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Introduction

Welcome to the 7th International Conference on Natural Language and Speech Processing (ICNLSP
2024)!

ICNLSP is an excellent opportunity for researchers to discuss trends in the field of Natural Language
Processing, and to publish their results in the field.

Many topics were discussed through the interesting works presented during the two days of the confer-
ence: speech recognition, machine translation, text summarization, sentiment analysis, large language
models, natural language understanding, language resources, and other topics etc.

The program committee accepted 47 good papers (long and short ones) which is around 45% of the
received submissions, thanks to the high-quality level of the reviews.

"An Introduction to Large Language Models" is the title of a keynote presented by Prof. Gérard Chollet
who was chairing the first session: large language models, followed by 06 oral sessions, namely: in-
formation extraction and summarization, human-machine interaction and conversational Al, advances in
native language identification and text classification, audio, ASR, and TTS, speech emotion recognition
and speaker verification and diarization, and data representation.

Prof. Gérard Chollet has clarified many mysterious points on LLMs and discussed their weaknesses, in-
cluding hallucinations, the black-box nature of their decision-making, and concerns surrounding security
and privacy. He presented symbolic Al and knowledge graphs (KGs) as potential solutions.

We thank all participants for their presentations and discussions during the conference.We would like to
thank Gérard Chollet and Hugues Sansen (Institut Polytechnique de Paris) for preparing for the special
LLM session.

We appreciate the contribution of Dr. Daniel Braun (University of Twente), Dr. Koichi Takeuchi (Okayama
University), Dr. Mohammed Mediani (United Arab Emirates University), Prof. Hend Al-Khalifa (King
Saud University), Prof. Yiicel Saygin (Sabanci Universitesi) and Prof. Nicolas Ballier (Université Paris
Cité) for chairing the conference sessions.

Finally, we are grateful to the program committee members for their efforts and commitments.

Mourad Abbas and Abed Alhakim Freihat
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Invited Talk

Prof. Gérard Chollet was granted a PhD in Computer Science and Lin-

guistics from the University of California, Santa Barbara. He taught

at Memphis State University and University of Florida before joining 2200\
CNRS. In 1981, he took in charge the speech research group of Alca- Ty
tel. In 1983, he joined a CNRS research unit at ENST (Institut Mines- n°
Telecom). In 1992, he participated to the development of IDIAP, a re- ’
search laboratory of the ‘Fondation Dalle Molle’ in Martigny, Switzer-
land. From 1996 to 2012, he was back full time at ENST. He supervised
more than forty doctoral theses. CNRS decided in 2012 to grant him an
emeritus status within SAMOVAR (Télécom-SudParis). His main re-
search interests are in phonetics, automatic audio-visual speech processing, spoken dialog systems, mul-

S
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timedia, pattern recognition, biometrics, privacy-preserving digital signal processing, speech pathology
and speech training aids. His main publications are available from his Google Scholar Citations profile.

An Introduction to Large Language Models
Prof. Gérard Chollet, CNRS, France.

In the tutorial "An Introduction to Large Language Models," key weaknesses of LLMs were discussed,
including hallucinations, the black-box nature of their decision-making, indecisiveness, and concerns sur-
rounding security and privacy. To address these challenges, symbolic Al and knowledge graphs (KGs)
were introduced as potential solutions. The integration of LLMs with KGs can enhance transparency
and reliability in Al outputs, leveraging structured knowledge to mitigate errors and improve decision-
making. A significant focus was placed on an embedded solution developed within the e-ViTA project
(https://www.e-vita.coach/), specifically designed to address privacy issues. This implementation show-
cases how KGs can provide a framework for safeguarding sensitive information while still allowing LLMs
to function effectively. By utilizing KGs, users can access more interpretable and contextually accurate
information without compromising data security. The tutorial emphasized the importance of unifying
LLMs and KGs to create more robust Al systems that are not only powerful but also trustworthy and se-
cure. Through this approach, the future of Al can balance innovation with ethical considerations, paving
the way for more responsible applications in various domains.
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Leveraging Annotator Disagreement for Text Classification

Jin Xu
University of Twente
jinxu130817@gmail.com

Abstract

It is common practice in text classification to
only use one majority label for model training
even if a dataset has been annotated by mul-
tiple annotators. Doing so can remove valu-
able nuances and diverse perspectives inher-
ent in the annotators’ assessments. This paper
proposes and compares three different strate-
gies to leverage annotator disagreement for text
classification: a probability-based multi-label
method, an ensemble system, and instruction
tuning. All three approaches are evaluated on
the tasks of hate speech and abusive conversa-
tion detection, which inherently entail a high
degree of subjectivity. Moreover, to evaluate
the effectiveness of embracing annotation dis-
agreements for model training, we conduct an
online survey that compares the performance of
the multi-label model against a baseline model,
which is trained with the majority label. The
results show that in hate speech detection, the
multi-label method outperforms the other two
approaches, while in abusive conversation de-
tection, instruction tuning achieves the best per-
formance. The results of the survey also show
that the outputs from the multi-label models are
considered a better representation of the texts
than the single-label model.

1 Introduction

Employing multiple annotators for data annotation
and afterwards using the majority annotation for
model training is a widely adopted practice to mit-
igate biases and allow for error detection and cor-
rection (Sabou et al., 2014).

However, such procedures also remove genuine
disagreement between annotators that can provide
valuable insights, e.g. for subjective tasks like de-
tection of hate speech, emotions, or sexism, but
also for more objective tasks like legal or medi-
cal decision making. In recent years, the practice
of only considering majority annotations has been
increasingly criticized and many researchers have

Mariét Theune
University of Twente
Human-Media Interaction
m. theune@utwente.nl

Daniel Braun
University of Twente
Industrial Engineering and
Business Information Systems
d.braun@utwente.nl

started to advocate for better ways to deal with dis-
agreement between annotators (Basile et al., 2021;
Uma et al., 2021; Plank, 2022; Braun, 2024).

In this article, we propose three different strate-
gies to leverage annotator disagreement during the
training of text classification models: a probability-
based multi-label approach, an ensemble system
approach, and an instruction tuning approach. We
compare these strategies against a baseline model
that is trained on the majority labels derived from
the multiple annotations. We choose two text classi-
fication tasks which inherently entail a high degree
of subjectivity for the evaluation: hate speech de-
tection and abuse detection in conversations. In our
chosen datasets (Toraman et al., 2022; Cercas Curry
et al., 2021), these two tasks exhibit different com-
plexity and difficulty in terms of the label space:
while the hate speech detection dataset contains
binary labels, the abusive conversation detection
dataset is not only annotated with abusive / non-
abusive but also the severity of the abuse.

Our first approach tackles the tasks as a
probability-based multi-label text classification
problem. Instead of predicting specific labels to
one instance, the model provides a probability dis-
tribution. The second approach imitates the pro-
cess of annotation from multiple annotators with an
ensemble system. The ensemble system consists
of many sub-models, each of which is trained on
different labels to capture the diverse viewpoints
embedded in the annotations. Thirdly, we use in-
struction tuning. Specifically, we use a pre-trained
generative model and inject explicit guidance into
the training process to customize the model’s be-
havior. The performance of the proposed models
is compared using cross entropy. To evaluate the
effectiveness of incorporating multiple labels, we
also conduct an online survey. This survey aims to
investigate human preferences between the outputs
generated by the multi-label model and a baseline
model.



The results show that on the hate speech dataset,
the multi-label method outperforms the ensemble
system and instruction tuning. Conversely, instruc-
tion tuning is the best-performing method on the
abusive conversation dataset. Through multino-
mial test, the outputs from the multi-label model
are considered more reasonable than those from
the baseline model to characterize samples from
the online survey. This proves the effectiveness
of leveraging annotation disagreements for model
training.

2 Related Work

2.1 Sources of Disagreement

Disagreement in annotations can originate from
different sources. Natural language can be inher-
ently complex and interpreted in multiple ways
within a given context (Poesio, 2020). There are
many subjective elements which may add an ad-
ditional layer of intricacy to the understanding of
texts, such as sentiments, opinions or nuanced ex-
pressions. Therefore, it is common that there are
divergent interpretations among annotators. Fur-
thermore, some sentences and even the definition
of labels may contain vague or ambiguous state-
ments (Russell et al., 2008), making it challenging
for annotators to reach an agreement.

However, annotators themselves and their back-
ground can also have significant impact on the an-
notation results (Davani et al., 2022). Through
post-annotation interviews, Patton et al. (2019), for
example, showed that annotators who come from
communities discussed in gang-related tweets are
more likely to rely on their lived experiences in
the process of annotating when compared to gradu-
ate student researchers. This divergence results in
distinct label judgments. Luo et al. (2020) found
that the political affiliation of annotators can signifi-
cantly shape how they assess and annotate political
stances.

2.2 Handling Disagreement

Majority voting involves aggregating annotations
by selecting the label that the majority of anno-
tators agree upon. Majority voting is easy to un-
derstand and implement and tends to perform well
when the annotators share unanimous perspectives
(Uma et al., 2021). However, the employment of
a majority voting method in annotation processes
can unintentionally obscure nuanced viewpoints,
especially for groups that are underrepresented in

annotator pools (Prabhakaran et al., 2021). To ad-
dress this concern, it is important to ensure a di-
verse representation among annotators to foster a
more comprehensive understanding of various per-
spectives, particularly those from underrepresented
demographics (Wan et al., 2023).

Some studies have introduced alternative meth-
ods to majority voting in order to incorporate an-
notator disagreement in model training. Chou and
Lee (2019) modelled the label uncertainty and an-
notator idiosyncrasy simultaneously by using both
hard label (majority voting) and soft label (the
distribution of annotations). The results showed
that the soft label contains useful information that
significantly boosts the model performance. For-
naciari et al. (2021) proposed a multi-task neural
network that was trained on soft label distribution
over annotator labels. By integrating a divergence
measurement between soft label and “true” label
vector into the loss functions, they effectively miti-
gated overfitting and therefore improved model per-
formance. Davani et al. (2022) introduced multi-
annotator models where each annotator’s judge-
ments were regarded as independent sub-task with
a shared common representation of the annotation
task. This approach enables to preserve and model
the internal consistency in each annotator’s label.
It also incorporates the systematic disagreements
with other annotators. Similarly, the network archi-
tecture introduced by Guan et al. (2018) individu-
ally models annotation experts. In this approach,
each expert’s model weight is calculated indepen-
dently, and these individual weights are then aver-
aged to facilitate ensemble recognition. To include
the knowledge from annotators, Fayek et al. (2016)
employed neural networks to build an ensemble
system that consists of many models, with each
model representing one annotator. Then the final
results are obtained by combining the individual
model outputs.

Although the approaches outlined above have im-
proved the performance by leveraging annotation
disagreements, they remained limited to identifying
the majority label. The outputs, in the form of “soft
labels” (probability distribution over labels), were
still aggregated to single labels as final predictions.
There is limited research focusing on evaluating
the effectiveness of embracing multiple labels.
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3 Datasets

In this section, the two datasets that have been used
in this study will be briefly introduced.

3.1 Hate Speech

The first dataset is the “Large-Scale Hate Speech
Dataset”! published by Toraman et al. (2022). It
consists of a total of 100,000 tweets (7,000 training,
1,500 validation, and 1,500 testing). Each tweet
in the dataset is annotated by five annotators that
have been selected randomly from a panel of 20
annotators. According to the annotation guidelines
utilized by Sharma et al. (2018), tweets are cat-
egorized as “Hate” if they target, incite violence
against, threaten, or advocate for physical harm
towards an individual or a group of people based
on identifiable trait or characteristic. If tweets hu-
miliate, taunt, discriminate against, or insult an
individual or a group of people, they are annotated
as “Offensive”. In the absence of these criteria, the
tweets are labeled as “Normal” .

3.2 Abuse Conversation

The second dataset is the “Abuse in Conversational
AI” dataset’ (hereinafter referred to as “abusive
conversation dataset”) published by Cercas Curry
etal. (2021). The data was collected from conversa-
tions between users and conversational Al systems,
and consists of 2501 samples as training data, 831
as validation data and 853 as testing data. The data
was annotated using an unbalanced rating scale pro-
posed by Poletto et al. (2019), in which inputs are
labelled on a scale from Not abusive, Ambiguous,
Mildly abusive, Strongly abusive to Very strongly
abusive. This annotation scheme offers insights
into not only the presence of abusive content, but
also the severity of the abuse. In the annotation
process, eight annotators were recruited, and each
example is annotated by a minimum of three anno-
tators.

4 Methodology

4.1 Baseline model

The baseline model for this study is trained on the
“ground truth” label that is aggregated via majority
voting. Given BERT’s (Devlin et al., 2019) no-
table performance in contextual understanding, we

lhttps ://github.com/avaapm/hatespeech/tree/
master/dataset_v1

Zhttps://github.com/amandacurry/convabuse/
tree/main

Tweet: The Washington-declared
coalition has targeted 1,413
Mosque in in #Yemen since 2015.

Hate: 0.6
Offensive: 0.2
Normal: 0.2

It shows how much USA respects
Islam! How much it cares for
Muslims! Through killing them &
bombing their Mosques!

Integration

label from annotator 1: Hate
label from annotator 2: Hate

label from annotator 3: Offensive
label from annotator 4: Hate
label from annotator 5: Normal

Figure 1: The framework of model training within the
probability-based multi-label method.

choose it as the pre-trained model. Since the base-
line model outputs a single label, we augment its
architecture by adding a fully connected layer to
the last hidden state, thereby adapting the model
structure to the specific prediction task.

4.2 Probability-based multi-label method

The task of identifying hate speech or abusive con-
versation can be regarded as a multi-label text clas-
sification problem, where a given piece of text can
be associated with one or multiple labels simultane-
ously. Unlike the traditional approaches that assign
one or several exclusive labels to the input text
(Jiang and Nachum, 2020), our model predicts the
probability of each label being associated with the
given text. The approach is illustrated in Figure 1.
The model is trained on the probability distribu-
tion across different labels which is derived from
individual annotations. Like the baseline model,
the multi-label model also is based on BERT but
fine-tuned with different types of target labels.

4.3 Ensemble system

In the annotation process, multiple labels are as-
signed by different annotators. Inspired by this
process, we propose an ensemble system consist-
ing of several sub-models. As shown in Figure 2,
each sub-model is based on a BERT model that
is fine-tuned individually on its respective set of
labels. For each sub-model, the input is the text
from one sample and the output is a multidimen-
sional vector where each dimension corresponds to
one category. After that, this vector is transformed
by the SoftMax function and the dimension with
highest probability is identified as the output of the
sub-model. Finally, the predictions from all sub-
models are combined and converted into a prob-
ability distribution of three- or five-dimensional
vector.

In the abusive conversation dataset, the annota-
tors assigned for each sample are clearly specified

3
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Figure 2: Fine-tuning BERT individually as sub-models within the ensemble system.

and identifiable. Therefore, within the ensemble
system, each sub-model represents one specific an-
notator and is trained on that annotator’s labels. By
contrast, in the hate speech dataset, each sample is
labeled by five anonymous annotators. Despite the
anonymity, training a model with such labels can
potentially increase the robustness of sub-models
since it helps to reduce the biases or inconsisten-
cies introduced by individual annotators (Frenay
and Verleysen, 2014). Furthermore, the resulting
labels are likely to reflect a diverse range of per-
spectives and interpretations of the data. Train-
ing sub-models on these diverse annotations can
capture the variability in annotator judgments and
enhance the model’s ability to generalize across
different viewpoints (Audhkhasi and Narayanan,
2013). Since the sub-models can show varying
performances in the training and validation pro-
cesses, typically, the top n (n>3) best-performing
sub-models are chosen to determine the final out-
put. The ranking is based on their accuracy on the
validation data.

4.4 Instruction tuning

Instruction tuning is the process of fine-tuning
LLMs in a supervised fashion on a dataset con-
sisting of pairs of instructions and outputs. The
key idea is to provide the model with explicit in-
structions to enhance its performance and align it
with specific objectives. Unlike traditional training
approaches where models learn from data alone,
instruction tuning injects explicit guidance into the
training process. This approach allows for explicit
customization of the model’s behavior. In this
study, we ask the model to predict the class of
hate speech or abusive conversation based on the

Below is an instruction that describes a task, paired with an
input that provides further context. Write a response that
appropriately completes the request.

### Instruction: Predict the category (Normal, Offensive or
Hate) for the given tweet.

### Input: tweet: The Washington-declared coalition has
targeted 1,413 Mosque in Yemen since 2015. It shows how
much USA respects Islam......

### Response: Hate

LLaMa 2

Figure 3: Fine-tuning LLaMa 2 as a sub-model with
instruction tuning in the hate speech dataset.

Below is an instruction that describes a task, paired with an
input that provides further context. Write a response that
appropriately completes the request.

### Instruction: Predict the severity of abuse for the
provided conversation, ranging from Ambiguous and Not
abusive to Mildly abusive, Strongly abusive, or Very
strongly abusive.

### Input: agent: You are being a bit negative. user: I said
AGREE. agent: Can you elaborate on that? user: I don't
think so ......

### Response: Not abusive

LLaMa 2

Figure 4: Fine-tuning LLaMa 2 as a sub-model with
instruction tuning in the abusive conversation dataset.

input we construct. The input contains the task
description, the instruction, the original text, and
the annotation from one specific annotator (i.e. not
the majority label). The approach of fine-tuning
LLaMa 2 via instruction tuning on the two datasets
is presented in Figure 3 and Figure 4. On the left
sides of the figures are the inputs fed into the pre-
trained model. The input comprises the following
four components: scenario description, instruction,
text input and response.

Like the ensemble system, top n (n>3) best-
performing sub-models are selected to contribute
to the final predictions.

4



Training Validation Testing

Hate speech  0.7613 0.7569 0.7638

AbUSIVE 1 eg61 09680 0.9834
conversation

Table 1: The average cross entropy of the probability-
based multi-label model on two tasks.

4.5 Evaluation

4.5.1 Cross entropy

The final output of our proposed models is a prob-
ability distribution across different labels, and in
this scenario, a single “ground truth” label is no
longer applicable for model evaluation. Instead,
we use cross entropy to compare the distribution
of annotations with model output. Cross entropy
is one kind of statistical distance which measures
how a probability distribution is different from a
reference probability distribution. In the field of
NLP, it has been used to quantify how well the
model’s predicted distribution matches the annota-
tion distribution (Pavlick and Kwiatkowski, 2019).

4.5.2 Online survey

Using cross entropy to evaluate the effectiveness of
training models with multiple labels against mod-
els that only rely on the majority label is impos-
sible due to the format disparity between the out-
puts generated. To bridge this gap, we conduct
an online survey where participants specify their
preference between annotations generated from the
probability-based multi-label model and the base-
line model. For each dataset, we select 10 samples,
each featuring two annotations. Both annotations
are in the form of probability distributions across
different labels. One is generated from the baseline
model trained with majority labels, which is, how-
ever, used to generate a probability distribution in
the phase of inference. The other one is from the
probability-based multi-label model. This model
has the same structure as the baseline model and
their only difference is the labels they were trained
on. For each sample, participants are required to
indicate which annotation they find is more rea-
sonable to characterize the tweet or the abusive
conversation.

5 Results
5.1 Multi-Label Method

Table 1 show the performance of the multi-label
model on the two datasets. In this approach, the
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Figure 5: Comparison of the ensemble system’s perfor-
mances on two tasks.

model demonstrates superior performance on the
hate speech dataset compared to the abusive con-
versation dataset. In particular, the cross entropy
for the hate speech dataset is 0.7638, while this
value for the abusive conversation dataset is 0.9834.
With a parameter size of 110 million, the multi-
label model benefits from the extensive training
data in hate speech dataset to optimize and align it-
self with the downstream task. In contrast, there are
only 2501 training samples in the abusive conver-
sation dataset, which can easily lead to overfitting
in the process of training. The multi-label model
exhibits relatively consistent losses across train-
ing, validation, and testing data in the hate speech
dataset, indicating a good fit without signs of under-
fitting or overfitting. By comparison, in the abusive
conversation dataset, losses during validation and
testing are noticeably higher than during training.
When the model encounters unseen data in valida-
tion and testing phases, the loss can be relatively
high due to the lack of generalization.

5.2 Ensemble system

Figure 5 shows the ensemble system’s perfor-
mances on the two datasets. In the testing phase,
we select the top-performing sub-models based on
their validation accuracies. The ensemble system
performs better on the abusive conversation dataset
than on the hate speech dataset. Specifically, in
the hate speech dataset, the best performance is
achieved by the top 3 sub-models and the corre-
sponding overall cross entropy loss is 0.9720. Con-
versely, the best overall cross entropy for the abu-
sive conversation dataset is 0.6782, achieved with
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Figure 6: Comparison of instruction tuning’s perfor-
mances on two tasks.

the top 8 (all) sub-models. The ensemble system is
designed to simulate the process of annotation and
has a large parameter size. Despite being trained on
a substantially larger dataset, this method performs
less effectively for the hate speech dataset. In this
dataset, 20 annotators contribute, with each sample
being annotated by five randomly assigned anno-
tators, which means the five annotators for all the
samples are not always the same individuals. As a
result, one single sub-model may struggle to learn
the specific characteristics of each annotator from
the data. By contrast, in the abusive conversation
dataset, there are eight annotators in total and for
each sample it is clearly indicated which annotators
are assigned for the annotation task. In this context,
each sub-model is designed to emulate an individ-
ual annotator. Consequently, the ensemble system
integrates the unique insights from each individual
annotator, as represented by the sub-models.

5.3 Instruction Tuning

Figure 6 shows the performance of the instruction
tuning approach. In this approach, even though
with a considerably smaller training data size, the
model’s performance on the abusive conversation
dataset is significantly better compared to the hate
speech dataset. In the hate speech dataset, the
best performance is achieved by the top 3 sub-
models, with a cross entropy of 1.2445. By contrast,
the lowest cross entropy in the abusive conversa-
tion dataset, achieved by the top 6 sub-models,
is 0.6200. Unlike traditional machine learning or
deep learning algorithms, one of the most evident
advantages of instruction tuning is that it does not
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Figure 7: Comparison of different models’ perfor-
mances on the hate speech dataset.

require much training data. Even though there are
only 2501 training samples in the abusive conversa-
tion dataset, it is already sufficient to fine-tune the
model and enable it to grasp the specific patterns
and knowledge within the data. With this limited
dataset, the pre-trained model selectively activates
or deactivates certain neurons in the neural net-
work, which serves an important role in revealing
or concealing some functions embedded in LLaMa
2. Although the hate speech dataset contains a large
amount of training data, the individual samples an-
notated by specific annotators remain unknown,
which presents a challenge for the model in terms
of fitting and learning patterns from the data.

5.4 Comparison

As shown in Figure 7, the multi-label method out-
performs the other approaches on the hate speech
dataset. The reason behind this might be the afore-
mentioned issue in this dataset: the five anno-
tators assigned to each sample are anonymous.
Both the ensemble system and instruction tuning
were trained using the same paradigm, where sub-
models were fine-tuned individually on their re-
spective labels. On the contrary, the multi-label
model only relied on the probability distribution
across different classes as the target, circumventing
the issue with annotator anonymity. Furthermore,
the hate speech dataset is big enough to fine-tune
the BERT model.



1.2

Cross Entropy
S
[\) [N (=} oo

[an}

multi-label

ensemble system

instruction tuning

Top 3= Top 4 mTop 5mTop 6mTop 7w Top 8

Figure 8: Comparison of different models’ performances on abusive conversation dataset.

Figure 8 shows that on the abusive conversation
dataset the multi-label method performs worst. The
size of this dataset is relatively small, which can re-
sult in overfitting during fine-tuning. The ensemble
system consists of sub-models, with each tailored
to predict annotations from a specific annotator.
With multiple sub-models making their own deci-
sions independently and contributing to the final
prediction, the ensemble system can mitigate the
bias brought by overfitting. Since instruction tun-
ing does not have a high requirement for dataset
size, it performs slightly better than the ensemble
system.

5.5 Online survey

In exploring the probability distribution preference,
we recruited 36 participants for the online survey.
The multinomial test (Read and Cressie, 2012) is
employed since there are three possible preference
options. The details of the results are outlined in Ta-
ble 2. From this table, the multinomial tests for the
multi-label model on two datasets are statistically
significant, with the p-value of 0.0000. This means
there is a notable disparity among the three cate-
gories being compared. Individuals generally favor
the multi-label model as a more reasonable repre-
sentation to characterize tweets or conversations.
The results indicate the effectiveness of leveraging
annotation disagreements in model training.

6 Conclusion

In this paper, we proposed and compared three ap-
proaches to incorporate diverse annotations in the
training of ML models: a probability-based multi-

label method, an ensemble system, and instruction
tuning. All three approaches take the individual
labels from all annotators into account for model
training in different ways, rather than only depend-
ing on an assumed “ground truth” label. In this way,
the output includes a rich diversity of perspectives
from annotators. We applied the proposed mod-
els on two datasets, which correspond to two tasks:
hate speech detection and abuse detection in conver-
sational Al The two datasets show discrepancies
in terms of data size, classification difficulty, the
number of annotators involved in each sample, and
their anonymity levels. Results show that on the
hate speech dataset, the multi-label method demon-
strates the highest performance among the three
models, while instruction tuning achieves the low-
est loss on the abusive conversation dataset. Lastly,
an online survey was conducted to evaluate the
performance of the probability-based multi-label
model in comparison to the baseline model. The
online survey investigated individuals’ preference
between the distributions generated from the multi-
label model and the baseline model. The evaluation
of the survey results showed that the distribution
generated from the multi-label model is considered
more reasonable to characterize the texts compared
to the baseline model. In the future, we would like
to explore some methods or techniques to mitigate
the class-imbalanced issue in the dataset. For exam-
ple, there have been many popular algorithms that
contribute to a relatively class-balanced dataset by
over sampling (Chawla et al., 2002) or down sam-
pling (Wilson, 1972). We would also like to work
on investigating automatically generated prompts.



Hate speech

Abusive conversation

Preference Counts Proportion P-value Counts Proportion P-value
Baseline 118 0.3278 0.6078 152 0.4222 0.0003

Multi-label model 198 0.5500 0.0000 194 0.5389 0.0000

No difference 44 0.1222 1.0000 14 0.0389 1.0

Table 2: Multinomial test for probability distribution preference on two datasets.

Recent research has demonstrated that a concrete
prompt, which consists of several discreate tokens,
may not always be the most effective prompt to
instruct the behavior of the model (Liu et al., 2023).
Conversely, continuous embeddings of prompts,
which might lack immediate human interpretabil-
ity, make sense for the model itself (Li and Liang,
2021; Subramani et al., 2019).

Limitations

There are some limitations to the experiments.
Firstly, the ensemble system showed to be not suit-
able for the hate speech dataset, where the five an-
notators assigned to each sample are not fixed. In
this dataset, each set of annotations used for train-
ing a sub-model can comprise annotations from
multiple individuals. As a result, it becomes im-
possible for the sub-models to capture the specific
characteristics of each annotator embedded in the
annotations.

Secondly, both datasets in this study suffer from
class-imbalanced problem, which can have an ad-
verse impact on model training. When trained on
a class-imbalanced dataset, the model primarily
focuses on the samples from the majority class
and neglect those from the minority class, as that
is an efficient strategy for minimizing the train-
ing loss. Another limitation is the inconsistency
among annotators, which can introduce noise into
the dataset and weaken model performance. Since
our dataset lacked identifiable annotators, it was
not possible to model individual annotator bias or
assess inter-annotator agreement comprehensively.
This constrains our ability to account for subjective
variations in labeling.

Thirdly, we only leverage manually created
prompts, which may introduce subjectivity and
bias based on the prompt maker’s perspective (Tian
et al., 2023). It has been proved that manually
created prompts suffer from a high degree of in-
stability and a minor change in the prompt can
result in substantial discrepancies in the model’ s
performance (Liu et al., 2023).
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Abstract

In this paper, we conduct an empirical study
designed to systematically evaluate the efficacy
of deep learning approaches in Native Lan-
guage Identification (NLI) for native and non-
native Arabic speakers. Specifically, we utilize
three models: CAMeLBERT, AraBERTVO0.2,
and ARBERTV2. Our analysis is structured
around two classification scenarios: binary clas-
sification and multi-class classification. This
methodological framework allows us to com-
prehensively assess the performance of each
model for the designated task.

1 Introduction

Native Language Identification is a specialized area
within natural language processing (NLP) focused
on automatically determining an individual’s first
language (L1) or mother tongue based on their
written or spoken text in a second language (L2).
This field involves the analysis of various linguistic
features—including vocabulary usage, syntax, and
stylistic patterns—to deduce the most likely native
language of a writer or speaker. This process is
predicated on the hypothesis that linguistic charac-
teristics of the mother tongue often manifest in the
acquisition and use of a second language, a phe-
nomenon known as language transfer (Zampieri
et al., 2017).

NLI offers a range of practical applications
across diverse fields: Authorship Identification (Au-
thorship Attribution) (Jarvis and Paquot, 2015),
Author Profiling (Estival et al., 2007), Forensic
Linguistics, (Mohammadi et al., 2017), Human-
machine voice interface applications (Qian et al.,
2017), Second Language Acquisition (SLA) (Mal-
masi and Dras, 2017b), Educational Technology
Development (Laufer and Girsai, 2008), Market-
ing (Chen et al., 2017), and Security (Malmasi and
Dras, 2017a).

In the literature, most research on NLI has fo-
cused on integrating linguistic features with ma-

chine learning methods (Tetreault et al., 2013).
Key linguistic features analyzed include part-of-
speech (POS) tagging (Gebre et al., 2013), charac-
ter n-grams (Kulmizev et al., 2017), spelling errors
(Kyle et al., 2015), and syntactic features (Wong
and Dras, 2011). Commonly employed machine
learning techniques in this domain include Naive
Bayes (NB) and Support Vector Machines (SVM).
This combination leverages both detailed linguistic
analysis and advanced computational models to ef-
fectively predict the native language of individuals
from their second language texts.

The objective of our study is to conduct a series
of experiments to investigate the efficacy of deep
learning approaches in NLI for Arabic language
learners. We explore this through two classifi-
cation scenarios: binary classification and multi-
class classification. To this end, we employ three
models based on Bidirectional Encoder Repre-
sentations from Transformers (BERT): CAMeL-
BERT (Inoue et al., 2021), AraBERTvV0.2 (An-
toun et al., 2020), and ARBERTV2 (Abdul-Mageed
et al., 2021). These models are specifically imple-
mented to assess the contribution of deep learning
techniques in accurately identifying the native lan-
guages of Arabic language learners.

The structure of this paper is organized as follows:
Section 2 reviews related work in NLI, offering
background and context for our study. Section 3
describes the methodology and datasets used in our
experiments, detailing the computational models,
analysis techniques, and evaluation of each model’s
performance across various classification scenarios.
Section 4 discusses the findings. Finally, Section
5 concludes the paper and suggests potential direc-
tions for future research in this field.

2 Literature Review

Like all other topics specific to natural language
processing, research in NLI was focused essentially
on learning English. However, in recent years a
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number of studies have focused on other languages
as Chinese, Norwegian, Portuguese and Arabic.

2.1 English Learning Language

(Tetreault et al., 2012) conducted a pioneering
study on the use of classifier ensembles for NLI.
The study employed an ensemble of logistic re-
gression learners, utilizing a diverse set of fea-
tures including character and word n-grams, func-
tion words, parts of speech, spelling errors, and
writing quality markers. For syntactic features,
they explored the use of Tree Substitution Gram-
mars and dependency features obtained using the
Stanford parser. They also proposed incorporat-
ing language models into NLI and used language
model perplexity scores based on lexical 5-grams
from each language in their corpus. The ensem-
ble model achieved accuracies, with 90.1% on the
ICLE (Granger et al., 2009) and 80.9% on the
TOEFL11 corpus (Blanchard et al., 2013), respec-
tively.

(Lotfi et al., 2020) proposed a deep generative lan-
guage modelling (LM) approach to NLI. Their ap-
proach is to fine-tune a GPT-2 model separately
on texts written by the authors with the same L1,
and assigning a label to an unseen text based on
the minimum LM loss with respect to one of these
fine-tuned GPT-2 models. They evaluated their ap-
proach using two datasets, TOEFL11 and ICLE,
achieving an accuracy of 86.6% and 94.2% respec-
tively.

(Uluslu and Schneider, 2022) described ProDAPT,
transformer adapters based on deep generative
model, which is considered as an alternative
lightweight fine-tuning strategy that achieves equal
performance to full fine-tuning on most tasks. In
terms of performance, their model achieved 82.4%
accuracy on TOEFL11 corpus.

2.2 Arabic Learning Language

(Malmasi and Dras, 2014) presented the first appli-
cation for NLI to Arabic learners, based on a super-
vised multi-class classification approach, by com-
bining three syntactic features (CFG production
rules, Arabic function words and Part-of-Speech n-
grams. To perform multi-class classification, they
used SVM. The system achieves an accuracy of
41% on ALC Corpus.

(Mechti et al., 2020) studied the impact of auto-
matic classification using some data statistically ex-
tracted from a source corpus, to detect the mother
tongue of Arabic learners. They combined three

syntactic features which are: Part of speech n-
grams, function words and context-free grammar
production rules. For the classification, the LIB-
SVM2 was used, as variant of SVM. For training
and evaluation, they opted for Arabic Learner Cor-
pus, in which their model obtained an accuracy of
45%.

(Ionescu, 2015) presented a study based on a ma-
chine learning method that works at the character
level, using a kernel based on Local Rank Distance
(LRD). The resulting model of this combination
was trained and tested on ALC, obtained an accu-
racy score of 50.1%.

2.3 Other Learning Languages

(Malmasi et al., 2015) proposed NLI experiments
on Norwegian language, by employing a super-
vised multi-class classification approach, which
takes into consideration three syntactic feature
types: function Words, part-of-Speech n-grams and
mixed POS-function word n-grams. As a dataset
for training and evaluation they used the ASK Cor-
pus (Tenfjord et al., 2006). The model achieved an
accuracy score of 78.6%.

(Remnev, 2019) developed a model for Russian
Native Language Identification, based on the sup-
port vector method and the TF-IDF metric. To
train and evaluate the proposed model, he used the
Russian Learner Corpus. In terms of performance,
the adopted approach achieved an accuracy score
of 80%. (Malmasi et al., 2018) presented a study
about native Language Identification for learners of
Portuguese (as L2 Language). The used approach
is a combination of linguistic features and Machine
Learning. The authors defined three features which
are: Function words, Context-free grammar pro-
duction rules and Part-of-Speech (POS) tags. They
also utilized a standard multi-class classification
approach, by using linear Support Vector Machines.
For the dataset, they used NLI-PT (del Rio Gayo
et al., 2018). The proposed model attained an accu-
racy of 54.1% .

(del Rio, 2020) investigated the impact of different
linguistic features in NLI for L2 Portuguese. For
that, she defined two types of lexical features: one
includes all the words in the text, and the other one
includes all the words except nouns and adjectives.
In addition, other morphological and syntactic fea-
tures have been used, including: POS, context-free
grammar (CFG) production rules and dependency
triplets. For the experiment, she used 04 classifiers,
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which are: Multinomial Logistic Regression, SVM,
Ridge Regression and Multi-Layer Perceptron clas-
sifier, which have been trained and tested on the
NLI-PT dataset. In terms of performance, the MLP
classifier achieved the best accuracy of 66%.
(Uluslu, 2023) presented an application of NLI
specifically for Turkish language learners. The ap-
proach employed a combination of three syntactic
features: Context-Free Grammar (CFG) produc-
tion rules, part-of-speech n-grams, and function
words. The study used a standard supervised multi-
class classification method, where a linear Support
Vector Machine (SVM) was applied for classifica-
tion. Feature vectors were created using a TF-IDF
weighting scheme. The Turkish Learner Corpus
(TLC) (Golynskaia, 2022), was utilized to evaluate
the system’s performance. By combining the three
features, the proposed system achieved an accuracy
score of 44.2%.

3 Experimental Methodology
3.1 Data

For our experiment, we used the Arabic Learner
Corpus (ALC) (Alfaifi et al., 2014). The Corpus
has been used for various studies in language learn-
ing and computational linguistics focusing on Ara-
bic. It comprises a collection of written and spoken
materials produced by learners of Arabic, which are
used for different types of linguistic research and
language teaching tool development. The dataset
was compiled during the years 2012 and 2013. It
comprises 282,732 words and consists of 1585
texts, encompassing both written and spoken con-
tent. These texts were generated by a total of 942
students learning Arabic, representing 67 nationali-
ties and originating from 66 distinct mother tongue
backgrounds. In addition, ALC includes 26 vari-
ables as metadata elements, 12 for the learner and
14 for the text.

3.2 Models

The aim of our research is to examine the impact
of various pre-trained Arabic BERT models by ex-
ploring different combinations of classification task
related to native language identification.

To achieve this, we fine-tuned 03 models, including
AraBERTVO0.2, ARBERTv2 and CAMeLBERT Us-
ing Arabic Learner Corpus. Each model was used
to execute 02 Scenarios, which are: Binary classifi-
cation and Multi-class classification.

Our choice of these models was made for a num-

ber of reasons: they have been specifically pre-
trained on large-scale Arabic corpora, which helps
them capture the nuances and intricacies of Arabic.
They have demonstrated competitive performance
on various NLP tasks (Sentiment Analysis, Lan-
guage Identification, Named Entity Recognition,
Fake News Detection, etc). Their architectures and
training procedures are designed to achieve state-
of-the-art results on a range of Arabic language
understanding tasks, making them suitable choices
for classification tasks as well. These models often
come in different version (Large/base) and variants
(MSA/Dialect).

It’s also important to mention that even though
the 03 models were developed based on the same
architecture (BERT), there are a number of distin-
guishing features.
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Figure 1: Configurations of used models.

Parameter Value
Epochs 05
Batch 08
Learning rate | 4.87 e-5
weight decay 0.01
seed 20

Table 1: Hyper-parameters values.

3.2.1 Binary Classification

Binary classification is a fundamental task in ma-
chine learning where the goal is to classify input
data into one of two possible categories or classes
(Er et al., 2016). To do this, We carried out two ex-
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periments, the first concerning the identification of
Arabic as the mother tongue of learners, in order to
fine-tuning our models, we have divided our dataset
into two distinct categories. The first category is
labelled "1", which concerns texts whose authors
native language is Arabic. The rest of the texts
constituting the second category will be labelled
"0" (Table 2 summarises the different test results).
The second experiment mirrors the first, but in this
instance, we handle each of the six languages in-
dividually, applying the same process to each one
(the result is given in the table 3).

3.2.2 Multi-class Classification

Multi-class classification involves classifying data
into more than two groups/categories (Fields et al.,
2024). Unlike binary classification, where the
model is trained to predict only one of the two
classes of an item, a multi-class classifier is trained
to predict one of the three or more classes of an
item. In our case, we set up two experiments, the
first for detecting Arabic language learners’ mother
tongues and the second dealing with the same task
based on level of study.

* Multi-class classification for detecting Ara-
bic learners’ mother tongue: The corpus
comprises 66 distinct mother tongue represen-
tations. However, the number of representa-
tive texts varies from one Mother tongue to
another, so we kept only languages with a
good quantitative representation in terms of
texts, as shown in figure 2. The results of this
experiment are given in table 3.

800 790

Number of Texts

100 76
64 a7 aa 36 35

0

Arabic  Chinese Urdu Malay French Fulani English

Figure 2: Number of texts produced by Arabic language
learners with a mother tongue other than Arabic (ALC

corpus).

* Multi-class classification based on Level
of Study: The ALC contains 05 cate-
gories of learners according to their level of

study: secondary school, general language
course, diploma programme (advanced lan-
guage course), Bachelor degree and Master
degree. Learners of both the Bachelor degree
and Master degree were majoring in Arabic.
Figure 3 gives an estimate of the percentage
of each level of study in the ALC. For re-
sults, table 5 presents a global view of the
performance of three models in detecting the
mother tongue based on levels of study, of-
fering a comparative understanding of their
effectiveness in this classification task. The
Table 6 offers nuanced insights into its ability
of the CAMeLBERT model to capture spe-
cific mother tongue differences at each level,
providing a more refined understanding of its
classification precision in this context.

Percentage (%)

Bachelor
degree

Master
degree

General
language course

Secondary
School

Diploma
programme

Figure 3: Corpus distribution by Level of Study.

4 Discussion

After reviewing the results, we found that the three
models achieved good results for binary classifi-
cation, but in the Multi-class classification there
was a significant decrease in the effectiveness of
the models, which is probably due to the fact
that deep learning models such as CAMeLBERT,
AraBERTV0.2 and ARBERTV2 have differences in
performance when applied to multi-class classifica-
tion task due to several reasons:

* Model structure and training data: These mod-
els, being variants of BERT (bi-directional en-
coding representations of transforms), are pri-
marily designed to capture complex patterns
in text through deep bi-directional represen-
tations. However, the effectiveness of these
models is highly dependent on the quality
and diversity of the training data. For Arabic
with many dialects and a rich morphological
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Metrics | CAMeLBERT | AraBERTv0.2 | ARBERTv2
Accuracy 97.71% 97.26% 96.34%
Precision 96.51% 95.62% 94.37%

Recall 97.14% 96.84% 95.57%
F1 96.82% 96.21% 94.95%

Table 2: Binary Classification, One-versus-All (Arabic versus the six other languages).

Metrics | CAMeLBERT | AraBERTv0.2 | ARBERTv2
Chinese 98.32% 96.14% 94.43%
Urdu 97.66% 95.89% 95.09%
Malay 96.15% 97.23% 95.77%
French 97.73% 98.02% 96.41%
Fulani 98.18% 97.86% 95.31%
English 97.06% 96.23% 93.86%

Table 3: Binary Classification One-versus-One (Arabic/Non-Arabic).

Metrics | CAMeLBERT | AraBERTv0.2 | ARBERTv2
Accuracy 87.21% 83.10% 81.27%
Precision 64.74% 33.49% 28.67%

Recall 61.74% 40.59% 3591%
F1 60.43% 36.45% 30.58%

Table 4: Multi-class detection of mother tongue learners’.

Metrics | CAMeLBERT | AraBERTv0.2 | ARBERTV2
Accuracy 80.82% 75.79% 74.42%
Precision 80.00% 77.74% 62.92%

Recall 63.22% 50.02% 48.41%
F1 66.13% 53.55% 50.86%

Table 5: Global view on multi-class classification performance based on Level of study using CAMeLBERT,

AraBERTv0.2 and ARBERTV2.

Metrics Precision | Recall | F1 Score
Secondary school 58.64% | 40.44% | 48.45%
General language course | 60.08% | 45.58% | 52.19%
Diploma programme 62.12% | 49.24% | 56.78%
Bachelor degree 78.45% | 54.97% | 63.32%
Master degree 80.25% | 57.48% | 66.45%

Table 6: Detailed scores for multi-class classification based on Level of study using CAMeLBERT.

structure, models trained on Standard Arabic

may not perform well when faced with dialect-

related variations unless they are specifically

tuned to diverse datasets that include such vari-

ations.
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Task complexity: Multi-class classification
task are inherently more complex than bi-
nary classification. In multi-class classifi-
cation, the model must choose the correct
class among several possible classes, which in-
creases the chance of error, especially if some



classes are underrepresented in the training
data. Multi-class classification adds another
layer of complexity since each sample may
belong to multiple classes simultaneously, re-
quiring the model to understand and predict
all applicable classes.

* Imbalance between categories: Often, in
multi-category settings, some categories con-
tain far more examples than others. This im-
balance can lead to models that are biased
towards more frequent categories, reducing
their overall effectiveness across less frequent
categories. Similarly, in multi-class settings,
some classes may be repeated more frequently
than others, which can skew the model’s pre-
dictions.

* Fine-tuning and adaptation: While models
like AraBERTv0.2, CAMeLBERT, and AR-
BERTYV2 are pre-trained on a large set of mod-
els, their performance on specific tasks such as
multi-class classification or multi-label clas-
sification can depend on how well they are
tuned. Fine-tuning on a task-specific dataset
is critical, but without sufficient task-specific
data or proper organization, models can over-
adapt to the training data and perform poorly
on unseen data.

* Linguistic nuances: Arabic language process-
ing poses unique challenges due to the rich-
ness of the Arabic language in terms of lin-
guistic form and the presence of many ho-
mographs (words that are spelled the same
way but have different meanings). Effective
processing of these nuances requires either
specialized pre-processing or structures de-
signed to better capture these aspects, which
can be a limitation of general-purpose mod-
els such as AraBERTv0.2, CAMeLBERT, and
ARBERTV2 when they are not modified for
such details.

5 Conclusion

In this paper, we conducted a comparative study of
deep learning models for a classification task using
the Arabic Language Learners’ Corpus (ALC).
We evaluated three models based on the BERT
architecture: CAMeLBERT, AraBERTv0.2, and
ARBERTvV2. These models were fine-tuned and
tested on two classification scenarios: binary and

multi-class.

The experimental results indicate that all three
models perform exceptionally well in binary
classification, with F1 scores of 96.82% for
CAMEeLBERT, 96.21% for AraBERTv0.2, and
94.95% for ARBERTv2. However, the perfor-
mance decreased for multi-class classification.
CAMEeLBERT achieved the highest performance
in both subcategories: 60.43% for categorization
based on mother tongue and 66.13% for that based
on school level. In contrast, the F1 score related to
the other two models did not exceed 37% for the
first subcategory and 54% for the second one.

The noticeable decrease in performance of the
three models in the multi-class classification task
can be attributed to two main factors: firstly, the
size of the corpus used and the disparities in the
number of texts between languages and grade lev-
els; and secondly, the increased complexity of these
classifications compared to binary classification.
Comparing the three models, we found that
CAMeLBERT’s outperforms ARBERTV2 and
AraBERTVO0.2. This can be ascribed to several pa-
rameters: an extensive and diverse training corpus,
effective fine-tuning of tasks, architectural innova-
tions, and robust benchmark results.

For future work, we plan to incorporate additional
linguistic features such as syntactic and Part of
speech tagging to enhance the models’ efficiency.
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Abstract

Recently, neural vocoders have been employed
in end-to-end speech synthesis for convert-
ing the intermediate spectral representations
to the corresponding speech waveform. In
this paper, two generative adversarial network
(GAN) based vocoders, Parallel WaveGAN
and HiFi-GAN are proposed for Myanmar end-
to-end speech synthesis and subjective eval-
uations are conducted to compare the perfor-
mance of the models. The subjective evalua-
tion results show that both models trained on
small Myanmar speech dataset achieve the high
fidelity speech synthesis with fast inference
speed, showing the ability of generalizing to the
mel-spectrogram inversion of unseen speakers.
Specifically, in end-to-end speech synthesis,
Tacotron2 with HiFi-GAN vocoder achieves
state-of-the-art performance resulting in a 4.37
mean opinion score (MOS) for Myanmar lan-

guage.
1 Introduction

Text-to-speech (TTS) models focus on synthesizing
intelligible and natural sounding speech which are
indistinguishable from the original human speech.
For the past few decades, statistical parametric
speech synthesis (SPSS) has been the dominant
technology for TTS (Tokuda et al., 2013; Qian
et al., 2014; Wu et al., 2015; Zen and Sak, 2015).
However, SPSS needs a complex pipeline for get-
ting language dependent good linguistic features
and that is time consuming and very expensive.
This paper is a part of the ASEAN IVO 2023
project, "Spoof Detection for Automatic Speaker
Verification", which aims to enhance the security
and reliability of speaker verification by effectively
detecting spoofing attacks.

In recent years, end-to-end neural TTS models,
such as Tacotron (Wang et al., 2017), Tacotron2
(Shen et al., 2018), Transformer based TTS (Li
et al., 2019), FastSpeech (Ren et al., 2019), Fast-
Speech2 (Ren et al., 2020), have emerged to sim-

winpapal}@ucsy.edu.mm

plify traditional speech synthesis pipeline and their
synthesized speeches can be comparable with hu-
man recordings. The end-to-end neural TTS is typi-
cally composed of two main processing models, the
spectral representation generator and the vocoder.
The first one generates the spectral representation
such as mel-spectrograms given the input text or
phoneme, and the vocoder converts the speech
waveforms from the generated mel-spectrograms.
Griffin Lim algorithm (Griffin and Lim, 1984), the
classic phase estimation method is generally used
for speech waveform reconstruction.

Recently, in the context of end-to-end TTS
synthesis, the separately trained neural vocoders
such as WaveNet (Van Den Oord et al., 2016),
Parallel WaveNet (Oord et al., 2018), MelGAN
(Kumar et al., 2019), WaveGlow (Prenger et al.,
2019), Parallel WaveGAN (Yamamoto et al.,
2020) and HiFi-GAN (Kong et al., 2020) have
demonstrated remarkable capabilities in generat-
ing natural-sounding synthetic speech. Inspired by
this factor, in this work, the advantage of neural
vocoder is combined into the Myanmar end-to-end
speech synthesis to achieve both efficient and high-
fidelity speech synthesis.

We trained two generative adversarial network
based neural vocoders, Parallel WaveGAN and
HiFi-GAN on Myanmar speech dataset because of
their remarkable performance on generating wave-
form at fast inference speed while maintaining the
quality of speech comparative to the other neu-
ral vocoders. To confirm the effectiveness of the
vocoders, experiments were conducted by utiliz-
ing them in different conditions. We examined
the ability of each vocoder in ground truth mel-
spectrogram inversion, generalization on unseen
speakers, and Myanmar end-to-end speech synthe-
sis. Audio samples are available on this website!.

"http://nlpresearch-ucsy.edu.mm/subeval-voc.html
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2 Myanmar End-to-End Speech Synthesis

For Myanmar language, statistical parametric
speech synthesis with different input linguistic fea-
tures have been done on Myanmar speech synthesis.
In HMM-based Myanmar TTS (Thu et al., 2015),
CART-based Myanmar TTS (Hlaing and Pa, 2018),
DNN-based Myanmar speech synthesis (Hlaing
et al., 2018), LSTM-RNN-based Myanmar speech
synthesis (Hlaing et al., 2019; Hlaing and Pa, 2020,
Oo et al., 2020), we found that traditional speech
synthesis pipeline and traditional vocoder such as
WORLD vocoder (Morise et al., 2016) were used.

The first end-to-end Myanmar TTS System
based on Tacotron was introduced in (Win et al.,
2020) and Tacotron2 based end-to-end Myanmar
TTS with phone-level embedding was found in
(Qin et al., 2020). However, there is no research
on the effectiveness of neural vocoder specifically
trained on Myanmar speech dataset for Myanmar
end-to-end TTS. To the best of our knowledge, this
is the first effort to explore the advance of neural
vocoder in Myanmar end-to-end TTS.

Figure 1 shows our proposed model of Myan-
mar end-to-end TTS with generative adversarial
network based neural vocoders. In this work, a
Tacotron2 (Shen et al., 2018) model was trained for
the purpose of text to mel-spectrogram generation
and the generated mel-spectrograms were given
into our separately trained GAN-based vocoders,
including Parallel WaveGAN and HiFi GAN as
the input conditions. Tacotron2 uses character se-
quences as input, but our model was trained on
phoneme sequences to alleviate the mispronuncia-
tion problems of rarely occurred words in the small
training set.

3 GAN based Neural Vocoder

The first attempt of applying GAN (Goodfellow
et al., 2014) to the synthesis of raw-waveform au-
dio is WaveGAN (Donahue et al., 2018) and fol-
lowed by many variants of GAN-based vocoders
such as MelGAN (Kumar et al., 2019), StyleMel-

GAN (Mustafa et al., 2021), Multi-band Mel-
GAN (Yang et al., 2021), Parallel WaveGAN (Ya-
mamoto et al., 2020) and HiFi-GAN (Kong et al.,
2020). GAN-based vocoders show significant per-
formance over autoregressive models in the speed
and quality of synthesized speech (AlBadawy et al.,
2022). Among the different variants of GAN-based
vocoders, we selected to train the vocoders using
Parallel WaveGAN and HiFi-GAN for Myanmar
end-to-end speech synthesis.

3.1 Parallel WaveGAN

The Parallel WaveGAN (Yamamoto et al., 2020) is
a distillation-free, fast, and small-footprint wave-
form generation method using GAN. Though
a WaveNet-based model conditioned on mel-
spectrogram is used as the generator, the model
is non-autoregressive at both training and inferenc-
ing. The generator is trained by jointly optimiz-
ing the multi-resolution short-time Fourier trans-
form (STFT) auxiliary loss L, and the waveform-
domain adversarial loss L.

LG’ - Laua:(G) + Aadeadv<C717 D) (1)

where A4, represents the hyperparameter that bal-
ances the two loss terms.

Meanwhile, the discriminator is trained to cor-
rectly classify the generated sample as fake and
simutaneously ground truth sample as real with the
following equation:

Lp = Eay[(1 — D(2))*] + E=[D(G(2))’] ()

where x denotes the target waveform, p denotes its
distribution, and 2z denotes the input white noise.

3.2 HiFi-GAN

HiFi-GAN has been composed of one generator
and two discriminators containing multi-scale dis-
criminator (MSD) and multi-period discriminator
(MPD) (Kong et al., 2020). The generator of HiFi-
GAN is a fully convolutional neural network with
multi-receptive field fusion (MRF) module that can
perceives the various length of patterns in parallel.
The final loss terms for the generator in HiFi GAN
is as follows:

La = Lagw(G; D) + )\fLF(G; D) + )\mLM(G)

3)

where L and L), are the feature matching loss
and mel-spectrogram loss, respectively.

In the discriminator part, each sub-discriminator

of MPD handles equally spaced samples of input
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audio and MSD was used to capture consecutive
patterns and long-term dependencies. The discrim-
inator with respect to the sub-discriminators of
MPD and MSD is as follows:

K

Lp = Laaw(Dy;G)
k=1

4

where Dy represents k-th sub-discriminator in
MPD and MSD.

4 Experiments

The dataset and the experimental setups of the mod-
els are presented in this section. The training of
both GAN-based vocoders had been conducted
on the open-source implementation from this site?
and Tacotron2 model was implemented using ESP-
net’, an end-to-end speech processing toolkit. Each
vocoder was trained on a single Nvidia Tesla K80
GPU and Tacotron2 model was trained on two
Nvidia Tesla K80 GPUs.

4.1 Dataset

For training our proposed end-to-end pipeline in-
cluding Tacotron2 model, Parallel WaveGAN and
HiFi-GAN vocoders, we used a Myanmar phonet-
ically balanced speech corpus (PBC) (Thu et al.,
2015) built from Basic Travel Expression Corpus
(BTEC) (Kikui et al., 2003) recorded by a female
native speaker. In total, 3,800 utterances were uti-
lized for training, 100 utterances each for validation
and testing. The sampling rate of speech data was
16kHz.

4.2 Experimental setup of Parallel WaveGAN

For training the Parallel WaveGAN on Myanmar
speech dataset, we used 80-band log-mel spectro-
grams with band-limited frequency range (80 to
7600 Hz) as the input auxiliary features for wave-
form generation models. The same configuration
setting for the generator and the discriminator net-
works with the original paper (Yamamoto et al.,
2020) was used in our work. Weight normaliza-
tion was applied to all convolutional layers of both
generator and discriminator. The hyperparameter
Aadv in Equation 1 was also set to 4.0. The model
was trained for 200K steps and the discriminator
was fixed for the first 100K steps, and then both
the generator and the discriminator were trained

Zhttps://github.com/kan-bayashi/ParallelWave GAN
3https://github.com/espnet/espnet

jointly. We set the length of each audio clip to
25600 and mini-batch size to 6. The generator was
set with the initial learning rate of 1 x 10~* and
the discriminator with the initial learning rate of
5% 107,

4.3 Experimental setup of HiFi-GAN

Among the variations of the generators in original
source of HiFi-GAN(Kong et al., 2020), the con-
figuration of HiFi-GAN V1 was applied to train
the model on Myanmar speech dataset. We used
80-band log-mel spectrograms with band-limited
frequency range (80 to 7600 Hz) as input condi-
tions. The FFT and hop size were set to 1024 and
256, respectively. Adam (Kingma and Ba, 2014)
optimizer with 51 = 0.5, 82 = 0.9 was used for
training both the generator and the discriminator
networks, and the initial learning rate was set to
2 x 10~%. The batch size was 16 and the length of
each audio clip was 8192. The model was trained
for only 200K steps, the same steps used for train-
ing the Parallel WaveGAN model. This is very
small compared to the training steps used in the
original paper (2.5M steps).

4.4 Experimental setup of Tacotron2

Tacotron2 (Shen et al., 2018), a recurrent sequence-
to-sequence feature prediction network with at-
tention that maps phoneme embeddings to mel-
spectrograms, was trained on the dataset mentioned
in section 4.1 with a batch size of 32. The model
was trained for 125K steps with Adam optimizer
(Kingma and Ba, 2014) and a learning rate of
1 x 1073, In the training process, the guided at-
tention loss was used to promote a fast and robust
attention learning.

5 Results

To examine the performance of our trained Par-
allel WaveGAN and HiFi-GAN models, three
mean opinion score (MOS) tests were performed
for ground truth mel-spectrogram inversion, mel-
spectrogram inversion for unseen speakers, and
end-to-end Myanmar speech synthesis tasks. Ten
native non-expert speakers participated in all MOS
tests. Subjects were given the synthesized speeches
of two models and ground truth audio, and they
had to rate the quality of synthesized speeches on
a scale of 1 to 5 where 1 is bad and 5 is excellent.
The speech samples were randomly ordered.
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Model MOS RTF

Ground Truth 4.69+0.10 -

Paralle]l WaveGAN 4.49 +0.12 0.015

HiFi-GAN 459+£0.11 0.011
Table 1: Comparison of MOS with 95% confidence

intervals and inference speed (RTF) in ground truth mel-
spectrogram inversion. Note that RTF is based on the
average inference time of 100 utterances in evaluation
set on a single Nvidia Tesla K80 GPU.

5.1 Ground Truth Mel-spectrogram Inversion

The MOS test and speed measurement with Real
Time Factor (RTF) were performed to evaluate
the performance of Parallel WaveGAN and HiFi-
GAN models in terms of the quality of synthesized
speeches and the inference speed. 10 utterances
randomly selected from the testing set, were used
for MOS test of mel-spectrogram inversion and the
results are shown in Table 1. It can be clearly seen
that both models can synthesize the high quality
speech comparable to the ground truth speech. Re-
markably, HiFi-GAN model achieves the highest
MOS score 4.59 with a gap of 0.10 compared to the
ground truth audio score 4.69 and this means that
the synthesized speech is almost indistinguishable
from the original speech. The RTF results indicate
that both models get very small RTF values. Specif-
ically, HiFi-GAN model gives the lowest RTF value
(0.011) which implies that the model can synthesize
speech 99.9 times faster than real-time on single
Nvidia Tesla K80 GPU.

5.2 Generalization to Unseen Speakers

In this MOS test, 10 utterances of two unseen fe-
male speakers were utilized for investigating the
ability of our trained models on generalizing to
unseen speakers. However, we did not conduct an
additional training for each model on multi-speaker
dataset for this task. The MOS results for the mel-
spectrogram inversion of the unseen speakers are
shown in Table 2. The results show that Parallel
WaveGAN and HiFi-GAN achieved 4.42 and 4.48
scores, respectively, indicating that both models
can generalize well to unseen speakers.

5.3 End-to-End TTS

To verify the effectiveness of the Parallel Wave-
GAN and HiFi-GAN models in Myanmar end-to-
end TTS pipeline, each model was integrated to
the Tacotron2 model mentioned in section 4.4 as
the vocoder. In the inferencing step, the Tacotron2

Model MOS

Ground Truth 4.68 +0.12
Parallel WaveGAN 4.42 + 0.12
HiFi-GAN 448 £0.11

Table 2: Comparison of MOS with 95% confidence
intervals for generalizing on unseen speakers

Model MOS

Ground Truth 4.68 £ 0.15
Tacotron2 + Parallel WaveGAN 4.33 4+ 0.13
Tacotron2 + HiFi-GAN 437 +0.13

Table 3: Comparison of MOS with 95% confidence
intervals in end-to-end Myanmar speech synthesis with
neural vocoders

model convert the input phoneme sequences to the
corresponding mel-spectrograms, and by inputting
generated mel-spectrograms to vocoder models,
they generate the corresponding speech waveform.
To evaluate the quality of the generated speech sam-
ples, we conducted MOS test and the results are
presented in Table 3. It can be observed that end-to-
end TTS systems with independently trained neu-
ral vocoders can generate high quality synthesized
speech. In particular, our model using Tacotron2
with Parallel WaveGAN vocoder achieves 4.33
MOS score which is comparable to the MOS results
of the Parallel WaveGAN with the Transformer-
based TTS (Yamamoto et al., 2020), and also the
model using Tacotron2 with HiFi-GAN vocoder
achieves 4.37 MOS score which is comparable to
HiFi-GAN V1 model without fine-tuning (Kong
et al., 2020) in the end-to-end TTS settings.

6 Conclusion

In conclusion, both Parallel WaveGAN and HiFi-
GAN models achieve high-fidelity speech synthe-
sis with fast inference speeds, showing the ability
of generalizing to unseen speakers. By integrat-
ing these GAN-based models with Tacotron2 in
the end-to-end TTS framework as the vocoders,
we achieved the state-of-the-art speech quality for
Myanmar language. Our work demonstrates that
the GAN-based models, even trained on the small
dataset with limited training steps, can achieve high
quality speech for low-resource languages. Future
work includes improving the mel-spectogram gen-
erator to better capture the prosody of speech and
using GAN-based vocoders in various end-to-end
speech synthesis settings.
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Limitations

Due to the limited GPU resources, we can use the
limited training steps on the models, however, more
robustness of the models can be achieved by fine-
tuning the hyperparemeters and training the models
until an optimal point is reached. When the ability
of vocoder is examined with the aim of generalizing
to unseen speakers, one of the limitations is the
unavailability of multi-speaker Myanmar dataset.
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Abstract

Text classification is a fundamental Natural
Language Processing task that is mostly
addressed with resource-intensive transformer
architectures. Researchers are continuously
investigating lightweight alternatives with-
out compromising predictive efficacy. A
lightweight alternative called Gzip-KNN that
combines the compression capability of Gzip
with the K-nearest neighbors (KNN) classifier
has been recently proposed. In this paper, we
investigate the potential of Gzip-KNN for
the detection of Al-generated text, notably
ChatGPT-generated content. We compare its
performance to several streamlined machine
learning models such as Logistic Regression,
eXtreme Gradient Boosting, and Gated Recur-
rent Unit. Our evaluation considers predictive
accuracy, training duration, and inference
speed, all while adjusting the available data
in in- and out-of-domain contexts. = Our
experimental results highlight that Gzip-KNN
achieves high predictive performance, often
surpassing other models, especially when
operating on a limited dataset for inference.
Nonetheless, its extended inference time
restricts its utility in time-sensitive scenarios.
Intriguingly, Gzip-KNN manages to match the
performance of other tested approaches even
when utilizing a very limited percentage of the
available data.

Keywords ChatGPT, Generative Language
Models, Bots, GZIP

1 Introduction

The task of text classification, i.e., the categoriza-
tion of a text into predefined classes, is fundamen-
tal in the domain of Natural Language Processing
(NLP). The general approach involves designing
a function that maps texts to their corresponding
classes. Such function is generally obtained with
supervised machine learning. Specifically, super-
vised training is performed by tuning the parame-

ters of the models to minimize the error between
estimated and ground truth classes. The complexity
of the training process highly depends on the num-
ber of model parameters, which typically ranges
from a few to millions.

Conventional approaches for text classification
rely on complex models such as neural networks
and in particular, transformers-based architectures,
which are characterized by millions of parameters.
These models yield remarkable predictive perfor-
mance at the cost of a high training complexity. In-
deed, training these models is expensive in terms of
the amounts of data required, computational power,
and training time (Chollet, 2017; Thompson et al.,
2020). Therefore, employing such models for text
classification may be an overkill. Rather than rely-
ing solely on large models, there is a growing in-
terest in rediscovering lightweight approaches that
can match the predictive accuracy of more complex
models while requiring less computational power
and training data (Fournier et al., 2023; Gururangan
et al., 2019; Pan et al., 2019).

Recently, Jiang et al. (Jiang et al., 2023) pro-
posed a lightweight methodology for text classi-
fication based on the combination of data com-
pressing techniques (the Gzip compressor) and a
low-complexity classifier (KNN, i.e., the K-nearest
neighbors algorithm).

The proposed approach is referred to as Gzip-
KNN, and is discussed in detail in Section 3. One
of the distinctive traits of Gzip-KNN is the high
computational efficiency due to its simple underly-
ing components and non-parametric nature. In fact,
the absence of tunable parameters drastically sim-
plifies the training process. The intuition behind
Gzip-KNN is that samples belonging to the same
class are inherently more regular compared to sam-
ples from different classes. Hence, a lossless com-
pression technique, such as the well-known Gzip
algorithm, can be used to obtain representations
that capture this intrinsic regularity. Subsequently,
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the representation of the sample undergoing clas-
sification is compared with the representations of
the training samples using a novel distance metric.
This process yields a distance matrix, which serves
as the input for a k-nearest-neighbor classifier. In
their study, the authors compare the predictive per-
formance of Gzip-KNN with that of deep learning
techniques and the Google Bidirectional Encoder
Representations from Transformers (BERT) model.
Experimental results show that Gzip-KNN is com-
petitive with deep learning methods and can outper-
form BERT in out-of-domain benchmark datasets,
exemplifying its robustness in handling unseen data
distributions.

In our work, we extend on the previous study
by focusing on the detection of Al-generated text.
More specifically, we evaluate the potential of Gzip-
KNN for the detection of texts generated by Chat-
GPT. We frame the problem as a supervised clas-
sification task, where the objective is to learn a
mapping between a representation of the text and a
binary variable, which is 1 if the text is generated by
ChatGPT, and 0 otherwise. Then, we compare the
performance of Gzip-KNN, in terms of predictive
power, training time, inference time and memory
footprint, to that of other approaches. In particu-
lar, we consider both lightweight models, such as
logistic regression and eXtreme Gradient Boost-
ing (XGB), and more complex approaches, namely
the Gated Recurrent Unit (GRU). We refrain from
considering pre-trained models as our aim is to
compare Gzip-KNN to low-resource approaches.
To systematically discuss our findings, we pose the
following research questions (RQs):

RQ1) To what extent can Gzip-KNN detect
ChatGPT-generated text? Can Gzip-KNN out-
perform traditional ML-supervised approaches in
terms of predictive performance?

RQ2) How does Gzip-KNN compare to other ap-
proaches in terms of training time and inference
time?

RQ3) Can Gzip-KNN outperform traditional ML
approaches in an out-of-domain context? And in
a data-constrained and inference-time-constrained
scenarios?

To address these RQs, we conduct two experi-
ments. In the first, we analyze the trade-off between
predictive performance and complexity of Gzip-
KNN and the supervised learning approaches in an
in-domain context. In the second, we perform eval-
uations considering constraints on available data

and on inference time in an out-of-domain con-
text. The experimental findings demonstrate that
Gzip-KNN exhibits strong predictive performance,
surpassing alternative methods, even when making
predictions with a limited amount of data. How-
ever, it does come with the drawback of increased
inference time, which restricts its suitability to situ-
ations where rapid decision-making is not critical.
Nevertheless, the results also indicate that Gzip-
KNN can deliver comparable performance to other
methods when utilizing only a small fraction of the
available data in an out-of-domain context.

The paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the Gzip-
KNN approach proposed in (Jiang et al., 2023). In
Section 4 we describe the datasets and experimen-
tal setup, and in Section 5 we present and discuss
experiment results. Finally, Section 6 concludes
the paper.

2 Related Work

The detection of Al-generated text is currently re-
ceiving a great deal of attention, as the prolifer-
ation of Al-generated text, particularly from ad-
vanced language models such as ChatGPT, has led
to growing concerns about the authenticity and re-
liability of textual content across diverse domains
(Guo et al., 2023; Khalil and Er, 2023; Tian and
Cui, 2023). Moreover, as Al-generated content be-
comes more prevalent in online interactions, news
articles, customer support chats, and creative writ-
ing, the need to accurately distinguish between
human-generated and Al-generated text has gained
paramount significance.

The community has dedicated substantial efforts
to developing sophisticated machine learning mod-
els capable of detecting Al-generated content (Pe-
goraro et al., 2023; Liu et al., 2023; Guo et al,,
2023; He et al., 2023). In particular, zero-shot and
one-shot techniques have gained attention as inno-
vative approaches for text classification in general
and for identifying Al-generated text in particular
(Mitchell et al., 2023; Liu et al., 2023; Yan et al.,
2018).

Other approaches rely on statistical proper-
ties (Gehrmann et al., 2019), linguistic features
(Ma et al., 2023; Guo et al., 2023), information-
theorical metrics such as entropy (Gehrmann
et al., 2019) and perpexity (Tian and Cui, 2023;
Guo et al., 2023), topological features (of atten-
tion maps generated by the transformer model)
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(Kushnareva et al., 2021), Transformers (Bleumink
and Shikhule, 2023), pretrained language mod-
els without (Bakhtin et al., 2019) or with fine-
tuning (Solaiman et al., 2019; Mitrovic et al., 2023;
Chakraborty et al., 2023; Ippolito et al., 2019; Guo
et al., 2023; Chiang et al., 2023; Ma et al., 2023),
where in particular GPT-2 Output Detector is fre-
quently used (Gao et al., 2023; Anderson et al.,
2023).

While these proposed methods may achieve the
desired predictive performance on in- and out-of-
domain data, their demanding computational re-
quirements and memory footprint is a substantial
obstacle to their deployment. Gzip-KNN presents
a lightweight and resource-efficient alternative to
complex solutions for Al-generated text detec-
tion, leveraging an innovative combination of ap-
proaches (e.g., compression techniques) to perform
text classification without prior training.

3 Gzip and K-Nearest Neighbors for Text
Classification

Algorithm 1 Text Classification using Gzip-KNN

Sample ¢ to be classified
Training dataset D = {s1, s, . ..
Number of nearest neighbors &
function CLASSIFY(t, D, k)
Compress ¢ using Gzip (denote as gzip(t))
for each sample s in D do
Compress s using Gzip (gzip(s))
Compute Normalized Compression
Distance (NCD) between gzip(s) and gzip(t)
Store NCD in a distance list
end for
Find the indices of the £ smallest distances
in the distance list
9: Retrieve the corresponding k nearest neigh-
bors’ classes
10: Count the occurrences of each class among
the k& neighbors
11: Pick the majority class as the target label
for ¢
12: end function

,Sn}

AN e

A

In this Section, we describe the various steps
executed by the Gzip-KNN algorithm to classify
a sample text . The corresponding pseudocode is
shown in Algorithm 1. The first step involves com-
pressing ¢ using the Gzip algorithm. Then, for each
sample s in the training dataset, the text is simi-

larly compressed using Gzip, and subsequently, the
Normalized Compression Distance (NCD) between
the compressed form of s and ¢ is calculated (see
Equation 1).

C(st) —min{C(t),C(s)}
max{C(t),C(s)}

NCD(t,s) = )

where st represents the concatenation of texts ¢
and s, while C'(-) is the length of a text compressed
using Gzip.

The NCD serves as a measure that indicates the
extent of information shared between two distinct
texts. When two texts exhibit substantial shared
content, their concatenation yields a more efficient
compression outcome, resulting in a reduced NCD
value. Therefore, since texts belonging to the same
class typically share a greater degree of common at-
tributes compared to texts from distinct classes, the
NCD value can be leveraged in the task of text clas-
sification. Specifically, the Gzip-KNN algorithm
uses the NCD distance computation as the basis for
identifying the k-nearest neighbors of a reference
text # within the training set. Finally, the target text
t is classified based on the majority label among
the selected k-nearest neighbors.

The absence of tunable parameters makes train-
ing lightweight and straightforward. However, it
must be noted that classifying a text sample 7 re-
quires repeating the concatenation between ¢ and all
the samples of the training set, which may result in
a high inference time, especially with large datasets.
In Section 5 we analyze the impact of the size of
the training set on both predictive performance and
inference time.

4 Dataset

We choose a labeled dataset consisting of human-
(class 0) and ChatGPT-generated (class 1) re-
sponses to a set of queries. Specifically, ChatGPT
answers were generated using GPT-3.5. These re-
sponses are provided in relation to a set of queries
that encompass a wide range of open-ended ques-
tions. These questions were drawn from five di-
verse datasets, each contributing queries represen-
tative of a specific domain:

* open_qga: General queries on various topics
sourced from the WikiQA dataset (Yang et al.,
2015).
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* wiki_csai: Queries related to specific concepts
within the realm of information technology,
gathered from Wikipedia (Guo et al., 2023).

* finance: Queries centered around finance-
related subjects, obtained from the FiQA
dataset (Maia et al., 2018).

e medicine: Queries focused on the field of
medicine, collected from the Medical Dialog
dataset (Zeng et al., 2020).

* reddit_eli5: Open-ended questions spanning
various subjects, gathered from the ELIS
dataset (Fan et al., 2019).

The human- and ChatGPT-generated responses
are of similar length distribution (Guo et al., 2023).

S Experimental Setup and Quantitative
Evaluation

In this section, we present the results of our ex-
periments, which aim to evaluate the Gzip-KNN
algorithm for text classification along various di-
mensions. Specifically, in Section 5.1 we first eval-
uate the classification performance and the com-
plexity of the approach, in terms of training time
and inference time. Then, in Section 5.2, we assess
the classification performance in an out-of-domain
setting, where the algorithm is tested on datasets
never seen during training.

5.1 Experiment 1: Performance vs.
Complexity

Experimental Setup: We conduct this experi-
ment while systematically varying the number
of responses used during the training phase, all
while ensuring a balanced distribution between
the human-generated and ChatGPT-generated re-
sponses. Specifically, we consider a range of re-
sponses n = 100, 300, 500, 1000, 2000, 5000,
which are randomly selected from the dataset. We
adopt a 5-fold cross-validation methodology for
each value of n. During the testing phase, we eval-
uate the approach using a set of 10,000 responses,
selected randomly from the dataset and equally
split between the two labels. We also ensure the
same testing sets are used to evaluate the differ-
ent models for fold. The aim of this analysis is to
comprehensively assess the model’s performance
across different training data volumes while main-
taining a consistent test set.
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Figure 1: Classification performance of the LR, XGB,
GRU and Gzip-KNN models, for varying sizes of the
training set

We compare Gzip-KNN to Logistic Regression
(LR), eXtreme Gradient Boosting (XGB), and
Gated Recurrent Unit (GRU) along two main
dimensions, namely predictive performance and
model complexity. To evaluate the former, we con-
sider traditional classification metrics, such as ac-
curacy and FI-score. To evaluate the latter, we
consider the training time #4,4ining and the infer-
ence time &y, ference-

Predictive Performance: Figure 1(a) shows the
mean accuracy and standard deviation of the four
models with respect to the number of training sam-
ples, ranging between 100 and 5000 training sam-
ples. When only 100 training samples are used,
Gzip-KNN achieves an accuracy of 0.83, outper-
forming XGB (0.75), GRU (0.69), and LR (0.65).
The significant gap in accuracy reveals Gzip-KNN’s
capability in text classification, and particularly, in
detecting ChatGPT-generated text, with very little
training data. The accuracy of all models shows a
general upward trend in performance as the training
dataset size increases with Gzip-KNN outperform-
ing the other approaches. However, it is worth
noticing that the performance gap between Gzip-
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KNN and the other approaches narrows as the train-
ing dataset size grows, up to a number of training
samples equal to 1000. Specifically, for a number
of training samples of 1000, Gzip-KNN shows an
accuracy of 0.88, just slightly higher than that of
XGB (0.87), LR (0.86), and GRU (0.81). The accu-
racy achieved by all models continues to increase
as the training set size becomes larger, except for
Gzip-KNN, which seems to saturate around an ac-
curacy of 0.89, outperformed by XGB, LR, and
GRU, which achieve an accuracy of 0.94, 0.91 and
0.9 using 5000 training samples, respectively.

Figure 1(b) shows the weighted F1-score and
its standard deviation achieved by the different ap-
proaches with respect to the number of training
samples, ranging between 100 and 5000. Results
in terms of F1-score show a similar trend to that
of accuracy. For a number of training samples
less than 1000, Gzip-KNN outperforms other ap-
proaches, achieving an F1-score of around 0.88.
This confirms Gzip-KNN’s intrinsic ability to distill
and compress information effectively, even when
the dataset is not exceedingly large, and that its
architecture inherently adapts to the complexity
of the data, discerning relevant features and con-
nections without the need for a large number of
examples. For a higher number of training samples,
the F1-score of Gzip-KNN saturates around 0.89
while that of other approaches continues to show
a slight increase as the size of the training dataset
increases.

Overall, results show that the performance dif-
ferences between Gzip-KNN and the other models,
namely, XGB, LR, and GRU, tend to diminish as
the training size increases, which could be due to
more data being available for XGB, LR, and GRU,
reducing overfitting and improving generalization,
while Gzip-KNN does not further benefit from more
training samples. In other words, the performance
gains achieved by the Gzip-KNN seem to saturate
beyond a certain point of dataset size. Unlike tradi-
tional methods that tend to improve as more data
is fed into their training pipelines, Gzip-KNN ap-
pears to capitalize on a specific threshold of data
sufficiency. This suggests that, for Gzip-KNN, the
emphasis should be placed not solely on increasing
the dataset size, but rather on refining the compres-
sion and distance calculation mechanisms. Further
research could delve into optimizing the interplay
between these two components to extract more nu-
anced information and potentially push the Gzip-

KNN’s performance boundaries.

Model Complexity: We first examine the com-
plexity of the considered approaches in terms of
training time and inference time. Table 1 shows
the training time (in seconds), averaged over 10
different evaluations, for the various models with
respect to the number of training observations. Re-
sults show that the training times of the various
models exhibit distinct trends as the number of
training observations increases. The Gzip-KNN,
which demonstrates exceptional efficiency, con-
sistently yielding remarkably low training times
across, shows a slightly increasing trend, ranging
between 0.005 seconds for 100 training observa-
tions to 0.093 seconds for 2000 training observa-
tions. LR and XGB demonstrate linear increments
in training time with the expansion of training data,
reaching up to 0.274 seconds for LR and 0.810
seconds for XGB, at 2000 training observations.
GRU, on the contrary, shows a nuanced pattern,
with training times displaying some fluctuations
without a clear trend, ranging between 8.7 and 13.3
seconds, on average. These results highlight the
clear advantage Gzip-KNN has over other models
in terms of training time, which suggests its po-
tential utility for scenarios demanding swift model
deployment.

We now focus on the inference time. Table 2
reports the variation in inference times for differ-
ent models, across various sizes of the training set.
Notably, the Gzip-KNN approach consistently ex-
hibited relatively higher inference times compared
to the other models for all sizes of the training set,
ranging between 5.9 seconds (when 100 observa-
tions are used to perform the inference) to 115.6
seconds (when 2000 observations are used to per-
form the inference). On the contrary, the inference
time for other approaches is significantly lower
(i.e., fluctuating around 1 second), and not depen-
dent on the size of the training set. This shows that
the Gzip-KNN approach introduces an additional
significant computational overhead with respect to
other approaches, particularly when the number of
observations used for inference is relatively large.

Gzip-KNN: Performance vs. Complexity. Fo-
cusing our attention on Gzip-KNN approach, a dis-
tinct trade-off emerges between predictive power
and the time required for inference. As illustrated
in Figure 1, Gzip-KNN achieves a relatively high
predictive performance (0.82 of accuracy and 0.85
of Fl-score) even with a small number of obser-
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Table 1: Training Time Results

Num. Training Training Time (seconds)

Observations GRU GZIP+KNN LR XGB
100 10.101 0.005 0.017 0.093
300 9.497 0.014 0.040 0.168
500 8.701 0.023 0.054 0.230
1000 14.179 0.048 0.111 0.458
2000 13.346 0.093 0.275 0.811
5000 28.238 0.225 0.496 1.697
Table 2: Inference Time Results
Num. Training Inference Time (seconds)
Observations GRU  GZIP+KNN LR XGB
100 1.033 5.944 0.072  0.096
300 0.922 17.332 0.074  0.095
500 0.781 28.848 0.076  0.095
1000 1.030 58.784 0.091 0.100
2000 0.884 115.589 0.083  0.099
5000 0.927 286.129 0.077 0.103

vations employed for inference (100 observations).
This, however, corresponds to a relatively elevated
inference time of 5 seconds (see Table 2). The pre-
dictive performance of Gzip-KNN can be further
improved to reach 0.9 accuracy by employing a
larger set of observations for inference (1000 sam-
ples). However, this incurs a substantial increase
in inference time, culminating in an extended dura-
tion of 58.5 seconds. This suggests that the Gzip-
KNN approach can have a robust predictive per-
formance, particularly when dealing with a con-
strained dataset. Yet, its value is limited to sce-
narios where prediction accuracy takes precedence
over rapid inference. In conclusion, while Gzip-
KNN ofters a powerful tool for predictive tasks, its
optimal use hinges on aligning its strengths with
the specific requirements of the given application
context.

5.2 Experiment 2: Performance in
Out-of-Domain Context

Experimental Setup: We now shift our attention
to assessing the performance of the different meth-
ods in an out-of-domain context in different circum-
stances. Specifically, we perform two evaluations.
In the first evaluation, we consider that a limited
amount of data is available for training. The objec-
tive of this experiment is to quantify the capability
of Gzip-KNN in detecting ChatGPT-generated text
in an out-of-domain context and under the limita-
tions of available data. We perform the training con-

sidering a part of the datasets, set at 1000 text sam-
ples, extracted from three specific contexts (e.g.,
from technology, finance and open QA datasets)
with equal contribution and then perform the testing
on a different dataset that corresponds to a different
context (e.g., medicine). Note that while no formal
training takes place for the Gzip-KNN approach,
the inference still relies on the utilization of text
samples, which are the training samples used to
train the other ML models.

In the second evaluation, we introduce a con-
straint on inference time. To comply with the im-
posed inference time constraint, the size of the data
used by Gzip-KNN at inference time must be re-
stricted. Specifically, 600 samples are randomly
taken from the training set, and used to perform
the inference. On the contrary, for the other ap-
proaches, since using all data available for training
does not heavily impact the inference time, we con-
sider that all data available can be used for training.
The objective of this experiment is to asses whether
Gzip-KNN can outperform other models in an out-
of-domain context even when a limit is imposed
on inference time (and, therefore, on the amount of
data that are required by Gzip-KNN to perform a
text classification).

Out-of-Domain ChatGPT-generated Text De-
tection with Limited Data: Figures 2(a) and
2(b) show the accuracy and F1-score metrics, re-
spectively, that are achieved by the four models
when tested on the considered datasets. In general,
XGB and LR tend to outperform other approaches,
consistently achieving some of the highest perfor-
mance levels across most datasets. For instance, in
the Finance dataset, XGB achieves the best accu-
racy and F1-score (0.807 and 0.805, respectively)
and ranks second in the Medicine and OpenQA
datasets (e.g., its accuracy is 0.944 and 0.716, re-
spectively). LR achieves the highest accuracy and
F1-score in the Medicine dataset (0.95 for both met-
rics) and it ranks second in the Finance and CSAI
datasets, with accuracy values of 0.74 and 0.69, re-
spectively. Gzip-KNN generally achieves lower per-
formance compared to alternative methods. How-
ever, it is important to note that Gzip-KNN reaches
the best performance in the OpenQA dataset, sur-
passing alternative methods in both accuracy and
F1-score, with values of 0.753 and 0.665, respec-
tively. Additionally, in the Finance dataset, the
performance of Gzip-KNN is only slightly lower
than that of the alternatives (indeed, GRU, Gzip-
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KNN, and LR all achieve an accuracy of around
0.74).
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Figure 2: Comparison of accuracy and F1-score of dif-
ferent models for out-of-domain ChatGPT-generated
text detection considering different test datasets.

Out-of-Domain ChatGPT-generated Text De-
tection under Constraint on Inference Time:
Figures 3(a) and 3(b) show the accuracy and F1-
score metrics of the four different approaches for
each of the cases, respectively. Notably, XGB ex-
hibits consistently high accuracy and F1-scores,
specifically for Medicine and Finance (0.981 ac-
curacy in both cases), outperforming other ap-
proaches in all cases except for when testing over
the CSAI dataset. GRU also shows a similar perfor-
mance outperforming other approaches for the case
of testing over the CSAI dataset. LR demonstrates
competitive performance outperforming GRU in
some cases while Gzip-KNN achieves the highest
accuracy on the Medicine dataset (0.826) and the
lowest on the CSAI dataset (0.587). With respect
to other approaches, Gzip-KNN achieved generally
lower, yet comparable, accuracy and F1-scores, ex-

cept when testing on Open QA, where it achieved
the highest accuracy and F1-score. Note that Gzip-
KNN uses only 600 text samples for this experi-
ment, while other approaches utilize all available
datasets. This shows that Gzip-KNN can achieve
performance in out-of-domain ChatGPT-generated
text detection when using a significantly small
amount of data (a portion of the dataset) compa-
rable to that of other approaches (in this case, LR,
GRU, and XGB) when trained on the entire dataset.
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Figure 3: Comparison of accuracy and F1-score of dif-
ferent models for out-of-domain ChatGPT-generated
text detection considering different test datasets.

6 Conclusion

In this work, we evaluate the effectiveness of a re-
cently proposed algorithm, Gzip-KNN, in the task
of detection of ChatGPT-generated text. The Gzip-
KNN algorithm combines compression techniques
with the k-nearest neighbors (KNN) algorithm for
classification, resulting in a lightweight solution
compared to traditional techniques used for text
classification. Specifically, we compare this ap-
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proach with LR, XGB, and GRU, in terms of clas-
sification performance and model complexity in
various scenarios. Obtained results show that the
Gzip-KNN algorithm outperforms the alternatives
in terms of classification performance in situations
where the training dataset is limited in the number
of samples. However, such an advantage comes
also with an increased inference time, which is sig-
nificantly higher for Gzip-KNN than for the other
approaches. Finally, we also evaluated the classifi-
cation performance of the approaches in an out-of-
domain setting, where the models are tested on a
set never seen during training. These experiments
have shown that Gzip-KNN can yield comparable
classification performance to the other methods
while only utilizing a significantly lower amount
of training data.
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Abstract

We introduce new large labeled datasets on bias
in 3 languages and show in experiments that
bias exists in all 10 datasets of 5 languages eval-
uated, including benchmark datasets on the En-
glish GLUE/SuperGLUE leaderboards. The 3
new languages give a total of almost 6 million
labeled samples and we benchmark on these
datasets using SotA multilingual pretrained
models: mT5 and mBERT. The challenge of
social bias, based on prejudice, is ubiquitous,
as recent events with Al and large language
models (LLMs) have shown. Motivated by this
challenge, we set out to estimate bias in mul-
tiple datasets. We compare some recent bias
metrics and use bipol, which has explainability
in the metric. We also confirm the unverified as-
sumption that bias exists in toxic comments by
randomly sampling 200 samples from a toxic
dataset population using the confidence level
of 95% and error margin of 7%. Thirty gold
samples were randomly distributed in the 200
samples to secure the quality of the annotation.
Our findings confirm that many of the datasets
have male bias (prejudice against women), be-
sides other types of bias. We publicly release
our new datasets, lexica, models, and codes.

1 Introduction

The problem of social bias in data is a pressing
one. Recent news about social bias of artificial
intelligence (AI) systems, such as Alexa' and Chat-
GPT,? shows that the age-old problem persists with
data, which is used to train machine learning (ML)
models. Social bias is the inclination or prejudice
for, or against, a person, group or idea, especially
in a way that is considered to be unfair, which
may be based on race, religion or other factors
(Bellamy et al., 2018; Antoniak and Mimno, 2021;
Mehrabi et al., 2021; Alkhaled et al., 2023). It can

'bbe.com/news/technology-66508514
bloomberg.com/news/newsletters/2022-12-08/chatgpt-
open-ai-s-chatbot-is-spitting-out-biased-sexist-results

also involve stereotypes that generalize behavior to
groups (Brownstein, 2019). It can unfairly skew
the output of ML models (Klare et al., 2012; Raji
et al., 2020). Languages with fewer resources than
English are also affected (Rescigno et al., 2020;
Chéavez Mulsa and Spanakis, 2020; Kurpicz-Briki,
2020). For example, in Italian, the female gender
is under-represented due to the phenomena such as
the “inclusive masculine”" (when the masculine is
over-extended to denote groups of both male and
female referents) (Luccioli et al.; Vanmassenhove
and Monti, 2021).

In this work, we are motivated to address the
research question of how much bias exists in the
text data of multiple languages, if at all bias ex-
ists in them? We particularly investigate 6 bench-
mark datasets on the English GLUE/SuperGLUE
leaderboards (Wang et al., 2018, 2019) and one
dataset each for the other 4 languages: Italian,
Dutch, German, and Swedish. First, we train SotA
multilingual Text-to-Text Transfer Transformer
(mT5) (Xue et al., 2021) and multilingual Bidi-
rectional Encoder Representations from Transform-
ers (mBERT) models for bias classification on the
multi-axes bias dataset (MAB) for each language,
in a similar setup as Alkhaled et al. (2023). For
the evaluations, we search through the literature to
compare different metrics or evaluation methods as
shown in Table 1 and discussed in Section 2. This
motivates our choice of bipol, the multi-axes bias
metric, which we then compare in experiments with
a lexica baseline method. In addition, to confirm
the unverified assumption that toxic comments con-
tain bias (Sap et al., 2020; Alkhaled et al., 2023),
we annotate 200 randomly-selected samples from
the training set of the English MAB.

Our Contributions

* We make available new large labeled datasets
on bias of almost 2 million samples each for
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Metric/Evaluator Axis Terms
Winogender (Rudinger et al., 2018) 1 60
WinoBias (Zhao et al., 2018) 1 40
StereoSet (Nadeem et al., 2021) 4 321
GenBiT (Sengupta et al., 2021) 1 -
CrowS-Pairs (Nangia et al., 2020) 9 3,016

Bipol (Alkhaled et al., 2023) >2, <13 >45, <466

Table 1: Comparison of some bias evaluation methods.

3 languages: Italian, Dutch, and German.?

¢ We make available lexica of sensitive terms
for bias detection in the 3 languages.

* We confirm the unverified assumption in the
underlying datasets of MAB (Social Bias
Inference Corpus v2 (SBICv2) and Jigsaw)
(Alkhaled et al., 2023) that toxic comments
contain bias.

The rest of this paper is organized as follows.
In Section 2, we discuss the literature review of
related work. In Section 3, we briefly discuss the
bipol metric. In Section 4, we explain the steps in-
volved in the methodology and the datasets we use.
In Section 5, we present our findings and discuss
them. In Section 6, we end with the conclusion and
possible future work.

2 Literature Review

Although English usually gets more support and at-
tention in the literature, there have been attempts at
measuring and mitigating bias in other languages.
Testing for the presence of bias in Italian often has
a contrastive perspective with English, with a fo-
cus on gender bias (Gaido et al., 2021; Rescigno
et al., 2020). MuST-SHE (Bentivogli et al., 2020)
and gENder-IT (Vanmassenhove and Monti, 2021)
are examples of gender bias evaluation sets. Go-
ing beyond gender bias, Kurpicz-Briki and Leoni
(2021) and Huang et al. (2020) also identified bi-
ases related to people’s origin and speakers’ age.
It is essential to remember that the mentioned bi-
ases can be vehicles for misogynous and hateful
discourse (El Abassi and Nisioi, 2020; Attanasio
et al., 2022; Merenda et al., 2018).

Bias studies for Dutch mostly consider binary
gender bias. Chdvez Mulsa and Spanakis (2020)
investigate gender bias in Dutch static and con-
textualized word embeddings by creating Dutch
versions of the Word/Sentence Embedding Asso-
ciation Test (WEAT/SEAT) (Caliskan et al., 2017;

3 github.com/LTU-Machine-Learning/bipolmulti

May et al., 2019). WEAT measures bias in word
embeddings and can be limited in scope, in addi-
tion to having sensitivity to seed words. McCurdy
and Serbetci (2020) perform a similar evaluation in
a multilingual setup to compare the effect of gram-
matical gender saliency across languages. Several
works use different NLP techniques to evaluate bias
in corpora of Dutch news articles (Wevers, 2019;
Kroon et al., 2020; Kroon and van der Meer, 2021;
Fokkens et al., 2018) and literary texts (Koolen and
van Cranenburgh, 2017).

In Kurpicz-Briki (2020), bias is measured with
regards to place of origin and gender in German
word embeddings using WEAT (Caliskan et al.,
2017). In Kurpicz-Briki and Leoni (2021), an au-
tomatic bias detection method (BiasWords) is pre-
sented, through which new biased word sets can
be identified by exploring the vector space around
the well-known word sets that show bias. In the
template-based study of Cho et al. (2021), on gen-
der bias in translations, the accuracy of gender in-
ference was measured for multiple languages in-
cluding German. It was found that, particularly
for German, the inference accuracy and disparate
impact were lower for female than male, implying
that certain translations were wrongly performed
for cases that required female inference. Since Ger-
man is a grammatically gendered, morphologically
rich language, Gonen and Goldberg (2019) found
that debiasing methods of Bolukbasi et al. (2016)
were ineffective on german word embeddings.

For Swedish, the main focus of bias research ap-
pears to be on gender. Sahlgren and Olsson (2019)
show with their experiments that gender bias is
present in pretrained Swedish language models.
Katsarou et al. (2022) and Precenth (2019) found
that the male gender tends to be associated with
higher-status professions. A study with data from
mainstream news corpora by Devinney et al. (2020)
shows that women are associated with concepts like
family, communication and relationships.

3 Bipol

For the purpose of this work, we summarize bipol
here but details are discussed in Alkhaled et al.
(2023). The bipol metric uses a two-step mecha-
nism for estimating bias in text data: binary classi-
fication and sensitive term evaluation using lexica.
It has maximum and minimum values of 1 and O,
respectively. Bipol is expressed in Equations 1b
and lc from the main Equation la, where b, is

35



the classification component and by is the sensitive
term evaluation component.

be.bs,
- {t

_ tp+ fp
T tp+ fpH+itn+ fn

- (13 (I T
- s s 1
<q Z€=1ds ), 1o

t=1 r=1

if bs >0
otherwise

(1a)

(1b)

1
by = -
.

In step 1, a trained model is used to classify all
the samples. The ratio of the biased samples to
the total samples predicted is determined. The #p,
Jp, tn, and fn are values of the true positives, false
positives, true negatives, and false negatives, re-
spectively. Since there’s hardly a perfect classifier,
the positive error rate is usually reported. False pos-
itives are known to exist in similar classification
systems like spam detection and automatic hate
speech detection (Heron, 2009; Feng et al., 2018).

Step 2 is similar to term frequency-inverse docu-
ment frequency (TF-IDF) in that it is based on term
frequency (Salton and Buckley, 1988; Ramos et al.,
2003), Biased samples from step 1 are evaluated
token-wise along all possible bias axes, using all
the lexica of sensitive terms. An axis is a domain
such as gender or race. Tables 2 and 3 provide
the lexica sizes. For English and Swedish, we use
the same lexica released by Alkhaled et al. (2023)
and Adewumi et al. (2023b), respectively. For the
other 3 languages, we create new lexica of terms
(e.g. she & her) associated with specific gender
or stereotypes from public sources.* Some of the
terms in the lexica were selected from the sources
based on the topmost available. These may also be
expanded as needed, since bias terms are known to
evolve (Haemmerlie and Montgomery, 1991; An-
toniak and Mimno, 2021). The non-English lexica
are small because fewer terms are usually available
in other languages compared to the high-resource
English language and we use the same size across
the languages to be able to compare performance
somewhat. The Appendix lists these terms.

Equation 1c first finds the absolute difference
between the two maximum summed frequencies in
the types of an axis (| ) o, as— > .- ¢s|), where
n and m are the total terms in a sentence along
an axis. For example, in the sentence “Women!!!

4ﬂuentu.com/blog/italian/italian—nouns,

en.wiktionary.org/wiki/Category:Italian_offensive_terms,
Dutch_profanity, Category:German_ethnic_slurs

PERSON taught you better than that. Shame on
you!”, female terms = 1 while male terms = 0. This
is then divided by the summed frequencies of all
the terms (dy) in that axis (Zi’:1 ds). The opera-
tion is performed for all axes (¢) and the average
taken (% ZZ:Q- It is performed for all the biased

samples () and the average taken (% Z:Zl ).

Axis Type 1 Type 2 Type 3
Racial 84 (black) 127 (white)

Gender 76 (female) 46 (male)

Religious 180 (christian) 465 (muslim) 179 (hindu)

Table 2: English lexica sizes (Alkhaled et al., 2023).
An example of racial-black is negro.

Axis Type 1 Type 2
Gender 17 (female) 17 (male)
Racial 10 (black) 10 (white)

Table 3: Italian, Dutch, German and Swedish Lexica
sizes. An example of gender-female is woman.

4 Methodology

4.1 Datasets
4.1.1 MAB

The Italian, Dutch and German datasets were
machine-translated from MAB® with the high-
quality Helsinki-NLP model (Tiedemann and Thot-
tingal, 2020). Each translation took about 48 hours
on one GPU. Examples from the data are provided
in Table 4. Table 5 provides statistics about the
datasets. For quality control (QC), we verified
translation by back-translating some random sam-
ples using Google NMT. Personal identifiable infor-
mation (PII) was removed from the MAB dataset
using the spaCy library. The 3 datasets are used
to train new bias classifiers. We also train on the
original English and the Swedish.

Machine-Translation issues: Culture-specific
biases may not be represented in the MAB versions
for the translated languages because the original
dataset is in English. This is a limitation. How-
ever, bias is also a universal concern, such that
there are examples that span across cultures. For
instance, the examples in Table 4 are of universal
concern because individuals with non-conforming
bodies and women should be respected, regardless
of culture or nationality. Hence, the MAB versions

The reference provides details of the annotation of the
base data.
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comment_text

label

old_id

id

A fitness ranking that drops each month as more and more
fat people move to Colorado.

biased

6231681

167

Een fitness ranking die elke maand daalt als meer en meer
dikke mensen verhuizen naar Colorado.

Ein Fitness-Ranking, das jeden Monat fillt, wie mehr und
mehr fette Menschen nach Colorado zu bewegen.

Un ranking di fitness che scende ogni mese come sempre
pil persone grasse si spostano in Colorado.

En fitness ranking som sjunker varje méanad som fler och

fler feta ménniskor flyttar till Colorado.

Women ! ! | PERSON taught you better than that. Shame

on you!

biased 6233025 | 628

Vrouwen ! ! | PERSOON heeft je beter geleerd dan dat.

Je moet je schamen!

Frauen!!!! PERSON lehrte Sie besser als das. Schande

iiber Sie!

Donne ! ! ! Person ti ha insegnato meglio di cosi, vergog-
nati!

Kvinnor ! ! - Han ldrde dig bittre dn sa. Skidms pa dig!

Table 4: English, Dutch, German, Italian, and Swedish examples from the MAB dataset. "PERSON" is the
anonymization of a piece of personal identifiable information (PII) in the dataset.

Set Biased Unbiased Total
Training 533,544 1,209,433 1,742,977
Validation 32,338 69,649 101,987
Test 33,470 68,541 102,011
599,352 1,347,623 1,946,975

Table 5: MAB dataset split

are relevant for bias detection, though they were
translated.

4.1.2 Evaluation datasets

Ten datasets are evaluated for bias in this work.
All are automatically preprocessed before evalua-
tion, the same way the training data were prepro-
cessed. This includes removal of IP addresses, emo-
jis, URLs, special characters, emails, extra spaces,
numbers, empty text rows, and duplicate rows. All
texts are then lowercased.

We selected datasets that are available on the
HuggingFace (Wolf et al., 2020) Datasets. We eval-
uated the first 1,000 samples of each training split
due to resource constraints. The understanding
is that if bias is detected in these samples, then
scaling over the entire dataset means there’s proba-

bility of more bias. For English, we evaluated the
sentence column of Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2019), the sentence
column of Question-Answering Natural Language
Inference (QNLI) (Wang et al., 2018), the senten-
ncel column of Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005), the
premise column of Multi-Genre Natural Language
Inference (MNLI) (Williams et al., 2018), the
premise column of the CommitmentBank (CB)
dataset (De Marneffe et al., 2019), and the pas-
sage column of Reading Comprehension with Com-
monsense Reasoning Dataset (ReCoRD) (Zhang
et al., 2018). For Italian, we evaluated the con-
text column of the Stanford Question Answering
Dataset (SQuAD) (Croce et al., 2018; Rajpurkar
etal., 2016); for Dutch, the sentencel column of the
Semantic Textual Similarity Benchmark (STSB)
(Cer et al., 2017); for German, the text column of
the German News Articles Datasets 10k (GNAD10)
(Schabus et al., 2017); for Swedish, the premise of
the CB.
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4.2 Annotation for the assumption
confirmation

To verify the assumption that toxic comments con-
tain bias, we randomly selected 200 samples from
the training set of MAB-English for annotation on
Slack, an online platform. The selection of 200
samples is based on an error margin of 7% and a
confidence level of 95%. To ensure high-quality
annotation, we use established techniques for this
task: 1) the use of gold (30) samples, 2) multiple
(i.e. 3) annotators, and 3) minimum qualification
of undergraduate study for annotators. Each an-
notator was paid 25 U.S. dollars and the it took
about 2 hours to complete the annotation on aver-
age. We mixed the 30 gold samples with the 200,
to verify the annotation quality of each annotator,
as they were required to get, at least, 16 correctly
for their annotation to be accepted. The 30 gold
samples are samples with unanimous agreement in
the original Jigsaw or SBICv2 data, which make up
the MAB. We provide inter-annotator agreement
(IAA) using Jaccard similarity coefficient (intersec-
tion over union) and credibility unanimous score
(CUS) (Adewumi et al., 2023a) (intersection over
sample size).

4.3 Experiments

We selected two state-of-the-art (SotA) pre-trained,
multilingual models for experiments to compare
their macro F1 performance: mT5-small and
mBERT-base. These are from the HuggingFace
hub. We further report the mT5 positive error rate
of predictions. The mT5-small has 300 million
parameters (Xue et al., 2021) while mBERT-Base
has 110 million parameters. We trained only on
the MAB datasets and evaluated using only the
mT5 model, the better model of the 2, as will be
observed in Section 5. For the CB and ReCoRD
datasets, we evaluate all samples since they contain
only about 250 and 620 entries, respectively. We
used wandb (Biewald, 2020) for hyper-parameter
exploration, based on Bayesian optimization. For
mT5S, we set the maximum and minimum learn-
ing rates as 5e-5 and 2e-5 while the maximum and
minimum epochs are 20 and 4, respectively. One
epoch is equivalent to the ratio of the total num-
ber of samples to the batch size (i.e. the steps).
We used a batch size of 8 because higher numbers
easily resulted in memory challenges.

For mBERT, we set the learning rates and epochs
as with mT5. However, we explore over batch

sizes of 8, 16 and 32. For both models, we set the
maximum input sequence length to 512. Training
took, on average, about 7.3 hours per language per
epoch for mBERT while it was 6 hours for mTS5.
For all the experiments, we limit the run counts to 2
per language because of the long training time each
takes on average. The average scores of the results
are reported. The saved models with the lowest
losses were used to evaluate the datasets. All the
experiments were performed on two shared Nvidia
DGX-1 machines that run Ubuntu 20.04 and 18.04.
One machine has 8 x 40GB A100 GPUs while the
other has 8 x 32GB V100 GPUs.

The lexica baseline, compared in experiments, is
similar to the equation of the second step in bipol.
It does not consider bias semantically and uses term
frequencies, similarly to TF-IDF. It uses the same
lexica as bipol. Its maximum and minimum values
are 1 and 0, respectively.

5 Results and Discussion

From Table 6, we observe that all mT5 results
are better than those of mBERT across the lan-
guages. The two-sample t-test of the difference
of means between all the corresponding mT5 and
mBERT scores have p values < 0.0001 for alpha
of 0.05, showing the results are statistically sig-
nificant. It appears better hyper-parameter search
may be required for the mBERT model to converge
and achieve better performance. The best macro
F1 result is for English mT5 at 0.787. This is not
surprising, as English has the largest amount of
training data for the pre-trained mT5 model (Xue
et al., 2021). This occurred at the learning rate of
2.9e-5 and step 1,068,041.

macro F1 1 (s.d.) mTS5 error |

MAB version mBERT mT5 fp/(fp+tp)
English 0.418 (0.01) 0.787 (0) 0.261
Italian 0.429 (0)  0.768 (0) 0.283
Dutch 0.419 (0.01) 0.768 (0) 0.269
German 0.418 (0.01) 0.769 (0) 0.261
Swedish 0.418 (0.01) 0.768 (0) 0.274

Table 6: Average F1 scores on the validation sets.

Figures 1 and 2 depict the validation sets macro
F1 and loss line graphs for the 2 runs for the 5
languages, respectively. From Table 7, we observe
that all the evaluated datasets have biases, though
seemingly little (but important) when compared
to the maximum of 1. We say important because
many of the datasets contain small number of sam-
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bipol scores

1 (s.d)

English be bs bipol (b) baseline |
CB 0.096 0.875 0.084 (0) 0.88
CoLA 0.101 0.943 0.095 (0) 0.958
ReCoRD 0.094 0.852 0.025 (0) 0.829
MRPC  0.048 0.944 0.045 (0) 0.957
MNLI  0.063 0.833 0.053 (0) 0.965
QNLI 0.03 0.933 0.028 (0) 0.945
Italian
SQuAD 0.014 0 0.014 (0) 0.989
Dutch
STSB 0.435 0.992 0.432(0) 0.987
German
GNADIO 0.049 0.502 0.025(0) 1
Swedish
CB 0.08 0.938 0.075(0) 0.97

Table 7: Average bipol & lexica baseline scores.

ples yet they can be detected. Furthermore, a low
value does not necessarily diminish the weight of
the effect of bias in society or the data but we leave
the discussion about what amount should be tol-
erated open for the NLP community. Our recom-
mendation is to have a bias score as close to zero
as possible. On the other hand, the lexica baseline
appears overly confident of much more bias, which
is incorrect because the method fails to exclude un-
biased text in its evaluation, which is a shortcoming
of methods based solely on it. The Dutch STSB is
higher than the other bipol scores because of the
higher bipol classifier component score of 0.435,
which may be because of the nature of the dataset.

5.1 Error analysis & qualitative results

According to the error matrix in Figure 3, the mT5
model is better at correctly predicting unbiased
samples. This is because of the higher unbiased
samples in the training data of MAB. In Table 8, the
first example for the English CB contains a stereo-
typical statement "men are naturally right and it
is the role of women to follow their lead", lead-
ing to the correct biased prediction by the model.
Similarly, this correct prediction is made in the
Swedish CB. We notice over-generalization (May
et al., 2019; Nadeem et al., 2021) in the correct
examples for the CoLA predictions, where "every"
is used. The table also shows some incorrect pre-
dictions.

5.2 Consistent prediction with perturbation

An interesting property of relative consistency that
we observed with the model predictions, as demon-

strated with the CoLLA dataset, is that when sen-
tences are perturbed, the model mostly maintains
its predictions, as long as the grounds for prediction
(in this case - over-generalization) remain the same.
The perturbations are inherent in the CoLA dataset
itself, as the dataset is designed that way. Some
examples are provided in Table 9 in the Appendix,
where 6 out of 8 are correctly predicted. This prop-
erty is repeated consistently in other examples not
shown here.

5.3 Explainability by graphs

We show explainability by visualization using
graphs. Bipol produces a dictionary of lists for
every evaluation and we show the top-5 frequent
terms bar graph for the GNAD10 dataset in Figure
4, which has overall male bias. Many of the 10
evaluated datasets display overall male bias.

5.4 Assumption confirmation through
annotation

The results of the annotation of the 200 MAB sam-
ples reveal that toxic comments do contain bias.
This is shown in Figure 5. The Jaccard similarity
coefficient and CUS of IAA are 0.261° and 0.515,
respectively, given that over 50% is the intersection
of unanimous decision.

6 Conclusion

The findings of this work show that bias besets Nat-
ural Language Processing (NLP) datasets regard-
less of language, including benchmark datasets on
the GLUE/SuperGLUE leaderboards. We intro-
duced MAB datasets in 3 languages for training
models in bias detection. Each has about 2 million
labeled samples. We also contribute lexica of bias
terms for the languages. In addition, we verified
the assumption that toxic comments contain bias. It
may be impossible to completely remove bias from
data or models, since they reflect the real world,
but resources for estimating bias can provide in-
sight into mitigation strategies for reducing bias.
Future work may explore ways of minimizing false
positives in classifiers to make them more effec-
tive. One may also explore how this work scales to
other languages or how multilignual models com-
pare to language-specific monolingual models or
large language models (LLMs). Regarding culture-
specific biases in datasets, one solution will be to

®Not to be interpreted using Kappa for 2 annotators on 2
classes. Ours involved 3 annotators
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Macro F1 (Validation)

F1

0.78

0.77
0.76

Step
500k M 1.5M 2M 2.5M 3M 3.5M
dutch1 = swedish1l = italian1 = germanl = english1
Figure 1: Macro F1 of the validation set for the 5 languages, as generated by wandb.
Validation Loss
024 o
S
0.235
0.23
0.225
0.22
0.215
0.21
Step
500k M 1.5M 2M 2.5M 3M 3.5M
dutch1 = swedish1l == italianl = germani = english1

Figure 2: Loss on the validation set for the 5 languages, as generated by wandb.
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Figure 3: Error matrix of mT5 on MAB-English dataset. The original MAB was annotated by hu-

mans who may have their personal biases based on
cultural or demographic backgrounds. This means
collect data from the specific cultures/nationalities  the final annotations may not be seen as absolute

to capture these biases. ground truth of social biases.
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\ prediction

csvid

Correct predictions from the English CB

nicky approached her with the assumption that men are nat-
urally right and it is the role of women to follow their lead.
constance whose confidence was growing daily was not pre-
pared to give in to nickys wishes merely because of his sex.
if she felt he was right then she agreed with him.

biased

85

b: thats true. a: so. b: uh the other argument is that the death
penalty is a deterrent and i really dont uh agree with that. i
dont think anyone who would commit uh a crime that would
get them the death penalty would stop at the moment and say
well i was about to kill and dismember this person but oh if
they catch me theyre going to kill me so i better not do it. i
just dont think uh that it works that way. a: yeah. i dont think
its done.

biased

133

Incorrect prediction

b: yeah and the ground will filter some of it but not all of it.
a: no not when you figure i didnt realize one cow produces
that much manure

biased

137

Correct predictions from the English CoLA

if you give him enough opportunity every senator will suc-
cumb to corruption.

biased

266

every senator becomes more corrupt the more lobbyists he
talks to.

biased

277

Incorrect prediction

bill squeezed the puppet through the hole.

biased

82

Table 8: Qualitative examples of apparently correct and incorrect predictions in some of the English datasets, based
on the mT5 model.
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Figure 4: Top 5 frequent terms in the GNAD10 dataset
(paired terms are only for comparison).
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A Appendix

Swedish lexica and the English equivalent

1. Gender-female

1) hon (she) ii) hennes (her) iii) flicka (girl)
iv) mor (mother) v) kvinna (woman) vi) dot-
ter (daughter) vii) mormor (grandmother)
viii) dam (lady) ix) sondotter (son’s daughter)
x) dotterdotter (daughter’s daughter) xi) tjej
(girl) xii) tjejer (girls) xiii) gumma (old
woman) xiv) fru (wife) xv) slampa (slut)
xvi) slyna (slut) xvii) lebb (lesbian)

. Gender-male

i) han (he) ii) pojke (boy) iii) kille (boy) iv) far
(father) v) farfar (grandfather) vi) hans (his)
vii) man (man) viii) son (son) ix) make (hus-
band) x) herre (lord) xi) herrar (lords) xii) son-
son (son’s son) xiii) dotterson (daughter’s
son) xiv) gubbe (old man) xv) farbro (uncle)
xvi) broson (nephew) xvii) mén (men)

. Racial-black

i) neger (nigger) ii) blaneger (nigger) iii) bla-
land (nigger) iv) blatte (dark immigrants)
v) svartskalle (black head) vi) turk (non-
Swedish) vii) sosse (political slur) viii) svart-
ing (blackness) ix) partysvenska (political
slur) x) nigga (nigger)

. Racial-white

i) svenne (Swedish stereotype) ii) turk (non-
Swedish) iii) jugge (derogatory term) iv) sosse
(political slur) v) hurrare (Finnish Swedish)
vi) lapp (Sami people) vii) Ang mo (red
hair) viii) partysvenska (political slur) ix) Ann
(White woman) x) rutabaga (Swede)

Example of predictions for the CoLLA dataset

comment_text

prediction

csv id

if you give him enough
opportunity every senator
will succumb to corrup-
tion.

biased

266

you give him enough op-
portunity and every sena-
tor will succumb to corrup-
tion.

biased

267

we gave him enough op-
portunity and sure enough
every senator succumbed
to corruption.

unbiased

268

if you give any sena-
tor enough opportunity he
will succumb to corrup-
tion.

biased

269

you give any senator
enough opportunity and
he will succumb to corrup-
tion.

biased

270

you give every senator
enough opportunity and he
will succumb to corrup-
tion.

biased

271

we gave any senator
enough opportunity and
sure enough he suc-
cumbed to corruption.

biased

272

we gave every senator
enough opportunity and
sure enough he suc-
cumbed to corruption.

unbiased

273

Table 9: Mostly consistent correct prediction with per-

turbation in the CoLLA dataset.
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Abstract

Traditional spoken emotion recognition solu-
tions often process entire utterances all at once,
ignoring the emotional variability within the
speech. This shortcoming, especially plaguing
end-to-end models, prompted us to investigate a
segment-based technique processing only short
parts of the audio, improving the recognition
accuracy across three diverse emotion datasets.
Furthermore, we employed a triplet loss to
increase inter-class separability, demonstrat-
ing that combining it effectively with segment-
based processing within our multi-task learn-
ing framework leads to improvements on both
English and Finnish datasets. Our proposed
method achieves 8.1% unweighted average
recall improvement over the baseline on the
IEMOCAP, 12% on the RAVDESS, and 7.2%
on the FESC dataset. The results also indicate
that vocalised emotions are strongly concen-
trated in short segments of speech, and new
methods are needed to exploit this fact.

1 Introduction

In the age of digital transformation, the significance
of human-computer interaction (HCI) systems be-
comes crucial. However, current HCI solutions
struggle to comprehend emotions, a critical aspect
of tasks like automated analysis of customer feed-
back. Incorrectly categorising emotions in such
analyses could lead to misunderstandings, where
complaints might be mistaken for positive feed-
back and vice versa. Therefore, the integration of
an accurate spoken emotion recognition (SER) sys-
tem within HCI applications holds vital importance
in enhancing user experiences (Brave and Nass,
2007).

With the emergence of the Transformer archi-
tecture (Vaswani et al., 2017), pre-trained self-
supervised models have gained popularity, partic-
ularly for tasks with limited data (Grész et al.,
2022). One popular audio-based foundation model

is wav2vec2 (Baevski et al., 2020), which has al-
ready proven successful in SER applications. In
a previous study, the authors utilised a pre-trained
wav2vec2 model to extract embeddings from mul-
tiple layers, subsequently employing these em-
beddings as input for a neural network classifier
(Pepino et al., 2021). Besides serving as feature
extractors, these pre-trained models can also be
fine-tuned for the specific task at hand. A fine-
tuned wav2vec2 approach was successfully ap-
plied for predicting emotional intensities (Porja-
zovski et al., 2023). In addition to fine-tuning, the
researchers incorporated a pre-training stage for
the wav2vec2 model, outperforming the other ap-
proaches (Chen and Rudnicky, 2023) on the IEMO-
CAP dataset (Busso et al., 2008).

Despite their popularity, the majority of SER so-
lutions process the whole utter