary heuristics dealing with specific linguistic
phenomena, such as compounds and reflexive verbs, and aimed at further reducing
the MISS instances.

Reflexive Verbs. Preliminary analyses show that the standard evaluation procedure fails
to recognize GOOD or BAD translations represented by reflexive verbs in languages such
as German, Italian, and Spanish. For the latter two languages, we address these cases as
follows. First, we identify reflexive verbs included as GOOD and BAD translations by in-
specting the ending, that is, rsi and rse in Italian and Spanish, respectively. Subsequently,
we associate such reflexive verbs with some reflexive pronouns in the corresponding
language, that is, mi, ti, si, ci, vi in Italian and me, te, se, nos, os in Spanish. Finally, we
determine whether the lemmatized sentence produced by a given model contains the
reflexive form included as GOOD or BAD or the corresponding non-reflexive base form of
the verb and one of the associated reflexive pronouns.

Instead, in German we check whether a given GOOD or BAD translation is composed
of at least two elements, the first of which is the reflexive pronoun sich. If this is the case,
we look for a match between the base form of the verb that comes after sich and any of
the reflexive pronouns mich, dich, sich, uns, euch in the lemmatized candidate translation.
We leave it to future work to address multiple cases and scenarios as well as to extend
and improve these rules to all languages covered.

German-specific Rules. The correct detection of a GOOD or BAD translation into German
requires additional rules regarding specific linguistic phenomena such as word order,
multi-word expressions, compounds (Komposita), and separable verbs. For instance,
given the source sentence He thought Nehru jackets went out of fashion at the end of the
seventies translated into German with Er dachte, Nehru-Jacken kamen Ende der siebziger

10 We follow an iterative approach, where the entire analysis procedure is executed with each package but
only considering the remaining MISS instances.

11 A package trained on a concatenation of ISDT, VIT, PoSTWITA, and TWITTIRO. We perform the iterative
analysis with the single-dataset models as well in order to increase redundancy.

12 GSD package converted to simplified characters.
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Jahre aus der Mode, the correct lemmatization of kamen [...] aus der Mode is aus der Mode
kommen. In order to ensure that the GOOD translation aus der Mode kommen is detected
in the aforementioned translation, we implement a multi-word inversion mechanism
capable of dealing with these cases.

Another challenge when translating into German concerns separable verbs, such
as zurücklegen. For example, given the source text The caravan covered almost 100 miles
each day translated with Die Karawane legte jeden Tag fast 100 Meilen zurück, the correct
lemmatization of legte [...] zurück is zurücklegen. To address these specific cases, we rely
on the dependency tree, which classifies the nature of the relationship between prefixes
of separable verbs and the main part of the verb using the Universal Dependencies13

dependency relation compound:prt. Specifically, we combine the prefix with the lemma-
tized core part of the verb, obtaining forms such as zurücklegen.

3.3.3 Handling UNKs. We observe that, in some cases, instances are classified both as
GOOD and BAD; we define these cases as UNK instances. Interestingly, our manual in-
spection shows that UNK instances are often caused by the match between a single
word w appearing in B and a compound word, or multi-word, containing w, found
within G. We address these cases by attributing higher priority to the identification of
the longest matches, thereby ignoring potential shorter matches contained in longer
matches already classified as either GOOD or BAD. Importantly, we note that UNK instances
represent, on average, 1.15% of all DIBIMT items, thus having a limited impact on
the overall evaluation of semantic biases. We report the breakdown of UNK instances in
Appendix D.1.

3.4 Metrics of the DIBIMT Benchmark

In this section, we detail the metrics used in the DIBIMT benchmark to evaluate MT
models. In addition to accuracy, DIBIMT analyzes the semantic biases of a translation
model via four metrics, which we illustrate in what follows. To formally define these
metrics, we adopt the following notation:

• λP represents a (lemma, part of speech) pair, where P is the part of speech;

• ΩL(λP) = {σ1, . . . ,σn} indicates the set of synsets pertaining to the part of
speech P which contain λ as a lexicalization in language L;

• µλP (σ) refers to the index of synset σ in ΩEN(λP) ordered according to
WordNet’s sense frequency, as computed from SemCor. That is, index k
means that synset σ is the k-th most frequent meaning for λP.

All the metrics defined in this section are computed on the set of translations produced
by a given modelM in a target language L, excluding MISS and UNK occurrences.

Accuracy. The standard accuracy metric provides a general view of a model’s perfor-
mance in a given language. It is computed as: #GOOD

#GOOD+#BAD .

Sense Frequency Influence (SFI). This metric assesses the impact of frequency on MT
models’ ability to handle ambiguous words. First, we group instances based on their

13 https://universaldependencies.org/.
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ambiguous word meaning’s frequency index, that is, µλP (σ). We define #GOODµ as
the number of GOOD instances whose ambiguous word’s meaning has a frequency
index of µ; similarly, #BADµ is defined for BAD instances. Moreover, we introduce
the set of all frequency indices a synset can assume in the DIBIMT dataset as M ={
µλP (σ)|λP ∈ LP,σ is the meaning of λP in context

}
, where LP represents the set of all

(lemma, part of speech) pairs corresponding to the target words in DIBIMT.
We propose the Sense Frequency Influence (SFI) as a measure of accuracy, where

the weight of each instance is adjusted based on its sense frequency index:

SFI =

∑
µ∈M µ · #GOODµ∑

µ∈M µ ·
(
#GOODµ + #BADµ

) (2)

As a result, instances focused on lower-frequency senses are given more promi-
nence in the SFI metric. We discuss our choice of using frequency index-based weighting
instead of frequency-based weighting in Appendix B.

Polysemy Degree Importance (PDI). This metric investigates the impact of the polysemy
degree of words on the disambiguation capabilities of a model. To this end, we define
δL(λP) = |ΩL(λP)| as the polysemy degree, that is, the number of senses of λP in language
L. This metric mirrors SFI in the way it is computed, but groups instances by their
ambiguous word’s polysemy degree δEN(λP) instead of µ.

Most and More Frequent Senses. Finally, we measure the frequency with which models
predict senses that are more common than the correct one. Given an instance classified
as BAD, we denote σ̂ as the synset associated with the incorrectly translated lemma.14

Subsequently, we compute the frequency index of σ and σ̂with respect to λP. If µλP (σ̂) <
µλP (σ), then the system selected a sense which is more frequent than the correct one and
which we call More Frequent Sense (MFS+). Additionally, if µλP (σ̂) = 1, then the model
disambiguated the source word w to the Most Frequent Sense (MFS) of the associated
lemma λP.

4. Performance on the DIBIMT Benchmark

We now put our DIBIMT framework into practice, analyzing and discussing the per-
formance obtained by state-of-the-art MT systems and LLMs. First, we describe the sys-
tems considered. Then, we detail critical issues that surfaced as a result of preliminary
experiments as well as our strategies to address them. Lastly, we illustrate our results.

4.1 Evaluated Systems

We evaluate a wide range of systems, including commercial and non-commercial MT
models and LLMs. Specifically, we test the following MT systems:

• Google Translate,15 one of the most popular commercial MT systems.

14 If there are multiple synsets associated, we consider the most frequent one, that is, the one with the
lowest frequency index according to µλP (·).

15 https://translate.google.com/.
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• DeepL Translator,16 a state-of-the-art commercial MT system.

• MBart50 (Tang et al. 2021), multilingual BART fine-tuned on the
translation task for 50 languages (around 610M parameters). We refer to
MBart50 as the English-to-many model, and to MBart50MTM as the
many-to-many model.

• M2M100 (Fan et al. 2021), a multilingual model able to translate from/to
100 languages. We evaluate both versions of the model, the one with
418M parameters (M2M100) and the one featuring 1.2B parameters
(M2M100LG).

• OPUS (Tiedemann and Thottingal 2020), one of the smallest
state-of-the-art NMT models available to date; a base Transformer (each
model features approximately 74M parameters) trained on a single
language pair on large amounts of data. Moreover, we evaluate its
multilingual counterpart, jointly trained on multiple target languages,
which we dub OPUSMUL.17

• NLLB-200 (NLLB Team et al. 2022), a state-of-the-art MT system trained
on approximately 200 different languages. NLLB-200 leverages multiple
data augmentation techniques, such as back-translation via both neural
and statistical MT models, and high-quality bitext mining. Specifically,
we consider the following four different versions of NLLB-200:

– NLLB-200SM: smallest version, distilled, counting 600M
parameters;

– NLLB-200MD: medium version, counting 1.3B parameters;

– NLLB-200MDD: medium version, distilled, counting 1.3B
parameters;

– NLLB-200LG: large version, the baseline model presented in
NLLB Team et al. (2022), counting 3.3B parameters.

Furthermore, we evaluate the following LLMs:

• Gemma 1 (Gemma Team et al. 2024a), a family of open-source language
models based on Google’s Gemini (Gemini Team et al. 2024). Gemma is
based on the Transformer decoder architecture (Vaswani et al. 2017),
relying on crucial improvements such as the MultiQuery Attention
(Shazeer 2019), rotary positional embeddings (Su et al. 2024), and the
GeGLU activation function (Shazeer 2020). We use:

– Gemma-2B (google/gemma-2b-it), which features 2B
parameters and is trained on 3T tokens;

16 https://deepl.com/.
17 We use Helsinki-NLP/opus-mt-en-mul from HuggingFace. The bilingual models’ signature instead is

Helsinki-NLP/opus-mt-en-xx, with xx varying across the languages supported by DIBIMT, except for
Slovene, which is not available.
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– Gemma-7B (google/gemma-7b-it), which is a 7B model
trained on 6T tokens.

• Gemma 2, that includes new additional Gemma models which
range in scale from 2B to 27B parameters. We use Gemma2-9B
(google/gemma-2-9b-it), with 9B parameters and trained on 8T tokens
(Gemma Team et al. 2024b). Compared to Gemma 1 models, Gemma2-9B
additionally utilizes the interleaving local-global attentions (Beltagy,
Peters, and Cohan 2020) and the Grouped-Query Attention (Ainslie et al.
2023) and is trained using knowledge distillation by minimizing the
negative log-likelihood between the probabilities of a larger model, the
teacher, and a smaller one, the student.

• LLaMA 2, a family of models developed by Meta (Touvron et al. 2023).
Trained on publicly available datasets only, LLaMA 2 models range from
7 to 65 billion parameters. LLaMA 2 models rely on the Transformer
architecture, with improvements such as the SwiGLU activation function
(Shazeer 2020) and rotary embeddings. We use LLaMA2-7B
(meta-llama/Llama-2-7b-chat-hf), a 7 billion parameter conversational
model optimized for generating human-like responses in a dialogue
setting.

• LLaMA 3, an improved version of the LlaMA 2 model family. LLaMA 3
models are available in two sizes: 8 billion and 70 billion parameters. One
notable enhancement in LLaMA 3 is the implementation of a new
tokenizer, which significantly increases the vocabulary size to 128,256
tokens, compared with the 32,000 tokens used in LLaMA 2. We evaluate
meta-llama/Meta-Llama-3-8B-Instruct, which we dub LLaMA3-8B.

• Mistral-7B, a pretrained LLM featuring 7 billion parameters
(Jiang et al. 2023). Its vocabulary size is 32,000. We evaluate
mistralai/Mistral-7B-Instruct-v0.2.

• Tower-7B, a 7 billion parameter model fine-tuned for translation-related
tasks, such as MT, automatic post-editing, and Named Entity
Recognition (Alves et al. 2024). We experiment with
Unbabel/TowerInstruct-7B-v0.1. Built on top of LLaMA 2, this model
has been fine-tuned to translate between English and the following
languages: Chinese, Dutch, French, German, Italian, Korean, Portuguese,
Russian, and Spanish.

• Phi-3, a family of small language models by Microsoft (Abdin et al. 2024).
Phi-3 language models are available in both short- and long-context
lengths. We evaluate microsoft/Phi-3-mini-128k-instruct, a
lightweight language model with 3.8B parameters, supporting a context
length of 128K tokens. microsoft/Phi-3-mini-128k-instruct is trained
on 3.3T tokens and its vocabulary size is 32,064.

• GPT-3.5TURBO, a large language model optimized for chat applications.
The translations were produced by the default model at the time of
writing, that is, gpt-3.5-turbo-0613.

• GPT-4, a large-scale multimodal language model that achieves better
performance than its competitors (OpenAI et al. 2024). The translations
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from GPT-4 were produced by the default model at the time of writing,
that is, gpt-4-0613.18

We report in Appendix C the details about the generation parameters we use for
each open-source MT system, together with the prompt provided to the LLMs.

4.2 Evaluation Metrics

To test the aforementioned systems, we adopt the evaluation procedure illustrated in
Section 3.3, using the metrics we defined in Section 3.4. Thus, each system is assigned
specific scores to account for different aspects of the evaluation, that is, its overall accu-
racy, its ability to deal with infrequent senses and highly ambiguous words, represented
by SFI and PDI metrics, respectively, and the frequency with which it predicts senses
that are more common than the correct one, represented by the MFS and MFS+ metrics.

4.3 Benchmark Refinement

In order to reduce the number of MISS instances we perform a manual refinement,
which we illustrate in this section. Specifically, annotators are required to inspect the
MISS instances resulting from the evaluation of some of the considered systems and
determine whether these should be classified as GOOD or BAD. This step is prompted by
the consideration that the set of GOOD and BAD translations is not closed and can always
be augmented with new suitable items. We highlight that, due to time and budget
constraints, the aforementioned refinement step does not involve the NLLB-200 models,
OPUSMUL, and the considered LLMs.

In Table 4 we report the average percentage of MISS instances on the DIBIMT
benchmark before and after the MISS refinement, and the related accuracy scores. As we
can see, the refinement process substantially reduces the percentage of MISS instances,
with an average reduction of 19.75% across all tested systems. Furthermore, we notice
that the refinement produces an average accuracy increase of 19.61%, suggesting that a
MISS instance might frequently be associated with a correct translation, rather than an
incorrect one. From these results, we can also notice that manually inspecting sentences
produced by some models does not bias the benchmark toward them. Indeed, the
average drop in MISS % in refined and non-refined systems is 22.82% and 18.31%,
respectively, and the average accuracy increase is 18.49% and 20.14%, respectively, with
very similar deltas between the two groups.

However, we wish to point out two notable exceptions. The first concerns OPUSMUL,
for which we report a substantially smaller MISS % drop and accuracy increase, com-
pared with other models. We attribute this to its particularly low accuracy, as will be
discussed in the next section. Indeed, systems struggling to translate ambiguous focus
words often generate contextually inappropriate tokens or severe hallucinations, which
arguably should not be included in the benchmark as they are not disambiguation
errors. We report examples of these phenomena in the qualitative analysis of Section 5.
The second exception is represented by the open-access LLMs. As we can see from
Table 4, these systems display a much higher percentage of MISS instances than the oth-
ers. We attribute this to the fact that, to the best of our knowledge, they perform MT in

18 Translations were generated in November 2023.
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Table 4
Impact and generalization of manual MISS refinement, comparing refined and non-refined
models, in terms of average MISS % and accuracy score across languages. Full tables with
per-language breakdowns are reported in Appendix G. The final mean accuracy after
refinement differs from Table 5 as it is computed over model averages.

MISS % Accuracy
Model Before After ∆ (−) Before After ∆ (+)

R
efi

ne
d

Google 49.41 15.61 33.80 33.88 56.85 22.97
DeepL 53.36 15.31 38.04 40.08 65.66 25.59
MBart50 57.47 41.87 15.60 17.88 35.49 17.61
MBart50MTM 52.27 32.31 19.96 18.11 35.45 17.35
M2M100 51.24 33.12 18.12 11.13 25.83 14.70
M2M100LG 52.43 36.02 16.42 15.69 31.78 16.09
OPUSBIL 44.22 26.41 17.81 20.86 35.98 15.12

Mean 51.49 28.67 22.82 22.52 41.01 18.49

N
on

-r
efi

ne
d

OPUSMUL 61.28 52.24 9.04 9.08 20.06 10.98
NLLB-200SM 55.01 37.23 17.78 21.67 40.55 18.88
NLLB-200MD 57.99 36.86 21.13 29.64 51.33 21.68
NLLB-200MDD 56.87 34.20 22.67 33.02 53.92 20.90
NLLB-200LG 57.68 33.43 24.26 36.40 57.82 21.42
Llama2-7B 65.97 42.20 23.78 25.68 55.45 29.77
Llama3-8B 60.53 53.58 6.95 33.70 46.05 12.35
Mistral-7B 62.04 45.18 16.87 27.13 48.31 21.18
Gemma-2B 71.82 63.06 8.75 23.40 40.53 17.13
Gemma-7B 63.91 50.60 13.32 26.94 46.79 19.85
Gemma2-9B 61.46 36.64 24.83 45.38 69.80 24.42
Phi3-mini 67.18 57.42 9.76 24.36 42.57 18.22
Tower-7B 61.18 42.82 18.36 40.60 60.55 19.95
GPT-3.5TURBO 55.47 27.87 27.60 44.43 67.30 22.87
GPT-4 54.77 25.16 29.61 48.66 71.09 22.43

Mean 60.88 42.56 18.31 31.34 51.47 20.14

Mean 57.89 38.14 19.75 28.53 48.14 19.61

a zero-shot setting, without prior fine-tuning for the task.19 Indeed, it has already been
shown that the zero-shot translation performance of most LLMs can be substantially
improved by either using few-shot learning (Zhang, Haddow, and Birch 2023; Bawden
and Yvon 2023), or by fine-tuning them to MT (Alves et al. 2024; Xu et al. 2024). Also, all
the tested LLMs were pre-trained using mostly English data, with very limited exposure
to some of the target languages in the DIBIMT benchmark. As a consequence of the
foregoing factors, open-access LLMs frequently hallucinate and produce omissions. We
delve deeper into this matter in our linguistic analysis, in Section 5.

Finally, we report a total average of 38.14% MISS instances. We wish to highlight
that this number is inflated by the high percentage of MISS instances of the open-access
LLMs. Indeed, considering only the other systems, the average MISS % is reduced to

19 Tower-7B is an exception. Nonetheless, it was not fine-tuned to translate toward Bulgarian and Slovene,
that is, the language directions with the highest MISS %, which is almost double compared with that of
the other language directions (Table 23).
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31.97%. Additionally, we argue that some translations are ultimately non-classifiable,
for example, a complete omission of the target word could still be correct if the transla-
tion conveys the meaning of the source sentence, as we show in the linguistic analysis
of Section 5. Finally, we believe that manually accounting for any possible translation
produced by all existing models is unfeasible, due to the high variability intrinsic to the
translation task.

4.4 Results

We report the accuracy of the aforementioned systems on the DIBIMT benchmark in
Table 5. We observe average values ranging from 20.06% to 71.09%, with an absolute
low of 9.76% (OPUSMUL in Chinese), and an absolute high of 83.37% (Gemma2-9B in
Russian).

The best-performing system is GPT-4, with an average accuracy of 71.09%, fol-
lowed by Gemma2-9B and GPT-3.5TURBO. We note that the largest (and more recent)
LLMs achieve competitive results despite their not being fine-tuned directly for MT.
This confirms the results of Iyer, Chen, and Birch (2023), where the authors found

Table 5
Systems’ accuracy on the DIBIMT benchmark. For each translation direction, the best score is
bold and underlined, the second best is bold, and the third best is underlined.

Model DE ES IT RU ZH BG NL SL Mean
Google 62.42 57.49 57.94 68.34 56.61 50.84 44.79 56.39 56.85
DeepL 81.9281.9281.92 64.87 70.66 73.73 55.52 62.69 52.44 63.47 65.66

MBart50 34.29 31.57 38.38 40.86 39.35 – 23.53 40.48 35.49
MBart50MTM 34.20 34.81 38.29 40.05 39.08 – 22.77 38.97 35.45

M2M100 26.25 27.62 26.62 31.84 20.39 22.64 18.90 32.41 25.83
M2M100LG 31.84 32.78 34.39 38.58 27.36 29.29 23.97 36.02 31.78

OPUSBIL 34.88 37.39 37.15 41.29 34.45 35.71 31.01 – 35.98
OPUSMUL 21.08 25.58 21.72 24.05 9.76 14.87 18.48 24.91 20.06

NLLB-200SM 38.03 42.21 43.32 50.86 38.87 37.08 29.35 44.71 40.55
NLLB-200MD 54.02 51.88 55.38 58.97 45.00 47.80 41.18 56.37 51.33
NLLB-200MDD 58.37 51.87 59.21 59.26 48.93 50.83 44.58 58.29 53.92
NLLB-200LG 63.73 55.74 63.85 66.52 47.40 54.29 49.05 61.97 57.82

Llama2-7B 48.82 49.43 51.63 53.28 45.52 33.98 37.93 47.83 46.05
Llama3-8B 64.16 56.35 57.68 67.77 55.65 40.31 46.60 55.09 55.45
Mistral-7B 58.13 49.77 54.91 57.45 44.57 36.14 38.78 46.72 48.31
Gemma-2B 45.51 46.65 39.93 51.16 43.43 27.50 27.41 42.62 40.53
Gemma-7B 50.69 51.03 52.37 59.26 51.19 33.03 34.49 42.29 46.79
Gemma2-9B 74.72 65.70 72.7672.7672.76 83.3783.3783.37 68.7668.7668.76 64.9464.9464.94 60.90 67.23 69.8069.8069.80
Phi-3-mini 61.01 52.25 50.82 48.79 39.87 23.64 29.39 34.83 42.57
Tower-7B 70.31 64.83 66.73 72.30 58.02 43.71 57.04 51.45 60.55

GPT-3.5TURBO 73.75 66.4866.4866.48 69.32 75.31 66.81 57.23 61.4161.4161.41 68.1168.1168.11 67.30
GPT-4 77.2277.2277.22 70.0470.0470.04 71.7171.7171.71 80.2080.2080.20 71.1571.1571.15 64.1664.1664.16 62.6962.6962.69 71.5571.5571.55 71.0971.0971.09

Mean 52.97 49.38 51.58 56.51 45.80 41.53 38.94 49.61 48.29
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that instruction-tuned LLMs achieve state-of-the-art performance when dealing with
disambiguation biases, with competitive scores even in unseen languages.20 Interest-
ingly, Gemma2-9B achieves an accuracy close to that of GPT-4, and better than one
of the best commercial translation systems, that is, DeepL, despite having only 9B
parameters. Also, Tower-7B, an LLM based on LLaMA2-7B additionally fine-tuned for
MT-related tasks, achieves performance that is competitive with the larger LLMs and
commercial MT systems.21 This suggests that a promising direction for MT research
could be eliciting the translation performance of LLMs. Indeed, sense (in)frequency
poses one of the hardest challenges for MT systems (Section 4.4.1). Therefore, finding
ways to leverage the information LLMs learn from monolingual corpora, which is
abundant, might be key to mitigating this issue. In addition, thanks to the vast amounts
of monolingual data available, LLMs can be scaled to accommodate higher parameter
counts, learning more complex relations between words and their contexts. Indeed, the
highest performance was obtained by GPT-4 which, most likely, is the largest system
among the ones considered here.22

Among the open-source MT systems, instead, NLLB-200 variants outperform the
others, with the larger NLLB-200LG being the only open-source system that obtains
results that are competitive with the commercial systems. Indeed, although on average
commercial systems perform considerably better than their non-commercial counter-
parts, we observe that NLLB-200LG manages to outperform Google Translate in every
language except Spanish, Russian, and Chinese. The systems that attain the lowest ac-
curacy are M2M100 and OPUSMUL, that is, the smallest ones, together with OPUSBIL. As
expected, we observe that, for a given architecture, increasing the parameter count cor-
responds to an increase in accuracy; for instance, NLLB-200LG obtains a mean accuracy
of 57.82%, while NLLB-200SM only 40.55% with a decrease of 17.27%, while M2M100LG

outperforms M2M100 by 5.95%. Surprisingly, this does not apply for OPUSBIL, whose
overall accuracy is higher than that of OPUSMUL, M2M100, M2M100LG, MBart50, and
MBart50MTM, despite the last four being considerably larger. We defer the explanation of
this phenomenon to Section 6.3.

Concerning the availability of resources in specific language pairs, we note that
the mean accuracy for Chinese is particularly low, despite the large number of parallel
corpora available for this translation direction. Furthermore, although Fan et al. (2021)
consider German to be high-resource, compared with Slovene, M2M100 and M2M100LG

exhibit better performance in Slovene—with accuracy scores of 32.41% and 36.02% —
than they do in German, where their scores are 26.25% and 31.84%, respectively. The
same pattern is observed in the outputs of OPUSMUL. Finally, we highlight that, while
substantial efforts are being made to improve the availability of parallel corpora for
low-resource languages, we observe that, despite its low number of MISS instances, a
high-resource language such as Dutch exhibits the poorest performance in DiBiMT (see
Table 5). In light of this counterintuitive finding, we encourage the MT community to
assess and address the impact of lexical ambiguity on high-resource languages as well,
as it might still pose significant challenges for these.

20 Iyer, Chen, and Birch (2023) dub as unseen the languages not intentionally included in the pretraining of
LLMs.

21 We highlight that Tower-7B’s fine-tuning data did not include Bulgarian and Slovene, which is why its
performance is lower in translating toward these languages.

22 Even if we ignore the exact number of parameters of the GPT systems, we can assume that they are at
least one or two orders of magnitude larger than the other tested systems.
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Figure 3
Mean accuracy, SFI, and PDI of each system on the DIBIMT benchmark. Full tables with
per-language SFI and PDI scores are reported in Appendix G.

4.4.1 Identifying Pitfalls in Disambiguation. In Figure 3, we present the mean accuracy,
SFI, and PDI scores for each system. As expected, both SFI and PDI exhibit lower values
compared to accuracy, which is due to the systems’ increased difficulty in accurately
translating words with rare meanings and those that are highly ambiguous. Interest-
ingly, SFI is consistently lower than PDI, suggesting that the infrequency of senses poses
a particularly significant challenge for neural architectures.

To investigate this matter more thoroughly, we group the instances of DIBIMT
based on their sense frequency index and polysemy degree, and present in Figure 4
the accuracy of each system on each identified group.23 As anticipated, the accuracy
significantly drops when the focus word exhibits a high polysemy degree, or its associ-
ated meaning is infrequent, and the decline in accuracy is more evident with increasing
levels of frequency index, rather than polysemy degree. Interestingly, the most accurate
systems demonstrate greater robustness to highly polysemous words. To illustrate this,
we compare the average accuracy decrease when transitioning from words with a
polysemy degree of less than 6 to those with 14 or more. The average drop in accuracy is
22.55 points; however, for top-performing systems (GPT-4, Gemma2-9B, GPT-3.5TURBO,
DeepL, Tower-7B, NLLB-200LG, Google, LLaMA3-8B, NLLB-200MDD, and NLLB-200MD),
this decrease is less marked, at 17.17 points, versus 27.03 points for the other systems.

23 We determined groups’ ranges independently for each metric, aiming at populating each group with
approximately 20% of the instances.
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Figure 4
Accuracy of all systems when grouping the instances of the DIBIMT benchmark according to the
sense frequency index and polysemy degree of their ambiguous focus words. Different groups
have no instances in common, for example, the group with a sense frequency index < 6 is
composed of those instances whose ambiguous focus words have a sense frequency index
between 6 (excluded) and 4 (included). Below the x-axis, we report the percentage of instances
that belong to each group.

We hypothesize that systems with limited contextualization capabilities struggle when
selecting the correct translation from numerous possibilities. Instead, more accurate
systems are trained on extensive data and have likely learned better decision bound-
aries for different senses of ambiguous words, making them more confident in picking
translations representing the correct meaning, regardless of the number of possible
translations.

Conversely, all systems seem to encounter similar difficulties when ambiguous
words are used with particularly infrequent meanings, that are likely underrepresented
in their training corpora. Indeed, the average accuracy drop between the most frequent
sense (<2) and senses over the 9th frequency index is 34.51, and the gap between the
average score of top- and bottom-performing systems is only 5.06, much lower than the
gap we observe for PDI, at 9.86. In these cases, all systems tend to translate the focus
word into one of its more common meanings. We delve deeper into this phenomenon
in Appendix D, where Table 19 presents the scores of MFS and MFS+ metrics, which
quantify how often a system translates the focus word into its most frequent sense
(MFS), or a sense more frequent than the correct one (MFS+). On average, we report
that the MFS is chosen more than half of the time a model translates incorrectly, whereas
systems choose a more frequent sense more than 3 out of 4 times they make a mistake.
We hypothesize that this tendency to translate into more frequent meanings is strictly
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Table 6
Results by PoS tag. Numbers represent the mean value of each score introduced in the article.
Column All summarizes the results reported in the other tables.

All Nouns Verbs
Accuracy 48.29 47.80 48.78
% MISS 38.49 32.79 44.74
MFS 51.21 54.56 45.37
MFS+ 76.44 75.95 77.88
SFI 38.71 39.15 38.24
PDI 43.13 42.87 43.37

related to the balance of senses in the training corpora. Indeed, since words’ meanings
appear in natural texts following a Zipfian distribution, neural models may tend to fall
back upon this distribution whenever they are unsure about the meaning of an am-
biguous word. In Section 4.4, we suggested exploring ways for leveraging monolingual
corpora to counter the sense infrequency issue. In addition, we believe that another
promising direction for MT research might be re-balancing the sense distribution found
in monolingual and parallel corpora, to incorporate a larger number of occurrences of
words used with infrequent meanings. However, we encourage caution and suggest
using the DIBIMT benchmark to measure variations in the disambiguation accuracy of
words with frequent and infrequent meanings. Indeed, modifying the sense distribution
of MT systems’ training data might have the undesirable outcome of trading off the
disambiguation performance of frequent senses for infrequent ones.

4.4.2 Nouns vs Verbs. Notably, verbs are found to be harder to disambiguate than nouns
(Barba, Procopio, and Navigli 2021), also considering the average polysemy degree
of nouns and verbs in WordNet, namely, 1.24 and 2.17, respectively. We investigate
whether this is true when evaluating systems against the DIBIMT benchmark. With
this aim in view, Table 6 shows the average performance considered both on all parts
of speech in DIBIMT, and on nouns and verbs separately. While the accuracy scores
remain similar, we observe a significantly higher number of MISS instances for verbs.
Interestingly, on average, the only notable difference seems to be that systems are more
biased toward the most frequent sense when dealing with nouns. We attribute this to
verbs having a higher average polysemy degree, and therefore a higher number of more
frequent senses, making it more likely for systems to pick one or the other of these rather
than homing in on the single most frequent one.

5. Manual Error Analysis

In this section, we address RQ2, that is, we investigate the presence of patterns when
analyzing the errors produced by the systems under consideration when translating
ambiguous focus words. As a result of our analysis, we identify the following four error
patterns: (i) disambiguation errors, in which models fail to choose the correct sense, and,
instead, select an incorrect sense, which is often more frequent than the correct one; (ii)
omissions, when systems do not translate the focus word; (iii) untranslated source words,
that is, the focus word is reproduced as-is in the translation; and (iv) hallucinations, when
the focus word is translated with a word or expression that is semantically detached
from the source, including when models generate a word or expression that does not
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exist in the target language. In the following, we introduce and discuss these error
patterns. Finally, we focus on errors encountered in general-purpose LLMs.

5.1 Disambiguation Errors

For the purposes of investigating the ability of MT systems to deal with lexical ambi-
guity, the most relevant error pattern to be studied is represented by disambiguation
errors (also referred to as WSD errors), that is, translation errors in which systems do
not select the correct sense for the ambiguous focus word.

In this error scenario, the incorrect sense chosen by a given system corresponds
either to the most frequent meaning denoted by the focus word or simply a meaning that
is more frequent than the correct one. For instance, the source text The pitcher delivered
the ball is incorrectly translated into Dutch by Google with De werper leverde de bal af, in
which the verb afleveren does not convey the correct meaning of the focus word, that is,
throw or hurl from the mound to the batter, as in baseball, which, instead can be expressed
by the Dutch verb gooien. Similarly, the focus word call in The ship will call in Honolulu
tomorrow, used with the meaning stop at a given station on a specific route, is incorrectly
translated by many models into different languages with more frequent senses of the
verb to call (e.g., to assign a name or to get into communication).

Interestingly, we observe disambiguation errors when the focus word is used with
a figurative meaning. For instance, in the source text The continuous rain washed out
the cricket match, the focus word wash out means to prevent or interrupt due to rain.
The aforementioned source sentence is translated by OPUSBIL into Bulgarian with

, which corresponds to The rain washed away the
cricket game. Similarly, the sentence The storm had washed out the game is rendered
by DeepL with , in which the proposed translation for the
focus word once again means wash away.

Moreover, we identify specific source texts in which the focus word is incorrectly
translated into all languages by the majority of systems. For instance, in the sentence
She was checking out the apples that the customer had put on the conveyer belt, the focus
word check out is translated by several models with verbs meaning checking or examining
the quality or accuracy of something and not record, add up, and receive payment for items
purchased. A potential explanation for this phenomenon could be the fact that the correct
senses of the focus words above are much less frequently encountered—if at all—in the
training data than the ones chosen by systems. Should this hypothesis be verified, then
counterbalancing the senses in the training data might prove beneficial to improving the
disambiguation capabilities of systems. Additional instances of disambiguation errors
are reported in Table 7.

5.2 Omissions

This type of error consists in omitting the translation of the ambiguous focus word.
Specifically, we identify two types of omission, that is, severe omissions and mild omis-
sions, depending on the impact of the omission on the quality and comprehensibility of
the output translation. Instances of the two types of omission are reported in Tables 8
and 9, respectively.

Severe Omissions. Severe omissions compromise the translation system output. This type
of omission can affect not only the focus word, but also textual segments in which
the focus word occurs and, in some rarer cases, even entire clauses. For instance,
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Table 7
A list of disambiguation errors produced by systems in various languages (in red). The source
text is reported in italics and the focus words highlighted in bold.

considering Dutch as the target language, we observe that, in the source text I don’t
want to be bald, so just top my hair, the coordinate clause so just top my hair is omitted
entirely, as reported in Table 8.

An instance of single focus word omission is represented by the translation into
German and Dutch of the source text Bacon is very fatty when raw; however, most of the fat
will render during cooking. Here, MBart50 omits the focus word render which describes
the action carried out by the subject in the second clause and whose omission impairs
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Table 8
Examples of severe omissions. The source text is reported in italics and the focus words
highlighted in bold. Omissions are indicated by an ellipsis within square brackets and
highlighted in red.

the comprehensibility and grammaticality of the output text severely, as shown in
Table 8. Another instance of omission present in several target languages can be iden-
tified when considering the focus word in the source text Beg the point in the discussion
which is omitted by several systems including NLLB-200MD.

Interestingly, we observe instances that, unlike the previous example, preserve
the grammatical correctness of the output translation despite the presence of a severe
omission. For instance, M2M100 translates the source sentence We drew last time we
played into Italian with L’ultima volta abbiamo giocato (meaning The last time we played).
Here, while the output text shows overall grammatical correctness, the omission of
the verb drew leads to the removal of crucial information contained in the source text,
namely, that of tying a game. Along these lines, the source sentence The dog’s laps were
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warm and wet is translated into many languages with the rather bizarre equivalents of
either The dog is warm and wet or The dogs are warm and wet (Table 8).

Finally, a noteworthy case of severe omission across models and languages can be
observed when considering the source text she made gravy with a base of beef stock, whose
translations show that several models omit the focus word stock.

Mild Omissions. While severe omissions compromise the quality of the translation sig-
nificantly, mild omissions exhibit a minor detrimental impact on the intelligibility of
the output translation and its adherence to the source text. An interesting instance of
this scenario can be observed in Bulgarian, where non-numeral quantifiers such as
fix in its meaning a dose of something strongly desired can be omitted with a slight loss
of information but without failing to convey the overall meaning of the translation.
For example, the sentence She needed a fix of chocolate can be rendered, omitting the
focus word fix, with the equivalent of She needed chocolate, that is, in Bulgarian with

, as proposed by both DeepL and Google. Interestingly,
we also observe this type of omission in other target languages such as Slovene. For
instance, phrases like roll of thunder and clap of thunder are rendered with the equivalent
of thunder or to thunder by DeepL and Google, specifically with grmenje and zagrmeti,
respectively. Finally, an additional representative example of this phenomenon can be
observed when considering the translation into Slovene of the source text The valley
was between two ranges of hills, where the textual sequence between two ranges of hills is
translated by DeepL and Google with the equivalent of between two hills (Table 9), that is,

Table 9
Examples of mild omissions. The source text is reported in italics and the focus words
highlighted in bold. Omissions are indicated by an ellipsis within square brackets and
highlighted in red.
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omitting ranges. This pattern is the least problematic among those found in our analysis
and such translations can be considered correct in some cases, yet this raises interesting
questions as to the extent to which a translation should be faithful to the source sentence
while maintaining the overall meaning.

5.3 Untranslated Source Words

Another error pattern identified during our qualitative analysis is represented by un-
translated source words, that is, focus words reported as-is in the translation and
therefore not translated into the target language. Importantly, we highlight that this
error category does not include those cases in which a given source word in English
can be considered as an acceptable translation into the target language, for example,
English words commonly used in several other languages such as hobby or hotel, or,
similarly, anglicisms used in specific domains such as computing.

Interestingly, we observe this type of error when a given focus word has come into
use in a specific target language. As reported in Table 10, the source sentence You’d better
back up these files is translated into German as Besser würden Sie diese Dateien backup
by M2M100. Here, as can be seen, the source verb back up is incorrectly reported as-is
in the target text, albeit without whitespace between the two components. A potential
explanation for this phenomenon could be the fact that the English noun backup can be
translated into German with the noun Backup (or Back-up), which the model could have
learned during the training phase. However, in the source text provided, the word back
up is a verb and should have been translated with sichern or eine Sicherungskopie machen.

Another noteworthy instance of this type concerns the verb crash which is borrowed
from English into Dutch as crashen. For example, the word crash in the source text You
can crash here, though it’s not very comfortable is reported as-is in the Dutch translation,

Table 10
Examples of untranslated source words (in red in the target language).
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while the correct infinitive form crashen should have been used. Generally, based on our
manual analysis, M2M100 seems particularly prone to this behavior in Dutch, leaving
words such as brass, chap, brick, catch, check out, and clean up untranslated.

Finally, this error category also includes those cases in which the focus words
are simply transliterated into a different alphabet. We observe this phenomenon in
Bulgarian, for example, in the source sentence Okay, everyone sit on your bum and try
and touch your toes, in which the focus word bum is merely transliterated into Cyrillic
with .24

5.4 Hallucinations

In the field of MT, hallucinations can be described as incorrect translations that ex-
hibit a severe semantic detachment from the source text (Lee et al. 2018). For the
purposes of our analysis, we concentrate on hallucinations generated when translating
the ambiguous focus word. Importantly, we differentiate between hallucinations and
disambiguation errors. In fact, as illustrated previously, in disambiguation errors the
focus word is translated with one of its senses, but not the correct one in the given
context. Instead, hallucinations are not senses of the focus word.

Interestingly, upon manual inspection, hallucinations seem to occur more fre-
quently when the focus word is a verb. As can be seen in Table 11, the source sentence
The soldier acquitted herself well in battle is translated by M2M100 into Italian with Il
soldato si è goduto bene nella battaglia, in which the Italian verb godersi is semantically
detached from the English source word acquit. In fact, godersi means to enjoy, take pleasure
in an activity, and does not lexicalize any meaning expressed by the verb to acquit,
which, instead, according to WordNet, can refer to: (i) pronounce not guilty of criminal
charges; and (ii) behave in a certain manner. Interestingly, we observe another hallucination
produced by the same model which translates the same source text into Spanish with El
soldado se acercó bien en la batalla. Here, the Spanish verb acercarse (i.e., to go/move closer,
among other meanings) cannot convey the meaning of the focus word in the source text.
Additional noteworthy hallucinations are observed in Bulgarian, where the source text
render fat in a casserole is translated into Bulgarian by M2M100 with

which could be translated literally as Apply fat to currants. Finally, the focus
word in the source text The dog’s laps were warm and wet is translated into Italian with
the equivalent of paws by GPT-4.

5.4.1 Non-existing Target Words. We identify a specific type of hallucination including
words that do not exist in the vocabulary of a given target language. Among the causes
for non-existing target words, we observe orthographic errors, incorrect morphological
modifications of an existing word, and the creation of a word or expression that cannot
be understood by a native speaker. Interestingly, this type of error may also originate
from (pseudo-)loanwords, that is, words (apparently) adopted from a foreign language
other than the source or the target one with little or no modification. Examples of non-
existing target words can be found in Table 12.

Orthographic and Morphological Errors. In Dutch, we observe a few non-existing target
words connected to orthographic errors. For example, the Dutch translation of the

24 The word can be used in Bulgarian as an equivalent of boom in English (e.g., referring to a sudden
increase, growth, or loud noise).
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Table 11
Examples of hallucinations (in red in the target language).

English verb back up is misspelled by various models such as MBart50 in You’d better
back up these files translated as Je zou deze files beter back-upen, while the correct spelling
is back-uppen. Similarly, in Slovene we identify several spelling errors. For instance,
the source sentence Back up the car a little, you’re blocking the driveway is translated by
MBart50MTM with Če malo vzpenemo avto, zapremo prikolinec in which the word form
vzpenemo does not exist in Slovene and the correct spelling would be vzpnemo. As a
matter of interest, we note some instances in which MBart50MTM creates new words
in Slovene by prepending an existing prefix to an existing verb in Slovene, which,
however, results in a non-existing word, such as razbrisati, composed of the prefix
raz, generally conveying the meaning of separation, dispersal, or spreading apart, and the
existing verb brisati, which means to wipe, erase, or delete, in the translation razbrisati se
na sestanku. . . Stol je bolan.

(Pseudo-)loanwords. We observe a significant number of cases of linguistic interference
in which the translation of the focus word is or seems to be derived from a language
other than the source and the target one. We refer to these cases as (pseudo-)loanwords.
For instance, the source text Though initially adopting a hard-line stance, the politician
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Table 12
Examples of non-existing target words (in red in the target language).

Source The press gang used to impress people into the Navy.

MBart50 NL De persbank beeindruckde mensen in de marine.

Source I can’t hack it anymore.

MBart50MTM SL Ne morem ga več heči.

Source The hair has fouled the drain.

MBart50MTM SL Peres je foukal odvod.

Source Scratch that meeting–the chair is ill.

MBart50MTM SL razbrisati se na sestanku. . . - Stol je bolan.

Source Back up the car a little, you’re blocking the driveway.

MBart50MTM SL Če malo vzpenemo avto, zapremo prikolinec.

Source Though initially adopting a hard-line stance, the politician soon started to backpedal.

M2M100
ES

Aunque inicialmente adoptó una postura de lı́nea dura, el polı́tico
pronto comenzó a retrocedir.

soon started to backpedal is incorrectly translated into Spanish by M2M100 as Aunque
inicialmente adoptó una postura de lı́nea dura, el polı́tico pronto comenzó a retrocedir in
which the word retrocedir is a Catalan verb, while the corresponding word in Spanish is
retroceder.

In Dutch, we identify several instances in which the source word is translated either
with a German word or with a word that is very similar to a German word. For instance,
the source text The press gang used to impress people into the Navy is translated by MBart50
as De persbank beeindruckde mensen in de marine in which the word beeindruckde does not
exist in Dutch and seems to be derived from the German verb beeindrucken (even though
the form proposed by MBart50 does not exist in German either). Instead, the sentence
He placed his hands on the arm rests of the chair is translated by MBart50 with Hij zette zijn
handen op de armstützen van de stoel where Armstütze is a German word meaning armrest.

Similar cases can be found in Slovene as well, where we observe some instances in
which the source word is translated into a language other than Slovene. For instance, we
identify this phenomenon in the following source sentences: (i) Freud thought of cathexis
as a psychic analog of an electrical charge in which MBart50MTM translates the focus word
with , which resembles the Ukrainian word meaning
load; (ii) If the goalkeeper is injured, we have a backup, in which MBart50 uses the Czech
word záloha, which can be translated into English with advance or backup; (iii) Though
initially adopting a hard-line stance, the politician soon started to backpedal, where the focus
verb is translated by MBart50MTM as odstupati, which is a Serbian and Croatian word.

5.5 Error Patterns Observed in General-purpose LLMs

Compared to commercial MT models and larger LLMs, we observe that the smaller
LLMs exhibit an overall significant decrease in translation quality and an increase in
MISS instances. Given the higher percentage of MISS cases reported by smaller general-
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purpose open-source LLMs, we now investigate the error patterns identified when
analyzing the output of such models. In general, we observe that general-purpose LLMs
show many cases of omissions, untranslated source words, and hallucinations.

As far as omissions are concerned, we note several cases in which models fail to
provide any translation and, instead, offer an explanation for why the translation cannot
be generated. For instance, when prompted to translate the source text They tracked him
back toward the head of the stream into Italian, Gemma-2B answers with I cannot translate
the text to Italian without context, as the text does not provide any context. Along these lines,
when required to translate Lines of communication were set up between the two firms into
Italian, Gemma-2B answers with I cannot translate the text as it does not provide any context
or information about the two firms or their communication. Similar cases can be observed
when translating into German (e.g., when receiving as input the source text He got life
for killing the guard), the same model outputs I cannot translate this sentence as it contains
a violent and harmful statement. I am not able to promote or endorse violence or incite hatred,
or when asked to translate the sentence Pull a bank robbery into Bulgarian, Gemma-2B
answers: I cannot translate that sentence, as it is not appropriate to talk about illegal activities.
Other cases of omission impact only the focus word. For instance, the source text His
trousers bag at the knees is translated into Spanish by Phi3-mini as Sus pantalones en las
rodillas, where the focus word bag is omitted.

Interestingly, we observe untranslated source text when analyzing the output pro-
duced by various models, for example, when instructing LLaMA2-7B to translate the
source text His face has many lines. In some other cases, we observe that LLaMA2-7B
leaves part of the source text, including the focus word, untranslated, for instance, the
source text Let me show you my etchings is a rather worn line is translated with

rather worn line.
Finally, among the several cases of hallucinations, we note a substantial number of

non-existing target words. For instance, Phi3-mini translates the source text Alternation
of summer and winter into Italian with Alternatazione di estate e inverno, where the word
Alternatazione does not exist in Italian. Similarly, the same model translates the source
text He bore himself with dignity into Spanish with Portróbale con dignidad, containing
the word Portróbale which does not exist in Spanish. The source text Hey, buddy, you got a
light? is rendered into Russian as ?, where the
word does not exist in standard Russian. Another noteworthy hallucination is
produced by LLaMA2-7B which translates the source text The office was full of secret heads
with Ofice was full of tajnye glavy, where the word glavy does not exist as-is in Russian
and corresponds to the transliteration of the word . Finally, several hallucinations
are observed when translating into Bulgarian, for example, I’m sitting for a painter this
evening is rendered by Gemma-2B as , where the
word is not a translation equivalent for sitting.

6. Experimental Analysis

While the previous section provided crucial insights into the output of MT systems
by manually analyzing the errors produced when dealing with lexical ambiguity, we
now move on to a computational inspection and assessment of the disambiguation
capabilities of such systems. To this end, we propose an extensive array of experiments
aimed at exploring five of the seven research questions we introduced in Section 1. First,
we concentrate on the role played by the encoder in dealing with ambiguous words. To
this end, we first study the correlation between the disambiguation capabilities of the
encoder and those of the entire architecture (RQ3). We then evaluate the effectiveness
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of the latent representations produced by the encoder for disambiguation purposes.
Next, we move on to assess the relationship between the capacity of an architecture and
its disambiguation capability (RQ4). We posit that multilingual models tend to allocate
more resources to learning proper representations for common senses across languages,
thus compromising their ability to deal with infrequent senses, a phenomenon which we
refer to as budgeting. We explore this hypothesis by investigating whether multilingual
MT systems sacrifice their disambiguation performance in order to be able to handle
multiple languages (RQ5). Furthermore, we study the impact of the decoding strategy
on the MT systems’ disambiguation capabilities (RQ6). Finally, we explore the extent to
which standard MT evaluation settings are suitable for detecting disambiguation errors
by comparing them to the test scenario proposed in our work (RQ7). Given the need
to access models and their components directly, the aforementioned experiments are
conducted using the open-source, encoder-decoder MT models illustrated in Section 4.1.

6.1 The Impact of the Encoder on the Translation of Ambiguous Words

Over the last few years, the most common architecture used for MT systems has been
the Transformer (Vaswani et al. 2017), in which—except for GPT-like approaches—an
encoder takes as input the source sentence, and a decoder generates its translation
autoregressively. The decoder is designed to attend only to the latent representations
produced by the last layer of the encoder module and the representations from its prior
decoding steps, without directly accessing the input source sentence. Hence, intuitively,
such representations should encode semantic information regarding the source words
and their meanings. In order to study the contribution of the encoder to distinguishing
word senses (RQ3), we freeze the encoders of several MT systems and use them to
extract the representation of the source sentence and provide it as input to a two-layer
fully connected neural classifier trained to perform WSD. Subsequently, we compare
the performance obtained by this classifier with the DIBIMT accuracy (see Section 3.4)
of the entire architecture, and measure their correlation.

6.1.1 Experimental Setup. We train a two-layer, fully connected neural classifier to per-
form WSD taking MT systems’ encoders’ representations as input. We train these sys-
tems on the concatenation of standard WSD training datasets, that is, SemCor (Miller
et al. 1993) and the Princeton WordNet Gloss Corpus (Langone, Haskell, and Miller
2004, WNG).25,26 We use SemEval-2007 (Pradhan et al. 2007) as our development set.27

As far as the test data is concerned, we measure the disambiguation performance of
our systems on the sense-tagged sentences contained in the DIBIMT dataset, which can
also be used as a benchmark for WSD, since each instance is manually annotated with
the most suitable BabelNet sense of the ambiguous focus word. However, a direct com-
parison between the disambiguation performance and that obtained against DIBIMT
would not be fair if computed on all sentences, since the accuracy in DIBIMT considers
only the sentences classified as either GOOD or BAD, as described in Section 3.4. Therefore,
in order to level the playing field, for each model, we only compute the WSD accuracy
on the set of sentences classified as either GOOD or BAD according to DIBIMT.

25 https://wordnetcode.princeton.edu/glosstag.shtml.
26 As mentioned in Section 3.2.1, some instances of DIBIMT were extracted from WNG; therefore, we

remove those instances from the training data.
27 In Appendix E, we present a description of these datasets along with the implementation details of the

WSD systems.
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Figure 5
Comparison between the DIBIMT accuracy of MT models (on the y-axis) and the WSD accuracy
of their encoders (on the x-axis), measured on the same set of sentences of DIBIMT. The DIBIMT
accuracy is averaged across languages, while the WSD accuracy is computed on English (i.e., the
source language for each combination). For OPUS models the WSD accuracy is averaged across
language pairs, since we use a different OPUSBIL for each translation direction, and OPUSMUL

requires the special token of the target language in the input sentence. The exact numerical
values can be found in Appendix F, Table 22.

6.1.2 Results. We show the result of this experiment in Figure 5. We measure a statisti-
cally significant Pearson correlation of 0.95 between WSD and DIBIMT accuracy scores,
with a p-value < 0.001, suggesting that, as expected, the decoder is using the encoder’s
last layer representations in order to disambiguate. Furthermore, we note that in some
cases—specifically, for M2M100 and M2M100LG—the WSD accuracy of the encoder is
higher than the corresponding DIBIMT accuracy, which could indicate that the decoder
is not always capable of successfully leveraging all the information embedded in the
representations provided by the encoder. Interestingly, although most models demon-
strate comparable accuracy in both WSD and DIBIMT, this trend is not observed for the
models of the OPUS family, where the DIBIMT accuracy is substantially higher. While
this may be due to the smaller number of parameters of their fully connected classifier,28

28 Inevitably, the size of the fully connected classifier depends on the size of the representations produced
by the encoder.
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we argue that there might be other reasons for this behavior. In the following sections,
we delve deeper into the analysis of the representations produced by the encoder and
also provide additional reasons to help understand why OPUS models show a higher
DIBIMT accuracy compared to that achieved in the WSD setting.

6.2 Do Encoders Capture Words’ Meanings?

In the previous section, we showed that the disambiguation capabilities of the encoders
correlate strongly with those achieved by the corresponding architectures, when evalu-
ated against the DIBIMT benchmark. We now study the disambiguation performance
obtained by relying on the representations produced by the encoders, also in relation
to the capacity of the corresponding systems (RQ4). Specifically, we compare the sys-
tems’ performance to that achieved by an encoder-only pre-trained language model
(PLM), that is, BERT (Devlin et al. 2019), since we expect the encoder of MT models
to produce vector representations that have different properties compared to those of
PLMs. In fact, while the MT training objective requires models to implicitly capture the
meaning of words in order to translate them correctly, BERT was trained on the Masked
Language Modeling objective, which explicitly requires models to learn rich contextual
representations of a word based on the context in which it appears.

6.2.1 Experimental Setup. The experimental setup is partially shared with that of the pre-
vious experiment. Specifically, we train the neural classifiers on the datasets illustrated
in Section 6.1.1. Instead, as for the evaluation, we test systems on two different datasets:

• ALLNEW (Maru et al. 2022), a refined version of the ALL Senseval and
SemEval standard WSD dataset collection (Raganato, Camacho-Collados,
and Navigli 2017);

• DIBIMTWSD, that is, the sense-annotated sentences contained in our
framework. However, differently from the previous experiment we do
not restrict the set of sentences used for this experiment, employing
instead the full set of sense annotations as we do not need to compare our
results with the DIBIMT scores of the entire architectures.

6.2.2 Comparison Baselines and Systems. We compare all open-source MT models with the
following baselines and systems:

1. Most Frequent Sense (MFS): This baseline disambiguates an ambiguous
word by predicting the sense occurring most frequently in SemCor, as
customary in WSD;

2. Random choice: This baseline predicts a sense uniformly at random
among the candidates of a word in context;

3. BERTLG: We train the same two-layer fully connected neural classifier as
in Section 6.1.1 on the output of a BERT-large model;

4. BERTLG random: We train the neural classifier as above, but by randomly
initializing and freezing the parameters of the BERT-large model. We use
this baseline as a lower bound, as the representations extracted from the
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encoder hold no particular meaning, making it difficult even to
discriminate between different words, let alone different senses of the
same word. Therefore, we expect that the performance obtained by this
baseline can be completely attributed to the ability of the classification
head to learn simple patterns (e.g., learning to predict the MFS).

6.2.3 Results. We report the results of this experiment in Table 13. The difference in
performance between models is not particularly evident on ALLNEW, where the systems
are in the same ballpark, with the sole exception of the smaller OPUS models. Instead,
significant performance gaps can be observed when considering the results obtained
on DIBIMTWSD, where only the bigger NLLB-200 models are able to achieve a perfor-
mance above or on par with BERTLG, and all other MT models perform worse than
BERTLG by a sizeable margin. In this respect, Figure 6 shows how the WSD accuracy
on DIBIMTWSD varies in relation to the capacity of the models. Several tested encoders
are larger than BERTLG, with NLLB-200LG featuring more than 5 times its parameters;
nevertheless, similar-size M2M100LG and MBart50 models attain an accuracy score that
is considerably lower than that of BERTLG. These results suggest that the pre-training
objective of BERTLG is more suited for the task of WSD. Furthermore, it seems that, while
more capacity is key to producing richer representations, the training recipe can make a
big difference, given that the smaller NLLB-200SM model outperforms several other MT
encoders, achieving a higher score than the bigger M2M100LG, when evaluating against
DIBIMTWSD.

Looking at the left-hand side of Figure 6, instead, the OPUS models exhibit re-
markably low accuracy. In light of the performance of the baselines, it is particularly
interesting to look at OPUSMUL, which obtains an accuracy score on DIBIMTWSD that is
only slightly above the lower bound provided by BERTLG random. We hypothesize that
the representations of its encoder are not rich enough to provide a decision boundary

Table 13
WSD accuracy of MT encoders and the baselines, measured on ALLNEW and on DIBIMTWSD. The
scores of OPUS models are averaged across languages, since we use a different OPUSBIL for each
target language, and OPUSMUL requires a special token indicating the target language in the
input.

Model ALLNEW DIBIMTWSD

MBart50 77.10 32.76
MBart50MTM 77.51 34.70

M2M100 76.23 29.96
M2M100LG 78.06 32.97

OPUSBIL 73.86 25.82
OPUSMUL 68.29 12.53

NLLB-200SM 78.04 39.66
NLLB-200MD 79.56 45.91
NLLB-200MDD 79.76 48.82
NLLB-200LG 80.56 53.34

Baseline ALLNEW DIBIMTWSD

BERTLG 79.48 46.74
BERTLG random 57.11 12.29

MFS 60.91 12.75
Random choice 26.66 15.23
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for infrequent senses, which is further demonstrated by the performance of the same
model on ALLNEW, where OPUSMUL scores well above BERTLG random. This is probably
due to the focus words in DIBIMT being more difficult to disambiguate since these
show a higher polysemy degree,29 and the most frequent sense is more rarely the correct
one; this is also confirmed by the performance of the MFS and Random choice baselines.
Indeed, (i) MFS attains a relatively decent score on ALLNEW, but a particularly low one
on DIBIMTWSD, indicating that the most frequent sense is seldom the correct one for
DIBIMTWSD instances; and (ii) the performance of the Random choice baseline decreases
moving from ALLNEW to DIBIMTWSD, which is due to the ambiguous focus words in
DIBIMTWSD having a higher polysemy degree, and therefore more candidate senses to
choose from.

Finally, we offer a partial answer to the question raised in Section 6.1.2: Why do
OPUS models demonstrate superior DIBIMT performance compared to their encoder’s
WSD accuracy? Since OPUSMUL performs similarly to BERTLG random, we hypothesize
that the decoder compensates for the encoder’s limited contextualization by leveraging
its own parameters to generate correct lexicalizations. Instead, OPUSBIL shows a distinct
pattern, as its encoder’s WSD accuracy on DIBIMT is significantly higher than BERTLG

29 The average polysemy degree of DIBIMTWSD instances is 10.56, compared to 5.87 for ALLNEW .
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random, suggesting that there might be a different reason behind its performance. In the
next section, we investigate the phenomenon of budgeting under the lens of the perfor-
mance difference between OPUSBIL and OPUSMUL, and put forward an explanation for
this behavior.

6.3 Does Multilinguality Come at the Cost of Performance?

In the context of studying disambiguation biases in MT, we use the term budgeting to
refer to the phenomenon whereby a model sacrifices its ability to represent infrequent
senses of ambiguous words so as to be able to learn other information, such as that
coming from more languages. On the basis of the surprisingly high performance of
OPUSBIL compared to its size and that of the other models tested, we hypothesize that
multilingual models may be budgeting their disambiguation capabilities to memorize
more common senses in multiple languages. In this section, we investigate this phe-
nomenon by analyzing the performance obtained by OPUSBIL and OPUSMUL, thereby
answering RQ5. We note that this experiment shares the experimental setup with that
of Section 6.2.

6.3.1 Results. Table 14 reports the disambiguation performance achieved by using the
encoder representations of OPUSBIL and OPUSMUL, both on ALLNEW and DIBIMTWSD,
as well as the DIBIMT accuracy obtained by the corresponding architecture (column
DIBIMTMT). In every tested language, the performance of OPUSMUL is worse than that
of OPUSBIL. As mentioned in Section 6.2, the performance gap is emphasized when
evaluating against DIBIMT sentences, where OPUSBIL models obtain a score that is
significantly higher than that achieved by OPUSMUL. We highlight that OPUSMUL fea-
tures the same neural architecture and a number of parameters comparable to that of
OPUSBIL, and, to the best of our knowledge, OPUSMUL was trained using the data of
the bilingual models combined. Therefore, we attribute its worse performance to the
phenomenon of budgeting which might hamper its disambiguation capabilities.

Going back to the question posed in Section 4.4, that is, Why does OPUSBIL out-
perform larger models?, budgeting provides a possible answer. In fact, all M2M100 and
MBart50 models are massively multilingual, thus using the same set of parameters to
translate multiple languages. However, while the results of this experiment suggest that
budgeting plays a significant role in this situation, we cannot isolate this phenomenon as

Table 14
Comparison of OPUS models in different languages. The language direction EN→ SL is not
included because the corresponding OPUSBIL model is not available.

ALLNEW DIBIMTWSD DIBIMTMT

Lang. Bil. Mul. Bil. Mul. Bil. Mul.
DE 74.11 68.54 22.52 11.96 34.88 21.08
ES 74.70 68.60 28.56 12.18 37.39 25.58
IT 72.71 67.42 24.78 11.75 37.15 21.72
RU 74.09 68.66 26.19 13.04 41.29 24.05
ZH 73.93 69.84 24.25 13.47 34.45 9.76
BG 73.38 67.42 26.94 12.07 35.71 14.87
NL 74.13 68.44 27.48 12.39 31.01 18.48
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Table 15
DIBIMT scores averaged across languages for varying values of the beam size β. For each
translation and its set of beams, we select the beam deemed the most probable by the MT model.
For Min, we select the translation with the highest probability (assigned by the model) across all
beams and beam sizes (i.e., across 126 outputs).

Model β = 1β = 1β = 1 β = 5β = 5β = 5 β = 20β = 20β = 20 β = 100β = 100β = 100 Min
MBart50 35.38 35.49 35.98 36.17 36.12
MBart50MTM 34.77 35.45 36.09 35.75 35.70

M2M100 24.67 24.93 25.53 24.94 26.33
M2M100LG 30.92 30.90 31.21 31.36 32.11

OPUSBIL 34.97 35.57 35.71 35.80 36.33
OPUSMUL 19.89 20.00 20.38 20.88 21.23

NLLB-200SM 39.08 39.60 39.82 40.06 40.51
NLLB-200MD 49.95 50.64 50.91 51.15 51.76
NLLB-200MDD 52.40 53.12 53.40 54.03 54.67

the only reason for the performance disparity, since M2M100 and MBart50 were trained
using different datasets and algorithms compared to OPUSBIL.

Furthermore, we hypothesize that budgeting is also responsible for lowering MT
models’ DIBIMT accuracy to the level of their corresponding encoder’s WSD accuracy,
as discussed in Section 6.1.2. Indeed, the decoder of a multilingual model is required
to learn to generate text in several output languages, which might reduce the model’s
capacity allocated to accurately translating rarer senses. Conversely, since OPUSBIL’s
decoder is asked to generate text in a single language, additional capacity can be allo-
cated to compensate for the limitations of its encoder’s representations, thus attaining a
DIBIMT score higher than its encoder’s WSD performance.

6.4 Is Beam Search at Fault?

Given the copious amounts of data on which models are trained, it might be possible
that the information necessary to translate infrequent senses is stored latently some-
where within the model. Since MT systems generally rely on the beam search algorithm
with relatively low beam sizes to produce translations, an insufficient exploration of
the decoding tree could prevent models from choosing a sequence containing a correct
translation. In order to investigate this possibility, we now tackle RQ6, that is, the impact
of the beam search on the disambiguation capabilities of MT models. Specifically, we
investigate whether the decoding strategy utilized by an MT model can be considered,
at least partially, responsible for its disambiguation errors. To this end, we explore the
decoding space of MT models using the beam search algorithm with several beam size
values β, that is, 1 (equivalent to greedy decoding), 5, 20, and 100, and with default
generation parameters, in the following two different settings.30

Standard Setting. Table 15 reports the DIBIMT accuracy as computed on the min-
perplexity translations produced by beam search at each value of β. Unexpectedly, we
find that increasing the beam size does not guarantee the min-perplexity sentence to

30 Due to hardware constraints, we do not include NLLB-200LG in this experiment.
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have a lower perplexity than those found in smaller beam sizes. Therefore, we also
compute accuracy using the translations with the absolute lowest perplexity which we
could find in any of the 126 explored beams (column Min).

Oracle Setting. Table 16 reports the maximum DIBIMT accuracy that can be obtained by
cherry-picking the best translations at each value of β (i.e., as if we had an oracle telling
us whether or not a translation is correct). That is, given a list of translations decoded
by a model for a specific instance in DIBIMT, that instance is considered GOOD if any of
the decoded translations is classified as GOOD, while it is considered BAD if there are no
GOOD translations and at least one BAD translation, and MISS otherwise. We also compute
the oracle accuracy using, for each item, the best of the 126 explored beams (column
Comb).

6.4.1 Results. We observe that, using the oracle, the performance of every model steadily
increases with larger beam sizes: On the one hand, we observe that, at least in this
setting, models are not able to decode any GOOD translation in a high percentage of
cases (i.e., from approximately 32% for NLLB-200MDD to almost 75% for OPUSMUL); on
the other hand, this indicates that by exploring the decoding space of the models we
are indeed able to find GOOD translations that had not been found with smaller beam
sizes, with an average accuracy increase of approximately 15 points between β = 1 and
β = 100. Nonetheless, by looking at the results in Table 15, we notice that the DIBIMT
scores do not significantly improve when selecting min-perplexity sentences found
by exploring larger beams. This suggests that, regardless of the beam size, these MT
models tend to be more confident in producing sentences containing a BAD translation
of the focus word rather than a GOOD one. These results indicate that the evaluated MT
models display an intrinsic bias toward more frequent senses of ambiguous words.
Interestingly, we also notice that increasing the beam size does not always steer the
generation toward sentences that are deemed more probable by the underlying model.
Indeed, we found that, in approximately 64% of cases, the most likely translation is not

Table 16
Upper bound on the DIBIMT scores averaged across languages for varying values of the beam
size β. The scores are computed using an oracle that, for each translation and its set of beams,
selects one that contains a GOOD translation of the focus word, if any, then one with a BAD
translation, and, if both are missing, a translation that would be classified as a MISS. For Comb,
the oracle selects, for each item, the best among all beams and beam sizes combined (i.e., among
126 outputs).

Model β = 1β = 1β = 1 β = 5β = 5β = 5 β = 20β = 20β = 20 β = 100β = 100β = 100 Comb
MBart50 35.38 38.42 42.95 50.34 50.39
MBart50MTM 34.77 38.08 42.77 49.86 49.97

M2M100 24.67 27.21 31.29 37.55 37.52
M2M100LG 30.92 33.61 38.95 46.57 46.59

OPUSBIL 34.97 39.90 47.37 57.26 57.25
OPUSMUL 19.89 20.53 22.57 25.82 25.73

NLLB-200SM 39.08 43.01 48.65 55.71 55.72
NLLB-200MD 49.95 54.30 58.64 65.68 65.71
NLLB-200MDD 52.40 56.75 61.73 68.22 68.20
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generated using a beam size of 100. In particular, by looking at column Min of Table 15,
we notice that some systems have slightly higher accuracy scores when we select the
most probable translation among all generations. This suggests that whenever aiming to
obtain the generation deemed most probable by the model via beam search, increasing
the beam size as much as possible might not be the best option. Instead, it might be
more effective to generate several sets of sentences with different beam sizes, and then
return the most probable one among all generations.

As a matter of interest, when considering any of the translations produced by any
beam size in the oracle setting (column Comb in Table 16), the results remain almost
identical to β = 100, indicating that, most of the time, at least one among the 100
decoded sentences contains a GOOD translation of the focus words.

6.5 Can MT Evaluation be Improved by Dedicated Benchmarks?

Arguably the best way of evaluating MT systems is to ask professional human transla-
tors to rate their outputs. Indeed, over the last few years, several techniques for human
evaluation have been proposed, where annotators are tasked with either rating the
quality of translations with a score between 1 and 100 (Graham et al. 2013; Kocmi et al.
2022), or with identifying and classifying the category and severity of error spans in
the translations (Lommel, Uszkoreit, and Burchardt 2014; Freitag et al. 2021). However,
human evaluation is expensive, and therefore difficult to use for assessing the quality
of different iterations of the same models, let alone for selecting the best checkpoints at
training time. In order to obtain a less expensive and time-consuming evaluation, the
community relies on automatic evaluation strategies. These are based on one or more
evaluation metrics that assess the degree of faithfulness and adherence of a candidate
translation to the corresponding source text.

We now aim to determine if a standard automatic MT evaluation setting is effective
at detecting disambiguation errors (RQ7), and whether it can be improved by accompa-
nying the assessments with the scores returned by a dedicated benchmark like DIBIMT.
To this end, we select two widely used test datasets, along with four among the most
popular evaluation metrics.

We first translate the sentences of the test datasets using several MT systems, then
we score their translations using the selected metrics and measure their correlation
with the DIBIMT accuracy. Our goal is to understand whether the MT systems that are
ranked higher by the DIBIMT accuracy—and therefore more capable of disambiguating
ambiguous words—are also ranked higher by popular MT metrics on the selected test
sets. Therefore, we use Kendall’s tau coefficient, which is a statistic used to measure the
ordinal association between two measured quantities (Kendall 1938). In addition, we
qualitatively analyze our results to get a sense of how current evaluation techniques
fare when dealing with systems that have different disambiguation capabilities.

6.5.1 Test Data. We measure the performance of our MT systems on two test datasets:

1. Flores-200 (Goyal et al. 2022; NLLB Team et al. 2022): A parallel corpus
containing 3,001 sentences coming from English Wikipedia31 and
translated into 200 languages by professional translators. The dataset is

31 Specifically, one third of the source sentences comes from Wikinews, one third from Wikijunior, and the
last third comes from WikiVoyage.
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divided into three splits: dev, devtest, and test, which is hidden. We
report our scores on the devtest split.

2. Medline-2022 (Neves et al. 2022): A parallel corpus composed of
abstracts of scientific publications in the biomedical domain retrieved
from the MEDLINE database,32 along with five clinical case reports
selected from publications of the Journal of Medical Case Reports,
covering several translation directions: EN↔ {ES, IT, DE, RU, ZH, FR, PT}.

We select Flores-200 and Medline-2022 because both have become standard benchmarks
for measuring the performance of multilingual MT systems, the former for its wide cov-
erage in terms of language pairs, and the latter for its domain specificity. Unfortunately,
Medline-2022 covers only five out of the eight language pairs available in the DIBIMT
benchmark.

6.5.2 MT Evaluation Metrics. We measure the performance of our models with four
commonly used MT evaluation metrics:

1. BLEU is a precision-oriented metric computed using the number of
overlapping n-grams between a translation and its reference (Papineni
et al. 2002). The final score also takes into account a brevity penalty. We
compute BLEU using corpus score from the sacreBLEU library (Post
2018).

2. chrF++ compares a translation and its reference based on the number of
overlapping character n-grams and word unigrams and bigrams they
share (Popović 2015, 2017). We also use sacreBLEU for computing
chrf++, using the corpus score function.

3. BERTScore leverages pre-trained encoders to extract the contextualized
embeddings of the tokens of a translation and its reference (Zhang et al.
2020). Then, it computes the cosine similarity between each pair of
embeddings, greedily matching the most similar ones. Based on the
embeddings’ similarities, BERTscore returns a Precision, Recall, and F1
measure. We report the F1 score, computed using the evaluate library
from HuggingFace.33

4. COMET is a machine-learned metric which takes as input a candidate
translation, its reference, and the source sentence in the original
language. COMET is trained with a regression objective to approximate
human judgment (Rei et al. 2022), and outputs scores between 0 and 1,
with 1 indicating a perfect translation. We use the default model
Unbabel/wmt22-comet-da, which is based upon XLM-R (Conneau et al.
2020).

32 https://www.nlm.nih.gov/databases/download/pubmed_medline.html.
33 https://huggingface.co/docs/evaluate/index.
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Table 17
Kendall correlation between metrics scores and the DIBIMT score of all tested models. Bold
numbers are statistically significant, with a p-value < 0.05. Correlation values are computed
using kendalltau from SciPy (Virtanen et al. 2020).

Test set Metric DE ES IT RU ZH BG NL SL

Flores-200

BLEU 0.780.780.78 0.820.820.82 0.820.820.82 0.820.820.82 0.11 0.790.790.79 0.960.960.96 0.560.560.56
chrF++ 0.780.780.78 0.820.820.82 0.780.780.78 0.820.820.82 0.20 0.790.790.79 1.001.001.00 0.560.560.56
BERTScore 0.820.820.82 0.820.820.82 0.820.820.82 0.820.820.82 0.24 0.790.790.79 0.960.960.96 0.560.560.56
COMET 0.870.870.87 0.780.780.78 0.820.820.82 0.820.820.82 0.24 0.710.710.71 0.910.910.91 0.670.670.67

Medline-22

BLEU 0.690.690.69 0.640.640.64 0.600.600.60 0.640.640.64 0.47 – – –
chrF++ 0.780.780.78 0.640.640.64 0.690.690.69 0.640.640.64 0.560.560.56 – – –
BERTScore 0.730.730.73 0.640.640.64 0.640.640.64 0.730.730.73 0.510.510.51 – – –
COMET 0.820.820.82 0.690.690.69 0.600.600.60 0.690.690.69 0.510.510.51 – – –

6.5.3 Results. Table 17 presents the Kendall correlation between various metrics as-
sessments and the DIBIMT accuracy for each target language. With the exception of
the translation direction EN→ ZH, most correlations are notably high, indicating that
current MT evaluation metrics tend to rank MT models with stronger disambiguation
capabilities higher. However, this is not sufficient for answering RQ7. More specifically,
it is probable that MT models that are proficient in translating highly ambiguous words
inherently perform better overall, leading to higher scores from MT metrics. To explore
this further, Figure 7 compares the metrics scores and the DIBIMT accuracy, both aver-
aged across languages. Despite the high correlations, we observe significant differences
in the value ranges between the metrics scores and DIBIMT accuracy. Specifically, the
metrics scores tend to be relatively flat, suggesting that, while they generally rank
systems similarly to DIBIMT, they do not clearly reflect the performance differences
between them in terms of disambiguation capabilities. This is particularly evident when
examining NLLB-200 models, where the DIBIMT accuracy increases from NLLB-200SM

to NLLB-200LG by a substantial delta of approximately 15 points, while all metrics report
modest improvements. Furthermore, most metrics rank M2M100 differently compared
to DIBIMT, suggesting that M2M100 may particularly struggle with translating am-
biguous words while at the same time being capable of generating overall good quality
translations.

As a final consideration, we highlight that MT metrics consider various factors for
assessing overall translation quality, which might lead to overlooking or not sufficiently
penalizing disambiguation errors. Additionally, when compared with the sentences in
the DIBIMT benchmark, the lower ambiguity in the two considered test sets could be
a factor. In conclusion, whether it be due to limitations in the metrics or the datasets,
our results suggest that the current common evaluation setting does not probe MT
models’ ability to translate ambiguous words effectively, highlighting the necessity for
a benchmark specifically designed for it, such as DIBIMT.

6.6 Findings of Our Experiments

Here we summarize the main findings of this section:

• The encoder of a Transformer-based encoder-decoder MT system
provides a critical contribution to the overall disambiguation capabilities.
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Figure 7
Mean metrics scores for each model on the Flores-200 (7a) and Medline-2022 (7b) test sets,
together with their DIBIMT accuracy. All scores have been averaged over all tested language
pairs.

• In terms of disambiguation performance, MT systems’ encoders learn
representations that are less effective compared to BERT. However, this
gap diminishes or even disappears with the use of larger MT models.

• Multilingual models seem to trade off their disambiguation capabilities in
order to memorize more common senses in multiple languages.
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• MT systems are intrinsically biased toward more frequent senses of
ambiguous words, and increasing the beam size does not guarantee
better disambiguation performance.

• MT evaluation needs an ad-hoc benchmark to assess how systems fare
with the translation of ambiguous words, as the standard setting of
evaluation is not fitting to be employed for investigating this
phenomenon.

7. Recommendations for Future Improvements

In this section, we put forward some recommendations to the community for enhancing
the MT capabilities based on the findings of our work:

• Going beyond the surface and exploring the understanding
capabilities of MT: While MT systems have achieved tremendous
progress in producing high-quality translations, this work highlights the
crucial need to focus on their ability to deal with non-predominant
meanings of ambiguous words. While some works already tackle this
issue (Iyer, Chen, and Birch 2023; Iyer et al. 2023), there is still a long way
to go to ensure that lexical ambiguity is properly addressed in MT.

• Higher-resource languages still deserve attention: While substantial
efforts are being made to improve the availability of parallel corpora for
low-resource languages, we observe that, despite its low number of MISS
instances, a high-resource language such as Dutch exhibits the poorest
performance in DiBiMT (see Table 5). In light of this counterintuitive
finding, we encourage the MT community to assess and address the
impact of lexical ambiguity on high-resource languages as well, because
these, unexpectedly, may pose significant challenges.

• Studying the interplay between LLMs and MT systems: We observe a
recent trend in the literature suggesting that adapting LLMs may yield
superior results compared with training traditional MT architectures
from scratch, while dropping the requirement of vast amounts of parallel
corpora for training (Alves et al. 2024; Xu et al. 2024). In our work, we
further explore this trend by assessing LLMs’ ability to deal with lexical
ambiguity. Interestingly, our experimental results show that Tower-7B, a
language model for translation-related tasks built upon LLaMA 2, which
we experimented with, outperforms LLaMA2-7B, LLaMA3-8B, and all
open-source MT systems when evaluated against DIBIMT. In light of
such findings, we suggest that the research community further
investigates the potential of LLMs in MT.

• Re-balancing the training data of MT systems: One of the crucial
obstacles that systems face when dealing with lexical ambiguity is sense
infrequency. To translate words used with infrequent senses effectively,
we encourage the community to explore artificially increasing the
occurrences of such senses in training corpora. However, such data
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modification could compromise the systems’ ability to properly translate
common senses. In such experimental scenarios, the DIBIMT benchmark
can play a pivotal role in evaluating the effects of any adjustments to the
training methodology and achieving an optimal balance.

8. Conclusion

In this article, we present DIBIMT, an entirely manually curated benchmark for in-
vestigating the ability of MT systems to deal with lexical ambiguity. DIBIMT covers
eight language pairs, each composed of English and one of the following languages:
Bulgarian, Chinese, Dutch, German, Italian, Russian, Slovene, and Spanish. We put
forward a detailed study of the impact of lexical ambiguity on the automatic translation
output by 22 systems, including both commercial and non-commercial MT systems, two
commercial LLMs, and a set of open-access LLMs. We find that commercial systems
consistently outperform their open-access counterparts, with GPT-4 achieving the best
results overall. Among the open-access systems, Gemma2-9B stands out, achieving
results that are substantially higher than all the rest and close to GPT-4. Moreover,
although the performance of all systems significantly decreases when dealing with in-
frequent meanings and highly ambiguous words, we notice that top-performing models
are more robust in handling the latter phenomenon. Conversely, all models struggle
similarly with sense infrequency, which proves to be the most challenging obstacle in
disambiguating ambiguous words. In this respect, we find that systems translate the
focus word with the most frequent sense in about 50% of cases, while approximately
75% of the time they use a sense that is more frequent than the correct one. In light
of these findings, and to counter the most prominent obstacle of sense infrequency, we
put forward promising research directions for enhancing MT capabilities. Among our
recommendations for future improvements, we include adapting LLMs to MT, since
such systems do not necessarily require vast amounts of parallel corpora as traditional
MT systems do. Furthermore, we suggest investigating and addressing the impact of
lexical ambiguity on higher-resource languages, since these might pose unexpected
challenges. We study the nature of errors produced by systems when translating am-
biguous words by carrying out a manual error analysis, in which we identify four
error patterns, namely, disambiguation errors, omissions, untranslated source words,
and hallucinations. The first error category, disambiguation errors, is the most relevant
to the DIBIMT benchmark, since this pattern consists of incorrect translations due
to the erroneous choice of word meanings. Instead, omissions occur when a given
model does not translate the focus word. We differentiate between severe and mild
omissions depending on the impact of the omission on the overall quality and com-
prehensibility of the output translation. The third error pattern is that of untranslated
source words, which are focus words reported as-is and therefore not translated into
the target language. Finally, the last error pattern is represented by hallucinations,
consisting of translations showing a significant semantic detachment from the source
text. Differently from disambiguation errors, hallucinations are not possible senses of
the focus word. Hallucinations also include a sub-pattern which we refer to as non-
existing target words, that is, output words and expressions that do not exist in the
vocabulary of the target language. Interestingly, based on our manual inspection, we
find that, while disambiguation errors and hallucinations are commonly found in the
output translations of all systems considered, untranslated source words and non-
existing target words almost exclusively affect non-commercial systems.
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In order to better investigate the ability of systems to deal with lexical ambiguity,
we also carry out an extensive array of experiments. First, we investigate the impact of
the encoder on the ability of a given MT model to disambiguate ambiguous words. Our
results demonstrate that the encoder provides a vital contribution to the disambiguation
capabilities of the corresponding architecture. Furthermore, we find that the represen-
tations learned by BERT are more effective than those learned by the encoders of MT
systems when dealing with ambiguous words. Nonetheless, we show that capacity
is key, and the encoders of larger MT systems are capable of surpassing BERT. We
also investigate the presence of a trade-off between multilinguality and performance,
a phenomenon which we refer to as budgeting, by evaluating a multilingual model and
its bilingual counterparts against the DIBIMT benchmark. We find that the multilin-
gual model OPUSMUL consistently achieves worse disambiguation performance than its
bilingual counterparts. We then examine the role of the decoding strategy in translating
ambiguous words, focusing on the impact of varying beam sizes on a model’s ability
to disambiguate these words. Our experiments reveal that an increase in beam size
does not necessarily improve performance, potentially because models are, in a high
percentage of cases, not able to translate the focus word altogether. In this context, we
show that MT systems exhibit an intrinsic bias toward more frequent senses of am-
biguous words. Specifically, these systems might assign a higher probability to wrong
translations of the ambiguous focus word despite the pool of decoded translations also
including correct translations. Finally, we investigate the effectiveness of current MT
evaluation metrics such as BLEU, chrF++, BERTScore, and COMET in assessing the
ability of models to disambiguate ambiguous words, measuring the performance of MT
systems on two popular test sets, namely, Flores-200 and Medline-2022. Crucially, we
show that the standard evaluation setting is not fitting to be used for the investigation
of disambiguation errors—whether it be due to the metrics not capturing them, or to the
test sets not being particularly suited for the task—and highlight the need for an ad-hoc
manually curated benchmark such as DIBIMT.

Our benchmark is available at https://nlp.uniroma1.it/dibimt/. In light of the
major impact of lexical ambiguity on machine-generated translations, and despite the
efforts made so far, we encourage the research community to devote particular care to
improving the disambiguation capabilities of MT systems, thereby enabling a signifi-
cantly better translation performance.

Appendix A. Annotation Guidelines

This work aims to create a novel entirely manually-curated evaluation benchmark
called DiBiMT which allows semantic biases in MT to be investigated.

With this aim in view, you receive a spreadsheet that contains approximately 1,000
automatically-extracted instances, each comprising the following data: i) a lemma and
its part of speech (PoS), associated with a definition derived from either WordNet or
Wiktionary; ii) a sentence in English containing a focus word for which some good and
bad translation candidates derived from BabelNet are provided.

For each instance, good translation candidates are located on the same line as the
definition and the example, whereas bad translation candidates can be found on the line
below. From a translation perspective, a good candidate can be described as a correct
translation into the target language for the English focus word. Instead, a bad candidate
is an incorrect translation for the English focus word in the given context.

Annotators are asked to verify: i) the correctness of the good translation candidates
and add new good translations if deemed necessary; ii) the incorrectness of the bad
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translation candidates provided. Furthermore, annotators are required to adopt the
following guidelines. Do not annotate idioms and mark them with the tag IDIOM. Do
not annotate instances in which the semantic context does not allow us to unequivocally
determine the meaning of the focus word and label these with the tag X. Discard
instances containing proper names as focus words (e.g., The military campaign near that
creek was known as “The battle of Bull *Run*”). Mark with the tag DISCUSS challenging
instances which should be discussed during joint sessions. Annotators are allowed
to include cross-PoS candidates, that is, candidates whose PoS is different from that
of the focus word and, when this is the case, annotators are required to include the
candidate in square brackets in the following way: [candidate with different pos |P].
Annotators are asked to do the same for multi-word expressions as well:
[multi word expression |P]. Annotators can specify the PoS by adding a letter (either,
n, a, v or r) after |P.

Once the aforementioned annotation steps are finalized, annotators are required
to study and classify as either GOOD or BAD all so-called MISS cases, that is, translation
candidates proposed by the MT models and LLMs considered and classified as neither
GOOD nor BAD. Please note that we expect that in only a small percentage of MISS cases is
the target translation actually missing, such as in omissions (see Section 5).

Appendix B. Discussion of Index-based Weighting in SFI

As illustrated in Section 3.4, SFI weighs instances based on their ambiguous word
meaning’s frequency index, that is, µλP (σ). This metric could be reformulated to use
sense frequencies instead of their indices to weigh the item’s contribution to the metric
score. In this section, we discuss our reasoning for using an index-based weighting
instead of a frequency-based one.

Our assumption is that computing frequencies for very low-frequency meanings is
inherently bound to produce a very noisy and unreliable estimation, especially when
considering that there are very few manually annotated corpora for WSD.34 Therefore,
given that word meanings tend to follow a Zipfian distribution, and that our very
infrequent senses are likely to have wrong estimations, we decide to leverage Zipf’s
law and use the indices instead of the raw frequency, as it should display better stability
across different corpora compared to raw frequency counts, providing a much more
robust and reliable score.

Appendix C. DIBIMT Experimental Setup

In this section, we report the generation parameters used when translating the sentences
of DIBIMT with the open-source MT systems; the API call we use for translating with
DeepL, Google, GPT-3.5TURBO, and GPT-4; and the prompt provided to GPT systems and
LLMs.

Generation Parameters. For open-source models, we use a beam size of 5, with early stop-
ping. We apply no length penalty and return the sequence with the lowest perplexity,
among those generated using the beam search algorithm.

34 WordNet computes its sense orderings via SemCor, arguably the most used manually annotated English
WSD dataset, which is composed of sentences coming from news articles of the 1960s.

390



Martelli et al. DIBIMT: A Gold Evaluation Benchmark for Studying Lexical Ambiguity in MT

Table 18
Breakdown of UNK instances.

Model DE ES IT RU ZH BG NL SL Mean
Google 1.80 2.85 1.50 1.05 1.65 1.20 0.75 0.60 1.42
DeepL 1.95 2.40 1.20 1.20 2.25 1.35 0.90 0.45 1.46

MBart50 1.80 1.80 1.05 0.75 1.05 – 0.60 0.30 1.05
MBart50MTM 1.35 1.20 1.05 0.45 0.60 – 0.45 0.75 0.84

M2M100 0.75 1.50 1.20 0.60 0.45 0.60 0.45 0.90 0.81
M2M100LG 1.20 1.50 0.90 1.05 0.75 0.90 0.75 0.60 0.96

OPUSBIL 1.80 2.10 0.90 1.35 2.10 1.20 0.75 – 1.46
OPUSMUL 0.75 1.20 1.05 0.30 0.60 0.45 0.45 0.30 0.64

NLLB-200SM 1.50 1.95 0.60 0.60 0.45 0.45 1.05 0.90 0.94
NLLB-200MD 1.35 2.10 0.60 0.60 1.05 0.45 0.90 0.90 0.99
NLLB-200MDD 1.05 1.80 1.20 0.90 0.60 0.75 0.90 0.90 1.01
NLLB-200LG 1.20 1.95 1.35 0.75 0.90 0.60 0.75 0.45 0.99

Llama2-7b 1.50 1.80 1.20 1.20 0.30 0.45 0.45 0.30 0.90
Llama3-8B 1.50 1.80 1.35 1.05 0.90 0.45 1.05 0.60 1.09
Mistral-7b 2.40 2.40 1.80 1.35 2.25 1.20 2.25 0.75 1.80
Gemma-2B 0.30 1.80 0.75 0.90 1.20 0.45 0.00 0.15 0.69
Gemma-7B 0.90 2.25 2.70 0.45 2.10 1.20 2.25 0.90 1.59
Gemma2-9B 0.90 2.10 1.65 1.20 2.25 0.75 1.20 0.90 1.37
Phi3-mini 1.65 2.25 1.35 0.15 0.90 0.15 0.45 0.00 0.86
Tower-7B 0.90 3.45 1.95 1.35 2.25 0.45 1.20 0.00 1.44

GPT-3.5TURBO 0.75 2.70 2.40 1.20 2.70 0.75 1.20 0.75 1.56
GPT-4 1.50 2.85 2.25 1.20 3.15 0.75 0.90 0.75 1.67

Mean 1.31 2.08 1.36 0.89 1.38 0.73 0.89 0.58 1.15

API Calls. We generate translations into all our target languages with GPT-3.5TURBO

and GPT-4 using the API made available by OpenAI.35 For both models, we use the
following instruction-based prompt: “Translate the following English text to {lang}:
{source text}”, where {lang} and {source text} are two variables containing a given
target language and the source sentence to be translated, respectively. In both cases, we
adopt the default hyperparameters.

Appendix D. DIBIMT Additional Results

In this section, we report additional information regarding the overall results of systems
on the DIBIMT benchmark, discussed in Section 4.

Appendix D.1 UNK Instances

A breakdown of UNK instances is reported in Table 18.

35 https://platform.openai.com/.
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Appendix D.2 MFS and MFS+

Table 19 reports the scores of MFS and MFS+ metrics, indicating the percentage of times
that a system translates ambiguous words with their most frequent sense (MFS), or
with senses more frequent than the correct one (MFS+). As can be seen from the Mean
column, most systems obtain roughly the same scores, irrespective of their performance;
indeed, even GPT-4, which is the best among the tested systems, reports MFS and MFS+
scores in line with the others. This suggests that almost all systems36 tend to default to
more frequent senses at the same rate.37

Appendix D.3 Noun vs. Verbs

Tables 20 and 21 report the accuracy scores of all systems when measured only on nouns
and verbs, respectively.

Appendix E. WSD Systems Training – Experimental Setup

In this section, we describe the experimental setup used for training WSD systems.

Appendix E.1 Data

We use SemCor and WNG for training and SemEval-2007 for development:

• SemCor corpus is typically used for training WSD systems, which
contains 33,362 sentences, totaling 226,036 instances, which have been
manually annotated with their WordNet sense.

• WNG contains 117,659 definitions and 48,318 examples coming from
WordNet, manually annotated with their sense.

• SemEval-2007 comprises 455 sense-annotated instances sourced from
articles in the Wall Street Journal Corpus (Paul and Baker 1992). Unlike
other datasets, the annotated instances in SemEval-2007 are exclusively
nouns or verbs.

Appendix E.2 Model Architecture

Our architecture is based on that of Amuse-WSD (Orlando et al. 2021), with some minor
modifications. Specifically, given a word in context w, we first encode w and extract
the hidden state of the last layer of the encoder; then, we apply batch normalization to

36 We note that M2M100 systems prefer the most frequent sense at a lower rate, compared with other
systems.

37 We clarify that MFS and MFS+ are computed considering only the BAD instances, and therefore the scores
of different systems are not computed on the same number of instances.
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Table 19
Frequency analysis. MFS represents the percentage of times the model mistakenly translates the
focus word into a lexicalization belonging to the Most Frequent Sense associated with λP. MFS+,
instead, is the percentage of times the wrong translation belongs to any synset that is more
frequent than the focus one.
Model Metric DE ES IT RU ZH BG NL SL Mean
Google MFS 58.37 60.50 57.48 41.76 48.88 42.86 51.75 47.66 51.16
Google MFS+ 80.54 75.21 76.38 72.53 69.96 75.89 76.57 76.56 75.45
DeepL MFS 52.73 57.22 60.23 42.86 46.34 49.35 50.82 51.35 51.36
DeepL MFS+ 72.73 74.87 80.11 75.32 71.14 75.32 77.87 77.48 75.61

MBart50 MFS 53.75 48.85 57.19 42.37 49.24 – 56.09 51.35 51.26
MBart50 MFS+ 80.31 65.23 81.75 80.53 77.48 – 78.53 81.08 77.84
MBart50MTM MFS 53.80 57.00 61.73 43.08 50.00 – 52.56 57.94 53.73
MBart50MTM MFS+ 81.19 76.45 84.12 82.21 79.92 – 77.56 85.98 81.06

M2M100 MFS 56.63 59.81 53.33 43.80 51.59 44.80 52.75 49.66 51.55
M2M100 MFS+ 80.65 76.32 80.33 80.23 81.98 76.80 79.61 79.19 79.39
M2M100LG MFS 51.72 59.94 56.58 39.35 53.92 44.88 51.95 45.96 50.54
M2M100LG MFS+ 78.68 76.09 82.89 77.98 83.66 76.38 79.88 78.26 79.23

OPUSBIL MFS 51.80 57.26 57.66 41.22 48.81 49.57 53.82 – 51.45
OPUSBIL MFS+ 82.04 73.74 83.48 75.95 76.11 79.13 78.59 – 78.43
OPUSMUL MFS 56.49 68.17 57.88 50.76 57.68 54.74 55.02 54.17 56.86
OPUSMUL MFS+ 85.50 84.08 82.19 85.28 81.65 81.05 77.70 79.17 82.08

NLLB-200SM MFS 56.73 59.15 57.61 42.21 51.54 46.15 50.35 53.54 52.16
NLLB-200SM MFS+ 81.82 76.47 81.52 79.90 77.09 76.92 77.11 82.83 79.21
NLLB-200MD MFS 55.17 58.10 55.16 44.91 50.25 47.19 49.13 50.67 51.32
NLLB-200MD MFS+ 81.77 75.49 76.23 75.45 74.11 71.91 77.39 77.33 76.21
NLLB-200MDD MFS 57.81 57.31 50.97 40.91 50.79 50.62 51.74 52.00 51.52
NLLB-200MDD MFS+ 81.77 74.70 76.21 73.30 73.82 76.54 80.87 78.67 76.98
NLLB-200LG MFS 54.82 57.38 54.35 44.00 50.50 52.70 43.26 63.49 52.56
NLLB-200LG MFS+ 81.93 72.57 75.00 73.33 71.29 79.73 78.14 87.30 77.41

Llama2-7b MFS 55.56 62.27 52.88 48.82 46.58 37.50 52.53 54.10 51.28
Llama2-7b MFS+ 80.70 78.18 83.25 83.46 70.55 75.00 78.28 77.05 78.31
Llama3-8B MFS 59.09 59.90 56.35 35.71 46.31 41.18 52.36 64.62 51.94
Llama3-8B MFS+ 83.77 76.33 79.70 73.81 67.79 75.00 77.83 86.15 77.55
Mistral-7b MFS 52.56 57.08 50.53 45.91 42.78 32.88 46.67 45.83 46.78
Mistral-7b MFS+ 82.69 76.71 77.89 81.13 68.56 65.75 73.33 59.72 73.22
Gemma-2B MFS 57.32 58.20 54.17 38.10 46.43 42.22 45.74 47.22 48.67
Gemma-2B MFS+ 78.05 71.96 80.36 68.57 67.26 77.78 69.15 63.89 72.13
Gemma-7B MFS 56.74 56.46 55.87 40.00 50.27 30.12 45.41 41.25 47.02
Gemma-7B MFS+ 80.34 75.12 84.36 75.45 71.35 43.37 71.50 57.50 69.87
Gemma2-9B MFS 56.64 63.58 61.83 30.56 44.03 54.39 46.94 57.14 51.89
Gemma2-9B MFS+ 76.11 77.16 83.21 68.06 60.45 80.70 74.15 84.13 75.50
Phi3-mini MFS 51.30 61.84 55.98 44.09 42.08 41.46 60.25 59.38 52.05
Phi3-mini MFS+ 77.27 78.26 79.43 77.17 69.40 70.73 82.61 71.88 75.84
Tower-7B MFS 61.07 59.52 52.47 37.93 44.38 34.78 51.46 57.78 49.92
Tower-7B MFS+ 80.92 73.81 77.78 70.69 63.31 73.91 74.27 73.33 73.50

GPT-3.5TURBO MFS 54.48 63.58 54.60 40.68 43.14 45.07 52.49 50.75 50.60
GPT-3.5TURBO MFS+ 74.63 73.99 77.91 70.34 64.05 74.65 76.24 82.09 74.24
GPT-4 MFS 55.65 64.29 54.84 38.54 42.75 44.93 51.43 55.88 51.04
GPT-4 MFS+ 75.00 75.32 77.42 66.67 61.07 72.46 72.00 80.88 72.60

Mean MFS 55.47 59.43 55.89 41.71 48.10 44.37 51.11 52.94 51.21
Mean MFS+ 79.93 75.37 80.07 75.79 71.91 73.95 76.78 77.17 76.44
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Table 20
Noun accuracy.

Model DE ES IT RU ZH BG NL SL Mean
Google 61.13 58.23 54.65 64.74 50.52 45.80 45.62 51.66 54.04
DeepL 81.08 66.77 69.60 69.52 54.45 55.42 56.72 55.71 63.66

MBart50 36.52 36.17 38.76 38.28 34.69 – 25.97 33.33 34.82
MBart50MTM 36.53 39.38 34.90 37.96 34.57 – 25.20 35.71 34.89

M2M100 28.38 32.67 25.51 29.74 16.50 19.81 21.74 28.37 25.34
M2M100LG 32.47 34.69 32.23 35.38 24.59 24.89 25.27 30.89 30.05

OPUSBIL 37.81 41.40 36.07 40.83 33.46 32.76 35.19 – 36.79
OPUSMUL 26.13 29.57 23.81 26.04 11.63 18.01 19.11 25.00 22.41

NLLB-200SM 38.27 45.58 40.29 49.36 34.76 31.77 33.47 43.81 39.66
NLLB-200MD 53.53 52.78 52.94 55.31 42.78 43.16 44.02 55.08 49.95
NLLB-200MDD 55.78 54.11 54.35 58.20 45.63 43.22 48.02 57.00 52.04
NLLB-200LG 62.95 59.53 62.73 62.20 44.95 50.00 52.00 59.90 56.78

Llama2-7b 55.56 54.07 53.15 57.05 45.64 35.88 40.87 46.97 48.65
Llama3-8B 66.26 59.04 61.54 69.64 53.97 43.51 55.27 52.17 57.68
Mistral-7b 61.90 52.02 56.83 57.60 45.69 38.75 40.09 43.79 49.58
Gemma-2B 44.33 49.77 39.77 52.99 42.35 26.92 27.72 38.96 40.35
Gemma-7B 50.47 54.88 52.29 58.02 48.57 29.79 32.41 36.67 45.39
Gemma2-9B 77.29 68.38 72.00 81.09 67.36 56.80 64.96 62.50 68.80
Phi3-mini 61.19 55.14 51.29 51.08 38.98 25.32 31.71 32.76 43.43
Tower-7B 69.05 65.43 65.58 67.81 56.71 45.71 61.66 49.11 60.13

GPT-3.5TURBO 72.79 67.12 68.04 71.76 65.52 52.50 65.41 64.61 65.97
GPT-4 75.17 68.24 70.97 78.44 68.20 59.24 65.52 65.93 68.96

Mean 53.85 52.04 50.79 55.14 43.71 38.96 41.72 46.19 47.80

obtain eeew ∈ Rd. Finally, we use a two-layer fully connected neural network to assign the
correct sense to the word in context. More formally:

eeew = BatchNorm
(
lll−1
w
)

hhhw = SiLU(WWWheeew)

ooow = WWWohhhw

where lll−1
w is the last hidden state of the transformer, BatchNorm(·) is the batch normal-

ization operation, and SiLU(x) = x · sigmoid(x) is the Sigmoid-weighted Linear Unit
(Elfwing, Uchibe, and Doya 2017). WWWh and WWWo are the weights of the first and second
layers of the fully connected, and the bias is 0. In all experiments, the weights of the
encoders are frozen, and the only trainable parameters are those in WWWh and WWWo.

Appendix E.3 Training Objective

Sense boundaries are not always clearly defined. Indeed, in the training datasets uti-
lized, there are some cases in which annotators have deemed multiple senses appro-
priate for the same instance. For this reason, Conia and Navigli (2021) frame WSD as a
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Table 21
Verb accuracy.

Model DE ES IT RU ZH BG NL SL Mean
Google 63.90 56.59 61.87 72.56 64.32 57.01 43.43 61.71 60.17
DeepL 82.88 62.50 71.89 78.55 56.70 71.23 46.15 71.76 67.71

MBart50 31.25 25.88 37.91 44.39 45.45 – 19.33 50.35 36.37
MBart50MTM 30.89 28.65 42.57 42.94 44.79 – 18.99 42.95 35.97

M2M100 23.03 21.21 28.24 35.14 25.66 26.76 13.28 38.36 26.46
M2M100LG 30.96 30.33 37.37 42.93 31.11 35.33 21.82 43.09 34.12

OPUSBIL 31.33 32.57 38.60 41.83 35.75 40.00 24.60 – 34.95
OPUSMUL 13.53 19.88 18.31 20.43 7.20 10.19 17.14 24.75 16.43

NLLB-200SM 37.75 38.08 47.06 52.87 44.17 44.53 22.73 45.99 41.65
NLLB-200MD 54.59 50.82 58.26 63.54 47.59 53.64 36.94 57.83 52.90
NLLB-200MDD 61.40 49.18 65.07 60.64 52.98 60.25 39.26 59.78 56.07
NLLB-200LG 64.65 51.20 65.13 72.16 50.60 59.51 44.77 64.37 59.05

Llama2-7b 38.17 43.59 49.72 48.31 45.38 30.67 32.43 49.33 42.20
Llama3-8B 61.46 53.00 53.02 65.27 57.82 35.58 33.75 59.62 52.44
Mistral-7b 53.33 46.88 52.74 57.23 43.14 32.80 36.36 51.43 46.74
Gemma-2B 47.66 41.96 40.19 48.15 44.88 28.57 26.67 48.89 40.87
Gemma-7B 51.01 46.03 52.47 61.11 54.44 38.75 39.00 53.25 49.51
Gemma2-9B 71.50 62.26 73.73 86.07 70.59 74.82 54.23 72.84 70.75
Phi3-mini 60.80 48.76 50.26 45.87 41.09 19.35 23.44 38.71 41.03
Tower-7B 71.94 64.09 68.20 77.72 59.77 40.32 48.97 55.74 60.84

GPT-3.5TURBO 74.90 65.68 70.80 79.63 68.50 63.70 54.80 72.45 68.81
GPT-4 79.68 72.27 72.65 82.35 75.13 70.11 58.10 78.60 73.61

Mean 51.66 45.97 52.55 58.17 48.50 44.66 34.37 54.37 48.78

multi-label classification problem, where a model is trained to maximize the probability
of all the appropriate senses of a word in context. Furthermore, they find it beneficial
to integrate relational information into the training algorithm. In this respect, they
extend the set of appropriate senses for a word in context by exploiting the semantic
connections between pairs of senses. More formally, given a focus word w, let Sw be
the set of candidate senses of w, and Ŝw ⊆ Sw be the set of correct senses. Let R be the
set of semantic connections (e.g., hypernymy or hyponymy, among others, between any
two senses). We can now define Ŝ+

w = Ŝw ∪ {sj : (si, sj) ∈ R, si ∈ Ŝw} as the new set of
appropriate senses for w, obtained by extending Ŝw to include every sense sj that is
connected to any sense si ∈ Ŝw by means of a semantic connection in R.

Our WSD systems are thus trained to minimize the binary cross-entropy loss:

LBCE(w, Ŝ+
w ) =−

∑
s∈Ŝ+

w

log(ys) (E.3)

−
∑

s∈S+
w \Ŝ+

w

log(1− ys) (E.4)
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Table 22
Accuracy values for the comparison in Figure 5.

Model WSD DIBIMT
MBart50 33.07 35.49
MBart50MTM 34.76 35.45
M2M100 27.35 25.83
M2M100LG 33.29 31.78
OPUSBIL 25.93 35.98
OPUSMUL 10.04 20.06
NLLB-200SM 39.06 40.55
NLLB-200MD 46.96 51.83
NLLB-200MDD 49.95 53.92
NLLB-200LG 55.63 57.82

where S+
w = Sw ∪ {sj : (si, sj) ∈ R, si ∈ Sw} and ys is the probability assigned to sense s by

the WSD system.

Appendix F. Additional Experimental Results

In this section, we report additional information regarding the experiments of Section 6.
In Table 22 there are the exact numerical values of the comparison shown in Figure 5.
Figures 8–19 show the comparison between metrics scores on Flores-200 and Medline-
2022, and the DIBIMT accuracy. Differently from Figure 7, the scores are not averaged
across languages, and therefore we have a different figure per each language direction.
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Figure 8
Metrics scores for each model on the Flores-200 test set, together with their DIBIMT accuracy,
when translating from English into German.
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Figure 9
Metrics scores for each model on the Flores-200 test set, together with their DIBIMT accuracy,
when translating from English into Spanish.
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Figure 10
Metrics scores for each model on the Flores-200 test set, together with their DIBIMT accuracy,
when translating from English into Italian.
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Figure 11
Metrics scores for each model on the Flores-200 test set, together with their DIBIMT accuracy,
when translating from English into Russian.
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Figure 12
Metrics scores for each model on the Flores-200 test set, together with their DIBIMT accuracy,
when translating from English into Chinese.
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Figure 13
Metrics scores for each model on the Flores-200 test set, together with their DIBIMT accuracy,
when translating from English into Bulgarian.
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Figure 14
Metrics scores for each model on the Flores-200 test set, together with their DIBIMT accuracy,
when translating from English into Dutch.
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Figure 15
Metrics scores for each model on the Medline-2022 test set, together with their DIBIMT score,
when translating from English into German.
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Figure 16
Metrics scores for each model on the Medline-2022 test set, together with their DIBIMT score,
when translating from English into Spanish.
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Figure 17
Metrics scores for each model on the Medline-2022 test set, together with their DIBIMT score,
when translating from English into Italian.
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Figure 18
Metrics scores for each model on the Medline-2022 test set, together with their DIBIMT score,
when translating from English into Russian.
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Figure 19
Metrics scores for each model on the Medline-2022 test set, together with their DIBIMT score,
when translating from English into Chinese.
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Appendix G. Additional Tables

Table 23
MISS % after the manual refinement process described in Section 4.3.

Model DE ES IT RU ZH BG NL SL Mean
Google 9.01 11.42 7.00 12.42 21.65 27.77 21.75 13.88 15.61
DeepL 4.43 14.29 7.44 10.47 15.18 29.94 22.39 18.37 15.31

MBart50 25.19 22.14 28.94 33.08 34.55 – 38.46 49.47 33.12
MBart50MTM 29.79 31.56 30.76 36.45 34.39 – 39.16 50.00 36.02

M2M100 42.45 31.66 36.72 42.68 46.08 47.36 42.62 45.39 41.87
M2M100LG 28.98 26.64 28.74 31.67 35.95 40.09 33.84 32.58 32.31

OPUSBIL 21.22 11.94 19.36 31.91 31.55 40.52 28.40 – 26.41
OPUSMUL 49.85 40.67 43.48 60.60 55.20 59.49 50.30 58.35 52.24

NLLB-200SM 31.96 18.50 25.49 38.61 43.83 50.45 39.09 49.92 37.23
NLLB-200MD 31.91 18.53 24.28 38.61 45.45 48.64 40.85 46.60 36.86
NLLB-200MDD 29.39 18.17 23.37 34.64 43.59 45.62 37.22 41.60 34.20
NLLB-200LG 29.29 16.06 22.64 32.33 41.91 45.55 36.25 43.37 33.42

Llama2-7b 48.55 32.67 39.45 58.42 59.70 68.98 51.96 68.87 53.58
Llama3-8B 33.33 25.50 27.81 40.76 49.17 61.14 39.85 60.03 42.20
Mistral-7b 42.40 32.41 34.66 42.86 46.32 56.75 47.39 58.61 45.17
Gemma-2B 54.74 45.34 57.25 67.47 54.93 81.93 61.17 81.68 63.06
Gemma-7B 45.08 33.28 41.45 59.34 41.96 66.46 51.53 65.66 50.59
Gemma2-9B 31.77 25.88 25.00 33.38 34.20 53.47 42.94 46.44 36.64
Phi3-mini 39.79 31.90 35.41 62.76 53.71 83.48 65.66 86.66 57.42
Tower-7B 32.22 24.07 24.62 35.26 37.88 74.85 39.61 74.06 42.82

GPT-3.5TURBO 21.15 18.18 16.90 27.47 28.97 47.73 28.83 33.69 27.86
GPT-4 15.83 17.59 14.88 25.64 29.72 41.84 29.05 26.74 25.16

Mean 31.74 24.93 27.98 38.95 40.27 53.60 40.38 50.09 38.49
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Table 24
MISS % before the manual refinement process described in Section 4.3.

Model DE ES IT RU ZH BG NL SL Mean
Google 39.27 29.48 28.70 52.80 42.03 81.83 39.67 81.53 49.41
DeepL 45.92 35.61 36.30 56.04 40.49 85.11 43.29 84.08 53.36

MBart50 40.06 43.20 41.87 53.54 48.80 – 46.84 84.36 51.24
MBart50MTM 42.56 43.46 43.93 54.59 48.87 – 49.25 84.36 52.43

M2M100 50.68 44.02 44.14 55.34 52.26 82.16 50.98 80.18 57.47
M2M100LG 43.35 38.01 38.83 49.77 45.63 81.23 43.59 77.78 52.27

OPUSBIL 37.10 26.36 30.62 51.21 43.47 81.20 39.61 – 44.22
OPUSMUL 54.05 46.46 45.93 65.26 57.36 84.41 55.26 81.53 61.28

NLLB-200SM 43.07 32.63 38.20 57.23 54.52 82.88 47.44 84.08 55.01
NLLB-200LG 48.42 34.75 40.33 60.84 57.40 84.71 51.13 86.34 57.99
NLLB-200MD 48.42 33.74 39.97 57.92 55.87 84.98 48.64 85.44 56.87
NLLB-200LG 50.83 32.27 41.20 60.84 55.05 85.89 48.57 86.79 57.68

LLaMA2-7B 57.53 42.51 50.98 70.50 68.32 88.46 60.75 88.74 65.97
LLaMA3-8B 52.72 38.37 42.36 62.58 61.99 87.26 50.76 88.16 60.53
Mistral-7B 55.35 44.71 48.18 60.15 56.36 86.92 57.90 86.77 62.04
Gemma-2B 65.06 54.63 64.06 75.98 62.59 92.04 67.07 93.10 71.82
Gemma-7B 58.35 45.80 51.82 73.30 53.51 84.68 59.12 84.71 63.91
Gemma2-9B 55.64 39.40 44.73 65.41 53.73 87.67 58.16 86.94 61.46
Phi3-mini 56.13 42.88 47.36 71.88 62.05 93.25 68.87 95.05 67.18
Tower-7B 53.70 40.92 44.11 61.82 51.28 90.70 55.29 91.60 61.18

GPT-3.5TURBO 47.44 33.54 36.91 59.09 47.19 86.77 46.76 86.04 55.47
GPT-4 44.04 33.64 35.15 58.85 49.39 85.14 47.89 84.08 54.77

Mean 49.53 38.93 42.53 60.68 53.10 85.86 51.67 85.79 58.51
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Table 25
Accuracy scores before the manual refinement process described in Section 4.3.

Model DE ES IT RU ZH BG NL SL Mean
Google 34.83 36.85 37.71 37.18 47.91 24.79 35.50 16.26 33.88
DeepL 54.47 46.59 47.04 38.14 43.22 33.33 39.89 17.92 40.08

M2M100 8.84 9.73 12.90 10.44 16.72 6.72 18.40 5.30 11.13
M2M100LG 13.60 15.57 17.40 15.32 19.67 13.60 20.86 9.46 15.69

MBart50 15.58 15.96 17.62 15.26 30.00 – 22.10 8.65 17.88
MBart50MTM 16.23 17.55 18.98 12.91 28.61 – 22.85 9.62 18.11

OPUSBIL 13.91 24.69 20.65 18.01 24.73 17.60 26.43 – 20.86
OPUSMUL 7.84 9.86 10.58 4.33 11.27 7.69 17.79 3.25 9.08

NLLB-200SM 18.52 25.90 21.90 21.13 29.47 17.54 26.65 12.26 21.67
NLLB-200MD 28.86 33.95 33.92 29.62 36.88 24.51 32.92 16.48 29.64
NLLB-200MDD 34.11 34.93 37.69 32.62 40.96 27.00 37.24 19.59 33.02
NLLB-200LG 38.53 38.26 43.48 39.23 40.60 30.85 39.77 20.45 36.40

LLaMA2-7B 26.95 34.47 32.52 25.13 38.39 14.29 25.67 8.00 25.68
LLaMA3-8B 40.58 39.71 38.85 37.25 48.02 18.82 34.97 11.39 33.70
Mistral-7B 34.12 30.05 36.26 28.90 38.54 14.94 27.44 6.82 27.13
Gemma-2B 24.14 29.77 20.50 24.53 35.89 20.75 25.11 6.52 23.40
Gemma-7B 27.80 32.96 32.39 24.86 44.26 14.71 29.74 8.82 26.94
Gemma2-9B 49.15 48.64 53.13 52.40 61.51 30.49 45.85 21.84 45.38
Phi3-mini 34.48 33.95 33.81 21.39 32.94 11.11 24.15 3.03 24.36
Tower-7B 46.25 47.80 46.22 44.44 53.56 29.03 43.24 14.29 40.60

GPT-3.5TURBO 50.72 52.28 50.12 46.30 60.34 28.41 49.01 18.28 44.43
GPT-4 53.91 54.11 53.74 53.31 65.36 34.34 51.88 22.64 48.66

Mean 30.61 32.44 32.61 28.76 38.58 21.03 31.70 12.42 28.52
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Table 26
SFI scores for each system and language. Higher is better.

Model DE ES IT RU ZH BG NL SL Mean
Google 53.24 51.20 47.88 59.73 49.82 42.91 35.51 45.42 48.21
DeepL 74.34 54.31 58.60 62.30 46.13 49.96 41.43 50.15 54.65

MBart50 25.70 22.66 26.06 27.99 29.07 – 19.35 27.20 25.43
MBart50MTM 23.64 25.19 25.00 27.02 28.37 – 19.29 23.35 24.55

M2M100 21.38 21.20 20.77 22.62 11.84 18.33 17.00 22.19 19.42
M2M100LG 24.25 26.33 25.09 29.25 16.50 22.37 17.92 25.45 23.39

OPUSBIL 24.41 28.94 28.06 29.86 28.50 25.04 25.42 – 27.18
OPUSMUL 14.38 19.35 15.80 18.03 4.91 9.35 16.19 17.48 14.44

NLLB-200SM 30.11 32.54 34.17 39.91 28.12 27.40 22.10 30.37 30.59
NLLB-200MD 46.20 42.80 47.21 45.40 37.10 37.41 33.54 42.11 41.47
NLLB-200MDD 50.88 43.13 51.96 46.97 39.17 38.01 38.03 43.48 43.95
NLLB-200LG 53.59 46.01 54.92 57.86 38.50 43.95 41.10 49.18 48.14

Llama2-7b 39.78 38.56 39.90 40.01 33.80 24.91 30.13 35.17 35.28
Llama3-8B 51.07 45.77 44.68 55.71 45.76 32.74 36.34 41.98 44.26
Mistral-7b 46.17 40.30 40.70 43.47 36.05 26.80 33.10 33.28 37.48
Gemma-2B 36.72 38.47 31.30 34.94 33.45 17.75 21.34 33.38 30.92
Gemma-7B 39.62 43.43 39.13 46.67 39.53 19.79 26.88 26.85 35.24
Gemma2-9B 63.27 54.54 62.50 74.38 64.58 57.24 52.52 54.16 60.40
Phi3-mini 51.04 44.88 40.13 37.90 30.04 15.41 22.43 21.51 32.92
Tower-7B 60.08 59.12 55.21 63.52 48.87 26.25 47.43 36.57 49.63

GPT-3.5TURBO 66.69 61.88 59.72 68.33 61.28 47.00 53.63 58.96 59.69
GPT-4 71.45 64.99 61.43 73.53 66.64 55.31 56.74 65.08 64.40

Mean 44.00 41.16 41.37 45.70 37.18 31.90 32.16 37.30 38.71
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Table 27
PDI scores for each system and language. Higher is better.

Model DE ES IT RU ZH BG NL SL Mean
Google 58.10 54.61 54.89 65.43 54.36 49.08 40.47 52.44 53.67
DeepL 78.58 59.98 64.97 69.28 50.82 57.97 46.89 59.55 61.01

MBart50 28.23 25.85 31.94 32.31 34.10 – 20.60 36.41 29.92
MBart50MTM 26.29 26.90 32.30 31.61 33.17 – 19.97 32.56 28.97

M2M100 21.63 22.26 22.47 24.68 15.35 19.67 15.15 27.50 21.09
M2M100LG 25.63 27.16 27.44 32.09 21.26 25.13 18.50 30.23 25.93

OPUSBIL 27.64 31.63 31.16 33.25 30.72 30.91 26.97 – 30.33
OPUSMUL 16.17 19.86 18.07 17.52 6.86 10.74 15.58 20.45 15.66

NLLB-200SM 33.52 35.95 38.62 45.44 33.18 33.31 25.23 38.34 35.45
NLLB-200MD 49.86 47.29 51.98 52.48 41.42 44.36 36.56 49.16 46.64
NLLB-200MDD 54.51 47.36 56.59 53.29 42.99 46.24 41.18 51.86 49.25
NLLB-200LG 58.75 51.29 61.24 62.73 43.75 51.06 45.09 56.98 53.86

Llama2-7b 43.68 42.77 44.59 47.27 37.76 27.35 31.69 43.11 39.78
Llama3-8B 57.64 49.59 49.82 61.04 49.95 36.89 40.09 52.32 49.67
Mistral-7b 52.64 42.86 47.25 50.00 40.74 32.68 34.03 39.85 42.51
Gemma-2B 39.38 40.57 36.64 39.98 35.96 22.16 21.83 37.18 34.21
Gemma-7B 45.39 47.38 45.66 49.94 43.88 26.46 28.90 34.00 40.20
Gemma2-9B 68.04 61.22 68.35 78.06 65.30 63.32 55.73 63.26 65.41
Phi3-mini 56.22 46.78 44.86 38.33 32.52 18.88 25.47 29.42 36.56
Tower-7B 66.34 62.00 61.68 68.27 54.10 36.28 51.38 49.29 56.17

GPT-3.5TURBO 68.78 64.89 65.75 71.33 62.05 54.59 57.37 64.86 63.70
GPT-4 74.59 69.35 67.48 76.57 68.41 62.28 61.50 70.48 68.83

Mean 47.80 44.43 46.53 50.04 40.85 37.47 34.55 44.73 43.13
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Guerreiro, Pedro Henrique Martins, João
Alves, Amin Farajian, Ben Peters, Ricardo
Rei, Patrick Fernandes, Sweta Agrawal,
et al. 2024. Tower: An open multilingual
large language model for
translation-related tasks. In Proceedings of
First Conference on Language Modeling.

Barba, Edoardo, Luigi Procopio, and Roberto
Navigli. 2021. ConSeC: Word sense
disambiguation as continuous sense
comprehension. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 1492–1503.
https://doi.org/10.18653/v1/2021
.emnlp-main.112

Bawden, Rachel and François Yvon. 2023.
Investigating the translation performance
of a large multilingual language model:
The case of BLOOM. In Proceedings of the
24th Annual Conference of the European
Association for Machine Translation,
pages 157–170.

Beltagy, Iz, Matthew E. Peters, and Arman
Cohan. 2020. Longformer: The
long-document transformer. arXiv preprint
arXiv:2004.05150.

Bevilacqua, Michele, Tommaso Pasini,
Alessandro Raganato, and Roberto
Navigli. 2021. Recent trends in word
sense disambiguation: A survey. In
Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence,
IJCAI-21, pages 4330–4338. https://doi
.org/10.24963/ijcai.2021/593

Brown, Tom, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, et al. 2020. Language
models are few-shot learners. In
Proceedings of the 34th International
Conference on Neural Information Processing
Systems, 33:1877–1901.

Camacho-Collados, Jose and Roberto
Navigli. 2017. BabelDomains: Large-scale
domain labeling of lexical resources. In
Proceedings of the 15th Conference of the
European Chapter of the Association for
Computational Linguistics: Volume 2, Short
Papers, pages 223–228. https://doi.org
/10.18653/v1/E17-2036
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https://doi.org/10.5565/rev
/tradumatica.77

Maru, Marco, Simone Conia, Michele
Bevilacqua, and Roberto Navigli. 2022.
Nibbling at the hard core of Word Sense
Disambiguation. In Proceedings of the 60th
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 4724–4737. https://
doi.org/10.18653/v1/2022.acl
-long.324

Marvin, Rebecca and Philipp Koehn. 2018.
Exploring word sense disambiguation
abilities of neural machine translation
systems. In Proceedings of the 13th
Conference of the Association for Machine
Translation in the Americas (Volume 1:
Research Track), pages 125–131.

410

https://doi.org/10.18653/v1/2023.findings-emnlp.859
https://doi.org/10.18653/v1/2023.findings-emnlp.859
https://doi.org/10.18653/v1/2023.findings-emnlp.859
https://doi.org/10.18653/v1/2023.wmt-1.44
https://doi.org/10.18653/v1/2023.wmt-1.44
https://doi.org/10.18653/v1/2023.wmt-1.44
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.1145/146802.146810
https://doi.org/10.1145/146802.146810
https://doi.org/10.3115/1621969.1621984
https://doi.org/10.3115/1621969.1621984
https://doi.org/10.18653/v1/W19-3704
https://doi.org/10.18653/v1/W19-3704
https://doi.org/10.5565/rev/tradumatica.77
https://doi.org/10.5565/rev/tradumatica.77
https://doi.org/10.18653/v1/2022.acl-long.324
https://doi.org/10.18653/v1/2022.acl-long.324
https://doi.org/10.18653/v1/2022.acl-long.324


Martelli et al. DIBIMT: A Gold Evaluation Benchmark for Studying Lexical Ambiguity in MT

McCarthy, Diana and Roberto Navigli. 2007.
SemEval-2007 Task 10: English lexical
substitution task. In Proceedings of the
Fourth International Workshop on Semantic
Evaluations (SemEval-2007). https://
doi.org/10.3115/1621474
.1621483

Mihalcea, Rada, Ravi Sinha, and Diana
McCarthy. 2010. SemEval-2010 Task 2:
Cross-Lingual Lexical Substitution. In
Proceedings of the 5th International Workshop
on Semantic Evaluation, pages 9–14.

Miller, George A. 1995. WordNet: A lexical
database for English. Communications of the
ACM, 38(11):39–41. https://doi.org/10
.1145/219717.219748

Miller, George A., Claudia Leacock, Randee
Tengi, and Ross T. Bunker. 1993. A
semantic concordance. In Human Language
Technology: Proceedings of a Workshop.
https://doi.org/10.3115/1075671
.1075742

Navigli, Roberto. 2009. Word sense
disambiguation: A survey. ACM
Computing Surveys (CSUR), 41(2):1–69.
https://doi.org/10.1145/1459352
.1459355

Navigli, Roberto, Michele Bevilacqua,
Simone Conia, Dario Montagnini, and
Francesco Cecconi. 2021. Ten years of
BabelNet: A survey. In Proceedings of the
Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21,
pages 4559–4567. https://doi.org/10
.24963/ijcai.2021/620

Navigli, Roberto and Simone Paolo Ponzetto.
2010. BabelNet: Building a very large
multilingual semantic network. In
Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics,
pages 216–225.

Neves, Mariana, Antonio Jimeno Yepes, Amy
Siu, Roland Roller, Philippe Thomas,
Maika Vicente Navarro, Lana Yeganova,
Dina Wiemann, Giorgio Maria Di Nunzio,
Federica Vezzani, Christel Gerardin, et al.
2022. Findings of the WMT 2022
biomedical translation shared task:
Monolingual clinical case reports. In
Proceedings of the Seventh Conference on
Machine Translation, pages 694–723.

Nivre, Joakim, Marie-Catherine De Marneffe,
Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D. Manning, Ryan McDonald,
Slav Petrov, Sampo Pyysalo, Natalia
Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A
multilingual treebank collection. In
Proceedings of the Tenth International

Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666.

NLLB Team, Marta R. Costa-jussà, James
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Popović, Maja. 2017. chrF++: Words helping
character n-grams. In Proceedings of the
Second Conference on Machine Translation,
pages 612–618. https://doi.org/10
.18653/v1/W17-4770

Post, Matt. 2018. A call for clarity in
reporting BLEU scores. In Proceedings of the
Third Conference on Machine Translation:
Research Papers, pages 186–191.
https://doi.org/10.18653
/v1/W18-6319

Pradhan, Sameer, Edward Loper, Dmitriy
Dligach, and Martha Palmer. 2007.

411

https://doi.org/10.3115/1621474.1621483
https://doi.org/10.3115/1621474.1621483
https://doi.org/10.3115/1621474.1621483
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.3115/1075671.1075742
https://doi.org/10.3115/1075671.1075742
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.24963/ijcai.2021/620
https://doi.org/10.24963/ijcai.2021/620
https://doi.org/10.18653/v1/2021.emnlp-demo.34
https://doi.org/10.18653/v1/2021.emnlp-demo.34
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1075527.1075614
https://doi.org/10.3115/1075527.1075614
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319


Computational Linguistics Volume 51, Number 2

SemEval-2007 Task-17: English lexical
sample, SRL and all words. In Proceedings
of the Fourth International Workshop on
Semantic Evaluations (SemEval-2007),
pages 87–92. https://doi.org/10.3115
/1621474.1621490

Qi, Peng, Yuhao Zhang, Yuhui Zhang, Jason
Bolton, and Christopher D. Manning. 2020.
Stanza: A Python natural language
processing toolkit for many human
languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations,
pages 101–108. https://doi.org/10
.18653/v1/2020.acl-demos.14

Raganato, Alessandro, Jose
Camacho-Collados, and Roberto Navigli.
2017. Word sense disambiguation: A
unified evaluation framework and
empirical comparison. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics:
Volume 1, Long Papers, pages 99–110.
https://doi.org/10.18653/v1
/E17-1010

Raganato, Alessandro, Yves Scherrer, and
Jörg Tiedemann. 2019. The MuCoW test
suite at WMT 2019: Automatically
harvested multilingual contrastive word
sense disambiguation test sets for machine
translation. In Proceedings of the Fourth
Conference on Machine Translation (Volume 2:
Shared Task Papers, Day 1), pages 470–480.
https://doi.org/10.18653/v1
/W19-5354
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