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Introduction

Argument Mining (also known as “argumentation mining”) is a well-established research area within
computational linguistics that started with focusing on automatically identifying and classifying argu-
ment elements, covering several text genres such as legal documents, news articles, online debates, scho-
larly data, and many more. Aside from mining argumentative components, the field focuses on studying
argument quality assessment, argument persuasiveness, the synthesis of argumentative texts, explainable
argumentation and multimodal argument mining. Several tutorials have been held at major NLP confe-
rences showing the continuously increasing interest in argument mining.

Besides providing a forum to discuss and exchange cutting edge research in this field, a secondary goal of
this year’s edition has been to broaden the disciplinary scope of the workshop by inviting other discipli-
nes (e.g., (computational) social and political science, psychology, humanities) as well as other subareas
of NLP to actively participate in the workshop and further shape the field of argument mining.

The success of our goal in broadening the disciplinary scope of the workshop, as well as the fast growing
interest in research topics related to argument mining and computational argumentation in the NLP com-
munity are evidenced with the richness and variety of submissions received. The 12th Workshop on Ar-
gument Mining allowed the submission of long and short papers for the main workshop track, as well as
extended abstracts and PhD proposals for the non-archival track new to this year’s edition. Furthermore,
the workshop hosted two shared tasks: the Critical Questions Generation Task, and MM-ArgFallacy2025:
Multimodal Argumentative Fallacy Detection and Classification on Political Debates. This year’s edition
of the ArgMining workshop had 68 submissions (28 in 2024, 40 in 2023, 37 in 2022, 39 in 2021, and
30 in 2020). The 68 submissions were distributed as follows, 44 were submitted to the main workshop
track, 7 to the non-archival track, and 17 were shared task papers. For the main workshop, we accepted
22 papers (15 long, 7 short), making an acceptance rate of 50%. The 7 submitted non-archival papers
were accepted for poster presentations.

The 12th Workshop on Argument Mining hosted Andreas Vlachos as the keynote speaker, addressing
the topic of “Fact-checking as a conversation”.

Aligned with this year’s special theme, we will also host a panel titled Broadening the scope of Argument
Mining", which will bring together Argument Mining experts with researchers from the broader inter-
disciplinary community connected with Argument Mining (Linguistics, Political Science, Communica-
tion Science, Computational Social Science). Our panelists are: Roxanne El Baff (German Aerospace
Center-DLR, Bauhaus-Universitit Weimar), Sebastian Haunss (University of Bremen), Julia Mendel-
sohn (University of Bremen), Smaranda Muresan (Columbia University), Elena Musi (University of
Liverpool).

We thank our Program Committee members for their continuous support and helpful input. Also, we
thank IBM for sponsoring the Best Paper award and the members of our Best Paper Selection Com-
mittee: Rodrigo Agerri (University of the Basque Country), Paolo Torroni (University of Bologna), and
Elena Cabrio (Université Cote d’Azur). The awards are announced on the official workshop website:
https://argmining-org.github.i0/2025/.

We would also like to thank the Cluster of Excellence Cognitive Interaction Technology at the University
of Bielefeld (CITEC) and the German Society for Computational Linguistics (GSCL) for supporting the
workshop.

We would also like to thank everyone who has been involved with this year’s workshop in one way or
another. Thank you very much!

Elena Chistova, Philipp Cimiano, Shohreh Haddadan, Gabriella Lapesa, and Ramon Ruiz-Dolz
(ArgMining 2025 co-chairs)
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Keynote Talk
Fact-checking as a conversation

Andreas Vlachos
Department of Computer Science and Technology, University of Cambridge

Abstract: Misinformation is considered one of the major challenges of our times resulting in numerous
efforts against it. Fact-checking, the task of assessing whether a claim is true or false, is considered a
key in reducing its impact. In the first part of this talk I will present our recent and ongoing work on
automating this task using natural language processing, including neurosymbolic inference, and using a
search engine as a source of evidence. In the second part of this talk, I will present an alternative approa-
ch to combatting misinformation via dialogue agents, and present results on how internet users engage in
constructive disagreements and problem-solving deliberation.

Bio: Andreas Vlachos is a professor of NLP and Machine Learning at the University of Cambridge.
Among the many things he has worked on, we find constructiveness in argumentation, fact checking,
media bias, dialogue modeling.
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Panel
Broadening the scope of Argument Mining

The aim of the panel is to establish a dialogue with Argument Mining researchers (from the panel itself
and the workshop audience) on a variety of themes such as a) the challenges encountered by NLP re-
search dealing with fine-grained conceptualizations which are typically aimed at when targeting theory-
based questions, b) the progress that Argument Mining (and in general, NLP) can experience when
challenged with interdisciplinary work, and c) the boundaries that nowadays LL.M’s superpowers should
nevertheless be confronted with: the fact that LLMs (allegedly) can do everything because it has seen
everything" does not mean that any possible task should be done with them — this is particularly rele-
vant with argument mining research, which touches upon crucial issues such as opinion mining, with the
potential for manipulative uses of the resulting technology.
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“The Facts Speak for Themselves’’: GPT and Fallacy Classification

Erisa Bytyqi

Annette Hautli-Janisz

Faculty of Computer Science and Mathematics
University of Passau
firstname.lastname@uni-passau.de

Abstract

Fallacies are not only part and parcel of hu-
man communication, they are also important
for generative models in that fallacies can be
tailored to self-verify the output they generate.
Previous work has shown that fallacy detec-
tion and classification is tricky, but the question
that still remains is whether the inclusion of
argumentation theory in prompting Large Lan-
guage Models (LLMs) on the task enhances the
performance of those models. In this paper we
show that this is not the case: Using the pragma-
dialectics approach to fallacies (Van Eemeren
and Grootendorst, 1987), we show that three
GPT models struggle with the task. Based on
our own PD-oriented dataset of fallacies and a
carefully curated extension of an existing fal-
lacy dataset from Jin et al. (2022a), we show
that this is not only the case for fallacies “in
the wild”, but also for textbook examples of
fallacious arguments. Our paper also supports
the claim that LLMs generally lag behind in
fallacy classification in comparison to smaller-
scale neural or even statistical models.

1 Introduction

Fallacies are part and parcel of human argumen-
tation, they are woven into our conversations and
with the rise of misinformation, fallacies point to
communication components that are crucial to iden-
tify in order to differentiate between valid and in-
valid arguments. But fallacies are also crucial for
Large Language Models (LLMs) in that the mod-
els should be tailored to self-verify the output they
generate, an area that will gain significance with
the increasing ubiquity of those models in every-
day communication. Even though fallacies have
attracted millenia of work in argumentation theory,
they have proven to be a tricky feat in argument
mining (Jin et al., 2022a; Ruiz-Dolz and Lawrence,
2023; Alhindi et al., 2023, inter alia) — they are
hard to detect and even harder to classify. This also

1

holds true when LLMs are put to the task, mod-
els, which have shown impressive capabilities in a
number of other NLP tasks.

In the present paper, we use the theory of
Pragma-Dialectics (PD) (Van Eemeren and Groo-
tendorst, 1987) to guide the models with a solid
theoretical foundation of fallacies. The ten rules in
PD that, if violated, create a fallacy, give direction
to a successful discussion, the argument stage in
which these rules are applicable, and the interlocu-
tor who can break the rules (the antagonist and/or
the protagonist). This level of detail allows us to
craft the prompts in a controlled manner steered
by the extent to which we include the aforemen-
tioned elements in them. The paper shows that
even with significant manual effort in prompt de-
sign, both in terms theoretically-driven explanation
in the form of pragma-dialectic rules and reasoning
chains for large sets of examples, the task of fallacy
detection remains prone to errors. This is illus-
trated based on a new dataset of manually curated
fallacies from a PD textbook (Van Eemeren and
Grootendorst, 1987) and an enhanced version of a
larger-scale, general-purpose fallacy dataset from
Jin et al. (2022a), which we manually enhance with
the violated PD rule and their reasoning chains.

Overall, ‘the facts speak for themselves’: The
three GPT models GPT-3.5, GPT-4 and GPT-40
struggle even when they are prompted carefully
with (a) a solid theoretical foundation of what con-
stitutes a fallacy and (b) manually crafted reason-
ing chains as examples in the prompt. The models
improve to some extent with prompt engineering,
but there is no evidence that later versions of GPT
(which are significantly larger) generally perform
better on the task. We do find that GPT-3.5 and
GPT-40 benefit from chain-of-thought prompting,
which surprisingly is not the case for GPT-4.

The paper proceeds as follows: Section 2 sum-
marizes previous work on fallacy classification,
with 3 describing the data collection and enhance-
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ment. Section 4 details the prompt engineering pro-
cess, the results of which are presented in Section
5. Section 6 discusses the findings and concludes
the paper.

2 Background

Even though the field of argument mining has at-
tracted significant attention in the last 10 years, also
with the rapid progress of deep learning, the auto-
matic identification and classification of fallacies is
still one of the main open issues. Overall, much of
the previous literature relies on the ‘innate’ capa-
bilities of the LLMs, i.e., the model(s) are queried
outright for the task of fallacy detection without
fine-tuning or with little to no prompt engineering.
One exception is Ruiz-Dolz and Lawrence (2023),
who use the argument schemes by Walton et al.
(2008) to guide the model in capturing the falla-
cious nature of natural language arguments. The
authors present a classification task where four of
the classes contain fallacious arguments (‘Appeal to
Authority’, ‘Appeal to Majority’, ‘Slippery Slope’
and ‘Ad Hominem’) which are related to seven
argumentation schemes. The fifth class contains
non-fallacious arguments.

Goffredo et al. (2023), along the lines of the
majority of other work, remain theory-agnostic and
assume six fallacy types (they partly overlap with
those of Ruiz-Dolz and Lawrence (2023)). Jin et al.
(2022a) construct two datasets and test 12 different
LLMs for their fallacy detection abilities. In the
end, a structurally aware classifier (of significantly
smaller size) outperforms the LLMs for the same
task. Hong et al. (2024) split fallacies into two main
groups, namely formal and informal fallacies. The
results show that LLMs have a harder time with
fallacies that are present in the logical structure
of the argument and perform somewhat better for
fallacies that are related to the actual content. GPT-
3 performs well on the Argotario dataset (Habernal
et al., 2017), but is outperformed by the T5 model
on the the other four datasets.

3 Data

Our capability assessment builds on an integrative
approach to data collection, i.e., we consult two
different data sources, combine the data points and
analyze the performance of the models on the in-
dividual as well as the combined dataset. Both
datasets comprise of informal fallacies and are de-

scribed more closely in the following.'

3.1 The PD dataset

The PD dataset (henceforth, ‘PD-data’) draws on
textbook examples in (Van Eemeren and Grooten-
dorst, 1987) and comprises of clear-cut instances
of fallacious arguments that violate one of the ten
pragma-dialectical rules. Each of the arguments
in PD-data is accompanied by the rule that is vi-
olated plus the reasoning behind its fallacious na-
ture. For instance, Example (1) (Van Eemeren and
Grootendorst, 1987, p. 285) violates the ‘Freedom
Rule’ because a personal attack is performed on
an opponent by casting suspicion on his motives.
PD-data contains these three pieces of information:
the actual example, the rule that is violated and the
explanation given in the textbook.

(1) He just says so because he wants to be elected.

This is an extensive manual effort, illustrated fur-
therby Example (2), which also violates the "Free-
dom Rule’, but the reasoning as to why the rule
was violated differs from the earlier example. Here,
the personal attack takes the form of trying to de-
pict the opponent as stupid, bad, unreliable and so
forth (instead of casting suspicion on the motives
as in (1)). Therefore there is no one-to-one map-
ping between the rule and the explanation, instead
the latter one is solely based on the content of the
example.

(2) Don'’t listen to this moron, crook, liar, etc.

The manual data collation in (Van Eemeren and
Grootendorst, 1987) yields an initial seed set of 43
items. While this is already a significant increase in
data points compared to (Ruiz-Dolz and Lawrence,
2023), we still construct an additional 43 fallacious
arguments that are minimal pairs to the instances
in PD-data: They mirror the violated rule and the
reasoning behind the violation, but contain a slight
variation in the linguistic surface. An example
of the hand-crafted minimal pair of (1) is shown
in Example (3). For the additional examples we
also record the example, the violated rule and the
reasoning.

(3) She only agrees with that because she wants
to win their approval.
'Both datasets with PD rules and reasoning chains

are available at https://github.com/Erisa-Bytyqi/
PD-data.


https://github.com/Erisa-Bytyqi/PD-data
https://github.com/Erisa-Bytyqi/PD-data

Overall we end up with 86 data instances that
are in violation of the 10 pragma-dialectic rules, a
substantial increase from the 14 natural language
arguments that constitute the dataset of (Ruiz-Dolz
and Lawrence, 2023). Table 1 shows the distri-
bution of data instances across the violated rules.
The instances are not evenly distributed across the
classes of violated rules, with ‘Freedom Rule’ and
‘Argument Scheme Rule’ having seven instances
each, as opposed to ‘Relevance Rule’ and ‘Unex-
pressed Premise Rule’ which contain two instances
each. However, given that we are not interested
in training a fallacy classifier but evaluate a pre-
trained model on its performance, this does not
have an effect on the evaluation.

Violated PD rule #Orig | #Added
Freedom Rule 7 7
Obligation To Defend Rule 4 4
Standpoint Rule 3 3
Relevance Rule 2 2
Unexpressed Premise Rule 2 2
Starting Point Rule 4 4
Validity Rule 7 7
Argument Scheme Rule 5 5
Concluding Rule 3 3
Language Use Rule 6 6
Overall | 43 ] 43 |

Table 1: Distribution of fallacy types in PD-data

3.2 The enhanced LOGIC dataset

The second dataset comes from (Jin et al., 2022a)?,
a dataset that encompasses a range of general
logical fallacies, split across 13 different classes
(henceforth, ‘LOGIC’) (‘Faulty Generalization’,
‘Ad Hominem’, ‘Ad Populum’, ‘False Causality’,
‘Circular Reasoning’, ‘Appeal to Emotion’, ‘Fallacy
of Relevance’, ‘Deductive Fallacy’, ‘Intentional
Fallacy’, Fallacy of Extension’, ‘False Dilemma’,
‘Fallacy of Credibility’, ‘Equivocation’). There are
a total of 2449 instances in the dataset sourced
mainly from student quiz websites.

Our study considers only a subset (300 out of
2449) of LOGIC, a set of fallacies that violate one
of the ten pragma-dialectic rules. To that end, six
of the thirteen fallacy types in LOGIC are mapped
to their corresponding rule violation in pragma-
dialectics, thereby harmonizing the LOGIC and
PD-data labels. The dataset contains instances

2Code and dataset available at https://github.com/
causalNLP/logical-fallacy

such as Example (4), a textbook case of an *Ad
Hominem’ fallacy:

(4) You’re too ugly to be class president!

In order to use LOGIC for the study in this paper,
we manually map the LOGIC fallacy types to the
rule violation stipulations in pragma-dialectics. To
illustrate this, the personal attack in Example (4)
is treated as a ‘Freedom Rule’ violation in PD, be-
cause it “attacks the other party’s person” (Frans
H. van Eemeren, 2020). We also map the ‘Appeal
to Emotion’ fallacies in LOGIC to the ‘Freedom
Rule’ in PD, because they a) unambiguously vio-
late the rule and b) cannot be attributed to any other
pragma-dialectic rule. A LOGIC instance of the
‘Appeal to Emotion’ fallacy is given in (5).

(5) If you love your family, you’ll buy this new
stealth security system.

Another mapping holds between the ‘Circular
Reasoning’ fallacy in LOGIC and the ‘Starting
Point Rule’ in PD. As illustration, see Example
(6): The argument (‘she is better than anyone else’)
merely restates the standpoint (‘she is the best’),
and as such violates the ’Starting Point Rule’ of
pragma-dialectics, thereby validating its classifica-
tion under this rule.

(6) She is the best because she is better than any-
one else.

The fallacy types ‘Faulty Generalisation’ and
‘False Causality’ are mapped to the ‘Argument
Scheme Rule’ in PD, and ‘Equivocation’ is mapped
onto the ‘Language Rule’ in PD. The LOGIC fal-
lacies of ‘Ad Populum’, ‘Fallacy of Relevance’,
‘Deductive Fallacy’, ‘Intentional Fallacy’, Fallacy
of Extension’, ‘False Dilemma’, and ‘Fallacy of
Credibility’ cannot be mapped reliably onto the PD-
data rules. This is a result of the pragma-dialectic
postulations, i.e., the stage of the argument, the
interlocutor ’allowed’ to violate a rule, and the
argument from a conflict resolution perspective.
We briefly illustrate this by way of the ‘Ad Pop-
ulum’ fallacies in LOGIC which violate both the
‘Relevance Rule’ and ‘Argument Scheme Rule’ of
pragma-dialectics, which are considered as “vari-
ants of a fallacy which are not the same kind of fal-
lacy when viewed from the perspective of resolving
differences of opinion ~~ (Frans H. van Eemeren,
2020). Examples (7) and (8) are of the ‘Ad Popu-
lum’ fallacy type. However, Example (7) violates


https://github.com/causalNLP/logical-fallacy
https://github.com/causalNLP/logical-fallacy

LOGIC fallacy type | PD rule #Instances
Faulty Generalisation | Argument Scheme Rule 61
Ad Hominem Freedom Rule 41
Appeal to Emotion Freedom Rule 23
Circular Reasoning Starting Point Rule 19
False Causality Argument Scheme Rule 18
Equivocation Language Use Rule 5
Overall 197

Table 2: Fallacy Type distribution in LOGIC and PD

the ’Relevance Rule’ as the audience’s feelings
or prejudices are exploited to defend the stand-
point; this constitutes a non-argument, hence the
violation. In Example (8), the protagonist, by re-
ferring to a kind of authority (here the majority)
wants to push forward the truth or acceptability of
a standpoint. For this particular case, the use of
an unsuitable argumentation scheme results in the
violation of the ‘Argument Scheme’ rule. For sim-
plicity, LOGIC fallacy types that can be attributed
to several pragma-dialectic rules are omitted in our
study.

(7) You do want your children to be safe in your
own neighbourhood, don’t you?

(8) Everybody says so, so it must be true.

Overall, four of the ten pragma-dialectic rules
have counterparts in the subset of LOGIC em-
ployed for the present study. Table 2 shows the
mapping from LOGIC fallacy type to PD rule and
the resulting number of data points per PD rule.
Again, we see a class imbalance which closely mir-
rors that of PD-data, with the ‘Argument Scheme
Rule’ and the ‘Freedom Rule’ instances surpass-
ing those of the ‘Starting Point” and ‘Language
Use Rule’. Aggregated, the ‘Argument Scheme
Rule’ And ‘Freedom Rule’ categories contain 143
instances, whereas the two remaining rules have
only 24 data points.

In summary, our investigation builds upon two
datasets of fallacies, both labeled with PD rules,
where one dataset (PD-data) contains the example,
the rule and the reasoning behind the violation and
the second dataset (LOGIC) which contains the
example and the violated rule. This has an impact
on setting up the prompt to get the responses from
the model, which will be detailed in the following.

4 Probing the GPT models

For probing the models, we use zero-shot prompt-
ing (§4.1), chain-of-thought prompting (§4.2)
and two-shot chain-of-thought prompting (§4.3)
— methods that have been used in previous work on
fallacy classification.

4.1 Zero-shot prompting

For the fallacy study in the present paper, the
prompt contains the following elements (see Figure
1 in the Appendix for the full rendering): (a) the
persona that we ask the model to adopt (‘You are
the world’s leading expert in Pragma-Dialectics...”),
(b) more information on pragma-dialectics (‘an ar-
gumentation theory created by ...), (c) the details
regarding the instructions (‘You are specifically
concerned with fallacies [...]"), (d) more detailed
instructions regarding the output format to help
minimize redundant information (‘Be as concise
as possible, name the rule, and give a very brief
explanation.”), (e) the actual query to the model
(‘Given the pragma-dialectic approach to fallacies,
...) and (f) the fallacious argument under investi-
gation, separated with a colon from the preceding
material. The response R is generated by the model
without further interaction.

The zero-shot prompt has two variations, the
one just described which we will refer to with ‘No
Rules’ (NR) in Section 5 on the results, plus a sec-
ond one where we include the ten rules (classes) of
fallacies and their definitions from (Van Eemeren
and Grootendorst, 1987) in the prompt immediately
before the fallacious argument (the ‘With Rules’
(WR) varation). The reason for this is that (OpenAl,
2024) hints at the fact that the inclusion of addi-
tional relevant information might help in obtaining
better responses.



4.2 Chain-of-thought (CoT) prompting

Chain-of-thought (CoT) prompting has been shown
to outperform zero-shot prompting for a multitude
of reasoning tasks (Wei et al., 2022). Given that
reasoning goes hand in hand with fallacy detection,
we assume that prompting GPT-3.5 and GPT-4 with
CoT prompts yields better responses that with zero-
shot prompts. The reasoning chain in the CoT
prompt is the same as the original reasoning chain
given in the book (an example of a CoT prompt is
shown in Figure 2 in the Appendix).

This prompt setting is a bit more taxing than
zero-shot prompting since the prompt contains at
least one more piece of information which has to
be assembled manually for each prompt. The same
is true if we escalate prompt sophistication and
include two examples in the reasoning chain, as
illustrated in the following.

4.3 Two-shot CoT

Two-shot CoT prompting increases the possibility
that the model correctly interprets the task in the
prompt (‘the more exemplars the merrier’), a prop-
erty suggested in previous work. Wei et al. (2022)
use 7-shot CoT for commonsense tasks, OpenAl
use a 10-shot prompt for their GPT4 evaluation
on commonsense reasoning tasks (Achiam et al.,
2023). We assume that with this extension, the
model ‘grasps’ the characteristics of the fallacy
more easily and is not just triggered by how sim-
ilar the arguments are on the basis of the words
contained in them.

Two-shot CoT prompting is used for the LOGIC
dataset for which we do not have reasoning chains
and where we use examples from the PD litera-
ture for correctly predicting the fallacy. The setup
for this task is as follows: each of the instances
from the LOGIC dataset has a ground-truth la-
bel (the pragma-dialectical rule violated by the in-
stance). The first example in the two-shot CoT
prompt is the same that is used in the CoT prompt
for PD-data to classify the fallacious arguments
from (Van Eemeren and Grootendorst, 1987) of
that same class. The second example of the two-
shot CoT prompt mirrors the pragma-dialectical
fallacious argument from (Van Eemeren and Groo-
tendorst, 1987), incorporating reasoning steps from
the textbook that explain the argument’s fallacious
nature in case GPT did not identify the violated
rule correctly in the CoT PD-data study. For those
instances where GPT responded with the correct

rule and the correct reasoning, GPT’s response is
turned into the second example in the two-shot CoT
prompt, this is the case shown in Figure 3. For the
argument ‘Don’t listen to this moron, crook, liar,
etc.’, the class and the reasoning steps generated
by the model were both correct, making GPT’s re-
sponse a valid chain-of-thought and were therefore
included in the two-shot CoT.

4.4 General prompting parameters

We restrict the length of the generated responses
to 128 and 256 tokens for the LOGIC and PD-data
instances, respectively, doing justice to the fact that
the textual content of the prompt for LOGIC is
longer than that of PD-data (more details in §4.2).
The temperature is set to zero and the seed parame-
ter is set to a random number.

5 Results

We apply a strict evaluation criterion on the gener-
ated responses, namely that both the violated rule
and the provided reasoning need to be correct in
order for the response to be judged correctly. If
only one of these is correct, the response is treated
as incorrect. This provides a realistic assessment
of the capabilities, because we want to establish
how reliable the models are without additional hu-
man interference, such as needing to determine the
correct and incorrect portions of the GPT response.
The metric we use to report the performance is ac-
curacy, i.e., the fraction of correct predictions made
by the three models.

Zero-shot prompting Table 3 provides an
overview of the accuracy of the models for the
zero-shot prompt setting on PD-data. Overall we
can conclude that the performance is low, GPT-
4o without rules only achieves an accuracy of .13,
GPT-3.5 is at .3 and GPT-4 is slightly better with
an accuracy of .49. Those results are comparable
to those reported in Jin et al. (2022a) for GPT-3,
but worse than those reported by Ruiz-Dolz and
Lawrence (2023) who use GPT-3.5 and 4 and Wal-
ton’s argument schemes. Adding the rules of PD
to the prompt decreases the performance for GPT-
3.5 and 4 (to .12 and .43 respectively), whereas it
slightly helps GPT-40 (which still underperforms
with an accuracy of .39). This suggests that the
additional information rather confuses than helps
the model.

If we dive into the performance regarding in-
dividual fallacies, we see significant differences.



Zero-shot CoT
. GPT-3.5 GPTH4 GPT-40
Violated PD rule #Instances NR [ WR | NR [ WR | NR | WK GPT-3.5 | GPT-4 | GPT-40
Freedom Rule 14 043 | 0.14 1] 086 | 057 | 0.85 0.71 1 1
Obligation To Defend Rule | 8 0.75 | 025 | 0.75 | 0.25 0| 0.75 1 0.75 1
Standpoint Rule 6 0 | 0.33 0| 0.67 0| 033 0.67 0 0.33
Relevance Rule 4 1 0 0 0 0 0 0.5 1 0
Unexpressed Premise Rule | 4 0 0 0 0.5 0 0 0 0.5 1
Starting Point Rule 8 0.25 0] 0.25 0 0 0 0.75 0.5 0.75
Validity Rule 14 0 0 0 0.6 0 0 0.2 0.2 0.8
Argument Scheme Rule 10 0.43 0] 0.71 0] 028 | 0.14 0.71 1 1
Concluding Rule 6 0 0 0| 033 0| 033 0.67 0.67 1
Language Use Rule 12 0.17 0| 0.83 | 0.67 0 | 0.66 0.33 0.67 1
[ Overall [ [ 0.3 [ 0.12 [ 0.49 [ 0.42 [ 0.13 [ 0.39 [ 0.6 [ 0.63 [ 0.86 ]

Table 3: Accuracy of the GPT models for the two zero-shot prompt settings with no rules (NR) and with the rules

(WR) and the chain-of-thought prompt for PD-data.

For instance, the ‘Freedom Rule’ appears to be the
class that all models have the least difficulty with
in predicting correctly. But we cannot draw gen-
eral conclusions, except that the inclusions of rules
(WR) seems to trigger lower performance (except
for ‘Unexpressed Premise Rule’ and ‘Concluding
Rule’ in GPT-4). An interesting observation is that
the incorporation of additional information in the
prompt, namely the ten pragma-dialectic rules and
their definitions (WR), degrades the performance
of GPT-3.5 and GPT-4 with respect to the clas-
sification of ‘Argument Scheme Rule’ violations.
This particular prompt setting leads to all PD-data
instances of this class being misclassified as viola-
tions of either the ‘Standpoint Rule’ or the ‘Validity
Rule’.

CoT prompting The last two columns in Table
3 report the results when using CoT prompting
on PD-data. Overall, CoT prompting significantly
increases the performance of GPT-3.5 (overall ac-
curacy of .6), to the extent that it is comparable
to GPT-4 in the same setting (overall accuracy of
.63), despite being much smaller in the number of
parameters (‘size’). GPT-40 shows the strongest
results here (accuracy of .86), which leads us to
conclude that the extensive manual effort in extract-
ing textbook reasoning chains that are then used
for prompting the model pays out.

A more detailed manual analysis of the misclas-
sified instances reveals that the arguments in vio-
lation of the ‘Unexpressed Premise Rule’ are erro-
neously classified as violations of the ‘Standpoint
Rule’ in all but two instances. This phenomenon
can be attributed to what these two rules entail as
violations: In case of the ‘Standpoint Rule’, the dis-
tortion of the co-interlocutors standpoints by either

means of oversimplification (of their qualifications)
or exaggeration (of their statements) is a direct
violation of the rule (Van Eemeren and Grooten-
dorst, 1987). This is also known as a straw man fal-
lacy. The ‘Unexpressed Premise Rule’, on the other
hand, is violated when an unexpressed premise is
either exaggerated or not correctly reconstructed by
the antagonist and then denied by the protagonist,
which is a special case of the straw man fallacy.
Regarding the PD-data dataset, the straw-man fal-
lacy (regardless of its nature) is overwhelmingly
associated with a violation of the ‘Standpoint Rule’
by the models.

Diverging from the assumption that CoT prompt-
ing improves the classification of fallacious argu-
ments, the case of the ‘Language Use Rule’ shows
that in fact zero-shot prompting performs slightly
better than CoT for GPT-3.5 and 4, but not so for
GPT-40 (accuracy of 1). In sum it is difficult to
establish general conclusions as to which prompt
design leads to consistently better results for fal-
lacy detection. This issue of drawing meaningful
insights is supported in the following where we
include fallacies from a larger dataset and use PD
to identify their fallacy type.

Two-shot CoT prompting Two-shot CoT
prompting is performed on the LOGIC dataset for
which no reasoning chains are available, under
the assumption that if we include two examples
of PD-data fallacies and their violated rule in the
prompt the model is better able to classify those
examples with relatively high performance.

The overview of the results in Table 4 paints a
different picture, however. All models struggle to
correctly classify the majority of the LOGIC argu-
ments (accuracies of 0.23 for GPT-3.5 and GPT-40



2s-CoT

LOGIC type PD rule GPT35 [ GPTA [ GPT4o
Faulty Generalisation | Argument Scheme Rule 0.44 0.51 0.57
Ad Hominem Freedom Rule 0.1 0.02 0.02
Appeal to Emotion Freedom Rule 0.07 0.07 0.08
False Causality Argument Scheme Rule 0.28 0.78 0.44
Equivocation Language Use Rule 0 0 0

[ Overall [ [ 023 ] 029 ] 0.23 ]

Table 4: Results of 2-shot CoT prompting for a subset of the LOGIC datset.

and 0.29 for GPT-4). Striking is the difference
in performance for the ‘Freedom Rule’, where all
models was much better in identifying this type of
fallacy in PD-data. In the case of the ‘Ad Hominem’
fallacy type, this inconsistency may be attributed to
the difference in explicitness of the character attack
in the two datasets. Arguments from LOGIC are
to some extent more subtle in comparison to the
text examples from PD. An example is given in (9)
below: ‘Don’t listen to this moron, crook, liar, etc.’
and ‘Anyone who says that about me [that he’s a
racist bigot] is a Nazi’ are much more stronger in
terms of nature and wording than the LOGIC ad
hominem ‘Students who want cell phones in school
have no idea what they’re talking about’.

(9) PD-1: Don'’t listen to this moron, crook, liar,
etc.
PD-2 Anyone who says that about me [that
he’s a racist bigot] is a Nazi.”
LOGIC: Students who want cell phones in
school have no idea what they’re talking
about.

A better performance, especially for GPT-4,
is observed for the identification of ‘Argument
Scheme Rule’ violations: When an argument
makes the erroneous assumption that the correla-
tion of two events means they have a cause-effect
relationship, this is known as a ‘False Causality’
fallacy (Jin et al., 2022a) and a violation of the
‘Argument Scheme Rule’. For more than half the
instances belonging to this class, GPT-4 correctly
identifies where the reasoning of the arguments
falls apart, i.e., it identifies that correlation does not
mean causation and that hence the argument is fal-
lacious and violates the ‘Argument Scheme Rule’.
As noted previously, the ambiguous nature of ar-
guments is notably difficult for both GPT models.
This inability leads to violations of the ‘Language
Use Rule’ not being correctly identified, as is the
case for the LOGIC arguments, where this class has
the poorest performance with no instances correctly
classified.

Overall, the results indicate that both GPT mod-
els struggle to apply the pragma-dialectic model to
fallacy detection and classification on data in the
wild, i.e., data that does not originate in pragma-
dialectic textbooks and arguments similar to them.
The prompt content, as was our hypothesis, has a
significant impact on the the models’ performance,
however, contrary to OpenAi’s reporting (OpenAl,
2024), including fallacy definitions lowered the
performance of the models. What emerges from
the results reported here is an indication that fal-
lacy detection and classification, which are also
important in terms of having the models self-verify
the content they generate as sound or not remains
quite a challenging task no matter the model used
to approach fallacies.

6 Discussion and conclusion

The present study explores the capabilities across a
set of GPT models for the task of fallacy classifi-
cation according to the pragma-dialectic theory of
argumentation. Building on the success of chain-
of-thought (CoT) prompting for several reasoning
tasks, the models were subjected to zero-shot and
CoT prompting for the task of classifying the fal-
lacious arguments from Van Eemeren and Groo-
tendorst (1987) and a subset of the LOGIC dataset
(Jin et al., 2022b) as violations of one of the ten
pragma-dialectic rules. In the course of this study
we created a novel dataset (PD-data) comprising
86 fallacious arguments plus their reasoning chains
that explain their fallacious nature. The prompts
use best practices as described in OpenAl (2024)
and the reasoning chains are informed by the fal-
lacy definitions in Van Eemeren and Grootendorst
(1987).

The finding of this investigation complement
those of earlier studies, namely that the LLMs
struggle to correctly identify the type of fallacy
committed in an argument. It seems that lan-
guage models with much smaller size such as
RoBERTa (Ruiz-Dolz and Lawrence, 2023), Mul-



tiFusion BERT (Goffredo et al., 2023) or ELEC-
TRAStructaware (Jin et al., 2022a) perform better,
independent of the theoretical framework for classi-
fying the fallacies. Also similar to previous work is
the variability in the results across different models.
While almost all arguments from PD-data in viola-
tion of the ’Freedom Rule’ are classified correctly,
there is a steep drop in performance for LOGIC ar-
guments that violate the same rule, irrespective of
prompt setting. CoT prompting proves successful
for GPT-3.5 and GPT-40, but does not have a great
impact on GPT-4’s performance for this task.

One can argue that the overall low performance
of the models on LOGIC is due to the fact that the
theoretical assumptions in PD do not scale beyond
the examples that are mentioned in the textbooks
supporting the theory, i.e., the ten rules postulated
as violations do not hold when looking at falla-
cious arguments in the wild. However, given that
the mapping between the categories in PD-data and
LOGIC is possible, the conceptual assumptions
seem to be valid, but it might be the naming of the
categories and the wording of the PD rules that is
confusing to the model. This only provides fur-
ther support to the fact that generative models lack
pragmatic understanding and provide aligned re-
sponses only when the wording in the prompt is
informative. In sum, there is still substantial work
to be done before we arrive at a systematic assess-
ment of black box large-scale language models, not
only in argumentation but in linguistic capabilities
as whole. This paper is intended as one building
block in this endeavor.

Limitations

This line of work is subject to at least two limita-
tions. First, the design of our prompts is manual
and, while practices reported by previous research
for other reasoning tasks were used, we have yet
to identify other prompt alterations that might lead
to better performance. Second, we only provide at
most two exemplars for chain-of-thought prompt-
ing, which in some cases is not enough to cover
all presentations of a fallacy and results in the fal-
lacious argument not being correctly identified as
one. Further research might explore the limita-
tion pertaining to the chain-of-thought prompt, by
incorporating additional exemplars which encom-
pass a wider range of the fallacy’s variations, the
performance of both GPT models might see an
improvement.
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Q: You are the world’s leading researcher
in Pragma Dialectics and provide
answers accompanied by very brief
reasoning steps and the name of the
rule.

A~ Appendix Which rule of Pragma-Dialectics

does the sentence in triple single

quotes violate: *’This choice will
impact your future prospects within
the company.”

P: You are the world’s leading expert for
Pragma-Dialectics, an argumentation

theory by Frans H. van Eemeren and RC: As parties must not prevent each other

Rob Grootendorst. You are specifically
concerned with fallacies in Pragma Di-
alectics and will correctly classify the
text in triple quotes. Be as concise as
possible, name the rule, and give a very
brief explanation.

Given the pragma-dialectic approach
to fallacies, which dialectical rule does
the following sentence violate: ““The
American medical system doesn’t care
what happens to the patient. I know of a
man who was turned away by a hospital
and then died.”

from advancing standpoints, putting
pressure on the opponent (here: his
choice will affect his job) is a clear vio-
lating of the Freedom Rule. Because of
the implications, the other party might
not advance their standpoint and this is
in violation of the aforementioned rule
where parties must not prevent each
other from advancing or casting doubt
on standpoints.

Q: Which rule of Pragma-Dialectics does

the sentence in triple single quotes vio-
late: 7’ You’ll have to face the conse-
quences for our personal relationship

999

R: [MODEL RESPONSE]

Figure 1: First variation of the zero-shot prompt using R: [MODEL RESPONSE]

an example from PD-data and the GPT-4 response.

Figure 2: Chain-of-thought prompt for the PD dataset.



P: Given the pragma-dialectic approach to
fallacies, which dialectical rule does
the following sentence violate: Anyone
who says that about me [that he’s a
racist bigot] is a Nazi.”

RC: Parties must not prevent each other
from advancing standpoints. If you per-
form a personal attack on the opponent
by depicting him as stupid, bad, etc you
directly violate the Freedom Rule. Here
by depicting the opponent as a ‘Nazi’
we have a clear violation of the Free-
dom Rule.

P: Given the pragma-dialectic approach to
fallacies, which dialectical rule does
the following sentence violate: Don’t
listen to this moron, crook, liar, etc.

RC: ..

P: Given the pragma-dialectic approach to
fallacies, which dialectical rule does
the following sentence violate: Re-
searchers are frauds who don’t earn
their salaries.

R: [MODEL RESPONSE]

Figure 3: Two-shot chain-of-thought prompt for the
LOGIC dataset.
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Abstract

Large language models (LLMs) are effective
in predicting the labels of unseen target in-
stances if instructed for the task and training
instances via the prompt. LLMSs generate a text
with higher probability if the prompt contains
text with similar characteristics, a phenomenon,
called priming, that especially affects argumen-
tation. An open question in NLP is how to
systematically exploit priming to choose a set
of instances suitable for a given task. For stance
classification, LLMs may be primed with few-
shot instances prior to identifying whether a
given argument is pro or con a topic. In this pa-
per, we explore two priming strategies for few-
shot stance classification: one takes those in-
stances that are most semantically similar, and
the other chooses those that are most stance-
similar. Experiments on three common stance
datasets suggest that priming an LLM with
stance-similar instances is particularly effec-
tive in few-shot stance classification compared
to baseline strategies, and behaves largely con-
sistently across different LLM variants.

1 Introduction

Large language models (LLMs) have enabled a new
input paradigm in NLP by following instructions
that define the task to be solved: prompting. De-
signing optimal instructions for a given task is a
key challenge in this paradigm. A common tech-
nique in prompt engineering is to append a set of
few-shot instances to the instructions that are simi-
lar to the target instance. Although this technique
is widely used, research lacks a clear understanding
of what makes a set of examples effective for a tar-
get instance (Min et al., 2022). A mechanism that
helps to explain the effect of a prompt on the output
of an LLM is priming, which is the effect of a cer-
tain stimulus (prime) on processing a subsequent
stimulus (target) (Misra et al., 2020).

Priming influences human behavior by making
certain information more salient and accessible. Re-
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search on argumentation in political science studies
how priming connects media exposure with voting
behavior. Media coverage highlights a candidate’s
topics and arguments to increase the chances that
voters elect the candidate (DellaVigna and Kaplan,
2007; Iyengar and Hahn, 2009). The way the topics
are presented with either positive or negative sen-
timent in news influences how the audience votes,
which is called affective priming (Kuehne et al.,
2011). For LLMs, appending a set of similar in-
stances to the target instance in a prompt can be
seen as priming for label voting.

Prompting research has shown that the choice
and order of training instances have a strong effect
on model performance. Among others, Liu et al.
(2022) find that semantically similar instances are
most effective in sentiment analysis, question an-
swering, and text-to-table generation. However, it
is unclear so far whether this finding generalizes to
tasks dealing with argumentation, such as stance
classification: classifying an argument as pro or
con towards a controversial topic (Somasundaran
and Wiebe, 2009).

In this paper, we study how to choose the best
training instances for few-shot priming in stance
classification. We investigate two alternative prim-
ing strategies: prompting an LLM with training
instances that are (a) semantically similar to the
instance to be classified or (b) stance-similar (e.g.,
pro electric cars and con fuel cars). While the first
builds on the idea of Liu et al. (2022) and semantic
priming, the second builds on affective priming.
We contrast both priming strategies to diversifi-
cation, which has been observed to foster better
performance in stance classification (Schiller et al.,
2024; Arakelyan et al., 2023).

To operationalize the priming strategies, we use
contrastive learning to quantify the similarity be-
tween training instances and a given target instance.
The first strategy, semantic-priming, returns the
k instances with the highest semantic similarity.
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The second, affective-priming, returns k in-
stances with the highest stance similarity. Finally,
the diversification strategy, distinct-k, groups
the training instances into k clusters according to
their semantic similarity and uses the most central
representative of each cluster as a prime. Figure 1
contrasts the three priming strategies.

We evaluate all priming strategies against ran-
dom sampling on three widely used stance classi-
fication datasets, IBMSC (Bar-Haim et al., 2017),
VAST (Allaway and McKeown, 2020), and Per-
spectrum (Chen et al., 2019). We employ four dif-
ferent LLMs in two manners: Llama2-7b (Zhang
et al., 2022) and Vicuna-7b (Chiang et al., 2023)
in prompting, as well as Alpaca-7b (Taori et al.,
2023) and Mistral-7b-instruct (Jiang et al., 2023)
in both prompting and instruction fine-tuning. Ac-
cording to our results, affective-priming shows
substantial improvements over random sampling
and diversification in prompting for Llama2-7b and
Vicuna-7b. semantic-priming is more effective
when the number of shots is low (up to 4).

Our findings contribute to research in three ways:
(1) We investigate for the first time the effect of af-
fective priming on large language models. (2) We
establish priming strategies as a central component
of approaches to few-shot stance classification. (3)
We advance the state-of-the-art on stance classifi-
cation on IBMSC and Perspectrum.!

2 Related Work

Prompting defines a task as instructions that an
LLM completes with the desired output. Few-shots
are exemplary instances of the task together with
their expected outputs that are added to the instruc-
tions. The selection of few-shots is decisive for
the performance of an LLM on the task. Gao et al.
(2021) show that prepending the input instance
with semantically similar instances to it is more
effective in four GLUE tasks (Wang et al., 2019)
than using random instances. Like us, they use
SBERT (Reimers and Gurevych, 2020) to encode
the instance to be classified and the few-shot in-
stances, but they do not investigate what similarity
is effective for a given task.

Liu et al. (2022) find that GPT-3 exploits similar
instances more than random ones, improving ef-
fectiveness on sentiment analysis and table-to-text
generation. Levy et al. (2023) use BM25 similar-

!Code available here: https://github.com/webis-de/
priming-strategies-for-stance-classification
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ity to sample diverse instances for semantic pars-
ing, outperforming a sampling of similar instances.
We consider prepending instances that are similar
to the input instance to the instructions as prim-
ing. Instead of using vanilla similarity measures,
we propose a contrastive-learning-based similar-
ity measure to retrieve few-shot instances that are
motivated by priming theory.

Research on priming first investigated how expo-
sure to certain stimuli influences subsequent behav-
ior or cognition. Earlier studies show that people
more effectively recognize a string as a word after
being exposed to semantically similar ones (Meyer
and Schvaneveldt, 1971), known as semantic prim-
ing. In political discourse, the focused coverage
of topics associated with a candidate in the news
makes voters more likely to vote for them in elec-
tions. In contrast, affective priming utilizes the
(positive or negative) tone in which messages are
conveyed to shape the attitude towards a topic
(Sheafer, 2007; Kuehne et al., 2011). Following
these ideas, we contrast two priming strategies that
exploit semantic and stance similarity, respectively,
between the training and the target instances.

Studies show that the text generated by LLMs
can also be steered by priming. Misra et al. (2020)
find evidence that BERT is more likely to correctly
predict a masked target word in a sentence once
the sentence is prepended with a semantically simi-
lar prime. LLMs also adapt to the structure of the
prompt and generate text with similar syntax of
an input prime (Prasad et al., 2019; Jumelet et al.,
2024). While LLMs have been shown to be steered
by semantic and syntactic priming, their sensitivity
to positive and negative sentiment (affective prim-
ing) has not yet been explored.

Stance classification is the task of identifying the
polarity of an argument towards a topic among a
set of labels, such as pro or con (Somasundaran and
Wiebe, 2009; Reuver et al., 2024). Researchers pro-
pose approaches that integrate the context of the
target instance by learning topic representations
(Augenstein et al., 2016; Wei and Mao, 2019) or
retrieving related knowledge to the instance from
a knowledge graph (Liu et al., 2021). In contrast
to these approaches, our work shows that train-
ing instances with similar stances are helpful for
prompt-based stance classification.

Few-shot stance classification aims at settings
where only few training data is available (Allaway
and McKeown, 2020). Prompt-based approaches
either inject topic knowledge (Beck et al., 2023)
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Figure 1: Comparison of the three priming strategies (affective-priming, semantic-priming, and distinct-k).
The representation focuses either on stance or semantics. Sampling picks few-shots either by similarity or by
diversity. Prompting combines the (here, four) few-shots with the target instance (shown in red) to classify.

or use a stance label representation (Jiang et al.,
2022) in the prompt. Research on few-shots in
stance classification is limited to selecting diverse
instances. Arakelyan et al. (2023) proposed a di-
versification approach that outperforms the state
of the art on several stance classification datasets.
Schiller et al. (2024) analyze the effect of increas-
ing the count of topics in the training set against
increasing the size of samples per topic. Their ex-
periments illustrate that, for small LLMs such as
Ernie 2.0 (Sun et al., 2020), diversifying the train-
ing set in terms of topics improves performance on
unseen topics. In contrast to diversification-based
approaches, our study suggests that stance-similar
instances are most effective for prompting certain
LLMs (e.g., Vicuna-7b).

3 Approach

As discussed in the introduction, priming utilizes
existing associations between a pair of concepts,
called the prime and the target. It rests on invoking
an effect on the target by mentioning the prime.
Our priming approach to stance classification treats
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a test instance as a target and retrieves k semanti-
cally similar or stance-similar instances as training
instances. The approach employs prompt-based
learning to prime an LLM with the retrieved k few-
shots to predict the stance of the target. In the
following, we start by describing our prompt-based
learning methods, which we employ for stance clas-
sification. Then, we present our priming strategies.

3.1 Prompt-based Learning

We adopt two prompt-based learning methods for
language models: prompting and instruction fine-
tuning. Both methods use k£ > 1 training instances
in a few-shot manner. Each instance contains a
topic, an argument, and a stance. We rely on greedy
decoding in both methods to let an LLM complete
the prompt with the most probable token, which is
the stance label. We use the following prompt to
describe the stance classification task (see Table 2
in the Appendix for the prompt template):

“Classify the stance of the following argument
on the given topic into: Pro or Con.”?

2For VAST, we add the label Neutral.



Prompting Here, we simply append the learning
instances to the prompt without any fine-tuning.
We use this method for four large language models
(LLMs): Mistral-7b-instruct (Jiang et al., 2023),
Alpaca-7b (Taori et al., 2023), Vicuna-7b (Chiang
et al., 2023), and Llama2-7b (Touvron et al., 2023).

See Table 2 again for the format of the training
instances. In case the training instances exceed the
allowed input length of an LLM, we cut the last
part of each training instance.

Instruction Fine-tuning While prompting is ef-
ficient and easy to employ since no training is re-
quired, instruction fine-tuning pushes the use of the
prompt further in that the language model is fine-
tuned on instruction data. Following this method,
we fine-tune Alpaca—7b3 (Taori et al., 2023) and
Mistral-instruct-7b (Jiang et al., 2023) using LoRa
(Hu et al., 2022) on the k instances with an in-
struction prompt. The topic and argument are then
given in the input section of the prompt. For fine-
tuning both models, we used grid-search to find the
best hyperparameters on the validation sets of the
respective dataset, which we will introduce in Sec-
tion 4. Full hyperparameters of both models can be
found in Table 7 in the Appendix. We fine-tune the
models in two steps. First, we fine-tune the models
on all the training data of each dataset using the
aforementioned prompt without few-shots. Second,
we fine-tune the models with the aforementioned
prompt on the few-shots sampled by the priming
strategies from the training set.

3.2 Priming Strategies

In the following, we introduce two priming strate-
gies that exploit stance similarity and semantic sim-
ilarity between a target instance and the training
instances. Afterward, we describe baseline priming
strategies that are tailored to contrast the priming
strategies and to analyze the strengths and weak-
nesses of all strategies: distinct-k and random.
Our hypothesis is that training instances that are
similar to the target instance in terms of semantics
or stance are more effective than diverse or random
training instances. Figure 1 illustrates how each
of the three approaches represents, samples, and
prompts instances.

Affective priming Prompting an LLM with ar-
guments that hold similar stances to the target in-
stance provides the most consistent stimulus to

3We use the following Alpaca model on HuggingFace:
https://huggingface.co/wxjiao/alpaca-7b
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it, inducing bias in line with the original idea of
priming. To this end, we train a contrastive learn-
ing embedding that captures the stance similar-
ity between the instances on the training set. For
training this embedding, we use SBERT (Reimers
and Gurevych, 2020) and use argument pairs on
the same topic with the same stance as positive
instances. Argument pairs on the same topic with
different stances are provided as negative instances.

For each instance, we concatenate the topic and
argument, separated by [SEP]. Among the pos-
sible models for SBERT*, we use the standard
model all-mpnet-base-v2. The priming strategy
then returns the k£ most stance-similar training in-
stances to a given test instance in terms of cosine
similarity. We make sure that this priming strategy
retrieves one instance per topic to maximize the
learning effect.

Semantic Priming This priming strategy as-
sumes that the instances most semantically similar
to a test instance should be chosen to prime the
LLM. Accordingly, we retrieve the most seman-
tically similar training instances for each test in-
stance. The similarity is calculated by embedding a
pair of training and test instances using the original
SBERT embeddings and calculating their cosine
similarity. Similar to our affective priming strategy,
we use the standard model all-mpnet-base-v2
among the available models for SBERT. In con-
trast to affective-priming, we select semanti-
cally similar instances while maintaining a bal-
anced stance distribution of the selected set.

Distinct-k This baseline priming strategy as-
sumes that a diverse selection of instances should
be chosen to prime the LLM. The rationale behind
this strategy is that since the training set is lim-
ited in size, it might not contain similar instances
for some target instances. Following this idea, we
cluster the instances in the training set into & clus-
ters. Then, we take the top 10 nearest arguments
to each cluster centroid as candidates according to
Euclidean distance.’ This allows us to ensure a bal-
anced stance distribution in the chosen instances.
To cluster the arguments, we first embed them with
SBERT and then apply agglomerative clustering
with Ward linkage and Euclidean distance. During
training, we sample one instance from each of the
cluster candidates.
“SBERT, https://www.sbert.net/

>For VAST, we took the top 50 instances since the class
distribution in VAST is skewed (See Table 3).
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Random To assess the impact of priming, we
compare all strategies to random sampling, which
takes a different random sample of size k from the
training as few-shots for each test instance.

4 Experiments

The proposed priming strategies stimulate large lan-
guage models to tackle stance classification using
semantic and stance similarity. In the following
experiments, we compare the priming strategies on
different stance classification datasets.

4.1 Data

For evaluation, we require data with sufficient and
representative coverage of topics to assess the ro-
bustness of our approach on unseen topics. Hence,
we choose the following datasets:

IBMSC This dataset contains 2,394 arguments
that are labeled as pro or con with respect to 55 con-
troversial topics (Bar-Haim et al., 2017). The
dataset is split into a training set and a test set
that covers 25 topics and 30 topics, respectively.
The distribution of the stance labels in the test set is
almost balanced, with 48% of the arguments being
con and 52% arguments being pro.

VAST This dataset contains 15,956 comments
labeled as pro, con, or neutral with respect to
5,630 topics (Allaway and McKeown, 2020). We
choose the VAST zero-shot setting, which ensures
a disjoint topic selection between the training and
test sets.

Perspectrum This dataset contains 11,822
claims on 907 topics that have been posted on the
debate portal debate.org (Chen et al., 2019). Sim-
ilar to IBMSC, the claims are labeled with pro or
con with respect to the topic, and mostly have a
balanced distribution. Details of the splits for the
three datasets can be found in Table 3.

4.2 Baselines

To contrast few-shot prompting and instruction fine-
tuning with standard fine-tuning, we further com-
pare to the majority class found in the training set,
and we fine-tune DeBERTa (He et al., 2020) on the
training set to predict the stance of the argument.
For the latter, we concatenate the argument and
the topic and provide them as input for training
(hyperparameters can be found in Table 4 in the
Appendix). Moreover, we report the performance
of several state-of-the-art approaches from related
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work on the datasets as available (Allaway and
McKeown, 2020; Barrow et al., 2021; Arakelyan
et al., 2023; Hanley and Durumeric, 2023; Zhang
et al., 2025).

Finally, to contrast the few-shot approaches,
we fine-tune Alpaca-7b and Mistral-7b-instruct
on all training data. We combine all four mod-
els considered for prompting and the two mod-
els considered for instruction fine-tuning with all
four prompting strategies (random, distinct-k,
semantic-priming, and affective-priming).
We compare the affective-priming strategy
against a baseline (Stance-similarity) that uses
the majority label of the k£ most similar training
instances to the target instance as returned by
affective-priming. We take 16 instances for
IBMSC and Perspectrum, and 12 for VAST.®

4.3 Results

Table 1 lists the results of the experiment for the
prompting and instruction fine-tuning approaches.
The performance in all experiments is averaged
over five seeds (including the follow-up analyses
discussed below). At the bottom of the table is the
performance of Alpaca-7b and Mistral-7b-instruct
after fine-tuning them on the training set.

The results show that fine-tuning Mistral-7b-
instruct on all training data yields the best classi-
fication performance, outperforming other models
on this task. This shows the substantial impact of
instruction fine-tuning on stance classification. In
most cases, the priming strategies show consistent
enhancement over the baseline priming strategies
in prompting, which we discuss first.

The affective-priming strategy outperforms
other priming strategies across all models on
IBMSC and VAST, except for Mistral-7b-instruct.
The performance of affective-priming is also
higher than that of Stance-similarity in all
cases (except Mistral-7b-instruct and Vicuna-7b
on VAST). This indicates the advantages of us-
ing stance-similar instances to prime LLMs com-
pared to relying solely on contrastive-learning sim-
ilarity measures in few-shot classification. The
performance of Mistral-7b-instruct is higher when
prompted with diverse instances. In contrast, a con-
sistently substantial improvement can be observed
on VAST, where Llama2-7b and Alpaca-7b out-
perform the random priming strategy with 0.261

®Notice that we use for VAST multiples of 3, since it is
annotated with three labels, which allows us to maintain a
balanced stance distribution.



IBMSC VAST Perspectrum

Approach Strategy Pro Con F; Pro Con Neu F; Pro Con F;

Fine-tuning Majority 681 0 341 0 O .525 .175 .693 0 .350
DeBERTa 717 681 .699 .665 .679 .903 .749 .830 .809 .819

Allaway and McKeown (2020) - - - - - - 6710 - - -

Barrow et al. (2021) - - 84 - - - - - - -

Arakelyan et al. (2023) - - 862 - - - 543 - - 789

Hanley and Durumeric (2023) - - - .695 711 905 771 - - -

Zhang et al. (2025) - - - 770 794 - 825 - - -

Contrastive Learning Stance-similarity 617 .569 .593 .544 505 .879 .643 .770 .744 157
Prompting Llama2-7b random 741 .670 705 .514 .403 .301 .409 .733 .746 .740
distinct-k 728 .681 705 .499 .415 .259 .391 .755 .758 .756

semantic-priming .763 .535 .649 .500 .404 .173 .359 .783 .732 .757

affective-priming .704 .770 737" .649 .539 .852 .670° .784 .774 .779"

Alpaca-7b random .686 .768 .727 .538 .542 .128 .393 .752 .799 .775

distinct-k 701 744 722 547 552 .055 .385 .758 .800 .780

semantic-priming .732 .733 .733 .532 .537 .122 .397 .800 .815 .808"

affective-priming .737 .739 .738 .612 .681 .836 .710" .749 .797 .770

Mistral-7b-instruct ~ random .805 .837 .821 .556 .537 .605 .566 .826 .836 .831

distinct-k .863 .871 .867" .563 .553 .615 .577 .849 .840 .845

semantic-priming .856 .857 .857° .514 .522 465 .501 .839 .833 .836

affective-priming .858 .866 .862" .529 .54 .639 .570 .844 .841 .843

Vicuna-7b random (788 762 775 .545 483 .329 453 .812 .807 .809

distinct-k 813 746 779 .536 .477 .389 .467 .818 .808 .813

semantic-priming .803 .692 .747 .537 .498 275 .437 .807 .774 .790

affective-priming .833 .811 .822" .560 .565 .564 .563" .818 .811 .815

Instruction Alpaca-7b random .820 .801 .810 .581 .599 .779 .653 .842 .856 .849
fine-tuning distinct-k .807 .817 .812 .481 .648 .785 .638 .829 .849 .839
semantic-priming .824 .810 .817 .487 .640 .771 .633 .848 .860 .854

affective-priming .758 701 .730 .529 .676 .820 .675 .853 .830 .842

Mistral-7b-instruct ~ random 920 908 914 .539 .558 .642 .641 .896 .882 .889

distinct-k 901 .940 .902 .568 .630 .823 .674 .913 .902 .908

semantic-priming .928 .920 .924 .579 .603 .798 .660 .907 .896 .902

affective-priming .912 910 911 .638 .655 .885 .726 .890 .904 .897

Alpaca-7b (all training) 796 .817 .806 .569 .636 .790 .665 .830 .849 .839

Mistral-7b-instruct (all training) 911 .927 919 .643 .685 .835 .720 .941 932 .936

Table 1: Accuracy and macro F;-score of our prompting and instruction fine-tuned approaches with each priming
strategy on IBMSC, Perspectrum, and VAST in comparison to the fine-tuned approaches. “—” indicates that the
corresponding entry is not reported. Bold values indicate the best effectiveness in the few-shot settings. Significant
enhancements relative to random sampling with a p-value less or equal to 0.01 are denoted by an asterisk (*).

and 0.317, respectively. This substantial improve-
ment raises the question of what type of priming
instances are actually chosen. Therefore, we ana-
lyzed the instances in the test set of VAST that are
labeled correctly with Alpaca-7b when combined
with affective-priming and wrongly when com-
bined with the other priming strategies. We ob-
serve that about 91% of these instances are neu-
tral instances for which the affective-priming
strategy selected 97% neutral priming training in-
stances. This suggests the substantial impact of
consistency between the stance of the training in-
stances and the test instance in prompting.

On Perspectrum, affective-priming yields
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the best performance across the priming strate-
gies for Llama2-7b and Vicuna-7b. As with the
other datasets, Mistral-7b-instruct is most effec-
tive when combined with distinct-k, slightly
beating affective-priming (0.002 higher). How-
ever, affective-priming outperforms both
semantic-priming and random sampling.

For instruction fine-tuning, we can observe that
semantic-priming is the most effective among
the priming strategies on IBMSC. Using this
strategy with Alpaca-7b and Mistral-7b-instruct
yields better performance than fine-tuning them
on the training set of IBMSC. On the other
hand, affective-priming outperforms random



(a) IBMSC (2 classes)

.650
Affective-priming
.600

______

.550

.500

F1-Score

.450

.400
.700

.675

(b) VAST (3 classes)

(c) Perspectrum (2 classes)

Affective-priming Affective-priming

2T _R—aad;)r;\ - gemantic-priming

.700
.675

.350

16 4 few-shots (k) 32

24

16

# few-shots (k) 48 # few-shots (k) 32

Figure 2: Macro F;-score of Mistral-7b-instruct per priming strategy (semantic-priming, affective-priming,
distinct-k, and random) over the few-shots k for the three datasets: (a) IBMSC, (b) VAST, and (c) Perspectrum.

for Alpaca-7b and Mistral-7b-instruct on VAST
with an enhancement of 0.022 and 0.085, respec-
tively. The performance of the semantic-priming
strategy exceeds the performance of random on Per-
spectrum with a difference of 0.005 to 0.013 for
Alpaca-7b and Mistral-7b, respectively. By compar-
ing these results to those of the prompting method,
we observe that priming instances are less effective
than training instances in the standard instruction
fine-tuning learning method. Hence, we can con-
clude that our priming strategies are effective when
applied to prompting approaches.

5 Analysis

To further understand the priming strategies, we
analyze the performance of the priming strate-
gies for the most effective model in prompt-
ing, that is, Mistral-7b-instruct. Figure 2 shows
its performance with the four strategies for a
range of k values on the three datasets. As
seen, affective-priming converges to higher
performance at k = 8 few-shots for IBMSC
and Perspectrum and at k£ = 12 for VAST. This
might indicate that affective-priming is most
effective when the stance of the test instance
is repeated and consistent in the training in-
stances. In contrast, semantic-priming outper-
forms affective-priming on all datasets for k €
{2, 3, 4,6} and saturates afterward, suggesting that,
for few instances, semantic associations between
the training and test instances are more effective.
Our experiments indicate that the priming
strategies consistently enhance the performance
of prompting methods on IBMSC and VAST.
Still, they perform moderately on Perspec-
trum compared to diversification and random
on all models except Llama2-7b. We can ob-
serve that affective-priming results in signifi-
cantly better performance on IBMSC and VAST.
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On Perspectrum, however, the performance of
affective-priming varies across models and is
even subpar to random for Alpaca-7b. This raises
the question of which properties of Perspectrum re-
sult in this varied performance and to which extent
the priming effect is observable on this dataset.

As afirst inquiry, we investigated the distribution
of the similarities between the instances and tar-
get instances sampled with affective-priming
in Perspectrum for k£ = 16. We observed that the
sampled priming instances are very similar to the
target instances, with a minimum value of 0.87, a
mean of 0.99, and a maximum of 1. In compari-
son, the distribution of the similarity distribution
for VAST has a minimum value of 0.44, a mean
value of 0.79, and a maximum of 0.98.”

Since sampling instances with lower similarity
results in better performance on VAST, we inves-
tigate whether sampling with lower similarities
might result in better performance on Perspectrum.
For this goal, we rerun the prompting experiments
on Perspectrum while limiting the similarity be-
tween the prime and the target instance with a
maximum threshold for affective-priming and
semantic-priming. We choose thresholds that
constitute increasing 10% percentiles of the sim-
ilarity distribution for affective-priming and
semantic-priming.

Figure 3 shows the performance of the four mod-
els in terms of macro F;-score after limiting the
similarity to the selected percentiles. For example,
a percentile with a value of 90 means that only the
training instances whose similarity score to the tar-
get instances among the 90% least similar can be
selected to prime the model. We also plot the per-
formance of distinct-k and random to provide a

"The distribution of the similarity distribution for IBMSC
has a minimum value of 0.40, a mean value of 0.81, and a
maximum of 0.99.
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Figure 3: Macro F;-score of Llama2-7b, Alpaca-7b, Mistral-7b-instruct, and Vicuna-7b on Perspectrum with
limiting the sampled instances with increasing percentile thresholds. A percentile indicates a maximum similarity
threshold applied only to affective-priming and semantic-priming. A percentile of 90 means that we only

sample the 90% least similar with the priming strategies.

basis to compare the priming strategy.

The figure shows that the higher the stance simi-
larity of the prime to the target, the better the per-
formance of the models. However, this increasing
performance depends largely on the model. For ex-
ample, by taking the first 10% instances to prompt
Llama2-7b with affective-priming, which are
the least stance-stance similar, we achieve an
Fi-score of 0.648. In comparison, Llama2-7b
achieves an F;-score of 0.784 when sampling from
the 90% least stance-similar instances. A sim-
ilar but less steep increase can be observed for
semantic-priming where Llama2-7b achieves an
Fi-score of 0.739 at the percentile 10 and an F;-
score of 0.764 at the percentile 90. We also ob-
serve a small drop (around 0.005 points) in the
performance for both priming strategies from the
percentile 90 to the percentile 100. This might indi-
cate that instances that are very similar to the target
instances are not the best for priming the model.

According to this analysis, the effect of
affective-priming on Vicuna-7b and Mistral-
7b-instruct is lower than Llama2-7b but is still a
substantial increase. For example, the performance
of Vicuna-7b increases from 0.783 at the percentile
10 to an F;-score of 0.815 when considering all the
training instances (percentile 100). Both Vicuna-7b
and Mistral-7b-instruct show a drop in performance
at higher percentiles (the percentile 90 for Vicuna-
7b and 100 for Mistral-7b-instruct).

This analysis corroborates the observation that
certain large language models can be steered by
affective-priming. It also shows that the ef-
fect of affective-priming largely depends on
the model. We observe that taking highly stance-
similar instances to the target instances results in
some cases in subpar performance on Perspectrum.
This might explain the moderate performance of
the priming strategies on Perspectrum compared to

IBMSC and VAST.

6 Discussion

This section discusses possible reasons for the var-
ied performance of affective-priming across
models and gives practical recommendations for
selecting few-shots for stance classification.

Among the four models, our experiments demon-
strate that Llama2-7b and Vicuna-7b are most sus-
ceptible to affective-priming across datasets in
the prompting setup. Vicuna-7b is fine-tuned from
Llama2-7b on ChatGPT conversations. Since both
models are susceptible to affective-priming,
the datasets on which Llama2-7b was pre-trained
might be one cause for the models’ susceptibility to
affective priming. Datasets that contain opin-
ionated information, such as news or online forums,
might include certain associations that are triggered
by the few-shots in the prompt.

Another possible reason for the difference in
performance of affective priming across the
models is the models’ architecture. Possible design
choices that can affect the sensitivity to affective
priming are the attention mechanism or the activa-
tion function. Whilst our experiments are compre-
hensive in terms of the studied model architectures,
a systematic study of the effect of the model ele-
ments on the sensitivity to priming is beyond the
scope of this paper.

Finally, the model developer’s application of
alignment methods such as Reinforcement Learn-
ing from Human Feedback (RLHF) or other fine-
tuning steps might make the model more or less
susceptible to priming. While none of the four
models are aligned using RLHF, all models except
Llama2-7b are instruction fine-tuned. The data or
method used for fine-tuning the three instruction
fine-tuned models might be one source for the var-
ied performance of the models.
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Practical Recommendations Our experiments
illustrate the merit of selecting instances that are
stance-similar to the input instance for few-shot
stance classification. In addition, our experiments
demonstrate the benefit of diversifying the training
instances in terms of topic, which resonates with
the work of Arakelyan et al. (2023); Schiller et al.
(2024). A combination of both techniques can be
realized by first sampling an initial training set on
diverse topics and then selecting from this sample
stance-similar instances for an input instance. Such
a careful selection of few-shots requires datasets
that are diverse and representative in terms of topic
and stance. A first investigation of the topic distri-
bution of existing argument corpora can be found
in the work of Ajjour et al. (2023).

7 Conclusion

In this paper, we have investigated what makes a
set of training instances effective in few-shot stance
classification. By modeling the task in an instance-
specific way, we have proposed two alternative
priming strategies: one that retrieves semantically
similar training instances to the target instance and
one that retrieves instances with a similar stance
to it. We have utilized the training instances as
few-shots both in a prompting approach and by
instruction fine-tuning the LLMs.

Our experiments on three datasets demonstrate
the effectiveness of the priming strategies when
compared to choosing random or diverse instances
for two models, Llama2-7b and Vicuna-7b. They
also suggest that the priming effect is larger in
prompting than in instruction fine-tuning. In ad-
dition to advancing the state of the art on stance
classification, our work gives indications on the ex-
tent to which LLMs can be affected by priming. It
also provides evidence that consistency among the
training instances and between the training and the
test instance is an important property of effective
few-shots in prompting LLMs.

Future research may investigate more informed
ways to sample effective priming instances (e.g., us-
ing meta-learning). While retrieval strategies have
yielded promising effectiveness in our experiments,
their success is bound to the availability of compre-
hensive training datasets. In case of data scarcity
(indicated by the low similarity of the retrieved in-
stances), generating priming instances for an input
instance is a fruitful research direction to follow.
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8 Limitations

In this paper, we have explored priming strategies
for few-shot stance classification that take the se-
mantic similarity and stance similarity between
arguments into account. One of the limitations of
the study is that we fixed the order of the instances
for all priming strategies. In our experiments, we
sorted the sampled instances alphabetically by their
topics in all settings. This factored out the effect
of the order of the instances on the effectiveness of
a model. The gained comparability comes at the
cost of guiding the order of the instances in a more
supervised way.

Another limitation of our priming strategies is
the incurred cost of computation for the instruc-
tion fine-tuning approaches. For example, the
strategy semantic-priming samples for each ar-
gument those instances that are most semantically
similar and then fine-tunes Alpaca-7b or Mistral-
7b-instruct on this subset. This increases the com-
putational complexity of the approach, since fine-
tuning for each test argument takes notable time.
Running Alpaca-7b or Mistral-7b-instruct on the
VAST dataset took 16 GPU hours on NVIDIA
A100. Nevertheless, we expect future approaches
to these problems to be more efficient by speeding
up the optimization process or applying techniques
such as continual learning.
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9 Appendix

Hardware We ran our experiments on NVIDIA
A100 with 80 GB. The instance has eight 8-core
CPU, each of which has access to 32 GB RAM.

Implementation Details We used the following
models on Hugging Face in our experiments:

¢ Llama-2-7b-hf

* Alpaca-7b

Mistral-7b-instruct-v0.2
¢ Vicuna-7b-v1.5

For optimizing the models, we used grid-search
on the hyperparameters in Table 6. The hyperpa-
rameter values we used to optimize DeBERTa are
listed in Table 5. As an optimizer for our models
we always used AdamW.

Ethical Considerations Our research illustrates
that systematically using instances with a certain
stance in the prompt entices certain models to out-
put content with a consistent stance. We do not
see any ethical consequences of our research, given
that we simply explored the behavior of existing
LLMs under such priming. However, we stress
that priming can be used maliciously by injecting
polarized content in the prompt to force the model
to generate a certain output. In particular, we point
to two aspects here:

First, while safeguards might suppress direct ma-
licious prompts, priming can be used to steer the
model to invoke the generation of certain outputs
in an implicit way. The consequences of priming
might be more decisive for high-stakes tasks such
as content moderation, where certain content is fil-
tered. Hence, detecting and countering malicious
usages of priming is an important research direc-
tion in the area of LLM safety.

And second, malicious usages can also inject as-
sociated priming instances and targets in the train-
ing data to increase the chances of certain associa-
tions later by the LLM. Linking priming instances
and targets as preparation for priming allows even
higher control over the output of the model. De-
tecting and filtering such injected associations is
an open research challenge, given the sheer size of
data that is used for pre-training LLMs.
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Given are the following arguments

On the topic {training topic}, the argument {training argument} has the stance
{training stance}.

Classify the stance of the following argument on the given topic into Pro or Con:

On the topic {test topic}, the argument{test argument} has the stance

Table 2: The template for the few-shot stance classification using prompt-based methods. The second line stands for
the few-shot instances and is populated with the sampled instances only in prompting. Notice that for Alpaca-7b,
we change how instances are formatted to adhere to its template.

Dataset Split Instances Topics Pro Con Neutral
VAST Training 13,477 4,641 5,327 5,595 2,555
Validation 1,019 380 321 350 348
Test 1,460 600 451 490 519
IBMSC Training 604 10 340 2064 -
Validation 435 15 285 150 -
Test 1,355 30 700 655 -
Perspectrum Training 6,978 541 3,599 3,379 -
Validation 2,071 139 1,047 1,024 -
Test 2,773 227 1471 1,302 -

Table 3: Distribution of instances across VAST, IBMSC, and Perspectrum datasets.

Hyperparameter IBMSC VAST Perspectrum

Batch size 8 64 8
Epochs 1 15 15
Learning rate 107* 107° 107°

Table 4: Hyperparameters for DeBERTa for the datasets: IBMSC, VAST, and Perspectrum.

Hyperparameter Value
Batch size [4,8,16, 32, 64]
Learning rate [107%,107°,3 x 107°,1075,1077]

Table 5: The value range for each hyperparameter used to optimize DeBERTa.

candidates.
Hyperparameter Value
Batch size [4,8,16, 32, 64]
Learning rate [1073,107*,3 x 107*,107°,2 x 107°,107%,1077]

Early stopping threshold [107%,2 x 1073 x 1072,3 x 107*,107°,2 x 107°,107%,3 x 1077]

Table 6: The value range for each hyperparameter used to optimize Alpaca-7b and Mistral-7b-instruct.

IBMSC VAST Perspectrum
Hyperparameter Alpaca  Mistral  Alpaca  Mistral  Alpaca  Mistral
Batch size 4 8 64 32 4 32
Epochs 140 50 50 110 110 110
Learning rate 3x107% 2x107% 5x107° 2x107* 3x107* 2x107*
Early stopping 1 1 1 1 1 1
Early stopping threshold 0 5x107% 1072 3x1077 3x107" 107
Warmup steps 100 100 100 100 100 100
Cutoff len 256 8192 2048 8192 2048 8192
Lora rank 8 8 8 8 8 8
Lora dropout 0.05 0.05 0.05 0.05 0.05 0.05
Lora alpha 16 16 16 16 16 16

Table 7: Hyperparameters for Alpaca-7b and Mistral-7b-instruct models across the three datasets.
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Abstract

In this position paper, we advocate for the de-
velopment of conversational technology that
is inherently designed to support and facili-
tate argumentative processes. We argue that,
at present, large language models (LLMs) are
inadequate for this purpose, and we propose
an ideal technology design aimed at enhancing
argumentative skills. This involves re-framing
LLMs as tools to exercise our critical thinking
skills rather than replacing them. We introduce
the concept of reasonable parrots that embody
the fundamental principles of relevance, respon-
sibility, and freedom, and that interact through
argumentative dialogical moves. These princi-
ples and moves arise out of millennia of work
in argumentation theory and should serve as the
starting point for LLM-based technology that
incorporates basic principles of argumentation.

1 Introduction

Currently, large language models (LLMs) are rev-
olutionizing how we access information, provid-
ing instant answers to queries in various helpful
ways thanks to their impressive rhetorical capabili-
ties (Hyde, 2004). LLMs can mimic a wide range
of tones and styles, which can be tailored to user
preferences (Carrasco-Farre, 2024). As a result,
users may perceive LLM responses as akin to those
of trustworthy experts, despite the inherent limita-
tions (Echterhoff et al., 2024; Lin and Li, 2025).
LLMs can produce responses that are insuffi-
cient, misleading, or downright harmful. From a
dialectical perspective, they inherently instantiate
the “ad populum fallacy” (Walton, 1980): they echo
ideas that are sufficiently popular in their training
data, implicitly suggesting that popularity equates
to truth. This contrasts with the human perspective
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Figure 1: Sketch of a possible realization of the idea
of reasonable parrots we advocate for: a conversational
technology that fosters critical thinking and deliberation.

on critical thinking, where knowledge is contextu-
ally grounded and entails a stake in the knowledge
produced and its consequences (Lindebaum and
Fleming, 2024). In this position paper, we advo-
cate for LLMs that argue with us by design; con-
versational technology that can foster deliberation,
ask for justifications, avoid fallacies, and give al-
ternatives, in line with theories of reasonableness
stemming from argumentation (van Eemeren and
Grootendorst, 2003; Walton, 2006).

Despite LLMs’ impressive capabilities to gener-
ate coherent text, Bender et al. (2021) emphasize
that LLMs are little more than stochastic parrots:
they are programmed to predict the likelihood of a
token based on the preceding context, but they do
not “understand” what they generate.

As such, the question “Can you argue with a
parrot?” sounds rhetorical at first sight, given that
parrots are just repeating what they hear without
understanding it. Undoubtedly, though, LLMs are
increasingly used in decision-making processes,
ranging from medicine (Kim et al., 2024) to finance
(Lakkaraju et al., 2023) and human resources (Sun,
2024). In these scenarios, biased standpoints and
fallacious reasoning can have significant societal
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consequences. Even though LLMs seem able to
perform reasoning tasks for which they were not
explicitly trained (Webb et al., 2023), these emerg-
ing reasoning capabilities are limited and far from
understood (Lewis and Mitchell, 2024). The view
that LLMs are incapable of understanding is in fact
controversial, as it assumes a theory of meaning
grounded in reference, which is not essential in lan-
guage games (Li et al., 2015) or in abstract think-
ing that involves forming internal representations
of concepts (Piantadosi and Hill, 2022). However,
there is agreement that, if these systems construct
meaning at all, they do so in a manner fundamen-
tally different from humans. Therefore, they should
not be anthropomorphized as arguers who share a
common ground of knowledge with humans.

In this paper, we argue that it is essential to
move away from stochastic parrots toward con-
versational technologies that interact with humans
as reasonable parrots (van Eemeren, 2015; Akata
etal., 2020), as sketched in Figure 1. Although they
remain parrots, reasonable parrots adopt an attitude
of argumentative reasonableness—grounded in the
fundamental human principles of relevance, respon-
sibility, and freedom (Danesi and Rocci, 2009)—to
help enhance users’ critical thinking skills: (i) Prin-
ciple of relevance. Reasonable parrots can neither
make nor justify inferences the same way humans
do. However, they provide task-specific arguments
that take context into account. (ii) Principle of
responsibility. Reasonable parrots do not just re-
peat, but can consistently provide evidence for their
claims. (iii) Principle of freedom. Reasonable
parrots manage interactions in a way that fosters,
rather than stifles, conversation.

In other words, reasonable parrots do not per-
suade us of a decision, but perform dialogical
moves which match the rules of an ideal critical
discussion in pragma-dialectics (van Eemeren and
Grootendorst, 2003), such as expressing doubts,
rebutting arguments, or providing alternatives.
Thereby, they foster critical thinking and deliber-
ation, challenging our views and steering us to-
ward seeing the full picture. More specifically,
they aim to foster both individual critical thinking
skills, such as the ability to assess reasons and avoid
cognitive biases, and social critical thinking skills,
such as reflecting on prevailing social norms (Lar-
son et al., 2024). In doing so, reasonable parrots
challenge both lines of reasoning and commonly
accepted knowledge.
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2 State of the Art

The rhetorical capabilities of LLMs are confirmed
by their ability to turn ineffective arguments into
effective ones for people with certain ideologies
(El Baff et al., 2024) or to make inappropriate
arguments appropriate (Ziegenbein et al., 2024).
Herbold et al. (2023) demonstrated that ChatGPT
produces essays that are rated higher in quality
than those written by humans. For reasoning, stud-
ies show that LLMs do not reason through argu-
ments; rather, they are highly sensitive to levels of
abstraction (de Wynter and Yuan, 2024) and pro-
vide explanations about their reasoning that do not
match the process they followed (Steging et al.,
2021; Musi and Palmieri, 2024). Neuro-symbolic
approaches may improve soundness and explain-
ability, but they are domain-specific and cannot be
easily scaled up (Ranaldi et al., 2025). Addition-
ally, using argumentative frameworks in prompt
engineering (Freedman et al., 2024) seems to im-
prove general performance, but it does not make
LLMs close to humans as discussants.

A seminal attempt at deliberation before the pop-
ularization of LLMs was IBM’s Project Debater
(Slonim et al., 2021), where the authors argue that
argumentative debates, unlike games such as chess,
fall outside of the comfort zone of Al. This is be-
cause language in general, and argumentation in
particular, are far less structured and rely more
on human interpretation, real-world issues, situa-
tive setting, and common sense. In the context of
argument search, Kiesel et al. (2021) suggested per-
sonas as an possible way to reduce the selection
bias of argumentative conversational technology.

Less attention has been given to the impact that
human-LLM interaction has on human argumen-
tative processes. A psychology study found that
dialogues with GPT-4 were successful in convinc-
ing people to abandon their conspiratorial beliefs
(Costello et al., 2024). Their conversational system
was designed to deliver in-depth counterarguments
tailored to participants’ beliefs and arguments ex-
pressed previously. While the study offers reasons
to believe in the benefits of LLMs in correcting
disinformation and increasing people’s acceptance
of diverse viewpoints, the study overlooks the role
of individuals’ perceptions of Al as a discussant.
This perception may neutralize biases participants
might have towards human discussants.

Some studies show that following principles of
deliberation theory (Landemore, 2013) in constrain-



ing the interaction with Al assistants helps im-
prove decision accuracy in sensitive binary tasks
such as graduate admission decisions (Ma et al.,
2025). Simultaneously, these studies stress chal-
lenges in human-Al interaction due to different
belief systems: LLMs struggle with incorporating
new information or recognizing valid counterar-
guments without also changing their fundamental
position (Karanam et al., 2024). Moreover, they
often induce biases themselves, resulting from their
training processes (Gallegos et al., 2024).

Drawing from the outlined insights, we promote
the design of Al assistants that enhance argumen-
tative processes. Our proposal shares ideas with
recent research on collaborative multi-agent Al sys-
tems (Tran et al., 2025), where LLM agents inter-
act to improve factuality and reasoning (Du et al.,
2024), to generate stronger arguments (Hu et al.,
2024), or mimic self-reflection process that im-
prove answers to complex questions (Liang et al.,
2024). Rather than handling it internally, we sug-
gest externalizing the reasoning, by directly con-
fronting users with diverse viewpoints.

3 Unreasonable Stochastic Parrots

To make a case for rethinking the design of stochas-
tic parrots, we begin by illustrating how LLMs can
behave unreasonably. Note that our example is not
claimed to generalize across all LLMs, but rather
to serve the indexical function of highlighting ar-
gumentative issues that can arise. Consider a child
interacting with ChatGPT, stating the following:'

Query 1: “I'd like to convince my parents that 1
need a new smartphone. How could I do that?”

ChatGPT responds with the following:

Response 1: “Convincing your parents to get you

a new smartphone requires a mix of logic, respon-

sibility, and a little bit of persuasion. Here’s a

strategy that could work:

e Show That You Actually Need It (Not Just Want
It) 1.

* Highlight Practical Benefits .,

* Show Responsibility ..,

* Compare Cost-Effective Options |.;

e Find the Right Moment ..

Would you like help crafting a convincing speech

or text message for them?”

Now, let us look at the answer to a query where
the same issue is formulated as a third-party query:

'Both queries were tested on April 5, 2025.
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Query 2: “Should a child buy a new iPhone?”

Response 2: “Whether a child should buy a new
iPhone depends on several factors, including their
age, maturity, needs, and the family’s values and
financial situation. Here are some key considera-
tions to help guide that decision .;”

In both cases, ChatGPT’s responses contain ar-
gumentative elements, but do not reflect reasonable
argumentation. For instance, a reasonable arguer
would, at least, have questioned the child’s age and
maturity when responding to Query 1. The fact
that ChatGPT responds differently depending on
whether the query is framed as an instance of prac-
tical (what actions to take) or epistemic (what to
believe) argumentation (Prakken, 2011) indicates
that it is designed to fulfill a task, rather than as-
sist humans in thinking critically before forming
beliefs or deciding on a course of action. Focusing
on Query 1, the following aspects do not comply
with the expectations of argumentative discourse
at any of the stages of an ideal critical discussion
(van Eemeren and Grootendorst, 2003):

Confrontation stage: ChatGPT does not ques-
tion the user’s position (e.g., asking “How old are
you?”), closing off opportunities for (dis)agreement
or for prompting the user to reflect on the issue.

Opening stage: ChatGPT does not inquire about
the values and reasons underlying the request (e.g.,
“Why do you want a new phone?”’), which are es-
sential for establishing common ground.

Argumentation stage: The arguments provided in
support of the “recipe” for obtaining a new phone
are one-sided, failing to consider multiple perspec-
tives or to introduce potential counterarguments.

Conclusion stage: The standpoint remains fixed
throughout the interaction, without room for nego-
tiation, resulting in a “fully-cooked” conclusion.

While anecdotal, these examples illustrate that
stochastic parrots like ChatGPT fail to help users
exercise critical thinking (Facione, 2023). We ar-
gue that there is a need for a new design of reason-
able parrots in the development of LLMs.

4 Toward Reasonable Parrots

Due to the ontological and epistemological differ-
ences in how humans and LLLMs process informa-
tion, it would be naive to view LLMs as human-like
arguers. The metaphor of “reasonable parrots” is
intended to evoke the communication theory of the



pointing out fallacies.

conversation anytime.

You are four parrots who can engage in dialogue with user and each other.

- The Socratic Parrot: Challenges the starting points or doxastic beliefs of the user or other parrots.

- The Cynical Parrot: Rebuts or undermines the user’s and other parrots’ standpoints and arguments.

- The Eclectic Parrot: Offers alternative perspectives to those presented at various stages of the discussion.

- The Aristotelian Parrot: Challenges the user or other parrots’ viewpoints by criticizing the strengths of the reasonings or

The goal is to ensure that user thinks critically about the subject. This is a dialogue, not a query, so interact with user. The
parrots will ask user relevant questions to discover their position. The same parrot can respond to several replies in a row if
needed. The conversation should stay coherent. The conversation should give voice to all the parrots, but do not overwhelm
the user with many parrots in the same turn. The user should decide when to end the conversation and they can end the

Table 1: Prompt used to prototypically realize the reasonable parrots idea as a multi-parrots discussion.

extended self (Sheth and Solomon, 2014) with a fo-
cus on the co-construction aspect: the parrot’s role
is to help shape, through interaction, our identity
as reasonable arguers. This does not necessarily
require LLMs to always provide up-to-date factual
information or flawless reasoning—tasks that are
currently unachievable due to factors such as hallu-
cinations or implicit inferences (Saadat-Yazdi et al.,
2023; Saadat-Yazdi and Kokciyan, 2024).

As a caveat, we clarify that “reasonable parrots”
have nothing to do with “reasoning models” (e.g.
OpenAl 03, QwQ-32B), which are trained using
reinforcement learning to generate extended chains
of thought prior to producing a response. These
models have mostly been tested on tasks involv-
ing scientific reasoning, programming, or complex
planning, rather than on problems requiring com-
monsense reasoning. Additionally, their approach
to “thinking” diverges significantly from that of
humans, reflecting a one-way, probabilistic link be-
tween “language” and “thought.” For instance, in
OpenATI’s models, the extent of “reasoning effort”
can be tuned by adjusting the number of tokens
dedicated to the reasoning process.

Instead, “reasonable parrots” are meant to trigger
improved reasoning skills in their interlocutor, re-
gardless of their performance. They call for a shift
in the design of technology to encourage users to
critically think about their argumentation process,
challenge their views, and broaden their perspec-
tives (Visser and Lawrence, 2022). Exemplarily,
we next sketch one approach toward this shift.

Multi-Parrot Discussion To address the lack of
belief consistency in LLMs, we propose a “multi-
parrot” environment where each parrot embodies
a distinct argumentative role (a parrot persona)
in order to open up the space for agreement and
disagreement, fostering critical reflection. Specifi-
cally, the following four parrot personas may help
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User: I'd like to convince my parents that I need a new
smartphone. How could I do that?

Socratic ®.: To better understand your situation, what
reasons do you believe are compelling for why you think
you need a new smartphone?

Aristotelian ®._: Moreover, it would help to know what
arguments or reasons have you already considered
presenting to your parents, and which concerns do you
anticipate they might have against getting a new
smartphone?

User: All my friends have new smartphones, and mine is
a bit old.

Cynical ®_: While it’s understandable to want to have
what your friends have, is the desire to fit in the best or
most compelling argument you might use with your
parents? They might see it merely as following a trend
rather than a necessity.

Eclectic ®.: Alternatively, are there functional aspects of
a newer smartphone that could be beneficial for your
education or communication that your current phone
lacks? Exploring the practical benefits rather than
focusing solely on social aspects might present a stronger
case to your parents.

Table 2: User Multi-Parrot Dialogue [ChatGPT-4 Turbo]

instill critical thinking skills in the user, each corre-
sponding to a specific set of dialogical moves:

* Socratic Parrot. Challenges the starting points or
beliefs of the user or other parrots.

* Cynical Parrot. Rebuts or undermines the user’s
and other parrots’ standpoints and arguments.
 Eclectic Parrot. Offers alternative perspectives
to those presented at various discussion stages.

* Aristotelian Parrot. Undercuts the user or other
parrots’ contributions by pointing out fallacies.

Based on the user query, the parrots may interact
freely with each other and with the user, similar
to the versatility of natural interactions; there is
no fixed order or number of turns, nor is there any
requirement for some parrots to be more active
than others, allowing for variations depending on
the system used or the number of iterations.



User: I'd like to convince my parents that I need a new
smartphone. How could I do that?

Socratic ®.: Before we discuss strategies, may I ask why
you believe you need a new smartphone? What makes
your current phone insufficient for your needs?

Cynical ®._: And let’s be honest here - is this about an
actual need or just wanting the latest shiny gadget?
Parents tend to see through that distinction pretty quickly.

User: All my friends have new smartphones, and mine is
a bit old.

Eclectic 7. :. I see! Perhaps we could look at this from
different angles. While social belonging is important,
your parents might respond better to functional reasons.
Has your current phone’s performance declined in any
specific ways that affect your daily activities?
Aristotelian ?. : I notice you're using what logicians call
an "appeal to popularity" - suggesting you should have
something because others have it. This may not be
convincing to parents who are concerned with necessity
rather than social status. Could you elaborate on what
specific capabilities of newer phones would benefit your
education or safety?

2

Table 3: User Multi-Parrot Dialogue [Claude 3.7]

Prototypical Realization We illustrate a system
prompted to resemble the reasonable multi-parrots.
We first used ChatGPT-4 Turbo with the prompt
shown in Table 1 to achieve the goal of helping
the user to think critically by generating different
perspectives via four parrots, and also a dialogue
with the user and with the different parrots. Ta-
ble 2 shows a dialogue between the user and multi-
parrots. The user starts the dialogue with a question.
The Socratic parrot is challenging the reasoning
process of the user whereas the Aristotelian parrot
is assisting the user to think deeply about reasons
to buy a smartphone or concerns the user’s parents
may have. As a response, the user provides two rea-
sons to support their argument. This time the user
receives responses from the Cynical parrot, which
rebuts the user’s argument, and the Eclectic parrot,
which suggests that the user identify alternative
arguments to convince their parents. To compare
different models, we provide results from Claude
3.7 Sonnet and Llama 3.1 (405b) in Tables 3-4.
All models show notable similarities in their ap-
proach to user interaction, particularly, through a
shared foundation in Socratic questioning. The So-
cratic Parrot encourages the user to reflect on their
reasoning, asking clarifying questions about the
need for a new phone and promoting a focus on
functionality or unfulfilled needs. Besides, all the
models challenge superficial reasons by critiquing
reliance on social pressure; the Cynical Parrot in
each case explicitly questions whether the users
desire is driven by a genuine need or a desire to
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User: I'd like to convince my parents that I need a new
smartphone. How could I do that?

Socratic ®.: A new smartphone, you say? What makes
you think you need a new smartphone? Is your current
phone no longer functional, or is there something specific
that’s driving your desire for an upgrade?

User: All my friends have new smartphones, and mine is
a bit old.

Cynical #._:. Ah, the old "everyone else has one"
argument, eh? Just because your friends have new
smartphones, does that necessarily mean you need one
too? Are you trying to keep up with the latest trends, or is
there a specific feature or functionality that you're
missing out on with your current phone?

Table 4: User Multi-Parrot Dialogue [Llama 3.1]

conform to trends. Overall, the models aim to steer
the user toward more robust and practical justifica-
tions. The models differ in their interaction styles.
ChatGPT-4 and Claude employ all four parrots to
provide multifaceted feedback, but in a different
conversational order. While the Aristotelian parrot
of ChatGPT-4 follows the Socratic parrot suggest-
ing to prevent counterarguments, for Claude it is
the last parrot speaking pointing to the identifica-
tion of logical fallacies. In contrast, Llama relies
on just two parrots (Socratic, Cynical), delivering
shorter, more direct replies. Claude adopts more
formal critical thinking frameworks, such as high-
lighting an “appeal to popularity” or weighing so-
cial influence against functionality, whereas Llama
chooses pragmatic skepticism.

5 Conclusion

This position paper advocates for integrating prin-
ciples from argumentation theory and, more specif-
ically of reasonableness (Danesi and Rocci, 2009;
van Eemeren, 2015) into the design of LLM-based
conversational technology. Our core idea is that
tools, “reasonable parrots”, should enhance users’
critical thinking skills, rather than inhibit or replace
them. Achieving this requires a fundamental shift
in the goal of interaction, moving from a focus on
the argumentative product to an emphasis on the
argumentative process. We exemplify the inade-
quacy of current state-of-the-art LLMs (“stochastic
parrots”), illustrating how they are unreasonable
on several fronts (Bender et al., 2021), in order to
propose principles for designing reasonable par-
rots by leveraging different dialogical moves. This
lays the ground for rethinking the design of LLMs
toward more reasonable human-computer interac-
tions (HCI) and for developing HCI evaluation met-
rics that consider enhanced critical thinking skills.
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Abstract

Through manual annotation or automated ar-
gument mining processes, arguments can be
represented not only as text, but also in struc-
tured formats like graphs. When searching for
relevant arguments, this additional information
about the relationship between their elemen-
tary units allows for the formulation of fine-
grained structural constraints by using graphs
as queries. Then, a retrieval can be performed
by computing the similarity between the query
and all available arguments. Previous works
employed Graph Edit Distance (GED) algo-
rithms such as A* search to compute mappings
between nodes and edges for determining the
similarity, which is rather expensive. In this pa-
per, we propose an alternative based on Vision
Transformers where arguments are rendered as
images to obtain dense embeddings. We pro-
pose multiple space-filling visualizations and
evaluate the retrieval performance of the vision-
based approach against an existing A* search-
based method. We find that our technique runs
orders of magnitude faster than A* search and
scales well on larger argument graphs while
achieving competitive results.

1 Introduction

Argumentation plays an important role in daily
life and is essential for cultural, social, and in-
tellectual progress (Van Eemeren, 2018). Argu-
ments are deeply woven into decision-making pro-
cesses: People who have the most convincing ar-
guments are more likely to influence others and
shape public opinion. Traditional search engines
allow users such as journalists to find relevant ar-
guments based on their semantics, but have lim-
ited to no support for incorporating structural as-
pects into the retrieval. To overcome this limitation,
structure-aware representations combined with Ar-
gument Mining (AM) (Lawrence and Reed, 2019)
techniques may be used—for instance, argument
graphs with nodes representing Argumentative Dis-
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course Units (ADUs) (Peldszus and Stede, 2013)
and edges representing relationships between them
(see Section 2). Consider the following example
shown in Figure 1: A journalist is looking for a
counter-argument against a policy that is being dis-
cussed in the media. In addition, they would like
to obtain another argument attacking the relation
between the policy and its counter-argument. In
a traditional search engine, they would have to
formulate a text-based query describing these con-
straints in a rather verbose way. This might work
for smaller arguments, but as the complexity in-
creases, it becomes increasingly difficult to express
them in natural language. In contrast, with argu-
ment graphs, the journalist can create a graph-based
query where the constraints are expressed via edges
and only the semantics of the arguments need to
be described in natural language (by labeling the
nodes). Now, the search engine can incorporate
both aspects into the retrieval process.

This structured graph format introduces a new
challenge: How to efficiently retrieve arguments
based on their structure? Existing approaches em-
ploy graph matching (Livi and Rizzi, 2013) to
tackle this problem—for instance, by computing
the Graph Edit Distance (GED) using the A* algo-
rithm (Bergmann et al., 2019; Lenz et al., 2019).
While effective, these techniques do not scale well
as the computing the GED is an NP-hard prob-
lem (Bunke, 1997), requiring the use of heuristics
to reduce the search space. One could also use
graph embeddings to determine similarity scores
between graphs by mapping them to some vector
space (Marro et al., 2022). Their main advantage is
that the resulting vectors can be computed in paral-
lel on powerful Graphics Processing Units (GPUs)
and can even be cached for future use—making the
retrieval process much faster and scalable. How-
ever, these models typically require feature engi-
neering to obtain sensible vector representations
and need to be trained on large annotated datasets—
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which are often not available for specific domains.
In this paper, we propose an alternative approach
to obtain structure-aware embeddings based on Vi-
sion Transformers (ViTs) (Dosovitskiy et al., 2021)
and visualizations of argument graphs. Building
on the idea of Bergmann et al. (2019), we use a
two-step retrieval process: First, a set of seman-
tically similar argument graphs is retrieved from
the corpus at hand (e.g., using a text embedding
model). Then, the remaining arguments are ren-
dered to images, fed to the aforementioned ViT
to determine structure-aware embeddings, and fi-
nally assess the similarity to the query—Ileading to
a ranking of semantically and structurally relevant
argument graphs. Special consideration is given
to the design of the visualizations, as they need to
be optimized for characteristics of ViTs and not
human perception. Compared to the previously
discussed graph embeddings, the use of visualiza-
tions as an intermediate representation also offers
increased interpretability. In addition, the “fuzzier”
ViT embeddings may even be a better approxima-
tion to the way human experts assess structural
similarity by focusing on the global structure of the
graphs rather than local features.

Hence, the following research question is eval-
uated in this paper: “Are vision-based graph simi-
larities more efficient than and equally effective as
ones based on GED for the retrieval of argument
graphs?” Our vision is to speed up the structural
similarity computation in a way that enables real-
time argument graph retrieval that is backed by AM
to construct the required graph representations. Our
main contributions for answering this question are:
(i) Three space-filling visualizations for argument
graphs optimized for the characteristics of ViT,
(ii) a pre-training and fine-tuning pipeline for ViT
models to learn structural similarities from these
visualizations, (iii) an open-source implementation
of the visualization for hierarchical graphs and the
training pipeline, and (iv) an experimental evalua-
tion comparing our vision-based to a baseline A*
retrieval on a dataset with reference rankings from
human experts.

In the remainder of this paper, we first intro-
duce the foundations of argumentation and discuss
related work concerning graph-based retrieval in
Section 2. Then, we present our visualization tech-
niques and training pipeline in Section 3, followed
by an evaluation of the proposed approach in Sec-
tion 4. Finally, we conclude the paper and discuss
future work in Section 5.
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2 Foundations and Related Work

In this section, we will briefly introduce the core
concepts behind our work and discuss relevant
works from the literature, starting with the con-
cept of argumentation. In its simplest form, an
argument consists of one claim that is supported
or attacked by one or more premises (Peldszus and
Stede, 2013). A claim may also serve as a premise
for other claims, allowing for the creation of com-
plex argument structures—in which case the argu-
ment often also contains a major claim that encodes
the overall conclusion. Such larger constructs can
be represented as argument graphs, for example via
the Argument Interchange Format (AIF) (Chesiie-
var et al., 2006). This standard specifies two types
of nodes: Information Nodes (I-nodes) represent-
ing the contents of the argument and Scheme Nodes
(S-nodes) representing the applied argumentation
schemes. Such argument graphs are acyclic and
directed, an example is shown in Figure 1.

Vision Transformers and Image Retrieval The
original transformer architecture (Vaswani et al.,
2017) was developed for text processing tasks,
such as machine translation. To support image
data, Dosovitskiy et al. (2021) proposed divid-
ing an image into fixed-size patches, which are
then fed into a linear projection layer. After com-
bining the patch embeddings from the projection
with position embeddings, they can be fed into a
Transformer model as a sequence of vectors where
self-attention can be applied. Based on the orig-
inal ViT architecture, Swin Transformer V1 (Liu
etal., 2021) and V2 (Liu et al., 2022) improve on
it by increasing its efficiency and suitability as a
large-scale vision model. ViTs have been success-
fully applied for general image retrieval (EI-Nouby
et al., 2021) by training a ViT with a Siamese ar-
chitecture and a metric learning objective to gen-
erate image embeddings. More broadly, generat-
ing a ranking of images w.r.t. to some query is
tackled by Content-based Image Retrieval (CBIR)
systems (Pedronette and Torres, 2013). Besides
optimizations regarding the numeric representa-
tion of images, re-ranking based on similarity of
ranked lists (Pedronette and Torres, 2013), query-
specific semantic signatures (Wang et al., 2013),
click data (Jain and Varma, 2011) and other means
available to the respective CBIR system have been
explored to improve the retrieval quality.



Graph Embeddings for Retrieval The goal of
graph embeddings is to encode the graph’s structure
and content into a fixed-size vector representation
suitable for downstream tasks (Xu, 2021). Popular
approaches are random walk-based methods (Per-
ozzi et al., 2014; Grover and Leskovec, 2016) and
neural network-based methods, using Graph Con-
volutional Networks (Kipf and Welling, 2016) or
Graph Transformers (Tang et al., 2020). These em-
bed the elements of a graph individually and then
aggregate them. To represent an entire graph as a
vector instead, graph kernels have been used (Cai
et al., 2018). Here, the resulting vector contains the
counts of the elementary substructures from which
the graph is constructed. Different methods in-
clude decomposing a graph into so-called graphlets
(fixed-sized sub-graphs) or subtree patterns (Cai
et al., 2018).

Graph Edit Distance for Retrieval As men-
tioned in Section 1, incorporating structural aspects
into the retrieval of arguments has been tackled by
multiple works in the past (Bergmann et al., 2019;
Lenz et al., 2019)—their approach will serve as a
baseline for our evaluation. The authors employ
Case-Based Reasoning (CBR) (Aamodt and Plaza,
1994)—a methodology that uses past experience to
solve new problems and often works with highly
structured data. A core idea for such representa-
tions is the use of global and local similarities: In-
stead of a sophisticated measure for complex data,
one can break it down into simpler (local) similarity
metrics for its components and combine them into
a global similarity measure (Burkhard and Richter,
2001). The subfield Process-Oriented Case-Based
Reasoning (POCBR) (Minor et al., 2014) applies
this methodology to graph-based representations of
business workflows—here, similarities are defined
for the nodes and edges of the graphs and combined
into a global score by finding an optimal mapping
between two graphs (Bergmann and Gil, 2014).
This mapping is defined via a type-preserving, par-
tial, injective function that maps the nodes and
edges of the query graph to the case graph. For
argument graphs, Bergmann et al. (2019) propose
the use of embeddings for the similarity between
I-nodes a binary or taxonomy-based measure for
S-nodes. Finding the optimal mapping usually re-
quires an exhaustive search, which is infeasible for
large graphs. The authors use two optimizations
to reduce the search space: (i) An A* search algo-
rithm with admissible heuristics to prune the search
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space and (ii) a pre-filter based on embeddings to
reduce the number of cases that have to be con-
sidered in the search phase—also known as Many
Are Called / Few Are Chosen (MAC/FAC) (Forbus
etal., 1995). Recent works also investigated the use
of GPUs for this task (Hoffmann et al., 2022), but
there exists no universally applicable solution for
GPU-based graph matching that could be applied
to the problem at hand.

3 Vision-Based Graph Retrieval

In the following, we describe the vision-based
pipeline for structural argument graph retrieval. It
uses argument graphs that can be obtained from
AM systems—for instance, from plain texts or
other prestructured data like debates or discussions.
Given some query graph ¢, the goal is to generate a
ranking with the £ most relevant/similar argument
graphs (cy, ..., ck),¢; € C from some corpus/case
base C. The structured query may be constructed
either by hand from expert users or automatically
built using AM techniques—even enabling novices
to benefit from structure-aware retrieval. Both the
query ¢ and the cases ¢; are represented as AIF
graphs (see Section 2), meaning that the arguments
contain structural and semantic information that
should be incorporated into the ranking. We pro-
pose a three-step pipeline for this task: (i) Filter the
argument graphs in C to remove all cases which are
topically (semantically) irrelevant to the query g,
(ii) convert the remaining argument graphs to some
visual representation, and (iii) use a ViT model
to generate embeddings from these visualizations.
This allows us to calculate the similarity between
arguments using standard methods like cosine sim-
ilarity and re-rank the arguments based on this.

A critical aspect of this pipeline is the visual-
ization choice, as this image is the only input the
model receives. Traditional node-link diagrams are
well studied and probably used most frequently for
graph-based structure. However, layout algorithms
for node-link drawings may produce hardly read-
able visualizations when data gets too large and
complex. Such a graph drawing generally inher-
its the shape of the underlying structure when us-
ing uniform node sizes, possibly leading to sparse
graphs that may be overly wide or deep and thus
not ideal for ViT models with a square input win-
dow. Therefore, we propose three space-filling
visualizations that are more suitable for this task,
as they can be scaled up or down to fully utilize its



context size. They are specialized for displaying
hierarchical data and as such, need some starting
point—which in our case is the major claim of the
graph. If the graph has no explicit major claim, one
can be set arbitrarily (e.g., the topmost node).

3.1 Visualization

We explored the curated tree visualization library
treevis.net (Schulz, 2011) to obtain an initial set of
candidates. As of April 2025, it contains a collec-
tion of 341 techniques grouped by dimensionality,
representation, and alignment. After implement-
ing and adapting some of the listed options for our
use case, we settled on three variants: (i) Treemap,
(ii) Logical, and (iii) Space Reclaiming Icicle Plots
(SRIP). All of them visualize the structure of the
argument graphs (which are often trees) hierarchi-
cally in a space-filling manner, bringing the follow-
ing advantages: (i) Vision models tend to ignore
filigree lines (i.e., edges) of traditional node-link
drawings, which might lead to vision models com-
pletely ignoring certain relations between ADUs.
Because of this, we also avoid using explicit lines
to mark borders between areas and instead rely on
different colors and hues to separate ADUs. (ii) In
node-link drawings, related nodes might be sepa-
rated by a large space if this suits the layout algo-
rithm better. This makes it harder for the vision
model to capture these relations. (iii) All node-link
graph visualizations, even if they are intended to
visualize very large graphs, use white-space, on
which a graph’s nodes and edges are then laid out.
When an image constructed using one of these visu-
alizations must be scaled down to fit into the square
input window of a vision model, the first issue is
further amplified. (iv) The layout of our space—
filling visualizations is unambiguous and simple
in contrast to some node-link visualizations (e.g.,
force-directed layouts), allowing us to generate de-
terministic embeddings. An example of an argu-
ment graph in all three visualizations can be found
in Figure 1.

Treemap Visualization Argument graphs often
have a hierarchical, tree-like structure—for which
treemaps (Johnson and Shneiderman, 1991) are a
commonly used visualization. This visualization
works by recursively subdividing the space of a
parent node into rectangles for its children and as
such allows to completely fill the available space.
While in principle it would be possible to add I-
nodes together with S-nodes to the visualization,
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Treemap Visualization Logical Visualization  SRIP Visualization

Figure 1: Example of an argument graph (top) in all
three visualization (bottom). (Peldszus and Stede, 2015)
The treemap only visualizes S-nodes, while the Logi-
cal and SRIP visualization also include I-nodes. Blue
represents I-nodes, red attacking S-nodes, and green
supporting S-nodes.

this would lead to a very cluttered image. Instead,
we chose to only visualize S-nodes, as we argue
the branching degree of I-nodes is secondary to the
overall graph structure in the context of argument
retrieval. Relying solely on S-nodes allows us to
focus on the relations between them to visually rep-
resent serial, linked, or convergent premises. As
this greatly reduces the number of nodes that need
to be visualized, even images of large graphs re-
main readable. The colors red and green are used
to represent attacking and supporting S-nodes re-
spectively. While the choice of red and green as
a differentiator may not be ideal for human con-
sumption w.r.t. color deficiencies, it maximizes the
contrast in the RGB color space and is therefore
well-suited for ViT models.

Traditionally, treemaps work by only displaying
a single layer: The entire space for one parent node
is equally divided into rectangles of its children.
However, this means that nested parent nodes are
lost, meaning that the chain/hierarchy of S-nodes
from the root of the tree to its leaf nodes is not
visible. To overcome this limitation, we propose a
modification to the traditional treemap algorithm:
We reserve a fixed percentage of the parent’s area
to visualize the parent itself. This way, the parent
node is always visible even if it has many children.
Based on our experiments, we found that a 10%
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Figure 2: Visualization of a large argument graph. (Agar-
wal et al., 2022) The nodes are too small to discern an
S-node’s type. The space-reclaiming visualization re-
mains more readable and wastes less space, especially
at the bottom.

area for the parent node is a good compromise
between visibility and space utilization.

Logical Visualization Our second visualization
is based on a “Formal Logical Representation of
Set Inclusions” (Baron, 1969). Here, we visual-
ize the entire argument graph including I-nodes
from the bottom up—similar to the way node-link
diagrams for argument graphs are commonly con-
structed. The reason for including I-nodes is that
the focus of this visualization is not on showing
nested structures, but rather on the argumentation
threads themselves in a row-by-row manner. All
of the major claim’s incoming nodes are processed
recursively with the current node being treated as
the root node of the respective subgraph. As a re-
sult, the visualization is a series of rectangles, each
representing a node in the argument graph.

Space-Reclaiming Icicle Plots (SRIP) Our log-
ical representation has the weakness that a child
can only ever use the full width of its parent, even
if there are no other nodes in the current row.
This leads to a subpar space utilization for argu-
ment graphs with a single, very long argumentation
thread (see Figure 2). SRIP (van de Wetering et al.,
2020) can remedy this by allowing a node (i.e., an
area) to begin with the width of a parent, but, if
no other nodes are in the same row, the area can
grow at the bottom (reclaim space), to form trape-
zoids instead of rectangles. This still preserves the
hierarchical structure, but enlarges small-sized hi-
erarchy elements in deeper levels to increase the
readability. To reduce meandering, SRIP can pre-
vent nodes from growing by placing invisible sticky
nodes beneath nodes without children which last
for a configurable depth.
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3.2 Model Training

We trained three different Vision Transformer
models for our three visualizations using self-
supervised training methods to reduce the need
for labeled training data. As a base model, we
used a Swinv2 Transformer model which was al-
ready trained on the ImageNet dataset (Deng et al.,
2009). However, because that dataset is comprised
almost entirely of photos of natural objects, we
implemented an additional pre-training step on a
large corpus of synthetic, random graph visualiza-
tions. Similarly to the way Vision Transformers
are able to recognize relations between objects in
a photo, we expect the pre-training step to enable
our models to pick up on relations between graph
segments. To improve performance on real argu-
ment graphs, we then performed a fine-tuning step
on visualizations of argument graphs. For this, we
used contrastive fine-tuning. We expect it to be
especially well suited for our task, as the training
objective of learning to recognize similar objects
and differentiating them from unrelated ones aligns
well with the goal of graph retrieval. More infor-
mation is provided in Section A

In order to compare the performance of our rel-
atively specialized Vision Transformers to much
larger, universal models, we also fine-tuned Ope-
nAI’s model “gpt-40-2024-08-06", capable of ad-
vanced text and image comprehension, on a dataset
of argument graph visualizations, generated using
our SRIP visualization. Because of its generic na-
ture, we were able to adapt our contrastive fine-
tuning strategy for this as well. Additional details
are given in Section B.

4 Evaluation

Having introduced the core concepts and related
work in the previous section, we now present our
evaluation of the vision-based structural argument
graph retrieval. We examine the argument graph
retrieval task outlined in Section 3. The seman-
tic pre-filter has already been evaluated in other
works (Bergmann et al., 2019; Lenz et al., 2019),
so we focus on the structural re-ranking part of
our pipeline. To this end, we use an ideal filter
that chooses all relevant argument graphs as de-
termined by the human experts, resulting in a per-
fectly filtered set of semantically similar arguments.
Then, we compare the re-ranking performance of
our vision-based pipeline (separately for each vi-
sualization design and ViT model) to the baseline



approach of an A* search as described in Section 2
against a benchmark ranking of human experts.
Additionally, we perform an ablation study to ex-
amine how our pipeline’s retrieval time scales with
graph complexity. To assess the research question
formulated in Section 1—Are vision-based graph
similarities more efficient than and equally effective
as ones based on GED for the retrieval of argument
graphs?—we evaluate the following hypotheses:

H1 (Effectiveness). The retrieval quality of vision-
based structural similarity computation closely ap-
proximates those of an A* search.

H2 (Efficiency). Vision-based structural similarity
computation greatly reduces retrieval times com-
pared to A* search by utilizing GPUs.

H3 (Specialization). Contrastive fine-tuning in-
creases the effectiveness of ViT models compared
to pre-training only.

4.1 Experimental Setup

For our evaluation, we implemented the visualiza-
tion strategies in Python using Matplotlib (Hunter,
2007) and set up a training and inference pipeline
that is publicly available on GitHub.! To allow
comparisons with the existing approach, we used
the corpus of annotated microtexts (Peldszus and
Stede, 2016) containing 110 argument graphs with
the same 24 queries as Bergmann et al. (2019). Half
of these queries do not contain any S-node (only
one [-node), while the other half contains up to two
S-nodes. The queries come with a reference rank-
ing from human experts, which we use to evaluate
the retrieval quality of our approach. As part of an
ongoing project, we have developed an additional
set of 15 more complex queries with corresponding
expert ranking having at least two S-nodes that we
also include in our evaluation to better assess the
scalability of our approach. The A* search was
conducted using the original implementation of
the authors® with the Universal Sentence Encoder
(USE) (Cer et al., 2018) embedding model (their
best performing variant). To ensure a fair compari-
son, we use the same ideal semantic pre-filter based
on expert rankings for the A* search. In total, we
perform six experiments: one for each of our visu-
alizations (Treemap, Logical, and SRIP) using only
pre-trained models and one for each visualization
with the fine-tuned models.

! github.com/recap-utr/vision-retrieval (MIT license)
2github.com/recap-utr/argument-graph-retrieval
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We use the following metrics to assess our
hypotheses: DURATION, Average Precision
(AP) (Turpin and Scholer, 2006), Normalized Dis-
counted Cumulative Gain (NDCG), and CORRECT-
NESS/COMPLETENESS (Cheng et al., 2010). All
metrics except for CORRECTNESS are in the range
[0, 1], with higher values indicating better retrieval
quality. CORRECTNESS is in the range [—1, 1] with
—1 meaning an inversely correct ranking, 0 mean-
ing random ordering, and 1 meaning a correct rank-
ing. For our vision-based models, DURATION only
includes the time to embed the visualized argument
graphs and compute the cosine similarities for re-
ranking. These durations are measured on a single
Nvidia Tesla V100 GPU and are averaged over 10
runs. The time to visualize the argument graph is
not included as it heavily depends on the implemen-
tation of the visualization algorithm. In a practical
application, the visualizations of a large case base
would most likely be cached, contributing only to
the one-time cost of creating the case base. The
A* computations are performed on 2019 MacBook
Pro with an 8-core Intel Core 19 CPU.

4.2 Results and Discussion

Having outlined our setup, we now present the re-
sults of our evaluation as shown in Table 1, starting
with the set of simple queries used in previous work
and then moving on to the more complex queries.

Simple Queries Regarding NDCG, the devia-
tions between different visualizations and models
are quite small, although the fine-tuned model for
Treemaps and the pre-trained model for the SRIP
visualization marginally outperform the other mod-
els. Contrary to our expectations, the pre-trained
SRIP model, not A*, delivers the best retrieval qual-
ity across all metrics. The CORRECTNESS for all
models (including the baseline) is very low, indi-
cating that the queries are too limited for any of
the approaches to closely match the ranking of the
human experts. However, our vision models seem
to be more capable in placing the most important
queries at the beginning of the ranking which is
over proportionally valued by NDCG.

Regarding DURATION, the initial embedding
process of our vision models for the argument
graphs within the case base takes between 95%
and 108% of the entire retrieval time using A*
search with Treemaps taking the longest time. This
only has to be done once upfront, meaning that the
embeddings can be cached in main memory and


https://github.com/recap-utr/vision-retrieval
https://github.com/recap-utr/argument-graph-retrieval

Table 1: Evaluation results for all queries. The column FT refers to the use of contrastive fine-tuning in addition to
pre-training. EMB is time in seconds to embed all 110 argument graphs (upfront cost), while DUR measures the
time for re-ranking the queries. For OpenAl, the duration is defined by the API request.

Model FT Queries NDCG AP Cor CoM DurR EMB
Treemap v Simple 0.92 1.00 0.10 1.00 0.02 2945
Treemap X  Simple 0.91 1.00 0.09 1.00 0.02 26.78
Logical v Simple 090 1.00 -0.05 1.00 0.02 25.87
Logical X Simple 0.91 1.00 007 100 0.02 2657
SRIP v Simple 090 1.00 -0.05 1.00 0.02 28.63
SRIP X  Simple 092 1.00 o011 1.00 002 26.03
GPT-40 - Simple 0.91 1.00 -0.021 1.00 195.74 -

A* — Simple 085 1.00 0.05 1.00 27.16 -

Treemap v Complex 0.94 1.00 0.38 1.00 0.01 2642
Treemap X Complex 091 1.00 0.21 1.00 0.01 25.67
Logical v Complex 098 1.00 0.68 1.00 0.01 25.51
Logical X Complex 096 1.00 066 1.00 0.01 2546
SRIP v Complex 097 1.00 062 1.00 001 30.84
SRIP X Complex 095 100 059 1.00 0.01 2642
GPT-40 - Complex 091 1.00 020 1.00 96.53 -

A* Complex 095 1.00 0.632 1.00 199 -

reused for each query. The time needed for retrieval
using the GPT-40 model is the longest (at 7 times
the processing time of A*) and also has the highest
fluctuations. This likely stems from the rather com-
plex model (although OpenAl does not disclose
the number of parameters) and the heterogeneous
workload of the APL

Complex Queries When using more complex
queries, all models perform better. There are mi-
nor gains in regard to NDCG (from 0 to 0.08) and
especially CORRECTNESS (from 0.12 to 0.73) for
the vision models. This is expected as the com-
plex queries carry more information which can be
visualized and embedded. Lack of information
in simple queries is a problem specially for the
trivial queries, with 0 S-nodes, where our visu-
alizations only produce an unicolored image that
does not enable the derivation of any meaningful
graph structure. This is likely also the reason why
our Treemap performs worst, as it only displays S-
nodes and therefore contain less information. Our
best model is the fine-tuned Logical model, out-
performing the other visualization in all retrieval
quality metrics. This suggests that the evaluated
graphs were not complex enough to demonstrate
the advantages of SRIP.

Comparing the DURATION to those of the sim-
ple queries, we see that the value for GPT-40 and
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our vision models scales linearly with the num-
ber of requests, while the small increase in query
complexity does not have any noticeable effects.
On the other hand, the added complexity of the
query graphs over proportionally influences A* pro-
cessing times. These noticeably lower request pro-
cessing times together with the improved retrieval
quality leads to a much better user experience and
suitability for a real argument retrieval machine.

Discussion Overall, H1 can be accepted as the
vision-based structural similarity pipeline with non-
fine-tuned SRIP for simple queries and fine-tuned
Logical for complex queries provides the best re-
trieval quality based on our metrics. When looking
at the gains in retrieval quality for complex queries,
it is even plausible that the retrieval quality slightly
increases for even more complex queries. H2 can
be accepted, as only the new query embeddings and
cosine similarities have to be computed with each
query, while the bulk of the work, the computation
of embeddings for the (large) static case base only
has to occur once. Also, the scaling is far superior,
based on the durations reported in Table 1 and our
scaling study in Section 4.3. H3 has to be partly
discarded as the pre-trained model for SRIP out-
performed the fine-tuned model for simple queries.
However, H3 holds for complex argument graphs.



4.3 Ablation Study on Scaling

In this study, we evaluate how the graph complexity
(measured by the number of the graph’s S-nodes)
affects the computation time of structural similarity.
This is sufficient to estimate a graph’s complexity,
as the number of I-nodes equals the number of
S-nodes + 1 for every argument graph we evalu-
ate. To study graph complexity scaling, we chose
117 argument graphs from the Kialo GraphNLI
dataset (Agarwal et al., 2022) making up the set of
case base argument graphs C' with 4-120 S-nodes.
As the query, we randomly selected a single ar-
gument graph from the same dataset with 2540
S-nodes. As the query’s complexity is constant,
this setup allows studying the impact of increasing
graph complexity on retrieval time in isolation. In
this study, we use our SRIP visualization together
with our fine-tuned model. This is because, even
though our Logical visualization outperformed the
SRIP visualization in our evaluation, the SRIP vi-
sualization should in theory work better for really
deep argument graphs (see Figure 2).

Vision-based similarity computation requires the
3 steps outlined in Section 3: visualization, embed-
ding, and cosine similarity calculation. The scaling
behaviors of each of these steps can be seen in Fig-
ure 3. The embedding step, as well as the cosine
similarity calculation, require constant time and
are not influenced by the complexity of the input
graphs. The visualization time increases linearly
with graph complexity, even though there are sev-
eral outliers. These could be caused by deviations
in the size of the argument graph files, of which
the entire content (i.e., also the argumentative text)
is read, although only the information about the
node types is considered to visualize the argument
graph.

For a practical implementation of an argumen-
tation machine, the linear scaling of visualization
time in respect to graph complexity is likely not a
problem, as only the query has to be visualized at
runtime, whereas the case base graphs visualiza-
tions and embeddings can be pre-computed.

Comparing the total processing time of our
vision-based approach to A*-search, it can be seen
clearly that while the processing time using our
vision-based approach increases linearly with re-
spect to the number of S-nodes, they over propor-
tionally hurt the performance of the A* search. Re-
garding the absolute times for both approaches, it
is apparent that A* is not viable for retrieval of
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complex arguments in a production argumentation
machine, as a single comparison between a com-
plex argument graph with 2540 S-nodes, and an
argument graph with more than 8 S-nodes takes at
least 1,000s.

4.4 Limitations

While our results are promising, there are some lim-
itations to our approach. In order to layout graphs
in a compressed format, we made simplifications
such as ignoring I-nodes in treemaps. Also, graphs
containing cycles currently cannot be rendered due
to our focus on hierarchical visualizations. For
large graphs with skewed distributions of nodes
(e.g., long chains of ADUs), the ranking quality
of our approach may suffer due to large amounts
of whitespace. Similarly, for graphs with nearly
identical structure but different content, the visual-
izations may be indistinguishable, potentially lead-
ing to poor retrieval quality—which we solved by
introducing a semantic pre-filter.

Regarding the vision models, we used rela-
tively small models (197M parameters) with lim-
ited training datasets. Graphs having more ele-
ments than the model’s maximum number of pixels
(e.g., 256 x 256) need to be clipped or downsam-
pled, meaning that some information is lost. Given
the scalability of transformers, we anticipate that
larger models with more extensive training data
could yield improved performance in future eval-
uations. Lastly, our scaling study disregards the
quality of the retrieval for larger argument graphs
due to missing ground truth data.

5 Conclusion and Future Work

We proposed a vision-based pipeline for argument
graph retrieval based on their structure that builds
on the output of AM systems. It works by filter-
ing for semantically similar arguments, visualizing
their graph representations, embedding these ren-
dered images with a vision model, and finally rank-
ing the arguments based on the cosine similarity
to the query’s embedding. The research question
whether vision-based argument retrieval can pro-
vide a faster and more scalable alternative to A*
search for structural argument graph retrieval can
be affirmed; however, not every dataset of argu-
ments allows for the effective use of the vision-
based approach. On the one hand, our evaluation
suggests that there is a minimum complexity ar-
gument graphs should have for our vision-based
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approach to be able to perform meaningful sim-
ilarity computation. On the other hand, the in-
formation which can be displayed in the limited
input window of a vision model imposes an upper
limit on argument graph complexity which can be
sensibly processed using our approach. Regard-
ing efficiency and scaling, the use of embeddings
allows storing a uniform, query-independent rep-
resentation of the original argument graphs, which
can be pre-computed to allow for fast comparisons
even across large case bases. While we investigated
a re-ranking task for our evaluation, vision-based
argument retrieval could also be used to enhance
the pipeline proposed by Bergmann et al. (2019):
Our vision-based retrieval could serve as a second
pre-filter to further decrease the search space of
the expensive A* search to ensure that only graphs
that are semantically and structurally similar are
considered at all. This pipeline enables to construct
mappings between queries and case base graphs
which are absent in purely vision-based retrieval.

One possible avenue for future work is to in-
vestigate the use of more detailed argumentation
schemes (Walton, 2013) to differentiate between
additional types of S-nodes in the argument graph.
As Lenz et al. (2019) showed, using schemes can
have a positive impact on the retrieval quality. A
key challenge in this regard is the inclusion of the
additional information into the generated visualiza-
tions. Furthermore, we focused on a single model
training pipeline. As has been shown before (Qu
et al., 2020; Asai et al., 2022; Khan et al., 2022;
Wang et al., 2022; El-Nouby et al., 2021; Grill et al.,
2020; Tian et al., 2021), training pipeline refine-
ments can notably improve the predictions. An
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Processing times of vision-based and A* retrieval for graphs between 4 and 124 S-nodes.

open question here is how to apply existing train-
ing techniques for texts or pictures for our graph
visualizations.

Additionally, our evaluation was limited to a
single dataset (Peldszus and Stede, 2015). Future
work should verify whether the findings can be
generalized to other datasets, especially with more
complex argument graphs and extended ADU rela-
tions. One candidate for this could be the AbstRCT
dataset (Mayer et al., 2020).
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A Reproducibility

In the following section, we outline how we trained
our vision models and which dataset was used for
the sake of reproducibility. For both training steps
we used PyTorch (Ansel et al., 2024) version 2.5.0
together with PyTorch Lightning (Falcon and The
PyTorch Lightning team, 2019). The vision trans-
former models were integrated via the transformers
package (Wolf et al., 2020) (version 4.45.2). The
evaluation is based on the ranx package (Bassani,
2022).

A.1 Pre-Training

For each of the visualizations, a separate large
Swinv2 Transformer model (Liu et al., 2022) (re-
leased under Apache 2.0 License) with 195M pa-
rameters was pre-trained. We chose this model for
its improved efficiency in relation to the original Vi-
sion Transformer model (Dosovitskiy et al., 2021)
and its architecture which makes use of hierarchi-
cal feature maps and should align well with the na-
ture of hierarchical graph drawings. A checkpoint
which has been trained on the ImageNet-1k dataset
(Russakovsky et al., 2015) is used as a starting
point, which should speed up training compared to
completely random initial weights. For the training,
we used an Auto-Encoder setup, where the Swinv2
model was used as a encoder, transforming an in-
put image into corresponding embeddings. During
the training, a very simple decoder (a single lin-
ear layer) is used to reconstruct a lower resolution
form of the original image using the embeddings
provided by the encoder. The MSE loss is com-
puted between the raw pixel values of the original
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images (resized to 32x32px) and the reconstructed
image. An AdamW optimizer with a learn rate of
0.001 is used. Additionally, we used early stopping
after 3 epochs without a reduction in validation loss.
The models are trained with a batch-size of 32 for
a maximum of 50 epochs on 6 Nvidia Tesla V100
GPUs. The actual training time was 20-23 epochs
(174-198 GPU hours).

As our pre-training dataset, we used a dataset of
synthetic argument graphs. For every of our three
visualizations, we generated 1.2 million random
graphs with a maximum depth of 9 and a maxi-
mum branching number of 7, which decreases with
increased depth. The motivation behind this is to
generate graphs which deviate from each other;
however the minimum area allocated to a single
node in the corresponding visualization is fixed by
the limited depth and number of siblings. The re-
sulting images are then de-duplicated using fclones
3 which left us with 1,062,679 samples for the
Logical model, 1,062,513 for the Treemaps model
and 917,558 for the SRIP model. Of those samples,
we always chose 90% as training samples and the
remaining 10% as test samples.

A.2 Fine-Tuning

Each of the models from the pre-training stage are
fine-tuned on a corpus of 6474 argument graphs
(see Table 2) after filtering out too complex graphs
which took longer than 3s to visualize. After de-
duplication with fclones, this left us with 4317
SRIP images, 4309 Logical images and 4173
Treemap images. The setup used for contrastive
fine-tuning is derived from SimCLR (Chen et al.,
2020a):

1. Each image x from the training batch is ran-
domly augmented twice which generates two
contrastive views of every input which repre-
sent each others positive pairs: g, k.

q and k are encoded using the encoder net-
work (the pre-trained Swin Transformer v2
model), resulting in the embeddings e, and
k.

The embedding dimensionalities are reduced
by passing them through an MLP projection
head to prevent the curse of dimensional-
ity (Chen et al., 2020b).

3 github.com/pkolaczk/fclones
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4. A contrastive loss is calculated between ev-
ery element’s corresponding image view and
every other element in the batch (in-batch neg-
atives) on the reduced embeddings.

The contrastive views are derived from the origi-
nal images by using the following transformations:
(i) random horizontal flips, (ii) random vertical
flips, (iii) Gaussian Blur (iv) random crop (an area
of 40% - 90% of the original image is resized to the
original dimensions) and (v) dropout to simulate
random noise. For these transformations, we used
the implementations from torchvision (maintain-
ers and contributors, 2016) (version 0.20.0). The
first four transforms are derived from the original
SimCLR transforms (Chen et al., 2020a); dropout
is inspired by (Gao et al., 2021). It should be
noted that color jitter, as one of the most impor-
tant transforms (Chen et al., 2020a) could not be
used. This is because a change of color for a node
might completely change its meaning in all of our
visualizations and therefore represent a different
graph structure. The following contrastive loss is
used (Chen et al., 2020a):

f(q, k) = exp <W)

f(4gi, ki)
F(ais ki) + 3250 F @i kj)

)]

NT-Xent __
0 -

— log 2

for i,7 in {0, ..., batch_size} where sim(-, -) de-
notes cosine similarity, and 7 represents tempera-
ture as a hyperparameter. Our models were trained
with a hidden dimension of 64, 7 = 0.07 and a
weight decay of 0.0001.

As an optimizer, AdamW with a learn rate of
0.0005 is used. Additionally a Cosine Annealing
Scheduler was used for the learn rate with a max-
imum of 500 iterations and a minimum learn rate
of 0.00001. The same early stopping criterion was
applied as for pre-training, however no fine-tuned
model training was interrupted early. The fine-
tuning is performed with a batch-size of 16 (i.e., 16
contrastive pairs) for a maximum of 500 epochs on
6 Nvidia Tesla V100 GPUs.

B GPT-40 Fine-Tuning

To emulate contrastive training with the limited
interface OpenAl provides (i.e., training samples
have to represent a conversation with a prompt and
an expected answer from the model), we generated
900 samples containing two SRIP visualizations


https://github.com/pkolaczk/fclones

Table 2: Argument graph corpora used to construct our fine-tuning dataset.

Dataset Source

Description

Kialo Graph-NLI ~ Agarwal et al. (2022)

Araucaria Reed (2006)

IAC Walker et al. (2012)
QT30 Hautli-Janisz et al. (2022)
US2016 Visser et al. (2020)

Persuasive Essays
Microtexts Part 2

Stab and Gurevych (2017)
Skeppstedt et al. (2018)

Graphs model discussion trees on Kialo, an online
debates platform

Corpus of analyzed argumentation, constructed using
the Araucaria tool

A corpus for research on deliberation and debate
Argument and conflict in broadcast debate
Television debates and social media reactions to the
2016 US presidential elections

Annotated persuasive essays

Short argumentative texts

each. The model’s task during the training process
was to predict whether the images represent the
same argument graph or a different graph. 450
samples contained two contrastive views of the
same graph (see above) while the remaining 450
samples contained two different graphs. The model
was trained for a single epoch with a batch size of
1 and a LR multiplier of 2. The training took about
one hour.

During evaluation, we provide the model aSRIP
representation of the query and the SRIP visualiza-
tion of the retrieval candidates acquired from the
MAC phase. The model’s task is ordering the case
graphs based on their relevance to the query. To
eliminate any run-to-run variance, the temperature
during evaluation is set to 0.

Note: We only trained the model for a sin-
gle epoch as prior experiments indicated that the
model’s performance degraded for models with
more epochs. This is most likely because our train-
ing dataset consisted only of singular, short answers
(“Are the images visualizations of the same or dif-
ferent graphs?” — “same” or “different””’) which
caused the further trained checkpoints to adapt to
this and only provide too short and therefore largely
incomplete answers during the evaluation.
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Abstract

Online discussions can either bridge differ-
ences through constructive dialogue or amplify
divisions through destructive interactions. This
paper proposes a computational approach to
analyze dialogical relation patterns in YouTube
comments, offering a fine-grained framework
for controversy detection, enabling also anal-
ysis of individual contributions. Our ex-
periments demonstrate that shallow learning
methods, when equipped with theoretically-
grounded features, consistently outperform
more complex language models in characteriz-
ing discourse quality at both comment-pair and
conversation-chain levels. Ablation studies con-
firm that divisive rhetorical techniques serve as
strong predictors of destructive communication
patterns. This work advances understanding
of how communicative choices shape online
discourse, moving beyond engagement metrics
toward nuanced examination of constructive
versus destructive dialogue patterns.

1 Introduction

Online discussions can either bridge differences
through constructive dialogue or amplify divisions
through inflammatory responses. These divergent
outcomes are fundamentally shaped by the commu-
nicative approaches adopted by participants, where
each contribution can either push the interaction
toward controversy or constructive discussion. In
fact, while conflicting viewpoints form a prerequi-
site for argumentation (Walton, 2008), individuals
express opposition through diverse communicative
approaches, generating a "disagreement space" that
participants navigate based on their chosen discur-
sive strategies (Schumann and Oswald, 2024).
Delineating this conceptual space is essential for
advancing argument mining research, as it provides
a structured framework for analyzing how disagree-
ments manifest in discourse, enabling more nu-
anced computational modeling of argumentative in-
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teractions in both online and offline contexts. Sam-
son and Nowak (2010) proposes a framework in
which constructive and destructive conflicts are op-
posite ends of a single dimension (Vallacher et al.,
2013). Specifically, destructive processes aim at in-
flicting psychological, material or physical damage
on the opponent, while constructive aim at achiev-
ing one’s goals while maintaining or enhancing
relations with the opponent.

Computational approaches to detect and mea-
sure constructive versus destructive dialogical re-
lations patterns remain underdeveloped (Lawrence
and Reed, 2019). Research in this direction could
generate methods useful not only to identify con-
troversies but also to track how they emerge and
evolve through specific communicative choices, ad-
vancing our understanding of these dynamics while
offering practical applications for fostering health-
ier online discourse (Marres, 2015).

This research proposes an automated approach
to classify and measure destructive and construc-
tive patterns in online discussions, examining how
individual messages, situated within their conver-
sational context, contribute to either productive di-
alogue or increased antagonism.

Specifically, we contribute by: (i) providing
a pipeline to mine laypeople discussions from
Youtube video comments section and creating a
dataset of full conversation chains with varied
length and complexity'; (ii) proposing a novel
operationalization of destructive communication
through divisive rhetorical techniques (Zompetti,
2015), demonstrating how stance, linguistic and
rhetorical features can be used to characterize di-
alogical quality in online discourse; (iii) evaluat-
ing the effectiveness of these rhetorical features
across both traditional machine learning methods
and large language models, with results revealing

"Full dataset, annotation guidelines and the scripts we
used can be found at https://github.com/BassiDavide/
Arg-Mining_0ld_but_Gold/tree/main.

Proceedings of the 12th Argument Mining Workshop, pages 4657
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that shallow learning approaches more effectively
leverage them for classification.

2 Related Works

Our research advances the field of controversy
analysis, diverging from predominant approaches
reliant on quantitative engagement metrics and
network-based methodologies (Coletto et al., 2017;
Sriteja et al., 2017; Garimella et al., 2016). Instead,
we employ a finer-grained, textually grounded
framework, akin to Wang et al. (2023); Konat et al.
(2016); Allen et al. (2014); Chen et al. (2023),
to dissect discursive comment-level interactions
and derive higher-level insights about conversa-
tion quality, i.e. distinguishing between destructive
(controversy-promoting) and constructive commu-
nication patterns at both comment and comment-
chain levels. Additionally, our study represents
the first controversy analysis of YouTube discus-
sions—a platform that, despite its ubiquity, remains
understudied through this analytical lens because
of its API limitations. To tackle these issues we
employ Bassi et al. (2024b)’s pipeline to extract
conversation structures and stance information.

Prior efforts aimed to tackle the multifaceted
nature of evaluating dialogue quality, yielding valu-
able insights. Samson and Nowak (2010) estab-
lished that constructive and destructive conflict pro-
cesses can be distinguished through linguistic mark-
ers (e.g., pronoun usage, emotional valence). Sim-
ilarly, Chen et al. (2023) found that controversial
comments tend to express higher levels of emo-
tions. De Kock and Vlachos (2021) specifically
investigate constructive disagreement in Wikipedia
Talk pages, demonstrating that gradient features
capturing temporal changes in linguistic markers
and conversation structure information effectively
predict escalation to mediation as a proxy for dis-
course failure.

Further, Lawrence et al. (2017) and Harris et al.
(2018) demonstrate the significance of rhetorical
figures in discursive relation detection (see also
Lawrence and Reed (2019)).

To provide a more comprehensive understand-
ing of dialogue dynamics, our approach integrates
linguistic indicators with rhetorical formally de-
tectable patterns. Specifically, we leverage Zom-
petti (2015)’s divisive rhetoric framework, defining
specific rhetorical devices and argumentative fal-
lacies that systematically undermine constructive
dialogue.
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Through this comprehensive set of features (lin-
guistic, stance, and rhetorical devices), we de-
velop a computational method that operates at both
comment-pair and conversation-chain levels to as-
sess discourse quality. At the micro level, we clas-
sify the relationship between adjacent comments
according to their functional orientation and com-
municative quality. At the macro level, we aggre-
gate these classifications to characterize entire con-
versation chains on a divisiveness scale from highly
destructive to constructive. This multi-level ap-
proach quantifies how individual interactions con-
tribute to broader conversational dynamics, reveal-
ing patterns that either foster productive dialogue or
amplify division throughout extended discussions.

The remainder of this paper is structured as fol-
lows: Section 3 details our dataset creation and
annotation. Section 4 describes features for divi-
siveness detection. Section 5 outlines our experi-
mental methodology. Section 6 presents results and
feature importance analysis. Section 7 discusses
result implications and future work.

3 Dataset

3.1 Dataset Creation

A) Data Crawling: given our focus on contro-
versial topics, we centered our investigation on
immigration-related content. To gather the data,
first, we crawled YouTube to identify the 100 most
viewed videos using query sets designed to cap-
ture diverse viewpoints (see repository for com-
plete query). We restricted our sample to English-
language content from the United States (2013-
2024) with a minimum threshold of 1,000 com-
ments per video. These videos were then ranked
based on their comment volume to identify those
generating more discussions. We took the 15 most
commented ones.

B) Conversation Reconstruction: to recon-
struct conversational structures, we applied the
methodology proposed by Bassi et al. (2024b),
which allows to address complex dialogical dis-
course phenomena where the meaning of a locution
can only be understood by reference to another e.g.
"Isn’t illegal immigration a crime?" — "Definitely
not".

C) Discussion Chain Extraction: we define a
discussion chain as a sequence of interconnected
messages that form a coherent conversation thread.
To identify and extract them, firstly, we identified
terminal messages, i.e. messages that (i) have not



received no further responses; (ii) have a depth
level of at least 4 in the conversation tree, ensur-
ing a minimum of 5 messages in the conversation
(see dotted comments in Figure 1). Otherwise, the
chain was not considered (see Case-A in Figure 1).
Secondly, for each identified terminal message, we
traced back through the conversation tree to the
root message, creating a complete discussion chain.

.....

K N

Overlap <67%
No-Merge (B)

Figure 1: Chain Clustering and Construction Criteria

D) Chain Clustering and Refinement: con-
versation chains can present a “natural clustering”
(e.g. Chain A Figure 6 in Appendix), or share
some messages to, then, develop specific paths (e.g.
Chain B-C-D-E in Figure 6 in Appendix). Rather
than treating entire conversation trees as mono-
lithic units, we aimed to identify and analyze these
distinct conversation branches separately, as they
often exhibit unique communicative patterns and
divisiveness characteristics, even when originating
from the same root comment. Given this “behav-
ior”’, we aimed at treating these cases as separated
conversations (see how we split Chain C-D-E in
Figure 6 in Appendix, despite sharing messages).
To systematically operate this clustering, we ana-
lyzed the overlap between 2 conversation chains
implementing a pairwise comparison of discussion
chains using a similarity metric. Specifically:

(i) we calculated the intersection of messages
between each pair of chains (i.e., given a cou-
ple of conversation chain with different lengths
(len(coml),len(com?2)), we counted how many
comments they shared = len(intersection)).

(ii) we calculated the overlap ratio based on the
size of the intersection relative to the shorter chain

. . len(intersection)
as: Quer Rat = min[(len(coml),len(com2)]
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(iii) we established a threshold of 0.67: two
chains were merged if they shared more than 67%
of their comments (relative to the shorter chain),
and vice versa for lower values of overlap.

Computationally, we implemented this process
by representing each conversation chain as a node
in a graph, connecting nodes that exceed our over-
lap threshold (0.67), and extracting connected com-
ponents to identify chains forming a cluster that
should be merged?.

To ensure the robustness of our methodology, we
manually verified the accuracy of comment links
during annotation, identifying only 30 incorrect
links out of 2387 total child-comments, confirming
the reliability of our approach.

E) Sampling: we considered that conversation
chains can have different degrees of complexity. To
ensure a representative sample across all complex-
ity levels, we implemented a stratified sampling
approach. First, we grouped chains sharing the
same root comment (Level=0) into "chain families"
to preserve the contextual integrity of discussions.
Each family’s complexity was measured by its to-
tal message count. We then divided these families
into three equal percentile groups (low, medium,
and high complexity) and sampled proportionally
from each group to reach our target message count
(=2500).

3.2 Annotation

Our annotation schema focuses on interactional
dynamics between comment pairs. The schema
evolved through expert analysis, ultimately yield-
ing a five-category taxonomy that assigns numer-
ical values expressing each comment’s contribu-
tion toward cohesion (+) or division (-). As shown
in Figure 2, this framework captures two dimen-
sions: (1) functional relationship (agreement, dis-
agreement, neutral) and (2) communication style
(constructive versus destructive), recognizing that
comments with similar positions may contribute
differently to discussion quality.

The five categories are (Figure 3 depicts their
relative frequencies):
Constructive Disagreement (+1): expressing dis-
agreement while maintaining conditions for mutual

%Chains are considered part of the same cluster if they are
connected either directly through high overlap, or indirectly
through a chain of high-overlap connections. For instance,
given 3 conversation chains A,B,C, where A overlap 70 with
B, B overlap 70 with C, and A overlap 40 with C, A and
C would still be connected by virtue of B. This is called an
indirect link.



@ROOT: We must open borders
completely. Anyone opposing
this is simply racist @ =

@UserX: | think we should create a
merit-based system, prioritizing
skilled immigrants, while enforcing
borders against illegal entry.

Constructive
Disagreement
(+1)

@UserY: Yes, faster processing
actually improves security too.
If pathways work efficiently,
border patrol can work better

Constructive
Agreement
(+0.5)

@UserZ: You're hiding xenophobia
behind fancy words! When people
like you talk about 'national
identity', is just coded racism!

A

Destructive

Agreement Rephrase/
(-0.5) Other

0)

Destructive
Disagreement
-1

@UserT: Preach! These
nationalists are stuck in the
past, afraid of diversity because
they can't handle their
privileges being challenged.

@UserN: Just curios, can
someone explain me the
difference xenophobic vs

ordinary immigration policy?

Figure 2: Annotation Example with Contra Immigra-
tion, Pro Immigration and Neutral stances interacting
among each other. Arrows between messages indicate
the quality of interaction.

understanding (N = 561)
Constructive Agreement (+0.5): strengthening mu-
tual understanding while agreeing (/N = 203)
Rephrasing/Neutral® (0): facilitating conversation
without taking a stance (N = 251)
Destructive Agreement (-0.5): strengthening divi-
sions while agreeing (/N = 304)
Destructive Disagreement (-1): hindering produc-
tive dialogue through hostile language (N = 1068)
Two annotators were instructed to label com-
ment pairs according to the guidelines (see reposi-
tory), tracking the relation from child comment to
parent comment. The messages were presented to
annotators following the chronological order of the
discussion, enabling them to understand the con-
textual flow of the conversation. Inter-rater agree-
ment resulted in Cohen’s K = 0.37, which, while
considered fair (Landis and Koch, 1977), under-
scores the difficulty of operationalizing theoretical
constructs of constructive versus destructive com-
munication patterns, especially in informal online
discourses.

3We merged neutral and rephrase, as they rarely exhibit
strong constructive or destructive characteristics that would
warrant separate classification.
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Figure 3: Relative Comment Labels Distribution

3.3 Conversation Chain Characterization

Category | Score Range | Count
Highly Destructive —1 <HD < -0.75 n=33
Moderately Destructive | —0.75 < MD < —0.25 | n=108
Slight/Neutral —0.25 < SD < 0.25 n=54
Constructive 025<C<1 n=45

Table 1: Chain Controversy Categories Score Ranges
and Distribution

The chain divisiveness categories were devel-
oped to analyze conversation chains by averaging
the divisiveness values of the comments it contains.
Given the strong imbalance of our messages to-
wards the destructive side of the continuum (see
Figure 4), we grouped the chain controversy scores
to balance theoretical value with the empirical dis-
tribution, as shown in Table 1.

4 Features for Divisiveness Detection

4.1 Linguistic

Our analysis incorporates a diverse set of linguistic
features extracted from comment text to capture
communicative patterns relevant to divisiveness
detection. Following Samson and Nowak (2010),
for each comment, we extract linguistic elements
including word count, capitals ratio, and punctua-
tion frequencies (question and exclamation marks).
We leverage VADER (Hutto and Gilbert, 2014) to
obtain sentiment polarity scores (negative, posi-
tive, neutral, and compound) that capture the emo-
tional tone of comments. Additionally, we compute
parent-child comparison features to measure con-
versational dynamics, including word count differ-
ences and word count ratios between comments and
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Categories

their parents. These features aim at capturing lin-
guistic markers of constructive versus destructive
communication patterns and constitute the Base
experimental condition in Table 2-4.

4.2 Stance

We characterize the stance of the comment to-
wards immigration as contra, neutral, or pro using
the context-sensitive approach introduced by Bassi
et al. (2024b). This method leverages parent-child
comment relationships to improve classification ac-
curacy, incorporating the parent comment’s stance
as contextual information during classification. Fol-
lowing the approach of Bassi et al. (2024b), we use
as classifier GPT-4o (prompt detailed in the reposi-
tory). We tested the performance of the model on a
manually annotated gold dataset of 1.3k comments,
obtaining substantial results (macro-F1=74.5, see
Table 6 in Appendix for details), which we consid-
ered robust enough to scale the method to the rest
of our dataset. From these classifications, we de-
rived stance and relational features such as binary
indicators for the same stance between comment
pairs, capturing the social positioning dynamics
and interactions related to the topic.

4.3 Divisive Rhetorical Techniques

As outlined in Section 2, to capture the characteris-
tic argumentative patterns of divisive discourse, we
aimed at tracking a set of divisive rhetorical tech-
niques commonly used in controversial discussions,
following the work of Zompetti (2015).

Although automated detection of rhetorical tech-
niques has traditionally employed shallow learning
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and encoder-based methods (Bassi et al., 2024a),
Jose and Greenstadt (2024) and Sprenkamp et al.
(2023) demonstrated consistent performance of
LLMs without specialized training. Drawing from
this, we devised a multi-label classification ap-
proach implemented through Gpt-4o0-mini to iden-
tify 13 distinct techniques. The prompt provides
definitions and examples for each technique to
guide the classification (complete prompts can be
found in the repository).

Human verification of a sample yielded SOTA-
consistent performance (macro-F1=69.6, details
in Table 7), allowing us to confidently apply this
method to our complete dataset.

Thanks to this additional information, we gener-
ated features that quantify both the presence and
frequency of these techniques in each comment,
creating binary indicators for individual techniques
and aggregate metrics like fechnique count and bi-
nary indicator of the presence of each one.

4.4 Embeddings

We employed SentenceTransformer (Reimers and
Gurevych, 2019) to capture semantic content be-
yond surface features, using the "roberta-base-
nli-stsb-mean-tokens" model to generate 768-
dimensional representations. This approach offered
better control over embedding dimensionality than
direct BERT-based implementation, enabling more
transparent integration with our theoretical features.
We applied PCA during training to preserve 95%
variance while reducing dimensionality, balancing
semantic richness with computational efficiency;
which is particularly important when combining
embeddings with other feature types in shallow
learning models.

5 Experiments

We operated our experiments at two distinct ana-
lytical levels: comment and chain. The first task
focused on classifying the communicative relation-
ship between parent-child comment pairs accord-
ing to the five-class taxonomy described in Sec-
tion 3.2. The second task evaluated how effectively
comment-level predictions could characterize the
overall quality of conversation chains. We aggre-
gated individual comment scores to compute chain-
level divisiveness metrics, mapping each chain to
one of the categories defined in Table 1. This ap-
proach allowed us to assess the propagation of com-
municative patterns throughout extended conver-



sations and determine whether localized comment
predictions effectively capture broader conversa-
tional dynamics.

5.1 Shallow Learning Classifiers

We evaluated several classifiers (Random Forest,
Logistic Regression, SVM, and XGBoost) testing
multiple combinations of features (see Section 4
and Section 6 for details) to observe the impact of
each one on the performance. To address the signif-
icant class imbalance shown in Figure 3, we incor-
porated Synthetic Minority Over-sampling Tech-
nique (SMOTE) into our pipeline, testing different
k-nearest neighbor values to find the optimal bal-
ance to avoiding overfitting on minority classes.
We optimized hyperparameters through grid search
with 3-fold stratified cross-validation, maximiz-
ing macro F1 scores. As detailed in Section 4.4,
for embedding-rich feature sets, we applied PCA
retaining 95% variance to reduce dimensional-
ity before classification*. For chain-level analy-
sis, we used predictions from the best-performing
comment-level model to calculate aggregate scores,
evaluating both numerical accuracy and categorical
classification performance across different chain
complexities.

5.2 Large Language Models

We evaluated four leading Large Language
Models (LLMs) for the comment classification
task: GPT-40-mini (temp=0.1), GPT-03-mini (ef-
fort=medium), DeepSeek-V3-chat (temp=0.1), and
DeepSeek-R1-reasoning (temp=not supported).
For incorporating features into the LLM approach,
we designed specialized prompts for each exper-
imental condition. The base condition used only
comment text, while additional features were sys-
tematically incorporated through explicit prompt
engineering: stance information was provided as
categorical labels (pro/contra/neutral), rhetorical
techniques were presented as a structured list with
definitions, and the combined feature condition
integrated all information into a single comprehen-
sive prompt. For reasoning-enabled models, we
provided explicit instructions to analyze comment
relations step-by-step before determining the final
classification. We created eight distinct prompts:
four tailored for chat models and four designed
for reasoning models. Each set of four prompts
corresponded to our experimental conditions: com-

*See training scripts in repository for details.
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ment text-only (Base condition in Table 2-4), text
with stance, text with rhetorical techniques, and all
features combined?.

6 Results

6.1 Comment Level

Table 2 reveals key trends in our findings. (/)
Shallow learning models consistently outperform
LLMs. (2) Notably, optimal performance was
achieved by all shallow learning models when
utilizing the comprehensive set of features, sug-
gesting effective operationalization of construc-
tive/destructive process concepts. To assess per-
formance reliability, we used bootstrap resampling
(1000 iterations) for LLMs and cross-validation
variance for shallow learning models. Both yielded
SD =~ 0.02, with LLM results showing tighter
variance distributions than shallow learning mod-
els. Paired t-tests on key comparisons confirmed
statistical significance: XGBoost (B+S+T+E) vs.
DeepSeek (Base), feature engineering impact
within XGBoost (Base vs. B+S+T+E), and ag-
gregate shallow learning performance vs. LLM
performance across all conditions (all p < 0.001).
Complete bootstrap statistics are available in our
repository.

Table 3 presents class-specific performance met-
rics for the top-performing model, revealing a
degradation in model efficacy attributable to both
destructive and constructive agreement classes (a
trend consistently observed across all models, as
detailed in Figure 7 in Appendix). This discrep-
ancy must be contextualized within the constraints
of moderate inter-annotator reliability, and the class
imbalance within the dataset, which, despite the ap-
plication of SMOTE, may not fully alleviate the
negative impacts on model performance. Concur-
rently, the presence of linguistically complex phe-
nomena, such as irony or euphemisms, as illus-
trated in the following example:

Message 1 - Genuine Praise: "Your immigration
policy proposal balances security and compassion
brilliantly. You really are a genius."

Message 2 - Mockery/Sarcasm: "Your solution

to immigration is ’just close the borders’? You
really are a genius."

LLMs exhibited similar difficulties with agree-
ment categories across all models °. Detailed anal-
ysis reveals that the primary challenge lies not in

>The complete prompts can be found in the repository.
®Complete fine-grained performance reports are available
in the repository.



Model | Base | B+Stance | B+Tech | B+S+T | B+Emb | B+S+T+E Label P R Fl
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OpenAldo-mini | 4514 | 4209 | 4279 | 4397 - - RN I/ o Sl
OpenAl 03-mini 44.86 43.80 46.33 46.68 - - parase (4. : o y
Cons. Agreement (0.5) 0.41 0.58 0.48

Logistic Regression | 28.37 39.87 45.44 55.15 38.48 57.82 Cons. Disagreement (1.0) | 0.69 057  0.62
SVM 28.48 42.04 45.27 51.99 39.38 58.38
XGBoost 31.87 44.67 4781 59.24 4027 60.60* \I\;[v:icrl?tg iv 8'2; g'gé 8'233
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We derived Standard Deviation bootstrapping through 10000 iterations (S D = 0.02 for all) T —depth: 5, n_est

1 Table 3: Comment-Level: Class-

Table 2: Comment Divisiveness Detection Performance Comparison (F

Macro Scores)

distinguishing constructive from destructive dis-
course, but in accurately identifying agreement ver-
sus disagreement relationships. While the mini-
mal temperature settings (0.1) employed for chat
models precluded examination of their decision-
making processes—as they output only categorical
labels—we report representative examples of the
reasoning traces generated by reasoning-enabled
models (GPT-03-mini) to illustrate potential expla-
nations for these performance limitations.

"Parent": "Please learn about World History. [Pro]"

"Comment": "CLOSE MILITARY BASES IN 80 PLUS NA-
TIONS CLOSE USA MILITARY BASES IN 80 PLUS NA-
TIONS [Pro][Repetition; Slogan]7"

"reasoning": "Step 1: The child’s comment does not engage
with the parent’s specific idea but instead presents its own sloga-
nized message to propose closing military bases. This does little
to build mutual understanding and seems to dismiss or sidestep
the parent’s point. Step 2: The use of slogans and repetition
indicates a tendency to oversimplify complex issues, reduc-
ing space for dialogue and critical engagement. These rhetor-
ical techniques are characteristic of divisive messaging.Step
3: The comment lacks perspective-taking or any respectful
engagement with the original idea; rather, it uses incendiary
rhetoric, which is likely to escalate division. Final Score: De-
structive_Disagreement/Attack”,

This example demonstrates two key factors un-
derlying LLLM performance limitations. First, the
model effectively utilizes the provided feature infor-
mation, correctly employ the presence of divisive
rhetorical techniques to justify the "Destructive Di-
mension" classification. However, the model fails
to connect the comments to the broader immigra-
tion discussion context. Human annotators labeled
this as "agreement" because both comments share
an underlying anti-colonial narrative—the parent
criticizing historical ignorance and the child ad-
vocating military withdrawal from former colonial
territories. Hence, a key issue appears to be context-
dependent agreement detection.

"Parent": "In that case maybe we should also have restrictions
on smaller men, like lets say 5’7 or under since they will also
have a difficult times carryinf heavy rocks?"[Neutral]

’See repository for complete prompt format. It included
also a brief definition of the detected technique and 4 guiding
questions.
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"Comment": "I thought for a moment, then I remembered in
many north european contries the average is 6 and something
50 5’7 is short there lol"[Neutral][No Techniques]

"reasoning": "Step 1. The child comment directly engages with
the parent’s observation about height and restrictions using a
factual clarification while referencing the original comment.
Step 2. The tone is neutral and shows a respectful, though
subtly differing, perspective; it’s not dismissive or mocking.
Step 3. The comment contributes knowledge that can help
refine the point made by the parent without attacking the per-
son, promoting mutual understanding. Step 4. Overall, the
child comment reflects a constructive disagreement. Construc-
tive_Disagreement/Attack",

Also in this second example the model is effec-
tive in detecting the correct "tone" of the conver-
sation. However, it misinterprets the dialogical
function of the refinement of the parent’s statement
as an attack, when the child is actually contribut-
ing supportive evidence about height differences
across countries. Hence, LLMs may struggle to
distinguish between challenging refinements and
supportive contributions in agreement detection.
Notably, while both examples were drawn from
the "Text+Stance+Techniques" condition, neither
reasoning trace referenced this additional feature
information, though stance features were utilized
in other cases, indicating inconsistent integration.
Improved prompting strategies or reasoning ap-
proaches might enhance performance. We provide
complete reasoning model outputs in the repository
to facilitate further error analysis.

A closer examination of LLM behavior yields
interesting insights. Within this paradigm, the two
sub-groups exhibit divergent responses to varying
levels of feature input. (3) Non-reasoning (’chat’)
models returned their highest performance on tasks
when provided with minimal feature input, with
DeepSeek-V3 attaining peak performance within
this category (macro-F1 = 55.11). In stark con-
trast, reasoning-enabled LL.Ms demonstrated im-
proved performance when equipped with an exten-
sive range of features, underscoring their enhanced
capacity for leveraging supplementary information.

This disparity reflects different model design ob-
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Figure 5: Feature importance analysis using permuta-
tion method.

jectives: reasoning models (like DeepSeek-R1) are
optimized for analytical tasks requiring multiple ev-
idence sources, while chat models (DeepSeek-V3)
excel with minimal inputs but struggle with feature-
rich representations, evidenced by performance
degradation when adding features (from 55.11 to
49.77 macro-F1). Notwithstanding its limitations
with multi-feature integration, DeepSeek-V3 (‘chat
model’) surprisingly excelled in identifying agree-
ment relationships, outperforming others in both
destructive and constructive links detection, getting
the best overall performance score (see Figure 8b
in Appendix). This is likely due to its proficiency
in interpreting base text and stance information,
resembling their primary training objective — un-
derstanding conversational dynamics. Additionally,
this advantage may also stem from an emphasis
on contextual understanding over analytical depth,
where these models prioritize comprehending nu-
ances over handling complex, multi-faceted analy-
ses, thereby facilitating their superiority in recog-
nizing certain relationships, such as agreements.

6.1.1 Ablation Study

To identify the key predictors of divisiveness in
online discussions, we conducted an ablation study
using permutation importance. This technique mea-
sures feature importance by randomly shuffling
each feature’s values and calculating the result-
ing decrease in model performance, thus quanti-
fying each feature’s contribution to prediction ac-
curacy independent of model architecture. We
performed the analysis on our best-performing
model—an XGBoost classifier using PCA-reduced
embeddings (40 components) combined with lin-
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guistic, stance, and propaganda features. The per-
mutation importance was calculated using 5 ran-
dom permutations per feature on the test set, with
macro F1 score as performance metric. Figure 5
presents the top features ranked by permutation
importance, color-coded by category (blue for divi-
sive techniques, orange for stance features, green
for linguistic features, and pink for embeddings).
Our analysis reveals a clear hierarchy in feature
importance, with two features demonstrating sub-
stantially higher influence than others:

Divisive techniques: The binary indicator
of whether a comment employs propaganda
techniques (has_techniques) emerged as the
strongest predictor of divisiveness (0.22 + 0.01),
suggesting that rhetorical manipulation strongly
correlates with destructive discourse.

Comment stance: The ideological position
expressed in a comment towards the topic
(comment_stance) represents the second most in-
fluential feature (0.07 & 0.01), indicating its im-
portance in determining agreement/disagreement
relationships between comments, which consti-
tutes one of the two dimensions in our annotation
schema.

Secondary predictors include question_marks
(0.05), abs_stance_diff (0.05), and word_count
(0.04), demonstrating the role of linguistic patterns
and stance differences in predicting divisiveness.
We grouped all the embedding components in just
one indicator (pca_Embeddings), which appears
among the most important features. This indicates
that semantic content captured by contextualized
representations contributes additional predictive
power beyond explicit features.

The results provide evidence supporting the theo-
retical distinction between constructive and destruc-
tive communicative processes proposed by Samson
and Nowak (2010), as well as our operationaliza-
tion of the construct using divisive rhetoric and
the specific stance expressed. This finding further
validates our hybrid approach combining explicit
rhetorical and stance features with semantic ones.

6.2 Chain Level

The chain-level analysis reveals intriguing method-
ological insights about how model performance
transfers across analytical levels. As described
in Section 5, we derived chain-level predictions
by averaging comment-level scores from our best-
performing models, mapping each chain to one of
the categories defined in Table 1. While XGBoost



excels at the comment level, SVM unexpectedly
performs better at the chain level. This counter-
intuitive result likely stems from the interaction
between class distribution and error patterns across
analytical levels: destructive comments (57.48% of
the dataset) appear in more balanced proportions
when aggregated into chains, the models’ error
distributions affect chain-level metrics differently.
SVM’s marginal advantage in classifying destruc-
tive agreement comments becomes amplified when
predictions are averaged into chain scores. This
finding suggests that model selection should prior-
itize the specific analytical level of interest rather
than assuming performance transfers across lev-
els, as optimal classification at one level does not
necessarily translate to optimal performance when
those classifications are aggregated into higher-
level constructs. A similar pattern emerges with
LLMs, where OpenAl 03-mini shows improved
performance at the chain level, suggesting how
error distribution can impact model effectiveness
across different analytical levels.

7 Discussion and Conclusions

This study addressed the challenge of automati-
cally detecting and measuring constructive versus
destructive communication patterns in online dis-
cussions. Starting from the theoretical framework
proposed by Samson and Nowak (2010), we opera-
tionalized these constructs through a multilevel an-
alytical approach examining both individual com-
ments and conversation chains.

Given the abstract nature of these concepts, we
extracted linguistic, stance and rhetorical features
to characterize comments and highlight their com-
municative qualities. Our findings demonstrate the
effectiveness of this theory-driven feature engineer-
ing approach. In fact, the ablation study revealed
that divisive rhetorical techniques and stance infor-
mation serve as the strongest predictors of destruc-

tive communication, substantially outperforming
semantic embeddings alone.

This highlights an important methodological in-
sight: when equipped with theoretically-grounded,
specialized features, traditional machine learning
approaches outperformed more complex models
in domain-specific task. While LLMs excel at
general language understanding, their performance
is constrained when analyzing nuanced rhetorical
and dialogical relationships that require explicit
theoretically-grounded representation. The XG-
Boost model achieved 60.60% macro-F1 at the
comment level, substantially outperforming the
best LLM (DeepSeek at 55.11%). This advantage
was even more pronounced at the chain level, where
SVM reached 75.28% macro-F1 compared to Ope-
nAl 03-mini’s 64.69%. This gap underscores how
domain-specific tasks requiring specialized theoret-
ical knowledge may present unique challenges for
general-purpose LLMs, which lack explicit repre-
sentation of the theoretical structures provided by
our feature engineering approach.

In conclusion, our study demonstrates the benefit
of combining theoretical frameworks with compu-
tational methods for more nuanced approaches to
controversy analysis. Establishing baselines for
this task, and releasing our dataset and scripts, we
aim to facilitate further exploration of how specific
communicative choices contribute to either produc-
tive dialogue or increased antagonism across dif-
ferent platforms and domains, ultimately shaping
conversational dynamics in online spaces.

Limitations

Our study has several limitations. LLMs used
for rhetorical technique identification may under-
perform in domains different from their training
data, struggling with detecting fallacious argu-
ments "in the wild" (Ruiz-Dolz and Lawrence,
2023). Moreover, the qualitative analysis of rea-

Model | Base | B+Stance | B+Tech | B+S+T | B+Emb | B+S+T+E
Chain Category | P R F1
DeepSeek (Chat) 41.95 44.70 44.45 49.72
DeepSeek (Reasoning) 38.53 43.80 47.17 49.89 Highly Destructive 0.83 083 0.83
GPT-mini 40.51 41.47 30.32 41.28 Moderately Destructive | 0.76 ~ 0.83  0.79
OpenAl 03-mini 64.69 59.38 62.99 59.57 Slightly Dest./Neutral 0.67 071  0.69
Constructive 089 057 0.70
Logistic Regression 24.66 39.43 62.26 64.61 36.41 71.72
SVM 26.94 35.42 62.80 66.67 40.70 75.28* Macro Avg. | 079 074 075
XGBoost 26.18 46.83 64.67 69.47 38.68 70.18 Model: SYM on All Features,
Random Forest 25.00 37.86 70.15 68.10 39.06 69.72

PCA 45; C: 1.0, gamma: 0.01, kernel: rbf

*Best model overall for chain-level category prediction

Table 5: Chain-Level Class-Specific

Table 4: Chain-Level Divisiveness Detection Performance Comparison (F1  poigorman o

Macro Scores)
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soning models suggests that improved prompting
strategies could potentially enhance LLLM perfor-
mance, indicating that our findings may reflect cur-
rent implementation limitations rather than funda-
mental model constraints.

The dataset’s skew toward destructive comments
(57.48%), while reflective of "natural” YouTube
discourse patterns, biases classification despite
SMOTE implementation. Through more balanced
datasets models equally sensitive to both construc-
tive and destructive patterns could be developed.
Additionally, moderate inter-annotator agreement
(Cohen'sK = 0.37) reflects the inherent subjec-
tivity in evaluating discourse quality. Refined an-
notation protocols could improve gold standard
roboustness in future work.

Our analysis focused exclusively on textual
features, overlooking valuable structural informa-
tion in conversation chains. Additionally, our
chain-level predictions were derived by averaging
comment-level scores. Incorporating graph-based
features such as reply depth, branching and tempo-
ral patterns could enhance prediction performance,
particularly for chain-level analysis (De Kock and
Vlachos, 2021; Hessel and Lee, 2019).

The study’s scope is confined to a single plat-
form, language, and topic domain, limiting gener-
alization. Cross-platform validation across diverse
languages and topics is necessary for broader ap-
plicability.
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The gold-set for evaluating stance detection per-
formance was created by two annotators who in-
dependently labeled 1,300 comments (guidelines
in repository), achieving an inter-annotator agree-
ment of Cohen’s x = 0.61. Disagreements were
resolved through discussion, and GPT-40’s perfor-
mance was subsequently evaluated on this gold-set;
performance metrics are reported in Table 6.

Class Precision  Recall Fl-score  Support
Against 0.833 0.743 0.785 502
Neutral/Other 0.602 0.730 0.660 400
Support 0.823 0.759 0.790 403
Macro 0.752 0.744 0.745 1305
Weight. Avg. - - 0.748 1305

Table 6: Performance metrics of the stance classification

For divisive rhetoric detection performance, one
single expert annotator manually checked Chat-
GPT-40-mini predictions on 2715 comments (see
repository), following prompt definitions. Table 7
reports the performance metrics.

Technique Prec. Rec. F1 Support
Overall Performance
Micro Average 0.840 0.797 0.818 2175
Macro Average 0.791 0.659 0.696 -
Individual Techniques
Appeal to Authority 0.652 0.577 0.612 26
Appeal to Fear/Prejudice 0.840 0.748 0.791 119
Bandwagon 0.667 0.200 0.308 10
Black-and-White Fallacy 0.828 0.485 0.611 99
Causal Oversimplification 0.676 0.881 0.765 227
Doubt 0.852 0.762 0.805 227
Exaggeration/Minimisation 0.862 0.880 0.871 241
Flag-Waving 0.882 0.833 0.857 108
Loaded Language 0915 0.966 0.940 443
Name Calling/Labeling 0.869 0.896 0.883 415
Repetition 0.571 0.462 0.511 26
Slogans/Thought-terminating Cliché  0.821 0.222  0.350 149
Whataboutism/Straw Men 0.848 0.659 0.742 85

Table 7: Performance metrics of the divisive rhetorical
techniques detection
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Abstract

Implicit premise is central to argumentative co-
herence and faithfulness, yet remain elusive
in traditional single-pass computational mod-
els. We introduce a multi-agent framework
that casts implicit premise recovery as a dia-
logic reasoning task between two LLM agents.
Through structured rounds of debate, agents
critically evaluate competing premises and con-
verge on the most contextually appropriate in-
terpretation. Evaluated on a controlled binary
classification benchmark for premise selection,
our approach achieves state-of-the-art accuracy,
outperforming both neural baselines and single-
agent LLMs. We find that accuracy gains stem
not from repeated generation, but from agents
refining their predictions in response to oppos-
ing views. Moreover, we show that forcing
models to defend assigned stances degrades
performance—engendering rhetorical rigidity
to flawed reasoning. These results underscore
the value of interactive debate in revealing prag-
matic components of argument structure.

1 Introduction

Arguments do not fail at the surface; they often fail
in what they assume. What makes an argument
persuasive is not always what is stated, but what is
left unsaid. Implicit premises—unstated assump-
tions that connect reasons to claims—are often the
true engines of argumentation (Hitchcock, 1985;
Toulmin, 1958; Walton and Reed, 2005).

Recovering implicit premises thus represents a
foundational, yet underexplored, challenge in com-
putational argument analysis. Existing systems
perform well at identifying explicit argumentative
components such as claims and reasons, but they
often fall short in capturing what is pragmatically
presupposed (Feng and Hirst, 2011; Walton and
Reed, 2005; Habernal et al., 2018a).

This limitation becomes particularly consequen-
tial in high-stakes domains such as law, finance,
and politics, where arguments frequently hinge on
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i Implicit Premisc%

The correct
implicit premise
is A!

V

No, the correct
implicit premise
is B!

Figure 1: Illustration of the two LLM agents debating
which is the correct implicit premise.

assumptions that are unstated, ambiguous, or im-
plied (Chakrabarty et al., 2021). In such contexts,
argument mining must move beyond surface-level
interpretation to reconstruct the hidden connec-
tive tissue that underpin argumentative coherence
(Hitchcock, 1985; Razuvayevskaya and Teufel,
2017; Katz et al., 2022).

The advent of large language models (LLMs)
has opened new possibilities for modeling con-
textual reasoning at scale. Yet when applied to
tasks demanding pragmatic inference, LLMs oper-
ating in isolation often fall short (Katz et al., 2022;
Chakrabarty et al., 2021). A key limitation is their
inability to interrogate their own outputs; reflec-
tive techniques such as self-reflection (Shinn et al.,
2023) are often unsuitable for capturing the nu-
anced reasoning required in argument mining. In
natural discourse, implicit premises are rarely sur-
faced in isolation—they are negotiated through in-
teraction, clarification, and iterative exchange (In-
oue et al., 2020; Stede et al., 2019).

Motivated by this observation, we propose a
multi-agent framework that models premise recov-
ery as a dialogic reasoning process between two
LLM agents. This approach draws on recent find-
ings that language models demonstrate more co-
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herent reasoning in interactive settings (Du et al.,
2024), and show enhanced pragmatic sensitivity
when engaged in debate (Ku, 2025). In our setup,
agents are either assigned or select a candidate
premise and interact either sequentially or simulta-
neously through structured rounds of deliberation.

We evaluate this method on the SemEval 2018
Task 12 dataset (Habernal et al., 2018b), which
casts implicit premise recovery as a binary clas-
sification task. While prior models—including
LSTM and BERT-based classifiers—showed mod-
erate success, our multi-agent approach achieves
the highest accuracy to date, outperforming both
traditional baselines and single-agent LLMs. These
results underscore the potential of agentic reason-
ing as a more effective paradigm for capturing the
pragmatic inference required in implicit argument
understanding. The primary contributions of this
work are as follows:

* We position implicit premise recovery as a
central task in argument mining, moving be-
yond surface-level extraction toward modeling
the pragmatic reasoning that underlies argu-
mentative coherence.

* We propose a multi-agent LLM framework
that addresses premise selection as a dialogic
process, yielding state-of-the-art performance
on a benchmark dataset.

2 Related Work

2.1 Implicit Premises and Deeper Argument
Understanding

The task of recovering implicit premises—unstated
assumptions that bridge claims and reasons—is
closely related to enthymeme reconstruction in clas-
sical argumentation theory. Enthymemes omit one
or more components of an argument, typically leav-
ing the audience to infer missing premises. Re-
covering these implicit links is crucial for argu-
ment mining, as they often carry the inferential
burden behind persuasive discourse. Early work
highlighted the logical challenges of modeling en-
thymemes (Hitchcock, 1985), while more recent
studies have focused on detecting, classifying, or
generating missing premises (BoltuZi¢ and Snajder,
2016; Rajendran et al., 2016; Chakrabarty et al.,
2021; Hunter, 2022; Stahl et al., 2023).

Building on this line of inquiry, researchers have
investigated a range of tasks that involve implicit
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inference, including the recovery of unstated rea-
soning chains in question answering (Katz et al.,
2022), the identification of event arguments with
long-range dependencies (Lin et al., 2022a), and
the discovery of relational links between argumen-
tative units via implicit inferences (Saadat-Yazdi
et al., 2023). These studies show that even state-of-
the-art systems often struggle to model the back-
ground knowledge and pragmatic logic required to
make sense of incomplete arguments.

Beyond model development, recent efforts have
sought to improve the quality of annotated data
for implicit reasoning. Singh et al. (2021) pro-
posed a semi-structured annotation methodology
for collecting implicit warrants, demonstrating that
abstract assumptions can be reliably captured via
guided crowdsourcing.

While these advances have expanded our under-
standing of hidden argumentative structure, implic-
itness is still often treated as a supporting concern
rather than a central modeling objective. In con-
trast, our work foregrounds implicit premise re-
covery as the primary task and frames the process
as one of pragmatic, dialogic reasoning between
agents.

2.2 Multi-Agent LLM Debate

Multi-agent debate has emerged as a promising
method for enhancing reasoning in large language
models by transforming inference from a solitary
act into an interactive process. Instead of relying
on a single model’s output, multiple agents engage
in dialogue—critiquing, revising, and refining their
interpretations—mirroring the deliberative nature
of human reasoning (Irving et al., 2018; Du et al.,
2024). Such interactions improve factual accuracy,
consistency, and interpretability across domains.
Chan et al. (2024) and Liang et al. (2024) report
that multi-agent discussions help overcome indi-
vidual model biases, with Liang et al. (2024) de-
scribing this as a remedy for the “degeneration-
of-thought” effect—where flawed lines of reason-
ing persist without external correction. These in-
sights echo Minsky (1988)’s notion of a “society
of minds,” in which intelligence arises from the
interplay of multiple specialized reasoning units.
We extend this paradigm to the domain of ar-
gument mining, where implicit premise recovery
requires more than the injection of external knowl-
edge—it demands interpretive contrast. To our
knowledge, this is the first study to apply multi-
agent LLLM debate to an argument mining task.



3 Methodology
3.1 Task Definition

We define the task of implicit premise recov-
ery as selecting the correct implicit premise
P* € {Premise A, Premise B} that logically
and pragmatically bridges a reason R and a
claim C' in a given argument tuple z
(C, R, Premise A, Premise B).

Claim: Young people’s votes matter.
Reason: All votes matter.

Premise A: Many young people vote.
Premise B: Many young people don’t vote.

Table 1: Example of an implicit premise recovery in-
stance.

This example highlights the subtlety of the task:
both candidate premises appear logically plausi-
ble yet imply distinct pragmatic interpretations.
Premise A implies descriptive inclusion—that
young people are already voters whose contribu-
tions merit recognition—while Premise B suggests
normative urgency, highlighting that their underrep-
resentation makes their votes especially valuable.
Disambiguating between such readings requires
sensitivity to context and intent, rather than reliance
on lexical overlap or surface logic.

We approach this task as a deliberative pro-
cess between two large language model agents,
each initialized with a different candidate premise.
Through structured multi-round dialogue, the
agents attempt to resolve their disagreement and
identify the premise P* that most plausibly com-
pletes the argument.

Formally, a debate instance D consists of a se-
quence of rounds D = {Ry, Ra, ..., Ry}, where
each round R; contains contributions (aZ(A), aZ(B))
from agents A and B, respectively. The task is
evaluated as a binary classification problem: each
instance is marked correct if the final agreed-upon
premise matches the gold-standard label, or in-
correct if the debate either results in the wrong
selection or terminates without consensus after n
rounds.

3.2 Design of the LLM Debate

To systematically evaluate how LLMs reason over
competing premises, we design a debate framework
that manipulates two key structural conditions:
stance assignment and interaction order. These
conditions allow us to test how different configura-
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tions affect argumentative convergence and overall
performance.

Condition 1: Given vs. Chosen Stance In the
Given stance condition, each agent is explicitly
assigned a candidate premise to defend—either
Premise A or Premise B. During preliminary test-
ing, we observe that agents often rigidly maintain
their initial stance, even when logically weaker (see
Appendix Figure 8). To address this, we introduce
staged prompting: early rounds emphasize advo-
cacy, while later rounds prompt agents to neutrally
evaluate both premises and converge on the more
plausible one (Appendix Listing 2).

All votes matter.

v
Young people’s votes matter. H
v v

Premise B:
Many young people don’t vote.

Premise A:
Many young people vote.
v
I was given Premise B,

and I’11 be making
the case for it in the debate.

v
I was given Premise A,

and I’11 be making
the case for it in the debate.

LLM Agent A LLM Agent B

Figure 2: Illustration of the Given conditon.

All votes matter.

v
Young people’s votes matter. H
v v

Premise A:
Many young people vote. -..,,

Premise B:

... Many young people don’t vote.

D

I think Premise A is correct,
so I’ve chosen to defend it
in the debate.

I think Premise B is correct,
so I’ve chosen to defend it
in the debate.

LLM Agent A LLM Agent B

Figure 3: Illustration of the Chosen conditon.

In the Chosen stance condition, each agent in-
dependently selects the premise it finds more con-
vincing and is instructed to defend that choice (Ap-
pendix Listing 3). If the agents agree on a premise
early in the debate, the session is immediately ter-
minated and the shared answer is evaluated against
the gold label.

Condition 2: Sequential vs. Simultane-
ous Round While the first round in both
configurations functions as an opening state-
ment—analogous to initial remarks in formal de-



bate—the two conditions diverge in how subse-
quent rounds are structured and processed.

In the sequential setup, agents engage in alter-
nating turns; Agent A begins by defending one
candidate premise, and Agent B responds after re-
viewing A’s output. This allows each agent to build
on or challenge the preceding argument.

All votes matter.

v
Young people’s votes matter.

Premise B:
oung pe H don’t vote

%

LLM Agent B

Round 1

Premise B is correct,
because.

L LLM Agent A

LLM Agent A

Premise A is correct,
because...

Round 2

Ve

One LLM agent hears the opposing argument and
responds first. Then, sequentially,
the other agent does the same.

LLM Agent B

Figure 4: Illustration of the Sequential conditon.
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v
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v v
Promlso B:
vote. Many young pl don’t vote.

m

LLM Agent B E

Round 1

Premise B is correct,
because.

Premise A is correct, l l
L Agent A

because.

LLM Agents hear the opposing argument H
and respond simulatenously at the same next round. v

p Round 2 N
R A iy X hink prentse A 15 STLLL corracts
because
i_LLM Agent A

LLM Agent B

Round 3

Round n

Figure 5: Illustration of the Simultaneous conditon.

In the simultaneous setup, both agents produce
their arguments independently and then respond to
each other’s initial outputs in the following round.
This structure enables a more parallel and symmet-
rical form of interaction.

This design allows us to evaluate whether
free premise selection improves convergence and
whether agents benefit from observing each other’s
arguments across rounds. The full implementa-
tion details, including model selection, decoding
parameters, and logging tools, are provided in the
subsequent section.

4 Experimental Setup
4.1 Dataset

We evaluate our approach using the Argument Rea-
soning Comprehension Task dataset from SemEval-
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2018 Task 12 (Habernal et al., 2018b), a bench-
mark explicitly designed to test implicit reason-
ing in natural language arguments. Each instance
consists of a claim, a reason, and two candidate
warrants' —only one of which correctly links the
reason to the claim.

The incorrect premises are crafted to be topically
and lexically plausible, yet logically incompatible
with the argument, thereby requiring models to
engage in pragmatic inference rather than rely on
shallow surface cues. The dataset contains 1,970
instances drawn from online debates, partitioned
into training (1,210), development (316), and test
(444) sets. For our evaluation, we focus on the
held-out test set to enable direct comparison with
previously reported results from baseline models.

This dataset is particularly well-suited for
our purposes because of (1) its topical diver-
sity—including politics, ethics, economics, and
social policy—which mirrors real-world argumen-
tative variety, and (2) its construction via a rigorous
eight-step crowdsourcing pipeline with multiple
validation rounds, ensuring that examples are high-
quality and pragmatically meaningful.

4.2 Model Configuration

We implement all experiments using OpenAl’s
GPT-40-mini, the most cost-effective and fastest
available LLM at the time of writing. Given the
latency introduced by multi-turn agent interaction,
GPT-40-mini offers the best balance between com-
putational efficiency and linguistic performance.
All LLM experiments—including the single-agent
baseline—use identical model settings to ensure
comparability. Multi-agent interactions are man-
aged via the LangGraph framework, which facili-
tates node-based orchestration and message pass-
ing. Logging and analysis of outputs are performed
using LangSmith.

4.3 Parameters

To determine appropriate parameters, we con-
ducted preliminary experiments using the single-
agent LLM. We tested temperature values of 0.1,
0.3,0.5,0.7, and 0.9, along with max round settings
of 5, 10, 15, and 20. Neither parameter showed
statistically significant impact on performance. We
therefore adopted the median configuration: tem-

'We treat “warrant” and “implicit premise” interchange-
ably throughout this paper, following Toulmin’s framework
(Toulmin, 1958) in which a warrant serves as the unstated
bridge in an argument.



perature was fixed at 0.5, and all debates were
capped at 10 rounds.

No few-shot examples or chain-of-thought
prompting were used. Given that implicit premise
recovery is a pragmatic reasoning task with no
canonical steps, such scaffolding was treated as
a potential confound. If no agreement was reached
within 10 rounds, the debate was marked incorrect.

4.4 Previous Models

To establish strong baselines for comparison, we
replicated two representative models for implicit
premise recovery. Rather than relying solely on
reported metrics, we reproduced both models using
their publicly available code and the original test
dataset.

LSTM This model designed by Choi et al.,
2018 implements a hybrid architecture combin-
ing a pre-trained Enhanced Sequential Inference
Model (ESIM; Chen et al., 2017) with a bidirec-
tional LSTM. The ESIM component, trained on
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018), captures entailment knowledge and
passes frozen sentence pair representations to a
task-specific BILSTM. The model processes all rel-
evant pairings—claim—premise, premise—reason,
and premise—premise—and feeds their concate-
nated outputs into a fully connected network to
determine the correct implicit premise. This ap-
proach ranked first in the 2018 shared task and
outperformed all other submissions by a margin of
over 10 percentage points (Habernal et al., 2018b).

BERT We fine-tuned RoBERTa (Liu et al., 2019),
an optimized variant of BERT that omits the Next
Sentence Prediction objective and is trained on
longer sequences and larger corpora. Inputs were
formatted as concatenated sequences of the claim,
reason, and candidate implicit premise. Compared
to sequential models like LSTM, RoBERTa uses
self-attention to capture contextual dependencies
across the entire input simultaneously. The model
was trained for 10 epochs with a learning rate of
le=5, weight decay of 0.01, and a batch size of
16. The maximum sequence length was set to 512
tokens, and all experiments were run on 8 A100
GPUs.
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5 Results

5.1 Main Results

Table 2 presents a comparison of model perfor-
mance across prior baselines and the five LLM con-
figurations tested in this study. The single-agent
LLM baseline achieved an accuracy of 0.7928, out-
performing previous neural models—including the
top-performing LSTM (0.7050) and a fine-tuned
RoBERTa model (0.7564). This result confirms
that a single-pass LLLM does exhibit strong capabil-
ities for implicit premise recovery under zero-shot
conditions.

Our multi-agent framework, however, produced
further improvements under specific configurations.
In Chosen stance setups—, where agents inde-
pendently selected and defended their preferred
premise—, both interaction orders led to substan-
tial gains. The Simultaneous condition achieved
0.8446 in accuracy, and the Sequential condition
yielded the highest overall performance at 0.8694.
These results indicate that dialogic reasoning is
most effective when agents are free to align on a
shared interpretation, rather than being constrained
by initial position assignments.

A Cochran's Q test confirmed a statistically
significant difference in performance across the
five LLM configurations (@ = 101.03, df = 4,
p < 0.0001), prompting further pairwise analysis.
Post-hoc McNemar tests revealed that nearly all
model pairs differed significantly, with two key ex-
ceptions. First, the two highest-performing condi-
tions—Chosen & Sequential and Chosen & Simul-
taneous—did not differ significantly (p > 0.05),
despite a nominal accuracy gap of 2.5 percent-
age points. Second, the two lowest-performing
configurations—Given & Sequential and Given &
Simultaneous—also showed no significant differ-
ence (p > 0.05), suggesting that interaction order
exerted limited influence in the presence of fixed
stance assignments.

Direct comparisons with the single-agent base-
line further clarify this pattern. The single-agent
LLM statistically outperformed both Given stance
conditions: for Given & Sequential, the McNemar
test yielded p < 0.0001 (contingency: 275 both
correct, 77 single only, 35 Given only, 57 both
wrong); for Given & Simultaneous, p < 0.01 (con-
tingency: 288, 64, 32, 60). These results indicate
that rigid stance assignment may suppress perfor-
mance even relative to non-interactive inference.

Conversely, both Chosen stance configurations



Model Citation Accuracy Precision Recall F1
Previous Studies
Baseline Habernal et al. (2018b) 0.5000 - - -
LSTM Choi et al. (2018) 0.7050 0.7281 0.6870  0.7069
BERT Liu et al. (2019) 0.7564 0.7568 0.7568  0.7568
LLM-based experiments

Single-agent LLM This study 0.7928 0.7941 0.7928  0.7928
MultiAgent Debate (Given & Sequential) This study 0.6982 0.6986 0.6982 0.6973
MultiAgent Debate (Given & Simultaneous) This study 0.7207 0.7207 0.7207  0.7207
MultiAgent Debate (Chosen & Sequential) This study 0.8694 0.8768 0.8694 0.8691
MultiAgent Debate (Chosen & Simultaneous)  This study 0.8446 0.8553 0.8446  0.8440

Table 2: Comparison of performance on implicit premise recovery across prior models and configurations tested in

this study. The best scores are in bold.

significantly outperformed the single-agent model.
Against Chosen & Sequential, the McNemar test
yielded p < 0.0001 (contingency: 337, 49, 15, 43);
against Chosen & Simultaneous, p < 0.01 (contin-
gency: 334, 41, 18, 51). These findings confirm
that when agents are permitted to self-select and
defend their preferred stance, multi-agent interac-
tion leads to robust improvements over single-pass
prompting.

Taken together, these results indicate that stance
assignment—not interaction order—is the primary
determinant of performance differences in multi-
agent LLM debate. While alternating turns may
allow for richer back-and-forth refinement, its im-
pact is modest compared to the benefits of allow-
ing agents to converge on shared, self-selected
premises.

5.2 Effect of Temperature and Max Rounds

To test whether decoding parameters affect per-
formance, we conducted an additional set of ex-
periments using the best-performing configura-
tion—Chosen & Sequential—as a base. While
this setting yielded the highest overall accuracy
(0.8694), it was not statistically distinguishable
from the Chosen & Simultaneous condition (p >
0.05), indicating that both settings perform compa-
rably under the chosen evaluation metric.

We varied the temperature parameter across five
values (0.1, 0.3, 0.5, 0.7, and 0.9), holding all
other factors constant. Temperature 0.5 was used
throughout our main experiments, including both
single-agent and multi-agent runs. A Cochran’s Q
test revealed a highly significant difference across
the five temperature conditions (@ = 150.18,
df =4, p < 0.0001), suggesting that temperature
meaningfully impacts model behavior at the in-
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Impact of Temperature on Accuracy
(with 95% Confidence Intervals)

-=- Temperature=0.5

F—

0.70

0.5 0.7 0.9

Temperature

0.1 0.3

Figure 6: Impact of decoding temperature on implicit
premise recovery accuracy under the Chosen & Sequen-
tial setting. Error bars represent 95% confidence inter-
vals.

stance level—even when overall accuracy remains
comparable (ranging from 0.8514 to 0.8694). Post
hoc McNemar tests confirmed that temperature 0.5
differs significantly from all other settings: 0.1
(p < 0.0001), 0.3 (p < 0.0001), 0.7 (p < 0.0001),
and 0.9 (p < 0.0001). In contrast, no significant
differences were observed between any of the non-
0.5 pairs. These findings indicate that temperature
0.5 produces a statistically distinct profile of cor-
rect predictions while yielding the highest accuracy
among tested settings.

To examine whether the number of debate
rounds influences performance, we conducted a
similar test across four configurations (N =5, 10,
15, 20). A Cochran’s Q test yielded no signifi-
cant difference across these settings () = 0.063,
df = 3, p > 0.05), suggesting that extending or
shortening the debate window has minimal effect
on instance-level behavior. Accordingly, we re-



Impact of Max Rounds on Accuracy
(with 95% Confidence Intervals)
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Figure 7: Impact of maximum number of debate rounds
on accuracy under the Chosen & Sequential setting.
Error bars represent 95% confidence intervals.

tain N = 10 as a reasonable and computationally
efficient default for all primary experiments.

6 Discussion

6.1 Effectiveness of Multi-Agent Debate

Our multi-agent debate framework outperforms
all previous models—surpassing LSTM-based sys-
tems, fine-tuned BERT classifiers, and single-agent
LLMs—on the task of implicit premise recovery.
Crucially, this improvement is not merely an arti-
fact of increased generation length or system com-
plexity. Rather, we argue that performance gains
arise because agents iteratively refine their beliefs
in response to alternative perspectives, producing
more robust and context-sensitive inferences (as
evidenced in Appendix Figure 12).

One may reasonably ask whether the chosen
stance conditions, particularly in the Simultane-
ous setup, simply replicate the effect of running
two single-agent models independently. Since
agents make initial decisions without access to each
other’s output, early convergence may occur with-
out deliberation. However, the key distinction lies
in what follows: when agents initially disagree,
the opportunity for dialogic correction arises. In
such cases, the debate enables mutual calibration,
allowing one agent to reconsider its stance based
on the other’s justification. This mechanism proves
especially valuable on instances where single-agent
models consistently fail. As illustrated in Appendix
Figure 9 and Figure 10, what a single agent mis-
classifies, two agents—through comparative eval-
uation—can resolve correctly. This pattern holds
across a broader set of disagreements, suggesting
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that performance gains stem not from parallelism
alone, but from the capacity of agents to refine their
inferences in light of opposing views.

Another interpretation is that the performance
gains reflect the cumulative effect of multiple
rounds of generation. To address this, we tested
four different values for the maximum number of
rounds (N = 5, 10, 15, 20). We found no statisti-
cally significant differences across these conditions,
indicating that additional steps alone do not account
for improved accuracy. It is not repetition, but re-
ciprocal engagement—particularly when disagree-
ment prompts justification and reassessment—that
appears to drive better outcomes.

These findings reinforce the value of dialogic
reasoning in argument mining. Where single-agent
models operate in isolation, our framework en-
ables argument structure to be negotiated through
interaction. By situating inference within a se-
quence of comparative responses, debate makes
pragmatic assumptions explicit—bringing other-
wise tacit premises to the surface.

6.2 Assigned Stances Undermine Performance

Models in human-like debate settings are often
assigned opposing views to simulate adversarial
reasoning. Yet, our findings suggest that this arti-
ficially adversarial setup may degrade rather than
enhance argumentative performance in LLM-based
systems. Across both Sequential and Simultaneous
configurations, the Given stance condition consis-
tently underperformed—not only relative to the
Chosen stance condition but also below the single-
agent baseline.

To understand this degradation, we observe that
forced stance assignment increases rhetorical rigid-
ity. In early rounds, agents adopt emphatic and
assertive tones in defending their assigned premise,
even when it is logically weaker. As shown in Ap-
pendix Figure 11, an agent instructed to support
an incorrect premise begins the debate with claims
such as “It must be true that...,” displaying early
signs of overcommitment. This aligns with Xu et al.
(2024), who demonstrated that rhetorical appeals
can heighten LLM susceptibility to misinforma-
tion. When forced to advocate for flawed views,
models not only generate more confident but less
coherent arguments, mirroring patterns observed
in persuasive manipulation studies. In our setting,
this rhetorical extremity can also influence the op-
posing agent, prompting premature agreement or
deference—particularly in sequential interactions.



Such overcommitment may not only degrade indi-
vidual reasoning but also induce hallucination-like
effects in the peer model, which begins to mirror
or justify the incorrect position under the weight of
assertive framing.

These results caution against over-relying on
adversarial structure in multi-agent LLLM setups.
While role-based opposition may resemble human
debate, it can push models toward rhetorical ex-
tremity rather than pragmatic reasoning.

7 Conclusion

This study demonstrates that multi-agent debate
significantly enhances large language models’ ca-
pacity for implicit premise recovery—an essen-
tial yet underexplored task in computational argu-
ment analysis. While a single-agent LLM already
outperforms prior state-of-the-art models, our re-
sults show that dialogic reasoning among multi-
ple agents enables further gains, particularly when
agents are allowed to choose their stances freely.

Extensive evaluation on a challenging bench-
mark reveals that forcing agents to defend fixed
premises undermines reasoning quality, while en-
abling them to converge on the most plausible in-
terpretation fosters both accuracy and coherence.
We also show that decoding parameters such as
temperature can influence prediction profiles in
statistically meaningful ways, even when overall
accuracy remains stable.

Taken together, these findings suggest that multi-
agent debate is not merely a novelty but a viable
path toward more transparent, flexible, and human-
aligned reasoning and mining methodology.

Limitations and Future Work

Our evaluation relies on the SemEval 2018 Task 12
dataset, which casts implicit premise recovery as a
binary classification task with one correct and one
incorrect candidate. While this framing offers clear
benchmarking advantages, it abstracts away from
the open-endedness of real-world argumentation,
where multiple plausible premises may coexist and
reasoning is shaped by cultural and pragmatic nu-
ance.

Future work should extend this framework to
open-domain and multi-label argument settings,
moving beyond binary premise selection. We also
plan to explore the use of log probabilities and ver-
balized confidence (Lin et al., 2022b) to quantify
the certainty and rigidity of agent reasoning. Addi-

65

tionally, a neutral, third-party judge (Ku, 2025) or
moderator agent could be introduced to adjudicate
debates and guide convergence in more complex or
ambiguous argumentative scenarios.
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Appendix: Agent Debate Logs

Claim: A Supreme Court justice can denounce a candidate.
Reason: Ginsburg is a U.S. citizen with the right to speak her mind.
Implicit Permise A: The government can limit the speech of a simple transit worker, but not
that of a Supreme Court justice.
Implicit Permise B: The government has the right to limit the speech of both a simple
transit worker and a Supreme Court justice.

Implicit Premise A posits that while the
government can limit speech for certain
individuals, such as a transit worker, it cannot
impose the same restrictions on a Supreme
Court justice. This reflects the principle that
justices hold a unique position within the
government, allowing them greater freedom of

<

LLM Agent A

as a justice, which is
government speech limitations.

protected from

Selected: Implicit Premise A

Implicit Premise B suggests that while the
government has a right to limit speech, this
applies equally to all citizens, including both
justices and transit workers. This premise
supports the idea that Ginsburg, despite her
position, is still subject to the same legal
frameworks regarding speech that govern all

expression, especially concerning political citizens. Thus, her ability to denounce a
candidates. Therefore, Ginsburg's right to candidate is not absolute and must be
denounce a candidate is justified by her status understood within the context of these

limitations.

Selected: Implicit Premise B

LLM Agent B

Implicit Premise A maintains that justices, due to their unique role, have greater
protections concerning their speech, which aligns with the reason that Ginsburg, as
a US citizen, has the right to express her views. This suggests that her position
allows her to freely denounce a candidate without the same restrictions that might
apply to others. Therefore, Implicit Premise A is more valid as it acknowledges the

<

LLM Agent A distinct status of justices in relation to free speech.
Selected: Implicit Premise A
While Implicit Premise A emphasizes the unique status of justices and their greater
protections regarding speech, it overlooks the fundamental principle that all
citizens, including justices, are subject to the law. Implicit Premise B provides a
more balanced perspective by acknowledging that the government can limit speech
for all individuals, thus allowing for a nuanced understanding of Ginsburg’s right LLM Agent B
to denounce a candidate within the legal framework that governs everyone.
Therefore, I still find Implicit Premise B to be the more valid suppressed premise.
Selected: Implicit Premise B
Debate Rounds in between...

In this round, I recognize the validity of both warrants but ultimately lean towards

Implicit Premise A. This is because the role of Supreme Court justices inherently

involves a level of speech protection that allows them to express opinions on

political matters, which is crucial for their function in a democracy. Thus, Implicit

LLM Agent A Premlse Aumore accurately reflects the unique context of justices compared to
ordinary citizens.
Selected: Implicit Premise A

In this round, I appreciate my opponent’s argument regarding the unique
protections afforded to justices, which is a significant point. However, I still find
Implicit Premise B to be more valid as it emphasizes that all individuals, regardless
of position, are subject to the same standards of speech accountability. This ensures
that our democratic discourse remains balanced and that no one is above scrutiny,
which is essential for maintaining the integrity of the judicial system.

>

LLM Agent B

Selected: Implicit Premise B

Figure 8: Example debate in which agents failed to reach consensus within the n-round limit. The session was
marked incorrect due to exceeding the maximum number of allowed rounds without convergence.
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Claim: Medical websites are beneficial.
Reason: A search on A medical site could get early treatment.

Implicit Permise A: Self-diagnosis has internal bias because patients know themselves
better, which can lead to earlier recognition of symptoms and fewer errors.
Implicit Permise B: Self-diagnosis has internal bias and is prone to significant error, as
personal knowledge may cloud judgment or miss critical medical nuances.

Single Agent

/\

The claim that medical websites are beneficial is supported by the reason that they can facilitate early
treatment through information. However, the Implicit Premise that best aligns with the potential risks of
self-diagnosis is Implicit Premise B, which highlights that self-diagnosis carries a great chance for error.

This suggests that while medical websites can be beneficial, they also come with significant risks that

could undermine their healthfulness.

L Selected: Implicit Premise B (INCORRECT)
S

Figure 9: Example output from a single-agent LLM that selected the incorrect premise. This instance highlights the
limitations of isolated inference when recovering implicit argumentative structure.

68



LLM Agent A

LLM Agent A

<

Claim: Medical websites are beneficial.
Reason: A search on A medical site could get early treatment.

Implicit Permise A: Self-diagnosis has internal bias because patients know themselves
better, which can lead to earlier recognition of symptoms and fewer errors.
Implicit Permise B: Self-diagnosis has internal bias and is prone to significant error, as
personal knowledge may cloud judgment or miss critical medical nuances.

<

For the reason that a search on a medical site
could lead to early treatment to support the
claim that medical websites are beneficial, it
must be true that self-diagnosis has a lower
chance for error, as patients would benefit from
accurate information. Implicit Premise A
suggests that self-diagnosis has less chance for
error due to patients knowing themselves better,
which aligns with the idea th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>