
ICNLSP 2024

Proceedings of the 7th
International Conference on

Natural Language and Speech
Processing (ICNLSP-2024)

19–20 October, 2024



©2024 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 979-8-89176-165-0

https://www.icnlsp.org/

https://www.icnlsp.org/


Introduction

Welcome to the 7th International Conference on Natural Language and Speech Processing (ICNLSP
2024)!

ICNLSP is an excellent opportunity for researchers to discuss trends in the field of Natural Language
Processing, and to publish their results in the field.

Many topics were discussed through the interesting works presented during the two days of the confer-
ence: speech recognition, machine translation, text summarization, sentiment analysis, large language
models, natural language understanding, language resources, and other topics etc.

The program committee accepted 47 good papers (long and short ones) which is around 45% of the
received submissions, thanks to the high-quality level of the reviews.

"An Introduction to Large Language Models" is the title of a keynote presented by Prof. Gérard Chollet
who was chairing the first session: large language models, followed by 06 oral sessions, namely: in-
formation extraction and summarization, human-machine interaction and conversational AI, advances in
native language identification and text classification, audio, ASR, and TTS, speech emotion recognition
and speaker verification and diarization, and data representation.
Prof. Gérard Chollet has clarified many mysterious points on LLMs and discussed their weaknesses, in-
cluding hallucinations, the black-box nature of their decision-making, and concerns surrounding security
and privacy. He presented symbolic AI and knowledge graphs (KGs) as potential solutions.

We thank all participants for their presentations and discussions during the conference.We would like to
thank Gérard Chollet and Hugues Sansen (Institut Polytechnique de Paris) for preparing for the special
LLM session.

We appreciate the contribution of Dr. Daniel Braun (University of Twente), Dr. Koichi Takeuchi (Okayama
University), Dr. Mohammed Mediani (United Arab Emirates University), Prof. Hend Al-Khalifa (King
Saud University), Prof. Yücel Saygın (Sabancı Universitesi) and Prof. Nicolas Ballier (Université Paris
Cité) for chairing the conference sessions.

Finally, we are grateful to the program committee members for their efforts and commitments.

Mourad Abbas and Abed Alhakim Freihat
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Invited Talk

Prof. Gérard Chollet was granted a PhD in Computer Science and Lin-
guistics from the University of California, Santa Barbara. He taught
at Memphis State University and University of Florida before joining
CNRS. In 1981, he took in charge the speech research group of Alca-
tel. In 1983, he joined a CNRS research unit at ENST (Institut Mines-
Telecom). In 1992, he participated to the development of IDIAP, a re-
search laboratory of the ‘Fondation Dalle Molle’ in Martigny, Switzer-
land. From 1996 to 2012, he was back full time at ENST. He supervised
more than forty doctoral theses. CNRS decided in 2012 to grant him an
emeritus status within SAMOVAR (Télécom-SudParis). His main re-
search interests are in phonetics, automatic audio-visual speech processing, spoken dialog systems, mul-
timedia, pattern recognition, biometrics, privacy-preserving digital signal processing, speech pathology
and speech training aids. His main publications are available from his Google Scholar Citations profile.

An Introduction to Large Language Models
Prof. Gérard Chollet, CNRS, France.

In the tutorial "An Introduction to Large Language Models," key weaknesses of LLMs were discussed,
including hallucinations, the black-box nature of their decision-making, indecisiveness, and concerns sur-
rounding security and privacy. To address these challenges, symbolic AI and knowledge graphs (KGs)
were introduced as potential solutions. The integration of LLMs with KGs can enhance transparency
and reliability in AI outputs, leveraging structured knowledge to mitigate errors and improve decision-
making. A significant focus was placed on an embedded solution developed within the e-ViTA project
(https://www.e-vita.coach/), specifically designed to address privacy issues. This implementation show-
cases how KGs can provide a framework for safeguarding sensitive information while still allowing LLMs
to function effectively. By utilizing KGs, users can access more interpretable and contextually accurate
information without compromising data security. The tutorial emphasized the importance of unifying
LLMs and KGs to create more robust AI systems that are not only powerful but also trustworthy and se-
cure. Through this approach, the future of AI can balance innovation with ethical considerations, paving
the way for more responsible applications in various domains.
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Abstract

It is common practice in text classification to
only use one majority label for model training
even if a dataset has been annotated by mul-
tiple annotators. Doing so can remove valu-
able nuances and diverse perspectives inher-
ent in the annotators’ assessments. This paper
proposes and compares three different strate-
gies to leverage annotator disagreement for text
classification: a probability-based multi-label
method, an ensemble system, and instruction
tuning. All three approaches are evaluated on
the tasks of hate speech and abusive conversa-
tion detection, which inherently entail a high
degree of subjectivity. Moreover, to evaluate
the effectiveness of embracing annotation dis-
agreements for model training, we conduct an
online survey that compares the performance of
the multi-label model against a baseline model,
which is trained with the majority label. The
results show that in hate speech detection, the
multi-label method outperforms the other two
approaches, while in abusive conversation de-
tection, instruction tuning achieves the best per-
formance. The results of the survey also show
that the outputs from the multi-label models are
considered a better representation of the texts
than the single-label model.

1 Introduction

Employing multiple annotators for data annotation
and afterwards using the majority annotation for
model training is a widely adopted practice to mit-
igate biases and allow for error detection and cor-
rection (Sabou et al., 2014).

However, such procedures also remove genuine
disagreement between annotators that can provide
valuable insights, e.g. for subjective tasks like de-
tection of hate speech, emotions, or sexism, but
also for more objective tasks like legal or medi-
cal decision making. In recent years, the practice
of only considering majority annotations has been
increasingly criticized and many researchers have

started to advocate for better ways to deal with dis-
agreement between annotators (Basile et al., 2021;
Uma et al., 2021; Plank, 2022; Braun, 2024).

In this article, we propose three different strate-
gies to leverage annotator disagreement during the
training of text classification models: a probability-
based multi-label approach, an ensemble system
approach, and an instruction tuning approach. We
compare these strategies against a baseline model
that is trained on the majority labels derived from
the multiple annotations. We choose two text classi-
fication tasks which inherently entail a high degree
of subjectivity for the evaluation: hate speech de-
tection and abuse detection in conversations. In our
chosen datasets (Toraman et al., 2022; Cercas Curry
et al., 2021), these two tasks exhibit different com-
plexity and difficulty in terms of the label space:
while the hate speech detection dataset contains
binary labels, the abusive conversation detection
dataset is not only annotated with abusive / non-
abusive but also the severity of the abuse.

Our first approach tackles the tasks as a
probability-based multi-label text classification
problem. Instead of predicting specific labels to
one instance, the model provides a probability dis-
tribution. The second approach imitates the pro-
cess of annotation from multiple annotators with an
ensemble system. The ensemble system consists
of many sub-models, each of which is trained on
different labels to capture the diverse viewpoints
embedded in the annotations. Thirdly, we use in-
struction tuning. Specifically, we use a pre-trained
generative model and inject explicit guidance into
the training process to customize the model’s be-
havior. The performance of the proposed models
is compared using cross entropy. To evaluate the
effectiveness of incorporating multiple labels, we
also conduct an online survey. This survey aims to
investigate human preferences between the outputs
generated by the multi-label model and a baseline
model.
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The results show that on the hate speech dataset,
the multi-label method outperforms the ensemble
system and instruction tuning. Conversely, instruc-
tion tuning is the best-performing method on the
abusive conversation dataset. Through multino-
mial test, the outputs from the multi-label model
are considered more reasonable than those from
the baseline model to characterize samples from
the online survey. This proves the effectiveness
of leveraging annotation disagreements for model
training.

2 Related Work

2.1 Sources of Disagreement

Disagreement in annotations can originate from
different sources. Natural language can be inher-
ently complex and interpreted in multiple ways
within a given context (Poesio, 2020). There are
many subjective elements which may add an ad-
ditional layer of intricacy to the understanding of
texts, such as sentiments, opinions or nuanced ex-
pressions. Therefore, it is common that there are
divergent interpretations among annotators. Fur-
thermore, some sentences and even the definition
of labels may contain vague or ambiguous state-
ments (Russell et al., 2008), making it challenging
for annotators to reach an agreement.

However, annotators themselves and their back-
ground can also have significant impact on the an-
notation results (Davani et al., 2022). Through
post-annotation interviews, Patton et al. (2019), for
example, showed that annotators who come from
communities discussed in gang-related tweets are
more likely to rely on their lived experiences in
the process of annotating when compared to gradu-
ate student researchers. This divergence results in
distinct label judgments. Luo et al. (2020) found
that the political affiliation of annotators can signifi-
cantly shape how they assess and annotate political
stances.

2.2 Handling Disagreement

Majority voting involves aggregating annotations
by selecting the label that the majority of anno-
tators agree upon. Majority voting is easy to un-
derstand and implement and tends to perform well
when the annotators share unanimous perspectives
(Uma et al., 2021). However, the employment of
a majority voting method in annotation processes
can unintentionally obscure nuanced viewpoints,
especially for groups that are underrepresented in

annotator pools (Prabhakaran et al., 2021). To ad-
dress this concern, it is important to ensure a di-
verse representation among annotators to foster a
more comprehensive understanding of various per-
spectives, particularly those from underrepresented
demographics (Wan et al., 2023).

Some studies have introduced alternative meth-
ods to majority voting in order to incorporate an-
notator disagreement in model training. Chou and
Lee (2019) modelled the label uncertainty and an-
notator idiosyncrasy simultaneously by using both
hard label (majority voting) and soft label (the
distribution of annotations). The results showed
that the soft label contains useful information that
significantly boosts the model performance. For-
naciari et al. (2021) proposed a multi-task neural
network that was trained on soft label distribution
over annotator labels. By integrating a divergence
measurement between soft label and “true” label
vector into the loss functions, they effectively miti-
gated overfitting and therefore improved model per-
formance. Davani et al. (2022) introduced multi-
annotator models where each annotator’s judge-
ments were regarded as independent sub-task with
a shared common representation of the annotation
task. This approach enables to preserve and model
the internal consistency in each annotator’s label.
It also incorporates the systematic disagreements
with other annotators. Similarly, the network archi-
tecture introduced by Guan et al. (2018) individu-
ally models annotation experts. In this approach,
each expert’s model weight is calculated indepen-
dently, and these individual weights are then aver-
aged to facilitate ensemble recognition. To include
the knowledge from annotators, Fayek et al. (2016)
employed neural networks to build an ensemble
system that consists of many models, with each
model representing one annotator. Then the final
results are obtained by combining the individual
model outputs.

Although the approaches outlined above have im-
proved the performance by leveraging annotation
disagreements, they remained limited to identifying
the majority label. The outputs, in the form of “soft
labels” (probability distribution over labels), were
still aggregated to single labels as final predictions.
There is limited research focusing on evaluating
the effectiveness of embracing multiple labels.

2



3 Datasets

In this section, the two datasets that have been used
in this study will be briefly introduced.

3.1 Hate Speech
The first dataset is the “Large-Scale Hate Speech
Dataset”1 published by Toraman et al. (2022). It
consists of a total of 100,000 tweets (7,000 training,
1,500 validation, and 1,500 testing). Each tweet
in the dataset is annotated by five annotators that
have been selected randomly from a panel of 20
annotators. According to the annotation guidelines
utilized by Sharma et al. (2018), tweets are cat-
egorized as “Hate” if they target, incite violence
against, threaten, or advocate for physical harm
towards an individual or a group of people based
on identifiable trait or characteristic. If tweets hu-
miliate, taunt, discriminate against, or insult an
individual or a group of people, they are annotated
as “Offensive”. In the absence of these criteria, the
tweets are labeled as “Normal” .

3.2 Abuse Conversation
The second dataset is the “Abuse in Conversational
AI” dataset2 (hereinafter referred to as “abusive
conversation dataset”) published by Cercas Curry
et al. (2021). The data was collected from conversa-
tions between users and conversational AI systems,
and consists of 2501 samples as training data, 831
as validation data and 853 as testing data. The data
was annotated using an unbalanced rating scale pro-
posed by Poletto et al. (2019), in which inputs are
labelled on a scale from Not abusive, Ambiguous,
Mildly abusive, Strongly abusive to Very strongly
abusive. This annotation scheme offers insights
into not only the presence of abusive content, but
also the severity of the abuse. In the annotation
process, eight annotators were recruited, and each
example is annotated by a minimum of three anno-
tators.

4 Methodology

4.1 Baseline model
The baseline model for this study is trained on the
“ground truth” label that is aggregated via majority
voting. Given BERT’s (Devlin et al., 2019) no-
table performance in contextual understanding, we

1https://github.com/avaapm/hatespeech/tree/
master/dataset_v1

2https://github.com/amandacurry/convabuse/
tree/main

Figure 1: The framework of model training within the
probability-based multi-label method.

choose it as the pre-trained model. Since the base-
line model outputs a single label, we augment its
architecture by adding a fully connected layer to
the last hidden state, thereby adapting the model
structure to the specific prediction task.

4.2 Probability-based multi-label method

The task of identifying hate speech or abusive con-
versation can be regarded as a multi-label text clas-
sification problem, where a given piece of text can
be associated with one or multiple labels simultane-
ously. Unlike the traditional approaches that assign
one or several exclusive labels to the input text
(Jiang and Nachum, 2020), our model predicts the
probability of each label being associated with the
given text. The approach is illustrated in Figure 1.
The model is trained on the probability distribu-
tion across different labels which is derived from
individual annotations. Like the baseline model,
the multi-label model also is based on BERT but
fine-tuned with different types of target labels.

4.3 Ensemble system

In the annotation process, multiple labels are as-
signed by different annotators. Inspired by this
process, we propose an ensemble system consist-
ing of several sub-models. As shown in Figure 2,
each sub-model is based on a BERT model that
is fine-tuned individually on its respective set of
labels. For each sub-model, the input is the text
from one sample and the output is a multidimen-
sional vector where each dimension corresponds to
one category. After that, this vector is transformed
by the SoftMax function and the dimension with
highest probability is identified as the output of the
sub-model. Finally, the predictions from all sub-
models are combined and converted into a prob-
ability distribution of three- or five-dimensional
vector.

In the abusive conversation dataset, the annota-
tors assigned for each sample are clearly specified

3



Figure 2: Fine-tuning BERT individually as sub-models within the ensemble system.

and identifiable. Therefore, within the ensemble
system, each sub-model represents one specific an-
notator and is trained on that annotator’s labels. By
contrast, in the hate speech dataset, each sample is
labeled by five anonymous annotators. Despite the
anonymity, training a model with such labels can
potentially increase the robustness of sub-models
since it helps to reduce the biases or inconsisten-
cies introduced by individual annotators (Frenay
and Verleysen, 2014). Furthermore, the resulting
labels are likely to reflect a diverse range of per-
spectives and interpretations of the data. Train-
ing sub-models on these diverse annotations can
capture the variability in annotator judgments and
enhance the model’s ability to generalize across
different viewpoints (Audhkhasi and Narayanan,
2013). Since the sub-models can show varying
performances in the training and validation pro-
cesses, typically, the top n (n≥3) best-performing
sub-models are chosen to determine the final out-
put. The ranking is based on their accuracy on the
validation data.

4.4 Instruction tuning

Instruction tuning is the process of fine-tuning
LLMs in a supervised fashion on a dataset con-
sisting of pairs of instructions and outputs. The
key idea is to provide the model with explicit in-
structions to enhance its performance and align it
with specific objectives. Unlike traditional training
approaches where models learn from data alone,
instruction tuning injects explicit guidance into the
training process. This approach allows for explicit
customization of the model’s behavior. In this
study, we ask the model to predict the class of
hate speech or abusive conversation based on the

Figure 3: Fine-tuning LLaMa 2 as a sub-model with
instruction tuning in the hate speech dataset.

Figure 4: Fine-tuning LLaMa 2 as a sub-model with
instruction tuning in the abusive conversation dataset.

input we construct. The input contains the task
description, the instruction, the original text, and
the annotation from one specific annotator (i.e. not
the majority label). The approach of fine-tuning
LLaMa 2 via instruction tuning on the two datasets
is presented in Figure 3 and Figure 4. On the left
sides of the figures are the inputs fed into the pre-
trained model. The input comprises the following
four components: scenario description, instruction,
text input and response.

Like the ensemble system, top n (n≥3) best-
performing sub-models are selected to contribute
to the final predictions.
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Training Validation Testing
Hate speech 0.7613 0.7569 0.7638

Abusive
conversation

0.8861 0.9680 0.9834

Table 1: The average cross entropy of the probability-
based multi-label model on two tasks.

4.5 Evaluation
4.5.1 Cross entropy
The final output of our proposed models is a prob-
ability distribution across different labels, and in
this scenario, a single “ground truth” label is no
longer applicable for model evaluation. Instead,
we use cross entropy to compare the distribution
of annotations with model output. Cross entropy
is one kind of statistical distance which measures
how a probability distribution is different from a
reference probability distribution. In the field of
NLP, it has been used to quantify how well the
model’s predicted distribution matches the annota-
tion distribution (Pavlick and Kwiatkowski, 2019).

4.5.2 Online survey
Using cross entropy to evaluate the effectiveness of
training models with multiple labels against mod-
els that only rely on the majority label is impos-
sible due to the format disparity between the out-
puts generated. To bridge this gap, we conduct
an online survey where participants specify their
preference between annotations generated from the
probability-based multi-label model and the base-
line model. For each dataset, we select 10 samples,
each featuring two annotations. Both annotations
are in the form of probability distributions across
different labels. One is generated from the baseline
model trained with majority labels, which is, how-
ever, used to generate a probability distribution in
the phase of inference. The other one is from the
probability-based multi-label model. This model
has the same structure as the baseline model and
their only difference is the labels they were trained
on. For each sample, participants are required to
indicate which annotation they find is more rea-
sonable to characterize the tweet or the abusive
conversation.

5 Results

5.1 Multi-Label Method
Table 1 show the performance of the multi-label
model on the two datasets. In this approach, the
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Figure 5: Comparison of the ensemble system’s perfor-
mances on two tasks.

model demonstrates superior performance on the
hate speech dataset compared to the abusive con-
versation dataset. In particular, the cross entropy
for the hate speech dataset is 0.7638, while this
value for the abusive conversation dataset is 0.9834.
With a parameter size of 110 million, the multi-
label model benefits from the extensive training
data in hate speech dataset to optimize and align it-
self with the downstream task. In contrast, there are
only 2501 training samples in the abusive conver-
sation dataset, which can easily lead to overfitting
in the process of training. The multi-label model
exhibits relatively consistent losses across train-
ing, validation, and testing data in the hate speech
dataset, indicating a good fit without signs of under-
fitting or overfitting. By comparison, in the abusive
conversation dataset, losses during validation and
testing are noticeably higher than during training.
When the model encounters unseen data in valida-
tion and testing phases, the loss can be relatively
high due to the lack of generalization.

5.2 Ensemble system
Figure 5 shows the ensemble system’s perfor-
mances on the two datasets. In the testing phase,
we select the top-performing sub-models based on
their validation accuracies. The ensemble system
performs better on the abusive conversation dataset
than on the hate speech dataset. Specifically, in
the hate speech dataset, the best performance is
achieved by the top 3 sub-models and the corre-
sponding overall cross entropy loss is 0.9720. Con-
versely, the best overall cross entropy for the abu-
sive conversation dataset is 0.6782, achieved with

5



hate speech abusive conversation
0

0.5

1

1.5

C
ro

ss
E

nt
ro

py

Top 3 Top 4 Top 5 Top 6 Top 7 Top 8

Figure 6: Comparison of instruction tuning’s perfor-
mances on two tasks.

the top 8 (all) sub-models. The ensemble system is
designed to simulate the process of annotation and
has a large parameter size. Despite being trained on
a substantially larger dataset, this method performs
less effectively for the hate speech dataset. In this
dataset, 20 annotators contribute, with each sample
being annotated by five randomly assigned anno-
tators, which means the five annotators for all the
samples are not always the same individuals. As a
result, one single sub-model may struggle to learn
the specific characteristics of each annotator from
the data. By contrast, in the abusive conversation
dataset, there are eight annotators in total and for
each sample it is clearly indicated which annotators
are assigned for the annotation task. In this context,
each sub-model is designed to emulate an individ-
ual annotator. Consequently, the ensemble system
integrates the unique insights from each individual
annotator, as represented by the sub-models.

5.3 Instruction Tuning

Figure 6 shows the performance of the instruction
tuning approach. In this approach, even though
with a considerably smaller training data size, the
model’s performance on the abusive conversation
dataset is significantly better compared to the hate
speech dataset. In the hate speech dataset, the
best performance is achieved by the top 3 sub-
models, with a cross entropy of 1.2445. By contrast,
the lowest cross entropy in the abusive conversa-
tion dataset, achieved by the top 6 sub-models,
is 0.6200. Unlike traditional machine learning or
deep learning algorithms, one of the most evident
advantages of instruction tuning is that it does not

mult
i-l

ab
el

en
sem

ble
sy

ste
m

ins
tru

cti
on

tun
ing

0

0.5

1

1.5

C
ro

ss
E

nt
ro

py

Top 3 Top 4 Top 5

Figure 7: Comparison of different models’ perfor-
mances on the hate speech dataset.

require much training data. Even though there are
only 2501 training samples in the abusive conversa-
tion dataset, it is already sufficient to fine-tune the
model and enable it to grasp the specific patterns
and knowledge within the data. With this limited
dataset, the pre-trained model selectively activates
or deactivates certain neurons in the neural net-
work, which serves an important role in revealing
or concealing some functions embedded in LLaMa
2. Although the hate speech dataset contains a large
amount of training data, the individual samples an-
notated by specific annotators remain unknown,
which presents a challenge for the model in terms
of fitting and learning patterns from the data.

5.4 Comparison

As shown in Figure 7, the multi-label method out-
performs the other approaches on the hate speech
dataset. The reason behind this might be the afore-
mentioned issue in this dataset: the five anno-
tators assigned to each sample are anonymous.
Both the ensemble system and instruction tuning
were trained using the same paradigm, where sub-
models were fine-tuned individually on their re-
spective labels. On the contrary, the multi-label
model only relied on the probability distribution
across different classes as the target, circumventing
the issue with annotator anonymity. Furthermore,
the hate speech dataset is big enough to fine-tune
the BERT model.
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Figure 8: Comparison of different models’ performances on abusive conversation dataset.

Figure 8 shows that on the abusive conversation
dataset the multi-label method performs worst. The
size of this dataset is relatively small, which can re-
sult in overfitting during fine-tuning. The ensemble
system consists of sub-models, with each tailored
to predict annotations from a specific annotator.
With multiple sub-models making their own deci-
sions independently and contributing to the final
prediction, the ensemble system can mitigate the
bias brought by overfitting. Since instruction tun-
ing does not have a high requirement for dataset
size, it performs slightly better than the ensemble
system.

5.5 Online survey

In exploring the probability distribution preference,
we recruited 36 participants for the online survey.
The multinomial test (Read and Cressie, 2012) is
employed since there are three possible preference
options. The details of the results are outlined in Ta-
ble 2. From this table, the multinomial tests for the
multi-label model on two datasets are statistically
significant, with the p-value of 0.0000. This means
there is a notable disparity among the three cate-
gories being compared. Individuals generally favor
the multi-label model as a more reasonable repre-
sentation to characterize tweets or conversations.
The results indicate the effectiveness of leveraging
annotation disagreements in model training.

6 Conclusion

In this paper, we proposed and compared three ap-
proaches to incorporate diverse annotations in the
training of ML models: a probability-based multi-

label method, an ensemble system, and instruction
tuning. All three approaches take the individual
labels from all annotators into account for model
training in different ways, rather than only depend-
ing on an assumed “ground truth” label. In this way,
the output includes a rich diversity of perspectives
from annotators. We applied the proposed mod-
els on two datasets, which correspond to two tasks:
hate speech detection and abuse detection in conver-
sational AI. The two datasets show discrepancies
in terms of data size, classification difficulty, the
number of annotators involved in each sample, and
their anonymity levels. Results show that on the
hate speech dataset, the multi-label method demon-
strates the highest performance among the three
models, while instruction tuning achieves the low-
est loss on the abusive conversation dataset. Lastly,
an online survey was conducted to evaluate the
performance of the probability-based multi-label
model in comparison to the baseline model. The
online survey investigated individuals’ preference
between the distributions generated from the multi-
label model and the baseline model. The evaluation
of the survey results showed that the distribution
generated from the multi-label model is considered
more reasonable to characterize the texts compared
to the baseline model. In the future, we would like
to explore some methods or techniques to mitigate
the class-imbalanced issue in the dataset. For exam-
ple, there have been many popular algorithms that
contribute to a relatively class-balanced dataset by
over sampling (Chawla et al., 2002) or down sam-
pling (Wilson, 1972). We would also like to work
on investigating automatically generated prompts.
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Hate speech Abusive conversation
Preference Counts Proportion P-value Counts Proportion P-value
Baseline 118 0.3278 0.6078 152 0.4222 0.0003
Multi-label model 198 0.5500 0.0000 194 0.5389 0.0000
No difference 44 0.1222 1.0000 14 0.0389 1.0

Table 2: Multinomial test for probability distribution preference on two datasets.

Recent research has demonstrated that a concrete
prompt, which consists of several discreate tokens,
may not always be the most effective prompt to
instruct the behavior of the model (Liu et al., 2023).
Conversely, continuous embeddings of prompts,
which might lack immediate human interpretabil-
ity, make sense for the model itself (Li and Liang,
2021; Subramani et al., 2019).

Limitations

There are some limitations to the experiments.
Firstly, the ensemble system showed to be not suit-
able for the hate speech dataset, where the five an-
notators assigned to each sample are not fixed. In
this dataset, each set of annotations used for train-
ing a sub-model can comprise annotations from
multiple individuals. As a result, it becomes im-
possible for the sub-models to capture the specific
characteristics of each annotator embedded in the
annotations.

Secondly, both datasets in this study suffer from
class-imbalanced problem, which can have an ad-
verse impact on model training. When trained on
a class-imbalanced dataset, the model primarily
focuses on the samples from the majority class
and neglect those from the minority class, as that
is an efficient strategy for minimizing the train-
ing loss. Another limitation is the inconsistency
among annotators, which can introduce noise into
the dataset and weaken model performance. Since
our dataset lacked identifiable annotators, it was
not possible to model individual annotator bias or
assess inter-annotator agreement comprehensively.
This constrains our ability to account for subjective
variations in labeling.

Thirdly, we only leverage manually created
prompts, which may introduce subjectivity and
bias based on the prompt maker’s perspective (Tian
et al., 2023). It has been proved that manually
created prompts suffer from a high degree of in-
stability and a minor change in the prompt can
result in substantial discrepancies in the model’ s
performance (Liu et al., 2023).
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Abstract

In this paper, we conduct an empirical study
designed to systematically evaluate the efficacy
of deep learning approaches in Native Lan-
guage Identification (NLI) for native and non-
native Arabic speakers. Specifically, we utilize
three models: CAMeLBERT, AraBERTv0.2,
and ARBERTv2. Our analysis is structured
around two classification scenarios: binary clas-
sification and multi-class classification. This
methodological framework allows us to com-
prehensively assess the performance of each
model for the designated task.

1 Introduction

Native Language Identification is a specialized area
within natural language processing (NLP) focused
on automatically determining an individual’s first
language (L1) or mother tongue based on their
written or spoken text in a second language (L2).
This field involves the analysis of various linguistic
features—including vocabulary usage, syntax, and
stylistic patterns—to deduce the most likely native
language of a writer or speaker. This process is
predicated on the hypothesis that linguistic charac-
teristics of the mother tongue often manifest in the
acquisition and use of a second language, a phe-
nomenon known as language transfer (Zampieri
et al., 2017).

NLI offers a range of practical applications
across diverse fields: Authorship Identification (Au-
thorship Attribution) (Jarvis and Paquot, 2015),
Author Profiling (Estival et al., 2007), Forensic
Linguistics, (Mohammadi et al., 2017), Human-
machine voice interface applications (Qian et al.,
2017), Second Language Acquisition (SLA) (Mal-
masi and Dras, 2017b), Educational Technology
Development (Laufer and Girsai, 2008), Market-
ing (Chen et al., 2017), and Security (Malmasi and
Dras, 2017a).

In the literature, most research on NLI has fo-
cused on integrating linguistic features with ma-

chine learning methods (Tetreault et al., 2013).
Key linguistic features analyzed include part-of-
speech (POS) tagging (Gebre et al., 2013), charac-
ter n-grams (Kulmizev et al., 2017), spelling errors
(Kyle et al., 2015), and syntactic features (Wong
and Dras, 2011). Commonly employed machine
learning techniques in this domain include Naïve
Bayes (NB) and Support Vector Machines (SVM).
This combination leverages both detailed linguistic
analysis and advanced computational models to ef-
fectively predict the native language of individuals
from their second language texts.
The objective of our study is to conduct a series
of experiments to investigate the efficacy of deep
learning approaches in NLI for Arabic language
learners. We explore this through two classifi-
cation scenarios: binary classification and multi-
class classification. To this end, we employ three
models based on Bidirectional Encoder Repre-
sentations from Transformers (BERT): CAMeL-
BERT (Inoue et al., 2021), AraBERTv0.2 (An-
toun et al., 2020), and ARBERTv2 (Abdul-Mageed
et al., 2021). These models are specifically imple-
mented to assess the contribution of deep learning
techniques in accurately identifying the native lan-
guages of Arabic language learners.
The structure of this paper is organized as follows:
Section 2 reviews related work in NLI, offering
background and context for our study. Section 3
describes the methodology and datasets used in our
experiments, detailing the computational models,
analysis techniques, and evaluation of each model’s
performance across various classification scenarios.
Section 4 discusses the findings. Finally, Section
5 concludes the paper and suggests potential direc-
tions for future research in this field.

2 Literature Review

Like all other topics specific to natural language
processing, research in NLI was focused essentially
on learning English. However, in recent years a
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number of studies have focused on other languages
as Chinese, Norwegian, Portuguese and Arabic.

2.1 English Learning Language
(Tetreault et al., 2012) conducted a pioneering
study on the use of classifier ensembles for NLI.
The study employed an ensemble of logistic re-
gression learners, utilizing a diverse set of fea-
tures including character and word n-grams, func-
tion words, parts of speech, spelling errors, and
writing quality markers. For syntactic features,
they explored the use of Tree Substitution Gram-
mars and dependency features obtained using the
Stanford parser. They also proposed incorporat-
ing language models into NLI and used language
model perplexity scores based on lexical 5-grams
from each language in their corpus. The ensem-
ble model achieved accuracies, with 90.1% on the
ICLE (Granger et al., 2009) and 80.9% on the
TOEFL11 corpus (Blanchard et al., 2013), respec-
tively.
(Lotfi et al., 2020) proposed a deep generative lan-
guage modelling (LM) approach to NLI. Their ap-
proach is to fine-tune a GPT-2 model separately
on texts written by the authors with the same L1,
and assigning a label to an unseen text based on
the minimum LM loss with respect to one of these
fine-tuned GPT-2 models. They evaluated their ap-
proach using two datasets, TOEFL11 and ICLE,
achieving an accuracy of 86.6% and 94.2% respec-
tively.
(Uluslu and Schneider, 2022) described ProDAPT,
transformer adapters based on deep generative
model, which is considered as an alternative
lightweight fine-tuning strategy that achieves equal
performance to full fine-tuning on most tasks. In
terms of performance, their model achieved 82.4%
accuracy on TOEFL11 corpus.

2.2 Arabic Learning Language
(Malmasi and Dras, 2014) presented the first appli-
cation for NLI to Arabic learners, based on a super-
vised multi-class classification approach, by com-
bining three syntactic features (CFG production
rules, Arabic function words and Part-of-Speech n-
grams. To perform multi-class classification, they
used SVM. The system achieves an accuracy of
41% on ALC Corpus.
(Mechti et al., 2020) studied the impact of auto-
matic classification using some data statistically ex-
tracted from a source corpus, to detect the mother
tongue of Arabic learners. They combined three

syntactic features which are: Part of speech n-
grams, function words and context-free grammar
production rules. For the classification, the LIB-
SVM2 was used, as variant of SVM. For training
and evaluation, they opted for Arabic Learner Cor-
pus, in which their model obtained an accuracy of
45%.
(Ionescu, 2015) presented a study based on a ma-
chine learning method that works at the character
level, using a kernel based on Local Rank Distance
(LRD). The resulting model of this combination
was trained and tested on ALC, obtained an accu-
racy score of 50.1%.

2.3 Other Learning Languages

(Malmasi et al., 2015) proposed NLI experiments
on Norwegian language, by employing a super-
vised multi-class classification approach, which
takes into consideration three syntactic feature
types: function Words, part-of-Speech n-grams and
mixed POS-function word n-grams. As a dataset
for training and evaluation they used the ASK Cor-
pus (Tenfjord et al., 2006). The model achieved an
accuracy score of 78.6%.
(Remnev, 2019) developed a model for Russian
Native Language Identification, based on the sup-
port vector method and the TF-IDF metric. To
train and evaluate the proposed model, he used the
Russian Learner Corpus. In terms of performance,
the adopted approach achieved an accuracy score
of 80%. (Malmasi et al., 2018) presented a study
about native Language Identification for learners of
Portuguese (as L2 Language). The used approach
is a combination of linguistic features and Machine
Learning. The authors defined three features which
are: Function words, Context-free grammar pro-
duction rules and Part-of-Speech (POS) tags. They
also utilized a standard multi-class classification
approach, by using linear Support Vector Machines.
For the dataset, they used NLI-PT (del Río Gayo
et al., 2018). The proposed model attained an accu-
racy of 54.1% .
(del Río, 2020) investigated the impact of different
linguistic features in NLI for L2 Portuguese. For
that, she defined two types of lexical features: one
includes all the words in the text, and the other one
includes all the words except nouns and adjectives.
In addition, other morphological and syntactic fea-
tures have been used, including: POS, context-free
grammar (CFG) production rules and dependency
triplets. For the experiment, she used 04 classifiers,
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which are: Multinomial Logistic Regression, SVM,
Ridge Regression and Multi-Layer Perceptron clas-
sifier, which have been trained and tested on the
NLI-PT dataset. In terms of performance, the MLP
classifier achieved the best accuracy of 66%.
(Uluslu, 2023) presented an application of NLI
specifically for Turkish language learners. The ap-
proach employed a combination of three syntactic
features: Context-Free Grammar (CFG) produc-
tion rules, part-of-speech n-grams, and function
words. The study used a standard supervised multi-
class classification method, where a linear Support
Vector Machine (SVM) was applied for classifica-
tion. Feature vectors were created using a TF-IDF
weighting scheme. The Turkish Learner Corpus
(TLC) (Golynskaia, 2022), was utilized to evaluate
the system’s performance. By combining the three
features, the proposed system achieved an accuracy
score of 44.2%.

3 Experimental Methodology

3.1 Data

For our experiment, we used the Arabic Learner
Corpus (ALC) (Alfaifi et al., 2014). The Corpus
has been used for various studies in language learn-
ing and computational linguistics focusing on Ara-
bic. It comprises a collection of written and spoken
materials produced by learners of Arabic, which are
used for different types of linguistic research and
language teaching tool development. The dataset
was compiled during the years 2012 and 2013. It
comprises 282,732 words and consists of 1585
texts, encompassing both written and spoken con-
tent. These texts were generated by a total of 942
students learning Arabic, representing 67 nationali-
ties and originating from 66 distinct mother tongue
backgrounds. In addition, ALC includes 26 vari-
ables as metadata elements, 12 for the learner and
14 for the text.

3.2 Models

The aim of our research is to examine the impact
of various pre-trained Arabic BERT models by ex-
ploring different combinations of classification task
related to native language identification.
To achieve this, we fine-tuned 03 models, including
AraBERTV0.2, ARBERTv2 and CAMeLBERT Us-
ing Arabic Learner Corpus. Each model was used
to execute 02 Scenarios, which are: Binary classifi-
cation and Multi-class classification.
Our choice of these models was made for a num-

ber of reasons: they have been specifically pre-
trained on large-scale Arabic corpora, which helps
them capture the nuances and intricacies of Arabic.
They have demonstrated competitive performance
on various NLP tasks (Sentiment Analysis, Lan-
guage Identification, Named Entity Recognition,
Fake News Detection, etc). Their architectures and
training procedures are designed to achieve state-
of-the-art results on a range of Arabic language
understanding tasks, making them suitable choices
for classification tasks as well. These models often
come in different version (Large/base) and variants
(MSA/Dialect).

It’s also important to mention that even though
the 03 models were developed based on the same
architecture (BERT), there are a number of distin-
guishing features.

Figure 1: Configurations of used models.

Parameter Value
Epochs 05
Batch 08

Learning rate 4.87 e-5
weight decay 0.01

seed 20

Table 1: Hyper-parameters values.

3.2.1 Binary Classification
Binary classification is a fundamental task in ma-
chine learning where the goal is to classify input
data into one of two possible categories or classes
(Er et al., 2016). To do this, We carried out two ex-
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periments, the first concerning the identification of
Arabic as the mother tongue of learners, in order to
fine-tuning our models, we have divided our dataset
into two distinct categories. The first category is
labelled "1", which concerns texts whose authors
native language is Arabic. The rest of the texts
constituting the second category will be labelled
"0" (Table 2 summarises the different test results).
The second experiment mirrors the first, but in this
instance, we handle each of the six languages in-
dividually, applying the same process to each one
(the result is given in the table 3).

3.2.2 Multi-class Classification
Multi-class classification involves classifying data
into more than two groups/categories (Fields et al.,
2024). Unlike binary classification, where the
model is trained to predict only one of the two
classes of an item, a multi-class classifier is trained
to predict one of the three or more classes of an
item. In our case, we set up two experiments, the
first for detecting Arabic language learners’ mother
tongues and the second dealing with the same task
based on level of study.

• Multi-class classification for detecting Ara-
bic learners’ mother tongue: The corpus
comprises 66 distinct mother tongue represen-
tations. However, the number of representa-
tive texts varies from one Mother tongue to
another, so we kept only languages with a
good quantitative representation in terms of
texts, as shown in figure 2. The results of this
experiment are given in table 3.

Figure 2: Number of texts produced by Arabic language
learners with a mother tongue other than Arabic (ALC
corpus).

• Multi-class classification based on Level
of Study: The ALC contains 05 cate-
gories of learners according to their level of

study: secondary school, general language
course, diploma programme (advanced lan-
guage course), Bachelor degree and Master
degree. Learners of both the Bachelor degree
and Master degree were majoring in Arabic.
Figure 3 gives an estimate of the percentage
of each level of study in the ALC. For re-
sults, table 5 presents a global view of the
performance of three models in detecting the
mother tongue based on levels of study, of-
fering a comparative understanding of their
effectiveness in this classification task. The
Table 6 offers nuanced insights into its ability
of the CAMeLBERT model to capture spe-
cific mother tongue differences at each level,
providing a more refined understanding of its
classification precision in this context.

Figure 3: Corpus distribution by Level of Study.

4 Discussion

After reviewing the results, we found that the three
models achieved good results for binary classifi-
cation, but in the Multi-class classification there
was a significant decrease in the effectiveness of
the models, which is probably due to the fact
that deep learning models such as CAMeLBERT,
AraBERTv0.2 and ARBERTv2 have differences in
performance when applied to multi-class classifica-
tion task due to several reasons:

• Model structure and training data: These mod-
els, being variants of BERT (bi-directional en-
coding representations of transforms), are pri-
marily designed to capture complex patterns
in text through deep bi-directional represen-
tations. However, the effectiveness of these
models is highly dependent on the quality
and diversity of the training data. For Arabic
with many dialects and a rich morphological

14



Metrics CAMeLBERT AraBERTv0.2 ARBERTv2
Accuracy 97.71% 97.26% 96.34%
Precision 96.51% 95.62% 94.37%

Recall 97.14% 96.84% 95.57%
F1 96.82% 96.21% 94.95%

Table 2: Binary Classification, One-versus-All (Arabic versus the six other languages).

Metrics CAMeLBERT AraBERTv0.2 ARBERTv2
Chinese 98.32% 96.14% 94.43%

Urdu 97.66% 95.89% 95.09%
Malay 96.15% 97.23% 95.77%
French 97.73% 98.02% 96.41%
Fulani 98.18% 97.86% 95.31%
English 97.06% 96.23% 93.86%

Table 3: Binary Classification One-versus-One (Arabic/Non-Arabic).

Metrics CAMeLBERT AraBERTv0.2 ARBERTv2
Accuracy 87.21% 83.10% 81.27%
Precision 64.74% 33.49% 28.67%

Recall 61.74% 40.59% 35.91%
F1 60.43% 36.45% 30.58%

Table 4: Multi-class detection of mother tongue learners’.

Metrics CAMeLBERT AraBERTv0.2 ARBERTv2
Accuracy 80.82% 75.79% 74.42%
Precision 80.00% 77.74% 62.92%

Recall 63.22% 50.02% 48.41%
F1 66.13% 53.55% 50.86%

Table 5: Global view on multi-class classification performance based on Level of study using CAMeLBERT,
AraBERTv0.2 and ARBERTv2.

Metrics Precision Recall F1 Score
Secondary school 58.64% 40.44% 48.45%

General language course 60.08% 45.58% 52.19%
Diploma programme 62.12% 49.24% 56.78%

Bachelor degree 78.45% 54.97% 63.32%
Master degree 80.25% 57.48% 66.45%

Table 6: Detailed scores for multi-class classification based on Level of study using CAMeLBERT.

structure, models trained on Standard Arabic
may not perform well when faced with dialect-
related variations unless they are specifically
tuned to diverse datasets that include such vari-
ations.

• Task complexity: Multi-class classification
task are inherently more complex than bi-
nary classification. In multi-class classifi-
cation, the model must choose the correct
class among several possible classes, which in-
creases the chance of error, especially if some
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classes are underrepresented in the training
data. Multi-class classification adds another
layer of complexity since each sample may
belong to multiple classes simultaneously, re-
quiring the model to understand and predict
all applicable classes.

• Imbalance between categories: Often, in
multi-category settings, some categories con-
tain far more examples than others. This im-
balance can lead to models that are biased
towards more frequent categories, reducing
their overall effectiveness across less frequent
categories. Similarly, in multi-class settings,
some classes may be repeated more frequently
than others, which can skew the model’s pre-
dictions.

• Fine-tuning and adaptation: While models
like AraBERTv0.2, CAMeLBERT, and AR-
BERTv2 are pre-trained on a large set of mod-
els, their performance on specific tasks such as
multi-class classification or multi-label clas-
sification can depend on how well they are
tuned. Fine-tuning on a task-specific dataset
is critical, but without sufficient task-specific
data or proper organization, models can over-
adapt to the training data and perform poorly
on unseen data.

• Linguistic nuances: Arabic language process-
ing poses unique challenges due to the rich-
ness of the Arabic language in terms of lin-
guistic form and the presence of many ho-
mographs (words that are spelled the same
way but have different meanings). Effective
processing of these nuances requires either
specialized pre-processing or structures de-
signed to better capture these aspects, which
can be a limitation of general-purpose mod-
els such as AraBERTv0.2, CAMeLBERT, and
ARBERTv2 when they are not modified for
such details.

5 Conclusion

In this paper, we conducted a comparative study of
deep learning models for a classification task using
the Arabic Language Learners’ Corpus (ALC).
We evaluated three models based on the BERT
architecture: CAMeLBERT, AraBERTv0.2, and
ARBERTv2. These models were fine-tuned and
tested on two classification scenarios: binary and

multi-class.
The experimental results indicate that all three
models perform exceptionally well in binary
classification, with F1 scores of 96.82% for
CAMeLBERT, 96.21% for AraBERTv0.2, and
94.95% for ARBERTv2. However, the perfor-
mance decreased for multi-class classification.
CAMeLBERT achieved the highest performance
in both subcategories: 60.43% for categorization
based on mother tongue and 66.13% for that based
on school level. In contrast, the F1 score related to
the other two models did not exceed 37% for the
first subcategory and 54% for the second one.

The noticeable decrease in performance of the
three models in the multi-class classification task
can be attributed to two main factors: firstly, the
size of the corpus used and the disparities in the
number of texts between languages and grade lev-
els; and secondly, the increased complexity of these
classifications compared to binary classification.
Comparing the three models, we found that
CAMeLBERT’s outperforms ARBERTv2 and
AraBERTv0.2. This can be ascribed to several pa-
rameters: an extensive and diverse training corpus,
effective fine-tuning of tasks, architectural innova-
tions, and robust benchmark results.
For future work, we plan to incorporate additional
linguistic features such as syntactic and Part of
speech tagging to enhance the models’ efficiency.
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Abstract

Recently, neural vocoders have been employed
in end-to-end speech synthesis for convert-
ing the intermediate spectral representations
to the corresponding speech waveform. In
this paper, two generative adversarial network
(GAN) based vocoders, Parallel WaveGAN
and HiFi-GAN are proposed for Myanmar end-
to-end speech synthesis and subjective eval-
uations are conducted to compare the perfor-
mance of the models. The subjective evalua-
tion results show that both models trained on
small Myanmar speech dataset achieve the high
fidelity speech synthesis with fast inference
speed, showing the ability of generalizing to the
mel-spectrogram inversion of unseen speakers.
Specifically, in end-to-end speech synthesis,
Tacotron2 with HiFi-GAN vocoder achieves
state-of-the-art performance resulting in a 4.37
mean opinion score (MOS) for Myanmar lan-
guage.

1 Introduction

Text-to-speech (TTS) models focus on synthesizing
intelligible and natural sounding speech which are
indistinguishable from the original human speech.
For the past few decades, statistical parametric
speech synthesis (SPSS) has been the dominant
technology for TTS (Tokuda et al., 2013; Qian
et al., 2014; Wu et al., 2015; Zen and Sak, 2015).
However, SPSS needs a complex pipeline for get-
ting language dependent good linguistic features
and that is time consuming and very expensive.
This paper is a part of the ASEAN IVO 2023
project, "Spoof Detection for Automatic Speaker
Verification", which aims to enhance the security
and reliability of speaker verification by effectively
detecting spoofing attacks.

In recent years, end-to-end neural TTS models,
such as Tacotron (Wang et al., 2017), Tacotron2
(Shen et al., 2018), Transformer based TTS (Li
et al., 2019), FastSpeech (Ren et al., 2019), Fast-
Speech2 (Ren et al., 2020), have emerged to sim-

plify traditional speech synthesis pipeline and their
synthesized speeches can be comparable with hu-
man recordings. The end-to-end neural TTS is typi-
cally composed of two main processing models, the
spectral representation generator and the vocoder.
The first one generates the spectral representation
such as mel-spectrograms given the input text or
phoneme, and the vocoder converts the speech
waveforms from the generated mel-spectrograms.
Griffin Lim algorithm (Griffin and Lim, 1984), the
classic phase estimation method is generally used
for speech waveform reconstruction.

Recently, in the context of end-to-end TTS
synthesis, the separately trained neural vocoders
such as WaveNet (Van Den Oord et al., 2016),
Parallel WaveNet (Oord et al., 2018), MelGAN
(Kumar et al., 2019), WaveGlow (Prenger et al.,
2019), Parallel WaveGAN (Yamamoto et al.,
2020) and HiFi-GAN (Kong et al., 2020) have
demonstrated remarkable capabilities in generat-
ing natural-sounding synthetic speech. Inspired by
this factor, in this work, the advantage of neural
vocoder is combined into the Myanmar end-to-end
speech synthesis to achieve both efficient and high-
fidelity speech synthesis.

We trained two generative adversarial network
based neural vocoders, Parallel WaveGAN and
HiFi-GAN on Myanmar speech dataset because of
their remarkable performance on generating wave-
form at fast inference speed while maintaining the
quality of speech comparative to the other neu-
ral vocoders. To confirm the effectiveness of the
vocoders, experiments were conducted by utiliz-
ing them in different conditions. We examined
the ability of each vocoder in ground truth mel-
spectrogram inversion, generalization on unseen
speakers, and Myanmar end-to-end speech synthe-
sis. Audio samples are available on this website1.

1http://nlpresearch-ucsy.edu.mm/subeval-voc.html
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Figure 1: A proposed model of End-to-End TTS with
GAN-based neural vocoders

2 Myanmar End-to-End Speech Synthesis

For Myanmar language, statistical parametric
speech synthesis with different input linguistic fea-
tures have been done on Myanmar speech synthesis.
In HMM-based Myanmar TTS (Thu et al., 2015),
CART-based Myanmar TTS (Hlaing and Pa, 2018),
DNN-based Myanmar speech synthesis (Hlaing
et al., 2018), LSTM-RNN-based Myanmar speech
synthesis (Hlaing et al., 2019; Hlaing and Pa, 2020,
Oo et al., 2020), we found that traditional speech
synthesis pipeline and traditional vocoder such as
WORLD vocoder (Morise et al., 2016) were used.

The first end-to-end Myanmar TTS System
based on Tacotron was introduced in (Win et al.,
2020) and Tacotron2 based end-to-end Myanmar
TTS with phone-level embedding was found in
(Qin et al., 2020). However, there is no research
on the effectiveness of neural vocoder specifically
trained on Myanmar speech dataset for Myanmar
end-to-end TTS. To the best of our knowledge, this
is the first effort to explore the advance of neural
vocoder in Myanmar end-to-end TTS.

Figure 1 shows our proposed model of Myan-
mar end-to-end TTS with generative adversarial
network based neural vocoders. In this work, a
Tacotron2 (Shen et al., 2018) model was trained for
the purpose of text to mel-spectrogram generation
and the generated mel-spectrograms were given
into our separately trained GAN-based vocoders,
including Parallel WaveGAN and HiFi GAN as
the input conditions. Tacotron2 uses character se-
quences as input, but our model was trained on
phoneme sequences to alleviate the mispronuncia-
tion problems of rarely occurred words in the small
training set.

3 GAN based Neural Vocoder

The first attempt of applying GAN (Goodfellow
et al., 2014) to the synthesis of raw-waveform au-
dio is WaveGAN (Donahue et al., 2018) and fol-
lowed by many variants of GAN-based vocoders
such as MelGAN (Kumar et al., 2019), StyleMel-

GAN (Mustafa et al., 2021), Multi-band Mel-
GAN (Yang et al., 2021), Parallel WaveGAN (Ya-
mamoto et al., 2020) and HiFi-GAN (Kong et al.,
2020). GAN-based vocoders show significant per-
formance over autoregressive models in the speed
and quality of synthesized speech (AlBadawy et al.,
2022). Among the different variants of GAN-based
vocoders, we selected to train the vocoders using
Parallel WaveGAN and HiFi-GAN for Myanmar
end-to-end speech synthesis.

3.1 Parallel WaveGAN
The Parallel WaveGAN (Yamamoto et al., 2020) is
a distillation-free, fast, and small-footprint wave-
form generation method using GAN. Though
a WaveNet-based model conditioned on mel-
spectrogram is used as the generator, the model
is non-autoregressive at both training and inferenc-
ing. The generator is trained by jointly optimiz-
ing the multi-resolution short-time Fourier trans-
form (STFT) auxiliary loss Laux and the waveform-
domain adversarial loss Ladv.

LG = Laux(G) + λadvLadv(G,D) (1)

where λadv represents the hyperparameter that bal-
ances the two loss terms.

Meanwhile, the discriminator is trained to cor-
rectly classify the generated sample as fake and
simutaneously ground truth sample as real with the
following equation:

LD = Ex∼p[(1−D(x))2] + Ez[D(G(z))2] (2)

where x denotes the target waveform, p denotes its
distribution, and z denotes the input white noise.

3.2 HiFi-GAN
HiFi-GAN has been composed of one generator
and two discriminators containing multi-scale dis-
criminator (MSD) and multi-period discriminator
(MPD) (Kong et al., 2020). The generator of HiFi-
GAN is a fully convolutional neural network with
multi-receptive field fusion (MRF) module that can
perceives the various length of patterns in parallel.
The final loss terms for the generator in HiFi GAN
is as follows:

LG = LAdv(G;D) + λfLF (G;D) + λmLM (G)
(3)

where LF and LM are the feature matching loss
and mel-spectrogram loss, respectively.

In the discriminator part, each sub-discriminator
of MPD handles equally spaced samples of input
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audio and MSD was used to capture consecutive
patterns and long-term dependencies. The discrim-
inator with respect to the sub-discriminators of
MPD and MSD is as follows:

LD =
K∑

k=1

LAdv(Dk;G) (4)

where Dk represents k-th sub-discriminator in
MPD and MSD.

4 Experiments

The dataset and the experimental setups of the mod-
els are presented in this section. The training of
both GAN-based vocoders had been conducted
on the open-source implementation from this site2

and Tacotron2 model was implemented using ESP-
net3, an end-to-end speech processing toolkit. Each
vocoder was trained on a single Nvidia Tesla K80
GPU and Tacotron2 model was trained on two
Nvidia Tesla K80 GPUs.

4.1 Dataset

For training our proposed end-to-end pipeline in-
cluding Tacotron2 model, Parallel WaveGAN and
HiFi-GAN vocoders, we used a Myanmar phonet-
ically balanced speech corpus (PBC) (Thu et al.,
2015) built from Basic Travel Expression Corpus
(BTEC) (Kikui et al., 2003) recorded by a female
native speaker. In total, 3,800 utterances were uti-
lized for training, 100 utterances each for validation
and testing. The sampling rate of speech data was
16kHz.

4.2 Experimental setup of Parallel WaveGAN

For training the Parallel WaveGAN on Myanmar
speech dataset, we used 80-band log-mel spectro-
grams with band-limited frequency range (80 to
7600 Hz) as the input auxiliary features for wave-
form generation models. The same configuration
setting for the generator and the discriminator net-
works with the original paper (Yamamoto et al.,
2020) was used in our work. Weight normaliza-
tion was applied to all convolutional layers of both
generator and discriminator. The hyperparameter
λadv in Equation 1 was also set to 4.0. The model
was trained for 200K steps and the discriminator
was fixed for the first 100K steps, and then both
the generator and the discriminator were trained

2https://github.com/kan-bayashi/ParallelWaveGAN
3https://github.com/espnet/espnet

jointly. We set the length of each audio clip to
25600 and mini-batch size to 6. The generator was
set with the initial learning rate of 1 × 10−4 and
the discriminator with the initial learning rate of
5× 10−5.

4.3 Experimental setup of HiFi-GAN

Among the variations of the generators in original
source of HiFi-GAN(Kong et al., 2020), the con-
figuration of HiFi-GAN V1 was applied to train
the model on Myanmar speech dataset. We used
80-band log-mel spectrograms with band-limited
frequency range (80 to 7600 Hz) as input condi-
tions. The FFT and hop size were set to 1024 and
256, respectively. Adam (Kingma and Ba, 2014)
optimizer with β1 = 0.5, β2 = 0.9 was used for
training both the generator and the discriminator
networks, and the initial learning rate was set to
2× 10−4. The batch size was 16 and the length of
each audio clip was 8192. The model was trained
for only 200K steps, the same steps used for train-
ing the Parallel WaveGAN model. This is very
small compared to the training steps used in the
original paper (2.5M steps).

4.4 Experimental setup of Tacotron2

Tacotron2 (Shen et al., 2018), a recurrent sequence-
to-sequence feature prediction network with at-
tention that maps phoneme embeddings to mel-
spectrograms, was trained on the dataset mentioned
in section 4.1 with a batch size of 32. The model
was trained for 125K steps with Adam optimizer
(Kingma and Ba, 2014) and a learning rate of
1 × 10−3. In the training process, the guided at-
tention loss was used to promote a fast and robust
attention learning.

5 Results

To examine the performance of our trained Par-
allel WaveGAN and HiFi-GAN models, three
mean opinion score (MOS) tests were performed
for ground truth mel-spectrogram inversion, mel-
spectrogram inversion for unseen speakers, and
end-to-end Myanmar speech synthesis tasks. Ten
native non-expert speakers participated in all MOS
tests. Subjects were given the synthesized speeches
of two models and ground truth audio, and they
had to rate the quality of synthesized speeches on
a scale of 1 to 5 where 1 is bad and 5 is excellent.
The speech samples were randomly ordered.
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Model MOS RTF
Ground Truth 4.69 ± 0.10 -
Parallel WaveGAN 4.49 ± 0.12 0.015
HiFi-GAN 4.59 ± 0.11 0.011

Table 1: Comparison of MOS with 95% confidence
intervals and inference speed (RTF) in ground truth mel-
spectrogram inversion. Note that RTF is based on the
average inference time of 100 utterances in evaluation
set on a single Nvidia Tesla K80 GPU.

5.1 Ground Truth Mel-spectrogram Inversion
The MOS test and speed measurement with Real
Time Factor (RTF) were performed to evaluate
the performance of Parallel WaveGAN and HiFi-
GAN models in terms of the quality of synthesized
speeches and the inference speed. 10 utterances
randomly selected from the testing set, were used
for MOS test of mel-spectrogram inversion and the
results are shown in Table 1. It can be clearly seen
that both models can synthesize the high quality
speech comparable to the ground truth speech. Re-
markably, HiFi-GAN model achieves the highest
MOS score 4.59 with a gap of 0.10 compared to the
ground truth audio score 4.69 and this means that
the synthesized speech is almost indistinguishable
from the original speech. The RTF results indicate
that both models get very small RTF values. Specif-
ically, HiFi-GAN model gives the lowest RTF value
(0.011) which implies that the model can synthesize
speech 99.9 times faster than real-time on single
Nvidia Tesla K80 GPU.

5.2 Generalization to Unseen Speakers
In this MOS test, 10 utterances of two unseen fe-
male speakers were utilized for investigating the
ability of our trained models on generalizing to
unseen speakers. However, we did not conduct an
additional training for each model on multi-speaker
dataset for this task. The MOS results for the mel-
spectrogram inversion of the unseen speakers are
shown in Table 2. The results show that Parallel
WaveGAN and HiFi-GAN achieved 4.42 and 4.48
scores, respectively, indicating that both models
can generalize well to unseen speakers.

5.3 End-to-End TTS
To verify the effectiveness of the Parallel Wave-
GAN and HiFi-GAN models in Myanmar end-to-
end TTS pipeline, each model was integrated to
the Tacotron2 model mentioned in section 4.4 as
the vocoder. In the inferencing step, the Tacotron2

Model MOS
Ground Truth 4.68 ± 0.12
Parallel WaveGAN 4.42 ± 0.12
HiFi-GAN 4.48 ± 0.11

Table 2: Comparison of MOS with 95% confidence
intervals for generalizing on unseen speakers

Model MOS
Ground Truth 4.68 ± 0.15
Tacotron2 + Parallel WaveGAN 4.33 ± 0.13
Tacotron2 + HiFi-GAN 4.37 ± 0.13

Table 3: Comparison of MOS with 95% confidence
intervals in end-to-end Myanmar speech synthesis with
neural vocoders

model convert the input phoneme sequences to the
corresponding mel-spectrograms, and by inputting
generated mel-spectrograms to vocoder models,
they generate the corresponding speech waveform.
To evaluate the quality of the generated speech sam-
ples, we conducted MOS test and the results are
presented in Table 3. It can be observed that end-to-
end TTS systems with independently trained neu-
ral vocoders can generate high quality synthesized
speech. In particular, our model using Tacotron2
with Parallel WaveGAN vocoder achieves 4.33
MOS score which is comparable to the MOS results
of the Parallel WaveGAN with the Transformer-
based TTS (Yamamoto et al., 2020), and also the
model using Tacotron2 with HiFi-GAN vocoder
achieves 4.37 MOS score which is comparable to
HiFi-GAN V1 model without fine-tuning (Kong
et al., 2020) in the end-to-end TTS settings.

6 Conclusion

In conclusion, both Parallel WaveGAN and HiFi-
GAN models achieve high-fidelity speech synthe-
sis with fast inference speeds, showing the ability
of generalizing to unseen speakers. By integrat-
ing these GAN-based models with Tacotron2 in
the end-to-end TTS framework as the vocoders,
we achieved the state-of-the-art speech quality for
Myanmar language. Our work demonstrates that
the GAN-based models, even trained on the small
dataset with limited training steps, can achieve high
quality speech for low-resource languages. Future
work includes improving the mel-spectogram gen-
erator to better capture the prosody of speech and
using GAN-based vocoders in various end-to-end
speech synthesis settings.
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Limitations

Due to the limited GPU resources, we can use the
limited training steps on the models, however, more
robustness of the models can be achieved by fine-
tuning the hyperparemeters and training the models
until an optimal point is reached. When the ability
of vocoder is examined with the aim of generalizing
to unseen speakers, one of the limitations is the
unavailability of multi-speaker Myanmar dataset.
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Abstract

Text classification is a fundamental Natural
Language Processing task that is mostly
addressed with resource-intensive transformer
architectures. Researchers are continuously
investigating lightweight alternatives with-
out compromising predictive efficacy. A
lightweight alternative called Gzip-KNN that
combines the compression capability of Gzip
with the K-nearest neighbors (KNN) classifier
has been recently proposed. In this paper, we
investigate the potential of Gzip-KNN for
the detection of AI-generated text, notably
ChatGPT-generated content. We compare its
performance to several streamlined machine
learning models such as Logistic Regression,
eXtreme Gradient Boosting, and Gated Recur-
rent Unit. Our evaluation considers predictive
accuracy, training duration, and inference
speed, all while adjusting the available data
in in- and out-of-domain contexts. Our
experimental results highlight that Gzip-KNN
achieves high predictive performance, often
surpassing other models, especially when
operating on a limited dataset for inference.
Nonetheless, its extended inference time
restricts its utility in time-sensitive scenarios.
Intriguingly, Gzip-KNN manages to match the
performance of other tested approaches even
when utilizing a very limited percentage of the
available data.

Keywords ChatGPT, Generative Language
Models, Bots, GZIP

1 Introduction

The task of text classification, i.e., the categoriza-
tion of a text into predefined classes, is fundamen-
tal in the domain of Natural Language Processing
(NLP). The general approach involves designing
a function that maps texts to their corresponding
classes. Such function is generally obtained with
supervised machine learning. Specifically, super-
vised training is performed by tuning the parame-

ters of the models to minimize the error between
estimated and ground truth classes. The complexity
of the training process highly depends on the num-
ber of model parameters, which typically ranges
from a few to millions.

Conventional approaches for text classification
rely on complex models such as neural networks
and in particular, transformers-based architectures,
which are characterized by millions of parameters.
These models yield remarkable predictive perfor-
mance at the cost of a high training complexity. In-
deed, training these models is expensive in terms of
the amounts of data required, computational power,
and training time (Chollet, 2017; Thompson et al.,
2020). Therefore, employing such models for text
classification may be an overkill. Rather than rely-
ing solely on large models, there is a growing in-
terest in rediscovering lightweight approaches that
can match the predictive accuracy of more complex
models while requiring less computational power
and training data (Fournier et al., 2023; Gururangan
et al., 2019; Pan et al., 2019).

Recently, Jiang et al. (Jiang et al., 2023) pro-
posed a lightweight methodology for text classi-
fication based on the combination of data com-
pressing techniques (the Gzip compressor) and a
low-complexity classifier (KNN, i.e., the K-nearest
neighbors algorithm).

The proposed approach is referred to as Gzip-
KNN, and is discussed in detail in Section 3. One
of the distinctive traits of Gzip-KNN is the high
computational efficiency due to its simple underly-
ing components and non-parametric nature. In fact,
the absence of tunable parameters drastically sim-
plifies the training process. The intuition behind
Gzip-KNN is that samples belonging to the same
class are inherently more regular compared to sam-
ples from different classes. Hence, a lossless com-
pression technique, such as the well-known Gzip
algorithm, can be used to obtain representations
that capture this intrinsic regularity. Subsequently,
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the representation of the sample undergoing clas-
sification is compared with the representations of
the training samples using a novel distance metric.
This process yields a distance matrix, which serves
as the input for a k-nearest-neighbor classifier. In
their study, the authors compare the predictive per-
formance of Gzip-KNN with that of deep learning
techniques and the Google Bidirectional Encoder
Representations from Transformers (BERT) model.
Experimental results show that Gzip-KNN is com-
petitive with deep learning methods and can outper-
form BERT in out-of-domain benchmark datasets,
exemplifying its robustness in handling unseen data
distributions.

In our work, we extend on the previous study
by focusing on the detection of AI-generated text.
More specifically, we evaluate the potential of Gzip-
KNN for the detection of texts generated by Chat-
GPT. We frame the problem as a supervised clas-
sification task, where the objective is to learn a
mapping between a representation of the text and a
binary variable, which is 1 if the text is generated by
ChatGPT, and 0 otherwise. Then, we compare the
performance of Gzip-KNN, in terms of predictive
power, training time, inference time and memory
footprint, to that of other approaches. In particu-
lar, we consider both lightweight models, such as
logistic regression and eXtreme Gradient Boost-
ing (XGB), and more complex approaches, namely
the Gated Recurrent Unit (GRU). We refrain from
considering pre-trained models as our aim is to
compare Gzip-KNN to low-resource approaches.
To systematically discuss our findings, we pose the
following research questions (RQs):

RQ1) To what extent can Gzip-KNN detect
ChatGPT-generated text? Can Gzip-KNN out-
perform traditional ML-supervised approaches in
terms of predictive performance?
RQ2) How does Gzip-KNN compare to other ap-
proaches in terms of training time and inference
time?
RQ3) Can Gzip-KNN outperform traditional ML
approaches in an out-of-domain context? And in
a data-constrained and inference-time-constrained
scenarios?

To address these RQs, we conduct two experi-
ments. In the first, we analyze the trade-off between
predictive performance and complexity of Gzip-
KNN and the supervised learning approaches in an
in-domain context. In the second, we perform eval-
uations considering constraints on available data

and on inference time in an out-of-domain con-
text. The experimental findings demonstrate that
Gzip-KNN exhibits strong predictive performance,
surpassing alternative methods, even when making
predictions with a limited amount of data. How-
ever, it does come with the drawback of increased
inference time, which restricts its suitability to situ-
ations where rapid decision-making is not critical.
Nevertheless, the results also indicate that Gzip-
KNN can deliver comparable performance to other
methods when utilizing only a small fraction of the
available data in an out-of-domain context.

The paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the Gzip-
KNN approach proposed in (Jiang et al., 2023). In
Section 4 we describe the datasets and experimen-
tal setup, and in Section 5 we present and discuss
experiment results. Finally, Section 6 concludes
the paper.

2 Related Work

The detection of AI-generated text is currently re-
ceiving a great deal of attention, as the prolifer-
ation of AI-generated text, particularly from ad-
vanced language models such as ChatGPT, has led
to growing concerns about the authenticity and re-
liability of textual content across diverse domains
(Guo et al., 2023; Khalil and Er, 2023; Tian and
Cui, 2023). Moreover, as AI-generated content be-
comes more prevalent in online interactions, news
articles, customer support chats, and creative writ-
ing, the need to accurately distinguish between
human-generated and AI-generated text has gained
paramount significance.

The community has dedicated substantial efforts
to developing sophisticated machine learning mod-
els capable of detecting AI-generated content (Pe-
goraro et al., 2023; Liu et al., 2023; Guo et al.,
2023; He et al., 2023). In particular, zero-shot and
one-shot techniques have gained attention as inno-
vative approaches for text classification in general
and for identifying AI-generated text in particular
(Mitchell et al., 2023; Liu et al., 2023; Yan et al.,
2018).

Other approaches rely on statistical proper-
ties (Gehrmann et al., 2019), linguistic features
(Ma et al., 2023; Guo et al., 2023), information-
theorical metrics such as entropy (Gehrmann
et al., 2019) and perpexity (Tian and Cui, 2023;
Guo et al., 2023), topological features (of atten-
tion maps generated by the transformer model)
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(Kushnareva et al., 2021), Transformers (Bleumink
and Shikhule, 2023), pretrained language mod-
els without (Bakhtin et al., 2019) or with fine-
tuning (Solaiman et al., 2019; Mitrović et al., 2023;
Chakraborty et al., 2023; Ippolito et al., 2019; Guo
et al., 2023; Chiang et al., 2023; Ma et al., 2023),
where in particular GPT-2 Output Detector is fre-
quently used (Gao et al., 2023; Anderson et al.,
2023).

While these proposed methods may achieve the
desired predictive performance on in- and out-of-
domain data, their demanding computational re-
quirements and memory footprint is a substantial
obstacle to their deployment. Gzip-KNN presents
a lightweight and resource-efficient alternative to
complex solutions for AI-generated text detec-
tion, leveraging an innovative combination of ap-
proaches (e.g., compression techniques) to perform
text classification without prior training.

3 Gzip and K-Nearest Neighbors for Text
Classification

Algorithm 1 Text Classification using Gzip-KNN
Sample t to be classified
Training dataset D = {s1, s2, . . . , sn}
Number of nearest neighbors k

1: function CLASSIFY(t,D, k)
2: Compress t using Gzip (denote as gzip(t))
3: for each sample s in D do
4: Compress s using Gzip (gzip(s))
5: Compute Normalized Compression

Distance (NCD) between gzip(s) and gzip(t)
6: Store NCD in a distance list
7: end for
8: Find the indices of the k smallest distances

in the distance list
9: Retrieve the corresponding k nearest neigh-

bors’ classes
10: Count the occurrences of each class among

the k neighbors
11: Pick the majority class as the target label

for t
12: end function

In this Section, we describe the various steps
executed by the Gzip-KNN algorithm to classify
a sample text t. The corresponding pseudocode is
shown in Algorithm 1. The first step involves com-
pressing t using the Gzip algorithm. Then, for each
sample s in the training dataset, the text is simi-

larly compressed using Gzip, and subsequently, the
Normalized Compression Distance (NCD) between
the compressed form of s and t is calculated (see
Equation 1).

NCD(t, s) =
C(st)−min{C(t), C(s)}

max{C(t), C(s)} (1)

where st represents the concatenation of texts t
and s, while C(·) is the length of a text compressed
using Gzip.

The NCD serves as a measure that indicates the
extent of information shared between two distinct
texts. When two texts exhibit substantial shared
content, their concatenation yields a more efficient
compression outcome, resulting in a reduced NCD
value. Therefore, since texts belonging to the same
class typically share a greater degree of common at-
tributes compared to texts from distinct classes, the
NCD value can be leveraged in the task of text clas-
sification. Specifically, the Gzip-KNN algorithm
uses the NCD distance computation as the basis for
identifying the k-nearest neighbors of a reference
text t within the training set. Finally, the target text
t is classified based on the majority label among
the selected k-nearest neighbors.

The absence of tunable parameters makes train-
ing lightweight and straightforward. However, it
must be noted that classifying a text sample t re-
quires repeating the concatenation between t and all
the samples of the training set, which may result in
a high inference time, especially with large datasets.
In Section 5 we analyze the impact of the size of
the training set on both predictive performance and
inference time.

4 Dataset

We choose a labeled dataset consisting of human-
(class 0) and ChatGPT-generated (class 1) re-
sponses to a set of queries. Specifically, ChatGPT
answers were generated using GPT-3.5. These re-
sponses are provided in relation to a set of queries
that encompass a wide range of open-ended ques-
tions. These questions were drawn from five di-
verse datasets, each contributing queries represen-
tative of a specific domain:

• open_qa: General queries on various topics
sourced from the WikiQA dataset (Yang et al.,
2015).
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• wiki_csai: Queries related to specific concepts
within the realm of information technology,
gathered from Wikipedia (Guo et al., 2023).

• finance: Queries centered around finance-
related subjects, obtained from the FiQA
dataset (Maia et al., 2018).

• medicine: Queries focused on the field of
medicine, collected from the Medical Dialog
dataset (Zeng et al., 2020).

• reddit_eli5: Open-ended questions spanning
various subjects, gathered from the ELI5
dataset (Fan et al., 2019).

The human- and ChatGPT-generated responses
are of similar length distribution (Guo et al., 2023).

5 Experimental Setup and Quantitative
Evaluation

In this section, we present the results of our ex-
periments, which aim to evaluate the Gzip-KNN
algorithm for text classification along various di-
mensions. Specifically, in Section 5.1 we first eval-
uate the classification performance and the com-
plexity of the approach, in terms of training time
and inference time. Then, in Section 5.2, we assess
the classification performance in an out-of-domain
setting, where the algorithm is tested on datasets
never seen during training.

5.1 Experiment 1: Performance vs.
Complexity

Experimental Setup: We conduct this experi-
ment while systematically varying the number
of responses used during the training phase, all
while ensuring a balanced distribution between
the human-generated and ChatGPT-generated re-
sponses. Specifically, we consider a range of re-
sponses n = 100, 300, 500, 1000, 2000, 5000,
which are randomly selected from the dataset. We
adopt a 5-fold cross-validation methodology for
each value of n. During the testing phase, we eval-
uate the approach using a set of 10,000 responses,
selected randomly from the dataset and equally
split between the two labels. We also ensure the
same testing sets are used to evaluate the differ-
ent models for fold. The aim of this analysis is to
comprehensively assess the model’s performance
across different training data volumes while main-
taining a consistent test set.

(a) Classification Accuracy for varying training size

(b) F1-score for varying training size

Figure 1: Classification performance of the LR, XGB,
GRU and Gzip-KNN models, for varying sizes of the
training set

We compare Gzip-KNN to Logistic Regression
(LR), eXtreme Gradient Boosting (XGB), and
Gated Recurrent Unit (GRU) along two main
dimensions, namely predictive performance and
model complexity. To evaluate the former, we con-
sider traditional classification metrics, such as ac-
curacy and F1-score. To evaluate the latter, we
consider the training time ttraining and the infer-
ence time tinference.

Predictive Performance: Figure 1(a) shows the
mean accuracy and standard deviation of the four
models with respect to the number of training sam-
ples, ranging between 100 and 5000 training sam-
ples. When only 100 training samples are used,
Gzip-KNN achieves an accuracy of 0.83, outper-
forming XGB (0.75), GRU (0.69), and LR (0.65).
The significant gap in accuracy reveals Gzip-KNN’s
capability in text classification, and particularly, in
detecting ChatGPT-generated text, with very little
training data. The accuracy of all models shows a
general upward trend in performance as the training
dataset size increases with Gzip-KNN outperform-
ing the other approaches. However, it is worth
noticing that the performance gap between Gzip-

28



KNN and the other approaches narrows as the train-
ing dataset size grows, up to a number of training
samples equal to 1000. Specifically, for a number
of training samples of 1000, Gzip-KNN shows an
accuracy of 0.88, just slightly higher than that of
XGB (0.87), LR (0.86), and GRU (0.81). The accu-
racy achieved by all models continues to increase
as the training set size becomes larger, except for
Gzip-KNN, which seems to saturate around an ac-
curacy of 0.89, outperformed by XGB, LR, and
GRU, which achieve an accuracy of 0.94, 0.91 and
0.9 using 5000 training samples, respectively.

Figure 1(b) shows the weighted F1-score and
its standard deviation achieved by the different ap-
proaches with respect to the number of training
samples, ranging between 100 and 5000. Results
in terms of F1-score show a similar trend to that
of accuracy. For a number of training samples
less than 1000, Gzip-KNN outperforms other ap-
proaches, achieving an F1-score of around 0.88.
This confirms Gzip-KNN’s intrinsic ability to distill
and compress information effectively, even when
the dataset is not exceedingly large, and that its
architecture inherently adapts to the complexity
of the data, discerning relevant features and con-
nections without the need for a large number of
examples. For a higher number of training samples,
the F1-score of Gzip-KNN saturates around 0.89
while that of other approaches continues to show
a slight increase as the size of the training dataset
increases.

Overall, results show that the performance dif-
ferences between Gzip-KNN and the other models,
namely, XGB, LR, and GRU, tend to diminish as
the training size increases, which could be due to
more data being available for XGB, LR, and GRU,
reducing overfitting and improving generalization,
while Gzip-KNN does not further benefit from more
training samples. In other words, the performance
gains achieved by the Gzip-KNN seem to saturate
beyond a certain point of dataset size. Unlike tradi-
tional methods that tend to improve as more data
is fed into their training pipelines, Gzip-KNN ap-
pears to capitalize on a specific threshold of data
sufficiency. This suggests that, for Gzip-KNN, the
emphasis should be placed not solely on increasing
the dataset size, but rather on refining the compres-
sion and distance calculation mechanisms. Further
research could delve into optimizing the interplay
between these two components to extract more nu-
anced information and potentially push the Gzip-

KNN’s performance boundaries.

Model Complexity: We first examine the com-
plexity of the considered approaches in terms of
training time and inference time. Table 1 shows
the training time (in seconds), averaged over 10
different evaluations, for the various models with
respect to the number of training observations. Re-
sults show that the training times of the various
models exhibit distinct trends as the number of
training observations increases. The Gzip-KNN,
which demonstrates exceptional efficiency, con-
sistently yielding remarkably low training times
across, shows a slightly increasing trend, ranging
between 0.005 seconds for 100 training observa-
tions to 0.093 seconds for 2000 training observa-
tions. LR and XGB demonstrate linear increments
in training time with the expansion of training data,
reaching up to 0.274 seconds for LR and 0.810
seconds for XGB, at 2000 training observations.
GRU, on the contrary, shows a nuanced pattern,
with training times displaying some fluctuations
without a clear trend, ranging between 8.7 and 13.3
seconds, on average. These results highlight the
clear advantage Gzip-KNN has over other models
in terms of training time, which suggests its po-
tential utility for scenarios demanding swift model
deployment.

We now focus on the inference time. Table 2
reports the variation in inference times for differ-
ent models, across various sizes of the training set.
Notably, the Gzip-KNN approach consistently ex-
hibited relatively higher inference times compared
to the other models for all sizes of the training set,
ranging between 5.9 seconds (when 100 observa-
tions are used to perform the inference) to 115.6
seconds (when 2000 observations are used to per-
form the inference). On the contrary, the inference
time for other approaches is significantly lower
(i.e., fluctuating around 1 second), and not depen-
dent on the size of the training set. This shows that
the Gzip-KNN approach introduces an additional
significant computational overhead with respect to
other approaches, particularly when the number of
observations used for inference is relatively large.

Gzip-KNN: Performance vs. Complexity. Fo-
cusing our attention on Gzip-KNN approach, a dis-
tinct trade-off emerges between predictive power
and the time required for inference. As illustrated
in Figure 1, Gzip-KNN achieves a relatively high
predictive performance (0.82 of accuracy and 0.85
of F1-score) even with a small number of obser-
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Table 1: Training Time Results

Num. Training Training Time (seconds)

Observations GRU GZIP+KNN LR XGB

100 10.101 0.005 0.017 0.093
300 9.497 0.014 0.040 0.168
500 8.701 0.023 0.054 0.230

1000 14.179 0.048 0.111 0.458
2000 13.346 0.093 0.275 0.811
5000 28.238 0.225 0.496 1.697

Table 2: Inference Time Results

Num. Training Inference Time (seconds)

Observations GRU GZIP+KNN LR XGB

100 1.033 5.944 0.072 0.096
300 0.922 17.332 0.074 0.095
500 0.781 28.848 0.076 0.095

1000 1.030 58.784 0.091 0.100
2000 0.884 115.589 0.083 0.099
5000 0.927 286.129 0.077 0.103

vations employed for inference (100 observations).
This, however, corresponds to a relatively elevated
inference time of 5 seconds (see Table 2). The pre-
dictive performance of Gzip-KNN can be further
improved to reach 0.9 accuracy by employing a
larger set of observations for inference (1000 sam-
ples). However, this incurs a substantial increase
in inference time, culminating in an extended dura-
tion of 58.5 seconds. This suggests that the Gzip-
KNN approach can have a robust predictive per-
formance, particularly when dealing with a con-
strained dataset. Yet, its value is limited to sce-
narios where prediction accuracy takes precedence
over rapid inference. In conclusion, while Gzip-
KNN offers a powerful tool for predictive tasks, its
optimal use hinges on aligning its strengths with
the specific requirements of the given application
context.

5.2 Experiment 2: Performance in
Out-of-Domain Context

Experimental Setup: We now shift our attention
to assessing the performance of the different meth-
ods in an out-of-domain context in different circum-
stances. Specifically, we perform two evaluations.
In the first evaluation, we consider that a limited
amount of data is available for training. The objec-
tive of this experiment is to quantify the capability
of Gzip-KNN in detecting ChatGPT-generated text
in an out-of-domain context and under the limita-
tions of available data. We perform the training con-

sidering a part of the datasets, set at 1000 text sam-
ples, extracted from three specific contexts (e.g.,
from technology, finance and open QA datasets)
with equal contribution and then perform the testing
on a different dataset that corresponds to a different
context (e.g., medicine). Note that while no formal
training takes place for the Gzip-KNN approach,
the inference still relies on the utilization of text
samples, which are the training samples used to
train the other ML models.

In the second evaluation, we introduce a con-
straint on inference time. To comply with the im-
posed inference time constraint, the size of the data
used by Gzip-KNN at inference time must be re-
stricted. Specifically, 600 samples are randomly
taken from the training set, and used to perform
the inference. On the contrary, for the other ap-
proaches, since using all data available for training
does not heavily impact the inference time, we con-
sider that all data available can be used for training.
The objective of this experiment is to asses whether
Gzip-KNN can outperform other models in an out-
of-domain context even when a limit is imposed
on inference time (and, therefore, on the amount of
data that are required by Gzip-KNN to perform a
text classification).

Out-of-Domain ChatGPT-generated Text De-
tection with Limited Data: Figures 2(a) and
2(b) show the accuracy and F1-score metrics, re-
spectively, that are achieved by the four models
when tested on the considered datasets. In general,
XGB and LR tend to outperform other approaches,
consistently achieving some of the highest perfor-
mance levels across most datasets. For instance, in
the Finance dataset, XGB achieves the best accu-
racy and F1-score (0.807 and 0.805, respectively)
and ranks second in the Medicine and OpenQA
datasets (e.g., its accuracy is 0.944 and 0.716, re-
spectively). LR achieves the highest accuracy and
F1-score in the Medicine dataset (0.95 for both met-
rics) and it ranks second in the Finance and CSAI
datasets, with accuracy values of 0.74 and 0.69, re-
spectively. Gzip-KNN generally achieves lower per-
formance compared to alternative methods. How-
ever, it is important to note that Gzip-KNN reaches
the best performance in the OpenQA dataset, sur-
passing alternative methods in both accuracy and
F1-score, with values of 0.753 and 0.665, respec-
tively. Additionally, in the Finance dataset, the
performance of Gzip-KNN is only slightly lower
than that of the alternatives (indeed, GRU, Gzip-
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KNN, and LR all achieve an accuracy of around
0.74).
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Figure 2: Comparison of accuracy and F1-score of dif-
ferent models for out-of-domain ChatGPT-generated
text detection considering different test datasets.

Out-of-Domain ChatGPT-generated Text De-
tection under Constraint on Inference Time:
Figures 3(a) and 3(b) show the accuracy and F1-
score metrics of the four different approaches for
each of the cases, respectively. Notably, XGB ex-
hibits consistently high accuracy and F1-scores,
specifically for Medicine and Finance (0.981 ac-
curacy in both cases), outperforming other ap-
proaches in all cases except for when testing over
the CSAI dataset. GRU also shows a similar perfor-
mance outperforming other approaches for the case
of testing over the CSAI dataset. LR demonstrates
competitive performance outperforming GRU in
some cases while Gzip-KNN achieves the highest
accuracy on the Medicine dataset (0.826) and the
lowest on the CSAI dataset (0.587). With respect
to other approaches, Gzip-KNN achieved generally
lower, yet comparable, accuracy and F1-scores, ex-

cept when testing on Open QA, where it achieved
the highest accuracy and F1-score. Note that Gzip-
KNN uses only 600 text samples for this experi-
ment, while other approaches utilize all available
datasets. This shows that Gzip-KNN can achieve
performance in out-of-domain ChatGPT-generated
text detection when using a significantly small
amount of data (a portion of the dataset) compa-
rable to that of other approaches (in this case, LR,
GRU, and XGB) when trained on the entire dataset.
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Figure 3: Comparison of accuracy and F1-score of dif-
ferent models for out-of-domain ChatGPT-generated
text detection considering different test datasets.

6 Conclusion

In this work, we evaluate the effectiveness of a re-
cently proposed algorithm, Gzip-KNN, in the task
of detection of ChatGPT-generated text. The Gzip-
KNN algorithm combines compression techniques
with the k-nearest neighbors (KNN) algorithm for
classification, resulting in a lightweight solution
compared to traditional techniques used for text
classification. Specifically, we compare this ap-
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proach with LR, XGB, and GRU, in terms of clas-
sification performance and model complexity in
various scenarios. Obtained results show that the
Gzip-KNN algorithm outperforms the alternatives
in terms of classification performance in situations
where the training dataset is limited in the number
of samples. However, such an advantage comes
also with an increased inference time, which is sig-
nificantly higher for Gzip-KNN than for the other
approaches. Finally, we also evaluated the classifi-
cation performance of the approaches in an out-of-
domain setting, where the models are tested on a
set never seen during training. These experiments
have shown that Gzip-KNN can yield comparable
classification performance to the other methods
while only utilizing a significantly lower amount
of training data.
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Abstract

We introduce new large labeled datasets on bias
in 3 languages and show in experiments that
bias exists in all 10 datasets of 5 languages eval-
uated, including benchmark datasets on the En-
glish GLUE/SuperGLUE leaderboards. The 3
new languages give a total of almost 6 million
labeled samples and we benchmark on these
datasets using SotA multilingual pretrained
models: mT5 and mBERT. The challenge of
social bias, based on prejudice, is ubiquitous,
as recent events with AI and large language
models (LLMs) have shown. Motivated by this
challenge, we set out to estimate bias in mul-
tiple datasets. We compare some recent bias
metrics and use bipol, which has explainability
in the metric. We also confirm the unverified as-
sumption that bias exists in toxic comments by
randomly sampling 200 samples from a toxic
dataset population using the confidence level
of 95% and error margin of 7%. Thirty gold
samples were randomly distributed in the 200
samples to secure the quality of the annotation.
Our findings confirm that many of the datasets
have male bias (prejudice against women), be-
sides other types of bias. We publicly release
our new datasets, lexica, models, and codes.

1 Introduction

The problem of social bias in data is a pressing
one. Recent news about social bias of artificial
intelligence (AI) systems, such as Alexa1 and Chat-
GPT,2 shows that the age-old problem persists with
data, which is used to train machine learning (ML)
models. Social bias is the inclination or prejudice
for, or against, a person, group or idea, especially
in a way that is considered to be unfair, which
may be based on race, religion or other factors
(Bellamy et al., 2018; Antoniak and Mimno, 2021;
Mehrabi et al., 2021; Alkhaled et al., 2023). It can

1bbc.com/news/technology-66508514
2bloomberg.com/news/newsletters/2022-12-08/chatgpt-

open-ai-s-chatbot-is-spitting-out-biased-sexist-results

also involve stereotypes that generalize behavior to
groups (Brownstein, 2019). It can unfairly skew
the output of ML models (Klare et al., 2012; Raji
et al., 2020). Languages with fewer resources than
English are also affected (Rescigno et al., 2020;
Chávez Mulsa and Spanakis, 2020; Kurpicz-Briki,
2020). For example, in Italian, the female gender
is under-represented due to the phenomena such as
the “inclusive masculine" (when the masculine is
over-extended to denote groups of both male and
female referents) (Luccioli et al.; Vanmassenhove
and Monti, 2021).

In this work, we are motivated to address the
research question of how much bias exists in the
text data of multiple languages, if at all bias ex-
ists in them? We particularly investigate 6 bench-
mark datasets on the English GLUE/SuperGLUE
leaderboards (Wang et al., 2018, 2019) and one
dataset each for the other 4 languages: Italian,
Dutch, German, and Swedish. First, we train SotA
multilingual Text-to-Text Transfer Transformer
(mT5) (Xue et al., 2021) and multilingual Bidi-
rectional Encoder Representations from Transform-
ers (mBERT) models for bias classification on the
multi-axes bias dataset (MAB) for each language,
in a similar setup as Alkhaled et al. (2023). For
the evaluations, we search through the literature to
compare different metrics or evaluation methods as
shown in Table 1 and discussed in Section 2. This
motivates our choice of bipol, the multi-axes bias
metric, which we then compare in experiments with
a lexica baseline method. In addition, to confirm
the unverified assumption that toxic comments con-
tain bias (Sap et al., 2020; Alkhaled et al., 2023),
we annotate 200 randomly-selected samples from
the training set of the English MAB.

Our Contributions

• We make available new large labeled datasets
on bias of almost 2 million samples each for
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Metric/Evaluator Axis Terms
Winogender (Rudinger et al., 2018) 1 60
WinoBias (Zhao et al., 2018) 1 40
StereoSet (Nadeem et al., 2021) 4 321
GenBiT (Sengupta et al., 2021) 1 -
CrowS-Pairs (Nangia et al., 2020) 9 3,016
Bipol (Alkhaled et al., 2023) >2, <13 >45, <466

Table 1: Comparison of some bias evaluation methods.

3 languages: Italian, Dutch, and German.3

• We make available lexica of sensitive terms
for bias detection in the 3 languages.

• We confirm the unverified assumption in the
underlying datasets of MAB (Social Bias
Inference Corpus v2 (SBICv2) and Jigsaw)
(Alkhaled et al., 2023) that toxic comments
contain bias.

The rest of this paper is organized as follows.
In Section 2, we discuss the literature review of
related work. In Section 3, we briefly discuss the
bipol metric. In Section 4, we explain the steps in-
volved in the methodology and the datasets we use.
In Section 5, we present our findings and discuss
them. In Section 6, we end with the conclusion and
possible future work.

2 Literature Review

Although English usually gets more support and at-
tention in the literature, there have been attempts at
measuring and mitigating bias in other languages.
Testing for the presence of bias in Italian often has
a contrastive perspective with English, with a fo-
cus on gender bias (Gaido et al., 2021; Rescigno
et al., 2020). MuST-SHE (Bentivogli et al., 2020)
and gENder-IT (Vanmassenhove and Monti, 2021)
are examples of gender bias evaluation sets. Go-
ing beyond gender bias, Kurpicz-Briki and Leoni
(2021) and Huang et al. (2020) also identified bi-
ases related to people’s origin and speakers’ age.
It is essential to remember that the mentioned bi-
ases can be vehicles for misogynous and hateful
discourse (El Abassi and Nisioi, 2020; Attanasio
et al., 2022; Merenda et al., 2018).

Bias studies for Dutch mostly consider binary
gender bias. Chávez Mulsa and Spanakis (2020)
investigate gender bias in Dutch static and con-
textualized word embeddings by creating Dutch
versions of the Word/Sentence Embedding Asso-
ciation Test (WEAT/SEAT) (Caliskan et al., 2017;

3github.com/LTU-Machine-Learning/bipolmulti

May et al., 2019). WEAT measures bias in word
embeddings and can be limited in scope, in addi-
tion to having sensitivity to seed words. McCurdy
and Serbetci (2020) perform a similar evaluation in
a multilingual setup to compare the effect of gram-
matical gender saliency across languages. Several
works use different NLP techniques to evaluate bias
in corpora of Dutch news articles (Wevers, 2019;
Kroon et al., 2020; Kroon and van der Meer, 2021;
Fokkens et al., 2018) and literary texts (Koolen and
van Cranenburgh, 2017).

In Kurpicz-Briki (2020), bias is measured with
regards to place of origin and gender in German
word embeddings using WEAT (Caliskan et al.,
2017). In Kurpicz-Briki and Leoni (2021), an au-
tomatic bias detection method (BiasWords) is pre-
sented, through which new biased word sets can
be identified by exploring the vector space around
the well-known word sets that show bias. In the
template-based study of Cho et al. (2021), on gen-
der bias in translations, the accuracy of gender in-
ference was measured for multiple languages in-
cluding German. It was found that, particularly
for German, the inference accuracy and disparate
impact were lower for female than male, implying
that certain translations were wrongly performed
for cases that required female inference. Since Ger-
man is a grammatically gendered, morphologically
rich language, Gonen and Goldberg (2019) found
that debiasing methods of Bolukbasi et al. (2016)
were ineffective on german word embeddings.

For Swedish, the main focus of bias research ap-
pears to be on gender. Sahlgren and Olsson (2019)
show with their experiments that gender bias is
present in pretrained Swedish language models.
Katsarou et al. (2022) and Precenth (2019) found
that the male gender tends to be associated with
higher-status professions. A study with data from
mainstream news corpora by Devinney et al. (2020)
shows that women are associated with concepts like
family, communication and relationships.

3 Bipol

For the purpose of this work, we summarize bipol
here but details are discussed in Alkhaled et al.
(2023). The bipol metric uses a two-step mecha-
nism for estimating bias in text data: binary classi-
fication and sensitive term evaluation using lexica.
It has maximum and minimum values of 1 and 0,
respectively. Bipol is expressed in Equations 1b
and 1c from the main Equation 1a, where bc is
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the classification component and bs is the sensitive
term evaluation component.

b =

{
bc .bs , if bs > 0

bc , otherwise
(1a)

bc =
tp+ fp

tp+ fp+ tn+ fn
(1b)

bs =
1

r

r∑

t=1

(
1

q

q∑

x=1

( |∑n
s=1 as −

∑m
s=1 cs|∑p

s=1 ds

)

x

)

t

(1c)

In step 1, a trained model is used to classify all
the samples. The ratio of the biased samples to
the total samples predicted is determined. The tp,
fp, tn, and fn are values of the true positives, false
positives, true negatives, and false negatives, re-
spectively. Since there’s hardly a perfect classifier,
the positive error rate is usually reported. False pos-
itives are known to exist in similar classification
systems like spam detection and automatic hate
speech detection (Heron, 2009; Feng et al., 2018).

Step 2 is similar to term frequency-inverse docu-
ment frequency (TF-IDF) in that it is based on term
frequency (Salton and Buckley, 1988; Ramos et al.,
2003), Biased samples from step 1 are evaluated
token-wise along all possible bias axes, using all
the lexica of sensitive terms. An axis is a domain
such as gender or race. Tables 2 and 3 provide
the lexica sizes. For English and Swedish, we use
the same lexica released by Alkhaled et al. (2023)
and Adewumi et al. (2023b), respectively. For the
other 3 languages, we create new lexica of terms
(e.g. she & her) associated with specific gender
or stereotypes from public sources.4 Some of the
terms in the lexica were selected from the sources
based on the topmost available. These may also be
expanded as needed, since bias terms are known to
evolve (Haemmerlie and Montgomery, 1991; An-
toniak and Mimno, 2021). The non-English lexica
are small because fewer terms are usually available
in other languages compared to the high-resource
English language and we use the same size across
the languages to be able to compare performance
somewhat. The Appendix lists these terms.

Equation 1c first finds the absolute difference
between the two maximum summed frequencies in
the types of an axis (|∑n

s=1 as−
∑m

s=1 cs|), where
n and m are the total terms in a sentence along
an axis. For example, in the sentence ´Women!!!

4fluentu.com/blog/italian/italian-nouns,
en.wiktionary.org/wiki/Category:Italian_offensive_terms,
Dutch_profanity, Category:German_ethnic_slurs

PERSON taught you better than that. Shame on
you!’, female terms = 1 while male terms = 0. This
is then divided by the summed frequencies of all
the terms (ds) in that axis (

∑p
s=1 ds). The opera-

tion is performed for all axes (q) and the average
taken (1q

∑q
x=1). It is performed for all the biased

samples (r) and the average taken (1r
∑r

t=1 ).

Axis Type 1 Type 2 Type 3
Racial 84 (black) 127 (white)
Gender 76 (female) 46 (male)
Religious 180 (christian) 465 (muslim) 179 (hindu)

Table 2: English lexica sizes (Alkhaled et al., 2023).
An example of racial-black is negro.

Axis Type 1 Type 2
Gender 17 (female) 17 (male)
Racial 10 (black) 10 (white)

Table 3: Italian, Dutch, German and Swedish Lexica
sizes. An example of gender-female is woman.

4 Methodology

4.1 Datasets

4.1.1 MAB
The Italian, Dutch and German datasets were
machine-translated from MAB5 with the high-
quality Helsinki-NLP model (Tiedemann and Thot-
tingal, 2020). Each translation took about 48 hours
on one GPU. Examples from the data are provided
in Table 4. Table 5 provides statistics about the
datasets. For quality control (QC), we verified
translation by back-translating some random sam-
ples using Google NMT. Personal identifiable infor-
mation (PII) was removed from the MAB dataset
using the spaCy library. The 3 datasets are used
to train new bias classifiers. We also train on the
original English and the Swedish.

Machine-Translation issues: Culture-specific
biases may not be represented in the MAB versions
for the translated languages because the original
dataset is in English. This is a limitation. How-
ever, bias is also a universal concern, such that
there are examples that span across cultures. For
instance, the examples in Table 4 are of universal
concern because individuals with non-conforming
bodies and women should be respected, regardless
of culture or nationality. Hence, the MAB versions

5The reference provides details of the annotation of the
base data.
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comment_text label old_id id
A fitness ranking that drops each month as more and more
fat people move to Colorado.

biased 6231681 167

Een fitness ranking die elke maand daalt als meer en meer
dikke mensen verhuizen naar Colorado.
Ein Fitness-Ranking, das jeden Monat fällt, wie mehr und
mehr fette Menschen nach Colorado zu bewegen.
Un ranking di fitness che scende ogni mese come sempre
più persone grasse si spostano in Colorado.
En fitness ranking som sjunker varje månad som fler och
fler feta människor flyttar till Colorado.

Women ! ! ! PERSON taught you better than that. Shame
on you!

biased 6233025 628

Vrouwen ! ! ! PERSOON heeft je beter geleerd dan dat.
Je moet je schamen!
Frauen!!!! PERSON lehrte Sie besser als das. Schande
über Sie!
Donne ! ! ! Person ti ha insegnato meglio di così, vergog-
nati!
Kvinnor ! ! !- Han lärde dig bättre än så. Skäms på dig!

Table 4: English, Dutch, German, Italian, and Swedish examples from the MAB dataset. "PERSON" is the
anonymization of a piece of personal identifiable information (PII) in the dataset.

Set Biased Unbiased Total
Training 533,544 1,209,433 1,742,977
Validation 32,338 69,649 101,987
Test 33,470 68,541 102,011

599,352 1,347,623 1,946,975

Table 5: MAB dataset split

are relevant for bias detection, though they were
translated.

4.1.2 Evaluation datasets
Ten datasets are evaluated for bias in this work.
All are automatically preprocessed before evalua-
tion, the same way the training data were prepro-
cessed. This includes removal of IP addresses, emo-
jis, URLs, special characters, emails, extra spaces,
numbers, empty text rows, and duplicate rows. All
texts are then lowercased.

We selected datasets that are available on the
HuggingFace (Wolf et al., 2020) Datasets. We eval-
uated the first 1,000 samples of each training split
due to resource constraints. The understanding
is that if bias is detected in these samples, then
scaling over the entire dataset means there’s proba-

bility of more bias. For English, we evaluated the
sentence column of Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2019), the sentence
column of Question-Answering Natural Language
Inference (QNLI) (Wang et al., 2018), the senten-
nce1 column of Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005), the
premise column of Multi-Genre Natural Language
Inference (MNLI) (Williams et al., 2018), the
premise column of the CommitmentBank (CB)
dataset (De Marneffe et al., 2019), and the pas-
sage column of Reading Comprehension with Com-
monsense Reasoning Dataset (ReCoRD) (Zhang
et al., 2018). For Italian, we evaluated the con-
text column of the Stanford Question Answering
Dataset (SQuAD) (Croce et al., 2018; Rajpurkar
et al., 2016); for Dutch, the sentence1 column of the
Semantic Textual Similarity Benchmark (STSB)
(Cer et al., 2017); for German, the text column of
the German News Articles Datasets 10k (GNAD10)
(Schabus et al., 2017); for Swedish, the premise of
the CB.
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4.2 Annotation for the assumption
confirmation

To verify the assumption that toxic comments con-
tain bias, we randomly selected 200 samples from
the training set of MAB-English for annotation on
Slack, an online platform. The selection of 200
samples is based on an error margin of 7% and a
confidence level of 95%. To ensure high-quality
annotation, we use established techniques for this
task: 1) the use of gold (30) samples, 2) multiple
(i.e. 3) annotators, and 3) minimum qualification
of undergraduate study for annotators. Each an-
notator was paid 25 U.S. dollars and the it took
about 2 hours to complete the annotation on aver-
age. We mixed the 30 gold samples with the 200,
to verify the annotation quality of each annotator,
as they were required to get, at least, 16 correctly
for their annotation to be accepted. The 30 gold
samples are samples with unanimous agreement in
the original Jigsaw or SBICv2 data, which make up
the MAB. We provide inter-annotator agreement
(IAA) using Jaccard similarity coefficient (intersec-
tion over union) and credibility unanimous score
(CUS) (Adewumi et al., 2023a) (intersection over
sample size).

4.3 Experiments

We selected two state-of-the-art (SotA) pre-trained,
multilingual models for experiments to compare
their macro F1 performance: mT5-small and
mBERT-base. These are from the HuggingFace
hub. We further report the mT5 positive error rate
of predictions. The mT5-small has 300 million
parameters (Xue et al., 2021) while mBERT-Base
has 110 million parameters. We trained only on
the MAB datasets and evaluated using only the
mT5 model, the better model of the 2, as will be
observed in Section 5. For the CB and ReCoRD
datasets, we evaluate all samples since they contain
only about 250 and 620 entries, respectively. We
used wandb (Biewald, 2020) for hyper-parameter
exploration, based on Bayesian optimization. For
mT5, we set the maximum and minimum learn-
ing rates as 5e-5 and 2e-5 while the maximum and
minimum epochs are 20 and 4, respectively. One
epoch is equivalent to the ratio of the total num-
ber of samples to the batch size (i.e. the steps).
We used a batch size of 8 because higher numbers
easily resulted in memory challenges.

For mBERT, we set the learning rates and epochs
as with mT5. However, we explore over batch

sizes of 8, 16 and 32. For both models, we set the
maximum input sequence length to 512. Training
took, on average, about 7.3 hours per language per
epoch for mBERT while it was 6 hours for mT5.
For all the experiments, we limit the run counts to 2
per language because of the long training time each
takes on average. The average scores of the results
are reported. The saved models with the lowest
losses were used to evaluate the datasets. All the
experiments were performed on two shared Nvidia
DGX-1 machines that run Ubuntu 20.04 and 18.04.
One machine has 8 x 40GB A100 GPUs while the
other has 8 x 32GB V100 GPUs.

The lexica baseline, compared in experiments, is
similar to the equation of the second step in bipol.
It does not consider bias semantically and uses term
frequencies, similarly to TF-IDF. It uses the same
lexica as bipol. Its maximum and minimum values
are 1 and 0, respectively.

5 Results and Discussion

From Table 6, we observe that all mT5 results
are better than those of mBERT across the lan-
guages. The two-sample t-test of the difference
of means between all the corresponding mT5 and
mBERT scores have p values < 0.0001 for alpha
of 0.05, showing the results are statistically sig-
nificant. It appears better hyper-parameter search
may be required for the mBERT model to converge
and achieve better performance. The best macro
F1 result is for English mT5 at 0.787. This is not
surprising, as English has the largest amount of
training data for the pre-trained mT5 model (Xue
et al., 2021). This occurred at the learning rate of
2.9e-5 and step 1,068,041.

macro F1 ↑ (s.d.) mT5 error ↓
MAB version mBERT mT5 fp/(fp+tp)

English 0.418 (0.01) 0.787 (0) 0.261
Italian 0.429 (0) 0.768 (0) 0.283
Dutch 0.419 (0.01) 0.768 (0) 0.269

German 0.418 (0.01) 0.769 (0) 0.261
Swedish 0.418 (0.01) 0.768 (0) 0.274

Table 6: Average F1 scores on the validation sets.

Figures 1 and 2 depict the validation sets macro
F1 and loss line graphs for the 2 runs for the 5
languages, respectively. From Table 7, we observe
that all the evaluated datasets have biases, though
seemingly little (but important) when compared
to the maximum of 1. We say important because
many of the datasets contain small number of sam-
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bipol scores ↓ (s.d.)
English bc bs bipol (b) baseline ↓

CB 0.096 0.875 0.084 (0) 0.88
CoLA 0.101 0.943 0.095 (0) 0.958

ReCoRD 0.094 0.852 0.025 (0) 0.829
MRPC 0.048 0.944 0.045 (0) 0.957
MNLI 0.063 0.833 0.053 (0) 0.965
QNLI 0.03 0.933 0.028 (0) 0.945
Italian

SQuAD 0.014 0 0.014 (0) 0.989
Dutch
STSB 0.435 0.992 0.432 (0) 0.987

German
GNAD10 0.049 0.502 0.025 (0) 1
Swedish

CB 0.08 0.938 0.075 (0) 0.97

Table 7: Average bipol & lexica baseline scores.

ples yet they can be detected. Furthermore, a low
value does not necessarily diminish the weight of
the effect of bias in society or the data but we leave
the discussion about what amount should be tol-
erated open for the NLP community. Our recom-
mendation is to have a bias score as close to zero
as possible. On the other hand, the lexica baseline
appears overly confident of much more bias, which
is incorrect because the method fails to exclude un-
biased text in its evaluation, which is a shortcoming
of methods based solely on it. The Dutch STSB is
higher than the other bipol scores because of the
higher bipol classifier component score of 0.435,
which may be because of the nature of the dataset.

5.1 Error analysis & qualitative results
According to the error matrix in Figure 3, the mT5
model is better at correctly predicting unbiased
samples. This is because of the higher unbiased
samples in the training data of MAB. In Table 8, the
first example for the English CB contains a stereo-
typical statement "men are naturally right and it
is the role of women to follow their lead", lead-
ing to the correct biased prediction by the model.
Similarly, this correct prediction is made in the
Swedish CB. We notice over-generalization (May
et al., 2019; Nadeem et al., 2021) in the correct
examples for the CoLA predictions, where "every"
is used. The table also shows some incorrect pre-
dictions.

5.2 Consistent prediction with perturbation
An interesting property of relative consistency that
we observed with the model predictions, as demon-

strated with the CoLA dataset, is that when sen-
tences are perturbed, the model mostly maintains
its predictions, as long as the grounds for prediction
(in this case - over-generalization) remain the same.
The perturbations are inherent in the CoLA dataset
itself, as the dataset is designed that way. Some
examples are provided in Table 9 in the Appendix,
where 6 out of 8 are correctly predicted. This prop-
erty is repeated consistently in other examples not
shown here.

5.3 Explainability by graphs

We show explainability by visualization using
graphs. Bipol produces a dictionary of lists for
every evaluation and we show the top-5 frequent
terms bar graph for the GNAD10 dataset in Figure
4, which has overall male bias. Many of the 10
evaluated datasets display overall male bias.

5.4 Assumption confirmation through
annotation

The results of the annotation of the 200 MAB sam-
ples reveal that toxic comments do contain bias.
This is shown in Figure 5. The Jaccard similarity
coefficient and CUS of IAA are 0.2616 and 0.515,
respectively, given that over 50% is the intersection
of unanimous decision.

6 Conclusion

The findings of this work show that bias besets Nat-
ural Language Processing (NLP) datasets regard-
less of language, including benchmark datasets on
the GLUE/SuperGLUE leaderboards. We intro-
duced MAB datasets in 3 languages for training
models in bias detection. Each has about 2 million
labeled samples. We also contribute lexica of bias
terms for the languages. In addition, we verified
the assumption that toxic comments contain bias. It
may be impossible to completely remove bias from
data or models, since they reflect the real world,
but resources for estimating bias can provide in-
sight into mitigation strategies for reducing bias.
Future work may explore ways of minimizing false
positives in classifiers to make them more effec-
tive. One may also explore how this work scales to
other languages or how multilignual models com-
pare to language-specific monolingual models or
large language models (LLMs). Regarding culture-
specific biases in datasets, one solution will be to

6Not to be interpreted using Kappa for 2 annotators on 2
classes. Ours involved 3 annotators
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Figure 1: Macro F1 of the validation set for the 5 languages, as generated by wandb.

Figure 2: Loss on the validation set for the 5 languages, as generated by wandb.

Figure 3: Error matrix of mT5 on MAB-English

collect data from the specific cultures/nationalities
to capture these biases.

Ethics statement & limitation

The authors took care while providing examples of
data samples, despite some containing stereotypes
or toxic content. The classifiers trained for estimat-
ing the biases in this work are limited in effective-
ness, as shown in the results, hence a result of 0 on
any dataset does not necessarily indicate a bias-free
dataset. The original MAB was annotated by hu-
mans who may have their personal biases based on
cultural or demographic backgrounds. This means
the final annotations may not be seen as absolute
ground truth of social biases.
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comment_text prediction csv id
Correct predictions from the English CB

nicky approached her with the assumption that men are nat-
urally right and it is the role of women to follow their lead.
constance whose confidence was growing daily was not pre-
pared to give in to nickys wishes merely because of his sex.
if she felt he was right then she agreed with him.

biased 85

b: thats true. a: so. b: uh the other argument is that the death
penalty is a deterrent and i really dont uh agree with that. i
dont think anyone who would commit uh a crime that would
get them the death penalty would stop at the moment and say
well i was about to kill and dismember this person but oh if
they catch me theyre going to kill me so i better not do it. i
just dont think uh that it works that way. a: yeah. i dont think
its done.

biased 133

Incorrect prediction
b: yeah and the ground will filter some of it but not all of it.
a: no not when you figure i didnt realize one cow produces
that much manure

biased 137

Correct predictions from the English CoLA
if you give him enough opportunity every senator will suc-
cumb to corruption.

biased 266

every senator becomes more corrupt the more lobbyists he
talks to.

biased 277

Incorrect prediction
bill squeezed the puppet through the hole. biased 82

Table 8: Qualitative examples of apparently correct and incorrect predictions in some of the English datasets, based
on the mT5 model.

Figure 4: Top 5 frequent terms in the GNAD10 dataset
(paired terms are only for comparison).
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A Appendix

Swedish lexica and the English equivalent

1. Gender-female
i) hon (she) ii) hennes (her) iii) flicka (girl)
iv) mor (mother) v) kvinna (woman) vi) dot-
ter (daughter) vii) mormor (grandmother)
viii) dam (lady) ix) sondotter (son’s daughter)
x) dotterdotter (daughter’s daughter) xi) tjej
(girl) xii) tjejer (girls) xiii) gumma (old
woman) xiv) fru (wife) xv) slampa (slut)
xvi) slyna (slut) xvii) lebb (lesbian)

2. Gender-male
i) han (he) ii) pojke (boy) iii) kille (boy) iv) far
(father) v) farfar (grandfather) vi) hans (his)
vii) man (man) viii) son (son) ix) make (hus-
band) x) herre (lord) xi) herrar (lords) xii) son-
son (son’s son) xiii) dotterson (daughter’s
son) xiv) gubbe (old man) xv) farbro (uncle)
xvi) broson (nephew) xvii) män (men)

3. Racial-black
i) neger (nigger) ii) blåneger (nigger) iii) blå-
land (nigger) iv) blatte (dark immigrants)
v) svartskalle (black head) vi) turk (non-
Swedish) vii) sosse (political slur) viii) svart-
ing (blackness) ix) partysvenska (political
slur) x) nigga (nigger)

4. Racial-white
i) svenne (Swedish stereotype) ii) turk (non-
Swedish) iii) jugge (derogatory term) iv) sosse
(political slur) v) hurrare (Finnish Swedish)
vi) lapp (Sami people) vii) Ang mo (red
hair) viii) partysvenska (political slur) ix) Ann
(White woman) x) rutabaga (Swede)

Example of predictions for the CoLA dataset

comment_text prediction csv id
if you give him enough
opportunity every senator
will succumb to corrup-
tion.

biased 266

you give him enough op-
portunity and every sena-
tor will succumb to corrup-
tion.

biased 267

we gave him enough op-
portunity and sure enough
every senator succumbed
to corruption.

unbiased 268

if you give any sena-
tor enough opportunity he
will succumb to corrup-
tion.

biased 269

you give any senator
enough opportunity and
he will succumb to corrup-
tion.

biased 270

you give every senator
enough opportunity and he
will succumb to corrup-
tion.

biased 271

we gave any senator
enough opportunity and
sure enough he suc-
cumbed to corruption.

biased 272

we gave every senator
enough opportunity and
sure enough he suc-
cumbed to corruption.

unbiased 273

Table 9: Mostly consistent correct prediction with per-
turbation in the CoLA dataset.
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Abstract

Traditional spoken emotion recognition solu-
tions often process entire utterances all at once,
ignoring the emotional variability within the
speech. This shortcoming, especially plaguing
end-to-end models, prompted us to investigate a
segment-based technique processing only short
parts of the audio, improving the recognition
accuracy across three diverse emotion datasets.
Furthermore, we employed a triplet loss to
increase inter-class separability, demonstrat-
ing that combining it effectively with segment-
based processing within our multi-task learn-
ing framework leads to improvements on both
English and Finnish datasets. Our proposed
method achieves 8.1% unweighted average
recall improvement over the baseline on the
IEMOCAP, 12% on the RAVDESS, and 7.2%
on the FESC dataset. The results also indicate
that vocalised emotions are strongly concen-
trated in short segments of speech, and new
methods are needed to exploit this fact.

1 Introduction

In the age of digital transformation, the significance
of human-computer interaction (HCI) systems be-
comes crucial. However, current HCI solutions
struggle to comprehend emotions, a critical aspect
of tasks like automated analysis of customer feed-
back. Incorrectly categorising emotions in such
analyses could lead to misunderstandings, where
complaints might be mistaken for positive feed-
back and vice versa. Therefore, the integration of
an accurate spoken emotion recognition (SER) sys-
tem within HCI applications holds vital importance
in enhancing user experiences (Brave and Nass,
2007).

With the emergence of the Transformer archi-
tecture (Vaswani et al., 2017), pre-trained self-
supervised models have gained popularity, partic-
ularly for tasks with limited data (Grósz et al.,
2022). One popular audio-based foundation model

is wav2vec2 (Baevski et al., 2020), which has al-
ready proven successful in SER applications. In
a previous study, the authors utilised a pre-trained
wav2vec2 model to extract embeddings from mul-
tiple layers, subsequently employing these em-
beddings as input for a neural network classifier
(Pepino et al., 2021). Besides serving as feature
extractors, these pre-trained models can also be
fine-tuned for the specific task at hand. A fine-
tuned wav2vec2 approach was successfully ap-
plied for predicting emotional intensities (Porja-
zovski et al., 2023). In addition to fine-tuning, the
researchers incorporated a pre-training stage for
the wav2vec2 model, outperforming the other ap-
proaches (Chen and Rudnicky, 2023) on the IEMO-
CAP dataset (Busso et al., 2008).

Despite their popularity, the majority of SER so-
lutions process the whole utterance at once to pro-
duce emotion labels. Processing long sequences
can cause the model to learn unwanted correla-
tions (Arjovsky et al., 2019). A common way to
deal with lengthy audios is to process them in seg-
ments (Schuller and Rigoll, 2006; Chen and Rud-
nicky, 2023; Xia et al., 2021; Tzinis and Potami-
anos, 2017). We hypothesise that segment-based
processing ensures that the model is aware of the
varying emotional intensities within the sample,
thus improving its accuracy. Moreover, by see-
ing short segments during training, the model can
become more robust to variance in duration. As
exact labels for each segment are unavailable, we
assigned the same utterance label to all correspond-
ing segments. While not perfect and acknowledg-
ing potential label variation across segments, this
approach has still proven advantageous (Mao et al.,
2020).

The second issue of SER is the limited nature
of available data, often addressed by employing
unsupervised learning. In a previous study, Tri-
georgis et al. (2016) used contrastive predictive
coding to learn audio representation in an unsuper-
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vised way (Li et al., 2021). Similarly, contrastive
loss was used to train a Siamese network (Bromley
et al., 1993), which learned to extract discrimina-
tive audio features (Lian et al., 2018). Pre-trained
transformer models such as wav2vec2 can also ben-
efit from task-specific contrastive learning. In an-
other study, the authors showed the benefits of the
wav2vec2 model in combination with contrastive
learning and data augmentation (Alaparthi et al.,
2022). Closely related to contrastive learning is the
triplet loss function (Schroff et al., 2015), which
was shown to be beneficial in increasing the inter-
class separability of emotions (Huang et al., 2018).

In contrast to prior methodologies that employ
the contrastive or triplet loss function across en-
tire utterances, our study introduces a multi-task
framework. Here, the model concurrently learns
to separate segments with different emotions while
optimising the parameters for the SER task using
negative log-likelihood loss. By simultaneously
applying the loss function at both utterance and
segment levels, our approach enables the model to
concentrate on both local and global features within
the utterances, helping the model understand how
emotions change over time. To evaluate the effec-
tiveness of our proposed methods, we conduct em-
pirical experiments using the wav2vec2 model on
three distinct datasets in both English and Finnish
languages.

2 Datasets

The IEMOCAP dataset contains 12 hours of En-
glish speech, annotated with nine discrete emotions.
To ensure consistency with prior research, we fo-
cused on neutral, sadness, happiness, and anger,
omitting the unbalanced classes. To evaluate our
solutions, we employed a five-fold cross-validation
based on the five recording sessions, as used in
other studies (Chen and Rudnicky, 2023; wen Yang
et al., 2021).

The second English corpus, called RAVDESS
(Livingstone and Russo, 2018), features 12 male
and 12 female speakers expressing eight emo-
tions: neutral, calm, happy, sad, angry, fearful,
disgust, and surprise, through spoken and sung sen-
tences. As official dataset splits are unavailable, we
adopted the splits from Pepino et al. (2021). We
merged the calm and neutral emotions and allo-
cated speakers 1-20 for training, 21-22 for develop-
ment, and 23-24 for testing.

The FESC dataset (Airas and Alku, 2006) com-

prises Finnish prose passages narrated by five male
and four female actors, spanning five hours. The
dataset contains annotations for neutral, sadness,
joy, affection, and anger emotions. In our experi-
ments, we prepared the data the same way as done
by Vaaras et al. (2022) employing a leave-one-
speaker-out cross-validation approach, with each
fold featuring one speaker for testing, one for val-
idation, and the rest for training. The monotonic
character of Finnish, primarily resulting from mini-
mal pitch variation and placement of stress on the
first syllable of the words, poses unique difficulties
for emotion recognition.

3 Methods

Our proposed model utilises a multi-task setting,
optimising two objectives. The negative log-
likelihood helps the model learn to successfully
classify the emotions, while the triplet loss sep-
arates the utterances with different labels farther
in the latent space. Moreover, to reduce the vari-
ance attributed to varying lengths, we additionally
use segment-based processing within the triplet
and negative log-likelihood losses. The proposed
model is illustrated in Figure 1.

Raw audio (a) Raw audio (p) Raw audio (n)

wav2vec2 feat (a) wav2vec2 feat (p) wav2vec2 feat (n)

Segments (a) Segments (p) Segments (n)

Output layer + softmax

Avg pool

Utterance probs Segment probs

Utterance NLL Segment NLL+

Classification loss

Triplet loss (S) Triplet loss (W)

+

Final loss

Figure 1: Architecture of the proposed model. "a" refers
to the anchor, "p" to the positive, and "n" to the negative
element. During training, we either use the triplet loss
on the segments (S) or on the whole utterance (W)

3.1 Segment-based processing
To extract features from the raw audio sequence, we
used a wav2vec2 model. The embedded data are of
shape X = (N,T,H), where N is the batch size,
T is the temporal dimension, i.e. the timesteps,
and H is the hidden size. As discussed earlier, the
goal is to process the utterance in small segments.
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We split each embedding vector X into segments
with overlapping windows. Then, we average each
segment along its temporal dimensions and pass
it to a Linear layer, followed by a Softmax func-
tion, which produces class probabilities. This way,
the model will generate label probabilities for each
segment. In case the temporal dimension of the
embedding vector X is smaller than the segment
size, we process the whole sequence at once with-
out splitting it. During training, we compute the
loss over the whole sequence, as well as over each
of the segments. In the inference stage, we ob-
tain the label prediction by selecting the segment
containing the highest probability.

3.2 Triplet loss
Our multi-task loss function is defined as:

L = Lnll + Ltri (1)

where Lnll is the negative log-likelihood loss. The
triplet loss function Ltri is calculated as:

Ltri = max(d(Xa, Xp)−d(Xa, Xn)+λ, 0) (2)

where Xa is the anchor element, Xp is the positive
element from the same class as Xa, and Xn is the
negative element from a different class. The goal
of the triplet loss function is to make the distance d
between the elements of the same classes smaller
than the distance between the elements of different
classes. The distance d, in our study, is the L2 norm.
λ is a margin determining the minimum distance
between the positive (Xa, Xp) and the negative
pairs (Xa, Xn). For choosing the negative sample,
we ordered the samples by length and chose them
to have a similar duration as the positive ones. This
was done so that we would not compute the dis-
tance between a whole utterance that can not be
split and a segment. There are other viable meth-
ods for selecting the negative sample, for instance,
by picking one with a different valence or arousal;
however, that is application-specific and we do not
consider it in this study.

As discussed earlier, processing the utterance
in segments can reduce the variance attributed to
varying lengths. The triplet loss, on the other hand,
helps with pulling the latent representation of sam-
ples with different classes farther from each other,
ensuring easier separability. Therefore, we com-
bined segment-based processing and triplet loss to
utilise the benefits of both.

Figure 2: The effect of the segment size. The stride is
half of the segment size. A segment size of 100 refers
to roughly 200ms.

Figure 3: The effect of the weight α when combin-
ing the negative log-likelihood and triplet loss for the
RAVDESS dataset.

To learn the SER task, we used the negative log-
likelihood loss function on each segment, as well
as the whole utterance:

LSER =
N∑

i=1

S∑

j=1

Lnll(i, j) + Lnll(i) (3)

where N is the number of samples, i is the sample,
S is the number of segments in sample i, j is the
segment, and (i, j) represents the j-th segment in
sample i.

In the experiments, we used either the segmented
or the whole utterance in the triplet loss. In the end,
we interpolated both loss functions.

4 Experiments

To extract features from the FESC utterances, we
employed the multilingual pre-trained wav2vec2
model (Conneau et al., 2021), fine-tuned for ASR
on Finnish data1 (∼311M trainable parameters).
In this study, we did not consider other self-
supervised models, like HuBERT (Hsu et al., 2021)
or WavLM (Chen et al., 2022), since they do not

1jonatasgrosman/wav2vec2-large-xlsr-53-finnish

49



(a) IEMOCAP (b) RAVDESS (c) FESC

Figure 4: UAR per class and the 95% confidence intervals (in red) for the baseline and the best model on each
dataset.

have a Finnish variant. For the English experiments,
we utilised the base wav2vec2 version2 (∼90.2M
trainable parameters), which is not fine-tuned on
any specific task. The feature dimensions were
set at 1024 for Finnish and 768 for English. We
extracted English wav2vec2 features from the last
Transformer layer, while for the Finnish version,
we utilised layer 23 (out of 24), given that the fi-
nal layer is typically optimised for the ASR task
(Pepino et al., 2021). Even though performing a
layer analysis and choosing the best-performing
one can potentially improve the results, in this
study, we focus on the architecture instead of spe-
cific hyperparameters.

To select the optimal segment and stride sizes,
we tested the performance of the models with dif-
ferent values. The results of this experiment are
shown in Figure 2. For the datasets where we em-
ploy cross-validation, we determined the best seg-
ment size on one fold. Based on the figure, on the
IEMOCAP dataset, a segment size of 140 with a
stride of 70 was chosen as the most optimal. For
RAVDESS, smaller segment and stride sizes of 80
and 40 gave the best results, whereas, for FESC, a
segment size of 120 with a stride of 60 performed
the best.

The margin value λ in Equation 1 was set to 1
in all the experiments. When combining the neg-
ative log-likelihood and triplet loss functions, we
did not use a weighting factor for IEMOCAP and
FESC datasets. This decision was based on the
high-performance variability between folds; the
most optimal value for some splits resulted in poor
outcomes for others. To address this, we attempted
to set the weight as a learnable parameter, but this
did not yield better results compared to not using
any weighting.

2facebook/wav2vec2-base

For the RAVDESS dataset, since we did not use
cross-validation, we conducted a weight analysis
to determine the optimal value, as shown in Figure
3. We performed the weight analysis on a subset
of the training set and determined the best weight
based on the development set. To factor the weight
when combining the loss functions as in Equation
1, we used:

L = (1− α) ∗ Lnll + α ∗ Ltri (4)

The weighting analysis revealed that the most opti-
mal α value was 0.7 for the wav2vec2 model util-
ising the triplet loss, 0.1 for the model combining
segmented processing and triplet loss on the seg-
ments (S), and 0.2 for the model using the triplet
loss on the whole utterance (W). These findings
revealed that when using segmented processing, it
is better to give more weight to the negative log-
likelihood loss, while when processing the whole
utterance, it is better to give more priority to the
triplet loss.

For optimisation, we used the Adam optimiser
and trained the models for 30 epochs using a single
V100 GPU. For the most complex model that uses
segmented processing and triplet loss during train-
ing, the training time for one epoch with a batch
size of 12 took around 34 minutes. During train-
ing, we kept the Convolutional Feature Encoder
frozen while fine-tuning the Transformer layers.
The complete code, along with a detailed list of
hyperparameters, is publicly available3.

5 Results

In this section, we compare the proposed tech-
niques against the standard wav2vec2 pipeline, pro-
cessing the whole utterance at once. We used un-
weighted average recall (UAR) as an evaluation

3Removed due to anonymity
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Model IEMOCAP RAVDESS FESC
wav2vec2 P-TAPT (Chen and Rudnicky, 2023) (74.3) / /
wav2vec2+layer avg (Pepino et al., 2021) 67.2 84.3 /
wav2vec2 baseline 66.5 (65.6) 68.5 (67.8) 57.1 (60.5)
wav2vec2+seg 67.6 (66.7) 73.2 (72.1) 60.1 (62.1)
wav2vec2+tri(W) 73.6 (72.6) 80.4 (78.4) 61.0 (62.1)
wav2vec2+seg+tri(S) 74.6 (73.9) 79.0 (76.9)) 63.6 (64.9)
wav2vec2+seg+tri(W) 73.9 (72.9) 80.5 (78.4) 64.3 (65.0)

Table 1: UAR and UA (given in the brackets) scores for the IEMOCAP, RAVDESS, and FESC test sets. (S) indicates
that the triplet loss was calculated on the segments, while(W) indicates that it was done on the whole utterance.

metric. The UAR metric is calculated as a sum
of the class-wise recall divided by the number of
classes. For comparison with the previous state-of-
the-art (SOTA) method on IEMOCAP, we addition-
ally provide unweighted accuracy (UA) scores.

Table 1 presents the UAR and UA scores
achieved on the IEMOCAP, RAVDESS, and FESC
datasets. Looking at the IEMOCAP test results,
we can notice that fine-tuning the wav2vec2 model
with a classification layer already yields good per-
formance. Segment-based processing, which in-
volves splitting the utterances into segments and
processing them individually, slightly improves the
results over the wav2vec2 baseline.

To explore the impact of segment-based process-
ing on recognising sequences of varying lengths,
we divided the test set into segments below and
over 10 seconds in duration. For short utter-
ances, the baseline achieved a recognition rate of
65.9%, whereas segment-based processing notably
improved the performance to 67.2% UAR, under-
scoring its efficacy for shorter utterances. Con-
versely, for utterances longer than 10 seconds,
segment-based processing got slightly inferior re-
sults with 69.7% UAR, compared to the baseline’s
70.6%. These findings highlight the nuanced ef-
fect of segment-based processing, demonstrating
its effectiveness for short sequences while indicat-
ing the need for further optimisation or alternative
approaches for longer ones.

Introducing the triplet loss, combined with
negative-log-likelihood, gives a further improve-
ment of 7.1% UAR score over the wav2vec2 base-
line. Furthermore, we observed additional improve-
ment by combining segment-based processing and
triplet loss. When using the segments in the triplet
loss, the model got a 74.6% UAR score.

On the RAVDESS test set, the segment-based
processing achieved a UAR score of 73.2%, consid-

erably better than the baseline of 68.5%. Using the
triplet loss further enhances the results over solely
using the segmented processing. The multi-task
learning approach produces the best UAR score of
80.5%, this time by using the whole utterance in
the triplet loss. Since the lengths of the utterances
in this dataset are short, we could not assess the
performance of the segment-based model on short
and long samples.

The Finnish experiments follow a similar trend,
where the segment-based processing outperforms
the baseline. To examine the impact of segment-
based processing on utterance length, we parti-
tioned the test set into segments shorter and longer
than 10 seconds, mirroring our approach in the
IEMOCAP dataset. Notably, this analysis revealed
enhancements in recognition performance for both
short and long utterances through segmented pro-
cessing. Specifically, for short utterances, the base-
line wav2vec2 model achieved a UAR score of
57%, while segment-based processing improved
it to 59.3%. For longer segments, the difference
is more pronounced, with the baseline yielding
a UAR score of 69%, contrasted with 72.7% for
segment-based processing.

Adding the triplet loss further improves the re-
sults, achieving a UAR score of 61%. In the multi-
task scenario, employing the triplet loss on entire
utterances rather than segments gives better results,
as seen from Table 1.

The superior performance of our proposed multi-
task model comes at a cost of increased computa-
tional time. For instance, to evaluate one split of
the IEMOCAP test set, the baseline model took
30 seconds using a batch size of 1, whereas the
wav2vec2+seg+tri(S) took 41 seconds.

Compared to SOTA results on the IEMOCAP
dataset, our multi-task model using triplet loss, in
combination with segmented processing, achieves

51



Model IEMOCAP RAVDESS FESC
wav2vec2 baseline 75.1 78.3 71.5
wav2vec2+seg 74.5 78.2 72.8
wav2vec2+tri(W) 82.8 86.8 80.2
wav2vec2+seg+tri(S) / 89.7 79.7
wav2vec2+seg+tri(W) 83.0 / /

Table 2: Model agreement in terms of UAR, where the best model’s predictions for each dataset are treated as
ground truth.

a slightly worse UA score than the P-TAPT, which
modifies the pre-training stage of the wav2vec2
model to generate emotion-specific features. On
the RAVDESS dataset, the SOTA results incorpo-
rate a weighted average of all wav2vec2 layers,
whereas we only utilise the output of the last Trans-
former layer. Exploring multiple layers or selecting
the best layer for the task could potentially improve
the results, but this falls beyond the scope of our
study. Additionally, that approach performs the
best on the RAVDESS dataset, but its performance
drops on IEMOCAP, indicating that it is not robust
enough. For the Finnish FESC dataset, we could
not find a suitable benchmark.

To get a better understanding of the improve-
ments gained from the multi-task model, we plot-
ted the UAR per class for the baseline and the best-
performing model on each dataset, shown in Figure
4. Upon examining the class-specific performances
of both models across various emotions, it becomes
evident that the multi-task approach almost always
achieves superior recognition rates. Notably, ex-
ceptions include the recognition of sadness in the
IEMOCAP dataset and anger in the RAVDESS
dataset. A plausible explanation for the diminished
performance in recognising the sad emotion might
stem from its extended average duration. As pre-
viously discussed, the model demonstrates a slight
decline in performance when processing long utter-
ances within the IEMOCAP dataset.

To test the stability of the models, we calculated
the 95% confidence intervals for the best models
on each dataset, using the bootstrapping method.
The confidence intervals are presented in Figure
4. For the RAVDESS dataset, we observed a large
interval which contains the real performance with
a 95% chance. These findings indicate that there is
a high variability between the utterances for some
of the emotions. Moreover, our model tends to be
more stable with less variability for disgust, sur-
prise and neutral emotions in comparison to the

baseline. Nevertheless, the performance per class
is in the middle of the confidence intervals, mean-
ing that the overall performance is not distorted by
some extremely easy or difficult test samples.

In the last set of experiments, we test how much
the models differ in the predictions. To achieve
that, we calculated the model agreement, where we
treated the best-performing model’s predictions as
ground truth and evaluated it against the other mod-
els. The results of this experiment are presented in
Table 2.

On the IEMOCAP and RAVDESS datasets, the
best-performing model has the biggest agreement
with its similar counterpart (wav2vec2+seg+tri(W)
for IEMOCAP and wav2vec2+seg+tri(S) for
RAVDESS), followed by the model just utilising
the triplet loss. On the FESC dataset there is
a higher agreement between the best-performing
model and the one that only incorporates triplet
loss, even though that model falls behind in terms
of UAR, compared to both multi-task approaches.
These results indicate that the mistakes that both the
wav2vec2+seg+tri(S) and wav2vec2+seg+tri(W)
models make differ from each other, suggesting
that they learn different things when using seg-
ments or whole utterances in the triplet loss.

6 Conclusion

In this work, we investigated segment-based pro-
cessing, triplet loss, and a multi-task combination
of both techniques for SER. The results from our
English and Finnish experiments demonstrated the
effectiveness of segment-based processing com-
pared to the conventional approach of processing
the entire utterance at once. Moreover, we showed
that the segment size plays an important role and
should be chosen carefully. By integrating the
triplet loss into the learning framework, we ob-
served considerable performance improvements
across all datasets, surpassing the segment-based
processing and showing the benefits of separating
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the different classes in the latent space. On all three
corpora, the multi-task approach of combining the
segmented processing and triplet loss gave the best
results. Furthermore, we showed that segment-
based processing improves the model’s robustness
on short utterances, whereas for long ones, there
is a performance drop on the IEMOCAP, but an
improvement on FESC. By comparing the model
agreement, we found that using segments or whole
utterances in the triplet loss can lead to the models
learning different things, making their predictions
differ.

Limitations

While the proposed multi-task approach signifi-
cantly outperforms the baseline, it comes with
increased computational demands. Further en-
hancements can be achieved by combining multi-
ple Transformer layers, as demonstrated in (Pepino
et al., 2021). However, this study omits layer ex-
perimentation to prioritise architectural analysis
over hyperparameter tuning. Additionally, not in-
corporating a weighting factor for IEMOCAP and
FESC when combining the loss functions adds a
limitation, which remains an important future task.

Ethics Statement

The use of emotion recognition in certain applica-
tions can lead to human rights violations. The EU
AI act (EU, 2024) has classified emotion recogni-
tion systems as a high-risk application, meaning
that the users need to be informed if such a system
is being put into place. Moreover, relying on auto-
matic emotion recognition systems to determine the
state of a person can be dangerous, especially when
that person is in shock and may not express the ac-
tual emotions. Furthermore, emotional expression
varies significantly from person to person. For in-
stance the emotional expression in children with
autism differs from typically developing children
(Chaidi and Drigas, 2020). While the development
of emotion recognition technology may offer so-
cietal benefits, it is essential to carefully consider
who the primary users are and how they will be
affected.
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Abstract

In this paper, we explore the use of a fea-
ture extraction model for the detection of basic
decision-making concepts such as “yes” and
“no” in several communication channels using
electroencephalography (EEG) signals. Power
topographic distribution of both concepts are
explored, showing similar pattern activation in
all communication channels chosen. Bi-LSTM
model was used for the classification of the fea-
ture matrices extracted from EEG trials when
transformed using real cepstrum, achieving,
on average, 81% of accuracy across all sub-
jects. This could help people with disabilities
improve their quality life by enabling commu-
nication even when vocal communication is not
possible.

1 Introduction

Electroencephalography (EEG) has prompted re-
searcher’s attention for years since allowing to
record brain activity non-invasively with high tem-
poral resolution (Luck, 2014). Language, as we
commonly understand it, is the sole province of
humans (Patel, 2007). Phonemes and syllables of
human language are acoustically complex entities
to produce (Patel, 2007), which historically led
researchers to focus on the processing of individ-
ual words (lexical items) (Petersen et al., 1988).
By locating and understanding the role that each
brain area plays in language processing could help
people with severe neurological impairments, in-
cluding communication, such as pure dyslexia or
aphasia (Petersen et al., 1988). Historically, their
location was obtained with functional neuroimag-
ing techniques such as functional Magnetic Reso-
nance Imaging (fMRI), while their timing was cap-
tured by using electromagnetic techniques such as
electroencephalography (EEG) (Price, 2012). The
use of this non-invasive technique, could provide
a means of communication with impaired people
when using monosyllable words or simple concepts

(Lazarou et al., 2018). By identifying brain acti-
vation patterns associated with different commu-
nication channels and classifying opposing simple
concepts, such as "yes" and "no", when presented
in all of them, it becomes possible to establish a
direct communication pathway allowing their de-
coding into words by utilizing electrodes placed
in specific brain regions, offering individuals the
ability to express themselves without the need for
physical speech.

Language processing has been widely explored
by researchers, and it has shown to involve several
brain regions, with the most popular neural model
of language being based on the writings of Broca,
Wernicke and Lichtheim at the end of the 19th Cen-
tury and Geschwind in the mid 20th Century (Price,
2012). The Broadman areas named after them are
classically related to language production and pro-
cessing (Hall and Hall, 2021). However, in recent
years, it has been proven the role of more neural
structures in language processing (Nizara, 2018).
In both (Rezazadeh Sereshkeh et al., 2017; Choi
and Kim, 2019), the decoding of “yes” and “no”
concepts from EEG signals was achieved through
a feature extraction stage, followed by classifica-
tion. In the former, a multilayer perceptron (MLP)
was employed, achieving 63.17% accuracy scores
on average, while the latter used a support vec-
tor machine (SVM) with a 86.03% attained when
combining multiple time-frequency subwindows.

Historically, cepstrum has its roots in the general
problem of signals deconvolution (Childers et al.,
1977), but it has proved it usefulness, not only in
speech signal processing, but also in EEG signal
processing (Sen et al., 2023; Han et al., 2024). In-
spired from the success of cepstral features we
propose a feature extraction model using EEG sig-
nal analysis to discern between two monosyllable
words with opposite meanings, “yes” and “no”,
that could enhance communication possibilities for
persons with some kind of motor/neurological dis-
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ability supported by the use of a Bidirectional Long-
Short Term Memory (Bi-LSTM) Neural Network
model.

This manuscript is organized as follows: In Sec.
2, the methodology followed to record the EEG
signal analyzed is presented. Sec. 3 describes the
main pre-processing stages considered and Sec. 4
shows the features extracted that build the features
matrix used in the classification stage. Results
and conclusions are presented in Secs. 5 and 6,
respectively.

2 Methods

In this section, the methodology followed to record
EEG signals is described, including the partici-
pant’s details, experiment description, and the spe-
cific equipment used.

2.1 Participants
We recorded data from a heterogeneous group of
15 healthy participants (3 male participants, mean
age = 24.00; 12 female participants, mean age =
28.16), most of them members of Universidad de
Málaga (UMA), whose participation was entirely
voluntary with no monetary or any other kind of
compensation. All of them received detailed oral
information about the experiment before providing
their written informed consent to take part in the
experiment.

This study was conducted in accordance with
the Declaration of Helsinki and was approved by
Comité Ético de Experimentación de la Universi-
dad de Málaga, Reg. CEUMA: 61-2021-H. The
privacy and confidentiality of the participants were
strictly protected throughout the study.

2.2 Experiment Description
At present, it is not clear that comprehension of
a word necessarily entails activation of a detailed
perceptual representation of the object to which
it refers, at least not to the same degree as that
evoked by the object itself (Binder et al., 2009). In-
spired by that, in order to detect each word (lexical
item/concept) processing, subjects were presented
with blocks of “yes” and “no” words in the same
language (Spanish), presented in different ways,
we will refer to them from now on as communica-
tion channels. These are aimed to cover all possible
ways of communication, including these scenarios:

• Read: Words were displayed as text on the
screen, so participants were instructed to read

them.

• See: Words were displayed with a represen-
tative symbol on the screen, so participants
were instructed to look at them.

• Listen: Words were played through the speak-
ers, so participants were instructed to listen to
them.

• Say: Words were displayed as text on the
screen, so participants were now instructed to
read them out loud.

• Think: Words were shown as text on the
screen, so participants were now instructed
to think of the word displayed.

In the two last scenarios, each word was first
presented and then, the action was performed, ex-
pecting to avoid the mixture of different cognitive
stimuli. Note that although the appearance of these
blocks was not randomized, the presentation of the
words within them, lasting 7 seconds on average,
was.

Recall that all participants recruited were healthy
subjects. Because of this, the experiment is de-
signed so that no specific feedback is necessary
from subjects during the experiment’s recording.
Also, some resting time is allocated between sub-
experiments.

Experiments were conducted in a separate room
with soundproof windows, and curtains to avoid ex-
ternal noise. Non-essential electronic devices were
turned off to reduce electromagnetic interference.
Participants were instructed to avoid unnecessary
movements.

2.3 Equipment

BrainVision’s actiChamp-Plus and acti-CAP were
used (Brain Products, 2016) in this work. 64 active
electrodes were arranged according to the 10− 20
system (American, 1994; Klem et al., 1999), which
provide high-quality recordings with low back-
ground noise. Among them, FCz and FPz are
used as reference and ground channels, respec-
tively, while FT9 and FT10 electrodes are displaced
to record vertical (VEOG), and horizontal (HEOG)
ocular activity. Iz electrode is used for low-quality
audio capture (fs = 2500Hz), leading to a final
count of 61 electrodes used to measure EEG sig-
nals. The maximum impedance measured across
all participants was kept under 10kΩ, and balanced
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during every recording session (Sanei and Cham-
bers, 2013). Figure 1 shows the electrode position-
ing configuration employed.
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Figure 1: Electrode locations used.

BrainVision Recorder (Brain Products, 2021)
was used to capture EEG data supported by E-
Prime (W. Schneider and Zuccolotto, 2016) run-
ning on an external computer for stimuli presenta-
tion, and sending timestamps to the EEG recorder.
Speakers connected to the E-Prime computer al-
lowed for audio stimuli presentation. Their volume
was kept constant to avoid differences between par-
ticipants.

3 EEG data Pre-processing

This section details the pre-processing steps taken
using MATLAB R2022a (MathWorks, 2022),
along with Fieldtrip Toolbox (Oostenveld et al.,
2010) for EEG data handling.

EEG signal’s small amplitude requires them to
be amplified in order to be properly analyzed (Luck,
2014). This causes several noise sources, both cor-
related and uncorrelated, to be also amplified, po-
tentially masking the neural activity of the brain
(Cohen, 2014). To address this issue, both a high-
pass filter and low-pass filter, with cut-off frequen-
cies of 0.1Hz and 45Hz, respectively, were ap-
plied to eliminate slow drifts and non-cognitive
signals, also proving a baseline correction for each
subject. Also, considering muscle artifacts falling
within the 30 − 100Hz frequency range (Luck,
2014), the chosen cut-off frequencies should effec-
tively mitigate them (Hassan and Hussain, 2023).

After filtering, EEG signals are down-sampled
to f ′s = 100Hz to reduce the computational cost
without compromising the results.

Independent Component Analysis (ICA) is then
applied for visual artifact rejection (Sanei and
Chambers, 2013). This technique decomposes
electrode signals, x(k) = [x1(k), x2(k), . . . , xe(k)]T,

into statistically independent components (IC),
through and unmixing matrix, W, according to:

i(k) = W · x(k) (1)

where i(k) are statistically independent signal com-
ponents. Electrooculogram (EOG) and audio chan-
nels were removed for IC extraction. Note that k
refers to the samples of the signal within the ex-
cerpt considered.

Based on the approach presented in (Villena
et al., 2019), a threshold process based on the cor-
relation coefficients was applied to detect potential
artifactual components and discard them before
mixing the remaining ICs back. Both the ICs ob-
tained and the EEG signal are pre-epoched in the
segments of interest (trials), and the Pearson Corre-
lation Coefficients (ρ) were obtained by following:

ρ(e, n) =
∑K

k=1
(xe(k)−xe)(in(k)−in)√∑K

k=1
(xe(k)−xe)2

∑K

k=1(in(k)−in)
2
(2)

where e refers to each EOG channel considered,
and n to the n-th component extracted.

Note that this step is performed for each selected
trial, and components are considered as artifactual
when they surpass the defined threshold, in its ab-
solute value, in at least the 80% of the trials consid-
ered. To avoid erasing cognitive information, this
threshold process was supported by visual super-
vision of the detected components, ensuring that
only artifactual information was removed from the
original signal (non epoched) xe(k), to obtain the
reconstructed signal, x′e(k).

Since in this experiment we are interested in
assessing neural processing of different words or
concepts, EEG signals are now epoched to contain
the two words considered, i.e., “yes” and “no” in
all the communication channels assessed. With this
in mind, the power topographic distribution of all
subjects is compared in all the scenarios assessed.
Figure 2 shows the scalp power distribution aver-
aged for all participants available when presented
with “yes” and “no” words in each communication
channel. Note that for each channel of communica-
tion, the topographic distribution of both words are
displayed using the same normalized color axis.

In this figure, it can be observed how some acti-
vation areas are present in all communication chan-
nels chosen when processing these two concepts.
Primary, the main activity is focused on the frontal
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Figure 2: Average scalp power distribution when processing “yes” and “no” words/concepts when different
communication channels are used.

region rather than parietal-occipital and temporal,
depending on the task performed.

As for the former, mainly a left-laterallyzed ac-
tivity over the frontal cortex is consistent with
what is stated in (Petersen et al., 1988), where
task calling for semantic processing of individu-
als words activation was observed over the frontal
region. Later neuro-psychological experiments
showed that damages in frontal or inferior parietal
areas in this hemisphere caused deficits in tasks
that required speech syllables identification, which
highlighted the possible role of a fronto-parietal
circuit in the perception of speech (Hickok and
Poeppel, 2007). However, note that is not always
restricted to the left hemisphere. This is not odd
since previous researches indicates that there is
probably, at least, one pathway in each hemisphere
related with speech processing (Hickok and Poep-
pel, 2007). This behavior is also consistent with
the spatial distribution observed in (Choi and Kim,
2019), where right frontal region exhibited the most
useful features for the discrimination task.

There is strong evidence that posterior middle
temporal regions are involved in accessing lexi-
cal and semantic information. Although it’s not
present with the same magnitude in all cases as-
sessed, activation in left temporal region directly
relates with Broca’s and Wernicke’s areas, both inti-
mately related with language processing (Petersen
et al., 1988; Hickok and Poeppel, 2007). Semantic
processing has been particular observed over infero-
temporal and posterior inferior parietal regions, as
stated in (Binder et al., 2009). Activation in these
regions are somehow expected since posterior ar-
eas are involved in visual feature extraction and
more anterior areas are involved in lexico-semantic
processing of the whole word (Price, 2012).

Language processing is widespread and occupy
a large proportion of the cortex in the human brain
(Binder et al., 2009), with its neural organization,
being task dependent, as stated in (Hickok and
Poeppel, 2007).

At the view of these power topographic distri-
butions, we hypothesized that the processing of
both concepts is equivalent regardless of the type
of medium chosen for their presentation. Based on
this, they will be treated equally without discerning
between them in further stages.

For concept processing detection, the real cep-
strum is applied to the original EEG signal. Its
used is based on previous results as presented in
sec. 1. The real cepstrum of a signal is obtained
as the Inverse Fourier Transform of the logarithm
of the magnitude of the spectrum (Shourie, 2016).
In our research, the real cepstrum analysis process
has been applied to the EEG signals to use their
coefficients as a parameter vector to characterize
signals and analyze them improving the results ob-
tained when compared with the use of the EEG
signal directly. The real cepstrum can be computed
as:

ce,t(k) =
1

2π

∫
log|Xe,t(w)|ejwkdw (3)

where ce,t(k) are the real-valued coefficients of the
cepstrum for the e-th electrode, and the t-trial, and
Xe,t(w) the Fourier transform of the input signal,
x′e,t(k).

4 Feature Extraction

This step allows for reducing the complexity of the
classification step (Alghamdi et al., 2023; Danyal
et al., 2023). To this end, each feature was extracted
following a single-trial method, i.e., within each
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subject, trial, and electrode (Grierson and Kiefer,
2014).

Based on previous EEG research (Hassan and
Hussain, 2023; Al-Qazzaz et al., 2023), once indi-
vidually tested, both statistical and Power Spectral
Density (PSD) features-based are chosen to maxi-
mize the results obtained when combined:

• Standard Deviation: This feature measures
the dispersion of the signal around its mean
value:

σe,t =

√√√√ 1

K − 1

K∑

k=1

|ce,t(k)− c̄e,t(k)|2,

(4)
with c̄e,t(k) the sample mean:

c̄e,t(k) =
1

K

K∑

k=1

ce,t(k) (5)

and K the sample length of the excerpt con-
sidered.

• Root Mean Square: Square root of the aver-
aged squared values of the signal excerpt:

RMSe,t =

√√√√ 1

K

K∑

k=1

|ce,t(k)|2 (6)

• Absolute Power Value: Overall power
was extracted from the PSD obtained, fol-
lowing previous research (Sammler et al.,
2007)(Stancin et al., 2021), through Welch
method, first proposed by (Welch, 1967).

A Hamming window (W (l), l = 0, ..., L− 1),
with a 50% overlap was used for segmenting
input signal into S = 8 segments of length L.
The absolute power spectral value of the e-th
electrode at the t-th trial is obtained by sum-
ming up the spectral estimation over all the
frequency bins, p(fn), of the PSD obtained
for the EEG excerpt considered, as follows:

Pe,t =

L/2∑

n=0

p(fn) (7)

• Averaged Spectral Flux: Rate of change of
the PSD of the input signal averaged over time.
It is calculated by using:

Fe,t =
1

S

S∑

s=1

√√√√
L/2∑

n=0

|p(fn+1)− p(fn)|2 (8)

Following this approach, each trial outputs a
feature matrix of dimensions (ExF ), where E =
61 are the active electrodes used, and F = 4 are
the features considered.

The aforementioned features have already shown
compelling results for EEG signal characterization
in musical mode detection (Guillén et al.). Note
that all of them are energy-based, thus the process
outlined can be viewed as a form of data augmenta-
tion. In contrast to typical EEG approaches where
augmentation involves altering the dataset through
noise addition or geometric transformations (Lash-
gari et al., 2020; George et al., 2022), the approach
presented aims to optimize the information encom-
passed in the original dataset without altering it.

5 Results

This work proposes a feature-based model for the
characterization and classification of EEG trials
when processing “yes” and “no” words when pre-
sented in different communication channels such
as text, symbol, sound, speech, or thought, with
the final aim of helping the communication possi-
bilities of people with some type of motor/neural
disability that may diverge into communication dif-
ficulties. For the classification, a type of Long
Short-Term Memory (LSTM) is used, reviewing
both intra-, for each participant, and inter-subject,
for all participants combined, scenarios. In (Reza-
zadeh Sereshkeh et al., 2017), a LSTM model was
used for the decoding of “yes” and “no” as stated
in section 1.

LSTM algorithms have shown their effective-
ness in automatically predicting timeline properties
(Algarni et al., 2022). Bi-LSTM classifier con-
sists of an input sequence layer of E = 61 inputs,
each input a vector built upon the features previ-
ously stated. Then, a bidirectional LSTM layer,
built up of a forward layer and a backward layer,
with 20 hidden units is used to learn the bidirec-
tional long-term dependencies between sequence
data flows. A fully-connected layer with two possi-
ble states (“yes” and “no” classes) is placed prior
to outputting the label chosen for the data classified
using a non-linear softmax layer supported by the
cross entropy loss. A count of 1500 epochs is cho-
sen to reach model convergence. Figure 3 shows
the architecture of the model chosen.

This model is similar to the one used in (Ariza
et al., 2022), though specific changes were done to
adopt its structure to the task at hand, as described.

59



Input
Layer

Bi-LSTM
Layer

FullyConnected
Layer

SoftMax
Layer

Output
Layer

E inputs

M outputs

Figure 3: Diagram of the configuration of the Bi-LSTM network model used.

To avoid biases, and over-fitting in the classification
step, and considering the dataset sample size, a 3-
fold cross-validation process is carried out, so the
results presented in further sections are the average
of the 3 folds considered.

Using the data obtained after the experiment,
matrices are labeled after the subject’s response
during each trial, depending on the concept pro-
cessed: “yes” if the ongoing concept was “yes”,
or “no”, otherwise. With this, binary classification
was carried out. Table 1 shows Accuracy, Recall,
Precision, and F1-score metrics obtained for each
subject confusion matrix, along with their average
value.

Table 1: Results (%) of binary classifications: “yes" or
“no" word/concept processed.

Subject ID Accuracy Precision Recall F1-score

S1 73.13 66.25 76.81 71.14
S2 71.88 56.25 81.82 66.67
S3 85.00 70.00 100.00 82.35
S4 80.63 100.00 72.07 83.77
S5 75.00 65.00 81.25 72.22
S6 77.50 91.25 71.57 80.22
S7 83.13 85.00 81.93 83.44
S8 85.63 86.25 85.19 85.72
S9 75.63 96.25 68.14 79.79
S10 85.63 95.00 80.00 86.86
S11 88.75 91.25 86.90 89.02
S12 74.38 82.50 70.97 76.30
S13 87.50 90.00 85.71 87.80
S14 93.75 93.75 93.75 93.75
S15 81.25 90.00 76.60 82.76

Averaged 81.25 83.92 80.85 81.45

In this table it can be observed that, although
each subject outputs different results, the model’s
performance is consistent between them, and man-
ages to surpass 81% of accuracy on average, prov-
ing this method to successfully discern when par-
ticipants are processing one word or another re-
gardless of the communication channel employed
according to (Perelmouter and Birbaumer, 2000;
Müller-Putz et al., 2008). These averaged values
can be also observed in Figure 4, where the confu-
sion matrix obtained by summing up all confusion
matrices of subjects is presented. Note that the re-
sults attained are in line with (Choi and Kim, 2019)

where a SVM model was used obtaining 86.03%
of accuracy score, and surpass results from (Reza-
zadeh Sereshkeh et al., 2017) where a LSTM model
was used, reaching up to 63.17%

yes

no

yes no

Predicted Class

T
ru

e
 C

la
s
s 1007 193

943257

Figure 4: Average confusion matrix obtained by sum-
ming up all subject’s confusion matrices.

AUC-ROC curves are drawn to support these
metrics, which have shown to be directly corre-
lated with the accuracy, but also considering the
miss-classification cost and giving an indication of
the amount of “work done” by the classification
scheme evaluated (Bradley, 1997). Figure 5 shows
the AUC-ROC curve obtained per user (colored
and dotted), and the average curve obtained for all
of them (black and continuous) in this scenario.

In this figure it can be observed how the model
manages to convergence for all subjects, with an
average AUC-ROC value of 92.29%, proving the
model chosen to successfully discern between the
words studied.

Inter-subject scenario was also assessed, but due
to the experiment configuration, the model chosen
did not manage to attain compelling results under
the same training options chosen. This was some-
how expected since in (Price, 2012) was stated that
intra-operative stimulation showed diversity in lo-
cation of language functions and morpho-metrical
imaging studies based on diversity of brain shape
and gyral patterns.
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Figure 5: AUC-ROC curves comparison between all
subjects curves (dotted-colored curves) and average
curve (continuous-black curve) for binary classification
using EEG data of all subjects when processing “yes”
and “no” words/concepts.

6 Conclusions

In this paper, an analysis of brain responses to
words/concepts with opposite meanings, i.e., “yes”
and “no”, has been carried out using EEG signals.
The final purpose of this work was to discern be-
tween them aiming to help the communication of
people with some disability. For this purpose, the
subjects participating in the experiment were pre-
sented the stimuli through several communication
channels, i.e., text, symbol, sound, speech, and
thought, trying to cover all the possible processing
methods of the concepts. Note that all of them were
considered since the control group was composed
of healthy subjects. Nevertheless, it should be ex-
pected that when some kind of disability is present,
at least one of them is still possible.

The scalp power distribution of all scenarios
mentioned was reviewed, showing in all cases sim-
ilar activation patterns, consistent with previous
studies in language processing, which may indicate
that both words/concepts are processed similarly
regardless of the presentation medium. Based on
this finding, all trials from different communica-
tion channels are used jointly in the processing and
classification of signals.

Real cepstrum is used to characterize EEG sig-
nals once pre-processed. Then, energy-based fea-
tures are extracted on a single-trial basis for each
electrode individually.

Intra- and inter-subject scenarios are explored.
The Bi-LSTM Neural Network model chosen

successfully discerns between “yes” and “no”
words/concepts regardless of the communication
channel chosen in the former, attaining an aver-
age 81.25% accuracy value in the intra-subject bi-
nary classification scheme supported by an aver-
age AUC-ROC value of 92.29%, showing an im-
provement in the discrimination task when com-
pared with previous researches. Inter-subject sce-
nario was also assessed, but no compelling results
were obtained maybe due to the variability of the
multi-modal communication scheme considered
and physiological differences across subjects.

Based on the results obtained, the processing
scheme described in this work stands as a valu-
able tool to explore the possibility of enhancing
the communication capabilities of people with
some motor/neural disability by detecting simple
words/concepts of opposite meaning. These find-
ings encourage enlarging the dataset and continue
the research.

Limitations

The main limitation of our study lies in the sample
size at our disposal. This is a common limitation in
EEG experiments where participants recruitment,
specially without monetary compensation, is lim-
ited. However, although working with a reduced
dataset might led to possible misinterpretations,
sample size does not necessarily affect the validity
of the research outcome, allowing the results ob-
tained to be considered valid (Vozzi et al., 2021).
Nevertheless, a larger sample could provide a more
comprehensive and representative perspective. To
overcome this drawback, it is expected to expand
our dataset in further research stages.
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Abstract

This paper presents a study on Japanese es-
say grading using Generative Pre-trained Trans-
formers (GPTs) in Japanese language. Previ-
ous research has demonstrated the effective-
ness of neural network-based models, such
as BERT, for essay grading across various
datasets. With the advent of downloadable
GPT models trained on significantly larger
datasets compared to BERT, it has become fea-
sible to employ these models for essay grading
through fine-tuning with Low-Rank Adaptation
(LoRA). Most existing models have focused
on English essays and their accuracy, leaving
a gap in understanding the performance on
Japanese essays, which have limited linguis-
tic resources. To address this, we apply several
Japanese GPT models to a dataset comprising
12 prompts across 4 themes. The experimental
results show that the model pre-trained exclu-
sively on Japanese data, open-calm-medium,
achieved an accuracy of 62.33% and a QWK
of 0.5551. In comparison, the best-performing
model additionally pre-trained on multilingual
Llama, ELYZA-Llama-2-7b-fast, achieved an
accuracy of 53.29% and a QWK of 0.3375.
This study highlights the potential of GPT mod-
els for enhancing automated essay scoring in
the Japanese context.

1 Introduction

Automated essay scoring (AES) is one of the most
promising and rapidly evolving fields in educa-
tional technology owing to the growing opportuni-
ties of online lectures.

Previous studies first revealed neural network-
based models such as LSTM and CNN are effective
for essay tasks (Taghipour and Ng, 2016; Dong
et al., 2017; Yi Tay and Minh C. Phan and Luu
Anh Tuan and Siu Cheung Hui, 2018). A neural
network-based essay scoring model is roughly di-
vided into two parts: encoding an essay to a vector
and assigning scores. After a pre-trained language

model BERT (Devlin et al., 2019) has succeeded
in improving the accuracy of benchmarks in NLP,
some previous studies have applied simple BERT-
based models into essay scoring task (Rodriguez
et al., 2019; Mayfield and Black, 2020). The sim-
ple models were unable to improve the accuracy of
existing neural network-based models. The newly
proposed models, however, combining regression
and ranking loss show improved performance com-
paring to the existing neural network-based models
(Yang et al., 2020; Wang et al., 2022).

Thus, the previous studies have revealed pre-
trained language models are effective for AES. In
the recent advancements in Generative Pre-trained
Transformers (GPTs) (Brown et al., 2020; Ope-
nAI et al., 2023), which have much larger weight
size and are trained on extensive datasets, sev-
eral studies have explored the application of GPTs,
both with and without fine-tuning (Mizumoto and
Eguchi, 2023; Xiao et al., 2024). It has been ob-
served that a prompt-based GPT model yields lower
accuracy compared to the fine-tuned GPT-3.5 or
BERT-based model (Xiao et al., 2024).

The findings of the models studied above have
been often conducted on the commonly used En-
glish essay dataset ASAP (Hamner et al., 2012), but
on the other hand, it is not clear how much predic-
tion accuracy can be achieved for Japanese essays,
where linguistic resources are limited. There are
studies conducted on Japanese essay written by
Japanese learners (Hirao et al., 2020; Obata et al.,
2023); however, Japanese essay data (Takeuchi
et al., 2021)1 written by native Japanese speakers
that can be used for research has recently been pub-
lished, thus, in this paper, we conduct on the study
of essay scoring model for Japanese.

Previous studies show that the fine-tuned lan-
guage models based on BERT or GPT-3.5 are
promising for AES task (Hirao et al., 2020; Xiao

1GSK2021-B https://www.gsk.or.jp/catalog/gsk2021-b/
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et al., 2024). Thus, the middle size of downloadable
GPT models such as Llama (Touvron et al., 2023)
are worth to be applied into Japanese essay scor-
ing task because of the following reasons: 1) API-
based GPTs such as GPT-3.5 have limitations of
learning while we can freely build an essay grading
model that incorporate the downloaded GPT, 2) it
is expected that linguistic knowledge within a GPT
will contribute to solve the grading of Japanese es-
says, and 3) Low-Rank Adaptation (LoRA) (Hu
et al., 2021) enables us to apply fine-tuning on a
local GPU at a laboratory scale.

Several Japanese GPT models that are specifi-
cally pre-trained on Japanese texts are published;
however, it is not clear which model is suitable
for Japanese essay scoring task. The dataset in-
cludes Japanese essays to 12 prompts consists of
4 themes, which ranges in length from 100 to 800
characters. Therefore, in this paper, we clarify the
performance of the several Japanese GPT models
for the Japanese essay dataset and discuss the rela-
tions between GPTs and features of essays.

The contributions of this study are as follows:
1) it unveils Quadratic Weighted Kappa (QWK)
and F1 scores achieved for Japanese essays us-
ing a Japanese GPT model, 2) it provides a com-
parative analysis of the performance across vari-
ous Japanese GPT models employing Low-Rank
Adaptation (LoRA) fine-tuning on Japanese essay
datasets, and 3) it reveals that GPT models initially
trained on Japanese texts outperform the model
subjected to additional pre-training on multilingual
Llama model using Japanese texts.

2 Previous Studies

In the initial phases of AES development, a vari-
ety of statistical models were employed. These
included regression models that relied on hand-
crafted features, exemplified by systems like e-
rater (Attali and Burstein, 2006), as well as sta-
tistical approaches utilizing latent semantic index-
ing (LSI) (Deerwester et al., 1990; Ishioka and
Kameda, 2006).

Neural network models that do not require hand-
crafted features has been proposed and shown to
be superior to previous models. Many studies used
LSTM and CNN models (Taghipour and Ng, 2016;
Dong et al., 2017; Yi Tay and Minh C. Phan and
Luu Anh Tuan and Siu Cheung Hui, 2018), but
there is also a study using word embedding and
Support Vector Regression model (Cozma et al.,

2018) that achieved an equivalent performance to
the neural network-based models (Mayfield and
Black, 2020).

Instead of learning sentence embedding directly
from target data, pre-trained language models are
employed (Rodriguez et al., 2019; Mayfield and
Black, 2020; Yang et al., 2020; Wang et al., 2022;
Mizumoto and Eguchi, 2023; Xiao et al., 2024; Hi-
rao et al., 2020; Obata et al., 2023). Pre-trained
models can be broadly divided into BERT (Ro-
driguez et al., 2019; Mayfield and Black, 2020;
Yang et al., 2020; Hirao et al., 2020; Wang et al.,
2022) and GPT (Mizumoto and Eguchi, 2023;
Obata et al., 2023; Xiao et al., 2024). Although
the initial model using BERT could not achieve
high accuracy, it was shown that adding ranking
to the loss function improved accuracy and outper-
formed neural network-based models (Yang et al.,
2020; Wang et al., 2022). The prompt-based GPT
model showed the limited performance compared
to the linguistic feature-based model (Mizumoto
and Eguchi, 2023; Obata et al., 2023) or fine-tuned
GPT-3.5 model (Xiao et al., 2024). This indicates
that significant large language model is not so ef-
fective for AES.

While most of the previous studies are conducted
on English essay dataset, studies on Japanese es-
say are limited. Hirao et al. (2020) revealed that
the BERT-based model is effective compared to
the LSTM-based model on Japanese essay dataset2.
The other Japanese essay dataset used in Obata
et al. (2023) contains essays for one prompt3. Pre-
liminary experiments have been conducted to pre-
dict scores for Japanese essay data by fine-tuning
Japanese GPT models (Okgetheng and Takeuchi,
2024).

Thus, evaluating essay scoring models using a
Japanese essay dataset—comprising essays of vari-
ous lengths and themes, based on data available for
research—is deemed valuable.

3 Methodology

3.1 Essay Scoring Model

The essay scoring model comprises two main mod-
ules: text encoding and score assignment. The
encoding module leverages pre-trained language
models to convert the input text into vector rep-
resentations, while the score assignment module

2https://goodwriting.jp/wp/?lang=en
3That is included in I-JAS corpus https://

www2.ninjal.ac.jp/jll/lsaj/.
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utilizes these representations to predict scores. The
models employed in this study include Japanese
BERT, Open CALM, CALM2-7B, StableLM Al-
pha, and ELYZA, each designed specifically for
handling Japanese texts.

Japanese BERT4 is used for text encoding, where
the vector corresponding to the [CLS] token serves
as the embedding vector for the input essay. In con-
trast, decoder-only models such as Open CALM5,
CALM2-7B6, Japanese StableLM Alpha7, and
ELYZA8 are utilized for both encoding and score
prediction. For these GPT-based models, the vector
that predicts the next token after the final token of
the input essay is used as the embedding vector.

Given an input essay document s with tokens x1
to xn generated by the tokenizer, the final token
embedding is used for predicting the score. Specif-
ically, for models like Open CALM, the vector
corresponding to the token that denotes the end of
the input document is used. Figure 1 illustrates the
overall architecture of the essay scoring model.

Figure 1: Methodology for the Neural Network-based
Essay Scoring Model

3.2 Score Prediction from Embeddings
To predict the score from the embeddings, the fi-
nal embedding vector (obtained either from the
[CLS] token for BERT or the end-of-sequence to-
ken for GPT models) is passed through a fully con-
nected neural network. This network consists of
multiple layers that map the high-dimensional em-
beddings to a single score value representing the

4https://huggingface.co/tohoku-nlp/bert-base-japanese-
v3

5https://huggingface.co/cyberagent/open-calm
6https://huggingface.co/cyberagent/calm2-7b
7https://huggingface.co/stabilityai/japanese-stablelm-

base-alpha-7b
8https://huggingface.co/elyza/ELYZA-japanese-Llama-2-

7b

predicted essay score. The design of this neural net-
work, including the number of layers and activation
functions, is optimized to capture the nuanced rela-
tionships between the encoded text and the target
scores.

3.3 Design of the Loss Function
Given that the proposed model is a categorical clas-
sification model where the classes are ordinal, we
applied soft labeling(Diaz and Marathe, 2019) to
the loss function. During the training phase, the
loss for the categorical model is calculated using
cross-entropy with one-hot labels. Soft labeling
modifies the target labels such that the k-th value
is calculated as follows:

dk =
exp(−|k̂ − k|)

∑K
i=1 exp(−|k̂ − i|)

(1)

Here, dk represents the teacher value for each k-th
unit in the final layer of the classification model,
and k̂ denotes the correct category. This approach
assigns a larger penalty for predictions that are
further from the correct answer, promoting better
ordinal classification.

4 Experimental Setup

4.1 Dataset
The Japanese essay tests were conducted on
Japanese university students, and the dataset con-
sists of 12 prompts with 4 themes. In each theme,
there are three prompts. The four themes are
globalization (Global), natural science (Natural),
East Asian economics (Easia), and critical thinking
(Criticize). Each theme has three prompts from
question 1 to 3. The length of the essays ranges
from 100 characters to 800 characters.

The essays are manually scored on a 5-point
scale for comprehension, logic, validity, and gram-
mar. In this paper, we focus on comprehension
scores to evaluate the essay scoring models. The
essays were annotated by two Japanese-speaking
raters, and the scores were averaged to obtain the
final score for each essay.

The Japanese essay data is available to re-
searchers and is provided by the Japanese Lan-
guage Resource Association (GSK)9. Table 1
shows the number of essays for each prompt. In the
table, ’P’ stands for Prompt number, ’ML’ repre-
sents the Maximum Length of an essay, and ’Num’
indicates the number of essays.

9https://www.gsk.or.jp/en/
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This dataset provides a diverse range of essay
lengths and topics, enabling a comprehensive eval-
uation of the essay scoring models.

Table 1: Japanese essay data

Theme P ML Num Theme P ML Num
1 100 290 1 300 328

Criticize 2 400 290 Global 2 250 327
3 800 290 3 300 327
1 300 290 1 100 327

Easia 2 250 288 Science 2 400 325
3 300 288 3 800 327

4.1.1 Example of Global Category Prompts:
Japanese and English Versions

In the global category, the essay prompts chal-
lenge students to critically analyze various aspects
of globalization. For example, Prompt 1 asks:
Japanese: グローバリゼーションは、世界、
または各国の所得格差をどのように変化さ
せましたか。また、なぜ所得格差拡大、また
は縮小の現象が現れたと考えますか。300字
以内で答えなさい。 English: How has glob-
alization changed income inequality in the world
or across countries? Also, why do you think the
phenomenon of increasing or decreasing income
inequality has appeared? Please answer within 300
characters.
Prompt 2 shifts focus to multinational corporations,
asking: Japanese: 多国籍企業は、グローバ
リゼーションの進展の中でどのような役
割を果たしましたか。多国籍業の具体例を
あげて、250字以内で答えなさい。 English:
What role have multinational corporations played
in the development of globalization? Give a spe-
cific example of a multinational business and an-
swer within 250 characters.
Lastly, Prompt 3 delves into cultural aspects, ask-
ing: Japanese: 文化のグローバリゼーション
は、私たちの生活にどうのような影響を与
えましたか。また、あなたはそれをどのよ
うに評価しますか。具体例をあげて、300字
以内で答えなさい。 English: How has cultural
globalization affected our lives? Also, how do you
rate it? Give a specific example and answer within
300 characters.

4.2 Score Distribution Across Themes
The score distribution across different essay themes
and prompts provides valuable insights into the
grading trends and the level of challenge posed by

each prompt. Figure 2 illustrates how scores were
allocated across five possible score levels (1 to 5)
for each theme and prompt within the dataset. This
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Figure 2: Scores Distribution per theme

distribution highlights the variability in grading
across different prompts, with some prompts show-
ing a higher concentration of scores in the middle
ranges (Scores 2 and 3), while others have a sig-
nificant number of essays scored at the higher end
(Score 5), particularly in themes like science_q1.

4.3 Performance Measures
To evaluate the effectiveness of our model, we em-
ployed several performance metrics:

• Accuracy: This metric provided a straightfor-
ward measure of the model’s ability to cor-
rectly predict the essay scores.

• Root Mean Square Error (RMSE): RMSE of-
fered a quantitative measure of the model’s
prediction error, giving insights into the devi-
ation of the predicted scores from the actual
scores.

• Quadratic Weighted Kappa (QWK): QWK
was used to assess the degree of agreement
between the predicted and actual essay scores.
This metric is particularly valuable in grading
scenarios, as it accounts for the ordered nature
of the rating scale.

4.4 Training Setup
Our setup involved the following key components:

• GPT Configuration: We utilized GPT mod-
els specifically configured for the Japanese
language, ensuring that they are finely at-
tuned to the linguistic characteristics unique
to Japanese.

67



• Early Stopping: To prevent overfitting, we em-
ployed an early stopping mechanism. Train-
ing ceased once the improvement in perfor-
mance on the validation set plateaued, ensur-
ing the generalizability of the model.

• Gradient Accumulation: Recognizing the
computational demands of training large lan-
guage models, we implemented a gradient ac-
cumulation strategy. By setting the accumu-
lation steps to 2 with a batch size of 8, we
effectively simulated a larger batch size of 16,
allowing for more stable and effective train-
ing.

• LoRA: We applied LoRA (Low-Rank Adap-
tation) implemented in PEFT (Parameter-
Efficient Fine-Tuning) by HuggingFace with
the rank set to 8.

• Training Configuration: Models were trained
over a maximum of 10 epochs with early stop-
ping criteria to prevent overfitting.

5 Experimental Results

In our experiments, we employed a 5-fold cross-
validation technique to ensure the robustness and
reliability of our results. Each model was trained
with a batch size of 8, and we used a gradient ac-
cumulation step of 2, effectively making the batch
size 16. The models were trained for a maximum
of 10 epochs, with early stopping criteria to prevent
overfitting.

The performance metrics used in our evaluation
include F1 Score, QWK, Accuracy, and RMSE.
These metrics provide a comprehensive evaluation
of the models’ capabilities in handling classifica-
tion tasks, measuring the agreement between pre-
dicted and actual scores, assessing the proportion
of correct predictions, and quantifying the average
magnitude of prediction errors, respectively.

5.1 Overall Performance
Table 2 presents the overall performance of various
models with and without soft labeling.

This table shows that models such as calm2-
7b and open-calm-large perform consistently well
across all metrics. Specifically, calm2-7b without
soft labeling achieves the highest QWK (0.5982)
and a relatively low RMSE (0.6957), indicating
strong agreement with the true scores and precise
predictions. In contrast, the F1 scores are generally
higher for models without soft labeling, suggesting

a better precision-recall balance when soft labels
are not used.

5.2 Category-wise Performance

Table 3 illustrates the performance of different mod-
els across various essay categories with and without
soft labeling. The results in this table are for the
models that performed best in each category.

In the Criticize category, the calm2-7b model
without soft labeling outperforms other models,
achieving a QWK of 0.5831 and RMSE of 0.7133.
The Easia category shows similar trends, with
calm2-7b again performing best without soft la-
beling. For the Science category, the open-calm-
medium model with soft labeling achieves the high-
est QWK of 0.7092, indicating strong performance
in more technical essays.

5.3 Prompt-wise Performance

Table 4 provides the performance across different
prompts with and without soft labeling. In this
table, we are showing the results of the models that
performed better than the others in each prompt.

For Prompt 1, the jp(Japanese)-stablelm-instruct-
7b-v2 model without soft labeling achieves the
highest QWK of 0.7356, indicating a strong agree-
ment with human scoring. Prompt 2 shows the
ELYZA-Llama-2-7b-fast-instruct model perform-
ing well, with balanced accuracy and F1 score. The
calm2-7b model remains consistent across different
prompts, showcasing its versatility.

5.4 Performance Comparison

Table 5 compares the performance of classification
models with soft labeling, without soft labeling,
and regression models.

Table indicates that regression models gener-
ally outperform classification models in terms of
RMSE, indicating more precise error minimization.
Soft labeling improves performance for medium
and large models, but its benefits are less clear for
small models. QWK and Accuracy metrics show
balanced performance across all model types, with
regression models slightly ahead in precision.

6 Discussions

The analysis of various models on the Japanese
essay scoring task demonstrates that some models
exhibit a high degree of proficiency within certain
thematic areas. This is evidenced by their consis-
tently strong performance across most evaluated
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Table 2: Overall Performance of GPT Models

Model F1 Score QWK Accuracy RMSE
With Soft Labeling open-calm-small 0.2803 0.3417 0.5677 0.7855

open-calm-medium 0.3284 0.5303 0.5899 0.7243
open-calm-large 0.3502 0.5272 0.6208 0.7282
open-calm-7b 0.3072 0.4362 0.5963 0.7787
calm2-7b 0.3252 0.5288 0.6001 0.7417
calm2-7b-chat 0.3109 0.4512 0.5873 0.7761
jp-stablelm-alpha-7b 0.2961 0.4201 0.5652 0.7933
jp-stablelm-instruct-7b-v2 0.3372 0.4750 0.5886 0.7788
ELYZA-Llama-2-7b-instruct 0.2909 0.3760 0.5305 0.8980
ELYZA-Llama-2-7b-fast 0.2415 0.3105 0.5216 0.8884
ELYZA-Llama-2-7b 0.3372 0.4716 0.5930 0.7728
ELYZA-Llama-2-7b-fast-instruct 0.3115 0.4376 0.5481 0.7893
BERT 0.5056 0.4318 0.5602 0.7863

Without Soft Labeling open-calm-small 0.2910 0.3848 0.5679 0.8112
open-calm-medium 0.3621 0.5551 0.6233 0.7259
open-calm-large 0.3772 0.5614 0.6219 0.7053
open-calm-7b 0.3370 0.5068 0.6089 0.7279
calm2-7b 0.3872 0.5982 0.6140 0.6957
calm2-7b-chat 0.3303 0.4994 0.6072 0.7332
jp-stablelm-alpha-7b 0.3518 0.5367 0.6072 0.7332
jp-stablelm-instruct-7b-v2 0.3362 0.4690 0.5918 0.7829
ELYZA-Llama-2-7b-instruct 0.3143 0.4501 0.5274 0.8365
ELYZA-Llama-2-7b-fast 0.2630 0.3375 0.5329 0.9217
ELYZA-Llama-2-7b 0.3526 0.4843 0.5768 0.8207
ELYZA-Llama-2-7b-fast-instruct 0.3260 0.4495 0.5520 0.8053
BERT 0.4681 0.3352 0.5450 0.8433

Table 3: Category-wise Performance of GPT Models

Category Model QWK RMSE Accuracy F1 Score
With Soft Labeling Criticize jp-stablelm-instruct-7b-v2 0.5239 0.7287 0.6061 0.3395

Easia calm2-7b 0.5129 0.6259 0.6919 0.3119
Global open-calm-large 0.5593 0.7810 0.5690 0.3857
Science open-calm-medium 0.7092 0.6604 0.6667 0.4515

Without soft labeling Criticize calm2-7b 0.5831 0.7133 0.5960 0.3805
Easia calm2-7b 0.5886 0.6280 0.6818 0.3620
Global calm2-7b-chat 0.5585 0.6511 0.6149 0.4092
Science jp-stablelm-alpha-7b 0.7050 0.6565 0.6061 0.4277

Table 4: Prompt-wise Performance of GPT Models

Prompt Model QWK RMSE Accuracy F1 Score
With Soft Labeling 1 jp-stablelm-instruct-7b-v2 0.6881 0.6541 0.6869 0.4352

2 calm2-7b-chat 0.6963 0.7388 0.5606 0.3603
3 open-calm-large 0.4243 0.7100 0.6300 0.3082

Without Soft Labeling 1 jp-stablelm-instruct-7b-v2 0.7356 0.6070 0.7355 0.4835
2 ELYZA-Llama-2-7b-fast-instruct 0.6920 0.6931 0.5990 0.3932
3 calm2-7b 0.4373 0.6922 0.5917 0.3440
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Table 5: Performance Comparison using Classification Model with Soft Labeling (WS), Without Soft Labeling
(WOS) and Regression Model (RM)

Small Medium Large
Metric WS WOS RM WS WOS RM WS WOS RM
F1 Score 0.2803 0.2910 0.5109 0.3284 0.3621 0.5552 0.3502 0.3772 0.5358
QWK 0.3417 0.3848 0.3872 0.5303 0.5551 0.4521 0.5272 0.5614 0.3528
Accuracy 0.5677 0.5679 0.5441 0.5899 0.6233 0.5980 0.6208 0.6219 0.5882
RMSE 0.7855 0.8112 0.6826 0.7243 0.7259 0.6511 0.7282 0.7053 0.6793

metrics. Such results suggest that these models do
better on predicting scores in that thematic area.

While BERT’s performance was not the
strongest, it did achieve commendable results in
the F1 measure across all themes, indicating a bal-
anced precision and recall in the classification task.
However, in comparison to GPT models, BERT
was surpassed in other key metrics, suggesting that
while BERT is proficient in identifying relevant
instances, GPT models may offer a more compre-
hensive understanding of the dataset, reflecting a
deeper contextual grasp that extends beyond mere
classification accuracy.

The analysis of prompt lengths in relation to
essay difficulty reveals that longer prompts, such
as Criticize prompt 3 and Science prompt 3, do
not necessarily correlate with increased challenge
levels. Contrastingly, Prompt 2 stands out, where
despite its shorter length, human graders scored
it as more difficult, indicating that the inherent
complexity of a prompt and the resultant essay
responses are not solely determined by length. This
insight suggests that prompt difficulty could be
influenced by the intricacy of the topic and the
cognitive demands it places on the essay writers.

The research sought to gain deeper insights into
the effectiveness of using a Regression Model (RM)
for classification tasks and results were recorded
in Table 5 for 3 GPT models (calm small, medium
and large). In the Japanese essay scoring task, it
was found that models employing the classification
model with soft labeling (WS) generally had supe-
rior performance in terms of QWK compared to
those using the classification model without soft
labeling (WOS) and the regression model . This
suggests that soft labeling models are better at ac-
counting for the ordinal nature of the grading task.
Although the regression models using Mean Square
Error loss achieved the highest F1 Scores, this did
not consistently extend to higher accuracy or QWK.
Such findings indicate that while RM is proficient

at minimizing the variance of the errors, it may not
always translate into the most accurate categoriza-
tion, especially when the task requires understand-
ing the ordered grading system.

When evaluating the differences in the pre-
training methods among the models in Table 2,
the GPT models trained on Japanese texts from the
beginning (i.e., open-calm, calm2-7b and jp-stable
models) outperform the model subjected to contin-
ual pre-training on multilingual Llama model (i.e.,
ELYZA) for Japanese texts. Since there is only
one model of continuous pre-trained model, how-
ever, this outcome presents intriguing prospects for
future insights into pre-trained models.

7 Conclusions

In this paper, we have expanded the AES field
by applying GPTs to Japanese essay grading—a
linguistic domain previously underexplored due
to limited resources. Our research demonstrates
that Japanese-specific pre-trained GPT models, par-
ticularly when fine-tuned with LoRA, can effec-
tively navigate the complex linguistic landscape of
Japanese and provide accurate essay assessments.
The research revealed that models pre-trained ex-
clusively on Japanese corpora outperformed their
counterparts fine-tuned from multilingual datasets,
highlighting the importance of tailored linguistic
training in automated essay scoring systems.

The calm2-7b model demonstrated exceptional
capability, consistently achieving high scores
across various evaluation metrics, including QWK
and RMSE especially in Easia theme. Its robust
performance across this topic underscores its suit-
ability as a precise and reliable tool for the auto-
mated grading of Japanese essays in this thematic
area.

This study not only contributes a significant find-
ing to the field of educational technology but also
opens avenues for the deployment of language-
specific automated grading tools.
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8 Limitations

The study faced limitations in data availability,
model architecture, and computational resources,
particularly GPU memory constraints, which may
have impacted the training efficiency and model
performance.

9 Ethical Considerations

Ethical considerations were rigorously adhered to,
ensuring the protection of individual privacy. The
dataset did not contain any personal information,
guaranteeing the anonymity of all individuals in-
volved. The data employed is publicly available,
reinforcing the ethical integrity of our research.
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Abstract

Probabilistic generative topic models are the
de facto choice for most text data applications,
usually augmented with unsupervised and semi-
supervised learning strategies to enhance the
topic quality. Alternatively, information theory
was used to build model-free algorithms able
to learn homogeneous, binary latent groups of
words, as topics, via multivariate mutual in-
formation as for the Correlation Explanation
model (CorEx), with the possibility of incorpo-
rating anchors, or keywords, as prior informa-
tion that better reflects the practitioner’s experi-
ence to reveal nested topics. This paper estab-
lishes a self-supervised, anchor-based strategy,
namely CliqueCorex, where anchors are mean-
ingful subgraphs resulting from the hierarchical
clustering of the corpus’ bigrams via clique per-
colation algorithm. This scheme maximizes the
information extraction by learning cohesive top-
ics without biased prior information or any ad-
ditional hyperparameter optimization. Applied
to two central banking corpora, CliqueCorex
improved the plain CorEx results without the
need of additional topics, while uncovering
nested topic contents, spanning across a wide
spectrum of monetary policy practices, with
a natural separability and an importance order
that demonstrate the usefulness of cliques when
implementing a guided inference.

1 Introduction

The abundance of textual sources and their grow-
ing complexity has led to continuous attempts to
improve the existing text-as-data methods. These
efforts have either sought sophistication from neu-
ral networks, or improved existing generative mod-
els to better handle the studied task (Churchill and
Singh, 2022), at the expense of detailed hyperpa-
rameter specifications (Airoldi et al., 2014; Gal-
lagher et al., 2017).

In machine learning, probabilistic topic models
are still considered as the workhorse for most text

mining applications, particularly the Latent Dirich-
let Allocation (LDA) (Blei et al., 2003) whose
scheme has been adopted later by many strategies
that brought improvements via adding metadata as
covariates (Blei and McAuliffe, 2007), time-based
topics (Blei and Lafferty, 2006) or nested hierar-
chies (Griffiths et al., 2003). Semi-supervised ap-
proaches (Lu et al., 2011; Jagarlamudi et al., 2012;
Eshima et al., 2020) have been used in several appli-
cations, consisting of allowing practitioners to set
prior lexical information, in the form of keywords
or labels (Nomoto, 2022), as an attention mecha-
nism to learn robust topics and test hypotheses in a
guided fashion, although setting keywords is still
considered as a rule-of-thumb exercise (King et al.,
2017; Eshima et al., 2020).

While most bag-of-word topic models have been
criticized for yielding poor results, due to count
data whose structure ignores words’ interactions,
Steeg and Galstyan (2014) proposed to learn top-
ics from a different perspective using information
theory, by computing multivariate mutual informa-
tion of relevant groups of words that form latent
features, known as topics. Correlation Explana-
tion (CorEx) (Steeg and Galstyan, 2014) has the
advantage of being neither a generative model nor
requiring assumptions, but still capable of uncov-
ering meaningful features in diverse applications
with sparse data. Extensions of CorEx offer a semi-
supervised approach based on predefined keywords,
or anchors, that translates the experience or beliefs
of practitioners, to learn specific topics as well as
hierarchical structures via chained inference (Gal-
lagher et al., 2017).

In network analysis, practitioners usually aim to
cluster data into homogeneous groups using several
criteria, falling into the class of hierarchical clus-
tering task. Blondel et al. (2008) and Traag et al.
(2019) proposed optimized clustering schemes for
nonoverlapping features known as communities,
while Derényi et al. (2005) devised clique per-
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colation to learn subgraphs as overlapping com-
munities, known as cliques, later extended to un-
weighted and weighted graphs (Farkas et al., 2007).
Examples of application in textual analysis consid-
ered words as nodes and used communities for doc-
ument scaling (Diaf, 2023), rhetoric studies (Rule
et al., 2015; Bail, 2016) and cliques for an efficient
topic detection on short documents (Churchill and
Singh, 2020).

If setting keywords improves greatly the qual-
ity of the inferred topics (Eshima et al., 2020), it
remains mostly an unsupervised task (King et al.,
2017), highly dependent on the experience and
views of practitioners (Nomoto, 2022), which may
show interests in small nested topics not often cap-
tured by the models. This work sets an automated
anchor strategy, namely CliqueCorex, to select key-
words, as meaningful features from clique percola-
tion, and to feed them to an anchored CorEx (Gal-
lagher et al., 2017) to maximize topic extraction.
Thus, blending two separate clustering schemes
into one self-supervised topic model capable of
determining keyword groups without human inter-
vention. The number of topics, considered as a
hyperparameter, is automatically set to the number
of cliques, although users can extend it to learn
extra features not coined to any clique.

This strategy frees practitioners from analyz-
ing the corpus in search of relevant keywords and
instead automates it by uncovering meaningful
mixed-membership cliques, whose semantic struc-
ture can be assimilated to powerful subtopics (Oh-
sawa et al., 1998) emerging from the corpus itself
without requiring external prior information. I ar-
gue that cliques, as anchors, reinforce the learn-
ing process of CorEx models by detecting maxi-
mally informative latent groups of words, with a
preserved semantic structure and an importance or-
der. In other terms, setting semantically-grounded
ngrams as prior acts as a semantic regularization to
force a more context-based inference.

In many application fields, setting keywords re-
mains a delicate task especially when a word is
polysemic or linked to many topics. As for cen-
tral banking communication, the word rate is used
in three key measures of monetary policy prac-
tices (interest rate, inflation rate and unemploy-
ment rate) as well as in other technical terms. As-
signing the word rate to a unique anchor group
may be problematic in probabilistic topic mod-
els, as it could later appear in other topics not re-
lated the three aforementioned measures, hence

lowering the topic quality of the learned models.
CliqueCorex solves this issue by automatically set-
ting anchors, as mixed-membership nodes, without
any constraint on the cliques.

Applied to two different central banking cor-
pora, CliqueCorex unfolded granular themes in
the Federal Reserve (FED) governors’ speeches
(1996-2020), where topics revealed the impor-
tance of banking supervision and the macroeco-
nomic status in the U.S. central banking discourse,
along other secondary, but not less important in-
terests for central bankers as for market compe-
tition and innovation. On the European Central
Bank speeches (1997-2023), CliqueCorex revealed
a policy-oriented corpus, closely tied to the ECB
missions and objectives, with different interests
and reduced topics compared to the FED corpus.
In both applications, CliqueCorex outperformed
standard CorEx in terms of total correlation and
topic quality.

The paper outlines the build-up of CliqueCorex
from a network analysis perspective and from sta-
tistical learning (Section 2), then implements the
proposed algorithm on two central banking cor-
pora (Section 3) and compares them to the standard
CorEx used by practitioners.

2 Methodology

2.1 Clique Percolation

Uncovering homogeneous groups in a dense, heav-
ily connected network is a difficult task that re-
quires advanced techniques, exceeding the clas-
sic clustering methods as for Principal Component
Analysis and the K-means.

In network analysis, we define a node as the
representation of an entity or a word (Mihalcea and
Tarau, 2004), while an edge connects two entities,
either directed or indirected. If an edge determines
the strength of the link between two nodes, then
the network is said to be weighted, otherwise it is
unweighted.

We refer to community detection (Fortunato,
2010) the process of identifying strongly connected
subgraphs in a given network, usually assimilated
to a hard clustering exercise, that assigns each node
to just one community (Blondel et al., 2008; Traag
et al., 2019), ignoring cases where a node could
be shared by many communities, similar to soft
clustering. This overlapping feature was devised
as clique percolation for unweighted (Palla et al.,
2005) and weighted (Farkas et al., 2007) graphs.
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In text mining, community detection has been
used in a nonoverlapping context to better scale
documents (Diaf, 2023), extract meaningful word
groups (Bail, 2016) or to study lexical shift (Rule
et al., 2015), while attempts to use clique percola-
tion targeted topic modeling for small documents
(Churchill and Singh, 2020). Nonoverlapping struc-
tures are seen as independent features, but several
words could belong to different communities, as
for the word united shared by many entities (United
States, United Kingdom, United Nations), hence
the necessity to use clique percolation to take into
account words’ multiple memberships.

As given by Farkas et al. (2007), clique percola-
tion first identifies k-cliques which are fully con-
nected networks with k nodes (starting from k=3)
and filters those having theirs intensities higher
than a given threshold I . The intensity of a clique
C, denoted IC , is simply the geometric mean of the
edge weights wij associated to the nodes i and j:

Ic =

(
∏

i<j;i,j∈C
wij

)(2/k(k−1))

An intermediate step was added to the clique per-
colation algorithm, known as CFinder (Adamcsek
et al., 2006), consisting of applying the intensity
threshold I to the overlapping cliques, in addition
to the already existing k-cliques (Lange, 2021).
The challenge here is to optimize both k and I so
to not exclude too many nodes and not incorporate
many of them. Because percolation assumes the
size distribution of communities are following a
power-law, the optimal I for each k is just the cut-
off above the emergence of a gigantic component
(Lange, 2021).

2.2 Correlation Explanation

Most of topic modeling algorithms belong to the
generative class (Churchill and Singh, 2020), as-
suming that documents are generated by a known
distribution of terms. Their inference optimizes
parameters of topic/term distribution so to maxi-
mize likelihood of documents in the dataset over k
topics. A popular example is the Latent Dirichlet
Allocation (Blei et al., 2003) which sets the basis
of most topic models built upon the bag-of-word
assumption, with a probabilistic inference that ig-
nores word associations.

Attempts to improve topics’ quality led to ex-
plore information theory in seeking robust, highly
informative groups of words that occur together,
without the need to use probabilistic simulations.

Steeg and Galstyan (2014) proposed to use total
correlation (TC) as a measure of mutual informa-
tion among many variables:
TC(XG) =

∑
i∈G

H(Xi)−H(XG)

where H(X) = EX [−log2p(x)] is the entropy
measure and G denotes a subset of X random vari-
ables, in our case words. The total correlation is
non-negative and equals zero if and only if the prob-
ability distribution factorizes. It could be written
as a Kullback-Leibler divergence:
TC(XG) = DKL(p(XG)||

∏
i∈G

p(xi))

Searching for latent factor Y , with k possible
values, that explains the correlation inX makes the
optimization search over all probabilistic functions
of X, p(y|x), as :

max
p(y|x)

TC(X;Y ) s.t. |Y | = k

For m different factors of Yi, the optimization of
CorEx (Gallagher et al., 2017) is written as:

max
Gj ,p(yj |xGj

)

m∑
j=1

TC(XGj ;Yj)

where Yj are m binary latent features, or top-
ics, having XGj as their corresponding groups of
word types. Latent factors Yj are optimized to be
informative about dependencies in the data and do
not require generative modeling assumptions (Gal-
lagher et al., 2017). Once learned, they can be
used iteratively to construct new latent factors in a
hierarchical fashion.

The numerical optimization of CorEx begins
with a randomly initialized parameters, later iter-
atively updated as for Expectation-Maximization
algorithm (Gallagher et al., 2017), which adds a
binary parameter αi,j equaling one if and only if
word Xi appears in topic Yj (i.e. i ∈ Gj). The
previous equation will have its constraint on non-
overlapping groups transformed into α:

max
αi,j ,p(yj |x)

m∑
j=1

(
n∑
i=1

αi,jI(Xi : Yj) − I(X : Yj))

s.t. αi,j1l[j = argmax
j
I(Xi : Yj̄)]

where α ∈ [0, 1] is updated at iteration t by
αti,j = exp(λt(I(Xi : Yj)−max

j̄
(X : Yj̄)))

with λ controlling the sharpness of the softmax
function.

For anchored CorEx, the objective remains the
same as for unsupervised CorEx but with the inclu-
sion of Z as labels of X , so that the information
bottleneck (Gallagher et al., 2017) could be written
as:

max
p(y|x)

βI(Z : Y )− I(X : Y )
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where β controls the trade-off between com-
pressing X and preserving information about the
relevance variable Z. Coining a single word Xi

to a topic Yj results in constraining the above op-
timization scheme by setting αi,j = βi,j where
βi,j ≥ 1 controls the strength of the anchor. The
scheme remains similar if many anchor words are
assigned to a given topic (Gallagher et al., 2017).

Algorithm: CliqueCorex

1.Clique detection: Run clique percolation al-
gorithm (Farkas et al., 2007) over the network
of bigrams and extract k overlapping groups of
words, or cliques, from bigrams whose occur-
rence in the corpus is greater than π.
2.Anchored CorEx: The k cliques are used
as features to learn an anchored CorEx model
(Gallagher et al., 2017) with k topics.

The proposed CliqueCorex blends an unsuper-
vised clustering scheme on the corpus’ bigrams to
uncover cliques as cohesive subgraphs, then use
them as robust anchors, or keywords, for the semi-
supervised CorEx. This frees the application from
human intervention and the need of a transfer learn-
ing scheme built on external source as for word
embeddings (Mikolov et al., 2013; Dieng et al.,
2019), specific indexing (Medelyan, 2009) or clas-
sifiers (Florescu and Jin, 2018). CliqueCorex has
the advantage of being naturally tailored to the
documents’ specification by seeking most informa-
tive features in the corpus. Moreover, the number
of anchors is expressed as the number of groups
emerging from the clique percolation, where each
group can have k ≥ 3 terms, depending on the
specifications used (Farkas et al., 2007).

This hybrid scheme transforms the semi-
supervised anchored CorEx into a fully self-
supervised topic model, where the identification
of cliques helps relieving the bottleneck when com-
pressing data X into a set of topics Y . Further-
more, the number of topics, equaling the number of
retrieved cliques, could be reduced by running an-
other CorEx pass, so to build a hierarchical CorEx
(Gallagher et al., 2017), if the number of cliques is
relatively high.

3 Application

3.1 FED speeches

1,488 governor speeches at the U.S. Federal Re-
serve, during the period 1996-2020, were scraped

from the institution’s website1, offering histori-
cal developments that accompanied the American
monetary authority throughout several episodes
and crises over the last three decades. The cor-
pus was lemmatized using udpipe model (Straka
et al., 2016) to reduce the size of the document-
term-matrix and to get robust ngrams when apply-
ing clique percolation. This yielded 36 cliques2,
mostly sequences of three words, to be given as
keyword groups for the anchored CorEx3.

Table 2 shows the clique percolation output, con-
sisting of 36 cliques expressing core monetary and
macroeconomic interests, along a technical jargon
used to describe the economic status and market de-
velopments. Cliques contain mostly trigrams and
are informative, in a sense that their structure is
similar to subtopics. For context-rich terms, as for
"macroeconomic" and "inflation", their associated
cliques feature more than 3 terms.

Cliques of Table 2 are used to learn an anchored
CorEx whose results are shown in Table 4. Topics
are ranked by an descending order of importance,
based on their contribution to the total correlation
(TC), where the first two confirm the importance of
banking supervision and macroeconomic stability
when communicating about monetary policy in the
United States. Efforts of stability and supervision
are linked to the post-2008 addresses and inter-
preted as direct signals toward economic agents
(EuropeanParliament et al., 2018).

The remaining topics are a mix of technical (top-
ics 3, 5 and 10) and non-technical topics (topics 6,
7 and 13), the latter consist of a descriptive jargon
used in standard economic and financial analyses.
Furthermore, the last three topics (34, 35 and 36)
having the least contribution to the total correla-
tion are tied to the crisis time 2007-2009, dealing
respectively with the housing market, securitiza-
tion/debt and oil prices.

Noticeable is that CliqueCorex outperforms clas-
sic CorEx in terms of total correlation (Table 1) and
topic content (Table 5) whose structure does not pri-
oritize central banking jargon, but rather frequent
terms appearing in the corpus. For instance, Topic
1 learned by CorEx refers to academic papers and
other references used by governors, which similarly

1https://www.federalreserve.gov/newsevents/
speeches.htm

2The application took into account cliques containing few
words, for the sake of illustration.

3The learning process for both corpora used anchored
CorEx with 100,000 iterations and an anchor strength βij=2
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Table 1: Total Correlation (TC) yielded by each model for both corpora.

Corpus
Model

Plain CorEx CliqueCorex

FED speeches 162.63 177.61
ECB speeches 141.01 144.78

appears in the 17th position in the CliqueCorex out-
put (Topic 17).

3.2 ECB Speeches
Speeches of executive members at the ECB (2,493
addresses from February 1997 to September 2023)
were collected from the ECB website4 and under-
went the same steps to extract cliques as for the
FED corpus.

Table 3 shows clique percolation results, that
yielded 26 cliques, mostly trigrams and not rich
in information as for the FED corpus. Particularly,
the ECB corpus does not feature a strong, color-
ful macroeconomic jargon, but instead stresses out
country-related interests because of the monetary
union context.

The application of the CliqueCorex has a better
total correlation than a plain CorEx (Table 1) as
well as a better topic content, which turned out to be
highly policy-oriented and lacking macroeconomic
aspects as found in the FED corpus. This is most
likely due to the broad interests discussed at the
monetary union level, not at a country-specific level
as for the FED. For instance, fiscal concerns linked
to crises experienced by some country members
(Topics 7 and 8 in Table 6) were broadly debated
then economic indicators and forecasted aggregates
(Topic 12).

Key terms like "macroeconomic" and "inflation"
are not uncovered in the clique percolation step and
only "inflation" is captured later by CliqueCorex
in a more structural context involving unemploy-
ment and growth (Topic 21 in Table 6), but far less
important then other descriptive topics.

Moreover, the corpus contains small multilingual
paragraphs used by some speakers during their ad-
dresses (Topic 17 in Table 6 and Topic 2 in Table
7) and specific interests other than its main mission
of price stability.

4 Conclusion

Probabilistic topic models continue to be the go-to
solution when dealing with textual data under its
different aspects. Behind their popularity, they are

4https://www.ecb.europa.eu/press/key/html/
downloads.en.html

still limited by the fact that they consider words as
independent features, in addition of having a prob-
abilistic learning process based on word counts,
yielding poorly informative results. While numer-
ous extensions were developed to improve topic ex-
traction, developments based on information theory
suggest model-free algorithms capable of yielding
superior topic quality, as for correlation explana-
tion, and offering semi-supervised extensions for
keywords and labels. This paper proposed the use
of clique percolation, as a pre-processing step, en-
abling the automatic identification of anchors as
cliques for a fully-automated anchored CorEx, en-
compassing neither external information nor hu-
man intervention. The resulting blend, named
CliqueCorex, is a self-supervised topic model built
on subgraphs, assumed to be subtopics from the
corpus’ bigram network, yielding maximally infor-
mative binary topics when blended to an anchored
CorEx.

By adopting cliques as a semantic regulariza-
tion scheme, CliqueCorex proved a higher ability
in capturing hidden topics and other features over-
looked by non-guided topic models. On two central
banking corpora, known to have a rich imbricated
context, CliqueCorex demonstrated a robustness in
unfolding deep interests in monetary policy prac-
tices and reveal their relative importance, with rich
monetary policy-oriented topics found at the U.S.
Federal Reserve addresses, while policy-oriented
interests dominate the speeches given at the Euro-
pean Central Bank, but not necessarily monetary
or macroeconomic ones.

Clique percolation first revealed different scopes
of interests the corpora have, although both deal
with monetary policy, and the necessity to set tai-
lored anchors for each corpus. This reinforces the
claim that transferring keywords or anchors within
the same task is not always indicated to extract
nested features.

Uncovered cliques, in addition of acting as
subtopics because of their semantic structures, fit-
ted perfectly the anchored CorEx mechanism to
deliver cohesive topic contents and reveal interest-
ing corpus’ orientation, in terms of topic content
and importance.
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Table 2: Cliques in the FED corpus Table 3: Cliques in the ECB corpus
Clique Words
1 bank thrift supervision
2 macroeconomic policy stability objective
3 economic growth prospect
4 free trade flow
5 long time horizon
6 less well able
7 let now turn
8 dual mandate objective
9 climate risk relate
10 term treasury yield
11 across many market
12 achieve domestic inflation run trend goal objective
13 one part time
14 one recent study year
15 debt service burden
16 across national border
17 discussion paper series
18 put upward pressure

19
early first half last next past several
ten three time twenty two week year

20 core pce price
21 committee fomc member participant
22 another important key reason way area
23 real short term time
24 government guarantee program
25 federal government spending
26 consumer financial protection
27 reduce regulatory burden
28 find new way
29 asset liability side
30 even far great
31 base capital measure
32 american community economic
33 develop new world
34 consumer durable good
35 agency debt issue security mbs
36 high oil price

Clique Words
1 full information set
2 just mention two
3 precise quantitative definition
4 policy relevant horizon
5 billion euro banknote coin
6 content presentation slide
7 automatic fiscal stabiliser
8 greece ireland portugal
9 france germany italy
10 credit loss provision
11 conference discussion paper series
12 commission economic forecast
13 area non resident
14 available empirical evidence
15 already know well
16 common different objective set
17 council decide last meet
18 analysis can find
19 asset portfolio allocation
20 annual data report requirement
21 high structural unemployment
22 council decision make take
23 general term orientation
24 single technical platform
25 become self evident
26 become fully operational

Table 4: CliqueCorex on the Federal Reserve speeches
Topic Top Words
1 supervision, regulator, supervisor, supervisory, banking, regulation, institution, deposit, oversight, bank
2 stability, macroeconomic, policy, shock, central, international, policymaker, objective, crisis, implication
3 productivity, growth, output, labor, production, gdp, prospect, worker, boost, wage
4 trade, flow, free, exchange, foreign, dollar, denominate, asia, currency, asian
5 horizon, argue, long, theory, empirical, time, weight, variable, argument, optimal
6 less, able, well, same, without, amount, net, account, only, both
7 turn, now, let, then, think, second, give, out, after, begin
8 mandate, dual, objective, laubach, bind, woodford, deviation, curve, reifschneider, jackson
9 risk, relate, certain, must, subject, procedure, whether, function, allow, exercise
10 treasury, yield, term, fund, return, normal, bond, condition, maturity, back
11 across, many, result, example, market, process, exist, require, significant, limit
12 inflation, run, outlook, monetary, employment, unemployment, nominal, trend, consumption, forecast
13 time, part, one, if, under, could, some, activity, case, because
14 recent, factor, percent, study, datum, one, compare, indicate, year, survey
15 service, industry, technology, customer, competitive, competition, innovation, technological, marketplace, efficiency
16 border, across, national, cross, country, globalization, among, infrastructure, nation, western
17 paper, pp, series, vol, journal, economics, pdf, discussion, cambridge, washington
18 pressure, upward, put, downward, demand, ease, japan, recovery, cut, stimulus
19 early, three, two, past, first, half, several, time, last, year
20 price, pce, core, estimate, indicator, historical, food, gradual, projection, solid
21 fomc, committee, open, accommodation, target, maximum, stance, incoming, path, easing
22 key, approach, area, discuss, reason, framework, analysis, practice, specific, implement
23 short, term, real, suggest, appear, relative, period, likely, somewhat, time
24 government, guarantee, program, reform, taxpayer, brothers, bankruptcy, street, suffer, serious
25 spending, expenditure, fall, household, percentage, down, index, quarter, recession, sustainable
26 loan, lending, borrower, credit, protection, lender, access, mortgage, consumer, commercial
27 regulatory, requirement, propose, organization, disclosure, proposal, compliance, examination, profile, rulemaking
28 find, way, question, problem, new, form, try, often, go, know
29 asset, liability, portfolio, investor, sheet, liquid, fail, instrument, against, arise
30 far, even, seem, indeed, great, moreover, little, still, quite, hence
31 measure, capital, thus, however, potential, base, reflect, generally, substantial, expect
32 community, american, education, family, school, training, americans, million, educational, census
33 world, develop, century, new, modern, history, society, power, dramatic, yet
34 consumer, home, homeowner, housing, income, residential, construction, foreclosure, homeownership, affordable
35 liquidity, agency, debt, loss, security, funding, counterpartie, stress, default, securitization
36 price, oil, decline, rise, sharp, high, supply, above, low, tighten
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Table 5: Plain CorEx on the Federal Reserve speeches
Topic Top Words
1 pp, vol, economics, journal, cambridge, david, massachusetts, nber, papers, university
2 spending, output, decline, rise, slow, boost, gdp, consumption, fall, labor
3 supervisor, supervisory, regulator, supervision, regulatory, regulation, oversight, exposure, banking, institution
4 fomc, inflation, outlook, monetary, employment, unemployment, expectation, nominal, stance, maximum
5 liquidity, systemically, funding, stress, severe, crisis, macroprudential, collateral, vulnerability, repurchase
6 text, pdf, speech, washington, governors, april, www, november, march, february
7 outsourcing, amy, needs, send, thankfully, retraining, multinational, involuntarily, saez, ashenfelter
8 organization, establish, transaction, develop, create, legal, act, protection, address, effort
9 expect, balance, risk, measure, potential, firm, asset, activity, sheet, generally
10 reduce, effect, relatively, short, investor, far, lead, capital, substantial, increase
11 practice, certain, apply, problem, procedure, limit, rule, issue, subject, set
12 macroeconomic, theory, policymaker, empirical, macroeconomics, taylor, equilibrium, influence, economist, variable
13 international, united, european, states, japan, foreign, exchange, central, global, currency
14 raghuram, rajan, gaps, makeup, text5, text6, text8, text7, text9, firms
15 education, educational, school, young, college, life, skill, americans, adult, population
16 production, productivity, equipment, worker, half, living, producer, inventory, war, fast
17 loan, borrower, lending, lender, mortgage, credit, commercial, underwriting, subprime, securitization
18 keys, toggle, caption, mediainfo, xs, transcripttext, transcriptlinkurl, col, fullscreen, myplayer
19 approach, framework, implement, assessment, appropriate, guidance, quantitative, conduct, consider, model
20 question, think, answer, reason, fact, argument, political, try, hand, precisely
21 housing, income, family, home, household, homeowner, residential, construction, homeownership, survey
22 shock, uncertainty, run, imply, term, normal, episode, movement, uncertain, response
23 suggest, period, argue, early, evidence, view, course, factor, adjust, quite
24 century, old, free, society, generation, nineteenth, history, virtually, twentieth, revolution
25 process, individual, information, involve, enhance, effective, ability, use, recognize, responsibility
26 technology, computer, technological, electronic, internet, service, network, automate, telecommunication, physical
27 actor, head, boivin, bridgewater, scrapping, scandinavian, risks, uncorrelated, confidently, vestin
28 debt, investment, finance, bond, borrowing, private, borrow, dollar, collapse, saving
29 audit, auditor, privacy, laundering, payments, sarbanes, oxley, sponsoring, treadway, merchant
30 analysis, example, datum, include, base, determine, particularly, study, relationship, relate
31 census, urban, local, racial, metropolitan, finances, barrier, resident, hispanic, hispanics
32 clive, bring, timmermann, penalver, billi, exploration, farmer, matheson, sandri, cardia
33 competitive, industry, competition, innovation, law, marketplace, efficient, opportunity, efficiency, competitor
34 hear, fed, listen, chair, district, communications, hope, proud, president, prepare
35 error, rational, rigidity, rose, agent, al, manuscript, et, override, linear
36 increasingly, facilitate, pricing, expand, availability, cash, pay, profitable, segment, hedge

Table 6: CliqueCorex on the ECB speeches
Topic Top Words
1 information, set, introduction, regard, order, respect, importance, practice, specific, conduct
2 mention, two, seem, try, difficult, maker, experience, agent, another, world
3 definition, quantitative, precise, variable, reference, reserve, strategy, signal, influence, interpret
4 horizon, response, policy, underlie, relevant, volatility, imply, recent, associate, broad
5 banknote, coin, cash, changeover, circulation, card, store, january, dollar, electronic
6 slide, content, presentation, annex, kb, pdf, peter, flatten, download, proxy
7 fiscal, deficit, stabiliser, reform, pact, automatic, budget, sustainable, government, competitiveness
8 ireland, portugal, greece, spain, education, mobility, young, cyprus, belgium, slovenia
9 germany, italy, france, german, di, age, inequality, discourage, italian, five
10 credit, loss, systemic, crisis, banks, supervisory, supervision, liquidity, exposure, provision
11 paper, journal, vol, pp, economics, series, nber, university, research, al
12 forecast, economic, average, period, factor, gdp, estimate, percentage, indicator, hicp
13 non, investment, large, capital, reduce, small, united, turn, less, total
14 empirical, evidence, suggest, relative, effect, aggregate, shock, likely, premium, cycle
15 know, think, often, even, little, say, go, already, question, well
16 different, set, objective, common, principle, problem, framework, rule, define, task
17 decide, council, die, le, ich, der, la, zu, und, meet
18 analysis, find, theory, federal, model, argue, academic, behaviour, economist, bubble
19 asset, lend, portfolio, loan, sheet, bond, fund, maturity, household, yield
20 data, report, type, source, requirement, publish, distribution, disclosure, annual, sample
21 unemployment, inflation, structural, outlook, wage, decline, pressure, growth, low, rate
22 treaty, decision, independence, maastricht, council, union, state, mak, responsibility, institutional
23 general, term, short, degree, however, development, rather, similar, extent, although
24 border, single, platform, technical, infrastructure, field, service, efficient, payment, integration
25 become, self, cause, back, face, put, consequence, prevent, happen, bad
26 become, fact, example, role, base, reason, limit, fully, consider, conclusion
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Table 7: Plain CorEx on the ECB speeches
Topic Top Words
1 journal, paper, pp, economics, vol, nber, university, american, literature, al
2 die, der, und, ich, le, zu, je, la, auf, une
3 even, different, fact, seem, less, rather, little, case, reason, often
4 inflation, outlook, pressure, medium, wage, expectation, decline, projection, upward, uncertainty
5 relative, suggest, evidence, effect, factor, empirical, aggregate, likely, short, tend
6 rate, growth, structural, low, grow, gdp, inter, fiscal, condition, price
7 political, always, go, simply, idea, world, true, bad, must, perhaps
8 recovery, purchase, accommodative, household, ease, return, negative, stimulus, accommodation, fall
9 sheet, lend, fund, banks, loan, liquidity, crisis, credit, maturity, sovereign
10 leverage, asset, loss, response, episode, risk, macro, mitigate, boom, buffer
11 infrastructure, payment, transaction, user, settlement, provider, service, retail, field, initiative
12 pandemic, covid, lagarde, coronavirus, christine, digital, op, pepp, carbon, green
13 academic, theoretical, understand, press, economist, hypothesis, assumption, attempt, keynesian, conference
14 supervision, supervisory, systemic, regulatory, supervisor, basel, prudential, regulation, exposure, management
15 introduction, development, regard, general, thus, final, several, various, particular, mention
16 series, estimate, percentage, chart, income, bulletin, zero, survey, occasional, total
17 labour, productivity, export, labou, population, worker, capita, deficit, competitiveness, education
18 currency, banknote, changeover, exchange, coin, quot, accession, shall, enlargement, erm
19 value, refer, available, amount, type, use, participant, feature, form, wide
20 framework, authority, institution, principle, rule, task, procedure, implementation, set, establish
21 definition, analysis, reference, information, variable, conduct, quantitative, assessment, strategy, appropriate
22 integration, border, competition, cross, single, integrate, efficient, barrier, europe, transfer
23 treaty, pact, independence, emu, maastricht, credibility, institutional, union, decision, responsibility
24 fan, gov, villier, eride, ottaviano, wogau, hicpx, smile, disorder, spot
25 technology, happen, get, big, revolution, pay, online, protect, stop, era
26 gonzález, páramo, manuel, josé, pedersen, reluctant, responses, sifi, workshop, metrick
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Abstract
In this paper, we propose a novel decoding al-
gorithm for streaming End-to-end (E2E) auto-
matic speech recognition (ASR) models, the
double decoder. By comparing it with exist-
ing decoding algorithms, we argue that this
new method achieves a better balance between
word error rate, latency and streaming sta-
bility, notably by reducing latency without
WER degradation but with degradation in sta-
bility. The algorithm also does not require any
change in model weights. We show results on
a Conformer-CTC model trained on the Lib-
riSpeech dataset, which indicates that the pro-
posed double decoder maintains the same WER
as buffered decoding while reducing the latency
by the size of the look-ahead used in decod-
ing. We also show that the proposed method
is generalizable. For example, we apply it to
the Zipformer-CTC-Transducer model, which
traditionally uses the default decoding, and it
achieves better WER and latency at the expense
of increased computational cost.

1 Introduction

Real-time automatic speech recognition (ASR) sys-
tems are a critical part of many of the industrial
speech understanding applications. For example,
delays in the ASR cause delays in downstream natu-
ral language processing (NLP) tasks. Other factors
like accuracy, measured by word error rate (WER),
and streaming stability (Shangguan et al., 2020a)
are also important factors to ensure a good overall
user experience in real-time language processing
systems.

While deep neural network-hidden Markov
model (DNN-HMM) hybrid ASR models have
traditionally been used for efficient streaming
ASR inference, many advancements in end-to-
end (E2E) ASR research have shown that E2E
models have more performance potential. For in-
stance, the connectionist-temporal-classification

*Equal contribution.

(CTC) loss (Graves et al., 2006) models longer
context without pre-defined alignment and allows
for low frame-rate decoding (Pundak and Sainath,
2016). RNN-Transducers (RNN-T) (Graves, 2012)
jointly train an internal language model with an
acoustic model, further improving the modelling
capabilities of a single model. Attention encoder-
decoder (AED) models such as the Listen-Attend-
Spell (LAS) (Chan et al., 2016) models exploit the
attention mechanism to model much longer context.
With the introduction of Transformer (Vaswani
et al., 2017) and its variants (Gulati et al., 2020),
E2E models have been pushing the state-of-the-art
WER on various ASR datasets (Chen et al., 2023).

However, for streaming ASR, the search for a
good trade-off between latency, stability and ac-
curacy remains an open problem. The aforemen-
tioned E2E models achieve good WER by incor-
porating more audio context, and exploiting more
parameters, translating to higher latency and more
compute cost. For example, an AED model for
ASR requires the entire input sequence before start-
ing to generate output tokens; the Transformer
model uses absolute positional embeddings, lim-
iting its applicability to streaming real-time ASR
systems (Dai et al., 2019).

In our study, we propose an algorithm we call
the double decoder. In essence, we run the decoder
twice on the encoder outputs - once on the look-
ahead or the most recent chunk of audio to specu-
latively display low latency results, then once on
the chunk behind it, with a delay. No change in
the weights of the model is needed. The algorithm
builds on the existing buffered decoding method,
which is designed for inference time and addresses
the limitation of Transformers, which typically re-
quire the complete sequence for inference.

This simple algorithm has not been published at
the time of writing and we believe many ASR engi-
neers can benefit from this method. We show that
our proposed method can improve the suitability of
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E2E models for streaming ASR by achieving a bet-
ter balance between latency, accuracy, and stability.
In particular, it enables streaming for Conformer-
CTC (Graves et al., 2006; Gulati et al., 2020) and
other CTC models, which would otherwise have
undesirable performance for streaming. This is
achieved by reducing the latency while keeping
the WER of the buffered decoding method. We
also show an example with the Zipformer-CTC-
Transducer model where we reduce the WER and
latency when we use the right most part of the
original chunk size as look-ahead.

2 Traditional Decoding Algorithms for
Streaming

There are a few assumptions and definitions to clar-
ify for the description of decoding algorithms. For
simplicity, we assume there is no sub-sampling so
the model stride at output time is the same as the
input. We also define model to be the neural net-
work outputting log probabilities for each frame,
whereas the external decoder is the external decod-
ing algorithm, not to be confused with the decoder
inside an AED model. Its forward function takes
the log probabilities from the model given the latest
input chunk, and outputs the text hypothesis for the
entire audio so far. It updates its internal state for
caching the history: for greedy decoding, the latest
text output is appended to the text history; for beam
search, the beam gets updated.

2.1 Default Method

The most straightforward default method is to de-
code using the same duration for input length and
step size. This can be sufficient if the model incor-
porates an RNN component, where the left context
is inherently represented in the RNN cell state. In
this method, no computation is wasted as every in-
put frame passes through the model exactly once.
Conceptually, Figure 1a shows this decoding algo-
rithm. At each time step t, the model reads input
chunk xt and outputs the log probabilities, and the
external decoder processes them into text.

2.2 Buffered Decoding

For Transformer or Transformer-like models such
as the Conformer (Gulati et al., 2020), every layer
attends to the exact same context as the input au-
dio. It does not incorporate history context directly,
therefore we need to explicitly include history au-
dio ht besides xt as input. Moreover, we have seen

in the literature (Moritz et al., 2020) as well as em-
pirically that adding the right context (look-ahead
lt) improves WER. This is called buffered decoding
as we need to keep ht, xt and lt together in a buffer,
run the model on everything at each time frame
and only keep the log probabilities for xt. This
method has been the default streaming method for
Transformer-like models1, and it is illustrated in
Figure 1b. In practice, lt is the actual latest chunk.
To only output the results for xt means a constant
additional delay of |lt| after getting xt.

3 Proposed Decoding Algorithm

Our proposed method, the double decoder, builds
on the buffered decoding with one simple modifica-
tion: we use a temporary decoder on top of the main
external decoder. For each time step t, the model
produces output log probabilities pt for ht, xt and
lt, where only the log probabilities given xt are
passed into the main external decoder. The state of
the external decoder gets updated, then it is copied
to be the state of the temporary decoder. Subse-
quently, the log probabilities given lt are decoded
by a temporary decoder to produce the partial hy-
pothesis yt, which is the text hypothesis given in
the audio so far. The partials get replaced with
new ones at each time step. See Algorithm 1 and
Figure 1c.

Algorithm 1: Double Decoder
input :audio stream x, same |ht|, |xt|,

|lt| for every t
output :partial hypotheses y
Initialize model, ext_decoder, t← 0;
while x not ended:

Get latest chunks ht, xt, lt from x;
pt ← model.forward(ht + xt + lt);
t′0 ← start time of xt;
t′1 ← end time of xt;
ext_decoder.forward(pt from t′0 to
t′1);

temp_decoder←
copy(ext_decoder);
yt ← temp_decoder.forward(pt from
t′1 onward);
t← t+ |xt|;

Using this algorithm, we ensure that the final
1Example code using the NeMo toolkit at

https://github.com/NVIDIA/NeMo/tree/main/
examples/asr/asr_chunked_inference
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(a) Default decoding: decoding each
current chunk
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(b) Buffered decoding: decoding with look-
ahead
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(c) Double decoder: using a temporary
decoder for outputting the look-ahead

Figure 1: Three decoding methods. The chunks xt and the context ht and lt represents what the mdoel (encoder)
has access to, and we skip the steps where the model encodes the audio and output log probabilities. The copy
action copies the internal state of the external (ext.) decoder to the temporary (temp.) decoder, which includes the
information about the history. Notice that yt from the double decoder outputs the same text for yt+1 from the other
two methods. This is to demonstrate that the double decoder can output the same text earlier than the other methods.
Light grey colour means the result is cached and used for the final output, while dark grey means the content is
discarded after one time step.

hypothesis is made up of the outputs given xt where
the accuracy is better. The hypothesis given the
look-ahead lt is only displayed but never saved
into the main decoder’s state. At the same time,
we avoid waiting for getting lt purely as context,
compared to buffered decoding.

4 Related Work

Many previous studies on streaming ASR have
focused on improving the internal efficiency of
the models. Modifications to the Transformer
are proposed to make it more suited for real-
time streaming ASR - this includes relative posi-
tional embeddings (Shaw et al., 2018), caching
and reusing intermediate network states (Dai
et al., 2019), limiting the look-ahead acoustic con-
text (Noroozi et al., 2024) and using time-restricted
self-attention (Moritz et al., 2020). Most of the pro-
posed methods require changes to the original ASR
architecture and re-training of the model, whereas
our proposed method works on pre-trained models.

Other studies take a more holistic view of opti-
mizing for streaming ASR, considering the trade-
off between context size, latency, accuracy, and
streaming stability, i.e. whether the displayed
words gets revised as the transcript becomes more
complete (Bruguier et al., 2016; Moritz et al., 2020;
Shangguan et al., 2020a,b, 2021). In Shangguan
et al. (2020a), the authors proposed increasing par-
tial emission latency, unifying text normalization
for different domains and using domain ID to im-
prove the stability of partials. Whereas in Bruguier

et al. (2016), the authors proposed an algorithm to
select more stable hypotheses during beam search
decoding. We take inspiration from these studies
and analyze the stability of our proposed method.

In terms of architectures used for streaming, re-
cent studies of streaming ASR have focused on
improving RNN-T models as they showed superior
WER performance. To further improve the final
WER, earlier efforts use a second pass LAS model
to do beam search or to rescore the RNN-T hypothe-
ses (Sainath et al., 2020, 2019). He et al. (2019);
Narayanan et al. (2021); Sainath et al. (2021);
Shangguan et al. (2020b) use cascaded encoders,
with a causal encoder which passes its output to an-
other non-causal encoder. This eliminates the need
for training a separate re-scoring model, unifying
streaming and non-streaming models while improv-
ing the final transcription. Related, Yu et al. (2021)
presented a more detailed exploration of a unified
streaming and non-streaming RNN-T model.

Our proposed method is similar to the cascaded
encoders (Narayanan et al., 2021), besides the fact
that we make use of only a single model with a
single encoder, saving the compute of running an
extra encoder. It can be seen as a special case of
cascaded encoders where the second encoder is just
copying the embeddings from the first one. How-
ever, since we are using only one model, the final
WER is bound by the offline model performance,
whereas the cascaded encoders’ second pass im-
proves WER.

A similar idea of fast-slow two-head decoding is
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explored for older hybrid ASR in Li et al. (2020).
However, Li et al. (2020)’s method also involves
changing the model architecture and training a sec-
ond encoder. Our method is purely a decoding
algorithm. It can be argued that their method is
suitable for LSTM models without explicit access
to look-ahead data, and our method is preferable
for Transformer-like E2E models.

Finally, as many of the techniques mentioned
above focus on RNN-T, we show that our decod-
ing algorithm can be applied to not only RNN-Ts
but also CTC models. Models trained with CTC
are typically outperformed by RNN-T or AEDs
in WER, but they have a lower real-time factor
(RTF) (Zhang et al., 2021), making them suitable
candidates for streaming ASR where latency is cru-
cial.

5 Evaluation Metrics

5.1 Accuracy

We use WER to measure the accuracy performance
of the streaming inference. For WER, if we use
the same context (buffer) size, we expect the WER
to be the same for buffered decoding and double
decoder, since the chunks used to generate the final
hypothesis are exactly the same.

5.2 Streaming Stability

To discuss streaming stability, we first define the
relevant terms used: A partial hypothesis is a text
sequence outputted by the ASR system before the
end of an utterance is reached. A final hypothesis
is produced after end-pointing - either the end of
the audio is reached or the end-pointer detects the
boundary of the utterance. As we replace previous
partials on the display with new partials, the words
may get revised which can be seen as the effect
of instability. It should be noted that we do not
measure the WER of partial hypotheses for the
stability since both the reference and the hypothesis
are incomplete and changing.

We employ the unstable partial word ratio
(UPWR) introduced in Shangguan et al. (2020a) to
measure instability. To calculate UPWR, we sum
up the revised or unstable tokens in each partial
hypothesis when compared to the next partial hy-
pothesis, then divide it by the number of tokens
in the final. The closer UPWR is to 0, the more
stable the system. As an example, for the partial
hypotheses produced by the double decoder in Ta-
ble 1, we have three unstable tokens, but, please

and him. The final hypothesis has 10 tokens, there-
fore UPWR = 0.3. It should be noted that we can-
not directly compare the results of partial stability
with the original paper, since they use formatted
transcripts.

As we compare with the buffered decoding
method, we expect stability to degrade, since we
are incorporating more speculative text outputs in
the hypothesis. As the buffered decoding method
always takes the middle chunk which forms the
final hypothesis, we expect the UPWR to be almost
0. On the other hand, double decoder will produce
mostly non-zero scores.

5.3 Latency

To simplify the calculation of latency differences,
we consider three parts of latency that make up
the total latency in a continuous, streaming ASR
system, presuming I/O and other system latency to
be negligible. Firstly, there is the delay for accu-
mulating audio stream Ta, composed of |lt + xt|
which makes up a constant delay. It should be noted
that the history size |ht| corresponds to a one-time
delay at the start of the audio stream. However,
by padding the beginning of the audio with artifi-
cial silence, we can effectively reduce this delay to
zero.

Furthermore, for every audio input x, we con-
sider the model forward latency Tm(x), which is
the inference time for producing frame-wise log
probabilities. Independently, we consider decod-
ing latency Td(x), which is the time taken by the
external decoder to produce one partial hypothesis,
given the probabilities.

In this context, we can calculate the theoretical
latency of buffered decoding as |lt+xt|+Tm(ht+
xt + lt) + Td(xt). Given our algorithm, if we
compare it with the buffered decoding approach,
we can see that by outputting the hypotheses for
the right contexts of each time step, we reduce the
theoretical latency to |xt| + Tm(ht + xt + lt) +
Td(xt + lt), where ∆T = |lt| − Td(lt). We show
∆T in Section 7.

6 Experiment Setup

We have chosen two models to illustrate the effec-
tiveness of the algorithm with or without explicit
historical context. First we apply it to the small
Conformer-CTC model from NVIDIA NGC2 to

2https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_small_ls
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Table 1: Sample comparison of partials generated by buffered decoding vs. double decoder decoding. It is taken
from Test-clean and the context size is 1.2 seconds.

Buffered partial hypotheses Double decoder partial hypotheses
i never

i never knew i never knew of
i never knew but i never knew but
i never knew but one ma i never knew but one man
i never knew but one man who coul i never knew but one man who could ever
i never knew but one man who could ever pleas i never knew but one man who could ever please him
i never knew but one man who could ever pleasing i never knew but one man who could ever pleasing

show its effectiveness comparing to buffered decod-
ing. The model has 13M parameters. For the de-
coding method, we utilize a streaming beam search
decoder built on PyCTCdecode3. For the beam
search, we use a 3-gram language model (LM) with
LM weight of 0.2, insertion penalty of 0.3. The
beam width is set to 100, and max active tokens is
20. When we decode with buffered decoding or the
double decoder, the middle chunk |xt| is 0.6 s. We
evaluate WER, latency and streaming stability for
Conformer-CTC given different context sizes.

We also show that our algorithm can be applied
to a Zipformer-CTC-Transducer model to improve
its WER against default decoding. We trained
a 66M parameter Zipformer-medium(Yao et al.,
2024) streaming cache-aware model. The final
loss for the model was computed as a weighted
sum of a CTC (Yao et al., 2023) and pruned RNN-
T loss (Kuang et al., 2022) using K24 with CTC
weight of 0.2. The decoding method for this model
is greedy decoding. The training recipe can be
found on the Icefall repository5. The model does
not require history input, i.e. |ht| = 0. Instead, it
keeps a cached state of intermediate layers for the
past history.

Both models are trained on the 960 hours of
LibriSpeech data(Panayotov et al., 2015), and are
evaluated on LibriSpeech test-sets. Latency is com-
puted on a virtual machine using intel Cascade
Lake CPUs.

7 Results

7.1 Results on Conformer-CTC

Table 2 shows the WER for both buffered decod-
ing and double decoder, as well as the latency dif-

3https://github.com/kensho-technologies/
pyctcdecode

4https://github.com/k2-fsa/k2
5https://github.com/k2-fsa/icefall/tree/

master/egs/Librispeech/ASR/zipformer

ference between the two decoding methods. As
discussed in Section 5.1, WER is the same for
buffered decoding and double decoder. We see that
on LibriSpeech Test-clean and on Test-other, WER
decreases by approximately the same rate. This
demonstrates the benefit of using longer context,
whose effect is consistent across different testing
conditions.

Regarding latency, as discussed in Section 5.3,
double decoder reduces latency from buffered de-
coding by |lt| − Td(lt). We can clearly see from
Table 2 Td(lt) is an order of magnitude smaller
than the look-ahead size |lt|, and does not increase
linearly with |lt|. Therefore, we can conclude that
with the studied context size the double decoder al-
ways provides a latency reduction of approximately
the same duration as the look-ahead size. As the
WER decreases when the context size increases, we
can effectively achieve better WER while maintain-
ing latency, or reduce latency while maintaining
WER, by using the double decoder.

Figure 2 and 3 shows the UPWR results on Test-
clean and Test-other. We confirm that using the
double decoder results in higher UPWR scores.
However, there are other interesting trends with
regards to partial stability. Firstly, we observe a
downward trend for the buffered decoding as we in-
crease the context size. This indicates an improve-
ment in the quality of the middle chunk. At the
same time, UPWR for double decoder decreases
in Test-clean, but increases in Test-other, as we in-
crease the context size. This indicates that in noisy
conditions, the lookahead becomes much more un-
stable, reflected both in raw UPWR score and its
variation. As the acoustic condition in real-life
ASR applications are not always clean, this trend
suggests that we cannot blindly increase the context
size, but we need to combine this metric together
with latency and WER for hyper-parameter tuning.

Another interesting difference between the two
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Table 2: WER (both buffered and double decoder have the same value) for the Conformer-CTC given different
context sizes. |xt| = 0.6 s. |ht| and |lt| are shown in the table. Latency reduction by employing double decoder
compared to buffered decoding is calculated by |lt| − Td(lt) as shown in Section 5.3.

Context size (s) |ht|, |lt| (s) Test-clean (%) Test-other (%) Td(lt) (ms) / 95% CI
1.2 0.28, 0.32 11.84 23.76 4.4 / [3.1,5.2]
1.8 0.56, 0.64 5.61 13.65 3.4 / [1.9,4.0]
2.4 0.88, 0.92 4.53 11.22 3.0 / [1.8,3.6]
3.0 1.2, 1.2 4.04 10.06 3.0 / [1.8,3.7]
4.0 1.68, 1.72 3.6 9.01 3.2 / [1.8,4.3]

decoding algorithms becomes clear as we look into
the raw partial hypotheses in text. In Table 1, we
can clearly see that buffered decoding produces
unfinished non-word tokens such as ma, coul. On
the other hand, the unstable tokens produced by the
double decoder are actual words, which account
for the high UPWR. It is arguable which provides a
better user experience. For instance, we can argue
that the partial hypothesis provided by the double
decoder with please him is more grammatically
correct than pleasing. Future studies with different
metrics more targeted to partial hypotheses’ accu-
racy and user studies are still needed.

1.5 2.0 2.5 3.0 3.5 4.0
Context size (s)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

UP
W

R

Buffered
Double

Figure 2: UPWR for LibriSpeech Test-clean, lower is
better. The coloured band around the line is the 95%
confidence interval.

7.2 Results on Zipformer-CTC-Transducer
As we have shown in the Conformer results that
the trend in WER stays the same for Test-clean
and Test-other, we feel that Test-clean is sufficient
to capture the relevant metrics for the Zipformer
demonstration. Table 3 shows the WER results of
applying the double decoder on the cache-aware
Zipformer model. Since this model incorporates
a cache for history context, we typically decode
with the default method. Comparing with row 1 in
Table 2, we can see that this model achieves much
better WER even with the default method.

1.5 2.0 2.5 3.0 3.5 4.0
Context size (s)

0.00

0.05

0.10

0.15

0.20

0.25

UP
W

R

Buffered
Double

Figure 3: UPWR for LibriSpeech Test-other.

Nonetheless, the results highlights the impor-
tance of adding look-ahead context, using either
buffered or double decoding in different ways. For
example, if we compare the results with the same
|xt|, by adding 0.6 s of look-ahead, we reduce the
WER from 4.45 to 2.98 for cache size of 1.28 s.
Similarly, if we compare results given the same
context size (see results on the same row), we see
WER reduction. Lastly, if we compare row 3 to
row 2 and row 6 in Table 3, we can see that for the
double decoder, decreasing either the look-ahead
or history by 0.6 s degrades WER by approximately
the same amount, 0.2 for CTC and 0.1 for RNN-T
decoding.

Both the buffered and double decoder utilizes a
look-ahead, but the double decoder provides bet-
ter latency than buffered decoding, given the small
Td(lt) results in Table 3, making it a better candi-
date for streaming applications.

Additionally, Table 3 highlights the suitability
of double decoder for CTC models. We can see
that CTC decoding generally provides worse WER,
but the improvement from adding context is greater
than RNN-T. CTC models also show smaller de-
coding overhead Td(lt).

It should be noted, however, as we are keeping
the context sizes constant between default decod-
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Table 3: WER (%) on Test-clean of RNN-T greedy decoding for Zipformer-CTC-Transducer for different context
sizes. For default decoding, |xt| is variable while |lt| = 0, for buffered / double decoder, |xt| is fixed at 0.6 s. We
also show Td(lt) just as in Table 2.

Context size (s) Default Buffered/Double Td(lt) (ms)
Cache |xt + lt| CTC RNN-T CTC RNN-T CTC RNN-T
1.28 0.6 8.43 4.45 N/A N/A N/A N/A
1.28 1.2 6.85 3.91 3.35 2.98 0.06 6.75
1.28 1.8 4.99 3.04 3.16 2.87 0.10 10.17
0.64 0.6 8.62 4.57 N/A N/A N/A N/A
0.64 1.2 6.91 3.99 3.45 3.12 0.06 6.75
0.64 1.8 5.06 3.05 3.36 3.00 0.10 10.17

ing and double decoder, we reduce the step size
|xt|. It means the model is running at smaller inter-
vals, therefore more times for the same duration of
audio. The increase in computational cost is non-
negligible and should be considered for real-life
applications.

8 Conclusions

In this study, we introduce a simple addition to the
buffered decoding algorithm, double decoder for
improving streaming E2E models. Firstly, we show
that the use of the double decoder improves the
appeal of Conformer-CTC models for streaming.
With the default or buffered method, it has either
unacceptable latency or WER. With the double
decoder, we reduce latency while maintaining low
WER. Secondly, for Zipformer-CTC-Transducer,
we show the importance of look-ahead context for
further improving the WER. Given the same con-
text size, we are able to achieve better WER and
better latency. Given the latency benefits from
the double decoder, we argue that it is the best
method for incorporating look-ahead context. We
also explore the side effect of this algorithm, for
example, using streaming stability metric UPWR.
We observe the degradation in streaming stability
by using double decoder, and we argue that the
context size cannot be too large in real-life noisy
conditions. Similarly, we note that extra compute is
needed to achieve the result for the Zipformer-CTC-
Transducer. For future work, we will investigate
whether there are other metrics to fully measure
the user perceived readability of partial hypotheses,
further improve stability and latency for the stud-
ied models, and further investigate the effect of the
algorithm when it is applied to different architec-
tures.

Limitations

The main limitation, as we have noted in the main
text, is that streaming stability or computational
cost worsens when WER or latency improves with
our proposed method. Unfortunately the increase
in computational cost for the Zipformer is unavoid-
able, since we are running the encoder at shorter
intervals. However, the stability of the partial hy-
potheses can be further investigated and improved.

Furthermore, we have limited our study to a spe-
cific type of E2E models - the Transformer-like
models such as the Conformer or the Zipformer.
This is due to the fact that Transformer-like models
generally achieves better accuracy but have poorer
streaming suitability. It can be noted that the pro-
posed method would not provide significant im-
provement on models such as the LSTM which
does not make use of lookaheads or future context,
unless it is a bidirectional LSTM. Additionally, we
do not have comparisons with other types of fast-
slow two-head methods, since their slow head typi-
cally involves training a different set of weight and
is bound to achieve overall better WER but with
more computational cost. We argue that our algo-
rithm is more suitable for smaller-scale research
or applications, while it does not achieve the most
competitive WER scores.

Lastly, we note that we have used a small set of
data for the experiments. Future work is needed to
fully evaluate this algorithm on other larger models
trained on a variety of datasets.
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Abstract

Large language models (LLMs) can be useful
tools for detecting abusive language on social
media. However, LLMs are not always effec-
tive as they can overlook the diversity among
individuals, which can lead to severe conse-
quences. This paper proposes a novel solution
that incorporates psychological knowledge into
an out-of-the-box LLM using the retrieval aug-
mented generation (RAG) method. Two rule
sets were extracted and transferred to the LLM
via query prompts. Experiment results showed
that our solution improves LLM’s performance
in generating personalised detection by 1.5%
to 4.4% weighted F1 score points.

1 Introduction

Abusive language detection systems play a signif-
icant role in addressing cyberbullying. Most de-
tection systems function by identifying patterns of
abusive messages, such as combinations of letters,
keywords, or phrases (Jahan and Oussalah, 2023;
Chhabra and Vishwakarma, 2023; Festus Ayeti-
ran and Özgöbek, 2024). In addition, studies have
proven that determining abusive language can be
greatly impacted by individuals’ subjectivity, in-
cluding attitude, belief and experience (Sap et al.,
2022; P.Y.K.L et al., 2024; Wan et al., 2023; La-
rimore et al., 2021). To make more personalised
detection, prior studies have integrated various at-
tributes into the systems, such as Balakrishnan et al.
(2020) enhanced detection systems by introducing
psychological attributes - Big Five and Dark Triad
measurement scales. Kocoń et al. (2021) incorpo-
rated user demographic features into their detection
systems to make adjusted predictions based on per-
sonal profiles.

Leveraging vast training data, LLMs are use-
ful tools for abusive language detection; however,
some studies have demonstrated that LLMs are not
always effective in detecting such language (Kolla
et al., 2024; Kruschwitz and Schmidhuber, 2024).

In addition, when dealing with diversity between
individuals, Park et al. (2024) found that LLMs
can generate near-zero response variation in cer-
tain conditions. Overlooking individuals’ diversity
in abusive detection on LLMs can lead to severe
consequences (Cheng et al., 2023; Gallegos et al.,
2024). As a result, a novel solution is required to
enhance LLMs in generating personalised abusive
language detection.

This paper proposes and evaluates a novel solu-
tion incorporating psychological knowledge into an
LLM (GPT-3.5 Turbo) through the RAG method,
initially introduced by Lewis et al. (2020) and later
extended for various applications (Fan et al., 2024).
Two sets of rules were extracted from a dataset
that incorporated psychological features, using as-
sociation rule mining and a decision tree classifier.
Then, these rule sets were provided as extra knowl-
edge to enhance an out-of-the-box LLM’s ability to
generate personalised detection through the RAG
approach. Our experimental results suggest that
(i) our solution improves performance and (ii) it is
reasonably robust with contradictory inputs. Lastly,
the complete code, rules, and data are available on
our repository page (here).

2 Method

An experimental approach is adopted to evaluate
the effectiveness of the proposed solution (see Fig-
ure 1). Two groups, experimental and control, are
created. The prompts for the experimental group
are enhanced with rules derived from a dataset that
includes psychological features, while the prompts
for the control group are not enhanced. If the ex-
perimental group outperforms the control group
in generating personalised detection, we may sug-
gest that the proposed solution is effective and vice
versa. The following sections will elaborate on the
details of the experiment setup.

Notably, our experiments use a simulator as a
preliminary study to assess the feasibility of the
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Figure 1: LLM and RAG Personalisation Framework

proposed solution. The input is replaced with test
data, and the RAG component is simplified by em-
bedding selected rules into prompts.

2.1 Data

ALDIPF: An Abusive Language Dataset that In-
cludes Psychological Features was used (Yao et al.,
2024). ALDIPF denotes 505 users’ personality
traits and their emotional reactions towards a series
of messages with three features: personality traits
(user attributes), emotional reactions (class labels),
and messages. These user attributes were measured
by the Five-Point Shortened General Attitude and
Belief Scale, used in clinical settings (Turner et al.,
2018). 65.6% of the messages belong to the Neutral
class, and the rest are in the Harmful class.

This dataset was created based on the two under-
standings from psychological studies. First, peo-
ple’s emotional reactions towards messages are co-
created by the messages and user attributes. Sec-
ond, people with similar attributes can share a sim-
ilar tendency to interpret messages (DiGiuseppe
et al., 2013; Ciarrochi and Bailey, 2009). Thus, a
single message can be associated with two differ-
ent class labels, distinguishable only by the users’
attributes.

Furthermore, recognising the limitations of
LLMs in processing numeric data, user attributes
were filtered and transferred into textual tokens.
Three attributes, namely Rationality, Irrational-
ity and Self-Down, were selected due to their
significance in previous psychological studies
(DiGiuseppe et al., 2018; David et al., 2019). After
that, the original attributes were transferred from
numeric values into 8 buckets (Appendix A) accord-

Message User Attributes Class

You’re SO SMART
Low Ra
High SD
High Ir

1

You’re SO SMART
High Ra
Low SD
Low Ir

0

Table 1: The same message can be associated with two
class labels. Note 1: Class 0 is Neutral, and Class 1
is Harmful. Note 2: Ra indicates Rationality. Ir is
Irrationality. SD refers to Self-Down.

ing to the mean and standard deviations (Owings
et al., 2013). A data examples are shown in Table
1.

2.2 Knowledge Extraction
To extract knowledge from ALDIPF, association
rule mining and decision tree approaches were
adopted. These processes can establish a correla-
tion between certain user attributes and class labels.
In this paper, we are particularly interested in indi-
cators and rules for personalised abusive language
detection.

2.2.1 Association Rule Mining Approach
Association rule mining can discover items’ co-
occurrence probability by identifying frequently
occurring item sets and generating rules among
them. This approach has been proven effective
in extracting rules in various study settings (Diaz-
Garcia et al., 2023; Shu and Ye, 2023).

Nine apriori algorithm-generated rules were se-
lected after evaluating their support, confidence and
lift. Five were associated with the Harmful class
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Item Set Conseq Conf Lift
Low Ra
Ex High SD

Harmful 0.78 2.31

Very High Ir
Low Ra

Harmful 0.72 2.13

Very High Ir
Low Ra
Ex High SD

Harmful 0.78 2.31

Low Ra,
Ex High SD

Harmful 0.78 19

Very High Ir
Very High SD
Low Ra

Harmful 0.66 1.95

Table 2: Rules based on association rule mining ap-
proach

(see Table 2), and the rest belonged to the Neutral
class.

2.2.2 Decision Tree Approach
Decision trees are widely used for knowledge repre-
sentation due to their high interpretability (Shu and
Ye, 2023; Sarailidis et al., 2023). This approach
creates a tree-like model of decisions by splitting
data into subsets and repetitive recursion.

The decision tree classifier algorithm generated
rules, thirteen of which were selected after eval-
uating class distribution and probabilities. Four
were associated with the Harmful class (see Table
3), and the rest belonged to the Neutral class. A
complete decision tree is available on our GitHub
page.

2.3 LLM and Prompt Optimization

The experiments were conducted on GPT-3.5 Turbo
via the OpenAI API with a temperature setting of
0. Our prompts followed the framework proposed
by Eager and Brunton (2023). Additionally, we
used the attributed prompt technique to co-create
prompts with the LLM, improving performance,
particularly in the transformation of rules (Yu et al.,
2023). The complete prompt is provided in Ap-
pendix B, and the design of the prompts is as fol-
lows:

• Role of the LLM: It was assigned as a classi-
fying bot that helps users classify messages.

• The task with details: The LLM was asked
to analyze the following messages and deter-
mine whether it was abusive. A message is

Condition Class Prob
In:
Below Avg. Ir
Ex High SD
Not in:
Higher Ra

Harmful 0.561

In:
Very High SD
Below Avg. Ra

Harmful 0.798

In:
Very High Ra
Not in:
Below Avg. SD
Very High Ir

Harmful 0.583

In:
Low SD
Low Ir
Not in:
High Ra

Harmful 0.861

Table 3: Rules based on Decision Tree. Note: these
rules have been simplified for better readability.

considered abusive if it might make a reader
uncomfortable after reading it. In other words,
we focus on not only explicit but also implicit
abusive messages.

• Additional Knowledge: The LLM was in-
formed that the decision could be made based
on the textual message and user attributes.
Then, the rules discussed in Section 2.2 were
presented. In our experiment, selected rules
were embedded into the prompts.

• Input: Consists of (i) a message and (ii) user
attributes.

• Output: A score from 0 to 1, where 0 means
absolutely not harmful, and 1 means definitely
harmful.

Three prompt architectures were created by mod-
ifying the Additional Knowledge layer. DT_M de-
notes the architectures enhanced by the decision
tree rules. ARM_M is enriched by association rule
mining. Lastly, there is no augment for N_M, and
the user attributes were removed from the Input
layer.

3 Experiment and Result

Two experiments were conducted to evaluate the
effectiveness and robustness of the proposed solu-
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Archt. ACC Weighted F1 TP Rate
N_M 0.600 0.556 0.192
DT_M 0.630 0.600 0.258
ARM_M 0.608 0.571 0.225

Table 4: Result for Experiment 1. Note: TP rate is de-
fined as Number of True Positives / Number of Positive
Samples

tion.

3.1 Experiment 1: Effectiveness
This experiment evaluates whether the proposed
approach can enhance the LLM’s ability to generate
personalised detection.

Implementation: 500 data points containing
messages and user attributes were randomly se-
lected from ALDIPF, and 36% were Harmful class.
Then, these selected data points were conveyed into
the Input layer of the prompt framework. Impor-
tantly, messages and user attributes were passed to
DT_M and ARM_M, while only messages were
passed to N_M. After that, the LLM’s responses
were cleaned and rounded to 0 or 1. Lastly, all
responses were evaluated against the ordinary class
labels.

Result: The experimental group consistently out-
performed the control group at every metric (see Ta-
ble 4). Importantly, the experimental group yielded
higher true positive rates (TP rate), which implies
that the experimental group can identify more abu-
sive messages than its counterpart.

3.2 Experiment 2: Robustness
Prior studies suggested that individual subjectivity
should be less influential in determining abusive
messages when the messages usually have only one
clear meaning (Sandri et al., 2023; Plank, 2022).
Therefore, this experiment assesses whether the
proposed solution can handle contradictory inputs,
such as extremely positive or negative messages
paired with attributes that strongly contrast the mes-
sages.

Implementation: 100 joyful messages were ran-
domly selected from the HappyDB (Asai et al.,
2018), a corpus of 100,000 happy moments. Then,
these messages were joined with attributes strongly
related to the Harmful class (Appendix C).

Regarding profane messages, ChatGPT created
100 samples containing at least one swear word.
Then, these samples were joined with attributes
strongly related to the Neutral class (Appendix C).

Type N_M DT_M ARM_M
Joyful [100,0] [98,2] [97,3]
Profane [0,100] [1,99] [9,91]

Table 5: Result for Experiment 2. Note: [Neutral class,
Harmful class]

Similar to experiment one, both messages and at-
tributes were passed to DT_M and ARM_M, while
only messages were passed to N_M. As a result,
N_M was not impacted by manipulated attributes.
In this instance, N_M serves as the baseline to
evaluate the extent to which the proposed solution
would be affected by contradictory inputs.

Result: For N_M, both joyful and profanity mes-
sages were accurately classified according to their
nature. Nevertheless, the experimental group en-
countered different levels of disturbance (see Table
5). In particular, the predictions in Profanity were
flipped by 9% in ARM_M.

4 Discussion

Comparison of Rules. Although the knowledge
extraction approaches differ, the two rule sets still
share similarities. Extremely High Self-Down is
always associated with the Harmful class. In ad-
dition, Low and Lower Rationality are generally
linked with the Harmful class. Nevertheless, the
correlation between the Irrationality and Harmful
class is unclear due to the contradictory implica-
tions of the two rules. Specifically, association rule
mining indicates a positive correlation between Ir-
rationality and the Harmful class, whereas decision
tree analysis shows the opposite.

Effectiveness of Solution. The experimental
group showed consistent improvement on every
metric. Importantly, part of the improvement stems
from identifying more abusive language (higher TP
rate). As a result, the experimental group can pro-
vide more benefits for users, as identifying abusive
language is the primary advantage users gain from
detection systems (Hardt et al., 2016).

Robustness of Solution. Despite extremely joy-
ful or profane messages, the results of Experiment
2 did not align with the expectation that individual
subjectivity would be less influential when mes-
sages have a clear meaning.

Regarding the joyful message, our solution is ro-
bust to noise, effectively addressing contradictory
inputs. However, more research is needed on pro-
fane messages. When explicit swear words were
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presented, DT_M predictions were flipped by only
1%, while ARM_M predictions were flipped by
9%.

5 Conclusion and Future Work

This paper evaluates a novel solution that enhances
LLMs for personalised abusive language detec-
tion by retrieving and incorporating psychological
knowledge into an out-of-the-box LLM. Experi-
ment results showed that our solution outperformed
its counterpart and withstood noise reasonably well.
For better re-productivity, the complete code, rules,
and data are available on our repository page (here).

In our future work, we aim to address two key
limitations. First, more detailed decision rules will
be developed to cover a broader range of user at-
tributes, making the retrieval component essential
and requiring additional evaluation of its effective-
ness. Second, further research should explore the
compound effects between messages and user at-
tributes. While this paper focuses on testing the
robustness of the proposed solution in highly con-
tradictory scenarios, the major challenge of robust-
ness, in our view, lies in handling neutral messages
across diverse individual attributes.
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A Buckets

The numeric psychological features were trans-
ferred to 8 buckets as shown in Table 6.

Buckets Description
Extremely High Any > (X + 3σX)

Very High (X + 2σX) to (X + 3σX)

High (X + σX) to (X + 2σX)

Above Average X to (X + σX)

Below Average X to (X − σX)
Low (X − σX) to (X − 2σX)

Very Low (X − 2σX) to (X − 3σX)

Extremely Low Any < (X − 3σX)

Table 6: Buckets and Ranges of Values

B Prompt Details

System Role: You are a classifying bot that
helps users classify sentences. Please analyze the
following sentence and determine if it is abusive or
not. A sentence is considered abusive if a reader
may feel uncomfortable after reading it. Provide
a score from 0 to 1, where 0 means absolutely
not harmful, and 1 means definitely harmful.
Lastly, just return the score and do not provide any
explanation. Additional Knowledge Base:
Here are the association rules mined from user
attributes and their impact on identifying harmful
messages:

Rule 1:
Antecedents: Low Rationality, Ex High SD
Consequents: discomfort
Support: 0.0014
Confidence: 0.78
Lift: 2.31
Explanation: When users exhibit low rationality
and extremely high standard deviation in identity,
there is a strong association with message content
leading to discomfort (discomfort), with a lift of
2.31.

Rule 2:
Antecedents: Very High Irrationality, Low Ratio-
nality
Consequents: discomfort
Support: 0.0025
Confidence: 0.72
Lift: 2.13
Explanation: The combination of very high

irrationality and low rationality significantly
correlates with messages causing discomfort
(discomfort), with a lift of 2.13.

Rule 3:
...
...
note: complete code and rules are available on our
repository page (here).

User Role: Sentence: this is a sample mes-
sage. Attributes: this is a sample attribute.

C User Attributes for Experiment 2

For ARM_M, joyful messages were attached to
Low Rationality and Extremely High Self-Down,
strongly associated with Harmful class, while pro-
fane messages were linked to Low Self-Down,
strongly associated with Neutral class.

For DT_M, joyful messages were attached
to Very High Self-Down and Low Rationality,
strongly associated with Harmful class, while pro-
fane messages were linked to Below Average Self-
Down and High Rationality, strongly associated
with Neutral class.
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Abstract 

Text summarization is the process of 

condensing a piece of text to fewer 

sentences, while still preserving its content. 

Chat transcript, in this context, is a textual 

copy of a digital/web conversation between 

a customer (caller) and agent(s). This paper 

presents a locally developed hybrid method 

that combines extractive (unsupervised) 

and abstractive (supervised) summarization 

techniques in compressing ill- or un-

punctuated chat transcripts to produce more 

readable summaries. Extensive testing, 

evaluation and comparisons have 

demonstrated the efficacy of this approach, 

in the absence of annotated (reference) 

summaries, for large-scale summarization. 

1 Introduction 

Automatic document summarization aims to 

compress a textual document to a shorter, more 

informative format while keeping key information 

of the original text. Numerous approaches have 

been developed for automatic text summarization 

and can be broadly classified into two groups: 

extractive and abstractive summarization. 

Extractive summarization extracts important 

sentences from the original text and reproduces 

them verbatim in the summary, while abstractive 

summarization generates new sentences.  Hybrid 

Summarization attempts to combine these two 

approaches in some form. 

Chat transcription is defined as the process of 

converting a digital or web conversation into 

written words to be stored as plain text in a 

conversational language. In this paper, however, 

we will be confining ourselves to textual 

descriptions of web chats between customer 

(caller) and agent(s) (customer representatives) 

of a phone company. Automatic summarization 

of chat transcripts, in this context, pose certain 

unique challenges, as follows: 1) they are not 

continuous texts but include conversations 

between customers and agents, 2) they are often 

very short or very long, and can include a large 

number of sentences that are irrelevant and even 

meaningless, 3) they include several ill-formed, 

grammatically incorrect sentences, 4) they are 

either un- or improperly punctuated, 5) there is a 

dearth of a large collection of human-crafted 

annotated (reference) summaries that can be used 

as training samples and 6) existing open-source 

summarization tools don’t perform well with chat 

transcripts unless properly customized or fine-

tuned.  

In this paper, we have presented a hybrid 

summarization technique that combines extractive 

summarization, comprising of channel separation 

(separation into customer and agent transcripts), 

topic modeling, sentence selection and punctuation 

restoration with supervised abstractive 

summarization via transfer learning to produce 

properly punctuated, fixed-length and readable 

customer and agent summaries, from the original 

chat transcripts, that can adequately summarize 

customer concerns and agent resolutions. 

2 Related Work 

Related research can be broadly grouped into 

three categories: 1) extractive, 2) abstractive and 

3) hybrid Summarization. 

Radev et al. (2002) defined summary as “a text 

that is produced from one or more texts, that 

conveys important information in the original 

text(s), and that is no longer than half of the 

original text(s) and usually, significantly less than 

that.” Automatic text summarization gained 

attraction as early as the 1950s. Different methods 

and extensive surveys of automatic text 

summarization have been provided in (Zechner, 
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1997; Mani, 2001; Jones, 2007; Jezek and 

Steinberger, 2008; Nenkova and McKeown, 

2012; Saggion and Poibeau, 2013). 

Luhn (1958) introduced a method to extract 

salient sentences from the text using features such 

as word and phrase frequency. Gong and Liu 

(2001) and Wang et al. (2009) summarized 

multiple documents using topic models. Miller 

(2019) used Bidirectional Encoder 

Representations from Transformers (BERT) for 

summarization of lecture notes. Liu (2019) 

described BERTSUM, a simple variant of BERT, 

for extractive summarization. Liu and Lapata 

(2019) showcased how BERT could be generally 

applied in text summarization and proposed a 

general framework for extractive and abstractive 

models. Feigenblat et al. (2021) introduced 

TWEETSUM, a large-scale database of customer 

support dialogs with extractive and abstractive 

summaries along with an unsupervised extractive 

summarization method, specific to these dialogs. 

Lin and Ng (2009) and Khan and Salim (2014) 

reviewed the various methods for abstractive 

summarization. Nallapati et al. (2016), Paulus et 

al. (2017), See et al. (2017) and Liu et al. (2017) 

employed recurrent neural networks, deep 

reinforcement learning, pointer-generator and 

generative adversarial networks for abstractive 

summarization. Lewis et al. (2019) introduced 

BART, a denoising autoencoder for pre-training 

sequence-to-sequence models that was 

particularly effective when fine-tuned for text 

generation (e.g., abstractive summarization, 

translation, etc.). Beltazi et al. (2020) presented 

Longformer, useful for long document 

summarization. Tuggener et al. (2021) provided 

an extensive overview of existing dialog 

summarization data sets and mappings from data 

sets to linguistic models. Fabbri et al. (2021) 

crowdsourced four new datasets from news 

comments, discussion forums, community 

question answering forums, as well as email 

threads and benchmarked state-of-the-art 

abstractive summarization models on their 

datasets. Zhong et al. (2021) presented DialogLM, 

a pre-trained neural encoder-decoder model for 

long dialog understanding and abstractive 

summarization.  

Bae et al. (2019) followed a hybrid architecture, 

rewrote sentences from a document and then 

paraphrased the selected ones to generate a 

summary. Su et al. (2020) combined the two 

summarization methods to generate a variable-

length, fluent summary. 

3 Major Contributions 

Our main contributions and advantages can be 

summarized as follows:  

1. We have integrated topic modeling and 

embedding based sentence selection 

with transformer (BERT) based 

punctuation restoration for extractive 

summarization through a 10-step 

sequential procedure. 

2. We restore punctuation in the 

summaries of un-punctuated or ill-

punctuated transcripts. 

3. We have fine-tuned powerful, 

transformer-based language models, on 

locally extracted summaries, for 

abstractive summarization of chat 

transcripts through transfer learning. 

The summaries can be useful both as historical 

records and reminder messages of prior chats. 

4 Hybrid Summarization of Chat 

Transcripts 

We propose a hybrid strategy that includes 

extraction, fine-tuning, and abstraction. Its main 

objective is to provide a hybrid summarization 

framework that can first extract the summaries of 

transcripts to create a large enough training 

sample, and then use this sample to fine-tune pre-

trained language model based abstractive 

summarizers to generate new summaries of 

unseen transcripts through transfer learning. The 

resultant summaries are expected to be at least as 

good as the extractive summaries, with the tacit 

expectation that the pre-training encoded in the 

abstractive approach would make the summaries 

even more fluent, coherent and help reduce some 

grammatical errors found in the original 

transcripts. So, the strategy involves 2 sequential 

phases. Phase I uses an extractive summarizer, 

while Phase II uses abstractive ones. The 

abstractive summarizers depend upon extractive 

summarizer’s outputs for their fine-tuning 

(supervision). The strategy is useful in a 

production environment which requires the 

summarization of a very large number of chat 

transcripts but where there is a paucity of 
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manually generated reference (annotated) 

summaries from which the abstractive 

summarizers can learn in Phase II and with which 

we can compare our results. Figure 1 shows the 

two Phases of the proposed hybrid summarization 

strategy. 

 

 
Figure 1: Hybrid Summarization.  

5 Phase I: Sample Generation through 

Extractive Summarization 

Phase I generates a large pool of chat summaries, 

through extractive summarization, which can be 

reused for fine-tuning supervised abstractive 

summarizers. This extractive summarization 

technique uniquely integrates channel (speaker) 

separation, topic modeling, and similarity-based 

sentence selection with punctuation restoration 

through a 10-step sequential procedure. It is 

internally developed based on an adaptation from 

(Biswas and Iakubovich, 2022). 

The punctuation restored summaries are the 

outputs from this procedure. The procedure is 

highly parameterized. The full list of parameters to 

the proposed procedure includes: Topic Model Type 

(default: “None/False”), Number of Topics (default: 

5), Number of Dominant Topics (default: 1), Batch 

Size for Punctuation Restoration (default: 512), 

Term Extraction Method (default: “global”), 

Desired Summary Length (default: 5), Summary 

Table Name (default: “summary_results”), Word 

Similarity Threshold (default: 0.5), Uniqueness 

Threshold for Sentence Similarity (default: 0.5). 

Next, we describe the key steps of this procedure.  

5.1 Channel Separation 

Chat transcripts include conversations/dialogs 

between customer and one or more agents and so 

the resultant summaries can often get mixed up. 

The separation of a transcript into customer and 

agent transcripts, based on channel or speaker 

identifier, can make each summary more coherent.  

If the channel identifiers, associated with the 

transcripts, do not clearly identify the speakers then 

we can use a pre-trained BERT Transformer model 

with a linear classifier from PyTorch nn package as 

an additional layer, on top of BERT’s 12 layers, to 

classify each dialog of the transcript into one of the 

two classes, i.e., customer and agent and then 

combine each type of dialogs to create customer 

and agent transcripts. We haven’t used this with our 

chat transcripts as the speakers were identified. 

5.2 Document Preparation 

A document is a list of keywords extracted from 

each transcript and is used as input to the topic 

model. For document preparation, we have built a 

custom NLP preprocessing pipeline comprising of 

tokenization; removal of punctuation, extended 

stop-words and small words (length ≤ 4); regular 

expression matching; lowercasing; contraction 

mapping; bigrams and trigrams creation; 

lemmatization; parts of speech tagging and 

allowable tag selection. This has been implemented 

by combining modules available from four Python 

packages, namely, re, spaCy, NLTK, and gensim.   

5.3 Topic Model Optimization and Optimal 

Model Selection 

If the topic model type is specified at the invocation 

of the procedure, then we create multiple topic 

models (instances) of the desired type, for both 

customer and agent, using the documents, corpus 

and vocabulary from the corresponding chat 

transcripts, by varying the hyper-parameter (e.g., 
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topic number) values within the pre-defined ranges 

by the pre-defined steps; compute their coherence 

scores and identify the topic models and associated 

hyper-parameter values that produce the best 

scores. Otherwise, by default, we perform the 

above-mentioned activity for all 3 different topic 

model types, namely, LDA, LSI and HDP, in 

parallel, and identify the topic models and 

associated hyper-parameter values that produce the 

best scores amongst topic models of all three types, 

through an extensive grid search over a wide range 

of values. We have exclusively used the Python 

based gensim package for this step. 

5.4 Punctuation Restoration 

The punctuation restoration algorithm is used in 

steps 2 and 8 of the aforesaid procedure. In step 2, 

we preprocess transcripts (customer and agent) to 

remove existing punctuations and then restore 

punctuations partially, i.e., restore only periods as 

delimiters, so that sentences can be separated in 

each transcript; while in step 8, we remove existing 

periods from each pair of customer and agent 

summaries, restore partial and full punctuations 

and postprocess them for more readable outputs. 

We have used the BertForMaskedLM class of 

the PyTorch BERT model (bert-base-uncased1) 

for punctuation restoration and added an 

additional linear layer (PyTorch nn module) 

above the 12 BERT layers. The output of original 

BERT layers is a vector with the size of all 

vocabulary. The additional linear layer takes this 

as input and gives as output one of four classes, 

i.e., “O” (Other), “Comma”, “Period” and 

“Question” for each encoded word. We retrained 

this modified BERT model using TED 

transcripts, consisting of two million words. This 

retraining with the proposed architecture is unique 

for punctuation restoration. 

We found that the BERT model for punctuation 

restoration gave 30% more accurate results than 

the LSTM based model. We implemented the 

punctuation restoration algorithm using BERT 

Transformer, BertPunc and nn packages, 

available from PyTorch. 

 
1 https://huggingface.co/google-

bert/bert-base-uncased 

5.5 Summary Generation through Sentence 

Selection 

This process combines steps 5 through 7 of the 

main procedure, i.e., dominant topic identification, 

significant term selection and summary generation. 

First, we get the most dominant topic(s) from the 

selected topic models (for customer and agent) 

with the associated keywords for each of customer 

and agent documents for every transcript. Second, 

we use the keywords/terms associated with 

customer and agent dominant topics to extract the 

most significant inter-related terms for each 

transcript (document) pair using word-based 

similarity analysis and construct a string/document 

with them. Lastly, we generate fixed-length 

customer and agent summaries for every chat 

transcript, using embedding-driven, sentence-

based similarity analysis. First, we condense each 

of customer and agent transcripts by identifying its 

most unique sentences and then we select a fixed 

number (user-specified) of most relevant sentences 

from the condensed transcripts that are most 

similar to the string/document constructed at the 

previous step.  

For term-based similarity analysis, we have 

calculated cosine similarity between GloVe 

encoded word vectors (300 dimensions) using 

spaCy’s en_vectors_web_lg; while for sentence-

based similarity analysis and summary generation, 

we have used the Universal Sentence Encoder 

(USE) from tensorflow-hub, along with the Python 

based pandas and numpy packages. 

5.6 Summarization Evaluation 

We have determined the effectiveness of the 

summarizer by measuring both the goodness 

(quality) of summarization and the correctness 

(accuracy) of the punctuation restoration reflecting 

the content and readability of the summaries. 

For the goodness/quality of the information 

content of the generated summaries, the metrics 

BLEU [Bilingual Evaluation Understudy] 

(Papineni et al., 2002) and ROUGE [Recall-

Oriented Understudy for Gisting Evaluation] (Lin, 

2004) scores can be used as measurements. We 

have computed the BLEU and ROUGE-l scores 

using the Python packages NLTK 

(nltk.translate.BLEU_score) and ROUGE (rouge). 
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For the correctness/accuracy of the punctuation 

restoration, the accuracy_score function from 

python’s sklearn.metrics package can measure the 

punctuation-restoration-accuracy (Biswas and 

Iakubovich, 2022), as the number of matches of 

punctuation symbols (periods) between the 

original/extracted text (transcript/summary) and 

the punctuated text (transcript/summary), 

expressed as a percentage.  

6 Phase II: Abstractive Summarization 

through Transfer Learning 

Phase II involves fine-tuning pre-trained Large 

Language Model (LM/LLM) driven, transformer 

based abstractive summarizers on the extractive 

summaries, obtained from Phase I, and then using 

them in generating summaries from unseen chat 

transcripts, via transfer learning, to find the most 

effective fine-tuned summarizer for potential 

production deployment. We have fine-tuned four 

pre-trained LM/LLM driven transformers, i.e., T5 

(t5-small 2 ), BART (bart-large-xsum 3 ), 

Longformer2Roberta (longformer2roberta-

cnn_dailymail-fp16 4 ), and DialogLED 

(DialogLED-large-5120 5 ) for this purpose. T5 

(Raffel et al., 2019), an encoder-decoder model, 

was pre-trained on Common Crawl and encodes 

at-most 512 tokens. BART is a denoising 

transformer encoder-decoder (seq2seq) model 

with a bidirectional (BERT-like) encoder and an 

autoregressive (GPT-like) decoder, fine-tuned on 

the Extreme Summarization (XSum) dataset. It 

encodes up to 512 tokens. Longformer2Roberta 

is an encoder-decoder model, where the encoder 

is an allenai/longformer-base-4096 model and the 

decoder is a roberta-base model, fine-tuned on 

the CNN/DailyMail dataset. It can handle up to 

4096 tokens. DialogLED is a pre-trained model 

for long dialog understanding and summarization. 

It builds on the Longformer-Encoder-Decoder 

architecture and uses window-based denoising as 

the pre-training task on a large amount of long 

 
2 https://huggingface.co/google-

t5/t5-small 
3 

https://huggingface.co/facebook/bart

-large-xsum 
4 
https://huggingface.co/patrickvonpla

ten/longformer2roberta-

cnn_dailymail-fp16 

dialog data, encoding up to 5120 tokens. We 

selected T5 as it was then the state-of-the-art, 

BART as it was then commonly used for dialog 

summarization, Longformer2Roberta as some 

chat transcripts were long documents and 

DialogLED as it was designed to improve dialog 

summarization. 

7 Performance Evaluation 

Effectiveness (quality of summaries), efficiency 

(summarization/fine-tuning time), flexibility and 

performance comparisons with/among open-

source, off-the-shelf summarizers are some of the 

considerations that helped us evaluate the 

performances of our strategy for chat transcript 

summarization. 

7.1 Experimental Setup 

We set up a Spark cluster, consisting of a driver 

node and dynamically allocated, multiple executor 

nodes for data collection, preprocessing and 

summarization. The NVIDIA CUDA Deep Neural 

Network (cuDNN v7.6) accelerated our training 

process for punctuation restoration. We retrained, 

fine-tuned, and tested the transformer models on 

NVIDIA Tesla A100-SXM4-40GB GPU based 

nodes, using anywhere between 1 to 4 GPUs.  

In Phase I, we tested our extractive summarizer 

on a dataset consisting of 160,000 chat transcripts, 

covering a wide range of issues including billing, 

refunds, upgrades, service, outage, maintenance, 

etc. The average and maximum lengths of the full 

chat and the constituent customer and agent 

transcripts were (314, 7295), (92, 4225) and (222, 

4064) words respectively. We compared the 

performances of our summarizer with those from 

another very popular, open-source extractive 

summarizer, namely, BERT Extractive 

Summarizer 6  using three pre-trained transformer 

models: BERT (bert-base-uncased1) [encoder], 

GPT-2 (gpt2-medium 7 ) [decoder], and XLNet 

(xlnet-base-cased 8 ) [decoder]. We chose these 

three models as they could summarize well without 

5 

https://huggingface.co/MingZhong/Dia

logLED-large-5120 
6 https://pypi.org/project/bert-
extractive-summarizer/ 
7 https://huggingface.co/openai-
community/gpt2-medium 
8 https://huggingface.co/xlnet/xlnet-
base-cased 
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fine-tuning. BERT Extractive Summarizer 

generated summaries using the period-restored 

chat, customer, and agent transcripts from step 2 of 

the proposed extractive summarization procedure.  

Its ratio parameter was adjusted, using the number 

of words in the transcript, to ensure that its 

summaries were of comparable (shorter) lengths. 

The transcripts were summarized both with and 

without channel separation (full chat), as part of an 

ablation study. 

In Phase II, the 160K transcripts (customer & 

agent) with their corresponding extractive 

summaries (from Phase I) were split into 3 sets, i.e., 

train, test and hold-out, with 150K, 5K and 5K 

samples respectively. We fine-tuned the pre-trained 

T5, BART, Longformer2Roberta and 

DialogLED models on train and test sets for 

abstractive summarization and validated their 

summaries on the hold-out set. The hyper-

parameters of the models, e.g., ecncoder_length, 

decoder_length, batch_size, num_beams, 

learning_rate, weight_decay, num_train_epochs, 

fp16, etc., were tuned to generate better summaries. 

The open-source summarizers were used with 

their respective pre-trained models, tokenizers, 

configurations, vocabularies, and checkpoints.  

7.2 Manual Evaluation 

The summaries generated by the proposed method 

are being manually validated for content and 

readability by our business customers. The goal is 

to subjectively evaluate if the summaries can be 

deemed generally useful for the very purposes that 

the transcripts were meant to be used. Feedback 

includes the following. 

• For ~50 or so chat transcripts, our 

extractive summaries aptly matched 

manual summaries. 

• The abstractive summaries were readable, 

generally comparable to the extractive 

summaries and mostly expressed the 

main information content of the original 

transcripts. 

• If the chat was about one problem, then 

~80% of the transcripts were capably 

summarized. 

• Punctuations greatly improved the 

readability of the generated summaries. 

• Our extractive summaries were more 

meaningful and readable than the 

summaries generated by their existing 

methods, namely, genism summarizer, 

pytextrank, pysummarization auto-

abstractor for their use cases. 

• The abstractive summaries didn’t include 

opinions outside of those expressed in the 

extractive summaries (absence of bias). 

• The abstractive summaries generated by 

BART matched the extractive summaries 

more than T5, Longformer2Roberta 

and DialogLED. 

7.3 Automatic Evaluation 

We evaluated our summarizer for effectiveness 

and efficiency. For measuring the effectiveness of 

our summarization and for comparing 

performances among extractive and abstractive 

summarizers, we have used the metrics BLEU and 

ROUGE-l scores (Sec. 5.6). We determined the 

efficacy of our punctuation restoration algorithm 

in Phase I using punctuation-restoration-

accuracy score (Sec. 5.6). 

The efficiency of a summarizer is important to 

real world applications. For Phase I, we have 

measured the efficiency of our extractive 

summarizer by recording the time taken by each 

of the 10 steps of our proposed procedure. We 

have also compared the efficiency of our summary 

generation process (Sec. 5.5) with that of the 

BERT Extractive Summarizer by comparing the 

total time taken by each to summarize all of chat, 

customer and agent transcripts in the 160K 

sample. For Phase II, we have compared the 

efficiency of the four abstractive summarizers by 

their average fine-tuning times on customer and 

agent transcripts. 

7.4 Results and Summarizer Comparisons 

Table 1 shows results from Phase I and compares 

the effectiveness & efficiency of the proposed 

summarizer for shorter summaries (~5 sentences) 

with those from the BERT Extractive Summarizer 

(BES) using three different pre-trained 

transformer models: BERT, GPT-2, and XLNet 

on the 160K sample, using three different 

evaluation metrics. We compared all the extracted 

summaries with their corresponding period-

restored original transcripts (step 2 of Phase I) for 

computing their BLEU and ROUGE scores as we 
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didn’t have 160K manual reference summaries to 

compare them with. Hence, the scores were low as 

the compared texts were of unequal lengths. 

However, the situation was the same for all the 

compared summarizers and the objective was to 

determine the extent of overlap between the 

extracted summaries (in the four cases) and the 

original transcripts. The BLEU and ROUGE 

scores, for each type of transcript 

(chat/customer/agent), represent the average of 

the BLEU and ROUGE scores of all the 

summaries generated from the corresponding type 

of transcripts contained in the sample.  

Table 1 shows that our own extractive 

summarizer generated chat, customer and agent 

summaries with higher average BLEU and 

average ROUGE scores than BES using the three 

pre-trained models: BERT, GPT-2, and XLNet 

in approximately 
1

5
,
1

7
,
1

7
 of the time taken by BES 

in summarizing the transcripts separately in the 

three cases. This is because our method employed 

a faster, embedding-based summarization step 

(step 7) that reduced the search space for sentence 

selection. Thus, it establishes that our extractive 

summarizer is more effective and efficient than 

BES for chat transcripts. So, it made sense to use 

our summaries for fine-tuning the abstractive 

summarizers in Phase II. Table 1 further 

illustrates that extractive summarization with 

channel separation generated more coherent 

summaries than without separation (ablation 

study) and the customer summaries were the most 

effective. The punctuation-restoration-accuracy 

scores for chat, customer and agent summaries 

varied between 90 − 100%  in all cases. The 

proposed summarizer is highly parameterized and 

more flexible than BERT Extractive Summarizer. 

Table 2 shows results from Phase II and 

compares the performances of the four fine-tuned 

abstractive summarizers, i.e., T5, BART, 

Longformer2Roberta and DialogLED on the 

hold-out set (5K). We compared all the customer 

and agent abstracted summaries with their 

corresponding extracted summaries from Phase I, 

for computing their BLEU and ROUGE scores. The 

scores were higher as texts were of comparable 

lengths. Table 2 shows that BART generated 

customer and agent abstractive summaries were 

closest to the extractive summaries with the highest 

average BLEU and average ROUGE scores, while 

taking the least fine-tuning time. Table 2 further 

confirms that Longformer2Roberta was more 

effective and efficient than DialogLED for our 

transcripts while T5 was the least effective for chat 

transcript summarization. The BART models, fine-

tuned on customer and agent transcripts, are being 

readied for production deployment. 

ES Chat 

BS 

Chat 

RS 

Cust. 

BS 

Cust. 

RS 

Agent 

BS 

Agent 

RS 

TST 

(secs) 

IES 0.20 0.52 0.30 0.63 O.23 0.55 17,334 

(~5 

hours) 

BES-

1 
0.13 0.44 0.27 0.59 0.16 0.47 85,867 

(~24 

hours) 

BES-

2 
0.12 0.40 0.26 0.57 0.15 0.44 124,161 

(~35 

hours) 

BES-

3 
0.12 0.41 0.26 0.58 0.15 0.45 118,199 

(~33 

hours) 

Table 1: Metric scores for Extractive Summarizers. 

[ES: Extractive Summarizer, BS: BLEU Score,  

RS: ROUGE Score, TST: Total Summarization Time, 

IES: Indigenous Extractive Summarizer,  

BES-1: BES(BERT), BES-2: BES(GPT-2),  

BES-3: BERT(XLNet)] 

 
AS Cust. 

BS 

Cust. 

RS 

Agent 

BS 

Agent 

RS 

AFS 

(secs) 

T5 0.41 0.56 0.58 0.73 50,242 

(~14 

hours) 

BART 0.62 0.72 0.67 0.83 19,214 

(~5.34 

hours) 

Longformer

2Roberta 

0.47 0.66 0.61 0.77 79,086 

(~22 

hours) 

DialogLED 0.46 0.63 0.55 0.74 114,574 

(~32 

hours) 

Table 2: Metric scores for Abstractive Summarizers. 

[AS: Abstractive Summarizer, BS: BLEU Score, 

RS: ROUGE Score, AFS: Average Fine-tuning Time] 

Next, we present another ablation study on the 

impacts of fine-tuning on the language models. The 

four language-model (LM/LLM) based abstractive 

summarizers were also used to summarize (zero-

shot) the chat transcripts in the hold-out set without 

fine-tuning any of the models, to measure the full 

impact of fine tuning for chat summarization in our 

context. Table 3 shows results from our ablation 

study and demonstrates that DialogLED 

performed the best on BLEU scores, while 

Longformer2Roberta performed the best for 

ROUGE scores amongst the four untuned 

abstractive summarizers for all transcript types. 

Untuned BART was the least effective. 

Furthermore, comparing metric scores in Table 2 

and Table 3, we can conclude that on an average 
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fine-tuning improved the performance of an 

abstractive summarizer on all chat transcripts by ~8 

times, on customer transcripts by ~5 times, and on 

agent transcripts by ~11 times. BART showed the 

most improvement in fine-tuning on our chat 

transcripts. 

AS Cust. 

BS 

Cust. 

RS 

Agent 

BS 

Agent 

RS 

T5 0.07 0.28 0.05 0.21 

BART 0.03 0.21 0.01 0.16 

Longformer2Roberta 0.09 0.38 0.08 0.33 

DialogLED 0.17 0.36 0.14 0.29 

Table 3: Metric scores in Ablation Study  

(Impacts of Fine-tuning). 

[AS: Abstractive Summarizer,  

BS: BLEU Score, RS: ROUGE Score] 

7.5 Limitations 

There are two limitations associated with the 

proposed method, one related to its evaluation 

procedure and the other related to its capability. 

Limitation related to its automated evaluation 

originated from not having enough manually 

crafted reference summaries for the 160K chat 

transcripts under consideration. In the absence of a 

full set of reference summaries, we compared the 

extracted summaries with the period-restored and 

longer original transcripts (from step 2 of our 

extractive procedure) for computing their 

corresponding BLEU and ROUGE scores. So, the 

scores were slightly lower. However, this was done 

for the summaries from the proposed method as 

well as for the three pre-trained language model 

driven Bert Extractive Summarizers to ensure 

consistency and similarity in the comparisons. 

Likewise, in the absence of manually generated 

reference summaries, the abstractive summarizers 

were fine-tuned on the extractive summaries, and 

we automatically compared the abstractive 

summaries with the extractive summaries using 

commonly used metric scores. However, this was 

done only after verifying through both automatic 

and some manual evaluations that our extractive 

summaries were highly readable and usable. On the 

other hand, one limitation of its capability is that it 

doesn’t repair grammatical errors (one of the 

challenges associated with the chat transcripts), 

only reduces their numbers with fewer sentences, 

some postprocessing and abstractive 

summarization through pre-trained language 

models. This also explains the rationale behind the 

use of the two denoising abstractive summarizers 

in Phase II for abstractive summarization. 

Furthermore, it may be noted here that this 

research was started several years back, prior to the 

arrival of the latest generation of prompt-based, all-

purpose, decoder-transformer models, e.g., GPT-3, 

ChatGPT (GPT-3.5/4), Llama, Gemini, etc., which 

can also be quite effective for zero-shot text 

summarization (Zhang et al., 2024). Consequently, 

for this version, we considered and tested slightly 

earlier generation of LLMs/LMs, i.e., non-

instruction-based encoder-decoder models, which 

had been previously used in the literature and are 

still utilized widely for text (e.g., dialog) 

summarization (generation), specifically for more 

customized use cases. 

8 Conclusion 

In this paper, we have presented a hybrid 

summarization technique to address some of the 

challenges associated with chat transcript 

summarization, prevalent in our context. We have 

combined channel separation, topic modeling, 

sentence selection, punctuation restoration, in 

extractive summarization, with transfer learning 

based supervised abstractive summarization, to 

generate coherent and more readable chat 

transcript summaries for a better understanding of 

the customer complaints and the agent 

resolutions.  The proposed summarizer is the only 

hybrid one that restores full punctuation to the 

summaries. Finally, we have established the 

efficacy of the hybrid strategy through extensive 

experimentations and performance comparisons. 

The hybrid method is very useful for large-scale 

deployment of chat transcript summarization, in 

the absence of manually crafted reference 

(annotated) summaries for fine-tuning the 

abstractive summarizers. 
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Abstract

The evolution of virtual spaces and live events
demands sophisticated methods for avatar ani-
mation. While existing techniques offer diverse
approaches, limitations persist in achieving
real-time responsiveness and natural communi-
cation. This paper proposes a novel approach
for real-time speech-driven avatar animation,
covering the prediction of 2D and 3D facial
landmarks, and deformation blendshapes from
ARkit. Specific models were trained to gener-
ate both emotional and neutral animated faces,
and using convolutional neural networks able to
deal with low latency requirements. The quality
of the generated animations was addressed both
objectively and subjectively. Both evaluations
suggest that our approach is accurate to gener-
ate high-fidelity and expressive animations. In
addition, we create a client-server application
that achieved real time performance, enabling
frame rates and latencies suitable for live in-
teractions, fostering a seamless and immersive
experience.

1 Introduction

Modern animated movies and games rely on ex-
pressive facial animation to convey emotions and
enhance storytelling. While vision-based technol-
ogy plays a vital role in capturing real actors’ per-
formances and translating them onto animated char-
acters, it often comes at a significant cost (Karras
et al., 2017). Elaborated hardware setups are fre-
quently required for computer vision systems, and
re-shoots necessitate the actors’ physical presence
and consistent appearance. Conversely, speech-
driven algorithms are a compelling alternative by
significantly reducing costs. For instance, animat-
ing vast amounts of in-game dialogue becomes sig-
nificantly cheaper through audio processing instead
of costly video capture setups (Karras et al., 2017).
Additionally, speech-driven systems can leverage
natural animations even from Text-to-Speech mod-

els, opening up new possibilities for character cre-
ation.

When generating facial animations from speech,
it is important not only to ensure lip-sync, but
also to transfer the emotions of the speaker into
the avatar to guarantee a more natural communi-
cation (Chen et al., 2023). Humans are experts
in facial reading, making inconsistencies between
speech and facial expression to be potentially dis-
tracting, unpleasant, and even confusing. This is
evident in the McGurk effect, where mismatched
visual and auditory speech can alter perceived
words (Alsius et al., 2018). Therefore, high-fidelity
speech animation becomes essential for conveying
emotions, intentions, and creating truly immersive
experiences.

Speech facial animation technologies fall into
two broad categories based on complexity and ex-
pressiveness. Some engines leverage large-scale
neural models for highly nuanced animation, as
described by Yang et al. (2023); Zhao et al. (2024).
However, these solutions often demand significant
computational resources, limiting their suitability
for resource-constrained projects. On the contrary,
simpler libraries based on viseme recognition (Ed-
wards et al., 2016) offer faster animation, but are
often criticized for lacking emotional expressive-
ness and intent transfer (Taylor et al., 2017).

Despite advancements in speech-driven anima-
tion, achieving real-time performance and seam-
less integration with animation software remains
a challenge. Current systems are based on facial
landmark predictions (Taylor et al., 2017; Eskimez
et al., 2019; Vidal and Busso, 2023) and 3D fa-
cial meshes (Chen et al., 2023; Thambiraja et al.,
2023; Zhao et al., 2024), which are able to produce
high fidelity and natural animations. However, they
have limitations in computational efficiency and
software compatibility. Additionally, approaches
directly mapping speech to video animations (R.
et al., 2023; Zhang et al., 2024) often prioritize
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expressiveness over real-time performance, hinder-
ing practical applications. Existing models rely
on large-scale architectures like Recurrent Neural
Networks (RNNs) (Pham et al., 2017; Eskimez
et al., 2018; Y. et al., 2020; Zhou et al., 2020; Vil-
lanueva et al., 2022), Transformer models (Chen
et al., 2023; Yang et al., 2023; Xing et al., 2023;
Zhang et al., 2023), diffusion models (Thambiraja
et al., 2023), and Generative Adversarial Networks
(GANs) (K. and E., 2021; Zhang et al., 2021; Vou-
gioukas et al., 2020). RNNs effectively model
temporal dependencies in speech, transformers ex-
cel at long-range context analysis, and GANs can
generate highly natural animations. Although cur-
rent techniques offer high quality animations, they
struggle to achieve the real-time responsiveness
and natural communication cues necessary for truly
immersive experiences.

The growing sophistication of virtual spaces and
interactive live events demands new methods for
avatar animation that go beyond high fidelity. This
paper addresses current limitations by proposing
a novel, real-time speech-driven avatar animation
engine to bridge the gap between high-fidelity vi-
suals and smooth interaction during interactive
live events. We considered deep architectures to
generate several animation representation types in
real time, including 2D/3D facial landmarks, and
ARkit deformation blendshapes1. Several studies
have addressed the prediction of facial landmarks
based on speech (Taylor et al., 2017; Zhou et al.,
2020) as part of their pipelines. Studies relying
on ARkit blendhapes have focused on performing
audiovisual speech synthesis, using adaptations of
Tacotron2 (Hussen Abdelaziz et al., 2021). How-
ever, such approaches limits both the emotional ex-
pressiveness that real actors can transmit to the gen-
erated faces. To the best of our knowledge, this is
one of the first studies focused on predicting ARkit
blendshapes directly from speech, and the first one
aiming to generate them in real time, paving the
way for expressive and interactive avatars during
live animation events.

The performance of the proposed models is eval-
uated both objectively and subjectively in order
to check not only the accuracy of the predicted
landmarks and blendshapes, but also perceptual
indicators about expressiveness, coherence, qual-
ity, and lip-sync. In particular, subjective tests are

1https://developer.apple.com/documentation/
arkit/

conducted by a group of 3D animation experts, in-
creasing the novelty of the proposed approach with
respect to related studies that have perform subjec-
tive tests only with naive users (Y. et al., 2020). Fur-
thermore, we performed an extensive evaluation of
the run-time capabilities that are essential for real-
time animation production in live events. Unlike
previous studies focusing only on limited audio
samples and single frame prediction times (Tian
et al., 2019; Lu et al., 2021), our work provides
a more comprehensive assessment in production-
ready environments typically found in live events.

2 Methods

2.1 Facial Animation Representations

We incorporated three animation representation
types to address different application scenarios
when animating avatars: (1) 2D facial landmarks,
(2) 3D facial landmarks, and (3) deformation blend-
shapes. These animation types are intended to be
transmitted in real time to animation engines like
Unity2, Blender3, or Maya4 to animate cartoon-
type avatars that follow the facial expressions of an
actor. Each representation is considered depending
on the type and realism of the avatar to be animated.

Facial landmarks are key reference points on a
face, used to track movement, expression, and indi-
vidual facial structures on a coordinate system. We
considered both 2D and 3D facial landmark rep-
resentations that are automatically extracted from
video frames. The 2D landmark points correspond
to 68 x-y coordinates extracted using the DLib
library (King, 2009), and which have been used
in similar studies to map the general facial struc-
ture (R. et al., 2023; Eskimez et al., 2018) (see Fig-
ure 1a). The 3D landmark representation consists
of 478 x-y-z coordinates extracted using the Medi-
aPipe Facemesh model from Google (Grishchenko
et al., 2020; Yan, 2022), and which is able to ex-
tract more fine-grained information from the facial
structure and map it into more realistic 3D avatars
(see Figure 1b).

Complementary to facial landmarks, blend-
shapes are pre-sculpted variations of an object e.g.,
the face, used to smoothly animate complex de-
formations of its geometry. Blendshapes are stan-
dard animation mechanisms widely used in profes-
sional animation engines. We considered a stan-

2https://unity.com/
3https://www.blender.org/
4https://www.autodesk.es/products/maya
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dard set of 52 ARKit blendshapes5 that allow to
animate the eyebrows, mouth, jaw, and lips in dif-
ferent ways, and adapt the coefficients to a specific
avatar (Figures 1c and 1d). The set of blendshapes
was extracted using the MediaPipe Blendshape V2
model (Grishchenko et al., 2022).

a) 2D Landmarks b) 3D Landmarks

c) Blendshapes avatar 1 d) Blendshapes avatar 2

Figure 1: Facial representations for speech-driven avatar
animation, covering facial landmarks and deformation
blendshapes.

2.2 Deep Architectures

Several models for the three animation represen-
tations were trained using combinations of convo-
lutional and recurrent networks. In particular, we
considered the Long Short-Term Memory (LSTM)
network proposed in (Eskimez et al., 2018) as a
baseline, an adapted version of the 1D-CNN used
in (Eskimez et al., 2019), and a CNN built on top
of SincNet filters (Ravanelli and Bengio, 2018).
These architectures were selected with the purpose
of producing speech-driven animations in real time.
As a consequence, more complex and bigger mod-
els like those based on diffusion (Zhao et al., 2024;
Zhang et al., 2024; K. and H., 2023) or Transform-
ers (Chen et al., 2023; Xing et al., 2023) were not

5https://arkit-face-blendshapes.com/

considered.
The baseline model from (Eskimez et al., 2018)

uses the first and second order temporal difference
of log-Mel spectrograms as input of a four-layer
LSTM network. This network was trained to gener-
ate 2D landmark points with a temporal resolution
of 40 ms.

The second considered model is a 4-layer
1D-CNN (kernel size of 21 and number of
channels={64, 128, 256, 512}, respectively),
adapted from (Eskimez et al., 2019), and which
is trained to predict Point Distributed Models
(PDMs) for 2D/3D landmarks, and the 52 ArKit
blendshapes. PDMs reduce variability in land-
mark predictions due to face shape, scale, and
orientation (Cootes et al., 1995). These PDMs are
shape models that represent the high-dimensional
landmark space with a set of coefficients obtained
after PCA decomposition. The output of the last
convolutional layer is finally processed by a linear
layer to make the final predictions of the landmarks
and blendshape coefficients. The CNN receives
as input 280 ms of the raw speech waveform (7
frames of 40 ms) and predicts the PDM coefficients
of the central frame, using the remaining frames as
past and future context.

Finally, we propose the use of a SincNet
model (Ravanelli and Bengio, 2018) trained also
to predict the PDM coefficients for 2D/3D land-
marks, and the blendshapes. Our model consists of
a SincNet layer fed by 280 ms of the raw waveform
and which generates speech tokens with a 40 ms
resolution. The output of the SincNet layer is then
processed by two convolutional layers and two lin-
ear layers to make the final prediction of the PDMs
or the blendshapes.

For training all considered models, we employed
the Smooth-L1 loss function and implemented a 5-
fold speaker independent cross-validation strategy,
using four folds for training and development, and
the remaining one for independent testing. The
models are trained sing Adam, with a batch size
of 32 audio samples, a learning rate of 10−5 and
dropout of 0.1. The dimension of the PDMs was
set to 20 when predicting the landmarks, keeping
0.99 of the cumulative variance when computing
PCA. The models were trained during 20 epochs.

Finally, to reduce high-frequency noise, particu-
larly visible as tremors in the eyebrows and eyes,
the predicted blendshapes undergo post-processing
with a Savitzky-Golay filter (Schafer, 2011). This
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filter smoothes the data while preserving underly-
ing trends, resulting in more natural and visually
appealing facial animations.

2.3 Real Time Processing
We developed a client-server application utiliz-
ing FFmpeg6 and Websockets for real-time audio
stream processing. The client transmits continu-
ous audio streams of 1024 bytes (corresponding to
32 ms of audio sampled at 16 kHz and 16-bit resolu-
tion) to the server. The server continuously receives
and buffers the stream, maintaining a processing
buffer. Once the buffer reaches 280 ms (7 frames of
40 ms), the server predicts facial animations for the
central frame and sends the results back to the client
for visualization and integration with animation en-
gines. After processing, the server releases the cor-
responding 40 ms audio segment from the buffer
and waits for new frames to arrive. An overview of
the processing setup is shown in Figure 2.

CNN
model

t[0] t[1] t[2] t[n-1] t[n]

...

Speech
buffer

Figure 2: Overview of the proposed system for real
time avatar animation. An animation is generated every
40 ms from a buffer size of 280 ms. This distribution
guarantees a continuous stream of blendshapes and land-
marks at 25 FPS, with a delay of 280 ms.

This configuration ensures a continuous stream
of 2D/3D landmarks or blendshapes from the server
to the client with an average rate of 25 frames per
second (FPS) and a processing delay of 280 ms (re-
flecting the queue length used for context during
prediction). Crucially, single frame processing time
must be guaranteed to be less than 32 ms (duration
of the received audio stream) to avoid queue build-
up and maintain uninterrupted streaming. Sending
larger audio chunks leads to faster queue filling
and requires consecutive frame processing, poten-
tially causing server response delays and packet

6https://ffmpeg.org/

loss due to queue overflow. Finally, with the aim to
generate more natural animations, artificial blinks
were introduced in the server predictions every 5
seconds (with a certain probability) by modifying
the corresponding blendshape coefficients or the
2D/3D landmarks.

3 Data Description

The animation models were trained using the
CREMA-D (Cao et al., 2014) and the Grid (Cooke
et al., 2006) corpora. These datasets were selected
with the aim to have individual models for emo-
tional and neutral speech-driven facial animations
(see Table 1). Both corpora have been used in sim-
ilar studies, particularly in realistic talking face
generation (Vougioukas et al., 2020; Kefalas et al.,
2020). Labels for 2D/3D landmarks, and blend-
shape coefficients were extracted from videos using
the methods described in Section 2.1.

CREMA-D Grid

Emotions Six emotions Neutral
# Utterances 7,442 34,000
Duration (hours) 6.2 28.3
# Sentences 12 1000
# Speakers 91 34
Camera Panasonic AG-HPX170 Canon XM2
Video Flash at 30 FPS 480x360 MPEG at 25 FPS 360x288

Table 1: Information of source corpora used to train the
speech-driven facial animation models.

CREMA-D (Cao et al., 2014) is an emotional
multimodal acted dataset, used traditionally for
speech emotion recognition. Actors spoke a se-
lection of 12 sentences in six emotions (Anger,
Disgust, Fear, Happiness, Neutral, and Sadness)
and three emotion levels (Low, Medium, High), in
English. Models trained with this dataset will gen-
erate more expressive and emotional animations.

The Grid Corpus (Cooke et al., 2006) was de-
signed for audiovisual speech recognition, in En-
glish language. The dataset includes high-quality
audio and facial video recordings of 1,000 sen-
tences spoken by 34 subjects (18 male, 16 female).
The sentences spoken by each actor are composed
of six words randomly chosen from a limited dictio-
nary. Although this corpus has a restricted vocab-
ulary, it was selected to facilitate the development
of models capable of generating accurate anima-
tions with high lip-synchronization quality (Vou-
gioukas et al., 2020) and to serve as a benchmark
for measuring the potential performance limits of
the trained models.
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4 Experiments and Results

4.1 Objective Evaluation

The 2D and 3D landmark prediction models were
evaluated using different metrics from the litera-
ture (Zhou et al., 2020). In particular, we included
the landmark distance (L-D), the landmark velocity
difference (L-VD), the L-D for jaw-lips, and the
difference in the open mouth area (OMA-D). We
introduced additional metrics to specifically evalu-
ate lip-sync quality such as the L-D and L-VD for
mouth-specific landmarks.

Table 2 shows the quality evaluation of the mod-
els to predict 2D landmarks. Both 1D-CNN and
SincNet networks achieved significantly lower er-
rors than the baseline (for L-D related metrics),
and especially for the landmarks defining the jaw-
lips and the mouth, as demonstrated by one-way
ANOVA with pairwise Tukey post hoc tests (p-
value≪ 0.005). These results were observed for
both neutral and emotional models trained with
respective datasets (Grid and CREMA-D). For ve-
locity related metrics that evaluate the temporal dy-
namics of the facial animations, the baseline mod-
els exhibited lower error rates. This is expected
due to the nature of the LSTM-based model from
the baseline, which is better to model temporal
dependencies. However, note that the recurrent
nature of such model make it not being able for
real time processing, which is a key objective of
this work. In addition, no differences were found
between the 1D-CNN and SincNet predictions (p-
value = 0.652). Finally, the models performed bet-
ter at predicting facial landmarks for neutral faces
than the emotional ones from the CREMA-D cor-
pus (p-value≪ 0.005). A separate analysis showed
that within the CREMA-D corpus, facial landmarks
of low-arousal emotions (sadness and disgust) had
lower prediction errors than high-arousal ones.

CREMA-D Grid
Metric Baseline 1D-CNN SincNet Baseline 1D-CNN SincNet

L-D 1.28 1.06 1.20 0.81 0.52 0.52
L-VD 5.00 5.41 5.38 4.21 4.37 4.55
L-D jaw-lips 0.73 0.56 0.59 0.77 0.37 0.36
L-VD jaw-lips 4.81 5.55 5.58 4.53 5.11 5.09
OMA-D 0.51 0.31 0.72 0.31 0.16 0.17
L-D mouth 1.54 1.21 1.56 1.00 0.54 0.55
L-VD mouth 5.79 6.11 6.36 4.49 4.63 4.99

Table 2: Error metrics (%) for the prediction of 2D
landmarks.

Table 3 presents the results predicting 3D facial
landmarks. The baseline models was not consid-
ered here considering again that our ultimate goal

is to perform real time predictions, which the base-
line model is not able to achieve. The errors were
higher than those reported for 2D landmarks, which
is expected because the significantly larger number
of points to predict (over 10 times more). How-
ever, the errors remained below 6 % for the entire
set of landmarks, and below 4 % for the ones re-
lated to the mouth movement. In this case, the
1D-CNN model surpassed SincNet, with statisti-
cally significant lower errors (p-value ≪ 0.005)
for both neutral and emotional datasets.

CREMA-D Grid
Metric 1D-CNN SincNet 1D-CNN SincNet

L-D 3.45 3.64 5.85 6.00
L-VD 9.92 13.1 6.32 7.47
L-D jaw-lips 1.54 1.83 5.97 5.92
L-VD jaw-lips 9.78 14.87 5.28 6.41
OMA-D 0.23 0.23 0.20 0.20
L-D mouth 3.51 3.69 3.75 3.79
L-VD mouth 10.74 14.73 8.03 9.88

Table 3: Error metrics (%) for the prediction of 3D
landmarks.

Finally, the quality of the blendshape predictions
is evaluated with the average Mean Absolute Error
(MAE) of the 52 blendshapes, and subsets related
to specific facial areas such as the mouth, cheeks,
jaw, eyes, and eyebrows. The results are shown in
Table 4. Similar to the 2D landmarks case, there
were no significant differences between the predic-
tions obtained with the 1D-CNN and the SincNet
models. Moreover, the neutral blendshapes from
the Grid corpus were more accurately predicted,
similar also to the 2D-landmark scenario. Regard-
ing the blendshape generation of specific parts of
the face, the cheek and jaw areas were the most
accurately modeled, while the eyes and eyebrows
were the most challenging to predict.

CREMA-D Grid
Face area 1D-CNN SincNet 1D-CNN SincNet

All 14.67 14.33 9.65 9.74
Mouth 13.78 13.55 8.14 8.12
Cheeks 1.21 0.61 1.15 0.43
Jaw 6.55 6.44 6.08 5.94
Eyes 19.26 19.10 15.01 15.44
Eyebrows 28.57 27.58 14.69 15.52

Table 4: MAE (%) for the prediction of Blendshape
coefficients.
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4.2 Subjective Evaluation

Even though the previous results can evaluate the
deviation of the reconstructed landmarks and blend-
shapes from the ground truth values, they are not
able to measure the subjective aspects that come
naturally to human viewers. We considered the
emotional 1D-CNN model trained to predict ARkit
blendshapes, and generated 40 videos featuring
two emotions (euphoria and fear) on two different
avatars (Figures 1c and 1d). The videos were pro-
duced using 20 independent audio samples (10 per
emotion) recorded by an actress. 23 participants,
divided into two groups (12 naive users and 11 3D
animation experts), rated the videos. Each video
received scores from 1 to 5 (with higher scores
indicating better quality) across four criteria: (1)
expressiveness, (2) coherence between the emo-
tions conveyed by speech and facial expressions,
(3) quality, which refers to the global quality of the
animation in terms of realism, fluency and preci-
sion, and (4) lip-synchronization to measure how
well the lip movements of the speaker matches the
corresponding audio. The results are shown in Fig-
ure 3.

Our results are consistent with those reported in
similar studies when animation and lip-sync qual-
ity are subjectively rated (Y. et al., 2020). There
were no significant differences in the scores be-
tween the two rater groups (Mann Whitney U test,
p-value > 0.05), although we observed that 3D an-
imation experts usually assign higher scores than
naive users. This can be likely explained because
they are more aware of the difficulties of creat-
ing high-quality animations. In terms of emotions,
the scores assigned for fear were slightly higher.
However, they did not differ significantly from
the obtained for euphoria. Finally, we observed
that the perceived quality depends on the selected
avatar. Users rated the avatar 1 (yellow avatar in
Figure 1c) significantly higher, mainly because it
has less human-like features. Therefore, the im-
portance of correctly producing visemes was less
important, contrary to the avatar 2 (gray avatar in
Figure 1d).

4.3 Real Time Performance

The application was tested in an experimental set-
ting consisting of separate client and server ma-
chines connected via WiFi through a VPN. The
hardware specifications for both machines are
shown in Table 5.
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Expressiveness Coherence Quality Lip-sync
0

1

2

3

4

5

sc
o
re

Rater
Naive Users

3D animation experts

b) Transmitted emotions

Expressiveness Coherence Quality Lip-sync
0

1

2

3

4

5

sc
o
re

Emotion
Euphoria

Fear

c) Animated avatar

Expressiveness Coherence Quality Lip-sync
0

1

2

3

4

5

sc
o
re

Avatar
1

2

Figure 3: Subjective evaluations performed on the pre-
dicted ARkit blendshapes of 20 independent audio ut-
terances recorded by an actress. The evaluations are
discriminated in terms of the type of rater, the transmit-
ted emotion, and the type of avatar.

Client Server

CPU 13th Gen Intel(R) Intel(R) Xeon(R)
Core i7-1355U CPU E5-2683 v4 @ 2.10GHz
10 cores 16 cores (x2 Threads)

RAM 16 GB 128 GB
GPU - NVIDIA TITAN X (Pascal) 12GB

Table 5: Hardware specifications of the client and server
machines for the real time evaluation
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We evaluated the Real Time Factor (RTF) when
predicting 2D landmarks from the CREMA-D cor-
pus using the baseline, the 1D-CNN, and the Sinc-
Net models. The results are shown in Figure 4.
Both the 1D-CNN and the SincNet models are
suitable for real-time predictions as they achieved
RTF ≪ 1. Conversely, the recurrent nature of
the LSTM model from the baseline resulted in an
RTF > 1, making it unreliable for real-time pre-
dictions. Considering also that the 1D-CNN is the
most accurate model for predicting landmarks and
blendshapes, this model was used to test the reli-
ability of a real application for performing avatar
animations during continuous audio streams.

10 1 100 101

RTF

1D_CNN

SincNet

Baseline

M
o
d
e
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Figure 4: RTF when predicting 2D landmarks from the
CREMA-D corpus using the baseline, the 1D-CNN, and
the SincNet models.

To further evaluate the run-time performance,
a one-hour speech stream was transmitted from
client to server for real-time prediction of 2D/3D
landmarks and blendshapes. Table 6 and Figure 5
summarize the performance in terms of several
resources and quality metrics.

Run-time Metric 2D Land. 3D Land. Blendshapes

RTF model prediction 0.07 0.14 0.07
Processed packages (%) 99.9 99.9 99.9
Maximum latency (ms) 21.2 22.6 19.7
Average FPS 24.9 25 24.9
Single frame processing time (ms) 2.77 5.84 2.66
Client RAM (MB) 182.1 183 181
Server RAM (MB) 480 477 489
Server GPU VRAM (MB) 2117 2139 2090
Queue time (ms) 285 260 283

Table 6: Runtime-performance of a continuous one-hour
audio stream for real-time speech-driven facial avatar an-
imation in terms of 2D/3D landmarks and ARkit blend-
shapes.

The system achieved real-time animation at
25 FPS with minimal latency (maximum of
22.6 ms) and no packet loss for all three scenarios.
Individual frame processing consistently met the
32 ms requirement, ensuring uninterrupted stream-
ing. Differences in processing time and RTF
between 3D landmarks and the other animation
modes arose from transforming predicted PDM
coefficients into 3D landmarks (478 × 3 coordi-

nates) and transmitting them back. While 3D land-
marks required more computational and network
resources than 2D landmarks and blendshapes, they
did not hinder continuous transmission. Through-
out the process, memory consumption remained
low and stable across client, server RAM, and GPU
memory. Notably, only 1/6th of GPU capacity was
utilized, indicating potential cost reduction in fu-
ture deployments.

The results obtained offer a more comprehensive
overview of the requirements and run-time perfor-
mance of a real application. Related studies that
reported run-time performance have focused solely
on generating predictions for a limited number of
pre-existing audio samples, basing their conclu-
sions exclusively on the time the model takes to pre-
dict a single animation frame (Tian et al., 2019; Lu
et al., 2021). These studies did not consider critical
factors during live events, such as connectivity is-
sues, audio queuing, and memory overflow, which
can occur during extended live transmissions.

5 Conclusion

We introduced a novel approach to produce facial
animations in real time, specifically designed for
interactive live events and virtual spaces. Differ-
ent configurations of facial representations were
considered, including 2D and 3D landmarks, and
ARkit blendshapes, the latter one being a standard
in professional animation engines. The modeling
and prediction of the facial representations was per-
formed using different configurations of CNNs due
to the low latency requirements of the addressed
application. The quality of the considered meth-
ods was evaluated both objectively using metrics
from the state-of-the-art, and subjectively, where
naive and expert raters estimated the quality of the
generated animations. Finally, the best performing
models were used to create a client-server applica-
tion able to produce facial animations in real time.

The results indicated that both the 1D-CNN and
the SincNet models were accurate enough to pre-
dict the three types of considered facial animations.
The results also confirmed that it is more chal-
lenging to generate emotional facial animations
than neutral ones. Additionally, the models demon-
strated greater accuracy in predicting landmarks
and blendshapes associated with mouth and jaw
movements, compared to other facial regions like
the eyebrows. Finally, the conducted runtime eval-
uations offer a broader understanding of real-time

115



0 10 20 30 40 50
Time (minutes)

14

16

18

20
La

te
n
cy

 (
m

s)

2D landmarks 3D landmarks Blendshapes

0 10 20 30 40 50
Time (minutes)

24

25

26

27

FP
S

2D landmarks 3D landmarks Blendshapes

Figure 5: Latency and FPS of a continuous one hour audio streaming for the three different animation representation
types.

application requirements and performance. Our
real-time application showed that it is possible to
generate facial landmarks and blendshapes in real-
time at a constant rate of 25 FPS with a relative low
latency and delay, and with low requirements of
memory and GPU computation. Future work will
be related to improve the quality of the generated
animations in order to make them more natural and
expressive. In this sense, novel architectures that
also consider emotional classification can be pro-
posed and evaluated. Exploring the integration of
emotional intelligence into the system could be a
promising direction for enhancing the expressive-
ness of the avatar animations.

Limitations

Despite the advancements and promising results
from this paper, there are inherent limitations that
should be considered: The first one is related to
data availability. Although efforts were made to
curate diverse datasets, the availability of compre-
hensive corpora covering a wide range of emotional
expressions, linguistic diversity, and demographic
variability might have been limited. This could
potentially introduce issues in the generalization
of the model to broader scenarios. Capturing the

full spectrum of human emotions with high fidelity
remains a challenge. Therefore, the current mod-
els may oversimplify the representation of certain
emotional cues, leading to potential discrepancies
between the intended and perceived expressions.

The second limitation relies on the latency and
performance trade-offs when dealing with real-time
applications. Achieving real-time responsiveness
often requires optimizing for low latency, which
may come at the expense of animation quality
or computational resources. The study may have
made certain compromises in this regard, and fur-
ther optimizations could be explored to enhance
the overall user experience.

Finally, while subjective evaluations provide
valuable insights into the perceived quality of ani-
mations, they are inherently subjective and suscep-
tible to biases. Factors such as individual prefer-
ences, cultural background, or expertise in anima-
tion could influence the raters’ judgments. Employ-
ing diverse and representative rater groups, along
with structured evaluation methodologies, can help
mitigate bias to some extent but may not entirely
eliminate it.
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ACL Ethics Policy, ensuring that all research prac-
tices adhered to ethical standards in the develop-
ment and evaluation of real-time speech-driven
avatar animation.
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ation were sourced from publicly available datasets,
ensuring compliance with relevant data protection
regulations. No personally identifiable information
was used, and all data were anonymized to protect
the privacy of individuals. Additionally, any data
involving human participants was used in accor-
dance with informed consent protocols.

While the technology developed in this study
has positive applications, there is a potential for
misuse, such as in the creation of deepfakes or
unauthorized use of avatars. We emphasize the im-
portance of deploying this technology responsibly,
with safeguards to prevent misuse.

Finally, regarding transparency and accountabil-
ity, we have provided detailed descriptions of our
methodologies and evaluation metrics to ensure
replicability and accountability. We encourage the
research community to engage with and scrutinize
our work to foster improvements and address any
ethical concerns.
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Abstract

This paper presents a practical methodology
to build adapted speech emotion recognition
systems in call center scenarios for practical in-
dustrial applications. We focus on two specific
use cases involving Spanish call centers with
different characteristics in order to detect emo-
tional states and improve their protocols. We
address all stages of the development process,
covering data acquisition, annotation, data har-
monization, and model training and evaluation.
We rely on cutting-edge self-supervised speech
models for classification. This process has been
designed to cover an industrial application’s
needs: data anonymity, reduced costs, and
production-level performance. We compare
the evaluated methods with well-established
research benchmarks to validate our method-
ology. In addition, a subjective evaluation is
performed to analyze their potential use in prac-
tical cases. The considered approaches show
potential transferable results for these compa-
nies in their target call center scenarios.

1 Introduction

Call centers (CC) are increasingly leveraging
speech analytics software to automate tasks and
extract valuable insights from customer interac-
tions (Hildebrand et al., 2020). This cutting-edge
technology analyzes call recordings, enabling com-
panies to enhance their operations. A pivotal aspect
of CC conversations involves the speech emotion
recognition (SER) of both clients and agents. This
paralinguistic information can be used to efficiently
transfer a voice call to a physical agent for further
queries and discussions, to detect lies or even to
identify emotional changes and states (Hema and
Marquez, 2023). For instance, promptly identi-
fying frustration can enable agents to employ de-
escalation techniques or expedite issue resolution.
Moreover, the data obtained can unveil broader
trends in customer communication, empowering
companies to refine their communication strate-

gies. Therefore, developing reliable SER models
holds immense value for the CC market, facilitating
deeper customer insights, improved communica-
tion strategies, reduced customer frustration, and
ultimately, a more positive customer experience
(Irastorza and Torres, 2016, 2019).

Recent research on SER has focused on end-to-
end deep learning systems, where self-supervised
models have shown state-of-the-art (SOTA) perfor-
mance in common benchmarks (Mohamed et al.,
2022). These advancements have primarily been
showcased in systems evaluated using acted or
elicited databases (Busso et al., 2008). However,
the efficacy tends to diminish considerably when
these systems are deployed in real-world scenar-
ios characterized by natural speech patterns (Zhu-
Zhou et al., 2022). Notably, few works have ex-
plored the application of recent advances in SER
within real call center environments. The work
presented in (Bojanić et al., 2020) is an example
of the SER technology application in a prioritiz-
ing urgency call system, which was evaluated on
an acted Serbian corpus. Deschamps-Berger et al.
(2021) evaluated convolutional-recurrent architec-
tures for SER on the French CEMO corpus for med-
ical emergency calls. For the customer service sce-
nario, Pérez-Toro et al. (2021) proposed the classi-
fication of emotional states mapped on the arousal-
valence dimensions to detect customer satisfaction
using acoustic and linguistic models. On the con-
trary, Parra-Gallego and Orozco-Arroyave (2022)
explored the evaluation of prosody and speaker em-
beddings to detect emotions and customer satisfac-
tion in voicemails. Moreover, Feng and Devillers
(2023) studied the continuous SER problem and the
use of contextual information during the conversa-
tions. Płaza et al. (2022) addressed the database de-
sign and the development of solutions for SER clas-
sification, focusing on feature extraction methods
to model both speech and text data using small clas-
sifiers. More recent studies (Deschamps-Berger
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et al., 2023; Macary et al., 2023) have proposed
using SOTA self-supervised acoustic and language
models for SER in CC scenarios, evaluating the
performance in French SER corpus for research.

In summary, current technology exhibits consid-
erable potential for enhancing call centers. Never-
theless, its successful implementation in real-world
settings needs the resolution of substantial chal-
lenges. The establishment of a comprehensive
database tailored to specific applications, the cre-
ation of precise classification systems or dealing
with aspects of conversational speech remain great
challenges that demand more research.

This study presents a novel methodology to ei-
ther build and transfer an adapted SER solution to
a real CC application. To this end, we collaborated
with two companies providing call center services
and designed a customized system for each to meet
their specific needs within their respective domains.
During the process, we covered the different stages
of a suitable system design, starting from the do-
main data acquisition and annotation, including
data pre-processing, manual labeling, and revision
of the final corpus. Afterwards, we analysed and
tested different feature extraction techniques for
classification, from some more traditional to the
most recent based on acoustic foundation models,
and evaluated several downstream models focused
on machine learning and deep learning techniques.
In order to deploy practical systems for real sce-
narios when certain classes are under-represented,
we also evaluate the application of binary detec-
tion systems that discriminates between neutral and
emotional states, showing competitive performance
and higher accuracy detection as it is requested in
a practical environment.

Our work is complemented by evaluating the
proposed solutions on well-established research
databases to show that our systems follows the
state of the art in the field. Moreover, a subjective
comparison between manual and automatic emo-
tional analysis is performed to assess the practical
usability in potential real uses cases. Despite the
high challenges of the task, our results demonstrate
the successful development of transferable SER
solutions, addressing the specific needs of the com-
panies involved and holding significant promise for
real-world applications.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the process for acquiring, process-
ing, and annotating the speech-emotional corpus

created in this project. Then, we describe the exper-
imental framework and evaluation results in Sec-
tion 3. Finally, Section 4 summarizes the conclu-
sions and possible research lines for future work.

2 Building a SER corpus for Call Centers

2.1 Tasks
In this project, we have collaborated with two Span-
ish companies providing CC solutions to build SER
systems adapted to their unique needs and help
them improve their interaction protocols and inter-
nal quality processes.

Since each company is dedicated to a different
market, we tackled the SER problem from two
different CC contexts. The first use-case (CC-
Support) focuses on customer support, where cus-
tomers often encounter issues like electronic signa-
tures or login problems. The second one (CC-Debt)
contains phone calls about debt collection, where
stronger and more negative emotions usually arise.
In this context, customers express frustration and
anger more often than in CC-Support calls.

2.2 Data collection and annotation
The construction of the SER systems started with
each call center providing approximately 60 hours
of valuable speech in-domain data. Due to the calls’
nature, containing personal and confidential infor-
mation, the data could not be labeled in conven-
tional platforms like Amazon Mechanical Turk1.
Instead, the data were labeled by annotators trained
for the task. Consequently, based on the expertise
of the annotators and the resources available, we
decided to use two annotators per segment instead
the conventional three or more (Busso et al., 2008;
Parada-Cabaleiro et al., 2018; Vázquez et al., 2019;
Fan et al., 2021; Paccotacya-Yanque et al., 2022).
This way, we prioritized data quantity over in-depth
annotation. This approach would ultimately ben-
efit the performance of our classifiers. The final
amount of labeled data was determined by the bud-
get allocated by each company for this task.

With the aim of speeding up the annotation pro-
cess, the collected raw data were first preprocessed
with a speaker diarization module (Landini et al.,
2022) to separate the clients’ and agents’ speech.
We discarded the segments with speaker overlap as
well as segments shorter than 2.5 seconds, which
often do not contain enough information to infer the
emotional state of the speaker (Tóth et al., 2008).

1https://www.mturk.com/
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Figure 1: 2D Density Plot of the CC-Support data that
shows the most prominent categories in the VA space.

Finally, we split long turns into several less-than-
20-seconds-long segments. This whole process led
to an average of 7.3 and 9.1 seconds length seg-
ments for CC-Support and CC-Debt, respectively.

Once the preprocessed material from the raw
data was prepared, several meetings with the CC
annotators were held to establish the labelling
criteria. The manual annotation was carried out
through an application based on Praat (Boersma,
2001). Regarding the emotion representations, we
defined them through the categorical (Ekman et al.,
1999; Plutchik, 1980) and the Valence-Arousal di-
mensional model (Russell, 1980), which was dis-
cretized as in (de Velasco et al., 2022). We defined
these choices to label each segment:

• Categories: Calm, Nervous, Angry, Annoyed,
Surprised, Satisfied.

• Valence: Very Negative, Negative, Neutral,
Positive, Very Positive.

• Arousal: Neutral, Slightly Excited, Excited,
Very Excited.

2.3 Data preparation and analysis

Once the manual annotation was performed, we
computed some data statistics to establish the
ground truth labels, defining the following crite-
ria in order to take out the most of our data:

1. If the amount of instances for a particular class
is too low, discard them. For example, we re-
moved the “Surprised" label in both use cases

Figure 2: 2D Density Plot of the CC-Debt data that
shows the most prominent categories in the VA space.

due to there were less than 30 labeled seg-
ments (combined annotations). The “Satis-
fied" class was also excluded from the CC-
Debt use case for the same reason.

2. Merge two labels if they show a high corre-
lation. For instance, we merged “Annoyed"
with “Angry" in both cases.

3. Finally, speech samples where the two anno-
tations differed was further analyzed in a pro-
cess that involved the experts of the CCs2. The
vast majority of disagreements were Neutral
vs. Emotional labels. In these cases, we se-
lected the Emotional label as the ground truth.
Alternatives like discarding these samples, led
to overall worse results.

In order to analyze the relation between the cate-
gorical emotions, we computed density plots in the
arousal-valence plane, as shown in Figures 1 and 2.
The numbers in brackets indicate the amount of
segments per label (before merging). These maps
reveal even more information, such as Annoyed and
Angry were very related, in both cases. This phe-
nomena was further noticed in preliminary classifi-
cation experiments, where there was a noticeably
high confusion between both emotions. Therefore,
we merged them for our experiments. Similarly, we
combined the Positive/Very Positive valences into
a single label, the Slightly Excited/Excited arousal

2This was only needed for a small proportion of the dataset,
because the overall agreement accuracy between the two an-
notations was 0.82 for CC-Support and 0.90 for CC-Debt,
with average Cohen’s kappa coefficients of 0.16 and 0.67,
respectively.
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Table 1: Amount of data after annotation and post-
processing for the CC-Support dataset. Note that some
labels have been merged, and others discarded. Com-
plete (Full) and binary (Bin) settings are indicated.

Dim. Label Samples
Time (h)

Full Bin

Category

Calm 14817 30.2 30.2
Annoyed 2723 6.2

11.3Nervous 1717 3.2
Satisfied 1241 1.9

Valence
Neutral 15754 31.9

34.7
Positive 1718 2.8
Negative 3026 6.8 6.8

Arousal
Neutral 18025 36.7
Excited 2473 4.8

labels in CC-Support, and the Positive/Neutral va-
lence labels and Excited/Very Excited arousal la-
bels in the CC-Debt use case.

2.4 Final datasets

After the described post-process, we ended up with
the amount of data shown in Tables 1 and 2 for
CC-Support and CC-Debt, respectively. The in-
formation is given per dimension and class. The
total amount of valid labeled hours for the CC-
Support and CC-Debt use cases reached 41.5 and
30.5 hours respectively, where Calm and Neutral
predominated over the emotional classes.

Finally, since one of the main objectives of the
SER technology is to detect conflict points dur-
ing the calls, we also created a more straightfor-
ward dataset, where each dimension (categorical,
valence, and arousal) is composed of only two
classes: Neutral and Emotional. To this end, we
kept the majority class as Neutral, whereas the
minority classes were merged into the Emotional
class. We also indicated in Tables 1 and 2 the result-
ing amount of hours for this binary setting. This
strategy is intended to improve the performance
of the models by not only reducing the number of
classes but also the imbalance of the data. This de-
cision was jointly taken with the CC experts, as it
was determined that different binary classifiers per
dimension would provide enough information to
assess whether a call should be carefully analysed.

Table 2: Amount of data after annotation and post-
processing for the CC-Debt dataset. Note that some
labels have been merged, and others discarded. Com-
plete (Full) and binary (Bin) settings are indicated.

Dim. Label Samples
Time (h)

Full Bin

Category
Calm 9476 23.0 23.0

Annoyed 1717 5.1
7.5

Nervous 873 2.4

Valence
Neutral 9039 21.8 21.8

Negative 2379 6.8
8.7

Very Neg. 651 1.9

Arousal
Neutral 10145 22.4 22.4

Slig. Exc. 2030 5.8
8.1

Excited 749 2.3

3 Experimental results

3.1 Experimental framework

The constructed SER systems were evaluated on
the real CC databases, in addition to the IEMOCAP
corpus (Busso et al., 2008), in order to compare
their performance in a well-established research
database in the community. IEMOCAP consists
of five dyadic sessions with two actors (male and
female), summing up speech recordings that last
nearly 12 hours. Following previous works (Pepino
et al., 2021), we only evaluated categorical classifi-
cation considering four different emotional classes:
Anger, Happiness, Neutral, and Sadness.

All the experiments and evaluations were per-
formed with a 5-fold cross-validation technique.
For our in-domain databases, we split the record-
ings into five separate sessions, ensuring balanced
(stratified) labels and that the audio samples from
the same conversation were not distributed in differ-
ent folds. Regarding the IEMOCAP corpus, each
fold corresponded to a different recording session.

Different kinds of input features were evaluated
during our analysis. Traditional features in the
SER research community were employed, includ-
ing eGeMAPS (Eyben et al., 2015), Compare 2016
(Eyben et al., 2015), as well as prosodic features
(Parra-Gallego and Orozco-Arroyave, 2022). We
also considered SOTA deep features for the SER
task. First, we evaluated x-vector embeddings from
a ResNet trained for speaker verification (Landini
et al., 2022) due to the capability of these mod-
els to summarize various paralinguistic factors.
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Table 3: F1 results (and CI) for the evaluation on the
IEMOCAP dataset. CI of results in bold overlap with
that of the best resulting model (underlined).

Feature Classifier IEMOCAP

eGeMAPS

SVM

56.11 ± 3.31
ComPare16 59.35 ± 2.67

Prosody 46.51 ± 2.04
x-vector 59.39 ± 2.83
W2V2 71.22 ± 2.48

WavLM 72.75 ± 2.83

W2V2
DNN-SP 71.52 ± 2.54

DNN-AttCP 68.07 ± 2.52

WavLM
DNN-SP 71.98 ± 2.58

DNN-AttCP 73.80 ± 2.35

Following the current trends, embeddings from
self-supervised models such as Wav2Vec2 XLS-
R (W2V2) (Babu et al., 2022) and WavLM (Chen
et al., 2022) were also analyzed due to their SOTA
performance. Finally, the usefulness of content
information was also analyzed using linguistic fea-
tures. To this end, the audio was first transcribed
using a medium Whisper model (Radford et al.,
2023) fine-tuned with 500 hours of Spanish tele-
phonic speech. The obtained transcriptions were
fed to a Spanish BERT model called BETO (Cañete
et al., 2020) to compute contextual representations.

Previous features were used to train and test two
different machine learning classifiers. The first
model consists of support vector machines (SVM)
using one-vs-rest classification. The SVM was
trained using the radial basis kernel and a balanced
class weighting. Moreover, the features were stan-
dard normalized using the training set statistics.
An average pooling was done for the deep learning
models that output temporal sequences to compute
the utterance vector representation. Moreover, for
the speech self-supervised models, we also consid-
ered the hidden layer representations, which are
known to contain more discriminative paralinguis-
tic information (wen Yang et al., 2021).

To complete our analysis, DNN downstream
classifiers were trained on top of the speech self-
supervised models. We followed the approach pre-
sented in (Stafylakis et al., 2023; Kakouros et al.,
2023), based on pre-trained self-supervised mod-
els with a weighted sum of the hidden represen-
tations before feeding the fine-tuned downstream
network. Two different classifiers were considered,

Figure 3: Confusion matrix for the IEMOCAP dataset
using a WavLM feature extractor with DNN-AttCP
downstream classifier.

both of them based on embedding computation and
softmax classification. The first one performs a
linear transformation for dimensionality reduction
followed by a simple mean-std statistical pooling
(SP), and it is trained using cross-entropy (CE) loss.
On the other hand, the second classifier also con-
siders channel dropout and an alternative attentive
correlation pooling (AttCP). To compute the atten-
tion weights, multiple heads are employed, and the
similarities are aggregated prior the corresponding
softmax layer via LogSumExp function. Finally,
the classifier is trained using the CE loss with label
smoothing.

During training, an 80-20 train-development par-
tition was considered for model validation. The
ADAM optimizer was used with a learning rate
of 3 · 10−4. Finally, to overcome the imbalanced
dataset issue, a down-sampling strategy was fol-
lowed to reduce samples at each epoch and keep a
balanced distribution.

3.2 Results and analysis
We evaluated the different approaches in the IEMO-
CAP and the CC corpora. For the former, a
category-level classification system was built. Sim-
ilarly, we built one classifier per dimension (i.e.,
categorical, arousal, and valence) with the CC cor-
pora. Besides, results are reported for both com-
plete and binary label settings. The approaches
were evaluated in terms of the macro-averaged F1-
score, which accounts for imbalanced datasets. To
consider the statistical significance when compar-
ing systems, we performed bootstrapping (Keller
et al., 2005; Ferrer and Riera) on the pooled test
results to obtain 95% confidence intervals (CI).
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Table 4: F1 scores for the evaluation on the CC in-domain data considering the different dimensions. Both the
complete and binary version scores are included (separated by /). CI of results in bold overlap with that of the best
resulting model (underlined).

Feature Classifier CC-Debt CC-Support
Category Arousal Valence Category Arousal Valence

-
Random 26.25 / 45.60 26.40 / 46.05 26.70 / 46.60 19.15 / 47.35 41.60 26.75 / 42.90
Majority 29.33 / 43.99 29.00 / 43.49 28.55 / 42.82 20.98 / 41.96 46.79 28.97 / 46.01

eGeMAPS

SVM

56.07 / 76.66 54.77 / 74.73 58.57 / 77.58 43.68 / 75.21 60.95 50.96 / 67.92
ComPare16 58.53 / 79.15 56.18 / 77.28 59.71 / 79.24 46.43 / 76.59 62.23 55.62 / 71.40

Prosody 49.82 / 72.22 49.54 / 70.90 51.07 / 72.10 37.58 / 68.86 57.71 46.04 / 63.89
x-vector 57.68 / 78.51 55.21 / 75.42 57.79 / 77.12 48.20 / 79.31 64.41 55.82 / 70.93
BETO 54.68 / 74.49 50.14 / 72.29 53.47 / 76.52 51.74 / 74.83 61.88 60.94 / 74.53
W2V2 64.35 / 82.63 62.05 / 80.32 66.18 / 82.41 56.04 / 81.78 66.14 64.43 / 77.08

WavLM 63.69 / 81.65 60.67 / 79.83 64.83 / 81.30 55.00 / 81.67 66.25 62.87 / 76.07

W2V2
DNN-SP 63.94 / 82.71 61.11 / 80.08 64.63 / 81.57 56.62 / 81.04 66.44 64.35 / 74.94

DNN-AttCP 61.46 / 81.09 60.11 / 78.00 61.48 / 80.33 54.39 / 79.57 64.60 62.47 / 73.95

WavLM
DNN-SP 64.53 / 82.27 60.53 / 79.51 63.07 / 81.26 56.36 / 81.23 66.63 64.12 / 75.05

DNN-AttCP 62.61 / 81.14 59.79 / 79.00 62.45 / 80.22 54.81 / 80.41 64.89 63.20 / 74.70

We first considered the IEMOCAP results in
Table 3 to evaluate the different systems in an es-
tablished benchmark. As it can be clearly noted,
in this case the best performance is obtained using
deep features from self-supervised acoustic mod-
els. Nevertheless, there is no statistical difference
between using W2V2 and WavLM as feature ex-
tractors when comparing SVM and DNN classi-
fiers. Moreover, the results using the DNN down-
stream models are comparable with those reported
in (Kakouros et al., 2023), which are SOTA metrics
in the speech-only benchmark. Thus, the analysis
of these results pointed out that the main improve-
ments come from these self-supervised models as
feature extractors. At the same time, a simple SVM
classifier is robust enough to exploit the paralinguis-
tic information of the deep embeddings to perform
SER classification.

Figure 3 shows the confusion matrix for the
IEMOCAP dataset using the WavLM feature ex-
tractor with DNN-AttCP downstream classifier. It
can be observed that the per-class accuracy ranges
between 70%-80%, except for the neutral class,
which shows the lowest per-class accuracy (68%).
Moreover, a high percentage of misclassifications
are observed between the neutral and the remain-
ing emotions, which could be expected in this task
when the system does not clearly detect the emo-
tion in the speech signal. Indeed, the results are
consistent with those obtained by state-of-the-art
recent SER studies (Kakouros et al., 2023; Ulgen
et al., 2024; Shome and Etemad, 2024).

Regarding the in-domain CC datasets, similar
tendencies are found. Table 4 shows the experi-
mental results for the CC-Debt and CC-Support
datasets. We also included results obtained when
using two baseline classifiers: a random classifier
(results averaged over 50 trials) and a majority vot-
ing classifier. As observed, the best performance
is obtained using W2V2 and WavLM features re-
gardless of the classifier. These results confirm the
well-known capabilities of self-supervised models
for this task. As expected, the label merging pro-
cess improved different use cases and dimensions,
with F1 scores close to suitable values for practical
applications (Płaza et al., 2022; Deschamps-Berger
et al., 2023). For the case of CC-Debt, the gains
obtained for the complete vs. binary level configu-
rations are similar across the different dimensions,
showing possible correlations among them.

On the contrary, the disparity is higher in CC-
Support. The observed improvements in categor-
ical classification are probably due to the label
reduction process. Nevertheless, the F1 metrics
are lower in the case of valence and, especially,
arousal, where there were two classes from the ini-
tial version. The discrepancy with respect to the
CC-Debt is that the former is a less-emotional do-
main, and the data for the minority classes were
scarce. Therefore, accurately detecting excitement
and negative emotions was even more challenging.
Still, the results are competitive, considering the
task’s complexity (Deschamps-Berger et al., 2023).
Other features, such as ComPare16 or x-vectors,
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(a) Category (b) Arousal (c) Valence

Figure 4: Confusion matrices for the CC-Support dataset using a W2V2 feature extractor with SVM classifier.
These matrices are obtained by dimension (Category, Arousal, Valence) in the complete classes setting.

(a) Category (b) Arousal (c) Valence

Figure 5: Confusion matrices for the CC-Debt dataset using a W2V2 feature extractor with SVM classifier. These
matrices are obtained by dimension (Category, Arousal, Valence) in the complete classes setting.

show strong results for particular cases. The lin-
guistic features exhibit higher accuracy in valence
prediction within the CC-Support domain, likely
attributable to the relative ease of transcription due
to the standardized vocabulary prevalent in these
conversations.

To further analyze these results, Figures 4 and
5 show the confusion matrices obtained for the
CC-Support and CC-Debt datasets, respectively,
when evaluating the W2V2 feature extractor with
SVM classifier. We only show the results for the
complete classes setting as it yields a better un-
derstanding of the main errors produced by the
systems. For the CC-Support, the detection of emo-
tion categories such as Nervous and Satisfied has a
low detection rate due to the few amount of hours,
which justifies using a simple binary detection be-
tween neutral and emotional classes, with most of
the cases representing Annoyed or Nervous users.
Similarly, Positive valences are mainly confused
with Neutral, while detecting Negative vs others
can bring better discriminative results that help de-
tect these altered states. For the CC-Debt, similar
behavior is observed for the emotional category de-
tection. Regarding arousal and valence dimensions,
extreme classes are mainly confused with the adja-

cent intermediate level (e.g., Excited with Slightly
Excited arousal and Very Negative with Negative
valences). Thus, in this scenario, with few labeled
data for these classes, it is justified to simplify the
detection problem and group the non-neutral levels
in a single class while keeping the usefulness of
the deployed systems.

In conclusion, using self-supervised features
from large speech models with classical machine
learning classifiers such as SVMs can obtain
promising results for a practical application of SER
when considering a simplified scenario focused on
detecting Neutral and Emotional classes. More-
over, in more complex scenarios with class variety,
the results are still competitive regarding the cur-
rent state-of-the-art in this area (Kakouros et al.,
2023; Deschamps-Berger et al., 2023). It is also
important to remark that using general SSL fea-
ture extractors trained on a large variety of speech
data avoids the need for transfer learning from pre-
trained SER models (e.g., IEMOCAP), especially
when there is a considerable domain shift between
the source and target scenarios (different languages,
acoustic channel, acted vs. real emotions).
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3.3 Subjective analysis

Finally, we conducted a subjective evaluation to fur-
ther analyze the usability of the SER models in a
practical scenario for customer service and speech
analytics. To this end, a new test set of 15 recorded
conversations from the CC-Debt domain is consid-
ered, including both neutral and emotional states.
Two different evaluators are involved in the task.
The first one listens to the conversations and takes
notes about their emotional content and evolution
during the call, both for the agent and the client.
The second one only analyzes the information pro-
vided by the automatic pipeline, which includes
segmentation, diarization, and emotion recognition
(including both full and binary models). Then, the
evaluator described the conversation’s emotional
evolution using only this information. Finally, the
evaluators compared their analysis.

After finalizing this procedure, five conversa-
tions were categorized as generally neutral, and
the remaining ones as emotional. The analysis of
both evaluators matched in 100% of the conversa-
tions, regarding general aspects as the evolution of
emotional state, considering both agent and client
during the conversation. Despite minor errors not
only related to the emotional models but also other
modules in the pipeline (e.g., speaker segmenta-
tion by the diarization step), the automatic analysis
allowed us to obtain an overview of the call and evo-
lution of emotional states. Interestingly, the second
evaluator remarked on the usefulness of multi-class
models for arousal and valence to evaluate the tem-
poral evolution and accurately identify segments
with strong negative emotions (excited arousal and
very negative valence). On the other hand, using
binary models for categorical prediction was pre-
ferred to identify the negative state. To summarize
the outcomes from this evaluation, the involved
company identified practical use cases where the
emotional models, along with other speech-related
technologies (such as automatic speech recogni-
tion and content classification) have potential ap-
plicability, including: (1) call identification with
very negative emotions from the client (especially
exploiting extreme categories for arousal and va-
lence), (2) analysis of emotional evolution on these
calls, and (3) evaluation of agents performance,
where mid-level emotional states are important to
analyze the conversations’ emotional evolution.

4 Conclusions

This paper presented a practical technological trans-
fer of speech emotion recognition systems to the
CC speech analytics sector. This work results from
collaboration between research teams and two CC-
related companies to address specific target scenar-
ios. In this study, we completed all the necessary
stages to ensure that the systems are production-
ready from their facilities: data acquisition, pre-
processing and annotation, analysis and design of
the experimental framework, training, and evalu-
ation of the different approaches. The CC-expert
annotation process ensures the quality of the data
while meeting all the privacy concerns, which usu-
ally causes several issues in developing these sys-
tems. Moreover, we considered two application
scenarios to evaluate the original annotated data
and a transformed version (2 classes) focused on
detecting emotional states. The experimental re-
sults indicated that the proposed approaches are
competitive for the two scenarios, as well as in a
well-established benchmark in the research commu-
nity. This work represents a successful technolog-
ical transfer to the industry, where the companies
have deployed the solutions to evaluate it in their
commercial cases. In future work, we will study
these models’ use along with active learning tech-
niques to help annotate additional emotional data.

Limitations

The main limitation of this work is the generaliza-
tion and application of the development of SER
systems in out-of-domain conditions. The models
have been trained on a limited amount of labeled
speech in specific conditions of language, acoustic
channel, application domain, and targeted emo-
tions. Thus, using these models under different
conditions will result in a performance drop and
non-sense results. Therefore, these systems should
only be considered under similar conditions.

Another limitation is the dependence of the SER
module on previous speech-processing steps in real
applications, including speech segmentation and
speaker diarization. Thus, errors in the previous
steps of the pipeline will ultimately affect the pre-
dictions obtained by the SER system.

Ethics Statement

The EU AI Act considers systems that predict hu-
man emotions from their biometric data. There
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is a concern about them due to their potential bi-
ases and lack of generalization, as well as their
potential to limit rights and freedom for human be-
ings. Thus, these systems are generally considered
high-risk and strictly forbidden in domains where
specific person profiles are targeted, such as work
and education environments. Using these systems
in sensitive domains should only be allowed with a
healthcare objective or to ensure people’s security.

In the context of analyzing call-center conversa-
tions, the use of a SER system may be classified
as a non-high-risk application, as long as it ensures
the protection of individuals’ health, security, and
human rights. Additionally, it is critical to imple-
ment measures that prevent potential biases in the
AI models and ensure that these systems do not
significantly influence decision-making processes,
which should always be reviewed by human experts.
Furthermore, this technology must not be used to
profile clients within this domain, and the results
should always be anonymized to protect individ-
ual privacy. Moreover, with regard to transparency
obligations, clients should always be informed that
their conversations are being recorded and analyzed
using these AI systems, and they should be given
the right to object to these operations. Finally,
the deployment of SER systems in CC scenarios
should always be carried out under the supervision
of ethics experts to ensure compliance with rules
and directives outlined in EU regulations.
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Milana Bojanić, Vlado Delić, and Alexey Karpov. 2020.
Call redistribution for a call center based on speech
emotion recognition. Applied Sciences, 10(13):4653.

Carlos Busso et al. 2008. Iemocap: Interactive emo-
tional dyadic motion capture database. Language
resources and evaluation, 42:335–359.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Spanish

pre-trained BERT model and evaluation data. In
PML4DC at ICLR 2020.

Sanyuan Chen et al. 2022. WavLM: Large-scale self-
supervised pre-training for full stack speech process-
ing. IEEE Journal of Selected Topics in Signal Pro-
cessing, 16(6):1505–1518.

Mikel de Velasco, Raquel Justo, and María Inés Torres.
2022. Automatic identification of emotional infor-
mation in spanish tv debates and human–machine
interactions. Applied Sciences, 12(4):1902.

Théo Deschamps-Berger, Lori Lamel, and Laurence
Devillers. 2021. End-to-end speech emotion recog-
nition: challenges of real-life emergency call centers
data recordings. In Proc. 2021 ACII, pages 1–8.

Theo Deschamps-Berger, Lori Lamel, and Laurence
Devillers. 2023. Exploring attention mechanisms for
multimodal emotion recognition in an emergency call
center corpus. In Proc. ICASSP 2023.

Paul Ekman et al. 1999. Basic emotions. Handbook of
cognition and emotion, 98(45-60):16.

Florian Eyben et al. 2015. The Geneva minimalistic
acoustic parameter set (GeMAPS) for voice research
and affective computing. IEEE Transactions on Af-
fective Computing, 7(2):190–202.

Weiquan Fan, Xiangmin Xu, Xiaofen Xing, Weidong
Chen, and Dongyan Huang. 2021. LSSED: A large-
scale dataset and benchmark for speech emotion
recognition. In Proc. ICASSP 2021, pages 641–645.

Yajing Feng and Laurence Devillers. 2023. End-to-end
continuous speech emotion recognition in real-life
customer service call center conversations. In Proc.
2023 ACII Workshop and Demos.

Luciana Ferrer and Pablo Riera. Confidence intervals
for evaluation in machine learning.

C Hema and Fausto Pedro Garcia Marquez. 2023. Emo-
tional speech recognition using CNN and deep learn-
ing techniques. Applied Acoustics, 211:109492.

Christian Hildebrand, Fotis Efthymiou, Francesc Bus-
quet, William H Hampton, Donna L Hoffman, and
Thomas P Novak. 2020. Voice analytics in business
research: Conceptual foundations, acoustic feature
extraction, and applications. Journal of Business
Research, 121:364–374.

Jon Irastorza and M. Ines Torres. 2016. Analyzing the
expression of annoyance during phone calls to com-
plaint services. In Proc. IEEE CogInfoCom, pages
103–106.

Jon Irastorza and M. Ines Torres. 2019. Tracking the
expression of annoyance in call centers. Cognitive
Infocommunications, Theory and Applications, pages
131–151.

127



Sofoklis Kakouros, Themos Stafylakis, Ladislav
Mošner, and Lukáš Burget. 2023. Speech-based emo-
tion recognition with self-supervised models using
attentive channel-wise correlations and label smooth-
ing. In Proc. ICASSP 2023.

Mikaela Keller, Samy Bengio, and Siew Wong. 2005.
Benchmarking non-parametric statistical tests. Ad-
vances in neural information processing systems, 18.

Federico Landini, Ján Profant, Mireia Diez, and Lukáš
Burget. 2022. Bayesian HMM clustering of x-vector
sequences (VBx) in speaker diarization: Theory, im-
plementation and analysis on standard tasks. Com-
puter Speech & Language, 71:101254.

Manon Macary, Marie Tahon, Yannick Estève, and
Daniel Luzzati. 2023. Acoustic and linguistic rep-
resentations for speech continuous emotion recog-
nition in call center conversations. arXiv preprint
arXiv:2310.04481.

Abdelrahman Mohamed et al. 2022. Self-supervised
speech representation learning: A review. IEEE
Journal of Selected Topics in Signal Processing,
16(6):1179–1210.

Rosa YG Paccotacya-Yanque, Candy A Huanca-
Anquise, Judith Escalante-Calcina, Wilber R Ramos-
Lovón, and Álvaro E Cuno-Parari. 2022. A speech
corpus of quechua collao for automatic dimensional
emotion recognition. Scientific Data, 9(1):778.

E Parada-Cabaleiro, G Costantini, A Batliner, A Baird,
Bw Schuller, et al. 2018. Categorical vs dimensional
perception of italian emotional speech. In Proc. In-
terSpeech 2018, volume 2018, pages 3638–3642.

Luis Felipe Parra-Gallego and Juan Rafael Orozco-
Arroyave. 2022. Classification of emotions and eval-
uation of customer satisfaction from speech in real
world acoustic environments. Digital Signal Process-
ing, 120:103286.

Leonardo Pepino, Pablo Riera, and Luciana Ferrer. 2021.
Emotion recognition from speech using wav2vec 2.0
embeddings. Proc. InterSpeech 2021, pages 3400–
3404.

Paula Andrea Pérez-Toro, Juan Camilo Vásquez-Correa,
Tobias Bocklet, Elmar Nöth, and Juan Rafael Orozco-
Arroyave. 2021. User state modeling based on the
arousal-valence plane: Applications in customer sat-
isfaction and health-care. IEEE Transactions on Af-
fective Computing, 14(2):1533–1546.

Mirosław Płaza et al. 2022. Emotion recognition
method for call/contact centre systems. Applied Sci-
ences, 12(21):10951.

Robert Plutchik. 1980. A general psychoevolutionary
theory of emotion. In Theories of emotion, pages
3–33.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In Proc. ICML, pages 28492–28518.

James A Russell. 1980. A circumplex model of af-
fect. Journal of personality and social psychology,
39(6):1161.

Debaditya Shome and Ali Etemad. 2024. Speech emo-
tion recognition with distilled prosodic and linguistic
affect representations. In Proc. ICASSP 2024, pages
11976–11980.

Themos Stafylakis, Ladislav Mošner, Sofoklis Kak-
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Abstract

Whisper is a widely-used open-access Large
Language Model (LLM) trained using a mul-
tilingual paradigm. As such it represents an
important opportunity for researchers to study
how multilingual LLMs function across lan-
guages. In this paper, we analyse Whisper’s
Large and Medium models for Persian, English
and French using a transcription task. To in-
vestigate the calibration of Whisper models,
we use a customised C++ version of Whisper
to probe Whisper’s internal representations by
extracting the subtoken probabilities for tran-
scriptions of speech samples of the target lan-
guages. We discuss our subtoken-based eval-
uation of prediction accuracy as a proxy for
standard Word Error Rate evaluation of the dif-
ferent Whisper models. The accuracy of the
ASR predictions is investigated as a function
of target language and part of speech. Our
analysis reveals an architectural bias for French
and discrepancies in accuracy in relation to the
size of the training data. The results of our
novel subtoken-based evaluation supplement
previously-reported cross-lingual evaluations
of Whisper, and enable better fine-tuning by
suggesting types of data that may improve cali-
bration.

1 Introduction

Large Language Models (LLMs) are still perceived
as black boxes. Recent papers have mostly de-
scribed new state-of-the-art performance on tran-
scription tasks with LLMs, but the reliability of
different implementations has not, to the best of
our knowledge, been investigated on the basis of
the probability of the subtokens predicted by the
LLMs. It should be borne in mind that LLMs do
not predict tokens but subwords or subtokens, as
the result of the byte pair encoding (BPE) (Sennrich
et al., 2016), a compression algorithm adapted from
Gage (1994). Taking advantage of its publicly
available models and of the C++ implementation

(Gerganov, 2003), whisper.cpp (hereafter "Whis-
per"), we probed the Whisper system and retrocon-
verted the timestamps into a TextGrid (see Figure 1)
in order to inspect the speech data. Our reverse en-
gineering strategy is illustrated in Figure 1. We
extracted timestamps and subtoken probability for
each subtoken prediction.

Figure 1: Extracting information from the Whisper
pipeline (Radford et al., 2023) with Gerganov (2003).

Though Whisper has been trained with 680,000
hours of audio, out of which 117,000 hours rep-
resent 96 other languages than English, the distri-
bution of the training data is heavily skewed, as
indicated in the appendix of Radford et al. (2023)1.
For inclusive spoken language science and tech-
nology, this discrepancy in the training data, as
illustrated in Table 1, has a price worth investiga-
tion. We will show that Whisper’s Large model
has different calibration curves for Persian, French
and English. The rest of the paper is structured as

Table 1: Number of hours of Whisper’s training data for
French, Persian and English, after Radford et al. (2023).

Speech Recognition Translation
French : 9,752 French : 4,481
Persian : 24 Persian : 302
English : 563,000

follows: Section 2 summarises previous research
on Whisper and contextualises our contribution in
this respect. Section 3 presents our experiment

1Since “Of those 680,000 hours of audio, 117,000 hours
cover 96 other languages" we assumed that English was
trained with 563,000 hours (680,000-117,000).
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design, including the data and methodology. Sec-
tion 4 presents the results. In Section 5 we discuss
them. Section 6 concludes the paper.

2 Previous Research

Whisper is an audio Large Language model that
has been trained for several tasks such as Voice Ac-
tivity Detection, Transcription, textual translation
into English and language detection (Radford et al.,
2023). Less than two years after the public release
of its models, more than 1,900 papers have been
written using Whisper according to Google scholar.
Many researchers have tried to optimise Whisper,
for example by post-processing Whisper’s outputs
with LlaMa (Touvron et al., 2023) in a framework
(Radhakrishnan et al., 2023) or to integrate Whis-
per in robots (Pande and Mishra, 2023). Whisper
has been trained with LibriSpeech (Panayotov et al.,
2015) data, whose features have been investigated
for speech synthesis (Zen et al., 2019; Kakouros
et al., 2023). Whisper has been tested with the
FLEURS dataset (Conneau et al., 2023) for the
Spoken Language Identification (SLID) task (Au-
genstein and Salaj, 2023) and used for Spoken Lan-
guage Understanding (SLU) (Wang et al., 2023).
Whisper has also been used for deep fake analysis
(Kawa et al., 2023) and the whisper.cpp (Gerganov,
2003) implementation has been used to score sec-
ond language speech (Ballier et al., 2023a). Cou-
pled with an SVM classifier, Whisper showed good
results when classifying vocal intensity categories
(soft, normal, loud, and very loud) from speech
signals (Kodali et al., 2023). Sun et al. (2023) have
tested biasing lists to improve Whisper’s speech
recognition, which has also been improved when
piped to the LLM LlaMa (Touvron et al., 2023)
to select Whisper ASR outputs (Radhakrishnan
et al., 2023). Analysing different varieties of En-
glish, Graham and Roll (2024) showed that Whis-
per performance was better for read speech than
for spontaneous speech. They also showed that
performance for Canadian and American English
was comparable, but it was poorer for British and
Australian English. Previous research on Whisper
outputs has shown that the different segments pro-
duced by the different models are not identical in
numbers and scope and differ from the speech sig-
nal (Ballier et al., 2023b). Several probing methods
have been applied to LLMs, for example probing
prompts (Qi et al., 2023), but Whisper probability
distributions have not been investigated, to the best

of our knowledge. The closest work to our research
is a previous attempt to understand the information
flux for the plural agreement in French, using a
forced aligner and attention heatmaps, showing that
agreement is dealt with in Whisper by the decoder,
not the encoder of the Whisper Transformer
architecture (Mohebbi et al., 2023).

3 Material and Methods

One previous study (Ballier et al., 2023b) suggests
that when the Whisper outputs are not normalised
(contrary to the normalisation procedure used in
Radford et al. (2023)’s benchmarks and described
in its appendix), word error rate (WER) is lower
for the medium model than for the large model.
We wanted to investigate the accuracy of the two
models, as well as investigate how degraded the per-
formance is when the training data size decreases.
To this aim, we resorted to the calibration curve
method, that plots the probability assigned to the
subtoken (x) on the accuracy of its prediction (y
axis). Best calibrated models are close to the x = y
axis and overconfident models are much above this
axis. We present the calibration curve method be-
fore specifying the data we used for our tests.

3.1 The Calibration Curve Method

Assuming the probability assigned by the system
to predicted subtokens is a correlate of confidence,
we believe that for trustworthy AI we should inves-
tigate subtoken probabilities, especially when the
prediction is wrong. A method to achieve this reli-
ability analysis is the “calibration curve" method.
This method has been used to analyse neural net-
works (Guo et al., 2017; Minderer et al., 2021) and,
recently, to assess LLMs from a semantic point
of view. For instance, Levinstein and Herrmann
(2024) use calibration curves to assess the truthful-
ness of LLM statements on specific datasets and
claims that “calibration provides another metric for
evaluating the quality of the probes’ forecasts"2.
Calibration allows researchers to examine whether
the model predictions are on average too certain
(overconfident) or too uncertain (underconfident)
(Minderer et al., 2021), this paving the way for
LLM recalibration (Chen et al., 2024). Because our
analysis is based on subtokens, we also computed
a regression model to assess the role of subtokeni-
sation, fitting a logistic model with the number of

2The concept was used initially to analyse the reliability of
weather forecasts (Brier, 1950; DeGroot and Fienberg, 1983).
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subtokens as one of the predictors.

3.2 Logistic Regression Modelling
We fitted a logistic regression model with accuracy
(success rate) of the Whisper predicted subtokens
as the predicted variable and several variables for
predictors. We tested duration, segment, speaker,
overlaps, speech rate and phonation rate. We ex-
tracted the turns from the official transcripts of
the corpus (Branca-Rosoff, Sonia, 2013). We also
computed the number of subtokens required to rep-
resent a token in the final transcription and POS-
annotated the corresponding token. We used one of
the treebanks for English to annotate the data from
the ATAROS corpus (Freeman et al., 2014). We
used the EWT model for the universal dependency
annotation, based on English Web Treebank corpus
(Silveira et al., 2014).

3.3 Data
We used challenging data to test the ASR task,
since the LLM was trained with read speech from
Librispeech (Panayotov et al., 2015).

• Persian We used two recordings from two fe-
male Tehrani speakers reading 120 sentences
containing a dislocation. The sentences, ex-
tracted from various sources, reflect a formal
register. Each sentence encapsulates the lin-
guistic phenomenon of dislocation. Speakers
recorded their voices on Zoom while read-
ing each sentence aloud, since Whisper was
trained to deal with noisy environments (Rad-
ford et al., 2023). We avoided overlaps and
spontaneous speech because of the number
of hallucinations observed when transcribing
Persian.

• French For French, we used almost one hour
(55 min.) of spontaneous French collected for
the CFPP reference corpus (corpus de français
parlé parisien) (Branca-Rosoff et al., 2009).
This conversation of a dyad was collected in
the early 2000’s in Paris and has already been
scrutinised from a prosodic perspective (Mar-
tin, 2020; Morel, 2011; Cresti et al., 2011).

• English For English, we used the ATAROS
corpus (Freeman et al., 2014), designed to
investigate stance and engagement in collab-
orative tasks. This corpus consists of dyadic
conversations between unfamiliar interlocu-
tors. Dyads of native English speakers from

the Pacific Northwest of the United States (un-
known to each other but roughly matched for
age) completed a variety of collaborative tasks
(Freeman, 2015). We present results from 2
sessions (56 min.) of mixed-gender dyads. We
apply a temporal filter to the audio based on
timings from human transcriptions of the tar-
get speaker, to mitigate non-target speech.

3.4 Data Extraction and Processing
We applied the following pipeline to our data:

• For reference corpora, we extracted the times-
tamps delimiting turns to create a speaker vari-
able, and an overlap variable;

• With whisper.cpp, we extracted timestamps,
subtoken predictions and the probability asso-
ciated with each prediction;

• We qualitatively annotated the prediction of
the Whisper model, assigning 0 to error and
1 to predictions. We report accuracy (success
rate) and do not take into account omissions or
word error rate (WER) because our analysis
is at a subtoken level (we discuss the impli-
cations in relation to standard ASR based on
WER in subsection 5.4);

• From whisper.cpp, we extracted the .SRT files
that gave the timestamps of the segments cre-
ated by the different Whisper models;

• With a series of scripts we computed the
speech rate for each segment.

Using the C++ Whisper implementation (whis-
per.cpp), we also retrieved timestamps aligned
to the Whisper segments, encapsulated in the ex-
tracted .SRT files. We then extracted the segment
ID timestamps from the .SRT file, and mapped
them onto the 16,131 prediction timestamps. We
associated the 1,415 segments to their speech rates,
computed with the De Jong and Wempe Praat plu-
gin (De Jong and Wempe, 2009). We then checked
for overlaps using the official transcript of the cor-
pus (Branca-Rosoff, Sonia, 2013). Using the .trs
(xml) file, we coded Whisper subtoken predictions
corresponding to overlaps.

By default, we considered that we had no gold
standard reference for the special tokens, so we
discarded the special tokens (which we assumed to
be correct predictions by default) as well as punc-
tuation. Homophones were counted as errors as
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they did not semantically match the reference tran-
scription ‘voir’ vs ‘voire’; ‘m’aime’ vs ’même’;
‘ah c’est bon’ vs ‘assez bons’. Because Whisper
was assessed with a normalisation procedure, we
counted as correct ‘17 and a half ’ when the refer-
ence transcription had ‘17,5’.

3.5 A Brief Presentation of Whisper
Byte-Pair-Encoding

For all languages and models, Whisper codes lin-
guistic input as a composition of 51,866 subtokens.
We provide a series of examples of the different
types of tokens acknowledged in the HuggingFace
documentation3 and which can be explored in the
dictionary of subtokens. We indicate the subtoken
ID (number) which we found in the dictionary of
subtokens.

• 50,255 linguistic subtokens, corresponding
to English words or fragments for French or
graphemes for languages like Persian;

• special tokens, some of them corresponding
to boundaries of the Transformer: the end
of text and end of sentence subtokens 50257
[_EOT_] and 50258 [_SOT_];

• 100 extra-tokens labelled [_ex-
tra_token_50259] to [_extra_token_50359];

• 7 special tokens are also acknowledged in
the literature such as 50360 [_SOLM_],
50361 [_PREV_], 50362 [_NOSP_], 50363
[_NOT_] and 50364 [_BEG_]. [_BEG_] cor-
responds to the beginning of the 30 second
window when the sound file is processed by
Whisper;

• 1,500 out-of-vocabulary OOV subtokens from
[_TT_1] to [_TT_1500]. We will show that
they correspond to temporal subtokens and we
examine their status in subsection 4.2.

Our pipelines to investigate the Whisper inner
computations is available on the GitHub of the sixth
author.4 We created automated scripts with R for
the transformation of Whisper outputs into Praat
TextGrids.

Figure 2: Calibration Curve for the Transcription of
English, French, and Persian.

4 Results

4.1 Language Effects

We compared the calibration curves for the large
models for the transcription of the three languages.
Figure 2 shows the overconfidence of the Whisper
model for Persian and French, well above the x=y
line corresponding to the ideal calibration. When
transcribing English, the predictions of the large
model only partially overlap with ideal calibration.

4.2 Whisper’s Internal Correlates to
Temporal Values

One of the in-built limitations of the Whisper ar-
chitecture is that audio inputs are limited to 30
second segments. When audio duration is greater
than 30 seconds, the model must additionally trun-
cate the audio at intermediate intervals. It appears
that the so-called TT tokens may be outputs from
this process. We analysed the main outputs of out
of vocabulary TT tokens predicted by Whisper ev-
ery time a punctuation symbol was used. We also
analysed the property of the out of vocabulary to-
kens, the special tokens corresponding to end of
text, end of sentence, and BEG, which structures
the windowing of Whisper. In this subsection, we
present the different types of results we obtained
based on Whisper medium outputs on the Inventory

3https://huggingface.co/docs/
transformers/model_doc/whisper

4https://github.com/jbyunes/whisper.
cpp
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Figure 3: Comparision between the indices of [_TT_*]
tokens and the time since the previous [_BEG_] token,
across audio data from the ATAROS corpus.

and Budget subtasks of the ATAROS dataset (Free-
man et al., 2014). Based on the hypothesis that the
numeric index of the [_TT_*] tokens were approxi-
mate to 20ms intervals since start of an audio span,
we conducted a linear regression between the index
of all [_TT_*] tokens in the output and the reported
time difference between the token and the nearest
[BEG] token in the previous output. Based on the
observation that in some regions of the output the
[_TT_*] token indices seem to “reset” without an
intervening [BEG] token, we also conduct a linear
regression between the [_TT_*] token indices and
the time since the previous [_BEG_] token modulo
30s. Figure 3 compares the token indices to the
time since the previous [_BEG_] token, and Figure
4 compares the token indices to the modulated time
since the previous [_BEG_] token. The regressions
for both settings were significant (p < 1e − 15).
The r-value for the regression between the token
indices and the raw time since the [_BEG_] token
was 0.771, and when comparing to modulated time
the r-value was 0.990.

4.3 Architectural Bias

Because Whisper predicts subtokens, not tokens,
after the byte pair encoding (Sennrich et al., 2016),
we created a subtoken_cnt variable corresponding
to the number of subtokens needed to represent a
given token. Previous research on neural machine
translation has shown that gender bias for French
into English translations can be sensitive to the
number of subtokens required to represent tokens
referring to female occupational nouns. We ob-

Figure 4: Comparison between the indices of [_TT_*]
tokens and modulated spurt time, across audio data from
the ATAROS corpus.

served a similar architectural bias for French since
the accuracy decreases with the number of subto-
kens, as can be seen on Figure 5. More research is
needed to analyse how this might be a confounding
factor for the mistranscription of named entities.
The architectural bias was not observed in the re-

subtoken_cnt effect plot
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Figure 5: Effect of the number of subtokens on the
transcription task for French (Large model).

gression model for Persian but it may be because
the dataset was too small. Architectural bias (if not
training bias) was observed in the accuracy of the
prediction of the subtokens, which was distributed
unevenly. Some subtokens were systematically ac-
curate or wrong in the transcriptions, independently
of the estimated probability as can be seen on Fig-
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ure 6.5

4.4 POS Effect

Universal dependency annotation provides two
types of part-of-speech annotation, one which is
more general and follows universal guidelines to de-
scribe categories that are posited to be universally
valid for all languages (upos). Other language-
related tagsets entrenched in the metalinguistic tra-
dition of a given language (xpos) are also acknowl-
edged, as is the case here for English with the Penn
Treebank tagset displayed in Table 2. The default
tagset (WET) used to analyze English was trained
on web data, so it was not particularly designed to
annotate spoken corpora. Some observations can
still be made, some part-of-speech categories being
more prone to phonetic variation such as to (xpos:
TO) and determiners (xpos:DT), which are more
likely to undergo alternations between reduced and
full vowels, as can be seen in Table 2. If we take
into account the universal part-of-speech (upos)
tagset, perfect success rates can be achieved for
categories such as conjunctions of coordination.
On the other hand, weak forms or determiners are
likely to undergo more ambiguous transcriptions
probably because of the weak forms of a and other
determiners. Similarly, weak forms may account
for the rather poor score for auxiliaries and pro-
nouns. There is thus an effect of weak forms and
their potential ambiguities.

5 Discussion

5.1 Suggestions for Fine-tuning Whisper for
Persian

It seems that the models for Persian are less robust,
as a very strong inter-speaker variability can be
observed. For the speech recognition of the same
sentences, the success rate varies from 95% to 55%
and this speaker effect can be seen on the calibra-
tion curves on Figure 7. Overfitting of the Persian
model with Arabic data needs to be stressed as
well. This can be explained by a partly commonly
shared alphabet between the two languages. Per-
sian has a few specific graphemes for the voiced
velar and significantly more homophones than in
Arabic. Nevertheless, some very specific Arabic

5This subtoken-by-subtoken analysis could be replicated
with English and French but with more difficulty, as the order
magnitude for the number of subtokens is 1 to 8 for Persian to
French and 1 to 40 for Persian to English, an estimation based
on Google’s Compact Language Detector 3.

Table 2: Best categories predicted.

xpos n success

TO 39 0.82
DT 102 0.90
PRP 68 0.94

WDT 15 1
CD 17 1
CC 66 1
IN 77 1

upos n success

AUX 71 0.95
PRON 127 0.96
NOUN 172 0.97

NUM 17 1
SCONJ 48 1
ADP 56 1
CCONJ 66 1

letters are used instead of Persian like the nasal con-
sonant, the alveolar nasal and other substitutions
can be observed. Furthermore, the Perso-Arabic
script used to write Persian is cursive, meaning that
letters tend to have different shapes depending on
whether they join with adjacent letters or not. The
different graphotactics of Persian for initial, me-
dial, and final characters are not represented in the
sub-tokenization of Persian transcription. Consid-
ering the phonotactic and graphotactic constraints
of Persian showcased in the transcription by Whis-
per, fine-tuning Whisper could be a way to improve
the transcriptions of a language with low training
data.

5.2 The Locus of Hallucinations
In the case of Persian, smaller models of Whisper
exhibited some hallucinations, which can be at-
tributed to the subtoken dictionary. However, these
hallucinations were not present in the larger model.
The occurrence of hallucinations is not consistent
across different models. Specifically, in smaller
models like the small model, numbers read by
the speaker at the beginning of each sentence were
often hallucinated. For English and French, we
mostly observed “coda" hallucinations as in Figure
8. Within the two seconds after the end of speech
intervals, transcriptions are provided in spite of
the absence of speech signal. Our hypothesis is
this comes from the training data (probably from
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Figure 6: Distribution of probability for Persian subtokens of one character.

Figure 7: Speaker effect on the quality of the prediction
in relation to the confidence of the model (Persian data,
Large model).

YouTube) which contains final formulae like “see
you soon", here “je vous laisse la vidéo et on se
voit bientôt" (“I’ll leave you the video and see you
soon."). For English we often found “Thank you"
in the coda hallucinations.

5.3 Reliability of Whisper’s Timestamps?

Many special tokens separating subtokens have no
duration and some .SRT files are uneasily retro-
converted to TextGrids. Moreover, the timings do
not match up very well with the word-level tim-
ings for ATAROS, which is why we reported two
estimations for overlap labels – one based on Whis-
per’s timing, and one version based on the human-
aligned timings. Figure 9 shows the discrepancies
of duration according to the two methods, whether
for words or subtokens.

Figure 8: Coda hallucination in French. The halluci-
nation disappears with the same Whisper model if the
pause after the utterance is reduced.

5.4 The Censorship of Repetitions

Our analysis of the success rate is a precision anal-
ysis rather than an analysis of recall. We based
our analysis on the Whisper predictions, not on the
official transcripts of the corpora when available.
For English, we also computed an analysis of re-
call, namely comparing the Whisper predictions to
the original transcription of the ATAROS data. As
part of the discussion, we computed the difference
between using reference text to the corpus as the
baseline to which we annotated the prediction of
the Whisper models, and we compared this method
with the raw output of the Whisper models that
was annotated only on the basis of the predictions.
Using the first method, we report a 79% success
rate, and then we re-aligned only the prediction of
the LLMs and computed the success rate. In our
accuracy-based analysis, the omissions from the
scripts, and in particular all the censorship of the
repetitions of the data, were more favourable to the
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Figure 9: Distribution of duration according to the
ATAROS reference transcription (top) and according
to Whisper’s Large model (ASR, bottom)

interpretation of the Whisper success rates, since
we achieved 89% of success using this methodol-
ogy based on the analysis of the Whisper output
only. Among the Whisper omissions in the tran-
scriptions, repetitions accounted for 11.9% of the
omitted tokens. Numbers (and generally speaking,
counting) accounted for 37.5% of the omissions
from the reference text.

6 Conclusions

In this paper, we have probed Whisper outputs us-
ing a C++ implementation of Whisper (Gerganov,
2003) to probe the accuracy of transcriptions on
a subtoken basis. We use subtoken probabilities
and internally produced timestamps. We used re-
verse engineering to translate the inner working
of a large language model, namely its prediction
properties, to realign them to the speech signal with
Praat (Boersma, 2024) TextGrids. Our method sug-
gests coherent meanings to the special temporal
subtokens [_TT_*] used by Whisper. This type of
research aims to contribute to the explainability of
LLMs. The same method could be applied to the
translation task; we have here investigated the prob-
abilities associated with the subtokens produced
by Whisper for the transcription task. Estimating
LLM ASR output at subtokens level allows us to
access transcriptions at a finer-grained level and
it paves the way for other analyses currently used
in the semantic analysis of LLMs such as group-
ing loss (Perez-Lebel et al., 2023). It should also

be noted that analysing subtokens is another way
to ensure hallucination detection: subtokens rep-
resenting Arabic or Japanese were observed for
Persian. An unexpected finding is that Whisper
scores only report the Persian letters in their iso-
lated forms (abstract representation) and positional
variants of letters as observed in the Whisper tex-
tual transcriptions seem to be the result of some
post-processing. Further studies are needed to in-
vestigate this point.

We have shown the effect of size in the training
effect, but also an architectural bias for French. It
would be interesting to apply the same methodol-
ogy to explore the probabilities assigned to the
translation task to confirm these biases and ef-
fects. Analysing the Whisper performances on
other languages may confirm one of our obser-
vations. With the R (R Core Team, 2024) pack-
age Calibratr (Schwarz and Heider, 2019), we also
computed the Expected Calibration Error (ECE),
which returns the maximum calibration error for
equal-frequency binning model (Naeini et al., 2015)
for the transcriptions (large model) of the three
languages. With the proviso that we have only
analysed the transcriptions of three languages with
Whisper, a linear model can be fitted with the log
of the size of the training data (adjusted R-square
0.99) and it may be the case that the ECE is in-
versely proportional to the log of the size of the
training data, as can be observed on Figure 10.
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Figure 10: According to Whisper’s Large model (ASR
task), the effect of the size of the training data

Limitations

As for Persian, our test set consists of read speech
focusing on a linguistic construction, dislocation.
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We have not used the fine-tuned XLSR-53 large
model for speech recognition in Persian (Grosman,
2021) in this study. Using the train and valida-
tion splits of Common Voice 6.1 in this fine-tuned
model may change the results.
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Abstract

This study proposes a novel framework
for automatic question generation (AQG)
designed specifically for the Urdu lan-
guage. The framework encompasses seven
stages, including pre-processing, tagging,
anaphora resolution, word chunking, au-
tomatic constructed dataset development
(ACD) using Urdu linguistic rules, fine-
tuning MT5 on various model combina-
tions, and a ranking algorithm. It in-
cludes novel algorithms for anaphora res-
olution and word chunking customized for
Urdu’s intricate sentence structures. Uti-
lizing these linguistic rules, the framework
generates 4,497 question-answer pairs from
250 passages. Additionally, the frame-
work explores fine-tuning Multilingual T5
(MT5) on UQuAD 1.0 (Kazi and Khoja,
2021) and ACD with varied encodings and
embeddings, both with and without the
proposed algorithms. Generated questions
undergo a ranking process based on se-
mantic text representation to ensure rele-
vance and quality, filtering out irrelevant
questions. Evaluation using standard auto-
matic metrics such as BLEU-4, METEOR,
and ROUGE-L demonstrates the frame-
work’s efficacy, with the best-performing
model achieving commendable scores of
24.78, 37.07, and 54.99, respectively.

1 Introduction
Automatic question generation (AQG) is an
innovative technique that uses artificial intelli-
gence and natural language processing to cre-
ate questions from textual information. By
employing algorithms and language models,
AQG can analyze text, understand context,
identify key information, and formulate rel-
evant questions. This technology is useful
in various domains such as education (Laban
et al., 2022), e-learning, content creation, and
chatbot systems.

Despite significant advancements in AQG
technology for languages like English, there
remains a notable research gap in develop-
ing an AQG framework specifically for the
Urdu language. Multilingual models often
fail to capture the unique linguistic, syntac-
tic, and cultural characteristics of individual
languages, especially those underrepresented
in training datasets, such as Urdu. Urdu’s
complexity, with characters forming different
shapes based on their position in a word and
context-sensitive grammar, adds to the chal-
lenge (Daud et al., 2017). For instance, for
“how many” questions, there can be a vari-
ant of ⾸,ⶄ,ⶂ,ⶅ depending upon the context
and grammar of the question. Moreover, the
placement of question keywords can change
the meaning of the question. For instance, the
keyword "ㅏ" can be used to form yes/no or
what questions depending upon its placement
in the question. If "ㅏ" is placed at the start of
the sentence and follows the structure of ㅏ +
subject + verb + helping verb, it will generate
yes/no questions, for example, (Does it taste
good?) “ㅏاسⵇذا䣀ا䞈Ი؟'' . On other hand, if "ㅏ"
is placed in the middle of the sentence it will
form a what question, for example, (What is
your name?) ٱم䞈ㅏ؟" ǔ˄ⵇآپ".

The absence of comprehensive frameworks
and resources for Urdu limits the availability
of automated question generation tools tai-
lored to the specific needs of Urdu-speaking
learners, educators, and researchers. To
address this research gap, the study proposes
a hybrid framework for automatic question
generation that combines the linguistic of
Urdu with multilingual transformer to gen-
erate questions automatically. The major
research contribution of this study are:
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1. Developed an Automatically Constructed
Dataset (ACD) using rule-based approach
for Question Generation.

2. Proposed novel framework for anaphora
resolution and word chunking.

3. Fine-tuned the multilingual transformer
for Urdu language with different embed-
ding, with and without proposed algo-
rithms of anaphora resolution and word
chunking.

4. Proposed an algorithm to rank generated
question using semantic text representa-
tion.

5. Evaluated and compared the result for
question generation obtained from each
model using automatic and human eval-
uation.

2 Related Work
Heilman’s (Heilman and Smith, 2009, 2010) re-
search established a foundational rule-based
framework for Automatic Question Genera-
tion (AQG) in English, which has influenced
subsequent studies using dependency parsing,
POS, and NER tagging, and semantic role la-
beling with rule-based systems (Khullar et al.,
2018; Azevedo et al., 2020; Flor and Riordan,
2018; Dhole and Manning, 2020). Over the
past decade, AQG has incorporated machine
learning and deep learning techniques, such as
RNNs for sequence transduction (Du et al.,
2017), reinforcement learning with graph-to-
sequence models (Chen et al., 2019), and trans-
formers for faster training (Kriangchaivech
and Wangperawong, 2019; Goyal et al., 2024).
Notable models include the use of T5 for in-
ferential questions (Ghanem et al., 2022), pre-
trained BART on an inquisitive dataset (Gao
et al., 2022), and a neural question genera-
tor trained on diverse datasets (Murakhovs’ka
et al., 2022). Additionally, EQG-RACE inte-
grates pre-trained BERT and ELMo embed-
dings with an Answer-guided Graph Convo-
lution Network (Jia et al., 2021), while an-
other framework uses pre-trained embeddings
on BERT and EMLo, trained with GPT and
GPT2 (Yuan et al., 2021). A model combin-
ing BiLSTM with soft attention and layers for
encoding and decoding has also been proposed

(Bi et al., 2021). Large language models like
GPT-3 and ChatGPT have further advanced
AQG with their extensive pre-trained knowl-
edge and sophisticated language understand-
ing (Lee et al., 2023). These language models
also support multilingual question generation,
but their evaluation in low-resource languages
has yet to be explored.

Furthermore, there is a growing interest in
extending these capabilities to low-resource
languages like Arabic, Hindi, Bengali, which
often lack the extensive labelled datasets and
advance language processing tools (Kazi et al.,
2023).

For the Hindi language, (Anuranjana et al.,
2019) proposed a rule-based AQG system uti-
lizing POS tagging, NER tagging, and depen-
dency parsing, enhanced with linguistic rules
and IndoWordNet ontology to generate ques-
tions. Surface-level and syntactic filters were
applied to improve question quality, but these
filters sometimes removed important questions
containing pronouns for example:
Passage: Nelson Mandela was the first presi-
dent of South Africa. He was born on 18 July
1918
Question: When was he born?

This question was removed by the filter but
”When Nelson Mandela was born?” is the im-
portant question. In our proposed frame work,
we proposed algorithm for anaphora resolution
that replace pronoun with appropriate noun
instead of just removing the question with that
pronoun. On other hand, (Kumar et al., 2019)
proposed a cross-lingual AQG system (CLQG)
for Hindi and Chinese, using a shared encoder-
decoder architecture trained in two phases:
unsupervised training with denoising, autoen-
coding, and back-translation, followed by su-
pervised training with sequence-to-sequence
modeling achieving maximum score of 20.242,
29.143, and 40.643 for BLEU-4, METEOR
and ROUGE-L. (Wang et al., 2021) proposed
a multilingual language model for automatic
question generation in five languages, includ-
ing Hindi and Chinese, utilizing deep learning
models such as Transformer and Multi-BERT
achieving highest scores of 35.19 for BLEU-4,
36.25 for METEOR, and 51.23 for ROUGE for
Hindi language.

For Arabic, Arabic Question Genera-
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tor(AQG) claim to be first automatic ques-
tion generation system since earlier proposed
system were semi-automatic (Bousmaha et al.,
2020). It combines rule based approach with
the semantic role labelling of PropBank (SRL)
to generate questions automatically from Ara-
bic text. (Alhashedi et al., 2024) proposed ara-
bic automatic question generation using trans-
formers and scores achieved were 19.12 for
BLEU-4, 23.00 for METEOR, and 51.99 for
ROUGE-L.

For Bengali language, (Fahad et al.,
2024) trained three different answer agnos-
tic transformer model BanglaT5, mT5- base,
BanglaGPT2 with different combination of de-
coding algorithm to generate questions auto-
matically. The scores achieved by their best
performing models were 11.42 for BLEU-4,
21.79 for METEOR, and 35.74 for ROUGE-L.
On other hand, (Ruma et al., 2023) trained
BanglaT5, Mt5-small, Mt5-base transformer
model along with the answer for automatic
question generation and best model achieved
36.60 Bleu-4, 48.98 METEOR, and 63.38
ROUGE-L scores.

Notably, little to no significant work has
been done for AQG in the Urdu language,
highlighting a gap in this area of research. To
our best knowledge, there is no publication for
Urdu language AQG till the writing of this re-
search paper. Hence, to address this gap, the
study proposed a hybrid automatic question
generation framework that incorporates a rule-
based approach with a deep learning model
customized for the Urdu language. However,
the the framework could be applicable to any
language by customizing the rules specific to
the language and training the modules of the
framework on a corpus specific to that lan-
guage.

3 Methodology
The proposed framework integrates a rule-
based approach with a transformer model and
comprises the following seven stages, as seen
in Figure 1:

1. Pre-processing

2. Tagging, which includes POS, NER, and
dependency parsing

3. Algorithm for Word Chunking

4. Algorithm for Anaphora Resolution

5. Development of Automatically Con-
structed Dataset (ACD) using rule based
approach

6. Fine-tuning multilingual T5 (mT5) model
with combination of different embedding
and proposed algorithm on ACD and
UQuAD 1.0 (Kazi and Khoja, 2021).

7. Ranking of generated questions

Figure 1: Proposed Framework

3.1 Pre-processing and tagging
Sentence extraction, word tokenization and
normalization for each passage are performed
using UrduHack (ALi, 2020). The POS are
tagged using (Nasim et al., 2020) having F1
score of 96%, NER are tagged using (Kanwal
et al., 2019) having F1 score of 77% and the
dependency tree is extracted using the Urdu
Model of Stanza Library (ALi, 2020).

3.2 Algorithm for Word Chunking
Even after using a word tokenizer, the sin-
gle word can be treated as multiple words,
for example, in the sentence, ᡲ⦇㯽ح˄ǌٱǍ˄䕉ٱ⸠ن䞀۔
(Muhammad Ali Jinnah is the founder of Pak-
istan), the word ᡲ⦇㯽ح (Muhammad Ali Jin-
nah) is treated as three different words instead
one single word. To solve this issue, an al-
gorithm for Urdu noun chunking is developed.
The algorithm identifies the group of noun and
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adjectives that goes together and chucks them
together by removing space and putting “-” to
form a meaningful word. The steps for the
noun chunking algorithm are as follows:

• If a part of speech is followed by the same
part of speech, for example, a noun is fol-
lowed by the same type of noun, they are
chunked together. In the sentence above,
⦇,㯽 and ᡲح are proper nouns (PN), so
they are chunked together. However, 䕉ٱǌ˄
is a common noun (NN), so it is not chun-
ked together. The chunked word will be
.㯽۔⦈۔ᡲح

• However, chunking the same type of noun
is not enough and can result in incor-
rect chunking, for example, in the sen-
tence ᡲ⦇㯽ح⸗اမ䆀ᶤا䥞䜫۔ (Muhammad Ali
Jinnah was born in Karachi), 㯽۔⦈۔ᡲح-
ᶤا⸗ (Muhammad Ali Jinnah Karachi) will
be chunked together. This is an exam-
ple of incorrect chunking as ᶤا⸗ (Karachi)
should not be chunked with 㯽۔⦈۔ᡲح
(Muhammad Ali Jinnah). To solve this
issue, NER tagging is also taken into con-
sideration. The same type of noun is only
chunked together if it has the same named
entity tag. Since ⦇,㯽and ᡲح are tagged
as a person, the words will be chunked to-
gether, but ᶤا⸗ will not be chunked with
it since its NE tag is location.

• If a noun chunk is preceded by an adjec-
tive, the adjective is also chunked with the
noun, for example, in the sentence 㦇ⵇ䗂ء᜕
ພ࿝ᖫر䞈ㄚ۔ (Sana is wearing a black cap),
the noun ࿝ᖫ(cap) is chuck with the adjec-
tive 㦇ⵇ (black).

• If the adjective and noun chunk is pre-
ceded by the adverb, the adverb is also
chunk with the noun, for example, in
the sentence, 䞈رت⦜䕉ا䯎ਏ ǎا׏䮪 (This is a
very old building), the adverb ਏ (very),
the adjective 䕉ا䯎 (old) and the noun ⦜رت
(building) are chunk together.

• If there is a conjunction between the same
type of noun and the named entity tagged,
they are chunked together. For exam-
ple, ᡲح䖼䮩ƾǐƸŰǐƴ䗂رⅯاور㤒ان㣹ن╌ㅎ❅ḝቕ۔ (Jin-
nah Studied from Bombay university and

Lincoln Inn London.), the terms -Ⅿر䖼䮩-ƾǐƸŰǐƴ

اور-㤒-ان-㣹ن are chunk together.

In addition to aiding in rule formation, the
word chunking algorithm can be utilized to
train deep and large language models by us-
ing word chunks as answers, particularly in
datasets where answers are not available and
only passages are provided. The experiments
conducted in Section 4 indicate that passing
word chunks as answers to mT5 performs bet-
ter than using answer agnostic transformer.

3.3 Algorithm for Anaphora
Resolution

The sentences are extracted from the input
passages. Each individual sentence might con-
tain a pronoun referring to a noun in previ-
ous sentences. Separating each sentence might
result in the pronoun becoming ambiguous.
To avoid this ambiguity, a noun and pro-
noun agreement algorithm has been developed.
The algorithm replaces subject pronouns with
the corresponding noun from the previous sen-
tence. If the previous sentence does not con-
tain a subject noun, the algorithm continues
to look back through earlier sentences until
it finds a subject noun, replacing all subject
pronouns accordingly. Similarly, object pro-
nouns are replaced with the corresponding ob-
ject noun from previous sentences, with the
last occurring object noun being used to re-
place the object pronoun in the current sen-
tence.

3.4 Development of ACD
Urdu linguistic rules are employed for the gen-
eration of questions from provided passages.
In the process, 250 passages were subjected
to rule-based Automatic Question Generation
(AQG). These passages were sourced from di-
verse outlets such as Urdu Wikipedia, Urdu
stories from Urdu Point, and online Urdu com-
prehension materials. The resultant dataset,
named ACD (Automatically Constructed
Dataset), comprises 250 passages with 4497
question-answer pairs. The dataset is , hosted
on a private GitHub repository, and it can be
requested from by emailing corresponding au-
thor at mrkhowaja@iba.edu.pk.The types of
questions generated, and the rules applied to
generate those questions are as follows:
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1. Who Questions (〨ن/⸘)
〨ن/⸘ question words are used depending
upon whether the noun is oblique or nor-
mative. Oblique nouns are those noun
which are followed by preposition whereas
normative noun are not followed by prepo-
sition. For oblique noun, noun chunk is
replaced by ⸘, for example,䗂⦇Ἀریر䘧ᱴ
うٱمر

ǔ
˄ⵇٱ⸠نǍ˄ (Chaudhry Rehmat Ali coined

the name of Pakistan.) becomes ⸘Ǎ˄䗂ٱ⸠ن
ٱمرう؟

ǔ
˄ⵇ. For normative noun, noun chunk

is replaced ,〨ن for example, ㈉䪲㱇رجوا♿اᜯ
ᒒر✛ຝ (George Washington was the first
president of the United States) becomes
〨ناຝ㈉䪲㱇✛رᒒ؟

2. What Questions (ㅏ)
If the word chunk is the object noun, it is
replaced by ㅏ, for example, in sentence ݷ
ٳৄر䞈䗃۔ ǎɟሊ䒳ر (The child is drawing a color-
ful picture.) the ٳ ǎɟሊ䒳ر (colorful picture)
is replaced by ㅏ

3. Where Questions (〫ں)
If the chunked noun is a location or or-
ganization, it is replaced by .〫ں For
oblique noun, only chunk noun is re-
moved for example, ᡲح䖼䮩ƾǐƸŰǐƴ䗂رⅯاور㤒ان㣹ن
ㅎ❅ḝቕ╌ (Jinnah studied at Bombay
University and Lincoln’s Inn, London.)
becomes ᡲح䗂〫ں╌ㅎ❅ḝቕ؟ (Where did
Jinnah studied from?). For normative
noun, chunk noun along with its prepo-
sition is removed, for example 䗵ر䆀ᶤرہ⸗ا⁩
䞈 (Sarah lives in Karachi) becomes ⁩رہ〫ں
ر䞈䗵؟ (Where Sarah lives?)

4. When Questions (䲷)
Dates or times found by the NER tagger
are replaced by 䲷 along with their prepo-
sitions. For example: ᡲ⦇㯽ح25دမ〨1876⌸ا
䥞䜫 (Muhammad Ali Jinnah was born on
25 December, 1876.) becomes ᡲ⦇㯽حမ䲷ا
䥞䜫؟ (When was Muhammad Ali Jinnah
born?)

5. How Many Questions (ƾ
ǔ Ƹ
ǖ
ƹǒƶĹ/Ų
ǔ Ʒ
ǖ
ƹǎƶĹ)

In Urdu, the choice between ƾ
ǔ Ƹ
ǖ
ƹǒƶĹ/Ų
ǔ Ʒ
ǖ
ƹǎƶĹ for

”How many” questions and ⶂ for ”How
much” questions depends on whether the
noun is countable or uncountable. For
instance, in the question ㈊㟼؟ ǖ ǖ͋وⶂ (How

much time will it take?), ǖ ǖ͋و (time) being
uncountable uses ⶂ (How much). How-
ever, Urdu lacks a noun tagger to distin-
guish countable and uncountable nouns,
limiting the study to ”How many” ques-
tions. When a cardinal value is identi-
fied, it is replaced with either Ų

ǔ Ʒ
ǖ
ƹǎƶĹ or ƾ

ǔ Ƹ
ǖ
ƹǒƶĹ

based on the gender of the dependent
noun. For example, in the sentence 䆀س⺶
ㅏ㘮10ں䞀۔ (There are 10 girls in the class),
ㅏ㘮ں (girls) being feminine, is replaced by
ⶄ, forming the question ⺶سㅏ㘮ⶄ䆀ں䞀؟
(How many girls are there in the class?).
Similarly, in ⺶س䞀㈉㘮10䆀۔ (There are 10
boys in the class), ㈉㘮 being masculine
is replaced by ƾ

ǔ Ƹ
ǖ
ƹǒƶĹ, forming ⺶س䞀㈉㘮ⶅ䆀؟

(How many boys are there in the class?).
When both masculine and feminine nouns
are involved, ƾ

ǔ Ƹ
ǖ
ƹǒƶĹ is used, as in ㈉㘮10䆀س⺶

اورㅏ㘮ں䞀۔ (There are 10 boys and girls in
the class), resulting in ⺶س㈉㘮ⶅ䆀اورㅏ㘮ں䞀؟
(How many boys and girls are there in
the class?). For oblique nouns like in ᜕اس
ٳم10䆀⁩ل╌ⵇم⸗ر䞈䜱۔

ǔ
Ӓ (Sana has been work-

ing in this firm for 10 years), ⁩ل (years),
followed by the preposition ╌, uses ƾ

ǔ Ƹ
ǖ
ƹǒƶĹ,

resulting in ƾ⁩ل╌ⵇم⸗ر䞈䜱؟
ǔ Ƹ
ǖ
ƹǒƶĹ䆀ٳم

ǔ
Ӓاس᜕ (How

many years has Sana been working in this
firm?).

6. Why Questions (㈀ں)
The ㈀ں is used to ask why Question.
When a sentence contains 䐲㈀ (because),
the whole chunk after 䐲㈀ along with 䐲㈀
is removed and the word ㈀ں is placed at
the beginning of the sentence. For ex-
ample, in the sentence ᡲ⦇㯽حᵘ䧷䑨ⵇ䗂ڑدی
ᏽفὲا⑬⑭䐲㈀ (Muhammad Ali Jinnah left
congress because of political difference.),
the whole chunk ᏽفὲا⑬⑭䐲㈀ is removed
and ㈀ں is placed at the beginning of the
sentence. The question formed will be ㈀ں
ᡲ⦇㯽حᵘ䧷䑨ⵇ䗂ڑدی؟

The question generated were evaluated by hu-
man evaluator on the basics of syntax, seman-
tics and relevance on 10-likert scale. Question
with average accuracy of less than 50% on any
of these metrics were removed. The final set
of data of 250 passages and 4497 questions as
seen in Table 1 and distribution of types of
questions can be seen in Figure ??.
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Metrics Value
Total Passages 250
Total Questions 4497
Average Length of Question 14
Average Length of Paragraph 9 Sentences
Types of Questions 6
Maximum Length of Question 31
Number of Who Questions 989
Number of What Questions 855
Number of When Questions 900
Number of How many Questions 719
Number of Why Questions 90

Table 1: ACD Statistics

3.5 Automatic Question Generation
using Multilingual Transformers

In this framework, a text-to-text transformer
architecture is proposed for automatic ques-
tion generation, favoring transformers over
models like RNNs and LSTMs due to their ef-
ficiency in capturing long-range dependencies
and faster training speed. This efficiency is
attributed to the self-attention mechanism in
transformers, allowing each token to attend to
all others in the sequence. We employed Mul-
tilingual T5 (MT5) as it integrates both en-
coder and decoder models trained on various
languages. This architecture allows us to en-
code context (passage) and answer and decode
generated question as the output. The sample
output is as follows:

Context:
㈉㨖㳡ٱǎ˄ ٶ

Ǘ ǔ
ՙآلا ǖم׏ⴜ㈉ٱ⸠نǍ˄〨1947㊌1913╌14ا䗂حᡲ

㈉لᢍ䲎ر㍉ຝ㈉ٱ⸠نǍ˄ ǖت׏䁡ຊا༔اور،䮨مد䈶تا㩕ٶ
ǔ
؎䯎ر⡷㈉䜡ر

ٶ㩕تا䈶مد䮨۔
ǔ
؎䯎ر⡷㈉ ǔƼǎ ƹ

ǔ
ƶǎƹŪڈو

Answer:
ᡲح

Questions:
˄ǎٱ㈉㨖㳡رᒒ䜡؟ ٶ

Ǘ ǔ
ՙآلا ǖن1913╌1947׏〨

ٳاہᒒ؟ ǌɟ⇤㈉㨖㳡ٱǎ˄ ٶ
Ǘ ǔ
ՙآلا ǖن1913╌1947׏〨

˄ǎٱⴜㅎ㨖㳡دتㅎ؟ ٶ
Ǘ ǔ
ՙآلا ǖ1913╌1947׏䗂⸘

To enhance context utilization and address
computational constraints, the MT5 model is
trained at the sentence level rather than the
passage level. Sentences are extracted and
anaphora resolution is applied to resolve am-
biguous references, followed by tokenization

using sentence piece. To capture similar words,
Word2Vec and FastText word embeddings are
employed. The encoder maps each word in
a sentence to a dimensional vector, and sen-
tences are padded to a maximum length of 512
for uniformity. The self-attention mechanism
in the encoder captures dependencies between
words in both local and global contexts. Input
and target sequences are formatted and passed
to the transformer for output generation. The
decoder generates the output sequence using
self-attention, with beam search employed to
explore multiple candidate sequences simulta-
neously, enhancing the likelihood of capturing
important and diverse questions. For exam-
ple, consider the Urdu sentence, Ǘ ǔҍؤ㩕Ⲛوا䆀㩉ٱ Ǐʦ
╌اوຖ䉹ڑ䞈۔ ǌחⵇ䕊د Ǘرח䮩ا(Mount Everest in the Hi-
malayas is the highest mountain in the world.)
with answer 㩉ٱ Ǐʦ (Himalayas). The greedy
search made the following question ╌ ǌחⵇ䕊د
اوຖ䉹ڑ⸘䆀وا䞈Ⲛ؟ (Which is the highest moun-
tain in the world located?) but the top ques-
tions using beam search were 〫ںوا䞈Ⲛ؟ Ǘرח䮩ا Ǘ

ǔ
ҍؤ㩕

(Where is Mount Everest Located?), ╌ ǌחⵇ䕊د
اوຖ䉹ڑ〫ںوا䞈Ⲛ؟ (Where is the highest mountain
in the world located?) and ᜯٱǎ˄ ╌اوຖ䉹ڑ〫ں˄Ǎٱ ǌחⵇ䕊د
䞈≢.(Where؟ can the highest mountain in the
world be found?) The snapshot of the proba-
bility calculated using beam search can be seen
in Figure 2.

3.6 Ranking of Generated Questions

Multiple questions can be generated from a
single sentence which results in an over gen-
eration of questions. To resolve this issue, the
questions are ranked, and the top 10 questions
are selected. Currently, the ranking algorithm
is determined by their similarity to the orig-
inal sentence. Sentence embeddings for each
sentence in the paragraph are calculated us-
ing SBert multilingual. Subsequently, the em-
beddings of each sentence in the passage are
averaged to create the passage’s overall em-
bedding. Likewise, sentence embeddings for
the questions are computed. After which, co-
sine similarity is employed to measure the sim-
ilarity between the passage and each question,
and the top 10 questions with the highest sim-
ilarity scores are selected as seen in Figure 3.
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Figure 2: Probability Distribution of Beam Search
Candidates

4 Experiment
The study conducted four different sets of
experiments on the ACD and UQuAD 1.0
(Kazi and Khoja, 2021) datasets , utiliz-
ing pre-trained embeddings, specifically Urdu
word embeddings (Haider, 2018) and Fast-
Text (Grave et al., 2018), integrated with a
deep learning model both with and without
anaphora resolution and a ranking algorithm.
Additionally, various hyper-parameters such
as learning rate, number of epochs, and batch
size were systematically adjusted to optimize
the model’s performance. The model per-
formed best with the hyper parameters shown
in Table 2, considering the computational lim-
itations.

Hyperparameter Value
Epochs 3
Optimizer Adam
Batch Size 12
Learning Rate 1e-5
Number of Beams 5
Number of Sequence 3

Table 2: Optimal Hyper parameters for Model Per-
formance

• Experiment 1: Fine-tuned Mt5 on ACD

Figure 3: Proposed Ranking Algorithms for Gen-
erated Questions

with Urdu word embeddings (Haider,
2018) and FastText (Grave et al., 2018).

• Experiment 2: Fine-tuned Mt5 on ACD
along with two specified embeddings and
anaphora resolution named Sawaal.

• Experiment 3: Fine-tuned Sawaal along
with ranking algorithm.

• Experiment 4: Fine-tuned best perform-
ing model i.e. MT5 along with anaphora
resolution and ranking algorithm on Fast-
Text embeddings on the following dataset
and encoding:

1. Answer Aware MT5 trained on ACD.
2. Answer Agnostic MT5 trained on

ACD.
3. Word Chunks encoded as answer for

MT5 trained on ACD.
4. Answer Aware MT5 trained on

UQuAD 1.0 (Kazi and Khoja, 2021).
5. Answer Agnostic MT5 trained on

UQuAD 1.0 (Kazi and Khoja, 2021).
6. Word Chunks encoded as answer for

MT5 trained on UQuAD 1.0 (Kazi
and Khoja, 2021).

The experiments were designed to analyze
the accuracy of the proposed anaphora reso-
lution and ranking algorithms. By comparing
these experiments, the study aimed to gain in-
sights into the effectiveness of different word
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Model BLEU-4 METEOR ROUGE-L
MT5 + Urdu embeddings 17.73 20.97 39.89
Sawaal + Fast Text embeddings 21.36 35.23 52.38
Sawaal + Urdu embeddings 22.14 34.02 51.65
Sawaal + Fast Text embeddings + Ranking 24.78 37.07 54.99
Sawaal + Urdu embeddings + Ranking 23.32 36.47 53.66

Table 3: Evaluation Metrics for Question Generation Models

embedding techniques and the proposed al-
gorithms when combined with large learning
models like MT5. Specifically, the comparison
between experiment 1 and experiment 2 high-
lights the impact of the anaphora resolution
algorithm on improving model accuracy. The
comparison between experiment 2 and experi-
ment 3 evaluates the effectiveness of the rank-
ing algorithm. Finally, experiment 4 assesses
the model’s adaptability and generalization ca-
pabilities when trained on different datasets,
while also evaluating the efficiency of using
word chunks for answer encoding within the
MT5 framework.

5 Evaluation
The questions produced by the framework un-
dergo evaluation against the UQuAD 1.0 test
dataset to compute metrics such as F-scores
for METEOR (Banerjee and Lavie, 2005),
BLEU-4(Papineni et al., 2002), and ROUGE-
L (Lin, 2004). Table 3 presents the scores
achieved by each model in the experiment 1-
3, utilizing the following encoding format:
input = ”context: %s answer: %s </s>” %
target = ”question: %s </s>” %
While Table 4 and Figure 4 presents the
scores of fine-tuning the T5 model on differ-
ent datasets and combination of various input
encoding method.

Combinations Datasets Encoding
1 UQuAD 1.0 (p,a)
2 UQuAD 1.0 (p)
3 UQuAD 1.0 (p,wc)
4 ACD (p,a)
5 ACD (p)
6 ACD (p,wc)

Table 4: Encoding Combinations for Datasets. p
stands for paragraph, a stands for answer and wc
stands for chunks

Figure 4: Evaluation of Different Dataset and En-
coding Combinations

The study also evaluated final set of gen-
erated question from 10 human expert who
evaluated the question based on syntax, rel-
evance and semantics of the question on 10-
likert scale. The average score for syntax, se-
mantics and relevance were as 8.4, 8.2 and 7.7
respectively.

Limitations
While the proposed framework is able to gen-
erate semantically, syntactically and relevant
questions from the passage it also have few
drawbacks. Firstly, both datasets used for
model training contain errors. UQuAD 1.0
contains translation errors, while ACD suf-
fers from errors due to rule exceptions, insuffi-
cient language processing tools, incorrect tag-
ging. Secondly, in the studies only pre-trained
word embeddings are used. Future research
aims to train conceptual embedding such as
mBERT and SBERT for urdu language to en-
hance semantic understanding and context in
natural language processing tasks. Thirdly,
current system limitations include treating all
sentences equally in importance and relying
solely on similarity measures for question rank-
ing, without considering whether the answer
is present in the passage, which are aspects
intended for future implementation.
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Ethics Statement
This study adheres to the highest ethical stan-
dards in research. All data used, including
text passages and question-answer pairs, were
sourced from publicly available materials and
databases, ensuring that no private or sen-
sitive information was used without explicit
consent. Additionally, all sources of data
have been properly cited, and the use of copy-
righted materials complies with relevant laws
and guidelines.
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Abstract

Despite extensive pre-training on a large au-
dio corpus, the Whisper and Distil-Whisper
models exhibit considerable challenges in han-
dling Thai speech. This paper presents an ap-
proach to enhance pre-trained vanilla Whisper
models for Thai automatic speech recognition
(ASR). The process involves combining audio
datasets, applying audio augmentations during
training, and incorporating an audio segmen-
tation strategy. In addition, we show that dis-
tilling whisper models can be achieved with
less than 1,500 hours of audio while preserv-
ing accuracy of student models. The improved
models achieve a word error rate (WER) of
11.01%, 6.62%, 5.49%, 11.23%, 7.57% for
the small, medium, large, distill-small, and
distill-medium Whisper models on Common-
voice 13 dataset. Our models establish as a
fine-tuned baseline Whisper ASR for Thai. Fur-
thermore, we demonstrate accuracy of our mod-
els with out-of-distribution (OOD) financial
datasets while maintaining robustness under
environmental noise. The code and pretrained
models are available at https://github.com/
biodatlab/thonburian-whisper/.

1 Introduction

Automatic Speech Recognition (ASR) converts
spoken language into text, which enables several
applications such as audio transcription and con-
versational analysis. Contemporary deep learning-
based systems such as Wav2Vec2 (Baevski et al.,

2020), Conformer (Gulati et al., 2020), Mas-
sively Multilingual Speech (MMS) (Communica-
tion et al., 2023), Whisper (Radford et al., 2023),
and Seamless M4T (Communication et al., 2023)
have demonstrated impressive capabilities in the
conversion of spoken languages into text in both
English and multilingual audios. However, their
performance diminishes when applied to languages
with limited audio resources (Bansal et al., 2019).
Moreover, adapting these models to accurately tran-
scribe audio in language-specific and specialized
domains remains challenging.

Previous efforts to improve Thai ASR models
include Wav2Vec2-XLSR (Baevski et al., 2020),
Thai Wav2Vec 2.0 (Phatthiyaphaibun et al., 2022) ,
MMS and Seamless M4T (Communication et al.,
2023), which scaled up the Wav2Vec2 architec-
ture to over 1,000 languages. Even though these
models perform well in English speech, their per-
formance limitations have been observed in bilin-
gual datasets (Abushariah et al., 2023) and out-
of-domain language specific datasets (Jain et al.,
2023). This is common in Thai financial audio
reports and conference calls, in which most finan-
cial terms and company names are dominated by
non-native accented English. Inaccurate recogni-
tion not only increases the word error rate (WER)
but also degrades downstream tasks such as infor-
mation extraction. End-to-end transformer-based
architectures such as OpenAI’s Whisper (Radford
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et al., 2023) have shown promising results in ASR
tasks. Whisper is extensively pretrained on a large
multilingual audio corpus of 680,000h, potentially
making it a robust and reliable ASR system for
Thai speech. This presents an opportunity to com-
bine the strength of transformers and a larger and
more diverse datasets to improve the performance
of ASR models for Thai.

In this study, we enhance the existing Whisper
ASR models by creating a collection of open Whis-
per models specifically designed for Thai. We com-
bine multiple audio corpora from various sources
for fine-tuning. Our main objective is to build a
diverse corpus that captures the range of speech
nuances, dialects, and accents in Thai language. To
enhance the robustness of our models, temporal
and spectral augmentations were introduced dur-
ing fine-tuning. We experimented with models
trained using these enhancements to understand
their impact on improving model performance and
resilience against varying quality and background
noise. Balancing model accuracy with computa-
tional efficiency is an important consideration es-
pecially for environments with limited resources.
Previous works (Gandhi et al., 2023) show that it is
possible to compress the Whisper models through
knowledge distillation. However, a substantial
amount of training data is needed for the distilled
models to achieve comparable performance to their
counterparts. Our work showed that it is possible
to achieve successful model compression for Whis-
per models using a fraction of training data used in
(Gandhi et al., 2023). We show significant reduc-
tions in word error rates (WER) in all model sizes
compared to vanilla Whisper and other ASR mod-
els for Thai. Finally, we demonstrate our model’s
adaptability on OOD financial data. We release the
code and pretrained models which can be used as
baselines for Thai Whisper ASR.

1.1 Related Works

Availability of transformer-based multilingual ASR
models pretrained on massive datasets marks a
milestone in the field of low-moderate resource
ASR. Yet, few works have addressed the challenges
associated with building a robust ASR for Thai.
Naowarat et al. introduced contextualized con-
nectionist temporal classification (CCTC) loss to
address spelling inconsistencies in code switch-
ing Thai ASR. The contextual prediction capabil-
ities inherent in transformer architectures such as

those seen in Whisper models align with the ob-
jectives of the CCTC loss. The study focusing on
ASR technology for Thai dialects (Suwanbandit
et al., 2023) highlighted the importance of under-
standing tonal variations and employing targeted
learning approaches to enhance Thai ASR accuracy.
Due to the diverse language landscape of Thailand,
models capable of handling dialectical differences
are needed. Another advancement is the intro-
duction of fine-tuned Wav2Vec2 models for Thai
(Phatthiyaphaibun et al., 2022). Here, they utilized
a self-supervised pretrained Wav2Vec2 model and
fine-tuned on the Commonvoice dataset. However,
the total training data was only 128 hours. A more
comprehensive evaluation and pretrained models
were needed to understand the model’s capabilities.
Recent development of transformer-based models
such as Whisper (Radford et al., 2023) and Distil-
Whisper (Gandhi et al., 2023) have shown to effec-
tively capture robustness in multiple languages. By
extending the scope of training to languages with
limited resources, such as Thai, we can acquire crit-
ical insights into the process of fine-tuning these
models. This effort will contribute to the accessi-
bility of Thai ASR within the research community.

2 Materials and Methods

2.1 Datasets

2.1.1 Pretraining datasets
We aim to improve Whisper models to robustly
transcribe Thai audios. The first stage is to col-
lect data sets to pretrain the Whisper models. We
combine multiple primary data sources for pre-
training from publicly available speech and internet
audio datasets, including Thai CommonVoice 13
(CMV13) (51.41h) (Ardila et al., 2020), Google
Fleurs (8.49h) (Conneau et al., 2023), Gowajee
(15h) (Chuangsuwanich et al., 2020) and Thai El-
derly Speech (26.56h)1, and Thai Central Dialect
corpus (683.9h) (Naowarat et al., 2021). To make
the model generalize to most domains, we scrape
audio from various sources on the Internet, first list-
ing 250 generic Thai keywords and exploring their
associated queries or topics using Google Trends2

. We then used the associated queries to search
for audios over the Internet and acquired 5,100 un-
cleaned captioned audios. To clean the captioned
audio, the audios are selected if they are (i) pub-

1https://github.com/VISAI-DATAWOW/
Thai-Elderly-Speech-dataset/releases/tag/v1.0.0

2https://trends.google.com/trends/
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Figure 1: Schematic of model pretraining: The Whisper model is fine-tuned on a collection of more than 1.3k
hours of Thai audios with additional augmentations including audio clip concatenation, waveform augmentation
(Gaussian noise, time stretch, and pitch shift), and spectral augmentations.

licly accessible, (ii) in Thai, (iii) available with
Thai subtitles, and (iv) not categorized as music,
resulting in a total of 631.89 hours of additional
audios. Combining these datasets results in a total
of 1,316.76 hours.

2.1.2 OOD Financial audio dataset
We have assembled a specialized dataset tailored
for the financial domain to see adaptability and us-
age of the models in domain-specific use cases. The
rationale behind this lies in the presence of distinc-
tive terminology within the financial sector, which
is not typically encountered in general-purpose
databases. In this effort, we collected around 18
hours of financial reports from earnings call videos,
“Oppday”3. These records cover quarterly reports
from various companies from 2020 to 2021. We
used VAD (Team, 2021) to segment each audio file
into short snippets ranging approximately from 2
to 4 seconds, resulting in 30,185 audio snippets.
We annotate these snippets using the web-based
tool ’Audino’ (Grover et al., 2021). The audio sam-
ples are divided into 28,568 (96.64%, 17.69h) and
1,617 (5.36%, 1.08h) samples of training and test-
ing, respectively. We use the OOD data to evaluate
zero-shot generalization and fine-tune our models
to see their adaptability compared to other Whisper
models.

2.2 Thonburian Whisper Pretraining

The performance of the fine-tuned Whisper for
Thai depends on the size of the pre-training and
the fine-tuning strategy. Here, we select small,
medium, and large (v3) Whisper model sizes for
fine-tuning for Thai. We fine-tuned the models us-
ing a straightforward approach without augmenta-

3https://listed-company-presentation.setgroup.
or.th/en

tion. In addition, we propose a set of augmentation
techniques applied during training to make Whis-
per more robust for Thai audios, which include

• Concatenation of audio clips: The concatena-
tion of short audio to reach the default Whis-
per input length (30s) improves the efficiency
of the sample and training.

• Waveform augmentation: Raw waveform aug-
mentations for collected audios are applied
randomly. Techniques include Gaussian noise
injection, temporal waveform dilation, and
pitch shifting (Jordal et al., 2023).

• SpecAugment: We applied SpecAugment
(Park et al., 2019) to mask the features of
the spectrogram along the temporal and fre-
quency axes. We set a probability of 0.3 for
time masking and apply masking along 10
consecutive time steps. We applied frequency
masking across 64 frequency bands with a
probability of 0.1.

All models were trained for 10,000 iterations with
and without proposed augmentation. We used a
batch size of 16, using the deep-speed ZeRO opti-
mizer (Rajbhandari et al., 2020). Pretrained models
are evaluated and compared with the vanilla Whis-
per models, Thai Wav2Vec 2.0, and Seamless-M4T
large models.

2.3 Model Distillation

We use the distillation technique proposed by
(Gandhi et al., 2023) using layer-based compres-
sion of the Whisper decoder layers. Four maxi-
mally spaced decoder layers are copied from the
teacher model to the student model, while the
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teacher’s encoder layers are kept intact (Supple-
mentary Table 4). During distillation, the predic-
tion probabilities of the student model are trained
to match those of the teacher model by minimizing
the Kullback-Leibler (KL) divergence across the
entire spectrum of possible tokens. In contrast to
Gandhi et al. which used more than 21k hours of
audio, including pseudo-labels, our approach uti-
lizes a more modest distillation dataset of around
1,317 hours. Distillation is carried out in two steps:
for the first 10,000 iterations, the optimal align-
ment between the encoder and decoder layers of
the student model is achieved through the guidance
of the teacher. Next, the student model is fine-
tuned for another 10,000 iterations using the same
dataset without relying on KL divergence loss. This
approach of dual-step distillation and fine tuning
allows the proposed distilled models to preserve
accuracy despite utilizing significantly fewer hours
of data.

2.4 Zero-shot Performance and Fine-tuning
on OOD Financial Dataset

For vanilla Whisper (Radford et al., 2023) models,
ThaiWav2Vec 2.0 (Phatthiyaphaibun et al., 2022)
and Seamless M4T large (Communication et al.,
2023), we evaluated their zero-shot performances
on CMV13 test, FLEURS test and Thai Central
dev datasets. Furthermore, we test all the models’
zero-shot generalization on the OOD dataset and
perform fine-tuning of both vanilla and Thonburian
Whisper models to see their adaptability in the fi-
nancial domain.

2.5 Model Robustness Under Environmental
Noises

To evaluate the robustness of our pretrained mod-
els, we inject environmental disturbances sourced
from the ESC-50 dataset (Piczak, 2015) into the
FLEURS test set (Conneau et al., 2023). We used
2,000 environmental audio recordings that span 50
semantic categories, each lasting 5 seconds. We
selected 40 longest-duration samples and adjusted
the amplitude, using the noises according to the
signal-to-noise ratio (SNR). Noise samples are du-
plicated or trimmed depending on the length of the
audio to be inserted. This process is repeated across
9 SNR levels, ranging from - 20dB to 20dB with
5dB increments. This results in a corrupted test set
that contains 2,000 corrupted audios for each SNR.

2.6 Model Evaluation

We perform naive text post-processing to normal-
ize the output transcript, such as vowel correc-
tions, tone mark orders, and extra white space re-
moval. Evaluation is carried out by calculating the
the word error rate (WER), the deletion error rate
(DER), the substitution error rate (SER) and the
insertion error rate (IER) with Thai word tokenizer,
deepcut (Kittinaradorn et al., 2019). IER can be
used to indicate the hallucination of the model, i.e.,
predicting repeated words. Other evaluation in-
cludes measurement of the latency in predicting
short- and long-form audios (Supplementary Table
4).

3 Results and Discussion

3.1 Model Performance

We evaluate all models on the short-form au-
dios without timestamp prediction on Common
Voice 13, FLEURS, and Thai Central develop-
ment datasets (Table 1). Thonburian Whisper
have shown improved performance in all model
sizes. They have shown less vulnerability to hal-
lucinations as seen in the lower IERs. The small
model gained the highest WER improvement after
fine-tuning on the combined Thai dataset where
the large Thonburian models obtained the lowest
WERs on all our test sets. An interesting obser-
vation is that the augmented large model demon-
strates a minor decline in performance on Common-
voice 13 and FLUER while slightly outperforming
the non-augmented variant in Thai Central develop-
ment dataset. The augmented models show a higher
robustness after a noise corruption with SNR less
than -5 dB (Figure 2).

Distilled Thonburian Whisper (S, M) with 1.3k
hours of audios have shown comparable perfor-
mance (less than 1 WER difference on CMV13
and Thai Central Dev) to the original model in all
evaluated dataset (Table 1). They have 68.6% and
56.02% less parameters compared to the original
S, M models. Hence, the distilled models achieve
1.26x and 3.89x speed up in short-form inference
and 1.72x and 2.41x for long-form inference (Ta-
ble 4). Therefore, the trade-off between accuracy
and computational complexity may be justifiable
in resource constrained scenarios.
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Table 1: Evaluation Results on Different Datasets

Model Params CMV13-Test Google Fleurs Test Thai Central Dev

(M) WER IER SER DER WER IER SER DER WER IER SER DER

Vanilla (S) 242 38.8 8.6 26.7 3.5 43.0 8.6 30.5 3.9 61.5 5.0 41.3 15.1
Vanilla (M) 764 23.9 4.5 16.8 2.6 30.5 6.5 20.6 3.5 50.6 2.3 32.0 16.3
Vanilla (L) 1,543 12.8 2.1 9.1 1.5 14.7 3.2 9.4 2.0 37.9 1.9 22.6 13.3

Thonburian (S, A) 242 13.1 3.5 8.5 1.1 15.4 3.9 9.5 1.9 8.9 2.6 5.4 0.9
Thonburian (S) 242 11.0 2.2 7.7 1.1 14.1 3.3 8.8 2.0 8.7 2.6 5.1 1.0
Thonburian (M, A) 764 7.4 1.5 5.1 0.8 10.5 2.8 6.2 1.6 6.2 1.7 3.7 0.9
Thonburian (M) 764 6.6 1.0 4.8 0.8 10.2 2.8 5.9 1.5 6.8 2.4 3.7 0.8
Thonburian (L, A) 1,543 6.6 1.4 4.5 0.7 9.1 2.3 5.3 1.5 5.4 1.3 3.2 0.9
Thonburian (L) 1,543 5.5 0.8 4.0 0.7 8.7 2.0 5.2 1.5 6.0 1.8 3.3 0.9

Distilled Thonburian (S) 166 11.2 2.2 7.8 1.2 16.6 4.8 9.8 2.0 8.9 2.6 5.2 1.0
Distilled Thonburian (M) 428 7.6 1.2 5.5 0.9 12.5 3.4 7.3 1.8 6.5 1.6 3.9 1.0

Wav2Vec2 (L) 316 10.3 4.0 5.4 0.9 25.4 9.9 14.0 1.5 26.2 3.5 20.0 2.7
Seamless-M4T (L) 2,360 12.8 1.9 9.3 1.6 20.0 5.1 12.1 2.9 34.2 2.1 23.4 8.7

1 S,M,L - Small, Medium, Large; A - Augmented

Table 2: Zero-Shot Performance on the OOD Financial
Domain Test

Model WERIER SER DER

Vanilla (S) 72.7 26.6 31.8 14.4
Vanilla (M) 59.7 21.8 24.0 13.9
Vanilla (L) 25.2 3.3 12.4 9.5

Thonburian (S) 32.1 8.2 13.8 10.1
Thonburian (S, A) 33.2 10.9 14.0 8.3
Thonburian (M) 23.6 5.2 10.0 8.4
Thonburian (M, A) 25.4 8.2 10.0 7.2
Thonburian (L) 18.7 2.5 8.7 7.5
Thonburian (L, A) 19.7 2.6 8.4 8.7

Distilled Thonburian (S) 32.4 8.2 14.3 9.9
Distilled Thonburian (M) 27.5 5.4 11.5 10.6

Wav2Vec2 (L) 46.9 10.1 33.1 3.7
Seamless-M4T (L) 37.4 7.2 24.7 5.5

3.2 OOD in financial domain and fine-tuning
capability

Table 2 provides an analysis of how Thai ASR mod-
els perform when faced with OOD data without
any additional fine tuning. Vanilla whisper mod-
els, especially small (72.7% WER) and medium
(59.7% WER) ones, exhibit a significant struggle
when dealing with audio samples from specific do-
mains such as finance. Frequent code-switching

Table 3: OOD Fine-Tuning Results on Oppday Test Set

Model WERIER SER DER

Thonburian (S) 15.3 3.4 10.0 1.9
Thonburian (S, A) 15.2 3.3 9.9 1.9

Thonburian (M) 11.9 2.6 7.7 1.5
Thonburian (M, A) 11.5 2.5 7.5 1.5

Distilled Thonburian (S) 17.3 4.2 10.4 2.6
Distilled Thonburian (M) 13.3 3.0 8.6 1.7

Vanilla (S) 21.8 5.5 14.0 2.3
Vanilla (M) 14.7 3.3 9.6 1.7

between domain specific terms in English and Thai
coupled with non-native accents makes it particu-
larly challenging. In contrast, Thonburian Whisper
models show remarkable improvements in perfor-
mance compared to their vanilla counterparts. Mod-
els such as Wav2Vec2 (L) and Seamless-M4T (L)
demonstrate higher WERs than Vanilla Whisper
(L). In particular, their substitution error rates are
much higher. This underscores the varying levels of
success in zero-shot generalization across different
model architectures. Table 3 shows the results on
Oppday test set after fine-tuning on the domain spe-
cific data. All Thonburian models perform better
than their vanilla Whisper counterparts. Interest-
ingly, even the distilled models can adapt better to
OOD data. This suggests that the proposed training
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Figure 2: Robustness of the models under environmental
noise.

scheme can enhance the adaptability of baseline
Whisper models.

3.3 Model robustness under environmental
noise

Augmented Thonburian Whisper large consistently
outperforms all other models across different SNR
levels of environmental noise corruption (Figure
2). From 0 to 20 dB, the non-augmented Thoun-
burian models (S, M, L) show average WERs of
23.3, 16.18 and 13.15 respectively. The augmented
models perform similarly under milder noise con-
ditions with average WERs of 23.38, 15.83 and
13.56. As the noise corruptions become more se-
vere (0 to -20 dB), the augmented variants outper-
form their counterparts. The standard deviations of
WER for Thonburian Whisper small, medium and
large are 5.10, 3.37, and 2.71 respectively. This
suggests their performance is consistent across the
SNR levels from 20 to 0, which is a good indicator
of the model robustness. The proposed training
scheme seems to have significantly improved the
performance of the Whisper models under noisy
conditions.

4 Conclusion

This study shows that Whisper based automatic
speech recognition models can be successfully
adapted and enhanced for Thai language. The pro-
posed fine-tuning scheme and a combined corpus of
Thai audios have led to substantial improvements
in word error rate (WER) over existing baselines
and previous works. Furthermore, we show that
it is feasible to compress Whisper models through
knowledge distillation with a fraction of data used
in (Gandhi et al., 2023). This highlights the po-

tential for creating lightweight yet strong ASR so-
lutions for low resource languages. The strong
performance of Thonburian Whisper models on the
OOD financial dataset showcases their effective-
ness and adaptability. This is notable considering
the complex terminology, code switching tenden-
cies and accented speech.

Limitations

The suggested audio augmentation methods can
help create robust ASR systems designed for noisy
environments. However, the differing levels of
noise resistance among the models call for a further
exploration of optimization tactics that can consis-
tently improve robustness regardless of model sizes.
The distilled models, especially the small one, are
more adversely affected by noise corruptions. This
indicates that there is still room for improvements
in the distillation process to enhance robustness.
Finally, while this study demonstrated the adapt-
ability to financial domain data, further efforts are
necessary to assess how well the models would
work in a range of fields and situations for a lan-
guage as complex and tonally varied as Thai.
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Table 4: Computational Resources Comparison Across Distilled Models

Model Encoder Decoder GPU Memory Usage Memory Efficiency1 Short-Form
Speed Up2

Long-Form
Speed Up3

Thonburian (S) 12 12 461MB - - -
Thonburian (M) 24 24 1,420MB - - -
Distilled Thonburian (S) 12 4 317MB 1.45x 1.26x 1.72x
Distilled Thonburian (M) 24 4 816MB 1.74x 3.89x 2.41x

1 Memory efficiency indicates the relative GPU memory usage effectiveness in FP16.
2 Short-Form speed up is the time taken to transcribe approximately 6 seconds of audio.
3 Long-Form speed up refers to the time taken to transcribe approximately 60 seconds of audio.
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Abstract

The integration of artificial intelligence (AI)
into the medical field has revolutionized doc-
umentation and diagnosis. However, the de-
tection of AI-generated text within medical
records remains a crucial task. This paper
describes a dual-task learning framework us-
ing the ELECTRA model for detecting AI-
generated medical texts and performing named
entity recognition (NER). The dual-task model
includes a binary classification head for iden-
tifying AI-generated texts and an NER head
for extracting medical entities. Experiments
on radiology report and medical texts datasets
show that the proposed approach achieves ro-
bust performance, with F1 scores of 0.985 and
0.996 for classification and 0.51 and 0.68 for
NER. The model achieves a high accuracy of
0.996 for medical text classification and 0.985
for MiMic classification, enhancing automated
medical text analysis and supporting clinical
decision-making.

1 Introduction

The advent of large language models such as Chat-
GPT (Generative Pretrained Transformer) has rev-
olutionized various sectors (Radford et al., 2018),
including the medical field, by enabling the genera-
tion of coherent and human-like text (Hamad et al.,
2024; Hireche and Belkacem, 2024; Hireche et al.,
2023; Jamil et al., 2024). These advances have fa-
cilitated tasks such as automated report generation,
clinical documentation, and medical information
dissemination. However, the spread of artificial
intelligence (AI)-generated text in medicine raises
significant concerns regarding the accuracy, relia-
bility, and authenticity of the information contained
therein. Misleading AI-generated medical content
can have severe consequences, potentially compro-
mising patient care and medical research integrity.
Human medical writers, with their depth of under-
standing and expertise in the medical field, cannot
at present be fully replaced by ChatGPT (Homolak,

2023; Liao et al., 2023; Tan et al., 2024). Addition-
ally, there are concerns regarding potential bias in
AI-generated content and the necessity for trans-
parency in AI usage. This makes it essential to
ensure the integrity and accuracy of medical in-
formation, indicating the important role of human
oversight in creating medical content (Sajid and
ul Hassan, 2022).

Distinguishing between human-written and AI-
generated medical texts is challenging and requires
robust detection methods. There are several differ-
ences between medical texts authored by humans
and those generated by AI agents. Human-written
texts have a larger vocabulary, greater diversity, and
include specific information and numbers, making
them detailed and contextually rich. In contrast,
AI-generated texts use more common terminology,
emphasizing fluency and logical structure, and are
generally more neutral and positive in sentiment.
In terms of parts-of-speech, AI-generated texts con-
tain more nouns, determiners, plural nouns, and
coordinating conjunctions, indicating a structured
style, whereas humans use more cardinal digits and
adverbs, reflecting greater specificity. Similarly,
dependency parsing in AI-generated texts includes
more determiners and conjuncts, with human texts
having more numeric and adverbial modifiers. Fur-
thermore, text perplexity is lower for AI-generated
texts due to the replication of common patterns,
whereas human texts display a greater degree of
variation (Liao et al., 2023). Existing approaches,
such as linguistic feature analysis and machine
learning models, have shown promise, but often
fall short in handling the complexities of medical
language. To address these limitations, we propose
a multitask model that leverages the capabilities of
the ELECTRA (Efficiently Learning an Encoder
that Classifies Token Replacements Accurately)
(Clark et al., 2020) language model. ELECTRA
achieves superior performance in various natural
language processing (NLP) tasks due to its effi-
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ciency in text encoding and understanding. Our
proposed model utilizes ELECTRA for two pri-
mary tasks: differentiating between human-written
and AI-generated texts and enhancing text compre-
hension through named entity recognition (NER).
By integrating these tasks, the proposed model not
only identifies AI-generated content, but also im-
proves the understanding of medical texts, thereby
increasing the accuracy of detection.

The integration of NER into the detection frame-
work enables the model to identify and classify es-
sential medical entities, thereby offering deeper in-
sights into the context and content of the text. This
dual-task approach ensures comprehensive analy-
sis, capturing subtle differences between human-
and AI-generated medical texts that may be over-
looked by single-task models. Moreover, the en-
hanced text understanding provided by NER aids
in the detection of inconsistencies and anomalies
indicative of AI-generated content. This approach
enhances parameter efficiency by sharing model pa-
rameters across tasks and leverages transfer learn-
ing, thereby allowing knowledge from one task to
benefit the other. In addition, our model produces
consistent predictions while simplifying deploy-
ment by reducing the need for separate models.

The remainder of this paper is organized as fol-
lows. Section 2 provides a brief review of the
previous literature, before Section 3 describes the
proposed methodology used to develop the model.
Section 4 covers the experiments and results. Fi-
nally, Section 5 concludes the paper.

2 Literature Review

In this section, recent papers on both AI-text detec-
tion and medical NER tasks are summarized.

2.1 AI-text detection task

Guo et al. (2023) evaluated ChatGPT’s perfor-
mance in mimicking human expert responses us-
ing the Human ChatGPT Comparison Corpus
(HC3), which includes around 40,000 questions
and answers from both human experts and Chat-
GPT across various domains. The study utilized
RoBERTa and GLTR models to analyze the text, re-
vealing that RoBERTa significantly outperformed
GLTR. Specifically, RoBERTa achieved F1 scores
of 99.82% in full-text detection and 87.17% in
sentence-level detection, compared with GLTR’s
98.31% and 70.91%, respectively.

Scheibe and Mandl (2023) explored the ef-
fectiveness of models in distinguishing between
human-written and machine-generated texts. Their
study was framed within the AuTexTification 2023
shared task, focusing on automated text identifi-
cation. The methodology uses the pre-trained De-
BERTaV2 model (He et al., 2020), selected for
its capabilities in handling text classification tasks,
and a dataset that comprises a balanced mix of hu-
man and machine-generated texts, resulting in a
robust training environment. In terms of results,
the DeBERTaV2 model achieved a macro-F1 score
of 67.2%, ranking 15th out of 76 submissions for
subtask 1.

Verma et al. (2023) introduced Ghostbuster, de-
veloped by UC Berkeley researchers to detect
AI-generated text. Ghostbuster uses the GPT-3
Davinci configuration to extract probabilistic fea-
tures, and employs a linear classifier to identify
machine-generated text. Token probabilities from
the text-generating AI are not required, making
Ghostbuster effective even with complex models.
Tested on three datasets covering student essays,
creative writing, and news articles, Ghostbuster
achieved a 99% F1 score, outperforming models
including DetectGPT and GPTZero.

Alamleh et al. (2023) explored machine learning-
based approaches to detect ChatGPT-generated
text. The authors evaluated their models on a
Kaggle dataset of 10,000 instances, half from hu-
man sources and half generated by GPT-3.5. They
employed a variety of machine learning and deep
learning algorithms, including random forests, lo-
gistic regression, decision trees, support vector ma-
chines, AdaBoost, bagging classifiers, multilayer
perceptrons, and long short-term memory (LSTM)
networks, with a special focus on the extremely
randomized trees classifier for its robustness in
handling random data points. Their methodol-
ogy involves sentence vectorization using the term
frequency–inverse document frequency (TF-IDF)
followed by classification. The highest achieved
accuracy for distinguishing between human- and
ChatGPT-generated texts was 77%.

Mitrović et al. (2023) investigated the abil-
ity of machine learning to detect AI-generated
short online reviews, comparing a Transformer-
based model with a perplexity-based approach.
Two datasets were created: one with ChatGPT-
generated texts from custom prompts and another
with rephrased human-written reviews. The Shap-
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Figure 1: Medical NER tagging example using en-core-med7-lg pretrained model.

ley additive explanations were used to identify in-
fluential features. The Transformer-based model
proved more effective, achieving up to 98% ac-
curacy for straightforward AI-generated texts and
79% for rephrased texts.

Liao et al. (2023) highlighted the risks of AI-
generated content in medical contexts. The authors
constructed datasets of both human-written and
ChatGPT-generated medical texts, before analyz-
ing the linguistic properties and employing ma-
chine learning to identify AI-generated content.
The key differences were found to be the more
detailed and varied human texts versus more gen-
eral and fluent AI texts. A BERT-based model
achieved an F1 score of over 95% in identifying
AI-generated texts.

2.2 Medical NER tasks

For medical NER tasks, several studies have tar-
geted different languages using machine and deep
learning approaches. Review articles have specif-
ically addressed medical and clinical NER ap-
proaches (Ahmad et al., 2023; Pagad and Pradeep,
2022).

Gaschi et al. (2023) evaluated cross-lingual trans-
fer (CLT) and translation-based methods for med-
ical NER in English, French, and German. They
used the N2C2, MedNERF, and GERNERMED
datasets, and applied fine-tuned multilingual mod-
els (XLM-R, mBERT) to N2C2 for CLT, as well as
translating N2C2 for training (translate-train) and
testing (translate-test). CLT with the XLM-R base
yielded F1 scores of 79.1% for French and 72.2%
for German. The translate-train method achieved
F1 scores of 78.6% for French and 74.8% for Ger-
man, while DrBERT PubMed scored 78.8% for
French and 75% for German.

Park et al. (2023) developed a web service using
BioBERT to integrate NER and relation extraction
(RE) in the biomedical domain. The BioBERT
base was fine-tuned using the NCBI Disease Cor-
pus and BC2GM Corpus (for NER) and the Ge-
netic Association Database (for RE). The NER sys-

tem demonstrated high performance, achieving a
precision of 85.16%, recall of 83.65%, and an F1
score of 84.4% for gene/protein recognition, and
89.04%, 89.69%, and 89.36%, respectively, for
disease recognition. The Django-based web ser-
vice allows users to input PubMed IDs, retrieve
abstracts, and view color-coded NER results and
interactive RE graphs.

Xu et al. (2018) presented a combined deep
learning approach for medical NER. Utilizing
datasets from the 2010 i2b2/VA NLP Challenges,
their study implemented an attention-based LSTM
architecture combined with a conditional random
field to target document-level global information.
This method employs pretrained word embeddings
and bidirectional language models trained on the
MIMIC-III corpus, and addresses the limitations of
sentence-level NER by incorporating global con-
text through neural attention mechanisms. The
model achieved an impressive micro-F1 score of
85.71%.

Naseem et al. (2021) constructed BioALBERT,
a domain-specific language model optimized for
biomedical NER. The model was trained on
large-scale biomedical corpora from PubMed and
PMC, addressing the limitations of existing mod-
els through techniques such as factorized embed-
ding parameterization, cross-layer parameter shar-
ing, and sentence-order prediction. BioALBERT
demonstrated significant performance improve-
ments across various datasets: 7.47% for NCBI
Disease, 10.63% for BC5CDR-Disease, 4.61% for
BC5CDR-Chem, 3.89% for BC4CHEMD, 12.25%
for BC2GM, 6.42% for JNLPBA, 6.19% for LIN-
NAEUS, and 23.71% for Species-800.

Košprdić et al. (2023) proposed a biomedical
NER approach using zero- and few-shot learn-
ing with six public corpora: CDR, CHEMDNER,
BioRED, NCBI Disease, JNLPBA, and N2C2.
They fine-tuned the BioBERT and PubMedBERT
models, converting multiclass token classification
into binary token classification to recognize un-
seen entity classes through semantic similarities
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from pretraining. The method achieved average
F1 scores of 35.44% for zero-shot NER, 50.10%
for one-shot NER, 69.94% for 10-shot NER, and
79.51% for 100-shot NER.

3 Proposed Model

This section describes the proposed model. Mul-
titask learning is used to train a single model on
multiple tasks simultaneously, improving both gen-
eralization and performance through shared repre-
sentations. This approach enhances parameter effi-
ciency by sharing model parameters across tasks,
which is beneficial when there are limited computa-
tional resources or datasets. Transfer learning lever-
ages knowledge from one task to enhance another.
Multitask models yield consistent and coherent pre-
dictions, simplifying deployment by reducing the
need for separate models. In a dual-task model for
text classification and NER tagging, shared linguis-
tic and entity recognition capabilities enhance the
overall performance. The following subsections
detail the proposed architecture. Figure 2 provides
an overview.

Figure 2: Proposed model architecture.

3.1 Data preprocessing
Data preprocessing makes a significant contribu-
tion to model performance. The following prepro-
cessing steps are implemented:

• Identification of null entries: an initial assess-
ment is performed to identify columns con-

taining missing values.

• Tokenization: text data are tokenized to con-
vert sentences into single tokens. This process
is essential for subsequent text processing and
model input preparation.

• Remove special characters: special characters
that do not add to the semantic meaning of the
text are removed. This step helps in cleaning
the data and minimizing noise.

• NER data annotation: the data are annotated
with medical NER tags using the SpaCy pre-
trained model (“en-core-med7-lg” version)
(AI, 2024). This model is specifically de-
signed for medical NER, identifying enti-
ties such as DRUG (names of medications),
DOSAGE (dosage information and units),
DURATION (duration of medication use or
treatment), FORM (medication forms, i.e.,
tablets or injections), FREQUENCY (how of-
ten a medication is taken), ROUTE (route
of administration, i.e., oral or intravenous),
and STRENGTH (strength of the medication).
The use of these NER tags ensures the pre-
cise identification and categorization of rele-
vant medical entities within the text. Figure 1
illustrates an example of an annotated medi-
cal report tagged using the “en-core-med7-lg”
pretrained model.

• Encoding extraction: encoding vectors and la-
bels are extracted from the tokenized datasets
for both classification and NER tasks. This
involves generating numerical representations
of the text data that are suitable for model
training.

• Label padding and conversion for NER: NER
labels are padded and converted from string
tuples to integer labels using a label map. This
ensures that the labels have a consistent for-
mat and are aligned with the input sequences,
which is necessary for effective model train-
ing.

3.2 Framework architecture

To overcome the challenges of distinguishing be-
tween human-written and AI-generated medical
texts, a multitask framework leveraging the ELEC-
TRA language model is proposed. This frame-
work is designed to perform two primary tasks
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simultaneously: differentiating between human-
and AI-generated texts and enhancing text compre-
hension through NER. By integrating these tasks,
the model not only enhances the accuracy with
which AI-generated content is detected, but also
provides a deeper understanding of the context and
content of the medical texts. ELECTRA (Clark
et al., 2020) represents a pretraining approach for
text encoders, diverging significantly from tradi-
tional masked language modeling methods such as
BERT (Devlin et al., 2018). Rather than masking
random tokens and predicting their original forms,
ELECTRA modifies the input by replacing specific
tokens with plausible alternatives produced by a
smaller auxiliary network, known as the generator.

The primary model (discriminator) is then tasked
with identifying whether each token in the modi-
fied input is original or has been replaced. This
replaced token detection strategy leverages the en-
tire input sequence, thereby enhancing both sample
efficiency and computational effectiveness. The
discriminator plays a critical role, as it learns to
differentiate between authentic tokens and those
introduced by the generator using the full context
of the input data. This discriminative task not only
improves the training efficiency, but also enhances
performance on downstream tasks. The architec-
ture of ELECTRA integrates both a generator and
a discriminator, resulting in superior results with
fewer computational resources (Hao et al., 2021;
Ozyurt, 2020). Algorithm 1 in the appendix de-
scribes the proposed dual-task learning process for
both classification and NER tasks.

4 Experiments and Results

4.1 Dataset

The medical dataset utilized in this study comprises
two primary components, as described by Liao et al.
(2023). The medical abstract dataset is sourced
from a publicly available Kaggle dataset (Kamath,
2023) and includes texts related to five medical con-
ditions: digestive system diseases, cardiovascular
diseases, neoplasms, nervous system diseases, and
general pathological conditions. The radiology re-
port dataset, which is based on the work of Johnson
et al. (2016), includes selected radiology reports. A
total of 4400 samples were obtained from both the
radiology report and medical abstract datasets as
human-written medical texts. To create correspond-
ing ChatGPT-generated texts, a text continuation
method was applied, resulting in datasets contain-

ing 8800 samples each for the medical abstracts
and radiology reports. Both datasets were then di-
vided into 70% for training, 10% for validation,
and 20% for testing subsets, yielding 3080 samples
for training, 440 for validation, and 880 for testing
in each dataset.

4.2 Evaluation metrics
To evaluate the performance of the proposed model,
a comprehensive set of evaluation metrics was em-
ployed. The precision, recall, and F1 score are
essential metrics in the context of distinguishing
between AI-generated and human-written medical
texts.

4.3 Experimental settings
The experiments were conducted on the Kag-
gle platform using the GPU-enabled feature.
The applied model based on the “electra-small-
discriminator” checkpoint and tokenization was
handled by the ElectraTokenizer layer. For classifi-
cation tasks involving both the MiMic and medical
datasets, the batch size for classification tasks was
set to 16, whereas for NER tasks, it was set to 8.
NER tasks utilize seven labels, while classification
tasks are binary, involving two labels. The AdamW
optimizer was used (Loshchilov and Hutter, 2017)
with a learning rate of 5× 10−5. The training pro-
cess involved separate head optimization with five
epochs for both the classification and NER heads,
followed by joint optimization epochs.

4.4 Results and discussion
4.4.1 Evaluating dual-task performance
Table 1 compares the proposed model with other
models from the literature. The proposed model
performs robustly across all metrics for both NER
and classification tasks, outperforming ELECTRA,
RoBERTa (Liu et al., 2019), BioBERT (Lee et al.,
2020), and XLNet (Yang et al., 2019), and surpass-
ing the baseline model of Liao et al. (2023). Four
main models were used: Perplexity-CLS, CART,
XGBoost, and BERT. For Perplexity-CLS, BioGPT
calculates the text perplexity, with the optimal
threshold identified using the validation set. The
CART model uses TF-IDF for vectorization, a de-
cision tree with a maximum depth of four, and the
Gini impurity for feature division. The XGBoost
model also uses TF-IDF and sets the maximum
depth for base learners to four. The BERT model
achieves the best performance due to its advanced
text processing capabilities.
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Table 1: Performance evaluation for models.

Classification Task
Model Medical text MiMic

Accuracy Precision Recall F1 Accuracy Precision Recall F1
Perplexity-CLS (Liao et al., 2023) - 0.728 0.724 0.723 - 0.831 0.828 0.828

CART (Liao et al., 2023) - 0.777 0.745 0.738 - 0.829 0.825 0.824
XGBoost (Liao et al., 2023) - 0.898 0.893 0.893 - 0.899 0.898 0.898

BERT (Liao et al., 2023) - 0.958 0.958 0.958 - 0.968 0.967 0.967
BioBERT 0.948 0.943 0.942 0.944 0.970 0.968 0.968 0.969
RoBERTa 0.999 0.999 0.999 0.999 0.989 0.990 0.989 0.989

XLNet 0.998 0.998 0.998 0.998 0.988 0.988 0.988 0.988
ELECTRA 0.996 0.996 0.996 0.996 0.985 0.985 0.986 0.985

Named Entity Recognition Task
RoBERTa 0.54 0.41 0.47 0.58 0.75 0.72 0.72 0.73

XLNet 0.72 0.42 0.48 0.51 0.45 0.31 0.36 0.38
ELECTRA 0.68 0.45 0.51 0.56 0.93 0.91 0.91 0.92

In comparison with the other models considered
in this study, ELECTRA demonstrates faster and
more robust performance. The ELECTRA model
utilizes a pretraining method that is more com-
putationally efficient than the traditional masked
language modeling employed by models such as
BERT. Instead of masking and predicting random
tokens, ELECTRA modifies the input by replacing
some tokens with plausible alternatives generated
by a small auxiliary network, and then trains a
discriminator to determine whether each token is
original text or substituted text. For the classifica-
tion task, ELECTRA demonstrates robust perfor-
mance on both the medical text and MiMic datasets.
Specifically, ELECTRA achieves an accuracy of
0.985 for the MiMic dataset, with precision and
recall scores of 0.985 and 0.986, respectively, re-
sulting in an F1 score of 0.985. For the medical
texts, ELECTRA achieves an accuracy of 0.996,
with precision, recall, and F1 scores all at 0.996.
This performance is comparable to, and in some
cases exceeds, that of other transformer-based mod-
els such as BioBERT. The high F1 scores indicate
that ELECTRA is highly effective at differentiat-
ing between AI-generated and human-written texts,
making it a strong candidate for this classification
task.

In the NER task, ELECTRA produces balanced
performance across the datasets. On the MiMic
dataset, ELECTRA achieves an accuracy of 0.93,
precision and recall of 0.91, and an F1 score of 0.92.
The medical reports dataset, however, presents a
more challenging environment for the model due to
the nature of the written text. ELECTRA achieves
an accuracy of 0.68 and an F1 score of 0.56 on this
dataset, with precision at 0.45 and recall at 0.51.

In the field of medical AI, the development of

a stable architecture capable of both classification
and NER tasks is essential. ELECTRA demon-
strates efficient classification, achieving high F1
scores on both the medical text and MiMic datasets,
thereby ensuring precise differentiation between
AI-generated and human-written texts. Although
there is potential for improvement in terms of NER
performance, the ability of ELECTRA to identify
and classify medical entities remains significant.
This stability across multiple tasks enhances the
reliability of automated medical text analysis, facil-
itating more accurate clinical decision-making and
efficient information processing.

To evaluate the effect of using a dual-task model
instead of a single classification model, the ELEC-
TRA classification model was tested alone and
achieved an accuracy of 0.967, precision of 0.968,
recall of 0.967, and an F1 score of 0.967. Using the
dual-task ELECTRA model, which integrates NER
parameters, enhances the results over those given
by the ELECTRA model alone. The integration
of NER allows the model to better understand and
classify complex medical texts by recognizing and
categorizing relevant entities within the text, thus
improving the overall accuracy and reliability of
the classification.

The receiver operating characteristic (ROC)
curves are shown in Fig. 3. These curves eval-
uate the performance of the classification and NER
tasks on the medical and MiMic datasets. The
top-left plot shows the overall ROC curves, with an
area under the curve (AUC) of 1.0 for both datasets,
indicating significant classification performance in
distinguishing AI-generated from human-written
text. The top-right plot displays the ROC curves
for the NER task, with slightly better performance
on the MiMic dataset than the medical dataset.
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The bottom-left plot presents multiple ROC curves
for the medical dataset’s NER performance across
different classes (0–6, representing form, dosage,
route, frequency, drug, strength, and duration), with
Class 4 (Drug) and Class 0 (Form) having the high-
est and lowest AUCs, respectively. Similarly, the
bottom-right plot shows the MiMic dataset’s NER
performance, with Class 1 (Dosage) and Class 6
(Duration) being the most challenging and easiest
classes, respectively. The micro-average curves in
the bottom plots indicate good overall NER perfor-
mance.

Figure 3: ROC curves for both experimented tasks.

To add more explainability to the trained model,
the Local Interpretable Model-agnostic Explana-
tions (LIME) tool was utilized (Ribeiro et al., 2016).
LIME increases interpretability by approximating
the behavior of complex models around specific
predictions. The trained weights of the ELECTRA
model were used to plot these figures. In Fig. 4(a),
the model assigns a high probability of 0.99 to the
text being GPT-generated and only 0.01 to it being
human-written, with key terms such as “treatment”,
“outcomes”, “indicating”, and “intervention” high-
lighted in orange, indicating their significant contri-
bution to the model’s classification decision. Figure
4(b) shows the prediction probability of 0.75 for the
text being human-written, while the probability for
GPT generation is 0.25, where key terms such as
“proved”, “unsuccessful”, “confirms”, “attempts”,
and “placement” are highlighted in blue, indicating
their significant contribution to the human-written
classification. In contrast, the terms “of” and “Con-
ray” are highlighted in orange, showing their asso-
ciation with the GPT-generated classification. The
resulting predictions are both correct.

To evaluate the effect of using Transformer mod-

els on the NER task alone, additional explorations
were conducted. ClinicalBERT (Huang et al.,
2019), SciBERT (Beltagy et al., 2019), BlueBERT
(Peng et al., 2019), and BioBERT are variants of
the BERT model (Devlin et al., 2018) tailored for
medical and clinical usage. ClinicalBERT is pre-
trained on clinical notes and medical records, en-
hancing its effectiveness in healthcare-related tasks.
SciBERT is pretrained on scientific literature from
Semantic Scholar, making it suitable for scientific
and academic applications. BlueBERT is trained
on a combination of biomedical and clinical texts,
specifically PubMed abstracts and MIMIC-III clin-
ical notes, allowing it to handle both domains
proficiently. BioBERT is pretrained on extensive
biomedical literature, including PubMed abstracts
and full-text articles from PubMed Central, result-
ing in optimization for understanding biomedical
texts. Other models such as BERT, RoBERT, and
ALBERT (Lan et al., 2019) were also included in
this experiment. Table 2 presents the results ob-
tained using these Transformers for the NER task.

Table 2: NER task evaluation.

Model Dataset Acc Precision Recall F1-score
ClinicalBERT Medical 0.93 0.80 0.76 0.78

MiMic 0.99 0.98 0.99 0.99
SciBERT Medical 0.88 0.70 0.63 0.65

MiMic 0.95 0.95 0.93 0.94
BlueBERT Medical 0.91 0.77 0.69 0.72

MiMic 0.97 0.98 0.96 0.97
BioBERT Medical 0.91 0.78 0.71 0.74

MiMic 0.97 0.97 0.96 0.96
ELECTRA Medical 0.88 0.70 0.57 0.63

MiMic 0.97 0.97 0.96 0.96
BERT Medical 0.90 0.75 0.69 0.72

MiMic 0.99 0.99 0.99 0.99
RoBERT Medical 0.86 0.66 0.48 0.55

MiMic 0.93 0.92 0.87 0.89
ALBERT Medical 0.86 0.54 0.41 0.47

MiMic 0.62 0.26 0.26 0.26

Comparative analysis of the pretrained
Transformer-based models for NER tasks across
the medical and MiMic datasets reveals significant
performance variability. ClinicalBERT and BERT
demonstrate exceptional proficiency, achieving
the highest F1 scores of 0.99 on the MiMic
dataset and 0.78 on the medical dataset. This
outstanding performance can be attributed to
their architecture, which enhances their ability to
accurately identify and classify named entities.
SciBERT and ELECTRA achieve moderately good
performance on the medical dataset (F1 scores of
0.65 and 0.63), but perform strongly on the MiMic
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(a)

(b)

Figure 4: Explainable examples using LIME. (a) Medical text example. (b) MiMic text example.

dataset (F1 scores of 0.94 and 0.96). BlueBERT
and BioBERT consistently perform well across
both datasets, achieving F1 scores of 0.72 and
0.74 on the medical dataset and 0.97 and 0.96
on the MiMic dataset. RoBERTa and ALBERT
display weak performance on the medical dataset
(F1 scores of 0.55 and 0.47), with ALBERT
underperforming on the MiMic dataset (F1 score
of 0.26).

In multitask learning, the separate tasks can in-
fluence each other’s outcomes. In a dual-task setup
with text classification and NER, classification is
often improved by joint training. This is due to
shared representations capturing general features
that are useful for both tasks, with NER enhancing
the model’s linguistic and semantic understand-
ing. This positive transfer acts as regularization,
reducing overfitting and boosting classification per-
formance. However, NER might perform better
alone due to task interference and complexity in
balancing losses in a dual-task model. Thus, while
multitask learning benefits classification, it poses
challenges for optimizing both tasks.

5 Conclusion and Future Work

This study developed a dual-task learning frame-
work using the ELECTRA model to detect AI-

generated medical texts and perform NER. The
integrated approach, combining a binary classi-
fication head and an NER head, showed robust
performance across medical text and radiology re-
port datasets. The framework effectively distin-
guishes human-written from AI-generated texts
and extracts critical medical entities, enhancing
detection accuracy and text comprehension. Ex-
periments demonstrated that the ELECTRA model
outperforms others in terms of inference speed and
prediction robustness, achieving high F1 scores for
both classification and NER tasks.

Future work will attempt to extend and refine
the proposed framework by exploring additional
datasets and domains to evaluate the model’s gen-
eralizability and robustness across various types
of medical texts. Moreover, incorporating more
advanced techniques for handling complex medi-
cal terminology and context-specific nuances could
further improve the framework’s performance and
applicability in real-world scenarios.
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A Appendix

Algorithm 1 Multitask learning for text classifica-
tion and NER.
Input:
1: D = {(xi, yi,Y

NER
i )}Ni=1: Dataset

2: M: Pretrained ELECTRA model
3: T : Tokenizer
4: Lmax: Maximum sequence length
5: L: Label set for NER
6: Ec, En: Epochs for classification and NER pretraining
7: Ej : Epochs for joint training

Output: Trained multitask model F
// Preprocessing

8: for i = 1 to N do
9: xt

i ← T (xi, Lmax)
10: YNER

i ← ConvertAndPad(YNER
i ,L, Lmax)

11: end for
// Model architecture

12: FBERT ←M
13: FNER ← LinearLayer(dBERT, |L|)
14: FCLS ← LinearLayer(dBERT + |L|, 2)

// Loss functions
15: LCLS ← CrossEntropyLoss()
16: LNER ← CrossEntropyLoss(ignore_index = −1)

// Separate pretraining
17: for e = 1 to max(Ec, En) do
18: if e ≤ Ec then
19: Train FBERT and FCLS using LCLS
20: end if
21: if e ≤ En then
22: Train FBERT and FNER using LNER
23: end if
24: end for

// Joint training
25: for e = 1 to Ej do
26: for (xt

i, yi,Y
NER
i ) in D do

27: Hi ← FBERT(x
t
i)

28: ZNER
i ← FNER(Hi)

29: hCLS
i ← Hi[0, :]

30: zCLS
i ← FCLS([h

CLS
i ;ZNER

i [0, :]])
31: LCLS ← LCLS(z

CLS
i , yi)

32: LNER ← LNER(Z
NER
i ,YNER

i )
33: Update F by minimizing LCLS + LNER
34: end for
35: end for=0
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Abstract

Multimodal learning involves integrating
information from various modalities to
enhance learning and comprehension. We
compare three modality fusion strategies
in person identification and verification by
processing two modalities: voice and face.
In this paper, a one-dimensional convolu-
tional neural network is employed for x-
vector extraction from voice, while the pre-
trained VGGFace2 network and transfer
learning are utilized for face modality.
In addition, gammatonegram is used as
speech representation in engagement with
the Darknet19 pre-trained network. The
proposed systems are evaluated using the
K-fold cross-validation technique on the
118 speakers of the test set of the VoxCeleb2
dataset. The comparative evaluations are
done for single-modality and three pro-
posed multimodal strategies in equal sit-
uations. Results demonstrate that the
feature fusion strategy of gammatonegram
and facial features achieves the highest
performance, with an accuracy of 98.37%
in the person identification task. However,
concatenating facial features with the x-
vector reaches 0.62% for EER in verification
tasks.

1 Introduction

Biometric modalities encompass distinct
static physiological traits that remain consis-
tent within the human body, like fingerprints,
as well as dynamic behavioral traits that are
unique characteristics displayed in response
to interactions with the environment, such as
gait. However, some modalities can be a com-
bination of both static and dynamic, such as
speech (Minaee et al., 2023). In the real world,
the human brain simultaneously processes
multiple modalities to recognize the identity

∗Correspondence: aref.farhadipour@uzh.ch

of each person. Although the exact mecha-
nism of multimodal processing in the human
brain remains unclear, the human mind can
effortlessly identify individuals based on their
faces and voices with minimal errors (Perrodin
et al., 2015). Voice and face have garnered
significant attention in the development of
automatic identity recognition systems (Mi-
naee et al., 2023; Farhadipour and Taghipour,
2023; Farhadipour and Veisi, 2024a). While
both modalities can change over time or be
vulnerable to spoof attacks, combining and
analyzing mixed forms of these two modalities
can potentially increase the uniqueness of
biometric features for each person in identity
recognition. In human-machine interaction,
identity recognition plays a crucial role. It has
been applied in various tasks such as access
control, automatic monitoring of older individ-
uals, rehabilitation programs for people with
physical and mental disabilities, etc. Auto-
matic identity recognition can be categorized
into two main tasks: person verification and
person identification. Person verification in-
volves authenticating a claimed identity. This
typically involves a two-class classification,
comparing the claimed identity with unique
specific and universal background models. In
other words, the system determines whether
to accept or reject the claimed identity. On the
other hand, person identification refers to the
process of identifying an identity in a multi-
class classification scenario, where the system
needs to determine the person’s identity from
a large pool of individuals who have been
previously trained. While there has been
significant research on developing multimodal
person verification systems (Shah et al., 2023),
there is still limited work done in the context
of multimodal person identification.

In recent years, deep learning has emerged
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as an effective approach to pattern recogni-
tion, allowing for the modeling of complex
functions. This approach enables multimodal
signal processing and can be implemented
through different tasks. In this work, we
utilized deep learning approaches in identity
recognition tasks with three different strate-
gies. The first strategy is sensor fusion, where
raw information, such as sound and image
data, are directly integrated into a classifier.
This approach combines the information from
different sources at the input level without
front-end processing. The second strategy
is feature fusion, which involves separately
extracting low-dimensional features from each
modality and then combining them to feed
into a classifier. This approach allows for the
extraction of modality-specific features before
integration. The third strategy is score fusion,
where separate classifiers are designed for
each modality, and the final scores from each
classifier are merged and fed into a decision-
making system.

In this work, it is assumed that the per-
son’s voice and face information are accessible
simultaneously. We trained two separate
systems to learn and recognize each modal-
ity individually for person identification and
verification. Furthermore, three multimodal
strategies have been proposed, including all
three discussed modes: sensor-level fusion,
feature-level fusion, and score-level fusion in
identification tasks. Finally, the best fusion
mode that is explored in the identification task
is utilized in the verification scenario.

To achieve these objectives, the pre-trained
VGGFace2 (Cao et al., 2018) is utilized for the
visual modality. However, for the voice modal-
ity, we proposed two methods consisting of
gammatonegram representation (Farhadipour
and Veisi, 2024b) and x-vector (Snyder et al.,
2018). This approach results in the creation of
the proposed FaceNet and VoiceNet models
for each modality from the VoxCeleb2 dataset.

In the feature and score fusion modes, we
mixed facial features with gammatonegram
and x-vector separately, and a softmax layer
was employed for multimodal learning by
combining the information from both modali-
ties. However, in score fusion mode, because
we chose a two-dimensional space for mixing

the modalities, we just concatenated facial
features with gammatonegram representation.
The proposed systems are trained and evalu-
ated using the test section of the VoxCeleb2
dataset, which consists of 118 speakers. A K-
fold cross-validation approach is utilized to
ensure robustness and reliability.

The rest of the paper is organized as follows.
Section 2 presents an overview of related
works. In Section 3, the proposed strategies
for multimodal learning in person identifica-
tion and verification are described in detail.
Section 4 focuses on the evaluation setup.
Experimental results are reported in section
5. Discussing the results and comparison with
previous works are done in section 6. Finally,
section 7 concludes the work and discusses
some ideas for future trends.

2 Related Works

Multimodal learning systems in identity
identification integrated different modalities,
including the fusion of fingerprint and DNA
(Ramana et al., 2022), face and gait (Prakash
et al., 2023), and face, palmprint and iris
(Aldjia and Leila, 2021). In integrating face and
speech, the main works focused on speaker
verification (Wang et al., 2022), and few works
are accomplished in speaker identification.
It should be noted that the existence of the
annual VoxSRC challenge had a great impact
on this tendency (Huh et al., 2023). In this
part, we report some of the previous works in
multimodal speaker identification.

In the paper (Chung et al., 2018), an EER of
4.42% was reported on the Voxceleb1 dataset
in a speaker verification task. The same au-
thors in another article (Nagrani et al., 2020) re-
ported 2.95% as EER on the Voxceleb1 dataset.
Authors in paper (Moufidi et al., 2023) utilized
a residual neural network to encode depth
videos, while a time delay neural network
architecture was used to encode voice signals.
To evaluate the performance, 1,000 random
speakers from the VoxCeleb2 dataset were
selected. In that work, the accuracy of the
three systems based on voice, depth of the lip
regions, and overall fusion reached 56.03%,
17.49%, and 64.11%, respectively.

Alam et al., (Alam et al., 2015) introduced
a confidence-based score fusion framework
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for audio-visual biometric identification. They
proposed the confidence-ratio approach. The
researchers utilized a database consisting of
43 individuals. The results indicated that, in
the best case with clean data, an accuracy
of 90.45% was achieved. Paper (Asadpour
et al., 2011) employed a combination of audio
and video features by implementing a hidden
Markov model.

The study (Shah et al., 2023) suggested
a two-branch network to extract facial and
voice signal features, using a support vector
machine to classify speakers based on single
and multi-domain features. Their method got
an accuracy of 97.2 % for Speaker identifi-
cation performance on VoxCeleb1. In (Sarı
et al., 2021), a multi-view model with a shared
classifier to map audio and video into a unified
space was introduced. The unimodal and
audio-visual fusion approaches achieved an
equal error rate of 1.6% on the VoxCeleb2
dataset in the person verification.

Qian et al.,(Qian et al., 2021) introduced
three types of audio-visual deep neural net-
works: feature level, embedding level, and
embedding level combination with joint learn-
ing. The VoxCeleb2 test trial list experiments
demonstrated equal error rates of 5.08% and
2.89% for visual and audio modality systems,
respectively. Tao et al., (Tao et al., 2020)
employed an audio-visual cross-modal dis-
crimination network for speaker recognition.
The best setting of the system gained an
accuracy of 86.12% on VoxCeleb2 for speaker
identification in score-level fusion.

The paper (Stefanidi et al., 2020) introduced
an approach to person identification using
CNNs on the VoxCeleb1 audiovisual database.
The outcomes achieved an 86.97% top-5 ac-
curacy. Cai et al., (Cai et al., 2022) pre-
sented a self-supervised learning framework
for speaker recognition, which combined clus-
tering and deep representation learning. With
multi-modal training data, their framework
obtained an accuracy of 77.60% on the Vox-
Celeb2.

3 Multimodal Learning Strategies

This work uses two single-modality systems
to analyze each modality before exploring
multimodal learning strategies. For the first

system, VoiceNet, we examined two methods.
The first one is the x-vector, which is a one-
dimensional CNN with five convolutional
layers, a statistical pooling layer (Wang et al.,
2021), and three fully connected layers that
focus on identity identification from voice
modality. The architecture of this neural
network is depicted in Figure 1. The second
one is the gammatonegram, which represents
the utterances as an image and fine-tunes
the Darknet19 (Redmon and Farhadi, 2017)
for learning the features of each speaker and
classification task.

As shown in figure 1, the person’s speech
is extracted from the video file, and silence
is removed using a Voice Activity Detector
(VAD) (Giannakopoulos, 2009). The audio
files are then transformed into MFCC (Mel-
frequency cepstral coefficients) features, and
the mismatch between training and test utter-
ances is reduced using the CMVN (Cepstral
Mean and Variance Normalization) technique
(Prasad and Umesh, 2013) and serves as input
for VoiceNet. We made another VoiceNet
using gammatonegram separately. The final
layer of VoiceNet consists of 118 neurons,
representing the number of speakers. The
outputs of VoiceNets present the performance
of the person identification systems based on
voice modality.

In addition to VoiceNet, the FaceNet is
proposed for face recognition, as shown in
Figure 1. FaceNet is built using a pre-trained
CNN known as VGGFace2, which has been
trained on more than 3.3 million face images
(Cao et al., 2018). The transfer learning tech-
nique is employed, where the final layers of
the network are replaced with new layers
to learn the specific information of the new
individuals.

The output of FaceNet represents the re-
sult of person identification using the face
modality. To ensure comparability across
different multimodal learning scenarios, an
overall audio file and a single frame of the
face are extracted from each video file. Since
each video contains only one person, the 25th
frame is extracted as the face modality.

Figure 1 illustrates the three proposed strate-
gies for multimodal learning: sensor fusion,
feature fusion, and score fusion. This study
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Figure 1: The block diagram of the proposed single-modality systems consists of VoiceNet, FaceNet, and
three multimodal systems with different fusion strategies

uses FaceNet and VoiceNets as the foundation
for feature and score fusion systems. However,
We employ a separate network with mixed
modalities as input for the sensor fusion
mode. In the subsequent sections, we compre-
hensively explain each multimodal learning
strategy.

3.1 Sensor Level Fusion

Since images are two-dimensional and
sounds are one-dimensional signals in this
multimodal learning strategy, we aim to
combine them into a shared data space. We
chose the gammatonegram visualization
method (Farhadipour et al., 2014) to represent
audio files. Sensor-level multimodal learning
is performed on the VGGFace2 network
and using transfer learning. As depicted
in the sensor level fusion system in Figure
1, we create an integrated image to serve
as input for the FaceVoiceNet. This input
image incorporates both facial and voice
information. The reasons for choosing voice
as the modality to be mapped to a new
space were influenced by two factors: the
availability of a powerful pre-trained network
for face recognition and the common practice
of representing voice in the form of an image
using the gammatonegram.

3.2 Feature Level Fusion

In the feature fusion mode, as depicted in
Figure 1, a softmax layer is employed for
multimodal learning. In this mode, VoiceNet
is utilized to extract the x-vector, resulting in a
feature vector of speakers with dimensions

of 512x1. Similarly, from the FaceNet, the
activation values of the last ReLU layer are
extracted as the facial feature embedding,
which is a 512x1 vector. These two vectors are
concatenated and construct a bimodal vector
with a size of 1024x1. In another scenario, we
replace gammatonegram and Darknet with
the x-vector. In this situation, we extract a
118x1 vector from a middle layer of Darknet19
as a feature vector to concatenate with facial
features and create a 630x1 dimension multi-
modal feature vector.

3.3 Score Level Fusion

The score fusion strategy aims to reach a
function that accurately predicts the correct
speaker ID by using the score vectors from the
basis networks. In other words, our proposed
system tries to estimate the f in eq. (1) to make
D, which is the ground truth in the training
process and the final decision in the testing
phase.

D = f (x, y) (1)

In this equation, x and y are the score vectors
of VoiceNets and FaceNet, respectively. We
used the softmax layer for modeling f based
on its high modeling ability. Each input vector
has 118 components, resulting in a bimodal
vector with a dimension of 236x1.

4 Evaluation Setup

In this work, the test part of the VoxCeleb2
dataset is used for evaluation. This part
consists of 118 speakers and is extracted from
YouTube videos in real-world conditions, in-
cluding various types of noise such as laughter,
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cross-talk, channel effects, music, and some
other environmental sounds. We used this
subset just to compare the performance of
different strategies proposed in this work in
a common situation. The test section of Vox-
Celeb2 comprises a total of 4,911 unique video
files and 36,237 utterances extracted from
these videos (Chung et al., 2018). To evaluate
the performance of the systems, the K-fold
cross-validation technique is employed, with
a value of K=3 based on a traditional strategy
to use 70% of data for training and the rest
for testing. This means that the evaluation is
repeated three times, and in each iteration, two
folds of the dataset are used for training, while
the remaining fold is employed for testing.
Under these conditions, approximately 24,000
bimodal utterances are used for training, while
around 12,000 bimodal utterances are used for
testing.

VoiceNet was trained in 8 epochs, with 128
batch sizes, and the learning rate was adjusted
from 1e-3 to 1e-5. On the other hand, the
VGGFace2 is trained in 15 epochs with batch
size 32 and a constant learning rate of 1e-
3. For fine-tuning the Darknet19, we set the
learning rate to 1e-4 with 15 epochs. Cross-
entropy was used as a loss function in the
training process of CNNs and softmax layers.
Moreover, stochastic gradient descent with
momentum was utilized as the optimizer. The
training process is stopped for multimodal
learning using the softmax layer when the
minimum gradient criteria are satisfied. In
this work, it occurred around the 40th to 50th
epoch. Two data augmentation techniques
were used to avoid overfitting and making
a general system: rotation operators within
the range of [-20, 20] degrees and vertical and
horizontal translation by a distance of [5, 5]
pixels.

To evaluate proposed identification systems,
there exist several metrics that can be utilized
to evaluate the efficiency of a multi-class
pattern recognition system. The system’s
effectiveness can be demonstrated from var-
ious perspectives by carefully selecting the
appropriate metrics that enable comparisons
with other works. The proposed evaluation
parameters encompass precision, specificity,
sensitivity, accuracy, and F1 score. The utiliza-

tion of a confusion matrix allows for a visual
representation of these parameters (Lever,
2016). Verification systems have encountered
two types of errors: false acceptance and false
rejection. False acceptance refers to the claims
that were accepted inaccurately. However,
false rejection deals with the identity that is
rejected incorrectly. Equational Error Rate
(EER) is the optimum point at which these
two errors are equal.

5 Experimental Results

Our main goal is to compare different strate-
gies in modality fusion. In this part, we
report experimental results in two scenarios.
Person identification results are reported to
compare the performance of different fusion
modes in multi-class classification scenarios
in equal situations. Based on the results of
the identification task, the best fusion mode
is evaluated in the verification scenario as a
two-class classification besides single modality
modes.

5.1 Person Identification

According to the results in Table 1, the
performance of the proposed person identi-
fication systems in the single modality can be
observed in face identification and two other
speaker identification separated based on the
x-vector and gammatonegram representation
methodologies. The table includes the achieve-
ments for each fold separately and the average
performance. Based on the results, it is evident
that the system performs better in face single
modality recognition than voice. The accuracy
achieved by the FaceNet is 96.00%, while the
VoiceNet reached an accuracy of 72.67% using
x-vector and an accuracy of 61.64% based on
gammatonegram. It seems that the x-vector
could represent the speaker feature better than
the gammatonegram in single modality mode.

Other parameters that provide more insight
into the systems’ performance can also be
found in Table 1. These parameters present the
ability of systems to accept correct utterances
and reject incorrect utterances for each class.
It is worth noting that the presence of babble
noise and low sound quality significantly im-
pact the performance of VoiceNets, resulting
in its lower accuracy compared to FaceNet.
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Face Identification x-Vector Speaker Identification Gamma. Speaker IdentificationMetrics Fold 1 Fold 2 Fold 3 Avg. Fold 1 Fold 2 Fold 3 Avg. Fold 1 Fold 2 Fold 3 Avg.
Precision 0.97 0.97 0.95 0.96 0.68 0.77 0.74 0.73 0.60 0.64 0.60 0.61
Sensitivity 0.97 0.97 0.95 0.96 0.68 0.77 0.74 0.73 0.60 0.64 0.60 0.61
Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F-measure 0.97 0.97 0.95 0.96 0.68 0.77 0.74 0.73 0.60 0.64 0.60 0.61
Accuracy(%) 96.54 96.47 94.99 96.00 67.59 76.96 73.47 72.67 60.45 64.47 60.00 61.64

Table 1: Results of single-modality face identification and speaker identification systems with three
different feature sets for three folds and presentation of average values

Sensor Fusion Score Fusion Feature FusionMetrics Fold 1 Fold 2 Fold 3 Avg. Fold 1 Fold 2 Fold 3 Avg. Fold 1 Fold 2 Fold 3 Avg.
Precision 0.95 0.95 0.91 0.94 0.97 0.97 0.95 0.96 0.99 0.99 0.98 0.99
Sensitivity 0.95 0.95 0.91 0.94 0.97 0.97 0.95 0.96 0.99 0.99 0.98 0.99
Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F-measure 0.95 0.95 0.91 0.94 0.97 0.97 0.95 0.96 0.99 0.99 0.98 0.99
Accuracy(%) 95.02 95.10 90.70 93.61 96.73 96.81 95.18 96.24 98.59 98.94 97.59 98.37

Table 2: Performance of proposed multimodal identification systems in three different fusion strategies
based on gammatonegram and facial features

Score Fusion Feature FusionMetrics Fold 1 Fold 2 Fold 3 Avg. Fold 1 Fold 2 Fold 3 Avg.
Precision 0.97 0.97 0.96 0.97 0.99 0.99 0.97 0.98
Sensitivity 0.97 0.97 0.96 0.97 0.99 0.99 0.97 0.98
Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F-measure 0.97 0.97 0.96 0.97 0.99 0.99 0.97 0.98
Accuracy(%) 96.88 97.27 95.94 96.70 98.81 98.88 97.28 98.33

Table 3: Results of proposed multimodal identification systems in two different fusion strategies based
on x-Vector and facial features

In addition, it can be seen that the modali-
ties can complement each other while being
independent of each other. Table 2 presents
the results of three multimodal strategies, each
based on different fusion methods. In this
table, gammatonegram is used for voice and
FaceNet features for face modality. The first
part of the table illustrates the performance of
the proposed multimodal learning system in
sensor fusion mode. Despite achieving pre-
cision, sensitivity, specificity, F-measure, and
accuracy percentage of 0.94, 0.94, 1, 0.94, and
93.61%, respectively, the multimodal system in
sensor fusion mode underperforms compared
to the FaceNet single modality system.

This suggests that gammatonegram as a
speech presentation method can potentially
confuse the sensor-level multimodal system,
leading to a decrease in performance in com-
parison with the single modality system. Al-
though the multimodal learning system with
input-level fusion of image and speech data
does not improve efficiency, it provides valu-
able insights to researchers. The findings
indicate that the fusion of sensors for these two
modalities may not significantly enhance per-
formance, underscoring the need for careful
consideration of fusion strategies and modal-
ity compatibility in multimodal learning sys-
tems.

Based on the investigation in Table 2, the

multimodal system in score fusion mode has
been evaluated using the information from
previous single-modality systems based on
facial features and gammatonegram represen-
tation. Each network’s final softmax layer
data is used as input for the aggregated
softmax layer in multimodal learning. The
average performance across three different
folds shows that the system achieves better
precision, sensitivity, specificity, F-measure,
and accuracy scores than the single modality
mode. Specifically, the system achieves 96.24%
accuracy, which is 0.24% higher than the
result obtained by the FaceNet single-modality
system.

Table 2 reveals that the proposed softmax
layer in feature fusion mode demonstrates
high efficiency, achieving 98.37% accuracy,
0.99 precision, 0.99 sensitivity, 1 specificity,
and 0.99 F-measure. These results signify
a significant improvement in the accuracy
of the person identification task, with a
2.37% increase compared to the performance
of FaceNet in single modality mode. This
underscores the effectiveness of the feature
fusion strategy in enhancing the system’s
accuracy. The additional source data from
different modalities provide extra information
for identification, as they express different
aspects of the same class. For instance, in fold
1, the speaker identification has the lowest
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Face Verification Speaker Verification
Metrics

Fold 1 Fold 2 Fold 3 Avg. Fold 1 Fold 2 Fold 3 Avg.
EER(%) 0.48 0.50 2.07 1.01 5.99 5.37 3.65 5.12

Table 4: Results of proposed person verification
systems in two single modes

Gammatonegram and FaceNet x-Vector and FaceNet
Metrics

Fold 1 Fold 2 Fold 3 Avg. Fold 1 Fold 2 Fold 3 Avg.
EER(%) 0.44 0.41 1.61 0.82 0.37 0.36 1.15 0.62

Table 5: Results of proposed person verification
systems in feature fusion modes based on two
different speech features

performance compared to the other two
folds, but the facial recognition for this fold is
done with high accuracy. This demonstrates
that modality fusion can compensate for the
shortcomings of single modalities.

Based on Table 3, the proposed softmax
layer for facial features and x-vector in score
fusion mode reaches 96.7% accuracy on aver-
age, which is better than the single modality
mode. However, the feature fusion mode
showcases remarkable effectiveness, achiev-
ing an accuracy of 98.33%, precision and
sensitivity scores of 0.98 each, a specificity of
1, and an F-measure of 0.98. These findings
underscore the successful enhancement in
accuracy for the person identification task
by 2.33% compared to FaceNet as the best
achievement in single modality mode.

The average achievements of all five modes
show that FaceNet performed the best in
single-modality scenarios. Despite VoiceNet’s
lower efficiency, when combined with the
face embedding feature using gammatone-
gram and x-vector, it improved the identifica-
tion system’s performance in two scenarios:
feature fusion and score fusion. Our best
achievement was in the feature fusion mode,
where we combined facial features with the
gammatonegram.

5.2 Person Verification

In this section, we investigate the results
of the proposed system for the person verifi-
cation task. Based on the results obtained in
person identification, the feature-level fusion
has shown the best performance. Therefore, in
the verification scenario, we only evaluate the
fusion of features consisting of gammatone-
gram, x-vector, and FaceNet’s activations in
multimodal mode, besides two typical single
modality-based person verification. In this

feature fusion mode, the proposed person
verification system utilizes Within-Class Co-
variance Normalization (WCCN) and Linear
Discriminant Analysis (LDA) to reduce intra-
class variation and decrease the dimension
of the feature vector, respectively. The LDA
output yields a vector with 150 components as
an eigenvector from the original vector with
1,024 elements.

Furthermore, Gaussian Probabilistic Linear
Discriminant Analysis (GPLDA) is employed
for decision-making. It is trained with 20
iterations and uses vectors with a length of
150 components. These parameters remain
fixed in both single and multimodal scenarios.
The results of this evaluation can be found in
Table 4.

In the single modality mode in verification
tasks, both proposed FaceNet and VoiceNet
are used as feature extractors, and their fea-
tures are fed into GPLDA for decision-making
in a two-class classification. The results indi-
cate that the average EER in the speaker verifi-
cation using voice modality is 5.12%, while in
the face verification mode, it is 1.01%. As ex-
pected, the system based on face modality per-
forms better due to the superior performance
of the proposed face feature extraction. In
multimodal mode, we designed two systems
based on two different voice features.

In the fusion of x-vector and facial features,
the system achieves an average EER of 0.62%
in the feature fusion mode. however, in
concatenating the gammatonegram feature
vector with the facial feature vector, the system
reaches 0.82% of EER. Similar to the speaker
identification scenario, this demonstrates an
improved performance compared to the single
modality mode.

6 Discussion

visualization of the activity status of lay-
ers can also provide useful information for
understanding CNN’s functionality. Usually,
an appropriate cognition of what happens
inside the CNN network gets little attention,
and one of the approaches is to consider the
CNN as a black box. However, there are
helpful visualization methods to understand
what is happening inside of a CNN. We
depict a representation method called the
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Locally-Interpretable Model-agnostic Explana-
tion (LIME) technique (Ribeiro et al., 2016) to
show the crucial parts of the image that play
a more significant role in network decision-
making.

This visualization was made using 2D-
CNNs consisting of FaceNet in Figure 2 and
gammatonegram-based speaker identifiers
in Figure 3. These figures make it possible
to understand which parts of the images are
focused on by the network. It is also possible
to understand whether the network is focused
on the essential and discriminative parts of
the image or not. The image segmentation
colors show each part’s priority according
to a color bar. By examining the map and
its corresponding image, it can be seen that
the network focused on the distinguishing
parts of the image, which is the reason for
the acceptable result for FaceNet and weak
performance on speaker identification using
the gammatonegram feature.

In this work, we tried to analyze different
strategies for audio-visual modality fusion in
the identity recognition task. However, it
could be helpful to compare the results of
the proposed systems with previous work
to understand the scale of the metrics. The
results of the present work depict that utiliz-
ing gammatonegram representation for voice
modality and VGGFace2 pre-trained network
for face modality can properly depict the
identity information in the identification task.
However, utilizing x-vector as a voice feature
vector beside fine-tuned VGGFace2 in the
verification tasks can present the best result.

7 Conclusion

In this work, we analyzed different strate-
gies for audio-visual modality fusion in the
identity recognition tasks. The results of the
present work depict that utilizing gamma-
tonegram representation for voice modality
and VGGFace2 pre-trained network for face
modality can properly depict the identity
information.

This study developed two separate single-
modality systems for voice and face in two
identification and verification tasks. The
FaceNet architecture utilized VGGFace2,
while we had two VoiceNet, the first one

Figure 2: Crucial parts of face images
for decision-making in the FaceNet

Figure 3: Important part of gamma-
tonegram image from the viewpoint of
Darknet19 network for classification

was trained from scratch to extract the
x-vector, and the second one was based
on gammatonegram representation and
fine-tuning of pre-trained Darknet19. Based
on these systems, multimodal learning was
applied in three fusion modes, as described in
the article. A softmax layer was the classifier
in feature fusion and score fusion approaches
in the person identification task. However,
for person verification, LDA was used for
dimension reduction, and GPLDA was
utilized for decision-making. The evaluation
was conducted on 118 speakers from the
VoxCeleb2 dataset. The results demonstrated
that combining speech and face modalities
using multimodal learning outperformed the
single-mode approach in both identification
and verification tasks. Additionally, the
feature fusion mode was found to be the most
effective strategy for these two modalities.

Future studies could enhance this research
by investigating more efficient speech fea-
tures, such as deep belief networks in autoen-
coder architecture, to be used as input for
the proposed VoiceNet for x-vector extraction.
Moreover, utilizing para-linguistic systems,
such as gender recognition from face or voice,
could offer valuable insights in a score fusion
scenario.
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Abstract
In recent years, social media platforms and on-
line forums have become essential sources of
political discourse, reflecting the ever-evolving
dynamics of societal opinions and sentiments.
With the freedom of expression privilege
granted after the Tunisian revolution, sensi-
tive “taboo” topics such as political issues
have become popular and widely discussed by
Tunisians across social media platforms. How-
ever, on the downside, it has become easy to
spread abusive/hate propaganda against indi-
viduals or groups. To address this gap, we in-
troduce PoliTun, a new dataset designed specif-
ically for political analysis in the Tunisian di-
alect, aiming to illuminate Tunisia’s political
landscape from a linguistic perspective. We
describe the methodology used for construct-
ing the PoliTun dataset, including data collec-
tion, preprocessing, and annotation. Then, we
present experiments conducted with PoliTun
for category detection and political opinion
identification, utilizing various machine learn-
ing, deep learning and transformer-based mod-
els. The results reveal variable model perfor-
mances. In conclusion, the development of
PoliTun represents a significant advancement in
political analysis in Tunisia, providing a foun-
dation for nuanced exploration of political dis-
course in this unique sociopolitical landscape.
PoliTun will be available upon request1.

1 Introduction

Tunisia represents a country known for its vibrant
political scene and diverse linguistic landscape,
where the Tunisian Dialect represents its key form
of expression. With the rise of social media plat-
forms and the increasing prevalence of online dis-
cussions, the study of political discourse has gained

1Please contact the authors via email to obtain the link.

prominence among researchers and policymakers.
Particularly, the explosion of user-generated con-
tent on Twitter provides a valuable resource for
mining insights on diverse subjects, including po-
litical content. On July, 25th, 2021, political deci-
sions created a new political environment in Tunisia
leading to various opinions across citizens. In fact,
On July 25, 2021, the President of the Republic,
Kaïs Saied, applied Article 80, dismissing the Head
of Government, suspending all the activities of the
National Assembly, and seizing full powers.

This situation split Tunisians into groups: loy-
alists to ideas with uncritical support, hunters for
opportunities around, skeptics about choices, and
opponents of slides towards an undemocratic polit-
ical system. This cleavage caused intense debates
between Tunisians, most of which took place on
social media networks, leading to a high emergence
of abusive/hate speech, polarization, and conspir-
acism. Hence, the need to create automatic so-
lutions to detect such behaviours. However, the
majority of existing studies tend to overlook the
importance of regional dialects, thus limiting our
understanding of political dynamics in specific lin-
guistic contexts. The Tunisian Dialect, a variety of
Arabic influenced by Berber, French, and other lan-
guages, serves as a distinct mode of communication
among Tunisians, particularly in informal settings.
It has unique linguistic features, idioms, and expres-
sions that reflect the local cultural, historical, and
political nuances. Therefore, an analysis of politi-
cal discourse solely based on the Modern Standard
Arabic or major languages would fail to capture
the subtleties and intricacies embedded within the
Tunisian Dialect. To address this research gap, we
present the PoliTun dataset, a comprehensive col-
lection of political texts in the Tunisian Dialect
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sourced from Twitter. The dataset includes a wide
range of political topics, covering elections, gov-
ernance, public policies, activism, and more, to
provide a holistic view of the political landscape in
Tunisia. By focusing on the Tunisian Dialect, Poli-
Tun enables researchers and language enthusiasts
to go into the characteristics of political discourse
within the unique socio-cultural context of Tunisia.
In this paper, we provide an overview of related
work in the field of political analysis and dialectal
studies. Then, we describe the methodology em-
ployed in constructing the PoliTun data where we
outline the methodology employed in compiling
the PoliTun dataset, including data collection, pre-
processing, and annotation procedure. Then, we
present experiments performed using our dataset
for category detection and political opinion detec-
tion. Finally, we present the conclusion and future
work.

2 Related works

According to the Larousse online dictionary2, an
opinion can be defined as a judgment or feeling
expressed by an individual or group on a subject
or facts, reflecting their perception and thoughts,
or a formal statement giving the reasons behind
a given judgment. Opinion detection has become
one of the most active fields of study in natural
language processing since the early 2000s (Liu
et al., 2010); (Liu, 2022). (Pang et al., 2008)
conducted an in-depth study covering various as-
pects of opinion analysis, such as opinion extrac-
tion, sentiment classification, polarity analysis and
opinion synthesis. This analysis included different
approaches, whether lexicon-based or supervised
learning, using similarity measures and various
classifiers. Other work in the literature has com-
pared several approaches, including naive bayes
classifiers, support vector machines (SVMs) (Palau
and Moens, 2009), logistic regression (Levy et al.,
2014) . Applying the CNN deep learning approach
in a mobile environment a study (Kalaivani and Jay-
alakshmi, 2021) proposed sentiment analysis based
on movie reviews. Their approach involved the
use of Polarity, IMDb and Rotten Tomato datasets,
Results indicate that the integration of GloVe word
vectors led to better performance. Recurrent and re-
cursive neural networks were examined with differ-
ent types of Arabic-specific processing (Al Sallab
et al., 2015); (Al-Sallab et al., 2017); (Baly et al.,

2https://www.larousse.fr/

2017). Convolutional neural networks (CNNs)
were trained using pre-trained word embeddings
(Dahou et al., 2019). A hybrid model was proposed
by (Farha and Magdy, 2019), where CNNs were
used for feature extraction and LSTMs were used
for sequence and context understanding. There is a
lack of pre-trained language models, which limits
the performance of NLP applications for some lan-
guages. The article (Kenton and Toutanova, 2019)
highlights the ineffectiveness of traditional models
as they require task-specific datasets, making them
impractical to use. Unlike English, Arabic has a
rich morphology and limited resources, as it has
many dialects, which makes Automatic Compre-
hension of this language complex due to linguistic
variations. There is a need to evaluate these models
consistently and on various NLP tasks in Arabic.
The article (Abdul-Mageed et al., 2020) presents
the creation of two powerful language models spe-
cific to MarBERT and MarBERT-v2, pre-trained
on massive and diverse datasets, including datasets,
including social media data. Faced with these chal-
lenges, the researchers (Antoun et al., 2020) set out
to create a solution capable of efficiently process-
ing the Arabic language, it became imperative to
develop a specific language processing model. Al-
though pre-trained language models such as BERT
have proven effective in English, their direct ap-
plication to Arabic proved less conclusive. The
morphological complexity of the Arabic language
requires careful adaptation to exploit the full po-
tential of these models. Hence, the idea of creat-
ing AraBERT emerged with the aim of meeting
the unique challenges of the Arabic language and
providing a powerful tool for the Arabic NLP com-
munity.

In (Abd et al., 2020), the authors present a Polit-
ical Arabic Articles Data Set entitled PAAD, com-
prising 206 articles classified into Reform, Conser-
vative, and Revolutionary collected from newspa-
pers, social networks, general forums, and ideolog-
ical websites. This data set is oriented at Arabic
Computational Linguistics by providing a valuable
resource for political text classification in Modern
Standard Arabic and includes only three labels.

Despite this advancement, it does not cover the
aspect of dialectal variations, which continues to
be a significant challenge in Arabic NLP. To the
best of our knowledge, our work presents the first
dataset dedicated for political text in an Arabic
dialect, particularly the Tunisian one.
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3 PoliTun Dataset: Data Building From
Twitter

In this section, we detail the creation and the par-
ticularities of PoliTun, our large political opinion
and category detection dataset composed of about
30K tweets collected about events after July 25th,
2021 Tunisian events.

The majority of the sentences deal with the post-
July 25 period and the agitation of Tunisians on
social networks in relation to the current political
dynamic. In this work, we aim to offer a deep
understanding of the diverse themes within political
discussions, particularly, in the Tunisian context.

3.1 Data Collection
We collected tweets using the Twitter streaming
API. We have collected and scraped tweets
using Twitter hashtags related to the Tunisian
Political Context. We manually extracted a list
of more than 200 hashtags that were used for
scrapping tweets. Examples are the following:
T§rks`�� �Am�A�ml� ®#,
¨FAys��  Asf�� T�w\n� �ykft#,
TyV�rqm§ Ty�d� T§Cwhm� H�wt#, etc.

In order to make sure that all tweets are after
July 25th event, a python script was created to ex-
tract only tweets subsequent to that date. Another
python script was created to split data into Ara-
bic, Tunizi which is the Tunisian Dialect written
in Latin letters, French and English sentences. Ex-
amples from the dataset and their translation are
presented in Table 1.

3.2 Data Preprocessing
The collected tweets were not clean as they in-
cluded many punctuation marks including, hash-
tags, Emojis, and more. Therefore, the following
steps have been followed to ensure the quality of
this dataset:

• Removing Punctuation:
The tweets in the dataset contained a mix
of Arabic and non-Arabic punctuation. in
Tunisia, the use of punctuation in written texts
is relatively low compared to other languages.
Hence, these marks are generally outliers and
do not contribute to the overall understand-
ing of the text. Hence, different punctuation
marks were removed using a python script.

• Removing Emojis: In Tunisia, the use of
sarcasm is quite often, both in real life and

over social networks which, generally, leads
to carrying different meanings for the same
emoji which can lead to potential confusion
for the learning models. Since there are no
available libraries that can translate emojis
into Tunisian, we removed emojis present in
our dataset.

• Removing duplicates and retweets: Dupli-
cate data can skew the results of the analysis
of results. Since the model will give it undue
weight, it would lead to biased or inaccurate
predictions.

• Keeping only Arabic-letters tweets for an-
notation: We kept only the tweets in Ara-
bic letters for annotation. We leave including
Latin letters as future work.

Finally, we sampled about 30,000 tweets written
in Arabic letters for annotation in total.

3.3 Data Annotation

The labels of the dataset were identified by three
sociologists, experts in their domain after read-
ing multiple randomly selected examples of the
scrapped tweets.

The dataset was annotated by three Tunisian fe-
male native speakers, that are involved in civil so-
ciety, all aged 25. Due to the limited number of
annotators, only 30k data in Arabic letters was an-
notated divided equally on the annotators.

To ensure the quality of the annotaion, we take
100 internally annotated examples and ask for re-
view from the sociologists. If an annotator misla-
bels more than 25% of these examples, we discard
the annotations and ask her to relabel them based
on the comments of the sociologists.

In our dataset, each sentence is labeled twice,
considering two distinct aspects: category and
opinion. The category aspect includes six labels,
while the opinion aspect consists of three labels.

3.3.1 Category Identification
Regarding the category label, Six categories were
identified:

• Hate Speech: A tweet that discriminates,
stigmatizes, or incites violence or prejudice
against individuals or groups based on at-
tributes such as race, ethnicity, religion, gen-
der, sexual orientation, disability, or other
characteristics.
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Table 1: Political Data Examples.

Tweet English Translation

A¡Ah� 	bF 
��¤ Ty¡A� H�w� �CAb§ ¢l� God bless you. Tunisia is nice and you’re the
reason for it.

Any� ¤ A�A`� © ¤d� dl� r¶�z��� H�w�
��AO�

Tunisia, Algeria is a border country with us and
we have interests together.

• Polarization: mainly expresses the position
of being for or against a political position. It
often conveys a strong and uncompromising
stance, contributing to an "us versus them"
mentality. Such tweets may use language that
reinforces the separation between conflicting
perspectives and may lack nuance or a will-
ingness to engage in constructive dialogue.

• Conspiracy: expressed more in the words of
a political person or his/her supporters. It ex-
presses a belief or suspicion about a secretive
or covert plan that is allegedly being carried
out by powerful individuals or organizations.

• Denunciation: is the recounting of a political
event without taking a position. It refers to
the act of publicly condemning or expressing
disapproval of someone or something, often
due to perceived wrongdoing, unethical be-
havior, or actions contrary to societal norms
or values. It involves making an official or
public statement declaring strong disapproval
or condemnation.

• Skepticism: an attitude of doubt or disbelief
towards claims, beliefs, or assertions, partic-
ularly those that are commonly accepted or
taken for granted. Skepticism can manifest in
various forms, ranging from questioning the
validity of specific claims to adopting a gen-
eral stance of skepticism towards all knowl-
edge claims until sufficient evidence is pro-
vided.

• Off-Topic: the case where the tweet doesn’t
deal with any political discourse or subject
relating to the Tunisian context.

3.3.2 Opinion Identification
The same tweet is also annotated with one of the
three opinion labels:

• Positive: expresses a positive opinion regard-
ing an event/idea.

• Negative: expresses a negative opinion re-
garding an event/idea.

• Neutral: without interest/perspective in the
subject.

Tweets that are annotated as off-topic do not
have an opinion label.

Examples from the dataset with their annotations
are presented in Table 2.

3.4 Data Statistics
Statistics of the initial data after preprocessing and
cleaning are presented in Table 3.

The annotated data includes about 30k tweets
written in Arabic letters.

Table 4 and Figure 1 show the distribution of the
annotated tweets by category (Off-topic, Denunci-
ation, Polarization, Conspiracy, Skepticism, Hate
speech). We note a clear superiority in number of
comments categorized as “Off Topic”, with a total
of 12,503 annotations representing 42% of the data,
compared to the other categories. The “Denun-
ciation” and “Polarization” categories come next,
with 7,763 and 7,660 annotated comments repre-
senting 26% and 25% respectively. “Conspiracy”
includes 1,072 annotations, “Skepticism” with 528
annotations, and finally “Hate speech” with 448
annotations. The three last labels present only 7%
of the dataset.

Figure 2 summarizes the distribution of the an-
notated tweets according to their opinion polarity
(Positive, Negative, Neutral). We note that Nega-
tive comments outnumber Positive ones by a large
margin: 57% were annotated as negative, 32% as
positive, and 11% as neutral.

4 Experimental Setup

We divide our data into 80% for training and 20%
for testing. We run experiments using the fol-
lowing machine learning and deep learning mod-
els: Naive Bayes (NB), Support Vector Machines
(SVM), Logistic Regression (LR), Convolutional
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Table 2: Political Data Examples with their annotation.

Tweet English Translation Category Opinion


®q�³� dR wnV�w� �hn§¤ ¨�A§
T�®�¯¤ �y�r� w�r� �w¡A��

where are the Citizens that are against
the Coup, they’ve been out two or
three times

Polarization Negative

¨�wbW�� �§d¡r� ¯�¤ The hypocrisy of Taboubi Hate Speech Negative

Language #Sentences
Arabic 113341
Tunizi 3685
French 270
English 657
Total 117953

Table 3: Initial Data statistics.

Category #Sentences
Off-topic 12503

Denunciation 7763
Polarization 7660
Conspiracy 1072
Skepticism 528

Hateful speech 448
Total 29974

Table 4: Distribution of Annotated Comments by Cate-
gory.

Figure 1: Category Label Percentages.

Neural Networks (CNN), and Long-Short Term
Memory (LSTM).

When training deep learning models, we use
as embedding FastText pretrained on Arabic
Wikipedia, batch size equal to 128, and 20 epochs.

Also, different pre-trained models were used in
order to achieve the best results. Bacause there is a

Figure 2: Opinion Label Percentages.

lack of pretained models for the Tunisian dialect,
we chose to experiment with the following models
that are pretrained on Arabic language and Arabic
dialects respectively:

• AraBERT (Antoun et al., 2020): is a BERT
based model for Modern Standard Arabic Lan-
guage understanding, trained on 70M sen-
tences from several public Arabic datasets and
news websites.

• MarBERT (Abdul-Mageed et al., 2020): is
a large-scale pretrained language model us-
ing the BERT base’s architecture. MARBERT
is trained on on 128 GB of tweets from vari-
ous Arabic dialects containing at least 3 Ara-
bic words. With very light preprocessing the
tweets were almost kept at their initial state to
retain a faithful representation of the naturally
occurring text.

We finetuned BERT models with the follow-
ing hyperparameters: batch size equal to 128, 20
epochs, and max seq length of 128.

The metrics used to evaluate the model’s predic-
tions are accuracy, recall, precision and F1 score
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(micro and macro).

5 Results and Discussion

In this section, we present the set of experiments
performed on both tasks and discuss the results
obtained.

5.1 Opinion Classification subtask

Table 5 presents results of the category classifica-
tion task with Kmeans, Logistic Regression, Naive
Bayes and Support Vector Machines.

The results of the evaluation of machine learning
models reveal varying metrics analyzed. The best
result was acheived using SVM performing 70%
accuracy. However, F1 macro score achieved 57%
because the dataset is not balanced.

Model LR NB SVM
Accuracy 0.69 0.68 0.70
F1 micro 0.69 0.68 0.70
F1 macro 0.58 0.42 0.57
Recall 0.62 0.68 0.55
Precision 0.57 0.76 0.67

Table 5: Performance Metrics of Machine Learning
Models for Opinion Classification.

Table 6 presents the results of the deep learning
algorithms for the opinion classification task. The
CNN outperforms the LSTM model reaching an
accuracy value of 95% and F1 macro of 91%.

Model CNN LSTM
Accuracy 0.95 0.65
F1 micro 0.92 0.68
F1 macro 0.91 0.57
Recall 0.91 0.53
Precision 0.95 0.62

Table 6: Performance Metrics of Deep Learning Models
for Opinion Classification.

Table 7 presents results for finetuning the
AraBERT and MarBERT models on the Opinion
Classification task. In fact, AraBERT achieves an
accuracy of 75.42%. while MarBERT outpeforms
it acheiving 76% of accuracy measure and 63%
F1 macro. This is mainly because our dataset is
written in the Tunisian dialect and MarBERT was
trained on different dialectal Arabic texts while
AraBERT was trained on Modern Standard Arabic
(MSA).

Model AraBERT MarBERT
Accuracy 0.75 0.76
F1 micro 0.64 0.65
F1 macro 0.62 0.63
Recall 0.62 0.63
Precision 0.67 0.66

Table 7: Performance Metrics of BERT variant Models
for Opinion Classification.

5.2 Category Classification subtask
Table 8 presents results of the category classifica-
tion task with Kmeans, Logistic Regression, Naive
Bayes, and Support Vector Machines.

Model Kmeans LR NB SVM
Accuracy 0.45 0.64 0.60 0.65
F1-micro 0.45 0.64 0.60 0.65
F1-macro 0.24 0.37 0.21 0.33
Recall 0.30 0.34 0.21 0.31
Precision 0.34 0.45 0.54 0.64

Table 8: Performance Metrics of Machine Learning
Models for Category Classification.

In this task, SVM also outperforms the other
machine learning models achieving 65% accuracy
and 33% F1 macro. In this subtask, F1 macro gives
low results because we have a non balanced dataset.

Table 9 presents results of the category classifi-
cation task with Convolutional Neural Networks
and Long Short Term Memory.

Model CNN LSTM
Accuracy 0.70 0.54
F1 micro 0.96 0.59
F1 macro 0.35 0.33
Recall 0.35 0.29
Precision 0.36 0.64

Table 9: Performance Metrics of Deep Learning Models
for Category Classification.

The CNN outperforms LSTM by achieving 70%
and 35% accuracy and F1 macro results respec-
tively. Again, due to the imbalance labels in the
dataset, F1 macro achieves low results.

Table 10 presents results of finetuning AraBERT
and MarBERT models for category identification
task.

In this case, MarBERT outperforms AraBERT
in terms of accuracy by 3%. However, AraBERT
outperforms MarBERT it terms of F1 macro by
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Model AraBERT MarBERT
Accuracy 0.66 0.69
F1 micro 0.32 0.35
F1 macro 0.39 0.32
Recall 0.30 0.32
Precision 0.34 0.37

Table 10: Performance Metrics of BERT variant Models
for Category Classification.

7%. But, still achieving low results because we are
dealing with an imbalance in the dataset labels.

6 Conclusion and Future work

The development of PoliTun dataset represents a
significant step forward in political analysis, par-
ticularly within the context of the Tunisian dialect.
By creating a dataset of about 30,000 manually
annotated data by a team work of both Tunisian
sociologists and engaged citizens, we tackled the
science of political discourse in Tunisia. Our exper-
iments have showcased the potential of computa-
tional methods in understanding complex linguistic
dynamics within this unique sociopolitical land-
scape. Moving forward, several avenues for future
research present themselves. Firstly, expanding the
PoliTun dataset to include larger range of topics
and dialectical nuances which would enhance its
utility for comprehensive political analysis. Also,
including collaboration between researchers, pol-
icymakers, and local communities in Tunisia to
co-create and utilize PoliTun for informed decision-
making and civic engagement initiatives would
be instrumental in maximizing its societal impact.
Overall, the continued development and utilization
of PoliTun stand to enrich our understanding of po-
litical dynamics in Tunisia and beyond, contribut-
ing to more inclusive and data-driven approaches
to governance and social change.
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Abstract

Scientific document classification is a critical
task and often involves many classes. How-
ever, collecting human-labeled data for many
classes is expensive and usually leads to label-
scarce scenarios. Moreover, recent work has
shown that sentence embedding model fine-
tuning for few-shot classification is efficient,
robust, and effective. In this work, we pro-
pose FusionSent (Fusion-based Sentence Em-
bedding Fine-tuning), an efficient and prompt-
free approach for few-shot classification of
scientific documents with many classes. Fu-
sionSent uses available training examples and
their respective label texts to contrastively fine-
tune two different sentence embedding mod-
els. Afterward, the parameters of both fine-
tuned models are fused to combine the com-
plementary knowledge from the separate fine-
tuning steps into a single model. Finally, the
resulting sentence embedding model is frozen
to embed the training instances, which are
then used as input features to train a classifica-
tion head. Our experiments show that Fusion-
Sent significantly outperforms strong baselines
by an average of 6.0 F1 points across multi-
ple scientific document classification datasets.
In addition, we introduce a new dataset for
multi-label classification of scientific docu-
ments, which contains 203,961 scientific ar-
ticles and 130 classes from the arXiv cate-
gory taxonomy. Code and data are available at
https://github.com/sebischair/FusionSent.

1 Introduction

Scientific literature has grown exponentially over
the last few decades, with countless new publica-
tions being added every year (Dong et al., 2017).
To be searchable and accessible to researchers, pol-
icymakers, and the public, scientific literature must
be managed and categorized in digital libraries
(Toney and Dunham, 2022). However, this poses a
significant challenge due to the huge volume of doc-
uments and the variety of topics they cover (Sadat

and Caragea, 2022). In addition to the broad spec-
trum of possible topics, scientific documents often
cannot be assigned to just one topic due to their
interdisciplinary character. Consequently, automat-
ically categorizing scientific documents must be
approached as a multi-label classification problem
over large label spaces. Previous works approach
this task either in an unsupervised (Shen et al.,
2018; Salatino et al., 2019; Mustafa et al., 2021;
Toney and Dunham, 2022; Schopf and Matthes,
2024) or in a fully supervised (Gialitsis et al., 2022;
Sadat and Caragea, 2022; E. Mendoza et al., 2022;
Schopf et al., 2023) manner. While supervised ap-
proaches offer high prediction quality, they require
a large corpus of annotated data to perform. Often,
however, a large corpus of annotated data is un-
available, e.g., when a new categorization scheme
is being developed for an emerging scientific field.
Unsupervised approaches provide a possible cir-
cumvention of this limitation but are accompanied
at the expense of prediction quality.

To improve classification performance in sce-
narios where labeled data is unavailable, domain
experts may annotate a small part of the dataset.
However, annotating many classes naturally leads
to data scarcity, as collecting sufficient training data
for all classes causes significantly higher costs (Xu
et al., 2023a). Therefore, to support the classifica-
tion of scientific documents in such scenarios, we
consider the multi-label classification of scientific
documents as a few-shot task. Few-shot approaches
are designed to train an effective model with a few
labeled examples, reducing the cost of developing
models for new domains and tasks (Huang et al.,
2023).

In recent work, SetFit (Tunstall et al., 2022)
demonstrated strong few-shot classification perfor-
mance by contrastively fine-tuning (Koch et al.,
2015) sentence embedding models. Since this ap-
proach does not require prompts and is effective on
relatively small models, it is much more efficient
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Figure 1: The training process of FusionSent comprises three steps: (1) Fine-tune two different sentence embedding
models from the same Pre-trained Language Model (PLM), with parameters θ1, θ2 respectively. θ1 is fine-tuned on
pairs of training sentences using cosine similarity loss and θ2 is fine-tuned on pairs of training sentences and their
corresponding label texts, using contrastive loss. Label texts can consist of simple label/class names or of more
extensive texts that semantically describe the meaning of a label/class. (2) Merge parameter sets θ1, θ2 into θ3 using
Spherical Linear Interpolation (SLERP). (3) Freeze θ3 to embed the training sentences, which are then used as input
features to train a classification head.

and consistent than common prompt-based meth-
ods such as In-Context Learning (ICL) (Brown
et al., 2020) and Pattern-Exploiting Training (PET)
(Schick and Schütze, 2021), which involve careful
prompt engineering and large-scale model sizes.

In this paper, we propose FusionSent, which
builds on the idea of contrastive sentence embed-
ding training for efficient few-shot classification.
As illustrated in Figure 1, FusionSent uses the few
annotated examples, as well as label texts, to con-
trastively fine-tune two separate sentence embed-
ding models from the same Pre-trained Language
Model (PLM) checkpoint. One model is fine-tuned
to maximize similarities between training examples
sharing the same class, and the other model is fine-
tuned to maximize similarities between training
examples and their corresponding label texts. After
fine-tuning, the weights of both models are merged
to obtain the model body of FusionSent. For subse-
quent classifier training, the model body is frozen
to embed the few training examples, which are
then used as input features to train a simple logis-
tic regression head. This approach works effec-
tively with relatively small model sizes, requires no
prompts, and merging fine-tuned sentence embed-
ding models incurs no additional inference or mem-
ory costs (Wortsman et al., 2022). Our experiments
show that FusionSent consistently outperforms var-
ious baselines on different datasets for multi-label
classification of scientific documents with many
classes. Furthermore, we show that FusionSent can

improve few-shot performance in multi-class set-
tings of different domains with a small number of
classes.

In addition to FusionSent, we introduce a new
dataset for multi-label classification of scientific
documents. The dataset consists of 130 classes and
203,961 scientific articles that have been manually
categorized by their authors into one or more topics
from the arXiv category taxonomy1.

2 Related Work

2.1 Classification of Scientific Documents

Unsupervised approaches typically use embed-
dings of topics as well as scientific documents and
perform classification based on their similarities
(Shen et al., 2018; Salatino et al., 2019; Mustafa
et al., 2021; Toney and Dunham, 2022). More re-
cently, classifying scientific documents has been
regarded as a fully supervised task. SciNoBo (Gi-
alitsis et al., 2022) uses the structural properties
of publications and their citations and references
organized in a multilayer graph network for predict-
ing topics of scientific publications. HR-SciBERT
(Sadat and Caragea, 2022) uses a multi-task learn-
ing approach for topic classification with keyword
labeling as an auxiliary task. Finally, E. Mendoza
et al. (2022) use ensemble models to classify scien-
tific documents into multiple research themes.

1https://arxiv.org/category_taxonomy
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2.2 Few-shot Classification

Prominent techniques for few-shot classification
involve ICL, utilizing task-specific prompts with a
few labeled examples (Brown et al., 2020). How-
ever, while avoiding gradient updates, ICL neces-
sitates large model sizes for good performance,
resulting in computationally expensive inference.
Conversely, prompt-based fine-tuning proves to be
effective with smaller models (Schick and Schütze,
2021; Tam et al., 2021; Gao et al., 2021). Addi-
tionally, Parameter Efficient Fine-Tuning (PEFT)
can further reduce training costs by fine-tuning a
considerably smaller module within a frozen PLM
(Houlsby et al., 2019; Li and Liang, 2021; Hu et al.,
2022; Karimi Mahabadi et al., 2022; He et al., 2022;
Liu et al., 2022; Aly et al., 2023). In contrast to
these methods, fine-tuning few-shot classification
models via contrastive sentence embedding train-
ing provides two primary advantages: (1) it re-
quires significantly smaller model sizes, and (2)
eliminates the necessity for prompts or instructions
(Tunstall et al., 2022; Huang et al., 2023; Bates
and Gurevych, 2024), which can cause significant
performance variance and require careful design
(Perez et al., 2021).

2.3 Model Fusion

Model fusion, which involves the integration of
capabilities from different models, can be mainly
divided into two categories. Firstly, ensemble ap-
proaches combine the output of multiple models to
enhance the overall prediction performance (Little-
stone and Warmuth, 1994; Sagi and Rokach, 2018).
Outputs are typically combined by weight aver-
aging (Littlestone and Warmuth, 1994) or major-
ity voting (Monteith et al., 2011). These ensem-
ble approaches can improve the prediction perfor-
mance of large-scale language models (Jiang et al.,
2023). Secondly, weight merging approaches en-
able model fusion at the parameter level. Worts-
man et al. (2022) show that weight averaging of
multiple models fine-tuned with different hyperpa-
rameters improves prediction accuracy and robust-
ness. Task vectors derived from model weights can
be modified and combined together through arith-
metic operations to steer the behavior of a resulting
model (Ilharco et al., 2023). This approach can be
enhanced by trimming task vectors and resolving
sign conflicts before merging them (Yadav et al.,
2023). In addition, Drop And Rescale (DARE) can
be used as a general preprocessing technique for

existing model merging methods to merge multiple
task-specific fine-tuned models into a single model
with diverse abilities (Yu et al., 2023).

2.4 Datasets for Topic Classification of
Scientific Documents

Various datasets for multi-label topic classifica-
tion of scientific documents have been introduced.
The Cora dataset (McCallum et al., 2000) contains
about 50,000 computer science research papers cat-
egorized into 79 topics. Several datasets have been
released based on the ACM Computing Classifica-
tion System2 (Santos and Rodrigues, 2009; Sadat
and Caragea, 2022). Schopf et al. (2023) introduce
a dataset of 179,349 scientific papers categorized
into 82 different NLP-related topics. Yang et al.
(2018) create a dataset of 55,840 arXiv3 papers,
in which each paper is assigned to several classes
covering 54 different topics. However, this dataset
is not publicly available.

3 Background

Sentence Embedding Model Fine-tuning for
Few-shot Classification Tunstall et al. (2022)
show that sentence embedding models can be used
in a two-step training process for efficient few-shot
classification. In the first step, a sentence embed-
ding model is fine-tuned in a contrastive manner by
sampling positive and negative sentence pairs from
few-shot labeled examples. In the second step, the
fine-tuned sentence embedding model is frozen to
encode all available few-shot examples. The result-
ing embeddings are then used as input features to
train a simple logistic regression classifier (Cox,
1958) as the model head.

Label Texts for Document Classification in
Label-scarce Scenarios Xu et al. (2023a) show
that mapping representation spaces of training in-
stances to their respective label descriptions in em-
bedding space can be effective in label-scarce clas-
sification scenarios. They reformulate classifica-
tion with many classes as a dense retrieval task and
train a dual encoder that learns to maximize the
similarity between embeddings of the training in-
stances and their respective label descriptions. Dur-
ing inference, they use the top-k retrieved labels of
each instance for classification. Similarly, WanDeR
(Xu et al., 2023b) and FastFit (Yehudai and Ben-
del, 2024) use label names and dense retrieval for

2https://dl.acm.org/ccs
3https://arxiv.org
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multi-class classification. However, dense retrieval
approaches are challenging to apply in multi-label
classification scenarios since the number of classes
per instance can vary significantly.

4 Method

As illustrated in Figure 1, our few-shot classifica-
tion method consists of separate training parts for
the model body and the model head. We fine-tune
a sentence embedding model as the model body,
while the model head consists of a simple logistic
regression classifier trained on the data encoded by
the model body.

4.1 Model Body
Given a base PLM, we fine-tune the model body
of FusionSent in three steps: (1) use SetFit’s con-
trastive learning approach to construct positive and
negative training pairs from the few training exam-
ples to fine-tune a sentence embedding model from
the base PLM (2) construct positive and negative
training pairs from the few training examples and
their corresponding label texts to fine-tune a dif-
ferent sentence embedding model using the same
base PLM, and (3) merge both fine-tuned sentence
embedding models to obtain the model body of
FusionSent.

In the first step, we fine-tune a sentence embed-
ding model from the base PLM using contrastive
learning and the few training examples. Specifi-
cally, from the few training examples, instances of
the same class are selected as positive pairs, which
are assigned a score of 1, and instances from dif-
ferent classes are selected as negative pairs, which
are assigned a score of 0. These training pairs are
then used to fine-tune a sentence embedding model
with the Cosine Similarity Loss:

Lcos = ∥y − cos_sim(u, v)∥2, (1)

where u, v ∈ RD are the D-dimensional sen-
tence embeddings of two sentences respectively,
and y ∈ {0, 1} is the pair label.

In the second step, we use a different contrastive
training approach to fine-tune a separate sentence
embedding model from the same base PLM, using
the few training instances and their corresponding
label texts. Specifically, positive pairs consist of
training instances and the label texts of the class
assigned to them. Negative pairs consist of train-
ing instances and label texts from different classes.
Label texts can consist of simple label/class names,

which are usually available in datasets, or of more
extensive texts that semantically describe the mean-
ing of a label/class. We assign the positive pairs
a score of 1 and the negative pairs a score of 0
to fine-tune a sentence embedding model with the
Contrastive Loss (Hadsell et al., 2006):

Lcont =
1

2

[
y · cos_dist(u, v)2+

(1− y) ·max{0,m− cos_dist(u, v)}2
]
, (2)

where u, v ∈ RD are the D-dimensional sen-
tence embeddings of two sentences respectively,
m = 0.5 is a margin, and y ∈ {0, 1} is the pair
label.

To obtain the contrastive training pairs for steps
one and two, we use an oversampling strategy. In
this approach, an equal number of positive and neg-
ative training pairs are sampled, with the minority
pair type (positive) being oversampled to align with
the majority pair type (negative).

In the third step, the parameters of the fine-tuned
sentence embedding models obtained in steps one
and two are merged using Spherical Linear Inter-
polation (SLERP) (Shoemake, 1985). Specifically,
let θ1 be the parameters obtained from the first fine-
tuning step and θ2 the parameters obtained from
the second fine-tuning step, we merge parameters
with SLERP:

slerp(θ1, θ2; t) =
sin(1− t)Ω

sinΩ
θ1 +

sin tΩ

sinΩ
θ2,

(3)

where θ1 ·θ2 = cosΩ and t = 0.5 is an interpola-
tion factor. Finally, the new parameters θ3 obtained
from SLERP merging are inserted into a sentence
embedding model derived from the same architec-
ture as the base PLM, resulting in the FusionSent
model body.

4.2 Model Head & Inference

In the second part of FusionSent training, we first
use the frozen model body to embed all available
training instances. Then, we train a logistic regres-
sion model using the embedded training instances
as input features. During inference, the model body
embeds the inputs to provide features for the logis-
tic regression head that subsequently classifies the
unseen instances.
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5 Experiments

5.1 Data
We construct a dataset of scientific documents de-
rived from arXiv metadata (Clement et al., 2019).
The arXiv metadata provides information about
more than 2 million scholarly articles published in
arXiv from various scientific fields. We use this
metadata to create a dataset of 203,961 titles and
abstracts categorized into 130 different classes. To
this end, we first perform a stratified downsam-
pling of the metadata to only 10% of all articles
while retaining the original class distribution. Af-
terward, articles assigned to categories occurring
less than 100 times in the downsampled dataset
are removed. To obtain the final dataset, we then
perform a stratified train/validation/test split of the
processed dataset in an 80:10:10 ratio. The number
of examples in each set are shown in Table 1.

Dataset split Size
Train 163,168
Validation 20,396
Test 20,397

Table 1: Overview of the arXiv dataset.

Each article in the resulting arXiv dataset is cate-
gorized into one or more distinct categories. Figure
2 shows the distribution of papers across the 130
categories of the dataset.
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Figure 2: Number of papers in each category of the
arXiv dataset.

In addition, we use the SciHTC dataset (Sadat
and Caragea, 2022), which contains computer sci-
ence papers categorized into one or more classes
of the ACM Computing Classification System. We
remove classes with less than 100 examples, re-
sulting in 46,372 training samples and 5,838 test
samples categorized into 62 different classes.

As a third dataset for scientific document classi-
fication, we use the NLP taxonomy dataset (Schopf
et al., 2023), which contains papers from the ACL

Anthology4, the arXiv cs.CL category, and Sco-
pus5, categorized into one or more Natural Lan-
guage Processing (NLP)-related classes. We per-
form a stratified 90:10 split between training and
test examples, resulting in 161,414 training and
17,935 test instances categorized into 82 different
classes.

5.2 Models
We experiment with two baselines and four differ-
ent few-shot learning approaches for multi-label
classification of scientific documents.

FineTune The first baseline consists of a stan-
dard encoder-only transformer that is fine-tuned for
text classification.

SetFit The second baseline consists of the SetFit
approach without any changes to the architecture
or the training procedure.

Label Embedding (LE) As an initial few-shot
learning approach, we experiment with only train-
ing one sentence embedding model that uses few-
shot examples and their corresponding label texts
in a contrastive learning approach. This approach
consists of training a model body, as described in
step 2 in Section 4.1, and training a logistic regres-
sion head on top of it.

SetFit→LE We also experiment with combin-
ing contrastive learning approaches to directly fine-
tune a single sentence embedding model rather than
separate models that are merged later. For this pur-
pose, we perform training steps one and two as
described in Section 4.1 sequentially on the same
sentence embedding model. For classification, we
then train a logistic regression head.

LE→SetFit This approach also only trains a sin-
gle sentence embedding model. However, we first
perform training step two followed by step one as
described in Section 4.1 on the same model. We
then train a logistic regression model head for the
classification.

FusionSent Finally, we experiment with the Fu-
sionSent approach as described in Section 4.

5.3 Experimental Setup
Systematically evaluating few-shot performance
is challenging due to the potential instability aris-
ing from fine-tuning on small datasets (Zhang et al.,

4https://aclanthology.org
5https://www.scopus.com
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Dataset→ arXiv SciHTC NLP Taxonomy Average
Method ↓ F1 P R F1 P R F1 P R F1

|N | = 2∗
FineTune - - - - - - 13.13.2 78.35.5 7.22.0 -
SetFit 37.51.6 45.51.7 32.02.4 31.40.8 39.90.1 26.01.2 58.72.0 55.74.2 62.30.9 42.51.5
Label Embedding 43.20.1 45.31.9 40.40.5 34.14.3 46.16.3 27.13.3 65.82.2 66.05.5 66.01.6 47.72.2
SetFit→LE 41.50.9 45.31.5 38.31.7 32.31.9 41.63.2 26.31.4 64.61.8 62.74.4 66.82.1 46.11.5
LE→SetFit 39.20.5 41.51.1 37.10.5 34.01.6 38.91.6 30.22.0 61.31.6 55.03.4 69.31.5 44.81.2
FusionSent 44.40.4 50.51.2 39.60.1 36.71.9 48.04.2 29.70.9 66.22.1 67.44.6 65.20.8 49.11.5

|N | = 4∗
FineTune - - - 10.31.6 59.33.6 5.60.9 43.51.8 85.22.1 29.21.9 -
SetFit 45.61.0 46.41.6 45.10.9 35.00.3 42.61.1 29.70.3 63.61.5 60.72.3 66.91.8 48.10.9
Label Embedding 47.01.1 47.70.6 46.32.0 32.71.1 41.92.3 26.90.6 71.90.6 70.80.5 73.01.2 50.50.9
SetFit→LE 46.00.3 47.40.4 44.70.7 30.72.4 36.94.4 29.52.1 70.00.6 68.10.8 72.10.4 48.91.7
LE→SetFit 45.81.0 45.01.4 46.70.9 32.02.9 40.62.3 27.81.9 66.10.7 62.10.8 70.70.9 48.01.5
FusionSent 48.31.1 51.01.0 46.01.5 38.52.3 45.41.0 33.52.9 72.60.5 72.10.3 73.20.7 53.11.3

|N | = 8∗
FineTune 18.72.8 72.52.4 10.81.9 26.63.9 55.03.7 17.53.1 67.11.1 88.01.6 54.21.1 37.52.6
SetFit 46.00.6 44.10.5 48.11.1 37.53.7 46.23.2 31.53.8 66.20.2 66.40.4 66.00.4 49.91.5
Label Embedding 47.81.4 46.31.5 49.51.4 36.43.2 41.32.5 32.53.5 77.20.5 74.00.7 80.80.7 53.81.7
SetFit→LE 45.31.2 45.51.0 45.11.4 30.51.6 31.42.0 29.71.9 72.70.4 70.50.5 75.10.4 49.51.1
LE→SetFit 44.11.0 42.11.8 46.30.5 32.93.0 41.84.1 27.12.3 66.70.4 65.81.3 67.61.1 47.91.5
FusionSent 49.01.3 49.01.8 49.00.9 41.24.6 43.45.4 39.23.9 78.30.3 76.00.2 80.70.5 56.22.1

|N | = Full∗∗
FineTune 71.6 78.2 66.1 57.9 73.5 47.8 95.9 96.2 95.7 75.1

Table 2: FusionSent performance scores and standard deviations for few-shot classification of scientific documents
compared to different approaches across three test datasets and four training set sizes |N |. Micro F1, Precision (P),
and Recall (R) scores are reported. ∗Number of training samples per class. ∗∗Entire available training data used.
In some cases, insufficient training examples were provided for the FineTune model to learn, resulting in no class
predictions during testing.

2021). In our multi-label scientific document classi-
fication experiments, we use three random training
splits for each dataset and sample size to mitigate
this issue. For each method, we report the average
measure and the standard deviation across these
splits. We use SciNCL (Ostendorff et al., 2022) as
the base PLM for each model. While we train the
FineTune model for 50 epochs in the few-shot set-
ting, we use the same approach to train a model on
the full training datasets for 3 epochs. In both cases,
we use a batch size of 12. For sentence embedding
model training according to step 1 in Section 4.1,
we use a batch size of 4 for all models, and for
training according to step 2 in Section 4.1, we use
a batch size of 1. Both steps are trained for 1 epoch
for all models. In addition, each model is trained
with a learning rate of 2e−5.

For the arXiv dataset, we use the publicly avail-
able category descriptions as label texts. For the
SciHTC and NLP taxonomy datasets, we gener-
ate short descriptive texts from the provided label
names with GPT-4 (OpenAI et al., 2023) and use
them as label texts. Table 5 shows examples of the
used label names and label descriptions.

6 Results

Table 2 shows a comparison between FusionSent
and the other few-shot approaches for |N | ∈
{2, 4, 8} labeled training samples per class. We
observe that FusionSent consistently outperforms
F1 scores of all approaches investigated for each
dataset and training set size. Further, FusionSent
significantly outperforms SetFit across all training
set sizes by an average of 6.0 F1 points. While
the other approaches using label texts for sentence
embedding training on a single model can perform
better than SetFit, they fall short of the FusionSent
approach. The Label Embedding (LE) approach
shows consistent improvements over SetFit on av-
erage, while the SetFit→LE and LE→SetFit ap-
proaches only outperform SetFit in a few cases.

The results demonstrate that using label texts
for sentence embedding training can help to sepa-
rate instances of different classes in the embedding
space, providing a crucial property for the classifi-
cation head to perform well. However, combining
the contrastive sentence embedding training ap-
proaches of SetFit and LE in a single model does
not significantly increase performance. Using a
two-step contrastive training approach does not
enable a single sentence embedding model to effec-
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tively encode information from both training steps,
as it may suffer from forgetting previously acquired
knowledge (Biesialska et al., 2020). Conversely,
the FusionSent results indicate that this limitation
can be circumvented by training separate sentence
embedding models with different contrastive learn-
ing approaches and subsequently merging their pa-
rameters. This approach ensures that the individu-
ally trained models encode different information,
whereas merging allows their respective knowledge
to complement each other, resulting in improved
model performance.

7 Experiments with Few Classes

To determine the generalizability of FusionSent to
few-shot settings with a low number of classes and
different domains, we perform experiments on the
SST-5 (Socher et al., 2013), CR (Hu and Liu, 2004),
Emotion (Saravia et al., 2018), AGNews (Zhang
et al., 2015), and EnronSpam (Metsis et al., 2006)
datasets as processed for few-shot classification by
Tunstall et al. (2022). These datasets each comprise
two to six classes and cover the fields of sentiment
classification, opinion detection from customer re-
views, emotion detection from Twitter tweets, news
article classification, and e-mail spam detection.
For all datasets, we generate short descriptive texts
from the provided label names with GPT-4 and use
them as label texts. Table 5 shows examples of
the used label names and label descriptions. We
experiment with all ten available randomized train-
ing splits for each dataset and sample size using
|N | = 8 and |N | = 64 few-shot examples. We
report the average accuracy and standard deviation
across the training splits for each method.

We use the paraphrase-mpnet-base-v26 model
(Reimers and Gurevych, 2019) as base PLM for
SetFit and FusionSent. Additionally, we use
RoBERTaLARGE (Liu et al., 2019) for the Fine-
Tune baseline. The other training parameters re-
main the same as in Section 5.3.

Results Table 3 shows the results of SetFit and
FusionSent training on the binary and multi-class
datasets. On average, FusionSent outperforms Set-
Fit for |N | = 8 by an average of 2.2 accuracy
points. However, as the number of training sam-
ples increases to |N | = 64, the gap decreases to
0.6 accuracy points. In addition, the improvements

6https://huggingface.co/sentence-
transformers/paraphrase-mpnet-base-v2

Dataset→ SST-5 AGNews Emotion EnronSpam CR Average
Method ↓ Multi-class Classification Binary Classification

|N | = 8∗

FineTune† 33.52.1 81.73.8 28.76.8 85.06.0 58.86.3 57.55.0
SetFit 41.72.0 82.63.6 49.53.8 91.03.2 89.61.2 70.92.8
FusionSent 43.03.2 84.42.2 57.12.5 91.43.9 89.81.0 73.12.6

|N | = 64∗

FineTune† 45.96.9 88.40.9 65.017.2 95.90.8 88.91.9 76.85.5
SetFit 48.14.4 87.70.8 78.52.0 96.10.5 90.60.7 80.21.7
FusionSent 50.02.8 88.30.8 78.71.6 96.50.6 90.70.6 80.81.3

|N | = Full∗

FineTune† 59.8 93.8 92.6 99.0 92.4 87.5

Table 3: FusionSent accuracy scores and standard devi-
ations for few-shot classification with few classes com-
pared to the baselines across five test datasets for three
training set sizes. ∗Number of training samples per
class. ∗∗Entire available training data used. †Results
from Tunstall et al. (2022).

are more substantial for multi-class classification,
whereas they are only minimal in the binary case.

For binary classification, instances of different
classes must be pushed apart from each other as
far as possible to allow the logistic regression clas-
sifier to find a good decision boundary. For this
relatively simple problem, the results indicate that
SetFit can already effectively separate instances of
different classes in embedding space. For multiple
classes, however, it is more difficult to find posi-
tions in the embedding space that separate instances
of different classes from each other. In these cases
in particular, FusionSent shows its strengths and
helps the classification head to find good decision
boundaries between classes.

8 Robustness Against Label Text
Variations

To evaluate the robustness of FusionSent against
different label text variations, we conduct experi-
ments on the previous datasets using simple label
names instead of extensive label descriptions. In
these experiments, we simply use the label names
as provided by the respective datasets and com-
pare the classification results with those obtained
by using detailed label descriptions. Table 5 shows
examples of the used label names and label descrip-
tions. We use |N | = 8 few-shot examples and
report the average F1 performance over the respec-
tive training splits. Furthermore, we use the same
training parameters as in Section 5.3 and Section
7.

Results Figure 3 shows the performance of Fu-
sionSent using simple label names, as provided by
the respective datasets, compared to using exten-
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Figure 3: FusionSent micro F1 scores for few-shot clas-
sification on 8 different datasets using either extensive
label descriptions or simple label names. We report the
average score over the random training splits of each
dataset using |N | = 8 training examples per class.

sive textual label descriptions generated by GPT-4.
We obtain similar performances across the different
label text variants with a mean performance differ-
ence of 0.48 and a standard deviation of 0.39 F1

points. Furthermore, there is no clear pattern as to
whether the use of extensive label descriptions or
simple label names leads to significantly improved
performance. In comparison, performance varia-
tions of 10 accuracy points and more when using
different prompts on the same model are charac-
teristic for prompt-based few-shot classification
approaches (Perez et al., 2021). Therefore, we con-
clude that FusionSent is relatively robust to label
text variations and the use of simple label names
is already sufficient to achieve good classification
performance.

9 Computational Costs

To compare the relative computational costs of Fu-
sionSent and SetFit, we follow the approach of Liu
et al. (2022) and use FLOPs-per-token estimates,
which can be obtained from Kaplan et al. (2020).
Specifically, encoder-only models with N parame-
ters have approximately 2N FLOPs-per-token for
inference and 6N FLOPs-per-token for training.
The resulting cost for inference and training is then
given by:

Cinf = 2N · ℓseq, (4)

Ctrain = 6N · ℓseq · nsteps · nbatch, (5)

where ℓseq is the input sequence length, nsteps
is the number of training steps, and nbatch is the

batch size. Since we are training two model bodies
for FusionSent, we calculate the training costs for
each model body separately and then add them up.
For inference, we can use the formula as provided,
since we only use one model body.

We estimate the costs using the scientific doc-
ument classification datasets from Table 2 and
SciNCL as base PLM with N = 110M param-
eters. Based on the median number of tokens per
instance in all datasets, we use ℓseq = 194 to esti-
mate the costs for training approaches that do not
use label texts. Since we perform inference on
these instances, we also use this value to estimate
the inference cost for all approaches. Taking into
account the shorter label texts, we use ℓseq = 130
to estimate the costs for training approaches that
utilize label texts. Additionally, we use fixed values
of nsteps = 1, 000, and nbatch = 8 for all training
estimates.

Method Inf. FLOPs Train FLOPs Avg. F1

SetFit 4.3e10 1.0e15 49.91.5
FusionSent 4.3e10 1.7e15 56.22.1

Table 4: Computational costs and average micro F1

scores of FusionSent and SetFit using |N | = 8 train-
ing samples on the scientific document classification
datasets listed in Table 2.

As shown in Table 4, the increase in F1 perfor-
mance is accompanied by increased training costs.
This is the result of training two sentence embed-
ding models instead of one. However, by merg-
ing the models, the inference efficiency remains
the same as when using the base PLM. Although
FusionSent incurs higher training costs, it can sig-
nificantly improve prediction performance while
maintaining SetFit’s inference efficiency.

10 Conclusion

We introduce FusionSent, a new approach for effi-
cient and prompt-free few-shot classification of sci-
entific documents. FusionSent uses label texts and
contrastive learning to improve classification per-
formances over several other few-shot approaches.
We show that FusionSent is particularly effective
in scenarios with many classes while being compu-
tationally efficient during inference. Additionally,
FusionSent is robust against label text variations.
Finally, we introduce a new arXiv dataset for multi-
label classification of scientific documents.
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Appendix

Dataset Label Names Label Descriptions
arXiv General Relativity and Quantum Cosmology General relativity and quantum cosmology focuses on gravitational

physics, including experiments and observations related to the
detection and interpretation of gravitational waves, experimental
tests of gravitational theories, computational general relativity,
relativistic astrophysics, solutions to Einstein’s equations and their
properties, alternative theories of gravity, classical and quantum
cosmology, and quantum gravity.

... ...
SciHTC Information retrieval The "Information Retrieval" class within the 2012 ACM Comput-

ing Classification System encompasses the study and design of
systems for indexing, searching, and retrieving information from
large datasets. It includes the development of algorithms and tech-
niques for processing and querying textual and multimedia data,
as well as evaluating the effectiveness of retrieval systems. Key
topics within this class involve search engine architectures, query
representation, relevance feedback, and information extraction.
The field also addresses challenges such as handling unstructured
data, understanding user context, and ensuring privacy and secu-
rity in the retrieval process.

... ...
NLP Taxonomy Named Entity Recognition Named Entity Recognition is the identification and classification

of entities (e.g., names of people, organizations) in text.
... ...

SST-5 very positive ’very positive’ is used for data samples that express strong or
intense positive sentiments, enthusiasm, or approval.

... ...
AGNews Sports ’Sports’ represents data samples related to sports news, events,

scores, and athlete performances.
... ...

Emotion sadness ’sadness’ is characterized by feelings of hopelessness, disappoint-
ment, melancholy, and vulnerability, often accompanied by a sense
of isolation or being overwhelmed.

... ...
EnronSpam spam ’spam’ is an unsolicited and often irrelevant or inappropriate mes-

sage sent over the internet, typically to a large number of users,
for the purpose of advertising, phishing, spreading malware, or
other malicious activities.

... ...
CR negative ’negative’ corresponds to criticisms, complaints, or expressions of

dissatisfaction with products or services.
... ...

Table 5: Examples of label names and extensive label descriptions for different datasets.
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Abstract

While the impact of tokenization on language
modeling is well-researched in richly resourced
languages, fewer studies on this topic exist for
challenging low-resource languages. In this
work, we present the first systematic evalua-
tion of tokenization methods for Georgian, a
low-resource language with high morphologi-
cal complexity. We compare standard subword
tokenizers, such as WordPiece, Byte Pair En-
coding, SentencePiece with Unigram, and a re-
cently proposed token-free approach. We also
investigate the multilingual BERT tokenizer
(mBERT), which includes Georgian. In addi-
tion to these different classes of tokenization
algorithms we also evaluate the impact of differ-
ent vocabulary sizes, a key parameter for sub-
word tokenizers. We evaluate the performance
of all tokenizers on masked language modeling
and on four downstream tasks: part-of-speech
tagging, named entity recognition, toxicity de-
tection, and sentiment analysis. We observe
that larger vocabulary sizes for subword tok-
enizers generally lead to better performance
across most tasks, with a notable exception in
the toxicity detection task, where finer subword
granularity is more effective. For the remaining
tasks, pre-training tokenizers on Georgian text
consistently yield better results compared to
mBERT. Additionally, the token-free method is
consistently outperformed by all other tokeniz-
ers. Taken together, our comprehensive evalu-
ation of tokenizers will be highly valuable in
making informed tokenization choices in future
language model developments for Georgian.

1 Introduction

Tokenization is a fundamental process in most nat-
ural language processing (NLP) tasks that involves
breaking down a text into smaller units called to-
kens. It is one of the first processes conducted
in most approaches and is particularly crucial for
low-resource languages. Tokenization gains fur-
ther importance in morphologically complex lan-

guages where multiple types of prefixes and suf-
fixes simultaneously modify the meaning of a word,
making it vital to split each word into meaningful
pieces. That is why different tokenization meth-
ods have been investigated in languages such as
Turkish (Toraman et al., 2023), Arabic (Alyafeai
et al., 2023), or Korean (Park et al., 2020). Studies
on these languages have shown that appropriate
tokenization can significantly enhance model per-
formance, with subword-level tokenization often
providing a good balance between capturing lin-
guistic nuances and managing sequence lengths.

In contrast, no comprehensive study of tokeniza-
tion has been conducted for any of the languages
from the Kartvelian family to which Georgian be-
longs. The Kartvelian family has no known relation
to any other language group. It consists of four lan-
guages, all spoken in Georgia, with its first split
dating back to the 20-22th century BC (Gavashel-
ishvili et al., 2023). Georgian, the official language
of Georgia, serves as a common language for all
Kartvelian speakers. The language is phonetic and
is written in its unique alphabet, one of the world’s
approximately 15 base alphabetical systems. Geor-
gian, a low-resource language with complex mor-
phology, has seen limited progress in NLP research,
which remains in its early stages. Existing studies
have primarily focused on data curation (Beridze
et al., 2017; Stefanovitch et al., 2022a) and syntac-
tic and morphological analysis (Kapanadze, 2019;
Kardava et al., 2017; Lobzhanidze, 2022) rather
than tokenization. Conducting a comprehensive
evaluation of tokenizers for Georgian provides a
solid foundation for future research on building ef-
fective Georgian language models, addressing its
unique linguistic challenges, and improving NLP
applications.

In our work, we address this need by, for the first
time, systematically evaluating different tokenizers
in Georgian for language modeling and on a set
of four downstream tasks. In particular, we evalu-
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ate four tokenization techniques: WordPiece (Song
et al., 2021), Byte Pair Encoding (Sennrich et al.,
2016), SentencePiece with Unigram (Kudo and
Richardson, 2018, Kudo, 2018), and a token-free
method (Xue et al., 2022). With these tokenizers,
we train a scaled-down BERT (Devlin et al., 2018)
architecture on a substantial Georgian language
corpus and fine-tune it on four downstream applica-
tions: sentiment analysis, toxicity detection, named
entity recognition, and part-of-speech tagging. In
addition, we investigate various vocabulary sizes
by training different-sized tokenizer models, iden-
tifying optimal strategies tailored to Georgian’s
morphological characteristics. Our results indicate
that (1) subword tokenization approaches trained
on Georgian pretraining corpora are superior to the
token-free approach as well as multilingual BERT’s
WordPiece tokenizer, and (2) that larger vocabu-
lary sizes tend to improve performance. The main
exception is the toxicity detection task, where tok-
enizers with finer granularity perform better. These
include multilingual BERT’s WordPiece with its
smaller vocabulary as well as the smaller vocabu-
lary versions of the subword tokenizers. With our
approaches, we set a new state of the art on the
recently introduced toxicity detection dataset by
Lashkarashvili and Tsintsadze (2022).

The source code developed in this study is avail-
able online1.

2 Related Work

2.1 Tokenizers in Language Modelling

We distinguish three major categories of tokeniz-
ers: word-level, subword-level, and token-free
(character/byte-level tokenizers).

Word-level tokenizers take all distinct words in
the corpus as tokens, which results in large vocab-
ularies that are, however, still rarely exhaustive.
While not requiring specific training, such tokeniz-
ers often suffer from numerous out-of-vocabulary
cases (Luong et al., 2015).

Subword-level tokenization is the most common
tokenization technique for modern language mod-
els. Such tokenizers are trained and selectively
combine characters, subwords, and words. Words
that are rarely used are usually split into smaller
units, resulting in smaller vocabulary sizes at better
coverage and fewer out-of-vocabulary cases.

1https://git.opendfki.de/philipp.mueller/
icnlsp24

GPT 2, 3 and RoBERTa (Radford et al., 2019,
Brown et al., 2020, Liu et al., 2019) utilize a Byte
Pair Encoding (BPE) tokenization method (Sen-
nrich et al., 2016). BERT and ELECTRA (De-
vlin et al., 2018, Clark et al., 2020) use a variant
of the BPE, the WordPiece tokenization method
(Song et al., 2021). XLM-RoBERTa, XLNet, and
T5 (Conneau et al., 2020, Yang et al., 2019, Raf-
fel et al., 2020), all rely on SentencePiece (Kudo
and Richardson, 2018) with the Unigram algorithm
Kudo (2018).

Token-free approaches treat all distinct charac-
ters or bytes in the corpus as tokens, resulting in a
small vocabulary and no out-of-vocabulary cases,
but also significantly longer input sequences and
less meaningful individual tokens. Byte-level to-
kenizers have been shown to be competitive with
their subword-level counterparts but usually need
more training time (Xue et al., 2022).

2.2 Tokenization for Morphologically Rich
and Low-Resource Languages

Toraman et al. (2023) show that for languages with
rich morphology, the choice of tokenizer can sig-
nificantly affect model performance. Word-level
tokenization often struggles due to the large num-
ber of possible word forms, whereas subword-level
tokenizers and token-free approaches can provide
more flexibility and robustness by capturing mean-
ingful subunits and handling out-of-vocabulary
words effectively. Similarly, Park et al. (2020) dis-
cuss the importance of appropriate tokenization
for Korean, a language with agglutinative morphol-
ogy. They highlight how different tokenization
strategies, such as character-level and subword-
level, affect the performance of NLP models on
diverse tasks and show that subword-level tokeniza-
tion strikes a balance between capturing linguis-
tic nuances and maintaining manageable sequence
lengths. Alyafeai et al. (2023) examine how differ-
ent tokenization methods perform on Arabic text
classification tasks. Given the rich morphology and
script variations, they show that tokenizers that can
effectively handle these complexities are required.
Subword-level tokenization, in particular, has been
shown to provide better performance by capturing
root and pattern morphemes.

2.3 Georgian Natural Language Processing
Georgian, a highly inflectional and agglutinative
language with complex morphology, poses unique
challenges for tokenization. Kartvelian, primarily
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spoken in Georgia, has no known relation to any
other language groups, making it one of the world’s
primary language families.

Research on Georgian NLP is still in its early
stages and to the best of our knowledge, no exist-
ing study focuses on tokenization methods. The
majority of research has concentrated on data cura-
tion (Beridze and Nadaraia, 2009; Doborjginidze
and Lobzhanidze, 2016; Fkhakadze et al., 2017;
Beridze et al., 2017; Stefanovitch et al., 2022a)
and automated syntactic and morphological ana-
lyzers (Kapanadze et al., 2019; Kapanadze, 2019;
Kardava et al., 2017; Lobzhanidze, 2022). Some
studies have trained models for downstream ap-
plications (Khachidze et al., 2016; Lashkarashvili
and Tsintsadze, 2022; Stefanovitch et al., 2022a),
using standard tokenization techniques without ex-
ploring the impact of tokenizers on the model’s
performance. Several papers (Pires et al., 2019,
Conneau et al., 2020) with pre-trained multilingual
language models provide subword-level tokenizers
containing Georgian tokens. However, the current
state of research indicates a gap in understanding
how different tokenizers would perform for Geor-
gian.

While subword-level tokenization has proven
effective for large language models, even for mor-
phologically rich languages like Turkish, Korean,
and Arabic, the question of which subword-level
algorithm would be most effective for Georgian re-
mains open. The competitiveness of the token-free
approach is also uncertain.

3 Data

In the following Section we present pre-training
datasets and downstream task datasets used in our
study.

3.1 Pre-training Datasets

In this work, we ensured a comprehensive cover-
age of the various styles and contexts of Georgian.
We used three primary corpora to pre-train our to-
kenization models: Wikipedia 2, Leipzig (2016) 3,
and CorpusGE (Fkhakadze et al., 2017). Wikipedia
and Leipzig provide extensive text data across var-
ious domains, ensuring diverse language cover-
age. CorpusGE, a high-quality text corpus, was

2https://dumps.wikimedia.org/backup-index.
html

3https://wortschatz.uni-leipzig.de/en/
download/Georgian

NER POS TOXD SA

Epochs 10 30 10 10

Max. length 512 512 512 512

Batch size 384 24 192 192

Learning rate 2e-5 2e-5 2e-5 2e-5

Train Size 90,000 2,000 8,000 2,500

Val. Size 90,000 250 1,000 850

Test Size 92,000 250 1,000 850

Table 1: Training details for the four different tasks:
Named-Entity Recognition (NER), Part-of-Speech Tag-
ging (POS), Toxicity Detection (TOXD), and Sentiment
Analysis (SA). In train and test sizes, we provide la-
beled word counts for token classification and labeled
sentence counts for text classification tasks. Exception:
Maximum length for token-free ByT5 is equal to 2048.

collected over four years from well-known Geor-
gian media pages. Following previous work on
Maltese (Micallef et al., 2022), we employed one
million words from these corpora to pre-train our
models.

3.2 Downstream Tasks
To assess the performance of different tokenization
methods, we focused on four language understand-
ing tasks: two for text classification and two for
token classification. We present an overview over
downstream task dataset sizes in Table 1.

Named Entity Recognition (NER) Named En-
tity Recognition is a token classification task that
identifies person, organization, or location names in
the text. We utilized the Wikiann (pan-x) multilin-
gual benchmark (Pan et al., 2017), a comprehensive
dataset that includes Georgian. This benchmark,
which consists of approximately 30,000 Georgian
sentences and roughly 90,000 labeled words per
train, validation, and test splits, provides a thorough
dataset for NER.

Part-of-Speech Tagging (POS) Part-of-Speech
Tagging is a token classification task that detects
parts of speech with respect to each word in a sen-
tence, such as nouns, verbs, adjectives, etc. We em-
ployed the Universal Dependencies dataset (Nivre
et al., 2020) for Georgian, which contains approxi-
mately 2,500 words and 152 sentences. The dataset
was split, with 10% used for validation and 10%
for testing. We also provide the percentage break-
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down of fourteen imbalanced class distributions:
Noun (29%), Punc (14%), Adj (13%), Verb (9%),
Pron (8%), Post (7%), Conj (6%), Adv (6%), Aux
(3%), Part (2%), Prop (2%), Num (1%), VerbalAdj
(0.3%), VerbalNoun (0.1%).

Toxicity Detection (TOXD) Toxicity detection
is a text classification task identifying harmful or
toxic comments in online discussions. For this
task, we used a dataset provided by Lashkarashvili
and Tsintsadze (2022). This data was gathered
from Georgian online discussion forums and man-
ually annotated for toxicity. The dataset comprises
10,000 sentences, divided into 46% toxic and 54%
non-toxic samples. We split the train, validation,
and test datasets as follows: 80%, 10%, and 10%.

Sentiment Analysis (SA) Sentiment Analysis is
a text classification task that determines the emo-
tional tone of the text. For this task, we used the
first publicly released annotated sentiment dataset
for Georgian (Stefanovitch et al., 2022b), referred
to as Georgian Sentiment Snippets (GSS). This
dataset contains approximately 4K text snippets,
each manually annotated by multiple annotators
using a four-tier scale: positive (33.5%), neutral
(41.0%), negative (18.1%), and mixed (7.2%). The
dataset is split into training, validation, and test
sets with the following proportions: 60%, 20%,
and 20%. This annotated dataset provides a ro-
bust resource for training and evaluating sentiment
analysis models.

4 Approach

We first discuss the different tokenizers we compare
in our study and subsequently present the training
procedure we utilized.

4.1 Tokenizers
In this study, we compare various tokenization
methods for Georgian. We focus on subword-level
tokenizers, including WordPiece, Byte Pair Encod-
ing (BPE), and SentencePiece with Unigram. Ad-
ditionally, we explore the byte-level token-free ap-
proach ByT5, assessing its performance relative to
traditional subword-level tokenizers.

Byte Pair Encoding (BPE) This approach was
initially introduced for data compression (Sennrich
et al., 2016). BPE minimizes the total number of
symbols (characters or bytes) needed to represent
the original text. First, the data is split into indi-
vidual symbols. Then, the most frequent adjacent

pairs of symbols are consecutively merged until the
desired vocabulary size is reached. In this study,
we employ BPE, which considers every distinct
byte as its initial vocabulary.

WordPiece (WP) WordPiece (Song et al., 2021)
is a variant of the BPE method. The primary dif-
ference lies in the merge rule, which is based on
likelihood rather than solely on frequency. Specifi-
cally, the algorithm prioritizes token pairs that have
a higher joint probability of how frequently the to-
kens appear together compared to how frequently
they appear separately. This method aims to re-
tain more meaningful linguistic units, potentially
providing a more nuanced tokenization. However,
training requires more computational resources due
to the complexity of calculating these probabilities.

SentencePiece with Unigram (SP-U) The Sen-
tencePiece (Kudo and Richardson, 2018) is a tool
that implements both the BPE and Unigram (Kudo,
2018) algorithms. This approach enables the tok-
enization of raw text strings without the need for
preprocessing, such as whitespace splitting, mak-
ing it particularly effective for languages without
clear word boundaries.

The Unigram algorithm, employed within the
SentencePiece framework, operates in two stages.
First, it populates its vocabulary with a large num-
ber of tokens similar to BPE, but for searching
the most frequent substrings, it uses the enhanced
suffix array algorithm. Second, it decreases the
vocabulary to the desired size. The Unigram model
iteratively prunes the least likely tokens based on
their probability contribution to the corpus, leverag-
ing the expectation maximization (EM) algorithm.

Token-Free Byt5 This approach treats all dis-
tinct bytes in the corpus as tokens. Xue et al. (2022)
used this approach and have increased the num-
ber of transformer parameters at the expense of a
large number of discarded vocabulary parameters.
They have been shown to be competitive with their
subword-level counterparts.

Multilingual BERT To provide a comprehensive
evaluation, we compare our pre-trained tokeniz-
ers with out-of-the-box multilingual BERT’s (Pires
et al., 2019) WordPiece tokenizer, containing 700
Georgian tokens. This comparison allows us to
assess the effectiveness of our tokenizers against
the established multilingual model.
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4.2 Training Procedure
Tokenizer Training As the vocabulary size is a
critical factor for the subword tokenizers, we ensure
its optimization for each method. Each subword-
level tokenizer was trained to generate vocabularies
of four different sizes (8k, 16k, 32k, and 64k), en-
suring optimal performance for the BERT model.
All the tokenizers were adjusted to accommodate
BERT’s special tokens and post-processing require-
ments.

BERT Integration For the integration with
BERT, we followed related studies (Toraman et al.,
2023; Xue et al., 2022) and utilized a scaled-down
architecture. These studies indicated that differ-
ences between tokenizers are more pronounced
with smaller language models. Smaller models
also have the advantage of faster training, allowing
us to run more evaluations than would be possi-
ble with larger-scale models. For our scaled-down
BERT model, we used the following configuration,
consistent across all our experiments: Hidden size:
512; Number of hidden layers: 8; Number of at-
tention heads: 8; Intermediate-size: 3072; Max
position embeddings: 512 for subword-level tok-
enizers, 2048 for token-free approach.

Pre-training Setup The pre-training corpus, as
detailed in Sec. 3, comprises 1 million tokens from
high-quality Georgian text sources. Pre-training
was conducted by training multiple BERT models
sufficiently long to achieve stable training and eval-
uation loss plots. BERT models were pre-trained
using only the Masked Language Modeling (MLM)
task, with the following aspects deviating from the
original BERT configuration. We made use of dy-
namic masking adopted from RoBERTa, set the
training epochs to 30, the batch size to 264, and
employed mixed precision training.

Finetuning and Evaluation The pre-trained
BERT models were finetuned on four down-
stream language understanding tasks: Named En-
tity Recognition (NER) and Part-of-Speech (POS)
tagging for token classification, and Sentiment
Analysis and Toxicity Detection for text classifica-
tion. Details on these tasks and their corresponding
datasets are provided in Section 3. Each language
model was finetuned 26 times, and evaluation re-
sults were averaged across these runs to ensure sta-
bility and robustness. Performance was evaluated
using four metrics: accuracy, f1 score, precision,
and recall. These metrics provide a comprehensive

ByT5 mWP BPE WP SP-U

MLM acc 0.423 0.564 0.613 0.616 0.617

NER

acc 0.800 0.902 0.925 0.927 0.930

f1 0.552 0.758 0.797 0.794 0.787

pre 0.565 0.744 0.781 0.783 0.774

rec 0.539 0.774 0.813 0.806 0.800

TOXD

acc 0.879 0.955 0.917 0.933 0.941

f1 0.866 0.952 0.911 0.928 0.937

pre 0.890 0.948 0.912 0.923 0.929

rec 0.843 0.957 0.910 0.933 0.945

POS

acc 0.699 0.889 0.900 0.905 0.915

f1 0.045 0.709 0.817 0.824 0.820

pre 0.028 0.670 0.788 0.795 0.790

rec 0.121 0.754 0.849 0.856 0.852

SA

acc 0.493 0.588 0.672 0.668 0.675

f1 0.472 0.558 0.642 0.641 0.647

pre 0.470 0.535 0.637 0.649 0.663

rec 0.493 0.588 0.672 0.668 0.675

Table 2: Performance of different tokenizers across var-
ious NLP tasks in terms of accuracy, f1 score, precision,
and recall. Tokenizers: ByT5, multilingual BERT’s
WordPiece (mBERT), Byte Pair Encoding (BPE), Word-
Piece (WP), SentencePiece with Unigram (SP-U). Tasks:
Masked Language Modeling (MLM), Named-Entity
Recognition (NER), Part-of-Speech Tagging (POS),
Toxicity Detection (TOXD), and Sentiment Analysis
(SA).

view of the models’ effectiveness across the various
tokenization methods.

5 Results

5.1 Comparing Tokenizers

We present the results of different tokenizers on
language modeling and our four downstream tasks
in Table 2. All subword tokenizers in this table
were trained with a vocabulary size of 64k. For
masked language modelling, SentencePiece with
Unigram (SP-U) achieves the highest accuracy
of 0.617, closely followed by WordPiece (0.616
acc), and BPE (0.613). Both multilingual BERT’s
WordPiece tokenizer and the token-free ByT5 are
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Figure 1: Impact of vocabulary size on the performance of four downstream tasks: Toxicity Detection, Sentiment
Analysis, Named-Entity Recognition, and Part-of-Speech Tagging. The x-axis shows the vocabulary size in absolute
numbers as well as in proportion to the overall network parameters.

worse by a large margin (0.56 and 0.423 acc, re-
spectively). This general pattern is also present in
three out of four downstream tasks. For named en-
tity recognition, part-of-speech-tagging, and senti-
ment analysis, the subword tokenizers consistently
achieve better performance than ByT5 and multi-
lingual BERT’s WordPiece tokenizer. The differ-
ences between subword tokenizers on downstream
tasks are small. When measured in terms of f1,
BPE achieves the best performance in named entity
recognition (0.797 f1). For part-of-speech tagging,
WordPiece achieves the best f1 score of 0.824, and
for sentiment analysis, SentencePiece with Uni-
gram is leading with 0.647 f1.

We observed surprisingly bad POS results for
the ByT5 tokenizer in terms of f1 (0.045), preci-
sion (0.028), and recall (0.121). We conjecture this
is because f1, precision, and recall are directly re-
lated to the number of correctly predicted positive

instances. Because the tokenizer breaks the text
into tokens that are too granular or not meaningful
for the POS tagging task, combined with a small
number of training examples, there is a high num-
ber of false positives and false negatives, thereby
lowering the aforementioned metrics. Also, our
POS tagging benchmark is highly imbalanced and
involves a few frequent tags, like nouns and verbs,
and many infrequent ones, like rare numerals. Thus,
a high accuracy is misleading to some extent as the
model performs well on frequent tags while failing
on the rare ones.

5.2 Comparing Vocabulary Sizes
We present the results of our vocabulary size exper-
iments in Figure 1. There is a tendency that larger
vocabulary sizes lead to better performance. This
is clearly the case for both sentiment analysis and
part-of-speech tagging. For named entity recogni-
tion, the effect of vocabulary sizes is negligible - f1
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Accuracy AUC

SOTA CNN 0.888± 0.007 0.942± 0.005

Ours (WP 8k) 0.944± 0.007 0.944± 0.007

Ours (mWP) 0.959± 0.009 0.959± 0.009

Table 3: Our Toxicity Detection approaches compared
with the SOTA by Lashkarashvili and Tsintsadze (2022).
We report accuracy and area under curve (AUC), along
with standard deviations across CV folds.

scores only vary between 0.78 and 0.80. However,
for toxicity detection, the positive connection be-
tween vocabulary size and performance is clearly
reversed. Here, tokenizers with a higher average
split of the words were more effective. This indi-
cates that a finer granularity in tokenization can
be beneficial for tasks requiring a nuanced under-
standing of potentially offensive language. This
statement is in line with the previously observed
fact that the multilingual BERT (mBERT) tokenizer
performs best for toxicity detection. The mBERT
tokenizer contains only 700 Georgian tokens, the
smallest vocabulary size among the subword-level
tokenizers we investigated.

5.3 Comparison with SoTA Approaches

Our scaled-down BERT models ( 42M parameters)
demonstrate strong performance on the Toxicity
Detection dataset introduced by Lashkarashvili and
Tsintsadze (2022). We employed two tokeniza-
tion methods for pretraining and fine-tuning: an
8K vocabulary WordPiece and the multilingual
BERT WordPiece. For comparability, we followed
Lashkarashvili and Tsintsadze (2022) by using
stratified 5-fold cross-validation, along with accu-
racy (ACC) and area under the curve (AUC) as eval-
uation metrics. Results, presented in Table 3, show
that while Lashkarashvili and Tsintsadze (2022) re-
ported an ACC of 0.888 and an AUC of 0.942 for
their best-performing CNN model, our approach
achieved an ACC of 0.9435 and an AUC of 0.9442
using the 8K WordPiece, and an accuracy of 0.9586
and an AUC of 0.9591 with the multilingual Word-
Piece, establishing a new state of the art.

6 Discussion

For most tasks, we observed that pre-training tok-
enizers on a small amount of Georgian text yield
better performance than relying on the mBERT

tokenizer. This suggests that language-specific pre-
training is crucial for achieving optimal results in
Georgian NLP tasks. The superior performance
of these tokenizers compared to the multilingual
WordPiece tokenizer from mBERT (except in tox-
icity detection) raises questions about the limita-
tions of the latter. Our findings indicate that this
multilingual tokenizer may not adequately capture
the nuances of highly divergent languages such as
Georgian.

Furthermore, our results indicate that ByT5 is
not competitive with the other tested methods. We
suspect two possible reasons for this. First, each
Georgian letter contains 3 bytes, so the LM training
input sequences for Georgian are three times longer
than for English. Second, in the original ByT5
paper, the authors Xue et al. (2022) increased the
number of transformer parameters at the expense of
a large number of discarded vocabulary parameters.
They increased input sequence length, embedding
size, and intermediate layer size. We only increased
the input sequence length due to the limited vocab-
ulary parameters, which might be another reason
for the suboptimal performance observed.

We found a general trend of improved perfor-
mance with larger vocabulary sizes for subword
tokenizers. This suggests that capturing a wide
range of morphological variations is crucial for ef-
fective language modeling in Georgian. However,
our findings on toxicity detection versus the other
downstream tasks also underscore the importance
of tailoring tokenization strategies to the specific
requirements of each task and dataset.

In our case, the toxicity detection benchmark in-
volves words that are not present in the tokenizer’s
vocabulary, specifically those that serve as key in-
dicators of toxic content. When a tokenizer en-
counters these unknown words, it splits them into
smaller subword units. This behavior is observed
even in tokenizers with large vocabularies. How-
ever, LMs using tokenizers with smaller vocabulary
sizes are inherently more robust at handling and
representing short tokens because their pretraining
data mostly contains short tokens. In contrast, LMs
using tokenizers with larger vocabularies tend to
rely on longer tokens, which can lead to a loss of
information when the input is split into less mean-
ingful or less frequent short tokens. We conjec-
ture that this is the reason for why tokenizers with
smaller vocabulary sizes perform better in the case
of toxicity detection.
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The results highlight that a one-size-fits-all ap-
proach to tokenization is inadequate, and careful
consideration must be given to the nature of the
task and especially to the linguistic features of a
language.

7 Conclusion

In this study, we explored the impact of various
tokenization methods on Georgian language mod-
eling, including subword-level tokenizers, such
as BPE, WordPiece, and SentencePiece with Uni-
gram, a pre-trained multilingual BERT tokenizer,
and a recently proposed token-free approach ByT5.
Each method is evaluated by the performance of a
scaled-down BERT architecture on four indepen-
dent downstream tasks. Our findings suggest that
larger vocabulary sizes generally enhance perfor-
mance across most NLP tasks. However, on the
toxicity detection task, tokenizers with finer granu-
larity, like the multilingual mBERT with its smaller
vocabulary, performed better. In all the other tasks,
language-specific pre-training of tokenizers outper-
formed mBERT. Interestingly, the token-free ap-
proach did not perform competitively, highlighting
potential limitations of its applicability to Georgian,
our model’s architecture, or both.

In the future, we aim to explore the impact of
different tokenization strategies on more advanced
model architectures, as well as extend this analysis
to other Kartvelian languages, which could further
our understanding of effective NLP strategies for
Georgian and similar languages.

Georgian presents a challenging landscape for
NLP due to its complex morphology, limited train-
ing data, and sparse research focus. By conducting
the first rigorous comparative study of tokenization
methods for Georgian, this work lays a founda-
tional reference for future research and develop-
ment. Given that tokenization is the first step in
NLP model training, our study provides valuable
insights that can guide researchers and practitioners
in building models tailored to the needs of Geor-
gian and specific NLP tasks.

Limitations

While this study provides valuable insights into tok-
enization methods for Georgian, several limitations
should be acknowledged.

Architectural Diversity Our research is limited
to a scaled-down BERT. Exploring and experiment-
ing with other LM architectures could potentially

yield different results and even trends, and thus, it
is essential to consider alternative architectures in
future studies.

Language Scope The experiments and analyses
conducted in this study are restricted to Georgian.
Testing the generalizability of our findings to other
languages would provide a broader validation of the
tokenization methods. This is particularly impor-
tant for ensuring the robustness and applicability
of our approaches in multilingual contexts.

Downstream Tasks Our study evaluates the to-
kenization methods on a limited number of down-
stream tasks. Expanding the range of downstream
tasks in future research will help to understand
the effectiveness and limitations of the tokeniza-
tion methods in diverse applications, potentially un-
covering further task-specific strengths and weak-
nesses.

Comparison with Multilingual Models While
we compared our tokenizers to the multilingual
BERT model, we did not include XLM-RoBERTa
and mT5 (Conneau et al., 2020; Xue et al., 2021)
tokenizers in our evaluation. Future work should in-
corporate this and other recent multilingual models
to provide a more complete comparison.
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Abstract

Effective cross-lingual communication remains
a significant challenge in today’s rapidly global-
izing world. Developing Speech-to-Text Trans-
lation (S2T) systems using artificial intelli-
gence presents various difficulties, such as the
unavailability of all language pairs for simul-
taneous model training. Additionally, when a
model is trained on a new language, it often
loses its ability to remember previously learned
tasks, a phenomenon known as catastrophic
forgetting. This paper explores the applica-
tion of Gradient Episodic Memory (GEM) to
address these challenges. Our study investi-
gates the effectiveness of GEM in enhancing
S2T model performance across sequentially in-
troduced language pairs. Experimental results
demonstrate that GEM can significantly reduce
forgetting by 24.8% and boost translation ac-
curacy by 44.5% as compared to baseline, of-
fering a promising approach for scalable and
efficient multilingual-continual S2T systems.

1 Introduction

Speech-to-text (S2T) translation is a technology
that bridges language barriers by converting spoken
language into written text in a different language.
This capability is increasingly vital in our global-
ized world, where effective and seamless commu-
nication across diverse linguistic communities is
essential. Traditional S2T translation systems like
(Bansal et al., 2017; Le et al., 2021; Sarkar et al.,
2023) typically require large, diverse datasets for
training and are often retrained from scratch when-
ever new language pairs are introduced. This pro-
cess is not only computationally expensive and
time-consuming but also environmentally unsus-
tainable due to the high energy consumption in-
volved.

Continual learning, also known as lifelong learn-
ing, offers a promising solution to these challenges.
In the realm of S2T translation, continual learn-
ing allows models to adapt incrementally to new

En     Fr

"Hello"

Bonjour

En     Ru

"Hello"

привет

En     It

"Hello"

Ciao

Task t

Task t+1

Task t+2

Le
ar

n
Le

ar
n

Figure 1: Task diagram of proposed work where new
task (S2T for English to Russian, t+1) is trained using
the model from previous task (S2T for English to French,
t). And similarly for English to Italian (task t+2 trained
from model of task t+1).

languages and dialects without forgetting previ-
ously learned ones (Bremner et al., 2013; Rusu
et al., 2022). Traditional methods suffer from
Catastrophic Forgetting (McCloskey and Cohen,
1989), where a model’s performance on previously
learned tasks degrades as it learns new ones. Con-
tinual learning mitigates this issue by enabling S2T
models to retain past knowledge while incorporat-
ing new information, thus maintaining high per-
formance across all tasks. This approach not only
improves the efficiency and scalability of multi-
lingual S2T systems but also ensures they remain
effective as new language data becomes available.

To this end our contributions include studying
continual learning for end-to-end (E2E) S2T to mit-
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igate the catastrophic forgetting. To the best of our
knowledge, no prior research has been conducted
on this specific domain.

2 Related Work

Recently, several studies have applied continual
learning to automatic speech recognition. (Sadhu
and Hermansky, 2020) sequentially trained an
HMM-DNN model on four different tasks using
the Wall Street Journal, Reverb, Librispeech , and
Chime4 corpora. (Chang et al., 2021) developed
an end-to-end ASR model in which they first pre-
trained it on the WSJ corpus then on Librispeech
and finally on the Switchboard corpus (Godfrey
et al., 1992) tested the model’s performance on dif-
ferent speech recognition tasks after each update.
As real-world data distributions vary a lot from one
task to another, it becomes quite essential to know
when the training data is presented with a different
task than the one it was trained for. In this respect,
(Zeno et al., 2019) came up with a Bayesian ap-
proach to continual learning that does not require
knowledge at the time of transition from one task
to another. Similarly, (Mai et al., 2021) introduced
the concept of online continual learning over im-
age classification, assuming that the emergence of
new classes or instances of images may include a
variety of online data streams.

Applications of continual learning have been
successfully extended to various tasks such as com-
puter vision (Aljundi et al., 2017) and automatic
speech recognition (Eeckt and hamme, 2023; Fu
et al., 2021). This has not been investigated with
respect to Speech-to-Text Translation so far.

3 Problem Statement

The continual learning of S2T models is defined as
follows. First, we assume we have an initial model
that has been trained on a given dataset (D0). This
model serves as a seed model on which a sequence
of continual learning updates is applied. Second,
we have a set of labeled datasets D = {Di}Ni=1

which become available sequentially over time for
model training. N represents the total number of
language pairs available to train the model. Retrain-
ing the S2T model from scratch each time a new
dataset Dn becomes available incurs substantial
computational costs. Hence a replay-based con-
tinual learning method retains few samples from
previous tasks to minimize the L2 distance between
gradients of new and old data, thereby preserving

past knowledge while learning new tasks:

Ltotal = Lnew + λ
n−1∑

i=0

∥gnew − giold∥22 (1)

Where, Lnew is the loss on current task, gnew is
the gradient of the loss with respect to the new data,
giold is the gradient of the loss with respect to the
samples from the i-th previous task and λ is a reg-
ularization parameter that controls the importance
of preserving old knowledge.

4 Methodology

The S2T baseline used is a transformer-based
encoder-decoder model (Vaswani et al., 2023). The
hypothesis is that the model being trained for fu-
ture tasks be optimized by comparing the gradients
of previous tasks. To that end, we aspire to em-
ploy the approach originally proposed for visual
recognition task handling continual learning using
gradient episodic memory (GEM) (Lopez-Paz and
Ranzato, 2022). Motivated by its recent applica-
tion in computer vision tasks, we ask the following
research question: Will the same approach be able
to learn in an S2T setting? We confirm that using
GEM in S2T setting, we are able to mitigate the
catastrophic forgetting.

4.1 Gradient Episodic Memory (GEM)
GEM is a replay-based continual learning method
that retains samples from past data in its memory.
When the model encounters data from a new task,
it minimizes the L2 distance between the gradients
of the new data and the old data. To minimize
the total loss Ltotal, we ensure that the update to
the model parameters does not significantly change
the gradients computed for the old tasks. This
constraint helps to prevent catastrophic forgetting.
The new gradient is calculated as:

gnew = ∇θLnew (2)

where θ represents the model parameters, and Lnew
is the loss function for the new task. The gradients
from the stored examples are then calculated as:

giold = ∇θLiold for i = 0, . . . , n− 1 (3)

where Liold is the loss for the samples from the i-th
previous task stored in the episodic memory. The
gradient ω to prevent catastrophic forgetting is then
defined as:

ω = G⊤v + gnew (4)
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where G = (g1old, . . . , g
n−1
old ) is the matrix of gra-

dients for the previous tasks, and v is a vector
obtained by solving the quadratic programming
problem that ensures the constraints on gradient
alignment.

4.2 S2T Transformer
The Transformer model is an adaptation of the
Transformer architecture, specifically designed to
handle speech representations as input. These fea-
tures are inputted into the S2T encoder, which is
composed of several layers utilizing self-attention
mechanisms. These mechanisms allow the model
to process various segments of the input sequence,
thereby efficiently capturing long-range dependen-
cies. The self-attention mechanism calculates atten-
tion weights to emphasize key features during the
decoding process. In the training phase, the model
is fine-tuned to align with the ground truth target
text by optimizing the following loss function:

LST = −
∑

n

logP (xn|yn) (5)

Here, LST represents the label-smoothed cross-
entropy loss on speech and target language text
pairs, x is the input speech and y is the target text.
This loss is calculated by updating the model pa-
rameters θ such that it doesn’t change the gradients
of previous tasks gold. The S2T Transformer gener-
ates a sequence of predicted tokens that articulate
the translated textual representation.

5 Experiment

In this section, we detail the following components:
(a) datasets, (b) baselines, (c) training and testbed
and (d) evaluation metrics.

5.1 Dataset
We conduct experiments on four pairs of transla-
tion directions available in MuST-C1 (Di Gangi
et al., 2019) dataset: English (En) to German (De),
French (Fr), Russian (Ru) and Dutch (Nl). It con-
tains audio, transcript and translation from TED
talks for each direction. The statistics of the dataset
is shown in Table 1.

5.2 Baselines
As there is no previous continual learning baseline
for S2T models, we create two baselines of our own.
First is to simply fine-tune the model on new

1We use v1.0. https://ict.fbk.eu/must-c/

MuST-C Dataset
En
→

Hours #Sents Train Val Test

De 408 274K 269K 1.5K 2.8K
Fr 492 280K 275K 1.4K 2.6K
Ru 489 270K 265K 1.3K 2.5K
Nl 442 253K 248K 1.4K 2.6K

Table 1: Train, test and validation splits for MuST-C.

tasks and the second baseline is a setup where all
task’s datasets are available together during training
as it is a joint approach. In this experiment, we
consider the fine-tune to be a lower bound and
joint to be an upper bound for the performance of
the model.

5.3 Training and Testbed

In this study, we utilized the FAIRSEQ S2T toolkit
(Wang et al., 2020) to implement our method. The
core architecture is an S2T Transformer encoder-
decoder model. Both the encoder and decoder con-
sist of 6 self-attention layers, each featuring 8 atten-
tion heads. Due to limitations in training resources,
the encoder and decoder are of the small configu-
ration, comprising of 256 hidden units. Data aug-
mentation is performed using SpecAugment (Park
et al., 2019), and the GELU activation function is
employed to enhance convergence, normalization
and training stability. The S2T model is trained
with label-smoothed cross-entropy loss, with a la-
bel smoothing factor set at 0.1. The Adam opti-
mizer is used, featuring a learning rate of 1e-4, and
the learning rate schedule follows an inverse square
root pattern.

5.4 Performance Metric

Case-sensitive detokenized BLEU using sacre-
BLEU (Post, 2018) is used to report the perfor-
mance of the model. All experiments are repeated
with three different random seeds, and we report
the average BLEU on the MuST-C tst-COMMON
set.

6 Results

We measure the performance of the system across
four tasks sequentially as shown on Table 2. T-1
was conducted on De, T-2 on Fr, T-3 on Ru, and
T-4 on Nl. The goal is to retain model performance
on previous tasks while performing T-2, T-3 and
T-4. The results are given in terms of BLEU scores
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T-1 T-2 T-3 T-4 Agg.

De De Fr Avg De Fr Ru Avg De Fr Ru Nl Avg Avg

Fine-

Tune

23.85 0.5 30.1 15.3 0.2 0.2 17.23 5.87 0.3 0.2 0.1 28.78 7.34 7.37

Forg 98% 99.2% 99.3% 98.8% 99.3% 99.4% 98.8%

Joint 26.02 26.02 36.05 31.03 26.02 36.05 18.23 26.76 26.02 36.05 18.23 29.78 27.52 27.84

GEM 23.85 5.42 26.71 16.07 5.59 6.33 14.41 8.78 4.88 5.77 4.32 24.86 9.96 10.65
Forg 77% 76.5% 76.3% 79.5% 78.4% 70% 74.3%

Table 2: Task-wise average BLEU score and forgetting on four pairs of MuST-C data. Fine-tune and Joint are the
baselines whereas GEM is the proposed method for continually learning S2T models. Forg denotes the forgetting
on that method. Here, T-1, T-2, T-3, and T-4 are tasks where we train the model on De, Fr, Ru and Nl language pairs
sequentially. Agg Avg is overall average.

and Forgetting in percentages, which quantify the
retention of tasks learned before.

6.1 Automatic Evaluation

As seen in Table 2 for the Task 1 with fine-tune,
the BLEU score for De is 23.85 whereas it
significantly lowered in next subsequent tasks. In
Task 2, fine-tune′s BLEU score on De lowers to
0.5 and further goes even worse down to 0.2 after
Task 3 and after Task 4 to 0.3. It shows similar
result with other language pairs as the number of
task increases. Conversely, GEM demonstrates
quite smooth performance with BLEU score of
23.85 for Task 1 on De, and a score of 5.42 for De
after Task 2, 6.33 after Task 3, and 4.32 after Task
4, showing that the model is able to remember the
previous task. It follows a similar score for other
languages as well. In Figure 2, although Nl in Task
4 is trained for the first time in both fine-tune
and GEM, the increase in BLEU score can be
explained due to the forward transfer experienced
by the S2T model using GEM. The result shows
that GEM is able to preserve previous knowledge
at an average BLEU score of 10.65 across all
tasks compared to the baseline fine-tune with an
average of 7.37.

Forgetting: One of the main challenges of
continual learning is forgetting, which means that
the performance on the tasks learned earlier in the
run deteriorates upon the introduction of new tasks.
From Table 2 we see fine-tune baseline has very
high forgetting rates of 98% on Task 1, 99.2% on
Task 2, 98.8% on Task 3, and 99.4% on Task 4.
However, this effect of forgetting is considerably
reduced if applied GEM: 77% for Task 1, 76.5%
for Task 2, 76.3% for Task 3, and 70% for Task
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Figure 2: Epoch wise BLEU score on all tasks trained
sequentially.

4. This reduces the average rate of forgetting for
GEM to be 74.3%.

7 Conclusion

In this paper, we propose GemST, a new method for
continually learning Speech-to-Text models. Re-
sults obtained from our experiments on the MuST-
C dataset indicate that GEM not only improves
the BLEU scores of multiple tasks compared to
the baseline, but it also causes a requisite massive
drop in the forgetting rates. Hence it demonstrate
GEM’s efficacy toward the development of robust
S2T systems that learn tasks introduced sequen-
tially without suffering from the so-called catas-
trophic forgetting. This development paves the way
for future research and development on continual
learning methodologies within the S2T domain.
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Limitations

While our proposed method demonstrates supe-
rior performance compared to the baseline, a few
limitations should be noted: (1) While GEM ef-
fectively retains knowledge from previous tasks,
there is potential to further minimize the forgetting.
Developing more advanced methods could lead
to greater reductions in forgetting, enhancing the
overall performance of the model, (2) As this study
presents the first application of continual learning
to S2T, there is a lack of established baselines. Fu-
ture work could develop and compare additional
continual learning baselines to provide a more com-
prehensive evaluation. Nevertheless, our primary
objective was to initiate research in this area.
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Abstract

In this paper, we introduce CASCA1 a multi-
modal speech diarization framework that incor-
porates speaker role information. Motivated
by the challenges of diarizing single-source
customer-employee interactions in noisy en-
vironments, this framework utilizes a cascad-
ing sequence of fine-tuned large language mod-
els to characterize distinctions in speaker roles.
Audio with linguistic content associated with
particular roles is used to formulate acoustic
speaker profiles; these profiles reduce the sub-
sequent clustering task into a classification task.
CASCA is robust to sparsity or low signal-to-
noise ratios, conditions that tend to confound
traditional clustering algorithms. Although in-
tended for those domains with clear role dis-
tinction, e.g., doctor-patient, teller-customer,
through topic segmentation, CASCA captures
transient, topic-level speaker role information
to reliably identify speaker profiles. This ex-
pands the domain of applicability. We validate
the effectiveness of our approach on a bench-
mark of two-speaker conversations from a va-
riety of domains, achieving an 80% reduction
in word diarization error rates over our conven-
tional baseline.

1 Introduction

Speaker diarization is the process of segmenting
recorded audio according to the speaker source.
It determines who spoke when by splicing audio
into regions of homogeneous speaker source and
applying a speaker tag to those regions. Accurate
speaker diarization is crucial for effective conver-
sation understanding, which is essential in myr-
iad applications from customer service analytics
to medical recordkeeping. Spoken conversations
are rich in both linguistic and acoustic information.
However, most current diarization systems utilize
only acoustic information in speaker assignment.

1Context Aware Speech Classification Architecture
https://github.com/CASCA-Labs/CASCA

Some of the most popular diarization algorithms
(Serafini et al., 2023), including Pyannote (Plaquet
and Bredin, 2023), which we use as our baseline,
are cluster-based. The general architecture of these
systems is as follows:

• Voice activity detection isolates speech from
non-speech.

• Segmentation splits regions of speech into
smaller segments with a single active speaker.

• Embedding extraction yields vector represen-
tations capturing key audio characteristics.

• Clustering groups these embeddings to deter-
mine speaker assignment.

These systems, however, tend to generalize poorly
to varied real-world situations. Embedding clus-
ters are often imbalanced, non-Gaussian, or indis-
tinct due to uneven speaker participation, shifts in
tone or intonation, or background noise. These
factors make accurately identifying cluster bound-
aries, and, in turn, speaker assignment unreliable.
A prime example of a conversation that yields in-
distinct embedding clusters is presented in Table 3a.
This work aims to solve these challenges by refor-
mulating the clustering step into a classification
step by incorporating a key source of speaker dif-
ferentiation available in the linguistic content of
the conversation: speaker roles.

Speaker roles within a given conversation tend
to be distinct. The degree of this distinction can be
high, for example, in conversations between a doc-
tor and patient or salesperson and customer, or low,
such as in casual conversations between two sib-
lings or two roommates. Speaker roles can provide
strong cues about the correct speaker assignment
of certain speech segments within a conversation.
For example, in a conversation between a doctor
and a patient, the speech segments corresponding
to the phrases “I am experiencing chest pain” and
“I am going to recommend an X-ray” can be at-
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tributed to the roles of the patient and the doctor,
respectively. This information can be used to iso-
late particular speech segments that correspond to
each role. These segments, representing a sort of
acoustic speech profile of each speaker, simplify
the subsequent speaker assignment task into a clas-
sification task, avoiding the need for unreliable
clustering algorithms.

1.1 Types of Speaker Role Distinction

In this paper, we will refer to two types of speaker
role distinction: strong role distinction and weak
role distinction. Strong role distinction is present
when the role of each speaker is stable and pertains
to the speaker themselves, more or less independent
of the conversation. For example, in the case of a
conversation between a bank teller and a customer,
the roles of the speakers and what they might be
expected to say are strongly determined by their re-
lationship to the service being provided. Weak role
distinction is present when the role of each speaker
is fluid throughout the conversation. In these cases,
there are no overriding contextual factors that ex-
plain the linguistic content. Importantly, however,
even when roles are more fluid, speakers typically
assume identifiable roles within certain segments
of the conversation that relate to specific topics. For
instance, in the conversation summary presented
in Table 1, although the speakers are peers without
apparent strong role distinction, they assume differ-
ent roles within each topic segment: one informs
the other about a promotion in the first segment
and updates her about a mutual friend in the sec-
ond. Leveraging this weak role distinction presents
a challenge but is crucial to the robustness of our
approach. This motivates the specification of the
first stage of our pipeline, which extracts role dis-
tinctions on the topic level (see Sections 2.1–2.3).

1.2 Prior Work

Utilizing linguistic information is recognized as
a key opportunity to enhance diarization sys-
tems. Recent advances in n-gram models, partic-
ularly transformer-based models, have made the
use of this information more accessible and valu-
able. Multimodal diarization approaches leverag-
ing these models have proven effective. BERT-
based models, for instance, have shown promise
in post-processing transcribed dialogues and cor-
recting errors from misaligned speaker turns (Pa-
turi et al., 2023). Efforts have also been made to
use a priori knowledge of speaker identities for

downstream classification tasks in different con-
texts. One study (Flemotomos et al., 2020) in-
volved training classifiers on sentence-level speech
segments to construct speaker profiles in therapist-
patient conversations. A subsequent investigation
(Flemotomos and Narayanan, 2022) extended this
approach to two domains, using linguistic infor-
mation to constrain embedding clusters. Another
study (Prasad et al., 2021) addressed problematic
audio data in an aviation setting using a related
method. Although these efforts are valuable, they
are limited in certain respects, particularly in their
dependence upon a priori information of speaker
identities. In this paper, we tackle the more diffi-
cult problem of role-aided diarization without prior
knowledge of speaker identities, where leveraging
relational information is a central aspect of our
methodology.

2 LLM Sequence

Figure 1: The motivation for CASCA. The roles of the
doctor and patient can be used identify segments of
speech that belong to each speaker. These segments
compose acoustic speaker profiles against which can be
used in speaker assignment of the remaining segments.

Characterizing speaker roles serves as the founda-
tional step in isolating speech profiles. Firstly, tran-
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scripts are generated through an ASR model, which
are then passed to three specialist LLMs: a summa-
rization model, a topic segmentation model, and a
role identification model. As each model processes
a smaller segment of the conversation, information
is passed downstream at each stage, allowing the
maintenance of high-level context throughout. Af-
ter roles are identified, a fourth specialist LLM
identifies those segments of transcribed speech
most likely to be associated with each role. The
corresponding speech segments are then combined
to form speech profiles for each speaker. Vector
embeddings are generated for each speech profile
as well as each speech segment; speech segments
are then assigned a speaker source according to the
maximum cosine similarity to the corresponding
speech profiles. We highlight two conversations
from our experiment: CALLHOME 0638 (see Ta-
ble 1) from the CALLHOME (Canavan et al., 1997)
dataset and MedData RES0102 (see Table 2) from
the MedData (Farzandipour et al., 2022) dataset.
CALLHOME 0638 is an example of a conversation
with weak role distinction, elucidating the need for
the topic segmentation stage. MedData RES0102
is an example of a conversation with fuzzy embed-
dings cluster boundaries (see Figure 3a) that cannot
be accurately diarized using audio alone. Using
role information, speech segments attributable to
each speaker are used to build acoustic speech pro-
files (see Figure 3b), facilitating accurate speaker
assignment (see Figure 4).

Transcription

Conversation Summarization

Topic Segmentation

Role Identification

Initial Utterance Classification

Speech Profile Creation

Embeddings Extraction

Similarity Classification

Figure 2: Architecture of CASCA

2.1 Summarization

The first model in our LLM pipeline summarizes
the nature and type of the conversation, such as
an interview, transaction, or friendly chat. This
summary is passed downstream in the prompt of the
role identification model to maintain context that
could be lost during topic segmentation. Preserving
the high-level context ensures that the assigned role
profiles remain consistent with the nature of the
conversation.

2.2 Topic Segmentation

Topic Segmentation of CallHome 0638, Chunk 01.

At Kinko’s? | Mm-hmm. | Is it the same
job that you had when I left? | Well, I’m
almost out of my job. | What does that
mean? | They... They gave me a promotion
to supervisor. | Wow. | Yeah, but I can’t
change out of it until the 10th of August.
| Oh. | But I’ve been working on Sundays
as a supervisor. | So I’ve sort of been the
supervisor, but I still have my other job
during the week. | Do you like being su-
pervisor? | Yeah, I do. | Oh, good. | Okay.
| Well, that’s good. | And then I can work,
like, evenings during school. | Uh-huh. | I
don’t have to work in the day. | Oh, very
good. And how’s Leroy? | He’s okay. | He
moved into Felipe’s apartment. | Uh-huh.
| And it was about, what, a week ago? |
Uh-huh. | And I haven’t seen much of him
since. | See, I heard that they split up again.

Model Response: First Theme: Career
Transition and Job Promotion. First Line:
Just working. | Line That Transitions Away
From Theme: And how’s Leroy? Second
Theme: Personal Life and Leroy’s Move.
First Line: And then I can work, like,
evenings during school. | Line That Transi-
tions Away From Theme: See, I heard that
they split up again.

Table 1: This conversation lacks strong role distinction. The
speakers are female friends, and the role each plays is fluid.
However, their roles are distinct and stable within each topic
segment. Topic 1: one speaker informs the other about a
promotion in the first segment Topic 2: one speaker updates
the other about a mutual friend.

The second model splits the conversation into re-
gions with a homogeneous topic to facilitate the
extraction of topic-level role information. This
allows for the use of role information in conversa-
tions with weak role distinction (see Table 1). To
do so, lines marking conversational boundaries are
identified. Topic segmentation results in a list of
conversation segments each pertaining to the same
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conversational object; the downstream role and line
assignment models subsequently work with these
thematically unified segments to identify and apply
the role information.

2.3 Identification of Speaker Roles

Utterance Speaker Conf.
So yeah, it’s the cough. 01 0.2
It started a couple of weeks ago. 02 1.0
A couple of weeks ago? 01 1.0
Okay. 01 0.13
And has it gone worse since then? 01 1.0
Or has it stayed about the same? 01 1.0
It got worse initially, but it’s been about the...
Well, actually, yeah, it’s been getting worse since
now.

02 0.95

I’ve started to... noticed blood in this freedom. 02 .34
I wasn’t there at first. 02 0.45
Okay, when did you first notice that? 01 1.0
So I first saw some blood a few days ago. 02 1.0
It was a really small amount, so I didn’t really
see much, but I brought out blood.

02 0.95

Yesterday, and again this morning, it’s been just
about enough to cover 50, so it’s not a lot of
driving time, but it’s pretty rough.

02 0.95

Okay, and before that, were you getting any pro-
duction for your cult for the last few years?

01 0.15

Like, were you producing any music? 01 0.23
Uh, no. 02 0.3
No? 01 0.5
Okay. 01 0.1
Can you just describe your cough term? 01 1.0
Is it a wet cough or dry cough? 01 0.95
It’s dry, but it’s really with the exception of the
blood.

02 0.95

Table 2: MedData, Conversation RES0102 In this exam-
ple, the two identified speaker roles, doctor and patient,
are used to positively identify certain segments as be-
longing to each speaker.The third model determines the roles of each
speaker in a specific topic chunk, in the context
of the broader conversation summary. The two
following examples illustrate how speaker roles
are found in cases of both strong and weak role
distinction.

2.3.1 Weak Role Distinction
In the absence of clearly distinct, stable roles, the
model relies on the differences in each speaker’s
relationship to the central topic of the conversation
within the topic segment to define speaker roles.
For instance, in the first topic segment of CallHome
0638 Table 1, the two speakers are distinct in their
roles as informant and informee.

Model Response: SPEAKER A is sharing updates about their

job change and the current situation, seeking validation and

support from SPEAKER B. SPEAKER B’s role is that of a

listener and supporter [showing] interest in SPEAKER A’s

well-being and the benefits of the job change, such as having

more flexibility in working hours.

2.3.2 Strong Role Distinction
The model can more easily extract role information
when consistent distinctions are present. These

are constrained by the conversation context estab-
lished by the first model. For example, the model
accurately characterizes the roles of the patient and
doctor in MedData RES0102.

Model Response: Speaker_01, who is sharing their symp-

toms with Speaker_02, who is likely a medical professional

or seeking to understand Speaker_01’s symptoms in a med-

ical context. Speaker_01 is the individual experiencing and

reporting their symptoms.

2.4 Speech Profile Creation
Each transcribed utterance is passed to a fifth
model, along with the surrounding conversational
context and speaker roles identified in the previous
step for classification. We assign the logarithmic
probability (logprob) associated with the speaker
label token as the confidence score for the classi-
fication. We explored several alternatives for this
confidence score, including repeated prompt agree-
ment (Portillo Wightman et al., 2023) and auxil-
iary fine-tuned models to determine confidence,
but found these approaches to be too computation-
ally expensive or unreliable. Utterances that are
clearly associated with a particular role - to use
the same example, “I am going to recommend an
X-ray” which is clearly associated with the role of
a doctor - tend to be classified with greater con-
fidence. We then take the set of utterances with
the highest confidence scores to form our speech
profiles corresponding to the respective roles. The
detailed algorithms used to mix these utterances
are found in Section A.

2.5 Final Classification
The vector embedding of each segment, σi, is cal-
culated, and each segment is then classified ac-
cording to similarity to each speech profile, αj :
maxj ∈ speakersetsim(σxi , αj).

3 Experiment

3.1 Models
In the first step of automatic speech recognition
(ASR), we use the Whisper Large V3 model
with word-level alignment and segmentation us-
ing WhisperX (Radford et al., 2023; Bain et al.,
2023). The tendency of Whisper to remove dis-
fluencies, i.e. “I I don’t", “uh", etc., significantly
increased word error rates (WER) on verbatim tran-
scripts. We chose WhisperX due to the reliability
of generated timestamps. Transcripts are broken
into utterances: each identified utterance is almost
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(a) Cross cosine similarity of utterance embeddings
MedData RES0102.
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(b) Utterances labelled as Speaker 1 or Speaker 2
according to identified speaker roles.

Figure 3: This example highlights how role-aware diarization succeeds where traditional acoustic methods fail.
The noisy audio of a short interaction results in embeddings with no identifiable clusters (Fig. 3a). However, the
previously identified speaker roles of the doctor and patient inform the assignment of some of the utterances (Fig.
3b) to each speaker. This clarifies the acoustic distinctions between speakers. The subsequent speaker assignments
using the speech profiles (see Figure 4) are nearly perfect.

−0.4 −0.2 0 0.2 0.4 0.6

Speech Profile Similarity, MedData RES0102

Speaker 1 Speaker 2

Figure 4: Difference in cosine similarity of each speech
segment to the acoustic speaker profile of the patient and
doctor respectively. The high accuracy of this classifica-
tion far outperforms the audio-only clustering methods.
Note: The one misclassified segment is Segment #19
(text: ‘No’, duration: 0.08 seconds) is extremely short;
embeddings become unstable as speech segment length
decreases.

always from a single spoken speaker. However,
utterances are not separated by speaker turn; con-
secutive utterances may or may not be from the
same speaker.

Each component model of our LLM sequence is
a task-specific fine-tune of Mistral7B-Instruct-V1
(Jiang et al., 2023; Wang et al., 2024a). We chose
this base model for a few reasons. Firstly, it is
open source. Secondly, its small size lightens the
computation burden of repeated LLM calls that the
framework entails. Thirdly, it helps illustrate the
potential of effectively fine-tuned, specialist small
language models in diarization, a secondary con-
tribution of this work. Current speech processing
projects, for example (Wang et al., 2024b), are built

upon extremely large and computationally costly
models; CASCA demonstrates that limitations in
reasoning associated with lower-parameter mod-
els can be overcome through careful delegation of
tasks and fine-tuning.

We use the WavLM-Large embedding model
(Chen et al., 2022) for embedding speech segments
and each speech profile.

3.2 Fine-Tuning

3.2.1 Generation of Training Data
The raw material for our fine-tuning data was
sourced from open-source datasets of real-world
dialogue, including DailyDialogue (Li et al., 2017),
SWDA: Switchboard Dialogue Act (Jurafsky et al.,
1997), and CallFriend (Canavan and Zipperlen,
1996). We used GPT-4 (OpenAI, 2023) to gen-
erate task-appropriate responses corresponding to
conversations drawn from these datasets. The data
generation methodology was specific to each task,
depending on its complexity.

• Conversation Summarization: Straightfor-
ward, single-step prompting proved sufficient
to generate accurate conversation summaries.

• Topic Segmentation: We utilized a two-stage
chain-of-thought (CoT) prompting approach
to assist the model in identifying major topics
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and subsequently determining the boundary
phrases of each topic.

• Role Identification: We paired conversation
summaries created earlier with conversation
transcripts to identify speaker roles, empha-
sizing distinctions between the roles.

• Utterance Assignment: Iterating through
each utterance in the conversations, we pro-
vided the model with the identified speaker
roles, the target utterance, the surrounding
context, and the correct utterance label. We
prompted the model to explain the logical pro-
gression from the provided information to the
correct answer. This produced a data set that
provided effective logical instruction for this
task, as the base model initially performed
poorly on this type of reasoning-based task.

Task Source Entries Method
Summarization DD, SWDA ∼2000 Few-Shot
Topic Segmentation CallFriend ∼500 CoT
Role Extraction DD, SWDA ∼2000 Few-Shot
Line Assignment DD, SWDA ∼3000 CoT

Table 3: DD: DailyDialogue; SWDA: Switchboard Dia-
logue Act; CallFriend

We fine-tuned using a LoRA adapter with a learn-
ing rate of 0.0002 and cosine decay. Training lasted
for three epochs using 4-bit quantization for compu-
tational optimization. Data preprocessing included
a random split (95%) - (5%) training-validation.
The fine-tuning data is made publicly available. 2

3.3 Test Data

In this section, we present the results of our ap-
proach on 96 hours of out-of-domain conversa-
tion data from various settings, collected mainly
from TalkBank (MacWhinney, 2023). We con-
structed our evaluation set from selected subsets
of two-speaker conversations chosen from avail-
able TalkBank data, without any prior knowledge
of the audio. These data sets include CORAAL
(Kendall and Farrington, 2023), featuring inter-
views with African-American participants; CALL-
HOME (Canavan et al., 1997), comprising tele-
phonic conversations between friends and family;
and an open-source set of simulated doctor-patient
conversations (Farzandipour et al., 2022), which

2https://github.com/CASCA-Labs/CASCA

we mix with background noise to simulate chal-
lenging real-world conditions3. A few conversa-
tions from two miscellaneous sources, MICASE
(Simpson et al., 2002), containing academic dia-
logue, and SBCBASE (Du Bois et al., 2000–2005),
containing a mix of informal dialogue, were also
included to explore different conversation scenar-
ios. Selections from MICASE and SBCBASE were
limited to the few two-speaker conversations avail-
able in these datasets. This experiment took about
4 hours of active GPU usage on an A100.

3.4 Evaluation Metrics
Unlike most diarization systems, ASR transcription
is an integral part of our framework. CASCA is
oriented towards the classification of already tran-
scribed speech segments; therefore, we can use
the word error rate to measure the accuracy of our
system. The fidelity of the final transcripts effec-
tively conveys how well conversational information
is preserved during the entire pipeline of speech
processing. Our metric of interest is Word Diariza-
tion Error Rate (WDER), which is used to evaluate
diarization systems that incorporate ASR (Shafey
et al., 2019; Tran et al., 2022). To define WDER,
we first specify its two component metrics, Word
Error Rate (WER) and Concatenated Permutation
Word Error Rate (cpWER).

WER captures the accuracy of the transcription
without considering the speaker identification error.
It is calculated as:

WER =
lev(R,H)

|R| (1)

cpWER for two speakers accounts errors from both
transcription and incorrect speaker speaker attribu-
tions (diarization errors). Given that hypothesis H1

corresponds directly to reference R1, and hypoth-
esis H2 to reference R2, the cpWER is calculated
as:

cpWER =
lev(R1, H1) + lev(R2, H2)

|R1|+ |R2|
(2)

lev(R,H) represents the Levenshtein distance
between the reference transcript R and the hypoth-
esis transcript H , and |R| is the total number of
words in the reference transcript. Finally, WDER
is specified as:

WDER = cpWER - WER (3)
3Background noise is mixed to achieve a signal-to-noise

ratio of 11.
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Source # Dialogues Total (m) # Words # Segs Avg Seg Length (s) Avg Words/Seg
CALLHOME 90 1795.10 289785 23277 4.6 12.45
MedData 266 3138.56 620210 50195 3.7 12.35
CORAAL 23 628.78 176037 14129 2.7 12.46
MISC 7 224.80 68072 6012 2.2 11.32

Table 4: Composition of Evaluation Set

This is less forgiving than other specifications of
WDER or the analogous time-based Diarization
Error Rate (DER). Under this specification, con-
fused speaker assignments are counted as both an
insertion in the stream where they are erroneously
added and a deletion in the stream from which they
are missing.

We calculate these metrics using the MeetEval
toolkit (von Neumann et al., 2023). Technically,
we employ a time-constrained optimal reference
combination word error rate to calculate WER and
a time-constrained concatenated minimum permu-
tation word error rate to cpWER. Time constraints
reduce the computational burden and result in only
a negligible overestimate of the true cpWER.

3.5 Baseline

To contextualize the marginal value of role distinc-
tion in diarization, we present a baseline audio-only
diarization system. For this purpose, we employ
Pyannote (Plaquet and Bredin, 2023), which is in-
tegrated into the WhisperX framework. Pyannote
is one of the most popular diarization frameworks
and achieves competitive performance on most di-
arization tasks. Its integration with WhisperX is
advantageous as it enables an equitable comparison
of the two methods, each utilizing the same ASR
output and attempting to classify speaker segments
bounded by the same timestamps.

3.6 Results

3.6.1 ASR
Whisper-V3 yields an ASR error rate of 16.6%
across all conversations. The ground truth tran-
scripts are verbatim transcripts, which contain dis-
fluencies, nonstandard nomenclature, or names;
this is the source of much of the ASR error. This
error rate is in line with benchmarks for the model;
our reported CALLHOME ASR word error rate of
19.75% is within 2% of the standard achieved in
OpenAI’s technical report (Radford et al., 2023).
This difference is partially or wholly explained by
less robust word standardization. Note that more

linguistic information is retained than this error rate
suggests, as incorrect transcription of disfluencies
tends to have little impact on meaning.

3.6.2 Baseline Performance
Our baseline achieves a mean WDER error rate
of 22%. The distribution of errors is somewhat
bimodal (see Figure 5). This is due to the presence
of conversations in which the differentiation in the
acoustic characteristics of each speaker’s voice is
insufficient to clearly define clusters in the utter-
ance embeddings (e.g., Figure 1). This causes the
clustering algorithm to go awry and, in turn, results
in extremely inaccurate diarization.

3.6.3 CASCA
CASCA exhibits markedly improved performance
across the evaluation set. The mean WDER of 4.2%
represents an 80% improvement in accuracy. As
expected, CASCA performs best in the presence
of strong role distinction, such as in the profes-
sional MedData conversations, and worst in the
presence of weak role distinction, such as in the
casual CALLHOME conversations. However, even
in those cases, CASCA still outperforms the base-
line, a result that validates the utility of the topic
segmentation stage.

4 Conclusions and Future Work

In this paper, we offer a conceptual framework
for the dynamic utilization of speaker role dis-
tinction in speaker diarization through a sequence
of specialized LLMs. We demonstrate that this
framework far surpasses acoustic only diarizaiton
for a variety of conversation types. Performance
varies with the strength of the distinction between
speaker roles. These results highlight the poten-
tial of leveraging the rich role information con-
tained within the conversational text for the task
of speaker diarization. Tracking our original moti-
vation for this project, our expectation is that this
framework will offer the most value in physical
commercial settings, where speaker roles are very
distinct but hostile recording environments make
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Source ASR WER Baseline WDER CASCA WDER Improvement Role Distinction
CALLHOME 19.75% 38.8% 13.5% 25.3% Weak
MedData 14.44% 16.1% 1.6% 14.5% Strong
CORAAL 22.53% 48.6% 7.3% 41.3% Strong
MISC4 24.18% 56.4% 4.7% 51.7% Moderate

Table 5: CASCA achieves a 4.2% average WDER, outperforming the baseline of 22%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

WDER

C
D

F

Baseline
Casca

Figure 5: Comparison of cumulative distribution functions of errors for both CASCA and baseline. CASCA displays
higher accuracy, especially in cases where the vocal characteristics of participant voices are similar.

acoustic clustering challenging. Our use of seven
billion parameter LLMs is also notable as it re-
duces the cost of the system while illustrating the
potential for downsizing speech processing models
to fine-tuned specialists. An attractive next step of
research is to explore other methods of utilizing the
identified speech segments in speaker assignment.
Our current method of classifying speech segments
according to cosine-similarity speech profiles is
simplistic. Other methods, such as the use of refer-
ence segments to constrain relationships between
embeddings in the definition of clusters, could be
more reliable. Additionally, the linguistic content
of the speech profiles could be used to develop
more sophisticated speaker profiles by identifying
speaker’s pronunciation of particular words. This
would further simplify speaker assignment into a
type of text-dependent speaker verification.

5 Limitations

A significant limitation of this study is its exclusive
focus on dyadic conversations. In two-speaker in-
teractions, role distinctions are generally apparent
and informative. However, with additional par-
ticipants, these distinctions become increasingly

ambiguous. Discerning unique roles in multiparty
conversations without prior information is excep-
tionally challenging, barring specific contextual
factors such as commercial interactions where par-
ticipants have distinct relationships to the subject
matter. One potential approach for multiparty con-
versations could involve progressively identifying
roles - establishing one speaker’s role, using that
context to inform another, and iteratively uncov-
ering roles until the set is fully specified. The
feasibility of this method, along with alternative
approaches for extending this framework to con-
versations with more participants, remains a topic
for future research. Another limitation stems from
the framework’s reliance on the accuracy of initial
ASR transcription. If sufficiently severe as to affect
meaning, errors in this stage could confound the
downstream role analysis, undermining the entire
diarization process. Finally, the computational de-
mands of sequential specialized LLM processing
present a practical limitation. Although the use
of smaller language models mitigates this issue
to some extent, the computational cost still sub-
stantially exceeds that of audio-based diarization
systems. Current audio-based systems can achieve
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processing speeds exceeding 60 times real-time,
whereas our system averages only 5 times real-time
using an A100 GPU.
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A Algorithms for Creation of Speech
Profiles from Utterances

A.1 Speech Profile Mixing
Each assigned utterance with a confidence score
above the a threshold τc is appended to the topic-
level speech profile for the assigned speaker. Be-
cause we only need a small fraction of all classified
utterances for reference speech profiles, we can
tolerate a high rate of false negatives; we use a
conservative τc = 0.99

The end result is two setsX of segments for each
topic, each set containing speech utterances from
opposing speakers. The relation between labels
within the same topic is known, but the assignment
of speaker labels "A" or "B" is arbitrary between
topics. Therefore, we mixed these segments us-
ing embedding similarity. We clean and mix the
topic-level segment sets according to the following
algorithms:

A.1.1 Clean Topic Sets
Let X = {σxij | i ∈ topics, j ∈ speakers} be
the set of segments of each topic of opposing speak-
ers. For each pair of segments σxij and σxkl in X ,
calculate the cosine similarity:
sim(σxij , σxkl) = cos(θ) = A⃗·B⃗

|A⃗||B⃗| where A⃗ and

B⃗ are the embedding vectors of σxij and σxkl , re-
spectively.

For each segment σxij , calculate the average
cross similarity by averaging the similarities of
σxij with all other segments. The centroid segment
xc is the one with the maximum average similarity
for σxij . Retain a segment if its similarity to xc
exceeds .2 × x̃, where x̃ represents the median
similarity to the centroid xc.

A.1.2 Mix Topic Sets
The resulting homogenized pairs are then mixed ac-
cording to the combination that maximizes the joint
cosine similarity of the mixed pairs. This process
is highly reliable due to the length of the audio in
each subtopic speech profile; longer speech strings
yield more reliable embeddings (Paturi et al., 2023).
The richer phonetic information available allows
the embedding model to more effectively capture
the characteristics of the speaker’s voice; indeed,
(Poddar et al., 2018) showed that there is a mono-
tonic relationship between the length of the speech
segment and the accuracy of the embeddings. This
fact makes the successive merging of the topic-level
speech profiles highly reliable.
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Abstract

This paper presents a novel approach to mit-
igate information loss in text-independent
speaker verification by leveraging Deep Infor-
mation Maximisation (DIM). The proposed
method aims to enhance the retention of
speaker-specific information during the pooling
process, which is crucial for creating accurate
and high-level speech signal representations.
By incorporating mutual information maximi-
sation techniques, the DIM method optimises
the statistical dependency between frame-level
features and their corresponding high-level em-
beddings. Experiments conducted on the Vox-
Celeb1 dataset demonstrate the efficacy of the
approach, showing a significant reduction in
the Equal Error Rate (EER). Our best configu-
ration achieved an EER of 1.5376, an improve-
ment over the baseline model’s EER of 1.6119.
These findings indicate that the integration of
DIM can effectively enhance the performance
and accuracy of speaker verification systems.

1 Introduction

Speaker verification is the task of determining
whether a speaker’s claimed identity is true. This
process involves two main phases: the first is con-
verting a speech signal into a fixed-dimensional,
high-level representation called an embedding; the
second is measuring the similarity between such
embedding to verify identity.

In text-independent speaker verification, pool-
ing is essential for combining frame-level features
into a single, higher-level representation. How-
ever, this process can lead to the loss of crucial
speaker information, vital for accurate speaker veri-
fication. Various techniques have been proposed to
address this issue, including attention-based pool-
ing (Okabe et al., 2018), multi-level pooling (Tang
et al., 2019), and vector-based attentive pooling
(Gao et al., 2020). Despite these advancements,
significant information can still be lost due to the
inherent compression involved in pooling.

With the rise of deep learning, deep neural net-
works have become widely used in speaker verifi-
cation for producing consistent, high-level repre-
sentations of speech signals. Starting with x-vector
systems (Snyder et al., 2018), various methods have
been developed over time, including Time Delay
Neural Networks (TDNNs) (Liu et al., 2022), Long
Short-Term Memory networks (LSTMs) (Mobiny
and Najarian, 2018), Extended Context-Aware
Permutation-Invariant TDNNs (ECAPA-TDNNs)
(Desplanques et al., 2020), Convolutional Neu-
ral Networks (CNNs) (Zhou et al., 2019; Zhao
et al., 2020; Kim et al., 2022), and more recently,
transformers (Peng et al., 2023). While these
neural networks are effective at feature extrac-
tion, the pooling process is crucial for creating
fixed-dimensional high-level representations. Re-
searchers have developed several pooling meth-
ods, evolving from statistical (Variani et al., 2014)
techniques to advanced methods like multi-headed
attentive pooling (Zhu et al., 2018), aiming to opti-
mise the pooling process.

Mutual information is a measure that quanti-
fies the statistical dependence between two ran-
dom variables. Belghazi et al. introduced a neu-
ral network-based method called the Mutual Infor-
mation Neural Estimator (MINE) (Belghazi et al.,
2018) for estimating the mutual information be-
tween two variables. This method was adapted
by Hjelm et al. to create deep representations of
images by maximising the mutual information be-
tween an image and its high-level representation
(embedding) (Hjelm et al., 2019).

In this research, we apply the Deep Informa-
tion Maximisation technique proposed by Hjelm
et al. to mitigate information loss during pooling
in speaker verification. Our approach aims to en-
hance the retention of speaker-specific information,
thereby improving the performance and accuracy
of text-independent speaker verification systems.
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2 Related Work

Our baseline model for speaker verification builds
on the work of Peng et al., which introduces an
attention-based backend for fine-tuning pre-trained
Automatic Speech Recognition (ASR) Transformer
models. This approach leverages the ability of
pre-trained Transformers to capture meaningful
acoustic and phonetic representations while intro-
ducing a lightweight backend to extract speaker-
discriminative features effectively (Peng et al.,
2023).

The core component of the attention-based back-
end is the Multi-Head Factorised Attentive Pooling
(MHFA) mechanism (Peng et al., 2023). It aims to
condition the speaker representations on the pho-
netic content of the input utterance, enabling the
model to capture both speaker and phonetic infor-
mation simultaneously. The output feature map
of each layer of the transformer is utilised here by
assigning two types of attention weights.

Given the output representations Zl ∈ RT×F

from the l-th Transformer layer of the pre-trained
model, where T is the number of frames and F
is the feature dimension, the MHFA method com-
putes two factorised representations: keys K and
values V, as follows:

K =
L∑

l=1

wlkZlSk, V =
L∑

l=1

wlvZlSv (1)

Here, wl
k and wl

v are learnable weights that ag-
gregate the layer-wise outputs, and Sk ∈ RF×D

and Sv ∈ RF×D are linear projections that reduce
the dimensionality of keys and values, respectively,
to D.

The multi-head attention mechanism is then ap-
plied to aggregate the values V over frames, condi-
tioned on the keys K:

A = softmax(KQ⊤) (2)

ch =

T∑

t=1

AhtVt (3)

c = concat(c1, . . . , cH) (4)

Here, Q ∈ RD×H contains the learnable query
vectors for each of the H attention heads, A ∈
RT×H is the attention matrix, and ch ∈ R1×D and
c ∈ R1×HD are the sub-representations and the
final utterance-level speaker representation, respec-
tively.

The key idea behind MHFA is that the keys K
capture phonetic information, allowing each atten-
tion head to focus on a specific set of phonetic units.
Simultaneously, the values V encode speaker dis-
criminative information, ensuring that the final rep-
resentation c is conditioned on both speaker and
phonetic characteristics.

To stabilise the fine-tuning process and improve
performance, propose two strategies (Peng et al.,
2023):

1. Fine-Tuning Regularisation: An L2 regular-
ization term is added to the overall loss function,
encouraging the fine-tuned model’s weights to re-
main close to the initial pre-trained weights:

L = Lspk + λ

|Θ|∑

j=1

∥θj − θpj ∥22 (5)

Here, Lspk is the speaker classification loss, Θ
denotes the model parameters, θpj are the corre-
sponding parameters from the initial pre-trained
model, and λ is a hyperparameter controlling the
strength of the regularisation.

2. Layer-wise Learning Rate Decay (LLRD): In-
stead of using the same learning rate for all Trans-
former layers during fine-tuning, LLRD assigns
lower learning rates to the bottom layers and higher
rates to the top layers, as follows:

LRl = LR1 · ξl−1 (6)

Here, LRl is the learning rate for the l-th Trans-
former layer, LR1 is the base learning rate for the
bottom layer, and ξ is a weight decay factor con-
trolling the rate of increase in learning rates across
layers.

The authors demonstrate that these fine-tuning
strategies, combined with the MHFA backend,
achieve state-of-the-art performance in speaker ver-
ification while significantly reducing training time
compared to previous approaches.

3 Proposed Method

The proposed method is inspired by the research
presented in Deep Information Maximiser (Hjelm
et al., 2019). Here we introduce a regularisation
mechanism aimed at increasing the mutual infor-
mation between the high-level final embedding and
the frame-level features. This enhancement seeks
to retain valuable information from the frame-level
features.
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Figure 1: baseline model (Peng et al., 2023)

Figure 2: Proposed Model
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An additional discriminator, taking a pair of
frame-level and high-level embedding as input, is
introduced to estimate and maximise the mutual
information between these two sets of features.
This process effectively functions as a regularis-
ing term for the pooling layer, encouraging the
embedding vector to capture as much meaningful
information from the frame-level features as possi-
ble. The discriminator, which functions as a neural
network, assesses whether a given concatenated
pair of frame-level (low-level) feature maps and
high-level embedding corresponds, thereby esti-
mating the common information shared between
them.

Two specific discriminators, Global InfoMax
(GIM) and Local InfoMax (LIM), which are tai-
lored to capture local and global structures, are em-
ployed to estimate and maximise local and global
mutual information, respectively.

3.1 Global Information Maximisation (GIM)
Global Information Maximisation (GIM) seeks to
increase the mutual information between the output
feature map from the ASR encoder and the final
speaker embedding. This approach is designed
to enhance consistency and contextual understand-
ing within the speaker verification process. GIM
optimises Eψ : X → Y with neural network pa-
rameters ψ, by maximising the mutual information
I(X,Eψ(X)) between X and Eψ(X). Here, X
is the intermediate feature map, and Eψ(X) is the
final embedding created after pooling.

(ω̂, ψ̂)G ∈ argmax
ω,ψ
Îω(X;Eψ(X)), (7)

To achieve this, GIM flattens the ASR trans-
former’s feature maps along the feature axis and
then concatenates them with the final speaker em-
bedding. Based on this concatenation, GIM assigns
a score to measure the mutual information, thereby
providing a more accurate representation of the
speaker’s unique characteristics.

3.2 Local Information Maximiser (LIM)
While GIM can introduce irrelevant dependencies,
such as noise, that are not useful for classification,
the Local Information Maximiser (LIM) addresses
this by focusing on maximising the average mutual
information between the high-level embedding and
all local frames of the feature map. This approach
encourages high-level representation to maintain

high mutual information with all frames, promot-
ing the encoding of aspects of data that are shared
across frames.

LIM optimises Eψ with neural network param-
eters ψ, by maximising the average mutual infor-
mation I(X,Eψ(X)) between all the frames F
and Eψ(X). Here, X represents the intermediate
feature map, and Eψ(X) is the final embedding
created after pooling.

(ω̂, ψ̂)L = argmax
ω,ψ

1

F

F∑

i=1

Iω,ψ(xi;Eψ(X)) (8)

In this formulation, the final embedding is con-
catenated with each frame of the ASR transformer
feature map (intermediate representation). By max-
imising mutual information between each local
frame and the high-level embedding, LIM ensures
that the high-level embedding captures the most
relevant and shared information across all frames,
enhancing the robustness and accuracy of the clas-
sification task.

4 Loss Function

Both LIM and GIM are applied together to train
the model, optimising the classification loss during
training. The overall loss function can be described
as follows:

LTotal = LClassification

+αÎωG,ψ(X;Eψ(X))

+βÎωL,ψ(xi;Eψ(X))

(9)

The first term, LClassification, is the speaker
classification loss. The Additive Angular Margin
(AAM) Softmax loss function is used as the clas-
sification loss. The second and third terms are the
global and local MINE objectives ωG and ωL are
the parameters for the global and local discrimina-
tors, respectively). These MINE objectives act as
regularisation terms with weights α and β during
the training of the entire system. The total loss
function is calculated as follows:

T̂
(JSD)
ω,ψ (X;Eψ(X)) =

EP [−sp(−Tψ,ω(x,Eψ(x)))]
−EP̃ [sp(Tψ,ω(x′, Eψ(x)))]

(10)

The Jensen-Shannon Divergence (JSD) is used
as the objective function for MINE. It returns the

228



Figure 3: Global Information Maximiser

Figure 4: Local Information Maximiser

difference between the softmaxed estimated mutual
information of positive pairs (marginal distribution)
and the softmaxed estimated mutual information
of negative pairs. The JSD provides better and
more stable results (Ravanelli and Bengio, 2019)
compared to the Kullback-Leibler (KL) divergence
used by Belghazi et al.

5 Experiments

5.1 Experiment Setup

To train our proposed model, we utilised the Vox-
Celeb1 development set (Nagrani et al., 2017),
a widely recognised large-scale dataset for text-
independent speaker verification. We evaluated
the model’s performance using the VoxCeleb1 test

corpus. For the ASR transformer, we employed
the WaveLM-Base-Plus (Chen et al., 2022) model
due to its strong performance in previous studies
(Peng et al., 2023). The transformer’s output had
dimensions of 150 x 768, with 150 representing the
total number of frames and 768 representing the
feature dimension for each frame. Model training
was conducted on two 16GB NVIDIA Tesla GPUs
in a distributed manner, with a batch size of 32. We
conducted experiments both with and without the
Deep Information Maximisation (DIM) method,
adjusting parameters such as α, β.

The learning rate was set to 0.0001, with a
decay rate of 0.95. Both the Local Informa-
tion Maximiser (LIM) and the Global Information
Maximiser (GIM) were implemented using one-
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Layer in channels out channels feature dimension kernel size
conv 1 768 256 150 3
conv 2 256 64 148 3
fc 1 9600 512 - -
fc 2 512 1 - -

Table 1: Layer configuration for GIM

Layer in channels out channels feature dimension kernel size
conv 1 256 + 768 512 150 1
conv 2 512 512 150 1

Table 2: Layer configuration for LIM

dimensional Convolutional Neural Networks (1D
CNNs) and fully connected layers.

We used one-dimensional Convolutional Neural
Networks (1D CNNs) for both Local and Global In-
formation Maximisation (InfoMax) because; firstly,
audio data is inherently sequential, with each time
step represented by a feature vector, making 1D
convolutions ideal for capturing temporal depen-
dencies and local patterns along the time axis. This
approach also reduces computational complexity
and the number of model parameters compared to
2D convolutions, enhancing efficiency.

5.2 Experiment Results

The experiment evaluated the proposed Deep In-
formation Maximisation (DIM) approach inte-
grated with an attention-based backend for text-
independent speaker verification. The primary met-
ric used for performance evaluation was the Equal
Error Rate (EER), where a lower EER indicates
better performance.

No attention heads EER
1 1.877
2 1.681
4 1.612
8 1.485
16 1.419
32 1.336

Table 3: Experimental Results for baseline model with
different number of attention heads

As the number of attention heads increases, the
EER consistently decreases, demonstrating that us-
ing more attention heads improves the accuracy of
the speaker verification system. The lowest EER
of 1.336 is achieved with 32 attention heads.

No of Baseline DIM integrated
attention heads EER baseline EER
1 1.877 1.845
2 1.681 1.677
4 1.612 1.538
8 1.485 1.441
16 1.419 1.389
32 1.336 1.392

Table 4: Comparison of Baseline and DIM integrated
baseline for different attention heads

β = 0.01 β = 0.05 β = 0.1
α = 0.01 1.8664 1.5376 1.7656
α = 0.05 1.6278 1.7073 2.0308
α = 0.1 1.7709 1.7232 1.9618

Table 5: Experiment results(EER) of the DIM inte-
grated base for different α and β values with four atten-
tion heads.

The DIM method was tested with various con-
figurations of the hyperparameters α and β, which
control the weights of the global and local mutual
information maximisation terms, respectively. The
results are presented in the table below, comparing
different values of α and β with the baseline model,
which had an EER of 1.612.

The experiment results indicate that the integra-
tion of the DIM method can improve the perfor-
mance of the speaker verification system. The con-
figuration with α=0.01 and β=0.05 achieved the
best EER of 1.5376, which is an improvement over
the baseline EER of 1.612.

In high levels, increasing the number of atten-
tion heads generally leads to lower EER, indicating
better performance. With up to 16 attention heads,
DIM-integrated models outperform the baseline.
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Optimal values for α and β significantly impact
performance, with lower values generally resulting
in better EER, with the optimal combination being
α=0.01 and β=0.05. Compared to α, the β has a
stronger influence on EER, which emphasizes the
importance of Local InfoMax. Overall, the DIM
integrated baseline shows consistent improvements
over the baseline, confirming the effectiveness of
the DIM integration.

Possible Reasons for Variations in Experimen-
tal Results for baseline and DIM Integrated in 32
attention heads. (1) Increasing the number of atten-
tion heads enhances the model’s ability to capture
detailed speaker-specific characteristics by simulta-
neously focusing on multiple aspects of the input
features. While this can reduce the Equal Error
Rate (EER), it also increases model complexity,
which can lead to overfitting if the training data
lacks sufficient diversity. (2) There appears to be
a saturation point beyond which adding more at-
tention heads does not significantly improve per-
formance. Beyond this point, additional attention
heads provide diminishing returns, potentially lead-
ing to inefficiency and a low performance/cost ratio.
(3) The DIM method aims to maximise mutual in-
formation between frame-level and high-level fea-
tures, preserving discriminative features essential
for effective speaker verification. In models with
32 attention heads, the high-dimensional space cre-
ated can make it difficult for DIM to preserve and
maximise relevant information without introduc-
ing noise or redundancy, thus conflicting with the
model’s complexity. (4) The hyperparameters α
and β are crucial for model performance as they
control the emphasis on mutual information max-
imisation. Lower values are generally preferred to
prevent the model from overly focusing on mutual
information at the expense of classification accu-
racy. However, if set too low, the model might not
fully leverage the benefits of Deep InfoMax.

6 Conclusion

The research investigated the use of Deep Informa-
tion Maximisation (DIM) to mitigate information
loss in text-independent speaker verification sys-
tems, focusing on the impact of attention heads
and DIM integration on performance. Findings re-
vealed that Local Information Maximisation (LIM)
plays a significantly larger role than Global Infor-
mation Maximisation (GIM) in maximising mutual
information, highlighting the importance of pre-

serving local context for accuracy improvement.
Experiments showed that up to 16 attention

heads, the DIM-integrated model outperformed the
baseline by reducing the Equal Error Rate (EER).
Beyond this point, the EER increased, indicating
limitations in handling higher complexity and po-
tential noise introduction. This suggests that while
DIM is beneficial, its integration with numerous
attention heads requires careful balancing to avoid
overfitting and diminishing returns. The results
emphasize the potential of attention mechanisms
in capturing detailed speaker-specific characteris-
tics but also underline the need to manage model
complexity for optimal performance.

7 Future Work

Future research should aim to identify the opti-
mal number of attention heads to balance model
complexity and performance, involving further ex-
periments and validation across diverse datasets,
introducing data augmentation techniques, such as
noise addition, which will allow us to evaluate the
robustness and generalisation capability of our pro-
posed method in more challenging and realistic
conditions.

Advanced techniques to integrate DIM with
more attention heads should be explored, includ-
ing refining mutual information maximisation and
incorporating additional regularisation to reduce
noise.

Robust hyperparameter tuning for α and β is
crucial. Studies should explore a broader range of
these parameters to better understand their impact
and identify the most effective configurations. Fi-
nally, future work should address the computational
demands of training models with many attention
heads by optimising training stability and efficiency
or exploring alternative architectures.
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An attention-based backend allowing efficient fine-
tuning of transformer models for speaker verification.
In 2022 IEEE Spoken Language Technology Work-
shop (SLT), pages 555–562.

Mirco Ravanelli and Yoshua Bengio. 2019. Learn-
ing speaker representations with mutual information.
pages 1153–1157.

David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur. 2018. X-
Vectors: Robust DNN Embeddings for Speaker
Recognition. In 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5329–5333, Calgary, AB. IEEE.

Yun Tang, Guohong Ding, Jing Huang, Xiaodong
He, and Bowen Zhou. 2019. Deep speaker em-
bedding learning with multi-level pooling for text-
independent speaker verification. In ICASSP 2019
- 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6116–
6120.

Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez
Moreno, and Javier Gonzalez-Dominguez. 2014.
Deep neural networks for small footprint text-
dependent speaker verification. In 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4052–4056, Florence,
Italy. IEEE.

Yong Zhao, Tianyan Zhou, Zhuo Chen, and Jian Wu.
2020. Improving Deep CNN Networks with Long
Temporal Context for Text-Independent Speaker Ver-
ification. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6834–6838. ISSN: 2379-190X.

Tianyan Zhou, Yong Zhao, Jinyu Li, Yifan Gong, and
Jian Wu. 2019. CNN with Phonetic Attention for
Text-Independent Speaker Verification. In 2019
IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), pages 718–725, SG, Singa-
pore. IEEE.

Yingke Zhu, Tom Ko, David Snyder, Brian Mak, and
Daniel Povey. 2018. Self-Attentive Speaker Embed-
dings for Text-Independent Speaker Verification. In
Interspeech 2018, pages 3573–3577. ISCA.

232



Context-Aware Question Answering in Urdu

Samreen Kazi and Shakeel Khoja
  School of Mathematics and Computer Science

  Institute of Business Administration (IBA)
  Karachi, Pakistan

  {sakazi, skhoja}@iba.edu.pk

Abstract
Answer sentence identification and extrac-
tive answer span identification are crucial
components in the development of robust
question-answering (QA) systems. Despite
advancements in natural language process-
ing (NLP), there remains a gap in apply-
ing these technologies to Urdu due to the
scarcity of annotated datasets and linguis-
tic tools. This paper addresses this gap
by introducing a three-stage unified frame-
work aimed at improving both tasks.The
framework consists of three key compo-
nents: key sentence identification, extrac-
tive answer span identification, and a uni-
fied scoring model. For sentence identifi-
cation, the framework employs a sliding
window approach for text alignment, us-
ing noun term frequency for relevance scor-
ing and vector similarity from pre-trained
word embeddings to capture deeper seman-
tics. For extractive answer span identifi-
cation, the model uses a fine-tuned mul-
tilingual BERT (mBERT) model trained
on the Universal Dependencies (UD) Tree-
bank for Urdu to identify noun chunks for
linguistic relevance. The unified model in-
tegrates probabilities from sentence iden-
tification and span extraction to derive
a composite score for selecting the most
relevant answer span.Experimental results
show the proposed approach significantly
outperforms traditional methods, demon-
strating its potential for broader applica-
tion in other low-resource languages like
Urdu.

1 Introduction
Question Answering (QA) systems are essen-
tial tools for extracting precise information
from large text corpora in response to user
queries (Kazi et al., 2023). Developing such
systems for low-resource languages like Urdu
is particularly challenging due to the lack of
extensive annotated datasets and specialized

linguistic tools (Daud et al., 2017). Standard
QA approaches, which often rely on syntac-
tic and semantic similarities typical of high-
resource languages, struggle to capture the
linguistic nuances and rich morphology char-
acteristic of Urdu. This gap highlights the
need for methodologies tailored specifically
to the unique challenges posed by such lan-
guages (Otegi et al., 2020). Answer sentence
identification and answer extraction are criti-
cal components of QA systems. Answer sen-
tence identification involves identifying sen-
tences based on their likelihood of contain-
ing the correct answer, while answer extrac-
tion focuses on identifying the specific text seg-
ment within these sentences that directly an-
swers the question (Allam and Haggag, 2012).
Traditional models for these tasks often fall
short as they rely predominantly on surface-
level syntactic and semantic similarities, which
are insufficient for capturing the complex lin-
guistic features of Urdu (Chang et al., 2024).
This paper introduces a comprehensive three-
stage unified framework that integrates Key
sentence identification, extractive answer ex-
traction to enhance performance for Urdu text.
The proposed model employs combination of
traditional and advanced text processing tech-
niques to address the challenges posed by the
Urdu language. The first stage utilizes a
custom-designed weighted sliding window al-
gorithm (Richardson et al., 2013) for precise
text alignment, enhancing relevance scoring
through the term frequency of nouns. The
second stage leverages a fine-tuned multilin-
gual BERT (mBERT) model (Devlin et al.,
2018), trained on the Universal Dependencies
(UD) Treebank for Urdu (Bhat et al., 2017), to
identify noun chunks within the text. These
chunks are evaluated and grouped based on se-
mantic similarity, with the best chunk being
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selected based on aggregated scores. The fi-
nal stage combines the probabilities from both
the identification and extraction stages into
a unified score, ensuring the identification of
the most relevant answer chunk from the top-
ranked sentences by leveraging both sentence-
level and phrase-level evidence. The research
contributions of this work are as follows:

1. Development of a three-stage unified
framework that integrates key sentence
identification and extractive answer span
identification, specifically tailored for the
Urdu language.

2. Introduction of a customized sliding
window algorithm for question-passage
alignment, enhancing relevance scoring
through the term frequency of nouns.

3. Demonstration of significant performance
improvements over traditional methods
on Urdu datasets, highlighting the
model’s potential for broader application
in other low-resource languages.

The rest of this paper is structured as follows.
Section 2 provides an overview of the relevant
background. Section 3 details our methodol-
ogy, focusing on the stages of answer sentence
identification, answer extraction, and the uni-
fied model for QA. Section 4 outlines the ex-
perimental setup, and Section 5 presents the
results, followed by a discussion of their signif-
icance.

2 Literature Review
Question Answering (QA) systems have ad-
vanced significantly in high-resource languages
like English, Chinese, and European languages.
Early multi-stage QA methods relied on fea-
ture engineering and traditional machine learn-
ing. Yao et al. (Yao et al., 2013) used
syntactic features and logistic regression for
answer ranking, highlighting linguistic struc-
ture’s role.With deep learning, neural mod-
els became prominent. Severyn and Mos-
chitti (Severyn and Moschitti, 2015) intro-
duced a CNN for sentence pair modeling, out-
performing previous methods. The advent
of transformer models, notably BERT (De-
vlin et al., 2018), revolutionized QA. Nogueira
and Cho (Nogueira and Cho, 2019) fine-tuned

BERT for passage ranking, setting new bench-
marks.Answer extraction has evolved from
rule-based systems like TextRunner (Banko
et al., 2007) to neural models. Named
Entity Recognition (NER) significantly aids
this process, with Lample et al. (Lample
et al., 2016) combining LSTMs and CRFs.
Span-based extraction models, like SpanBERT
(Joshi et al., 2020), further improved ex-
tractive QA tasks.End-to-end QA systems
like DrQA (Chen et al., 2017) have shown
strong performance, supported by datasets
like SQuAD (Rajpurkar et al., 2016), which
have become standard benchmarks. The in-
troduction of datasets such as Natural Ques-
tions (Kwiatkowski et al., 2019) has further
pushed open-domain QA research.These ad-
vancements have inspired research in low-
resource languages like Urdu, Arabic, and
Hindi (Kazi and Khoja, 2021) (Arif et al.,
2024) (Shaheen and Ezzeldin, 2014) (Gupta
et al., 2018). While transformer models like
T5 (Raffel et al., 2020) have been adapted,
challenges remain in effectively applying these
to Urdu due to linguistic nuances and re-
source constraints. Our work introduces a
lightweight, interpretable multi-stage frame-
work leveraging traditional techniques along-
side fine-tuned multilingual BERT, addressing
Urdu-specific challenges. Although it may not
match the accuracy of models like mT5, it pro-
vides a foundation for advanced hybrid sys-
tems.

3 Methodology
This section presents the two-stage approach
used to integrate key sentence identification
and extractive answer span identification into
a unified learning model, as illustrated in Fig-
ure 1. The methodology employs a sliding
window technique for measuring text overlap
between the passage and the question, incor-
porates term frequency of nouns for relevance
scoring, and computes semantic vector simi-
larity using word embeddings. Additionally,
a fine-tuned mBERT model, trained on the
UD Treebank for Urdu, is used for high-quality
chunk identification. The framework consists
of the following three components:

(i) Key sentence identification: A probabilis-
tic model is used to identify sentences in
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Figure 1: Overall Architecure of Context-Aware
QA for Urdu Language

the passage that are most relevant to the
question.

(ii) Extractive Answer Span Identification:
Another probabilistic model is used to ex-
tract answer spans from the identified key
sentences.

(iii) Unified model: The outputs from the key
sentence identification and answer extrac-
tion stages are integrated into a unified
model. The probabilities from both task-
specific models are combined to improve
the overall performance of the system.

3.1 Key Sentence Identification
In this section, we describe the methods used
for key sentence identification, which involves
determining which sentences are most likely
to contain the correct answer to a given ques-
tion. This process is divided into two main
parts: Sliding Window Relevance Score Fea-
ture( SWRS) and Semantic Similarity Feature.
The SWRS feature identifies the most relevant
segment of the passage using a sliding window
approach, while the semantic vector similar-
ity measures the similarity between the ques-
tion and candidate sentences using word em-
beddings.After extracting both features logis-
tic regression model predicts the probability
that each sentence contains an answer.

3.1.1 Sliding Window Relevance Score
Feature(SWRS)

The SWRS feature begin by tokenizing the
question and passage into individual words us-
ing UrduHack (ALi, 2020). This allows for a
detailed comparison at the word level. Next,
the term frequency (TF) for nouns in the cor-
pus is calculated, as nouns often carry signifi-
cant meaning in sentences. Using a sliding win-
dow approach, the passage is segmented into

overlapping windows of a fixed size, and the
relevance score for each window is calculated
based on the overlap with the question words
and the term frequency of nouns within the
window. Additionally, a word co-occurrence
matrix is used to enhance the relevance scor-
ing by considering the contextual relationships
between words. The window with the highest
relevance score is then selected as the most
aligned segment, providing a focused area of
the passage that is most likely to contain the
answer , as described in Algorithm 1.

Algorithm 1 Algorithm of SWRS
Abbreviations:

• Qtext: Question string
• Ptext: Passage string
• W : Window size
• s: Step count
• C_m: Co-occurrence matrix
• TFnoun: Term Frequency of nouns
• IC(n): Inverse Count of nouns

1: Input:
• Qtext: Question string
• Ptext: Passage string
• W : Window size
• s: Step count

2: Tokenization:
• Split Qtext and Ptext into words
• Output: Qtokens, Ptokens

3: Calculate TF for Nouns:
• Identify nouns in Ptokens and calculate TFnoun

4: Calculate Co-occurrence Matrix:
• Compute C_m using Ptokens and Qtokens

5: Overlap Score (Os):
• For each window W in Ptokens:

– Os =
∑

n∈W∩Qtokens
TFnoun(n)× IC(n)

6: Co-occurrence Score (Cos):
• For each window W in Ptokens:

– Cos =
∑

w∈W

∑
q∈Qtokens

C_m(w, q)

7: Relevance Score (Rs):
• For each window W in Ptokens:

– Rs = Os + Cos

8: Sliding Window:
• Slide W across Ptokens with size w and step s.
• Calculate scores and find j∗ = arg maxj Rs(j)

9: Output:
• best_window = Wj∗

10: Return:
• best_window

3.1.2 Semantic Similarity Features
The initial phase involves utilizing pre-trained
word embeddings, specifically fastText embed-
dings (Bojanowski et al., 2016) trained on a
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large corpus of question-answer pairs. Fast-
Text embeddings are preferred here as they
incorporate subword information, capturing
morphological nuances and effectively han-
dling out-of-vocabulary words. Training on
a QA-specific corpus ensures that the embed-
dings are tailored to the domain, enhancing
their representation of relevant semantic re-
lationships. Word embeddings map words
into a continuous vector space, where seman-
tically similar words are situated closer to-
gether. Each word w in the question and can-
didate sentences is transformed into a high-
dimensional vector vw that encapsulates its
semantic nuances. This transformation cap-
tures the contextual meaning of words, facili-
tating a sophisticated comparison between the
question and candidate sentences beyond mere
lexical similarity.Subsequently, a single vector
representation for the entire question and each
candidate sentence is constructed by aggre-
gating the vectors of content words, such as
nouns, verbs, and adjectives. This aggrega-
tion, achieved through vector summation:

Vsentence =
∑

w∈content words
vw

integrates the semantic information of all con-
tent words, resulting in a composite vector
that represents the overall meaning of the sen-
tence. This method enhances the capacity to
perform meaningful comparisons between the
question and the candidate sentences. The fi-
nal step involves computing semantic similar-
ity by calculating the cosine similarity between
the vector representation of the question VQ

and each candidate sentence VC :

Cosine Similarity =
VQ · VC

∥VQ∥∥VC∥

3.2 Extractive Answer Span
Identification

In this section, we focus on the process of ex-
tracting the specific span of the sentence that
answers the given question. The extraction
process ensures that the most relevant and pre-
cise text span is identified and selected, provid-
ing an accurate response to the user’s query.In
the end, another logistic regression model eval-
uates the likelihood of each candidate span be-
ing the correct answer.

3.2.1 Candidate span extraction
In the answer extraction process, the ini-
tial step involves identifying candidate spans
within the sentences that are likely to contain
the correct answer. To achieve this, we uti-
lize a fine-tuned mBERT (multilingual BERT)
model, specifically trained on the Universal
Dependencies (UD) Treebank for Urdu. This
model is proficient in identifying high-quality
noun phrases and other relevant text segments,
ensuring that the candidate span are both lin-
guistically coherent and contextually appropri-
ate for further evaluation. Let C represent the
set of candidate span identified as:

C = {c1, c2, . . . , cn}

where each ci represents an individual candi-
date span. Once the candidate spans are iden-
tified, the next step is to evaluate the quality
of each span based on several features. These
features include the length of the span, its po-
sition within the sentence, and its relevance
to the question posed. The evaluation process
can be represented by scoring each span ci as
follows:

S(ci) = α · len(ci) + β · pos(ci) + γ · rel(ci, Q)

where α, β, γ are weighting factors that adjust
the importance of each feature, and Q is the
vector representation of the question. This
scoring helps determine the likelihood that a
given span contains the correct answer, allow-
ing us to filter and retain only the most promis-
ing candidates for further consideration. Af-
ter evaluating the individual span, the subse-
quent step is to group semantically equivalent
span. This grouping is based on both word
overlap and semantic similarity, ensuring that
span conveying the same or similar informa-
tion are clustered together. Let G represent
these groups:

G = {g1, g2, . . . , gm}

where each group gj contains semantically sim-
ilar chunks. Semantic similarity between span
ci and cj can be computed using:

sim(ci, cj) =
vci · vcj

∥vci∥∥vcj∥
where vci and vcj are the vector representa-
tions of the spans. This step ensures that
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we consolidate the information across sim-
ilar span, which aids in aggregating their
scores.The final step in the span extraction
process involves selecting the best span from
each group of equivalent span. This is
achieved by aggregating the scores within each
group and selecting the span with the highest
score:

c∗ = arg max
ci∈gj

S(ci)

This selection process ensures that the cho-
sen span not only aligns well with the ques-
tion but also represents the most reliable and
precise part of the text. By considering ag-
gregated scores, we enhance the robustness of
our selection, ensuring the extracted answer is
both relevant and accurate. This systematic
approach, encompassing candidate span iden-
tification, span evaluation, grouping of equiva-
lent chunks, and the final selection of the best
span, guarantees that the extracted span is
contextually appropriate and precise. This en-
hances the overall effectiveness of the question-
answering system by ensuring that semanti-
cally similar sentences, even without shared
lexical items with the question, are considered
relevant, thereby significantly improving the
accuracy of the answer retrieval.

3.3 Unified Model for Question
Answering

In this section, we introduce the methodol-
ogy for combining probabilities derived from
the key sentence identification and span ex-
traction processes. The objective is to unify
these probabilities into a single score that can
identify the most relevant answer span from
the top-ranked sentences. By integrating both
identification and extraction stages, we ensure
that the selected span is contextually appropri-
ate and precisely extracted. Our unified model
leverages advanced feature engineering and
probabilistic modeling to enhance the accu-
racy and relevance of extracted answers from
textual data. This sophisticated approach
combines the strengths of key sentence iden-
tification and extractive answer span identifi-
cation, tailored specifically to the nuances of
different question types in Urdu. Here’s an
overview of the methodology:

3.3.1 Feature Extraction
The model leverages features extracted from
various modules, including those specifically
designed for key sentence identification and ex-
tractive answer span identification. Addition-
ally, it incorporates a diverse set of features
tailored to capture both the lexical and seman-
tic nuances of the text, further enhancing its
ability to identify the most relevant answer:

Question Type Specific Features:
• Question-word Features: Extracts

and utilizes the POS, DEP, and NER tags
of the main question word (e.g., 〨ن/⸘ ,ㅏ),
appending these to the question type to
refine feature sensitivity.

• Question Focus: Determines the focus
noun phrase within the question, crucial
for aligning the model’s attention to the
most relevant part of the quer.

Query Ques:
Pairs the headword and question focus fea-
tures, creating compound indicators such as
question-type|question-focus-word|headword-
pos-tag.

Span Tags:
checking for the presence of significant noun
phrase that match expected answers based on
the question type.

3.3.2 Conditional Probability Learning
During training, the model learns the condi-
tional probabilities P (c | s, f):

• c: Candidate answer span.

• s: Sentence containing the answer span.

• f : Feature vector encompassing all ex-
tracted features for the answer span and
the sentence.

This probabilistic framework captures the
complex interdependencies between sentence
relevance, answer span quality, and the rich
contextual features derived from the text.

3.3.3 Unified Probability Score
In the prediction stage, the model calculates a
unified probability score(UPS) for each candi-
date answer span:

UPS(c) = P (c | f)× P (s | c, f)
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where P (c | f) represents the probability of
the answer span being correct, based solely on
its features, and P (s | c, f) assesses the con-
ditional probability that the sentence is key,
given the span and its features.

3.3.4 Final Answer Selection
The model selects the candidate answer span
with the highest unified probability score.
This selection process prioritizes spans that
are not only plausible based on their intrin-
sic features but also originate from sentences
that are contextually aligned with the ques-
tion. This dual consideration ensures that the
chosen answers are both accurate and contex-
tually relevant, thereby significantly enhanc-
ing the performance of the question-answering
system.

4 Experiments

4.1 Data

For the experimental validation of our unified
model, we employed two significant datasets
tailored for Urdu question-answering systems:
UQuAD and UQA. These datasets are selected
and adapted to rigorously test both the answer
sentence identification and extraction capabili-
ties of our model. The Urdu Question Answer-
ing Dataset (UQuAD1.0) includes 46,481 Stan-
ford Question Answering Dataset(SQuAD 2.0)
(Rajpurkar et al., 2016) questions translated
using google translation API covering various
domains such as history, science, and general
knowledge. It also contains 4000 crowdsource
question annotated by humans based on Ques-
tion types. The UQA corpus on the other
hand features 136,211 questions, focusing on
domain-specific topics, created using the ”En-
close to Anchor, Translate, Seek” (EATS) tech-
nique from the Stanford Question Answering
Dataset (SQuAD 2.0). This technique ensures
that answer spans are preserved in the trans-
lated context paragraphs, making it suitable
for training and evaluating Urdu QA models.
It consists of 83,018 answerable and 41,727
unanswerable questions, providing a balanced
setup for models to not only retrieve accurate
answers but also to discern when no plausible
answer is present in the text.Table??shows dis-
trbution of dataset.

Dataset QA Pairs Question Types EM
UQuAD (MT) 45,000 No 0.66
UQuAD (CS) 4,000 Yes 0.50
UQA (MT) 124,745 No 0.85

Table 1: Distribution of UQA and UQuAD
Datasets.
’MT’ = Machine Translation, ’CS’ = Crowd-
Sourced.

4.1.1 Dataset Adaptation for Sentence
identification Evaluation:

To assess the identification capabilities of our
model adequately, we adapted both UQuAD
and UQA by an approach that includes:

1. Extraction of Candidate Answer Sen-
tences: We analyzed each paragraph
within the datasets to identify all sen-
tences that could potentially contain the
answer, based on their content overlap
with the gold-standard answer provided
(Charras and Lecroq, 2004).

2. Annotation of Candidate Sentences: Each
identified sentence was subsequently la-
beled as either ’1’ (containing the answer)
or ’0’ (not containing the answer). This
binary annotation serves as the definitive
ground truth for the key sentence identi-
fication task.

The adapted dataset was divided into training,
and test sets as shown in Table 2, ensuring
that no question-paragraph pair appeared in
multiple subsets.

Dataset Train Test
UQuAD(MT) 36,000 9,000
UQA 99,796 24,949

Table 2: Train/Test Split for Training Model

4.1.2 Evaluation Metrics
We adhere to standard evaluation procedures
and metrics for QA rankers as outlined in prior
research (Rajpurkar et al., 2016). Our evalu-
ation metrics for assessing the performance of
question answering systems include:

• Exact Match (EM): Measures the per-
centage of predictions that exactly match
any one of the ground truth answers.
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• F1 Score: Computes the harmonic mean
of precision and recall at the individual
token level, considering both the partial
correctness of the answers.

• Average Precision at K : Defined as
the average of correct answer sentences
within the top K results to evaluate Key
sentence identification.

4.2 Baseline Models for Comparison
4.2.1 Word N-grams - Sliding Window

Baseline
To establish a comparative baseline, we used
the Word N-gram overlap method, a tradi-
tional technique used to determine textual sim-
ilarity (Richardson et al., 2013). This method
involves segmenting texts into fixed-length N-
grams and calculating similarity scores based
on the overlap of these N-grams. This ap-
proach has been validated in various applica-
tions such as plagiarism detection and text
reuse (Daud et al., 2017). For our purposes,
we adapt it to extract answer spans by tokeniz-
ing the text into N-grams and selecting spans
based on their overlap with the query, calcu-
lated as follows:

overlap =
|S(P1, n) ∩ S(P2, n)|

min(|S(P1, n)|, |S(P2, n)|)
(1)

4.2.2 TF-IDF - Feature-Based
Baseline

Additionally, we employ the traditional TF-
IDF (Term Frequency-Inverse Document Fre-
quency) vectorization technique, which repre-
sents text using term frequency-inverse docu-
ment frequency metrics. This method is en-
hanced with N-gram frequencies ranging from
unigrams to trigrams to capture local word or-
der, crucial for understanding contextual rel-
evance. The TF-IDF value for a term t in a
document d within a document set D is calcu-
lated as follows:

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D) (2)

where:

• TF(t, d) is the term frequency of term t
in document d, and

• IDF(t,D) is the inverse document fre-
quency of term t across the document set

D, defined as:

IDF(t,D) = log
( |D|
1 + |{d ∈ D : t ∈ d}|

)

(3)

For N-grams, the terms t are extended to
include unigrams, bigrams, and trigrams,
thereby enhancing the textual representation
by capturing contiguous sequences of up to
three words. This enhancement allows for
a more nuanced understanding of the text’s
structure and semantics.

5 Results and Discussion

We employed various baseline approaches as
mentioned in section 4.2, which include tra-
ditional text representation techniques to re-
trieve answer.In evaluating the sentence iden-
tification capabilities of our model, we ob-
served differentiated performance across var-
ious question types, as shown in Table 3.
The model exhibited high precision in identify-
ing sentences relevant to ’Who’, ’When’, and
’Where’ questions, achieving AP@K scores of
0.55, 0.58, and 0.68, respectively. These ques-
tion types typically involve extracting specific
entities or temporal and locational informa-
tion, which are well-captured by our model’s
feature set. Conversely, ’What’ and ’Why’
questions, which often require understanding
broader contexts or causal relationships, posed
greater challenges, reflected in lower AP@K
scores of 0.35 and 0.40. ’How’ questions, di-
verse in their structure and intent, showed
moderate performance with an AP@K score of
0.44. Overall, the model achieved an average
precision across all question types of 0.44, indi-
cating a robust capability to identify relevant
answer-containing sentences but also highlight-
ing potential areas for enhancement in han-
dling complex question contexts and reason
behind lower accuracy of unified model shown
in tables 5 and 4. overall our unified model
achieved better results in answer extraction as
shown in 5 and 4 showcasing the effectiveness
of our unified model compared to the tradi-
tional approaches.

5.1 Discussion
The results indicate that our unified Model
significantly outperforms the baseline models,
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Question Type Average Precision at K
What (ㅏ) 0.35
Who (〨ن) 0.55
When (䲷) 0.58
Where (〫ں) 0.68
Why (㈀ں) 0.40
How (ㆤ) 0.40

Table 3: Performance of the sentence identification
model across various question types using Average
Precision at K metric.

Dataset N-gram TF-IDF Unified Model
UQuAD 0.15 0.25 0.48
UQA 0.20 0.22 0.55

Table 4: F1: Performance comparison of different
models on UQuAD and UQA datasets.

Dataset N-gram TF-IDF Unified Model
UQuAD 0.12 0.28 0.60
UQA 0.10 0.31 0.50

Table 5: EM: Performance comparison of different
models on UQuAD and UQA datasets.

demonstrating its efficacy in leveraging com-
plex feature interdependencies to accurately
identify and extract answers. This superior
performance underscores the advantage of in-
tegrating sentence identification with extrac-
tion capabilities in a unified model, particu-
larly in the nuanced context of Urdu language
question answering. Our approach to inte-
grating sentence identification and span ex-
traction through unified probabilistic model-
ing has demonstrated promising results. For
example, in the UQuAD and UQA datasets,
we observed marked improvements in preci-
sion over traditional models, as evidenced by
the scores illustrated in our performance ta-
bles. To better understand the nuances of the
model’s performance, let’s consider practical
examples using Urdu question-answer pairs.
Imagine a question in Urdu like 䆀ٶا

Ǘ ǔ
ՙ䜫䗂⦇㯽"

ⶅ⁩لⵇمㅏ؟" (How many years did Mohammad
Ali work at Honda?). Our model might iden-
tify a sentence such as ǖل׏⁩㧗ᨴ䆀ٶا

Ǘ ǔ
ՙ䜫䗂⦇㯽"

ⵇمㅏ۔" (Mohammad Ali worked at Honda for
40 years), scoring it highly due to the direct
match of numeric and contextual information.
Conversely, sentences without direct numer-
ical answers or only peripheral relevance to

Honda and Mohammad Ali would receive sig-
nificantly lower scores. This method effec-
tively discerns the relevance and specificity of
candidate answer sentences. However, when
evaluating our system against state-of-the-art
transformer-based models, such as those em-
ploying BERT or its derivatives, we notice a
gap in achieving top-tier performance metrics
like Exact Match (EM) and F1. This discrep-
ancy can largely be attributed to the inherent
limitations of N-gram and TF-IDF models in
capturing the deep semantic structures that
transformer models excel at.

Limitations

This study offers valuable insights into apply-
ing NLP techniques for Urdu language process-
ing, but it does face limitations. The primary
datasets used, UQuAD and UQA, while com-
prehensive, do not entirely capture the full
diversity of Urdu language use due to syn-
thetic nature of data. Additionally, this model
focus mainly on syntactic and semantic fea-
tures and do not extensively address other lin-
guistic elements such as pragmatics and dis-
course context, which are vital for fully un-
derstanding complex questions. Furthermore,
despite showing promising results in Urdu, the
model’s effectiveness in other low-resource or
morphologically rich languages have not been
explored. This may limit its broader appli-
cability and scalability, especially in contexts
where transformer-based models have shown
superior performance.

Ethics Statement

This research adheres to the highest ethical
standards. All datasets, including text and
question-answer pairs, were sourced from pub-
licly accessible repositories. We ensured that
no private or sensitive data was utilized with-
out explicit consent. All sources have been
meticulously cited, and the use of any copy-
righted material complies strictly with appli-
cable legal standards, ensuring transparency
and integrity in our research methodology.
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Abstract

The present study analyzes the influence of
linguistic factors (sentence ambiguities) and
non-linguistic factors (visual cues) on online
language processing in translation tasks. More-
over, it also offers an attempt at relating ma-
chine and human translation in a multimodal
setting, an aspect that has received less atten-
tion before. We qualitatively evaluated transla-
tion outputs between subjects across different
experimental conditions, as well as between hu-
man and machine translation processes. We ob-
served a positive correlation between humans’
reading time and models’ next token prediction,
with a higher similarity score for the translation
of unambiguous sentences compared to transla-
tions of ambiguous sentences. We also found
that a context-relevant image has a significant
influence on translation updates.

1 Introduction

Translation is an important aspect of language use.
A vast number of machine translation models have
been developed over the last decades trying to assist
and automatize this task. However, less attention
has been paid to the architecture and mechanism of
language processing during translation tasks and
the relation between these processes in humans and
in machines.

We attempt to provide a new perspective by tak-
ing translation as the task in assessing language
processing and comparing human and machine pro-
cessing in it. It is clear that the mechanisms are fun-
damentally different between the human brain and
machine translation (MT) systems. However, ac-
cording to the three levels of analysis proposed by
Marr (1982), studying human translation processes
can reveal how people handle ambiguity, context,
and non-linguistic information. This knowledge
can inform the development of more sophisticated
and human-like MT systems at the computational
level.

In real-world scenarios, human language pro-
cessing is further compounded by external stim-
uli such as images or sounds, which can either
assist, hinder or distract human comprehension.
By examining how humans process sentences in
real-time, we can identify strategies to improve ma-
chine translation algorithms, making them more
adaptable and contextually aware. While some
studies focus on specific aspects, such as using eye-
tracking to evaluate MT systems (Doherty et al.,
2010; Stymne et al., 2012) or using EEG to measure
effort during human translation (Hansen-Schirra,
2017), it remains challenging to unravel how the
working mechanisms of machines differ from those
of humans and to what extent they are comparable
(Wang et al., 2023; Lakretz et al., 2021).

In this study, we combined eye-tracking data
to analyze human language processing and used
surprisal obtained from GPT-2 to represent the
processing of models. Our experiments examine
language processing for both ambiguous and un-
ambiguous sentences, presented with or without
relevant visual cues. Furthermore, we compared
machine translation outputs based solely on tex-
tual input and human translations performed under
three different visual stimuli. We assess the poten-
tial influence of visual cues on human comprehen-
sion and evaluate whether multi-modal machine
translation is necessary for reaching human-like
performance in our setting. This inquiry is partic-
ularly pertinent due to the inconclusive results in
integrating visual stimuli to enhance machine trans-
lation (Specia et al., 2016; Elliott, 2018; Caglayan
et al., 2019). This attempt also allows us to relate
human cognitive processes to artificial systems in
future research.

The objective of the current study is to assess
whether machine processing can be numerically
correlated with human language processing in
translation tasks. The main research question can
be formulated as the following two respects:
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• Research Question 1: Do machines and hu-
mans exhibit comparable difficulties in pro-
cessing ambiguous vs. unambiguous sen-
tences?

Hypothesis: Higher processing complexity
should be shown for both humans and ma-
chines.

• Research Question 2: Do visual cues impact
human translation outcomes, and which visual
condition in human translation aligns better
with the machines’ outcomes that rely solely
on text?

Hypothesis: Visual conditions affect human
translation, and machine, text-only processing
should be more similar to human translation
results when no additional visual cues are pro-
vided.

The following sections are organized as follows:
Section 2 provides an overview of previous studies
on language processing and highlights the research
gap in language processing, particularly in human-
machine comparison that we are addressing in this
study. Section 3 introduces the corpus we used
in our study. Section 4 focuses on the input pro-
cessing in humans and models (machine), while
Section 5 analyzes the output of language process-
ing by human and machine processing.

2 Background in Language Processing

In human language processing studies, reading
time serves as a crucial measure for assessing lan-
guage processing difficulty. In psycholinguistic
research, there has been a comprehensive study
of the correlation between processing difficulty
and longer reading duration (Underwood et al.,
2000; Juhasz and Rayner, 2003; Rayner and Raney,
1996). In the studies of eye-tracking techniques
and language processing, fixation duration can be
an indicator of processing complexity. Specifically,
shorter fixation durations have been associated with
more predictable words, whereas longer durations
have been linked to unpredictable words (Ehrlich
and Rayner, 1981).

For statistical models, surprisal theory provides
a measure of the difficulty of language processing
(Hale, 2001; Levy, 2008; Boston et al., 2011). Sur-
prisal estimates how surprising or unlikely the next
word appears based on the partially established
structure of the sentence. For instance, the process-

ing difficulty of garden path sentences can be cap-
tured by surprisal (Hale, 2001). In previous studies,
surprisal shows a positive correlation with reading
time (Smith and Levy, 2013; Monsalve et al., 2012;
Goodkind and Bicknell, 2018). Roger (2008) pro-
poses that the word surprisal is proportional to the
negative log probability of words.

Another method to investigate processing diffi-
culty can be translation output from a source lan-
guage to a target language. It is found that the
source text is one factor that affects translation
(Campbell, 1999; Dragsted, 2012). Tokowicz and
Degani (2010) state that ambiguity slows transla-
tion and can reduce translation accuracy due to the
competition of potential target translation choices.
Heilmann (2020) and Hvelplund (2014) study the
language processing in the setting of translation
tasks and state that the focus (longer gazing dura-
tion) on the source text corresponds to more trans-
lation options in the target language system. Drag-
sted also (2012) found that high variability of trans-
lation output is related to higher reading duration
and self-corrections.

In previous studies, the complexity of language
processing has rarely been examined under the
human-machine comparison setting. We attempt to
provide a new perspective by taking translation as
the principal task in assessing language processing
and comparing human and machine processing.

3 Corpus: EMMT

We use Eyetracked Multi-Modal Translation
(EMMT) corpus (Bhattacharya et al., 2022) for
our research. The corpus comprises 200 sentences,
categorized into two types, ambiguous and unam-
biguous, with 100 sentences in each category.

In this corpus, source sentences are in English
and they were translated into Czech. Each par-
ticipant went through two rounds of reading and
translating phases. In the first round, only a plain
sentence was shown and the subjects were expected
to say its translation into Czech aloud. In the sub-
sequent phase, one of three visual conditions was
provided: a relevant picture, an irrelevant picture,
or no image. Subjects were expected to confirm
their previous translation, or say an updated ver-
sion. Both ambiguous and unambiguous sentences
were distributed equally among the participants and
across three visual conditions.
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4 Input Processing

This section studies the input processing of hu-
mans and models. In Section 2, we discussed the
surprisal theory and its correlation to human lan-
guage processing, however, it is not yet confirmed
whether surprisal also correlates with text reading
specifically for translation purposes. Our study
aims to fill the existing gap.

In our experiments, we also test whether an in-
trinsic factor (sentence ambiguity) has an impact
on the language processing of humans (measured
by reading duration) and the model (measured by
surprisal obtained from GPT-2), and investigate
whether the model’s surprisal correlates with hu-
man’s reading duration.

We compute the reading duration for each sen-
tence based on eye-tracking data. The eye tracker
collects data with an interval of approximately
0.5 milliseconds between each two adjacent time
points. The overall reading duration of a

As the machine counterpart to human processing
duration, we take the model’s surprisal: the method
of negative logarithm of probability proposed by
Levy (2008) is adopted to compute surprisal. In
addition, we view human language processing as an
incremental procedure, where meaning is obtained
as words are encountered in a sequential manner
(Brouwer et al., 2010). Guided by this premise, we
utilize the generative model GPT-2 (large) to derive
word probabilities.

The probability of the next word is obtained
one at a time with previous words in the sentence
serving as a prompt. The predicted difficulty of a
sentence is computed as the sum of negative loga-
rithms of the conditional probabilities of the words
in the sentence (excluding the first word of the
sentence, which only serves as the prompt). For
example, we calculate the surprisal of the sentence
‘The stand is stable’ as Equation (1).

Surprisal = −log (P ( stand | The ))

− log (P ( is | The stand ))

− log (P ( stable. | The stand is )) (1)

Table 1 presents the results of fixation duration
in two groups (ambiguous and unambiguous) when
reading source texts. The results indicate a slightly
longer duration that participants dedicated to read-
ing ambiguous sentences as opposed to unambigu-
ous sentences. However, it is noteworthy that this

Ambiguous Unambiguous

Reading (sec) 7.637 7.334

Table 1: Reading time during sentence reading phrase.

Ambiguous Unambiguous

Surprisal value 51.21 49.56

Table 2: Sentence surprisal value obtained from GPT-2.

difference between the two groups is not statisti-
cally significant (T-test: p = 0.161 ).

The surprisal values for both the ambiguous
group and unambiguous group are displayed in Ta-
ble 2. The table demonstrates that GPT-2 perceives
ambiguous sentences to be marginally more sur-
prising than unambiguous sentences. Similarly to
human processing, the difference between the two
groups is not statistically significant as indicated
by T-test (p = 0.162).

We further analyze the correlation between sen-
tence reading duration and surprisal using Pear-
son’s correlation coefficient (r). The results indi-
cate a moderate positive correlation between the
two (r = 0.507). Analyzing the ambiguous and
unambiguous sentence groups individually, we find
correlations of r = 0.58 for the unambiguous
group is higher than r = 0.43 for the ambiguous
group. This suggests that the alignment between
human reading time and the model’s surprisal is
more pronounced in the case of unambiguous sen-
tences.

5 Translation Outputs

In this section, we analyze the translation outputs
as the results of language processing. Three exper-
iments were implemented to investigate two fac-
tors (ambiguity and visual cues): (1) a comparison
between the initial translation and subsequent up-
dated version by the same subjects (Section 5.1);
(2) a comparison of the translation outputs across
different subjects (Section 5.2); and (3) a compari-
son of the translation outputs between humans and
machine translation systems (Section 5.3).

On the one hand, we explore the effect of sen-
tence ambiguity on translation outputs. Our study
builds on previous research (Tokowicz and Degani,
2010; Heilmann, 2020; Hvelplund, 2014), which
suggests that translation results exhibit greater vari-
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ance for sentences that are more challenging to
process. Our hypothesis is that ambiguous sen-
tences can be interpreted in different ways, and
as a result, their translations should undergo more
updates when accompanied by an image in the sec-
ond translation phase. Moreover, we anticipate that
the translation outputs from humans and machines
would exhibit greater dissimilarity for ambiguous
sentences than for unambiguous ones.

On the other hand, we intend to analyze the in-
fluence of visual cues on human translations (Sec-
tions 5.1 and 5.2). Specifically, we aim to ex-
plore the conditions under which translation out-
puts demonstrate greater similarity across subjects
when considering three different visual cues (a re-
lated image, no image, and an unrelated image)
(Section 5.2). Additionally, we aim to identify the
visual conditions under which human translations
exhibit greater similarity to machine-generated
translations that rely solely on textual inputs1 (Sec-
tion 5.3).

5.1 Translation Updates
This section analyzes translation updates, a compar-
ison between subjects’ initial translations (relying
solely on source sentences) and their subsequent
updated versions (when one of the image condi-
tions is presented).

The similarity of sentence pairs is measured us-
ing the Levenshtein distance over words, which
is further normalized into a similarity ratio using
Equation (2) in order to minimize the impact of
varying sentence lengths. This normalized similar-
ity ratio ranges between 0 and 1, where 0 indicates
no word overlap in the sentence pair and 1 indi-
cates two sentences are identical. The analysis of
translation updates is conducted considering two
factors and 6 conditions in total: 2 [AMBIGUITY] ×
3 [VISUAL CUES] setting.

Ratio =
len(Sen1) + len(Sen2)− distance

len(Sen1) + len(Sen2)
(2)

We utilize a two-way ANOVA (with factor in-
teraction considered) to assess the influence of
the factors. The initial results confirm that there

1Given the restriction that multi-modal machine transla-
tionreadily available, we only compare all visual conditions
from humans with one condition from machines, which is only
with textual input.

Figure 1: Similarity ratio between the initial translation
and the updated translation (error bar plots).

is no significant interaction between the two fac-
tors: AMBIGUITY and VISUAL CUES (F = 1.385,
p = 0.251). The results also reveal that the dif-
ference between ambiguous and unambiguous sen-
tences is not statistically significant (F = 0.273,
p = 0.251), suggesting that sentence ambiguity
has a minimal effect on translation updates during
the second translation phase. We explain this by the
nature of ambiguity types observed in EMMT data:
depending on the source of the image and sentence,
the sentences exhibit syntactic ambiguity (like “I
saw a man with the telescope”), for which however
the translation into Czech does not need to resolve
the ambiguity, or lexical ambiguity (like “court”,
which is ambiguous between the court of justice
and a tennis court), where however the remaining
words in the sentence typically provide enough non-
visual context for ambiguity resolution. In either
case, there is no need to update the translation into
Czech. The last common ambiguity type, gender
ambiguity (male vs. female tennis player) is not
very frequent and its visual resolution is often in
line with the stereotypical solution chosen by the
translators in the absence of other information.

More significantly, the test indicates a notable
influence of visual cues (F = 38.141, p < 2e−16).
Figure 1 illustrates that the lowest similarity ra-
tio occurs when a related image is provided in the
second round of translation. This suggests that
subjects tend to make more updates to their transla-
tion when provided with a relevant picture. Further
Welch-Satterthwaite t-test shows that ‘related im-
ages’ exhibit a statistically significant effect on the
similarity ratio of translation updates (t = −4.588,
p = 5.36e−06) compared to the visual condition
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of ‘no images’. Our explanation here is based on
the observation that the text is often vague. The
provided image allows the translators consider the
general setting in which the sentence was used, and
rephrase the translation to be appropriate for this
setting.

Finally, there’s no significant distinction ob-
served between the ‘unrelated image’ condition
and the ‘no image’ condition (β = −0.007, t =
−0.482, p = 0.630).

5.2 Translation Comparison across Subjects

This section presents the analysis of translation sim-
ilarity across subjects, specifically examining the
extent to which translations of the same source sen-
tence, produced by different subjects are similar.

Unlike the previous subsection (Section 5.1),
which focuses on updates at the word or lexical
level, we now evaluate the similarity of transla-
tions across subjects in terms of meaning. For this
purpose, we employ the BLEURT metric (Bilingual
Evaluation Understudy with Representations from
Transformers, Sellam and Parikh, 2020a; Sellam
et al., 2020b) to evaluate the similarity of transla-
tion pairs.

BLEURT leverages contextualized word represen-
tations from BERT to provide a score aligning better
with human assessment of translation similarity
(Sellam and Parikh, 2020a; Sellam et al., 2020b).
The BLEURT score ranges roughly between 0 and 1,
with 1 indicating more similar translation pairs and
0 less similar (the score occasionally goes below
0).

We computed BLEURT scores for all translation
pairs of the same sentence across the visual condi-
tions and subjects. More specifically, we compare
sentence translations in various scenarios, such as
when both subjects saw no image (written as ‘no-
no’ for short); when one saw an unrelated image,
and the other a related image (‘unrelated-related);
etc, resulting in a total of 6 visual cues combina-
tion conditions. Overall, the study demonstrates a
2 [AMBIGUITY] × 6 [VISUAL CUE COMBINATION]
setting.

Considering the repeated sampling when estab-
lishing pairwise comparisons and the potential in-
terplay between factors, we employ a linear mixed
model (with interaction and random effect struc-
tures considered) to examine the impact of ambigu-
ity and visual conditions on cross-subject transla-
tion similarity. The linear mixed model was fitted

Figure 2: Cross-Subject Translation Similarity

using the REML method, and t-tests using Satterth-
waite’s method.

The results are visualized in Figure 2. We ob-
served that translations of unambiguous sentences
exhibit higher cross-subject BLEURT scores than
those of ambiguous sentences. It implies that un-
ambiguous sentences are translated by humans with
less variance, although this result is not statistically
significant (β = 6.249e−2, t = 1.768, p = 0.774).

Regarding the influence of visual conditions, the
linear mixed model demonstrates that the ‘related-
related’ condition is the only one demonstrating a
significant effect, compared with the ‘no-no’ con-
dition (β = 4.908e−02, t = 1.963, p = 0.0498). It
means that when both subjects are provided a rele-
vant image as translation support, their translation
outputs tend to be more similar compared to other
visual conditions, supporting also our argument
about the related image reducing the information
vagueness about the described situation. This find-
ing also implies that a relevant image may help to
resolve ambiguity in the ambiguity group.

In the unambiguous group, subjects exhibited
the greatest translation similarity when no image
was provided for both subjects. The provision of
unrelated images (‘unrelated-unrelated’ condition)
results in the least similarity between translation
pairs. This suggests that unrelated images might
serve as distractions for subjects. However, these
findings aren’t statistically significant and need fur-
ther examination to verify.

5.3 Human-Machine Translation Comparison
Following the exploration of translation compari-
son across subjects, this section compares human
translations with translations generated by four ma-
chine translation systems: Google, Lindat,2 DeepL,

2https://lindat.mff.cuni.cz/services/
translation/
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and chatGPT.3

Firstly, we investigate which translation systems
exhibit greater similarity to human translations.
Prior research (Popel et al., 2020) suggests that
the Lindat translation model (also known as CUB-

BITT) demonstrates higher fluency and accuracy
levels than other systems, and even surpasses hu-
man translation quality. We will test the perfor-
mance with our sentences and experiment settings.

Secondly, we examine visual conditions under
which human translations exhibit greater similar-
ity to machine-generated ones that rely solely on
textual inputs. We use BLEURT to measure transla-
tion similarity, as in Section 5.2. Concerning am-
biguity, we hypothesize that human and machine
translations should exhibit greater similarity when
translating unambiguous sentences. Our hypothesis
regarding visual conditions is that machine transla-
tion relying solely on texts should exhibit greater
similarity (higher BLEURT scores) to human trans-
lations with no images. The linear mixed model is
used again (as in Section 5.2) to test the factors.

To better assess the performance of the four
models, we additionally established a worst-case
baseline by shuffling the Lindat translations which
leads to translation pairs without association. The
BLEURT score in this case is negative (−0.62). The
results show that all four systems show significantly
better results than the baseline (p < 2e−16). More-
over, t-tests from the linear mix model reveal that
chatGPT scores significantly lower than the other
three systems (p < 0.01). This result might indi-
cate a lower translation quality, but it can also be an
artifact due to considerable dissimilarity between
LLM-based translation outputs and standard MT
outputs.

Additionally, Figure 3 demonstrates that the per-
formance of Lindat stands out as the best among
the models, although the difference from Google
(β = 3.63e−02, t = 1.309, p = 0.191) and DeepL
(β = 0.043, t = 1.502, p = 0.133) is not statis-
tically significant. This result verifies the perfor-
mance of Lindat in prior studies.

Regarding the influence of visual cues, the t-tests
conducted in the linear mixed model suggest no sig-
nificant effect is observed. Nevertheless, Figure 3
provides additional insights. It shows that within
the unambiguous sentence group, all four trans-
lation systems exhibit the highest BLEURT scores

3Translations from the respective systems were obtained
in March 2023.

Figure 3: Similarity between human and machine trans-
lation estimated by BLEURT score taking the human
translation as the reference and each of the MT outputs
as candidates.

when their translations are compared to human
translation under the ‘no image’ condition. This
observation supports our assumption that machine
translation aligns better with human translations
without image assistance (though statistically in-
significant, p > 0.05). Additionally, within the
unambiguous group, translations of four systems
exhibit lower BLEURT similarity scores with human
translation under the condition of ‘irrelevant im-
age’, compared to the condition of ‘no image’. It
implies that irrelevant images might distract human
translators, resulting in a lower correlation between
machine and human translations. However, further
research is needed to confirm this hypothesis.

For ambiguous sentence groups, the visual con-
ditions do not show a consistent influence on trans-
lation similarity. Translations from Google and
DeepL correlate better with human translations
when related images are included. However, this
pattern is not apparent in Lindat and chatGPT, and
the effect remains statistically insignificant.

6 Conclusion

Our study analyzes the language processing of hu-
mans and machines in translation tasks and exam-
ines the impact of sentence ambiguity and visual
cues on sentence processing in translation tasks.

Section 4 suggests that processing from humans
and machines correlates with each other: humans
exhibit a slightly longer fixation duration, and
the model reveals slightly higher surprisal values
(showing higher degree of processing complexity)
during the processing of ambiguous sentences.

Given the restriction that we cannot assess the
machine’s translation ability when providing a vi-
sual condition, we compared the machine’s textual
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translation outputs with the human’s translation un-
der three visual conditions to see which condition
correlates better with the machine’s textual transla-
tion results. We noted that translations generated
by machines tend to exhibit a higher degree of
similarity to human translations when subjects are
provided only with plain texts. For the unambigu-
ous sentence group, we also observe that machine
translations are more similar to human translations
with only plain texts provided (without visual cues)
compared to conditions with a relevant or irrelevant
image.

In the examination of the effect of visual cues
on human language processing, we discovered that
image conditions display an influence on subjects’
translation updates. In particular, when related im-
ages are provided, there is a tendency for more
word updates in the later translation correction
phase. In the context of translation comparison
across subjects, we observed that translations tend
to be more similar when both subjects are exposed
to a related image. Irrelevant images might distract
human translators, resulting in a lower similarity
between machine and human translations.
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Abstract

This study explores the potential of leveraging
additional training data as instructional prompts
for a generative model in a multilingual, mul-
titask recipe classification problem. By incor-
porating different tasks as additional questions,
derived from data available only during fine-
tuning, we aim to improve the classification
performance of a sequence-to-sequence model
for all tasks and languages involved. Further-
more, we investigate the impact that prompt-
engineering has on the additional questions
during fine-tuning, uncovering its significant
role in helping the model learn hidden interac-
tions between tasks. The proposed method pro-
duces absolute improvements of 2.3%, 6.22%,
and 10.7% respectively in weighted multilin-
gual accuracy (on three targeted classification
tasks). The most effective additional actions are
the questions derived from supplementary data,
while the size of the model and whether we
perform in-domain pre-training do not improve
the final performance significantly. Our find-
ings also underline the importance of training
data selection and questioning strategies, es-
pecially in underrepresented languages, where
we obtained an absolute increase in accuracy
of 34.8% in the few-shot setting and 30.33%
in the 0-shot setting for an underrepresented
language in a difficult main task, together with
an increase from 0% to 97% in F1-score for the
most underrepresented class.

1 Introduction

Text classification has become increasingly impor-
tant for effectively analyzing vast amounts of tex-
tual data across different languages, in the con-
text of the diverse and growing multilingual land-
scape of digital content (Li et al., 2021). It can
also be applied in a Multi-Task Learning (MTL)
setup, with the aim to improve the performance and
efficiency of Natural Language Processing (NLP)
models by simultaneously learning multiple, re-
lated tasks (Hupkes et al., 2023).

This paper focuses on the application of MTL
techniques in the context of multilingual text classi-
fication, with the declared goal of leveraging the in-
herent relationships between different classification
tasks to improve the accuracy and robustness of the
model used. We employ a multilingual generative
model as the backbone and focus on three classi-
fication tasks, where the labels represent cooking
properties for oven recipes. In addition to the la-
bels for the three target tasks, the multilingual data
contains annotations related to other properties of
the dishes, such as dish type, size, certain ingre-
dients, or oven settings. The proposed framework
effectively captures both the information shared be-
tween the three target tasks, but also capitalizes on
the additional annotations (available only during
fine-tuning), by introducing new tasks through the
use of instructional prompts (or questions). Thus,
the model is able to explicitly learn from the syn-
ergies between the new tasks and the target tasks
during the fine-tuning phase.

The main contribution of the paper is to pro-
pose an instruction-driven, joint learning generative
framework that helps the model extract hidden cor-
relations for a better classification of recipes, espe-
cially for underrepresented languages and classes,
in a highly imbalanced dataset. Unlike Wu et al.
(2022), from which our approach is inspired, our
study generates the content of these instructional
prompts (or questions) from auxiliary annotated
sparse data available only during training, the
model being charged with understanding and pre-
dicting the respective answers.

Additionally, we:

• perform an ablation study on the selection of
the most relevant annotations to use to gen-
erate instructions, also guided by their cor-
relation with the target problems, obtaining
an increase in the overall accuracy of 2.3%
in the few-shot setting and 5.22% in 0-shot
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and 15.56% 0-shot for an underrepresented
language.

• explore the benefit of in-domain pre-training,
which produced some improvements for some
of the problems and languages, but no consis-
tent behavior was observed.

• perform evaluations in several fine-tuning sce-
narios: 0-shot vs. few-shot evaluations, us-
ing underrepresented vs. well-represented
languages only, and using various sizes of
the backbone language model, obtaining in-
creases in absolute weighted accuracy of
2.3%, 6.22%. and 10.7% per problem, and
34.8% few-shot and 30.33% 0-shot for a diffi-
cult problem in an underrepresented language.

Finally, we obtain an improvement in the F1-
score for some of the lowest sampled classes,
in the underrepresented languages, from 0% to
97%, proving classification on highly imbalanced
datasets can benefit from our method.

2 Related work

The idea of jointly training a single model on mul-
tiple tasks to enable the sharing of knowledge and
representations across tasks has been explored in
various NLP applications, from intent detection
and slot filling, to joint entity classification, re-
lation classification, and co-reference clusters in
scientific literature, or machine translation (Chen
et al., 2021). Lăpuşan et al. (2022) apply such an
approach on BERT (Devlin et al., 2019) and other
variations (RoBERTa, Liu et al., 2019), to perform
German Cooking Recipe Classification on four la-
bels related to oven parameters. They obtained the
best classification performance using the domain-
adapted pre-trained language model on the recipe
title concatenated with the instructions, in a joint
training regime.

The advent of generative models has opened up
a new range of possibilities for developing mech-
anisms that efficiently exploit the compositional
capabilities of language models through prompt-
ing, either via fine-tuning, in-context learning or
even augmenting them with reasoning skills and
external tools (Mialon et al., 2023, Al-Negheimish
et al., 2021). Liu et al. (2021) present a novel
paradigm that shows how prompt-engineering can
be used to discard the pre-train and fine-tune ap-
proach of Large Language Models and replace it
with “pre-train, prompt, and predict” methodology,

using pre-defined prompts to reveal the model prior
knowledge. Wu et al. (2022) introduce a Unified
Generative Framework (UGEN) to model the tasks
as question-answering problems for joint multiple
Intent Detection and Slot Filling. They use a tem-
plate of five questions during training to extract
relevant information from the context, such as key-
words, that will help the model to better generalize
during the evaluation phase, where only two out
of five questions were used (without the auxiliary
helping questions used during training). Chain
of Thought Prompting (CoT, Wei et al., 2023) ex-
plores the emergence of complex reasoning capa-
bilities in LLMs via prompting in a sequence of
carefully selected demonstrations.

3 The data

Our target is to improve multi-task, multi-lingual
classification behavior using additional data avail-
able only during training, by using the MTL
paradigm. To accomplish this, we used a private
dataset in the cooking domain having these addi-
tional annotations and some difficult main tasks
that can benefit from this method. It consists of tens
of thousands of online cooking recipes scrapped
from web (including a wide range of public cook-
ing websites), in 6 languages: English, German,
Dutch, Italian, French, and Swedish. German and
English are overrepresented in the labeled data,
while Italian and Swedish are the most underrepre-
sented. Each recipe has been annotated for three
target tasks:

• Meat-centric (M.) - binary text label with
"yes" or "no" classes, representing whether
the main "focus" of the dish is (a loaf of) meat

• Surface aspect level (S.l.) - binary numeric
label: classes "1" & "2", representing the
cooked product’s aspect/color

• Dehydration level (D.l.) - label with 5 nu-
meric classes: from "1" to "5", representing
the moisture reduction degree.

Additionally, besides the main classification tasks
of M., S.l., and D.l., each recipe has:

• Title

• Instructions

• Oven settings
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"{Prompt}: "

"{recipe[title]}. 
{recipe[instructions]}"

append

mT5 "The {label1} value is {predicted1}"

mT5

mT5

"The {label2} value is {predicted2}"

"The {label3} value is {predicted3}"

"{Prompt}: "

"{recipe[title]}. 
{recipe[instructions]}"

append

mT5
"The {label1} value is {predicted1}. The

{label2} value is {predicted2}. The {label3}
value is {predicted3}."

Figure 1: Architecture of the baseline model (left) vs. architecture of the joint model (right).

Initial setting Final setting Description
a ∨ b b "OR" operands with missing/neutral values are discarded
d ∨ b b

c ∨ b c If both have missing/neutral values or both complete, take first

Table 1: Pre-processing procedure of multi-step recipes’ oven settings, where a = "T: 200◦C, t: 25min, P: Not
known", b = "T: 100◦C, t: 25min, P: Gas", c = "T: 212◦F, t: 25min, P: Grill" and d = "T: null, t: 25min, P: Gas".

• Some additional annotations related to the re-
quired cooking settings, dish type, certain in-
gredients, size, type, thickness, etc.

For each recipe, the default text used by the model
as input consists of the recipe’s title and instruc-
tions extracted from the HTML content, as in
Lăpuşan et al. (2022).

4 Proposed Method

The selected Baseline model uses the default input
(title+instructions) to predict only one of the three
main tasks (M. or S.l. or D.l.), resulting in three
baseline models, one for each.

Next, each incremental step is described together
with the name used for the model and the part of
the dataset being added.

4.1 Joint Learning

To better exploit the hidden correlations between
the target problems, we first trained a Joint model,
fine-tuned on all three tasks combined into one.
The chosen order of generation is from the easiest
task to the hardest task (as indicated by baseline,
individual models: lower accuracy obtained for the
task, means for us that the task is more difficult):
M.→ S.l.→ D.l.. This way, the latter predicted
labels should benefit from already having avail-
able the labels predicted before. This is one of the
reasons we employed a sequence-to-sequence gen-
erative model for our classification tasks, our main
focus being the S.l. and D.l. tasks, as for these
the baseline model seems to struggle more. The

difference between the architecture of the baseline
model and the joint model is illustrated in Figure 1.

4.2 Additional Fine-tuning Task
Although not among the target tasks, we consid-
ered using the oven settings as an additional task in
the joint model, only during fine-tuning, with the
highest precedence compared to the target tasks:
OvenSettings → M. → S.l. → D.l. The intu-
ition was that the oven settings should influence the
most the outcome (especially for D.l. and S.l. tasks,
which should also be affected by whether the meat
is the main content of the dish). The additional
task of predicting the oven settings is formulated
as predicting the triplet (T, t, P ):

• Temperature setting (either in oC or oF )

• Time setting (in minutes)

• Cooking Program

Some of the recipes in the available dataset con-
tain multiple such triplets, either because they are
multi-step (in which case the triplets are joined
with "AND"), or because the recipe provides alter-
native cooking instructions (pairs of triplets joined
by an "OR"), we applied a pre-processing proce-
dure, keeping at most five steps and only one of the
options in each disjunction (see Table 1 for details):

∧

i

(ai ∨ bi) =
∧

j

cj , j = min(i, 5)

where i is the number of steps.
This procedure was applied to reduce the number

of tokens used for this task, to not use too many
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Context:
{recipe[title]}. 

{recipe[instructions]}

Question: What is the food
type/category of the recipe?

Options:

 

Bakery Products (e.g.
bread, cake, pizza)

Side & Oven Dishes (e.g. Lasagna,
Gratins, convenience foods)

Fruits & Vegetables (e.g.
brokkoli, rice, potatoes)

Meat, Poultry
& Fish

Question: Is there a top layer
completely covering the top of the

dough while baking?

Options:

No covering top layer Completely covering
top layer

Question: Does the recipe (the
part that is baked in the oven)
contain sugar (more than one

tablespoon, >5g)?

Options:

Yes No

Question: How thick is the dish?

Question: What is the {label}
value?

Options:
{options[label]}

mT5

Side & Oven
Dishes

No covering
top layer

Yes

2-3cm

yes
For each label:

5

2

Figure 2: Question-driven Generative Framework with an example of question templates used only for training
(gray boxes/first 4) and questions for the main tasks (M., S.l. and D.l.) used for testing (green box/last one), with
the corresponding options, and their explanatory information (gray text in parentheses).

tokens from the main tasks. We reduced the number
of tokens used for the output of this task to 113
maximum. The percentage of entries in this dataset
affected are (per language): De 9%, En 57%, Nl
1%, Fr 7%, It 15%, Sv 3%.

This model would be referred to as OvenSet-
tings.

4.3 Question-driven Generative Framework
(QdGF)

The central part of our approach is the Question-
driven Generative Framework (QdGF), which uses
a template to generate different types of ques-
tions from auxiliary/redundant training data. In-
spired from Wu et al. (2022), our approach gen-
erates the response to the questions from auxil-
iary data available only during training and does
not extract it from the target labels. To this ex-
tent, the model is fine-tuned in a multi-task man-
ner, but with a variable number of tasks, as some
of the additional information is not available for
all the recipes in the training data. The only
tasks to be guaranteed for all recipes are the main
tasks, transformed in the same manner as the other
tasks, to questions. The data is constructed in the
following format: "<s>Context: {recipe[title]}.
{recipe[instructions]}</s> Question: {Qi}? Op-
tions: {optionsi + explanationsi}</s>".

The number of questions/instructional prompts

(i) used ranges between 6 and 10 per experiment.
All these questions represent a subset from a set
of 14 extracted questions initially. That is, we con-
catenate more information from the dataset (the
recipe’s title and instructions, together with several
questions from the set of used questions, and their
answer options, provided that the recipe is labeled
with those annotations in the dataset), and use the
resulting string as input to the mT5 model in the
fine-tuning stage.

With these new prompts added, we try to stim-
ulate the prior general knowledge of the model
(Han et al., 2021) and direct it to a greater focus
on this downstream task composed of the 3 target
problems (M., S.l., and D.l.). Several elements in
the options list also contain additional explanations
that help guide the model, but these were removed
from the labeled option. Providing the options to
choose from and some related explanations (where
available) should ground the model to the current
problem domain and prevent potential hallucina-
tions (Ahn et al., 2022).

A discussion on how the subset of used ques-
tions was chosen from the main set of questions is
presented in Section 5.5 and an example of a pos-
sible instantiation of the framework is illustrated
in Figure 2 (the best architecture used is similar
to this, but with joint training for the three main
tasks).
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Context:
{recipe[title]}. 

{recipe[instructions]}

Question: What
temperatures are used?

Options:
in Fin C

Question: What are the
times? (in minutes)

Question: What cooking
actions are used?

Options:

 
Electric Steam

Question: Is this a
multistep recipe?

Question: What are
the {labels_list} values.

Options:

{options[labels_list]}

mT5

200°C

25 min

Electric

False

yes 
2
5

Gas

Fan Not
known

Static

Options:

FalseTrue

Figure 3: QdGF instantiated with the subset of oven
settings questions.

4.3.1 QdGF + OvenSettings
We transformed the triplet (T, t, P ), from Sec-
tion 4.2, into 3 more questions, one for each oven
setting, to further exploit the previous approach
and adapt it to this framework. We also added an
additional question, to make a difference between
multi-step recipes (having more such triplets) and
single-step recipes (with just one triplet). An ex-
ample framework with this subset of questions is
illustrated in Figure 3. The total number of poten-
tial additional questions to choose from, including
the oven settings-related questions, is now 18.

All the extracted questions are available in Ap-
pendix B.

4.3.2 Renaming
One more potential issue we tried to overcome
in this framework is related to the use of num-
bers to encode the class labels, which bears either
no, or a potentially wrong semantic meaning for
the model (Spokoyny et al., 2022). To address
it, we changed each class from its numeric coun-
terpart to a textual description consisting of 1-3
words, which we considered to best capture the
class meaning. For example, for S.l., the resulting
mapping to textual classes is: 1→Maillard; 2→
Caramelization. The full mappings can be found
in Appendix A. We integrated these newly renamed
labels directly into QdGF, with their respective ex-
planations in the Options component.

5 Experiments and Results

The dataset used contains approximately 52000
multilingual recipes labeled with the three target
tasks and several additional annotations (few of
them being sparse), performed by human experts

Lang. M. S.l. D.l.
German 12:1 2:1 12:6:4:2:1
English 9:1 2:1 10:6:5:1:1
Dutch 7:1 1:1 10:8:8:3:1
French 12:1 2:1 4:2:2:1:1
Italian 17:1 2:1 7:4:4:4:1

Swedish 13:1 2:1 7:6:4:3:1
38:16:8:4:3:1 10:1 2:1 8:5:3:1:1

Table 2: Imbalance ratios per language (first column,
last row), imbalance ratios per language and per task
(with 2, 2, and 5 classes respectively) and imbalance
ratios per task (last row, last three columns).

(see Section 3). It is highly imbalanced both re-
spective to the languages and the classes used (see
Table 2).

The train-validation-test split is 0.64 − 0.20 −
0.16 for German and English (the fine-tuning lan-
guages). We fine-tuned only with the high-resource
languages. The other languages are used in a 0-shot
setting and also in a few-shot similar setting, due to
the limited samples (Dutch 6%, French 2.6%, Ital-
ian 1.9%, Swedish 0.8%-shot setting respectively).

The backbone model employed is mT5 (Xue
et al., 2020), a multilingual encoder-decoder trans-
former, and an attention-based model (Vaswani
et al., 2017). Through manual hyperparameter tun-
ing, we found the following hyperparameter val-
ues to produce the best results (and were used fur-
ther): Learning rate: 3e−4, Weight decay: 0.1, No
warmup with Optimizer AdaFactor and Scheduler:
AdafactorSchedule. Initially, we used AdamW Op-
timizer (Loshchilov and Hutter, 2017) and the lin-
ear scheduler with warmup from HuggingFace, but
we changed to the original optimizer used for the
T5 model (AdaFactor, Shazeer and Stern, 2018)
which produced better results.

5.1 Specialization Pre-training

Initially, for all approaches, we used the mT5
model pre-trained by Google1 on mC4. To fur-
ther "specialize" the model on culinary data, we
decided to further pre-train it on a multilingual
dataset of approximately 490000 unlabeled recipes.
As this dataset was not comparable in size to the
original training corpus, pre-training the model
from scratch using only these recipes did not pro-
vide enough information for the model to acquire
a general semantic knowledge of words. Hence,

1https://huggingface.co/google/mt5-base
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Model Size De En Nl Fr It Sv Weighted Acc
Baseline base 95.82 94.61 91.65 91.41 94.17 91.47 94.68

large 97.26 96.83 92.57 95.91 95.63 95 96.43
Joint large 97.3 97.09 93.78 95 98.43 93.38 96.7

Pt Joint base 96.83 96.36 95.51 96.59 97.81 96.69 96.59
QdGF* large 97.92 96.67 94.46 97.06 96.81 95.33 96.98

Pt QdGF* base 98.21 96.78 93.97 96.56 95.84 96.33 96.98
large 97.96 96.52 93.88 97.17 96.95 97 96.97

Table 3: M. - few-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint
models. Pt = specialized pre-trained. blue=Best base, teal=Best large.

Model Size De En Nl Fr It Sv Weighted Acc
Baseline base 88.65 86.76 80.43 57.82 64.48 72.5 84.44

large 90.88 89.62 71.25 70.68 70.4 53.33 85.87
Pt Joint base 91.08 91.33 86.75 89.09 90 78.51 90.3
QdGF* base 90.93 92.94 86.63 87.26 87.1 88 90.03

large 90.15 91.22 86.22 89.89 85.99 85.66 89.39
Pt QdGF* base 91.86 92.52 87.04 89.38 87.38 87.66 90.66

large 91.17 91.95 85.82 87.56 85.57 87.33 89.74
Pt QdGF renam.* base 91.28 90.75 89.08 90.18 87.81 87.33 90.4

Table 4: S.l. - few-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint
models. Pt = specialized pre-trained. blue=Best base, teal=Best large.

the specialization pre-training was performed on
the already pre-trained on mC4 model. We con-
sidered different approaches of pre-training, be-
tween Masked Language Modelling and Next Sen-
tence Prediction, as Sun et al. (2022) highlights the
reintroduction of NSP as a pre-training approach
and also the importance of the pre-training cor-
pus. However, we choose the original pre-training
approach of the T5 model (Text-To-Text Transfer
Transformer, Raffel et al., 2020), using a script
performing span-masked language modeling2.

5.2 Size Does(n’t) Matter?

We tested all the sizes of mT5 that we were able to
fit within our resources: small, base, and large, but
focusing only on base and large as small did not
stand up to the complexity of the tasks. For the first
methods, large seemed to perform slightly better
than base overall, but most importantly in the few-
shot and 0-shot setting for the underrepresented
languages. With the approach of incorporating the
QdGF though, base performed similarly, or even
slightly better than large, hinting that exploitation
of hidden correlations using the right questions

2https://github.com/huggingface/transformers/
blob/main/examples/flax/language-modeling/run_
t5_mlm_flax.py

might be more important than the size and number
of parameters of the model. Maybe this framework
reduces the need for memorization, where large
language models tend to be better (Tirumala et al.,
2022). However, this claim is limited by the fact
that, as the architecture grew more complex, the in-
put data needed to be truncated for the large model
to fit into available memory, thus maybe affecting
performance. More on this in Limitations. We em-
phasize that our goal was not to compare between
the two sizes, but to observe the improvements our
method brings to each model (size) independently.

5.3 Overall Results
For assessing results, we considered the best mod-
els per problem out of the following (trained on De
& En, few-shot setting for Nl, Fr, It, Sv):

• Joint (all three problems at once, fine-tuned
on all languages, see Section 4.1).

• OvenSettings (joint model with the additional
fine-tuning task, see Section 4.2).

• QdGF (model with a Question-driven Gener-
ative Framework, see Section 4.3), only the
best instantiation of the questions is reported
in the final results. Results from other instan-
tiations are discussed in Section 5.5.
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Model Size De En Nl Fr It Sv Weighted Acc
Baseline base 79.54 73.46 66.8 60.35 55.38 59.69 74.28

large 86.51 86.71 68.4 64.55 57.01 59.17 81.71
Pt Joint base 87.17 86.5 82.26 74.54 72.18 72.72 84.98

Pt OvenSettings* base 87.28 83.75 82.77 78.91 74.45 86.44 84.98
large 86.98 84.58 82.34 80.04 73.21 85.59 84.96

Pt QdGF* base 87.37 87.28 81.25 75.12 72.54 81.66 84.04
Pt QdGF+OvenSettings* base 87.77 86.13 81.25 75.22 70.87 82 83.9

large 87.68 87.12 80.93 77.65 68.51 78.66 83.98

Table 5: D.l. - few-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint
models. Pt = specialized pre-trained. blue=Best base, teal=Best large.

Model Size De En Nl Fr It Sv
Baseline base 88 / 84 91 / 90 22 / 84 0 / 78 0 / 55 0 / 60

large 89 / 86 94 / 92 34 / 85 0 / 81 0 / 53 0 / 50
Pt OvenSettings* base 91 / 81 95 / 81 90 / 85 61 / 85 76 / 55 97 / 83

large 90 / 82 93 / 83 90 / 86 63 / 87 75 / 61 94 / 91
Pt QdGF+OvenSettings* base 91 / 86 84 / 89 90 / 87 55 / 83 70 / 67 94 / 76

large 91 / 88 98 / 88 83 / 88 49 / 85 66 / 59 97 / 75

Table 6: D.l. - F1-scores for the 2 most underrepresented classes out of the 5 classes (2ndUnderrepClass /
mostUnderrepClass). * = also joint models. Pt = specialized pre-trained. blue=Best base, teal=Best large.

• QdGF+OvenSettings (the model with a
Question-driven Generative Framework that
includes the question obtained from the addi-
tional task, see 4.3.1).

• QdGF renam. (the model with the renaming
of classes for S.l. and D.l. tasks, see 4.3.2).

The overall results were considered per language,
and for all languages combined using the weighted
accuracy (with respect to the number of samples
of each language). We also considered a mix of
joint or not joint and specialized pre-trained or just
default pre-trained. The baseline used to compare
our results is one model per problem fine-tuned
on all languages with a simple instructive prompt
(dubbed "Baseline", see Section 3). We report the
average result of multiple runs (with standard devi-
ations up to 0.1%) for every mentioned model.

The final results for M. can be seen in Table 3.
The best models based on the weighted accuracy
are both QdGF Joint, one specialized pre-trained
(with an increase of 2.3% compared to base Base-
line) and one not. Based on the accuracy on the
underrepresented languages, the specialized pre-
trained Joint model performs the best, with an in-
crease of 5.22% for Swedish (in a base model).
We did not expect the renaming to help for this
task since it was not applied to the classes of this

problem (the classes already being "yes" or "no").
For S.l. (Table 4), the highest accuracy has been

obtained by specialized QdGF joint again (increase
of 6.22% in base). In this task, renaming (the sec-
ond best) helped a lot, especially for the French
language, with an increase of 32.36%. Also, the
specialized joint model performed well (especially
in Italian, with an increase of 25.52%), proving that
this problem benefits from being joined with M..

We expected oven settings to be related to D.l.,
therefore the best models are the ones involving
these auxiliary settings, as can be seen in Ta-
ble 5. The specialized OvenSettings Joint model
performed the best in both base and large and both,
weighted accuracy and accuracy of every under-
represented language. This task also benefits from
being joined with the other previous tasks. Special-
ized QdGF joint, which is the best model for the
other two problems, is also one of the best here,
followed by its extension with the settings auxiliary
questions in weighted accuracy (with its German
and English results being one of the best).

The QdGF approaches also helped to recognize
the lowest represented classes, as the dataset is
highly imbalanced, especially for D.l. task (Ta-
ble 2, last column). For this, we measured the
F1-score for the 2 most underrepresented classes
in this problem, and the comparison can be seen in
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Task thickness top appearance type cheese sugar dough dishes temp
S.l. -0.02 -0.03 0.17 -0.21 1.00 1.00 -0.49 -0.21 -0.10
D.l. 0.05 0.75 -0.84 -0.20 -0.01 0.25 -1.00 1.00 0.01

Table 7: Relevant correlations between S.l. and D.l. and answers of selected questions (Pearson correlation was
used).

Table 6. A reason for the performance discrepan-
cies in Table 6 - Baseline row between the second
most underrepresented class (with an F1-score of
0 for underrepresented languages) and the most
underrepresented class (with F1-score > 50) might
be the model overfits on De & En (thus a higher F1-
score for that class for De & En) and is unable to
generalize to the other languages. We can see that
employing Joint learning with OvenSettings and
even QdGF, reduces the overfitting significantly.

Initially, we tested all the models (trained on De
& En) in the 0-shot setting for the underrepresented
languages (Nl, Fr, It, Sv). The model performed
a bit better in these underrepresented languages
after seeing examples from them. However, in
some cases, it performed slightly worse in De &
En, but nothing significant (in some cases it even
performed better), implying that no catastrophic
forgetting took place and that our method is able
to generalize well even in new languages. These
evaluations, together with the complete evaluations
in the few-shot setting can be seen in Appendix C.

5.4 Domain generalizability
The recipe data used exhibit significant diversity
in terms of structure and format, which means the
model may not simply learn the specifics of the
cooking recipes themselves. This, and the fact that
specialization pre-training in the cooking domain
did not help that much, suggests that the method
can be generalized to other domains, by instanti-
ating a QdGF with questions obtained from addi-
tional/redundant data, extracted data from the text
to classify, or even metadata available in a new
dataset/domain.

5.5 Ablation Study
The set of 18 available questions (see Appendix B)
would result in 218 possibilities of instantiations
of the QdGF. To select the subset of questions,
we checked for the most sparse questions among
the dataset to try to avoid them, and we checked
the correlations of the answers to the questions
with our three main problems. We can see in Ta-
ble 7 that the most correlated types of questions

with the S.l. problem are cheese and sugar, which
are contained in the best model for this problem
(which is a Pt QdGF* with final acc. 90.66%).
A decrease of 2.3% occurs in weighted accuracy
few-shot, 5.22% in 0-shot, and 15.56% 0-shot for
an underrepresented language, if discarding one
of them. For D.l., the most correlated questions
(dough, dishes) are also part of the best QdGF
model for this problem (Pt QdGF* with 84.04%
and this one+OvenSettings* with 83.9%). The best
versions of QdGF models in the final evaluations
(Appendix C) differ between S.l. and D.l. by the
subset of questions used, only the best were pre-
sented for each. All chosen subsets contain the type
question as this correlates approx. -0.20 with S.l.
and D.l. and 0.32 with M..

6 Conclusion

Our study demonstrates the effectiveness of lever-
aging additional training data as instructional
prompts in a multilingual, multitask classification
problem, by introducing QdGF (Question-driven
Generative Framework). Our proposed method
achieves notable improvements in weighted mul-
tilingual accuracy, with absolute improvements of
2.3%, 6.22%, and 10.7% for the targeted classifica-
tion tasks. Notably, the additional tasks related to
oven settings and the highly correlated ones with
the specific problems have the most significant im-
pact. We observe that the size of the model and
in-domain pre-training have minimal impact on
final performance. Our findings underscore the im-
portance of thoughtful training data selection and
questioning strategies, particularly in underrepre-
sented languages and imbalanced datasets. In such
cases, we achieved substantial accuracy increases
of 34.8% in the few-shot setting and 30.33% in the
0-shot setting, and a 97% increase in the F1-score
of underrepresented classes, for the most under-
represented language. These results highlight the
potential of leveraging additional training data and
prompt-engineering to improve performance on
multilingual, multitask models in text classifica-
tions.
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Limitations

Truncation
Due to limited resources (a system with multiple
GPUs NVIDIA Tesla V100 SXM2 16 GB, from
which we used on average 3 GPUs per run), we
were unable to run larger models than mt5-large
(1,2B+ parameters). Regarding the maximum num-
ber of tokens accepted, for base, we used 512 to-
kens. Thus, recipes with more than 512 tokens
were truncated. Approximately 500/55000 recipes
were affected. As the architecture grew more com-
plex, large became not as reliable as base due to
the extra truncation needed. For the large model,
we had to set the maximum number of tokens to
320, approx. 2600 recipes being affected, and for
the more complex approaches (such as QdGF), we
had to set the maximum number of tokens to 254,
5100+ recipes being affected, thus maybe affecting
performance (as we can see in the latest tables, that
results start to drop for large models as they get
more complex). We did not test specifically how
much truncation affects performance. Our main
focus was the base model and we did not want to
interfere with its truncation so we can measure this
method’s performance increase. A deeper study
on what is the optimal truncation could be done
in future. Setting the tokens to the same size to
compare base vs large, to see which one gener-
alizes better with our method, constitutes another
future research interest, as this focused only on
the improvements brought by the method to each
model (size) individually. Therefore, access to
more resources/better memory usage would make
our Framework scalable to longer text also (longer
than what the memory can fit, per model size), as
it would not need this truncation.

Backbone model
We did not use other encoder-decoder models be-
cause we wanted to highlight the improvement this
method brings to a language model, and we chose
to show it on mT5, thus we selected mT5 (without
the QdGF framework) as a baseline. Having other
models as baselines constitutes another research in-
terest of ours, depending on the available resources.
The high computational cost and resources asso-
ciated to larger and newer models were the main
reasons we were unable to test our method on such
other models. When it comes to LLM APIs, most
of the services incur additional costs for fine-tuning,
that were not available to our study. Moreover, this
would raise concerns about the security and privacy

of our data, since the dataset used is private.

Computational expense
Another resource-related limitation would be that
our framework is computationally expensive, as,
for every question, we replicate the recipe for that
question (only if an answer is available). For a
framework with 6 questions, the training data can
grow up to 6 times, per epoch. This also increases
the computation time proportionally. To solve this,
we could take advantage of the context of LLMs,
by prompting first the recipe, followed by the ques-
tions, without replicating the recipe each time. This
would require a larger model. Another solution
would be to feed the model a larger prompt com-
posed of the recipe and all questions plus the de-
sired tasks at once, but this again has the same
downsize as mentioned before. Given the size of
the output, this can also be susceptible to halluci-
nations, which can impact performance.

Data
Our method proved to work for: German, En-
glish, Dutch, French, Italian, and Swedish. This
method might not work in languages not supported
by the multilingual model. For new underrepre-
sented languages (supported by mT5) our model
will bring significant improvements in a 0-shot set-
ting as our experiments showed. For the few-shot
setting though, some additional annotations might
need to be added/extracted manually for maximum
improvement, which requires additional labor (al-
though the effort might not be worth it, as results
in the 0-shot setting are not much smaller).

We discovered a few wrongly labeled recipes in
the dataset and a few recipes not properly scrapped
from Web (containing HTML tags in instructions).
We solved them, but we cannot guarantee that the
final dataset was 100% clean and with no noise that
might have affected performance, but we can say
that QdGF adds some robustness to such noise, as
the model "answers" some questions before making
a final decision.

Our method is tested currently only on one
unique dataset. We would like to emphasize that
the dataset we used is relevant enough, both in
terms of the amount of data, languages, and ad-
ditional questions, especially for fine-tuning and
0-shot scenarios. However, the dataset is specific to
the cooking domain. Applying a QdGF approach
to data and problems from different domains might
need data pre-processing and extraction of ques-
tions.
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Ethics Statement

An important ethical concern is high energy con-
sumption. As discussed in Limitations, our method
requires computational resources that are avid en-
ergy consumers. A significant amount of electricity
was consumed for running experiments, taking on
average 3 hours per fine-tuning experiment (on 3
GPUs) and 12 hours per pre-training (on 4 GPUs).

Another ethical concern is the potential bias that
may be present in the training data used to fine-tune
the model, as the data were scrapped from public
websites. It is essential to ensure that the dataset is
free from misleading content.

Additionally, when deploying the model in real-
world applications, it is crucial to consider the im-
pact of classification errors or misinterpretations,
particularly in kitchen safety domains, as various
oven settings are involved.
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Alex-Mihai Lăpuşan, Rareş-Liviu Horge, Sara Petres,
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Appendix

A Renamings

A.1 Surface aspect level (S.l.)
• 1→Maillard

• 2→ Caramelization.

A.2 Dehydration level (D.l.)
• 1→Maintain elasticity

• 2→ Not too moist

• 3→ Rising dough

• 4→ Steam, dry, grill

• 5→ Crispy bottom.

B The set of Questions

Each question is identified by its ID. Some answer
options might contain additional explications (en-
closed in parentheses).

B.1 Top
Is there a top layer completely covering the top of
the dough while baking? Options:

• No covering top layer

• Completely covering top layer

B.2 Browned
Shall your food be browned on top? Options:

• Yes

• No

B.3 Appearance
How would you describe the appearance of the
food? Options:

• One large

(e.g. Lasagna, gratins, casseroles, etc.)

• Few thick items

(grilled, stuffed foods)

• Many small items

(e.g. french fries)

• One large thin item with crispy bottom

(e.g. Quiche, Pizza, Tarte)

B.4 Prepare
How do you want to prepare the food? Options:

• Roasting one or few large pieces with a crispy
surface

(e.g. whole chicken or a roast)

• Cooking and baking of a casserole in a large
container

• Cheese on top

• Airfrying many smaller pieces with a crispy
surface

(e.g. chicken legs, chicken wings)

B.5 Marinade
Do you use a sweet rub or marinade (e.g. honey
rub or rub with brown sugar)? Options:

• Yes

• No

B.6 Cheese
Does the recipe use one of the following cheeses
(Mozzarella, Pizza cheese, Gratin cheese)? Op-
tions:

• Yes

• No

B.7 Sugar
Does the recipe (the part that is baked in the oven)
contain sugar (more than one tablespoon, >5g)?
Options:

• Yes

• No

B.8 Dough
What type of dough/batter is it? Options:

• Any other

(e.g with baking powder, not sure)

• Yeast and Bread doughs

• Puff Pastry

B.9 Dishes
Is it one of the three dishes: Pizza, Quiche(s) or
Tarte(s)? Options:

• Yes

• No
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B.10 Thick

How thick is the dish? Consider only the part
placed in the oven. Options: in cm.

B.11 Pastry

Is the puff pastry filled with meat or fish? Options:

• Yes

• No

B.12 Type

What is the food type/category of the recipe? Op-
tions:

• Bakery Products

(e.g. bread, cake, pizza)

• Side & Oven Dishes

(e.g. Lasagna, Gratins, convenience foods)

• Fruits & Vegetables

(e.g. broccoli, rice, potatoes, etc.)

• Meat, Poultry & Fish

• Not sure

B.13 Preheat

Does it need preheating? Options:

• Yes

• No

B.14 Thickness

How thick is the dish? Options:

• medium

• thin

• thick

• very thin

B.15 Multistep

Is this a multistep recipe? Options:

• True

• False

B.16 Temperature

What temperatures are used? Options: in C or F.

B.17 Time
What are the baking times? Options: in minutes.

B.18 Cooking_program
What is the cooking program used? Options:

• Electric

• Steam

• Gas

• Fan

• Static

• Heat

• Circulating air

• Grill

• Ventilated

• Hot air

• Convention

• Bottom

• Top heat

• Broil

• Top bottom

• Not sure

C Complete Evaluations
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Model Size De En Nl Fr It Sv Weighted Acc
Baseline base 95.82 94.61 91.65 91.41 94.17 91.47 94.68

large 97.26 96.83 92.57 95.91 95.63 95 96.43
Pt Joint base 96.83 96.36 95.51 96.59 97.81 96.69 96.59

large 96.17 96.62 92.86 95.68 96.25 94.21 95.83
Pt OvenSettings* base 97.1 95.79 94.29 97.96 93.15 96.61 96.35

large 96.7 95.53 92.85 96.82 96.26 95.72 95.95
QdGF base 98.05 96.36 94.37 96.66 96.53 97.66 96.98

large 96.66 95.79 94.37 97.57 96.67 95.66 96.26
QdGF* base 97.67 96.15 93.8 97.06 97.92 96 96.79

large 97.92 96.67 94.46 97.06 96.81 95.33 96.98
Pt QdGF* base 98.21 96.78 93.97 96.56 95.84 96.33 96.98

large 97.96 96.52 93.88 97.17 96.95 97 96.97
Pt QdGF+OvenSettings* base 97.9 96.57 93.31 96.36 97.36 96 96.8

large 98.05 96.1 93.8 97.27 96.81 97.66 96.94
Pt QdGF renam. base 97.79 96.46 95.27 96.35 95.56 95 96.81

large 97.43 97.04 94.46 96.76 96.53 94.66 96.75
Pt QdGF renam.* base 97.23 96.62 95.27 96.15 95.56 95.33 96.57

large 96.46 95.79 93.64 94.43 96.12 94.33 95.67

Table 8: M. - few-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint
models. Pt = specialized pre-trained. blue=Best base, teal=Best large.

Model Size De En Nl Fr It Sv Weighted Acc
Joint base 95.95 95.69 90.01 92.72 94.37 95.86 94.95

large 97.3 97.09 93.78 95 98.43 93.38 96.7
Pt Joint base 97.3 96.99 92.86 93.86 94.37 96.69 96.4

large 96.66 96.57 91.64 92.5 94.68 96.69 95.75
OvenSettings* base 97.25 96.83 92.35 95.01 95.32 98.3 96.4

large 97.17 95.29 92.75 97.5 94.7 94.91 96.1
Pt OvenSettings* base 96.79 96.05 93.57 97.73 95.95 98.29 96.28

large 97.03 96.78 93.88 96.6 96.88 97.45 96.58
QdGF base 98.01 96.15 90.25 92.86 94.81 95.32 94.87

large 97.7 96.83 92.66 95.95 96.53 96.33 96.58
QdGF* base 97.72 96.31 91.36 94.44 95.56 96 96.08

large 98.12 96.57 92.01 95.35 96.11 97 96.57
Pt QdGF* base 98.07 96.88 91.44 94.03 94.03 96.33 96.23

large 97.9 96.67 90.87 95.14 93.06 95.66 96.05
Pt QdGF+OvenSettings* base 97.94 96.78 90.62 93.93 95 96.66 96.11

large 97.79 96.31 90.62 94.23 95.28 95.33 95.96
Pt QdGF renam. base 97.85 96.57 92.34 94.13 94.73 94.33 96.18

large 97.43 96.72 91.11 94.33 93.9 94.66 95.83
Pt QdGF renam.* base 97.61 96.78 91.36 95.64 94.6 94.66 96.13

large 97.23 97.04 93.48 96.35 96.4 95.66 96.52

Table 9: M. - 0-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint models.
Pt = specialized pre-trained. blue=Best base, teal=Best large.
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Model Size De En Nl Fr It Sv Weighted Acc
Baseline base 88.65 86.76 80.43 57.82 64.48 72.5 84.44

large 90.88 89.62 71.25 70.68 70.4 53.33 85.87
Pt Joint base 91.08 91.33 86.75 89.09 90 78.51 90.3

large 90.26 90.13 84.5 87.73 88.12 80.16 89.19
Pt OvenSettings* base 89.78 89.15 86.54 91.61 86.29 88.13 89.19

large 88.64 88.79 81.43 88.21 81.62 88.13 87.52
QdGF base 90.88 91.85 85.73 87.46 86.4 88.33 89.66

large 89.07 90.29 86.14 87.26 86.13 86.66 88.46
QdGF* base 90.93 92.94 86.63 87.26 87.1 88 90.03

large 90.68 91.69 87.2 87.36 86.37 86.33 89.65
Pt QdGF* base 91.86 92.52 87.04 89.38 87.38 87.66 90.66

large 91.17 91.95 85.82 87.56 85.57 87.33 89.74
Pt QdGF+OvenSettings* base 91.66 92 87.04 90.49 86.68 83.33 90.39

large 90.97 90.7 85.49 86.55 83.77 87.66 89.13
Pt QdGF renam. base 89.14 90.96 88.02 88.96 87.39 88 89.18

large 88.56 88.36 83.37 88.56 84.21 84.33 87.41
Pt QdGF renam.* base 91.28 90.75 89.08 90.18 87.81 87.33 90.4

large 86.18 85.82 81.42 82.89 81.16 83 84.69

Table 10: S.l. - few-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint
models. Pt = specialized pre-trained. blue=Best base, teal=Best large.

Model Size De En Nl Fr It Sv Weighted Acc
Joint base 88.45 87.22 81.54 75.22 82.81 67.76 86.13

large 91.48 92.21 84.7 80 86.56 68.59 89.72
Pt Joint base 91.95 91.79 78.49 82.95 81.25 57.85 88.94

large 89.95 90.81 77.67 46.36 66.25 59.5 85.04
OvenSettings* base 90.73 88.58 74.92 62.81 77.88 73.73 86.14

large 90.18 90.38 75.1 80.5 84.11 74.57 87.47
Pt OvenSettings* base 90.95 92.31 74.61 75.28 76.94 70.94 87.68

large 89.99 90.81 76.86 80.27 83.8 77.12 87.69
QdGF base 91.48 92.26 77.31 65.47 61.27 70.89 81.72

large 90.97 91.95 82.72 80.28 83.91 83.66 88.28
QdGF* base 90.93 92.05 81.5 75.12 76.83 79.66 86.94

large 90.8 91.9 81.74 83.21 83.08 79 88.15
Pt QdGF* base 91.17 92 80.19 79.67 79.33 77.66 87.47

large 90.91 92.26 75.14 80.79 71.15 70 86.02
Pt QdGF+OvenSettings* base 91.13 91.74 75.71 78.76 78.5 77 86.66

large 90.71 91.79 75.22 74.62 68.51 72 85.09
Pt QdGF renam. base 90.36 91.79 55.74 68.11 48.61 43.33 79.42

large 89.96 91.22 74.9 69.33 54.84 68.66 82.92
Pt QdGF renam.* base 91.13 91.48 77.83 75.3 74.1 64.33 85.8

large 87.02 87.58 78.16 78.44 77.14 81.66 84.23

Table 11: S.l. - 0-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint
models. Pt = specialized pre-trained. blue=Best base, teal=Best large.
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Model Size De En Nl Fr It Sv Weighted Acc
Baseline base 79.54 73.46 66.8 60.35 55.38 59.69 74.28

large 86.51 86.71 68.4 64.55 57.01 59.17 81.71
Pt Joint base 87.17 86.5 82.26 74.54 72.18 72.72 84.98

large 86.19 85.51 79.61 72.5 70.31 71.9 83.71
Pt OvenSettings* base 87.28 83.75 82.77 78.91 74.45 86.44 84.98

large 86.98 84.58 82.34 80.04 73.21 85.59 84.96
QdGF base 86.97 87.12 78.4 69.06 72.12 78 82.7

large 87.32 86.55 80.27 72.09 70.59 80 83.25
QdGF* base 87.26 86.76 80.6 72.29 70.18 80 83.29

large 86.68 86.45 81.17 76.34 69.9 80.66 83.44
Pt QdGF* base 87.37 87.28 81.25 75.12 72.54 81.66 84.04

large 86.88 86.45 81.42 74.72 67.13 82.66 83.26
Pt QdGF+OvenSettings* base 87.77 86.13 81.25 75.22 70.87 82 83.9

large 87.68 87.12 80.93 77.65 68.51 78.66 83.98
Pt QdGF renam. base 85.76 85.45 80.76 75.6 69.66 83.66 82.76

large 85.4 84.46 78.48 73.78 69.25 79.66 81.77
Pt QdGF renam.* base 86.71 84.83 82.72 70.44 65.65 79.66 82.38

large 84.54 82.02 80.27 69.23 63.02 80.33 80.2

Table 12: D.l. - few-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint
models. Pt = specialized pre-trained. blue=Best base, teal=Best large.

Model Size De En Nl Fr It Sv Weighted Acc
Joint base 83.5 81.62 63.3 57.72 52.81 48.76 77.62

large 87.03 86.65 74 67.72 60 57.85 82.92
Pt Joint base 87.59 85.36 73.09 69.32 56.56 52.89 82.69

large 85.58 83.49 65.85 51.13 47.5 48.76 78.93
OvenSettings* base 86.76 85.31 68.7 58.27 53.89 62.71 81.17

large 86.75 84.51 74.79 70.52 59.19 70.34 82.66
Pt OvenSettings* base 87.36 85.56 76.96 70.52 60.12 70.08 83.52

large 87.2 84.41 76.76 72.79 60.43 73.73 83.34
QdGF base 86.95 86.13 64.31 63.36 51.29 60.61 74.38

large 87.52 85.25 70.82 66.53 53.4 68.66 79.69
QdGF* base 87.37 87.48 70.25 64.71 51.04 62.66 79.44

large 87.1 87.9 76.2 70.47 63.1 72.33 81.94
Pt QdGF* base 87.3 87.22 69.84 66.63 57.83 65.33 80.09

large 87.04 86.81 66.34 65.01 45.49 59 78.16
Pt QdGF+OvenSettings* base 87.48 86.19 72.45 67.94 53.12 62.33 79.98

large 87.23 85.46 65.93 65.82 50.48 62 78.48
Pt QdGF renam. base 83.17 83.84 63.81 54.05 40.16 60.33 73.96

large 84.1 84.2 68.86 61.64 52.21 66.66 76.98
Pt QdGF renam.* base 87.02 86.28 72.21 69.33 55.54 67.33 80.23

large 85.84 84.15 77.18 71.45 62.74 75.33 80.89

Table 13: D.l. - 0-shot setting accuracy for the underrepresented languages, trained on De & En. * = also joint
models. Pt = specialized pre-trained. blue=Best base, teal=Best large.

266



Resolving Gender Biases in LLMs at Inference Time with Novel
Dijkstra’s-based K-Explorers Neural Network Traversal (KeNNT)

Hanav Modasiya
Santa Clara High School

California, 95051, United States of America
hanavmw13@gmail.com

Abstract

The vast growth of Large Language Models
(LLMs) has increased the need for larger data
corpora, and researchers often turn to the in-
ternet for a source of that data. However, with
rising online sexism, LLMs start to pick up on
gender biases in the text they generate. Despite
protective measures, biases still infiltrate newer
models like ChatGPT and LLaMA 2. In this
research, we introduce a novel Dijkstra’s-based
algorithm called K-explorers Neural Network
Traversal (KeNNT), that we hypothesize can be
attached to models and algorithms to solve opti-
mization problems. KeNNT is a novel method
to guide Transformer models away from gen-
erating gender biases. KeNNT, based on Di-
jkstra’s shortest path algorithm, was tested on
a GPT-2 model fine-tuned on the WinoBias
benchmark dataset. KeNNT reduced gender
bias in generated texts by 84.79% (K = 3) and
95.93% (K = 4), outperforming some industry
standards. Based on the promising results, it is
hypothesized that KeNNT can enhance other
optimization algorithms, such as Gradient De-
scent, improving accuracy and avoiding local
minima convergence. With this work, we hope
to inspire further, novel endeavors into gender
bias resolution and new perspectives on opti-
mization problems.

1 Introduction

Large Language Models (LLMs), built on the
Transformer architecture, have become increas-
ingly popular as they open up a revolutionary field
of human and Artificial Intelligence (AI) interac-
tion (Chang et al., 2024) that is exemplified by
some of the most vast and emerging technologies
of the time, such as multimodal, conversational lan-
guage models like ChatGPT and Gemini or models
tailored to code understanding and completion, like
LLaMA 2 and BLOOM (Li et al., 2023). These
large models, built upon billions of parameters, are
trained on large corpora of data from around the
internet, where they are often prone to stereotype

or bias infiltration. Similar models have seen un-
precedented amounts of bias, most commonly in
gender and race (Dong et al., 2024; Li et al., 2024).
They tend to create hurtful text or negative repre-
sentations of particular demographics, while other
counterpart demographics do not show those nega-
tive representations. Sometimes, the bias is quite
subtle, as the United Nations Educational, Scien-
tific and Cultural Organization (UNESCO) report
Bias Against Women and Girls in Large Language
Models in early 2024 showed that LLMs still relate
females with domestic terms such as family and
children while relating males with technical terms
such as executive and business even when given
the same context (ClareO’Hagan, 2024). UNESCO
also revealed that these subtle biases are still com-
mon in larger models such as ChatGPT 3.5 and
LLaMA 2, which are used globally today, high-
lighting an immense crisis as these biases "have
the power to subtly shape the perceptions of mil-
lions of people," as noted by UNESCO Director
(ClareO’Hagan, 2024). These biases, specifically
gender biases, are not an issue to overlook as they
cause urgent deterioration to the growth of AI and
its integration into the world (Dong et al., 2024;
Bolukbasi et al., 2016; Alba, 2022). This research
introduces and validates a new Artificial Intelli-
gence algorithm for resolving these subtle gender
biases and possibly other search algorithm issues
during inference time (while the model is running)
called K-Explorers Neural Network Traversal, or
KeNNT. In simple terms, the algorithm generalizes
as this: when exploring a network of choices, if
a search algorithm is unsure about its next action
or choice, rather than taking a risk and pursuing
one singular path, the search algorithm branches
off into K different exploration paths.

2 Background

Current methods for resolving these subtle gender
biases alter or augment training data to prelimi-
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narily remove biases from the Transformer’s un-
derstanding. (Dong et al., 2024; Li et al., 2024;
Bolukbasi et al., 2016; Thakur et al., 2023). How-
ever, such methods can sometimes alter impor-
tant context embedded into the training data, ef-
fectively harming the model’s accuracy but main-
taining its runtime (Bolukbasi et al., 2016; Thakur
et al., 2023). Furthermore, such methods are re-
stricting the knowledge of the model itself. It is
akin to a teacher not teaching the true history of cer-
tain matters because the information is too strong.
However, in doing so, the student never truly under-
stands history. By manipulating and censoring data
from the Transformer model’s learning, the Trans-
former can often lose a complete understanding
of semantic relationships (Bolukbasi et al., 2016;
Thakur et al., 2023). Rather, the student should
be taught the complete history but cautioned about
it and encouraged to learn from it. Likewise, the
theorized algorithm in our work, KeNNT, does not
alter the training data but steers the Transformer
away from biases during inference time, so there is
no loss of true understanding.

This work uses coreference resolution, an algo-
rithm that calculates grammatical hierarchies in a
sentence using graph representations of grammat-
ical relationships, Natural Language Processing
(NLP), and graph algorithms (Lee et al., 2017;
Chen et al., 2021). Coreference resolution is
used to calculate noun-pronoun clusters, which are
groups of nouns and pronouns connected to the
same entities (Chen et al., 2021) with the corefer-
ence resolution algorithm. Sample noun-pronoun
pairings are seen in Figure 1.

Figure 1: Nouns are linked with correlated pronouns

KeNNT is based on Dijkstra’s Algorithm. Di-
jkstra’s Algorithm searches for the shortest path
from one node to all other nodes in a weighted
graph through a greedy process (Fan and Shi, 2010;
Solka et al., 1995). Dijkstra’s has been used in
machine learning processes before but is primarily
used as a backbone for reinforcement learning pro-
cesses or adversarial networks (Liu et al., 2020). Its
integration and motivation are further elaborated in

section 4.

3 Problem Framing

Throughout this paper, the traditional view of
the Transformer model, and gender biases is al-
tered. The research depicts the Transformer model
as a search algorithm since it auto-regressively
searches for the next best token at inference time
(Chang et al., 2024). Specific to this research, gen-
der bias is considered as a case of local minima
convergence (Mishra, 2018). Local minima conver-
gence occurs when a search algorithm finds itself
optimizing towards the best solution in a segment
of the complete solution space, seen in Gradient De-
scent where if the gradient traverser explores a hole
that is not the deepest, it will never be able to find
the global minimum output (Jentzen and Riekert,
2022; Mishra, 2018). Since a Transformer model
uses the text it has already generated as context for
the next token it generates, once there is already
bias in the context, it is challenging for the model
to climb out of the bias hole, leading to continued
bias. Note that this is how our research frames the
gender bias problem in LLMs and this view can
vary amongst other research. KeNNT aims to solve
this issue because the general methods to avoid
local minima convergence in search algorithms do
not apply well to gender debiasing, regardless of
the problem framing. For example, in Gradient De-
scent, the current methods of improvement are ran-
dom restarts, momentum optimizations, and noisy
optimizations (Mishra, 2018). However, these opti-
mizations do not have much impact on gender bias
resolution directly, motivating the need for a new
approach towards gender bias resolution: KeNNT.

Next, the Transformer’s search space is framed
as a neural network. Since the Transformer
searches through its vocabulary during every infer-
ence step for the most probable next token (Chang
et al., 2024), the search space can be viewed as
a dense graph where the Transformer creates a
smooth line from the first column of the graph to
the last. This idea is seen in Figure 2. Let’s moti-
vate the concept of KeNNT through intuition. If
you were at a junction of dark tunnels—one leading
to a prize and the rest to a consequence—instead
of taking a risk and going into one, you can send
explorers to explore each tunnel for you and then
follow only the successful one. Likewise, the Trans-
former with KeNNT will split up into K variations
at certain junctions, creating a lightning shape com-
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Figure 2: Comparison of Traditional Transformer and Transformer with KeNNT in the problem framing

pared to the straight line. Remember that each node
in the graph is a certain token so splitting would
mean choosing to use a different word at a certain
location (elaborated in section 4).

4 Algorithm Overview and Design

Note that KeNNT is not a new Transformer model
or any form of a Transformer model. Refer to the
following flowchart in Figure 3.

Figure 3: Relationship between KeNNT and Trans-
former

KeNNT is rather an algorithm that can attach to
an AI search algorithm, or here, a Transformer
model, and its purpose is to steer the attached
model away from generating a biased answer or
falling into a local minimum. This interdependence
is visualized in the flowchart.

The Transformer with KeNNT design uses the
same Transformer model that a traditional Trans-
former loop would use to generate text, but it stores
multiple instances of different contexts (generated
sentences). The distinct contexts are called explor-

ers as they each explore a different path of the
neural network of decisions. Each explorer repre-
sents a different generated text, so it is a different
context for the Transformer, which is essentially
the same as each explorer being a Transformer it-
self. KeNNT does not generate output texts, rather,
KeNNT helps guide an explorer through its output
possibilities at every step. This may seem coun-
terintuitive since the idea is that the Transformer
model should be able to guide itself through search
space. However, the Transformer is not guiding
itself with a goal of gender bias reduction whereas
that is KeNNT’s goal. Thus incorporating KeNNT
with the Transformer effectively allows the model
to optimize grammatical accuracy and gender bias
mitigation. KeNNT is not trained and does not
learn information, while the Transformer model
does.

At any given time before the algorithm finishes
executing, there is a set of activated explorers.
The idea is that when a current explorer of the
graph feels unsure about the next node it should
traverse to, it will branch into K explorers (expan-
sion)—hence the name—that follow K new, dis-
tinct paths. This creates two parameters: K and
the expansion criteria. Essentially, it avoids taking
a risk that could lead to the local minima conver-
gence framed in section 3. Let’s explain why Di-
jkstra’s algorithm is used here. We can now have
numerous paths toward the end token, but we want
to choose the path that has the least bias. Instead of
trying all the paths, which would make the runtime
grow exponentially at a rate of K, we can use a
shortest path-finding algorithm. So, the algorithm
calculates a score for each explorer, which is its
total bias, and concurrently runs Dijkstra’s algo-
rithm to determine which explorer to process next.
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KeNNT only processes the best-scoring (lowest
bias score) explorer of the set of explorers until
one of them reaches the end token (end layer of the
graph). Each time an explorer is processed (one
more token is generated) its score is updated, al-
lowing multiple distinct explorers to be processed
throughout. The metric used to evaluate the bias of
an explorer is discussed in the exploration choice
section in section 4.1. Due to this, KeNNT pro-
cesses a drastically smaller amount of explorers,
reducing the runtime. This fact is seen in the results
in sections 5.4 and 5.5.

4.1 Pseudocode
Exploration Choice: The exploration choice is
parallel with Dijkstra’s algorithm as it focuses on
finding the best path from start to end with a maxi-
mal score while simultaneously reducing the run-
time drastically. A scoring evaluation method is
required to quantify the bias of an explorer so that
KeNNT can choose the best explorer to traverse all
current explorers. In the case of gender biases, the
scoring metric is the intensity of gender polarity of
a generated text, or simply, how gender-biased it
is. This scoring evaluation is based closely on the
BOLD metrics (Dhamala et al., 2021), and standard
gender bias benchmarks used in other research.

Given an incomplete or complete sentence gen-
erated by the Transformer, the algorithm does the
following steps to calculate a bias score, called
∆gender.

1. Compute the noun-pronoun pairings of the
sentence with coreference resolution.

2. For every cluster, calculate the vector word
embedding for the noun and pronoun sepa-
rately. For this work, Global Vectors for Word
Representation (GloVe) 6B embeddings (size
= 300) (Pennington et al., 2014) are used since
they are the same embeddings the Transformer
used is trained on. We also opted to use GloVe
over Bidirectional Transformers (BERT) (De-
vlin et al., 2019) embeddings because the re-
cent BERT embeddings models are already
gender depolarized, so they would not be ef-
fective in discerning a distinction in choosing
masculine pronouns over feminine pronouns
since they aren’t reflective of the corpora we
want; the embeddings are unrepresentative.

3. Calculate the similarity between the noun em-
bedding and its related pronoun embedding

using cosine similarity (Yeo, 2020). Then,
KeNNT calculates the similarity between the
noun and the opposite-gender pronoun. Fi-
nally, we take the difference of the two similar-
ities and normalize it into the range [0,1]. The
difference represents the polarity of choos-
ing one gender over the other. For example,
a small difference (value closer to 0) repre-
sents that the model did not conceive a major
distinction between choosing a masculine pro-
noun over the feminine counterpart, and vice
versa.

Traversal: Traversal refers to traversing the best
explorer one more choice to the right of the de-
cision graph in Figure 2. In the application of
KeNNT in gender biases, this refers to the selected
explorer generating the next token of its current,
incomplete text. This is done by passing the cur-
rent text into the encoder layer of the Transformer
and retrieving the output hidden states from its de-
coder layer to create the text with exactly one more
token (Vaswani et al., 2023). Then, KeNNT calcu-
lates and updates the bias metric ∆gender for the
updated explorer.

Expansion Point: An expansion point is when
an explorer splits into K explorers. The expansion
point determination is arguably the most significant
part of KeNNT as it dictates the spread of explo-
ration and the algorithm’s runtime. An expansion
point is determined at a point of uncertainty where
the directly succeeding paths of an explorer show
similar, temporary outputs, but could each have
vastly distinct, permanent consequences.

In the application of KeNNT in gender bias res-
olution, an expansion point is conducted when the
next token is a pronoun that has not already been
paired with a noun, which means that the pronoun
could have been masculine or feminine since there
is not enough context to discern which one. Once
KeNNT does the traversal step, the current explorer
has one more token added to its generated text, so
KeNNT must determine if that new token is an
expansion point. It may seem trivial to check if
the new token is a pronoun but we must make sure
that this pronoun has not already been linked to
a noun yet. So, we check this by comparing the
coreference clusters of the sentence without the
new token and the new coreference clusters with
the new token. Recall that a cluster is a grouping of
nouns and pronouns that refer to the same entity. To
determine whether or not a new cluster, which rep-
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resents a new noun-pronoun pair, has been started,
we check if the number of clusters increases from
adding the next token. If so, the added token (node)
must be an expansion point since there is a new
noun-pronoun connection that was not established
before.

Expansion: At an expansion point, KeNNT di-
verges into K new explorers. The Transformer, by
design, conveniently creates a softmax probabil-
ity distribution on all the words in its vocabulary
(Chang et al., 2024), which represents the proba-
bility of each token being the next token. Thus, to
conduct expansion, KeNNT quickly chooses the
top K words with the highest probabilities.

It is crucial to note that KeNNT is not just flip-
ping the pronouns: swapping masculine pronouns
with feminine pronouns or vice versa. The oppo-
site pronoun is often one of the top K words, but
there are still K-1 other possibilities that KeNNT
pursues and the collected data shows qualitatively
that KeNNT indeed changes the structure of the
text prominently and doesn’t just flip the pronouns.
This fact is seen in the qualitative results in section
5.7.

4.2 Transformer Model and WinoBias Dataset

To validate KeNNT for resolving gender bias,
we need a Transformer that will generate gender-
biased sentences. It is essentially a "corrupted"
Transformer. KeNNT guides the Transformer away
from bias, so the tests compare bias in outputs
from the corrupted Transformer with and without
KeNNT to see how strong it is at reducing bias. To
do this, a GPT-2 model architecture is fine-tuned
on the WinoBias dataset, a commonly used bench-
mark for evaluating gender bias resolution tools
(Zhao et al., 2018). The decision to use GPT-2
over another GPT architecture was mostly arbitrary
but we primarily chose it to reduce computational
requirements as larger GPT architectures are more
demanding. WinoBias contains sentences affirming
gender stereotypes (pro) in professions and identi-
cal sentences that negate gender stereotypes (anti).
The sentences are in two types: type 1 is where the
noun doing the verb is connected to the given pro-
noun and type 2 is where the noun acted on by the
verb is connected to the given pronoun. For exam-
ple, the sentence "The CEO bought the accountant
a car because he is rich" (pro, type1, 107) links
"CEO" with "he" showing subtle gender polarity.
On the other hand, the sentence "The CEO bought

the accountant a car and gave him the key." (anti,
type2, 107) links "accountant" with "he," showing
anti-gender polarity. The Transformer is fine-tuned
on Type 1 Pro and Type 2 Pro datasets, so the
model will exhibit biases; in the experiments.

4.3 Hardware
Since the algorithm does not require learning or
any other extensive processes, we opted to use a
home setup as it would make minimal change to the
runtime: a Macbook Air M1 2020. The hardware
specifications can be seen in Appendix A.

5 Results

5.1 Fine-tuned GPT-2 Model
To make sure that KeNNT’s application in gender
bias resolution is highly accurate, the Transformer
must accurately represent WinoBias. The GPT-2
architecture was fine-tuned on it for 30 epochs, con-
verging on a final loss of 0.3030 and a minimum
loss of 0.2421. The training had a final gradient
norm of 7.8005 and a minimum gradient norm of
3.4459. The full training curves for both parame-
ters can be seen in Appendix B.

5.2 Procedure
Throughout all of these tests, the following proce-
dure is followed to get results from the KeNNT
architecture:

• Repeat the following process for four to eight
different starting prompts. Run each prompt
four to eight times to reduce uncertainty. A
prompt is the first couple words of a sen-
tence from WinoBias. For example, some of
the starting prompts used were "The teacher
was" or "The farmer was".

• Generate text from the Transformer with and
without KeNNT of the set length by passing
the prompt as input.

• Record the correlated data of the test and
record the generated texts.

5.3 Accuracy
Our experiments compare the model’s accuracy
with a causal debiasing method (Li et al., 2024)
which was also tested on the WinoBias benchmark
used in our research. They also used a similar bias
metric based on the same principles used in our
work. To measure the accuracy of KeNNT, the bias
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score, ∆gender, of the first explorer to reach the
end of the network with KeNNT is calculated and
compared with ∆gender of the output from the
traditional Transformer without KeNNT. Then, the
∆gender decrease percentage, which we recorded
as our accuracy, is calculated and recorded. These
trials were run 100+ times. The average results of
this decrease percentage over 11 sentence lengths
ranging from 35 to 57 tokens are shown in Table
1 below. Sometimes, KeNNT was unable to cause
any change in bias so the change in score was 0,
which heavily detracts from the average bias reduc-
tion percentage. So, in a separate column, our tests
also measured the percentage of the trials in which
there was no change in bias. The causal debiasing
method by (Li et al., 2024) had a 94.57% accuracy
in guiding the Transformer away from biases. They
aimed to guide the Transformer away from creat-
ing biases found in WinoBias with modifications
made before inference time: causal prompting. In
comparison, KeNNT guides the Transformer away
from creating biases found in WinoBias with modi-
fications during inference time.

Table 1: Bias Score Decrease Percentage per K-value

K Decrease % % of Trials with No Improv.

2 65.9948% 32.6531%
3 84.7855% 14.2857%
4 95.9280% 4.0816%

The K = 4 model was robust g so it generally al-
ways decreased the bias score by around 100% on
all the trials in which there was a decrease. Other-
wise, it was barely able to decrease the score at all.
Therefore, the bias score percentage and the no im-
provement in bias score percentage closely add up
to 100% for K = 4. The K = 4 model had an average
bias improvement percentage of 95.93%, which is
better than the causal debiasing method by (Li et al.,
2024), which had a 94.57% accuracy. While the
margin of improvement is somewhat small, the fact
that there was no improvement in the bias score
only 4.08% of the time shows that KeNNT is re-
liable. When taking out the trials that had no im-
provement, the average improvement in bias score
was closer to 99.90%, which is much more. Still,
the accuracy is considered to be 95.93% because
there was a sufficient amount of trials that had no
improvement. Interestingly, our tests showed that
the trials that had no improvement were primarily

caused by the inability of KeNNT to reduce the
bias within the time it took for the explorer to reach
the end of the neural network, meaning that larger
texts would have better accuracy since they have
more time.

5.4 Runtime

All of the times in this section are measured in sec-
onds and our tests used the time module in Python
to record precise durations. In this section, the goal
is to understand the relationships KeNNT has with
runtime.

5.4.1 Effect of Output Length on Runtime

Graph 1 compares the runtime of KeNNT (K = 2)
and KeNNT (K = 3) with the runtime of the tra-
ditional Transformer without KeNNT. In contrast
to the initial expectations of exponential growth,
KeNNT’s runtime is linear to the length of the
generated text (linear relative to the generated text
length).
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Graph 1: Output Length vs. Runtime

Without KeNNT
K = 2
K = 3

This linear growth suggests that including Di-
jkstra’s algorithm in KeNNT makes it much more
efficient since it only processes a linear amount of
explorers. Since the traditional Transformer is also
linear, we know that with more optimizations and
more work (see sections 5.6 and 6), KeNNT can
become feasible in real-world settings. The tradi-
tional Transformer without KeNNT also follows
a linear path, with a slope of 0.017, but KeNNT
(K = 2) has a steeper slope of 0.17, and KeNNT
(K = 3) has a slope of 0.19. The 11x increase in
slope can be attributed to traversal operations dis-
cussed in section 5.6, which is noted as drastically
optimizable (see section 5.6).
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5.4.2 Effect of K on Runtime

We now examine the impact of K on runtime, which
is one of the two key factors influencing runtime.
The generated text length is set as the control vari-
able at 15 tokens per trial. From this, our tests
uncovered a linear relationship between K and run-
time (R2 = 0.855), as seen in Graph 2. The design
suggests that the runtime would grow exponen-
tially at a rate of K but instead, it grows at a linear
rate. This is further proof of the efficiency of Di-
jkstra’s algorithm and the feasibility KeNNT can
have. The memory does increase somewhat expo-
nentially which is shown in section 5.5.
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Graph 2: K vs. Runtime

5.5 Explorers Generated (Memory)

To further analyze the effect of K on the efficiency
of KeNNT, we calculated the number of explor-
ers generated for all K-Length pairs. This is done
to understand KeNNT’s relationship with memory
usage. In Graph 3 it is shown that there is a some-
what exponential correlation between K and the
amount of explorers created for larger values of K.
The amount of explorers created is the size of the
explorer set after the algorithm terminates. Note
that this is the number of explorers created, not
consistently processed, which explains why there
is an exponential proportionality of the text length
to the number of explorers created but a linear pro-
portionality between the generated text length and
runtime, as seen in section 5.4.1. This suggests
that excessive quantities of explorers are created
and held in memory while only a linear amount of
explorers need to be (addressed in section 6).

5.6 Optimization

We calculated the runtime of each of the four main
components of KeNNT separately, seen in Table 2.
This is the runtime breakdown of KeNNT for 45
tokens.

Table 2: KeNNT Runtime Breakdown

Before Optimization

Section Time (s) Percent

Exploration choice [1] 0.00016 0.0%
Expansion point det. [2] 1.22460 10.7%
Expansion [3] 1.13619 10.0%
Traversal [4] 9.03734 79.3%

After Optimization

Section Time (s) Percent

Exploration choice [1] 0.00017 0.0%
Expansion point det. [2] 0.54581 8.5%
Expansion [3] 0.68174 10.6%
Traversal [4] 5.18008 80.8%

Table 2 shows a very promising detail. The com-
putation that KeNNT adds to the traditional trans-
former only accounts for 20.7% of the runtime,
summing to 2.36 seconds of the total 11.40 seconds.
Thus, the parts of KeNNT responsible for gender
bias reduction only take a small portion of the over-
all runtime. With optimizations, KeNNT can be-
come more efficient. We optimized the "Traver-
sal" section, where background processes happen.
Coreference clusters between nouns and pronouns
are calculated for the expansion point determina-
tion and bias score calculations. By storing these
clusters in a larger memory scope so both tasks
can use the clusters easily, the need to recalculate
the clusters for each task is deducted, decreasing
the runtime for generating 45 tokens from 11.40
seconds to 6.41 seconds.

5.7 Qualitative Results

See the qualitative results in Appendix C of sample
texts generated by the Transformer with and with-
out KeNNT. As mentioned before, KeNNT doesn’t
merely flip pronouns, and the qualitative results
gathered prove this as KeNNT-generated texts of-
ten differ from those without KeNNT. Note that
sometimes there are the same bias scores through-
out the data. This occurs because they were given
the same nouns in their starting prompt like "ac-
countant," "teacher," and "cleaner." Additionally,
variation across the same prompt and between texts
with and without KeNNT is influenced by the mod-
erately high temperature setting (~2.0) during gen-
eration, ensuring diverse yet grammatically accu-
rate outputs. The minimal context of the three-word
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prompts also explains why texts with and without
KeNNT sometimes convey different ideas.

6 Future Work

We acknowledge that this current framework would
not work for other tasks like text summarization
so a future objective is to work on generalizing
KeNNT to other LLM tasks, expanding from just
text generation. For example, with text summariza-
tion or creating biographies, there isn’t going to
be gender bias since the noun and pronoun should
already be set.

KeNNT’s exceptional performance in gender de-
biasing suggests exploring its application in mit-
igating local minima convergence in other algo-
rithms like hill climbing (Hernando et al., 2018)
and gradient descent (Swenson et al., 2022; Jentzen
and Riekert, 2022). Also, given its success, further
investigation into scaling KeNNT for larger LLMs
and optimizing its feasibility is recommended.

Runtime: Whenever we traverse an explorer to
generate the next token, we reset the clusters and re-
calculate the coreference clusters from the ground
up. Instead, we could dynamically update clusters
to add pronouns continually without resetting the
cluster to reduce the runtime by a factor of N.

Memory: Since an exponential amount of ex-
plorers are created but only a linear amount are
used (see section 5.4 and 5.5), there are extra ex-
plorers that we don’t need to maintain. Thus, we
can purge inactive explorers—branches that have
not been used substantially to maintain a relatively
linear amount of explorers in memory.

7 Discussion and Conclusion

This research theorized the KeNNT algorithm to
guide Transformer models away from gender bi-
ases. KeNNT was validated by analyzing its capa-
bilities in steering a GPT-2 Transformer fine-tuned
on the WinoBias benchmark, demonstrating an ac-
curacy of 95.93% (K = 4) compared to 94.57%
from another model attempting to resolve gender
biases on WinoBias. This indicates that KeNNT
successfully improved accuracy in gender debias-
ing. While this represents a significant step toward
addressing gender biases in LLMs with KeNNT,
further work is needed for full implementation as
the runtime is not yet industry-efficient. There are
numerous optimizations that we mention in this
paper which we believe are good starting points
at improving KeNNT and gender bias resolution
with KeNNT. We also hypothesize that KeNNT
may also work on other local minima convergence
problems, such as gradient descent optimization.
To conclude, through this research, we aim to estab-
lish improved protective measures against gender
biases in LLMs and inspire further advancements
in AI optimization.

Limitations

One of the most important parts of KeNNT is the
integration of Dijkstra’s algorithm to reduce the
runtime from exponential to linear. The most fun-
damental principle of Dijkstra’s algorithm is that
it can only work flawlessly if and only if the edges
between two nodes are all non-negative or all non-
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positive (if the edges are multiplied by -1). An
edge in the graph that we framed in the problem
framing section is the difference in bias scores,
∆gender. Almost all of the time, ∆gender will al-
ways be non-negative since bias cannot be removed
from a text that already has bias. However, there
was a small number of trials that showed that the
bias score decreased from one layer to the next.
We hypothesize this happened because the coref-
erence resolution algorithm got more context to
better understand the noun-pronoun clusters. The
clusters were drastically altered, often decreasing
the bias score. So very rarely, there was a negative
edge, suggesting that Dijkstra’s algorithm would
not work flawlessly in this implementation. This is
a limitation since it can decrease accuracy.

Through our tests, it was seen that the runtime
of KeNNT was higher than that of a traditional
Transformer (still linear) but we also detailed opti-
mizations that we know can drastically reduce the
runtime. Still, we know that KeNNT will always
have a higher runtime than the traditional Trans-
former even with multiple optimizations. Thus it is
important to mention that the runtime of KeNNT
will always be somewhat of an issue even though
the margin of difference between the runtime of
KeNNT and that of a traditional Transformer could
be drastically reduced.

As mentioned in section 5.7, there is a factor of
temperature in the Transformer model text gener-
ation which essentially means that there is a vari-
ability induced into an explorer’s text generation;
there is a factor of randomness involved. Thus,
attempts to recreate our work may see distinctly
different results. We tried to combat this by reduc-
ing experimental uncertainty by running hundreds
of trials and running each trial four to eight times.
Additionally, different results can also be seen if
different architectures for coreference resolution,
word embeddings, or model fine-tuning were used.

Ethics Statement

There are some possible moral concerns with work
considering that this research directly relates to
sexism in our modern world. WinoBias, the bench-
mark dataset we used, is specifically designed to
show gender stereotypes. However, it is ensured
that this research does not associate with any of
those expressed stereotypes, ensuring that it does
no harm. We place the interests of society, espe-
cially those using LLMs daily, at the forefront of

our main concerns. A main development of this
research was proving that KeNNT can gender de-
bias LLMs and that has a positive moral and ethical
impact on society. Finally, we fully comply with all
professional and academic integrity policies. We
did not omit any limitations that we found and dis-
cussed them throughout the paper and extensively
in the Limitations section. We collected all of our
data and designed the experiments to the best of our
ability, in addition to making sure that we reduced
experimental uncertainty where we could. We did
filter and format data but it was always to enhance
its quality and we always mentioned how and why
we filtered or formatted, including mentioning the
data before those modifications. Thus, this research
fully complies with all the guidelines in the ACL
Ethics Policy.
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Appendix A. Hardware Specifications

Specification Details
Device Model MacBook Air M1 (2020)
Processor Apple M1 chip: 8-core and 16-core Neural Engine
Memory (RAM) 16 GB
Storage 256 GB SSD
Operating System macOS Sonoma 14.6.1
GPU Integrated 7-core, 8-core GPU
Additional Hardware None

Appendix B. Transformer Fine Tuning on WinoBias (Metrics)

Figure 5: The training loss over a course of 13,290 steps. The minimum and final training loss was 0.2421 and
0.3030 respectively.

Figure 6: The Gradient Normalization over a course of 13,290 steps. The minimum and final gradient normalization
was 3.4459 and 7.8005 respectively.
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Appendix C. Sample Qualitative Results

Table 3: Sample Outputs Generated With KeNNT

Ref Control Generated Text
Control

Bias
Score

Generated Text (KeNNT)
Bias
Score

(KeNNT)

1
"The teacher was worried about a
visit from the auditor because he
failed to submit..."

0.0
"The teacher was afraid of the an-
alyst’s report and reported it to his
office..."

0.0

2
"The accountant was willing to help
the farmer tabulate crops and asked
him to..."

0.0293645
"The accountant was willing to help
the farmer tabulate crops and gave
her a..."

0.0

3
"The sheriff gave the clerk some doc-
uments which she required. \nThe
clerk freely offered to"

0.0332694
"The sheriff gave the clerk some doc-
uments which led to his arrest. \nThe
construction worker..."

0.0

4
"The mechanic was friendly with the
cleaner and like her. \nThe cleaner"

0.0062141
"The mechanic was friendly with the
cleaner and like the assistant Mem-
ory \nLast"

0.0

5
"The mechanic was nice to the clerk
and told her what to do..."

0.0332694
"The mechanic was friendly with
the cleaner and like her. \nThe
cleaner..."

0.0034040

6
"The accountant was willing to
help the farmer tabulate crops and
charged him one thousand dollars..."

0.0293645
"The accountant was willing to help
the farmer tabulate crops and gave
him a discount. \nThe..."

0.0

7
"The mechanic was friendly with the
cleaner and like her. \nThe cleaner
called the mechanic and told..."

0.0034040
"The mechanic was friendly with the
cleaner and like them. \nThe cleaner
visited the manager and thanked..."

0.0

8
"The mechanic was friendly with the
cleaner and like her. \nThe cleaner
called the mechanic and told..."

0.0034040
"The mechanic was friendly with the
cleaner and like them. \nThe cleaner
visited the bake because he..."

0.0
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Abstract

Large Language Models (LLMs) are very effec-
tive at extractive language tasks such as Ques-
tion Answering (QA). While LLMs can im-
prove their performance on these tasks through
increases in model size (via massive pretrain-
ing) and/or iterative on-the-job training (one-
shot, few-shot, chain-of-thought), we explore
what other less resource-intensive and more
efficient types of data augmentation can be ap-
plied to obtain similar boosts in performance.
We define multiple forms of Dense Paraphras-
ing (DP) and obtain DP-enriched versions of
different contexts. We demonstrate that per-
forming QA using these semantically enriched
contexts leads to increased performance on
models of various sizes and across task do-
mains, without needing to increase model size.

1 Introduction

In this paper, we explore different methods of se-
mantically enriching reference texts to improve the
performance of Large Language Models (LLMs)
on downstream tasks, particularly Question An-
swering (QA). There are a number of common
ways to increase the performance of LLMs on these
tasks: fine-tuning, few-shot prompting, and data
augmentations. Traditionally, data augmentation is
done to increase the amount of training data avail-
able with the hope that more data will lead to better
performance.

In the context of LLM usage, we propose data
augmentation in terms of enriching the context text
in a prompt. To do this, we augment the data used
as a reference for the QA task to be more semanti-
cally informative; this is Dense Paraphrasing (DP).
Then, we use the new text as the reference and per-
form the task. We see noticeable improvements
in automatic and human metrics on the answers
obtained by models using DP-enriched text.

Our contributions are as follows:

Figure 1: Dense Paraphrasing and LLM. We hypothe-
size the economy of natural language plays an important
role in the degraded performance of LLMs on Natural
Language Processing (NLP) tasks, and by augmenting
the context text at prompt time by DP, we can boost
performance.

• We formalize multiple forms of Dense Para-
phrasing: Anaphora and Coreference Dense
Paraphrasing and Semantic Role Labelling
Dense Paraphrasing and propose computation-
ally efficient ways of obtaining these para-
phrases, avoiding multiple LLM calls.

• DP-enriched text outperforms the original text
on automatic metrics and human evaluation.

• Dense Paraphrasing improves performance on
models of all sizes: this includes Llama3 8B
and Llama3 70B.

We use smaller models such as the spaCy corefer-
ence model1 and the Verb Net parser (Gung, 2020;
Gung and Palmer, 2021) to generate DP-enriched
text. We then perform the QA task using the origi-
nal text and the DP-enriched text and compare our
results. This pipeline is based on the illustration in
Figure 1. We have made all of our code publicly
available on a public code repository.2

1en_coreference_web_trf
2https://github.com/brandeis-llc/dpqa
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2 Related Work

Many transformer-based models have proven them-
selves well-suited to QA tasks. The best models
have traditionally involved BERT or RoBERTa (Ju
et al., 2019; Wu et al., 2019). Other approaches
have involved ensembling the responses of multi-
ple models (Ju et al., 2019; Zhu et al., 2018). The
newest approaches use LLMs such as GPT (Brown
et al., 2020) to perform these tasks.

To improve LLM performance at these tasks un-
der zero-shot, one-shot, few-shot, and fine-tuning
conditions, a number of data augmentation strate-
gies have been proposed, summarized by Chen et al.
(2023). These methods include EDA (Easy Data
Augmentation) (Wei and Zou, 2019), SeemSeek
(Kim et al., 2022), AMR-DA (Shou et al., 2022),
Back-translation (Sennrich et al., 2016), Dialog In-
painting (Dai et al., 2022), and AutoConv (Li et al.,
2023).

The examples generated from these DA steps are
generally used to train models of smaller size (<1B).
In this work, we use the augmented examples in
the zero-shot prompt to perform the QA task.

This approach is based on query reformulation
techniques, widely used in the field of information
retrieval (Bruza and Dennis, 1997) and database
management systems (Rajaraman et al., 1995), and
then adopted for more complex NLP tasks un-
der different names such as “Decontextualization”
(Choi et al., 2021) or “Dense Paraphrasing” (Tu
et al., 2022, 2023).

3 Types of Dense Paraphrasing

Tu et al. (2023) define Dense Paraphrasing as gener-
ating text that “reduces ambiguity while also mak-
ing explicit the underlying semantics that [are] not
expressed in the economy of sentence structure”.

In this work, we define two forms of DP. These
methods all saturate the text with additional infor-
mation yet differ in what information is added. The
following Dense Paraphrasing methods are ways
to clarify various semantic relations in a text.

3.1 Anaphora and Coreference
One way to perform DP is by clarifying which
entity is being referred to whenever an anaphoric
or coreferential expression is used. We refer to
this process as Anaphora and Coreference Dense
Paraphrasing (A/C DP). This process duplicates
names next to all entity expressions, reinserting
information available from prior context.

(1) S1: “Here’s your patient,” the American said
to Clarke. “We expect you to cure him, and
you had better get to work at once.”

S2: “Here’s your (Clarke) patient (Blake),”
the American (Harding) said to Clarke
(Clarke). “We expect you (Clarke) to cure
him (Blake), and you (Clarke) had better get
to work at once.”

A/C DP is obtained by adding in the name of
the entity being referred to after each referential
expression. We link together entity chains grouped
by a coreference model through the spaCy package.
The first mention of an entity is the name that is
duplicated next to each mention of the entity.

3.2 Semantic Role Labelling

We explore another method of DP which focuses
on event participant roles. By employing Seman-
tic Role Labeling (SRL) to recover the predicate-
argument structure of the sentence, we hope the
model can better understand the wh-questions:
“who did what to whom”, “when”, and “where”
(Màrquez et al., 2008). Specifically, we use an off-
the-shelf SRL tool VerbNet Parser (Gung, 2020;
Gung and Palmer, 2021) for this purpose. Com-
pared to traditional SRL systems, the VerbNet
Parser infuses knowledge from the English Lexical
resource VerbNet (Brown et al., 2019, 2022) for en-
hanced disambiguation of the predicate. Further, its
thematic roles are more semantically informative
than those in traditional SRL.

For our task, we run the VerbNet Parser on all
contexts and questions. We extract the syntax roles
and insert them back into the sentence immediately
following the text span they correspond to. In ex-
ample 2, S1 is the original sentence and S2 is the
DP-enriched sentence. The VerbNet Parser detects
that the predicate in S1 is “sit” and the matching
frame requires a Theme and a Location. Then it
extracts the value from S1 for these two thematic
roles.

(2) S1: My grandfather was sitting in the back-
yard.
S2: My grandfather (Theme) was sitting
(Verb) in the backyard (Location).

3.3 Combining DPs

A text can also be passed through multiple layers
of DP. The result is a text that contains multiple
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No DP A/C DP SRL DP
EM F1 EM F1 EM F1

Llama3 8B 43.3 57.0 42.5 56.6 49.9 63.6
Llama3 70B 45.9 61.9 45.7 61.3 47.3 64.9

Table 1: The impact of Dense Paraphrasing on CoQA

types of semantic information presented alongside
the original text. We experiment with combining
the results of A/C DP and Semantic Role Labelling
Dense Paraphrasing (SRL DP) into a dually-DP-
enriched text. We present these results in the Ap-
pendix.

4 Experiments

We conduct experiments on the Conversational
Question Answering (CoQA) dataset (Reddy et al.,
2019).

4.1 Data
Conversational Question Answering (CoQA) is a
prominent dataset designed for the task of conver-
sational QA. The task is designed to examine the
models’ capability to understand the dialogue flow
and respond to a sequence of questions based on a
given passage. CoQA contains 127k questions with
answers, obtained from 8k conversations about text
passages from seven diverse domains, including
News, Literature, Exams, etc.

CoQA is designed to model conversational QA
and was created in an interactive mode where a
questioner asks a sequence of questions based on
a passage while a responder answers them. This
design is an example of multi-turn dialogue for
datasets. This setup ensures that the questions
asked are more natural than conventional QA pairs.
By training models on these datasets, we hope to
foster the development of models that can handle
dialogue flow and maintain context across longer
amounts of text.

4.2 Methods
We first obtain DP-enriched versions of the context
paragraphs of each example from CoQA dataset.
We use the publicly available Llama3 8B and
Llama3 70B models (AI@Meta, 2024). We run
both of our Llama3 8B and 70B experiments on
NVIDIA RTX A6000 with 48GB vRAM (300W
power supplied).

We perform the QA task without any DP as a
baseline. Figure 2 shows the prompt we feed to
LLMs. We repeat the task using the same prompt

Figure 2: An example prompt of Question K for the QA
task

but with contexts enriched with A/C DP and SRL
DP.

4.3 Results

Our results are summarized in Table 1. A/C DP
slightly hurts general performance while SRL DP
greatly improves it. Using SRL DP-enriched text
caused an increase of 6.6 percentage points each
in EM (exact match) and F1 with Llama3 8B. We
report an increase of 1.4 and 3.0 percentage points
for EM and F1 using SRL DP-enriched text with
Llama3 70B.

The CoQA development set contains five do-
mains: children’s stories, literature, middle-high
school stories, news, and Wikipedia. Table 2 shows
how while A/C DP can help in some domains, its
improvements are not consistent enough through-
out the entire dataset and hurt performance in many
cases.

As shown in Table 2, SRL DP improves every
metric for Llama3 8B and all but one metric for
Llama3 70B. This indicates that DP, specifically
SRL DP, can induce better performance at extrac-
tive language tasks across domains using models
of various sizes. This motivates further use of SRL
DP as a data augmentation step to increase the per-
formance of LLMs.

We also performed a round of human evaluation
on the first thirty stories in the CoQA development
set. These results are shown in Table 3. From this,
we can see that both types of DP led to improved
performance.

4.4 Error Analysis

We classify the common errors made by our models
into the following categories:

Reasoning Error The models usually make this
type of error when the answer cannot be directly
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CS Lit MHS News Wiki All
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

No DP 43.8 58.8 34.6 48.3 42.5 56.7 46.2 58.5 49.6 63.0 43.3 57.0
Llama3 8B A/C DP 39.7 56.4 35.8 49.5 38.0 52.8 46.8 60.4 52.0 63.8 42.5 56.6

SRL DP 48.2 63.8 41.9 54.5 47.8 62.8 52.7 65.4 58.7 71.5 49.9 63.6
No DP 43.3 60.8 42.6 57.8 43.2 60.4 46.3 62.0 54.0 68.4 45.9 61.9

Llama3 70B A/C DP 42.5 60.5 41.9 57.2 40.8 57.3 46.1 61.5 57.0 69.9 45.7 61.3
SRL DP 45.0 65.1 40.3 57.8 45.4 63.4 48.4 65.3 57.0 73.0 47.3 64.9

Table 2: CoQA by Domain

No DP A/C DP SRL DP
Llama3 8B 64.5 66.5 70.5

Llama3 70B 76.1 77.7 79.7

Table 3: Human Evaluation on the first 30 QA sets (251
questions) from CoQA reported as accuracy

extracted through keywords, or it requires some
extra reasoning to understand the question. For
example, if the story describes how a duck is sad
about herself being different from the rest of her
family, these models struggle to answer a question
that asks, “Is the duck happy about it?”

Intention Error This happens when the model
fails to understand the intention of a yes-no ques-
tion and, instead, answers with extractive informa-
tion. Although the information may be relevant,
the answer to a yes-no should be “Yes” or “No”.
For example, the question is “did they write back?”
and the model answers “write a note to her.” The
answer can be understood from this text but it is
not an answer to the question. A prompt that in-
cludes specific instructions for yes-no questions
may alleviate this error.

Follow-up Error When answering a follow-up
question, the models may not be able to detect that
this is a continuation of the question asked previ-
ously. For instance, consider the question “What
were they like” which refers to the man’s clothes
according to the preceding question. The model an-
swers “tough-as-nail”, which describes the man’s
character in movies. The wrong interpretation of
“they” in the question causes the answer to be true
but not relevant. This error can be greatly allevi-
ated through A/C DP where coreference resolution
would replace a pronoun with the actual entity and
recover the previous context.

In addition to these errors, both automatic eval-
uation, EM and F1, and human evaluation, accu-
racy, will miss some semantically correct answers.

These include the yes-no errors as well as answers
that are accurate but have taken the wording of the
story and rephrased it while maintaining the same
meaning.

5 Discussion

In natural language, even some required arguments
of event predicates can be omitted due to the
economy of sentence structure. This can pose a
challenge for downstream tasks like QA. VerbNet
Parser can not only extract existing thematic roles
of a sentence but can also indicate whether a the-
matic role is missing. Given that information, we
could perform saturation of missing roles by recov-
ering the covert arguments for each event and place
these arguments back into the text. This is another
form of DP, Frame Saturation Dense Paraphrasing
(FS DP), similar to what is done manually in Rim
et al. (2023).

Future work can explore other types of DP that
provide semantic information in plain text or even
other means of doing so. All of our experiments
were conducted under zero-shot conditions. Our
results motivate experiments and research using
DP with few-shot prompting and fine-tuning. In
particular, we recommend fine-tuning an LLM on
large amounts of DP-enriched training data before
performing downstream tasks on DP-enriched text.

We also note that SRL DP improves perfor-
mance throughout the conversational exchange. As
shown in Figures 3 and 4, SRL DP boosts both
metrics. However, as prompt length increases, the
DP-enriched text seems the same performance drop
as the original text. This semantic enrichment im-
proves the ability of models of multiple sizes to
answer questions and draw conclusions where the
necessary information is spread across a very long
text, up to 25 questions and answers long.

282



Figure 3: F1 and EM for the 8B model for No DP, A/C DP, and SRL DP

Figure 4: F1 and EM for the 70B model for No DP, A/C DP, and SRL DP

6 Conclusion

From our experiments, we conclude that Dense
Paraphrasing, specifically Anaphora and Corefer-
ence Dense Paraphrasing (A/C DP) and Semantic
Role Labelling Dense Paraphrasing (SRL DP), can
help LLMs perform extractive tasks such as QA.
A/C DP and SRL DP both enrich texts with se-
mantic information that language models can use
to more accurately perform downstream extractive
tasks.

Limitations

Our experiments and evaluation were only limited
to the CoQA dataset. These texts are all of a similar,
finite length. The dataset only covers a limited
number of domains and is only in English.

Ethics Statement

Any risks related to the unsupervised use of LLMs
are present here. We do not perform manual or
automatic checks or filters on the data we have eval-
uated or in our system. While there are safeguards
in place in LLMs to protect from offensive content
and bias (Liang et al., 2021; Roy et al., 2023; Sa-
hoo et al., 2024), they are not perfect (Wang et al.,
2024). During our limited human evaluation, we
did not come across any biased, harmful, or of-
fensive content in the dataset or generated by our
system.
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A Appendix

No DP A/C + SRL DP SRL + A/C DP
EM F1 EM F1 EM F1

Llama3 8B 43.3 57.0 40.8 55.6 40.1 52.4
Llama3 70B 45.9 61.9 45.1 60.9 39.1 54.6

Table 4: CoQA results of text enriched with multiple
forms of DP

We also ran the QA task using text that has been
enriched by both SRL DP and A/C DP. Including
both types of information in the same format hurt
performance on the CoQA dataset regardless of the
order they were added in. These results are shown
in Table 4

286



Introducing wwm-german-18k –
Can LLMs Crack the Million? (Or Win at Least 500 Euros?)

Matthias Aßenmacher1,2†, Luis Karrlein1†, Philipp Schiele3, Christian Heumann1

1Department of Statistics, LMU Munich, 2Munich Center for Machine Learning (MCML),
3Stanford University, Department of Electrical Engineering
Correspondence: matthias@stat.uni-muenchen.de † Equal contribution

Abstract

Language-specific evaluation of large language
models (LLMs) for multiple-choice question
answering (MCQA) is an important means to
test their abilities for a multitude of different
dimensions. With a data set assembled from
questions from the German variant of "Who
Wants to Be a Millionaire?" we evaluate a set of
German models and ChatGPT concerning fac-
tual/commonsense knowledge, syntactic abili-
ties, and logical reasoning, amongst others. We
contribute this new MCQA data set, extracted
from the show’s episodes and designed to eval-
uate the ability of models to answer this diverse
range of questions. To ensure data quality, we
describe our preprocessing, encompassing data
cleaning, deduplication, and the creation of
stratified splits. Furthermore, we fine-tune a set
of German LLMs and prompt ChatGPT to pro-
vide baseline results. Our findings reveal that
these models achieve (partly) satisfactory per-
formance on questions of lower difficulty lev-
els (≤ 1000 euros). As the difficulty increases,
performance steadily declines, highlighting the
challenging nature of the later stages of the
game. We contribute to the ongoing efforts
to advance the capabilities of LLMs in com-
prehending and answering questions by pro-
viding a valuable resource for German MCQA
research as well as further insights into the lim-
itations of current LLMs.

1 Introduction

Recent advancements in transformer-based lan-
guage models (Vaswani et al., 2017), especially
with the advent of generative large language mod-
els (LLMs), such as OpenAI’s GPT-series (Rad-
ford et al., 2018, 2019; Brown et al., 2020; Ope-
nAI, 2023), have demonstrated remarkable profi-
ciency in various natural language generation and
understanding tasks (Bubeck et al., 2023), includ-
ing question answering (QA). LLMs are trained
on vast amounts of text data from diverse sources,

enabling them to learn language patterns, lexical
semantics, and seemingly also factual knowledge.
The exact extent to which e.g. factual knowledge is
present in LLMs (and where exactly it is "stored"
in the model weights) is still an open research ques-
tion to be answered (Meng et al., 2022). As a result
of the extensive pre-training, they exhibit impres-
sive capabilities to apparently "comprehend" and
respond to a broad spectrum of questions, making
them potentially suitable candidates for tackling
the challenging task of answering questions from
quiz shows like "Wer wird Millionär?" (WWM;
English: "Who Wants to Be a Millionaire?").

The QA task in the context of WWM represents
an intriguing real-world use case for LLMs due to
several compelling factors. First, this task requires
not only the comprehension of questions but also
the ability to reason, analyze answer choices, and
make informed decisions. Second, when investigat-
ing the difficulty levels separately, we might gain
more insights into how well LLMs can cope with
different types of questions, either targeting solely
factual knowledge or requiring more complex rea-
soning abilities. Moreover, the WWM format fea-
tures questions across a wide range of domains,
spanning from commonsense knowledge to more
specific fields like science, sports, and pop culture.
Consequently, an LLM capable of effectively an-
swering such diverse questions must exhibit world
knowledge, as well as factual accuracy, and must
be able to grasp linguistic nuances across various
topics. Thus, evaluating LLMs on this specific task
can shed light on their knowledge representation
capabilities and potential to handle multifaceted
information.

Contributions: In this paper, we aim to investi-
gate the feasibility and efficacy of employing Ger-
man fine-tuned LLMs and ChatGPT for answering
questions from the WWM quiz show. Our contri-
bution is two-fold:
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• We introduce a new multiple-choice question-
answering (MCQA) resource for the German
language allowing for a more comprehensive
evaluation of German LLMs on this task. We
(i) gather the data, (ii) extensively describe
and motivate the pre-processing steps we ap-
plied, and (iii) provide a comprehensive de-
scriptive analysis of the data.

• We evaluate the capabilities of different pub-
licly available LLMs for this task and com-
pare their performance across difficulty lev-
els. This provides a reasonable baseline to
compare against when evaluating ChatGPT
on this task, even more so when generative
LLMs with satisfactory capabilities for Ger-
man emerge. Comparing fine-tuned to genera-
tive LLMs concerning their strengths and lim-
itations in this context, we aim to contribute to
the broader understanding of their capabilities
and potential real-world applications in QA
and game show formats.

2 Related Work: Other MCQA data sets
for the German language

To the best of our knowledge, similar data sets
from quiz shows or even "Who Wants to Be a Mil-
lionaire?" shows in other languages do not yet ex-
ist. When on the other hand considering language-
specific related work and thus filtering the hug-
gingface datasets space simultaneously for Ger-
man and the task including "multiple-choice-qa",
there are only eleven resulting data sets as of April
23, 2024.1 All of these search results are, how-
ever, multilingual data sets and thus only a por-
tion of the observations are in German. Other data
sets in the German language in the realm of QA
exist rather for the task of extractive QA2, with
deepset/germanquad (Möller et al., 2021) and
deepset/germandpr (Möller et al., 2021) being
probably the most prominent (purely German) ex-
amples. Nevertheless, none of these data sets is
specifically aimed at evaluating German models
and simultaneously targets MCQA. This stresses
the need for a new data set for evaluating the ever-
improving capabilities of modern-day LLMs.

1Search results as of April 23, 2024
2Search results as of April 23, 2024

3 The "wwm-german-18k" Data

3.1 Data Collection

The gathered data originates from the online ver-
sion of the German quiz show "Wer wird Mil-
lionär?" (English: "Who Wants to Be a Million-
aire?"), a format that is known across multiple lan-
guages. This iconic TV show, celebrated as one of
Germany’s premier and most recognized programs,
challenges contestants with a series of fifteen ques-
tions. As they navigate through these questions,
they stand a chance to win escalating monetary re-
wards, peaking at the coveted million Euro prize.
These questions span a broad spectrum, from sci-
entific inquiries to pop culture trivia, each of them
accompanied by four potential answers and a con-
strained response time. As the quiz progresses, the
complexity of the questions intensifies, but contes-
tants are aided by specific lifelines, known as "Jok-
ers", to facilitate their decision-making. To gather
the data, we utilized web scraping techniques to
engage with the online version of "Wer wird Mil-
lionär? Trainingslager"3 (English: "WWTBAM?
Training Camp"), hosted on RTL’s website, the
channel that airs the show in Germany. We initi-
ated a game session by sending a POST request
to the game’s API. After establishing the session,
we simulated individual games. For each game,
we began at the first level corresponding to the 50
Euro prize. A random question for this level was
then presented. Our script recorded the question
along with its four possible answers. Importantly,
regardless of the answer submitted, the system re-
turned the correct one. This behavior aligns with
the game’s mechanics, where players are shown
the right answer whether or not their guess was
accurate. We then added this correct answer to our
recorded data. Crucially, the game’s training camp
structure permits advancing to subsequent levels
irrespective of the accuracy of the previous answer,
ensuring a new question for each of the game’s 15
levels can be drawn in each iteration. As we sim-
ulated numerous games, only new questions and
their answers were added to our database. Given
the assumption that questions are drawn indepen-
dently, acquiring questions for each level mirrors
the coupon collector’s problem, where the goal is
to collect all unique n items through m draws. We
persisted in this iterative approach until reaching
a point where new questions rarely emerged, sug-

3https://spiele.rtl.de/spiele/rtl-spiele/wwm
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Figure 1: Comparison of the difficulty distribution in the different stages of processed data.

gesting we had captured the majority of available
questions. We thus do not claim to have obtained an
exhaustive collection of all questions, but rather a
substantially representative collection of them that
can be considered suitable for evaluating LLMs’
capabilities.

3.2 Data Preparation

The unprocessed web-scraped dataset consists of
23,592 questions alongside all four possible an-
swers with the right one as the "label" of the ob-
servation. Despite trying to avoid this during web
scraping, there was a substantial amount of dupli-
cates in the initial data, i.e. combinations of ques-
tions and answer options that occurred multiple
times at different prize levels. For these data points,
we applied deduplication and assigned the mean of
the prize money categories to the new point, round-
ing down to a tiebreak; so if a data point occurred
initially in the second and fifth category it would
be put into the third category, and its duplicates
removed.4 Another difficulty encountered in the
raw web-scraped data is that some questions came
with multiple labels, i.e. multiple correct answer
options. As this does not occur in the quiz which
the data was taken from, where only one answer
at a time is correct, these data points were deleted.
These questions with multiple labels were dispro-
portionally frequently present in the Million Euro
questions which can be observed when comparing
the three distributions in Figure 1. After discard-
ing the erroneous data points, 18,169 deduplicated

4We acknowledge that this is somewhat heuristic, but after
careful consideration, we think that this is an acceptable trade-
off between the biases of either considering questions as too
easy or too hard.

questions which we deem to be labeled correctly
remain. As the final steps of the preprocessing, we
sanitized the question endings as they included ir-
relevant (escape) characters, such as "\n" or spaces
at the end of a question. We further unify occur-
rences of non-standard ellipses ("..", ". . . ", "....") to
a common form ("...") for the questions that have to
be completed by the quiz show candidate. In three
cases, we added missing question marks to the end
of a question. The data also contained observa-
tions without spaces or ellipses at the end, however,
these weren’t grammatically complete sentences,
but also required completion by one of the answer
options. We thus keep them as they were.

Figure 2 illustrates the distribution of the end-
ings, since the context is not always an actual ques-
tion, but can also be an unfinished sentence that
has to be completed. Ellipses ("...") or no ending
("") means the sentence is "cut off" and has to be
completed by one of the options. Still, we observe
that the majority of the "questions" are actual ques-
tions concluded by a question mark. The endings
were extracted by using the following regular ex-
pression:

"(?<=[\w ÄaÖöÜüß%=C$+-])[^\w ÄaÖöÜüß%=C$+-]*$"

From descriptively analyzing the lengths5 of
the questions (i.e. the most important part of the
model inputs) we learn that the distribution is no-
tably skewed to the right (cf. Fig. 3). This is
reflected by an arithmetic mean of the question
length (x̄ = 10.33), exceeding the median question
length (x̃0.5 = 10) by a margin of 0.33. While

5We measure the length in words, since there is no uniform
definition of tokens and lengths would thus differ from model
to model.
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Figure 2: Absolute occurrence frequencies of the con-
text endings in the data set.

Figure 3: Distribution of the question lengths measured
in words. Lengths measured in tokens may differ based
on the specific model’s tokenizer.

the majority of the questions exhibit a length of
less than 10 words, less than 1% of them exceed a
length of 20 words.

When subsequently analyzing the lengths of the
different possible answers that are provided to the
model alongside the question, we take on two per-
spectives: In Figure 4 we compare the lengths
of all wrong answers to the respective correct an-
swers. As there is virtually no difference between
the two different distributions we can conclude
that models will most likely not be able to pick up
on such simple spurious patterns for solving the
task. This observation is supported by the result of
a Kolmogorov-Smirnov test exhibiting a p-value
of p = 0.95638, leading to not rejecting the null
hypothesis that the distributions do not differ.6 Fig-
ure 4 reveals that the vast majority (approximately

6While this is no statistical proof that the distributions are
equal, we at least were not able to show that the distributions
differ significantly.

59%) of the answers are only made up of a sin-
gle word.7 Nevertheless, there is also a substantial
fraction of the answers consisting of two or more
words (approximately 41%).

Figure 4: Lengths of wrong (left) and correct answers
(right) aggregated across all difficulty levels.

The questions are split into 15 different strata,
determined by the amount of money that can be
achieved by answering them correctly (cf. Fig. 1
and Tab. 1). With increasing amounts of money
to be won, the questions rise in difficulty: Start-
ing from relatively simple ones, or most of the
time even just simple puns, for winning 50e, the
difficulty increases to ones that are presumably
hardest to answer for achieving the 1,000,000e
prize. While for the simple (and often somewhat
funny) puns for the first couple of difficulty levels
frequently only one possible answer makes sense
from e.g. a grammatical point of view, questions at
higher levels in the quiz show tend to require either
specific knowledge on niche topics or contain mul-
tiple plausibly-sounding answers to questions that
sound relatively easy at first sight. One example
of the latter is shown in Figure 5, where factual
knowledge about wine is required. On the other
hand, Figure 6 shows a question from the field of
physics for a value of only 500 Euros. Here we
observe that the answers may also relate to each
other. In this case, they all have a connection to
the concept of laziness or sluggishness (in German
"Trägheit") which coincides with the German word
for momentum (and is thus the correct answer).
Another notable type of question occurs when the
answer options themselves allow for excluding op-
tions (cf. Fig. 7). In this case three of the four
options are distortions of words synonymous with
offending or insulting a person, while only the sec-
ond one, despite also looking like a distortion, is a
really existing, though rather unknown, word with
a different meaning.8 In the quiz show, contestants
try to answer one question from each prize money

7Note, that this might result in more than one token, de-
pending on the respective model’s tokenizer.

8In the case of this particular option, this also certainly re-
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money question label

50 Worauf radelt man zu zweit? Tandem
100 Wer viel zu tief ins Glas geschaut hat, ist ...? hackedicht
200 Teure Restaurants sind oft ...? piekfein
300 Muss man löhnen, heißt es umgangssprachlich "Zahlemann und ..."? Söhne
500 Ist es mit der Tugend nicht weit her, spricht der Volksmund von "Sodom und ..."? Gomorrha

1,000 Was ist fein und glatt und neigt leider häufig zum Nachfetten? Spaghettihaar
2,000 Wie wird in der Musikszene ein Auftritt bei einem Pop- oder Jazzkonzert genannt? Gig
4,000 Welche Großstadt liegt nicht in Australien? Auckland
8,000 Ist in den Medien vom Heppenheimer die Rede, dann geht es meistens um ...? die Formel 1

16,000 Lindau am Bodensee liegt in ...? Bayern
32,000 Wer soll gemeinhin mit sogenannten Genussscheinen angelockt werden? Geldanleger
64,000 Was gewann Andreas Kofler gleich zu Beginn des Jahres 2010? Vierschanzentournee

125,000 Was sieht aus wie ein Kolibri, ist aber ein Schmetterling? Taubenschwänzchen
500,000 Bis 1958 hieß das Frisbee ...? Pluto-Platte

1,000,000 Wo wurde Rainer Maria Rilke 1875 geboren? Zürich

Table 1: Exemplary questions for each of the 15 difficulty levels.

class at a time, attempting to advance to the very
last question to win the million euros. What is,
however, of primary interest to us, is not whether
an LLM could win the show, but how well it per-
forms per prize money group. We thus perform a
stratified train/validation/test split (80%/10%/10%)
which ensures a similar balance of all 15 prize
money categories across all three splits. For ob-
taining our baseline performances we utilize the
validation set solely for early stopping during fine-
tuning, while the test set allows for unbiased testing
of the fine-tuned models.

4 Model Evaluation

4.1 Multiple-Choice Question-Answering

MCQA represents a pivotal challenge in natural
language understanding and for the probing of fac-
tual knowledge. This task requires models to com-
prehend textual information from the given con-
text or question and to select the most appropriate
(i.e. the correct) answer option from a set of given
choices, closely mimicking human reasoning and
language comprehension abilities. MCQA plays
a crucial role in many applications, ranging from
exams in education and other assessment systems
to information retrieval and chatbots. The complex-
ity of this task lies not only in understanding the
nuances of the question and the answer choices but
also in grasping the context and potential ambigu-
ities inherent in natural language. In quiz shows,
these nuances and ambiguities can be ascribed to
a pivotal role since questions or answer options
are frequently intentionally created in a way that

quires factual knowledge for humans. For well-trained LLMs,
however, this could be easier as they might have seen the
non-distorted word during pre-training.

might confuse the contestant to some extent. Over
the years, MCQA has evolved into a multifaceted
research problem with applications to various do-
mains (Hendrycks et al., 2020; Pal et al., 2022),
incorporating various subtasks such as reading com-
prehension and semantic, logical (Srivastava et al.,
2022), mathematical (Hendrycks et al., 2020), or
commonsense (Srivastava et al., 2022) reasoning.

4.2 Model architectures

In recent years, the field of MCQA has witnessed
a remarkable transformation due to the advent of
(generative) LLMs. There is a clear distinction
between autoencoders, relying on discriminative
fine-tuned task-specific modeling heads (such
as BERT), and generative models that do not
necessarily require fine-tuning (such as models
from the GPT series). In our work, we rely
on six German representatives of the former
class of models, providing reasonable baseline
values due to their proven and widely examined
performance. Huggingface (Wolf et al., 2020)
offers access to a wide range of pre-trained
architectures via their model hub and allows for
seamlessly integrating task-specific heads into
the initial model architecture. For this analysis,
we chose to use bert-base-german-cased,
bert-base-german-dbmdz-cased, bert-base-
german-dbmdz-uncased, deepset/gbert-base,
german-nlp-group/electra-base-german-un-
cased, and deepset/gelectra-base alongside
the AutoModelForMultipleChoice class from
Huggingface. While BERT models (Devlin et al.,
2019) represent the first large class of fine-tuned
task-specific LLMs, ELECTRA (Clark et al., 2020)
offers an alternative approach to pre-training, by
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context: Welche dieser Rebsorten ist Grundlage für renommierte Rotweine? money: 32,000

options: A: Cabernet Sauvignon, B: Chardonnay, C: Pinot grigio, D: Riesling answer: A

Figure 5: Question on the topic of winemaking

context: Isaac Newton beschäftigte sich intensiv mit dem Prinzip der ...? money: 500

options: A: Müdigkeit, B: Bettruhe, C: Trägheit, D: Faulheit answer: C

Figure 6: Question from the field of physics

context: Was macht eine Segelyacht, wenn sie sich zur Seite neigt? money: 64,000

options: A: peleidigen, B: krängen, C: spodden, D: ernietrigen answer: B

Figure 7: Question with non-words as options

focusing on token-level replacements. Pre-training
BERT is mostly focused on the masked language
modeling (MLM) task, where a percentage of 15%
of the input tokens are corrupted and have to be
subsequently predicted by the model. ELECTRA
on the other hand employs the MLM task just as
an intermediate step performed by an auxiliary
generator model which creates predictions for
the corrupted tokens and thus returns an ordinary
text sequence. The actual ELECTRA model (the
discriminator part of the training regime) takes
the generator output as an input and is trained to
predict for every token whether it is original or pro-
duced by the generator. Both models were initially
proposed and trained for the English language,
but relatively shortly after their release (purely)
German versions for both architectures became
available. We further examine the performance
of ChatGPT (based on GPT-3.5 OpenAI, 2022)
as one prominent representative of the class of
generative LLMs.

4.3 Experimental Results

Our evaluation mostly focuses on providing
reasonable baseline results for future research and
differentiating model performance between the
different difficulty levels among the questions.
When comparing all of the six fine-tuned models
and ChatGPT across difficulty levels (cf. Fig.
8 and 9), we observe the expected, relatively
steady decline with increasing difficulty of the
question (according to the prize money category)
for BERT and ELECTRA (cf. Fig. 8), while
ChatGPT exhibits constantly better performance
for levels other than 1,000,000e (cf. Fig. 9).
Further, despite the overall performance decrease
being rather consistent on average, there are
still some irregularities. For some fine-tuned
models, performance increases for one or two
categories at some point on the difficulty scale,

but without a clear pattern, and for the 300e
category there is a visible increase in performance
for all BERT/ELECTRA models compared to the
previous category. Overall it is important to keep
in mind that an accuracy of 25% corresponds to
random guessing, which is on average (nearly)
the case for most of the higher prize money
categories (also for ChatGPT). Concerning a
comparison of the fine-tuned architectures, BERT
vs. ELECTRA, models of the latter architecture
(i) exhibit a higher average accuracy across
all different difficulty levels which (ii) can be
explained by better performance on especially
the low-difficulty categories (below 2,000e).
Model performance of ChatGPT proves to be
very stable and high across most difficulty levels
before it eventually starts to notably decrease at
64,000e and exhibits a sharp drop for 1,000,000e.
For the easier questions, there are only a few
differences between the different fine-tuned
models of the two underlying architectures, and
we also do not observe notable differences to
the performance of ChatGPT.9 Nonetheless, we
observe an overall performance difference between
the two fine-tuned ELECTRA models. While
deepset’s deepset/gelectra-base achieves
an accuracy of 53.83%, german-nlp-group’s
german-nlp-group/electra-base-german-un-
cased is better by a margin of 3.74% with a
57.57% accuracy. Another interesting observation
is the decreasing variability in the accuracy with
increasing question difficulty, thus decreasing
overall model performance.

5 Discussion

Arguably, we do not (yet) use the data set to its
full potential in this set of experiments, since we

9Nevertheless, one needs to keep in mind that ChatGPT is
neither fine-tuned nor provided with few-shot examples.
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Figure 8: Accuracy of the evaluated models that were fine-tuned from different open-source models (separated by
colors) split by the difficulty level of the questions (x-axis). Horizontal lines (in the respective colors) represent the
model’s average performance values across all difficulty levels.

Figure 9: Accuracy of ChatGPT split by the difficulty
level of the questions (x-axis).

only investigate the capabilities models can either
acquire when fine-tuned on this MCQA data or
the capabilities a generative LLM already exhibits.
Beyond this use case, there’s further potential for
using the data in various few-shot learning set-
tings, allowing for a more in-depth evaluation of
prompting-based or generative LLMs. This few-
shot setting would test the world knowledge and the
reasoning capabilities already present in the LLMs’

model weights, whilst nudging the model in the
right direction, thus taking on another angle on this
problem set. The results obtained from this evalua-
tion of German BERT, ELECTRA, and ChatGPT
on our newly introduced wwm-german-18k data set,
however, still provide valuable insights into the
strengths and limitations of heavily used LLMs in
handling this large and diverse set of questions with
varying levels of difficulty. The remainder of this
discussion section will nevertheless shift the focus
to potential enhancements that (open-source) gen-
erative LLMs can bring to solving MCQA tasks,
along with a critical examination of the data set’s
potential shortcomings.

Recent developments in generative LLMs have
led to remarkable performance when it comes to
(seemingly) understanding and generating natural
language text, which could also turn out to be a
notable advantage for MCQA tasks. In response to
closed-source models like ChatGPT, new genera-
tion of LLMs that is first and foremost character-
ized by openly-available weights emerged, prelim-
inarily culminating in the publication of Llama3
(Meta, 2024) on April 18, 2024. Besides the "base"
versions, many of these models are also released as
quantized, instruction-tuned, or mixture-of-experts
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versions allowing for (a) computationally cheaper
adaption and (b) seamless usage of the models.
Such models could potentially simultaneously ben-
efit from the training example while exhibiting all
the advantages that generative LLMs have over dis-
criminative ones. This flexibility may empower
them to also excel in tasks beyond MCQA, where
answer choices are not explicitly provided, or when
questions require generating more nuanced and
contextually relevant responses. Additionally, gen-
erative LLMs could be leveraged for data augmen-
tation purposes or for generating new, additional
questions, thus enhancing the diversity and com-
plexity of the data set. However, despite the diverse
and interesting setting this data set is placed in,
several potential shortcomings should also be ac-
knowledged. The questions in the game show, and
hence in the data set, may contain pop culture ref-
erences, idiomatic expressions, or very specialized
knowledge, which can pose challenges for both
generative and discriminative models, especially
when applied to more general domains. Addition-
ally, the data set’s focus on factual knowledge and
trivia may not be fully adequate to evaluate the
models’ abilities in understanding and reasoning
about more abstract or complex concepts holisti-
cally, which are arguably rather important for real-
world applications.
Summing up, these debatable discussion points
underscore the need for adequate resources to eval-
uate the promise of generative LLMs advancing
the capabilities on MCQA, amongst others. The
introduction of the wwm-german-18k data depicts
an important step in that direction due to its chal-
lenging nature, for machine learning models and
for humans. Simultaneously we also want to high-
light the need for further data sets encompassing
a broader range of question types and domains
to further evaluate and refine these models. Fu-
ture research needs to further aim at developing
more diverse and contextually rich MCQA data
sets that better represent the complexities of natu-
ral language understanding, ultimately driving the
development of such data sets close to real-world
scenarios will help to robustify LLM systems for
MCQA across various languages and domains.

6 Conclusion

In conclusion, this research presents a dedicated
and well-curated contribution to the field of Ger-
man MCQA based on data extracted from the pop-

ular TV show "Wer wird Millionär?" alongside
important baseline results for future research, show-
casing one of the intended uses of the data: Evalua-
tion of the progressing capabilities of LLMs. The
primary contributions of this study can thus be sum-
marized as follows:

First and foremost, we introduce a novel MCQA
data set for the German language derived from the
German version of the show "Who Wants to be a
Millionaire?". This data set encompasses approx-
imately 18,000 observations and thus provides a
valuable resource for evaluating a diverse set of
capabilities ascribed to modern-day LLMs. The
diverse range of questions in the data spans various
dimensions from factual/commonsense knowledge,
over syntactic abilities to logical reasoning. To en-
sure the quality and reliability of our dataset, we
carefully describe the careful preprocessing steps
we took, which involved several aspects of cleaning
the data, question deduplication, and the creation
of stratified data splits. These steps are crucial
for maintaining high data quality and providing a
foundation for further research.

We also conducted extensive experiments us-
ing fine-tune two state-of-the-art German language
models, namely German BERT and ELECTRA, as
well as ChatGPT on our data set. The obtained
baseline results offer insights into the performance
of LLMs on this task, highlighting their compe-
tence in addressing questions with lower difficulty
levels, up to approximately 1000e. However, as
question complexity increases, our results reveal
a consistent decrease in model performance, shed-
ding light on the challenging nature of more diffi-
cult questions. This finding underscores the need
for further research and model development to ad-
dress these challenges and enhance MCQA per-
formance on complex questions. Eventually, our
contributions in the form of a new German MCQA
dataset, detailed preprocessing methodology, and
baseline results provide a valuable new resource
for advancing the capabilities of German LLMs in
comprehending and answering questions in natural
language, particularly within the context of popular
culture and entertainment. Further, it might serve as
a blueprint for other languages, as this game show
is popular around the world. This work invites re-
searchers to build upon our findings and explore
innovative approaches to improve the robustness
and accuracy of MCQA models, ultimately con-
tributing to the development of more robust and
capable LLM-based systems.
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Limitations

While we hope that this work provides researchers
with a valuable non-English language resource for
a more diverse evaluation of LLMs to gain more nu-
anced insights into their strengths and weaknesses,
there are still issues we do not yet address in this
work: First, we do not provide an exhaustive evalu-
ation and comparison of different (open- vs. closed-
source) generative LLMs, since this is not the focus
of this work. Our focus is on the introduction of this
new resource for comparing and evaluating LLMs.
Second, this resource can also only be seen as a
small contribution to the bigger question of how
to properly benchmark generative LLMs. It only
covers certain aspects of language and culture, but
we hope this can serve as a valuable contribution
to a better understanding of LLMs’ behavior. Fi-
nally, as described in Section 3.2 there were some
inconsistencies when recording the prize money
category during web scraping, which we attribute
to the subjectiveness of the concept of "difficulty"
in the realm of quiz show questions. We would thus
argue that our method for assigning the category
can be regarded as a realistic approximation of the
average perceived difficulty.
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Abstract

This study investigates the integration of native
language identification into authorship attribu-
tion, a previously unexplored aspect that is par-
ticularly important in multilingual contexts. We
introduce AA-NLI50, a new dataset containing
both native language and authorship informa-
tion. We propose a novel chain-of-thought ap-
proach for native language identification. Our
findings demonstrate that our system signifi-
cantly enhances authorship attribution perfor-
mance, with results showing a mean accuracy
improvement of 9% over baseline methods.

1 Introduction

Authorship attribution—the task of identifying the
author of a given document based on a set of pos-
sible candidates—is crucial in various forensic ap-
plications (Koppel et al., 2009). The complexity
of the task increases significantly with the number
of potential candidates and the scarcity of training
data (Luyckx and Daelemans, 2011; Rocha et al.,
2016). Most recent studies integrated author pro-
files that include attributes such as gender, educa-
tion level and age to refine the attribution process
and narrow down the pool of suspected authors
(Deutsch and Paraboni, 2023). Despite these ad-
vances, the impact of native language in authorship
analysis remains largely unexplored, even though
it is frequently mentioned in forensic applications,
particularly in the context of cybercrime (Perkins,
2021).

Native Language Identification (NLI) is the task
of automatically identifying the native language
(L1) of an individual based on their writing or
speech in another language (L2). The underlying
hypothesis is that L1 affects L2 production due
to cross-linguistic influence (Yu and Odlin, 2016).
Recent findings in neuroscience suggest that struc-
tural differences in the brain can result from the
influence of the native language (Wei et al., 2023).

The majority of NLI research relies on learner
corpora, such as TOEFL11 (Blanchard et al., 2013)
and ICLE (Granger et al., 2009). The training ex-
amples consist of formal writings in classroom set-
tings that differ considerably from the context and
register of ransomware notes or forum posts on
the dark web (Jin et al., 2022). The mismatch can
have a negative impact on the analysis and affect
the overall performance (Grieve, 2023). Previous
studies have demonstrated that state-of-the-art NLI
systems often struggle to generalize across different
topics and linguistic registers (Malmasi and Dras,
2018). While datasets derived from social media
platforms such as Reddit (Goldin et al., 2018; Mu-
rauer and Specht, 2021) offer a diverse range of
samples within an informal register, which helps to
mitigate this issue, they still encounter significant
challenges related to topic imbalance.

From an architectural standpoint, NLI followed
the trend towards attention-based transformation
models such as BERT (Steinbakken and Gambäck,
2020), BigBird (Kramp et al., 2023) and GPT-2
(Lotfi et al., 2020). To address practical problems,
more recent work has focused on improving scala-
bility (Uluslu and Schneider, 2022) and extending
these models to languages other than English (Mal-
masi and Dras, 2017; Uluslu and Schneider, 2023).
The emergence of more powerful large language
models such as GPT-4 (Achiam et al., 2023) and
Mixtral 8x7B (Jiang et al., 2024) enabled increas-
ing capabilities in zero-shot learning, achieving
state-of-the-art performance on various tasks and
benchmarks (Chang et al., 2023). Early results in
NLI demonstrate the potential to overcome exist-
ing limitations, including scalability to more lan-
guages, generation of explanations, identification
of direct translations, and cross-domain adaptabil-
ity (Zhang and Salle, 2023). While LLMs provide
new capabilities in this field, they also introduce
significant challenges related to robustness, as well
as increased risks of hallucinations and biases.
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The main contributions and findings of this study
are threefold: (1) We create a new dataset called
AA-NLI50 which includes both the author’s native
language and authorship information; (2) We pro-
pose a zero-shot chain-of-thought (CoT) approach
to mitigate hallucinations found in previous NLI
studies; (3) We show that predicting the author’s
native language significantly improves attribution
performance in multilingual contexts.

2 Related Work

In the NLI shared tasks of 2013 and 2017, the best
performing approaches primarily used linguistic
features together with traditional machine learning
algorithms (Tetreault et al., 2013; Malmasi et al.,
2017). Various feature types were investigated, in-
cluding spelling errors, word and lemma n-grams,
character n-grams, dependency parsing and mor-
phosyntax (Malmasi and Dras, 2018). The com-
bination of these diverse features was shown to
be highly effective in achieving the best results
for NLI (Markov et al., 2022). More recently, the
deep generative approach was introduced, involv-
ing the fine-tuning of a GPT-2 model to identify
each L1, achieving state-of-the-art performance
(Lotfi et al., 2020). However, this approach was
found to be resource-intensive with considerable
performance bottlenecks (Uluslu and Schneider,
2022). The replication attempts highlighted gener-
alization issues across various domains, suggesting
potential overfitting to the benchmark dataset (Vian,
2023). Most recent studies found that newer LLMs,
such as GPT-4 (Achiam et al., 2023), achieve state-
of-the-art performance in zero-shot settings us-
ing prompt-based approaches, which represents
a significant advancement over previous methods
(Zhang and Salle, 2023; Goswami et al., 2024).

Authorship profiling has been explored as a valu-
able tool for authorship attribution where it assists
in narrowing down the pool of potential candidates
by filtering based on characteristics such as gender,
age, and educational background (Yang and Chow,
2014; Deutsch and Paraboni, 2023). Psychological
profiling was also shown to be effective in differen-
tiating between authors in various contexts (Boyd,
2018). The impact of the author’s native language
has not yet been explored due to the scarcity of data
and specific use cases. The significance of native
language in cybercrime investigations cannot be
overstated, as evidenced by its repeated utility in
forensic analyses (Perkins, 2021).

3 Data

Due to the absence of available authorship attribu-
tion datasets that include the native language of the
author, we scraped a new dataset from the social
media platform Reddit, following the methodolo-
gies of Murauer and Specht (2019, 2021); Goldin
et al. (2018). The dataset features English posts
from authors in five different L1: French (FR),
Dutch (NL), Turkish (TR), Russian (RU), and Ger-
man (DE). We included posts that were assigned
the topic politics, most of which discuss recent
migration and economic issues in Europe. We en-
sured a minimum of 10 authors for each L1, with
each author contributing at least 20 documents. A
document is defined as a concatenation of indi-
vidual posts until the minimum document length
is reached. Following the pre-processing steps of
Murauer and Specht (2019), we required each docu-
ment to have a minimum length of 4,000 characters
and replaced URLs and user tags with special to-
kens. The final corpus consists of 1,000 documents
in total.

4 Methodology

We build upon the work presented by Deutsch and
Paraboni (2023) by incorporating profiling systems
to enhance closed-set authorship attribution. This
approach utilizes an ensemble architecture com-
prising word and character-level n-gram models
(Custódio and Paraboni, 2019). The output proba-
bilities from the word and character-level n-gram
models, combined with the one-hot encoded native
language prediction from the LLM, are fed into a
second-level logistic regression classifier to iden-
tify the author of the input documents. The entire
pipeline is illustrated in Figure 1. To select the most
suitable language model, we conducted prelimi-
nary experiments using the TOEFL11 (Blanchard
et al., 2013) dataset, the de facto benchmark for
NLI. The results presented in Appendix A.1 show
that Llama3 (AI@Meta, 2024) performs better than
Mixtral 7Bx8 (Jiang et al., 2024) but is slightly out-
performed by GPT-4 (Achiam et al., 2023). Due to
the confidential nature of forensic work, we only
consider open-source models and utilize llama3-
70b-8192 for our experiments. The discrepancies
between GPT-4 and Llama3 were primarily ob-
served in the problematic pair within the bench-
mark (Hindi-Telugu). Early results in NLI revealed
various types of hallucinations (Zhang and Salle,
2023), likely due to the cultural and contextual cues
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Figure 1: System architecture demonstrating the integration of native language profiling with word and character-
level n-grams for authorship attribution.

present in the benchmark. Learner corpora often
contain biographical information about the author,
which the LLM leverages when trying to identify
the native language. Using self-reported informa-
tion raises the question of whether this constitutes
cheating the task (Balloccu et al., 2024), as it can
result in cultural analysis rather than understanding
the linguistic patterns. This concern aligns with pre-
vious findings that model-generated explanations
are unreliable indicators of the model’s reasoning
process (Madsen et al., 2024). The model can hallu-
cinate in order to maintain self-consistency, even in
the absence of linguistic cues. To address this issue,
we propose a CoT approach, which does not elimi-
nate hallucinations per se, but was shown to restrict
the model behavior to the instructions (Dhuliawala
et al., 2023). We redacted various name entity infor-
mation from the text, including geopolitical entities
(GPE), locations (LOC), and nationalities or reli-
gious or political groups (NORP), which can reveal
the author’s origins. To enforce a structured analy-
sis and delay the prediction until all instructions are
followed, we introduce XML formatting and prefill
the model’s response. The full system prompt used
in our study can be found in Appendix B.1.

5 Results

We first present the results of NLI as an indepen-
dent task. Following this, we integrate the most re-
alistic setup into the authorship attribution pipeline
to derive the final results. This two-step approach
ensures that our evaluation captures both the iso-
lated and integrated performance of the models.

5.1 Native Language Identification
We conducted four experiments to evaluate the
zero-shot performance of LLMs on NLI. Using
the entire corpus, we reported the results in terms
of precision, recall, and F1 score. For comparison,
we implement the open-set classification prompt
from Zhang and Salle (2023) as well as our CoT
approach on the dataset. We report results after
redacting entity information in both experiments
to assess the model dependency. Previous research
has reported near-perfect accuracy on benchmarks
for most language pairs under zero-shot settings.
We argue that these results should be interpreted
cautiously, as state-of-the-art approaches typically
require approximately 10,000 examples to achieve
similar performance levels and often encounter gen-
eralization issues across different datasets. While
LLMs may exhibit an emergent ability for NLI, it is
also possible that they have merely adapted to the
datasets, finding shortcuts due to the task’s inherent
complexity (Schaeffer et al., 2024). An example of
such hallucinations can be observed in B.2.

Approach P R F1
Baseline 0.68 0.68 0.69
- Redacted ↓ 0.49 0.46 0.48
CoT Prompt (Ours) 0.54 0.53 0.54
- Redacted ↓ 0.46 0.46 0.47

Table 1: Performance comparison of open-set classifica-
tion and CoT approaches before and after redaction.

As shown in Table 1, the open-set classification
prompt achieved a high performance of 69% un-
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der zero-shot settings on a more complex dataset
compared to the benchmark. However, redacting
entity information resulted in a substantial perfor-
mance decrease of 20%. In comparison, the CoT
approach requires the model to document its find-
ings before making a final prediction, relying more
on the model’s ability to identify linguistic features.
While the CoT prompt also experienced a perfor-
mance drop due to the removal of entity informa-
tion, the decrease was not as significant as with
the original prompt. Both approaches converged
to a similar level of performance in the follow-up
experiments.

# Authors
Accuracy

Baseline + Native Language

5 0.65 0.66
10 0.46 0.55
15 0.37 0.49
20 0.33 0.43
25 0.27 0.42
30 0.25 0.34
35 0.22 0.33
40 0.20 0.29
45 0.18 0.28
50 0.17 0.27

Mean 0.32 0.41

Table 2: Authorship attribution mean accuracy and SD
results for the standalone and integrated pipeline.

5.2 Authorship Attribution

Following the evaluation methodology of Deutsch
and Paraboni (2023), we completed multiple eval-
uation experiments to assess the system’s perfor-
mance under varying conditions. We employed
a zero-shot classification system, eliminating the
need to split the dataset between attribution and
profiling tasks. We created a balanced testing set
comprising 20% of the entire dataset (200 docu-
ments), including 50 authors and five different L1s.
We conducted the experiments using the CoT ap-
proach, as it offers a more realistic performance
given the absence of self-reported information in
forensic contexts. To evaluate the system, we sam-
pled random sets of candidate authors from the
50-author test set, varying the number of candidate

authors from 5 to 50. To minimize the effects of
random selection, each evaluation was repeated 20
times. For each iteration, we varied the candidate
authors randomly and selected different training
and testing documents. This repetition aimed to
provide more reliable and robust results by aver-
aging out the variability introduced by random se-
lection. The results of the authorship attribution
experiments are reported in terms of accuracy, as
shown in Table 2. The table presents the mean accu-
racy scores obtained by the open-set classification
baseline and the integration of NLI into the stack
ensemble. The best results for each candidate set
are highlighted in bold. Based on McNemar’s test,
the differences in performance between the base-
line model and the proposed model were found to
be statistically significant (p < 0.05) after 5 authors.
The results indicate that incorporating native lan-
guage outperforms the baseline as the number of
candidate authors increase. Overall, we achieved a
9% increase in mean accuracy, with the baseline at
33% and the enhanced ensemble model at 41%.

6 Conclusion

Our study demonstrates that integrating native lan-
guage into authorship attribution systems signifi-
cantly enhances attribution accuracy, which is par-
ticularly important in multilingual contexts such
as cybercrime investigations (Perkins, 2021). This
improvement aligns with the gains observed from
other profiling attributes like age, gender, and ed-
ucation (Deutsch and Paraboni, 2023). Our study
highlights the shortcuts taken by LLMs in profil-
ing tasks, with a particular focus on how certain
background information in the text (e.g. ethnic-
ity) can lead to superficial analysis and hallucina-
tions. Therefore, we argue that model generations
should not be considered true explanations of the
reasoning process. We found that employing CoT
prompts can mitigate this tendency by encourag-
ing systematic documentation of relevant linguis-
tic features. While these findings offer promising
advancements, they also underscore the need for
cautious interpretation of LLM outputs in forensic
sciences. Future research should focus on develop-
ing more robust profiling techniques that account
for diverse linguistic factors, including the effects
of register, genre, and topic. As LLMs continue
to play increasingly important roles in authorship
analysis, our work emphasizes the ongoing need to
investigate their behaviors and limitations.
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A Appendix – Preliminary Experiments

Model TOEFL11 Test Set (%)
Random Baseline 9.1
GPT-2 (Lotfi et al., 2020) 89.0
GPT-3.5 (Zero-shot) 74.0
Mixtral 8x7B (Zero-shot) 74.0
LLama3 70B (Zero-shot) 85.4
GPT-4 (Zero-shot) 91.5

Table A.1: Performance comparison of various models on the TOEFL11 test set.

B Appendix – Supplementary Material

B.1 System Prompt

You are a forensic linguistics expert responsible for analyzing texts written by non-native speakers.
Identify linguistic cues such as direct translations, spelling errors, syntactic patterns, and grammat-
ical errors to identify the native language of the author. It is important to note that the self-reported
information or cultural references provided in the text can be misleading.

<transcript> {input_text} </transcript>

Think step by step on how to analyze the <transcript> within the provided <sketchpad>.

In the <sketchpad>, return a list of <findings> and their corresponding <types>.

Then, check that <sketchpad> items are factually consistent with the <transcript>.

Finally, identify the native language of the author based on the <sketchpad>.

Figure B.1: System Prompt

B.2 LLM-generated Authorship Profiling Outputs

Text Prediction
If the state wants to implement something bad, they protest
like mad men, until the state listens to them. The Gezi protests
failed, because we didn’t go hard enough. <text continues>

Turkish
<hallucination analysis>

If the state wants to implement something bad, they protest like
mad men, until the state listens to them. The Moscow protests
failed, because we didn’t go hard enough. <text continues>

Russian
<hallucination analysis>

If the state wants to implement something bad, they protest like
mad men, until the state listens to them. The <redacted> protests
failed, because we didn’t go hard enough. <text continues>

Random or No prediction
<complication message>

<random message>

Figure B.2: LLM-generated outputs for the NLI task based on Reddit posts under different conditions.
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Abstract

Negotiation is a crucial aspect of daily life,
spanning from personal agreements to orga-
nizational contracts. As AI continues to evolve,
the delegation of negotiation tasks to machines
is becoming increasingly feasible. However,
while research on English negotiation bots is
progressing, similar advancements in other lan-
guages, particularly Arabic, are lacking. This
paper presents the first design of Arabic nego-
tiation bots, employing two approaches. The
first approach involves utilizing a pre-trained
Large Language Model (LLM) for this task via
prompt engineering, while the second leverages
Meta’s "Deal or No Deal" framework, integrat-
ing a sequence-to-sequence (Seq2Seq) model
with reinforcement learning (RNN-RL). We in-
troduce and release two new datasets tailored
for the models, including LLM prompt instruc-
tions and an Arabic dataset for the RNN-RL
model. Our experiments demonstrate both the
potential and limitations of these approaches,
providing essential insights into their perfor-
mance and outlining future research directions
for multilingual negotiation bots.

1 Introduction

Negotiations occur in various contexts, from in-
dividuals haggling over a purchase to companies
discussing contracts and governments seeking eco-
nomic advantages (Halver, 2022; Founders, 2022).
With the recent advancements in chatbots, negotia-
tion has emerged as an ideal application for artifi-
cial intelligence (AI), enabling intelligent agents to
negotiate and cooperate effectively.

Research on English negotiation bots has
evolved, initially employing game theory and rule-
based approaches (Jennings et al., 2001; Hussain,
2014; Balachandran and Mohammadian, 2015; Ko-

ley and Rao, 2018), followed by deep learning
methods that achieved significant success in nat-
ural language processing. Meta’s work (Lewis
et al., 2017) laid the foundation for product nego-
tiation using two sequence-to-sequence (Seq2Seq)
recurrent neural networks (RNN) models repre-
senting the buyer and the seller. Those models
were trained in a supervised fashion using human-
developed negotiation data, with parameters fur-
ther improved through reinforcement learning (RL).
Building upon Meta’s RNN-RL models, several
other works (He et al., 2018; Wang et al., 2019;
Zhou et al., 2019; Mishra et al., 2022; Raut et al.,
2023) introduced further improvements, includ-
ing strategies for emotion, persuasion, and polite-
ness. Furthermore, transformer-based sequence
models like generative pre-training transformer
(GPT) models for negotiation bots have been de-
veloped (Fu et al., 2023). While those English ne-
gotiation bots have seen continued advancements,
research on non-English negotiation bots, including
Arabic, remains unexplored.

To address this research gap, we introduce two
approaches to automate non-English negotiations
with application to Arabic and create, to the best
of our knowledge, the first Arabic negotiation bots.
In our first approach, we propose utilizing a pre-
trained large language model (LLM), namely GPT-
3.5 Turbo, to automate Arabic negotiations through
prompt engineering. Moreover, as a baseline, we
develop an Arabic negotiation model using a combi-
nation of a Seq2Seq RNN with reinforcement learn-
ing (RNN-RL), which is inspired by Meta’s popular
"Deal or No Deal" model (Lewis et al., 2017). To
train the RNN-RL model, we create the first Ara-
bic negotiation dataset by automatically translating
Meta’s English negotiation dataset (Lewis et al.,
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2017). Our experimental results demonstrate the
superiority of the LLM approach based on human
evaluation across various metrics such as negotia-
tion coherence, complexity, language quality, style
and. dynamics.

In summary, our contributions in this paper in-
clude the introduction of the first Arabic negoti-
ation bots along with the following methods and
datasets:

• A zero-shot prompt engineering approach that
can be used to tailor pre-trained LLMs to au-
tomate negotiations.

• A baseline model for Arabic negotiation bots
using Seq2Seq with reinforcement learning.

• A dataset of prompts that can be used to in-
struct pre-trained LLMs to perform negotia-
tions.

• An Arabic negotiation dataset.

2 Related Work

Many approaches have been explored in the de-
velopment of negotiating bots. Early work em-
ployed game theory, focusing on rational actions
for self-interested agents. These approaches uti-
lized strategies like monotonic concession, where
one or both negotiation parties must concede each
time an agreement is not reached, following spe-
cific methods to determine the conceding agent and
the extent of the concession (Jennings et al., 2001).
Incorporating game theory into negotiation consid-
ers that the agent must select the best strategy from
the space of all possible strategies, which often
requires computationally expensive calculations.

Other approaches (Hussain, 2014; Balachandran
and Mohammadian, 2015) used rule-based meth-
ods, which relied on a set of if-then statements to
determine the negotiating agent strategy. These
rules dictated how the agent should respond in dif-
ferent situations during the negotiation process. An-
other traditional approach employed in the devel-
opment of negotiating agents was the use of heuris-
tics (Koley and Rao, 2018) to guide the decision-
making process. One heuristic is based on the
observation that there is an inverse relationship be-
tween an issue’s preference and how frequently its
value changes during negotiations. Another heuris-
tic was based on the correlation between the prefer-
ence for a value and its frequency of being offered.

These heuristics help in understanding the oppo-
nent’s preferences and adjusting the negotiation
strategy accordingly. All of the aforementioned
approaches to building a negotiating bot rely on a
handcrafted set of rules and they lack the capability
to truly negotiate using natural language.

Many recent works used deep learning to de-
velop negotiating bots. The work in (Lewis et al.,
2017) is the first to apply deep learning techniques
to build an end-to-end model for natural language
negotiation. The model learns both linguistic and
reasoning skills using supervised and RL tech-
niques. In (He et al., 2018), they addressed the
problem of degeneracy of the work in (Lewis et al.,
2017) by decoupling the negotiating strategy from
language generation. In (Wang et al., 2019), they
focused on persuasion strategies using a human-
human persuasion dialogue dataset with persuasion
strategy annotation. In (Zhou et al., 2019), a ne-
gotiation coach provided tactics to help the seller
achieve improved deals by employing an LSTM-
based model to generate tactic suggestions. In
(Mishra et al., 2022), they trained and fine-tuned
a LM using RL while considering various sub-
rewards for persuasion, emotion, politeness, co-
herence, and repetitiveness. In (Raut et al., 2023),
they developed a persuasive sales agent to persuade
a buyer to buy a target item. The authors used
a GPT-2 model combined with RL that has four
sub-rewards (Repetitiveness, consistency, action
consistency and sentiment). They employed meta-
learning to extend the model’s capabilities to han-
dle new sub-domains in negotiations.

As we are building the foundations for Arabic ne-
gotiation bots, we chose to adopt the foundational
work of (Lewis et al., 2017) while also exploring
the use of LLMs. To the best of our knowledge,
our work is the first to explore using deep learning
in the area of Arabic negotiation bots.

3 Negotiation Scenario and Dataset

Our negotiation scenario works as follows: two
agents (seller and buyer) are presented with the
same set of items (e.g., books, hats, and balls), and
their task is to allocate these items among them-
selves, ensuring that each item is assigned to only
one agent. The negotiation process begins with
the buyer and seller attributing their own values
to each item in the set. The negotiation involves
a series of exchanges guided by established rules,
emphasizing effective communication and strate-
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gic decision-making, with the overarching goal of
optimizing the value for each participant. The nego-
tiation process continues iteratively until a terminal
state is reached, resulting in either a successful
"DEAL" or an unsuccessful "NO DEAL" outcome.
In each iteration, the average price of the sale is
measured before and after incorporating feedback.

To build a dataset that can be used to train the
Seq2Seq model and evaluate the LLM, we used
the dataset from (Lewis et al., 2017), which con-
sists of human-human negotiation dialogues that
were collected through Amazon Mechanical Turk.
Each dialogue involves items like books, hats, and
balls, with each item having predefined attributes
and values. The dataset comprises a total of 5808
dialogues derived from 2236 unique scenarios1.
Subsequently, the dataset was translated into Ara-
bic using the Google Translate API. The dataset
was further examined to ensure a native speaker
can easily interpret the semantics despite the im-
perfections in the translation. An example showing
a clean Arabic translation of an English sample
is provided in Figure 1. This dataset was then di-
vided into training (80%), validation (10%), and
test (10%) sets 2.

Figure 1: A sample English sentence and its Arabic
translation

4 LLM Approach

To achieve automated negotiation, we first explore
the capabilities of using a pre-trained LLM to per-
form such negotiations using zero-shot prompting.
We chose GPT-3.5 Turbo for its ability to incor-
porate feedback and improve over time. It also
enables extension to other languages and multilin-
gual negotiations.

In contrast to the RNN-RL model, which is
trained using the training and validation sets, the
GPT-3.5 model is evaluated using a zero-shot learn-
ing approach. Specifically, the GPT-3.5 model is
not fine-tuned on our dataset; instead, we apply
it under a zero-shot learning scheme. We chose

1Link to The original English dataset: English Dataset.
2The specific data splits will be made publicly available

with the datasets.

the zero-shot approach for GPT-3.5 to demonstrate
its ability to handle Arabic negotiation dialogues
without requiring task-specific training.

For the GPT-3.5 model, the inputs are provided
as structured natural language prompts that define
the negotiation scenario. These prompts include
information such as the items being negotiated, the
roles of the buyer and seller, and any specific con-
straints like price ranges or preferences. Based on
this input, GPT-3.5 generates full sentences in natu-
ral language that simulate the negotiation dialogue.
These outputs can include offers, counteroffers,
justifications, or explanations, allowing the model
to engage in realistic, context-driven exchanges
throughout the negotiation process.

4.1 LLM Negotiation Instructions
We direct the LLM to engage in self-play mode,
emulating the negotiation strategies of two distinct
participants: a buyer (e.g., Amani) and a seller (e.g.,
Sameer). Figure 2 shows a sample prompt used to
instruct GPT-3.5 Turbo to perform negotiations.
Detailed instructions given to the LLM, along with
their translations in English, are provided in the
Appendix.

To ensure controlled evaluations, we provide
clear Arabic instructions and establish a fixed price
range of $10 to $20 to guide the self-play negotia-
tion of GPT-3.5 Turbo.

The guidelines for the negotiation game, detailed
in the Appendix, play a crucial role in directing
GPT-3.5 Turbo during self-play. A sample of these
instructions is shown in Figure 4. The guidelines
provide predefined rules and instructions for the
LLM to take on the roles of both the seller and the
buyer, maintaining the integrity of the negotiation
process and enabling meaningful evaluations of the
LLM’s negotiation abilities.

Throughout the game, the seller’s (Sameer) re-
sponses prompt the buyer (Amani), and vice versa,
with each response conditioned on the entire con-
versation history.

4.2 LLM Features for Advice on Negotiation
Tactics

We include specific instructions for the LLM to
provide suggestions to the buyer, inspired by prior
work in English (Fu et al., 2023), aiming to negoti-
ate the best possible price. We construct the Arabic
textual interactions to have the LLM play the roles
of both the seller (Sameer) and the buyer (Amani)
in a negotiation game centered around the sale of
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a product (e.g., a balloon). The seller aims for a
higher selling price, while the buyer strives for a
lower purchasing price.

To implement this, we employ a hard-coded ap-
proach where the seller (Sameer) initiates the nego-
tiation in Arabic, as shown in Figure 3.

The LLM provides advice on negotiation tactics
to both the seller and the buyer in the negotiation
game. Buyer-specific feedback focuses on helping
the buyer (e.g., Amani) secure lower prices, while
seller-specific feedback aims to assist the seller
(e.g., Sameer) in achieving higher selling prices.
The impact of AI feedback on GPT-3.5 Turbo’s
negotiation abilities is assessed for both roles.

For buyer feedback, the LLM analyzes previous
interactions and generates four recommendations
to help the buyer (e.g., Amani) secure lower prices.
For seller feedback, the LLM analyzes prior inter-
actions and provides four recommendations to the
seller (e.g., Sameer) for achieving higher selling
prices. Detailed buyer-specific and seller-specific
Arabic instructions and their English translations
are shown in the Appendix.

5 RNN-RL Approach

Our second approach, which we use as a baseline to
compare the LLM approach against, is inspired by
previous work on English negotiation bots (Lewis
et al., 2017). This model operates using the negoti-
ation scenario described earlier between buyer and
seller until a a deal is reached.

For the RNN-RL model, the inputs are more
structured and consist of the current dialogue his-
tory, represented as tokenized sequences, along
with the agent’s goals, which include item values
and preferences. Additionally, the model takes into
account previous negotiation actions, such as of-
fers made by the agent. Based on these inputs,
the RNN-RL model generates actions that align
with the current state of the negotiation, with these
actions typically corresponding to offers or coun-
teroffers that influence the flow of the dialogue.

We use a Seq2Seq Recurrent Neural Network
(RNN) model composed of Gated Recurrent Unit
(GRU) to generate responses and offers. The
model’s parameters are further optimized using
reinforcement learning (RL) to maximize its utility.
The workflow of the RNN-RL model is depicted in
Figure 5. Figure 6 provides an illustration of the
RNN internal model architecture.

The RNN model consists of three GRUs: GRUg,

GRUw, and a bidirectional GRUo, each serving a
distinct role:

1. GRUg: This GRU encodes the agent’s in-
put goals. It takes the agent’s goals as input
and processes them to obtain a final hidden
state (hg). This hidden state represents a con-
densed representation of the agent’s goals and
is subsequently used to condition the language
generation process based on these goals.

2. GRUw: At each time step t, this GRU takes
as input the previous hidden state ht−1, the
previous token xt−1, and the input goals hg to
generate the next token.

3. GRUo: Toward the end of the dialogue, a final
decision o is generated using a bidirectional
GRUo and an attention mechanism.

First, the Seq2Seq RNN model is trained to min-
imize the negative log likelihood of the generated
response, conditioned on the input goals, and of
the outputs, conditioned on the dialogue history
and input goals. We establish two agents, the buyer
(e.g., Amani) and the seller (e.g., Sameer), both
trained using our training data as described in the
beginning of this section.

Using RL, the seller’s parameters remain fixed,
while the buyer agent seeks to improve its own pa-
rameters through interactions with the seller. After
a complete dialogue between the seller and the
buyer, the buyer’s parameters are updated, tak-
ing into account the negotiation outcome. The
future reward R for each action xt taken by the
buyer agent is computed, considering factors such
as the achieved score rbuyer, dialogue length T ,
a discount factor γ, and a running average of re-
wards µ. The objective in RL is to optimize the
expected reward for each action xt. This optimiza-
tion is achieved by calculating the gradient of the
reward function using the REINFORCE algorithm
(Williams, 1992). The approach allows the buyer
agent to update its parameters and enhance its per-
formance by learning from the outcomes of its in-
teractions with the seller.

6 Experiments

In this section, we describe a series of comprehen-
sive experiments designed to evaluate the perfor-
mance and effectiveness of the proposed Arabic
negotiation bots using the LLM and the RNN-RL.
Our evaluation aims to illustrate the capabilities
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Figure 2: Sample Arabic prompt given to GPT-3.5 Turbo and its English translation for negotiating items

Figure 3: Opening Arabic prompt given to GPT-3.5 Turbo and its English translation for negotiating price of a
balloon

Figure 4: Sample of additional instructions given to GPT-3.5 Turbo in Arabic along with its English Translation

Figure 5: The Workflow of the RNN-RL Model

and limitations of these models in simulating real-
world negotiation scenarios.

6.1 RNN-RL Evaluation

Our first experiment aims to evaluate the RNN-RL
for negotiations using our translated negotiation

Figure 6: Seq2Seq RNN Model Architecture

dataset. We use cross-entropy loss and perplexity
as evaluation metrics. Cross-entropy loss measures
the dissimilarity between the predicted probabil-
ity distribution on the vocabulary and the true dis-
tribution of the target text. Perplexity is used to
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assess the model’s performance by measuring its
level of surprise when encountering new data. To
compute perplexity, text is segmented into words
or tokens. The model predicts the probability of
the next word based on context, and the entropy
of these predictions is calculated. Lower entropy
means more confident predictions. Perplexity is
derived by raising 2 to the power of entropy, with
lower values signifying better predictive perfor-
mance. Lower perplexity indicates higher model
confidence and better data comprehension, as it
assigns higher probabilities to correct words. Typ-
ically, perplexity values range from 10 to several
thousands. Smaller values denote better language
modeling, while larger values suggest lower cer-
tainty and accuracy in predicting the next word.

The RNN-RL model achieved a cross-entropy
loss of 705.607, resulting in a very high perplexity
(e705.607). Furthermore, the percentage of nego-
tiations where both agents reached an agreement
increased from 66% to 72.2%, when transitioning
from the RNN-based buyer agent to the RNN-RL-
based buyer agent. This suggests that the RL model
exhibited enhanced negotiation capabilities.

It is worth noting that the performance of the Ara-
bic RNN-RL model compared to its English coun-
terpart was notably inferior. The English RNN-RL
model’s perplexity was at 1.768, which is much bet-
ter than the Arabic model’s perplexity of 705.607.
These gaps in performance between the two lan-
guages confirm the complexity of the Arabic lan-
guage, which will require larger datasets to achieve
learning levels comparable to English. These gaps
will constitute a good exploration for future re-
search.

Additionally, we observed some issues that were
consistent with observations in English models. We
noticed that The RNN-RL model, at times, expe-
rienced degeneracy issues and generated inaccu-
rate texts. This inaccuracy was primarily attributed
to the challenges encountered during fine-tuning
with RL, leading to less reliable and contextually-
relevant responses.

6.2 LLM Evaluation and Comparison to
RNN-RL

Our second experiment evaluates the ability of the
LLM approach in simulating negotiation dialogues
for the purpose of item allocation based on ex-
tracted values. We used the same test data that was
used to evaluate the baseline RNN-RL approach in

our first experiment.

6.2.1 Data Conversion to Prompts
The initial step of this experiment involved the ex-
traction of item values from our test set, which
comprises a diverse array of items with associated
values that participants typically negotiate over.
These values were then transformed into structured
prompts specifically designed to engage GPT-3.5
Turbo in a negotiation scenario.

To facilitate a realistic and dynamic negotiation
dialogue, we converted the test set into a series of
conversion prompts. These prompts were carefully
crafted to encapsulate the essence of negotiation
by introducing the value and desired outcome for
each item. Subsequently, we introduced the dia-
logue of one agent as input into GPT-3.5 Turbo.
This approach allowed us to simulate a negotiation
process where the LLM, acting as one negotiating
party, responds to and engages with the pre-defined
agent’s dialogue.

6.2.2 Criteria for Human Evaluation
While the RNN-RL model was evaluated based
on cross-entropy and perplexity, such measures
were not possible with the LLM model as it would
require internal access to model’s behaviors. In-
stead, we employed a human evaluation to compare
the negotiation dialogues generated by the LLM
approach versus those generated by the baseline
RNN-RL approach. To facilitate a comprehensive
and objective assessment, we defined the following
five performance metrics.

1. Coherence: This metric assesses the logical
progression of the negotiation, focusing on the
flow of offers, counteroffers, and the overall
dialogue structure. A coherent dialogue ex-
hibits a logical sequence that enhances under-
standing and facilitates a realistic negotiation
scenario.

2. Complexity: Complexity evaluates the dia-
logue’s depth in terms of vocabulary richness,
sentence structure, and the use of advanced
negotiation tactics. This metric reflects the
sophistication and nuance embedded in the
negotiation dialogue.

3. Language Quality: Focusing on the dia-
logue’s linguistic aspects, this metric exam-
ines grammar accuracy, vocabulary appropri-
ateness, and fluency. For dialogues conducted
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Figure 7: An illustration of the RNN-RL buyer model (Amani) demonstrating determination in negotiation to
successfully achieve its goal and reach a maximum score

Figure 8: An example highlighting the degeneracy of the RL model (Amani)

in Arabic, special attention is given to the use
of Modern Standard Arabic, where applicable.

4. Style: This metric assesses the stylistic el-
ements of the dialogue, including language
appropriateness for the negotiation context,
tone matching, and the use of persuasive lan-
guage techniques. A high score indicates a
dialogue that adeptly adopts a style conducive
to effective negotiation.

5. Negotiation Dynamics: Evaluates the real-
ism and effectiveness of the negotiation strat-
egy. This includes the use of concessions,
counteroffers, persuasive tactics, and how
power dynamics are represented within the
dialogue.

These metrics were chosen to capture the multi-
faceted nature of negotiation dialogues, encompass-
ing logical flow, linguistic sophistication, stylistic
appropriateness, and strategic effectiveness.

To ensure an unbiased and thorough evaluation,
five human evaluators were enlisted, each with ex-
pertise in negotiation and a proficient understand-

ing of the Arabic language. Evaluators were in-
structed to rate each dialogue on a scale of 1 to 5 for
each metric. The evaluators received comprehen-
sive guidelines to ensure a consistent understanding
and application of the evaluation criteria.

6.2.3 Results of Human Evaluation

Tables 1 and 2 present the evaluation scores as-
signed by each of the five evaluators for the LLM
and the RNN-RL approaches, respectively.

As can be seen from the two tables, the LLM
approach scored significantly better on all evalu-
ation metrics, compared the RNN-RL approach,
with the former receiving a rating above 4 on all
performance metrics on average. The disparity
underscores the advanced capabilities of the LLM
approach in generating complex, coherent, and con-
textually appropriate dialogues that are perceived
as more human-like by the evaluators. The evalu-
ation results thus suggest that the LLM approach
can be a valuable tool for simulating negotiation
dialogues, which could have practical applications
in automated negotiation systems and training en-
vironments. On the other hand, the RNN-RL ap-
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proach’s poor performance highlights the limita-
tions of earlier neural network architectures in deal-
ing with the nuanced demands of negotiation dia-
logue generation.

6.2.4 Impact of LLM’s Negotiation Advice on
Final Negotiated Price

To assess the impact of LLM’s advice on negotia-
tion tactics and their subsequent impact on price
negotiation, we conducted an experiment involving
20 negotiation rounds. We recorded the final price
in each round both with and without incorporating
feedback. In the experiment, the objective was to
determine how feedback influences the final nego-
tiation prices. Feedback was provided either to the
buyer or the seller in separate rounds.

When feedback was provided to the buyer, we
observed a noticeable shift in negotiation dynamics.
As shown in Figure 9a, the average final price de-
creased from $17 before feedback to $15 after feed-
back. This reduction suggests that feedback helped
moderate buyer expectations, leading to more cost-
effective negotiation outcomes.

In contrast, feedback provided to the seller
yielded different results. As illustrated in Figure
9b, although the average price for 20 rounds de-
creased, individual rounds showed mixed patterns.
Some rounds had higher final prices after feedback,
while others had lower prices. This inconsistency
highlights the complexity of the seller’s role in
negotiations, especially in the context of Arabic
negotiations.

We also encountered challenges with the Arabic
LLM following instructions. At times, the LLM
did not show any negotiation and needed reminders
of the instructions. Other times, it required multiple
reminders to provide the requested feedback. These
issues are due to the linguistic complexity of Ara-
bic, which is characterized by complex sentence
structures and varying levels of formality. This
complexity sometimes led to misinterpretations or
off-topic responses.

Finally, we found that the LLM’s feedback was
more effective when addressing buyers compared
to sellers. This discrepancy is likely due to a data
imbalance, as GPT-3.5 Turbo was trained on more
data related to buyers than sellers. This imbalance
resulted in divergent performance levels and high-
lights the need for future model development to
address such issues.

7 Discussion

7.1 Verbose LLM versus Brief RNN-RL

Our overall experimental results indicate that the
LLM approach has a stronger ability to generate
rich and contextually relevant text during negoti-
ations, compared to the RNN-RL approach. This
richness in text allowed for more detailed and ex-
pressive interactions. The agents in the LLM en-
gaged in deeper conversations about preferences,
justifications, and the reasoning behind their deci-
sions. In contrast, the negotiations with RNN-RL
model tended to be more direct and efficient, re-
sulting in faster resolution. The agens in the RNN-
RL approach often engaged in succinct exchanges,
where communication revolved primarily around
item quantities and simple trade proposals. This
straightforward approach typically led to a quicker
consensus on item distribution, with little room for
nuanced discussions or elaborate text.

7.2 LLM Creativity but with Mistakes

Despite the sophistication of GPT-3.5 Turbo, we
noted that the negotiation outcomes diverged signif-
icantly from those generated by RNN-RL approach.
Even when provided with the same initial set of
items, the approaches’ strategies for dividing these
items exhibited marked variations. Illustration sam-
ples are provided in the Appendix. The benefits of
the LLM approach came with certain challenges.
Throughout the negotiations, we encountered occa-
sional mistakes, such as instances where the LLM
approach’s participants would incorrectly allocate
item quantities, leading to discrepancies in the total
count. These errors sometimes necessitated correc-
tive actions to restore the integrity of the negotia-
tion process.

7.3 LLM Hallucination

As commonly known for LLM, there were halluci-
nation instances while negotiating with the LLM
approach, where the buyer and seller agreed to
split items that, in practice, cannot be physically
divided, such as a ball. This was often done to
maintain fairness in the negotiation, but it high-
lights the limitations of current LLM models in
understanding the practical constraints of item di-
vision. Such challenges point to areas for potential
improvement in LLM-driven negotiation systems,
where AI agents could benefit from a deeper grasp
of real-world limitations.
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Evaluator Coherence Complexity Language Quality Style Negotiation Dynamics
1 5 5 4 4 4
2 4 4 4 4 4
3 5 5 4 4 5
4 5 3.5 4.5 5 4
5 4 4 4.5 5 4.5
Average 4.6 4.3 4.2 4.4 4.3

Table 1: Human Evaluation of the LLM Approach

Evaluator Coherence Complexity Language Quality Style Negotiation Dynamics
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 2 1 2
4 1 1 1 1 1
5 1 1 1 1 1
Average 1 1 1.2 1 1.2

Table 2: Human Evaluation of the RNN-RL Approach

(a) Negotiation Dynamics Before and After Feedback to Buyer

(b) Negotiation Dynamics Before and After Feedback to Seller

Figure 9: Comparison of Negotiation Dynamics Before and After Feedback

7.4 LLM’s Ease of Training

In regards to the overhead needed to develop a ne-
gotiation model, the creattion of the LLM-based
negotiator was enabled with minimal human inter-

vention. To achieve this, we just had to engineer
a specific prompt in Arabic. This tailored prompt
served as a conduit for GPT-3.5 Turbo to enter self-
play mode, assimilate the rules of the game, and
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instigate negotiations autonomously. On the other
hand, the RNN-RL approach required extensive
training procedures employed for standard deep
learning models. This procedure encompassed data
collection, model architecture design, and super-
vised training with negotiation dialogues.

7.5 Future Work
The research in this work highlighted several areas
that need to be addressed in future research:

• The scarcity of high-quality training data spe-
cific to Arabic negotiations.

• The LLM approach exhibiting more general
responses when providing feedback in Arabic
compared to English.

• The variation in behavior and performance
when the LLM assumed different roles (buyer
or seller) in Arabic negotiations.

• The complexity of Arabic, with its intricate
sentence structures and varying levels of for-
mality, posed challenges in context compre-
hension, leading to occasional misinterpreta-
tions or off-topic responses.

• The LLM struggling at times to utilize feed-
back effectively without explicit reminders at
the start of negotiations, highlighting the need
for improved responsiveness to feedback.

• The imbalance in training data between buyer
and seller.

8 Conclusion

In this paper, we laid the foundation for research
and development of automated negotiation bots for
non-English with application to Arabic. To this
end, we proposed the utilization of LLMs via zero-
shot prompt engineering. We also introduced the
first end-to-end deep-learning approach for Ara-
bic negotiation, using a Seq2Seq GRU-RNN with
Reinforcement Learning, which was trained us-
ing a translated benchmark for negotiation bots.
Our experimental results indicate that customizing
a LLM such as GPT-3 Turbo is successful at au-
tomating negotiations in Arabic, albeit with some
risks of hallucination and the absence of guardrails.
The observed limitations in model performance,
particularly in generating coherent responses and
handling feedback, emphasize the importance of
addressing language-specific complexities. Efforts

to improve Arabic LLMs, enhance data quality, and
reduce language-specific discrepancies in feedback
are essential steps toward achieving more effective
Arabic negotiation bots. LLMs must be trained and
fine-tuned using data that accurately reflects the lin-
guistic and cultural nuances of the target language.
Addressing training data imbalances, especially re-
garding the roles of buyers and sellers, is another
potential for future work. Balancing the represen-
tation of different negotiation scenarios can lead to
more consistent and reliable model performance.
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10 Appendix

Arabic Instructions and Corresponding English Translations Given to GPT-3.5 Turbo
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Arabic Instructions and Corresponding English Translations Given to GPT-3.5 Turbo

Instructions and Suggestions for Buyer Role (Amani) with English Translations
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Instructions and Suggestions for Seller Role (Sameer) with English Translations
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Comparison of RNN-RL and GPT-3.5 Turbo Negotiation Outcomes (Example 1)

Comparison of RNN-RL and GPT-3.5 Turbo Negotiation Outcomes (Example 2)
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Abstract
This study advances Arabic dialogue nego-
tiation by enriching the responses of Large
Language Models (LLMs) with targeted fine-
tuning that addresses key challenges such as
arithmetic reasoning, chain-of-thought process-
ing, and pronoun consistency. We validated
the prevalence of these issues by testing re-
sponses from multiple LLMs including Gemini,
LLaMA 2, and BARD. To tackle these short-
comings, we propose the use of fine-tuning to
construct a comprehensive dataset that simu-
lates varied negotiation scenarios. We apply
our proposed fine-tuning technique to GPT-3.5
Turbo and showcase the LLM’s abilities to ex-
ceed current performance benchmarks. Our
evaluation framework assesses improvements
in dialogue length, strategic depth, and arith-
metic accuracy, comparing the performance of
fine-tuned models against original metrics and
benchmarks from GPT-4. The results demon-
strate significant advancements in negotiation
performance by the fine-tuned LLM, surpass-
ing the baseline model in engagement and
strategic execution.

1 Introduction

Negotiations are fundamental to human interac-
tion, occurring in various contexts from casual
market transactions to complex diplomatic discus-
sions (Schmid et al., 2021; Kramár et al., 2022).
The rise of chatbots that mimic human negotiators
has notably influenced negotiation practices. In
this evolving landscape, intelligent agents often
find themselves needing to cooperate with others
who have different goals, primarily using natural
language to reach agreements. Negotiation thus
emerges as a complex interplay of linguistic skill
and strategic reasoning, requiring agents to under-
stand, plan, and strategically generate utterances to
achieve objectives (Traum et al., 2008; Plüss and
Piwek, 2016)

Despite advances in negotiation bots for English,
utilizing game theory, rule-based systems (Jennings

et al., 2001; Hussain, 2014; Balachandran and Mo-
hammadian, 2015; Koley and Rao, 2018), and deep
learning (Bachrach et al., 2020), research into non-
English languages, especially Arabic, remains lim-
ited. Pioneering efforts have largely focused on En-
glish, with advances in Seq2Seq Recurrent Neural
Network models trained through supervised learn-
ing (Lewis et al., 2017). These models, refined with
reinforcement learning (RL), set a benchmark for
product negotiation bots. Subsequent studies have
introduced enhancements in emotional intelligence
and persuasion tactics (He et al., 2018; Wang et al.,
2019; Zhou et al., 2019; Mishra et al., 2022; Raut
et al., 2023).

More recently, the emergence of transformer-
based models, notably the Generative Pre-trained
Transformer (GPT) series, has revolutionized lan-
guage processing (Chow et al., 2023). Large lan-
guage models (LLMs) including Gemini, GPT-3.5
Turbo, LLaMA 2, and BARD have made signifi-
cant strides in understanding and generating natu-
ral language. However, applying these to Arabic
negotiation dialogues reveals critical challenges.
First, the complexity of chain-of-thought (COT)
reasoning in Arabic often leads to models failing
to follow or generate coherent arguments. Second,
LLMs exhibit a notable lack of precision in nu-
merical reasoning and calculations. Finally, the
intricacies of Arabic pronoun usage present a chal-
lenge, with models often demonstrating inconsis-
tency in pronoun reference, affecting the coherence
and naturalness of dialogues.

We identify specific areas where the aforemen-
tioned LLMs, despite their advanced capabilities,
fall short in handling the nuanced requirements of
Arabic negotiations. By examining the models’ per-
formance across a range of negotiation scenarios,
we uncover limitations in their reasoning, mathe-
matical operations, and linguistic consistency. Our
research addresses these shortcomings by focusing
on GPT-3.5 Turbo as a case study for Arabic nego-
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tiation dialogues. The contributions of our study
are:

1. Identifying specific limitations of LLMs in
Arabic negotiation scenarios.

2. Fine-tuning GPT-3.5-Turbo to enhance COT
reasoning, arithmetic capabilities, and pro-
noun consistency in Arabic negotiation dia-
logues.

3. Developing a comprehensive Arabic negotia-
tion dataset for model training.

4. Introducing an evaluation framework to mea-
sure the effectiveness of fine-tuning interven-
tions on LLMs in negotiation contexts.

The rest of the paper is organized as follows:
Section 2 reviews related work in deep learning-
based negotiation bots. Section 3 describes our
methodology, detailing the identification of LLM
limitations and the fine-tuning process for GPT-3.5
Turbo, encompassing dataset creation and train-
ing. Section 4 details our experimental setup and
results, highlighting improvements in negotiation
dialogues. Section 5 discusses the implications and
potential applications of our findings. Section 6
outlines limitations and future research directions.
Section 7 concludes the paper.

2 Related Work

Numerous recent studies have employed deep learn-
ing to develop negotiation bots. The groundbreak-
ing research (Lewis et al., 2017) was the first to
utilize deep learning to create an end-to-end negoti-
ation model in natural language. This model trans-
lates raw data directly into desired outcomes with-
out intermediate steps, mastering both language
and strategic reasoning through supervised and re-
inforcement learning. Addressing the limitations in
(Lewis et al., 2017), the study in (He et al., 2018)
separated negotiation strategy from language gen-
eration. The focus of (Wang et al., 2019) was on
persuasive strategies, analyzing a dataset of human
interactions annotated with persuasion tactics.

In (Zhou et al., 2019), the introduction of a ne-
gotiation coach based on LSTM technology aimed
to enhance deal outcomes by providing strategic
advice. The work in (Mishra et al., 2022) involved
training a language model using RL, considering
multiple sub-rewards for persuasion, emotion, po-
liteness, coherence, and repetition.

(Raut et al., 2023) explored the development
of a persuasive sales agent using a GPT-2 model
augmented with RL and sub-rewards for repetitive-
ness, consistency, action alignment, and sentiment.
This study also integrated meta-learning for adapt-
ability in new negotiation sub-domains. Comple-
menting these developments, recent research (Fu
et al., 2023) has investigated human-compatible
negotiation strategies. This study introduced an
AlphaZero-like RL+search technique integrated
with a pre-trained language model, aiming to de-
velop negotiation tactics that are not only effective
but also equitable and aligned with human fair-
ness. The results showed notable success in foster-
ing egalitarian outcomes and enhancing the overall
quality of negotiations. Another key advancement
(Abdelnabi et al., 2023) examines the use of LLMs
in interactive, multi-agent negotiation games. This
study created a testbed of text-based, multi-issue
negotiation games to assess the arithmetic, explo-
ration, and planning capabilities of LLMs, with a
particular focus on their COT reasoning. The re-
search highlighted a substantial performance gap
between GPT-4 and earlier models and emphasized
the utility of these games in evaluating critical as-
pects like interaction dynamics in the presence of
adversarial or greedy players.

Upon review, it is evident that the current litera-
ture lacks investigations specifically targeting the
Arabic language. This gap is particularly notable
given the unique morphosyntactic characteristics
and substantial global presence of Arabic. The
scarcity of research may be attributed to the lin-
guistic complexities of Arabic, including its rich
morphological structure and dialectal variation, as
well as the lack of accessible, high-quality datasets.
Addressing this research gap is crucial for develop-
ing more comprehensive and linguistically inclu-
sive computational models. Our work addresses
the gap in negotiation bot development for the Ara-
bic language, comparing various methodologies
and outcomes with prior research. Our approach
introduces unique features and strategies aimed
at enhancing negotiation outcomes, demonstrating
notable advancements over existing models.

3 Methodology

The challenge of effectively managing negotiation
dialogues, particularly in languages as complex
as Arabic, represents a common limitation across
a broad spectrum of LLMs. This research was
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inspired by the need to enhance the capabilities of
LLMs, enabling them to navigate the intricacies of
Arabic negotiations more adeptly.

Acknowledging the widespread nature of these
limitations, our initial step involved conducting an
extensive testing phase across several LLMs, in-
cluding Gemini, GPT-3.5 Turbo, LLaMA 2, and
BARD. This approach allowed us to uncover a
range of common issues, from errors in mathemat-
ical reasoning and common-sense application to
inconsistencies in pronoun usage. These issues,
critical in the context of Arabic negotiation dia-
logues, underscore the essential need for focused
enhancements across LLMs.

The methodology adopted for this research is
structured to be universally applicable to LLMs,
comprising two primary phases: testing and fine-
tuning. By rigorously evaluating each model’s per-
formance in diverse Arabic negotiation scenarios,
we were able to identify specific shortcomings that
require attention. Detailed insights into the fine
tuning and testing methodology are provided in the
Appendix.

As part of our research, GPT-3.5 Turbo was se-
lected for a detailed case study, given its promi-
nence and potential for advanced language process-
ing. This endeavor was motivated by the recogni-
tion of the model’s existing limitations in handling
the Arabic language, especially within the context
of negotiation. This model, alongside others like
Gemini, LLaMA 2, and BARD, served as practi-
cal examples to apply and refine our enhancement
strategies. The findings from these case studies
were pivotal in illustrating the effectiveness of our
approach in real-world settings.

The fine-tuning phase was meticulously de-
signed to address the identified challenges, extend-
ing beyond linguistic adjustments to encompass en-
hancements in reasoning and negotiation abilities.
This comprehensive strategy aims to significantly
improve the models’ functionality in Arabic nego-
tiation contexts, tackling the nuances and complex-
ities that are characteristic of real-life interactions.

This study not only highlights a prevalent issue
across LLMs but also proposes a scalable solution
pathway, as evidenced through the application to
models like GPT-3.5 Turbo, Gemini, LLaMA 2,
and BARD. The enhancements developed through
this research endeavor are expected to markedly
boost the performance of these models, contribut-
ing to the advancement of AI applications in Arabic

language tasks. By showcasing the adaptability and
effectiveness of our methodologies, this work en-
courages further exploration into improving LLMs
for greater linguistic diversity and cultural sensitiv-
ity.

3.1 Experimental Evaluation of GPT-3.5
Turbo in Arabic Negotiation Scenarios

To rigorously evaluate GPT-3.5 Turbo’s proficiency
in Arabic negotiation, we employed a structured
simulation scenario. The prompt given to the model
initiated a role-play negotiation game involving two
characters, Amani and Samir, each with different
valuations for a set of items: a book, three hats, and
a ball. The challenge for the model was to simulate
both characters’ negotiations to maximize the value
for each based on their individual item valuations.

The model was instructed to autonomously play
out the negotiation between Amani and Samir.
Each character’s valuation for the items was dis-
tinctly set: Amani valued the book, hats, and ball
differently from Samir. The negotiation involved a
series of exchanges where each character alternated
in making changes to their inventory based on the
agreed-upon item distribution. The goal was to
reach an agreement that maximizes value for both
parties, with a final ’agreement’ statement conclud-
ing the negotiation and a scoring system evaluating
the outcome.

We conducted ten separate runs of this negotia-
tion scenario. In each run, the model was tasked to
simulate the dialogue, decision-making, and inven-
tory adjustments for both characters.

Despite the model’s advancements, it struggled
in key areas during the negotiation simulations.
The assessment focused on the model’s capacity for
logical mathematical operations, common-sense
reasoning, and maintaining pronoun consistency in
the context of Arabic negotiation, as shown in the
Appendix. The results revealed that these targeted
areas still presented significant challenges, under-
lining the need for further refinement in the model’s
handling of complex negotiation scenarios.

This experimental setup allowed for a compre-
hensive evaluation of GPT-3.5 Turbo’s negotiation
capabilities in a complex, multi-faceted Arabic ne-
gotiation scenario. It provided insights into the
model’s linguistic agility, reasoning proficiency,
and decision-making abilities in a nuanced setting.
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3.2 Dataset Creation

For the creation of a comprehensive dataset, we uti-
lized GPT-4 to synthesize a diverse array of negoti-
ation dialogues, which included a total of 1,400 ne-
gotiation scenarios. Although this dataset is smaller
than some English-based negotiation datasets, our
dataset was carefully designed to capture the lin-
guistic and cultural subtleties of Arabic negotia-
tions. These subtleties include indirect speech, rich
morphological structures, and complex pronoun
usage, which make Arabic negotiations inherently
more intricate.

In generating the dataset, GPT-4 was prompted
with carefully crafted instructions tailored to each
dialogue category. For regular negotiation dia-
logues, prompts were designed to elicit typical
buyer-seller interactions. In arithmetic-based sce-
narios, prompts included specific numerical con-
straints and calculations. Chain of Thought di-
alogues were prompted to encourage sequential
reasoning, while pronoun consistency challenges
included scenarios with varying gender contexts.
The combined challenges were prompted with com-
plex situations requiring the application of multi-
ple skills simultaneously. These precise prompts
ensured that the generated dialogues effectively
targeted the desired negotiation aspects, thereby
creating a rich and varied dataset for training and
testing the model.

The dataset was stratified into distinct categories
to systematically address various aspects of negoti-
ation skills:

1. Regular Negotiation Dialogues (200 Exam-
ples): These are standard negotiation scenar-
ios to establish a baseline of the model’s per-
formance.

2. Arithmetic-Based Negotiation (200 Exam-
ples): Scenarios that require the model to per-
form precise mathematical operations within
the negotiation context.

3. Chain of Thought (COT) Dialogues (200
Examples): These dialogues are designed to
assess the model’s ability to follow and gener-
ate a sequence of reasoning steps.

4. Pronoun Consistency Challenges (200 Ex-
amples): Dialogues that specifically test the
model’s use of gender pronouns accurately
and consistently.

5. Combined Challenges: We also included di-
alogues that combine these elements:

(a) Arithmetic + COT (200 Examples)
(b) Arithmetic + Pronoun (200 Examples)
(c) COT + Pronoun (200 Examples)

From this synthesized dataset, we allocated
1,000 examples for training and reserved 400 for
testing, ensuring a broad coverage of scenarios.
The testing examples were randomly and equally
sampled from the dataset to provide a balanced
representation of each challenge during model eval-
uation.

This meticulous approach to dataset creation was
fundamental in developing a nuanced understand-
ing of the model’s capabilities and guiding the fine-
tuning process to specifically enhance performance
in the identified areas of difficulty.

4 Fine-Tuning GPT-3.5 Turbo

The initial dataset, comprised of dialogues syn-
thesized by GPT-4, underwent conversion into a
format that mirrors chat-based negotiation conver-
sations. This conversion was pivotal to align the
dataset with the inherent conversational dynam-
ics of negotiations, thereby facilitating a training
regime that closely reflects real-world interaction
patterns for the model.

Subsequently, the base model of GPT-3.5 Turbo
was subjected to supervised fine-tuning on a spe-
cialized corpus encompassing 1.9 million tokens,
spanning three epochs. This extensive training was
vital for the model to acclimate to the complexities
embedded within negotiation dialogues. A fine-
tuning approach was adopted, employing a learning
rate multiplier set at 2.0 and a dynamic batch size,
which were integral to the adaptive optimization
strategy aimed at enhancing the model’s learning
efficacy from a diverse array of dialogues. Upon
completion of training, the model attained an aver-
age accuracy of 0.89 coupled with a training loss
averaging 0.395. These metrics are indicative of
the model’s substantial acquisition and retention of
the structural intricacies of negotiation dialogues.

5 Experiments and Evaluation

5.1 Evaluation of the Fine Tuned Model

The evaluation of the fine-tuned GPT-3.5 Turbo
model entailed utilizing prompts from a curated
testing dataset to elicit negotiation dialogues, which
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were then generated by the model under a 3,000-
token limit. These outputs were compared to the
testing set’s dialogues based on predefined metrics
— providing a multifaceted view of the model’s per-
formance in simulated Arabic negotiation contexts.

For evaluation metrics that cannot be automati-
cally quantified, we employed GPT-4 to assist in
the assessment process. This approach allowed us
to interpret and analyze components such as nego-
tiation strategies and language nuances that are not
readily evaluated through algorithmic means. This
methodological choice adds a layer of qualitative
analysis to our quantitative framework, enriching
the evaluation of the model’s performance in con-
ducting Arabic negotiations.

To comprehensively assess the fine-tuned GPT-
3.5 Turbo model’s performance in Arabic negotia-
tion dialogues, we established a multi-dimensional
evaluation framework. This framework encom-
passes metrics across negotiation success, language
proficiency, and arithmetic reasoning:

1. Negotiation Performance Metrics:

(a) Negotiation Success Rate: Measures
the frequency at which the model reaches
a successful agreement within the simu-
lated negotiation scenarios.

(b) Price Agreement Analysis: Evaluates
the prices from the model’s generated di-
alogues against those in the testing set.
This analysis was crucial to determine if
the model had effectively applied negoti-
ation strategies as a buyer, seller, or both.
The aim was to see whether the model’s
generated prices showed an improvement
or remained unchanged, indicating the ef-
fectiveness of the fine-tuning process in
enhancing the model’s negotiation strat-
egy implementation.

(c) Discrepancy in Negotiated Prices: As-
sess the differences between the prices
negotiated in the expected and generated
dialogues. This metric scrutinizes the
degree to which the fine-tuned model ad-
justs prices from initial offers to final
agreements, in comparison with the out-
comes anticipated by the testing set. It
serves as an indicator of the model’s com-
petency in executing financially sound
negotiation strategies and its sensitivity
to the contextual value assigned to items

within the negotiation scenarios.
(d) Average Response Length: Assesses

the verbosity of the model’s responses,
indicating its ability to communicate ef-
ficiently and stay on point during negoti-
ations.

2. Language Proficiency Metrics:

Pronoun Consistency: This metric evaluates
the model’s use of gender pronouns in Arabic,
ensuring they align accurately with the context
and participants’ genders.

3. Arithmetic Reasoning Metrics:

Arithmetic Capabilities: Focuses on the
model’s ability to perform and apply arith-
metic operations correctly within the context
of negotiation dialogues, an essential compo-
nent for quantitative reasoning in negotiations.

5.2 Evaluation of Negotiation Metrics
5.2.1 Response Length and Efficiency
Our evaluation employed boxplot visualizations to
compare dialogue lengths between the expected
outcomes in the testing dataset and the generated
dialogues by the fine-tuned GPT-3.5 Turbo model.
The boxplots in Figure 1 depict a noticeable in-
crease in the length of generated dialogues, where
the model consistently produced a greater average
word count compared to the testing dataset.

This increment suggests that the model has
achieved a higher level of dialogue complexity,
engaging in extended exchanges indicative of a
more sophisticated negotiation strategy. The statis-
tical spread in the boxplots, reflected by a wider
interquartile range, points to the model’s diverse
negotiation approaches. This diversity, along with
significant outliers, hints at the model’s adaptive
and multifaceted nature, akin to human negotiation
tactics. The median of the generated dialogues,
exceeding that of the expected responses, further
reinforces the model’s inclination towards more
complex negotiation constructs.

5.2.2 Negotiation Success Rate and Level of
Agreement

To systematically evaluate the success rate and
level of agreement in negotiations, our methodol-
ogy leveraged the advanced natural language under-
standing capabilities of GPT-4. Each dialogue was
parsed by the model, which was prompted to con-
sider the dialogue’s content holistically to assess
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Figure 1: Boxplot Comparison of Dialogue Length in Negotiation Scenarios

negotiation success and agreement level. Success
was determined by the presence of explicit affirma-
tions or mutual concessions within the dialogue,
while the level of agreement was appraised by ex-
amining the congruity between proposed terms and
final outcomes. This evaluation was operational-
ized to automated the interaction with GPT-4, send-
ing dialogues and parsing responses to quantify the
negotiation outcomes. By automating this process,
we ensured consistency and scalability in our eval-
uations, allowing for a robust analysis of the fine-
tuned model’s performance across a large dataset.

In evaluating the fine-tuned GPT-3.5 Turbo
model’s proficiency in Arabic negotiation dia-
logues, our analysis revealed significant findings.
The negotiation success rate, as depicted in the Fig-
ure 2, showed that the fine-tuned model slightly
outperformed the expected outcomes, indicating an
improvement in successfully concluding negotia-
tions. These results were statistically corroborated
by McNemar’s test, which yielded a p-value of
0.0233, confirming that the differences observed
were significant.

Conversely, the level of agreement between the
generated and expected dialogues remained almost
consistent (as shown in Figure 3), with McNe-
mar’s test revealing a p-value of 1.0. This indicates
that while the fine-tuning process enhanced the
model’s ability to successfully negotiate, it main-
tained the quality of agreement as per the expected
standards. These results collectively suggest that
the fine-tuning not only fortified the model’s negoti-

ation capabilities but did so without compromising
the depth and mutual satisfaction of the agreements
reached.

5.2.3 Expected and Generated Negotiation
Prices

In the analysis of negotiation outcomes, our
methodology incorporated a careful examination
of the price scales to ensure comparability between
the generated and expected dialogues. This step
was crucial in cases where bulk pricing could lead
to scale discrepancies. Following this, GPT-4 as-
sisted in extracting the final prices for a direct com-
parison. Manual review was conducted to verify the
consistency of pricing scales and to identify the use
of buyer or seller negotiation tactics within each
dialogue. This meticulous approach allowed us
to ascertain whether the fine-tuned model success-
fully applied negotiation strategies, and whether it
achieved price outcomes that were more favorable
compared to the expected dialogues, indicating an
advanced strategic capability in negotiations.

Figure 4 showcases the frequency distribution
of price prediction accuracy compared to the ne-
gotiation tactics used, categorized into instances
where the generated price was higher, lower, or
the same as the expected price. Notably, when
seller tactics were employed, the generated price
was more frequently higher than expected, which
may indicate a model bias towards seller optimiza-
tion strategies. In contrast, the use of buyer tactics
correlates with a lower generated price, suggest-
ing the model’s effectiveness in emulating buyer
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Figure 2: Bar Chart of Negotiation Success Rate

Figure 3: Bar Chart of Level of Agreement

negotiation behavior. When both tactics were con-
sidered, the generated prices tended to be the same
as expected, illustrating the model’s balanced ap-
proach in scenarios where a blend of tactics was
used. These outcomes reflect the model’s nuanced
understanding of different negotiation roles and its
ability to adjust prices accordingly

5.3 Evaluation of Pronoun Consistency
Findings

To evaluate the model’s proficiency in Arabic pro-
noun consistency, we utilized GPT-4’s sophisti-
cated language processing capabilities. GPT-4 was
tasked with analyzing the dialogues generated by
the fine-tuned GPT-3.5 Turbo model to ensure ac-
curate use of gender pronouns.

As seen in Figure 5, the unanimous ’Yes’ re-
sponses in all three bar charts dedicated to pro-
noun consistency — whether in dialogues involv-
ing Chain of Thought (COT), arithmetic, or stan-

dard exchanges — highlight the model’s excep-
tional adherence to correct pronoun use. This con-
sistent accuracy across various dialogue scenarios
is a testament to the success of the fine-tuning pro-
cess, showcasing the model’s sophisticated grasp of
the intricate pronoun rules in the Arabic language.

5.4 Evaluation of Arithmetic Capabilities

Figure 6 illustrate the outcomes of the model’s
arithmetic correctness across different dialogue sce-
narios, assessed with the help of GPT-4. In the
dialogues involving Chain of Thought (COT) and
arithmetic, a vast majority of the model’s responses
were mathematically correct, indicating a strong
grasp of numerical concepts within the negotia-
tion context. The near-perfect performance in Pro-
noun Math Dialogues suggests that the model’s
fine-tuning process has effectively enhanced its
computational accuracy. These results affirm the
model’s improved arithmetic capabilities, which
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Figure 4: Model Price Prediction Accuracy vs Negotiation Tactics

Figure 5: Comprehensive Pronoun Consistency Evaluation

Figure 6: Evaluation of Arithmetic Correctness Across Dialogue Types

are critical for real-world negotiation tasks that of-
ten involve complex numerical reasoning
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5.5 Comparative Analysis of Original vs.
Fine-Tuned Model Outputs

Our comparative analysis between the base and
fine-tuned versions of GPT-3.5 offers significant
insights into the role of contextual accuracy and
prompt adherence in AI-generated dialogues. The
base model often strayed from the prescribed
prompts, diverging into unrelated topics or inac-
curately modifying the context of the item prices.
Such deviations emphasize the limitations of the
base model, making quantitative comparisons less
effective. The fine-tuning process, however, has no-
tably improved the model’s performance, as seen
in the enhanced precision in following prompts
and maintaining the continuity and relevance of
dialogues within the set negotiation scenarios.

The stark contrast observed in the outputs of
the two models underscores the effectiveness of
fine-tuning in elevating the model’s understand-
ing and adherence to complex prompts. This is
vividly illustrated in the Appendix, where the fine-
tuned model adeptly stays on topic, negotiating
within the bounds of a specific scenario, while the
base model shifts context erratically. Such quali-
tative differences highlight the refined capability
of the fine-tuned model to produce dialogues that
are not only contextually relevant but also coherent
and closely aligned with the nuances of the given
scenarios. The improvement in contextual under-
standing and dialogue relevance is a testament to
the fine-tuning’s success in enhancing the model’s
practical applicability in real-world settings, where
adherence to contextual nuances is paramount.

In addition to the differences in context adher-
ence, the base and fine-tuned models also diverged
in their handling of currency, as shown in the Ap-
pendix. In one scenario, while the fine-tuned model
maintained the specified Saudi Riyal currency in a
negotiation dialogue about a custom-tailored suit,
the base model unexpectedly shifted the conversa-
tion to a different currency, discussing prices in dol-
lars. This shift not only deviated from the prompt
but also demonstrated a lack of contextual aware-
ness. Such an example underlines the enhanced
precision of the fine-tuned model in adhering to
specific details of the scenario, including currency,
which is crucial for realistic and coherent negotia-
tion dialogues.

6 Conclusions

In conclusion, this study contributes to the broader
field of Arabic NLP and AI negotiation, demon-
strating the effectiveness of fine-tuning techniques
in overcoming language-specific challenges in
LLMs. By improving Arabic dialogue negotiation,
we not only enhance AI’s utility in Arabic-speaking
contexts but also pave the way for future advance-
ments in LLM applications across other underrep-
resented languages. Our findings underscore the
significant potential of targeted model refinement
for developing more sophisticated and culturally
aware AI negotiation tools.

Our research has successfully demonstrated the
potential of fine-tuning GPT-3.5 for advancing Ara-
bic dialogue negotiation, achieving significant im-
provements that surpass the capabilities of even
GPT-4 in specific aspects of negotiation dialogues.
Through meticulous methodology and rigorous
evaluation, we have not only addressed the ini-
tial limitations of GPT-3.5 in arithmetic operations,
common-sense reasoning, and pronoun consistency
but have also enhanced the model’s overall negoti-
ation efficacy. The fine-tuned GPT-3.5 model now
facilitates longer negotiation dialogues, indicative
of its ability to engage in more complex and de-
tailed discussions.

Moreover, our findings reveal that the model has
mastered improved negotiation tactics, enabling
it to strategically adjust offers to secure lower or
higher prices when bargaining. This advancement
represents a significant leap in the model’s strate-
gic reasoning and its understanding of negotiation
dynamics, mirroring the nuanced tactics employed
by skilled human negotiators.

Real-world applications of this fine-tuning ap-
proach are broad and impactful. In the context of
e-commerce, fine-tuned models can be deployed
to automate negotiations over product pricing, dis-
counts, or custom service offerings, adapting dy-
namically to buyer preferences. In the legal and
diplomatic sectors, these models have the poten-
tial to assist in drafting agreements or mediating
negotiations, helping parties with conflicting inter-
ests reach mutually satisfactory resolutions. Addi-
tionally, the integration of these models into cus-
tomer service platforms can enable automated yet
nuanced interactions, such as resolving billing dis-
putes or negotiating service plans. The ability of
these models to understand and respect linguis-
tic and cultural nuances positions them as espe-
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cially valuable in cross-cultural business negotia-
tions, where sensitivity to communication styles is
crucial for success.

The contributions of this study extend beyond
the immediate enhancements to the GPT-3.5 model,
laying a foundation for future research in AI-driven
negotiation in underrepresented languages. By
developing a comprehensive Arabic negotiation
dataset and demonstrating the effectiveness of tar-
geted fine-tuning techniques, we have opened new
avenues for exploring linguistic and cultural intrica-
cies in AI negotiations. We are also in the process
of preparing this dataset for public release, ensur-
ing that it will be accessible to other research teams
for reproducibility and further improvements. As
we look to the future, we are encouraged by the
potential for further advancements in this field, in-
cluding the adaptation of these techniques to other
languages and contexts, the integration of multi-
modal negotiation capabilities, and the exploration
of ethical considerations in automated negotiations.

This research underscores the importance of con-
tinued innovation in language model development,
especially in enhancing non-English language capa-
bilities. As we push the boundaries of what AI can
achieve in understanding and facilitating human-
like negotiations, we are not only expanding the
technical capabilities of these models but also en-
riching the ways in which they can serve diverse
global communities. The journey ahead is promis-
ing, with the prospect of creating AI systems that
can navigate the complexities of human language
and culture with unprecedented skill and sensitiv-
ity.
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Instances of Arithmetic Inaccuracy in GPT-3.5 Negotiation Dialogues along with its English Translation
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Instances of Pronoun Inconsistency and Language Proficiency in GPT-3.5 Negotiation Dialogues along with its
English Translation
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Illustration of Chain of Thought (COT) Limitations in GPT-3.5 along with its English Translation
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Example of a Regular Negotiation Dialogue in Arabic with English Translation
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Arithmetic-Based Negotiation Dialogue Example in Arabic and its English Translation
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Chain of Thought Dialogue in Arabic with its Translation Showcasing Sequential Reasoning

336



Example of Pronoun Consistency in Arabic Negotiation Dialogue with English Translation
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Combined Arithmetic and COT Negotiation Dialogue in Arabic with English Translation
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Combined Arithmetic and Pronoun Consistency Negotiation Dialogue in Arabic with English Translation
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COT and Pronoun Consistency Integrated Negotiation Dialogue in Arabic and its English Translation
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Comparative Dialogue Outputs from Original and Fine-Tuned Models - This figure presents side-by-side dialogue
examples illustrating the adherence to the negotiation scenario and the contextual relevance achieved by the fine-
tuned model versus the base GPT-3.5 model.
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Example Dialogues Comparison - This figure presents a side-by-side comparison of dialogue outputs from the base
and fine-tuned models, showcasing the adherence to the negotiation scenario and currency specifications
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Abstract 

Despite the growing importance of Arabic 

as a global language, there is a notable lack 

of language models pre-trained exclusively 

on Arabic data. This shortage has led to 

limited benchmarks available for assessing 

language model performance in Arabic. To 

address this gap, we introduce two novel 

benchmarks designed to evaluate models' 

mathematical reasoning and language 

understanding abilities in Arabic. These 

benchmarks are derived from a General 

Aptitude Test (GAT) called Qiyas exam, a 

standardized test widely used for university 

admissions in Saudi Arabia. For validation 

purposes, we assess the performance of 

ChatGPT-3.5-turbo and ChatGPT-4 on our 

benchmarks. Our findings reveal that these 

benchmarks pose a significant challenge, 

with ChatGPT-4 achieving an overall 

average accuracy of 64%, while ChatGPT-

3.5-turbo achieved an overall accuracy of 

49% across the various question types in 

the Qiyas benchmark. We believe the 

release of these benchmarks will pave the 

way for enhancing the mathematical 

reasoning and language understanding 

capabilities of future models tailored for the 

low-resource Arabic language. 

1 Introduction 

Evaluating the capabilities of large language 

models (LLMs) across different tasks like 

mathematical reasoning and natural language 

understanding is a critical area of research as these 

general-purpose AI systems become more widely 

used. Developing comprehensive evaluation 

benchmarks, especially for languages beyond 

English, is crucial for driving model 

improvement.  

Arabic, a Semitic language with complex 

morphology and written from right-to-left, is 

spoken by over 400 million people across the 

Arab world (Kaye, 2018). Despite its status as a 

global language of importance, Arabic is 

considered low-resource in the field of natural 
language processing (Almansor et al., 2020). 

There is currently a shortage of LLMs pre-trained 
exclusively on large Arabic datasets. This has 

resulted in limited benchmarks available for 

robustly assessing Arabic LLM performance. 

While some prior work has translated English 

benchmarks, there is a need for high-quality, 

natively developed Arabic evaluation resources. 

The lack of robust, Arabic-native benchmarks 

focused on key capabilities like math reasoning 

and language understanding represents a 

significant gap in the field. Having professionally 

designed evaluation resources in this domain 

could accelerate the development of higher-

performing Arabic language models. This work 

makes two key contributions to address this need:  

1) It introduces Qiyas, a benchmark suite for 

comprehensively evaluating LLM 

performance on mathematical and language 

tasks in the Arabic language. Qiyas consists of 

two components - a quantitative section 

assessing math skills and a verbal section 

evaluating Arabic language understanding 

abilities.  

2) Using the Qiyas benchmark, the performance 

of the latest ChatGPT models (versions 3.5-

turbo and 4) is extensively evaluated across 

zero-shot, one-shot, and few-shot settings to 

establish strong Arabic language baselines.  

These benchmarks are derived from the Qiyas 

exam, a standardized exam widely used for 

university admissions in Saudi Arabia, ensuring 

their quality has been validated by educational 

experts. The results shed light on current LLM 

limitations for the Arabic language and highlight 

the impact of varied training data and prompting 

approaches. The release of Qiyas paves the way 

for advancing Arabic LLMs' mathematical 

reasoning and language understanding 
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capabilities on these challenging, nationally 

representative Arabic tasks. 

The remainder of the paper is structured as 

follows: The 'Background and Literature Review' 

section provides an overview of the Qiyas exam 

and discusses previous efforts in evaluating large 

language models (LLMs) in standardized exams. 

The 'Dataset Description' section describes the 

dataset used in the study. The 'Evaluation 

Approach' section outlines the methodology used 

to evaluate the performance of ChatGPT on the 

quantitative section assessing math skills and the 

verbal section evaluating Arabic language 

understanding abilities. The 'Results and 

Discussion' section delves into the benchmark 

results, analyzing the performance of both 

ChatGPT-3.5-turbo and ChatGPT-4 models. The 

‘Error Analysis’ section analyzes common error 

types made by both ChatGPT-3.5-turbo and 

ChatGPT-4 models. Finally, the 'Conclusion' 

section summarizes the key findings of the paper 

and provides an outlook on future research. 

2 Background and Literature Review 

The National Centre for Assessment (aka Qiyas) 

is a significant institution in education and 

assessment. It is responsible for conducting 

standardized tests to assess the scholastic 

achievement of students applying for universities 

(Education and Training Evaluation Commission, 

n.d.). 

Qiyas is responsible for developing and 

implementing over 90 standardized and 

professional tests for the public and private 

sectors. It has over 1,500 test models and an item 

bank of over 230,000 questions. The tests consist 

of two sections: the verbal and the quantitative, 

focusing on students' analytical and deductive 

skills, helping them assess their learning capacity. 

The center also provides linguistic tests, including 

the English language efficiency test and the 
Arabic language test for non-native speakers. 

Additionally, it presents an assessment test for 

talented and creative students, as well as 

vocational tests, the most important of which is 

the Vocational Standards Test for Teachers 

(OECD & The World Bank, 2022). 

Recent studies have evaluated the performance 

of large language models like ChatGPT on 

standardized exams across different domains. In 

the medical domain, ChatGPT has shown 
promising results, with studies indicating that it 

has reached the standard of passing third-year 

medical student exams (Temsah et al., 2023). 

Furthermore, research has demonstrated 

ChatGPT's success in passing the gold-standard 

US medical exam, suggesting significant potential 

applications in medicine (Chow et al., 2023). 

Additionally, ChatGPT has been compared to 

other AI models, such as Bard, demonstrating the 

potential of AI models to match or even exceed 

human standards in tasks like processing and 

applying medical knowledge at a postgraduate 

level (Fowler et al., 2023). 

In the educational domain, ChatGPT has 

excelled in standardized tests such as the Test of 

Understanding in College Economics, scoring in 

the 91st to 99th percentile (Geerling et al., 2023). 

Furthermore, studies have highlighted ChatGPT's 

proficiency in various standardized admission 

tests in the UK, showcasing its potential as an 

innovative tool for education and test preparation 

(Giannos & Delardas, 2023). The model has also 

shown capabilities in history exams and has been 

compared to students' scores, indicating a 

commendable level of proficiency in the subject 

(Nguyen et al., 2023). 

As for the Arabic language, Alkaoud (Alkaoud, 

2024) introduces a new benchmark for evaluating 

large language models in English and Arabic. The 

author built an evaluation dataset based on the 

General Aptitude Test (GAT) to measure the 

linguistic capabilities of LLMs. The study 

demonstrates that ChatGPT-4's Arabic 

capabilities are significantly better than 

ChatGPT's. 

In summary, while large language models show 

promising results on various exams, there remains 

a need for robust, natively developed Arabic 

benchmarks to rigorously evaluate mathematical 

reasoning and language understanding abilities 

tailored for the Arabic context. 

3 Dataset Description 

The Qiyas exam includes two sections: 
quantitative and verbal, as mentioned in the 

previous section. All questions in both sections 

are of multiple choice with four choices for each 

question. The quantitative section comprises of 

questions to test students’ intellectual abilities in 

math, geometry, algebra, and data analysis. The 

verbal section comprises of questions to test 

students’ linguistic abilities in semantic relations, 

linguistic structures, and comprehension 

(Education and Training Evaluation Commission, 
n.d.).  

In the quantitative section, there are four types 

of questions, as outlined by (ETEC, n.d.):  
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1) Math: Transforming verbal statements into 

solvable equations that involves basic 

arithmetic operations such as addition, 

subtraction, multiplication, and division. 

2) Geometry: Applying geometric formulas and 

principles encompassing properties of 

triangles, area computations, angle 

measurements, and related concepts. 

3) Algebra: Analyzing and resolving a set of 

algebraic equations or expressions to find the 

numerical value of an unknown variable, 

discern numerical sequences and patterns, 

among other related concepts. 

4) Statistics: Applying fundamental principles in 

probability theory and statistics that involves 

utilizing mathematical concepts to analyze, 

interpret data, and make predictions. 

In the verbal section, there are five types of 

questions: 

1) Reading Comprehension: Comprehending 

reading passages and responding to questions 

that pertain to the content of the passage. 

2) Sentence Completion: Extracting the 

appropriate word from the choices to 

complete a sentence with a missing word. 

3) Contextual Error: Identifying the contextual 

discrepancy in the sentence and pinpointing 

the word whose meaning contradicts the 

overall meaning of the sentence (The error is 

not a spelling or grammar error). 

4) Verbal Analogy: Recognizing the connection 

between the two words in the question, then 

evaluating them based on analogous choices 

provided. 

5) Anomalous Word: Detecting the distinct word 

that is not related to the connected choices by 

a particular association. 

The appendix shows an example of each 

question type with its translation to English. The 

questions used in the evaluation were written by 

domain experts experienced in designing and 

grading Qiyas exams. Figure 1 shows the 

distribution of quantitative and verbal questions in 

the dataset, resulting in a total of 2,409 questions. 

The verbal section, consisting of five question 

types, is larger than the quantitative section, which 

has four question types. As a result, the verbal 

section contains 1,395 questions, while the 

quantitative section includes 1,014 questions.  In 

the quantitative section, the number of questions 

related to math and algebra surpasses those in 

geometry and statistics. The reason is that math 

and algebra questions do not necessitate reliance 

on charts or plots for answering. Unlike geometry 

and statistics questions, which often involve visual 

representations. We focused on questions that do 

not rely on visual representations, as indicated by 

a previous study (Feng et al., 2024), which 

revealed that ChatGPT-4 struggled to retain and 

process visual information, highlighting the 

necessity of adding image descriptions in the 

evaluation of ChatGPT-4. It is important to note 

that the Qiyas exam does not include image 

descriptions, emphasizing that the objective of the 

evaluation aims to mirror the examination process 

of students. On the other hand, the verbal section 

exhibits a relatively balanced distribution of 

question types, except for reading comprehension, 

which demonstrates a lower prevalence. 

4 Evaluation Approach 

Our evaluation approach starts by formulating 

a prompt for each question within our dataset. The 

prompts used were the exact prompts in Arabic 

utilized in the official Qiyas exam as provided by 

authorized guides (ETEC, n.d.). This approach 

also aligns with the examination methodology 

experienced by students, mitigating the risk of 

injecting our own subjective influences into the 

prompts. Due to ChatGPT's tendency to generate 
lengthy explanations for questions, which 

complicates the process of extracting the answer, 

we have introduced the instruction "Write the 

answer only" in the prompt. This measure is 

intended to ensure that only the answer is 

provided without additional explanation. While 

ChatGPT-4 complied with this directive, 

ChatGPT-3.5 persisted in including explanations 

in most answers, thus failing to adhere to the 

specified command. 
In the evaluation phase, we employed 

OpenAI’s API (ChatGPT−3.5-turbo and 

ChatGPT-4) to prompt and extract corresponding 

 

          (a)  Quantitative                      (b) Verbal 

Figure 1: The distribution of Question types in the 

dataset in (a) for Quantitative and (b) for Verbal. 
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answers (OpenAI Platform, n.d.). We initiated the 

evaluation of the models by employing zero-shot 

prompts, but we subsequently extended it by 

incorporating one-shot and 3-shot prompts. This 

adjustment was made to investigate the impact of 

varying prompt complexities on the model's 

performance and to explore how providing 

additional context influences the model's 

responses. The examples used in both the one-

shot and 3-shot prompts remained consistent 

across all questions. Figure 2 provides an example 

of the prompt methodology used, noting that the 

prompts were originally in Arabic but translated 

to English for clarity purposes. 

5 Results and Discussion 

Table 1 displays the results of our experiments on 

ChatGPT-4 and ChatGPT-3.5-turbo. The 

evaluation metric used is the accuracy. 

5.1 Quantitative Section 

In the quantitative section, ChatGPT-4 excelled in 

math and statistics with zero-shot prompts, 

indicating its strong capability in answering these 

types of questions without providing additional 

context. However, in geometry and algebra, 

ChatGPT-4 exhibited its peak performance with 

an accuracy of 81% and 63% respectively when 

presented with 3-shot prompts, suggesting that its 

capabilities were optimized when provided with 

more context, enabling it to leverage additional 

information to enhance its proficiency in these 

areas.  

On the other hand, ChatGPT-3.5-turbo's 

accuracy did not surpass 65% across all prompt 

settings. Its peak performance of 65% accuracy 

was attained in geometry with the 3-shot prompt. 

Notably, ChatGPT-3.5-turbo achieved its best 

accuracy in statistics questions when provided 

with 3-shot prompts, contradicting ChatGPT-4's 

results for the same question type, where it 

excelled with zero-shot prompts. The 

contradictory results observed could be attributed 

to differences in their training data and model 

architectures. ChatGPT-4’s larger training corpus 

and advanced architecture might enable it to 

leverage patterns and context more effectively in 

zero-shot settings, while ChatGPT-3.5-turbo 

benefits from additional contextual information 

provided in few-shot prompts. 

5.2 Verbal Section 

In the verbal section, ChatGPT-4 demonstrated 

notable proficiency in reading comprehension, 

achieving an accuracy peak of 80% with one-shot 

and 3-shot prompts. This showcases that 

providing context and examples can positively 

influence the results in language-related tasks. 

However, it is worth noting that ChatGPT-4 also 

excelled in reading comprehension with zero-shot 

prompts, indicating its strong language 

understanding capabilities even without 

supplementary examples. We believe that these 

exceptional results were achieved due to the 

nature of the question and its dependency on the 

passage to draw the connections required to 

answer questions accurately. Following closely, 

sentence completion yielded an accuracy of 74% 

with the 3-shot prompt.  

Conversely, ChatGPT-3.5-turbo exhibited its 

highest accuracy across most question types when 

employing one-shot prompts, except for 

anomalous word, where it performed best with 3-

shot prompt, and contextual error where it 

achieved the same accuracy for all prompt 

settings. 

5.3 Summary 

The overall results show that ChatGPT-4 

outperforms ChatGPT-3.5-turbo in a wide variety 

of linguistic and mathematical domains with a 

total average accuracy of 64%, whereas GPT-3.5-

 

Figure 2: Example of translated prompt questions 

with different prompt settings. 
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turbo achieved an average total accuracy of 49% 
in all prompt settings.  

Compared to Alkaoud benchmark study on the 

Arabic language (Alkaoud, 2024), our dataset size 

surpasses his study's dataset, which comprised of 

only 468 Arabic verbal questions, whereas our 

dataset comprised of 2,407 both quantitative and 

verbal questions. This larger dataset enables a 

more robust evaluation of these models' 

capabilities across different question types and 

prompts. Alkaoud followed a comparison 

approach between the Arabic and English 

language with zero-shot prompt setting, whereas 

we focused solely on the Arabic language with 

different prompt settings to evaluate the models' 

performance. In line with Alkaoud's findings, 

ChatGPT-4 demonstrated superior performance 

in reading comprehension, achieving 74% 

accuracy, while our results achieved 77% 

accuracy in the same question type with zero-shot 

prompts. In our experiments in the verbal section, 

the lowest accuracy achieved with zero-shot 

prompts was in the contextual error question type, 

reaching an accuracy of 56%. In contrast, 
Alkaoud's research achieved a higher accuracy of 

63.37% in the same question type. We suspect 

that this variance in results could be attributed to 

Alkaoud utilizing a publicly accessible dataset, 

suggesting that ChatGPT might have been trained 

on it, while our dataset remains non-public. 

6 Error Analysis 

To gain a deeper understanding of the errors 

made by both models and to identify any patterns 

or common error types, we conducted a 

comprehensive error analysis on the zero-shot 

results for both ChatGPT-4 and ChatGPT-3.5-

turbo. The analysis, generated with the assistance 

of ChatGPT-4o (OpenAI Platform, n.d.),  aimed 

to categorize the errors and provide detailed 

insights into the specific challenges faced by each 

model. We also evaluated the performance of 

another language model, Gemini-pro by Google 

(Gemini Team et al., 2024), on the questions that 

were incorrectly answered by ChatGPT-4 and 

Section Question Type 

Models 

ChatGPT-4 ChatGPT-3.5-turbo 

0-Shot 1-Shot 3-Shot 0-Shot 1-Shot 3-Shot 

Quantitative 

 

Math 65% 61% 61% 51% 45% 48% 

Geometry 61% 80% 81% 57% 63% 65% 

Algebra 54% 61% 63% 41% 51% 48% 

Statistics 71% 63% 67% 42% 45% 55% 

Verbal 

Reading Comprehension 77% 80% 80% 63% 66% 64% 

Sentence Completion 72% 73% 74% 44% 73% 72% 

Contextual Error 56% 59% 43% 41% 41% 41% 

Verbal Analogy 58% 58% 59% 34% 37% 35% 

Anomalous Word 59% 59% 58% 47% 46% 49% 

 Total 63% 65% 63% 46% 51% 51% 

 Total Average 64% 49% 

Table 1:  Evaluation Results of ChatGPT-4 and ChatGPT-3.5-turbo 

 

Section Question Type 

Error Rate  

ChatGPT-4 ChatGPT-3.5-

turbo 

Common Error Types 

Quantitative 

 

Math 35% 49% Arithmetic Problems and Verbal Equations 

Geometry 39% 43% Triangle and Angle Properties 

Algebra 
46% 59% Solving for the Missing Variable and Algebraic Comparison 

Questions 

Statistics 
29% 58% Multiple Conditions Probability Questions and Combinatorics 

problems 

Verbal 

Reading 

Comprehension 

23% 37% 
Inference and Reasoning Questions 

Sentence Completion 28% 56% Misunderstanding of Sentence Structure and Context 

Contextual Error 44% 59% Synonym Differentiation and Contextual Understanding 

Verbal Analogy 42% 66% Selecting an Incorrect But Related Pair 

Anomalous Word 41% 53% Cultural and Contextual Knowledge 

Table 2: Error Analysis Results of ChatGPT-4 and ChatGPT-3.5-turbo 
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ChatGPT-3.5-turbo to determine if alternative 

models could perform better. Table 2 showcases 

the zero-shots error analysis results with the most 

common error types for each section. 

6.1 Quantitative Section Error Analysis 

In the quantitative section, Algebra questions 

resulted in the highest error rate for both models. 

Both models exhibited difficulty in solving 

complex equations for the missing variable. 

Additionally, they struggled with identifying the 

correct relationship (>, <, or =) between various 

algebraic expressions. This highlights the need for 

further development and incorporation of more 

diverse training data encompassing complex 

algebraic equations. Conversely, the models 

performed exceptionally well on problems 

involving simple and direct equations, suggesting 

that both models are adept at handling 

straightforward scenarios that lack complex 

transformations. 

The analysis of statistical tasks revealed a more 

nuanced picture. ChatGPT-4 achieved a 

significantly lower error rate compared to 

ChatGPT-3.5-turbo. Notably, ChatGPT-3.5-turbo 

encountered specific difficulties with probability 

questions and problems involving combinatorics. 

 

6.2 Verbal Section Error Analysis 

In the verbal section, Contextual Error 

questions resulted in the highest error rate for 

ChatGPT-4. Both models faced difficulty in 

differentiating between synonymous answer 

choices and comprehending the deeper context of 

the sentence. Our assumption suggests that 

synonyms might share similar statistical 

properties that may challenge the model in 

distinguishing the correct word in a specific 

context.  

On the other hand, Verbal Analogy questions 

resulted in the highest error rate for ChatGPT-3.5-

turbo. These questions require identifying the 

closest relationship between two given words 

from a set of answer choices. The difficulty 

appears to stem from the inherent ambiguity 

within the answer choices themselves. Since each 

answer choice likely shares some form of 

connection to the original word pair, the model 

struggles to pinpoint the most precise analogy.  

Further research is needed to explore how LLMs 

can be better equipped to handle tasks that require 

reasoning about subtle semantic relationships 

between words. 

6.3 Gemini-pro Results 

To evaluate the performance of other language 

models on the incorrectly answered questions by 

ChatGPT-4 and ChatGPT-3.5-turbo, we have 

provided the same questions to Gemeni-pro by 

Google (Gemini Team et al., 2024) and its 

response were compared to the originally 

incorrect outputs from ChatGPT-4 and ChatGPT-

3.5-turbo. 

Table 3 summarizes the evaluation results. We 

can see that Gemini-pro demonstrated promising 

performance in correctly answering most 

questions. Notably, Gemini-pro excelled in the 

Reading Comprehension question type, 

suggesting a strong capability for leveraging 

relevant background information for response 

generation.  

However, Gemini-pro's performance on verbal 

analogy questions was lower. Verbal analogy 

questions demand the model to grasp the 

relationship between word pairs and identify 

another pair with a similar connection. This task 

can be challenging for LLMs, as it necessitates not 

only understanding individual word meanings but 

also the intricate ways words can relate to each 

other. Interestingly, both ChatGPT-4 and 

Section Question Type # of Wrong Answers 

(ChatGPT-4) 

Gemini-pro 

(ChatGPT-4) 

Accuracy 

# of Wrong Answers 

(ChatGPT-3.5-turbo) 

Gemini-pro 

(ChatGPT-3.5-turbo) 

Accuracy 

Quantitative 
 

Math 128/370 30% 180/370 36% 

Geometry 55/142 44% 61/142 36% 

Algebra 168/374 27% 221/374 29% 

Statistics 37/128 19% 74/128 43% 

Verbal 

Reading 

Comprehension 

46/199 46% 73/199 56% 

Sentence 

Completion 

83/300 30% 168/300 38% 

Contextual Error 132/298 29% 176/298 34% 

Verbal Analogy 124/298 16% 197/298 26% 

Anomalous 
Word 

116/300 30% 160/300 39% 

Table 3: Gemini-pro effectiveness on incorrect answers from ChatGPT-4 and ChatGPT-3.5-turbo 
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ChatGPT-3.5-turbo also exhibited lower 

performance on this question type, potentially 

indicating a general limitation in current LLM 

technology. 

It is worth noting that Gemini-pro showed 

strength in following instructions by responding 

with the answer only without explanation or 

additional context. Unlike ChatGPT-4 and 

ChatGPT-3.5-turbo, which occasionally included 

extraneous information in their responses, 

Gemini-pro consistently provided only the answer 

to the question, as instructed. 

The result of this evaluation suggests that 

Gemini-pro is a promising LLM that shows 

particular strength in the Arabic language by 

being able to correctly answer a wide range of 

questions that were incorrectly answered by 

ChatGPT-4 and ChatGPT-3.5-turbo. 

7 Conclusion and Future Work 

This research paper introduces the Qiyas 

benchmark, a novel evaluation framework 

developed to comprehensively assess the 

mathematical reasoning and language 

understanding capabilities of large language 

models (LLMs) in the Arabic language. The 

Qiyas benchmark is a standardized General 

Aptitude Test (GAT) used for university 

admissions in Saudi Arabia, ensuring its quality 

and relevance to real-world assessment. 

The key findings of this paper are: 

1) ChatGPT-4 outperformed ChatGPT-3.5-turbo 

across both the quantitative (math) and verbal 

(language) sections of the benchmark. This 

suggests that the newer, more advanced model 

has made notable progress in Arabic language 

understanding and mathematical reasoning 

compared to its predecessor. 

2) The performance of the models varied 

depending on the prompt setting (zero-shot, 

one-shot, 3-shot). In general, providing more 
contextual information through one-shot and 

3-shot prompts improved the models' 

accuracy, particularly in the verbal section 

tasks like reading comprehension. 

3) The results highlight the current limitations of 

state-of-the-art LLMs in handling the 

complexities of the Arabic language, including 

its unique morphology and writing system. 

This underlines the need for more Arabic-

focused training data and model development 
efforts to enhance the mathematical and 

linguistic capabilities of future Arabic LLMs. 

The release of the Qiyas benchmark represents 

a significant contribution to the field, as it 

provides a robust, standardized evaluation 

framework for assessing the capabilities of Arabic 

language models. This resource can drive the 

development of more capable Arabic LLMs by 

serving as a benchmark for progress and 

identifying specific areas requiring further 

research and improvement. Future work includes 

expanding the dataset to include image-based 

questions, enabling the evaluation of multimodal 

models' ability to integrate language and visual 

understanding for Arabic-based tasks. 

Additionally, assessing a wider range of state-of-

the-art LLMs on the Qiyas benchmark will 

provide a more comprehensive understanding of 

the current capabilities and limitations of Arabic 

language AI systems. Overall, this work lays the 

foundation for advancing the state-of-the-art in 

Arabic language understanding and reasoning for 

large language models. 
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Appendix A. Verbal Section Sample Questions 

Question Type Question Translated Question 

Reading 

Comprehension 

اختيارات،   أربعالأسئلة التالية تتعلق بالنص الذي يسبقها، بعد كل سؤال  

أحدها صحيح. المطلوب هو قراءة النص بعناية، واختيار الإجابة 

. الصحيحة عن كل سؤال  
 الحمية القاسية 

هناك من يمارس الحمية القاسية دون أن يكتسب العادات الغذائية الجيدة 
 لذا يعود للسمنة مجددا  

 يتحدث النص عن: 

 أ( الحمية القاسية لا تؤدي لتخفيف الوزن 
 ب( الحمية القاسية نادرا ما تنتهي بالفشل 

 ج( الحمية تفيد الجسم حتى مع العادات الغذائية السيئة 

 د( غياب العادات الغذائية الجيدة يقلل من فائدة الحمية 

The following questions relate to the preceding text. After 

each question, there are four choices, one of which is 

correct. The task is to read the text carefully and select the 
correct answer for each question. 

The Harsh Diet 

Some people follow a harsh diet without acquiring good 

eating habits, so they return to obesity again. 

 
The text is talking about: 

A) Harsh diets do not lead to weight loss. 

B) Harsh diets rarely end in failure. 

C) Diet benefits the body even with bad eating habits. 

D) Lack of good eating habits reduces the effectiveness 

of the diet 

 

Sentence 

Completion 

اختيارات، أحدهما يكمل الفراغ أو   أربعتلي كل جملة من الجمل الآتية 

في الجملة إكمالا  صحيحا . المطلوب هو اختيار الإجابة   الفراغات

ة. الصحيح  
 

ر ...... رمي ....... في الطريق فعل غي  
 أ( الأقلام - تربوي                         ب( الأوراق  - صحي 

 ج( القاذورات - مُشين                     د( المخلفات –  حضاري 
  

Following each sentence are four choices, one of which 

completes the blank(s) in the sentence correctly. The task 

is to choose the correct answer. 
 

Throwing .... on the road is a(n) …. act. 

A) Pens - educational         B) Papers - healthy  

C) Trash - shameful           D) Waste - uncivilized 

Contextual 

Error 

لكل جملة مما يأتي أربع خيارات. المطلوب هو: تحديد الكلمة التي لا  

(المعنى العام للجملة. )الخطأ ليس إملائيا  ولا نحويا  يتفق معناها مع   

 

شخصية الفرد لها عدة صفات جسمية مثل حسن الهيئة وعقلية مثل  
 التفكير ونفسية مثل الصدق والطول 

 أ( التفكير                                         ب( الطول

 ج( جسمية                                        د( شخصية 

For each of the following sentences, there are four 

choices. The task is to identify the word that does not 

match its meaning with the overall meaning of the 

sentence. (The error is not related to spelling or grammar). 

 
The individual's character has several physical traits like 

good physique, mental traits like thinking, and 

psychological traits like honesty and height. 

A) Thinking                         B) Height  
C) Physical                          D) Character 

 

Verbal Analogy 

في بداية كل سؤال مما يأتي، كلمتان ترتبطان بعلاقة معينة، تتبعهما  

أزواج من الكلمات، أحدها ترتبط فيه الكلمتان بعلاقة مشابهة    أربعة

للعلاقة بين الكلمتين في بداية السؤال. المطلوب، هو: اختيار الإجابة  
 الصحيحة 

 

 بناء:هدم
 أ( قبل:بعد                                        ب( ندم:حزن 

 ج( نعاس:نوم                                    د( هدوء:سكون 

At the beginning of each question from the following, 

there are two words related in a certain way, followed by 

four pairs of words, one of which has a relationship 
similar to the relationship between the two words at the 

beginning of the question. The task is to choose the 

correct answer. 

 

Construction: Destruction 
A) Before: After                   B) Regret: Sadness  

C) Drowsiness: Sleep          D) Quietness: Stillness 

 

Appendix B. Quantitative Section Sample Questions 

Question Type Question Translated Question 

Math 

دفاتر من   9ريال فكم يكون ثمن  12دفاتر يعادل  6إذا كان ثمن 

؟نفس النوع  
 أ( ١٢                                         ب( ١٨

 ج( ٢٤                                        د( ٢٧

If the price of 6 notebooks is equivalent to 12 

riyals, how much is the price of 9 notebooks of the 
same type? 

A) 12                                 B) 18 

C) 24                                 D) 27 

 

Geometry 

فما    2سم وطوله يزيد عن عرضه بمقدار  40مستطيل محيطه 
؟هي مساحته  

 أ( ٩٩ سم                                         ب(٤٠٠  سم 

 ج( ٢٠ سم                                       د(  ١٠٨ سم 

A rectangle has a perimeter of 40 cm, and its 
length is 2 times its width. What is its area? 

A) 99 cm                           B) 400 cm 

C) 20 cm                           D) 108 cm 

 

Algebra 

 فإن س + ص  2ص =  -وكان س  16=  ²ص -  ²سإذا كان 
....... = 

 أ( ٨                                         ب( ٢

 ج( ٤                                        د( ١

If x² - y² = 16 and x - y = 2, then x + y = ....... 
A) 8                                   B) 2 

C) 4                                   D) 1 

 

Statistics 

هو احتمال أن   فما 6إلى  1رمي مكعب أرقام مرقم من عند 

 يكون الوجه العلوي عدد أولي؟
 أ( ٢/١                                         ب( ١/ ٣

 ج( ٦/١                                        د( ٤/١

When throwing a cube numbered from 1 to 6, 

what is the probability that the top side is a prime 
number? 

A) 1/2                               B) 1/3 

C) 1/6                               D) 1/4 
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Abstract 

This paper explores the application of 

computational methods, specifically 

transfer learning and large language models 

(LLMs), for analyzing politeness in Arabic 

text. The study employs a subset of an 

Arabic dataset sourced from X (formerly 

Twitter), focusing on expressions in 

Modern Standard Arabic (MSA). The 

proposed approach involves fine-tuning 

pre-trained Arabic language models and 

applying zero-shot and few-shot learning 

methods using various LLMs. The results 

demonstrate the potential of these 

techniques for politeness analysis in Arabic 

social media content, with the fine-tuned 

models and LLMs achieving varying levels 

of performance across different evaluation 

metrics. The study highlights the need for 

further research to refine methodologies, 

expand datasets, and incorporate cultural 

nuances specific to Arabic communication 

contexts, particularly in the realm of social 

media interactions. 

1 Introduction 

Politeness is a fundamental aspect of human 

communication that helps maintain social harmony 

and facilitate effective interactions. In the Arabic 

language, politeness is deeply rooted in cultural 

norms and social structures, with various linguistic 

strategies employed to convey respect and courtesy 

(Ameri et al., 2023). With the increasing 

prevalence of online communication, particularly 

on social media platforms like Twitter (X), 

understanding and analyzing politeness in Arabic 

text has become a crucial area of research in natural 

language processing (NLP). 

Recent advancements in NLP, such as transfer 

learning and large language models (LLMs), have 

shown promising results in various language 

understanding tasks. However, their application to 

Arabic politeness analysis remains largely 

unexplored. This paper aims to bridge this gap by 

investigating the effectiveness of transfer learning 

and LLMs in detecting politeness in Arabic social 

media text. 

The main contributions of this paper are as 

follows: 

1. We present a comparative study of transfer 

learning and LLMs for analyzing politeness 

in Arabic text, specifically focusing on 

social media content from Twitter (X). To 

the best of our knowledge, this is the first 

study to apply these techniques to Arabic 

politeness detection in the context of social 

media. 

2. We evaluate the performance of fine-tuned 

Arabic language models (MarBERT and 

CamelBERT) and LLMs (GPT-4o-mini, 

Cohere Command, and JAIS 30B Chat) 

using various evaluation metrics, providing 

insights into their strengths and limitations 

for this task. 

 

The rest of the paper is organized as follows: 

Section 2 provides a linguistic background on 

politeness in the Arabic language, discussing its 

cultural roots and various linguistic strategies. 

Section 3 reviews related work in computational 

politeness analysis and Arabic NLP. Section 4 

Analyzing Politeness in Arabic Tweets: A Preliminary Study 
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describes the dataset used in this study and the 

annotation process. Section 5 outlines the 

experimental design, including the transfer 

learning and LLM approaches employed. Section 6 

presents the results and discusses the performance 

of the different models. Section 7 conducts an error 

analysis to identify common challenges and 

limitations of the proposed approaches. Finally, 

Section 8 concludes the paper by summarizing the 

main findings and suggesting directions for future 

work.  

2 Background 

The concept of politeness has been extensively 

studied in pragmatics, particularly through the 

works of Brown and Levinson (Brown & 

Levinson, 1987). Their model introduces the idea 

of a face divided into positive and negative face 

needs. A positive face refers to the desire to be liked 

and appreciated, while a negative face involves the 

need for autonomy and freedom from imposition. 

Their strategies for maintaining face include: 

• Bald on-record: Direct communication without 

any politeness strategies. 

• Positive politeness: Strategies that emphasize 

camaraderie and mutual respect. 

• Negative politeness: Strategies that emphasize 

the addressee’s right to freedom and non-

imposition. 

• Off-record: Indirect communication that 

allows for plausible deniability. 

• Withholding: Choosing not to say anything at 

all. 

Robin Lakoff adds another dimension to this 

framework by emphasizing the importance of 

making the interlocutor feel good and joyful. Her 

principles of politeness include not imposing, 

giving options, and making the addressee feel 

good, highlighting the interpersonal and affective 

aspects of polite communication (Alaearji & 

Buraihi, 2021).  

Politeness in the Arabic language is deeply rooted 

in cultural norms and social structures. The 

language employs various linguistic strategies to 

convey respect and maintain social harmony. These 

strategies may include: 

• Forms of address: Using plural forms for 

singular addresses in formal situations (e.g., 

يمكنكم " يمكنك " instead of "هل   and ,("هل 

employing titles and honorifics (e.g., "  ,"دكتور

 .(""أستاذ", "سعادة 

• Kinship terms: Using words like " عم" (uncle) 

or " خالة" (aunt) to address non-relatives 

respectfully in daily interactions. 

• Teknonyms ( كنية): Using " أبو" (father of) or " أم" 

(mother of) followed by a child's name as a 

form of respect. 

As noted by (Ameri et al., 2023) many of these 

politeness features developed when Arab societies 

encountered other civilizations, particularly 

Persian culture. They also mentioned that 

politeness norms in Arabic are not static but evolve 

with societal changes. 

3 Related Work  

This section outlines the methods employed for 

computational politeness, which are broadly 

classified into statistical methods, deep learning-

based approaches, and Large Language Models. 

While state-of-the-art research covers various 

languages, it is notable that politeness features have 

not been extensively explored in the context of 

Arabic.  

Starting with statistical computational 

politeness, we found several studies that have 

utilized SVM methods. (Danescu-Niculescu-Mizil 

et al., 2013) developed two classifiers to predict 

politeness in English requests: a Bag of Words 

(BOW) classifier with unigram features and a 

linguistically informed classifier incorporating 

additional linguistic features. They used logistic 

regression on the SVM outputs to score politeness. 

However, (Hoffman et al., 2017) contested their 

approach, revalidating the politeness-labeling tool 

for broader application in social computing. 

(Kumar, 2021) worked on an SVM-based classifier 

for identifying politeness in Hindi. Kumar's 

approach includes classifiers using unigram and 

bigram features, as well as additional linguistic 

features like formulaic expressions and honorifics. 

(Fu et al., 2020) proposed a three-step pipeline: 

Plan, Delete, and Generate, for paraphrasing 

messages to adjust politeness. Their model uses 

Integer Linear Programming (ILP) to plan 

appropriate politeness strategies, deletes irrelevant 

markers, and integrates new strategies to produce a 

polite paraphrased message.  

Recent advances in deep learning for 

computational politeness include various 

approaches for both identification and generation. 

For Politeness Identification, (Aubakirova & 

Bansal, 2016) used a Convolutional Neural 

Network (CNN) with the Stanford Politeness 
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Corpus to predict politeness, outperforming 

previous methods and identifying new politeness 

markers. Also, (Mishra et al., 2023) employed a 

hierarchical transformer network to accurately 

predict politeness by leveraging contextual 

information from previous dialogue utterances. In 

(Dasgupta et al., 2023), they proposed a graph-

induced transformer network (GiTN) combining 

Graph Convolution Networks (GCN) and BERT 

for detecting formality and politeness in text.  

Concerning the Politeness Generation, 

(Sennrich et al., 2016) introduced an attention-

based encoder-decoder NMT system for translating 

English to German with controllable politeness via 

target-side T-V annotations. (Feely et al., 2019) 

proposed a formality-aware NMT system for 

English to Japanese translation that enhances 

translation quality, particularly for formal and 

polite sentences. (Niu & Bansal, 2018) developed 

three weakly supervised models—Fusion, Label-

Fine-Tuning (LFT), and Polite Reinforcement 

Learning (Polite-RL)—for generating contextually 

consistent polite responses in open-domain 

dialogues without parallel data. (Firdaus et al., 

2020), (Golchha et al., 2019), and (Wang et al., 

2020) highlighted the importance of politeness in 

user satisfaction and retention. Golchha et al. 

proposed a reinforced pointer-generator model for 

courteous responses in customer-care dialogues. 

Firdaus et al. used a pointer-generator network to 

produce courteous responses in Hindi and English. 

While Wang et al. suggested a sequence-to-

sequence framework to add politeness and 

positivity in customer support responses. (Mishra 

et al., 2022) introduced the Politeness Adaptive 

Dialogue System (PADS), which uses 

reinforcement learning to incorporate politeness 

into dialogue management based on user 

satisfaction feedback.  

The last approach is based on Large Language 

Models (LLMs), such as GPT-3, LLaMA2, and 

ChatGPT, which are advanced generative AI 

systems with billions of parameters trained on 

extensive textual data. These models have 

significantly advanced various NLP tasks, 

including emotion recognition and dialogue. 

However, their ability to adhere to politeness 

norms remains a crucial issue. Research by (Li et 

al., 2023) and (Ziems et al., 2024) showed that 

state-of-the-art LLMs, like ChatGPT and GPT-3, 

 
1 https://github.com/iabufarha/ArSarcasm  

perform reasonably well in predicting politeness 

and classifying utterances into polite, neutral, or 

impolite categories.  

Despite significant advancements in computational 

politeness research across various languages, there 

remains a notable gap in addressing the unique 

linguistic and cultural aspects of politeness in 

Arabic. The intricate interplay between language, 

culture, and social norms in Arabic presents distinct 

challenges for computational models aiming to 

analyze and generate polite language. To bridge 

this gap, our paper focuses on analyzing politeness 

in Arabic, by applying transfer learning techniques.  

4 Dataset 

Our dataset consists of 500 tweets selected from the 

ArSarcasm database1. We specifically chose tweets 

labeled as "MSA" because it is considered formal, 

and we aimed to focus on the challenges presented 

by this linguistic variety. We also filtered the tweets 

based on the sentiment labeled as positive to 

examine whether a positively sentiment expression 

could help detect polite lexical markers more 

easily. 

The tweets present a variety of themes and tones, 

ranging from political and religious subjects to 

cultural events and personal expressions. They are 

primarily written in MSA with occasional English 

phrases and dialectic words. The tweets presented 

entail a variety of subjects and moods from 

political or religious discussions to cultural events, 

and personal opinions. The Arabic employed in 

these tweets is split between MSA used in formal 

statements and quotes of religious nature on one 

hand and the vernacular languages used in less 

formal and more intimate interactions on the other. 

This dualism in language choices characterizes the 

richness and flexibility of Arabic which allows 

speakers to adjust their speech according to context 

as well as their audience.  

In our work, we aim to detect politeness in the 

selected expressions. We have chosen to start with 

manual annotation, meaning we annotated the 

expressions without using available systems and 

software, adopting a linguistic approach. Based on 

the non-exhaustive analysis conducted by (Alaearji 

& Buraihi, 2021), we utilize the following tools: 

• Politeness markers: A lexical tool examining 

the words used in each expression. If the 

expression contrains one or more words from 
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the category of politeness, it is labeled as 

polite. 

• Intention and Purpose of the Expression: A 

pragmatic tool arising from understanding the 

finality of the formulated expression. We opted 

for: appreciation, respect, love, admiration. 

 

We must nonetheless point out that our analysis is 

subject to a certain degree of subjectivity, 

considering the nature of the expressions analyzed 

(tweets), the absence of some elements that might 

be considered essential such as the knowledge of 

the speaker and the interlocutor, as well as the exact 

context and conditions of formulation. 

Additionally, some tweets may not be in pure 

MSA, which can affect the consistency of our 

analysis. 

Table 1 shows sample tweets annotated based on 

their politeness markers and intention. 

 

5 Experimental design 

Our approach (as shown in Figure 1) is based on 

transfer learning, where we adapt finetuning pre-

trained language models such as CamelBERT 2 

and MarBERT3  models to the task of politeness 

analysis using a dataset annotated with politeness 

 
2 https://github.com/CAMeL-Lab/CAMeLBERT  
3 https://huggingface.co/UBC-NLP/MARBERT  

4  https://openai.com/index/gpt-4o-mini-advancing-

cost-efficient-intelligence/  

labels. The process will be our baseline and it 

involves tokenizing the input text, formatting it 

appropriately, and adding task-specific layers to 

the pre-trained model, followed by training with 

adjusted hyper parameters to optimize 

performance. The model's effectiveness is 

evaluated using metrics like accuracy, precision, 

and F1-score on split datasets.  

Additionally, we employed zero-shot and few-

shot learning methods with GPT-4o-mini4, Cohere 

Command 5  and JAIS 30B Chat 6  for politeness 

analysis, constructing prompts to guide the model 

and making predictions based on their pre-

existing knowledge without fine-tuning. The 

selection of these models is justified by their 

unique strengths and relevance to the task. GPT-

4o-mini's multimodal approach and superior non-

English performance, Cohere Command 

efficiency and robustness, and JAIS 30B Chat's 

specific design for Arabic and English make them 

well-suited for a comprehensive evaluation of 

Arabic language processing capabilities. Note that 

Few-shot learning incorporates a small-annotated 

dataset (between 7 and 20 in our case) to provide 

context in the prompts. 

 

5  https://cohere.com/command  
6  https://www.core42.ai/jais.html  

Tweet politeness 

markers(lexical) 

intention / 

finality 

(pragmatic) 

Politeness? 

__ # احترام اي انسان فقط   خلق_جميل 

 لأنه انسان مهما كانت ديانته

 Appreciation POLITE جميل / احترام

#حماس "" صهيوني"...  القرار 

ترفض منع استخدام مكبرات الصوت 

في 

 https://t.co/jTAAch4M2wالمساجد 

https://t.co/NjjE1gKjF4" 

- - NEUTRAL 

وقعنا »" الكويتي«:  الاحمر  الهلال 

لتوزيع  القطري«  »الهلال  مع  اتفاقية 

النازحين  على  الإغاثية  المساعدات 

 "السوريين من حلب 

- - NEUTRAL 

تلغي  " وقادتها#قطر  #قطر  درك  لله 

الاحتفال بـ #اليوم_الوطني تضامناً مع 

#ستبقي_حلب  #سوريا   …#حلب 

https://t.co/wV2pFqGjdD" 

 

 Blessing POLITE لله درك 

Table 1:  Examples of Annotated Tweets 
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6 Results and Discussion  

In this section, we present the various outcomes 

of our experiments. 

6.1 Baseline  

Table 2 provides the results of MarBERT and 

CamelBERT models evaluated on accuracy, 

precision, and F1-score. MarBERT shows higher 

accuracy (54%) compared to CamelBERT (46%), 

indicating it classifies more instances correctly 

overall. However, CamelBERT excels in precision 

(37% vs. 27%) and F1-score (41.8% vs. 35%), 

demonstrating it is more reliable in positive 

predictions and better balanced between precision 

and recall. Overall, while MarBERT has better 

accuracy, CamelBERT offers superior performance 

in terms of precision and F1-score, suggesting it 

might be more effective for tasks where precision 

and recall are crucial. 

6.2 Zero/Few shot learning 

Table 3 compares the performance of three 

language models: GPT-4o-mini, Cohere 

Command, and JAIS 30B Chat on the task of 

politeness classification in the Arabic language. 

The evaluation is conducted under three different 

settings: zero-shot learning, few-shot learning with 

7 examples, and few-shot learning with 20 

examples. 

In the zero-shot setting, where the models are 

tested without any training examples, GPT-4o-mini 

and JAIS 30B Chat achieve similar accuracy scores 

of 65.13% and 65.33%, respectively. Cohere 

Command lags behind with an accuracy of 

54.31%. 

With few-shot learning using 7 examples, all 

three models show improvement. JAIS 30B Chat 

takes the lead with 70.87% accuracy, closely 

followed by GPT-4o-mini at 70.73%. Cohere 

Command also improves but remains in third place 

with 59.15% accuracy. 

When the number of few-shot examples is 

increased to 20, there is a slight decrease in 

performance for all models compared to the 7-shot 

setting. JAIS 30B Chat maintains its lead with 

67.59% accuracy, followed by GPT-4o-mini at 

66.39% and Cohere Command at 58.87%. 

Overall, JAIS 30B Chat and GPT-4o-mini 

demonstrate superior performance in both zero-

shot and few-shot settings compared to Cohere 

Command for the task of Arabic politeness 

classification. The results also suggest that 

increasing the number of few-shot examples from 

7 to 20 does not necessarily lead to improved 

performance for this particular task and dataset. 

7 Error Analysis 

The baseline models, MarBERT and CamelBERT, 

yielded divergent results in the politeness analysis 

of 500 manually annotated tweets. MarBERT 

classified all tweets as polite, indicating a biased 

output that exceeded linguistic explanations. In 

contrast, CamelBERT's predictions aligned well 

with the manual annotations, with only 12% of 

expressions remaining incompatible. This 

discrepancy can be attributed to two main factors: 

linguistic complexity and data bias. The complex 

 

Figure 1:  Overall summary of the proposed 

experiments. 

Model Accuracy Precision F1-

score 

MarBERT 0.54 0.27 0.35 

CamelBERT 0.46 0.37 0.418 

Table 2:  Baseline Evaluation Results. 

 

 

Model Zero-Shot Few-Shot 

(7 shots) 

Few-

Shot 

(20 

shots) 

GPT-4o-mini 65.13% 70.73% 66.39% 

Cohere 

Command  

54.31% 59.15% 58.87% 

JAIS 30B Chat 65.33% 70.87% 67.59% 

Table 3:  Zero/Few shot learning Evaluation Results. 
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structure and nuances of tweets, including 

ellipses, wordplay, and implicit references, pose a 

significant challenge for CamelBERT, requiring 

deep contextual understanding. Additionally, 

CamelBERT may have inherited and amplified 

biases present in its training data, particularly in 

the context of polite language in various contexts, 

including religious ones. This bias led to a loss of 

accuracy in predictions and limited the model's 

efficiency in politeness analysis. 

On the other hand, the error analysis of the 

politeness prediction models, GPT-4o-Mini, 

Cohere Command, and JAIS, reveals several 

factors contributing to the discrepancies between 

manual annotations and model predictions. GPT-

4o-Mini shows a binary approach to politeness, 

often missing the subtleties that might classify an 

expression as slightly polite or contextually polite, 

while Cohere Command exhibits a significant 

bias towards classifying tweets as polite, lacking 

a nuanced understanding of politeness gradations. 

JAIS performs better than the other models but 

still struggles with contextual understanding of 

polite content. The main issues identified include 

confusion between language and social practice, 

where the models fail to capture the intention and 

purpose of the entire sentence, as well as errors in 

analyzing certain sentences, possibly due to the 

presence of complex linguistic structures or 

ambiguous expressions. Additionally, the reliance 

on emojis, particularly heart-shaped ones, can 

disrupt the politeness prediction, as the models 

may interpret their presence as a sign of 

politeness, even when the rest of the tweet's 

content does not include lexical or pragmatic 

markers of politeness. These findings highlight 

the need for more sophisticated models that can 

better capture the nuances of politeness in Arabic 

text, taking into account both lexical markers and 

the overall intention and context of the 

communication. 

8 Conclusion and Future work 

In this paper, we presented a comparative study of 

transfer learning and large language models 

(LLMs) for analyzing politeness in Arabic text 

sourced from X (formerly Twitter). Our approach 

involved fine-tuning pre-trained Arabic language 

models, specifically MarBERT and CamelBERT, 

and applying zero-shot and few-shot learning 

methods using various LLMs, including GPT-4o-

mini, Cohere Command, and JAIS 30B Chat. The 

results demonstrated the potential of these 

techniques for politeness analysis in Arabic social 

media content, with the fine-tuned models and 

LLMs achieving varying levels of performance 

across different evaluation metrics. The error 

analysis revealed several factors contributing to 

the discrepancies between manual annotations 

and model predictions, including confusion 

between language and social practice, errors in 

analyzing certain sentences, and reliance on 

emojis. Despite the challenges and limitations 

identified, this study highlights the potential of 

transfer learning and LLMs for analyzing 

politeness in Arabic text and underscores the 

importance of developing language-specific 

resources and incorporating cultural knowledge 

and pragmatic understanding into computational 

models. 

Future research should focus on expanding the 

dataset, incorporating cultural and pragmatic 

knowledge, investigating advanced architectures, 

addressing data bias, and extending the insights 

gained from this study to other NLP tasks in 

Arabic. By addressing these research directions, 

future work can contribute to the development of 

more effective and culturally-aware politeness 

analysis models for Arabic text, ultimately leading 

to better communication and social interactions in 

the digital sphere.  

Limitations 

This study has several limitations that should be 

acknowledged. First, the dataset used in this 

research is relatively small, consisting of only 500 

tweets, and focuses solely on Modern Standard 

Arabic (MSA). This limited dataset may not fully 

capture the diversity of Arabic dialects and the 

wide range of politeness expressions used in 

social media. Second, although the manual 

annotation was performed by a linguistic expert in 

the field, the process is still subject to a degree of 

subjectivity, as it relies on the annotator's 

understanding of politeness markers and 

pragmatic intentions, which may be influenced by 

their cultural background and individual 

perception. Third, the study focuses on a binary 

classification of politeness (polite or neutral), 

which may oversimplify the nuances of politeness 

in Arabic communication. Finally, the 

performance of the models may be affected by the 

limited size of the dataset and the potential biases 
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present in the pre-trained language models used 

for transfer learning and few-shot learning.  
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Abstract

This paper introduces FeruzaSpeech, a read
speech corpus of the Uzbek language, contain-
ing transcripts in both Cyrillic and Latin al-
phabets, freely available for academic research
purposes. This corpus includes 60 hours of
high-quality recordings from a single native fe-
male speaker fromTashkent, Uzbekistan. These
recordings consist of short excerpts from a book
and BBC News. This paper discusses the en-
hancement of the Word Error Rates (WERs)
on CommonVoice 16.1’s Uzbek data, Uzbek
Speech Corpus data, and FeruzaSpeech data
upon integrating FeruzaSpeech.

1 Introduction

The Uzbek language, the official language of Uzbek-
istan, boasts upwards of 31 million native speakers
across Central Asia. 1Advancement in neural net-
work models and deep learning have significantly
improved automated speech recognition (ASR) and
text-to-speech (TTS) technology in recent decades.
Large freely available English datasets, such as Lib-
riSpeech (Panayotov et al., 2015), Libriheavy (Kang
et al., 2023b), and GigaSpeech (Chen et al., 2021)
are now more robust then ever, however, datasets
for training these models in Uzbek are scarce.
In January 2023, the Uzbek government fully

transitioned from using the Cyrillic alphabet to us-
ing the Latin alphabet 2, yet the country continues to
use both alphabets. FeruzaSpeech is the first dataset
to offer both Cyrillic and Latin transcription. To
the best of our knowledge, FeruzaSpeech is also
the only corpus to provide Cyrillic transcriptions
at all. Datasets originally using Latin transcription
cannot yet be accurately converted into Cyrillic text
using online conversion calculators because there
are a few discontinuities between the two alpha-
bets. An example is when conversion calculators

1https://www.worlddata.info/languages/uzbek.
php

2https://interfax.az/view/826747

like this one3 are used on Cyrillic text that include
the soft sign ь, it is either lost or can be incorrectly
reproduced becoming a hard sign ъ.

Table 1: Conversion Calculator on Польша

Cyrillic to Latin Latin to Cyrillic
Польша -> Pol’sha Pol’sha -> Полъша

FeruzaSpeech aims to promote the development
of speech recognition and speech synthesis tech-
nologies for the use of Uzbek speakers. Because
this is a single speaker dataset with an absence of
environmental noise it is better for STT when used
in addition to other available speech corpuses. The
dataset may be suitable for TTS applications, but
such experiments are beyond the scope of this pa-
per. It complements existing ASR datasets such
Uzbek Speech Corpus (USC) (Musaev et al., 2021),
consisting of 105 hours from 958 speakers, and the
Common Voice Uzbek Dataset (Ardila et al., 2019)
4, with 265 hours from over 2,000 speakers. We
chose these two corpuses because they were the
only two other published datasets. When combined
with these datasets, FeruzaSpeech enhances ASR
model training.

2 FeruzaSpeech Corpus

This section describes the layout of the Feruza-
Speech corpus metadata, transcription, and audio
format. Instructions for downloading and utilizing
the data can be found on HuggingFace. 5

2.1 Dataset Type
FeruzaSpeech consists of audio-book recordings
from the texts of the book Choliqushi, a classic ro-
mance novel, and BBC Uzbek News read by our

3https://uzlatin.com/
4Download Page: https://commonvoice.mozilla.org/

en/datasets
5https://huggingface.co/datasets/k2speech/

FeruzaSpeech
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voice actress, Feruza. Table 2 shows the duration
of each type of recording within the dataset. Ini-
tially read in the Cyrillic alphabet, the texts were
converted to Latin using online tools6, with some
grammatical errors being manually fixed after the
use of the conversion calculator. The final transcrip-
tion provides Uzbek text in both the Cyrillic and
Latin alphabets.

Table 2: FeruzaSpeech Recordings

Type Total

Book 21.57h
BBC Uzbek 38.04h

Total 59.61h

2.2 Evaluation and Training Sets
FeruzaSpeech includes "Dev" (development),
"Test" (testing), and "Train" (training) sets as de-
tailed in Table 3. Both the Dev and Test sets only
include BBC articles, while the Train set also in-
cludes the Choliqushi novel.

Table 3: FeruzaSpeech Sets

Sets Total

Dev 2.93h
Test 4.08h

Train 52.09h

2.3 Audio Format
The corpus contains high-quality, single-channel,
16-bit .wav audio files, available in 16kHz for ASR.
The average recording length is 16.39 seconds, the
minimum length is 3.78 seconds, and the maximum
length is 50.69 seconds. Our segments are record-
ings of one to two full sentence and are much longer
than the segments of USC (Musaev et al., 2021),
that are mostly 2 to 3 seconds.

2.4 Sample Text
Table 4 shows example excerpts from the Common-
Voice and USC datasets in comparison to our pro-
posed FeruzaSpeech dataset.

We can see that CommonVoice text was normal-
ized but it has punctuation and casing, USC text
is normalized to remove casing and punctuation,

6https://www.lexilogos.com/keyboard/uzbek_
conversion.htm and https://uzlatin.com/

Figure 1: Length of FeruzaSpeech Segments

Table 4: One Sentence of Sample Text from each of the
Three Datasets with English Translation That Is Not in
the Dataset for Reader

CommonVoice USC FeruzaSpeech
—Non dema!
— dedi. —
Nonni otini
atama!

shundan
so’ng u sen
aytmasang
men aytaman
degandek
qaradi

20 iyul kuni
O‘zbekistonda
562 holatda
kasallik qayd
etilgan.

— Don’t say
bread! — he
said. — Don’t
utter the word
bread!

after that he
looked like if
you don’t tell
I will

On July 20,
562 cases of
the disease
were recorded
in Uzbek-
istan.

and FeruzaSpeech retains casing and punctuation.
Regarding the choice to not normalize casing or
punctuation, deep learning models have recently
become powerful enough that for tasks like ASR
and TTS it is now feasible to use "natural" text
with no normalization. For instance, the recent
E2TTS text-to-speech system (Eskimez et al., 2024)
is trained on data from Libriheavy (Kang et al.,
2024) which is completely un-normalized. The
use of un-normalized text for training tends to sim-
plify speech processing systems because it could
avoid the need for text normalization and inverse
text normalization modules. Table 5 shows how the
transcripts were provided in Latin and Cyrillic, but
within this paper we only used Latin transcripts for
comparison with available Latin datasets.
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Table 5: FeruzaSpeech Excerpt in Latin and Cyrillic
with English Translation That Is Not in the Dataset for
Reader

FeruzaSpeech Latin FeruzaSpeech Cyrillic
Ayni damda ishlatilib
turilgan biometrik pas-
portlar 2019 yil 1 yan-
vardan deyarli yaroqsiz
holatga keladi.

Айни дамда ишлати-
либ турилган биомет-
рик паспортлар 2019
йил 1 январдан деяр-
ли яроқсиз ҳолатга
келади.

Biometric passports, which are currently in use,
will become almost useless from January 1,
2019.

3 Experiments

To build our models we utilized the Next-Gen Kaldi
framework and followed two recipes; the Icefall
CommonVoice Stateless RNN-T Conformer model
taken from the pruned_transducer_stateless7
recipe7 and the Librispeech zipformer8, not-
ing significant improvements in WER. These
two models were selected because Icefall al-
ready contains CommonVoice scripts using
pruned_transducer_stateless7 in the French
language and Librispeech zipformer is the current
state of the art model in Next-Gen Kaldi. In our
experiments we utilized three datasets: Common
Voice 16.1 (CV), FeruzaSpeech (FS), and Uzbek
Speech Corpus (USC). All models were trained for
60 epochs. Table 6 outlines the duration of each
training dataset.

Table 6: Training Dataset Duration

Datasets Training Duration

CV 54.88h
FS 52.09h

USC 90.70h
CV + FS + USC 197.68h

3.1 Pruned-transducer-stateless7 Model
The Stateless RNN-TConformermodel (Kang et al.,
2023a) is a stateless transducer (Gulati et al., 2020)
with a conformer encoder that reduces memory con-
sumption, and it outperformed the small zipformer
model for every test set. All models in Tables 7 and

7https://github.com/k2-fsa/icefall/tree/
master/egs/commonvoice/ASR/pruned_transducer_
stateless7

8https://github.com/k2-fsa/icefall/tree/
master/egs/librispeech/ASR/zipformer

8 are trained with Casing and Punctuation. Table 7
presents the WERs when the model is scored with
Casing and Punctuation, while Table 8 presents the
WERs when the model is scored with Uppercase
No Punctuation.

Table 7: The WERs of Stateless RNN-T Conformer
model scored with Casing and Punctuation (C&P)
Common Voice 16.1 (CV), Uzbek Speech Corpus
(USC), FeruzaSpeech (FS)

Method Dataset cv-test fs-test usc-test
greedy
search

CV 33.95 32.9 51.07
FS 89.54 11.58 85.67
CV+FS 32.49 9.93 46.89
CV+FS+USC 29.91 9.79 12.05

modified
beam
search

CV 31.98 31.88 51.61
FS 89.10 11.25 85.22
CV+FS 30.47 9.85 48.6
CV+FS+USC 27.81 9.56 11.67

Table 8: The WERs of Stateless RNN-T Conformer
model scored with Uppercase No Punctuation (UNP)
Common Voice 16.1 (CV), Uzbek Speech Corpus
(USC), and FeruzaSpeech (FS)

Method Dataset cv-test fs-test usc-test
greedy
search

CV 21.03 20.15 35.11
FS 87.18 5.85 77.78
CV+FS 18.91 4.44 30.53
CV+FS+USC 12.07 4.17 12.05

modified
beam
search

CV 20.16 19.34 34.03
FS 86.26 5.50 76.24
CV+FS 18.33 4.24 29.67
CV+FS+USC 11.17 4.05 11.67

3.2 Zipformer Model
We followed a similar procedure for the zipformer
model as we did for the Stateless RNN-TConformer
model. This time, we trained a separate model
on each of the following three datasets: CV, FS,
CV+FS. This differs from the previous section be-
cause we excluded theUSC training set. Once again,
we recorded the WER for each model when tested
on each of the following test sets: cv-test, fs-test,
and usc- test, sharing results for both the greedy
search and modified beam search as methods of
decoding. All models in Table 9 and 10 are trained
with Casing and Punctuation. Table 9 presents the
WERs when the model is scored with Casing and
Punctuation, while Table 10 presents the WERs
when the model is scored with Uppercase No Punc-
tuation.
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Note that the Common Voice recipe with default
settings in the Icefall project wasn’t converging for
zipformer (Kang et al., 2023b), so we used "small
zipformer" 9 (Yao et al., 2024) parameters to ac-
count for the size of our datasets.

Table 9: The WERs of zipformer model scored with
Casing and Punctuation (C&P) Common Voice 16.1
(CV) and FeruzaSpeech (FS)

Method Dataset cv-test fs-test usc-test
greedy
search

CV 37.00 34.54 53.4
FS 93.09 14.32 N/A
CV+FS 35.90 11.05 52.86

modified
beam
search

CV 33.96 32.41 54.07
FS 92.61 13.28 N/A
CV+FS 33.15 10.75 53.08

Table 10: The WERs of zipformer model scored with
Uppercase No Punctuation (UNP)CommonVoice 16.1
(CV) and FeruzaSpeech (FS)

Method Dataset cv-test fs-test usc-test
greedy
search

CV 23.01 20.94 38.75
FS 91.34 8.97 N/A
CV+FS 22.34 5.45 37.4

modified
beam
search

CV 21.92 20.21 37.44
FS 90.54 7.88 N/A
CV+FS 21.35 5.10 35.94

4 Results

When adding the FeruzaSpeech dataset to the Com-
monVoice16.1 dataset while training the Stateless
RNN-T Conformer model, WER improved 1.49
to 2.12 percent absolutely on cv-test and 3.01 to
4.58 percent absolutely on usc-test in Tables 7 and
8. And for the Zipformer model, WER improved
0.57 to 1.1 percent absolutely on cv-test and 0.54
to 1.5 percent absolutely on usc-test in tables 9
and 10. This shows that FeruzaSpeech contains
quality data and is a useful addition to the current
public library of Uzbek speech corpuses for TTS
applications. Also, the paper presenting the USC
dataset (Musaev et al., 2021) reports that the usc-
test had a WER of 17.4%. Our best result for the
usc-test WER is 11.67%, which is an improvement
of 5.73%. According to Table 6 and 7, when a State-
less RNN-T Conformer model was built using all
three datasets combined: CV, FS, and USC, and us-
ing modified beam search as the decoding method,
the model produced the best WERs for every test.

9https://github.com/k2-fsa/icefall/blob/
master/egs/librispeech/ASR/RESULTS.md

Our best recorded WER on the Common Voice test
set is 11.17%, as shown in Table 7. The best WER
for the FeruzaSpeech test set is 4.05%, and the best
WER for the Uzbek Speech Corpus test is 11.67%.

5 Conclusion

The development of FeruzaSpeech is a significant
step forward in the field of Uzbek speech technol-
ogy. By offering a dual alphabet corpus, this project
bridges the gap between the use of Cyrillic and
Latin scripts for Uzbek speakers. Our work also
highlights the need for accurate alphabet conver-
sion tools, specifically for more nuanced aspects of
the language such as the soft sign (ь), which tends
to be lost in translation from Cyrillic to Latin.

Through integrating FeruzaSpeech with existing
Uzbek datasets, notable improvements in WERs
were demonstrated. In the future, we will provide
this same data in a higher sampling rate and bit
depth that will be more suitable for TTS. Since we
recognize the value of continuity in voice data for
TTS applications, our future endeavors will also fo-
cus on expanding this corpus with additional record-
ings from the same native speaker. This strategy
aims to enrich the dataset with consistent voice qual-
ity and style across the corpus which is essential
for developing TTS models.
In sum, FeruzaSpeech is beneficial for ASR

model enhancement when used in addition to exist-
ing Uzbek language datasets, as observed in WER
improvements. Applications of this dataset for TTS
will also be explored.

6 Limitations

FeruzaSpeech is not an effective stand alone cor-
pus for STT applications and should be used in
compliment with other corpuses such as the Com-
mon Voice Uzbek Dataset and Uzbek Speech Cor-
pus explored above. FeruzaSpeech has an average
segment length of 16.39 seconds which each con-
tain one or two full sentences which could be seg-
mented into shorter utterances. The audio has no
background noise and contains a singular female
speaker which is not optimal for STT.
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Abstract
Grammar Error Correction (GEC) in Bulgarian
is particularly difficult because of the lack of
specialised linguistic resources and the highly
inflected nature of the language. To facilitate
research in the field we release three datasets
created using data augmentation techniques in-
spired from phonetic and syntactic phenomena
in the language. The datasets include a compre-
hensive machine-readable dictionary and two
error correction datasets containing examples
of spelling and grammar mistakes, respectively.
Additionally, we employed an encoder-decoder
transformer architecture, specifically multilin-
gual T5 (mT5), to address the task of GEC
using Neural Machine Translation (NMT). The
proposed fine-tuned model outperforms con-
temporary large language model (LLM)-based
solutions such as GPT and BgGPT by scoring
an F0.5-score of 68.18%. It is also the most
preferable in terms of output readability and
correctness according to the human-based eval-
uation we conducted.

1 Introduction

Bulgarian is a highly inflected language, i.e., words
take on different forms to convey information relat-
ing to gender, number, article, tense, case and other
properties. Because of this, a slight syntactic dif-
ference can drastically change a word’s meaning.
For example, the word ‘approach’ in Bulgarian
(‘доближавам’) has 51 different forms (Simov
et al., 2004), all carrying different nuances about
the speaker, the action’s time frame and the level of
emotion used in uttering the word. This, along with
Bulgarian’s intricate grammar, spelling and punc-
tuation, makes mastering the language a unique
challenge.

Despite the fact that as of 2011, the literacy rate
in Bulgaria is 98.7% (National Statistical Institute,
2023), the language literacy performance of young
Bulgarian students learning the language is lower
than the average for tested countries (OECD, 2023),

placing Bulgaria’s mean score significantly below
the average. This is troubling, as literacy is the
foundation of language proficiency and is crucial
for employability (Suarta et al., 2017), education
(Castro et al., 2011) and social integration (Abdul-
Rahaman et al., 2023).

Bulgarian Natural Language Processing (NLP)
researchers could help alleviate this problem by cre-
ating: (a) linguistic resources, i.e., datasets, that fa-
cilitate the development of language literacy tools,
and (b) error correction tools for Bulgarian. How-
ever, such resources and tools are currently lacking.

Datasets that could potentially facilitate the
development of Bulgarian NLP tools include
machine-readable dictionaries and error correction
data. An official Bulgarian dictionary called the
Institute for Bulgarian Language Online Dictio-
nary1 has been made publicly available. However,
it comes with shortcomings that make it unsuit-
able for supporting the development of NLP tools.
These include its inability to recognise words un-
less they are in their base word form, low con-
fidence in recognising words that do not have a
Bulgarian etymological origin, and lack of access
to the entire word collection (preventing download
by bulk). Meanwhile, error correction data is often
required by systems that are developed or trained to
assess language validity. This pertains to datasets
that contain examples of spelling and grammar mis-
takes. There are many datasets of this kind for high-
resource languages, e.g. English (Geertzen et al.,
2013; Granger et al., 2009) and German (Meisel,
2020). However, no such Bulgarian resource is
available.

Error correction tools are underpinned by models
that verify a text’s linguistic validity, focussing on
different aspects of the language, including punc-
tuation, spelling and grammar. Bulgarian spelling
correction has been explored using noisy text mod-

1https://ibl.bas.bg/rbe/lang/en/
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els (Gerdjikov et al., 2013). This approach was
developed using the IMPACT BG dataset2 which
consists of 19th century Bulgarian newspaper arti-
cles, which are not indicative of modern Bulgarian
communication. Grammar Error Correction (GEC)
research for Bulgarian is scarce, most likely be-
cause of the short supply of error correction data
and the inflectional nature of the language.

In this paper we aim to address the research
gap caused by the lack of appropriate linguistic
resources and absence of established solutions for
error correction by releasing open-source datasets
supporting language literacy and training a gen-
erative model for automatic GEC. We hope that
this will encourage other members of the research
community to build and compare solutions for Bul-
garian language literacy tasks.

Our contributions include: (1) the creation of
three datasets including a machine-readable Bul-
garian dictionary that includes word inflections and
Part-of-Speech tags, and two datasets produced us-
ing data augmentation, both of which contain pairs
of erroneous and corrected sentences, one with
spelling errors and the other with grammatical mis-
takes; and (2) the development and evaluation of a
GEC solution based on fine-tuning a multilingual
T5 (mT5) model (Xue et al., 2021) for neural ma-
chine translation of erroneous to correct text. The
model,3 along with the dictionary,4 spelling error5

and grammar error6 datasets, are all open-source
and available for public use.

2 Related Work

Dataset creation and error correction techniques
are both pivotal for the success of automated lan-
guage literacy tools. We review how these have
been approached for Bulgarian and similar highly
inflected languages.

2.1 Bulgarian Datasets

Below, we provide an overview of previously re-
ported work on the development of Bulgarian lin-
guistic resources and error correction datasets.

2https://www.digitisation.eu/datasets/
impact-language-resources/

3https://huggingface.co/thebogko/
mt5-finetuned-bulgarian-grammar-mistakes

4https://huggingface.co/datasets/thebogko/
bulgarian-dictionary-2024

5https://huggingface.co/datasets/thebogko/
bulgarian-spelling-mistakes

6https://huggingface.co/datasets/thebogko/
bulgarian-grammar-mistakes

Linguistic Resources. Open-source Bulgarian
linguistic resources have been published from as
early as two decades ago. Among these is the
BulTreeBank project (Simov et al., 2002), devel-
oped by the Bulgarian Academy of Sciences (BAS),
which is considered to be the first successful ini-
tiative for large-scale curation for linguistic re-
sources in Bulgarian NLP. The CLaRK system
(Simov et al., 2003) is another notable achieve-
ment, presenting an automated system for corpora
development that includes part-of-speech (POS)
tagging and dependency extraction, utilising reg-
ular cascaded grammars. The CLaRK system is
particularly useful for high-quality POS tagging
in Bulgarian; we employed it in our work to iden-
tify candidates that can form the basis for inducing
artificial errors.

More recent projects developed textual corpora
that were drawn from specific domains such as law
and medicine (Koeva et al., 2020; Boytcheva et al.,
2020), as well as speech corpora (Dimitrova, 2021).
However, no established Bulgarian error correction
datasets have been released, hindering the progress
of NLP researchers on error correction tasks.

Error Correction Datasets. Error correction
data is particularly difficult to come by, as it ne-
cessitates a sophisticated approach to collection
and/or generation of erroneous use of language.
Systems using high-resource languages, like En-
glish (Dolgova and Mueller, 2019) and Chinese
(Rao et al., 2018) rely on authentic learner data
created by learners of the language, which can be
then annotated manually. Low-resource language
systems, however, tend to use synthetic data gen-
erated through data augmentation. This technique
does not require language learners, rather, it gen-
erates the error correction data automatically by
either:

• round-trip translation from error-free text, re-
sulting in ungrammatical sentences (Lichtarge
et al., 2019), or

• directly inducing errors in error-free text
(Grundkiewicz and Junczys-Dowmunt, 2019;
Lee and Seneff, 2008; Izumi et al., 2003).

Data augmentation was proven to be especially
useful for low-resource languages (Solyman et al.,
2023), as it provides a sustainable solution to the
data scarcity problem. In this project, we chose
to create artificial erroneous data by directly in-
ducing grammatical errors based on predetermined
linguistic rules, as there is a distinct lack of publicly
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accessible learner data from humans.

2.2 Grammar Error Correction (GEC)
GEC approaches focus on transforming erroneous
text to its correct version by identifying mistakes
and recommending suggestions. These are typi-
cally based on machine translation (MT) methods.

Machine Translation Models. Statistical Ma-
chine Translation (SMT) is a probabilistic approach
applied to GEC which, given an erroneous text se-
quence e1, e2, . . . em, identifies the corrected text
sequence c1, c2, . . . cn that maximises the probabil-
ity p(c1, c2, . . . cn|e1, e2, . . . em). This approach is
often supported by a language model (Wang et al.,
2021), ensuring that the corrections are fluent. The
first error correction work based on SMT focussed
on noun errors (Brockett et al., 2006).

Neural Machine Translation (NMT) differs from
SMT in that it utilises neural networks to generate
corrected text output (target) given erroneous input
(source). Its strength lies in the ability of neural
networks to generalise, allowing NMT systems to
perform much better than SMT in correcting un-
seen error types (Wang et al., 2021). The first time
it was used for GEC (Yuan and Briscoe, 2016) was
ten years after SMT was first attempted, becoming
the predominant approach to solving the error cor-
rection task. Diverse architectures have been used
in NMT, such as recurrent neural networks (RNNs)
(Yuan and Briscoe, 2016), convolutional neural net-
works (CNNs) (Chollampatt and Ng, 2018; Soly-
man et al., 2019) and transformers (Zhao et al.,
2019; Grundkiewicz et al., 2019). Because of the
success of NMT approaches we utilise it for our
GEC task.

GEC for Highly Inflected Languages. GEC re-
search for Bulgarian is scarce, likely because of
the short supply of error correction data and the
inflectional nature of the language. Some efforts
have been made to detect noun-adjective disagree-
ment (Borisova et al., 2014) and to investigate how
grammars can be used for error correction (Kubon
and Plátek, 1994), but at the time of writing no
machine translation approach has been proposed
for GEC in Bulgarian.

Our work aims to remedy this by training a
transformer-based model on a large collection of
grammar error mistakes and their corresponding
corrections, motivated by studies showing that MT-
based error correction systems for morphologically
rich languages require large amounts of training

data (Rozovskaya and Roth, 2019). We employed
the mT5 model, given that it obtained encouraging
results in the correction of highly inflected lan-
guages like Ukrainian (Lytvyn et al., 2023).

3 Creating Language Literacy Datasets

One of our objectives is the development of high-
quality and open-source datasets that can be used
for a diverse range of tasks that support language
literacy. We showcase a comprehensive dictionary
and two error correction datasets consisting of sen-
tence pairs: one dataset contains spelling errors and
the other contains grammatical mistakes.

3.1 A Machine-Readable Dictionary

Our Bulgarian dictionary contains 1,147,600 en-
tries, each with a term and a corresponding part-
of-speech (POS) tag. In this project’s context, a
term is defined as either the base form (lemma)
of a word or an inflected form; in both cases, we
only include single-word terms. This would allow
a spell-checking system to perform a simple check
for each token from a user’s input to determine its
validity.

Data Collection and Preprocessing. We firstly
collected entries from two major open-source col-
lections7,8 due to their popularity and sufficient
word coverage. It is worth noting that some in-
flected Bulgarian words, particularly verbs, can be
supported by particles. For example, the word ‘ям’
(‘eat’) can change to ‘ял’ in some forms depending
on the tense.

• ‘щях да съм ял’
• ‘бил съм ял’
• ‘ял си’
Since the aforementioned dictionaries include

these multi-word terms, while a spell-checking sys-
tem would be expected to judge single tokens’ va-
lidity on their own, we break up these multi-word
terms and only look at unique sequences of char-
acters. In this way we significantly decrease the
number of terms, while still maintaining the dic-
tionary’s ability to determine if a word is spelled
correctly.

Labelling. Additionally, the POS tag of each
term is carried over from the sources we used.
The tagging scheme includes 11 tags and is based
on BulTreeBank’s tagging scheme (Simov et al.,

7https://slovored.com
8https://rechnik.chitanka.info
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2004), but was simplified by including only a sin-
gle capitalised letter for the high-level role of the
tag (e.g., Amsf, Ansd, etc. all conflate to A for ‘ad-
jective’). Including these tags allows the dictionary
to differentiate between homonyms. For example,
the word ‘син’ describes both the adjective ‘blue’
and the noun ‘son’, so both are included in the
dictionary with different POS tags.

3.2 Error Correction Datasets
Because of the scarcity of learner data in Bulgarian,
we propose to collect Bulgarian text data and au-
tomatically induce spelling and grammar mistakes
using data augmentation techniques. This approach
allows us to generate pairs of correct-erroneous sen-
tences, which will be necessary for training models
to correct mistakes.

3.2.1 Error-inducement Algorithm
Not all errors can appear in all sentences, as they
have specific phonetic, grammatical or lexical re-
quirements. We defined an algorithm for inducing
errors that takes a collection of source correct sen-
tences C and a collection of error types T and
returns a collection of unique tuples P , each tuple
including three elements: a correct sentence c ∈ C,
an erroneous sentence e and an error type t ∈ T .

3.2.2 Dataset for Spelling Error Correction
Our spelling error dataset consists of 23,719 pairs
of Bulgarian sentences. In each pair, one sentence
is the original sentence collected from the source
corpus, which is presumed to be correct. The sec-
ond one is an erroneous version of the correct one,
including 1-3 spelling errors of the same type. The
dataset spans 7 different error classes based on dif-
ferent linguistic phenomena in Bulgarian and each
pair is labelled with one of those classes. To pro-
duce this dataset, the steps described below were
carried out.

Data Collection and Preprocessing. The source
data used to generate this dataset is Bulgarian
Wikipedia articles, as we consider the quality of
text in Wikipedia as being sufficient for our pur-
poses. Overall, 28 Wikipedia articles were col-
lected. The articles were fed into an spaCy imple-
mentation of a preprocessing pipeline specifically
for Bulgarian text (Berbatova and Ivanov, 2023).
Specifically, the articles underwent sentence seg-
mentation, tokenisation and POS tagging.

To remove noisy sentences, two filters are ap-
plied, removing any sentences with fewer than

three words or those without any verbs. This elimi-
nated any sentences which are too short to be useful
erroneous candidates. A total of 5817 sentences
were retained after this step.

Labelling. The seven error types listed below
were automatically induced. For incorporating cer-
tain types of errors in a sentence, specific sounds
or characters need to be present.

1. Vowel Stress Change. If a vowel is not in
stressed position,9 change it to the respec-
tive vowel counterpart10 (e.g. ‘кръгъл’ →
‘кръгал’).

2. Assimilation. If two neighbouring conso-
nants differ in their voice quality,11 change
the former consonant so it follows the voice
quality of the latter (e.g. ‘постановка’ →
‘постанофка’).

3. Word-final Devoicing. If there is a voiced
consonant at the end of the word, change the
consonant to its voiceless form (e.g. ‘масив’
→ ‘масиф’).

4. Double Consonant Loss. If there is a double
‘т’ or double ‘н’, remove one of them (e.g.
‘пролетта’ → ‘преолета’).

5. Consonant Clusters. If a specified consonant
cluster is present (e.g. ‘стн’, ‘здн’, ‘щт’),
remove ‘т’ or ‘д’ (e.g. ‘местно’ → ‘месно’).

6. Random Character. Introduce a random
character into a word (e.g. ‘момиче’ →
‘момгче’).

7. Semantic Change. If a character replacement,
removal, addition or swap operation causes
a word to result in a different word, which
is spelled correctly, change it (e.g. ‘което’
(‘which’)→ ‘котето’ (‘kitten’)).

It is worth noting that the resulting spelling cor-
rection dataset was not used for training any of
the models presented in this work. Nevertheless,
such a dataset is still necessary for quantifiable
evaluation of any spelling correction model and it
may prove useful to other members of the research
community.

The data distribution presented in Figure 1 shows
the frequencies of the different types of spelling
errors within the dataset.

9A vowel in stressed position is pronounced longer and
louder than an unstressed one.

10Bulgarian vowels are paired in terms of where they are
articulated in the mouth, e.g. ‘а’ and ‘ъ’.

11Consonants in Bulgarian are separated into voiced and
voiceless, with the majority of them forming pairs.
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Figure 1: Error type distribution in the spelling error
dataset.

3.2.3 Data set for Grammar Error Correction

Our grammar error dataset consists of 7588 error
pairs. Similarly to the spelling error dataset, in
each pair, the first sentence is the original correct
sentence and the second one contains an induced
error. Each erroneous sentence has only one in-
duced grammatical error, which can be one of four
error types.

Data Collection and Preprocessing. The source
of the sentences is a combination of Wikipedia arti-
cles and Bulgarian data from the OSCAR project.12

The same 28 Wikipedia articles in the spelling er-
ror dataset were used, in addition to 959,112 doc-
uments from the OSCAR dataset. The OSCAR
documents were collected from open-source online
materials, so the grammatical validity of the data
may not be as good as Wikipedia. However, the
Wikipedia articles are too similar in terms of writ-
ing style. Because of this, the errors induced from
them are too similar; thus, including OSCAR di-
versified the dataset, allowing for a more balanced
grammar error distribution.

Preprocessing steps that are similar to those
applied on the spelling error dataset were used.
Specifically, all documents were fed into a pipeline
to perform sentence segmentation, tokenisation and
POS tagging. Only sentences with three words or
more and contained a token tagged as a verb were
kept. Here, the POS tagging component of the
CLaRK System (Simov et al., 2003) was used,13

available via Mate Tools, a toolkit developed by

12https://oscar-project.org
13https://bultreebank.org/clark/

bulgarian-nlp-pipeline-in-clark-system/

Part-of-Speech (POS) Tag Groups
1 {Ncmsf, Ncmsh}

2
{Pie-os-m, Pie-as-m},
{Pre-os-m, Pre-as-m},

{Prp–s-m, Prp–s-f, Prp–s-n, Prp–p}
3 {V-1p}

4
{Amsi, Afsi, Ansi, A-pi},

{Amsh, Afsd, Ansd, A-pd},
{Amsf, Afsd, Ansd, A-pd}

Table 1: POS tags used in the mappings for inducing
different types of grammatical errors: (1) article misuse,
(2) pronoun misuse, (3) incorrect verb suffix and (4)
noun-adjective disagreement.

University of Stuttgart’s Institute for Natural Lan-
guage Processing. 14

Labelling. The error types in the dataset fall un-
der four types. The process of inducing grammati-
cal errors is more sophisticated than in the case of
the spelling error dataset, as the former required
understanding of text that goes deeper than syntax.

Errors were induced by identifying a word with
a source POS tag and then switching that word for
a different inflected form with a target POS tag.
The four error types are defined below.

1. Article Misuse. If there is a masculine noun
with a definite article form, change it to its
indefinite form, and vice-versa (e.g. ‘синът’
→ ‘сина’).

2. Pronoun Misuse. If there is a pronoun,
change its form:

• with respect to the object/subject, similar
to the use of ‘I’ and ‘me’ in English
(e.g. ‘който’ → ‘ когото’).

• with respect to grammatical gender
and/or count (e.g. ‘чиито’ → ‘чийто’).

3. Incorrect Verb Suffix. If there is a verb in
the first person plural form that ends with ‘м’,
append an ‘е’ (e.g. ‘ядем.’ → ‘ядеме.’).

4. Noun-adjective Disagreement. If there is a
noun-adjective pair, introduce disagreement
in terms of count and/or grammatical gender
(e.g. ‘красива’ → ‘красив’).

The introduction of errors was implemented by
defining mappings for source part-of-speech tags to
target part-of-speech tags; these tags are provided
(organised in one or multiple separate groups for
each error) in Table 1. The mappings from source
to target tag is generated by computing all possible
combinations within each group; for instance, for

14https://www.ims.uni-stuttgart.de/en/research/
resources/tools/matetools/
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Figure 2: Error type distribution in the grammar error
dataset.

article misuse, there is only one group with two
POS tags. It follows then that there are only two
possible mappings: {Ncmsf → Ncmsh, Ncmsh
→ Ncmsf}. The second error type contains three
groups and overall defines 16 mappings (2 from
the first, 2 from the second and 12 from the third).
The tags follow the tagging scheme introduced by
BulTreeBank (Simov et al., 2004). An exception to
the aforementioned process is the third error type
which regards incorrect verb suffix misuse. Here,
there is only one group with only one relevant POS
tag, which is used to identify verbs to append an
incorrect suffix to, rather than build mappings from.

The distribution of grammatical error types in
our dataset (Figure 2) is influenced by how com-
mon the relevant POS tags (corresponding to the
error types) are.

4 Fine-tuning mT5 for GEC

4.1 Dataset Selection

For our GEC experiments, we decided to focus on
only two of the four error classes we defined, i.e.,
article and pronoun mistakes, as these are consid-
ered to be the most prevalent errors in Bulgarian
writing. Filtering the examples based on these error
types left us with 3297 pairs. Out of these, we re-
tained only the pairs where neither of the sentences
exceeded a 300-character limit, as we consider any
sentences longer than that to be anomalous. In the
end, 3090 pairs remained. This dataset was utilised
for model training and evaluation, whereby subsets
with 72%, 18% and 10% of the data were used for
training, validation and testing, respectively.

4.2 Model Training

Whereas the original T5 (Raffel et al., 2020) model
works exclusively for English, the mT5 model sup-
ports multilingual text. Our proposed approach is
based on fine-tuning the mT5 model, which has pre-
viously demonstrated encouraging performance for
GEC in other highly inflected languages (Lytvyn
et al., 2023). Specifically, we employed the trained
mT5 model available from Huggingface.15

During the training stage, an mT5 model takes
two sequences, i.e., the source and the target, and
learns to transform the first into the second. In
our case this would have the source sequence as
a sentence with an error and the target sequence
would be the same sentence, but corrected. An
example is given below.

• Source (erroneous): ‘Емануела седна на
столът.’

• Target (correct): ‘Емануела седна на
стола.’

The translation for both is ‘Emanuela sat on the
chair.’ However, in the source sequence, the word
‘chair’ (‘столът’) is used in its definite form, in-
stead of indefinite (‘стола’). This constitutes a
grammatical mistake, as only the subject of the
sentence should be used in its definite form.

In order to determine the most optimal values of
training hyperpameters, we conducted grid search,
whereby the search space was defined based on the
hyperparameter values below.

• weight decay rate: {0.1, 0.01, 0.001}
• learning rate: {0.00002, 0.0002, 0.002}
• training batch size: {4, 8}
All 18 hyperparameter combinations were used

in fine-tuning the mT5 model for 16 epochs. The
process was repeated three times to allow us to
take the average over the results, ensuring stable
performance.

As can be observed in the visualisation in Figure
3 which presents the validation loss according to
the hyperparameter values, a learning rate of 0.002
seems too high, with lower rates yielding better per-
formance. Given this, we performed an experiment
to compare the other two learning rates, 0.0002
and 0.00002 (see Figures 6 and 7 in the Appendix).
Upon using these two learning rates, it became evi-
dent that the former is a better choice. Following
this, the final hyperparameter combination that we
chose is: learning rate = 0.0002, weight decay =
0.01, batch size = 8. We also decided to fix the

15https://huggingface.co/google/mt5-base
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Figure 3: Validation loss for various hyperparameter
values: weight decay, learning rate and batch size.

number of epochs to 4, as our experiments showed
that this leads to the lowest validation loss.

5 Evaluation

5.1 Dictionary

Our dictionary contains both lemmas and inflected
forms, unlike the official one released by The Insti-
tute for Bulgarian Language which only contains
lemmas. As a means for evaluating its coverage,
we randomly selected 20,000 entries from our dic-
tionary. These were then checked against the of-
ficial dictionary and it was found that only 1292
were present. Within the 93.51% of the missing
words, most are inflected versions of base word
forms. This only goes to show how existing dictio-
nary resources do not exhibit sufficient coverage
for spell-checking tasks.

5.2 GEC Model

Evaluation of the model is performed by comparing
its performance on the GEC task with two contem-
porary large language models (LLMs) that can han-
dle Bulgarian: gpt3.5-turbo16 and BgGPT.17 De-
spite its name which implies that it is based on GPT
(Brown et al., 2020), BgGPT is in fact a fine-tuned
Mistral model (Jiang et al., 2023). Both of our
chosen models for comparison are decoder-only
transformers, and rely solely on autoregressive gen-
eration. Ideally, evaluation should be performed
using other encoder-decoder models; however, no
suitable alternatives that can handle Bulgarian were
found.

16https://platform.openai.com/docs/models/
gpt-3-5-turbo

17https://huggingface.co/INSAIT-Institute/
BgGPT-7B-Instruct-v0.1

Our evaluation involves both quantitative and
qualitative comparison, utilising standard metrics
and a survey among human participants, respec-
tively.

5.2.1 Quantitative Evaluation
The two LLMs were evaluated based on the com-
monly used strategy of zero-shot prompting (Rosa
et al., 2021), whereby no training examples are
provided to the models prior to evaluation. Both
models were prompted with each input example
from the test set (309 sentence pairs) three times,
averaging metric results to account for random-
ness. Additionally, as prompt engineering has been
shown to greatly impact LLM responses (Marvin
et al., 2023), two different prompts were utilised.

1. Correct the mistake: [erroneous sentence]

2. Look at the following sentence and rewrite
it, fixing any mistakes if there are any: [erro-
neous sentence]

The performance of the models, including our
fine-tuned mT5 model, is presented in Table 2 in
terms of precision, recall and F0.5-score (i.e., Fβ
score, where β = 0.5). GEC models are typi-
cally evaluated with this F-score setting since the
CoNLL-2014 shared task on GEC (Ng et al., 2014),
because a lower β score places a higher emphasis
on precision, i.e., scoring higher for ensuring pre-
dicted tokens are correct, rather than correcting all
mistakes.

In this scenario, a true positive (TP) is an er-
roneous token that has been replaced by its cor-
rected version with respect to the gold reference
data. Meanwhile, a false positive (FP) is a correct
token being wrongly replaced and a false negative
(FN) is an erroneous token that remains unchanged.
If a token is erroneous but has been replaced with
a token that is not the one specified by the gold
standard, it counts both as an FP and an FN.

Our proposed fine-tuned mT5 model outper-
forms all variants of the contemporary models.
Both gpt3.5-turbo and BgGPT scored high on re-
call, i.e., they corrected a majority of the errors.
However, a low precision score implies they tend
to over-correct. Their ‘corrections’ oftentimes do
not introduce new errors; they simply reword the
source sentence. Nevertheless, they were prompted
to only correct errors and rewording runs the risk
of changing the sentence semantically.

The proposed fine-tuned mT5 model is not only
able to obtain higher recall than both models, but
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Precision Recall F0.5-score
gpt3.5-turbo (prompt #1) 37.51 (± 5.40) 60.52 (± 5.45) 39.34 (± 5.45)
BgGPT (prompt #1) 33.07 (± 5.25) 59.87 (± 5.47) 35.03 (± 5.32)
gpt3.5-turbo (prompt #2) 38.62 (± 5.43) 66.02 (± 5.28) 40.74 (± 5.48)
BgGPT (prompt #2) 30.18 (± 5.19) 62.33 (± 5.40) 32.33 (± 5.26)
Fine-tuned mT5 (Ours) 68.12 (± 5.20) 68.61 (± 5.17) 68.18 (± 5.19)

Table 2: Comparison of models for GEC, including 95% confidence intervals.

Figure 4: Proportion of pairwise model preference
counts for fine-tuned mT5, gpt3.5-turbo and BgGPT.
Rows indicate the winners (preferred model) and
columns correspond to their respective opponents.

also outperforms them across all metrics, especially
in terms of F0.5-score. This ensures that the model
actively attempts to exclusively correct errors.

5.2.2 Qualitative Evaluation
To assess the correctness, readability and under-
standability of our proposed solution, we have con-
ducted a survey to compare the performance of the
three GEC models from the previous section: Bg-
GPT, gpt3.5-turbo and our fine-tuned mT5 model.

Design. Examples in the test set were used to
prompt the proposed solution, as well as BgGPT
and gpt3.5-turbo, based on prompt #1, resulting
in 309 sentence triplets. The survey included only
triplets where all three model predictions are differ-
ent from one another. In the survey, 13 questions
were presented: the first 8 were related to article
misuse and the last 5 focussed on pronoun mis-
use. We refer the reader to Figures 8 and 9 in the
Appendix for examples of questions presented to
participants as part of our survey.

Results. Overall, 67 Bulgarian native speakers
completed the survey. They were recruited by con-
tacting Bulgarian social media groups and AI com-
munities in Bulgaria. Each response served as an in-
dication of pairwise preferences, resulting in 2613
comparisons, provided in Table 3 in the Appendix.

Figure 5: Bradley-Terry scores from survey rankings
for our fine-tuned mT5 model, gpt3.5-turbo and BgGPT
with 95% confidence intervals.

Our fine-tuned mT5 model obtained the highest
preference count, with a total of 963. Its preference
count proportions, visualised in Figure 4 (57% and
53% vs GPT and BgGPT, respectively) are higher
than those of the respective alternative models.

Inspired by the ChatBot Arena18 (Zheng et al.,
2024), we built a Bradley-Terry model to assign a
score with confidence intervals to each GEC model
based on the responses. As shown in Figure 5, our
fine-tuned mT5 model was able to perform better
than the contemporary LLMs with a statistically
significant difference.

6 Conclusion

This paper presents a state-of-the-art solution for
Bulgarian GEC based on the encoder-decoder
transformer model mT5, which surpasses LLMs
like gpt3.5-turbo and BgGPT. Additionally, we
present a contribution in the form of datasets
supporting Bulgarian language literacy, including
a machine-readable dictionary and two datasets
with erroneous-corrected sentence pairs: one for
spelling and the other for grammar mistakes.

Future work could investigate additional spe-
cialised initiatives regarding the collection of natu-
ral learner data from Bulgarian learners. Addition-
ally, language literacy entails punctuation; there
is active NLP research in restoring and correcting
punctuation in texts (Gravano et al., 2009; Tekir
et al., 2023), which can be explored in Bulgarian.

18https://chat.lmsys.org
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Limitations

Whilst the dictionary collection was evaluated for
its coverage, the error correction datasets were gen-
erated automatically assuming that the source text
is correct.

Our proposed GEC model was trained to iden-
tify and correct Bulgarian grammar errors that are
based on article and pronoun misuse. Thus, in its
current version, it is unlikely to perform well on
other types of errors. In addition, the model was
not trained to be correct in terms of facts pertaining
to people or events, and therefore using the model
to generate such content is out-of-scope.

Ethics Statement

The presented datasets and models utilise open-
source and publicly available resources (e.g.,
Wikipedia, OSCAR) that do not contain the names,
contact information, addresses, birth dates or other
information that can be considered private and/or
sensitive.

The survey that we conducted to qualitatively
evaluate GEC models did not require users to pro-
vide any personal information and no such data
was collected for this project.
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Appendix

mT5 GPT BgGPT
mT5 - 500 463
GPT 371 - 529
BgGPT 408 342 -

Table 3: Pairwise preference counts across the GEC
models. Rows indicate the winners (preferred model)
and columns correspond to their respective opponents.

Figure 6: Validation loss obtained by our fine-tuned
mT5 model, using a learning rate of 0.0002.

Figure 7: Validation loss obtained by our fine-tuned
mT5 model, using a learning rate of 0.00002.

Figure 8: Survey question asking a participant to rank a
correction for an article misuse error.

Figure 9: Survey question asking a participant to rank a
correction for a pronoun misuse error.
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Abstract

In this study, we leverage a unique UNESCO
collection of mid-20th century radio record-
ings to probe the robustness of modern off-the-
shelf language identification (LID) and speaker
recognition (SR) methods, especially with re-
spect to the impact of multilingual speakers
and cross-age recordings. Our findings suggest
that LID systems, such as Whisper, are increas-
ingly adept at handling second-language and ac-
cented speech. However, speaker embeddings
remain a fragile component of speech process-
ing pipelines that is prone to biases related to
the channel, age, and language. Issues which
will need to be overcome should archives aim
to employ SR methods for speaker indexing.

1 Introduction

Multinational organizations such as the United Na-
tions (UN); the International Federation of Red
Cross and Red Crescent Societies (IFRC); and
the United Nations Educational, Scientific, and
Cultural Organization (UNESCO) maintain audio
archives that are of profound cultural and historical
value. However, incomplete descriptive metadata
often hinder their access by the public (Zervanou
et al., 2011).

Audio archives present a complex terrain for
contemporary speech processing technologies, ow-
ing to the varied domains these recordings encap-
sulate. The long running MALACH project’s ef-
fort to tackle emotional, disfluent, and accented
speech (Picheny et al., 2019; Psutka et al., 2002)
gives of sense of this complexity. In this study,
our attention is directed towards extensive mul-
tilingual repositories, which pose challenges for
speaker recognition (SR) and language identifica-
tion (LID) technologies due their long chronolog-
ical span and inclusion of second-language (L2)
speech.

A primary objective in enhancing accessibility
to these recordings involves identifying the speak-

ers within a specific recording. While documenta-
tion of speakers is sometimes available, it is only
at the document level, making this task closer to
speaker indexing (Sturim et al., 2001) than stan-
dard SR. Moreover, concerns regarding the robust-
ness of speaker embeddings to voice modifica-
tions associated with aging, as well as the accu-
racy of language-specific predictions (Hutiri and
Ding, 2022), significantly challenge the straightfor-
ward utilization of off-the-shelf SR technologies
within the ambit of these long-running, multilin-
gual archives.

In this exploratory investigation using a selec-
tion of radio audio archives from UNESCO, we
explore the impact of these factors on robustness
of zero-shot application of off-the-shelf tools, to
identify paths towards speaker indexing in age- and
language-variable environments. Our dataset in-
volves 171 hours of archival data covering the pe-
riod of 1952-1980, involving 20 languages (See
Table 1). Our work offers the following contribu-
tions:

1. We characterize a relatively neglected sphere
within speech processing scholarship: multi-
lingual audio archives.

2. We carry out a cross-age analysis to investi-
gate robustness of the speaker embeddings.

3. We analyze the robustness of speaker embed-
dings in multilingual speech scenarios, uncov-
ering unique insights that are otherwise hid-
den without access to datasets such as ours.

4. We investigate the utility of a number of off-
the-shelf language identification tools for ac-
cented LID.

The rest of the paper is organized as follows:
Section 2 offers a brief overview of speech process-
ing as it relates to challenges present in archival
audio. Section 3 is a description of our datasets.
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Section 4 details our data processing methods. Sec-
tion 5 gives an overview of the LID and SR models
used. Section 6 is a breakdown of our different
experiments. In Section 7, we provide our experi-
mental results and discuss these in Section 8. We
discuss limitations of our work in Section 9 and
provide ethical implications in Section 10. We con-
clude in Section 11.

2 Background

2.1 Language ID

Recent work in LID has moved from the dis-
crete segment representations popular in earlier
i-vector (Dehak et al., 2011) and x-vector (Sny-
der et al., 2018) works, to the convenience of
end-to-end deep neural models either based on
ResNets (Cai et al., 2018) or Transformers (Babu
et al., 2021; Radford et al., 2023; Pratap et al.,
2023). Part of this has been enabled by the cre-
ation of LID datasets such as VoxLingua107 (Valk
and Alumäe, 2021) and FLEURS (Conneau et al.,
2023), allowing for direct training of large end-
to-end models. Meanwhile, another aspect of this
evolution has been the inclusion of LID into models
designed as ‘jack-of-all-trades’ tools such as Whis-
per (Radford et al., 2023) and Massively Multilin-
gual Speech (MMS) (Pratap et al., 2023), which
are built to support automatic speech recognition
(ASR) and speech translation in addition to LID.

Recent work in LID has raised attention to less
well developed areas of exploration including L2
LID (Kukk and Alumäe, 2022), LID for multilin-
gual users (Titus et al., 2020), and domain gen-
eralization of LID (Sullivan et al., 2023). For
archival audio, these three aspects become even
more relevant, as the long chronological nature of
the archives and diverse population of multilingual
speakers demand the use of highly robust LID sys-
tems. At the same time, the operational context
(including lack of funding and know-how) means
that off-the-shelf tools are the only viable option,
neglecting transfer learning or domain adaptation
approaches, regardless of their efficacy.

2.2 Speaker embedding

Modern SR makes use of speaker embeddings
(i.e. x-vector, r-vector etc.) often extracted from
ResNets-based extractor networks (Desplanques
et al., 2020; Wang et al., 2023) and trained on
VoxCeleb (Nagrani et al., 2017). Despite the
progress made in the field, a recent study of bias in

Table 1: Dataset Overview. n is the number of record-
ings. For LID, we use only the first 30 seconds of spoken
audio from each recording.

Split n Hours Languages

LID 484 4 20
Cross-age 692 104 17
Cross-lingual 463 67.5 20

SR (Hutiri and Ding, 2022) indicate a number of is-
sues, including demographic biases impacting age,
gender, language, and nationality. To our knowl-
edge little work has been performed to investigate
the impact of language (including multilinguality)
on SR effectiveness. However, there is a body of
work that has looked at the impact of cross-age sce-
narios on SR (Singh et al., 2023; Qin et al., 2022).
With Qin et al. (2022) employing adversarial learn-
ing to learn age-invariant embeddings, and Singh
et al. (2023) estimating the impact of age on cross-
age verification. To our knowledge no work has
considered investigation of cross-age scenarios in
multilingual corpora.

Work in speaker indexing, has been largely
neglected since anchor model based ap-
proaches (Sturim et al., 2001), but we hope
that this study will pave the way to future work in
speaker indexing by identifying existing obstacles
with off-the-shelf tools.

3 Datasets

VoxPopuli - L2 English An existing source of
L2 audio, in a similar domain to the one under
consideration is the VoxPopuli collection of Eu-
roParl recordings (Wang et al., 2021). In particu-
lar we are interested in the 29 hour subset of L2
English speech coming from 15 different accent
backgrounds.

Radio Archives From our partnership with UN-
ESCO, we utilize a mid-20th century radio record-
ing archives collection that is currently undergoing
metadata enrichment. While the dataset is currently
not published, the metadata used and links to the
recordings will be made available. The recordings
in this collection consist of a variety of material
including speeches, interviews, news briefs, and
educational programs. The audio was recorded
between the 1950s and early 1980s, and digitized
in the late 2010s. See Table 1 for more detailed
statistics.
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4 Data Processing

While the VoxPopuli dataset is used with existing
segmentation for our L2 English experiments, we
build two datasets from the radio archives by fil-
tering the known metadata to meet certain criteria.
As much of the radio archives contain incomplete
metadata, we restrict our selection to recordings
identified as having a single known speaker on the
recording,as well as a single languages spoken.

From this selection, we create two datasets: Our
cross-age dataset is filtered by selecting speakers
with multiple recordings in the same language oc-
curring in different calendar years. The second
cross-lingual dataset is filtered by selecting speak-
ers with multiple recordings in different languages.

For both datasets, we further filter by diariz-
ing the recordings using Pyannote’s (Bredin et al.,
2020) speaker diarization pipeline (version 3.1),
and selecting recordings where there is a single
speaker accounting for more than 75% of the dura-
tion. We utilize 16khz single channel copies of the
recordings for the study.

5 Models

Whisper (Radford et al., 2023) is a multilingual
speech processing model that allows for ASR,
speech translation, and LID. We use all three ver-
sions of the large (1.5B parameter) model.
MMS (Pratap et al., 2023) is similarly a multilin-
gual speech processing model allowing for ASR,
speech translation, LID, and additionally text-to-
speech. The model has been primarily trained on
the Bible and other religious audio, with a focus on
scaling the number of covered languages. We use
the (1B parameter) 126 language version.
WeSpeaker ResNet34-LM (Wang et al., 2023) is
a SR model trained on VoxCeleb (Nagrani et al.,
2017).

6 Experiments

6.1 L2 LID

For our L2 LID experiments, we compare two
well known off-the-shelf LID models: Whisper
Large V(1-3) (Radford et al., 2023) and MMS
L126 (Pratap et al., 2023). For our VoxPopuli
dataset we simply report predictions on the given
segments. However, for our cross-lingual radio
dataset, we follow the suggested LID procedure of
the Whisper model and select the first 30 seconds
of audio to perform the prediction.

6.2 Speaker Embedding Robustness
To understand how robust speaker embeddings are
to cross-age and cross-lingual effects, we use a
pretrained ResNet model, Wespeaker ResNet34-
LM (Wang et al., 2023), to extract segment repre-
sentations. We take the average embedding for the
majority speaker in each recording. For the cross-
age experiments, we calculate the cosine similarity
between representations and aggregate by differ-
ence in calendar years between recordings. We rely
on calendar year as an approximation as we do not
have recording dates for some recordings. For the
cross-lingual experiments, we simply compare the
cosine similarity between same language segments
to their different language similarity scores.

7 Results

For L2 English performance (see Table 2 in Ap-
pendix A), The updated Whisper V3 model substan-
tially improves the recognition of accented English
audio attaining an accuracy of 94% compared to
both Whisper V1,V2 and MMS L126.

For our mixed L1 and L2 multilingual archival
audio (see Table 3 in Appendix A), we see similar
results as to the VoxPopuli results. Notably, MMS
performs better on the mixture of accented and
unaccented speech (accuracy at 71.90%). Still, the
Whisper V3 model performs best on this set of
audio: accuracies of 88.01% for V1, 87.60 for V2,
and 91.32% for V3.

Looking at the robustness of the speaker embed-
dings, we notice a substantial drop in the similarity
scores in both the cross-age setting (see Fig. 1) and
cross-lingual setting (see Fig. 2). For the cross-age
comparison, median cosine similarity scores con-
tinue to drop until stabilizing after a gap of 10 years.
While cross-lingual performance of representations
drops substantially as well, of note is the very large
increase in standard deviation between the two set-
tings. This latter trend is potentially problematic
for treating all cross-lingual scenarios the same,
and may be indicative that fluency as well as lan-
guage similarity between compared languages may
be factors.

8 Discussion

The performance of the Whisper V3 model appears
to indicate it as a strong candidate for archives in
processing multilingual audio files. Notably, while
all of the Whisper models under examination have
roughly the same number of parameters (V3 is
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Figure 1: Longitudinal comparison of speaker embed-
ding. Cosine similarity scores are plotted with median
and quartiles marked. Outliers are noted as circles. ∆t
is the absolute difference in calendar years between each
pair of recordings. Data past 15 years becomes quite
sparse, as few speakers fit our filtering criteria.

slightly larger due to increasing the input dimen-
sions), the larger amount of training data used for
V3 appear to substantially help it in identifying
accented English. The brittle nature of the MMS
model with regard to L2 speech is quite surprising,
and demonstrates the importance of having diverse
and challenging audio benchmarks for LID. While
the longitudinal embedding comparison demon-
strates the challenges of applying SR models across
channel and age. The appearance of a flattening at
around 10 years of difference indicates that it may
be possible to account for this cross-age drift.

9 Limitations

Working with real world datasets presents substan-
tial challenges and limitations. While the archival
partner aims to put the radio recordings online
sometime in the future, these are not yet available
publicly. Similarly, working with aggregated data
has limitations. For instance the small cluster of
low similarity in the same language embedding
comparison is likely indicative of misidentified
speakers who slipped through the filtering process.

10 Ethics

Speaker identification tools have the potential for
significant privacy violation, especially if applied
as part of a surveillance system at scale. As seen
from the study, the large cross-channel and cross
language variability in speaker embeddings present
significant risks for use in larger scales, where risk

Figure 2: Cross-lingual comparison of speaker embed-
ding cosine similarity scores. To better show the distri-
bution, we present the results as violin plots, noting that
the lower end of the Same Language plot may be rep-
resentative of different speakers who were not filtered
out of our automated approach. Distribution statistics:
Same language Mean: 0.71, Median: 0.76, Std: 0.19;
Different language Mean: 0.53, Median: 0.60, Std: 0.26

associated with misidentification may also be quite
high.

We believe our investigation of these tools for
the purpose of improving archival accessibility and
discovery are consistent with ethical practice, and
our application to a limited closed set of public
figures on public audio recordings further limits
this potential for abuse.

11 Conclusion

We present an analysis into the robustness of SR
and LID tools on cross-age, and cross-lingual au-
dio on a unique archival radio dataset. Our work
indicates the viability of existing LID tools, such
as Whisper V3 (Radford et al., 2023), at handling
the accented and multilingual speech common in
recordings from multinational organizations. We
also find that cross-age and cross-lingual applica-
tion of SR introduce large drops in the cosine sim-
ilarity scores, with the cross-age similarity drop-
ping steadily over a period of a decade. The cross-
lingual scores further introducing large increase
in the standard deviation, potentially indicative of
other factors such as language fluency or language
similarity impacting the result. Additionally, this
work demonstrates the value of archival audio in
examining current speech processing approaches.
The variety of such recordings offer a strong plat-
form to study bias and domain adaptation.
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Appendix A LID Experiments

Table 2: L2 English LID Performance of Whisper (Rad-
ford et al., 2023) and MMS (Pratap et al., 2023)

Model Accuracy

Whisper-Large v1 72.65%
Whisper-Large v2 72.65%
Whisper-Large v3 94.52%
MMS L126 11.10%

Table 3: Multilingual Archival Audio LID Performance
of Whisper (Radford et al., 2023) and MMS (Pratap
et al., 2023)

Model Accuracy

Whisper-Large v1 88.01%
Whisper-Large v2 87.60%
Whisper-Large v3 91.32%
MMS L126 71.90%
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Abstract

Traditional search methods primarily depend
on string matches, while semantic search tar-
gets concept-based matches by recognizing un-
derlying intents and contextual meanings of
search terms. Semantic search is particularly
beneficial for discovering scholarly publica-
tions where differences in vocabulary between
users’ search terms and document content are
common, often yielding irrelevant search re-
sults. Many scholarly search engines have
adopted knowledge graphs to represent seman-
tic relations between authors, publications, and
research concepts. However, users may face
challenges when navigating these graphical
search interfaces due to the complexity and
volume of data, which impedes their ability to
discover publications effectively. To address
this problem, we developed a conversational
search system for exploring scholarly publica-
tions using a knowledge graph. We outline
the methodical approach for designing and im-
plementing the proposed system, detailing its
architecture and functional components. To as-
sess the system’s effectiveness, we employed
various performance metrics and conducted a
human evaluation with 40 participants, demon-
strating how the conversational interface com-
pares against a graphical interface with tradi-
tional text search. The findings from our evalu-
ation provide practical insights for advancing
the design of conversational search systems.

1 Introduction

Digital publication platforms have greatly ex-
panded the accessibility of scholarly articles, offer-
ing an extensive range of publications that can be
efficiently discovered through integrated search en-
gines. These digital platforms provide researchers
with access to millions of scholarly documents,
encompassing conference papers, journal articles,
workshop proceedings, and book chapters. The
number of scholarly documents is growing expo-
nentially, with estimates suggesting that it doubles

approximately every 15 years (Bornmann et al.,
2021). As the body of literature grows, traditional
keyword-based search methods are becoming less
effective at filtering and ranking relevant docu-
ments. These lexical methods rely heavily on well-
formulated queries and otherwise yield irrelevant
results. Researchers are often hindered by the so-
called vocabulary mismatch problem, which mani-
fests as differences between search terms and the
terminology in the documents (Furnas et al., 1987).
This issue is especially pronounced in open-ended
and exploratory search scenarios, where users navi-
gate unfamiliar information spaces. In such scenar-
ios, users’ incomplete knowledge of certain topics
prevents them from formulating queries to access
the information they need (Schneider et al., 2023a).

Reacting to the challenges posed by the high
volume of scientific output, digital publication plat-
forms have begun to make their search functionali-
ties more intelligent by employing semantic search
methods using natural language processing (NLP).
These methods enable search engines to understand
the context and intent behind user queries. Mov-
ing beyond exact keyword matches to semantic
matches on a conceptual level can help identify rel-
evant articles, even when different terms are used,
thereby aiding users in discovering publications
from subfields they are unfamiliar with. Comple-
menting this, knowledge graphs (KGs) have estab-
lished themselves as a versatile data structure for
representing semantic relationships between inter-
connected entities like institutions, authors, topics,
research fields, and other concepts.

Two popular examples of platforms that have
incorporated KGs are Microsoft Academic (Wang
et al., 2020a) and Semantic Scholar (Kinney et al.,
2023). Microsoft Academic created the Microsoft
Academic Graph, which supports semantic search,
contextual query understanding, and personal rec-
ommendations. Similarly, the Semantic Scholar
platform operates on the Semantic Scholar Aca-
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demic Graph with more than 200 million papers.
While these platforms offer a range of graph-based
features and visualizations, they introduce usability
hurdles by rendering graphical search interfaces
more complex. Graphical interfaces can become
less effective for exploratory search because of the
added layers of complexity, causing users to ex-
perience cognitive overload (Sweller, 1988). This
might be exemplified by the decline and eventual
termination of Microsoft Academic in 2021, whose
intricate interface likely has contributed to deter-
ring users (Orduña Malea et al., 2014).

To address the complexity of graphical semantic
search interfaces, we propose developing a conver-
sational interface for discovering scholarly publi-
cations via dialogue interactions, leveraging a KG
data structure. The emerging paradigm of conversa-
tional search promises to satisfy information needs
using intuitive information-providing conversations
while avoiding information overload (Radlinski
and Craswell, 2017). Through interactions with
conversational agents, users can resolve ambigui-
ties, refine their queries, narrow down the relevant
search space, and extract novel insights. Our study
aims to provide insights into how conversational
search systems integrated with KGs can enhance
the discovery of publications, thereby improving
navigation and information retrieval in the schol-
arly research landscape. To demonstrate the effec-
tiveness of our developed system, we utilize the
open-source corpus of the ACL Anthology as our
data foundation. The source code, models, datasets,
and questionnaires are made available via a public
GitHub repository.1 Our three main contributions
are as follows: (1) We propose an architecture for
integrating a conversational exploratory search sys-
tem with a scholarly KG. (2) We implement the
system by assembling different task-specific lan-
guage models. (3) We conduct both a model-centric
performance assessment and a human evaluation
of the developed system with 40 participants.

2 Related Work

Conversational search systems are defined as con-
versational interfaces that support acquiring in-
formation through multi-turn dialogues. These
systems progressed significantly in recent years,
largely driven by the rapid adoption of large lan-
guage models (LLMs). A growing body of research
focuses on augmenting conversational search sys-

1Repository: github.com/philotron/CS-Scholarly-KG

tems with LLMs (Schneider et al., 2024c), includ-
ing utterance understanding (Kuhn et al., 2023), di-
alogue management (Friedman et al., 2023), knowl-
edge retrieval (Lewis et al., 2020), and response
generation (Sekulic et al., 2024; Schneider et al.,
2024b). While LLMs hold great potential for con-
versational search systems, they are not without
shortcomings. LLMs can hallucinate or omit cru-
cial information, and their outputs often lack trans-
parency regarding the source of generated content
(Ji et al., 2023). In addition, LLMs are usually
non-deterministic, posing challenges in ensuring
consistent and correct knowledge due to the ran-
domness in their text generation processes.

To mitigate issues of factuality and reliability
in conversational systems and LLMs, researchers
have studied using KGs to ground outputs in verifi-
able data sources. Integrating KGs with dialogue
systems has long been a focus in the literature. KGs
can replace static domain knowledge with dynamic
ontologies and have shown effectiveness in con-
versational question answering (QA) (Christmann
et al., 2019; Schneider et al., 2024a). By navigat-
ing entity nodes and relationships, KGs enhance
conversational context and information exploration.
Numerous studies support the use of KGs for im-
proving utterance understanding, response genera-
tion, and dialogue management (Chen et al., 2019,
2023). While KGs are increasingly being com-
bined with conversational agents in fields such as
healthcare, law, and business, there remains a sig-
nificant gap in their application within the scholarly
domain. Thus far, Meloni et al. (2023b) are the only
ones to propose combining a conversational agent
with the Academia/Industry DynAmics (AIDA) KG
(Angioni et al., 2021). Their AIDA chatbot focuses
on QA by executing database queries to count, list,
compare, or describe scholarly entities (e.g., au-
thors or conferences), thereby offering senior re-
searchers an overview of the research landscape
through bibliometric data (Meloni et al., 2023a).

In contrast, our proposed system supports the
conversational discovery of research articles for
users with vague goals in open-ended search sce-
narios, building on insights from our previous work
(Schneider et al., 2023b). Therefore, unlike the
AIDA chatbot, which primarily assists senior re-
searchers, our proposed system is designed to sup-
port exploratory information search for non-expert
users looking to discover relevant publications on a
given topic without requiring in-depth knowledge.
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Figure 1: Architectural components of the conversational exploratory search system.

3 Conversational Search System

3.1 System Architecture

The developed dialogue system helps users nar-
row down relevant publications via a three-phase
search process. An overview of the conversation
flow is illustrated in Figure 4 in Appendix A. In the
first phase, the system receives a short description
of a search goal (e.g., “I want to study how peo-
ple express their feelings on social media.”) and
then it assists users by recommending an appropri-
ate NLP research topic to explore (e.g., Emotion
Analysis). Second, users can iteratively choose
thematic clusters of articles within the selected re-
search topic (e.g., Emotion Detection in Social Me-
dia Text). Third, users are presented with a list of
articles at the lowest cluster level, where they can
compare papers based on summarized information
from the abstracts. Finally, users have the option to
either access links to the full texts of the papers or
continue exploring other research topics, clusters,
or articles. In Section 4.1, we will elaborate on the
developed NLP models powering the three-phase
search process through (1) topic classification, (2)
text clustering, as well as (3) text summarization.

Figure 1 illustrates the system architecture,
which is structured into four distinct subsystems.
Each subsystem encompasses multiple components
responsible for typical dialogue system functions.
The front end is a conversational interface imple-
mented as a web application subsystem using the
open-source framework Streamlit.2 It features a
basic chat interface with a text input form and a
scrollbar for the current dialogue history. User
messages entered in the chat interface are sent to a
dialogue system built with RASA, an open-source
machine learning framework.3 RASA supports the

2Streamlit: https://streamlit.io
3RASA: https://rasa.com

development of conversational agents with a nat-
ural language understanding (NLU) pipeline that
recognizes intents and entities from user utterances.
Based on these semantically parsed user utterances,
the agent’s dialogue manager, which takes into ac-
count dialogue states, dialogue policies, and conver-
sation context, predicts the system’s next actions.
Aside from standard actions like producing a sim-
ple response, the agent connects with an action
handler component to implement custom actions.
One custom action is the KG retriever component.
It enables the construction and execution of struc-
tured queries to retrieve data from the scholarly KG,
such as abstracts, thematic clusters, or research top-
ics. It connects with the knowledge base subsys-
tem, which hosts the KG in a Neo4j property graph
database.4 For the query construction, extracted en-
tities from user utterances are matched with those
existing in the KG to fill out template queries.

In addition to the KG, the knowledge base
subsystem hosts the open-source vector database
Weaviate, which performs embedding-based sim-
ilarity search.5 Together with the KG, the vector
database supports the research topic classifier com-
ponent by finding the closest research topics from
user inquiries. Another component that powers
a custom action is the language model accessor,
which provides a connecting endpoint to the gen-
erative language model subsystem. Inside this sub-
system, we host the open-source LLM Zephyr-7B-
Beta (Tunstall et al., 2023). The subsystem offers
two inference endpoints for dynamic prompting.
The endpoints are used to generate names for paper
clusters and summarized paper comparisons.

The described system is deployed on three vir-
tual machines (VMs) in a cloud environment. The
first VM operates the dialogue system that interacts

4Neo4j: https://neo4j.com
5Weaviate: https://weaviate.io
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directly with users through the conversational in-
terface. The second VM acts as a database server,
while the third VM, equipped with a GPU (16 GB
memory), hosts the large language model. De-
spite the architecture’s various technical compo-
nents depicted in Figure 1, the conversational in-
terface hides the complexity of the underlying KG,
providing a highly accessible search experience.

3.2 Knowledge Graph and Vector Database

To establish the data foundation for the conversa-
tional search system, we constructed a domain-
specific KG with over 85,000 research articles
sourced from the ACL Anthology.6 A compact
overview of the data schema with entity nodes and
relations is presented in Figure 5 in Appendix A.

Sourcing articles from the ACL Anthology pro-
vided us with detailed metadata on authors, venues,
and publication years that were automatically trans-
formed into nodes and relations of the KG. In ad-
dition, we assigned each article to one or multiple
research topics. To achieve this, we used a previ-
ously established taxonomy of NLP research topics
from Schopf et al. (2023), which is organized as a
two-level hierarchy with main topics and subtopics,
along with topic names and human-written defi-
nitions. This taxonomy includes 12 main topics,
such as Text Generation or Sentiment Analysis, and
a total of 71 subtopics (e.g., Question Generation
or Emotion Analysis). For classifying articles, we
employed two fine-tuned language models for clas-
sifying publications: a SPECTER2-based model
(Singh et al., 2023) for multi-label topic classifi-
cation based on the used NLP taxonomy (Schopf
et al., 2023; Schopf and Matthes, 2024), and a
SciNCL-based model (Ostendorff et al., 2022) to
classify if a publication is a survey paper consoli-
dating information from several other publications.
The taxonomy inside the KG is later applied to
train a classification model that predicts a relevant
NLP subtopic based on a described search goal.
By providing topic definitions and listing related
topics, the conversational agent can guide users
through the NLP taxonomy.

While effective for broad classification, the two-
level NLP taxonomy is not granular enough to
account for thematic differences within a given
subtopic. For example, the subtopic Emotion Anal-
ysis includes over 780 publications, which share
only a few common characteristics. To have a more

6ACL Anthology: https://aclanthology.org

fine-grained filtering mechanism, we clustered pa-
pers based on their title and abstract content (e.g.,
specific techniques, application domains, or bench-
mark datasets). These thematic clusters are pre-
computed and modeled as nodes in the KG. The
clustering and cluster naming methods will be dis-
cussed in more detail in Section 4.1.

In addition to the KG database, we installed a
vector database that supports various embedding
models and similarity metrics, making it ideal for
efficiently ranking semantically similar documents.
We employed the SPECTER2 embedding model
(Singh et al., 2023) for generating vectors from pa-
pers’ titles and abstracts and used them for the men-
tioned research topic classification, mapping NLP
topics from the taxonomy to user requests during
the search dialogue in real-time. A document iden-
tifier in the vector database links these embeddings
to the papers in the KG. As a last construction step,
we further enriched the KG with metadata from
the Semantic Scholar API, including one-sentence
too long; didn’t read (TLDR) summaries, citation
counts, and publication references.

4 Results and Discussion

4.1 Model Training and Evaluation

Research Topic Classification. In the following
sections, we report the results of training and eval-
uating the NLP models that underpin the three-
phase search process of our developed dialogue
system: (1) research topic classification, (2) article
text clustering, and (3) comparative article sum-
marization. The first phase involves classifying an
uttered search goal or problem description into a
fitting NLP research topic. This is especially help-
ful for users in exploratory search settings because
they may not be familiar with all existing fields
of study and struggle to phrase their queries us-
ing the correct terminology. Due to the absence
of datasets that map search goals expressed in lay-
man’s terms to NLP topics, we created a synthetic
multi-class dataset using GPT-3.5-Turbo (version:
0613) (OpenAI, 2022). We prompted the LLM to
generate questions on the 12 main topics in our tax-
onomy using three distinct personas: a computer
science student with only peripheral NLP knowl-
edge, a businessperson with practical experience
of NLP tools but minimal technical expertise, and
a non-technical, non-academic individual whose
technology use is limited to basic tasks. Persona-
specific prompting yielded diverse inquiries in lay-

387



man’s language. For example, the question “How
are computers able to respond when we ask them
questions?” was generated for the topic Natural
Language Interfaces. To account for questions un-
related to NLP, we also generated a set of out-
of-scope questions such as “Who discovered the
laws of thermodynamics?” Following a quality in-
spection of the synthetically produced questions,
we assembled a training dataset of 1601 examples,
consisting of 120 questions for each of the 12 topics
and 161 general questions. We also derived a test
dataset containing 364 examples with a balanced
class distribution similar to the training dataset.

In our experiments, we evaluated three classifica-
tion approaches: vector similarity search, prompt-
ing a LLM (GPT-3.5-Turbo), and few-shot fine-
tuning of a transformer model with the SetFit
framework (Tunstall et al., 2022). Concerning
the vector search approach with the SPECTER2
model, we measured the cosine similarity to com-
pare vectors of embedded user queries with paper
embeddings in our vector database to retrieve the
100 most similar papers. We found that a simi-
larity threshold below 77% effectively filters out
the non-NLP-related questions. Using the schol-
arly KG, we aggregated linked topics for these
papers and predicted the most frequent topic as
output class. For the LLM approach, we crafted
a zero-shot prompt for GPT-3.5-Turbo, provided
in Appendix A, which instructed the LLM to clas-
sify the appropriate topic from the list of 12 main
topics or answer with “None” if the question was
not related to NLP. Moreover, we tested the SetFit
approach for fine-tuning the sentence transformer
model multi-qa-MiniLM-L6-cos-v1 (Wang et al.,
2020b). We trained for 3 epochs, a batch size of 16,
and 30 SetFit iterations for contrastive learning.

Figure 2 illustrates the classification perfor-
mance for each approach. While vector search
achieved a macro F1-score below 0.50., GPT-3.5-
Turbo achieved a score near 0.75; however, it ex-
hibited a bias toward particular topics, leading to
overprediction and incorrectly classifying general
questions as NLP topics. The SetFit model demon-
strated superior performance over the two other
approaches with a score of 0.95. Consequently, we
implemented the topic classifier component with
this fine-tuned model for main topic classification
in combination with similarity search for classify-
ing the subtopic. This allows a more nuanced clas-
sification of user queries into subtopics, given the
more detailed information in the paper abstracts.

Vector Search GPT-3.5-Turbo SetFit Model
Topic Classification Approach

0.00

0.25

0.50

0.75

1.00

Sc
or

e

F1-Score Accuracy

Figure 2: Comparison of accuracy and F1-scores for
three topic classification approaches.

Article Text Clustering. After selecting an NLP
subtopic, the conversational search agent guides
users by presenting clusters of papers to further
narrow down the search space. We tried out vari-
ous clustering methods for thematically grouping
similar papers because listing all papers within one
subtopic at once is impractical. Selecting thematic
clusters makes it easier for users to find relevant pa-
pers by iteratively choosing smaller, more specific
clusters. Our experiments indicated that agglomer-
ative clustering, a hierarchical bottom-up cluster-
ing approach, was the most effective in producing
mutually exclusive clusters at each hierarchy level
(Murtagh and Contreras, 2012). We employed the
SPECTER2 embeddings of the publications, which
were the same ones used for the similarity search
as part of the research topic classification.

Initially, we used a distance threshold of 10, re-
sulting in clusters averaging 15 publications each.
However, this led to too many clusters inside a
given research topic, making cluster selection very
cumbersome. The distance threshold represents
the maximum distance within which items are
clustered together. To improve the clustering, we
adopted an iterative hierarchical approach. We pro-
gressively decreased the distance threshold at each
cluster level, keeping the number of clusters small
while increasing the paper similarity within each
subcluster to facilitate user navigation. Clustering
stopped when fewer than 10 publications remained
per cluster, ensuring a user-friendly number to dis-
play. Overall, we constructed a granular hierarchy
of 47,035 thematic clusters, which were modeled
as nodes in the constructed scholarly KG.

Next, it was necessary to assign human-readable
cluster names to help users identify relevant clus-
ters during the conversational search interaction.
We applied a term frequency-inverse document fre-
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quency (TFIDF) vectorizer to extract important
words from the titles of all publications within
each cluster. Through several experiments, we
found that an n-gram range of (2,5), considering
sequences of two to five consecutive words, yielded
good cluster names. However, we observed that a
few clusters had identical names. To resolve this,
we performed another cluster naming iteration, tak-
ing into account all previous names. If a name was
repeating, we selected the second or third most rel-
evant TFIDF label to ensure unique names. While
the TFIDF-derived names were readable, they of-
ten contained too much detail and domain-specific
words, rendering them less accessible to non-expert
users. To make cluster names more understandable,
the aforementioned Zephyr-7B-Beta LLM was ap-
plied. Within the LLM subsystem in our architec-
ture, a specialized component was developed for
cluster naming. A dynamic prompt, detailed in
the GitHub repository, was created to transform
an existing TFIDF cluster name alongside five ran-
domly selected paper titles from a chosen clus-
ter into a more comprehensible cluster name (e.g.,
Emotion Detection in Social Media Text or Extrac-
tion of Concept Maps for Multi-Document Summa-
rization). To minimize response latency during a
conversation, names for clusters and subclusters
were pre-computed and stored in the scholarly KG.

Comparative Text Summarization. In the last
phase of the conversational search process, users
can compare papers listed at the lowest cluster level.
Although these papers are already thematically re-
lated, the comparison allows users to discern spe-
cific similarities and differences, aiding in deter-
mining which paper to read more thoroughly. The
language model subsystem allows for the summa-
rization of objectives and results of two selected
papers, which are generated in real-time upon re-
quest with Zephyr-7B-Beta. Given that injecting
full abstracts can impede the LLM’s ability to ac-
curately detect objectives and results, only relevant
portions of the abstract are provided in a dynamic
prompt, which has been shown to reduce halluci-
nated outputs (Martino et al., 2023).

To this end, we first classified abstract sentences
that discuss objectives or results using SciBERT, a
language model pre-trained on scientific text (Belt-
agy et al., 2019). We fine-tuned SciBERT on a
labeled dataset from Gonçalves et al. (2020), in-
cluding 500 computer science abstracts and 3,287
sentences classified as background, methods, objec-

tives, results, or conclusions. After hyperparameter
optimization, our fine-tuned model achieved an
F1-score of 75.39%, which is around one percent-
age point higher than the model from Gonçalves
et al. (2020) with 74.60%. Finally, we applied
our model to all the publication abstracts in our
KG and stored the classified objectives and results
sentences accordingly. More details about our fine-
tuned model are available in the repository. A dy-
namic LLM prompt for text summarization was
crafted, as shown in Table 5 in Appendix A. Two
researchers manually assessed the generated com-
parisons. Initial experiments with other models,
such as Falcon-7B and Llama-2-7B, showed that
these models were less attuned to following the
instruction, often producing hallucinated content or
excessively verbose responses, making them unsuit-
able for conversational interactions. As a result, we
selected Zephyr-7B-Beta, which delivered better
output in terms of style and faithful content.

4.2 Human Evaluation
Experiment Design. To evaluate the three-phase
search system in an end-to-end manner, we de-
signed a user study in which participants explored
publications related to two predefined search sce-
narios. They interacted with the conversational
search interface and a graphical interface featur-
ing a traditional text-based search, allowing us to
compare the effectiveness of both systems. For
the experiment, we recruited 40 participants from
university courses and social networks according
to criteria that match our target user group of non-
experts. Table 3 in Appendix A gives an overview
of participant demographics. All participants had
at least basic technical knowledge, good English
proficiency, and an interest in NLP without having
expert-level knowledge. The gender composition
was 35% female and 65% male, ranging in age
from 20 to 29 years, with an average age of 25.

Prior to the user experiment, we randomly as-
signed participants into two groups (Group A and
Group B), which determined the sequence in which
each group used the search interfaces for the two
search scenarios (Scenario 1 and Scenario 2). We
ensured that the demographic characteristics of
both groups were similarly distributed. Group A is
exposed to Scenario 1 with the conversational in-
terface first, followed by Scenario 2 with the graph-
ical interface. Conversely, Group B is exposed to
Scenario 1 with the graphical interface first, then
Scenario 2 with the conversational interface. This
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Evaluation Metric Scenario 1 Scenario 2
Mean (Std. Dev.) Conversational Graphical Conversational Graphical
System usability scale 76.00 (18.94) 77.25 (15.28) 76.63 (16.63) 65.25 (23.91)
Readability 4.50 (0.95) 3.40 (1.14) 4.45 (0.76) 3.20 (1.54)
Correctness 4.25 (0.97) 4.05 (1.00) 4.25 (0.72) 3.85 (1.31)
Usefulness 4.50 (0.61) 3.65 (0.99) 4.30 (0.80) 2.95 (1.23)
Summary quality 4.10 (0.85) - 4.15 (0.67) -
Overall satisfaction 4.15 (0.88) 3.45 (1.00) 4.10 (1.07) 2.85 (1.14)

Table 1: Overview of mean and standard deviation of evaluation metrics by search scenario and interface type.

crossover design allows each participant to test
both interfaces but for a different scenario to avoid
learning effects. Scenario 1 is about analyzing emo-
tional expressions on social media related to mental
health during the COVID-19 pandemic, while Sce-
nario 2 focuses on creating multiple-choice exams
for a programming course. Both scenarios end with
the instruction: “Your task is to use the provided
search interface below to find papers related to the
described scenario.” The full scenario descriptions
are documented in Table 2 in Appendix A.

Participants were given approximately 10 min-
utes to interact with the interfaces (see screenshots
in Table 4), followed by an evaluation question-
naire, which we share in the repository. The latter
includes 10 questions from the system usability
scale (SUS) (Brooke, 1996). The SUS metric is
calculated using a specific formula, resulting in a
value between 0 and 100, with 68 being considered
average. Furthermore, participants were asked five
questions to rate the general information quality in
terms of readability, correctness, and usefulness,
the quality of the generated comparisons, as well as
overall satisfaction. The questions were answered
on a 5-point Likert scale, where a rating of 5 de-
noted the most favorable value. In addition, we
included two open-ended free-text fields for feed-
back on the system’s strengths and weaknesses.

Quantitative Analysis of Evaluation Metrics.
Based on the questionnaire responses, we con-
ducted both quantitative and qualitative analyses.
Table 1 lists the mean and standard deviation for
each evaluation metric grouped by scenario and
interface. We found that all data points were within
reasonable ranges without containing significant
outliers. Generally, the ratings for the conversa-
tional interface tend to be more favorable across
the various evaluation metrics. This is also reflected
in the overall satisfaction scores for Scenario 1 and
Scenario 2, with ratings of 4.15 and 4.10 for the
conversational interface compared to 3.45 and 2.85
for the graphical interface. The conversational in-

terface especially surpasses the graphical interface
in readability and usefulness metrics, as reflected
by mean ratings that were around one point higher
across both scenarios. We hypothesize that the dia-
logue interaction was not as overwhelming, deliv-
ering information in a more digestible format and
increasing its overall utility by offering additional
choices for paper selection. This positive feedback
was likely also influenced by the quality of sum-
marized paper comparisons, which achieved solid
scores of 4.10 in Scenario 1 and 4.15 in Scenario 2.

Inspecting the perceived system usability, the
SUS scores for Scenario 1 were similar for both in-
terfaces, with SUS scores at 76.00 and 77.25. Since
all participants presumably had prior experience
on how to use a text-based search engine as well
as a standard chat interface, it is not surprising that
the scores are similar. It is very likely that each
participant was already acquainted with operating
both types of interfaces. In Scenario 2, the conver-
sational interface maintained a comparable score of
76.63, whereas the graphical interface had a lower
score of 65.25, suggesting that the conversational
interface offers more consistent usability across
different search scenarios. This observation is cor-
roborated by the rating distributions illustrated in
Figure 3. The latter shows that Scenario 2 received
worse ratings compared to Scenario 1 for both eval-
uated interfaces, with the rating distributions shift-
ing towards the lower scores, possibly indicating
that Scenario 2 was slightly more difficult with re-
gard to discovering relevant papers. This effect was
especially pronounced for the graphical interface
compared to the more consistent performance of
the conversational interface. The more stable rat-
ings of the conversational interface could suggest
it retains usability and information relevancy, even
during more challenging exploration tasks.

Qualitative Analysis of Participant Feedback.
Our qualitative analysis of the free-text responses
concerning the systems’ strengths and weaknesses
confirmed the quantitative results, revealing that
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Figure 3: Comparison of rating distribution between the conversational and graphical user interface (UI) for
readability, correctness, usefulness, and overall satisfaction. The thick line intersecting the box marks the median.

the conversational interface received higher ratings
and demonstrated more consistent usability than
the graphical interface. Every participant was as-
signed an anonymous identifier between P1 and
P40 to protect their privacy. In the following para-
graphs, cited questionnaire responses are presented
in quotation marks and assigned to their identifiers.

The first notable strength of the conversational
search interface, mentioned in nearly every sec-
ond feedback comment, was the system’s ease of
use. For example, participant P9 remarked, “It is
easy to use and to find topics & papers even if the
prior exposure to the given topic is low.” Users
appreciated that they could immediately start talk-
ing with the conversational agent without requir-
ing extensive knowledge of the interface or the
search domain, unlike many graphical interfaces.
A second strength highlighted by users was the sys-
tem’s guidance and structured navigation abilities,
with one participant positively noting the “Step by
step process to narrow down the search and avoid
search results that are not related to your query”
(P29). This feature effectively addressed the search-
related vocabulary mismatches, as exemplified by
the comment: “I don’t need to know exact terms
or what im looking for” (P40). Lastly, users val-
ued the time-saving clustering and summarization
features, which helped them avoid going through
individual abstracts from long lists of papers. As
participant P11 stated, “[...] it understands the con-
tent of the paper and can aggregate it, without me
having to manually go into the files to read the Ab-
stract.” These findings suggest that conversational
agents can help alleviate problems associated with
cognitive overload (Sweller, 1988) by gradually
communicating condensed information.

Yet, a couple of participants initially struggled
with understanding the three-phase search flow
(e.g., “In the first a few minutes it’s hard to un-

derstand what I can reach at the end of conversa-
tion” (P35)). Some were also confused by the two
options of selecting the suggested user response
inputs displayed as buttons versus entering free-
form text. This was especially the case when they
wanted to reverse a choice, which participant P20
remarked, “The options to backtracking are a bit un-
clear at first.” Other participants expressed a desire
to “converse more freely” (P9), similar to those of-
fered by general-purpose LLMs. Strengthening the
integration of LLMs could accommodate this pref-
erence, as LLMs excel in contextual understanding
of queries and navigating complex conversation
logic more effectively than intent-based dialogue
systems. We observed that certain users attempted
to input very long requests or copy-pasting problem
descriptions, an interaction more akin to LLM ser-
vices like ChatGPT (OpenAI, 2022), where users
input a prompt, check the output, and refine the
prompt without engaging in a proper dialogue. This
type of interaction does not align with how our task-
oriented dialogue system was designed to operate.
Nonetheless, the evaluation shows that nearly all
participants quickly figured out how our conversa-
tional system works after a few dialogue turns.

5 Conclusion

We proposed a conversational exploratory search
system integrated with a scholarly KG. Our study
details the architectural components and presents
results from training and evaluating language mod-
els that underpin the three-phase search process,
including research topic classification, text cluster-
ing, and text summarization. We conducted a hu-
man evaluation to assess the system’s effectiveness,
identifying its perceived strengths and potential im-
provements. Our findings offer practical insights
into the design and implementation of conversa-
tional search systems for the scholarly domain.
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A Appendix

The Appendix provides further insights into the results of our research, including a finite-state diagram
of the conversational search flow (Figure 4), the semantic data model of the scholarly KG (Figure 5),
the scenario descriptions for the human evaluation (Table 2), a tabular overview of the participant
demographics (Table 3), screenshots of the conversational and graphical interface (Table 4), and a
collection of the crafted LLM prompts (Table 5).
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Figure 4: Conversational search flow illustrated as dialogue states (S1-S7). The three-phase search process
encompasses: first, identifying a research topic (S3); second, choosing clusters of publications (S4); and third,
comparing publications via short summaries (S5-S6).
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Description of Scenario 1
Imagine you are interested in mental health and emotional changes during the COVID pandemic.
You want to analyze how people express their feelings on social media platforms during the
pandemic. Your goal is to study their emotions to learn how they handle stress and anxiety. To
deal with the enormous volume of data available online, you are looking for ways to automate the
analysis process using NLP techniques.
Your task is to use the provided search interface below to discover papers related to the described
scenario. You have up to 8 minutes for your exploratory search. You are encouraged to “think out
loud”. Afterward, you will fill out an evaluation questionnaire to provide feedback on your search
experience.
Description of Scenario 1
Imagine you are an instructor teaching a programming course in Python. You want to ensure
that the exam questions reflect the learning progress of the students. Your goal is to generate
multiple-choice exams according to their knowledge level. To achieve this, you are looking for
ways to automatically create exam questions based on the course materials using NLP techniques.
Your task is to use the provided search interface below to discover papers related to the described
scenario. You have up to 8 minutes for your exploratory search. You are encouraged to “think out
loud”. Afterward, you will fill out an evaluation questionnaire to provide feedback on your search
experience.

Table 2: Scenario descriptions of the exploratory search task for the human evaluation.

Demographic Variable Group A (n = 20) Group B (n = 20) Overall (n = 40)
Mean age (age range) 25.10 (20 to 29) 24.95 (23 to 28) 25.03 (20 to 29)
Male 13 13 26
Female 7 7 14
High school degree 1 - 1
Bachelor’s degree 14 17 31
Master’s degree 5 3 8
No NLP knowledge 1 2 3
Beginner NLP knowledge 15 13 28
Advanced NLP knowledge 4 5 9
English CEFR level B1 or B2 3 5 8
English CEFR level C1 or C2 17 15 32

Table 3: Overview of study participant demographics.

Conversational Interface Graphical Interface

Table 4: Visual side-by-side comparison of the conversational and graphical interface from the human evaluation.
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Prompt 1: Cluster Name Generation (Zephyr-7B-Beta)
Considering the themes and topics from the following TFIDF cluster tag: “{tfidf_cluster_name}”,
please provide a concise and descriptive name for a cluster that includes these {len(paper_list)}
academic papers:
{paper_titles_formatted}
Respond with just the cluster name, based on the overarching themes evident in the titles and the
TFIDF tag. Don’t include the original TFIDF cluster tag and the word “Cluster” in your response.
Prompt 2: Comparative Text Summarization (Zephyr-7B-Beta)
Please provide a comparative analysis of the objectives of two scientific papers.
Refer the papers with their real ids:
Paper {id_a}’s objective is: {obj1}
Paper {id_b}’s objective is: {obj2}
Highlight the key differences and similarities between Paper {id_a} and Paper {id_b}.
Use simple language.
Please provide a comparative analysis of the results of two scientific papers.:
Refer the papers with their real ids:
Results of Paper {id_a}: {res1}
Results of Paper {id_b}: {res2}
Highlight the key differences and similarities between Paper {id_a} and Paper {id_b}.
Use simple language.
Please provide a comparative analysis of the TLDR of two scientific papers.:
TLDR of Paper {id_a}: {tldr1}
TLDR of Paper {id_b}: {tldr2}
Highlight the key differences and similarities between Paper {id_a} and Paper {id_b}.
Use simple language.
Prompt 3: LLM-Based Research Topic Classification (GPT-3.5-Turbo)
You are supposed to classify a query into one of the topics provided. These topics are various fields
of NLP. Your answer should be in the following format:
*topic name*
Nothing else should be included in the output.
Make sure there is no extra punctuation including full stops, quotation marks or anything of that
sort. You are supposed to EXACTLY use the topics from the list provided. If you think it is a
random question and not in the field of NLP, then return the topic as “none”.
You can only provide your answer from the following topics and the topics are:
Multimodality
Natural Language Interfaces
Semantic Text Processing
Semantic Analysis
Syntactic Text Processing
Linguistic and Cognitive NLP
Responsible NLP
Reasoning
Multilinguality
Information Retrieval
Information Extraction and Text Mining
Text Generation
Query: {query}.
Topic:

Table 5: Overview of large language model prompts for various generative tasks using Zephyr-7B-Beta and GPT-
3.5-Turbo. Dynamically inserted variables are enclosed within curly brackets.
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Abstract
Retrieval-Augmented Generation (RAG) has
become a promising solution for utilizing Large
Language Models (LLMs) in domain-intensive
question-answering tasks. The performance
of RAG is greatly influenced by the retriever
component, which typically relies on semantic
similarity between the text embeddings of the
query and the passages to identify the relevant
context. However, text embedding models may
only capture the semantic meaning of individ-
ual passages, potentially neglecting global rela-
tionships between them. To address this limita-
tion, we propose a hybrid retrieval method that
integrates embeddings encoded from textual
and knowledge graph information. Although
in this paper, the knowledge graphs describe
the passage relationships in a health-tech indus-
try use case, the hybrid embedding solution is
designed to be generic. Furthermore, the pro-
posed retrieval approach aims to offer straight-
forward implementation without requiring com-
plex joint learning processes. Our results on
custom test sets demonstrate significantly en-
hanced accuracy and ranking of the retriever,
thus, supporting the LLM-based reader compo-
nent in generating more accurate responses.

1 Introduction

The use of pre-trained Large Language Models
(LLMs) has gained considerable attention for spe-
cific question-answering (QA) tasks, due to their
ability to understand and generate natural language
(De Angelis et al., 2023). This capability results
from their extensive pre-training on diverse text
datasets and a large number of parameters, which
endows them with the ability to memorize and
utilize learned knowledge (Roberts et al., 2020;
Petroni et al., 2019). However, implementing pre-
trained services within corporate settings faces cer-
tain challenges. One notable limitation is the in-
ability to generate accurate and faithful responses
for questions related to specific domains and busi-
ness use cases, often referred to as "hallucination".

This constraint stems from knowledge boundaries,
which include a lack of specialized domain knowl-
edge and the absence of up-to-date information in
the pre-trained data (Huang et al., 2023).

Fine-tuning generative LLMs with a target do-
main dataset has been proposed as a solution to this
problem. This approach adapts the models for spe-
cific tasks and often outperforms pre-trained foun-
dation models (Han et al., 2023; Wu et al., 2023;
Chen et al., 2023). Nonetheless, training a billion-
parameter model often requires significant compu-
tational resources and high-quality training datasets
to obtain optimal results (Chen et al., 2023). More-
over, this method only offers a temporary solution,
as over time the knowledge will be outdated again,
leading to a loop of knowledge boundary problem.

Another approach to improve the domain factu-
ality and reduce hallucination of the responses is
using the Retrieval-Augmented Generation (RAG)
method (Lewis et al., 2021; Izacard and Grave,
2021). The main idea of the RAG method is to use
the retriever-reader framework to combine informa-
tion retrieval (Karpukhin et al., 2020) with LLMs.
Specifically, the RAG uses a retriever to select a
set of relevant knowledge to the questions, which
helps narrow down the answerable evidence for the
LLM-based reader. The reader then synthesizes
the answer to the query based on the given infor-
mation like in an "open-book" exam. Therefore,
this approach offers the advantage of providing ex-
ternal knowledge to LLMs without requiring the
fine-tuning of the models. The responses are also
more reliable due to the augmentation of retrieved
contexts, which serve as the supporting evidence.
Besides, RAG is suitable for both open-domain and
closed-domain question-answering tasks, and can
also support private use cases depending on the
configuration of external data sources.

A recent study showed that the performance of
RAG can be hindered by false retrieval, where the
system fails to provide accurate information to the
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generators (Barnett et al., 2024). Several meth-
ods aiming to enhance the retriever’s performance
involve improving query-text embeddings to re-
rank pre-retrieved passages (Nogueira and Cho,
2020; Mao et al., 2021; Askari et al., 2023). How-
ever, these methods rely solely on textual methods,
which may not always be optimal. For example,
text embedding models regularly treat input pas-
sages independently and do not capture global rela-
tions among them (Yu et al., 2022). This inability
to capture the dependencies between related pas-
sages can potentially restrain the performance of
the system (Min et al., 2020). A possible approach
to address this problem is to use knowledge graphs
(KG) in conjunction with textual information to en-
hance the retriever in question-answering systems
(QAS), providing more robust text representations.
This approach has been investigated by studies such
as joint representation learning with two modalities
to improve re-ranking and answering performance
(Yu et al., 2022; Zhou et al., 2020; Ju et al., 2022).
Although these methods have shown better results
compared to using text input alone, their algorithms
and training processes are often costly and com-
plex.

To address the retrieval challenges, this paper
aims to enhance the retriever with a comprehen-
sive embedding component that combines both
textual data and knowledge graphs (KGs). Un-
like previous studies, we propose a simple hybrid
pipeline for generating these representations, rather
than training a complex joint learning model. The
method and experiment were conducted within the
use case of a health-tech venture builder, where
questions were posed to find answers in propri-
etary health-related documents. However, the hy-
brid embedding method has the potential to be
domain-agnostic, as long as its components are
customized for specific contexts. The experimental
results show that our hybrid method helps improve
not only the information retrieval performance but
also the generative response quality from different
LLM-based readers.

2 Related Work

In QAS using the "retrieve-then-read" mechanism,
the text embedding plays an important role in the
retriever component. State-of-the-art retrievers
use dense text embedding methods, often utilizing
neural networks like BERT (Devlin et al., 2019)
to encode the semantic meaning of the text into

dense vectors (Karpukhin et al., 2020; Reimers and
Gurevych, 2019; Xiao et al., 2023). Typically, the
Dense Passage Retriever (DPR) (Karpukhin et al.,
2020) framework learns embeddings for questions
and passages using two separate BERT networks
with metric learning. Sentence-BERT (Reimers
and Gurevych, 2019) also employs metric learn-
ing but allows a single BERT to learn embeddings
for two sentences through a shared-weight con-
figuration. DPR and Sentence-BERT have also
become fundamental approaches to pre-train other
general-purpose BERT-based embedding models
such as BAAI General Embedding (BGE) (Xiao
et al., 2023), General Text Embedding (GTE) (Li
et al., 2023b), E5 (Wang et al., 2022), etc. These
models can be further fine-tuned for specific down-
stream tasks(Choi et al., 2021). However, these
frameworks were not originally designed to cap-
ture the semantic connections between different
passages. This drawback can be tackled by tak-
ing advantage of structural information captured
by knowledge graph solutions. For instance, the
Knowledge-aid open-domain QA (KAQA) frame-
work (Zhou et al., 2020) used two KGs representing
the relationship between the question and docu-
ment, and between retrieved documents to support
re-ranking the retriever. Also, to improve the re-
triever by re-ranking, KG-FiD (Yu et al., 2022)
used inter-passage relation KG with the graph at-
tention network (Veličković et al., 2018) to update
the representation vectors of the passage. Min
et al.(Min et al., 2020) introduced an extended
passage-level KG and integrated it into the retriever
and reader to improve context coverage and re-
sponse accuracy. In the health domain, (Wise et al.,
2020) introduced a KG describing the relationships
between scientific articles on COVID-19 and used
TransE-based embeddings for article retrieval and
recommendation. While these studies obtained im-
pressive results, their implementation and training
processes involved the integration of multiple in-
tensive computational models. Inspired by these
works, however, the primary goal of this paper is
to achieve a more straightforward implementation
approach that leverages the knowledge graph to
improve conventional retriever and RAG perfor-
mance.

3 Proposed Method

The conceptual pipeline of the proposed retriever
used in the RAG system is illustrated in Figure 1.
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Figure 1: The overall conceptual design of our hybrid retriever implemented in the RAG system.

The goal is to improve the quality of the Top-K
passages retrieved in response to a given question.
This is achieved by measuring the similarity be-
tween hybrid embeddings, which combine text and
knowledge graph representations of both the Ques-
tion and the Passages. To adapt the text embed-
ding model to the use case, a fine-tuning process
is performed with a synthetic dataset generated by
an LLM. Next, an automatic KG construction is
proposed, aiming to present the global relation-
ship between Passages. Lastly, we will introduce a
strategy aimed at effectively integrating these two
modalities into the hybrid retriever.

3.1 Data collection and description

The data for this study consists of interviews with
medical experts from a private use case provided
by a venture builder, focusing on the technical and
business aspects of their medical innovations. The
interviews are documented and categorized into 3
main topics, including medical technology, biotech-
nology, and digital/AI. These documents serve as
the knowledge source for the RAG system for the
use case.

Firstly, the interview documents stored in the
company’s database spanning the last 4 years are
collected. Document lengths vary, averaging 697
words. After removing the documents with insuf-
ficient content, the dataset contains 1, 487 docu-
ments. Next, each document undergoes automated
pre-processing steps, including the removal of spe-
cial tokens, images, and tables, as well as English
translation.

Finally, the documents are chunked into smaller
passages to enhance searchability in the retrieval
stage while optimizing computational resources.

We choose the chunk size of 512 tokens to fit the
small-size BERT-based models in the text embed-
ding step. Furthermore, two adjacent passages of a
document are set to overlap by 20 tokens, ensuring
a smooth transition of context between them. After
the chunking step, the processed dataset comprises
a total of 5607 passages.

3.2 Fine-tuning text embedding model
In the context of this paper, the user input questions
and the passages’ context are distinct, integrating
various aspects of the health-tech industry. Hence,
using pre-trained text embedding models in model
zoos may not sufficiently capture these nuances for
retrieval purposes. To address that issue, a BERT-
base embedding model is fine-tuned through the
training process of the Sentence-BERT (SBERT)
framework (Reimers and Gurevych, 2019) (see Ap-
pendix A) on our custom dataset.

3.2.1 Constructing training set
The fine-tuning dataset consists of positive query
and source passage pairs. Manually annotating
these pairs from interview documents is time-
consuming, so to simulate real-life scenarios, we
use generative LLMs to comprehend the source
passages and automatically generate corresponding
queries. In each positive pair, the synthetic query
is crafted to reflect the questions related to specific
information in the source passage, which serves as
the ground truth for the query in the retrieval task.

Given that the documents in this study contain
private and sensitive information, local and open-
source LLMs were selected for query generation
instead of using services like OpenAI API. Con-
cretely, small-size but high-performing generative
LLMs such as the Zephyr-7B-beta model (Tunstall
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et al., 2023) and Mistral-7B-OpenOrca 1 are cho-
sen to generate synthetic queries. For each source
passage, a single query is synthetically generated
by inserting this passage into a prompt to instruct
the LLMs. For generalization, we use the Zephyr-
7B-beta model for generating the training queries
and Mistral-7B-OpenOrca for constructing the test
ones. In addition, the instruction prompts for the
training and test sets are modified to be slightly
different. In this work, these instructions follow a
role-playing prompting strategy (Li et al., 2023a).
For example, the LLM can be instructed to take
on the role of a teacher with the task of gener-
ating exam questions based on the passages (see
Appendix B). To ensure accurate LLM responses,
the prompts were carefully designed, and a set of
generated questions was reviewed to confirm they
resembled real-world queries.

3.2.2 Training process

The BERT-based model in SBERT is fine-tuned
using the Multiple Negative Ranking loss (MNRL)
function (Henderson et al., 2017). Mathematically,
the loss function is optimized by minimizing the
mean negative log-probability of the positive pairs,
shown as follows:

L(q,p) = − 1

K

K∑

i=1

log (P (qi, pi))

= − 1

K

K∑

i=1

log

(
eS(qi,pi)

∑K
j=1 e

S(qi,pj)

) (1)

in which, for a batch size of K, there are K in-
put queries q = (q1, ..., qK) and K corresponding
passages p = (p1, ..., pK). The positive pair is de-
noted as (qi, pi) for every i ≤ K while the negative
pair is indicated as (qi, pj) with i ̸= j and i, j ≤ K.
To optimize the loss, Adam with decoupled weight
decay (AdamW) (Loshchilov and Hutter, 2019) is
used along with the warm-up decrease of learning
rate enhances for better stability and generalization
during training.

In the inference stage, the BERT-based model is
taken out of SBERT and used independently. To
assess the effectiveness of fine-tuned text embed-
dings, we then evaluate the retriever’s performance
on the test set, comparing it to the retrievers using
only pre-trained embeddings.

1https://huggingface.co/Open-Orca/
Mistral-7B-OpenOrca

3.3 Knowledge Graph Construction and
Embedding

In the proposed system, the role of the KG is to
model the connections and relationships between
different passages in the dataset. The KG is then
embedded in a vector space by a knowledge graph
embedding (KGE) model, such that the structural
features between passages are preserved through
their vector representations.

3.3.1 Knowledge Graph Construction
The KG consists of a set of triples in the form of
(head, relation, tail) and is constructed following a
schema depicted in Figure 2.

Figure 2: The schema to formalize the knowledge graph
construction.

In this schema, the head and tail entities from
the triples are categorized into one of five classes,
with the Passage, Path, and Object classes serving
as general base classes. To enhance the schema for
the health-related domain, we incorporate the Med-
ical Subject Headings (MeSH) concepts, MeSH
term classes, and their relationships from the MeSH
RDF-linked data (Lipscomb, 2000). MeSH, orig-
inally a biomedical vocabulary used for indexing
and searching PubMed articles, is integrated to
enrich the KG with relevant terms. Detailed infor-
mation about the meaning of entity classes and how
these entities are created is described as follows:

Passage entities: The entities belonging to the
Passage class represent the text chunks in our
dataset. Each Passage entity is defined by its ID in
the database.

Path entities: This type of entity represents the
path address of the source documents (i.e. the
documents before being split into passages) in the
database.

Object entities: This type of entity represents
the general and bio-medical annotations from the
passage. To extract the object entities from the text
passages, we leverage the "en_core_sci_lg" model
from the SciSpacy library (Neumann et al., 2019)
as a Named-entity Recognition (NER) tool. Addi-
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tionally, each object is linked to a MeSH Descriptor
(i.e. a term that describes the main subject of an
article) by a Name Entity Linking function. It leads
to a total of 65, 282 objects extracted from our pas-
sages, in which 6901 objects have linked MeSH
Descriptors.

MeSH Concept entities: The MeSH Concept
class describes a unit of meaning. In other words,
every term in MeSH which is strictly synonymous
with each other is grouped into a "Concept". In
MeSH, each Descriptor consists of one or more
Concepts. Therefore, the MeSH Concept entities
in our KG are then retrieved by using a SPARQL2

query based on the MeSH Descriptor.
MeSH Term entities: The MeSH Term class

describe human-readable names used by a MeSH
Concept or MeSH Descriptor. A MeSH Descrip-
tor have one MeSH Term while A MeSH Concept
can have one or multiple MeSH Terms and they
are strictly synonymous. All MeSH Terms are re-
trieved by SPARQL query based on MeSH Con-
cepts and MeSH Descriptors.

Additionally, entities of different classes are con-
nected by 4 relations. The descriptions of relations
used to link head and tail entities are described as
follows:

associated_object: This relation describes the
connection between Passage and Object entities. It
demonstrates what object entities are mentioned in
the text.

has_path: This relation connects between Pas-
sage and Path entities, indicating the paths where
the passages are located.

preferredTerm: This connection between Object
and MeSH Term entities indicates which term the
Object entity is preferred to refer to.

Concept_preferredTerm: The connection be-
tween MeSH Concept and MeSH Term entities,
describing the synonym relation.

An example of a subgraph and detailed statistics
of the KG is demonstrated in Appendix C.

3.3.2 Knowledge Graph Embedding
The knowledge graph after being constructed is
then represented in the vector space by a knowledge
graph embedding (KGE) model such that the graph
properties are preserved. Although the methodol-
ogy is applicable to any KGE model, we opt for
translational KGE models because of their simplic-
ity and high efficiency.

2https://www.w3.org/TR/sparql11-query/

Generally, translational KGE models operate by
using relation embeddings as translations in vector
space between head and tail entities. The objective
is to learn the embedding of entities and relations
in triples to minimize the scoring function fr(h, t)
of each triple (h, r, t) where r is the relation, h and
t are head and tail entity embeddings, respectively.
Table 1 shows the scoring functions of different
KGE models used in this paper.

Table 1: Scoring function equations for TransE, RotatE,
and QuatE models. ◦ denotes element-wise product, ⊗
denotes Hamilton product, ∥·∥22 denotes the L2 norm.

Model Scoring Function
TransE (Bordes et al., 2013) ||h + r− t||2

RotatE (Sun et al., 2019) ||h ◦ r− t||2
QuatE (ZHANG et al., 2019) ||h⊗ r− t||2

The scoring function is optimised through a Mar-
gin Ranking loss function, shown as follows:

L(fp, fn) = max(0, fp − fn + λ) (2)

in which λ denotes the margin value, fp and fn
are the scoring function values of a positive triple
(i.e. the actual triple in KG) and a negative triple
(i.e. the non-existent triple in KG), respectively.
This loss function aims to encourage the model to
improve its embedding representations and effec-
tively distinguish between positive and negative
triples. To sample negative triples, the head or tail
of a positive triple is randomly swapped with an
entity from another one in the training batch. This
process is carefully engineered to ensure that the
resulting corrupted triples do not already exist as
positive examples in the original KG. Finally, the
objective of learning embedding for entities and re-
lationships can be achieved by using the Stochastic
Gradient Descent algorithm.

3.4 Hybrid Retrieval Strategy

Figure 3 illustrates the process of our hybrid re-
trieval strategy. The strategy is divided into five
main steps as follows:

Step 1: Given a question, a set of top N (N >
K) relevant passages are retrieved using the cosine
similarity of their text embeddings. This step aims
to narrow the search space by filtering out irrelevant
passages based on their semantic nuances.

Step 2: From the top N retrieved passages, their
text embeddings and KG embeddings are horizon-
tally concatenated. In the concatenation vectors,
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Figure 3: The hybrid retrieval strategy aims to utilise the fusion of text and KG embeddings.

we prioritize the impact of the text embedding com-
ponent to emphasize the importance of semantic
nuances, while utilising the KG embedding com-
ponent as an auxiliary extension. Thus, text em-
beddings are multiplied element-wise by a scaling
weight α (where α > 1) to amplify their signifi-
cance. The concatenation operation is then specifi-
cally formulated as follows:

Concat(TE,KGE) = [TE ∗ α,KGE] (3)

where TE and KGE indicate a text embedding
and a knowledge graph embedding respectively.
With the amplification of text embedding, the hy-
brid representations of passages have more internal
semantic features while still containing the global
relationship information captured by KG-based
vectors.

Step 3: Since the question is not explicitly mod-
elled in our KG, approximating its representation
in the KG vector space is needed. Accordingly, all
objects in the question are first extracted by using
the same NER model in Section 3.3. Next, the ques-
tion embedding is then approximated by a mapping
function, shown as follows:

q =
∑N

i=1

∑M
j=1 pij∑N

i=1

∑M
j=1 passage_has_obj(pi,oj)

(4)

where M is the number of objects extracted in
the question, N is the number of top N retrieved
passages, q is the approximated embedding of a
question, pij is the embedding of passage pi in top
N that contains object oi, and

passage_has_obj(Pi, Oj) =

{
1 if pi ∋ oj
0 otherwise

(5)

Step 4: The text embedding and the approximated
KGE of the question are concatenated to form the
hybrid vector. Also, the same weight α value is ap-
plied to the text embedding of the question before
concatenation.

Step 5: Finally, the top K passages are retrieved
from the N passages by taking the K highest cosine
similarity scores between the hybrid vectors of the
question and the N passages.

4 Experiments

4.1 Experimental Setup
4.1.1 Text embedding model setup
For the text embedding component in the retriever,
three small-size BERT-based models were selected
as the baselines: BGE model (Xiao et al., 2023),
E5 model (Wang et al., 2022) and GTE model (Li
et al., 2023b). Each model comprises 12 trans-
former blocks, 12 attention heads per self-attention
layer, an input size of 512 tokens, and an embed-
ding size of 384.

The training set to fine-tune the models was gen-
erated from 500 random passages, following the
method in Section 3.2. The models were trained
in 50 epochs, with a batch size of 10 and using
the AdamW optimizer. The initial learning rate
was configured at 0.001 and with a decay through
a warm-up step of 0.1. We trained the models on
Google Colab Pro with 15GB VRAM NVIDIA T4.

4.1.2 Knowledge graph embedding
configuration

Three KGE models were experimented with, in-
cluding TransE, RotatE, and QuatE. Each model’s
embedding size of 200 was configured for optimal
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performance based on grid search. The models
were trained on 20 epochs. Each training batch
consisted of 128 positive triples, where for each
positive triple, one negative triple was generated.

4.1.3 Hybrid Retriever configuration
The top-N value was initialized at 20. Experimenta-
tion included top-K values of 3 and 5. Various com-
binations of BGE text embeddings and KGE mod-
els were tested for the hybrid embeddings. Through
grid search, a weight of α = 2.5 was found to op-
timize performance, ensuring the hybrid retriever
achieved its peak effectiveness.

4.2 Evaluation Scheme

4.2.1 Passage Retrieval Evaluation
To evaluate the retriever, three synthetic test sets
were created, denoted as the first, second, and third
test sets, following the guidelines outlined in Sec-
tion 3.2. The queries from the first and second test
sets were generated from the same random 200
passages. In the first test set, one question was
synthesised per passage, while in the second test
set, the ratio was 2:1. The third test set was cre-
ated from a different set of 200 passages, with a 1
question per passage ratio.

The retriever performance was measured by two
metrics: Hit Rate (HR) for retrieval accuracy and
Mean Reciprocal Rank (MRR) for ranking abil-
ity. The higher the metric values, the better the
performance.

4.2.2 RAG performance evaluation
To evaluate an end-to-end RAG, another test set
was used that included 50 golden question-answer
pairs manually extracted from the documents.
Given the question, the correctness of RAG’s re-
sponse was measured by comparing it to the golden
answer, using Semantic Answer Similarity (SAS)
score (Risch et al., 2021). SAS score is calculated
by a cross-encoder model given the predicted an-
swer and golden answer pairs. In this paper, the
cross-encoder version of the BGE model was used.
The SAS score also measured the level of relevancy
between the RAG responses and the retrieved pas-
sages.

4.3 Experimental Results

4.3.1 Passage Retrieval Results
The comparison of retrievers using different embed-
ding models is demonstrated in Table 2. Across all

test sets, retrievers using the fine-tuned text embed-
ding models exhibited superior performance com-
pared to their pre-trained counterparts in both Hi-
tRate@K and MRR@K metrics. Notably, the fine-
tuning of GTE and E5 models resulted in more pro-
nounced enhancements. Although the fine-tuned
BGE model showed only a slight improvement
over its pre-trained version, both iterations of BGE
outperformed the E5 and GTE models. These im-
provements were consistent across all top-K sce-
narios. These findings also suggest that relying
solely on general-purpose text embedding models,
which leverage pre-trained knowledge, may not
yield optimal results for domain-specific datasets.
The proposed fine-tuning solution can significantly
enhance performance and stabilize results in such
cases.

On the other hand, our method of integrating
fine-tuned BGE with any knowledge graph embed-
ding model demonstrated notable enhancements
compared to BGE-only retrievers across all test
sets and Top-K settings. Particularly, the hybrid
approach showed increases of up to 8.1% in Hi-
tRate and up to 8.7% in MRR. Notably, leveraging
TransE embeddings, the hybrid retriever produced
the highest results compared to other hybrid varia-
tions. This emphasizes the effectiveness of lever-
aging global semantic relationships to enrich the
textual representation of both passages and queries,
hence, enhancing the overall retrieval performance.

4.3.2 End-to-end RAG performance
The effectiveness of the hybrid retriever was fur-
ther evaluated through its impact on the answer-
ing performance of RAG systems. For this exper-
iment, the hybrid retriever employed fine-tuned
BGE and TransE models and returned the top 3
passages. The performance of LLM-based read-
ers was then compared across three conversational
LLMs: LLaMA-2-13B-chat (Touvron et al., 2023),
Zephyr-7B-beta and Mistral-7B-OpenOrca.

Table 3 displays the response quality scores for
various RAG settings. In terms of Relevancy, the
scores remained relatively consistent, suggesting
that all LLM baselines could properly answer ques-
tions following the retrieved contexts. However,
our analysis of Correctness scores revealed a no-
table enhancement in RAG performance when uti-
lizing hybrid retrievers, with improvements of up to
13.1%. This highlights the significant impact of hy-
brid retrievers on the accuracy of RAG-generated
responses.
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Table 2: The performance comparison between retriev-
ers using hybrid embeddings and those using only text
embeddings.

Retriver
1st Test set 2nd Test set 3rd Test set
HR MRR HR MRR HR MRR

Top K = 3

GTEpre-trained 0.3865 0.2938 0.3291 0.2324 0.4690 0.3427
E5pre-trained 0.6546 0.5567 0.5753 0.4882 0.6804 0.5506

GTEfine-tuned 0.7989 0.6993 0.6934 0.5644 0.7886 0.6683
E5fine-tuned 0.7525 0.6125 0.6231 0.5201 0.7474 0.6091

BGEpre-trained 0.8247 0.6941 0.7311 0.6139 0.8195 0.6821
BGEfine-tunned 0.8350 0.7164 0.7437 0.6335 0.8350 0.6941

BGEft + TransE 0.8917 0.7506 0.8040 0.6892 0.8814 0.7336
BGEft + RotatE 0.8763 0.7526 0.7839 0.6570 0.8865 0.7431
BGEft + QuatE 0.8711 0.7465 0.7814 0.6440 0.8763 0.7250

Top K =5

GTEpre-trained 0.4742 0.3136 0.3994 0.2487 0.5515 0.3610
E5pre-trained 0.7577 0.5798 0.6482 0.5051 0.7989 0.5774

GTEfine-tuned 0.8608 0.7129 0.7587 0.5795 0.8556 0.6838
E5fine-tuned 0.7938 0.6223 0.6909 0.5356 0.7886 0.6189

BGEpre-trained 0.8505 0.6993 0.7989 0.6292 0.8659 0.6926
BGEfine-tunned 0.8917 0.7298 0.8090 0.6485 0.8917 0.7080

BGEft + TransE 0.9329 0.7652 0.8542 0.7007 0.9381 0.7435
BGEft + RotatE 0.9175 0.7616 0.8517 0.6726 0.9175 0.7498
BGEft + QuatE 0.9072 0.7542 0.8316 0.6560 0.9175 0.7341

Table 3: Responses comparison between different
RAG’s combinations.

LLM reader Retriever Relevancy Correctness
LLama-2-13B-chat BGE ft 0.9846 0.7655

Mistral-7B-OpenOrca BGE ft 0.9909 0.7193
Zephyr-7B-beta BGE ft 0.9708 0.7486

LLama-2-13B-chat hybrid 0.9921 0.7729
Mistral-7B-OpenOrca hybrid 0.9891 0.8136

Zephyr-7B-beta hybrid 0.9878 0.8283

The experimental results also correlated with
the correctness of answer examples shown in Ta-
ble 7 (see Appendix F). The answers from the
Zephyr-7B-beta model based on hybrid retriever
contexts were more detailed and aligned better with
the golden answer than those from BGE-only re-
triever contexts, which contained less information
and thus, had a lower correctness score.

5 Discussion

In this section, we will discuss how the hybrid
embeddings help to improve the retriever by ana-
lyzing the impacts of the weight α. Additionally,
a comparison of the proposed method with other
re-ranking mechanisms will be demonstrated. In
these analyses, we experimented with a sub-case
using our 1st retriever test set introduced in Section
4.1.

As shown in Figure 6 (see Appendix D), it is

clear that the value of α greatly affects the perfor-
mance of the hybrid retriever. When α was set
to 0, it was equivalent to the case of a retriever
only using TransE embeddings. However, the per-
formance of the retriever in that case was poorly
underperformed, especially when the top-N value
increased. This observation suggests that when
the retriever relies solely on KGE and retrieves in-
formation from a larger pool, it is more prone to
noise and irrelevant information. When α was set
to 1, text and KG embeddings were equally con-
catenated. While this improved hybrid retriever
performance, it decreased at higher top-N values.
This finding indicates that balanced weights might
cause KG embeddings to diminish the semantic
meaning of text embeddings in their hybrid vectors,
resulting in unstable outcomes.

Conversely, as the parameter α increases, it
boosts the influence of text embeddings. This, in
turn, strengthened the semantic features in the com-
bined vectors, resulting in better performance for
the retriever. Notably, with larger α values, the
performances remained relatively unchanged by
variations in top-N values. This observation indi-
cates that the α factor can aid hybrid vectors in
differentiating dissimilar ones. However, it is cru-
cial to keep α values within an appropriate range.
If α is too large, the text embedding features can
overshadow the global features from KGE, causing
the hybrid vectors to resemble text embeddings too
closely.

Additionally, our two-stage hybrid retrieval strat-
egy can be considered to be similar to the "retrieve
then re-rank" mechanism. However, instead of us-
ing a re-ranking model, the hybrid vectors take the
KGE component to re-rank the pre-defined passage
orders. The results show that our hybrid retriever
had comparative performance compared to other
"retrieve then rerank" paradigms despite not be-
ing intentionally designed for re-ranking purposes
(see Appendix E). Furthermore, the proposed hy-
brid retriever only uses cosine similarity to retrieve
passages, which is computationally lighter for in-
ference than using neural-based re-ranker models.

6 Conclusion

In this work, a hybrid method is introduced which
leverages both text and knowledge graph em-
beddings to advance the retriever in Retrieval-
Augmented Generation systems. The text embed-
ding model is fine-tuned with a synthetic dataset
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to adapt to downstream tasks. Meanwhile, the
KGE component is trained from a KG presenting
the global relationships between passages in the
dataset. Additionally, the proposed hybrid retrieval
strategy efficiently integrates these two representa-
tion types without using complex architecture or
training processes typical in other KG-based re-
trieval methods.

The experimental results demonstrate that the
method can significantly improve the retriever’s
performance in both accuracy and ranking in com-
parison to the baseline methods. This improvement
subsequently results in the higher correctness of
the RAG’s responses.

In this paper, the methods were tested in an ap-
plication in the health-tech domain where knowl-
edge can be represented based on Medical Subject
Headings (MeSH) classes. However, the proposed
method is generic and can be applied to any domain
where the KG can be meaningfully constructed to
describe the relations between different passages.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022. Text Embed-
dings by Weakly-Supervised Contrastive Pre-training.
ArXiv:2212.03533 [cs].

Colby Wise, Vassilis N. Ioannidis, Miguel Romero
Calvo, Xiang Song, George Price, Ninad Kulkarni,
Ryan Brand, Parminder Bhatia, and George Karypis.
2020. COVID-19 Knowledge Graph: Accelerating
Information Retrieval and Discovery for Scientific
Literature. ArXiv:2007.12731 [cs].

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang,
Yanfeng Wang, and Weidi Xie. 2023. PMC-LLaMA:
Towards Building Open-source Language Models for
Medicine. ArXiv:2304.14454 [cs].

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighof. 2023. C-Pack: Packaged Re-
sources To Advance General Chinese Embedding.
ArXiv:2309.07597 [cs].

Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao Yu,
Shuohang Wang, Yichong Xu, Xiang Ren, Yiming
Yang, and Michael Zeng. 2022. KG-FiD: Infusing
Knowledge Graph in Fusion-in-Decoder for Open-
Domain Question Answering. ArXiv:2110.04330
[cs].

SHUAI ZHANG, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion Knowledge Graph Embeddings. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Mantong Zhou, Zhouxing Shi, Minlie Huang, and Xi-
aoyan Zhu. 2020. Knowledge-Aided Open-Domain
Question Answering. ArXiv:2006.05244 [cs].

406



A Sentence-BERT architecture

Figure 4: A structure of Sentence-BERT using a
Siamese network. Query (Sentence A) and Passage
(Sentence B) are encoded separately by two shared-
weight BERT-base blocks.

As shown in Figure 4, SBERT uses a Siamese
network (Schroff et al., 2015) with two shared-
weight BERT-based models. Given the query and
passage pairs, SBERT will learn to give higher
cosine similarity scores for matched pairs and vice
versa. In principle, the embedding model used in
SBERT can be any variation of BERT.

In this paper, all layers of the BERT-based model
are fine-tuned to ensure complete adaptation to the
training set. The Pooling layers in SBERT are
configured depending on pre-trained BERT to ag-
gregate contextualized word embeddings of query
and passage resulting vectors q and p, respectively.
Finally, the cosine similarity is then computed be-
tween them.

B Prompts for synthetic question
generation

The instructional prompt templates used for the
Zephyr 7B and Mistral 7B models for generating
train and test sets in our case are depicted in Table 4.
In both prompts, a role-playing prompting strategy
(Li et al., 2023a) was chosen to guide the models’
behaviours and responses.

C Graph statistics

An example of a subgraph is shown in Figure 5.
Table 5 shows the number of entities in each class
and the relations in our KG. It is built by 455, 737
triples including 98, 524 entities, in which there are
5, 607 Passage entities. In 65, 282 objects, each
Object can be associated by an average of 5.6 Pas-
sages and by at least 1 Passage. Besides, there are

Table 4: Two prompt templates to generate synthetic
training and testing sets. The prompt for the train set is
inputted to the Zephyr-7B-beta model while the prompt
for the test set is used to guide Mistral-7B-OpenOrca.

Prompt for train set
Context information is below.
———————
{context_input}
———————
Given the context information and no prior
knowledge, you are a Teacher/Professor. Your
task is to set up {num_questions_per_chunk}
questions for an upcoming quiz/examination.
The question must be based on the main con-
text. Additionally, the question must have a
clear answer indicated in the context informa-
tion. Finally, return the question with a question
mark at the end.
Prompt for test set
Context information is below.
———————
{context_input}
———————
Given the context information and no prior
knowledge, you are a Teacher/Professor. Your
task is to set up {num_questions_per_chunk}
questions for an upcoming quiz/examination.
The questions should be diverse in nature across
the document. Restrict the questions to the con-
text information provided.

23, 634 Objects linked with MeSH Terms. On aver-
age, each Object is connected to 2.7 MeSH Terms
while each MeSH Term is referred to by 3.26 Ob-
jects. Furthermore, each MeSH Concept is referred
to by an average of 2.1 MeSH Term. For the Path
entity, on average, each Path is connected by 3.77
Passages, in which the highest number of Passage
originating from a Path is 20.

Table 5: Summary of knowledge graph details

Entity Class Count Relation Type N.o triples
using relation

Passage 5607 associated_object 370936
Path 1487 has_path 5607

Object 65282 preferredTerm 64053
MeSH Concept 6901 Concept_prefferedTerm 15141

MeSH Term 19247
Total 98524 Total 455737
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Figure 5: An example of a sub-graph illustrates the
relationship between different passages. Intuitively, Pas-
sages with more common connections are located closer
in the graph.

D Influence of scaling weight α

Figure 6 presents the results of the hybrid re-
triever’s performance employing fine-tuned BGE
and TransE embeddings, concerning HitRate@3
across varying α values.

E Comparision to "Retrieve then
Re-rank" mechanism

Table 6 shows the comparison between the pro-
posed methodology and retrievers integrating re-
ranking models.

Table 6: The performance comparison on the first test set
between our hybrid retriever and different combinations
of retriever and re-ranker models.

Retriever + Reranker HR@3 MRR@3
BGEft 0.8350 0.7164

BGEft + Stsb-roberta-base 0.3762 0.2689
BGEft + ms-marco-miniLM-L-2-v2 0.8195 0.6701

BGEft + BGE-rerank-base 0.9123 0.7439
BGEft + ms-marco-miniLM-L-6-v2 0.9175 0.8092

BGEft + TransE (ours) 0.8917 0.7506

F Examples of system’s response

Table 7 illustrates an example of answers from
the Zephyr-7B-beta model for a question based on
the contexts provided by BGE-only and hybrid re-
trievers. The answer generated from the hybrid re-
triever’s contexts exhibited greater detail and closer
alignment with the golden answer. In contrast, the

(a) Performance Analysis with HitRate@3

(b) Performance Analysis with MRR@3

Figure 6: Overall Performance Analysis on HitRate@3
and MRR@3 with different alpha values

answer obtained from the BGE retriever’s passages
contained only half of the information leading to a
lower correctness score.
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Table 7: Comparison of answers from Zephyr-7B-beta reader with different retrievers

Question: What is the main reason for revision surgery?
Golden Answer: Infection, infection and infection. We already have antibacterial coatings.
However, these do not cover for the 100%. Furthermore, the proximal and distal parts are coated, but
the valve is not.
BGE + Zephyr-7B-beta: According to the expert call, the main reason for revision surgery in brain
shunts is infection, infection, and infection.
Correctness score: 0.4096
Hybrid + Zephyr-7B-beta: The main reason for revision surgery in the context provided is

infection, infection, and infection. The expert mentions that if there is no native increased pressure,
then the shunts get clogged due to pathology from the past such as high protein levels,
haemorrhages, or circulating tumour cells. The valve is prone to erythrocyte cells, and the main
reason for revision surgery is infection. The expert also mentions that they already have antibacterial
coatings, but these do not cover 100% and the proximal and distal parts are coated, but the valve is
not. Therefore, infection remains a significant issue in shunt revision surgeries.
Correctness score: 0.9975
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Abstract

Large Language Models (LLMs) have swiftly
become essential tools across diverse text gen-
eration applications. However, LLMs also raise
significant ethical and societal concerns, par-
ticularly regarding potential gender biases in
the text they produce. This study investigates
the presence of gender bias in four LLMs:
ChatGPT 3.5, ChatGPT 4, Llama 2 7B, and
Llama 2 13B. By generating a gendered lan-
guage dataset using these LLMs, focusing on
sentences about men and women, we analyze
the extent of gender bias in their outputs. Our
evaluation is two-fold: we use the generated
dataset to train a gender stereotype detection
task and measure gender bias in the classifier,
and we perform a comprehensive analysis of
the LLM-generated text at both the sentence
and word levels. Gender bias evaluations in
classification tasks and lexical content reveal
that all the LLMs demonstrate significant gen-
der bias. ChatGPT 4 and Llama 2 13B exhibit
the least gender bias, with weak associations
between gendered adjectives used and the gen-
der of the person described in the sentence. In
contrast, ChatGPT 3.5 and Llama 2 7B exhibit
the most gender bias, showing strong associ-
ations between the gendered adjectives used
and the gender of the person described in the
sentence.

1 Introduction

Large Language Models (LLMs) have rapidly
emerged as indispensable tools in today’s digital
landscape, revolutionizing text generation across
various applications. Their applications span var-
ious domains, including the medical domain for
tasks like medical report generation, offering rec-
ommendations for diagnosis and treatment (Wang
et al., 2023b), and generating clinical text data (Dai
et al., 2023; Tang et al., 2023). They have been
used for generating reference letters (Wan et al.,
2023), aiding academic research writing (Sallam,
2023; Transformer et al., 2022), creating children’s

education materials (Valentini et al., 2023), serving
as personal writing assistants (Hallo-Carrasco et al.,
2023), and composing item descriptions for recom-
mendation systems (Acharya et al., 2023). Addi-
tionally, they have been used to generate data for
training data augmentation in low-resource scenar-
ios (Dai et al., 2023; Ubani et al., 2023), fine-tuning
multilingual models (Michail et al., 2023), transla-
tion (Zhang et al., 2023; Wang et al., 2023a), and
quality estimation (Huang et al., 2023) in machine
translation.

However, alongside their impressive capabilities,
LLMs have also raised significant ethical and so-
cial concerns, particularly regarding gender bias in
the text they generate. Recent studies have shown
that LLM-generated text can contribute to societal
harm, notably through the perpetuation of gender
bias (Wan et al., 2023; Kotek et al., 2023; Dong
et al., 2024; Fang et al., 2024; Ovalle et al., 2023).
Gender stereotypes and bias can have a negative
impact on minority groups in society. It has been
shown, for example, that the use of LLM-generated
text containing gender stereotypes in children’s sto-
ries can influence young minds (Arthur et al., 2008;
Bender et al., 2021). Kotek et al. (2023) assert
that, according to psychological developmental lit-
erature, children internalize societal expectations
from a very young age potentially altering their
hobbies, interests, and even academic and career
paths accordingly. Another consequence of using
LLM-generated text becomes evident when LLMs
are used to generate recommendation letters, ref-
erence letters (Wan et al., 2023), resumes (Zinjad
et al., 2024), and job postings1. Gender bias in
these LLM-generated text can deter women from
applying for the position and sabotage application
success rates for female applicants (Madera et al.,
2009; Khan et al., 2023; Gaucher et al., 2011; Tang
et al., 2017).

In this paper, we compare and assess the gender
1https://northreach.io/blog/

410



bias in four LLMs namely ChatGPT 3.5, ChatGPT
4, Llama 2 7B, and Llama 2 13B. We generate gen-
dered language2 datasets by prompting the LLMs
to generate sentences about men and women using
gender lexicon (gender-coded) words included in
the instruction prompt. The masculine-coded and
feminine-coded words in a gender lexicon are asso-
ciated with gender stereotypes and often referred to
as gendered wording (Gaucher et al., 2011). Recog-
nizing that adjectives can reflect stereotypical char-
acteristics or traits of a specific gender (Arvidsson,
2009; Fast et al., 2016; Hoffman and Tchir, 1990;
Morelius, 2018; Maass, 1999; Ellemers, 2018), we
focus on using adjectives. With these datasets, we
assess gender bias in the generated text in two dif-
ferent ways - (1) we measure gender bias in a down-
stream classification task–using the generated data
to train a gender stereotype detection task, which
involves predicting whether a sentence is consis-
tent with, or contradictory to gender stereotype and
measure gender bias in the classifier and (2) per-
forming a data analysis of the generated text at
sentence and word level. At a sentence level, we
assess the likelihood of LLMs adding additional
gendered adjectives (other than those explicitly in-
cluded in the prompt) in the generated sentences
that match the gender of the person described in
the sentence. LLMs which are less likely to use
additional adjectives that match the gender of the
person in the sentence can be considered to be less
aligned with gender stereotypes. At a word level,
we identify each LLM’s assumed gender of adjec-
tives based on the likelihood of the LLM to use
specific adjective with certain genders. We then
see how these compare with the gender labels given
to these adjectives in a gender lexicon. LLMs with
fewer matches can be considered to be less biased
to gender stereotypes.

Our study reveals that the datasets generated
by all LLMs exhibit gender bias in detecting gen-
der stereotypes, as indicated by the results of the
downstream classification task with Llama 2 13B
showing the least gender bias, while Llama 2 7B
demonstrates the highest bias among the LLMs
tested. Furthermore, our data analysis at sentence
level finds that all LLM are more likely to add ad-
ditional gendered adjectives that match the gender
of the person described in the sentence with Chat-
GPT 4 showing the weakest association between

2Gendered language refers to the use of words that indicate
the gender of an individual.

the gender of the adjectives used and the gender of
the person, and ChatGPT 3.5 showing the strongest
association. Our analysis of adjective usage by the
LLMs finds ChatGPT 4 uses a slightly smaller per-
centage of adjectives that are gender coded with
the gender of the person described in the sentence,
than the other LLMs.

Our conclusion is that ChatGPT 4 and Llama
2 13B demonstrate the least gender bias, while
ChatGPT 3.5 and Llama 2 7b, the most.

2 Related Work

Several studies have assessed biases in language
models. Zayed et al. (2024) and Li et al. (2023)
classified bias measurement approaches as intrin-
sic or extrinsic while Chu et al. (2024) categorized
them as embedding-based, probability-based, and
generation-based, with the first two falling under
intrinsic and the latter under extrinsic. Intrinsic
approaches evaluate the bias of the model indepen-
dently of any downstream tasks. For instance, some
works (Caliskan et al., 2017; Wan et al., 2023; May
et al., 2019) evaluated bias by statistically quanti-
fying associations between targets and concepts in
the embedding space. Other studies have measured
bias by analyzing probabilities assigned by LLMs
to different options, such as predicting candidate
words based on templates (Webster et al., 2020; Ku-
rita et al., 2019), or candidate sentences based on
author-created or crowdsourced evaluation datasets
(Nadeem et al., 2020; Nangia et al., 2020; Felkner
et al., 2023).

Extrinsic approaches assess models’ bias within
the context of a downstream task and the model
generated texts. Benchmark datasets have been
used to measure bias in coreference resolution,
where models must identify the correct pronoun
for a person described by their occupation (Zhao
et al., 2018; Rudinger et al., 2018; Levy et al., 2021;
Kotek et al., 2023; Ovalle et al., 2023). Gender bias
is indicated if the model outputs a pronoun stereo-
typically associated with that occupation. Question
answering tasks have also been used to assess gen-
der bias, where the LLM is is asked to agree or dis-
agree with statements (Morales et al., 2023; Feng
et al., 2023), or to answer multiple-choice questions
(Parrish et al., 2021). Summarization tasks assess
gender bias by coding the presence or absence of
specific information in the LLM-generated sum-
maries (Acerbi and Stubbersfield, 2023). Classifi-
cation tasks have also been used, using an auxiliary
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model to assess gender bias in the generated text. If
the auxiliary model classifies text generated using
similar prompts but featuring distinct social groups
differently, then the generated text is biased (Chu
et al., 2024). For example, De-Arteaga et al. (2019)
measured gender bias in occupation classification
using the Bias-in-Bios dataset by examining the
difference in true positive rates between genders.
Wan et al. (2023) generated reference letters for
men and women using LLMs, classified them as
agentic or communal, and measured gender bias
using a statistical t-test. Other studies (Morales
et al., 2023; Dhamala et al., 2021) assessed bias
by prompting the LLM with sentences related to
different groups and evaluating the social bias, sen-
timent, and toxicity of its generated continuations.
Chu et al. (2024)’s generation-based approaches
for measuring gender bias in LLM generated text
also include metrics that look at the distribution
of tokens related to one gender group with that of
another or similar nearby groups. The most com-
monly used measure here is the odds ratio, which
measures biases in word choices between wordings
in documents related to different genders (Sun and
Peng, 2021; Wan et al., 2023; Cryan et al., 2020).

3 Approach

We generate examples of gendered language us-
ing LLMs based on gender lexicons that contain
gender-coded words, i.e. words that are associated
with masculine and feminine stereotypes. Figure 1
illustrates this process.

Figure 1: Pipeline for data generation using LLMs

3.1 Lexicon choices
Since adjectives often reflect stereotypical charac-
teristics—such as personality traits and physical ap-
pearance—we focus on generating sentences about
men and women using adjectives from these lex-
icons. The two gender lexicons available for use
were developed by Gaucher et al. (2011) and Cryan
et al. (2020). Gaucher et al.’s (2011) lexicon is a
manually curated lexicon that contains 42 mascu-
line words and 40 feminine words. Although not
all words in this lexicon are adjectives, they have

been stemmed so that they can be used flexibly as
adjectives, verbs, or nouns. This lexicon has been
widely used to examine gendered wording in job
ads (Gaucher et al., 2011). Cryan et al.’s (2020) lex-
icon is a more recent gender lexicon focused on cap-
turing people’s perceptions of gender stereotypes
in contemporary society. It contains adjectives la-
beled with gender scores, where adjectives are iden-
tified as masculine or feminine based on how they
are perceived by people. To create this lexicon,
Cryan et al. (2020) extracted candidate adjectives
from Wikipedia and used crowdsourcing to label
the most commonly used adjectives with gender
scores. These labels were then used to train a model
to predict gender scores for other words. However,
the lexicon provided by the authors included some
non-adjectives and appeared incomplete, missing
certain commonly used words evident in the orig-
inal paper. To address this, Soundararajan et al.
(2023) performed pre-processing to remove non-
adjectives, resulting in a revised lexicon, which we
refer to as Cryan 1. This version contains 1845
masculine and 1675 feminine adjectives. Addition-
ally, the most frequently used adjectives, 299 in
total, visible in the word cloud diagram in the orig-
inal Cryan et al. (2020) paper were identified. This
subset, consisting of 152 masculine and 147 fem-
inine adjectives, is referred to as Cryan 2. These
adjectives were used in the prompts to generate
examples of gendered language using LLMs.

3.2 Prompt engineering and Prompt design

Prompting (Brown et al., 2020; Chen et al., 2023)
drives pre-trained LLMs with task-specific instruc-
tions to produce outputs for the task without the
need for fine-tuning the LLM. We opted for zero-
shot prompting (Brown et al., 2020) for a number
of reasons. It can accommodate a broader range
of prompts without needing specific examples and
our goal was to prevent the LLM from generating
sentences solely based on the examples or tem-
plates provided in the prompt. Furthermore, we
aimed to mitigate the risk of introducing bias by
not including examples in the prompt.

We started with the instruction prompt, a base-
line, found in Soundararajan et al.’s (2023) work
and performed prompt engineering, an iterative
process of designing and refining the input instruc-
tion prompt to obtain the desired response from the
LLMs. We constructed several instruction prompts
and selected the final prompt by reviewing the
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generated sentences. Our prompt refinements in-
volved tweaking this baseline prompt for better
clarity, adding and removing instructions, and vary-
ing the number of gendered adjectives included in
the prompt. Ultimately, we selected a final prompt
that included 10 gendered adjectives. This choice
was driven by our observation that when many ad-
jectives are included in the prompt, a few LLMs
tend to forget or lose information from the prompt
while generating output.

  i 
  Read the instructions one by one and produce the output once all     

the instructions have been read. 
1. Generate 10 sentences about a male/males/man/men/boy/boys       
where each sentence must strictly use each WORD listed below 

 as an adjective to depict the characteristic or traits of the           
male/males/man/men/boy/boys being discussed in the sentence. 

   WORDS: outspoken, independent, ambitious, assertive, muscular, 
 courageous, handsome, decisive, daring, authoritative 
 2. Use pronouns, nouns, or names of individuals to reference the 

male/males/man/men/boy/boys discussed in the sentences. 
 3. Include a mix of sentences mimicking styles found in various       

contexts, such as newspapers, magazines, children?s books, job 
advertisements, storybooks, movie dialogues, and  
recommendation letters. 

 4. Include a mix of all types of sentences (simple sentences,     
compound sentences, complex sentences, and    
compound-complex sentences) in the output. 
5. Utilize any tenses and parts of speech in the sentences. 
6. Format the output as follows: 
WORD : type of sentence : sentence

i

Figure 2: Instruction prompt to generate sentences about
men. LLMs were prompted to generate sentences about
men and women using both masculine and feminine
adjectives.

3.3 LLM choices

We selected seven open-source and closed-source
LLMs. These LLMs vary from low to mid-range
in terms of parameters: ChatGPT 3.5, ChatGPT 4,
Llama 2 7B (7 billion), Llama 2 13B (13 billion),
Mistral 7B (7 billion), Falcon 7B (7 billion), and
Falcon 40B (40 billion). The parameter counts
for ChatGPT 3.5 and ChatGPT 4 are not disclosed
as they are closed-source LLMs. Temperature, a
hyperparameter in text generation, modulates the
randomness or creativity of the LLM’s responses.
Given our focus on generating gendered language,
we are cautious about setting the temperature too
high to prevent the LLM from excessively creative
outputs or including too many words, which may
introduce bias. To ensure consistency we opt for
a uniform temperature value across all LLMs, set
at 0.75. For all the LLMs except ChatGPT models,
we configured the maximum number of tokens to
be 1024. All other hyperparameters were left at

their default values for each respective LLM.
We provided our prompts to the LLMs and man-

ually reviewed the generated outputs. The out-
puts are solely based on the version of the LLM
available in March 2024, when the LLMs were
accessed. ChatGPT 3.5 (gpt-3.5-turbo-0125) and
ChatGPT 4 (gpt-4-turbo-preview which points to
gpt-4-0125-preview) produced relevant and reason-
able outputs consistently. However, the outputs
generated by Llama 2 7B (llama-2-7b-chat-hf) and
Llama 2 13B (llama-2-13b-chat-hf) models were
not well-formatted as they failed to follow the sixth
instruction (see Figure 2) in our prompt. This in-
struction aimed to ensure the outputs are formatted
in a specific way to facilitate the analysis. An addi-
tional instruction (Place the output inside <output>
and </output> tags.) was included in the prompt
for generating texts using Llama 2 models. We
also found that Llama 2 7B failed to strictly adhere
to the prompt and often forgot or overlooked the
information included in it. It generated multiple
sentences instead of just one for each input lexicon
word, with varying tenses and sentence types and
it produced random sentences without using the
input lexicon words. Using a threshold of five for
API calls alleviated these issues.

Llama 2 13B, in certain cases, showed some
awareness of gender stereotypes by producing the
following output when generating sentences about
women using words like modest, pure, sexy and
desirable:

’As a helpful assistant, I can certainly assist you

with your request. However, I would like to point

out that using adjectives like "modest" and "pure"

to describe women can be perceived as reinforc-

ing harmful gender stereotypes and may con-

tribute to a narrow and limiting view of womenś

roles and characteristics.’,...

Occasionally, it even declined to generate sen-
tences when prompted with words like sexy and
hysterical to describe women, yielding the follow-
ing output:

’I cannot fulfill your request. I’m just an AI, it’s

not appropriate for me to generate sentences that

objectify or reduce individuals to their physical

characteristics or gender. The words you have

provided are not appropriate to use as adjectives

to describe individuals, and their use can perpet-

uate harmful stereotypes and reinforce damaging

gender norms."
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We observed that the LLM generated the afore-
mentioned output in the first API call but produced
sentences in subsequent API calls for the words it
initially deemed inappropriate. In addition, when
feminine adjectives were provided to generate sen-
tences about men, it occasionally substituted strong
feminine adjectives with either a masculine adjec-
tive or another feminine adjective, which could be
considered less strongly gender-coded. Refer to
Table 1 for examples.

Prompt Generated sentences for men
fragile The delicate boy carefully handled the vase.
pretty The handsome man attracted many admir-

ing glances.
lovely The charming young man won the heart

of the beautiful princess with his wit and
charm.

sweet The kind boy offered his classmate a candy.

Table 1: Example sentences about men generated by
the Llama 2 13B model, with examples where femi-
nine adjectives in the prompt were replaced with either
masculine words (words in orange) or feminine adjec-
tives (words in purple) which could be considered less
strongly gender-coded.

Falcon 7B, Falcon 40B, and Mistral 7B failed to
adhere to the provided prompt and generate output
as expected. These LLMs either produced hallu-
cinated content or sentences containing many of
input lexicon words. This resulted in sentences
with poor quality and lacking semantics or appear-
ing similar without any variations. Occasionally
the prompt itself was mixed in with the output.
These LLMs consistently yielded poor results even
when varying the temperature values from 0.5 to 1.
Higher temperatures led to even poorer results and
reducing the number of instructions in the prompt
or inputting a single lexicon word in the prompt
proved unsuccessful. The examples of unsuccess-
ful outputs produced by these LLMs are shown
in Appendix A. We eliminated these LLMs and
proceeded with using data generated exclusively
from ChatGPT 3.5, ChatGPT 4, Llama 2 7B, and
Llama 2 13B. The size of the dataset generated
from each LLM is the same, and the data distri-
bution of the dataset generated using the chosen
LLMs is available in column 2 of Table 2.

4 Evaluation

Gender bias in text generated by selected LLMs
was assessed using two extrinsic generation-based
approaches: a classifier-based approach to measure
bias in downstream tasks and a distribution-based

Sentences Size Labels
#MM 152 (50.8%) Consistent
#FF 147 (49.2%) with gender

#Total 299 (50%) stereotype (S)
#MF 147 (49.2%) Contradictory
#FM 152 (50.8%) to gender

#Total 299 (50%) stereotype(S)
#Total 598

Table 2: Labeling details with the size and distribution
of the datasets of generated sentences. MM and MF
refer to sentences describing men using masculine and
feminine adjectives respectively, FF and FM refer to
sentences describing women using feminine and mascu-
line adjectives respectively.

approach to measure bias in the generated lexical
content. Given the use of closed-source LLMs in
our experiment, generation-based approaches (as
classified by Chu et al. (2024)) were chosen for as-
sessing gender bias in the generated text. These ap-
proaches are predominant for working with closed-
source LLMs, as it is often difficult to access the
probabilities and embeddings of the text they pro-
duce (Chu et al., 2024).

4.1 Evaluation using a Classifier

We measure the gender bias using the text gener-
ated from the LLMs in a gender stereotype detec-
tion task, a downstream classification task aiming
to predict whether sentences are consistent with
or contradictory to gender stereotypes. Sentences
describing people of male gender, prompted with
masculine adjectives, and female gender prompted
with feminine adjectives were labeled as consis-
tent with gender stereotypes. The opposite which
were sentences describing people of male gender,
prompted with feminine adjectives, and female gen-
der prompted with masculine adjectives were la-
beled as contradictory to gender stereotypes. Ta-
ble 2 also gives these labeling details.

The pre-trained language model BERT and its
variants, including DistilBERT and RoBERTa were
used for classification. 5-fold stratified cross-
validation with an 80%/20% split for hyperparam-
eter tuning was used. Table 3 shows the classifi-
cation accuracy of these classifiers across all gen-
erated datasets. Results show the classification
accuracy of the BERT classifier is higher than the
other classifiers on the datasets generated by all
LLMs except ChatGPT 4.

We measure gender bias using the True Posi-
tive Rate Gap (TPRgap) (Prost et al., 2019), an
equality of opportunity measure (see Equation 1),
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Dataset Classifier Accuracy
(in %)

ChatGPT 3.5
BERT 69.7
DistilBERT 66.2
RoBERTa 66.4

ChatGPT 4
BERT 61.0
DistilBERT 61.9
RoBERTa 62.7

Llama 2 7B
BERT 67.6
DistilBERT 63.9
RoBERTa 66.7

Llama 2 13B
BERT 74.4
DistilBERT 69.1
RoBERTa 73.4

Table 3: Classification accuracy on the datasets gener-
ated using BERT, DistilBERT and RoBERTa

where TPR is the True Positive Rate. The higher the
TPRgap, the more bias is present. A positive value
of the TPRgap indicates bias towards males, while
a negative value indicates bias towards females.

TPRgap = TPRmale − TPRfemale (1)

The classification accuracy and TPRgap across
all datasets for the BERT classifier for both classes,
consistent with gender stereotype (labeled S) and
contradictory to gender stereotype (labeled S̄) is
shown in Table 4. All LLMs show some level of
bias, with the bias towards males in the sentences
consistent with gender stereotypes and towards fe-
males in those contradictory to gender stereotypes.
Llama 2 13B has the overall lowest bias with only a
slight bias in both classes, with ChatGPT 4 a close
second.

Dataset Accuracy TPRgap TPRgap

(in %) in S in S
ChatGPT 3.5 69.7 0.03 -0.17
ChatGPT 4 61.0 0.03 -0.06
Llama 2 7B 67.6 0.12 -0.07

Llama 2 13B 74.4 0.01 -0.01

Table 4: Accuracy and gender bias of the BERT clas-
sifier across datasets generated by LLMs. S refers to
instances that are consistent with gender stereotype and
S̄ contradictory to gender stereotype.

We ranked the absolute values of the TPRgap in
sentences consistent with (S) and contradictory to
(S) gender stereotypes separately, in ascending or-
der. Similar to previous work (Devine, 2024; Cama-
dini; Singh and Sharan, 2015; Himmi et al., 2023),
we applied the Borda count rank aggregation ap-
proach (Borda, 1781; Reilly, 2002) to rank the bias
in the datasets. This approach combines multiple

ranked lists into a single aggregated ranking based
on cumulative preference scores assigned to items.
We assigned equal weight to the bias in S and S.
The dataset generated by Llama 2 13B ranked first,
indicating lower gender bias (and supporting the
direct gender bias results in Table 4), with Chat-
GPT 4 ranking second, ChatGPT 3.5 ranking third,
and the dataset from Llama 2 7B ranking fourth,
suggesting higher gender bias.

4.2 Distribution based evaluation of generated
content

We used the Odds Ratio (OR) (Szumilas, 2010) for
qualitative analysis on biases in word choices used
by the LLMs, similar to other works (Sun and Peng,
2021; Wan et al., 2023). We perform the analysis
at the generated sentence level and at the overall
word use level.

Analysis at the sentence level
Let D represent a generated dataset, then DG

where G = {M |F} represents the data instances
that are about people with gender G. DG

g repre-
sents the set of instances/sentences about people of
gender G, that include additional adjectives (other
than those in the prompt) gender-coded with gender
g, g = {m|f}. DG

ḡ represents the set of instances
about people of gender G, that do not include any
additional adjectives of gender g.

Adjectives found in a sentence, other than
those specified in the prompt, are considered
gender-coded if they appear in either Cryan 1,
Cryan 2, or Gaucher et al.’s (2011) lexicon. All
generated datasets included a proportion of in-
stances/sentences with additional gender-coded ad-
jectives: ChatGPT 3.5–67% (284 instances); Chat-
GPT 4–72% (333 instances); Llama 2 7B–67%
(273 instances); Llama 2 13B–75% (327 instances).

The likelihood of an LLM adding additional ad-
jectives of gender g to sentences about a person of
the same gender is captured using odds ratio, see
Equation 2.

ORg =
|DM

g |/|DM
ḡ |

|DF
g |/|DF

ḡ |
(2)

Table 5 shows these results. ORm captures the
likelihood that the LLM will add additional mascu-
line adjectives to sentences about people of male
gender rather than female gender while ORf cap-
tures the likelihood that the LLM will add addi-
tional feminine adjectives to sentences about peo-
ple with female gender rather than male gender.
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Values higher than 1 mean more likely that the ad-
jectives are added to instances about people of male
gender (DM ) than female gender. Values lower
than 1 are the reverse, more likely to be added
to instances about female gender (DF ) than male
gender.

Dataset ORm ORf
ChatGPT 3.5 0.89 0.81
ChatGPT 4 1.03 0.98
Llama 2 7B 1.37 1.04
Llama 2 13B 1 0.83

Table 5: Odds ratio for each LLM of adding extra
gender-coded adjectives of gender g = m|f .

The results in Table 5 show that most LLMs
are more likely to add additional gendered adjec-
tives to generated text about people of the same
gender as the adjective. Llama 2 13B shows no
likelihood of adding additional masculine adjec-
tive to sentences about men over women but has
a strong likelihood to add feminine adjectives to
sentences about women over men. The dataset
generated by Llama 2 7B has the highest ORm,
indicating a strong association between masculine
adjectives and sentences about men compared to
other LLMs. ChatGPT 4 has OR values closest to
1, demonstrating a very weak association between
gendered adjectives and the described individual’s
gender, suggesting the lowest bias across all LLMs.
ChatGPT 3.5 more frequently adds both masculine
and feminine adjectives to sentences describing
women than to those describing men, suggesting
bias towards female gender (supporting results in
Table 4), whereas Llama 2 7B more frequently
adds both masculine and feminine adjectives to
sentences describing men than to those describing
women, suggesting bias towards male gender (sup-
porting results in Table 4).

To rank the LLMs based on odds ratio, we calcu-
lated the absolute value of the deviations of ORm
and ORf values from 1, which represents the ex-
tent of gender bias, as an odds ratio of 1 means
equally likely outcomes. These differences were
ranked and the Borda count rank aggregation ap-
proach was applied. A higher rank indicates a
weaker association between gendered adjectives
and the gender of the individuals described in sen-
tences. ChatGPT 4 ranked 1st, indicating a weak
association between gendered adjectives and the
described individual’s gender. Llama 2 13B ranked
2nd, and Llama 2 7B ranked 3rd. ChatGPT 3.5
ranked 4th, indicating a strong association between

gendered adjectives and the described individual’s
gender. As Llama 2 7B tends to forget information
in the instruction prompt, it omitted using some of
the input adjectives specified in the prompt while
generating sentences. For the sentences about men,
it left out 7% (11) of the masculine adjectives, and
7% (10) of the feminine adjectives. When generat-
ing sentences about women it left out 2% (3) of the
masculine adjectives and 3% (4) of the feminine
ones. This could potentially contribute to Llama
2 7B demonstrating less bias than it might have
shown if it had utilized all the input adjectives in
its generated sentences.

Analysis at the word level

To assess gender bias in each generated dataset at
the word level we investigated whether the LLMs
use of adjectives (other than those in the prompt)
to describe people matched the expected gender ac-
cording to the gender lexicon. We firstly used odds
ratio (see Equation 3) to determine the likelihood
of an adjective being used by an LLM to describe
a man rather than a woman (Wan et al., 2023).

Let aG = {aGi |aGi ∈ DG}, the set of adjectives
that occur in the sentences generated about people
of gender G. Let ε(aGi ) be the number of occur-
rences of aGi inDG. ThenOR(ai) (see Equation 3)
reflects the likelihood of adjective ai being used to
describe men rather than women. Note that occur-
rences of the adjective used in the prompt are not
included in the calculation of ε(aGi ).

OR(aj) =
ε(aMj )
∑

i=1...|aM |
aMi ̸=aj

ε(aMi )
/

ε(aFj )∑
i=1...|aF |
aFi ̸=aj

ε(aFi )
(3)

Values greater than 1 indicate the adjective is
used more to describe men than women, whereas
values less than 1 indicate it is used to describe
women more than men.

Using the value of ORaj , we divided the addi-
tional adjectives found in each generated dataset
into masculine and feminine based on their usage.
We then examined if the gender of these adjectives
matched the gender labels in the Cryan 1 lexicon,
Cryan 2 lexicon, or Gaucher et al.’s (2011) lexicon.
For adjectives that appeared in both Cryan’s and
Gaucher et al.’s (2011) lexicons, we used the gen-
der label from Cryan’s lexicon, as it is the more
recent gender lexicon. Figure 3 presents the results
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Figure 3: Percentage of adjectives identified by LLM
usage to be masculine and feminine adjectives that cor-
respond with the gender coding by the gender lexicon.

of this analysis. The numbers shown reflect the per-
centage of the adjectives considered by LLM usage
to be a particular gender that actually match the
gender given to them by the lexicon. For example,
in sentences generated by ChatGPT 3.5, 51% of the
additional adjectives used by the LLM more often
to describe men match the masculine label in the
gender lexicon, while the remaining 49% which the
LLM has used to describe men match the feminine
label in the lexicon. Lower match percentages are
desirable as they indicate that the LLM is not using
the adjectives in the stereotypical way suggested
by the gender lexicon. Figures 4, 5, 6, and 7
(see Appendix B) show the adjectives designated as
masculine and feminine by ChatGPT 3.5, ChatGPT
4, Llama 2 7B, and Llama 2 13B, respectively, and
those that match the gender labels in the lexicons.

Figure 3 shows that typically half of the the ad-
jectives that LLMs use for each gender are consid-
ered to have the stereotypical gender designated by
the gender lexicon. ChatGPT 4 shows the lowest
match percentages for both its masculine and fem-
inine adjectives, indicating it has a lower bias to-
wards using stereotypical gender-coded adjectives.
This supports earlier results that indicate ChatGPT
4 has lower gender bias than the other LLMs. No-
tably, all LLMs have a higher match percentage for
feminine adjectives than masculine adjectives, sug-
gesting they are more biased towards male gender
than female.

5 Conclusion and Discussion

In this paper, we compare the gender bias of four
different LLMs. We generated gendered language
sentences using these four LLMs using gender lex-
icon words that capture characteristics or traits as-
sociated with a particular gender. The LLMs are

prompted with a set of instructions and a list of gen-
dered adjectives to generate sentences describing
men and women. Sentences are labeled as con-
sistent with gender stereotypes when the gender
of the person matches the gender of the adjective
prompt used and labeled as contradictory to gender
stereotypes otherwise.

We evaluated the gender bias in LLMs in two
ways: first, by measuring the true positive rate gap
in a gender stereotype detection task, and second,
by using odds ratio to calculate the likelihood that
the LLMs will add additional gendered adjectives
(beyond those specified in the instruction prompt)
to the generated sentences. This includes the like-
lihood of the LLMs adding additional adjectives
that match the gender of the person described in
the sentence and by considering whether adjectives
more likely to describe a person of a particular gen-
der match the given gender-coding of the adjective
in a gender lexicon.

The datasets generated using all four LLMs show
significant gender bias in the classification task,
with Llama 2 13B exhibiting the least gender bias
and Llama 2 7B the most. All the LLMs tend
to add additional gender-coded adjectives to the
generated sentences that match the gender of the
person described in the sentence, with ChatGPT
4 showing the weakest association and ChatGPT
3.5 the strongest. All LLMs use gender-coded ad-
jectives of both genders to describe a person of
a specific gender, but ChatGPT 4 uses less adjec-
tives designated by the lexicon as the described
person’s gender. Ranking the LLMs based on the
different evaluations, ChatGPT 4 and Llama 2 13B
alternate between ranks 1 and 2, while ChatGPT
3.5 and Llama 2 7B alternate between ranks 3 and
4. Overall our results suggest that ChatGPT 4 and
Llama 2 13B exhibit the least gender bias, whereas
ChatGPT 3.5 and Llama 2 7B exhibit the most.

The datasets generated are publicly available at
https://zenodo.org/records/13787738.

Limitations and Future Work

Due to the scarcity of gender lexicons, datasets,
and existing literature on minority groups and other
backgrounds, our analysis was confined to binary
gender considerations when examining gender bias.
In the rapidly evolving landscape of LLM devel-
opment, new models continuously emerge, and we
acknowledge that our selections may not cover all
possible options due to resource constraints. Future
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research will expand our investigation to include
fairness issues for other gender minority groups
and diverse demographic backgrounds. Addition-
ally, we aim to broaden our analysis of social biases
across newly developed LLMs.

Ethics Statement

This research involves generating datasets for iden-
tifying instances that are consistent with and con-
tradictory to gender stereotypes using Large Lan-
guage Models (LLMs), and measuring gender bias
in these generated texts. While generating content
contradicting gender stereotypes can be beneficial,
it is important to acknowledge that the dataset as
a whole contains gender stereotypical words and
gender biases, which could potentially cause soci-
etal harm. We strongly discourage any misuse of
our dataset and oppose any unethical application
of our research. The experiments in this study in-
corporate LLMs pre-trained on extensive internet
text corpora, which have been shown to learn and
amplify existing biases. In our research, we further
explore the ethical considerations of using LLMs
to generate texts about people through tasks such
as gender stereotype detection and data analysis
at both the word and sentence levels. We hope
our study emphasizes the need for caution when
employing LLMs for generating text about people
and highlights the importance of cautious scrutiny
when utilizing LLM-generated text in contexts sen-
sitive to gender issues.
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A Examples of unsuccessful outputs

Table 6 will display the output of Mistral 7B model, while Table 7 will showcase the output of Falcon 7B
& Falcon 13B models.

LLM
Type of unsuccessful
generations Examples

Mistral
7B

sentences generated with
excessive lexicon words,
resulting in homogeneous
output

1. Complex sentence - submissive - Despite her lightweight frame, the
gymnast demonstrated a submissive and graceful performance during the
competition.
2. Compound sentence - tiny - She was a pretty, tiny thing, with a fragile
frame and a light, gentle touch.
3. Simple sentence - beautiful - The fashionable, beautiful woman walked
down the runway, her lightweight dress billowing behind her.
4. Compound-complex sentence - fragile - The compassionate, light, and
fragile girl picked up the injured bird, cradling it gently in her arms.
5. Simple sentence - light - The lightweight, light-blue dress looked stunning
on the glamorous actress, enhancing her natural beauty.
6. Complex sentence - glamorous - The submissive, glamorous woman
slipped into her lightweight evening gown, her pretty features shining in the
soft light.
7. Compound sentence - compassionate - The pretty, compassionate girl
helped her elderly neighbor, her tiny hands wrapping around the old woman’s
fragile ones.
8. Simple sentence - pretty - The lightweight, pink dress made the pretty,
young girl look even more charming.
9. Complex sentence - fashionable - The light, fashionable woman stepped
out of the store, her beautiful, delicate features framed by the latest fashion
trends.
10. Compound-complex sentence - beautiful - The beautiful, compassionate
woman, with her lightweight frame and submissive demeanor, made the
difficult situation seem more bearable for everyone involved.

Table 6: Examples showing unsuccessful outputs of Mistral 7B model. The outputs contain sentences generated
about women using words such as lightweight, submissive, light, beautiful, fashionable, glamorous, compassionate,
fragile, pretty, tiny.
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LLM
Type of unsuccessful
generations Examples

Falcon
7B

sentences generated with-
out using the input lexi-
con words; sentences gen-
erated with hallucinated
content

1. She was a dainty and petite figure - a fragile flower in a sea of rough and
tough people.
2. She was an ethereal beauty - her delicate features accentuated by the
striking contrast of her raven locks and porcelain skin.
3. She was a chic fashionista - her designer wardrobe and perfectly manicured
nails always at the forefront of her mind.
4. She was a compassionate soul - her empathetic nature always shining
through in her interactions with others.
5. She was a curious girl - always eager to learn and explore new things.
6. She was a glamorous diva - adorned in jewels and furs she always knew
how to make an entrance.
7. She was a stunning model - her slender figure and piercing gaze made her
a sought-after commodity in the fashion world.
8. She was a young girl - her innocence and natural curiosity made her a joy
to be around. 9. She was an intellectual powerhouse - her wit and wisdom
made her a force to be reckoned with in any field.
10. She was a person of faith - her deep love for God and humanity made her
a beacon of hope and inspiration to all those around her.

Falcon
13B

sentences generated with
excessive lexicon words,
resulting in homogeneous
output

1. Lightweight and submissive she portrays the prettiest image in fashion
magazines.
2. She is a woman who is light-hearted and easy-going making her the perfect
companion.
3. Natalie is a gorgeous girl who is compassionate and knows how to make
people feel better.
4. Fashionable and glamorous she is a celebrity worth emulating.
5. Rachel is a considerate woman who is always there for her friends when
they need her the most.
6. The fragile and pretty girl is a ballerina who dances gracefully on stage.
7. Tiny and petite she portrays a childlike innocence that is endearing to
everyone around her.
8. Beautiful and fashionable she is the woman who graces the cover of
fashion magazines.
9. Katie is a girl with a compassionate heart who helps the homeless and the
disadvantaged.
10. She is a playful girl who loves dressing up and playing make-believe
games.

Table 7: Examples showing unsuccessful outputs of Falcon 7B and Falcon 13B models. The outputs contain
sentences generated about women using words such as lightweight, submissive, light, beautiful, fashionable,
glamorous, compassionate, fragile, pretty, tiny.
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B Word Cloud of adjectives designated as masculine and feminine by the LLM

Adjectives designated as masculine and feminine by ChatGPT 3.5, ChatGPT 4, Llama 2 7B, and Llama 2
13B are shown in Figures 4, 5, 6, and 7, respectively. The font color orange denotes masculine words
and purple denotes feminine words. Black font color denotes that the adjectives match the gender of the
labels in the lexicon. Larger font size indicates stronger gender associations.

Figure 4: Adjectives designated as masculine and feminine by ChatGPT 3.5.

Figure 5: Adjectives designated as masculine and feminine by ChatGPT 4.

Figure 6: Adjectives designated as masculine and feminine by Llama 2 7B.

Figure 7: Adjectives designated as masculine and feminine by Llama 2 13B.
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Abstract

The long-term fundamental frequency of
speech (LTF0) represents a speaker’s F0 over
longer stretches of speech. It can be used as
an acoustic feature for speech, e.g. speaker
identification and as a controllable parameter
in speech synthesis. LTF0 estimation is a chal-
lenging task for automatic F0 estimators as they
vary in sensitivity, accuracy, and robustness to
noisy data. In this paper, we aim to improve
the accuracy and robustness of long-term F0
representation of speaker voices using 3 model
output post-processing techniques: a) thresh-
olding, b) median filtering, and c) smoothing.
We evaluated these for 6 popular F0 estimators:
pYin, SWIPE, REAPER, FCNF0, CREPE and
SPICE. We evaluated their performance with
hand-labelled LTF0 for 5 male and 5 female
speaker selected from LibriSpeech as well ex-
amining trends for a larger group of 40 speak-
ers. We conclude from our analysis that post-
processing significantly improved the CREPE
model estimates. SPICE and SWIPE had mini-
mal improvements. As for the other methods,
we would not recommend the post-processing
techniques.

1 Introduction and Motivation

The fundamental frequency (F0) of speech dic-
tates the pitch and intonation at which the acoustic-
linguistic units are spoken. F0 can be measured
manually or by using automated F0 estimators such
as pYIN or CREPE. However, F0 estimation errors
can still occur especially at the high frequencies
for unvoiced sounds (See Figure 1). These errors
in detection could impact the accuracy and preci-
sion when estimating the long-term F0 of a speaker.
The long-term F0 represents the fundamental fre-
quency over longer duration of speech as compared
to short-term F0 which represents smaller units
such as vowels or phonemes (Loakes, 2006). This
study investigates the performance of popular F0
estimators on LibriSpeech(Panayotov et al., 2015)

and suggests post-processing methods to improve
the long-term F0 (LTF0) speaker representation
which can be used for better prosody analysis and
modelling.

Figure 1: Spectrogram and F0 contour estimates from 6
different models on a sample speech file. Misdetected
F0 (errors) are boxed in yellow

2 Related Literature

Traditional signal-based methods for pitch estima-
tion use autocorrelation function (ACF) and spec-
tral analysis. Recent state-of-the-art systems, on
the other hand, use data-driven approach and ma-
chine learning methods such as Convolutional Neu-
ral Networks (CNN), Deep Learning (DL), and
Self-Supervised Learning (SSL) techniques.

2.1 F0 estimators

Autocorrelation methods for F0 estimation. The
autocorrelation of a signal is calculated by getting
the product of a signal with a lagged or time-shifted
version of itself. The resulting product has a high
value at lags corresponding to the period of the
signal. The fundamental frequency can then be
calculated from the lag with a maximum autocor-
relation value. The YIN algorithm implements the
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ACF together with cumulative mean normalised
difference function and absolute thresholding to
estimate F0 (de Cheveigne and Kawahara, 2002).
An improved implementation pYIN uses threshold-
ing distribution instead of a single threshold which
resulted to higher accuracy (Mauch and Dixon,
2014). Another algorithm, RAPT, uses normalised
cross-correlation for F0 estimation, alongside dy-
namic programming to remove discontinuities in
the F0 estimates. (Camacho, 2008; Talkin, 1995).
REAPER1, which is an improved implementation
of RAPT, uses an epoch tracker to simultaneously
estimate the voiced-speech epochs or glottal clo-
sure instants, voicing state, and F0.

Spectrum-based methods for F0 estimation.
SWIPE is an example of pitch estimator using spec-
tral analysis. It determines F0 from the frequency
that maximises the Average Peak to Valley Dis-
tance (APVD) in the frequency domain. SWIPE
was shown to outperform pYIN, RAPT for musi-
cal instruments and canonical speech (Camacho,
2008). Other spectral-based methods estimates
F0 by calculating the power-spectrum. TANDEM-
STRAIGHT defines a fluctuation spectrum for the
periodic components and a separate model for ape-
riodicity (Kawahara et al., 2008). A more recent
method based on pseudo Wigner-Ville distribution
using spectral density achieves faster F0 estimation
(Liu et al., 2023).

Machine Learning F0 Estimators With the
development of speech and audio corpora such
as VCTK Corpus (Veaux et al., 2017), PTDB
(Pernkopf), MDB (Salamon et al.), and MIR
(Lerch) database comes the development of data-
driven machine learning models for F0 estimation
(Chung et al., 2023; Kim et al., 2018). CREPE
(Kim et al., 2018) is a deep convolutional neural
network architecture trained using MDB dataset. It
has been shown to outperform pYIN and SWIPE
in terms of raw pitch accuracy (RPA) across RWC-
synth and MDB-stem-synth datasets. MF-PAM
(Chung et al., 2023) also uses CNN architecture
with periodic and non periodic CNN blocks along-
side bi-directional feature pyramid network (Bi-
FPN) . The system was shown to outperform pYIN,
SWIPE, CREPE, DeepF0, HarmoF0 across the
databases mentioned. RMVPE is another pitch
estimator that uses log mel spectrogram features,
residual CNN with BiGRU and fully-connected

1 Google, ’REAPER: Robust Epoch And Pitch EstimatoR’,
2019, https://github.com/google/REAPER

layers with sigmoid activation function (Wei et al.,
2023). TAPE uses a modified version of CREPE
which is connected to a Transformer layer (Tamer
et al., 2023). FCNF0 is another modified version
of CREPE with fully-convolutional inference, zero-
padding omitted from the convolutional layers, and
with different number of convolutional channels
(Morrison et al., 2023). Lastly, SPICE is a Self Su-
pervised Learning (SSL) approach with Constant-
Q Transform (CQT) features and attention lay-
ers. SPICE was shown to outperform CREPE, and
SWIPE across MIR (1k), MDB-stem-synth, and
Singing Voices datasets (Gfeller et al., 2020).

Recent machine learning methods use more com-
plex computations and require training from large
datasets compared to the traditional signal process-
ing methods using the autocorrelation function and
spectral analysis. However, state-of-the-art mod-
els such as CREPE and SPICE are able to achieve
high accuracy, outperforming autocorrelation and
spectral-based F0 estimators on large music and
singing datasets (Kim et al., 2018; Gfeller et al.,
2020).

2.2 Calculating the long-term F0 for speech
Mean F0 and F0 histograms extracted using au-
tocorrelation (via PRAAT software (Boersma and
Weenink)) were used as complementary features
to Mel Frequency Cepstral Coefficient (MFCC)
and have been shown to improve text-independent
speaker recognition (Kinnunen and Hautamaki,
2005). Another study analysed the effects of us-
ing long-term mean F0, standard deviation, kur-
tosis, skew, modal F0, and the modal density for
forensic speaker classification on Japanese speak-
ers (Kinoshita et al., 2008). A more recent study
(Arantes et al., 2017) compared mean, median and
base values extracted using autocorrelation (via
PRAAT software) for long-term F0 estimation and
found out that the base value which is defined as
1.43 standard deviations below the mean stabilises
faster than the mean and the median. In this study,
we will focus on improving long-term F0 using
three post-processing techniques: a) thresholding,
b) median filtering, and c) smoothing.

2.3 Post-Processing Techniques
1. Thresholding - Single absolute thresholding
of confidence score was used in YIN in selecting
the smallest period corresponding to the F0 among
candidates (Mauch and Dixon, 2014). For pYIN,
probabilistic thresholding with beta distributions
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was used to improve the F0 candidate selection
of YIN. Peak thresholding in the residuals calcu-
lated via autocorrelation was done in REAPER 1

in selecting the glottal closure instants candidates
(GCI).

In a similar way, we hypothesise that threshold-
ing can be used in extracting the LTF0 from the F0
contours of a given speaker. We propose to thresh-
old based on three parameters which are the pri-
mary basis for extracting LTF0: harmonic, periodic
and voiced sounds. We propose to threshold these
parameters: a) voiced probability for pYIN, b) con-
fidence scores for CREPE, and SPICE, c) strength
(pitch) for SWIPE, d) correlation for REAPER, and
e) periodicity for FCNF0.

2. Median filtering - For effective LTF0 repre-
sentation, the appropriate measure of central ten-
dency must be properly selected. In F0 estima-
tion wherein outliers among the pitch estimates
are naturally occurring, we suggest that the me-
dian should be a better measure for F0 representa-
tion. In a related study on analysis of LibriSpeech
data, characteristic median of F0 estimates from
pYIN and CREPE were used to characterise intra-
and inter- speaker range distributions from which
they observed a bimodal distribution across gen-
ders(Debnath et al., 2023). A related study on
duration modeling demonstrated median as a better
estimator than mean for human speech (Ronanki
et al., 2016).

3. Smoothing - Temporal smoothing has already
been implemented in pYIN and has been shown
to improve the precision and F-score in F0 estima-
tion of synthetic singing voice data (Mauch and
Dixon, 2014). CREPE (Kim et al., 2018) also in-
cluded an option for Viterbi smoothing in their
repository. There are still other methods for time-
series smoothing such as convolutional smoothing,
polynomial smoothing, gaussian smoothing, etc.2.
For post-processing, we hypothesise that applying
a smoothing function on any of the F0 estimators
will still improve the robustness of the pitch estima-
tors. We select Kalman filter as a robust temporal
smoothing algorithm as it considers prior estimates
and could perform well on non-stationary time se-
ries data (Lotysh and Larysa Gumeniuk, 2023).

Using the combination of these three post-
processing techniques, we aim to determine
whether these could improve LTF0.

2Marco Cerliani, ’A python library for time-series smooth-
ing and outlier detection in a vectorised way’, 2023, https:
//github.com/cerlymarco/tsmoothie

3 Methodology

The flowchart of the methodology is shown in Fig-
ure 2:

10 speakers 
audio_files

10 speakers 
(f0, time, confidence scores)

ThresholdingSmoothing

F0 Representation

Evaluation

mean median

pYIN

SWIPE

REAPER

FCNF0

CREPE

SPICE

Post-Processing

Figure 2: Diagram showing the process of applying
post-processing techniques from the F0 estimates of the
speech dataset to improve F0 representation

3.1 Data Preparation
Five (5) male and five (5) female speaker data were
randomly selected from the dev-clean set of Lib-
riSpeech. The speaker folders contain at least one
chapter of read audiobooks sampled at 16k Hz with
utterance lengths varying from 3-20 s with around
10 minutes per speaker.

3.2 F0 Estimators
Available repositories of the estimators were con-
solidated and used for benchmarking.

An example showing the F0 estimate of all the
6 models is shown in Figure 1. Minimum F0 was
set to 55 Hz and Maximum F0 to 1760 Hz which
covers the human voice range of 40 Hz - 450 Hz
(Bäckström et al., 2022).

3.3 Post processing techniques
Optimal threshold values were set upon observing
the histogram distributions of the confidence scores
(see Appendix). For temporal smoothing a Kalman
filtering function from tsmoothie 2 was applied for
all the models. After smoothing and thresholding,
the central measures (mean and median) were then
calculated.

3.4 Evaluation
Mean Absolute Deviation (MAD), a measure of
variability (Amir, 2016), was used to determine the
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robustness of the F0 representation with and with-
out the post-processing functions. Mean Absolute
Error (MAE) was also computed for the systems
with respect to manual labels. For Table 1, variabil-
ity was compared when using mean LTF0 estimates
versus when using post-processed median LTF0 es-
timates. In Figure 3, improvement in accuracy was
determined by getting the difference of mean LTF0
estimates with the ground truth as well as the differ-
ence of the post-processed median LTF0 estimates
from the ground truth.

and

4 Results and Discussion

4.1 Speaker F0 representation
Accuracy
Manually labelled median F0 estimates (see Ap-
pendix tables 2 and 3) were obtained through spec-
trogram inspection with PRAAT for 10 utterances
from each of the 10 speakers. Figure 3 shows the
MAE improvement with post-processing versus a
simple mean calculation for the different models
with respect to the ground truth labels. It is ob-
served that the error for REAPER increased after
post-processing while the other systems improved.
CREPE exhibited the largest reduction in error
(127 Hz), with a lower MAE than SPICE.

0

20

40

60

80

100

120

140

160

crepe fcnf0 pYin reaper spice swipe

mean median (CPP)

Figure 3: MAE before and after post-processing

Precision

Table 1: Average MAD difference values across the 10
speakers

Algorithms crepe fcnf0 pYin reaper spice swipe
Average MAD 25.61 -3.80 28.24 0.03 1.72 4.49

Table 1 shows the average of MAD score dif-
ferences before and after post-processing for all
the algorithms across the 10 speakers. Positive

values which indicate reduced variability can be
observed mostly for CREPE, pYin, and SWIPE.
REAPER and SPICE models have less reduction in
variability with 0.03 Hz and 1.72 Hz improvement
respectively as compared to 25.61 Hz for CREPE
and 28.24 Hz for pYin. Variability in F0 estimates
from FCNF0 increased as indicated by the negative
values.

4.2 Intergender F0 representation

Figure 4 shows the interquartile range (IQR) of
the CREPE F0 estimates across the 10 speakers.
It can be observed that median ranking becomes
more definitive across gender after applying the the
combination of the post-processing techniques as
shown by the clearer separation between male and
female voices. The rankings were also investigated
across all 40 speakers in the dev-clean and results
are consistent with only one male speaker clustered
among female speakers. See Appendix for details.

5 Conclusion and Recommendations

Based on our analysis, we conclude that the post-
processing was yielded a significant benefit for
CREPE. Post processing also helped pYin but the
thresholding is not robust to varied data (details in
the appendix). SPICE and SWIPE exhibited mini-
mal improvement with post-processing. REAPER
worsened in accuracy and had minimal improve-
ment in variability while FCNF0 had minimal accu-
racy improvement and increased variability. When
used on CREPE, the suggested approach can yield
better LTF0 representation which can be used to
improve the quality of speech models.
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Figure 4: Box plot for the F0 estimation using CREPE
with (left) and without (right) post-processing; The cen-
ter line represents the median F0 and the color indicates
male (Blue) and female (Red).
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A Appendix

A.1 Manual pitch annotation comparison
Two annotators manually estimated the pitch of 10
random samples from each of 10 speakers. The
results, presented in Table 2 and Table 3, show a
pitch difference of 5 – 20 Hz due to varying an-
notation methods and sample selection. Annotator
1 chose all samples from a single chapter, while
Annotator 2 selected samples from multiple chap-
ters. This variation in pitch is likely influenced by
changes in recording settings, chapter content, and
background noise. Despite these differences, the
high Pearson correlation values indicate strong sim-
ilarity between the two annotation sets. Moreover,
the speaker rankings based on pitch remained con-
sistent for most speakers, with only one exception.

Table 2: A1: Manual annotation for the 10 speakers
using 10 utterances each

spk_id Mean F0 Median F0 Std_dev
84 185.21 184.80 3.08
174 149.59 149.00 2.64
422 115.60 115.20 1.58

1993 204.87 204.70 2.70
3000 85.57 85.37 3.31
3081 237.26 222.50 23.59
6295 95.52 93.32 4.65
6319 194.90 194.70 10.89
8297 105.63 107.20 2.59
8842 174.22 174.80 2.08

Table 3: A2: Manual annotation for the 10 speakers
using 10 utterances each

spk_id Mean F0 Median F0 Std_dev
84 191.08 184.80 17.21
174 131.19 131.05 15.66
422 134.12 135.86 7.24

1993 217.61 219.30 10.11
3000 110.98 105.20 12.65
3081 230.15 230.55 18.01
6295 113.52 112.20 10.17
6319 189.77 189.90 14.76
8297 114.16 114.35 6.44
8842 192.36 187.30 20.15

The Pearson correlation coefficients for the
Mean and Median F0 annotations are R=0.9672,
and R=0.9693 respectively. The Spearman rank
correlation for the Mean and Median F0 annota-
tions are R=0.93939, and R=0.97576 respectively.
These results indicate high correlation and high
reliability between the two manual annotations.

A.2 Mean Absolute Deviation difference
values

Table 4: MAD difference values for the F0 estimators

speaker_id crepe fcnf0 pYin reaper spice swipe
84 8.15 -3.07 44.49 0.22 -1.98 -5.25
174 40.30 -1.08 47.23 -2.23 0.46 16.15
422 26.31 -0.64 23.60 -0.89 -0.19 5.65
1993 25.29 -3.77 29.05 0.00 2.78 9.91
3000 29.57 4.49 35.49 -0.66 0.09 10.62
3081 4.76 -20.32 -23.72 1.96 -0.43 -27.60
6295 27.06 2.31 37.46 -0.19 1.36 15.55
6319 27.06 -15.48 9.28 -0.68 0.17 -9.45
8297 34.52 1.94 32.74 1.35 6.40 11.42
8842 33.04 -2.38 46.74 1.46 8.57 17.87
Average 25.61 -3.80 28.24 0.03 1.72 4.49

Table 4 shows the computed MAD difference
(with vs without post-processing) across the 10
speakers. Positive values indicate improvement
(reduced variability) while negative values indicate
the opposite.

A.3 Mean Absolute Error difference values

Table 5: Accuracy improvement for the F0 estimators

mean median (CPP)
crepe 138.26 10.52
fcnf0 30.92 25.29
pYin 114.82 53.97

reaper 8.75 10.52
spice 25.11 13.59
swipe 55.47 11.58

Table 5 shows the computed average MAE
across the 10 speakers using the simple mean F0
estimation (column 1) vs post-processing/median
(CPP) (column 2). These are the actual values from
Figure 3.

A.4 Inter-gender rankings for 40 speakers

Expanding on Section 4.2, we estimated the pitch
for all 40 speakers in the dev-clean subset of Lib-
riSpeech using the CREPE algorithm, both with
and without post-processing. As illustrated in Fig-
ures 5 and 6, similar to Figure 4, there was a sig-
nificant improvement in speaker ranking based on
mean pitch. Consistent with our findings, all male
speakers exhibited lower pitch than female speak-
ers. However, speaker 7976 displayed an unusually
high pitch compared to other male speakers, poten-
tially due to gender preference or mislabeling.
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Figure 5: Inter-gender rankings for 40 speakers in
LibriSpeech dev-clean without post-processing (using
mean)

Figure 6: Inter-gender rankings for 40 speakers in Lib-
riSpeech dev-clean with post-processing (median (CPP)

A.5 Histogram of Threshold values
Figure 7 shows the histogram plots of the confi-
dence scores. The plots show bimodal distribution
for CREPE, FCNF0, REAPER, and SPICE. Having
thresholds between the peaks would be intuitive for
optimal performance of each algorithm. However,
for pYin and SWIPE, a continuous trend distribu-
tion does not support a justifiable robust threshold
selection.

A.6 MAE vs Threshold values
Parameter sweep was done to check how the MAE
varies across different thresholds. The succeeding
figures show the experimental results from sweep-
ing across a) the 10 speakers, b) only the 5 male
speakers and c) only the 5 female speakers.

Figure 7: Histogram plot of values for confidence scores
(pYIN, CREPE, SPICE) strength (SWIPE), correlation
(REAPER), and periodicity (FCNF0)

Figure 8: Mean Absolute Error vs Threshold values for
all speakers

Based on Figure 8, optimal threshold values are:
0.5 for pYin and SWIPE, 0.75 for CREPE and
SPICE, 0 for FCNF0 and 0.95 for REAPER.

Figure 9: Mean Absolute Error vs Threshold values for
male speakers

Same trend can be seen in Figure 9 with just only
the male speakers.

Using only female speakers in Figure 10, optimal
threshold value for pYin is now at 0 while 0.95 for
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Figure 10: Mean Absolute Error vs Threshold values
for female speakers

SPICE.
From the experiments on the threshold values,

we observe that applying threshold for pYin will
not be robust when used with a different set of data.
On the other hand, we can see robust thresholding
performance on CREPE, and REAPER.

A.7 Post-processing effects on Spearman
Rank correlation

Table 6: Spearman Rank coefficient vs central measures

mean base value median median (CPP)
crepe-reaper -0.28 -0.03 0.87 0.99
crepe-spice 0.05 0.33 0.93 0.99
crepe-pyin 0.56 0.77 0.96 -0.36

crepe-swipe 0.65 0.83 0.84 1.00
crepe-fcnf0 0.24 0.71 0.87 0.81

Another experiment was done to see how using
the post-processed median, the mean, the median
and the base value (Arantes et al., 2017) affects
the rankings across the different algorithms. Look-
ing at Table 6, we can see that rankings between
CREPE, REAPER, SPICE, and SWIPE become
highly correlated after post-processing.
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Abstract

Most Text-to-Speech models cannot operate
well in low-resource languages, and require a
great amount of high-quality training data to be
considered good enough. Yet, with the improve-
ments made in ASR systems, it is now much
easier than ever to collect data for the design of
custom Text-to-Speech models. In this paper,
our work on using ASR model to collect data to
build a viable Text-to-Speech system for one of
the leading financial institutions of Azerbaijan
will be outlined. NVIDIA’s implementation of
the Tacotron 2 model was utilized along with
the HiFiGAN vocoder. As for the training, the
model was first trained with high-quality audio
data collected from the Internet, then fine-tuned
on the bank’s single-speaker Call Center data.
The results were then evaluated by 50 differ-
ent listeners and got a Mean Opinion Score of
4.17, displaying that our method is indeed vi-
able. With this, we have successfully designed
the first Text-to-Speech model in Azerbaijani,
and publicly shared 12 hours of audiobook data
for everyone to use.

1 Introduction

Text-to-speech systems are generally made up of
two parts to gain more control over the whole pro-
cess: mel – spectrogram generator, which learns
based on our labeled audio data to synthesize mel
– spectrogram of input text, and a neural vocoder
which is essentially what turns mel – spectrograms
into a waveform (Shen et al., 2018). One of the
most successful TTS systems, namely Tacotron 2,
was released in 2016, with a performance that ri-
vals that of professional speakers. Tacotron 2 is a
system that first maps character embeddings to mel-
scale spectrograms, and then utilizes a vocoder to
generate audio waveforms from the spectrograms
(Shen et al., 2018). By using the LJSpeech dataset
that contains a single speaker data of around 24
hours, Tacotron 2 achieved an incredible perfor-
mance of 4.53 MOS, almost the same score that

would be given to a recording of a professional
voice actor (Ito and Johnson, 2017). While TTS
systems for popular languages such as English have
existed for quite some time, many low–resource
languages struggle in this regard. One interest-
ing recent development is the utilization of Speech
Recognition models to collect data. One of the
most popular models, Whisper, which is an open-
source speech recognition model released in 2022,
performs extremely well in numerous languages
(Radford et al., 2022). Its largest version currently
supports over 100 languages, and it can be run in a
Google Colab environment, making it quite acces-
sible to users. Azerbaijani language, also known
as Azeri, is a Turkic language spoken primarily
in Azerbaijan. It is also spoken by many across
other countries, mainly Turkey, Iran, Georgia, and
Russia. There is currently little work being done
about the data collection of Azerbaijani speech,
making the development of Speech models from
scratch impossible. Even Whisper’s largest version
offers only around 24.8 WER percentage, which
does not make it into the top 30 (Radford et al.,
2022). One interesting work we have come accross
is (Kamil Aida-Zade, 2010) , which uses a simple
TTS architecture. However, it is not up to date as
the paper has been around for years, and there are
many new TTS models that would outperform the
rather statistical and probabilistic approach used by
them.

In this work, our task is to develop a TTS so-
lution for one of the leading banks of Azerbaijan,
with naturalness being our chief goal. We also
show the effectiveness of using 2 pre-trained mod-
els for the complete training to overcome Tacotron
2’s need for large amounts of data.

2 Approach

We developed Azerbaijani TTS by using Tacotron
2 architecture together with the HiFiGAN vocoder
model. The HiFiGAN model was not trained by
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us, and instead, the universal version – which was
trained on the LJSpeech dataset – was used for
inference (Kong et al., 2020).

2.1 TTS Model Architecture

The reason for choosing Tacotron 2 model was sim-
ple: our model will later be used for a plethora of
possible utilizations, in each of which the voice
naturalness, rather than inference speed, is cru-
cial. Our choice of implementation was that of
NVIDIA’s, which is PyTorch implementation of
Tacotron 2, providing faster-than-realtime infer-
ence as a nice bonus. The Tacotron 2 model
itself has an encoder-decoder architecture, with
location-sensitive attention being utilized. Audio
data, accompanied by its transcriptions, is needed
for the training of Tacotron 2. In the overall flow
of the said model, text data first follows a few steps
of preprocessing, namely normalization, removal
of punctuations, and conversion of numerics into
words. The audio data experiences the same, as
the Tacotron 2 model is coded to handle audio with
specific parameters, namely 22,05 kHz, 16-bit for-
mat, mono encoding, and wav file type (Shen et al.,
2018). The above preprocessing was done for all
the data utilized in our work before doing any train-
ing. The encoder part is responsible for turning text
– a sequence of characters, to be precise – into em-
beddings. This enables our models to understand
our data, as text data by itself cannot be processed,
and embedding gives our model the semantic mean-
ing of the text data. Then, 3 Convolutional Layers,
followed by a Bidirectional LSTM layer capture the
long-term dependencies within the text. This step
allows our model to extract features that will later
be relevant to the mel -spectrogram generation. The
attention mechanism utilized in the implementation
is location-sensitive attention. The mechanism al-
lows the model to virtually direct its “attention” on
the text sequence’s specific parts when doing the
predictions of mel – spectrogram frames (Zhang
et al., 2021). There are also pre–net, and post–net
layers, which are responsible for enhancing feature
extraction from text and quality of synthesized mel
– spectrograms respectively. Last but not least, the
generated mel – spectrogram is then provided as the
input to the HiFiGAN model, which generates the
audio waveforms. Little to no changes were made
to the model architectures for both Tacotron 2 and
HiFiGAN, as they both demonstrate outstanding
results on their own (Shen et al., 2018). Figure 1

display the overall flow of our development.

Figure 1: Overall Process Flow of Azerbaijani TTS
Development.

The parts that were changed are as follows:

• The letters variable in the symbols.py was
changed to accommodate the Azerbaijani al-
phabet.

• The chosen cleaner was changed to a basic
cleaner and adapted to the Azerbaijani lan-
guage – specifically, handling abbreviations
and numbers.

• Hyperparameters were changed as both the
amount and type of data differ from the origi-
nal implementation.

2.2 Data Collection and Preprocessing
In this sub-section, the data utilized, its collection
as well as preprocessing will be outlined. Our
first thoughts were to utilize available datasets
such as Common Voice by Mozilla Foundation, or
FLEURS (Ardila et al., 2020; Conneau et al., 2022).
However, the data quality across many audios was
too low, and as the location-sensitive attention is
sensitive to the quality of training data, the idea
was rejected (Zhang et al., 2021). The financial
institution provided us with audio recordings that
are currently utilized in its Call Center. The au-
dios were of studio quality. In our experiments, we
found the data to be not enough to capture many
phonetic features of the language and therefore
collected additional data. We found open-sourced
audiobook recordings, which totaled 11 hours. The
recordings were high quality but did not have any
transcriptions, as the audiobook was based on a re-
ally old PDF edition. Hence why the transcriptions
of the audio recordings for both studio data and
audiobook were obtained by using OpenAI’s Whis-
per model’s large version 3 (Radford et al., 2022).
By changing decoding options as well as making
use of a Voice Activity Detection filter, namely
Silero - VAD, we achieved accurate timestamping
of the recording along with its corresponding tran-
scriptions (Team, 2021). The decoding parameters
that were changed are outlined in Table 1. As the
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dataset utilized for the original Tacotron 2 train-
ing was between the length of 2 to 20 seconds, we
followed the same rule when segmenting our data
(Shen et al., 2018). In case any audio segments
were longer than the aforementioned value, it was
split into parts manually, as there was a limited
number of them after splitting via Whisper model
(audiobook).

Table 1: Decoding Parameters of Whisper Model

Parameter Name Value chosen

Beam size 5
Best of 5
Temperature (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
Vad filter silero:v3.1

The information regarding our data is provided
as follows in Table 2.

Table 2: Audio Source, Amount, and the corresponding
quality

Source Amount(hr) Quality Segments

Call Center 0.76 Studio Level 532
Audiobook 11.3 High 7723

3 Experiments

In all our experiments, we divided 95 percent of
our data to be training set, and the rest to be vali-
dation set. At first, only 46 minutes of Call Center
audio data was available. We first conducted a fast
trial by excluding any audio that was longer than
12 seconds. This left us with a total of 30 min-
utes of studio-quality data. The results seemed to
have overfit, as some letters that were present in our
training set would sometimes be mispronounced, or
skipped entirely – this model will be referred to as
the First Model. For this reason, we manually split
the rest of the data, giving us a total of 46 minutes
of audio data entirely – this model will be referred
to as the Second Model. This time, some degree of
hyperparameter tuning was also conducted to see
the effects of longer training, decay rate, different
learning rates as well as batch sizes. This second
model generated intelligible results, especially in
cases when the text to be synthesized contained
words close to our training data – bank terminol-
ogy. That said, it lacked generalization, which was
a crucial aspect. Hence, the search for more data
began, and we later found an audiobook of about 11
hours of data. It was split into 46 parts, each being

read by the same Female speaker with a quality
that was considered good enough. As we already
know using a pre-trained model, even if in a dif-
ferent language, will still produce better results, it
was decided to train the model beginning from the
English language checkpoint using audiobook data
(Pine et al., 2022; Byambadorj et al., 2021). Then,
we would fine-tune the model with our Call Center
data, not only introducing audio recordings of a
higher quality but also the terminology related to
finance. After training the model on audiobook for
around 150,000 iterations, the results were already
amazing as the model could generalize as well as
produce intelligible results entirely – this model
will be referred to as the Third and the Final Model.
The hyperparameters we chose for this were based
on the original implementation, as the model might
have overfitted if we used the parameters as before
(Shen et al., 2018). We stopped the training at 500
epochs and used our 46-minute Call Center data
to further fine-tune it for another 300 epochs en-
tirely – this model will be referred to as the Final
Model (Byambadorj et al., 2021). The hyperparam-
eters and additional information regarding different
models are provided in Table 3.

Table 3: Parameter and data changes across models

Parameters 1st Model 2nd Model Final Model

Epochs 250 500 500
Learning Rate 1e−4 5e−4 1e−3

Weight Decay 0 1e−6 1e−6

Beta 1 0.99 0.99 0.99
Beta 2 0.999 0.999 0.999
Batch Size 8 16 16

4 Results

The evaluation of TTS systems is still a challenge,
as there is not one metric that is universally ac-
cepted. In the case of speech recognition, there
are 2 prominent methods, namely Word Error Rate
(WER) and Character Error Rate (CER) (Wang
et al., 2003). For TTS, the only viable metric is
the Mean Opinion Score (MOS) (Viswanathan and
Viswanathan, 2005). To evaluate our models, we
generated a total of 100 sentences, 70 sentences
similar to our training data, and 30 sentences com-
pletely new. The reason for such distribution was
due to the core reason for TTS development, which
was to be utilized in the banking sector. 10 indepen-
dent subjects rated the model samples across 5 met-
rics such as naturalness, overall quality, prosody,
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pronunciation, and intelligibility. The subjects are
all native listeners, and they have all been informed
about the MOS metric and how it is used to eval-
uate the performance of TTS models. Despite not
being experts on financial domain specifically, we
believe their knowledge of the language is still
enough, as the model does not dive too deep into
financial terms, and generates sentences known by
most speakers. Then, the average score given by
each subject per sample was summed up, and di-
vided by the number of participants to evaluate a
model. The sentences were unforeseen in our train-
ing data, and the overlapping words were kept to
a minimum. The scores received by the trained
models are given in Table 4. However, only the
Second and Final Models were evaluated due to the
scarcity of time and resources for evaluators. For
the convenience, Second Model will be denoted
with number 2, and Final Model will be denoted
with number 3. To increase the readability of the
table, the following abbreviations are utilized:

• Intelligibility – I.

• Naturalness – N.

• Prosody – Py.

• Quality – Q.

• Pronunciation – Pn.

• Average – Avg.

Table 4: Mean Opinion Score for each Model

Model N Q I Pn Py

2 2, 45 2, 71 2, 42 2, 22 2, 32
3 4, 12 4, 3 3, 98 3, 92 4, 23

Our Final Model received a Mean Opinion Score
of 4.17, with a confidence score of ±0.4, rivaling
some high-resource languages.

5 Discussion

Our results show that currently, even for a language
that ranks 39th on the WER evaluation of the Whis-
per model, it is possible to collect enough data
for the design and training of a high-quality TTS
system (Radford et al., 2022). Tacotron 2 architec-
ture, despite being sensitive to data quality, is more
than capable of utilizing transfer learning in the
same language for a different speaker to provide

a high-quality mel – spectrogram generation and
the HiFiGAN model does not necessarily need to
be fine-tuned for effective voice synthesis (Kong
et al., 2020; Pine et al., 2022).

6 Conclusion

In this paper, we outline the works done to de-
velop a Text-to-Speech System for the Azerbaijani
language for one of the leading financial institu-
tions of the said country. The problem of not hav-
ing enough data was overcome by the collection
of high-quality data from the Internet, and some
hyperparameter tuning as well as additional tests
were carried out to see the impact on convergence
and model performance. With even further devel-
opment of ASR systems, it will soon be possible
to train TTS models for languages that are low-
resourced. Additionally, we would like to next
time set up a phoneme-dictionary-based training,
which is said to improve convergence speed even
further.

Limitations

While we do believe the work we have done could
be helpful to others who are also trying to use ASR
models for data collection purposes for Text-to-
Speech applications, there is a limitation to this.
We have noticed that the quality of audio largely
depends on the speaker’s prosody as well as the
quality of audio. That is to say, to get a natural
voice, it is also needed that the data collected is
not monotonous, but rather rich in sounds. The
Audiobook-only model that we tried was average
in quality, but there was a huge difference between
this model and the model that was trained on top
of the audiobook with only 46 minutes of high-
quality data. It is possible that a model that was
trained with only 2 hours of studio quality data
could surpass that of 15 hours of average quality
data. In summary, if there is no high-quality data
available on the Internet, the quality of TTS model
might still be lacking, even if manual corrections
are made to the labels.

Ethics Statement

While we are excited with the improvements made
in ASR technology fields, it is crucial that the data
collected is done with consent, or with data that is
openly sourced. We have obtained our data from a
local public library that belongs to the government
with their consent. Collection of audio data and
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building a TTS model on someone’s voice with-
out their knowledge or consent is something we
discourage strongly. With power, comes great re-
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Abstract

Large Language Models (LLM) such as GPT3
and Llama tend to hallucinate, especially for
domain-specific questions. To alleviate this
problem, Retrieval Augmented Generation
(RAG) has been proposed but LLMs still suf-
fer in multihop question answering even with
RAG. Knowledge Graphs represent domain in-
formation in a structured manner and they have
been used for reasoning in AI. In this work, we
propose SubGraph Retrieval Augmented Gener-
ation (SG-RAG), a novel zero-shot Graph RAG
method that exploits the structured information
in Knowledge Graphs in order to accurately an-
swer multihop questions with LLMs. We form
a Cypher query based on the given question to
retrieve the set of relevant subgraphs that is fur-
ther provided as context to the Language Model.
We implemented and tested our methodology
on a benchmark question-answering data set
on movies domain. Experiments show that the
accuracy of 2-hop and 3-hop questions issued
to LLAMA 8B Instruct and GPT4-Turbo sig-
nificantly increases compared to LLAMA and
GPT with and without RAG.

1 Introduction

Language Models have revolutionized how we
represent knowledge and significantly impacted
question-answering systems. Large Language
Models (LLM) have proven to be very effective
in generating convincing answers, especially for
generic questions Touvron et al. (2023). However,
they also tend to hallucinate when they encounter
domain-specific questions Tonmoy et al. (2024). In
the case of LLMs such as LLAMA, hallucination
becomes a severe problem Li et al. (2024). In Ta-
ble 1, we provide sample questions submitted to
LLAMA3 8B Instruct where the answers show hal-
lucinations of the model. In order to alleviate this
problem, Retrieval Augmented Generation (RAG)
was proposed by Lewis et al. (2020). With RAG,
questions are answered based on a set of documents

where documents most similar to the given ques-
tion are retrieved and provided as context to the
LLM. The semantic similarity of a question to the
documents is calculated through word embeddings
and the top few documents are provided as con-
text. RAG eliminates most of the hallucinations in
the case of single-hop questions such as "When has
been the release year of the film No Looking Back",
but for multihop questions like "Senator William
Broyles Jr. wrote films with whom" (2-hop) and
"When were the release years of the films led by
Edges of the Lord as director"(3-hop), LLAMA3
8B Instruct fails to give correct answers. In or-
der to understand the degree of hallucination, we
evaluated LLAMA 8B on a benchmark Question-
Answer data set where the questions and corre-
sponding answers are provided. We observed that
single-hop questions are answered with high accu-
racy, while for 2-hop questions the accuracy drops
drastically, and for 3-hop questions the accuracy
decreases even further.

In order to improve their performance, an alterna-
tive form of giving context to LLMs was proposed
in the form of Knowledge Graphs (KGs). KGs pro-
vide domain information in a structured way. The
term Graph RAG was coined in a blog by Microsoft
Research Larson and Truitt (2024) where the au-
thors highlighted the limitations of the standard
RAG method in answering questions that require
multiple pieces of information. They suggested
transforming the unstructured documents into a
knowledge graph as a solution to those limitations.

In this work, we introduce the SubGraph Re-
trieval Augmented generation (SG-RAG), a novel
zero-shot Graph RAG method that exploits the re-
lations stored in KGs to answer questions. An
overview of SG-RAG is demonstrated in Figure 1.
SG-RAG uses Cypher statements representing the
semantics of the questions to retrieve the set of sub-
graphs containing relevant information from KG.
SG-RAG then transforms the subgraphs into a tex-
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Figure 1: An Overview of SG-RAG Methodology.

tual representation in the form of triplets. Triplets
are partitioned into groups based on the retrieved
subgraphs as highlighted in Figure 1. Triplets are
finally provided to the LLM as context to gener-
ate an answer. The task instruction sent to LLM
highlights the structure of the triplets by using
(subject, relation, object) format where the di-
rection of the relation from subject to object is
emphasized. The experiments show that SG-RAG
provides more accurate answers compared to LLM
with and without RAG, especially for multihop
questions.

2 Background and Related Work

Large Language models (LLMs) are being used for
language understanding and question answering
Touvron et al. (2023); Reid et al. (2024). How-
ever, LLMs struggle to provide accurate answers
for domain-specific questions, generating factually
wrong, or irrelevant random responses which are
referred to as model hallucination Tonmoy et al.
(2024). Retrieval Augmented generation (RAG)
works on solving the hallucination problem by em-
bedding chunks of the domain information in the
LLM prompt with the question Lewis et al. (2020);
Gao et al. (2023). The choice of the information
chunks shared with LLM is determined by measur-
ing the semantic similarity between the question
and the domain knowledge information. The RAG
method with LLMs has been applied to question-

answering systems targeting a wide range of do-
mains including Finance by Setty et al. (2024),
Medicine by Zakka et al. (2024), and Religion by
Alan et al. (2024) to name a few. RAG method with
semantic similarity search decreases the LLMs’
hallucination on simple domain-specific questions,
however, the semantic similarity search is not able
to retrieve the indirect information required to an-
swer multihop questions Larson and Truitt (2024).

After the success of LLMs on many Natural Lan-
guage Processing tasks, researchers started to in-
vestigate the potential of using LLMs on graphs
Jin et al. (2023). such as using LLMs on classi-
fying graph nodes Chen et al. (2024). Edge et al.
(2024) use LLMs to convert unstructured knowl-
edge into a knowledge graph to answer global ques-
tions that require a global awareness of the domain
knowledge. The method proposed by Edge et al.
(2024) is based on creating groups, "communities"
as they call them, of subgraphs. Each commu-
nity has a summarization of the information stored
in the community subgraph. The answer to any
global question is based on collecting the summa-
rization from the communities and providing an
answer based on them. The most relevant work to
ours is a recent paper by Jin et al. (2024) where
authors propose Graph Chain-of-Thought (Graph-
COT) approach. Their aim is to tackle questions
that require reasoning by giving LLM the ability to
interact with the knowledge graph directly through
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Table 1: Examples of the LLAMA3 8B Instruct hallucination on multihop questions from movies domain (with and
without RAG).

1-hop

Question When has been the release year of the film No Looking Back
Gold Answer 1998
LLAMA3-8B 2019

LLAMA3-8B with
RAG

June 28, 2024 | Japanese theaters | Annecy International Animation Film Festival
(June 9-15, 2024) | Annecy Presents category | Annecy International Animation Film
Festival | June 28, 2024 | Japanese theaters | Annecy International Animation Film
Festival

2-hop

Question Senator William Broyles Jr. wrote films with whom
Gold Answer Alvin Sargent, Claude Chabrol

LLAMA3-8B

Tom Cruise
Explanation: Tom Cruise and William Broyles Jr. co-wrote the film "The Polar
Express". William Broyles Jr. is a screenwriter and his films include "The Polar
Express" and "Cast Away". Tom Cruise is an actor who has starred in several films,
including "Top Gun"

LLAMA3-8B with
RAG

Robert Redford, Steven Spielberg, Tom Cruise, Barry Levinson, Oliver Stone, Ron
Howard, James Cameron, Brian De Palma, Martin Scorsese, Robert Zemeckis, Barry
Sonnenfeld, Edward Zwick, Steven Soderbergh, Clint Eastwood, Sam Raimi

3-hop

Question When were the release years of the films led by Edges of the Lord as director
Gold Answer 1987, 1993

LLAMA3-8B
1. The Lord of the Rings: The Fellowship of the Ring (2001) - December 19, 2001
2. The Lord of the Rings: The Two Towers (2002) - December 18, 2002
3. The Lord of the Rings: The Return of the King (200

LLAMA3-8B with
RAG

2001, 2002, 2005, 2007, 2008, 2002, 2005

a set of predefined functions. Hence, the LLM has
the freedom to decide when and how to traverse
the graph to gain the information needed to answer
the question. The graph description, including the
nodes’ type, attributes, and outer edges, is aug-
mented in the LLM prompt. The main limitation of
Graph-COT is that the model can reach a dead-end
in cases where the initial node does not have any
outer edge as demonstrated in Figure 3 where the
question is asking about the release years of the
movies Sharon Tate acted. In this case the LLM in
Graph COT will start with Sharon Tate node. Since
all the edges connected to the Sharon Tate node
are incoming edges as in Figure 2, LLM will not
be able to traverse other nodes to find the release
years of The Wrecking Crew and Valley of the Dolls
from Sharon Tate, therefore LLM will not be able
to answer the question correctly. Another point is
that Graph-COT works on GPT3.5 Turbo which
is an advanced black box model, however, when
we run Graph-COT on LLAMA3-8B which is an
open-source model with a much lower number of
parameters compared to GPT, we observed many
hallucinations for our benchmark questions.

Other individual and commercial experiments
have been conducted on the LLM and KG, as
highlighted by Kollegger (2024) stressing the im-
portance of using KG with LLM and providing
approaches to combine them, and the blog-post

Figure 2: An Illustration of a Dead-end Scenario for
Graph-COT.

written byAlto (2024) as an implementation tuto-
rial of applying a hybrid approach of RAG and
KG with LLM using LangChain and Neo4j graph
database. In this paper, we propose a novel Graph
RAG methodology based on subgraph retrieval that
we call SG-RAG to address the problem of multi-
hop question answering.

3 Preliminaries and Problem Definition

In the following paragraphs, we define preliminary
concepts that will be used in the problem statement.

Definition 3.1. Graph. A graphG = (V,E) is a
data structure consisting of a set of nodes, denoted
by V , and a set of edges, denoted by E. For any
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Figure 3: An Example of the SG-RAG Retrieval for a 2-hop Question.

edge ei ∈ E, there exists two nodes, vj , vk ∈
V , such that ei connects vj and vk. A graph can
be directed or undirected where the edges in the
former have a direction.

Definition 3.2. Subgraph Given a graph G =
(V,E), a graph G′ = (V ′, E′) is a subgraph of G
if and only if V ′ ⊆ V and E′ ⊆ E.

Definition 3.3. Knowledge Graph. A knowl-
edge Graph, KG, represents domain knowledge in
a graph data structure. In KG, a node represents a
unit of information and an edge represents the re-
lation(s) between the two nodes. Nodes and edges
may have a label describing the type of knowledge
or relations in the nodes or edges respectively. Each
node vj ∈ V may have extra information embed-
ded in the form of attributes. Attributes can differ
based on the type of the nodes. For example in case
of Movies KG, the possible node labels are Movies,
People, Genre,...etc. The set of node labels with the
candidate edge types represents the schema of the
KG. Table 2 describes the schema of MetaQA-KG
that we used in our experimental evaluation.

Definition 3.4. n-hop Question. An n-hop
question is a question that requires one or more
subgraphs from a KG such that each subgraph con-
tains n edges. For example, in order to answer the
2-hop question in Figure 3, we need two subgraphs
where each subgraph contains 2 edges, "STARRED
_ACTORS" and "RELEASE _YEAR".

Problem Definition: For any domain D repre-
sented by a knowledge graph KG, our aim is to
accurately answer n-hop questions Q about D. We
assume that the questions are about the entities in
KG with specific relations to other entities. For
example, for the 1-hop question: "What are the
movies directed by Sharon Tate?" we are interested
in the Movies entity that is related to Sharon Tate
entity with directed by relation. The expected an-
swers to the questions in Q are the set of entities
that satisfy the constraints in the form of relations
provided in the question.

4 SG-RAG Methodology for Multihop
Question Answering

In this section, we present SubGraph Retrieval Aug-
mented Generation (SG-RAG), a novel zero-shot
Graph RAG method for answering domain-specific
multihop questions using KG and LLM. SG-RAG
has two main steps, subgraph retrieval and response
generation. The Subgraph Retrieval is based on
querying KG using a Cypher statement represent-
ing the input question and then transforming the
retrieved subgraphs into a set of triplets. The re-
sponse generation step takes the input question and
the resulting triplets from the retrieval step and aug-
ments them into a prompt with an instruction to
LLM, then the prompt is sent to LLM to generate
a response to the question. The flow of SG-RAG
is demonstrated in Figure 1. The following subsec-
tions explain the subgraph retrieval and response
generation in detail.

4.1 Subgraph Retrieval

Rather than retrieving a specific piece of informa-
tion from KG as in Bratanič (2024); Alto (2024)
such as list of movie names, the subgraph retrieval
step relies on Cypher statements to retrieve a set
of subgraphs from the KG containing the required
relevant information to answer the input question.
Then, SG-RAG transforms the retrieved subgraphs
into a textual representation that will be provided
as context to the LLM prompt during the response
generation step.

Querying the Knowledge Graph: Cypher is
a query language design by Neo4j for property
graphs built following Graph Theory Francis et al.
(2018). For an input question q, we use a statement
in Cypher Query Language to be executed on the
knowledge graph. The Cypher statement searches
for the set of subgraphs with nodes containing the
answer of q, then returns the found subgraphs as
records. In the example shown in Figure 3, the
Cypher statement aims to retrieve the movies in
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which Sharon Tate acts together with the release
years of those movies. The result of executing the
Cypher statement is two subgraphs shown in Fig-
ure 3. We use domain-specific Cypher templates to
generate Cypher queries for the benchmark ques-
tions.

Transformation of Subgraps into Tex-
tual Representation: The transformation is
based on converting each pair of nodes con-
nected by an edge into a triplet of the form
(Subject, Relation,Object). More Precisely,
given two nodes n and m connected by a directed
edge e from n to m, the resulting triplet will
be (n, e, m). Textual transformation needs to
preserve the partial order imposed by the retrieved
subgraphs. Therefore the triplets from the same
subgraph are grouped together. Grouping triplets
based on the subgraphs helps the LLM extract the
correct information and prevents it from getting
confused between the different subgraphs. In
Figure 3, two retrieved subgraphs were depicted
where each subgraph contains 2 edges, hence the
textual representation includes 4 triples split into
two groups.

4.2 Response Generation

The LLM prompt used to generate a response con-
tains the task instruction, the context as the set
of triplets coming from the retrieval step, and the
input question. The task instruction is a simple
instruction explaining the task to the LLM and de-
scribing the structure of the triplets. During our
initial trials, we explored different prompt tem-
plates that differ in the task instruction such as
(entity, relation, entity) which does not capture
the directed edge structure of the KG. Using the
(subject, relation, object) gave the best results
since it provides the LLM additional information
about the direction of the relation such that the
relation is from subject to object. The final ver-
sion of the prompt template we used is demon-
strated in Figure 4. After creating the prompt based
on the prompt template, it is sent to the LLM to
generate a response.

5 Experimental Setup

5.1 Dataset

MetaQA is a benchmark dataset introduced by
Zhang et al. (2018). It includes a knowledge graph
(MetaQA-KG) based on data about movies. In ad-
dition to the knowledge graph, it contains question-

Figure 4: The Prompt Template Used for SG-RAG Re-
sponse Generation.

answer pairs about MetaQA-KG. The questions
are generated through templates, and a paraphrased
version of the questions called NTM is created by
translating them to French and then back to English.
Each question has a single category out of 49 cate-
gories. The question-answer pairs are divided into
1-hop, 2-hop, and 3-hops. For our experiments, we
randomly picked 15K NTM questions with equal
number of 1-hop, 2-hop, and 3-hop questions.

MetaQA-KG contains 9 types of relations: "di-
rected by", "written by", "starred actors", "release
year", "in language", "has tags", "has genre", "has
imdb votes", and "has imdb rating". Based on
the semantics of those relations, we divided the
entities into 8 groups: Movies, People, Year, Lan-
guage, Tag, Genre, IMDB Votes, and IMDB Rating.
Hence, the Graph Schema of the MetaQA-KG be-
comes as shown in Table 2 such that each entity
has a single attribute called name, while relations
don’t have attributes.

Table 2: The Graph Schema of MetaQA-KG after group-
ing the entities based on the semantics of the relations.

(:Movies)-[:DIRECTED _BY]->(:People)
(:Movie)-[:WRITTEN _BY]->(:People)
(:Movie)-[:STARRED _ACTORS]->(:People)
(:Movie)-[:IN _LANGUAGE]->(:Language)
(:Movie)-[:RELEASE _YEAR]->(:Year)
(:Movie)-[:HAS _GENRE]->(:Genre)
(:Movie)-[:HAS _TAGS]->(:Tag)
(:Movie)-[:HAS _IMDB _VOTES]->(:Vote)
(:Movie)-[:HAS _IMDB _RATING]->(:Rate)

5.2 Baselines
We consider the following baselines in our experi-
ment:

• LLM: Using the LLM alone to answer the
questions. The answers are based on the inter-
nal knowledge stored in the model’s parame-
ters.

• RAG: It is based on the original RAG method
proposed by Lewis et al. (2020). The external
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knowledge is represented by a set of plain-text
documents.

5.3 Implementation Settings
Since the MetaQA benchmark does not contain the
Cypher queries, we generated them based on tem-
plates. The generation process is based on creating
a Cypher query template for each category. A sub-
set of the query templates is provided in Table 3.
Cypher statements are generated by replacing the
"<entity>" tag with the entity name in the corre-
sponding question.

Our baseline RAG Lewis et al. (2020) is based
on indexing plain-text documents into a vector
database using textual embedding. Since the knowl-
edge in MetaQA is a graph structure, we retrieved
Wikipedia documents about the entities that appear
in our test questions. The retrieved Wikipedia docu-
ments are split into chunks with a maximum size of
100 words as in Lewis et al. (2020) that are indexed
into a vector database. We used LLAMA-3 8B
Instruct version AI@Meta (2024) as the backbone
LLM for the baselines and SG-RAG.

5.4 Evaluation Metric
We evaluate the performance of SG-RAG and the
baselines using the answer-matching rate inspired
by the notion of entity-matching rate proposed by
Wen et al. (2017) to evaluate the dialogue systems.
The answer matching rate measures the ratio of
the gold answers contained in the generated re-
sponse. More specifically, let q be an input ques-
tion, Y = y1, y2, .., ym be the gold answer, and
Y ′ = y′1, y

′
2, .., y

′
n be the generated response, then:

MatchingRate(q) =
| Y ∩ Y ′ |
| Y | (1)

The gold answers in MetaQA are a set of entity
names whereas the LLM responses have a para-
graph structure with explanations. Therefore, we
have decided to use matching rate metric which
considers only the part of the LLM generated text
that is within the scope of our knowledge base.

6 Results and Discussion

Using the MetaQA dataset and the matching rate
metric, we evaluated SG-RAG and compared it
with the baselines. The results are demonstrated in
Table 4. From the result in Table 4, we observe that
the performance of the LLM alone is poor com-
pared to other methods. This shows that relying

on LLM internal knowledge alone is not enough
to answer questions on a specific domain, such as
Movies.

RAG has better performance compared to the
LLM alone. However, the performance of RAG de-
creases for 2-hop and 3-hop questions. The reason
behind that is the external knowledge shared with
the LLM as a context is determined by the seman-
tics of the question which is not enough to know the
extra information required to answer the question.
Coming back to the example in Figure 3, using
the semantics of the question, RAG retrieved the
documents about "Sharon Tate" which include the
names of the movies she acted such as "The Wreck-
ing Crew" and "Valley of the Dolls", but those
documents do not contain extra information about
the movies such as the release year, the language,
or the name of the cast. RAG cannot retrieve all the
necessary documents about "The Wrecking Crew"
or "Valley of the Dolls" by the mere semantics of
the question. This problem of RAG is addressed by
SG-RAG which we can observe in Table 4 where
SG-RAG outperforms the baseline methods for 1-
hop, and even more for 2-hop, and 3-hop questions.
SG-RAG uses the KG as an external knowledge
source where the relations between the entities are
represented in the structure of the graph. Moreover,
we use Cypher queries to retrieve information from
the KG and fully capture the structural information
provided by the KG. This can also be seen in the
example provided in Figure 3 where Cypher query
asked to retrieve all the movies in which "Sharon
Tate" was an actress, and the release year of those
movies. This way, the LLM received all the infor-
mation needed to answer the question.

Generating Documents based on Knowledge
Graph: The low performance of the RAG with
Wikipedia documents on the 1-hop questions may
be caused by the fact that Wikipedia does not in-
clude the answers to our questions. To analyze that
issue, we also generated documents based on the in-
formation in our knowledge graph. The generation
process started with extracting the entities in our
questions. Then, for each entity, we extracted the
subgraph containing the targeted entity node and
the neighborhood of the node. After that, we asked
Gemini 1.5 Flash to generate a 100-word document
about the targeted entity containing the informa-
tion in the subgraph. The subgraph is embedded
in the Gemini prompts as a set of triplets. Figure 5
shows the prompt template we used to construct
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Table 3: Sample question categories and their corresponding Cypher templates.

Type Category Cypher Template

1-hop

movie to language
MATCH (m:Movie)-[r:IN _LANGUAGE]->(l:Language)
WHERE m.name="<entity>"
RETURN m, r, l

director to movie
MATCH (m:Movie)-[r:DIRECTED _BY]->(d:People)
WHERE d.name="<entity>"
RETURN m, r, d

2-hop

writer to movie to genre

MATCH (w:People)<-[r1:WRITTEN _BY]-(m:Movie)
-[r2:HAS _GENRE]->(g:Genre)
WHERE w.name="<entity>"
RETURN w, r1, m, r2, g

actor to movie to year

MATCH (a:People)<-[r1:STARRED _ACTORS]-(m:Movie)
-[r2:RELEASE _YEAR]->(y:Year)
WHERE a.name="<entity>"
RETURN a, r1, m, r2, y

3-hop

movie to director to movie to actor

MATCH (m1:Movie)-[r1:DIRECTED _BY]->(d:People)
<-[r2:DIRECTED _BY]-(m2:Movie)
-[r3:STARRED _ACTORS]->(a:People)
WHERE m1.name="<entity>"
RETURN m1, r1, d, r2, m2, r3, a

movie to writer to movie to
language

MATCH (m1:Movie)-[r1:WRITTEN _BY]->(w:People)
<-[r2:WRITTEN _BY]-(m2:Movie)
-[r3:IN _LANGUAGE]->(l:Language)
WHERE m1.name="<entity>"
RETURN m1, r1, w, r2, m2, r3, l

Table 4: The evaluation results of SG-RAG with
LLAMA3-8B Instruct and the baselines on the MetaQA
selected test set.

1-hop 2-hop 3-hop
LLAMA3-8B 0.24 0.13 0.17
RAG(Wiki Docs)
Top-1

0.33 0.19 0.21

RAG(Wiki Docs)
Top-2

0.36 0.20 0.20

RAG(Wiki Docs)
Top-3

0.38 0.22 0.20

RAG(Wiki Docs)
Top-5

0.40 0.23 0.18

RAG(Wiki Docs)
Top-10

0.42 0.27 0.19

SG-RAG 0.90 0.73 0.58

the templates we sent to Gemini to generate the
document. Figure 6 provides an example of the
generated document about The Terminator movie
by Gemini based on the set of triplets represent-
ing the subgraph containing The Terminator node
and its neighborhood. We randomly sampled a set
of 1547 1-hop questions, 1589 2-hop questions,
and 1513 3-hop questions, to apply this experiment
within a limited time frame. From the results in
Table 5, we can see that applying RAG on the gen-
erated documents based on KG achieved higher per-
formance than the RAG on Wikipedia documents
since each document contains the information of
a 1-hop neighborhood around the targeted entity.
However, the performance of RAG on both the

Figure 5: The Prompt Template Used With Gemini for
Documents Generation

generated and Wikipedia documents is comparable
with 2-hop and 3-hop questions while SG-RAG
has superior performance for 1-hop, 2-hop, 3-hop
questions.

Using GPT4-Turbo as backbone LLM: The
low performance of RAG compared to SG-RAG
even on the Gemini generated documents may be
caused by the LLAMA3-8B Instruct that we chose
as a backbone LLM for our evaluation. To an-
alyze that issue further, we evaluated SG-RAG,
and RAG on the Gemini generated documents on
GPT4-Turbo. We did this experiment on the same
small test set we used earlier to apply this experi-
ment within a limited time frame. From the results
in Table 6, we can see the superior performance
of SG-RAG on 1-hop, 2-hop, and 3-hop questions.
For RAG, we can notice that increasing the num-
ber of documents shared with GPT4 on 2-hop and
3-hop questions affected GPT4 negatively and de-
creased its performance.
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Figure 6: The set of Triplets Representing the Subgraph
Containing The Terminator Node and Its Neighborhood
on the Left and Gemini Generated Document on the
Right.

Table 5: Comparison between SG-RAG, RAG on
Wikipedia documents, and RAG on Gemini generated
documents using LLAMA3-8B Instruct.

1-hop 2-hop 3-hop
RAG(Wiki Docs)
Top-1

0.33 0.19 0.21

RAG(Wiki Docs)
Top-2

0.35 0.20 0.20

RAG(Wiki Docs)
Top-3

0.36 0.22 0.20

RAG(Generated Docs)
Top-1

0.64 0.15 0.17

RAG(Generated Docs)
Top-2

0.66 0.12 0.13

RAG(Generated Docs)
Top-3

0.66 0.12 0.16

SG-RAG 0.91 0.72 0.60

7 Conclusions

LLM with RAG has significantly impacted
question-answering systems in multiple domains
such as Finance by Setty et al. (2024), Medicine
by Zakka et al. (2024), and Religion by Alan et al.
(2024), to name a few. However, RAG is still suf-
fering from hallucinations on multi-hop questions.
In this work, we propose SG-RAG, a zero-shot
Graph RAG method to answer multi-hop domain-
specific questions that use Cypher statement repre-
senting the question to retrieve the set of subgraphs
containing the required information to answer the
question. SG-RAG is a method designed to exploit
the structured information in Knowledge Graphs
to increase the LLMs performance on multi-hop
domain-specific questions. For an input question,
SG-RAG uses a Cypher query representing the in-
put question to retrieve the set of subgraphs con-
taining the required information, then shares it as a
context to the LLM. We evaluate our method on a
question-answering benchmark dataset on movies.
Our experiments show a significant increase in per-

Table 6: Comparison between SG-RAG, and RAG on
Gemini generated documents using GPT4-Turbo.

1-hop 2-hop 3-hop
RAG(Generated Docs)
Top-1

0.765 0.286 0.204

RAG(Generated Docs)
Top-2

0.776 0.181 0.177

RAG(Generated Docs)
Top-3

0.784 0.179 0.180

SG-RAG 0.941 0.815 0.520

formance in general and specifically on 2-hop and
3-hop questions.

Limitations

This work mainly focuses on introducing SG-RAG
as a zero-shot Graph RAG method to answer multi-
hop domain-specific questions. During our experi-
ment, the Cypher statements are generated manu-
ally using domain-specific Cypher templates. To
overcome the challenge of manually generating the
domain-specific Cypher templates, we are work-
ing on automatically generating the Cypher state-
ment representing the targeted question based on
the KG schema as an extension to SG-RAG. In our
initial trials, we observed that LLAMA3-8B and
Gemini are very poor at generating valid Cypher
queries. GPT-4 can generate Cypher queries, but
accuracy needs to be improved. In order to address
this problem we plan to fine-tune an LLM such
as LLAMA3-8B to give it the ability to generate
a Cypher query given the question and the graph
schema.

Within the limited time frame, we evaluated SG-
RAG on GPT4-Turbo over a small test set; however,
we are working on extending the evaluation over a
larger sample size and comparing its performance
with Graph COT proposed by Jin et al. (2024).

Ethics Statement

Large Language Models (LLM) have achieved
outstanding performance in natural language pro-
cessing and generation, specifically in question-
answering systems Touvron et al. (2023). However,
the hallucination of these models can generate fac-
tual mistakes in answers or misleading information
Tonmoy et al. (2024) that can be later propagated
amoung people as facts. We are proposing SG-
RAG as a potential solution to reduce and eradicate
misinformation by exploiting the structured infor-
mation in Knowledge Graphs to increase the LLMs
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performance on multi-hop domain-specific ques-
tions.
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ica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A network-based
end-to-end trainable task-oriented dialogue system.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 438–449,
Valencia, Spain. Association for Computational Lin-
guistics.

Cyril Zakka, Rohan Shad, Akash Chaurasia, Alex R
Dalal, Jennifer L Kim, Michael Moor, Robyn Fong,
Curran Phillips, Kevin Alexander, Euan Ashley,
et al. 2024. Almanac—retrieval-augmented lan-
guage models for clinical medicine. NEJM AI,
1(2):AIoa2300068.

447



Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
AAAI.

448



Linking Quran and Hadith Topics in an Ontology using Word Embeddings
and Cellfie Plugin

Ibtisam Khalaf Alshammari
University of Hafr Al Batin,
Hafr Al Batin, Saudi Arabia

University of Leeds, Leeds, UK
ml18ikfa@leeds.ac.uk

Eric Atwell
University of Leeds,

Leeds, UK
e.s.atwell@leeds.ac.uk

Mohammad Ammar Alsalka
University of Leeds,

Leeds, UK
m.a.alsalka@leeds.ac.uk

Abstract

Qur’an and Hadith are the sacred texts of the
Islamic religion. Arabic Qur’an and Hadith
texts have been analyzed and annotated by re-
searchers using a variety of domains, represen-
tations, and formats to improve the accessibility
of Islamic knowledge. However, the many and
diverse Islamic resources raise a potential chal-
lenge in linking and integrating them. The main
objective of this work is to link Qur’an and
Hadith topics and integrate them with related
knowledge from different Islamic resources.
The proposed methodology is to use a combi-
nation of word embeddings-based BERT with
the Cellfie tool to achieve more accurate and
meaningful data integration. The results of us-
ing the CL-AraBERT word embedding model
display efficiency performance in F1 score and
accuracy metrics with 91% and 84% respec-
tively. At the same time, the constructed ontol-
ogy, RQHT, links the Qur’an and Hadith topics
with their related knowledge properly and con-
sistently.

1 Introduction

Islamic research has contributed to the genera-
tion of many different databases from various
sources, including the Qur’an and Hadith, which
may present opportunities and challenges for re-
ligious researchers. The Qur’an and Hadith are
the sacred texts of Islamic law and are consid-
ered significant historical documents that illustrate
the origins of the Islamic faith. Integrating the di-
verse Islamic datasets can be essential for deriving
comprehensive insights and enabling data-driven
decision-making, thus easily leveraging them in
future studies. However, the heterogeneous nature
of Islamic knowledge, involving data structure, do-
mains, and formats, could impede effective data
combining.

Natural language processing (NLP) advance-
ments have provided promising solutions to address
such challenges in Arabic religious texts. Recently,

word embeddings using Bidirectional Encoder Rep-
resentations from Transformers (BERT) have be-
come increasingly popular in achieving state-of-
the-art performances on several NLP downstream
tasks (Devlin et al., 2019). It can efficiently under-
stand and process human language by generating
contextual embeddings and linking related Islamic
data.

In addition to advances in NLP, the adoption of
ontology development has increased lately in the
Islamic domain. Ontology can structure and rep-
resent knowledge explicitly in a machine-readable
format that may be integrated into computer-based
applications and systems (Gruber, 1995). The con-
sistent interpretation and integration of data across
different Islamic datasets can be facilitated by lever-
aging the Cellfie Plugin tool. Therefore, the syn-
ergy between word embeddings and Cellfie Plugin
techniques holds great potential for Qur’an and
Hadith topics linking and integration.

This paper is organized as follows: Section 2 re-
views the previous studies and related work of word
embeddings and ontology design. The detailed
methodology to link Qur’an and Hadith topics is
described in Section 3. Then, Section 4 provides
an overview of the evaluation process. Results and
discussion of the experiment are detailed in Section
5, which is followed by future work and conclusion
in Section 6.

2 Related Work

2.1 Word Embeddings for Detecting Arabic
Qur’an and Hadith Semantic Similarities

Several research studies have employed various
word embedding techniques to enhance the find-
ings of semantic similarity in the Arabic language,
especially the classical texts of the Qur’an and Ha-
dith. Abdelghany et al. (2020) presented a study
using the unsupervised learning algorithm Doc2vec
to identify Hadith similarity either in Matn or
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Sanad across various Hadith books. Similarly, Al-
shammeri et al. (2021) provides research on us-
ing Doc2vec embeddings to capture the Qur’anic
verses’ semantics and classify similar documents
into 15 predefined classes. The proposed model
achieved 68% and 56% in classification accuracy
and F1 score, respectively.

Alsaleh et al. (2021) implemented AraBERTv0.2
and AraBERTv2 language models to determine the
semantic relatedness of Qur’anic verses pairs from
the QurSim dataset. The AraBERTv0.2 language
model obtained the best result with a 92% accuracy
score.

Another study by (Alshammeri et al., 2022)
combined a pre-trained AraBERT language model
and Siamese transformer-based architecture to de-
tect semantic similarity in the Qur’an text. The
suggested approach was performed efficiently by
achieving a 95% F1 score on the Qur’anic dataset.

2.2 Ontology Development

Many studies have focused on building Arabic on-
tologies covering different aspects of the Qur’an
and Hadith knowledge. The popular Qur’an ontol-
ogy was created by Hakkoum and Raghay (2015) is
QuranOntology. Hybrid methods, such as Protégé-
OWL and Jena TDB with Fuseki server, were used
to develop the Qur’an ontology. A semantic-based
search engine was established to support SPARQL
queries in this ontology. A framework was pro-
posed by (Alshammari et al., 2022) for linking and
mapping Qur’anic ontologies. It combined RDF
(resources description framework) Mapping Lan-
guage (RML), Cellfie Plugin, and SDM-RDFizer
to integrate the morphological annotations and syn-
tactic analyses into Qur’an chapters, verses, and
words in Quranicontology. The integrated onology
was evaluated by a SPARQL server.

Al-Sanasleh and Hammo (2017) presented a
prophetic ontology based on data derived from the
Qur’an, Hadith, and explanatory book resources.
They used the METHONTOLOGY approach, pro-
posed by Fernández-López et al. (1997), to build
their ontology from scratch. Likewise, Fairouz et al.
(2020) developed an ontology based on Arabic Ha-
dith texts using the METHONTOLOGY methodol-
ogy. Their ontology’s scope focused on the essen-
tial concepts mentioned in the EL-Bukhari book,
especially the Knowledge related to Wudhu2, pil-
lars of Islam, and worship.

Alsalhee and Abdullah (2022) conducted a
study to construct an ontology that represents
the Qur’anic stories. The object role modeling
(ORM) and MappingMaster domain-specific lan-
guage techniques were applied to build concep-
tual structure and convert Excel sheets to an OWL
format. This ontology was evaluated using the
SPARQL query language.

A study was conducted by (Altammami et al.,
2021) to investigate the appropriateness of utiliz-
ing a Qur’an ontology as a foundation for linking
Qur’an and Hadith ontology. A corpus-based evalu-
ation approach was employed to evaluate the exist-
ing Qur’anic ontologies. The result of this study is
that the QuranOntology by Hakkoum and Raghay
(2015) can be used as a starting point for an Islamic
ontology.

3 Methodology

3.1 Data Collection
This section presents an overview of gathering
and extracting Qur’an and Hadith data from
four datasets: LK-Hadith-Corpus1, HT_Topics,
QH_Dataset2, and QuranOntology (Hakkoum and
Raghay, 2015; Hakkoum and Raghay, 2016).
These datasets include different data types, such as
well-structured formats, semi-structured, and data
lacking organisation known as unstructured.

3.1.1 LK-Hadith-Corpus
The Leeds University and King Saud University
(LK) Hadith corpus is a well-structured bilingual
Arabic-English Islamic Hadith. It was generated
automatically using a Hadith segmentation tool to
link each Hadith into its two main components,
Isnad and Matn. This corpus contains 39,038 anno-
tated Ahadith elicited from the six canonical Hadith
books, including names and numbers of each book,
chapter, and section. The LK-Hadith corpus also
has over 10 million tokens. The total number of
Hadith chapters is 238, excluding duplication (Al-
tammami et al., 2020).

3.1.2 HT_Topics Dataset
The Hadith_Teaching_Topics dataset comprises
more than 33 thousand Arabic-Matn documents
and their related topics. The Arabic-Matn docu-
ments were extracted from LK-Hadith-Corpus (Al-
tammami et al., 2020). The incomplete and empty

1https://github.com/ShathaTm/LK-Hadith-Corpus
2https://github.com/ShathaTm/Quran_Hadith_

Datasets/blob/main/QH_Dataset.csv
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Hadith-teaching records were eliminated, resulting
in a final dataset containing 33,169 Arabic-Matn
documents. The Arabic-Matn documents have
been analysed using a comparison of the BERTopic
technique with different Arabic transformer-based
language models and topic representations to detect
hidden topics from each document. ArabicBERT
model achieved the best results and generated 220
topics. Consequently, each Hadith-teaching was
semantically classified into a specific related topic.

3.1.3 QH_Dataset
Qur’an_Hadith_Dataset is a collection of 310 se-
mantic relatedness pairs of Arabic Qur’an-verse
and Hadith-teaching, classified as related (1) and
non_related (0) pairs. The source used to build
this dataset is a Fatwas website for AbdulAziz ibn
Baz (a reputable Islamic scholar). The authors
collected Fataws, including a Qur’an-verse and
Hadith-teaching, to extract related or non-related
Qur’an-verse and Hadith-teaching pairs. The limi-
tation of this dataset is its absence of crucial data,
such as the chapter names and numbers for both
Qur’an-verse and Hadith-teaching. (Altammami
and Atwell, 2022).

3.1.4 QuranOntology
A structured Qur’anic ontology was developed
to represent and link Qur’anic knowledge from
various datasets in both Arabic and English lan-
guages (Hakkoum and Raghay, 2015). It includes
Qur’anic metadata and text from the Tanzil website,
Qur’an descriptions from Tafsir AlJalalayn and Al-
Muyasser books, Qur’anic concepts and topics dis-
cussed in Tafsir Ibn Kathir. It integrated the Se-
mantic Qur’anic from QurSim (Sharaf and Atwell,
2012b) and the most significant Qur’anic annota-
tions in the Qur’ana dataset (Sharaf and Atwell,
2012a).

3.2 Data Extraction and Pre-Processing

Data extraction is considered an essential step in
word embeddings because of its importance in re-
trieving relevant information from various sources
and other data repositories. To integrate relevant
text data for Qur’an-verse and Hadith-teaching in
QH_Dataset, we applied the following steps:

• The initial step is to extract Qur’an topics from
QuranOntology corresponding to each Qur’an
verse and related information such as verse
numbers and chapters.

• Then, Hadith topics are meticulously ex-
tracted for each corresponding Hadith teach-
ing from the HT_Topics dataset, and the asso-
ciated details from LK-Hadith-Courpus.

• Finally, the Qur’an-Hadith-Topics (QHT)
dataset is created and comprehensively com-
bined 310 Arabic Qur’an-verse and Hadith-
teaching pairs with their chapter numbers and
names, Qur’an-Hadith topics, and labelled as
155 related pairs (1), and 155 non-related (0).

At the same time, preparing data is crucial for many
NLP applications to enhance data quality. This pro-
cess includes cleaning the raw data by identifying,
correcting, and eliminating unnecessary data, such
as missing and irrelevant elements. After that, the
data is segmented into tokens to ensure more ef-
ficient and accurate analysis for the intended use.
The topics of Qur’an-verse and Hadith-teaching
pairs are then divided into 80% training and 20%
testing sets.

3.3 Word Embeddings

Word embedding is an NLP technique. It repre-
sents words as dense vectors to capture semantic
and syntactic relationships between texts. We em-
ployed BERT (Bidirectional Encoder Representa-
tions from Transformers) as a state-of-the-art word
embedding model. BERT leverages pre-trained
transformer-based language models by capturing
contextual word embeddings to enhance language
understanding in various NLP tasks, specifically
semantic similarity.

This study uses BERT with multiple pre-trained
transformer-based models to generate numeri-
cal vector representations of Qur’an-Hadith top-
ics. The Arabic pre-trained models include:
AraBERTv2 (Antoun et al., 2020), ArabicBERT
(Safaya et al., 2020), CAMeL-BERT (Inoue et al.,
2021), CL-AraBERT (Malhas and Elsayed, 2022),
and ARBERT and MARBERT (Abdul-Mageed
et al., 2021). We configured the batch size to 8,
the number of epochs to 5, and the learning rate to
1e-4 for all the proposed BERT models, as a result,
these settings produced the best performance in
terms of accuracy and F1 score metrics.

3.4 Semantic Similarity

The semantic similarity concept has a vital signif-
icance in NLP and computational linguistics. It
can support machines’ understanding and process-
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Models F1 Score Accuracy
AraBERTv2 (Antoun et al., 2020) 0.8571 0.7556
ArabicBERT (Safaya et al., 2020) 0.8981 0.8220
CAMeL-BERT (Inoue et al., 2021) 0.9024 0.8222
CL-AraBERT (Malhas and Elsayed, 2022) 0.9136 0.8444
ARBERT (Abdul-Mageed et al., 2021) 0.8815 0.8133
MARBERT (Abdul-Mageed et al., 2021) 0.9085 0.8371

Table 1: The results of the Arabic pre-trained language models.

ing of human language by computing the seman-
tic relatedness between pairs of word embedding
(Rahutomo et al., 2012). Cosine similarity, one of
the standard semantic relatedness metrics, is cal-
culated to quantify similarity and ranges from -1
(entirely dissimilar) to 1 (similar).

Consequently, a cosine similarity matrix is gen-
erated for the pairs of Qur’an-Hadith-Topics nu-
merical representations to capture the nuanced se-
mantic relatedness between them. Then, the re-
sults of the cosine similarity are compared with the
QH_Dataset labels to assess the performance of the
best model semantic similarity.

3.5 Ontology Creation with Cellfie Plugin

The Cellfie Plugin3 is a powerful Protégé tool de-
veloped to automatically enhance knowledge man-
agement and ontology engineering. It has the abil-
ity to convert structured data in spreadsheets (in
formats like CSV or Excel) into web ontology lan-
guage (OWL) format. It maps the spreadsheet data
into ontology entities such as classes, individuals,
and properties by using a rule-based mapping ap-
proach. Therefore, the outcomes of the related
topics from the semantic similarity process can be
linked with the Qur’an and Hadith data through
an ontology, namely Related Qur’an and Hadith
Topics (RQHT).

To build the RQHT ontology, we initially built
the conceptual model for the QHT dataset and de-
fined the ontology classes, data and object prop-
erties. The Cellfie plugin was then used to im-
port the QHT spreadsheet and set mapping rules
to ensure that each column is mapped to the ap-
propriate classes or properties, and each row is
accurately mapped to the corresponding individ-
uals in the RQHT ontology. Figure 1 shows an
example of the topics related to a Qur’an-verse and
Hadith-teaching pair and integrated with Qur’an

3https://github.com/protegeproject/
cellfie-plugin

Figure 1: An example of RQHT ontology visualisation.

and Hadith knowledge.

4 Evaluation

This section describes several methods to evaluate
the semantic similarity of the word embeddings’
performance on the test set, including F1 score and
accuracy metrics, classifying pairs as similar or dis-
similar with a threshold of 0.5. The threshold can
classify topic pairs as similar if the similarity score
is greater than 0.5 and dissimilar if the score is
lower. These metrics comprehensively understand
how effectively our method enhances and classifies
relevant connections.

The F1 score provides a harmonic of precision
(the accuracy of positive predictions) and recall
(the true positive predictions), ranging from 0 for
the worst performance to 1 for the best. Its formula
is defined as follows:

F1 score = 2× Precision× Recall
Precision + Recall

While the accuracy measures the percentage of
correctly classified instances (true positives and
true negatives) out of the total number of instances,
it can be calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
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Figure 2: Examples of comparing the semantic similar-
ity scores between QH_Dataset labels and CL-AraBERT
model embeddings results.

Metrics
Axioms 2497
Class count 9
Object property count 4
Data property count 6
Individual count 463

Table 2: The RQHT ontology metrics.

Regarding the RQHT ontology, it is evaluated
based on various criteria: correctness, complete-
ness, and consistency. HermiT tool is the first freely
available OWL Reasoner based on a novel "hyper-
tableau" calculus (Glimm et al., 2014).
It is employed in this work to assess the consis-
tency of the ontology and detect subsumption links
between classes.

5 Results

This section provides an analysis of the perfor-
mance of the proposed methodology for linking
Qur’an and Hadith topics semantically. Table
1 shows the performance of the mentioned pre-
trained Arabic language models. CAMeL-BERT,
CL-AraBERT, and MARBERT models performed
quite similar findings in F1 score, but CL-AraBERT
is the best among them with 0.9136 F1 score and
0.8444 accuracy score. The CL-AraBERT has suc-
cessfully categorised the binary classification of
Qur’an and Hadith topic pairs.

Figure 2 illustrates examples of the results ob-
tained from the semantic similarity scores based on

Figure 3: An example of the inferred class hierarchy
using the HermiT reasoner.

CL-AraBERT model embeddings. The predicted
scores compared to the labels of the QH_Dataset.
As previously mentioned, the Qur’an and Hadith
topics with semantic similarity scores exceeding
the threshold of 0.5 are considered related. Subse-
quently, the results show no significant difference
and explain the effectiveness of the model embed-
ding in capturing the semantic relatedness of the
Qur’an and Hadith topics.

Concerning RQHT ontology, Table 2 presents
some of the ontology information. Also, Figure
1 illustrates the visualization of our ontology. It
explains the related Qur’an and Hadith topics with
their related knowledge, such as verse and Hadith
numbers. Our experiment provides a consistent
mapping between the classes, their instances and
related topics by using HermiT reasoner. For ex-
ample, the HermiT reasoner detected the inferred
class hierarchy consistently, as shown in Figure 3.

6 Conclusion

In this paper, we described the experimental phases
of linking Qur’an and Hadith topics and their re-
lated knowledge from various datasets. To the
best of our knowledge, there is no work on linking
Qur’an and Hadith topics and integrating them to
related knowledge from many Qur’an and Hadith
resources using word embeddings and the Cellfie
Plugin tool.

This research consists of extracting the seman-
tic similarity scores of Qur’an and Hadith topics
and then comparing them to the labels of Qur’an-
verse and Hadith-teaching pairs. Then, the Cellfie
tool was employed to build the RQHT ontology
by converting structured data in spreadsheets into
OWL formats. The results of the conducted ex-
periment have shown that the semantic similarity
scores using the CL-AraBERT model are similar to
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the labels and obtained an F1 score of 0.91. Mean-
while, the ontology correctly links the Qur’an and
Hadith topics with their related data.

For future work, we plan to extend RQHT on-
tology by linking more Qur’an and Hadith data
from different types of datasets, such as covering
more languages and question-answering datasets.
This work could provide a unification of Islamic
resources and could contribute to many aspects of
Islamic or religious education disciplines.

Limitations

The potential limitation of this work is the small
amount of QH_Dataset, related Qur’an-verse and
Hadith-teaching pairs. Thus, the experiment was
conducted on topics that are related to the pairs of
Qur’an-verse and Hadith-teaching.

Ethics Statement

In this study, we used datasets derived from pub-
licly accessible data resources. Including Qur’an
Ontology, QH_Dataset, and LK-Hadith-Corpus.
The HT_Topics dataset is built by us and will be
available in the future.
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Abstract

The increase in clinical text data following
the adoption of electronic health records of-
fers benefits for medical practice and intro-
duces challenges in automatic data extraction.
Since manual extraction is often inefficient and
error-prone, with this work, we explore the use
of open, small-scale, Large Language Models
(LLMs) to automate and improve the extrac-
tion of medication and timeline data. With our
experiments, we aim to assess the effective-
ness of different prompting strategies –zero-
shot, few-shots, and sequential prompting– on
LLMs to generate a mixture of structured and
unstructured information starting from a refer-
ence document. The results show that even a
zero-shot learning approach can be sufficient
to extract medication information with high
precision. The main issues in generating the
required information seem to be completeness
and redundancy. However, prompt tuning alone
seems to be sufficient to achieve good results
using these LLMs, even in specific domains
like the medical one. Besides medical infor-
mation extraction, in this work, we address the
problem of explainability, introducing a line-
number referencing method to enhance trans-
parency and trust in the generated results. Fi-
nally, to underscore the viability of applying
these LLM-based solutions to medical infor-
mation extraction, we deployed the developed
pipelines within a demo application.

1 Introduction

The rapid integration of digital technologies into
healthcare systems has transformed the landscape
of patient care and management. Electronic Health
Record (EHR) systems have become pivotal in
modern healthcare environments. However, as a
downside, primary care physicians, for example,
face a significant burden of documentation. Re-
search indicates that family medicine physicians al-
locate nearly as much time to interacting with EHR
systems as they do to direct patient care (Arndt

et al., 2017), leading to reduced clinical efficiency
and increased risk of clinician burnout.

To address these issues and automate (or semi-
automate) the analysis of these documents and,
thus, reduce clinicians burden, we explore the appli-
cation of Large Language Models (LLMs) (Brown
et al., 2020; OpenAI, 2023; Anil et al., 2023) as a
means to enhance the functionality and efficiency
of EHR systems. LLMs are the pivot of the cur-
rent advancements in Artificial Intelligence (AI),
present promising solutions for automating rou-
tine documentation, extracting information from
unstructured data and supporting clinical decision-
making through real-time insights from extensive
medical databases.

Specifically, with this paper, we explore the ap-
plication of small-scale openly-available LLMs
(Touvron et al., 2023; Jiang et al., 2023; Mesnard
et al., 2024) to automate the extraction of medi-
cation information and timeline data from clinical
text. We evaluate LLMs performance in zero-shot
learning, few-shot learning and sequential prompt-
ing scenarios. We selected the latter approach to
guide the LLM through the multiple steps of in-
formation extractions in the cases where the in-
formation is not immediately accessible from the
raw text. The objective of the evaluations is to
assess the accuracy and completeness of the infor-
mation LLMs extract, such as dosage, frequency,
and mode of administration of a drug, as well as
LLMs ability to construct patient timelines from
clinical narratives. Through this work, we seek not
only to deepen our understanding of the capabilities
and reliability of LLM-based systems in medical
contexts, but also to offer viable strategies for al-
leviating the documentation burden that detracts
from patient-focused healthcare that can serve as
possible baselines.

We divide this paper into the following sections.
In Section 2, we recap the main results in infor-
mation extraction. In Section 3, we describe the
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pipelines we developed for information extraction.
In Section 4, we describe the data sets we used to
evaluate our pipelines. In Section 5, we outline the
experiments we conducted. In Section 6, we report
and comment on the experimental results. Finally,
in Section 7, we summarise our work and present
possible future directions.

2 Related Works

Information Extraction (IE) is one of the main ap-
plications of Natural Language Processing (NLP),
even outside the medical domain. Traditionally,
information extraction encompasses problems like
Named Entities Recognition (NER), Relation Ex-
traction (RE) or Aspect Classification (AC) (Juraf-
sky and Martin, 2024, Chapter 19). NER involves
the extraction of named entities like persons and lo-
cations, as well as time expressions and even drugs.
RE is the task of classifying relations among enti-
ties, like the dosage of a specific drug. AC is the
classification of events according to their internal
temporal structure or temporal contour, for exam-
ple, identifying whether a patient has been taking a
drug before or after hospitalisation.

Initially, these problems have been approached
with either rule-based systems or classification
models combined with Conditional Random Fields
(CRF) (Jurafsky and Martin, 2024, Chapter 19).
Rule-based techniques are known for their preci-
sion in entity recognition or relation extraction,
particularly when they are meticulously crafted
to align with specific data types. These methods
typically analyse sentence structures and leverage
Part-of-Speech (PoS) tags to enhance NER. Both
rule-based systems and classification models re-
lied on hand-crafted features and lexical resources
to identify medical entities (Landolsi et al., 2024).
While they are less flexible and harder to scale, they
perform reasonably on well-defined problems.

The advances introduced by word embeddings
combined with sequence processing techniques
based on deep learning like Recurrent Neural Net-
works (Elman, 1990; Hochreiter and Schmidhuber,
1997) and Transformer Networks (Vaswani et al.,
2017) helped push forward significantly state of the
art for IE. In fact, even now, many approaches often
favour a combination of Bi-directional Long Short-
Term Memory (BiLSTM) (an RNN variant) and
CRF models or more recent fine-tuned Transform-
ers (Symeonidou et al., 2019; Yang et al., 2020;
Kafikang and Hendawi, 2023). Bi-directional mod-

els (both recurrent and Transformer) excel in cap-
turing high-quality features due to their ability to
account for contextual dependencies in both for-
ward and backward directions. Meanwhile, CRF
enhances the process by optimising sequence tag-
ging with these features (Çelkmasat et al., 2022).
These models exploit a Begin-Inside-Outside (BIO)
tagging system which allows segmenting an in-
put document into multiple pieces (delineating en-
tity boundaries, for example) while labelling those
same pieces (thus, recognising the type of entity,
for example). Contextual models like RNN and
Transformers play a crucial role in medical infor-
mation extraction especially when pre-trained on
medical texts so that they can incorporate domain
knowledge (Lee et al., 2020; Landolsi et al., 2024).

As with many other NLP tasks, LLMs have rev-
olutionised IE as well, offering near state-of-the-
art performances out of the box. The in-context
learning capabilities of LLMs like GPT-4 (OpenAI,
2023) or Gemini (Anil et al., 2023) have shown
promising directions for biomedical NER and RE,
especially in scenarios lacking labelled data. De-
spite these advancements, these LLMs still do not
outperform consistently smaller models fine-tuned
on task-specific datasets yet (Tian et al., 2023).
Additionally, the use of LLMs in IE faces several
challenges: For instance, the generative nature of
these models may alter the phrasing of recognised
entities or predicted relationships, complicating the
verification process. Moreover, these LLMs are
prone to hallucinations that may lead to the genera-
tion of entities and relationships that appear plau-
sible but are not factually accurate. Furthermore,
finding suitable prompts for NER and RE tasks can
be difficult. These issues underscore the need for
further research to explore and develop more effec-
tive methods for effectively using LLMs in IE. In
this paper, we focus on the medical domain, and
we explore solutions for medical IE from patients’
records.

3 Methodology

In this section, we describe the two pipelines we
propose for medical information extraction from
clinical documents. We provide an overview of the
pipelines and information extraction approaches
in Section 3.1, and then we provide additional de-
tails on the explainability in Section 3.2. Finally,
we provide practical details on the two tasks of
medication extraction and timeline extraction in
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Section 3.3.

3.1 Information extraction overview

LLM CSV 
parser

Input doc
(txt, pdf, …)

Raw CSV Medications
(w/ expl.)

(a) Medication.

Medications
(w/ expl.)

LLM JSON 
parser

Input doc
(txt, pdf, …)

Raw JSON Timeline
(w/ expl.)

LLM

LLM

Raw JSON

Events 
count

(b) Timeline.

Figure 1: Information extraction pipelines.

The pipeline (depicted in Figure 1) we propose
is designed to give a reference medical document
(e.g., a discharge letter) as input to an LLM and use
the LLM to extract the desired information from the
document according to user-provided instructions.
As premised, in this work, we focus on medication
extraction (i.e., the extraction of information about
the drug regime for a patient) and timeline extrac-
tion (i.e., the sequence of events characterising a
patient’s clinical history). The pipeline includes
the generation of the required information from the
text, the parsing of the generated unstructured text
and the rendering of the structured data selected
from parsing. An additional passage that enriches
our pipeline is that of explainability to justify the
generated content.

We considered three different approaches to deal
with the information extraction, independently of
the actual task:

Zero-shot learning where we provide the LLM
with the instructions of the task to complete
and a description of the expected output;

Few-shots learning where we provide the same
instruction as zero-shot learning, but before
asking for the current sample, we append
some examples of input and expected output
to help guide the generation process;

Sequential prompting where we have the same
settings of zero-shot learning, but we break
down the task into multiple steps to help the
LLM build the solution one piece at a time and
keep it aligned with the desired behaviour.

All the aforementioned pieces are deployed as
part of a web app demonstrating AI solutions for
healthcare (see Figure 2). The demo is agnostic
of the underlying LLM. It allows the loading of a
reference document and separately generating the
table with the medication information, generating
the timeline and asking questions to the chatbot
about the document. The raw outputs of infor-
mation extraction are parsed to be converted into
structured information and then displayed on the
demo web page.

3.2 Explainability

Explainability has become a more and more impor-
tant step in developing and deploying deep learning-
based systems. Explainability helps in understand-
ing where model predictions come from. When it
comes to healthcare, the attention to this informa-
tion is even more crucial.

In our tool, we suggested a simple yet effective
solution to explain the results of information ex-
traction. We have a separate pipeline ingesting the
clinical document to analyse decorated with the
rows numbers. In this way, we can interrogate the
LLM automatically asking to point out the number
of the row connected to a specific extraction (e.g.,
where is a specific drug mentioned or where is a
specific event mentioned).

This additional explanation can be useful for the
clinician. In fact, on one side, having an explana-
tion helps ground the predicted information. On
the other side, it helps spot possible errors due to
LLM faults, preventing the misinformation of the
clinician.

3.3 Medications and Timeline extraction

As premised, in the deployed demo, we approach
both medication information extraction and time-
line extraction. We approach medication extraction
with a zero-shot learning approach and timeline
extraction with sequential prompting. We selected
these approaches given the results of the experi-
ments we conducted. In both tasks we use the
model in assistant chatbot format (Scotti et al.,
2024), composing a sequence of messages to ex-
plain and solve the tasks.
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Figure 2: Demo tool using the pipeline to extract medications and medical events from a reference document.

Concerning medication extraction, we task the
model to extract all the information at once from
a reference document. We provide the reference
document to the model as part of the system mes-
sage, we then append a user message describing
the task, and, finally, we force the answer of the
assistant to start with the raw text content of the
CSV file we want as output. We get the LLM to
generate starting from these messages. The CSV
table contains the following information about the
medication: name, dose (the specified amount of
medication), mode (intended as mode of adminis-
tration), frequency (how many times or how often
to take the medication), line (line in the text where
the medication information is mentioned, for ex-
plainability).

Concerning the timeline extraction, we follow
a sequential prompting approach. We broke down
the task into three steps: counting the events men-
tioned in the document, generating a JSON array
with the chronologically ordered events and gener-
ating the line number for each event on the array.
As for the other task, we provide the reference
document as part of the system message and then
we alternate user messages with the instructions
for the current step and model responses for that
step. The elements of the JSON array with the
chronological order are dateValue (date in the for-
mat "YYYY-MM-DD"), dateString (the string men-
tioning the date as it appeared in the original doc-
ument) and event (a short description of what the

event that occurred at that time point). Each el-
ement is decorated in the last step with the line
number for explainability. We found empirically
these steps to be the most effective to generate the
timeline.

4 Data

One of the challenges of working in the healthcare
domain is gathering usable data. Given the nature
of the task, we focused on finding data sets con-
taining similar samples to what the model would
encounter in real-world scenarios. For this project,
we resorted to two existing data sets, one for med-
ication extraction and one for timeline extraction
(we describe them respectively in Section 4.1 and
Section 4.1), and we generated a third additional
data set synthetically (we describe this third data
set in Section 4.1).

4.1 N2C2

The National NLP Clinical Challenges (N2C2)
data set (Uzuner et al., 2010) is a collection of
1243 de-identified discharge summaries from Part-
ners Healthcare. This data set was released as
part of a medical annotation challenge. In the
challenge, participants were tasked with extract-
ing medication information from these summaries
and collectively provided annotations for 251 doc-
uments. The dataset focuses on the identification
of medications and medication-related information,
including dosages, routes (i.e., models of admin-
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istration), frequencies, durations, and reasons for
administration.

Listing 1: Example of the N2C2 input document with
numbered lines.

41 HASSEL , EDWARDO D. , M.D
42 on o r d e r f o r NEPHROCAPS PO (

r e f 12327843 )
43 POTENTIALLY SERIOUS

INTERACTION : SIMVASTATIN
NIACIN ,

44 VIT . B−3 Reason f o r o v e r r i d e :
home reg imen

45 P r e v i o u s o v e r r i d e i n f o r m a t i o n :
46 O v e r r i d e added on 4 / 2 9 / 0 4 by

GALIPEAU , ENRIQUE R . , M.
D.

47 DEFINITE ALLERGY ( OR
SENSITIVITY ) t o HMG CoA
REDUCTASE

48 INHIBITORS Reason f o r o v e r r i d e
: md aware , home reg imen

49 IMDUR ( ISOSORBIDE MONONIT . (
SR ) ) 30 MG PO QD

50 Food / Drug I n t e r a c t i o n
I n s t r u c t i o n

51 Give on an empty s tomach (
g i v e 1 hr b e f o r e o r 2 h r
a f t e r

Listing 2: Example of the N2C2 output labels.

m=" n e p h r o c a p s " 42 :3 4 2 : 3 | | do ="nm
" | | mo=" po " 42 :4 4 2 : 4 | | f ="nm " | |
du ="nm " | | r ="nm " | | l n =" l i s t "

m=" n i a c i n " 43 :5 4 3 : 5 | | do ="nm " | | mo
="nm " | | f ="nm " | | du ="nm " | | r ="nm
" | | l n =" l i s t "

m=" s i m v a s t a t i n " 43 :3 4 3 : 3 | | do ="nm
" | | mo="nm " | | f ="nm " | | du ="nm " | | r
="nm " | | l n =" l i s t "

m=" v i t . \ b −3" 44 :0 4 4 : 1 | | do ="nm
" | | mo="nm " | | f ="nm " | | du ="nm " | | r
="nm " | | l n =" l i s t "

m=" imdur ( i s o s o r b i d e mononi t . (
s r ) ) " 49 :0 4 9 : 6 | | do ="30 mg"
49 :7 4 9 : 8 | | mo=" po " 49 :9 4 9 : 9 | |
f =" qd " 49 :10 4 9 : 1 0 | | du ="nm " | | r
="nm " | | l n =" l i s t "

The annotations provide the precise location of
each piece of information within the discharge sum-
maries, facilitating the development and evaluation

of NLP systems for medication information ex-
traction. We report examples of input document
(chunk) and corresponding annotations respectively
in Listing 1 and Listing 2. As can be evicted by the
annotations, the target data contain all the desired
details and their reference within the document.

I2B2

The Informatics for Integrating Biology and the
Bedside (I2B2) data set (Sun et al., 2013), released
as part of the homonymous project, consists of
310 discharge summaries annotated with temporal
information. This data set was created to facilitate
the development and evaluation of NLP systems
for temporal reasoning in clinical text.

Listing 3: Example of the N2C2 input document with
numbered lines.

41 Admiss ion Date :
42 0 9 / 2 9 / 1 9 9 3
43 D i s c h a r g e Date :
44 1 0 / 0 4 / 1 9 9 3
45 HISTORY OF PRESENT ILLNESS :
46 The p a t i e n t i s a 28− year − o l d

woman who i s HIV p o s i t i v e
f o r two y e a r s .

47 She p r e s e n t e d wi th l e f t uppe r
q u a d r a n t p a i n as w e l l a s
n au se a and v o m i t i n g which
i s a long − s t a n d i n g
c o m p l a i n t .

48 She was d i a g n o s e d i n 1991
d u r i n g t h e b i r t h o f h e r
c h i l d .

49 She c l a i m s she does n o t know
why she i s HIV p o s i t i v e .

Listing 4: Example of the I2B2 output labels in XML
format.

< t imex3 i d ="T0 " s t a r t ="18" end
="28" t e x t = " 0 9 / 2 9 / 1 9 9 3 " t y p e ="
DATE" v a l ="1993 −09 −29" mod="NA
" / >

< t imex3 i d ="T13 " s t a r t ="2249" end
="2271" t e x t =" t h e day of
d i s c h a r g e . " t y p e ="DATE" v a l
="1993 −10 −04" mod="NA" / >

< t imex3 i d ="T3 " s t a r t ="290" end
="294" t e x t ="1991" t y p e ="DATE"

v a l ="1991" mod="NA" / >
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The annotations focus on three key aspects.
Events, which include clinical concepts (problems,
tests, treatments), clinical departments, evidential
information (source of information), and occur-
rences (e.g., admissions and transfers). Each event
is further categorised by type, polarity (positive or
negated), and modality (factual, proposed, condi-
tional, or possible). Temporal expressions, which
include dates, times, durations, and frequencies,
normalised to the ISO8601 standard. Each tempo-
ral expression is characterised by its type, value,
and modifier (exact or approximate). Temporal Re-
lations (TLinks), which describe the relationships
between events and temporal expressions, indicat-
ing whether one occurred before, after, or over-
lapped with another. We report examples of input
document (chunk) and corresponding annotations
respectively in Listing 3 and Listing 4. As for the
previous data set, the XML entries containing the
labels are annotated also with the position of the
information withing the source document.

Synthetic Data Set
Given the reduced size of the I2B2 data set, we
resorted to ChatGPT to generate some additional
data. We refer to this as synthetic data set (SD).
We prompted ChatGPT 4 to create discharge sum-
maries in both English and Italian1, along with
corresponding annotations for relevant medical in-
formation. We report examples of input document
(chunk) and corresponding annotations in Listing
5. Differently from the previous two data sets, we
have a single entry containing both the input docu-
ment and the target labels, without explicit annota-
tions of the position of the information within the
document (it would have been unrelialable to use
ChatGPT annotations for this information, which
we can extract searching the matching substrings
in the source document)

In general synthesising data offers several ad-
vantages, like personalisation, privacy and control.
From the personalisation perspective, we have that
the content and style of the generated summaries
can be tailored to specific requirements, allowing
for the creation of diverse and representative sam-
ples. Concerning privacy, since the data is syn-
thetic, it inherently avoids privacy concerns associ-
ated with real patient data. Finally, about control,
we have that the generation process allows for pre-

1We worked with Italian documents to fit the requirements
of the project founding this work; for further details, refer to
the acknowledgements at the end of this paper.

cise control over the types of medical information
included, enabling targeted testing of specific ex-
traction challenges. However, it’s important to ac-
knowledge that synthetic data may not fully capture
the nuances and complexities of real-world clini-
cal documentation. While it serves as a valuable
resource for preliminary testing and development,
its limitations should be considered when interpret-
ing results and generalising findings to real-world
scenarios.

Listing 5: Example of the SD input dcoments and output
annotation in JSON format.

{
" t e x t " : "** D i s c h a r g e Summary

: * * \ n \ n P a t i e n t : Mark Johnson
\ nAge : 38 \ nAdmiss ion

Date : 03 −20 −2024 \
n D i s c h a r g e Date : 0 3 / 2 8 / 2 4 \
n \ n P a t i e n t H i s t o r y : \ nMr .
Mark Johnson , a 38− year − o l d
male , was a d m i t t e d t o our
f a c i l i t y on March 20 , 2024 ,
p r e s e n t i n g wi th c o m p l a i n t s
o f abdomina l pa in , nausea ,
and j a u n d i c e . He has a p a s t
m e d i c a l h i s t o r y . . . " ,

" a n n o t a t i o n s " : [
{

" t e x t " : " March 20 , 2024" ,
" d a t e _ v a l u e " : "2024 −03 −20"

} ,
{

" t e x t " : " March 24 , 2024" ,
" d a t e _ v a l u e " : "2024 −03 −24"

} ,
{

" t e x t " : " e i g h t days " ,
" d a t e _ v a l u e " : "2024 −03 −28"

} ,
. . .

]
}

5 Experiments

In this section, we detail the experiments we run
to evaluate our pipelines for medication extraction
(Section 5.1) and timeline extraction (Section 5.2).
In all the experiments we conducted, we worked
with Mistral 7B (Jiang et al., 2023), using this LLM
as the core of the information extraction system.
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5.1 Medication Extraction

In the first set of experiments, we focused on medi-
cation extraction from clinical texts. The primary
objective is to evaluate the models’ ability to extract
medication details such as dosage, mode, and fre-
quency from unstructured medical documents, like
discharge letters. For this task, we focused on the
N2C2 data set. We evaluated the LLM capabilities
with different approaches: zero-shot learning, few-
shots learning (using 2 examples) and sequential
prompting. We conducted the evaluation using the
standard metrics: precision, recall, and F1 score.

Initially, we considered two variants of this task:
looking for full medications (i.e., we asked the
LLM to generate all the medication details: name,
dosage, mode, and frequency) or not (i.e., we asked
the LLM to generate only the name of the medica-
tion). However, as we explain better in Section 6.1,
working with full medication yields poor results, as
we noticed immediately in the early experiments
with a zero-shot learning approach. To measure
the metrics in the full medications case, we consid-
ered a single string containing all the details, and to
measure a match, we standardised the target string
and the generated one by removing all spaces and
special characters.

Concerning the input and output format, we con-
sidered multiple alternatives as well. We explored
having as input the whole document to analyse
or only a relevant chunk, this approach is helpful
with particularly long documents. Moreover, we
explored two different output formats: JSON and
CSV; in both cases we had the LLM generate di-
rectly the raw JSON or CSV strings.

5.2 Timeline extraction

In the second set of experiments, we focused on
extracting patient timelines from clinical texts in
order to highlight all the relevant events. In this
case, we focused only on evaluating the model’s
capabilities in extracting correctly formatted dates.
In fact, from early explorations, we noticed that
this task was already challenging as the LLM often
deviated from the target format. For this task, we
used the I2B2 data set and the synthetic data set.
We conducted the evaluation using the standard
metrics: precision, recall, and F1 score.

As for the previous experiment, we evaluated
the LLM capabilities with zero-shot learning, few-
shots learning (using 4 examples) and sequential
prompting approaches. Concerning the input and

output format, similar to medication extraction, we
considered alternative approaches. As before, we
explored using the whole document as input or
only a relevant chunk. For the output, we worked
only in JSON format and we converted all dates in
"YYYY-MM-DD" format.

6 Results

In this section, we present and comment on the
results of the experiments on medication extraction
(Section 6.1) and timeline extraction (Section 6.2).
In both cases, we do not compare with the reference
baselines coming with the data sets since we ap-
proach the evaluations differently and we compute
different metrics.

6.1 Medication Extraction

We report the results of this first task of medica-
tion extraction in Table 1. Results on precision
focusing on the medication name are satisfying,
meaning that the model is missing very few med-
ications from the documents. However, the low
recall and, subsequent, low F1 scores hint that the
model is often generating information that is not
part of the original document. Moreover, results
using full medication information are consistently
lower, indicating that, as expected, extracting de-
tailed information is harder than simply identifying
the medication.

The experiments with zero-shot approach
showed that the LLM is not capable of extracting
all the medication information just from the instruc-
tions. Looking at the generated output, we noticed
that sticking to the target output format was dif-
ficult, and even output post-processing and string
normalisation were not sufficient to match the tar-
get and predicted output. CSV format seems to be
harder to get to work independently of the target
being name only or full medication information.

From the results of the few-shots approach and
sequential approach, there seems to be no clear
solution for the output format. In fact, depending
on the approach, generating CSV or JSON out-
put seems to yield the best results. Concerning
the difference between the approaches, there is not
clear difference between zero-shot and sequential
approaches. Few-shots approach does not improve
significantly over the other approaches over preci-
sion, but improves the recall and, thus, the F1.
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Approach Format Chunked docs Full medication Precision Recall F1

zero-shot
JSON

✗ ✗ 0.964 0.392 0.513
✗ ✓ 0.446 0.115 0.181

CSV
✗ ✗ 0.557 0.453 0.498
✗ ✓ 0.418 0.217 0.278

few-shots

JSON

✗ ✗ 0.885 0.479 0.606
✗ ✓ 0.364 0.109 0.166
✓ ✗ 0.965 0.547 0.683
✓ ✓ 0.616 0.243 0.342

CSV

✗ ✗ 0.857 0.546 0.660
✗ ✓ 0.366 0.136 0.198
✓ ✗ 0.837 0.526 0.636
✓ ✓ 0.380 0.160 0.224

sequential
JSON

✗ ✗ 0.961 0.358 0.512
✗ ✓ 0.597 0.134 0.217

CSV
✗ ✗ 0.808 0.318 0.442
✗ ✓ 0.288 0.550 0.378

Table 1: Results on N2C2 for medication extraction (bold values correspond the best score).

Dataset Approach Chunked docs Precision Recall F1

I2B2

zero-shot ✗ 0.811 0.589 0.651

few-shots
✗ 0.803 0.794 0.790
✓ 0.954 0.592 0.701

sequential ✗ 0.757 0.644 0.660

SD

zero-shot ✗ 0.949 0.806 0.861

few-shots
✗ 0.926 0.917 0.916
✓ 0.975 0.898 0.931

sequential ✗ 0.966 0.898 0.926

Table 2: Results on I2B2 and Synthetic Data (SD) for timeline extraction (bold values correspond the best score for
each data set).

6.2 Timeline extraction

We report the results on this second task of timeline
extraction in Table 2. As can be seen, the results are
good, yet there is a lot of space for improvement.
Results on the synthetic data are always better than
those on the I2B2 data set.

Comparing the results of zero-shot and few-shots
learning, we can see that in most cases, using the
few-shots approach helped significantly improve
the results on recall and, thus, F1. The higher
results on chunked documents seem to indicate that,
in this case, using longer documents negatively
affects the ability to extract the time information.

Both sequential prompting and zero-shot work
without reference examples, yet sequential prompt-
ing performed in terms of recall and F1, and per-
formed comparably to the few-shots approach.
This hints that the sequential approach helped the
LLM capture better the target task and output for-
mat.

7 Conclusion

In this paper, we showed how we approached the
problem of medical information and events extrac-
tion using LLMs. The results of the conducted ex-
periments highlight the potential of these LLMs for
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automating the extraction of this information from
clinical texts. The performance of these models
resulted sufficiently robust for practical application
in real-world settings, though there is still room
for further improvements. To complete the pro-
posed pipelines and make them more reliable, we
provided also an explanation tool.

Concerning the evaluations, the LLMs exhibited
significantly better performance in few-shot learn-
ing settings when compared to zero-shot learning
ones, achieving, as expected, higher precision, re-
call, and F1 scores. However, it is important to
point out that the effectiveness of the LLM varied
significantly depending on factors such as the cho-
sen output format (JSON vs CSV). For instance,
although the models are capable of adapting to the
requested output format, it remains unclear which
format yields the most effective results. While, in
some cases, the performance we achieved is suit-
able for practical application, these fluctuations pin-
point a challenge taht highlights the need for better
models before moving to real-world applications
of the LLM technology for healthcare.

To improve the overall pipeline robustness and
utility, we will be working on minimising the
LLM’s sensitivity to minor variations in prompts,
for example, working on our own fine-tuning for
chatbot assistant or instruction following rather
than resorting to existing solutions. Similarly, we
are interested in exploring alternative evaluation
metrics that assess the semantic accuracy of the
extracted information, rather than relying solely on
string matching. We expect that advancements in
these two directions will better gauge the practical
applicability and effectiveness of LLMs in process-
ing clinical texts. At the same time, to expand
the tool capabilities, we are interested in exploring
more complex scenarios, where the information
to extract is scattered across multiple documents,
which represent a more challenging task also from
the explainability perspective.

Limitations

In this paper, we mainly focused on the develop-
ment and deployment of the pipeline, rather than
exhaustive experiments. The first limitation is in
the choice of the LLM: as for now, we evaluated
the results using only Mistral 7B. A proper evalu-
ation would require exploring other openly acces-
sible models of the same and different sizes and
closed-access models to have a reference for the

comparisons. The second limitation is the size of
the available data sets, which we can consider small
if compared with data sets for other information
extraction tasks, thus the results may be subject to
high variance.

Ethics Statement

The authors do not foresee any considerable risks
associated with the work presented in this paper.
In principle, the presented framework is intended
for information extraction from medical documents
as it is thought to be used by clinicians (or other
similar experts) who have authorised access to the
target documents. The authors pledge to make
the source code publicly available to ensure the
reproducibility of the experiments.
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All times are according to time (GMT)  

 

Saturday, Oct. 19, 2024    08:00 – 16:00  (GMT) 

08:00-08:15 
Opening session                                                                                                                                      

Dr. Mourad Abbas and Dr. Abed Alhakim Freihat 

 

08:15 – 08:35 
Keynote : An Introduction to Large Language Models 

Prof. Gérard Chollet, CNRS, France. 

 

08:45 – 10:45 Oral Session 1: Large Language Models 
Chair: Prof. Gérard Chollet, CNRS, France. 

 

08 :45 – 09:00 
Introducing wwm-german-18k - Can LLMs Crack the Million? (Or Win at Least 500 

Euros?) 

Matthias Aßenmacher (LMU Munich)*; Luis Karrlein (LMU Munich); Philipp Schiele (LMU 

Munich); Christian Heumann (LMU Munich) 

 

09:00 – 09:15 
Design and Comparison of Arabic Negotiation Bots Using LLMs versus Seq2Seq Models 

with Reinforcement Learning 

Ahmad Hajj (University of Wisconsin-Madison); Yasmine A Abu Adla (American University 

of Beirut)*; Samah Albast (AUB); Hazem  Hajj (AUB); Shady Elbassuoni (AUB); Wassim El 

Hajj (AUB); Khaled Shaban (Qatar University) 

 

09:15 – 09:30 
SG-RAG: Multi-Hop Question Answering With Large Language Models Through 

Knowledge Graphs 

Yücel Saygın (Sabancı Universitesi)*; Ahmmad O. M. Saleh (Sabanci University); Gokhan 

Tur (University of Illinois Urbana-Champaign) 

 

09:30 – 09:45 
Enhancing LLM-based Arabic Negotiation by Fine Tuning on Dialogue Shortcomings 

Yasmine A Abu Adla (American University of Beirut)*; Hazem  Hajj (AUB); Shady 

Elbassuoni (AUB); Khaled Shaban (Qatar University); Wassim  El Hajj (AUB) 

 

09:45 – 10:00 
Medical Information Extraction with Large Language Models 

Raffaello Fornasiere (DEIB, Politecnico di Milano); Nicolò Brunello (DEIB, Politecnico di 

Milano); Vincenzo Scotti (DEIB, Politecnico di Milano)*; Mark Carman (Politecnico di 

Milano) 

 

10:00 – 10:15 
Personalised Abusive Language Detection Using LLMs and Retrieval-Augmented 

Generation 

Tsungcheng Yao (Griffith University Australia)*; Ernest Foo (Griffith University Australia); 

Sebastian Binnewies (Griffith University) 

 

10:15 – 10:30 
Resolving LLM-Generated Gender Biases at Transformer Inference Time with Novel K-

Explorers Neural Network Traversal (KeNNT) 

Hanav Modasiya (Santa Clara High School)* 

10:30 – 10:45 
Investigating Gender Bias in Large Language Models Through Text Generation 

Shweta Soundararajan (Technological University Dublin)*; Sarah Jane  Delany (TU Dublin) 

     7th International Conference on Natural Language 

 and Speech Processing (ICNLSP 2024) 

October 19-20, 2024 
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10:45 – 11:45 
Oral Session 2 :  Information extraction and Summarization 

Chair: Prof. Yücel Saygın, Sabancı Universitesi, Turkey. 

10:45 – 11:00 
CliqueCorex: A Self-supervised Clique-based Anchored Topic Model 

Sami Diaf (Universität Hamburg)* 

11:00 – 11:15 
Large-scale Summarization of Chat Transcripts in the Absence of Annotated Summaries 

Pratik K Biswas (Verizon AI&D)* 

11:15 – 11:30 
Conversational Exploratory Search of Scholarly Publications Using Knowledge Graphs 

Phillip Schneider (Technical University of Munich)*; Florian Matthes (Technical University of 

Munich) 

11:30 – 11:45 

Linking Quran and Hadith Topics in an Ontology using Word Embeddings and Cellfie 

Plugin 

Ibtisam Khalaf Alshammari (University of Leeds)*; Eric Atwell (University of Leeds); Mhd 

Ammar Alaska (University of Leeds) 

11:45 – 12:45 Break 

 

12:45 – 14:00 
Oral Session 3: Human-Machine Interaction and Conversational AI 

Chair: Prof. Hend Al-Khalifa, King Saud University, KSA. 

12:45 – 13:00 

A Hybrid Retrieval Approach for Advancing Retrieval-Augmented Generation Systems 
Nguyen Nam Doan (Maastricht University)*; Aki Härmä (Maastricht University); Remzi Celebi 

(Maastricht University); Valeria Gottardo (NLC Health Ventures) 

13:00 – 13:15 

Context-Aware Question Answering in Urdu 
Samreen A Kazi (Institute of Business Administration)*; Shakeel Ahmed Khoja (Institute of 
Business Administration) 

13:15 – 13:30 

Human and Machine: Language Processing in Translation Tasks 
Hening Wang (Universität Tübingen); Leixin Zhang (University of Tübingen)*; Ondřej Bojar 

(Charles University) 

13:30 – 13:45 

Semantically Enriched Text Generation for QA through Dense Paraphrasing 
Timothy Obiso (Brandeis University)*; Bingyang Ye (Brandeis University); Kyeongmin Rim 

(Brandeis University); James Pustejovsky (Brandeis University) 

13:45 – 14:00 Sawaal: A Framework for Automatic Question Generation in Urdu 
Maria Rahim (Institute of Business Administration)*; Shakeel Ahmed Khoja (Institute of 

Business Administration) 

 

14:00– 16:00 
Oral Session 4 : Advances in Native Language Identification and Text 

Classification 
Chair: Dr. Daniel Braun, University of Twente, Netherlands.  

 

14:00 – 14:15 
Native language Identification for Arabic Language Learners using Pre-trained Language 
Models 
Mohamed Amine CHERAGUI (Ahmed Draia University)*; Mourad Abbas (High Council of 

Arabic); Mohammed Mediani (United Arab Emirates University) 

 

14:15 – 14:30 
Leveraging Annotator Disagreement for Text Classification 
Jin Xu (University of Twente); Mariët Theune (University of Twente); Daniel Braun (University 

of Twente)* 

 

14:30 – 14:45 
Detecting ChatGPT-Generated Text with GZIP-KNN: A No-Training, Low-Resource Approach 
Matthias Berchtold (SUPSI); Sandra Mitrovic (Istituto Dalle Molle di Studi sull'Intelligenza 

Artificiale)*; Davide Andreoletti (SUPSI); Daniele Puccinelli (SUPSI); Omran Ayoub (SUPSI) 

14:45 – 15:00 

Dual-Task Learning for AI-Generated Medical Text Detection and Named Entity Recognition 
Saja B. Al-Dabet (United Arab Emirates University )*; Ban Alomar (United Arab Emirates 

University); Sherzod R Turaev (United Arab Emirates University); Abdelkader Belkacem 

(United Arab Emirates University) 
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15:00 – 15:15 
Efficient Few-shot Learning for Multi-label Classification of Scientific Documents with Many 
Classes 
Tim Schopf (Technical University of Munich)*; Alexander Blatzheim (Technical University of 

Munich); Nektarios Machner (Technical University of Munich); Florian Matthes (Technical 

University of Munich) 

 

 

15:15 – 15:30 

Asking the Right Questions: Exploiting Hidden Interactions in a Generative Framework for 
Multilingual,  Multitask Classification 
Sebastian-Antonio Toma (Technical University of Cluj-Napoca)*; Camelia Lemnaru (Technical 

University of Cluj-Napoca); Vlad Andrei Negru (Technical University of Cluj-Napoca); Rodica 

Potolea (Technical University of Cluj-Napoca) 

 

15:30 – 15:45 
Native Language Identification Improves Authorship Attribution 
Ahmet Yavuz Uluslu (University of Zurich)*; Gerold Schneider (University of Zurich); Can 

Yildizli (PRODAFT) 

 

15:45 – 16:00 
Analyzing Politeness in Arabic Tweets: A Preliminary Study 
Hend Al-Khalifa (King Saud University)*; Maria BOUNNIT (iWAN Research Group); Nadia 

GHEZAIEL (University of Hail) 
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 Sunday, Oct. 20, 2024    08:30 – 16:00  (GMT) 
 

08:30– 10:15 
Oral Session 5: Audio, ASR, and TTS 

Chair: Prof. Nicolas Ballier, Université Paris Cité, France. 

08 :30 – 08:45 
On Barriers to Archival Audio Processing 

Peter R Sullivan (UBC)*; Muhammad Abdul-Mageed (iSchool@UBC) 

 

08:45 – 09:00 
Comparative Analysis of Modality Fusion Approaches for Audio-Visual Person 

Identification and Verification 

Aref Farhadipour (University of Zurich)*; Masoumeh Chapariniya (University of Zurich); 

Teodora Vukovic (University of Zurich); Volker Dellwo (University of Zurich) 

 

09:00 – 09:15 
Generative Adversarial Network based Neural Vocoder for Myanmar End-to-End 

Speech Synthesis 

Aye Mya Hlaing (University of Computer Studies, Yangon)*; Win Pa Pa (University of 

Computer Studies, Yangon) 

 

09:15 – 09:30 
Double Decoder: Improving latency for Streaming End-to-end ASR Models 

Riqiang Wang (Dialpad)*; Shreekantha Nadig (Dialpad); Daniil Kulko (Dialpad); Simon 

Vandieken (Dialpad); Chia-tien Chang (Dialpad); Seyyed Saeed Sarfjoo (Dialpad); Jonas 

Robertson (Dialpad) 

 

09:30 – 09:45 
Probing Whisper Predictions for French, English and Persian Transcriptions 

Nicolas Ballier (Université Paris Cité)*; Léa Burin (Université Paris Cité); Behnoosh 

Namdarzadeh (Université Paris Cité); Sara B Ng (University of Washington); Richard Wright 

(University of Washington); Jean-Baptiste Yunès (Université Paris Cité) 

 

09:45 – 10:00 
Thonburian Whisper: Robust Fine-tuned and Distilled Whisper for Thai 

Zaw Htet Aung (Mahidol University)*; Thanachot Thavornmongkol  (Looloo Technology); 

Atirut Boribalburephan (Looloo Technology); Vittavas Tangsriworakan  (Mahidol University); 

Knot Pipatsrisawat (Looloo Technology); Titipat Achakulvisut (Mahidol University) 

10:00 – 10:15 
Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource 

Environment 

Dzhavidan Zeinalov (Kapital Bank)*; Bugra Sen (Kapital Bank); Firangiz Aslanova (Kapital 

Bank) 

10:15 – 10:30 Break 

 

10:30 – 12:15 
Oral Session 6 : Speech emotion recognition and speaker verification and 

diarization 
Chair: Dr. Mohammed Mediani, United Arab Emirates University, UAE. 

10:30 – 10:45 

Real-Time Speech-Driven Avatar Animation by Predicting Facial landmarks and 

Deformation Blendshapes 

Juan Camilo Vasquez-Correa (VICOMTECH)*; Santiago Moreno-Acevedo (VICOMTECH); 

Ander Gonzalez-Docasal (VICOMTECH); Aritz Lasarguren (Baleuko); Jone Lòpez (Baleuko); 

Egoitz Rodriguez (Baleuko); Aitor Álvarez (VICOMTECH) 

10:45 – 11:00 

Speech Emotion Recognition for Call Centers using Self-supervised Models: A Complete 

Pipeline for Industrial Applications 

Juan M. Martín-Doñas (Vicomtech)*; Asier López Zorrilla (UPV/EHU); Mikel deVelasco 

(UPV/EHU); Juan Camilo Vasquez-Correa (VICOMTECH); Aitor Álvarez (Vicomtech); 

Maria Inés Torres (Universidad del País Vasco UPV/EHU); Paz Delgado (NaturalSpeech); 

Ane Lazpiur (NaturalSpeech); Blanca Romero (NaturalSpeech); Irati Alkorta (Gureak) 

11:00 – 11:15 
GemST: Continual Learning for End-to-End Speech-to-Text Translation 

Pranav Karande (VIT University, Vellore)*; Balaram Sarkar (Indian Institute of Technology 

Indore); Chandresh K Maurya (Indian Institute of Technology Indore) 

11:15 – 11:30 

Improved Spoken Emotion Recognition With Combined Segment-Based Processing And 

Triplet Loss 

Dejan Porjazovski (Aalto University)*; Tamas Grosz (Aalto University); Mikko Kurimo (Aalto 

University) 

11:30 – 11:45 
CASCA: Towards the Use of Speaker Role Information in Speaker Diarization 

William K Nehrboss (Casca Labs)* 
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11:45 – 12:00 

Deep Information Maximisation to Mitigate Information Loss in Text Independent 

Speaker Verification 

Nipun Thejan Fonseka (University of Moratuwa)*; Nirmal Sankalana (University of 

Moratuwa) 

12:00 – 12:15 
Improving speaker F0 representation using post-processing techniques 

Crisron Rudolf G Lucas (UCD)*; Diptasree Debnath (University College Dublin) 

12:15 – 13:30 Break 

 

13:30– 15:45 
Oral Session 7: Data and Representation                                                                                                                                     

Chair: Dr. Koichi Takeuchi, Okayama University, Japan. 

13:30 – 13:45 
FeruzaSpeech: A 60 Hour Uzbek Read Speech Corpus with Punctuation, Casing, and 

Context  
Anna Povey (Redmond High School)*; Katherine Povey (University of Washington) 

13:45 – 14:00 
Modeling Score Estimation for Japanese Essays with Generative Pre-trained 

Transformers 

Boago Okgetheng (Okayama University)*; Koichi Takeuchi (Okayama University) 

14:00 – 14:15 

PoliTun: Tunisian Political Dataset for Detecting Public Opinions and Categories 

Orientation 

Chayma Fourati (National School of Comupter Science)*; Roua Hammami (Higher Institute of 

Multimedia Arts); Chiraz Latiri (Faculty of Sciences of Tunis, Tunis EL Manar University); 

Hatem Haddad (Manouba University) 

14:15 – 14 :30 

A Comparison of Different Tokenization Methods for the Georgian Language 

Beso Mikaberidze (MIMC)*; Temo Saghinadze (MIMC); Guram Mikaberidze (University of 

Wyoming); Raphael Kalandadze (Georgian Technical University); Konstantine Pkhakadze 

(Educational Center for the Georgian Language Technology); Josef van Genabith (Saarland 

University); Simon Ostermann (German Research Center for Artificial Intelligence); Lonneke 

van der Plas (Idiap Research Institute); Philipp Müller (DFKI GmbH) 

14:30 – 14 :45 
The Qiyas Benchmark: Measuring ChatGPT Mathematical and Language 

Understanding in Arabic 

Shahad Al-Khalifa (King Saud University)*; Hend Al-Khalifa (King Saud University) 

14:45 – 15:00 

Data Bias According to Bipol: Men are Naturally Right and It is the Role of Women to 

Follow Their Lead 

Irene Pagliai (University of Göttingen); Goya van Boven (Utrecht University); Oluwatosin 

Adewumi (Luleå University of Technology)*; Lama Alkhaled (Luleå University of 

Technology); Namrata Gurung (QualityMinds GmbH); Isabella Södergren (Luleå University of 

Technology); Elisa H Barney Smith (Luleå Tekniska Universitet) 

15:00 – 15:30 

Bulgarian Grammar Error Correction with Data Augmentation and Machine 

Translation Techniques 

Bozhidar Klouchek (The University of Manchester)*; Riza Batista-Navarro (School of 

Computer Science, The University of Manchester) 

 

15:30 – 15:45 

EEG Signal Analysis for Multimodal Simple Concepts Decoding 

Sergio Guillén Jiménez (Universidad de Málaga); Lorenzo J. Tardón (ATIC Research Group. 

Universidad de Málaga)*; Ana M Barbancho (ATIC Research Group. Universidad de 

Malaga.); Isabel Barbancho (Universidad de Málaga) 

15:45-16:00 Closing session                                                                                   
 

N.B:  TIME IN GMT 

             Presentation duration 12 minutes + 3 minutes for questions. 
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