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Preface

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scientific
conference for the study, development and evaluation of spoken language translation technology.
Launched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003),
IWSLT is the main venue for scientific exchange on all topics related to speech-to-text translation,
speech-to- speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual
communication including all multimodal, emotional, paralinguistic, and stylistic aspects and their
applications in the field. The conference organizes evaluations around challenge areas, and presents
scientific papers and system descriptions.

This year, IWSLT features four shared tasks: (i) Simultaneous Speech Translation; (ii) Offline Speech
Translation; (iii) Multilingual Speech Translation; and (iv) Low-Resource Speech Translation. These
topics represent open problems toward effective cross-lingual communication and we expect the
community effort and discussion will greatly advance the state of the field. Each shared task was
coordinated by a chair. The resulting evaluation campaigns attracted a total of 22 teams, from academy,
research centers and industry. System submissions resulted in system papers that will be presented
at the conference. Following our call for papers, this year 40 submissions were received. In a blind
review process, 11 research papers were selected out of 19 for oral presentation (58%) in addition to 21
system papers. The program this year will also host 4 so-called ACL findings papers (not included in
this proceedings), that expressed interest in being presented at IWSLT 2021. The program committee
is excited about the quality of the accepted papers and expects lively discussion and exchange at the
conference.

The conference chairs and organizers would like to express their gratitude to everyone who contributed
and supported IWSLT. We thank the shared tasks chairs, organizers, and participants, the program chair
and committee members, as well as all the authors that went the extra mile to submit system and research
papers to IWSLT, and make this year’s conference a most vibrants event. We also wish to express our
sincere gratitude to ACL for hosting our conference and for arranging the logistics and infrastructure that
allow us to hold IWSLT 2021 as a virtual online conference.

Welcome to IWSLT 2021 wherever you are joining from!

Marta R. Costa-jussa, Program Chair
Marcello Federico and Alex Waibel, Conference co-Chairs
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Antonios Anastasopoulos

FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN

Ondiej Bojar
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Maha Elbayad Marcello Federico
Facebook Amazon Al
Matteo Negri Jan Niehues
FBK Maastricht U.
Sebastian Stiiker Katsuhito Sudoh
KIT NAIST
Changhan Wang
Facebook
Abstract

The evaluation campaign of the International
Conference on Spoken Language Translation
(IWSLT 2021) featured this year four shared
tasks: (i) Simultaneous speech translation, (ii)
Offline speech translation, (iii) Multilingual
speech translation, (iv) Low-resource speech
translation. A total of 22 teams participated
in at least one of the tasks. This paper de-
scribes each shared task, data and evaluation
metrics, and reports results of the received sub-
missions.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier an-
nual scientific conference for all aspects of spo-
ken language translation. For 18 years running
(Akiba et al., 2004; Eck and Hori, 2005; Paul,
2006; Fordyce, 2007; Paul, 2008, 2009; Paul et al.,
2010; Federico et al., 2011, 2012; Cettolo et al.,
2013, 2014, 2015, 2016, 2017; Niehues et al.,
2018, 2019; Ansari et al., 2020), the conference or-
ganizes and sponsors open evaluation campaigns
around key challenges in simultaneous and con-
secutive translation, under real-time/low latency
or offline conditions and under low-resource or

1

Jacob Bremerman Roldano Cattoni

UMD FBK
Xutai Ma Satoshi Nakamura
JHU/Facebook NAIST
Juan Pino Elizabeth Salesky
Facebook JHU
Marco Turchi Alex Waibel
FBK CMU/KIT
Matthew Wiesner

JHU

multilingual constraints. System descriptions and
results from participants’ systems and scientific
papers related to key algorithmic advances and
best practice are published in proceedings and
presented at the conference. IWSLT is also the
venue of the SIGSLT, the Special Interest Group
on Spoken Language Translation of ACL, ISCA
and ELRA. With its long track record, IWSLT
benchmarks and proceedings serve as reference
for all researchers and practitioners working on
speech translation and related fields.

This paper reports on the evaluation campaign
organized by IWSLT 2021, which features four
shared tasks:

* Simultaneous speech translation, address-
ing low latency translation of talks, from En-
glish to German and English to Japanese, ei-
ther from a speech file into text, or from a
ground-truth transcript into text;

* Offline speech translation, proposing
speech translation of talks from English into
German, using either cascade architectures or
end-to-end models, able to directly translate
source speech into target text;

* Multilingual speech translation, focusing

Proceedings of the 18th International Conference on Spoken Language Translation, pages 1-29
Bangkok, Thailand (Online), August 5-6, 2021. ©2021 Association for Computational Linguistics
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Table 1: List of Participants

on the use of multiple languages to improve
supervised and zero-shot speech translation
between four Romance languages and En-
glish;

* Low-resource speech translation, focus-
ing on resource-scarce settings for translat-
ing two Swahili varieties (Congolese and
Coastal) into English and French.

The shared tasks were attended by 22 partic-
ipants (see Table 1), including teams from both
academic and industrial organizations. The fol-
lowing sections report on each shared task in de-
tail, in particular: the goal and automatic met-
rics adopted for the challenge, the data used for
training and testing data, the received submissions
and the summary of results. Detailed results for
each challenge are reported in a corresponding ap-
pendix.

2 Simultaneous Speech Translation

Simultaneous translation is the task of translat-
ing incrementally with partial text or speech in-
put only. Such capability enables multilingual live

communication and access to multilingual multi-
media content in real-time. The goal of this chal-
lenge, organized for the second consecutive year,
is to examine systems that translate text or audio
in a source language into text in a target language
from the perspective of both translation quality
and latency.

2.1 Challenge

Participants were given three parallel tracks to en-
ter and encouraged to enter all tracks:

* text-to-text: translating ground-truth tran-
scripts in real time from English to German
and English to Japanese.

* speech-to-text: translating speech into text in
real time from English to German.

For the speech-to-text track, participants were en-
couraged to submit systems either based on cas-
caded or end-to-end approaches. In addition,
the systems were run on a segmented and non-
segmented version of the test set, i.e. processing
one sound segment corresponding to an input sen-
tence at a time, or processing the whole speech
in one sound stream. Participants were required



to upload their system as a Docker image so that
it could be evaluated by the organizers in a con-
trolled environment. We also provided an example
implementation and a baseline system. !

2.2 Data and Metrics

For tracks related to English-German, participants
were allowed to use the same training and devel-
opment data as in the Offline Speech Translation
track. More details are available in §3.2.

For the English-Japanese text-to-text track, par-
ticipants could use the parallel data and mono-
lingual data available for the English-Japanese
WMT20 news task (Barrault et al., 2020). For
development, participants could use the IWSLT
2017 development sets,” the IWSLT 2021 devel-
opment set’ and the simultaneous interpretation
transcripts for the IWSLT 2021 development set.*
The simultaneous interpretation was recorded as
a part of NAIST Simultaneous Interpretation Cor-
pus (Doi et al., 2021).

Systems were evaluated with respect to quality
and latency. Quality was evaluated with the stan-
dard BLEU metric (Papineni et al., 2002a). La-
tency was evaluated with metrics developed for
simultaneous machine translation, including av-
erage proportion (AP), average lagging (AL) and
differentiable average lagging (DAL, Cherry and
Foster 2019), and later extended to the task of si-
multaneous speech translation (Ma et al., 2020b).

The evaluation was run with the SIMULEVAL
toolkit (Ma et al., 2020a). For the latency mea-
surement of speech input systems, we contrasted
computation-aware and non computation-aware
latency metrics. The latency was calculated at the
word level for English-German systems and at the
character level for English-Japanese systems.

The systems were ranked by the translation
quality (measured by BLEU) in different latency
regimes, low, medium and high. Each regime
was determined by a maximum latency threshold
measured by AL on the Must-C English-German
test set (tst-COMMON) for English-German or on
the IWSLT21 dev set for English-Japanese. The

"https://github.com/pytorch/fairseq/
blob/master/examples/speech_to_text/
docs/simulst_mustc_example.md

https://wit3.fbk.eu/2017-01-c

*https://drive.google.com/drive/
folders/1uSkOT-XgbICMohnviXdEFffKLdaQX0X7

*nttps://drive.google.com/drive/
folders/1bBls9PKNoRoDFfc567J5zDMcY j_
1FFEB

thresholds were set to 3, 6 and 15 for the English-
German text track, to 1000, 2000 and 4000 for
the English-German speech track and to 8, 12 and
16 for English-Japanese text track, and were cali-
brated by the baseline system. Participants were
asked to submit at least one system per latency
regime and were encouraged to submit multiple
systems for each regime in order to provide more
data points for latency-quality trade-off analyses.
The organizers confirmed the latency regime by
running the systems on tst-COMMON and the
IWSLT21 dev set.

2.3 Differences with the First Edition

English-to-Japanese Task This year, we added
a new task of English-to-Japanese simultaneous
translation. English-Japanese is a challenging lan-
guage pair for simultaneous translation because of
the large word order differences; a simultaneous
machine translation model has to wait for the latter
part of an English sentence in Subject-Verb-Object
order to generate a Japanese sentence in Subject-
Object-Verb order.

SimulEval We standardized the latency evalua-
tion aspect of the task by leveraging the SIMULE-
VAL toolkit. In addition, speech input systems
were run in a controlled environment (a p3.2xlarge
AWS instance) in order to be able to fairly com-
pare computation-aware AL.

Unsegmented input Based on feedback from
the participants in the first edition of the task, for
the speech track, systems were run on both seg-
mented and unsegmented input. The latter setting
required participants to implement a segmentation
logic in their systems, which is closer to a real-
world setting.

2.4 Submissions

The simultaneous task received submissions from
5 teams: 4 teams entered the English-German text
track; 3 teams entered the English-Japanese text
track and 2 teams entered the English-German
speech track. Teams followed the suggestion to
submit multiple systems per regime, which re-
sulted in a total of 162 systems overall.

UEDIN (Sen et al., 2021) submitted systems to
the text-to-text English-German track. In order to
be able to reuse an offline system, UEDIN adapts
the re-translation strategy to the simultaneous task.
Re-translation is triggered based on a language
model applied to the source input. In addition, a



dynamic masking method is employed to stabilize
the output translation.

VOLCTRANS (Zhao et al.,, 2021) submit-
ted systems to the text-to-text English-German
and English-Japanese tracks. The participants
adopt the efficient wait-k strategy (Elbayad et al.,
2020). They augment the training data using back-
translation and knowledge distillation. During in-
ference, a look ahead beam search strategy is in-
vestigated but the final submission uses greedy
search.

USTC-NESLIP (Liu et al.,, 2021) submit-
ted systems to all tracks, including both end-to-
end and cascaded system for the speech tracks.
The participants design a novel model architec-
ture, Cross-Attention Augmented Transducer, that
modifies RNN-T in order to support reordering be-
tween languages. They augment the training data
using self-training, back-translation and by syn-
thesizing the source side of the parallel corpora.

APPTEK (Bahar et al., 2021b) submitted sys-
tems to the English-German speech and text
tracks, using a cascaded system for the speech
track. Chunks that preserve monotonicity are ex-
tracted from a statistical word aligner. A classi-
fier, part of the overall model, is trained on the
boundaries in order to control the policy. To bet-
ter control the latency quality tradeoff, consecutive
chunks can be merged according to a probability.

NAIST (Fukuda et al., 2021) submitted sys-
tems to the text English-Japanese track. The par-
ticipants employ the wait-k method and sequence-
level knowledge distillation. Because Japanese
does not have a strict word order, they randomly
shuffle chunks on the target side to augment the
training data. An alternative method, next con-
stituent label prediction, was investigated but not
submitted to the task.

2.5 Results

We discuss results for the text and speech tracks.
More details are available in Appendix A.1.

2.5.1 Text Track

Results for the text track are summarized
in the first two tables of Appendix A.l.
Four teams (USTC-NESLIP, VOLCTRANS,
APPTEK, UEDIN) submitted systems for English-
German and three teams (USTC-NESLIP,
VOLCTRANS, NAIST) for English-Japanese.
In the table, only the models with the best BLEU
score for a given latency regime are reported. In
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Figure 1: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the English-German text track.
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Figure 2: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the English-Japanese text track.

order to obtain a broader sense of latency-quality
tradeoffs, we also plot all submitted systems for
quality and latency.

English-German The ranking is consistent
over all the regimes: 1. USTC-NESLIP
2. VOLCTRANS 3. APPTEK 4. UEDIN. We
plot all the submitted English-German systems in
Figure 1.

Japanese-English The ranking is consistent over
all the regimes: 1. USTC-NESLIP 2. APPTEK
3. NAIST. We plot all the submitted English-
Japanese systems in Figure 2.

2.5.2 Speech Track (English-German Only)

Results for the speech track are summarized in
the third table of Appendix A.1. Two teams
(USTC-NESLIP, APPTEK) submitted systems,
with both segmented and unsegmented speech in-
put. Latency regimes were defined for segmented
input systems only. We plan to define latency
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Figure 3: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the speech track with segmented
input. AL is measured in seconds.
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Figure 4: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for
the systems submitted to the speech track with seg-
mented input. AL is considering the computation time
and measured in seconds.

regimes for unsegmented input in the next edi-
tion. The ranking is consistent over all the regimes
in segmented systems and unsegmented systems:
1. USTC 2. AppTek We also report four latency-
quality trade-off curves:

* Segmented input systems without consider-
ing computation time in Figure 3.

* Segmented input systems considering com-
putation time in Figure 4.

* Unsegmented input systems without consid-
ering computation time in Figure 5.

* Unsegmented input systems considering
computation time in Figure 6.
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Figure 5: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for

the systems submitted to the speech track with unseg-
mented input. AL is measured in seconds.
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Figure 6: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for
the systems submitted to the speech track with unseg-
mented input. AL is considering the computation time
and measured in seconds.

3 Offline Speech Translation

Offline speech translation, declined in various
forms over the years, is one of the speech tasks
with the longest tradition at the IWSLT campaign.
Like in the last two evaluation rounds, this year’
it focused on the translation of English audio data
extracted from TED talks® into German.

3.1 Challenge

In recent years, offline speech translation (ST) has
seen a rapid evolution, characterized by the steady
advancement of direct end-to-end models (build-
ing on a single neural network that directly trans-
lates the input audio into target language text) that
were able to significantly reduce the performance

Shttp://iwslt.org/2021/0ffline
*http://www.ted.com



gap with respect to the traditional cascade ap-
proach (integrating ASR and MT components in
a pipelined architecture). In light of last year’s
IWSLT results (Ansari et al., 2020) and of the find-
ings of recent works (Bentivogli et al., 2021) at-
testing that the gap between the two paradigms has
substantially closed, also this year a key element
of the evaluation was to set up a shared framework
for their comparison. For this reason, and to re-
liably measure progress with respect to the past
rounds, the general evaluation setting was kept un-
changed. This stability mainly concerns two as-
pects: the allowed architectures and the test set
provision.

On the architecture side, participation was al-
lowed both with cascade and end-to-end (also
known as direct) systems. In the latter case, valid
submissions had to be obtained by models that:
i) do not exploit intermediate symbolic represen-
tations (e.g., source language transcription or hy-
potheses fusion in the target language), and ii) rely
on parameters that are all jointly trained on the
end-to-end task.

On the test set provision side, also this year
participants could opt for processing either a pre-
computed automatic segmentation of the test set
or a version of the same test data segmented
with their own approach. This option was main-
tained not only to ease participation (by remov-
ing one of the obstacles in audio processing) but
also to gain further insights about the importance
of a proper segmentation of the input speech. As
highlighted in (Ansari et al., 2020), effective pre-
processing to reduce the mismatch between the
provided training material (often “clean” corpora
split into sentence-like segments) and the supplied
unsegmented test data is in fact a common trait of
top-performing systems.

Multiple submissions were allowed, but par-
ticipants had to explicitly indicate their “pri-
mary” (one at most) and ‘“contrastive” runs,
together with the corresponding type of sys-
tem (cascade/end-to-end), training data condition
(constrained/unconstrained), and test set segmen-
tation (own/given).

3.2 Data and Metrics

Training and development data. Also this year,
participants had the possibility to train their sys-
tems using several resources available for ST, ASR
and MT. The major novelty on the data front

is that a new TED-derived resource was added
to the training corpora usually allowed to sat-
isfy the “constrained” data condition. The new
data come from the English-German section of the
MuST-C V2 corpus’ and include training, dev, and
test (Test Common), in the same structure of the
MuST-C V1 corpus (Cattoni et al., 2021) used last
year. Since the 2021 test set was processed using
the same pipeline applied to create MuST-C V2,
the use of the new training resource was strongly
recommended. The main differences with respect
to MuST-C v1 are:

e More talks, which results in 20k more au-
dio/text segments;

* Improved cleaning strategies able to better
discard low-quality triplets (audio, transcript,
translation), in particular when the text is not
well-aligned with the audio and the audio is
shorter than 50 millisecs;

* The talks were downloaded from the
YouTube TED channel,® where higher qual-
ity audio/videos are available with respect
to the TED website used for the previous
version of MuST-C. The downloading was
performed by means of youtube-dl,” the
well-known open-source download manager,
specifying the “-f bestaudio option”. The au-
dios were finally converted from two (stereo)
to one (mono) channel and downsampled
from 48 to 16 kHz, using FFmpeg.!° Upon
inspection of the spectrograms of the same
talks in the two versions of MuST-C, it
clearly emerges that the upper limit band
in the audios used in MuST-C V1 is 5 kHz,
while it is at 8 kHz in the latest version,
coherently with the 16 kHz sample rate.
This difference does not guarantee the
fully compatibility between V1 and V2 of
MuST-C.

Besides MuST-C V2, also this year the allowed
training corpora include:

e MuST-C V1 (Di Gangi et al., 2019);

* CoVoST (Wang et al., 2020);

"http://ict.fbk.eu/must-c/
$http://www.youtube.com/c/TED/videos
‘http://youtube-dl.orqg/
Ohttp://ffmpeg.org/



* WIT? (Cettolo et al., 2012) ;

* Speech-Translation TED corpus'';
 How?2 (Sanabria et al., 2018)'?;

¢ LibriVoxDeEn (Beilharz and Sun, 2019)13;
* Europarl-ST (Iranzo-Sénchez et al., 2020);

e TED LIUM v2 (Rousseau et al., 2014) and v3
(Hernandez et al., 2018);

o WMT 2019'# and 2020'>;
* OpenSubtitles 2018 (Lison et al., 2018);

* Augmented LibriSpeech (Kocabiyikoglu
etal., 2018)'°

 Mozilla Common Voice!” ;
* LibriSpeech ASR corpus (Panayotov et al.,
2015).

The list of allowed development data includes
the dev set from IWSLT 2010, as well as the
test sets used for the 2010, 2013, 2014, 2015
and 2018 IWSLT campaigns. Using other train-
ing/development resources was allowed but, in
this case, participants were asked to mark their
submission as an “unconstrained” one.

Test data. This year’s new test set was built
from 17 TED talks that are not included yet in the
public release of the corpus. Similar to last year,
participants were presented with the option of pro-
cessing either an unsegmented version (to be split
with their preferred segmentation method) or an
automatically segmented version of the audio data.
For the segmented version, the resulting number of
segments is 2,336 (corresponding to about 4h15m
of translated speech from 17 talks). To measure
technology progress with respect to last year’s
round, participants were asked to process also the
undisclosed 2020 test set that, in the segmented
version, consists of 2,263 segments (correspond-
ing to about 4.1 hours of translated speech from
22 talks).

Yhttp://113pcl06.ira.uka.de/~mmueller/
iwslt-corpus.zip

Zonly English - Portuguese

Bonly German - English

“http://www.statnt.org/wnt19/

Bhttp://www.statnt.org/wnt20/

"Sonly English - French

"http://voice.mozilla.org/en/datasets —
English version en_1488h_2019-12-10

Metrics. Systems’ performance was evaluated
with respect to their capability to produce trans-
lations similar to the target-language references.
Differently from previous rounds, where such sim-
ilarity was measured in terms of multiple auto-
matic metrics,'® this year only the BLEU met-
ric (computed with SacreBLEU (Post, 2018) with
default settings) has been considered. Instead of
multiple metrics, the attention focused on consid-
ering two different types of target-language refer-
ences, namely:

* The original TED translations. Since these
references come in the form of subtitles, they
are subject to compression and omissions to
adhere to the TED subtitling guidelines.'”
This makes them less literal compared to
standard, unconstrained translations;

* Unconstrained translations. These references
were created from scratch?® by adhering to
the usual translation guidelines. They are
hence exact (more literal) translations, with-
out paraphrasing and with proper punctua-

tion.
Lang Sentences Words
EN 2,037 41,214
DE - Orig 2,037 33,925
DE - Uncon.| 2,037 40,239

Table 2: Statistics of the official test set for the offline
speech translation task (zst2021).

As shown in Table 2, the different approaches
to generate the human translations lead to sig-
nificantly different references. While the uncon-
strained translation has a similar length (counted
in words) compared to the corresponding source
sentence, the original is ~15% shorter in order to
fulfil the additional constraints for subtitling.

Besides considering separate scores for the two
types of references, results were also computed by
considering both of them in a multi-reference set-
ting. Similarly to last year, the submitted runs

"®These were: case-sensitive/insensitive BLEU (Papineni
et al., 2002b), case-sensitive/insensitive TER (Snover et al.,
2006), BEER (Stanojevic and Sima'an, 2014), and Charac-
TER (Wang et al., 2016)

Yhttp://www.ted.com/participate/
translate/subtitling-tips

2We would like to thank Facebook, and in particular Juan
Pino, for providing us with this new set of references.



were ranked based on case-sensitive BLEU cal-
culated on the test set by using automatic re-
segmentation of the hypotheses based on the ref-
erence translations by mwerSegmenter.”!

3.3 Submissions

We received submissions from 12 teams, which is
a slight increase (+2) over last year’s round. Also
this year, participants come from the industry (the
majority), the academia and other research insti-
tutions. In terms of ST paradigms, though quite
evenly distributed, architectural choices show a
slight preference for the cascade approach, which
highlights a countertrend strategy with respect to
the 2020 round, in which half of the participants
opted for end-to-end submissions only. In detail:

e 5teams (BUT, HW-TSC, L1, OPPO, VUS)
participated only with cascade systems;

* 3 teams (FBK, NIUTRANS, UPC) partici-
pated only with end-to-end systems;

4 teams (APPTEK, VOLCTRANS,
ESPNET-ST,KIT) participated with both
cascade and end-to-end systems.

In total, 55 runs were evaluated: 24 ob-
tained from cascade systems and 31 obtained
from end-to-end systems. Concerning the seg-
mentation of the test data (own/given), most of
the primary submissions (7 out of 12) were ob-
tained with “own” segmentation strategies aimed
to improve the given automatic audio splits pro-
vided to participants like in last year’s round of
the task. As regards the data condition (con-
strained/unconstrained), all participants but two
(BUT and UPC) opted for “constrained” submis-
sions obtained by building their ST models only
using the provided training resources.

In the following, we provide a bird’s-eye de-
scription of each participant’s approach.

APPTEK (Bahar et al., 2021b) participated with
both cascade and end-to-end speech translation
systems fed with “own” automatic segmentation
of the test data. The primary cascade system is
akin to the conventional cascade systems where
source transcriptions are generated as an interme-
diate representation. ASR exploits an attention-
based model (Bahdanau et al., 2015; Vaswani
et al., 2017) trained following Zeyer et al. (2018),

Mttp://www-1i6.informatik.rwth-aachen.
de/web/Software/mwerSegmenter.tar.gz

while the MT component is based on the big
Transformer model model. Passing on the re-
normalized ASR posteriors into the MT model, the
model is trained in an end-to-end fashion (inspired
by the posterior tight integrated model by Bahar
et al. 2021a) using all ASR, MT, and ST available
training data. The system uses an improved auto-
matic segmentation based on voice activity detec-
tion (VAD) and endpoint detection (EP). The pri-
mary end-to-end system also processes the speech
input with “own” automatic segmentation. It is
based on an ensemble of 4 models combining an
LSTM speech encoder and a big Transformer de-
coder, as well as a pure Transformer model for
both the encoder and the decoder. The mod-
els are trained using CTC attention loss, spec-
trogram augmentation, pretraining, synthetic data
using forward translation, and fine-tuned on the
in-domain TED talks. Following Gaido et al.
(2020a), the direct model is also fine-tuned on au-
tomatically segmented data to increase its robust-
ness against sub-optimal non-homogeneous utter-
ances.

BUT (Vydana et al., 2021) participated with
a cascade system fed with the “given” automatic
segmentation of the test data. The primary sub-
mission is obtained from a system exploiting joint
training of the ASR and MT components, model
ensembling and tight ASR-MT coupling. Both
ASR and MT are pre-trained on pre-processed
clean data and rely on Transformer-based com-
ponents. Two different ASR models are respec-
tively trained to generate normalized and punctu-
ated text, the latter leading to better results. In the
proposed joint training procedure, the context vec-
tors from the final layer of the ASR-decoder are
used as inputs by the MT module, and both mod-
els are jointly optimized using a multi-task loss.
At inference time, beam search is used to obtain
the ASR hypotheses, and the corresponding con-
text vectors obtained from the ASR model are used
by the MT model for generating translations. The
MT model also uses a beam search to produce the
hypothesis and the final ST hypothesis is obtained
by a coupled search using the joint likelihood from
ASR and MT.

ESPNET-ST (Inaguma et al., 2021) participated
with both cascade and end-to-end speech transla-
tion systems, with primary focus on the direct ap-
proach. Both systems are fed with “own” auto-
matic segmentation of the test data. The primary



cascade system exploits an ASR component based
on Conformer (Gulati et al., 2020a) and an MT
component built with Transformer-base trained
without case information and punctuation marks.
The primary end-to-end system is based on the
Conformer encoder, a stacked multi-block archi-
tecture including a multi-head self-attention mod-
ule, a convolution module, and a pair of position-
wise feed-forward modules in the Macaron-Net
style (Lu et al., 2019). The baseline conformer is
improved by training with sequence-level knowl-
edge distillation and by adopting a Multi-Decoder
architecture (which equips dedicated decoders for
speech recognition and translation tasks in a uni-
fied encoder-decoder model enabling search in
both source and target language spaces during in-
ference), model ensembling and improved VAD-
based audio segmentation (a “bottom-up” variant
of (Potapczyk and Przybysz, 2020; Gaido et al.,
2021)).

FBK (Papi et al., 2021) participated with an
end-to-end-system fed with “own” automatic seg-
mentation of the test data. The primary submis-
sion is obtained from a Transformer-based archi-
tecture trained with a pipeline involving data aug-
mentation (SpecAugment (Park et al., 2019) and
MT-based synthetic data) and characterized by
knowledge distillation and a two-step fine-tuning
procedure. Both knowledge distillation and the
first fine-tuning step (optimized by combining la-
bel smoothed cross entropy and the CTC scoring
function described in Gaido et al. 2020b) are car-
ried out on manually segmented real and synthetic
data. The second fine-tuning step is carried out on
a random segmentation of the MuST-C v2 En-De
dataset, aimed to make the system robust to auto-
matically segmented test audio data (Gaido et al.,
2020a). For the same purpose, a custom hybrid
segmentation procedure (Gaido et al., 2021) is ap-
plied to the test data before passing them to the
system.

HW-TSC participated with a cascade system
fed with “own” automatic segmentation of the test
data. The ASR component is a Transformer-large
model, which is trained on the combination of Lib-
riSpeech, MUST-C v2 and COVOST, where tran-
scriptions are pre-pended by a label indicating the
source corpus to make them distinguishable. Dur-
ing inference, the model is forced to decode in the
MUST-C alike style by setting the first token as the
MUST-C tag. The MT model is a Transformer-

large model trained on the WMT19 corpus and
fine-tuned on IWSLT-2017 text translation corpus.

KIT (Nguyen et al., 2021) participated with
both cascade and end-to-end speech translation
systems fed with “own” automatic segmentation
of the test data (obtained from the WerRTCVAD
toolkit??). The primary cascade system exploits
sequence-to-sequence ASR models trained with
three architectures (LSTM, Transformer and Con-
former). Before MT, a Transformer-based seg-
mentation module is in charge to (monolingually)
translate disfluent, broken, uncased ASR outputs
into more fluent, written-style text with punctua-
tion in order to match the data conditions of the
translation system. This is done in a shifting win-
dow manner, in which decisions are drawn by
means of a simple voting mechanism. For MT,
the systems relies on an ensemble of Transformer-
large models trained on both clean and noisy syn-
thetic (TED-derived) data. The primary end-to-
end system is an improved version of last year’s
Speech Relative Transformer architecture (Pham
et al.,, 2020c). Its encoder self-attention layer
uses Bidirectional relative attention (Pham et al.,
2020a) to model the relative distance between
one position and other positions in the sequence.
Three models, trained with SpecAugment (Park
et al.,, 2019) and different activation functions
(GeLU, SiLU and ReLU), are eventually com-
bined in an ensemble.

LT participated with a cascade system fed with
the “given” automatic segmentation of the test
data. Both the ASR (three models) and the MT
components (two models) are based on fairseq
(Ott et al., 2019)*® and were trained on MuST-C
data.

NIUTRANS (Xu et al., 2021b) participated with
an end-to-end-system fed with “own” automatic
segmentation of the test data. The primary sub-
mission relies on a deep Transformer model im-
plemented in fairseq and improved by adding the
CTC loss as auxiliary loss on the encoders. The
system is also enhanced with Conformer (used to
replace the Transformer blocks in the encoder),
relative position encoding (to improve acoustic
modeling and generalize better for unseen se-
quence lengths; Shaw et al., 2018), and stacked
acoustic and textual encoding (to better encode the

Zhttp://github.com/wiseman/
py—webrtcvad

Bhttp://github.com/pytorch/fairseq.git



speech features; Xu et al., 2021a). Data augmenta-
tion is also applied via spectrogram augmentation,
speed perturbation and sequence-level knowledge
distillation, as well as by generating new synthetic
speech from MT data and by translating into Ger-
man the English transcriptions of ASR and ST
data. Finally, ensemble decoding is applied to in-
tegrate the predictions from several models trained
with the different datasets.

OPPO participated with a cascade system fed
with the “given” automatic segmentation of the
test data. The primary submission is based on
Transformer for both the ASR and MT compo-
nents, which are trained on part of allowed train-
ing datasets (MUSTC, LibriSpeech, CoVost, and
WMT20). Structured dropout is applied to in-
crease the differences between different models,
which are eventually combined via average en-
sembling.

UPC (Gdllego et al., 2021) participated with an
end-to-end-system fed with “own” automatic seg-
mentation of the test data (inspired by (Potapczyk
et al., 2019)). The primary submission combines
a Wav2Vec 2.0 encoder and an mBART decoder,
which are respectively pre-trained on the ASR and
MT tasks. A length adaptor module, consisting
of a stack of convolutional layers, alleviates the
length discrepancy between the speech and text
modalities. Model fine-tuning to the ST task was
carried out following the LNA strategy proposed
in (Li et al., 2021). In addition, based on the ST
improvements reported in (Escolano et al., 2020),
an Adapter module was added to extract richer
representations from the output of the encoder
(Bapna and Firat, 2019). Data augmentation is
also performed via randomized on-the-fly pertur-
bations obtained by adding an echo effect and by
modifying tempo and pitch, as well as by apply-
ing masking to the output of the Wav2Vec 2.0 fea-
ture extraction module. Different approaches were
explored to combine the fine-tuning of the pre-
trained models and the training of the intermedi-
ate modules. The best performance was obtained
with a two-stage strategy, where: 1) the Wav2Vec
and mBART models are frozen and the interme-
diate modules are forced to learn how to couple
them; 2) model fine-tuning follows the LNA strat-
egy, starting from the solid initial point obtained
in the previous step.

VOLCTRANS (Zhao et al., 2021) participated
with both cascade and end-to-end speech transla-
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tion systems fed with the “given” automatic seg-
mentation of the test data. The primary cascade
system exploits a Transformer-based ASR trained,
using spectrogram augmentation, on both clean
and filtered noisy data. MT processing relies on
Transformer-based models trained with data aug-
mentation (via back-translation, knowledge dis-
tillation and ASR output adaptation) and com-
bined with model ensemble techniques. The pri-
mary end-to-end system is trained by exploiting
knowledge distillation (leveraging ASR datasets
and four MT models) for data augmentation. The
encoder and the decoder are pre-trained in a pro-
gressive multi-task learning framework, also ex-
ploiting a fbank2vec network to learn contextual-
ized audio representations from log Mel-filterbank
features.

VUS (Jo et al., 2021) participated with a cas-
cade system fed with the “given” automatic seg-
mentation of the test data. For the ASR compo-
nent, a pretrained wav2vec 2.0 model (Baevski
et al., 2020) was used for the embeddings, and
the training was conducted with a Transformer
augmented on the output layer of the wav2vec
module.  Following Potapczyk and Przybysz
(2020), data pre-processing was made to remove
training samples (laughters, applauses and erro-
neous scripts) that can lower the ASR perfor-
mance. ASR output post-processing was also car-
ried out to obtain an accurate sentence-level out-
put, such as setting the sentence boundary be-
tween the fragment texts and re-aggregating some
wrongly merged sentences. The MT compo-
nent, also based on Transformer, was trained on a
pre-processed version (language identification and
length-based filtering and written-to-spoken text
conversion through lowercasing, punctuation re-
moval and abbreviations’ expansion similar to Ba-
har et al., 2020) of the WMT 20 en-de news task
dataset.

3.4 Results

Detailed results for the offline ST task are pro-
vided in Appendix A.2. Specifically, two sep-
arate tables respectively show the BLEU scores
of participants’ primary submissions computed on
this year’s 52021 and last year’s 1512020 test sets.
In each table, three BLEU scores are reported,
namely:

* BLEU_NewRef — computed on the new (ex-
act, literal) translations described in Section



3.2;

* BLEU_TEDRef — computed on the original
(subtitle-like) TED translations;

e BLEUMultiRef — computed using both
references in a multi-reference setting.

Systems are ranked according to their
BLEU NewRef score. Background colours
are used to differentiate between cascade (white
background) and end-to-end architectures (gray
background).  Additionally, the segmentation
strategy (Own vs Given) and the training data
condition (Constrained vs Unconstrained) char-
acterising each primary submission are shown in
separate columns.

Official results. In terms of this year’s
BLEU_NewRef primary metric, the top-ranked
system achieved a BLEU score of 24.6, which
is slightly below the one obtained by last year’s
winning system (25.3). Also the average (19.8)
and median scores (21.7) are inferior compared
to last year’s round of the evaluation (average:
20.15; median: 21.81). These results, however,
are not comparable since they are computed on a
different test set (built from different TED talks),
which also comprises reference translations that
are not the original ones. The evaluation of this
year’s systems on tst2020, which is discussed
below, is hence more informative if we want
to get an idea about the actual evolution of ST
technology.

Computing BLEU on the original TED trans-
lations (RLEU_TEDRef) results in overall scores
that are significantly lower (top submission: 20.3;
average: 16.6; median: 18.2). This large drop
indicates the difficulty for all systems to gener-
ate translations that are similar to the subtitle-like
ones characterising the recent TED talks included
in this year’s test set.

Unsurprisingly, the BLEU . MultiRef results
are considerably higher due to the positive effect
of combining more references (top submission:
34.0; average: 27.7; median: 30.5). However, it is
worth remarking that, in this multi-reference set-
ting, 12 primary submissions out of 16 reached a
BLEU score above 30.0.

Cascade vs end-to-end. A major finding from
last year (Ansari et al., 2020) was about the com-
plete reduction of the performance gap between
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cascade and end-to-end systems. In the same di-
rection, the analysis proposed in (Bentivogli et al.,
2021) has recently shown through manual analy-
ses and post-editing-based evaluations that the two
paradigms are now substantially on par. In appar-
ent contradiction, this year’s results depict a dif-
ferent situation: the two top ranked submissions
in the official ranking (based on BLEU_NewRef)
are in fact produced with cascade systems (re-
spectively scoring 24.6 and 23.4 BLEU). The first
end-to-end submission (obtained under the same
segmentation and training data conditions) is two
BLEU points below (22.6) the top-ranked system.
However, it is interesting to note that the type of
reference translations used for evaluation makes a
big difference in terms of final results. While all
systems perform significantly worse when BLEU
is computed against the original TED translations,
some low-ranked submissions would climb the
rankings if BLEU_TEDRef were used as primary
metric. Although this year’s winner would remain
the same, the 12t" and 13" submission would
jump respectively to the 3"¢ and 2" position. No-
tably, with a ranking based on BLEU_TEDRef, 7
of the top 10 positions would be occupied by the
end-to-end submissions.?*

All in all, in terms of performance distance be-
tween the two paradigms, our findings support
those of (Bentivogli et al., 2021) about relying on
automatic scores computed against independent
references. Across metrics, test sets and language
directions, they are less coherent than those com-
puted on human post-edits. Different from last
year, in this round the clear winner according to
all possible rankings is a cascade system. How-
ever, its distance from the other end-to-end sys-
tems varies considerably depending on the type
of reference translations used (down to 0.7 BLEU
points in the ranking based on BLEU_TEDRef).
In light of this variability, manual analyses and
post-editing-based evaluations like the ones pre-
sented in (Bentivogli et al., 2021), would help to
precisely assess if the observed BLEU score dif-
ferences (marginal with BLEU_TEDRef) actually
make one approach preferable to the other by final
users.

*System’s ranking based on BLEU_NewRef would end
up similarly, with 6 end-to-end submissions in the top 10 po-
sitions (the top 2 still being the same cascade systems domi-
nating the official ranking).



The importance of input segmentation. An-
other important finding from last year’s evaluation
concerned the importance of properly segmenting
the input speech at test time, so to feed the systems
with inputs that are closer to the sentence-like seg-
ments present in the clean corpora on which they
are trained. Also this year, the top five primary
runs submitted are all obtained by systems oper-
ating with “own” segmentation strategies, which
prove to be helpful independently of the under-
lying paradigm. This is confirmed by the fact
that the three lowest BLEU scores are achieved
by participants opting for the “given” segmen-
tation. Similar trends emerge with all possible
rankings (BLEU_NewRef, BLEU_TEDRef, and
BLEU MultiRef). The importance of a proper
segmentation of the input speech is even more ev-
ident if we look at the results computed on the
tst2020 test set, where the top seven runs are ob-
tained with custom segmentation and the worst
5 with the given one. These findings are in line
with last year’s observations and motivate further
efforts on improving this critical pre-processing
step.

Progress wrt 2020. Overall results computed on
1512020 are higher compared to those obtained on
tst2021. However, being the two test sets differ-
ent as discussed above, the scores are not directly
comparable to draw reliable conclusions about the
ST technology evolution (which might wrongly
be considered as an involution by merely com-
paring raw BLEU scores on the two benchmarks).
Rather, more can be said if we only focus on how
this year’s systems behave on £s:2020. The im-
provement is evident both if we look at the average
performance (increasing by more than 1 BLEU
point from 20.15 to 21.17) and if we concentrate
on the best systems. Specifically, with “own” test
data segmentation methods, three teams achieved
BLEU scores that are higher (up to 0.7 points) than
the one obtained by the 2020 winner under this
condition (25.3). With the “given” automatic au-
dio splits, two teams improved (up to 1.8 points)
the highest score obtained last year under this con-
dition (22.49). Interestingly, similar to last year,
the best system is an end-to-end one. The per-
formance distance with respect to the best cas-
cade result on 512020 is even larger (0.6 BLEU
points) compared to the one observed last year
(0.24). On one side, these results confirm that, on
last year’s test data (and with BLEU scores com-
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puted on the original TED translations), the end-
to-end paradigm has an edge on the cascade one.
On the other side, they confirm the above observa-
tions about the variability of automatic evaluation
outcomes, which are highly affected by the overall
testing conditions.

Final remarks. By inspecting this year’s results,
we can draw two final observations that, with an
eye at the future, provide us with possible indi-
cations for the next rounds of the IWSLT offline
ST task. One is about the training data condi-
tion: additional training resources did not yield
visible advantages. Unfortunately, having only
two “unconstrained” submissions makes it hard to
draw reliable conclusions on this aspect. How-
ever, one might wonder if differentiating between
constrained and unconstrained submissions still
makes sense if the general goal is to boost research
on a rapidly evolving technology. Is it a good
source of interesting observations or has it become
an irrelevant distinction? Reasoning on this ques-
tion might yield indications for future rounds of
the task.

The other observation is about how perfor-
mance is distributed with respect to the two ST
paradigms: while the results of cascade systems
are spread across the whole performance interval
(3.6 — 24.6 for BLEU_NewRef), the scores ob-
tained by end-to-end models are concentrated in a
two-point interval (20.6 — 22.6). Such a close per-
formance of direct models should stimulate reflec-
tion on the fact that either the architectural restric-
tions posed to define the “end-to-end” setting (i.e.
bypass any intermediate symbolic representation),
or other limitations of current technology, result
in systems that are quite similar to each other. Is it
still reasonable, for the good of ST, limiting partic-
ipant’s freedom with arbitrary, pre-defined archi-
tectural constraints? Setting less restrictive con-
ditions to experiment with, thus opening to partic-
ipation with alternative approaches (e.g. by avoid-
ing explicit architectural constraints) is a possi-
ble direction to promote more innovation in future
rounds of the evaluation campaign.

4 Multilingual Speech Translation

While multilingual translation is an established
task, until recently, few parallel resources ex-
isted for speech translation and most remain only
for translation from English speech. Multilin-
gual models enable transfer from related tasks,



which is particularly important for low-resource
languages; however, parallel data between two
otherwise high-resource languages can also often
be rare, making multilingual and zero-shot trans-
lation important for many resource settings.

In addition to parallel speech and translations,
many sources of data may be useful for speech
translation: monolingual speech and transcripts,
parallel text, and data from other languages or lan-
guage pairs. While cascades of separately trained
automatic speech recognition (ASR) and machine
translation (MT) models can leverage all of these
data sources, how to most effectively do so with
end-to-end models remains an open and exciting
research question.

Speech Target Languages
fr pt

Supervised Supervised Supervised Supervised Supervised

en es it

es
fr
pt
it

Supervised Supervised Supervised Supervised
Supervised Zero-shot
Zero-shot

Supervised

Zero-shot

Supervised

Table 3: Multilingual task language pairs. Lan-
guages are represented by their ISO 639-1 code.
Speech, transcripts, and translations were provided for
all Supervised tasks; for Zero-shot ST tasks, only
speech and transcripts were provided during training,
though target language text may be seen with other
source languages. Participants were required to submit
translations for all official translation directions.

4.1 Challenge

Motivated by the above, the multilingual speech
translation task provided data for two condi-
tions: supervised, and zero-shot. We provided
speech and transcripts for four languages (Span-
ish, French, Portuguese, Italian) and translations
in a subset of five languages (English, Span-
ish, French, Portuguese, Italian) as shown in Ta-
ble 3. For zero-shot language pairs, data for
ASR (speech and transcripts) was released for
training, but not translations; the target languages
could be observed in other language pairs in train-
ing. Both translation directions for one source
language (Italian) and one of two translation di-
rections for another (Portuguese) were chosen to
be zero-shot to enable comparison between su-
pervised and zero-shot conditions with the same
source language, and to measure the impact of
having no supervised ST data at all. Participants
could use the provided resources in any way.

At evaluation time, we provided speech in the
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four source languages and asked participants to
generate translations in both English and Spanish.
Both constrained submissions (using the provided
data only, e.g., no models pretrained on external
data) and unconstrained submissions were encour-
aged and evaluated separately. Submitting transla-
tions for additional optional language pairs as well
as generated transcripts (ASR) for evaluation was
not mandatory but encouraged as a useful point of
analysis.

4.2 Data and Metrics

For this task we use the Multilingual TEDx data
(mTEDx) (Salesky et al., 2021). The data is
derived from TEDx talks and translations. The
mTEDx data is segmented and aligned at the
sentence-level (using automatically generated seg-
mentations and alignments). mTEDx is publicly
available on OpenSLR.>> The data released dur-
ing the training period contained train, valida-
tion, and progress test sets. For the purposes of
this task, ST data for three language pairs was
withheld until after the evaluation period (Zero-
shot in Table 3). Use of any of resources be-
yond Multilingual TEDx made a submission un-
constrained. Any publicly available additional
data or pretrained models were permitted for train-
ing unconstrained systems.

We evaluated translation output using BLEU
as computed by SACREBLEU (Post, 2018) and
WER for ASR output. We computed all scores
using the provided utterance segmentations from
Multilingual TEDx. WER was computed on low-
ercased text with punctuation removed.

4.3 Submissions

We received 15 submissions from 7 teams.

FAIR (Tang et al., 2021a) submitted uncon-
strained end-to-end models which leverage pre-
trained multilingual wav2vec 2.0 and mBART
models, and finetune on the provided mTEDx MT
and ST data as well as additional corpora. They
compare different wav2vec 2.0 models trained
on different multilingual corpora and either text
(Baevski et al., 2020) or IPA targets (Wang et al.,
2021), and mBART with BPE (Liu et al., 2020)
or IPA representations (Tang et al., 2021b). They
combine different joint and speech-only finetun-
ing, and add an adaptor layer (Li et al., 2021)
between the two pretrained models for adapta-

Phttp://openslr.org/100/



tion and downsampling. They ultimately ensem-
ble three models for their final submission.

HWN (Zeng et al., 2021) used a unified
Transformer architecture in which audio and text
data can be featurized separately by a Conv-
Transformer (Huang et al., 2020) and text embed-
dings, before being fused and used as input to a
single encoder and decoder. They use curriculum
learning by first training the unified model for the
ASR and MT tasks, then continue training adding
the ST task and finally fine-tuning using the ST
task data only. They also use multiple data aug-
mentation techniques and model ensembling.

KIT (Pham et al., 2021) trained deep Trans-
former models with relative attention for ASR and
ST (Pham et al., 2019, 2020b) to create both cas-
caded and E2E models. They used additional tech-
niques such as distillation, Macaron feed-forward
layers, and the creation of synthetic data to signif-
icantly improve both models’ performance. Their
final submission is an ensemble of their cascade
and E2E systems.

UM-DKE (Liu and Niehues, 2021) trained
multilingual cascade and E2E models with a va-
riety of techniques to improve performance. They
start with a multilingual ASR model, which incor-
porates language embeddings, speed perturbation,
and ensembling. They improve their multilin-
gual MT by removing residual connections in the
Transformer architecture, and further ensembling.
Finally they train an E2E ST system which ben-
efits from joint training with ASR, pseudo-labels
for synthetic data to improve zero-shot pairs, and
‘multi-view ensembling,” which ensembles prob-
abilities based on three different speed perturba-
tions.

ON-TRAC (Le et al.,, 2021) used a dual-
decoder Transformer architecture (Le et al., 2020),
which includes a single encoder for speech data
and separate decoders (that interact with each
other) for each of the ASR and ST tasks. They
trained ASR and MT models to initialize the ST
model and used SpecAugment augmentation. No
synthetic data was created for zero-shot transla-
tion.

UEDIN (Zhang and Sennrich, 2021) trained
multilingual Transformer models with adaptive
feature selection (Zhang et al., 2020) to reduce
data dimensionality by selecting the most informa-
tive speech features. They create pseudo-speech
translation data which provides significant im-
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provements on all language pairs, not only zero-
shot. They additionally use sparsified linear at-
tention, RMSNorm, scheduling language-specific
modeling, and multi-task learning to improve their
models, and ensemble models of multiple sizes for
their final submission.

ZJU (Zhang, 2021) submitted an ensemble of
cascaded ST models, using a Conformer (Gulati
et al., 2020b) for ASR and a multilingual Trans-
former MT model. They use back-translation to
create data for zero-shot pairs, add noised data to
adapt their MT model to ASR output, and include
masked training. They additionally compared end-
to-end models with data augmentation and multi-
task training.

4.4 Results

Results for the Multilingual Task are shown in Ap-
pendix A.3. We calculated task results using the
average BLEU on all official ST language pairs:
all primary submissions are shown in Table 5.
The unconstrained submission from FAIR outper-
formed all other primary submissions on both su-
pervised and zero-shot language pairs. The KIT
submission was the strongest constrained system,
aided in part by strong ASR pretraining: ASR re-
sults are shown in Table 8. All but one primary
submission were ensembles of either multiple end-
to-end systems, or end-to-end and cascaded mod-
els. We saw a mix of end-to-end and cascaded sub-
missions across primary and constrastive submis-
sions (Table 6); in general, the end-to-end models
outperformed cascaded submissions, particularly
under zero-shot conditions. We discuss different
aspects of the task and submissions further below.

Constrained vs unconstrained. Use of addi-
tional data beyond mTEDx appeared to be a clear
benefit on all ST pairs, as the FAIR system per-
formed best on all language pairs. Interestingly,
the performance difference between the best un-
constrained and constrained systems across su-
pervised and zero-shot tasks was similar. When
we look at the constrastive submissions and ASR,
however, the underlying reason appears not to be
the additional data but rather how it is used. The
FAIR baseline is initialized from the multilingual
wav2vec2.0 model XLSR-53 and the mBART de-
coder, and is outperformed by many constrained
systems. The other FAIR submissions used co-
training with the text-to-text M T task and IPA rep-
resentations for ASR and/or MT models for sig-



nificant improvements.

Zero-shot performance. Overall we saw very
encouraging performance on the zero-shot pairs,
with very little degradation from the supervised
language pairs for many systems. Three lan-
guage pairs were zero-shot: pt-es, it-en, and it-
es. While Portuguese speech was observed in an-
other translation pair, Italian speech was only ob-
served for ASR. The Italian pairs proved more
challenging, but most systems nonetheless out-
perform the supervised end-to-end baselines in
Salesky et al. (2021) through some combination
of decoder pretraining, auto-encoding ASR data,
or back-translation. Comparing supervised and
zero-shot performance with the same source lan-
guage (pt), we saw stronger performance on the
zero-shot than supervised condition, likely indica-
tive of the relatedness of the source and target lan-
guages, facilitating zero-shot translation. Though
much more English target data has been seen (for
constrained systems), pt-es and it-es are both more
closely-related languages, and all but one system
show better results on these two zero-shot lan-
guage pairs than it-en. For teams which submit-
ted both end-to-end and cascaded models, there
were small but consistent improvements on zero-
shot with end-to-end; this may suggest that E2E
models more easily transfer from observed re-
lated languages and pairs, or perhaps that end-to-
end models were more optimized. The systems
with the greatest relative difference between su-
pervised and zero-shot pairs were FAIR, HWN,
and ON-TRAC. HWN had better performance
for languages with more ASR data, and ON-
TRAC struggled without e.g. auto-encoding text.

ASR performance impact. Interestingly, ASR
performance was not necessarily indicative of ST
performance; HWN and KIT ASR outperformed
the FAIR ASR without additional training data or
ensembling, with the exception of French where
both systems struggled, particularly KIT. This
was shown in ST performance; UEDIN outper-
formed KIT on language pairs where French was
the source language, precisely where UEDIN had
better ASR. All submitted ASR systems outper-
formed the end-to-end ASR in Salesky et al.
(2021), in part through better optimization and use
of multilingual models, and in particular use of
the CTC objective. Their hybrid LF-MMI mod-
els remain generally stronger for Portuguese and
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French; not necessarily correlated with data size.

Ensembling. Most primary systems were en-
sembles of 2+ models, which provided improve-
ments of up to 2 BLEU compared with the indi-
vidual systems, some of which were submitted as
constrastive (Table 6). We saw different ensem-
bling techniques, using joint decoding or averag-
ing model output probabilities. Ensembled mod-
els were alternatively models of different sizes
(UEDIN), trained on different data (FAIR), dif-
ferent combinations of fine-tuning and knowledge
distillation (HWN), system with back-translations
and with ASR noise added (ZJU), speed perturba-
tions of the same input (UM-DKE), or cascaded
and end-to-end models (KIT).

Unofficial language pairs. The unofficial lan-
guage pairs (Table 7) have the same source lan-
guages as the official language pairs, but different
target languages. The test sets are parallel with
the official blind evaluation sets. The relative per-
formance between primary systems on these ad-
ditional targets remains similar. Performance on
more closely related languages (es-pt) was in fact
generally higher, and language pairs with less-
observed target languages (es-fr, es-it) were lower.
The exception was FAIR, where average perfor-
mance was almost exactly the same as on the offi-
cial supervised pairs; the additional datasets used
for pretraining likely erase some of these resource
differences, supported by the differences between
their constrastive submissions which use different
pretraining sources.

End-to-End vs Cascade. Three groups submit-
ted an end-to-end system and a cascaded sys-
tem. In all three cases, the end-to-end system out-
performs the cascaded approach. Since the ten-
dency in the offline translation task (section 3)
is different (there the cascaded approaches typi-
cally perform better than the end-to-end models),
this opens up several interesting research ques-
tions that should be investigated further. There
are several differences between the two tasks that
could influence the ranking between the end-to-
end and cascaded models: First of all, the amount
of ASR and MT training data that is available in
addition to end-to-end training data is different.
In the offline task, there is significantly more data
available for the auxiliary tasks (particularly MT),
which may benefit cascaded models more. Sec-
ondly, the multilingual task uses provided auto-



matic sentence segmentation which is consistent
across train and test, while the offline task does
not provide segmentation at test time, requiring
teams to perform segmentation to translate, similar
to online or simultaneous conditions, which cas-
caded models may be more robust to. And finally,
the ability to facilitate multilingual and zero-shot
speech translation might be different in end-to-end
and cascaded models.

5 Low-Resource Speech Translation

The goal of the low-resource speech translation
task is to investigate pathways for developing
speech translation systems for currently under-
served languages. The majority of the world’s lan-
guages are predominantly oral, hence the need for
speech-based language tools (translation included)
is paramount for them to be of any use to the lan-
guage community. At the same time, most of these
languages are also under-resourced, with little to
no data being available for speech transcription
and translation.

While offline speech translation has a long-
standing tradition at the IWSLT campaign and
both monolingual and multilingual models of-
fer impressive promises for downstream model
deployment, the majority of recent advances in
speech translation both require large amounts of
data and are typically benchmarked on language
pairs with such data abundance. However, for the
vast majority of the world’s languages there exist
little speech-translation parallel data at the scale
needed to train modern speech translation mod-
els. Instead, in a real-world situation one will have
access to limited, disparate resources (e.g. word-
level translations, speech recognition, small par-
allel text data, monolingual text, raw audio, etc).
The low-resource track aims to fill this gap, by
encouraging and facilitating research on speech-
translation for data-scarce language pairs.

5.1 Challenge

As described above, the shared task focused
on the problem of developing speech transcrip-
tion and translation tools for under-resourced lan-
guages. This year’s iteration in particular focused
on speech translation tools that would match the
real-world needs of humanitarian organizations.
There were no restrictions on the type of mod-
els (e.g. end-to-end vs. cascade) or additional
data that were allowed, the goal for the partic-
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ipants being producing the best possible system
under these challenging settings. In collaboration
with the Translators without Border, we provided
newly collected speech and transcripts in two lan-
guages, Coastal Swabhili (ISO code: swh) and Con-
golese Swahili (ISO code: swc), as well as trans-
lations in English and French respectively. In ad-
dition, we provided pointers to other monolingual
speech datasets in the source Swabhili varieties, as
well as textual parallel corpora between the source
and target languages.

5.2 Data and Metrics

The Swahili Varieties Speech Translation
Dataset For the purposes of the task we created
and released a new speech translation dataset for
the two Swahili varieties. The new dataset is pub-
licly available.?¢

The training data were derived from the
Gamayun minikits that the Translators without
Borders had released for Congolese and Coastal
Swahili text translation (Oktem et al., 2020),
which included sentence-level translations be-
tween Coastal Swahili and English as well as Con-
golese Swahili and French.?’” We additionally col-
lected read versions for 5,000 sentences from this
dataset. For each variety the training set includes
voices from 6 speakers (3 male and 3 female). The
collection was carried out using mobile phones, as
opposed to clean studio settings, to better match
the real-world use-case scenarios the shared task
envisions.

The development and test data are derived from
the TICO-19 dataset (Anastasopoulos et al., 2020),
which is a multi-parallel evaluation benchmark on
the COVID-19 domain in more than 33 languages.
The original English sentences were translated
into Coastal Swahili and French, and the French
translations were then translated into Congolese
Swabhili. All translations were performed by pro-
fessional translators and an extensive quality as-
surance process was followed. For the purposes of
the shared task we additionally collected read ut-
terances in the two Swabhili varieties for all 3k sen-
tences. We follow the original dev and test splits.
The dev set utterances encompass 2 speakers (1

®nttps://drive.google.com/file/d/
11hifoEYOKzj6s11W_taKoVW_mAvzzz04/view?
usp=sharing

Z'This dataset was previously used for developing text-
based translation systems for humanitarian response (Oktem
etal., 2021).



Language Train Dev Test
Pair #utt.  #speakers #utt. #speakers #utt.  #speakers
swh-eng | 4599 6 (3M,3F) 868 2(IM,1F) 1063 3 (2M, IF)
swe-fra | 5000 6 (3M,3F) 868 2(IM,1F) 2124 6 (3M, 3F)

Table 4: Statistics of the newly-released Swabhili varieties speech translation corpus.

male, 1 female) in each language, and the test set
includes 3 (2M, 1F) and 6 (3M, 3F) speakers for
swh and swc respectively.

Statistics on the whole dataset used for the
shared task following cleaning and preprocessing
are listed in Table 4. The final dataset is 4-way par-
allel; the English and French sides are translations
of each other, creating opportunities for the evalu-
ation of multilingual systems, as well as, in the fu-
ture, speech-to-speech translation between the two
Swabhili varieties.

Additional Data Last, we reiterate that we al-
lowed the use of any other available data, such as
any data from the Offline and Multilingual Shared
Tasks, any speech recognition corpora like the
Swahili ALFFA dataset (Gelas et al., 2012) or
the Mozilla Common Voice datasets (Ardila et al.,
2020), as well as any text translation datasets like
the Gamayun minikits (Oktem et al., 2020). We
also allowed the use of pre-trained models like
wav2vec (Schneider et al., 2019; Baevski et al.,
2020) or mBART (Liu et al., 2020) (among oth-
ers).

Metrics Systems’ performance was evaluated
with respect to their capability to produce trans-
lations similar to the target-language references.
We used the BLEU metric computed with Sacre-
BLEU, in a case-insensitive setting. In addition,
we invited participants who produced speech tran-
scriptions in the Swahili variety as a by-product of
their system (e.g. if they use a ASR+MT cascade
approach) to also submit them. These were evalu-
ated using case-insensitive word error rate (WER).
The choice of case-insensitivity is due to our focus
on producing usable output that aids comprehen-
sion; we deem that the effect of proper casing is
largely minor in such challenging settings.

5.3 Submissions

The shared task received 4 submissions (9 total
runs across the {swh,swc}x{eng,fra} pairs) from
3 teams. All teams followed a cascade ASR—-MT
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approach in their primary submission — this indi-
cates that end-to-end learning is still very chal-
lenging in such data-scarce settings, and leaves a
lot of room for further future exploration.?®

In the following, we provide an overview of
each submission.

USYD-JD (Ding et al., 2021) uses a pipeline
approach, focusing in the MT component and its
ability to handle ASR errors. The ASR compo-
nent is trained on the Swahili Varieties dataset,
the ALFFA corpus, and the IARPA Babel Swahili
Language Pack using the default settings in Kaldi,
also lowercasing all sentences and removing punc-
tuation. The final ASR is post-corrected with
the SlotRefine method (Wu et al., 2020). The
MT component is a Transformer (Vaswani et al.,
2017) that operates in a non-autoregressive man-
ner, trained on almost all available OPUS swa-
eng datasets, but additionally utilizing denoising
pre-training and bidirectional self-training, tagged
back-translation, transductive fine-tuning, output
reranking and output post-processing. This NMT
system is the only that explores extensive strate-
gies for denoising and pre-training, reaching a

IMS  (Denisov et al., 2021) uses a pipeline ap-
proach. The ASR component for the primary
submission is a Conformer (Gulati et al., 2020b)
in its ESPnet implementation, trained by fine-
tuning a pretrained SPGISpeech model (O’Neill
et al., 2021) on both Swahili varieties using the
Swahili Varieties dataset, Gamayun samples, the
ALFFA corpus, and the JARPA Babel Swahili
Language Pack, also applying some preprocessing
steps like converting all numbers to words and re-
moving punctuation. The MT system is a Trans-
former (Vaswani et al., 2017) using multi-task
learning by tagging the input (to distinguish clean
text vs. ASR output). They also attempted an end-

2We note that the shared task received more than 20 initial
registrations. We suspect that the limited amount of received
submissions was exactly because of how challenging it can
be to create a system that produces decent outputs in these
extremely low-resource settings.



to-end ST system which however performed sig-
nificantly worse.

ON-TRAC (Le et al., 2021) used a pipeline
approach, using a hybrid HMM/TDNN au-
tomatic speech recognition system fed by
wav2vec (Schneider et al., 2019) features, with its
output then provided to a neural MT system. The
ASR system was trained on the Swahili Varieties
dataset, the ALFFA corpus, and the IARPA Babel
Swahili Language Pack. The NMT system uses
LSTMs with attention, with the swa-eng also us-
ing subwords, while the swc-fra system operates
at the word level. The swa-eng MT system was
trained on 2.2M sentence pairs, resulting from the
filtering through langID of all data available on
OPUS.?” The swc-fra NMT system was trained
on 1.1M parallel sentences.

5.4 Results

Out of the submitted systems, the USYD-JD sub-
mission that explored pre-training strategies was
the clear winner of the eng-swa task achieving a
BLEU score (case insensitive) of 25.3. Notably,
they only focused on the MT component of the
pipeline, making it robust to ASR errors and utiliz-
ing monolingual data effectively through denois-
ing and pre-training. For the swc-fra pair, the IMS
system was the best performing submission for
the swc-fra pair with a BLEU score of 13.5. The
evaluation of all submissions (including optional
language pairs and ASR transcription accuracy) is
provided in the Appendix.

The difference in accuracy between the two lan-
guage pairs could potentially be attributed to the
lack of data in Congolese Swabhili (as most avail-
able datasets are in the Coastal variety). How-
ever, the pre-training approaches that the USYD-
JD submission uses seem very promising towards
building robust MT systems also for the Con-
golese variety. A clear path for future work to-
wards even better ST systems could explore a
pipeline of the improved ASR systems of the ON-
TRAC or IMS submissions with the NMT system
of the USYD-JD submission. The lack of end-to-
end approaches in the submissions (and the evi-
dence from the IMS contrastive submission) sug-
gest that additional research is needed in order to
achieve competitive results in such data-scarce set-
tings with end-to-end models.

Phttps://opus.nlpl.eu/
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A.1. Simultaneous Speech Translation

- Summary of the results of the simultaneous speech translation text track.
- Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2 or IWSLT21 dev set)
- Raw system logs are also provided on the task web site.*

English-German tst-COMMON v2 Blind Test Set
BLEU AL AP DAL BLEU AL AP DAL

Low Latency

USTC-NESLIP 33.16 2.66 0.64 4.38  26.89 2.81 0.63 4.72
VOLCTRANS 28.76 2.86 0.69 4.22 23.24 3.08 0.68 4.25

APPTEK 30.03 2.94 0.68 4.40 22.84 3.12  0.66 4.66
UEDIN 25.06 2.33 0.63 3.69  22.30 4.22  0.71 5.54
Medium Latency

USTC-NESLIP 34.82 5.80 0.80 8.89  29.40 5.94 0.78 9.29
VOLCTRANS 32.88 5.80 0.83 9.06  27.22 6.30 0.81 9.24

APPTEK 31.73 5.89 0.80 9.57  25.70 6.22 0.78 10.40
UEDIN 30.58 5.89 0.80 7.20  24.56 6.92 0.81 8.20
High Latency

USTC-NESLIP 3547 1221 095 15.18 30.03 1235 0.93 16.33
VOLCTRANS 33.23 11.03 0.93 1140 26.82 12.03 0.92 12.39

APPTEK 33.16 11.19 0.92 14.44 26.62 12.00 0.91 16.05
UEDIN 33.10 14.69 0.98 15.17 26.50 1541 0.96 16.04
English-Japanese IWSLT 21 DEV Blind Test Set

BLEU AL AP DAL BLEU AL AP DAL

Low Latency

USTC-NESLIP 16.36 490 0.79 10.30 17.54 4.92 0.78 8.18

VOLCTRANS 15.80 6.34 0.89 13.57 16.91 6.54 0.89 11.26
NAIST 13.77 7.29 0.88 8.07 14.41 7.21 0.88 7.97
Medium Latency
USTC-NESLIP 17.53 842 0.92 11.81 18.30 7.61 0.90 10.59
VOLCTRANS 15.80 6.34 0.89 13.57 16.91 6.54 0.89 11.26
NAIST 15.22 11.48 097 11.98 16.20 11.54 0.97 11.98
High Latency
USTC-NESLIP 17.28 11.67 097 11.14 18.17 11.71 097 13.72
VOLCTRANS 15.85 11.19 0.97 0.97 1697 11.27 0.97 11.90
NAIST 15.57 13.70 0.99 13.91 16.19 13.83 0.99 14.01

ttps://iwslt.org/2021/simultaneous
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- Summary of the results of the simultaneous speech translation (segmented and unsegmented) speech track
- Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2, only segmented input.)
- Raw logs are also provided on the task web site.

English-German tst-COMMON v2
BLEU AL AP DAL AL(CA) AP(CA) DAL(CA)

Low Latency

USTC-NESLIP 2740 0.92 0.68 1.42 2.33 1.33 4.38
Medium Latency
USTC-NESLIP  29.68 1.86 0.82 2.65 3.66 1.48 5.36
APPTEK 24.88 1.96 0.88 3.08 3.37 1.17 4.10
High Latency
USTC-NESLIP  30.75 2.74 090 3.63 5.05 1.56 6.23
APPTEK 26.77 3.00 0.99 548 6.66 1.32 6.93
English-German Blind Test Set

BLEU AL AP DAL AL(CA) AP(CA) DAL(CA)

Low Latency

USTC-NESLIP  21.85 1.04 0.66 147 2.99 1.52 6.41
Medium Latency

USTC-NESLIP  24.83 1.96 0.80 2.79 4.49 1.63 7.15

APPTEK 16.60 1.95 0.80 2.73 2.86 1.06 3.86
High Latency

USTC-NESLIP  25.62 2.86 0.88 3.85 6.10 1.68 7.93

APPTEK 21.08 3.99 0.94 5.06 5.00 1.16 6.12
Unsegmented

USTC-NESLIP  25.31 3091 0.51 26.47 264.28 1.10 536.54

APPTEK 15.03 107.11 0.44 32.92 149.52 0.63 175.79
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A.2. Offline Speech Translation

Speech Translation: TED English-German tst 2021

- Systems are ordered according to BLEU_NewRef: BLEU score computed on the NEW reference set (literal translations).
- BLEU scores are given as percent figures (%).

- End-to-end systems are indicated by gray background.

- The “segm.” column indicates the segmentation strategy (Own vs Given).
- The “data condition” indicates the training data condition (Constrained vs Unconstrained).
- The { symbol indicates an end-to-end submission exploiting pre-trained models (not all parameters are jointly trained).

System | segm. | data condition | BLEU NewRef | BLEU_TEDRef | BLEU MultiRef
HW-TSC Own Constrained 24.6 20.3 34.0
KIT Own Constrained 234 19.0 32.0
APPTEK Own Constrained 22.6 18.3 31.0
KIT Own Constrained 22.0 18.1 30.3
APPTEK Own Constrained 21.9 18.1 304
VOLCTRANS | Given | Constrained 21.8 17.1 29.5
UPCY Own Unconstrained 21.8 18.3 30.6
VOLCTRANS | Given | Constrained 21.7 18.7 31.3
ESPNET-ST Own Constrained 21.7 18.2 30.6
FBK Own Constrained 21.6 18.4 30.6
OPPO Given | Constrained 21.5 17.8 30.2
ESPNET-ST Own Constrained 21.2 19.3 314
NIUTRANS Own Constrained 20.6 19.6 30.3
\"ASN Given | Constrained 15.3 12.4 20.9
BUT Given | Unconstrained 11.7 9.8 16.1
LI Given | Constrained 3.6 2.7 4.8

Speech Translation: TED English-German tst 2020

- Systems are ordered according to BLEU_TEDRef: BLEU score computed on the ORIGINAL reference set.
- BLEU scores are given as percent figures (%).

- End-to-end systems are indicated by gray background.

- The “segm.” column indicates the segmentation strategy (Own vs Given).
- The “data condition” indicates the training data condition (Constrained vs Unconstrained).
- The T symbol indicates an end-to-end submission exploiting pre-trained models (not all parameters are jointly trained).

System segm.
ESPNET-ST Own
HW-TSC Own
KIT Own
ESPNET-ST Own
FBK Own
UPC+ Own
APPTEK Own
VOLCTRANS | Given
KIT Own
APPTEK Own
NIUTRANS Own
OPPO Given
VOLCTRANS | Given
VUS Given
BUT Given
LI Given

data condition
Constrained
Constrained
Constrained
Constrained
Constrained
Unconstrained
Constrained
Constrained
Constrained
Constrained
Constrained
Constrained
Constrained
Constrained
Unconstrained
Constrained

BLEU_TEDRef
26.0
25.4
25.4
24.7
24.7
24.6
24.5
243
23.2
23.1
22.8
22.6
222
13.7
11.4

0.2
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A.3. Multilingual Speech Translation

- Submissions are ordered according to average ST performance across all official language pairs.
- ST systems are scored using the BLEU? metric as computed by SACREBLEU (Post, 2018).
- ASR systems are scored using WER| computed on lowercased text with punctuation removed.

Official Results:

Condition Supervised Zero-shot Avg

System Constrained E2E Ensemble es-en fr-en fr-es pt-en pt-es it-en it-es
FAIR v v 422 387 365 31.0 382 294 373 362

KIT v v 393 271 292 307 373 265 324 318
UEDIN v v v 36.2 264 295 270 345 23.0 31.1 297
UM-DKE v v v 339 254 276 257 337 228 294 284
ZJU v v 345 252 274 257 316 208 273 275
HWN v v v 354 267 270 267 270 17.6 154 25.1
ON-TRAC v v 202 144 150 132 30 42 46 107

Table 5: Multilingual ST: Results of primary submissions on official language pairs in BLEU?1

All Submissions:

Condition Supervised Zero-shot Avg
System Constrained E2E Ensemble es-en fr-en fr-es pt-en pt-es it-en it-es

FAIR primary Ve Ve 422 387 36.5 31.0 382 294 373 36.2
FAIR joint U_W v 415 374 352 292 36.8 29.1 36.8 35.1
FAIR joint U ve 404 364 344 290 382 284 34.6 339
FAIR joint X Ve 40.6 36.5 347 282 38.2 27.8 333 335
KIT contrastive v 38.9 285 29.7 302 37.1 258 33.0 319
KIT primary 39.3 27.1 29.2 30.7 373 265 324 318
UEDIN  primary Ve 36.2 264 295 27.0 345 23.0 31.1 29.7
UEDIN  contrastive v 35.0 255 28.8 262 333 224 30.1 288
UM-DKE primary Ve 339 254 27.6 257 337 228 294 284

345 252 274 257 31.6 20.8 273 275
333 237 269 23.6 30.0 19.7 26.7 263
345 219 243 243 293 21.7 26.8 26.1
341 284 293 198 253 20.0 25.8 26.1
354 267 27.0 26.7 27.0 17.6 154 25.1
202 144 150 132 3.0 42 4.6 107

ZJU primary
UEDIN  contrastive
UM-DKE contrastive
FAIR baselines_R
HWN primary
ON-TRAC primary

SN N N NN
SN NN

SSRNEN

Table 6: Multilingual ST: Results of all submissions (primary and contrastive) on official language pairs in BLEU?

Additional Results (Unofficial Language Pairs and ASR):

Condition Supervised Condition ASR Avg
System Const. E2E Ens. es-fr es-it es-pt fr-pt

System Const. E2E Ens. es fr it pt

FAIR v v BT 3300465355 HWN v v 1.1 222 162 238 183
KIT v v 324 323 466 288
UEDIN v v v 303 329 445 301 KIT v v 100 265 155 221 185
HWN v v v 27'0 30.8 43'2 26.9 FAIR v v 112 187 19.6 274 192
ON-TRAC v v 82 111 256 149 UEDIN v v 120 234 187 259 20.0

Table 8: ASR: Results of primary submissions on ASR

Table 7: Multilingual ST: Results of primary submis- )
in WER| (optional), sorted by average WER

sions on unofficial language pairs in BLEU? (optional)
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A.4. Low-Resource Speech Translation

Official Results:
System swh-eng swc-fra swc-eng
IMS.primary 14.9 13.5 7.7
IMS.contrastive 6.7 2.7 3.9
ON-TRAC 12.9 9.1 -
USYD-ID 25.3 - -

Table 9: Low-Resource ST: Results of all speech translation submissions (case-insensitive BLEU?). The swc-eng
and swa-fra pairs were optional.

System ‘ Coastal Swahili (swh) Congolese Swahili (swc)

ON-TRAC 31.2 36.8
USYD-ID 344 -

Table 10: ASR: Results of all (optional) speech transcriptions submissions (case-insensitive WER).
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Abstract

This paper describes USTC-NELSLIP’s sub-
missions to the IWSLT2021 Simultaneous
Speech Translation task. We proposed a novel
simultaneous translation model, Cross Atten-
tion Augmented Transducer (CAAT), which
extends conventional RNN-T to sequence-to-
sequence tasks without monotonic constraints,
e.g., simultaneous translation. Experiments
on speech-to-text (S2T) and text-to-text (T2T)
simultaneous translation tasks shows CAAT
achieves better quality-latency trade-offs com-
pared to wait-k, one of the previous state-of-
the-art approaches. Based on CAAT architec-
ture and data augmentation, we build S2T and
T2T simultaneous translation systems in this
evaluation campaign. Compared to last year’s
optimal systems, our S2T simultaneous trans-
lation system improves by an average of 11.3
BLEU for all latency regimes, and our T2T si-
multaneous translation system improves by an
average of 4.6 BLEU.

1 Introduction

This paper describes the submission to IWSLT
2021 Simultaneous Speech Translation task by Na-
tional Engineering Laboratory for Speech and Lan-
guage Information Processing (NELSLIP), Univer-
sity of Science and Technology of China, China.

Recent work in text-to-text simultaneous transla-
tion tends to fall into two categories, fixed policy
and flexible policy, represented by wait-k (Ma et al.,
2019) and monotonic attention (Arivazhagan et al.,
2019; Ma et al., 2020b) respectively. The draw-
back of fixed policy is that it may introduce over
latency for some sentences and under latency for
others. Meanwhile, flexible policy often leads to
difficulties in model optimization.

Inspired by RNN-T (Graves, 2012), we aim
to optimize the marginal distribution of all ex-
panded paths in simultaneous translation. How-
ever, we found it’s impossible to calculate the
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marginal probability based on conventional Atten-
tion Encoder-Decoder (Sennrich et al., 2016) ar-
chitectures (Transformer (Vaswani et al., 2017) in-
cluded), which is due to the deep coupling between
source contexts and target history contexts. To
solve this problem, we propose a novel architecture,
Cross Attention augmented Transducer (CAAT),
and a latency loss function to ensure CAAT model
works with an appropriate latency. In simultane-
ous translation, policy is integrated into translation
model and learned jointly for CAAT model.

In this work, we build simultaneous translation
systems for both text-to-text (T2T) and speech-
to-text S2T) task. We propose a novel archi-
tecture, Cross Attention Augmented Transducer
(CAAT), which significantly outperforms wait-k
(Ma et al., 2019) baseline in both text-to-text and
speech-to-text simultaneous translation task. Be-
sides, we adopt a variety of data augmentation
methods, back-translation (Edunov et al., 2018),
Self-training (Kim and Rush, 2016) and speech
synthesis with Tacotron2 (Shen et al., 2018). Com-
bining all of these and models ensembling, we
achieved about 11.3 BLEU (in S2T task) and 4.6
BLEU (in T2T task) gains compared to the best
performance last year.

2 Data

2.1 Statistics and Preprocessing

EN—DE Speech Corpora The speech datasets
used in our experiments are shown in Table 1,
where MuST-C, Europarl and CoVoST?2 are speech
translation specific (speech, transcription and trans-
lation included), and LibriSpeech, TED-LIUM3
are speech recognition specific (only speech and
transcription). After augmented with speed and
echo perturbation, we use Kaldi (Povey et al., 2011)
to extract 80 dimensional log-mel filter bank fea-
tures, computed with a 25ms window size and a

Proceedings of the 18th International Conference on Spoken Language Translation, pages 30-38
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10ms window shift, and specAugment (Park et al.,
2019) were performed during training phase.

Corpus Segments Duration(h)
MuST-C 250.9k 448
Europarl 69.5k 155
CoVoST2 854.4k 1090
LibriSpeech 281.2k 960
TED-LIUM3  268.2k 452

Table 1: Statistics of speech corpora.

Text Translation Corpora The bilingual paral-
lel datasets for Englith to German(EN—DE) and
English to Japanese (EN—JA) used are shown in
Table 2, and the monolingual datasets in English,
German and Japanese are shown in Table 3. And
we found the Paracrawl dataset in EN—DE task is
too big to our model training, we randomly select
a subset of 14M sentences from it.

Corpus Sentences
MuST-C(v2) 229.7k
Europarl 1828.5k
Rapid-2019 1531.3k
WIT3-TED 209.5k
EN—DE Commoncrawl 2399.1k
WikiMatrix 6227.2k
Wikititles 1382.6k
Paracrawl 82638.2k
WIT3-TED 225.0k
JESC 2797.4k
kftt 440.3k
EN=JA  \ikiMatrix  3896.0k
Wikititles 706.0k
Paracrawl 10120.0k

Table 2: Statistics of text parallel datasets.

Language Corpus Sentences

EN Europarl-v10 2295.0k
News-crawl-2019  33600.8k

DE Europarl-v10 2108.0k
News-crawl-2020  53674.4k

A News-crawl-2019  3446.4k
News-crawl-2020  10943.3k

Table 3: Statistics of monolingual datasets.
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For EN—DE task, we directly use Sentence-
Piece (Kudo and Richardson, 2018) to generate
a unigram vocabulary of size 32,000 for source
and target language jointly. And for EN—JA task,
sentences in Japanese are firstly participled by
MeCab (Kudo, 2006), and then a unigram vocab-
ulary of size 32,000 is generated for source and
target jointly similar to EN—DE task.

During data preprocessing, the bilingual datasets
are firstly filtered by length less than 1024 and
length ratio of target to source 0.25 < r < 4. In
the second step, with a baseline Transformer model
trained with only bilingual data, we filtered the
mismatched parallel pairs with log-likelihood from
the baseline model, threshold is set to —4.0 for
EN—DE task and —5.0 for EN—JA task. At last
we keep 27.3 million sentence pairs for EN-DE
task and 17.0 sentence pairs for EN—JA task.

2.2 Data Augmentation

For text-to-text machine translation, augmented
data from monolingual corpora in source and target
language are generated by self-training (He et al.,
2019) and back translation (Edunov et al., 2018)
respectively. Statistics of the augmented training
data are shown in Table 4.

Data EN—DE EN—JA
Bilingual data 27.3M 17.0M
+back-translation  34.3M 22.0M
+self-training 41.3M 27.0M

Table 4: Augmented training data for text-to-text trans-
lation.
We further extend these two data augmentation

methods to speech-to-text translation, detailed as:

1. Self-training: Maybe similar to sequence-
level distillation (Kim and Rush, 2016; Ren
et al., 2020; Liu et al., 2019). Transcriptions
of all speech datasets (both speech recogni-
tion and speech translation specific) are sent
to a text translation model to generate text y
in target language, the generated y/ with its
corresponding speech are directly added to
speech translation dataset.

. Speech Synthesis: We employ Tacotron2
(Shen et al., 2018) with slightly modified by
introducing speaker representations to both en-
coder and decoder as our text-to-speech (TTS)
model architecture, and trained on MuST-
C(v2) speech corpora to generate filter-bank



speech representations. We randomly select
4M sentence pairs from EN—DE text trans-
lation corpora and generate audio feature by
speech synthesis. The generated filter bank
features and their corresponding target lan-
guage text are used to expand our speech trans-
lation dataset.

The expanded training data are shown in Table 5.
Besides, during the training period for all the
speech translation tasks, we sample the speech data
from the whole corpora with fixed ratio and the
concrete ratio for different dataset is shown in Ta-
ble 6.

Dataset Segements Duration(h)
Raw S2T dataset 1.17”M 1693
+self-training 2.90M 4799
+Speech synthesis 7.22M 10424

Table 5: Expanded speech translation dataset with self-
training and speech synthesis.

Dataset Sample Ratio
MuST-C 2
Europarl 1
CoVoST2 1
LibriSpeech 1
TED-LIUM3 2
Speech synthesis 5

Table 6: Sample ratio for different datasets during train-
ing period.

3 Methods and Models

3.1 Cross Attention Augmented Transducer

Let x and y denote the source and target se-
quence, respectively. The policy of simultane-
ous translation is denoted as an action sequence
p € {R,W}X+¥l where R denotes the READ
action and W the WRITE action. Another repre-
sentation of policy is extending target sequence
y to length |x| + |y| with blank symbol ¢ as
g € (vU{o})X*¥ where v is the vocabulary
of the target language. The mapping from y to sets
of all possible expansion g denotes as H(x,y).
Inspired by RNN-T (Graves, 2012), the loss func-
tion for simultaneous translation can be defined as
the marginal conditional probability and expecta-
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tion of latency metric through all possible expanded
paths:

[,(SC, y) = 'Cnll(xv y) + Elatency (I7 y)
—log Y p(glz) +Egl(9)

; M
—log Y " p(ijlz) + > _ Pr(gly, z)i(3)
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Figure 1: Expanded paths in simultaneous translation.

_ p(glz)

o PO 17)
H (z,y) is an expansion of target sequence y, and
I(7 is the latency of expanded path .

However, RNN-T is trained and inferenced
based on source-target monotonic constraint,
which means it isn’t suitable for translation
task. And the calculation of marginal probabil-
ity > je pr () Pr(]) is impossible for Attention
Encoder-Decoder framework due to deep coupling
of source and previous target representation. As
shown in Figure 1, the decoder hidden states for
the red path ! and the blue path ¢ is not equal at
the intersection si # s3. To solve this, we sepa-
rate the source attention mechanism from the target
history representation, which is similar to joiner
and predictor in RNN-T. The novel architecture
can be viewed as a extension version of RNN-T
with attention mechanism augmented joiner, and is
named as Cross Attention Augmented Transducer
(CAAT). Figure 2 is the implementation of RAAT
based on Transformer.

Computation cost of joiner in CAAT is signif-
icantly more expensive than that of RNN-T. The
complexity of joiner is O(|x| - |y|) during train-
ing, which means O(|x|) times higher than conven-
tional Transformer. We solve this problem by mak-
ing decisions with decision step size d > 1, and

Where Pr(gly, x) ,and g €
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Figure 2: Architecture of CAAT based on Transformer.

reduce the complexity of joiner from O(|x| - |y])

to M. Besides, to further reduce video mem-
ory consumption, we split hidden states into small
pieces before sent into joiner, and recombine it for
back-propagation during training.

As the latency loss is defined as marginal expec-
tation over all expanded paths ¢, mergeable is also
a requirement to the latency loss definition, which
means latency loss through path ¢ may be defined
asl(9) = ZLX:IJ{M 1(gx) and (g ) is independent
of yjj/ 4 However, both Average Lagging (Ma
et al., 2019) and Differentiable Average Lagging
(Arivazhagan et al., 2019) do not meet this require-
ment. We hence introduce a novel latency function
based on wait-0 as oracle latency as follows:

1 2
d(i, 5) = R (z _d LJT',O)
) = 0 if g, = ¢ 2)
M7 dline i) else

Where i = szzl I(9,, = ¢) and jj
S%_, I(j # ¢) denote READ and WRITE ac-
tions number before ¢j;,. The latency for the whole
expanded path ¢ can be defined as

3)

Based on Eq. (3) the expectation of latency loss
through all expanded paths may be defined as :

ﬁlatency (x7 y) = E@EH(m,y)l(g)

=Y Pr(gly.2)i@m) @
]
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Latency loss and its gradients can be calculated
by the forward-backward algorithm, similar to Se-
quence Criterion Training in ASR (Povey, 2005).

At last, we add the cross entropy loss of offline
translation model as an auxiliary loss to CAAT
model training for two reasons. First we hope the
CAAT model fall back to offline translation in the
worst case; second, CAAT models is carried out
in accordance with offline translation when source
sentence ended. The final loss function for CAAT
training is defined as follows:

E({L‘, y) = ECAAT(xv y) + Alatency»Clatency (.73, y)
+ AceLee(T,y)

= —log ZP(?)I?«“)

+ )‘latency Z Pf(?ﬂya :E)d(y)
]

—Xee Y _logp(y;le, y<;)
j

6))

Where Ajgtency and Acg are scaling factors cor-
responding to the Li4teney and Log. And we set
A1 = A2 = 1.0 if not specified.

3.2 Streaming Encoder

Unidirectional Transformer encoder (Arivazhagan
et al., 2019; Ma et al., 2020b) is not effective for
speech data processing, because of the closely re-
lated to right context for speech frame x;. Block
processing (Dong et al., 2019; Wu et al., 2020) is
introduced for online ASR, but they lacks directly
observing to infinite left context.

We process streaming encoder for speech data
by block processing with right context and in-
finite left context. First, input representations
h is divided into overlapped blocks with block
step m and block size m + r. Each block
consists of two parts, the main context m,, =
[Pmsnt1,- -+ s hm41)sn) and the right context
rn = [h(m+1)*n7 T 7h(m+1)*n+7‘] . The query,
key and value of block b,, in self-attention can
be described as follows:

Q = Wq [mnv I‘n} (6)
K:Wk [mlv"' 7mnarn] (7)
V:WWJ [m1>"' 7mn7rn] (8)

By reorganizing input sequence and designed
self-attention mask, training is effective by reusing
conventional transformer encoder layers. And uni-
directional transformer can be regarded as a special



case of our method with {m = 1,7 = 0}. Note
that the look-ahead window size in our method is
fixed, which ensures increasing transformer layers
won’t affect latency.

3.3 Text-to-Text Simultaneous Translation

We implemented both CAAT in Sec. 3.1 and wait-k
(Ma et al., 2019) systems for text-to-text simulta-
neous translation, both of them are implemented
based on fairseq (Ott et al., 2019).

All of wait-k experiments use the parameter set-
tings based on big transformer (Vaswani et al.,
2017) with unidirectional encoders, which corre-
sponds to a 12-layer encoder and 6-layer decoder
transformer with a embedding size of 1024, a feed
forward network size of 4096, and 16 heads atten-
tion.

Hyper-parameters of our CAAT model architec-
tures are shown in Table 7. CAAT training re-
quires significantly more GPU memory than con-
ventional Transformer (Vaswani et al., 2017), for

the O (%) complexity of joiner module. We

mitigate this problem by reducing joiner hidden
dimension for lower decision step size d.

3.4 Speech-to-Text Simultaneous Translation
34.1 End-to-End Systems

The main system of End-to-End Speech-to-Text
simultaneous Translation is based on the aforemen-
tioned CAAT structure. For speech encoder, two
2D convolution blocks are introduced before the
stacked 24 Transformer encoder layers. Each con-
volution block consists of a 3-by-3 convolution
layer with 64 channels and stride size as 2, and a
ReLU activation function. Input speech features are
downsampled 4 times by convolution blocks and
flattened to 1D sequence as input to transformer lay-
ers. Other hyper-parameters are shown in Table 7.
The latency-quality trade-off may be adjusted by
varying the decision step size d and the latency
scaling factor A\jgtency. We submitted systems with
best performance in each latency region.

3.4.2 Cascaded Systems

The cascaded system consists of two modules, si-
multaneous automatic speech recognition (ASR)
and simultaneous text-to-text Machine Translation
(MT). Both simultaneous ASR and MT system are
built with CAAT proposed in Sec. 3.1. And we
found the cascaded systems outperforms end-to-
end system in medium and high latency region.
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3.5 Unsegmented Data Processing

To deal with unsegmented data, we segment the
input text based on sentence ending marks for T2T
track. For S2T task, input speech is simply seg-
mented into utterances with duration of 20 sec-
onds and each segmented piece is directly sent to
our simultaneous translation systems to obtain the
streaming results. We found an abnormally large
average lagging (AL) on IWSLT tst2018 test set
based on existed SimuEval toolkit(Ma et al., 2020a)
and segment strategy, so relevant results are not pre-
sented here. A more reasonable latency criterion
may be needed for unsegmented data in the future.

4 Experiments

4.1 Effectiveness of CAAT

To demonstrate the effectiveness of CAAT architec-
ture, we compare it to wait-k with speculative beam
search (SBS) (Ma et al., 2019; Zheng et al., 2019b),
one of the previous state-of-the-art. The latency-
quality trade-off curves on S2T and T2T tasks are
shown in Figure 3 and Figure 4(a). We can find that
CAAT significantly outperforms wait-k with SBS,
especially in low latency section(AL < 1000ms
for S2T track and AL < 3 for T2T track).
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Figure 3: Comparison of CAAT and wait-k with
SBS systems on EN—DE Speech-to-Text simultane-
ous translation.

4.2 Effectiveness of data augmentation

In order to testify the effectiveness of data augmen-
tation, we compare the results of different data aug-
mentation methods based on the offline and simulta-
neous speech translation task. As demonstrated in
Table 8, adding new generated target sentences into
the training corpora by using Self-training gives



Parameters S2T config T2T config-A T2T config-B
layers 24 12 12
Encoder attention heads 8 16 16
FFN dimension 2048 4096 4096
embedding size 512 1024 1024
attention heads 8 16 16
FFN dimension 2048 4096 4096
Predictor embedding size 512 1024 1024
output dimension 512 512 1024
attention heads 8 8 16
Joiner FFN dimension 1024 2048 4096
embedding size 512 512 1024
decision step size {16,64} {4,10,16,32} {10,32}
latency scaling factor ~ {1.0,0.2} {1.0,0.2} 0.2

Table 7: Parameters of CAAT in T2T and end-to-end S2T simultaneous translation. Noted that both predictor and
joiner have 6 layers for T2T and S2T tasks, and the additional two parameters for end-to-end 2T simultaneous
translation, which is the main context and right context described in Sec.3.2, are set m = 32 and r = 16 .

Dataset BLEU
Original speech corpora  21.24
+self-training 28.21
+Speech systhesis ~ 29.72

Table 8: Performance of offline speech translation on
MuST-C(v2) tst-COMMON with different datasets.

a boost of nearly 7 BLEU points and speech syn-
thesis provides the other 1.5 BLEU points increase
on MuST-C(v2) tst-COMMON. As illustrated in
Figure 3, all the data augmentation methods are
employed and provide nearly 3 BLEU points on
average in the simultaneous task at different la-
tency regimes. Note that our data augmentation
methods alleviate the scarcity of parallel datasets
in the End-to-End speech translation task and make
a significant improvement.

4.3 Text-to-Text Simultaneous Translation

EN—DE Task The performances of text-to-text
EN—DE task is shown in Figure 4(a). We can
see that the performance of proposed CAAT is al-
ways better than that of wait-k with SBS and the
best results from ON-TRAC in 2020 (Elbayad
et al., 2020), especially in low latency regime, and
the performance of CAAT with model ensemble
is nearly equivalent to offline result. Moreover, it
can be further noticed from Figure 4(a) that the
model ensemble can also improve the BLUE score
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more or less under different latency regimes, and
the increase is quite obvious in low latency regime.
Compared with the best result in 2020, we finally
get improvement by 6.8 and 3.4 BLEU in low and
high latency regime respectively.

En—JA Task Results of Text-to-Text simultane-
ous translation (EN—JA) track are plotted in Fig-
ure 4(b), where the curve naming CAAT _bst is best
performances in this track with or without model-
ensembling method. Curves in this sub-figure show
the similar conclusion to the former subsection,
that the result of proposed CAAT significantly out-
performs that of wait-k with SBS. While we can
also find that the gap between CAAT and offline is
more obvious (nearly 0.4 BLEU), this is mainly be-
cause parameters of joiner block for EN—JA track
in high-latency regime is reduced a lot from that
for EN—DE track, due to the unstable EN—JA
training.

4.4 Speech-to-Text Simultaneous Translation

End-to-End System In this section, we discuss
about our final results of End-to-End system based
on CAAT. We tune the decision step size d and
latency scaling factor Ajqzency to meet different la-
tency regime requirements. For low, medium and
high latency, the corresponding d and Ajg¢ency are
set to (16,64,64) and (1.0,1.0,0.2) respectively. We
show our final latency-quality trade-offs in Figure 5.
Combined with our data augmentation methods and
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Figure 4: Latency-quality trade-offs of Text-to-Text simultaneous translation.

new CAAT model structure, it can be seen that our
single model system has already outperformed the
best results of last year in all latency regimes and
provides 9.8 BLEU scores increase on average. En-
sembling different models can further boost the
BLEU scores by roughly 0.5-1.5 points at different
latency regimes.

Cascaded System Under the cascaded setting,
we paired two well-trained ASR and MT systems,
where the WER of ASR system’s performance is
6.30 with 1720.20 AL, and the MT system is fol-
lowed by the config-A in Table 7, whose results
are 34.79 BLEU and 5.93 AL. We found the best
medium and high-latency systems at decision step
size pair (dgsr, dmt) With (6,10) and (12, 10) re-
spectively. Performance of cascaded systems are
shown in Figure 5. Note that under current con-
figuration of ASR and MT systems, we can not
provide valid results that satisfy the requirement of
AL at low latency regime since cascaded system
usually has a larger latency compared to End-to
End system. During the online decoding of the
cascaded system, only after specific tokens are rec-
ognized by the ASR system, the translation model
can further translate them to obtain the final result.
The decoded results from ASR model first has a
delay compared to the actual contents of the audio,
and the two-steps decoding further accumulates the
delay, which contributes to the higher latency com-
pared to the End-to-End system. However, it still
can be seen that cascaded system has significant
advantages over End-to-End system at medium and
high latency regime and it still has a long way to go
for End-to-End system in the simultaneous speech
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translation task.
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Figure 5: Latency-quality trade-offs of Speech-to-
Text simultaneous translation on MuST-C(v2) tst-
COMMON.

5 Related Work

Simultaneous Translation Recent work on si-
multaneous translation falls into two categories.
The first category uses a fixed policy for the
READ/WRITE actions and can thus be easily inte-
grated into the training stage, as typified by wait-
k approaches (Ma et al., 2019).The second cate-
gory includes models with a flexible policy learned
and/or adaptive to current context, e.g., by Rein-
forcement Learning (Gu et al., 2017), Supervise
Learning (Zheng et al., 2019a) and so on. A special
sub-category of flexible policy jointly optimizes
policy and translation by monotonic attention cus-
tomized to translation model, e.g., Monotonic Infi-
nite Lookback (MILK) attention (Arivazhagan et al.,



2019) and Monotonic Multihead Attention (MMA)
(Ma et al., 2020b). We propose a novel method
to optimize policy and translation model jointly,
which is motivated by RNN-T (Graves, 2012) in
online ASR. Unlike RNN-T, the CAAT model re-
moves the monotonic constraint, which is critical
for considering reordering in machine translation
tasks. The optimization of our latency loss is moti-
vated by Sequence Discriminative Training in ASR
(Povey, 2005).

Data Augmentation As described in Sec. 2, the
size of training data for speech translation is sig-
nificantly smaller than that of text-to-text machine
translation, which is the main bottleneck to im-
prove the performance of speech translation. Self-
training, or sequnece-level knowledge distillation
by text-to-text machine translation model, is the
most effective way to utilize the huge ASR train-
ing data (Liu et al., 2019; Pino et al., 2020). On
the other hand, synthesizing data by text-to-speech
(TTS) has been demonstrated to be effective for
low resource speech recognition task (Gokay and
Yalcin, 2019; Ren et al., 2019). To the best of our
knowledge, this is the first work to augment data
by TTS for simultaneous speech-to-text translation
tasks.

6 Conclusion

In this paper, we propose a novel simultane-
ous translation architecture, Cross Attention Aug-
mented Transducer (CAAT), which significantly
outperforms wait-k in both S2T and T2T simulta-
neous translation task. Based on CAAT architec-
ture and data augmentation, we build simultaneous
translation systems on text-to-text and speech-to-
text simultaneous translation tasks. We also build
a cascaded speech-to-text simultaneous translation
system for comparison. Both T2T and S2T systems
achieve significant improvements over last year’s
best-performing systems.
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Abstract

This paper describes NAIST’s system for
the English-to-Japanese Simultaneous Text-to-
text Translation Task in IWSLT 2021 Eval-
uvation Campaign. Our primary submission
is based on wait-k neural machine translation
with sequence-level knowledge distillation to
encourage literal translation.

1 Introduction

Automatic simultaneous translation is an attractive
research field that aims to translate an input before
observing its end for real-time translation similar to
human simultaneous interpretation. Starting from
early attempts using rule-based machine translation
(Matsubara and Inagaki, 1997; Ryu et al., 2006)
and statistical methods using statistical machine
translation (Bangalore et al., 2012; Fujita et al.,
2013), recent studies successfully applied neural
machine translation (NMT) into this task (Gu et al.,
2017; Ma et al., 2019; Arivazhagan et al., 2019).

The simultaneous translation shared task in the
IWSLT evaluation campaign started on 2020 with
English-to-German (Ansari et al., 2020) speech-
to-text and text-to-text tasks, and a new language
pair of English-to-Japanese has been included on
2021 only in text-to-text task. English-to-Japanese
is much more challenging than English-to-German
due to the large language difference in addition to
data scarsity.

We developed an automatic text-to-text simulta-
neous translation system for this shared task. We
applied some extensions to a standard wait-k NMT
in the training time: sequence-level knowledge dis-
tillation and target-side chunk shuffling. However,
these techniques showed mixed results in different
latency regimes on the IWSLT21 development set,
so we configured the system differently for each
latency regime. This paper describes the details of
the system and the results on the development sets.
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We also describe our another attempt to include
incremental constitutent label prediction that was
not included in the primary system.

2 Simultaneous Neural Machine
Translation with wait-k

Let X = 1, 22,...,2|x| be an input sequence in
a source language and Y = y1, 42, ..., yjy| be an
output sequence in a target language. Here, the in-
put can be speech or text, but we assume the input
is text because this paper discusses the text-to-text
task. The task of simultaneous translation is to
translate X to Y incrementally. In other words,
each output prediction of Y is made upon partial
input observations of X. Suppose an output pre-
fix subsequence Y{ = y1,s, ...,y; has already
been predicted from prefix observations of the in-
put X! = 1, z9, ..., v;. When we predict the next

output subsequence ijﬂ = Yj4ls - Yy after fur-
!/

ther partial observations X/ 1 = Tit1,..., Ty, the
prediction is made based on the following formula:

)

./ / .

Y?,, = argmax P(Y|X{, X}, ,,Y/ (1)
Y

where Y isa possible prediction of the subsequence.
In a usual consecutive machine translation, we can
use the whole input sequence X anytime in the
prediction of Y. The limitation of available in-
put information is a key challenge of simultaneous
translation.

Wait-k delays the decoding process in & input
tokens (Ma et al., 2019). The wait-k model trans-
lates a token sequence of the source language X

into that of the target language Y as follows.
H;
Yi

2

. a:Ei—l—k;—l)a
Decoder(H;, 91, - - -, Ui—1)-

Encoder(x1, . .

The decoder has to predict an output token based on
the attention over an observed portion of the input
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tokens. k is a hyperparameter for the fixed delay
in this model; setting k& larger causes longer de-
lays, while smaller k£ would result in worse output
predictions due to the poor context information.

3 Knowledge Distillation

Knowledge Distillation (KD) (Hinton et al., 2015)
is a method that uses the distilled knowledge
learned by a stronger teacher model in the learning
of a weaker student model. When teacher distribu-
tion is ¢(y|x; O7), we minimize the cross-entropy
with the teacher’s probability distribution instead
of reference data, as follows:

VI
Lip(0;07) = = aly = k|z;01) x
k=1

logp(y = kl|z;0)  (3)

where 61 parameterizes the teacher distribution.
Sequence-level Knowledge Distillation (SKD),
which gives the student model the output of the
teacher model as knowledge, propagates a wide
range of knowledge to the student model and trains
it to mimic its knowledge (Kim and Rush, 2016).
The teacher distribution ¢(Y|X) is approximated
by its mode ¢(Y'|X) ~ 1{Y = argmax¢(Y|X)},
XerT

and the loss objectives as follows:

ﬁSICD = _Ezwdam Z Q(Y’X) lng(Y|X)
YeT

~ _EXNdata,?:argmaxq(Y\X)[logp(y -
Yer

where p(Y|X) is the sequence-level distribution,
and Y € T is the space of possible target sentences.
SKD can be implemented simply by training the
student model using (X,Y), where Y is derived
from the teacher model outputs for the source lan-
guage portion of the training corpus.

We use SKD for reduction of colloquial expres-
sions in the spoken language corpus. Such col-
loquial expressions are highly dependent on lan-
guages and difficult to translate by NMT, which
usually generates literal translations. Here, we
firstly train a teacher, Transformer-based offline
NMT model using the training corpus and use it to
obtain pseudo-reference translations in the target
language. Then, we train a student, Transformer-
based simultaneous NMT model using the pseudo-
parallel corpus with the original source language
sentences and the corresponding translation re-
sults by the teacher model. The pseudo-references

YIX)] @)
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should consist of more literal and NMT-friendly
translations, therefore the training of the student
model becomes easier than that using the original
parallel corpus. Since we have to train simultane-
ous translation using less context information than
an offline translation model, the SKD would be
helpful. This is motivated by the recent success
of non-autoregressive NMT using SKD (Gu et al.,
2018).

4 Target-side chunk shuffling

Chunk shuffling is a kind of data augmentation that
reorders Japanese chunks (called bunsetsu). Our
motivation for this one is to encourage monotonic
IMT utilizing a characteristic of Japanese as an
agglutinative language, in which the order of bun-
setsu chunks is not so strict. When we have a target
language sequence 1" = t1, ..., 7| in the training
set, we apply greedy left-to-right chunking to it; T’
is divided as a chunk sequence T = Cy,...,Cq,
in which each chunk consists of £ (i.e., delay hy-
perparameter in wait-k) tokens Cq = tq,, ..., tq,.
Note that the last chunk Cg may be shorter than &
according to the length of 7. Then, we choose to
shuffle or keep the chunks in 7" with a probability
pr, defined as a hyperparameter. We tried only the
random shuffling with the fixed chunk size of k&
in this time; More linguistically-motivated chunk
reordering would be worth trying as future work.

S Primary system

5.1 Implementation

Our system implementation was based on the of-
ficial baseline! using fairseq (Ott et al., 2019) and
SimulEval (Ma et al., 2020).

5.2 Setup

Data All of the models were based on Trans-
former, trained using 17.9 million English-
Japanese parallel sentences from WMT20 news
task and fine-tuned using 223 thousand parallel
sentences from IWSLT 2017. During fine-tuning,
we examined the effectiveness of knowledge distil-
lation and chunk shuffling with several hyperparam-
eter settings and reported the results by the models
that resulted in the higher BLEU on IWSLT 2021
development set. The text was preprocessed by
Byte Pair Encoding (BPE) (Sennrich et al., 2016)

"https://github.com/pytorch/fairseq/
blob/master/examples/simultaneous_
translation/docs/enja-waitk.md



System BLEU AL
offline 16.8 -
Baseline

wait-10 11.8 727
wait-20 14.69 11.47
wait-307i9h 1557 137
Proposed

wait-10 + CShuflo¥ 13.77  7.29
wait-10 + SKD 135  7.28
wait-20 + SKD™ediwm 1522 11.48
wait-30 + SKD 1521 13.71

Table 1: In-house results of our systems on IWSLT
2021 En-Ja development set. Superscripts ‘0w, medium
and 9" represent the systems submitted for low-,
medium-, and high-latency regimes, respectively.

for subword segmentation. The vocabulary was
shared over English and Japanese, and its size was
16,000.

Model The hyperparameters of the model almost
followed the Transformer Base settings (Vaswani
et al., 2017). The encoder and decoder were com-
posed of 6 layers. We set the word embedding
dimensions, hidden state dimensions, feed-forward
dimensions to 512, 512, and 2,048, respectively.
We performed the sub-layer’s dropout with a prob-
ability of 0.1. The number of attention heads was
eight for both the encoder and decoder. The model
was optimized using Adam with an initial learning
rate of 0.0007, 81 = 0.9, and 35 = 0.98, following
Vaswani et al. (2017).

Evaluation To evaluate the performance, we cal-
culated BLEU and Average lagging (AL) (Maet al.,
2019) with SimulEval on IWSLT 2021 develop-
ment set.

5.3 Results on the development set

Table 1 shows the excerpt of system results for
the full-sentence topline (offline), wait-k baselines
(wait-k), and our extensions: SKD (+ SKD) and
chunk shuffling (+ CShuf).

We tried some different latency hyperparameter
values £ = {10,12,14,...,32} for comparison.
Figure 1 plots our BLEU-AL results for wait-k
and wait-k+SKD. It shows that the use of SKD
gave some improvements in low-latency settings
with & = {10, 12,14}, however, the results with
larger k£ were mixed. These results support our
assumption on the difficulty of the translation into
colloquial expressions discussed in Section 3.
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Figure 1: Translation quality against latency for wait-k
and SKD-based wait-k on IWSLT 2021 En-Ja develop-
ment set. The broken line shows the score of the offline
model.

System  p, BLEU lenpy, len,qy
Baseline 0 11.80 34,376 27,891
+CShuf 0.01 10.57 38,257 27,891
0.02 13.77 29,369 27,891
0.03 9.87 42,296 27,891

Table 2: Target-side chunk shuffling result in p, =
{0,0.01,0.02,0.03}

We also tried chunk shuffling with different hy-
perparameter values’ p, = {0,0.01,0.02,0.03}.
Table 2 shows the result using the target-side chunk
shuffling. Here, the chunk shuffling results are only
shown for wait-10. The use of larger latency hyper-
parameter k£ did not show remarkable differences
from the baseline. Chunk shuffling with p, = 0.02
resulted in the best BLEU and outperformed the
baseline, but the other values 0.01,0.03 did not
work. These differences should be due to the out-
put length shown in [eny,,;, column in Table 2; the
output length became much shorter than the base-
line using the chunk shuffling with p, = 0.02. In
contrast, p, = 0.01 and p,, = 0.03 increased the
output length.

Table 3 shows translation examples by the base-
line and chunk-shuffling (p, = 0.02). Here,
the baseline translation results do not have end-
of-sentence expressions like TJ (desu), £ 9
(masu), T3 X122 (desuyone). These differences
were not straightforward with the chunk shuffling,
but a certain value of p, = 0.02 worked in our
experiment.

The results above suggest that the target-side

*Higher values of p, resulted in much worse results and
are not included in this paper.



En-input | I see other companies that say, “I’ll win the next innovation cycle, whatever it takes.”

Baseline | il D 24 A TIR D A/ R=Yay A7)V IZ<unk>] £ FD DIE EAR LD T dHh

CShuf |fth D &2 TR DA/ R=VarvH1 7V It T3] LE350%2 A ET

Ja-ref FAORRTHRUDOAEDNFAL 512 TAARATERDA /R=YavHAo L 2 HFE T2 &
S0kl TEY

En-input | She’s a musical instrument maker, and she does a lot of wood carving for a living.

Baseline | ¥ IF XB O HMEHF CTARE L 2 L TEE T VWL MIC

CShuf | AT KB DOHEZFETAHE D ZL TWET

Ja-ref Wl 1 s O FIEHM T A% KI5 28 THHF 2T TV ET

En-input | Humans are very good at considering what might go wrong if we try something new, say, ask for a raise.

Baseline | A& T 25 5 £ WIFIE(M A 5 < WIHIEM A S £ WIF Xl A5 5 < Wid i faf 23
DEL WIHIEMMA S ELS WIHHIEM A S ES WIF XM A S5 WIF Xl 2% 5 £ < Wid i il »3
DEL VI IEMASEC W IEMA S EL W IEMASES W IEMARE TEMARETD
finEE cCHMARECHLMPES TEMARLETHMMPELE T

CShuf | A IE (T A [HE> T W2 D & ZEXZ2 ONF/ETTH LW IL 2RAL TATH VN TT &R

Jaref | FfG 2 KDDL 0D IS BMAPHFLY 2L 2RAL S LS LE AR LES FTVILITRD HD 0
FEZB I ICRFTWET

Table 3: Translation examples by wait-k baseline and wait-k with chunk shuffling (p,, = 0.02).

System BLEU AL train dev eval
wait-10 + CShuf™® 1441 7.21 2,762,408 27,903 21,941
wait-20 + SKD™edwm 1620 11.54

wait-30Migh 16.19 13.83 Table 5: Number of NCLP instances.

Table 4: Official results of our submissions on IWSLT
2021 En-Ja test set.

chunk shuffling may work as a perturbation, and
we need further investigation.

5.4 Official results on the test set

Table 4 shows BLEU and AL results on the test
set. The system with the medium latency regime
(wait-20 + SKD) worked relatively well; it achived
a comparable BLEU result with wait-30. However,
the results were worse than those of the other teams
by around two points in BLEU in all the latency
regimes.

6 Another attempt: Incremental Next
Constituent Label Prediction

We tried another technique described below in the
shared task, but it was not included in our primary
submission because it did not outperform the base-
line. Here, we also describe this for further investi-
gation in future.

For simultaneous machine translation, deciding
how long to wait for input before translation is
important. Predicting what kind of phrase comes
next is a part of useful information in determining
the timing. In this study, we tried incremental Next
Constituent Label Prediction (NCLP).

In SMT-based simultaneous translation, Oda
et al. (2015) proposed a method to predict unseen
syntactic constituents to determine when to start
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translation for partially-observed input, using a
multi-label classifier based on linear SVMs (Fan
et al., 2008). Motivated by this study, we used a
neural network-based classifier using BERT (De-
vlin et al., 2019) for NCLP. The problem of NCLP
is defined as the label prediction of a syntactic con-
stituent coming next to a given word subsequence
in the pre-order tree traversal. In this work, we
used 1-lookahead prediction, so the problem was
relaxed into the prediction of a label of a syntactic
constituent given its preceding words and the first
word composing it. A predicted constituent label
was inserted at the corresponding position in the in-
put word sequence, immediately after its preceding
word. That doubled the length of input sequences.
For subword-based NMT, we applied BPE only
onto words in the input sequences and put dummy
labels after subwords other than end-of-word ones,
to order the input in an alternating way.

We used Huggingface transformers (Wolf et al.,
2020) for our implementation of NCLP with
bert-base-uncased. We used Penn Treebank
3 (Marcus et al., 1993) for the NCLP training and
development sets, and NAIST-NTT TED Talk Tree-
bank (Neubig et al., 2014) for the NCLP evaluation
set. Table 5 shows the number of training, develop-
ment, and evaluation instances extracted from the
datasets. Note that we can extract many instances
from a single parse tree.

Table 6 shows the results of the 5 most frequent
labels in the NCLP training data. NP and VP are
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Figure 2: Translation quality against latency for wait-
k and NCLP-based wait-k on IWSLT21 En-Ja dev set.
The broken line shows the score of the offline model.

Label Precision Recall Fl1

NP 0.90 094 092
VP 0.89 097 093
NN 0.95 097 096
R 0.98 1.00  0.99
PP 0.85 093 0.89

Table 6: NCLP results on the evaluation set.

important clues of the sentence structure, and their
F1 scores were over 90% on the NCLP evaluation
data.

However, the results by wair-k using NCLP re-
sults as its input did not outperform the baseline
wait-k, as shown in Figure 2. We can observe
NCLP-based wait-k gave smaller ALs with the
same latency hyperparameter k. One possible prob-
lem of current NCLP-based wait-k is that the length
of an input length is doubled by the additional
constitutent labels. Since we ran wait-k-based si-
multaneous NMT for such an augmented input se-
quence, the decoder using NCLP-augmented input
has roughly half of the information compared to the
decoder using original input if we use the same k.
This forces the decoder to perform very aggressive
anticipation with limited information from an input
prefix.

Table 7 shows the translation input and output
examples of baseline and NCLP. Input sentences in-
clude constituents labels. The first example shows
that NCLP could translate “publication” before a
verb “work” following the Japanese sentence order.
Second example shows NCLP output is constructed
naturally in terms of grammar, while the baseline
has repetitive and unnatural phrases. We observed
NCLP sentences are tend to be shorter and more

natural than baseline like these examples. However,
many sentences are not informative and missing
details compared to the baseline. We’ll investigate
a more effective way to use NCLP in our future
work.

7 Conclusion

In this paper, we described our English-to-Japanese
text-to-text simultaneous translation system. We ex-
tended the baseline wait-k with the knowledge dis-
tillation to encourage literal translation and target-
side chunk shuffling to relax the output order in
Japanese. They achieved some improvements on
IWSLT 2021 development set in certain latency
regimes.
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Abstract

We describe our submission to the TWSLT
2021 shared task' on simultaneous text-to-text
English-German translation. Our system is
based on the re-translation approach where
the agent re-translates the whole source pre-
fix each time it receives a new source token.
This approach has the advantage of being able
to use a standard neural machine translation
(NMT) inference engine with beam search,
however, there is a risk that incompatibility be-
tween successive re-translations will degrade
the output. To improve the quality of the
translations, we experiment with various ap-
proaches: we use a fixed size wait at the begin-
ning of the sentence, we use a language model
score to detect translatable units, and we apply
dynamic masking to determine when the trans-
lation is unstable. We find that a combination
of dynamic masking and language model score
obtains the best latency-quality trade-off.

1 Introduction

In spoken language translation (SLT), there is often
aneed to produce translations simultaneously, with-
out waiting for the speaker to finish. For example,
we may be targeting live events such as conferences
or meetings where excessive latency will disrupt
the user experience. In order to achieve low la-
tency SLT, however, translation systems must be
able to cope well with incomplete utterances, and
we find that we need to trade off latency for trans-
lation quality. In research on simultaneous SLT,
we would like to understand how to produce the
best possible trade-off between these two measures.
In the IWSLT 2021 shared task on simultaneous
translation, the aim was to build and evaluate si-
multaneous SLT systems at three different latency
regimes (low, medium and high), as measured us-
ing the Average Lagging (AL; Ma et al. (2019)).

"https://iwslt.org/2021/
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There are two main approaches to simultaneous
translation: streaming (Cho and Esipova, 2016; Ma
et al., 2019) where the system appends the output
to a growing hypothesis as new inputs are avail-
able, and re-translation (Niehues et al., 2016, 2018;
Arivazhagan et al., 2020a,b), where, as the name
suggests, the system re-translates the whole prefix
on every update to a completely new output. Re-
translation approach has the advantage that we can
use an unmodified, general purpose, optimised MT
engine with beam-search, but we have to address
the problem of flicker. That is to say, the translation
of a prefix may be changed by the translation of
an extended prefix. Recent work by Arivazhagan
et al. (2020a) has shown that, if measures are taken
to mitigate flicker, then re-translation produces re-
sults comparable to streaming approach. Since the
shared task does not permit any revision of a com-
mitted hypothesis (i.e. flicker is not allowed) we
focus on adapting the re-translation approach for
our submission without introducing any flicker into
a growing hypothesis.

2  Overview of Our Submission

We participated in the English—German text-to-
text simultaneous task. Since we re-translate the
incomplete input (know as a prefix) each time it is
updated, our system will try to modify the trans-
lations produced from earlier prefixes. But as the
task is evaluated using SimulEval (Ma et al., 2020)
which does not permit the modification of com-
mitted output (also known as flickering), we use a
simple approach to generate incremental output at
each re-translation step.

Concretely, we apply a method inspired by the
wait-k streaming approach (Ma et al., 2019) in
our re-translation system in the following manner.
In the task, a simultaneous SLT system is imple-
mented as an agent which must choose between

Proceedings of the 18th International Conference on Spoken Language Translation, pages 4651
Bangkok, Thailand (Online), August 5-6, 2021. ©2021 Association for Computational Linguistics



READ (read more input) and WRITE (append to
the current translation hypothesis) operations. Our
overall approach is shown in Algorithm 1. The
agent first performs k& consecutive READ opera-
tions and then alternatively READs and WRITEs
until the full input sentence is read. Once the input
is consumed, the agent keeps performing WRITE
operations until it reaches the end of the trans-
lated sentence. The WRITE operation involves
re-translating the prefix S and finding the next out-
put word w from output prefix 7. If the output
prefix T" has a length longer than the committed
hypothesis H, it picks the (i + 1)th word of T', else
sends READ signal to the agent, ¢ being the length
of the current hypothesis.

Algorithm 1 Our Re-translation Approach
Require: NMT system ¢, k
1: Initialize: S < {}, H «+ {},w + ¢
2: while w is not (eos) do

3: if |S| — |H| < k and not finished reading
then

4: READ next input s

5: S+ Su {S}

6: else

7: T + ¢(S)

8: if |T'| > |H| then

9: w < T[|H|+ 1]

10: else

11: w<— €

12: end if

13: if w is not ¢ or finished reading then

14: H «+ HU{w}

15: WRITE w

16: end if

17:  end if

18: end while

However, there is a potential problem with this
approach. In each WRITE step, the output word
w is selected from the (|H| + 1)th position of out-
put prefix T'. Thus if any correction is made by a
re-translation in the initial | H| words, the WRITE
operation won’t be able to recover the mistake. In
other words, our approach is able to suppress the
flicker caused by re-translation, but could end up
gluing together incompatible fragments of the hy-
pothesis. This problem can be worse when the out-
put prefix T" flickers too much. To improve trans-
lation quality, we employ two approaches which
aim at detecting meaningful units (MU) and allow-
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ing extra READs when inside an MU. An MU is a
chunk of words that has a definite translation and
can be translated independently without having to
wait for more input words (Zhang et al., 2020).

Our first method of detecting MUs relies on the
language model (LM) score. The agent keeps track
of the language model (LM) score of the previous
token and compares it with the score of the current
token. If the LM score is higher than the previous
token, it keeps reading more tokens and does a
re-translation only when this condition is not met.
Here the LM score is the log probability of the
current token given the context. Though LM score
doesn’t guarantee to find meaningful unit every
time but this simple approach shows it is better than
the baseline approach in terms of BLEU score.

Our second method of stabilising the re-
translation approach is based on the idea of dy-
namic masking (Yao and Haddow, 2020). The
dynamic mask approach finds the stable part of the
target prefix by comparing the translation of the
current prefix, with the translation of an extension
of the current prefix. The longest common prefix
(LCP) of the two translations is taken as the sta-
ble part. Figure 1 shows how dynamic masking
works in general. Yao and Haddow (2020) showed
that using dynamic mask could give a better flicker-
latency trade-off than using a fixed mask, without
affecting the translation quality of full sentences.

For our IWSLT submission, we generate the ex-
tended prefixes for dynamic mask simply by ap-
pending UNK (i.e the unknown word symbol) to
the prefix. In Figure 2, we show an example of how
dynamic mask stabilises the translation, by mask-
ing the least stable part of the MT output. This
translation-with-dynamic-mask provides a drop-in
replacement for the MT system ¢() in line 7 of
Algorithm 1, except when the agent has read the
full input sentence, when we do not need to apply
any mask.

3 Experimental Details

We use only the officially allowed IWSLT 2021
data sets. The training data include high quality
English-German parallel data from WMT 2020
(Barrault et al., 2020), English-German data from
MuST-C.v2 (Di Gangi et al., 2019), the TED corpus
(Cettolo et al., 2012) and OpenSubtitle (Lison and
Tiedemann, 2016). For development, we use the
concatenation of IWSLT test sets from 2014 and
2015. We test on IWSLT 2018 test set and tst-
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Figure 1: Dynamic Masking. The string a b is provided as input to the agent (in a full SLT system it would come
from ASR). The MT system then produces translations of the string and its extension, compares them, and outputs

the longest common prefix (LCP)

Source Translation MT Output
prefix | Back in New York, Zuriick in New York,
extension | Back in New York, UNK Damals in New York, in
prefix | Back in New York, I Damals in New York have ich
extension | Back in New York, I UNK Damals in New York war I Damals in New York

Figure 2: An example of dynamic mask applied during translation. For the first prefix, the translation of the prefix
and its extension disagree, so no output is produced (i.e. all output is masked). For the second prefix, the translation

is more stable.

COMMON from MuST-C.v2. As the there is a
significant overlap between MuST-C.v2 and tst-
20{14,15,18}, we remove the overlaps from the
MuST-C.v2 training data before training.

For preprocessing we rely only on Sentence-
Piece tokenization (Kudo and Richardson, 2018);
no other preprocessing tools are applied. We use
a shared vocabulary size of 32k. Standard NMT
models perform well when translation is done on
a full sentence but as our approach is based on re-
translation, we use training data that is a 1:1 mix
of full sentences and prefix pairs (Niehues et al.,
2018; Arivazhagan et al., 2020a). This ensures that
our model can translate both full sentences and
prefixes. To create prefix pairs, we first randomly
choose a position in the source sentence and then
take the proportionate length of the target sentence.
Along with that we also add modified prefix pairs
in which the source side has a shorter target prefix
appended with the source prefix. The purpose of
these modified prefix pairs was to investigate an
alternative type of stabilisation, where the previous
target prefix is fed into the translation of the current
source prefix, but in early testing this method did
not work well, so we did not pursue it further. The
validation data is also pre-processed similarly to
the training set. Note that this preprocessed val-
idation set is used at training for early stopping
and not for reporting the validation scores in the
Table 2.
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For training, we use the Marian toolkit (Junczys-
Dowmunt et al., 2018) with the ‘base’ transformer
architecture (Vaswani et al., 2017). First, we train
a model using the aforementioned pre-processed
training data and then fine-tune the model using
MuST-C.v2 training data which is more of a do-
main specific data for simultaneous translation task.
To train the language model for stabilisation, we
use KenLM (Heafield, 2011) to train a 6-gram lan-
guage model on the source-side training data. We
have shown the number of sentences in each corpus
in Table 1.

Corpus Sentence pairs
Europarl 1.79 M
Rapid 145M
News Commentary 035M
OpenSubtitle 2251 M
TED corpus 206 K
MuST-C.v2 248 K

Table 1: Corpora used in training the systems

4 Result and Analysis

We evaluate the model’s performance on the full
sentence translation before doing actual simultane-
ous translation. For this evaluation we use Sacre-
BLEU (Post, 2018) on the MuST-C.v2 and TED
2018 test sets. The results on full sentence is shown
in the Table 2. We see there is a significant improve-
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Figure 4: BLEU vs DAL plots for English-German with different beam sizes and length normalization.

ment after fine-tuning. For full sentence (or prefix
in case of re-translation) translation we set beam
size 12 and length normalization 1.0 in Marian.

Validation Test
TED 2014,15 TED 2018 MuST-C.v2
Baseline 30.8 27.5 32.7
Fine-tuned 31.9 294 33.6

Decoder settings: Beam size = 12; Normalization = 1.0

Table 2: BLEU scores on full sentence translation,
computed with SacreBLEU.?

# BLEU+case.mixed+numrefs. 1+smooth.exp+tok.13a+version.1.5.1

For evaluating the simultaneous translation, we
use SimulEval (Ma et al., 2020) which calculates
SacreBLEU for quality and Average Lagging (AL)
(Ma et al., 2019), differential AL (DAL) (Cherry
and Foster, 2019), and average proportion (AP)
(Cho and Esipova, 2016) for latency. The official
evaluation uses a blind test set, however, for sub-
mission purpose, we evaluate it on the MuST.v2
test set (tst-=COMMON) set. We have following
settings for re-translation:

Type k AL BLEU Approach
Full Sentence - - 33.60 -

High 20 14.73 33.09 Im

High 21 1494 332 mask
High 20 148 333 Im+mask
Medium 6 598 30.58 Im
Medium 6 572 3092 mask
Medium 5 549 31.55 Im+mask
Low 2 238 2516 Im

Low 2 232  26.77 mask
Low 1 248  27.57 Im+mask

Table 3: AL vs BLEU scores for three regimes (Low,
Medium, High) on MuST-C.v2 test set using beam size
12 and normalization 1.0. Best scores are in bold.

* baseline: The agent waits for initial k£ to-
kens and then alternates between READ and
WRITE (using re-translation). This is similar
to the wait-k approach by Ma et al. (2019).

* [m: After the initial k tokens, the agent uses
the language model to determine the “mean-

49



ingful unit” boundaries, and only WRITEs
when at a boundary.

mask: This is similar to the baseline, except
that the agent applies dynamic masking to
produce a more stable translation.

Im+mask: Combination of Im and mask. Thus
in this approach, the agent first uses the /m
score to decide whether to translate, and then
uses dynamic mask to obtain a more stable
translation.

The official evaluation has three regimes of latency:
low (AL< 3), medium (AL< 6) and high (AL<
15). In Table 3, we show the AL and BLEU scores
for the three regimes with different approaches.
We find that LM score and Dynamic masking com-
bined achieve the best AL-BLEU trade-off.

To gain a fuller comparison of approaches, we
calculate AL vs. BLEU and DAL vs. BLEU for
arange of k values, and different stabilisation ap-
proaches and plot them as shown in Figures 3 and 4.
Whilst for any given k, the lm+mask approach has
higher AL (because it adds WAIT operations), we
can see from the trajectory of the plot in Figure 3
that the Im+mask approach has the best AL-BLEU
trade-off. While training the models, we set the
length normalization to 0.6 which is used for scor-
ing the development set for the purpose of early-
stopping. However, we find that a normalization
1.0 performs slightly better than normalization 0.6
when doing re-translation. We show the plots for
both normalization values in figures 3 and 4.

When the AL is 15, for many sentences it is a
full sentence translation and thus all the approaches
have similar BLEU scores. We also notice many
sentences have negative AL scores. As the corpus
AL scores is the average of the sentence level AL
scores, negative scores can reduce the actual AL
score. To address this shortcoming of AL, Cherry
and Foster (2019), propose Differentiable Average
Lagging (DAL) as an alternative. In Figure 4, we
show the DAL vs BLEU scores. In Figure 4, we
also observe that the proposed LM and masking
improve the baseline by a significant margin in
DAL-BLEU trade-off.

5 Conclusion

In this paper, we describe our submission to the
IWSLT 2021 shared task on simultaneous text-to-
text German-English translation. We work with
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a re-translation approach, enabling use to use an
unmodified MT inference engine, together with an
adaptation of wait k to trade off quality and latency.
Additionally we proposed two techniques (dynamic
masking and LM score) to improve translation qual-
ity by reducing the potential for flicker. We find
that the combination of the proposed approaches
achieves the best AL-BLEU trade-off.
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Abstract

This paper describes the offline and simulta-
neous speech translation (ST) systems devel-
oped at AppTek for IWSLT 2021. Our of-
fline ST submission includes the direct end-
to-end system and the so-called posterior tight
integrated model, which is akin to the cas-
cade system but is trained in an end-to-end
fashion, where all the cascaded modules are
end-to-end models themselves. For simultane-
ous ST, we combine hybrid automatic speech
recognition (ASR) with a machine translation
(MT) approach whose translation policy deci-
sions are learned from statistical word align-
ments. Compared to last year, we improve
general quality and provide a wider range of
quality/latency trade-offs, both due to a data
augmentation method making the MT model
robust to varying chunk sizes. Finally, we
present a method for ASR output segmentation
into sentences that introduces a minimal addi-
tional delay.

1 Introduction

In this paper, we describe the AppTek speech trans-
lation systems that participate in the offline and
simultaneous tracks of the IWSLT 2021 evaluation
campaign. This paper is organized as follows: In
Section 2, we briefly address our data preparation.
Section 3 describes our offline ST models followed
by the experimental results in Section 3.6. For the
offline end-to-end translation task, we train deep
Transformer models that benefit from pretraining,
data augmentation in the form of synthetic data
and SpecAugment, as well as domain adaptation
on TED talks. Motivated by Bahar et al. (2021),
we also collapse the ASR and MT components into
a posterior model which passes on the ASR pos-
teriors as input to the MT model. This system is
not considered a direct model since it is closer to

*equal contribution
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the cascade system while being end-to-end train-
able. Our simultaneous translation systems are
covered in Section 4 with discussions on experi-
mental results in Section 4.5. We resume the work
on our streaming MT model developed for IWSLT
2020, which is based on splitting the stream of in-
put words into chunks learned from statistical word
alignment. Most notably, we can implement a flexi-
ble quality/latency trade-off by simulating different
latencies at training time. We also meet this year’s
requirement to support unsegmented input by de-
veloping a neural sentence segmenter that splits the
ASR output into suitable translation units, using a
varying number of future words as context which
minimizes the latency added by this component.

The experiments have been done using RASR
(Wiesler et al., 2014), RETURNN (Zeyer et al.,
2018a), and Sisyphus (Peter et al., 2018).

2 Data Preparation

2.1 Text Data

We participate in the constrained condition and
divide the allowed bilingual training data into in-
domain (the TED and MuST-C v2 corpora), clean
(the NewsCommentary, Europarl, and WikiTitles
corpora), and out-of-domain (the rest). The con-
catenation of MuST-C dev and IWSLT tst2014 is
used as our dev set for all experiments. Our data
preparation includes two main steps: data filtering
and text conversion. We filter the out-of-domain
data based on similarity to the in-domain data in the
embedding space, reducing the size from 62.5M
to 30.0M lines. For the details on data filtering,
please refer to our last year’s submission (Bahar
et al., 2020).

For a tighter coupling between ASR and MT in
the cascade system, we apply additional text nor-
malization (TN) to the English side of the data.
It lowercases the text, removes all punctuation
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marks, expands abbreviations, and converts num-
bers, dates, and other digit-based entities into their
spoken form. This year, our TN approach includes
a language model to score multiple readings of
digit-based entities and randomly samples one of
the top-scoring readings. We refer to it as ASR-like
preprocessing. The target text preserves the casing
and punctuation such that the MT model is able to
implicitly handle the mapping.

2.2 Speech Data

We use almost all allowed ASR data, including Eu-
roParl, How2, MuST-C, TED-LIUM, LibriSpeech,
Mozilla Common Voice, and IWSLT TED corpora
in a total of approximately 2300 hours of speech.
The MuST-C and IWSLT TED corpora are chosen
to be the in-domain data. For the speech side of the
data, 80-dimensional Mel-frequency cepstral coef-
ficients (MFCC) features are extracted every 10ms.
The English text is lower-cased, punctuation-free,
and contains no transcriber tags.

3 Offline Speech Translation

3.1 Neural Machine Translation

Our MT model for the offline task is based on the
big Transformer model (Vaswani et al., 2017). Both
self-attentive encoder and decoder are composed
of 6 stacked layers with 16 attention heads. The
model size is 1024 with a ReLu layer equipped
with 4096 nodes. The effective batch size has been
increased by accumulating gradient with a factor
of 8. Adam is used with an initial learning rate of
0.0003. The learning rate decays by a factor of 0.9
in case of 20 checkpoints of non-decreased dev set
perplexity. Label smoothing (Pereyra et al., 2017)
and dropout rates of 0.1 are used. SentencePiece
(Kudo and Richardson, 2018) segmentation with a
vocabulary size of 30K is applied to both the source
and target sentences. We use a translation factor to
predict the casing of the target words (Wilken and
Matusov, 2019).

3.2 Automatic Speech Recognition

We have trained attention-based models (Bahdanau
etal., 2015; Vaswani et al., 2017) for the offline task
mainly following (Zeyer et al., 2019). To enable
pre-training of the ST speech encoder with differ-
ent architectures, we have trained two attention-
based models. The first model is based on the
6-layer bidirectional long short-term memory (BiL-
STM) (Hochreiter and Schmidhuber, 1997) in the
encoder and 1-layer LSTM in the decoder with
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4 Model TED MuST-C MuST-C
tst2015  tst-HE  tst-COMMON
1 LSTM 6.9 1.5 9.7
Transformer 5.2 5.5 7.3

Table 1: ASR word error rate results in [%].

1024 nodes each. Another model is based on the
Transformer architecture with 12 layers of self-
attentive encoder and decoder. The model size is
chosen to be 512, while the feed-forward dimen-
sion is set to 2048. Both models employ layer-wise
network construction (Zeyer et al., 2018b, 2019),
SpecAugment (Park et al., 2019; Bahar et al., 2019)
and the connectionist temporal classification (CTC)
loss (Kim et al., 2017) during training. We further
fine-tune the models on the in-domain data plus
TED-LIUM. As shown in Table 1, the models ob-
tain low word error rates without using an external
language model (LM). These attention-based mod-
els also outperform the hybrid LSTM/HMM model
used in our simultaneous speech translation task.

3.3 Speech Translation

The ST models are trained using all the speech
translation English—German corpora i.e. IWSLT
TED, MuST-C, EuroParl ST, and CoVoST. After
removing the off-limits talks from the training data,
we end up with 740k segments. Sk and 32k byte-
pair-encoding (BPE) (Sennrich et al., 2016) is ap-
plied to the English and German texts, respectively.
We have done the data processing as described in
Section 2. We also fine-tune on the in-domain data,
using a lower learning rate of 8 x 107°.

3.3.1 End-to-End Direct Model

Following our experiments from last year, the direct
ST model uses a combination of an LSTM speech
encoder and a big Transformer decoder. The speech
LSTM encoder has 6 BiLSTM layers with 1024
nodes each. We refer to this model as LSTM-enc
Transformer-dec. The model is initialized by the
encoder of LSTM-based ASR (line 1 in Table 1)
and the decoder of the MT Transformer model.
We also experiment with the pure Transformer
model both in the encoder and decoder. The
Transformer-based ST models follow the network
configuration used for speech recognition in Sec-
tion 3.2. In order to shrink the input speech se-
quence, we add 2 layers of BiLSTM interleaved
with max-pooling on top of the feature vectors in
the encoder with a total length reduction of 6.
Layer-wise construction is done including the de-



coder: we start with two layers in the encoder and
decoder and double the number of layers after ev-
ery 5 sub-epochs (approx. 7k batches). During this,
we linearly increase the hidden dimensions from
256 to 512 nodes and disable dropout, afterwards it
is set to 10%. Based on our initial observation, the
layer-wise construction helps convergence, in par-
ticular for such deep architectures. The CTC loss
is also applied on top of the speech encoder during
training. The Transformer-based model uses 10
steps of warm-up with an initial learning rate of
8 x 10~%. We set the minimum learning rate to be
50 times smaller than this initial value. We also
apply SpecAugment without time warping to the
input frame sequence to reduce overfitting.

3.3.2 Posterior Tight Integration

The posterior model is inspired by Bahar et al.
(2021) where the cascade components, i.e. the end-
to-end ASR and MT models, are collapsed into a
single end-to-end trainable model. The idea is to
benefit from all types of available data, i.e. the
ASR, MT, and direct ST corpora, and optimize all
parameters jointly. To this end, we concatenate the
trained Transformer-based ASR and MT models,
but instead of passing the one-hot vectors for the
source words to the MT model, we pass on the
word posteriors as a soft decision. We sharpen the
source word distribution by an exponent «y and then
renormalize the probabilities.

A value of v = 1 produces the posterior distri-
bution itself, while larger values produce a more
peaked distribution (almost one-hot representation).
To convey more uncertainty, we use v = 1.0 in
training and v = 1.5 in decoding to pick the most
plausible token. We further continue training of
the end-to-end model using the direct ST parallel
data as a fine-tuning step. The constraint is that
the ASR output and the MT input must have the
same vocabulary. Therefore, we need to train a new
MT model with the appropriate English vocabulary
with 5K subwords. The ASR model is trained with
SpecAugment, the Adam optimizer with an initial
learning rate of 1 x 10~#, and gradient accumula-
tion of 20 steps. We also apply 10 steps of learning
warm-up. We employ beam search with a size of
12 to generate the best recognized word sequence
and then pass it to MT with the corresponding word
posterior vectors.
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3.4 Synthetic Data

To provide more parallel audio-translation pairs,
we translate the English side of the ASR data (Jia
et al., 2019) with our MT model. From our initial
observations, we exclude those corpora for which
we have the ground-truth target reference and only
add those with the missing German side. There-
fore, combining the real ST data with the synthetic
data generated from the How2, TED-LIUM, Lib-
riSpeech corpora, and the English—French part of
MuST-C (Gaido et al., 2020b), we obtain about
1.7M parallel utterances corresponding to 33M En-
glish and 37M German words, respectively.

3.5 Speech Segmentation

To comply with the offline evaluation conditions
for a direct speech translation system with unseg-
mented input, we cannot rely on ASR source tran-
scripts for sentence segmentation. Thus, we train a
segmenter aiming to generate homogeneous utter-
ances based on voice activity detection (VAD) and
endpoint detection (EP). The segmenter is a frame-
level acoustic model that applies a 5-layer feed-
forward network and predicts 3530 class labels,
including one silence and 3529 speech phonemes.
It compares the average silence score of 10 succes-
sive frames with the average of the best phoneme
score from each of those frames to classify silence
segments. We wait for a minimum of 20 consecu-
tive silence frames between two speech segments,
whereas the minimal number of continuous speech
frames to form a speech segment is 100.

Besides improving audio segmentation, follow-
ing the idea by Gaido et al. (2020a), we fine-tune
the direct model on automatically segmented data
to increase its robustness against sub-optimal non-
homogeneous utterances. To resegment the Ger-
man reference translations, we first use the baseline
direct model to generate the German MT output
for the automatically determined English segments.
Then, we align this MT output with the reference
translations and resegment the latter using a variant
of the edit distance algorithm implemented in the
mwerSegmenter tool (Matusov et al., 2005).

3.6 Offline Speech Translation Results

The offline speech translation systems results in
terms of BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006) are presented in Table 2. The
first group of results shows the text translation us-
ing the ASR-like processing. By comparing lines 1
and 3, we see an improvement in our MT develop-



TED MuST-C MuST-C

tst2015 tst-HE tst-COMMON
#  System BLEU TER BLEU TER BLEU TER
Text MT (ASR-like source processing)
1 AppTek 2020 submission 327 573 310 594 327 55.0
2 Transformer 324 578 308 600 33.1 54.5
3 + fine-tuning 338 565 320 58.6 345 53.1
Cascaded ASR — MT
4 AppTek 2020 submission (single) 309 61.0 293 61.7 30.0 58.0
5  AppTek 2020 submission (ensemble) 31.0 61.2 295 61.8 30.8 57.3
6  Transformer 314 593 30.1 607 314 56.9
7  Posterior ASR — MT 31.3 598 292 60.7 318 56.3
Direct ST
8  AppTek 2020 submission (single) 264 647 247 669 294 58.6
9  LSTM-enc Transformer-dec 288 627 285 619 314 56.9
10 + fine-tuning 283 648 27.8 628 33.1 55.6
11 + resegmentation 280 633 273 628 31.1 57.1
12 Transformer 297 625 28,6 62.1 30.7 57.3
13 + fine-tuning 295 627 28,6 624 310 57.1
Ensemble
14 AppTek 2020 submission 280 632 274 633 304 57.8
15 lines 10(2x), 13(2x) 304 617 296 602 338 54.5

Table 2: Offline speech translation results measured in BLEU [%] and TER [%].

ment over time. As intended, fine-tuning using the
in-domain data brings a significant gain. The MT
model in line 3 and the Transformer-based ASR
model from Table 1 make up the cascade system
that outperforms our last year’s submission, which
ranked first on tst2020 using given segmentation.
However, note that this year’s cascade system is a
single-shot try without careful model choice and
fine-tuning. This result indicates fast progress of
the speech translation task. As discussed in Section
3.3.2, passing ASR posteriors into the MT model,
we further fine-tune the cascade model on the direct
ST data. Therefore, the posterior model guarantees
better or equal performance compared to the cas-
cade system. Line 7 shows its competitiveness.

Regarding direct ST, we observe that the pure
Transformer model (line 12) performs on par with
the model with the LSTM-based encoder (line 9).
Our main goal has been to employ different model
choices to potentially capture different knowledge.
These models already use synthetic data. The di-
rect model with the LSTM encoder uses pretraining
of components, while all pretraining experiments
on the Transformer model degrade the translation
quality. The reason might be partly attributed to
the fact that we use a deep encoder (12 layers with
size 512) and a large decoder (6 layers with model
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size 1024) with 3 to 6 layers of adaptors in be-
tween. The training deals with a more complex
error propagation, causing a sub-optimal solution
for the entire optimization problem. Again, fine-
tuning helps both models in terms of the translation
quality, in particular on tst-COMMON. Using the
resegmeted MuST-C training data (line 11) leads
to degradation; however, we have observed that
this model generates less noise and fewer repeated
phrases.

Finally, we ensemble 4 models (two checkpoints
each from lines 10 and 13) constituting our primary
submission for the 2021 IWSLT evaluation. In
comparison to the 2020 submission, improvements
of more than 2% in BLEU can be observed for both
single and ensemble models.

4 Simultaneous Speech Translation

For the IWSLT 2021 simultaneous speech trans-
lation English—German tracks, we continue ex-
ploring our last year’s alignment-based approach
(Wilken et al., 2020), which uses a cascade of a
streaming ASR system and an MT model.

4.1 Simultaneous MT Model

This section gives a short summary of (Wilken
et al., 2020). Our simultaneous MT method is



based on the observation that latency in transla-
tion is mainly caused by word order differences
between the source and target language. For exam-
ple, an interpreter might have to wait for a verb at
the end of a source sentence if it appears earlier in
the target language. We therefore extract such word
reordering information from statistical word align-
ments (generated using the Eflomal tool (Ostling
and Tiedemann, 2016)) by splitting sentence pairs
into bilingual chunks such that word reordering
happens only within chunk boundaries.

For the MT model, we use the LSTM-based at-
tention model (Bahdanau et al., 2015). We make
the following changes to support streaming decod-
ing: 1. We only use a forward encoder.! 2. We add
a binary softmax on top of the encoder trained to
predict source chunk boundaries as extracted from
the word alignment. Importantly, we add a delay D
to the boundaries such that a detection at position
7 corresponds to a chunk boundary after position
74— D. The future context available this way greatly
increases the prediction accuracy. 3. We add an-
other softmax on top of the decoder to predict the
target-side chunk boundaries. They are needed as a
stopping criterion in beam search. 4. We mask the
attention energies such that when generating the
k-th target chunk only the source words encoding
in the chunks 1 to k£ can be accessed.

Inference happens by reading source words until
a chunk boundary is predicted. Then the decoder is
run using beam search until all hypotheses have pre-
dicted chunk end. During this, all source positions
of the current sentence read so far are considered
by the attention mechanism. Finally, the first best
hypothesis is output and the process starts over.

4.2 Random Dropping of Chunk Boundaries

One evident limitation of our IWSLT 2020 sys-
tems (Bahar et al., 2020; Wilken et al., 2020) has
been that we could not provide a range of different
quality-latency trade-offs. This is because basing
translation policy on hard word alignments leads to
a fixed “operation point” whose average lagging is
solely determined by the amount of differences in
word order between the source and target language.

To overcome this, we make the observation that
two subsequent chunks can be merged without
violating the monotonicity constraint. This cor-
responds to skipping a chunk boundary at infer-
ence time and waiting for further context, at the

! Although we experiment with a BiLSTM encoder in
streaming, we are unable to achieve an improved performance.
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cost of higher latency. The number of skipped
chunk boundaries can be controlled by adjusting
the threshold probability ¢, which is used to make
the source chunk boundary decision. In (Wilken
et al., 2020), we have found that a threshold ¢,
different than 0.5 hurts MT performance because
the decoder strongly adapts to the chunks seen in
training, such that longer merged chunks are not
translated well.

To solve this issue, we simulate higher detec-
tion thresholds ¢; at training time by dropping each
chunk boundary in the data randomly with a proba-
bility of pqrop. In fact, we create several duplicates
of the training data applying different values of
Pdrop and shuffle them. This way the model learns
to translate (merged) chunks with a wide variety
of lengths, in the extreme case of pgrop = 1 even
full sentences. This goes in the direction of gen-
eral data augmentation by extracting prefix-pairs as
done by Dalvi et al. (2018); Niehues et al. (2018).
Importantly, we still train the source chunk predic-
tion softmax on all boundaries to not distort the
estimated probabilities.

4.3 Streaming ASR

As the ASR component, we use the same hy-
brid LSTM/HMM model (Bourlard and Wellekens,
1989) as in last year’s submission (Bahar et al.,
2020). The acoustic model consists of four Bil-
STM layers with 512 units and is trained with the
cross-entropy loss on triphone states. A count-
based n-gram look-ahead language model is used.
The streaming recognizer implements a version of
chunked processing (Chen and Huo, 2016; Zeyer
et al., 2016), where the acoustic model processes
the input audio in fixed-length overlapping win-
dows. The initial state of the backward LSTM is
initialized for each window, while — as opposed
to last year’s system — the forward LSTM state is
propagated among different windows. This state
carry-over improves general recognition quality
and allows us to use smaller window sizes Wasr
to achieve lower latencies.

4.4 Sentence Segmentation

This year’s simultaneous MT track also requires
supporting unsegmented input. To split the unseg-
mented source word stream into suitable translation
units, we employ two different methods for the text
and speech input condition.



4.4.1 Text Input

For the text-to-text translation task, the input con-
tains punctuation marks that can be used for reli-
able sentence segmentation. We heuristically insert
sentence ends whenever the following conditions
are fulfilled:

1. the current token ends in sentence final punctu-
ation (. ? ! ;), or punctuation plus quote (. "
2" v ;M) yet is not contained in a closed
list of abbreviations (Mrs. Dr. etc.,..);

2. the first character of the next word is not lower-
cased.

Those heuristics are sufficient to recover the orig-
inal sentence boundaries of the MuST-C dev set
with a precision of 96% and a recall of 82%, where
most of the remaining differences can be attributed
to lines with multiple sentences in the original seg-
mentation. The described method uses one future
word as context and therefore does not introduce ad-
ditional delay into the system compared to awaiting
a sentence end token. We enable this kind of sen-
tence splitting also in the case of segmented input
as we find that splitting lines with multiple sen-
tences slightly increases translation performance.

4.4.2 Speech Input

For the speech-to-text translation task, sentence
segmentation is a much harder problem. Our
streaming ASR system does not require segmenta-
tion of the input; however, its output is lower-cased
and punctuation-free text.

In the literature, the problem of segmenting
ASR output into sentences has been approached
using count-based language models (Stolcke and
Shriberg, 1996), conditional random fields (Liu
et al., 2005), and other classical models. Recently,
recurrent neural networks have been applied, either
in the form of language models (Wang et al., 2016)
or sequence labeling (Iranzo-Sanchez et al., 2020).
These methods either are meant for offline segmen-
tation or require a fixed context of future words,
thus increasing the overall latency of the system.

Wang et al. (2019) predict sentence boundaries
with a various number of future words as context
within the same model, allowing for dynamic seg-
mentation decisions at inference time depending
on the necessary context. We adopt the proposed
model, which is a 3-layer LSTM with a hidden
size of 512, generating softmax distributions over
the labels y*), k € {0,...,m}, where m is the
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maximum context length. For each timestep ¢, ylgk)

represents a sentence boundary at position ¢t — k,
i.e. k words in the past. y(*) represents the case of
no boundary. To generate training examples, each
sentence is extended with the first m words of the
next sentence, and those words are labelled with
yW to y(m),

However, we make a crucial change on how the
model is applied: instead of outputting words only
after a sentence end decision?, we output words
as soon as the model is confident that they still
belong to the current sentence. For this purpose,
we reinterpret the threshold vector (%) such that

p(ygk)) > 0) detects a possible instead of a defi-
nite sentence boundary at position ¢t — k. The idea
is that as long as no incoming word is considered a
possible sentence end, all words can be passed on to
MT without any delay. Only if p(y() > 61 the
current word is buffered, and we wait for the second
word of context to make a more informed decision.
If for k = 2 the boundary is still possible, a third
word is read, and so on. A final sentence end deci-
sion is only made at the maximum context length
(k = m). In this case, a sentence end token is emit-
ted and the inference is restarted using the buffered
words. If during the process p(y*)) < %) for
any k, the word buffer is flushed, except for words
still needed for pending decisions at later positions.
Note that false negative decisions are not corrected
later using more context because the corresponding
words in the output stream have already been read
and possibly translated by the MT system.

4.5 Simultaneous MT Experiments

4.5.1 MT Model Training

We use the data described in Section 2.1 to train
the simultaneous MT models. For the text input
condition, no ASR-like preprocessing is applied
as the input is natural text. SentencePiece vocab-
ularies of size 30K are used for source and target.
We create copies of the training data with dropped
chunk boundaries (Section 4.2) with probabilities
of parop = 0.0, 0.2, 0.5 and 1.0. 6 encoder and
2 decoder layers with a hidden size of 1000 are
used, the word embedding size is 620. The chunk
boundary delay is set to D = 2. Dropout and la-
bel smoothing is used as for the offline MT model.
Adam optimizer is used with an initial learning
rate of 0.001, decreased by factor 0.9 after 10 sub-
epochs of non-decreasing dev set perplexity. Train-

“This is only appropriate in their scenario of an offline MT
system as the next step in the pipeline.



ing takes 150 and 138 sub-epochs of 1M lines each
for text and speech input, respectively.

4.5.2 Latency/Quality Trade-Off Parameters

As described in Section 4.2, we can vary the bound-
ary prediction threshold probability ¢ to set dif-
ferent latency/quality trade-offs at inference time.
In our experiments, we observe that the longer
a chunk gets the less confident the model is in
predicting its boundary, leading in some cases
to very large chunks and thus high latency. To
counteract this effect, we introduce another meta-
variable Atf, which defines a decrement of the
threshold per source subword in the chunk, making
the current threshold ¢} at a given chunk length
l: tj =ty — Aty - (I — 1). This usually leads to
chunks of reasonable length, while also setting a
theoretical limit of [ < [¢;/Aty] + 1.

For the speech input condition, we vary the ASR
window size Waggr of the acoustic model in the
ASR system between 250ms, 500ms and 1000ms.

Finally, we apply length normalization by di-
viding the model scores by 1%, I being the chunk
translation length in subwords, and tune « to values
< 1 for low latency trade-offs as we notice the MT
model tends to overtranslate in this range.

4.5.3 Fine-tuning

We fine-tune all simultaneous MT models on in-
domain data described in Section 2. We also add a
copy of MuST-C where the transcriptions produced
by our hybrid ASR system are used as source to
make MT somewhat robust against ASR errors.
Furthermore, we create low latency systems
by fine-tuning as above, but changing the chunk
boundary prediction delay D from 2 to 1. This
way the latency of the MT component is pushed
to a minimum; however, at the cost of reduced
translation quality caused by unreliable chunking
decisions with a context of only one future word.

4.54 Sentence Segmenter

We train the sentence segmenter for unsegmented
audio input (Section 4.4.2) on the English source
side of the MT training data to which we ap-
ply ASR-like preprocessing and subword splitting.
Note that the sentence splitting of the MT data it-
self is not perfect, and a better data selection might
have improved results.

We set the maximum length of the future con-
text to m 3 as the baseline results in Wang
et al. (2019) indicate no major improvement for
longer contexts. Adam is used with a learning rate
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Wasr (ms) | dev  tst-HE  tst-COMMON
250 | 117 111 124
500 | 107 103 10.8
1000 | 104 9.7 104

Table 3: WER [%] of streaming hybrid ASR on
MuST-C test sets for various window sizes Wasr

of 0.001, reduced by factor 0.8 after 3 epochs of
non-improved dev set perplexity. Training takes 27
sub-epochs of 690K sentences each. For inference,
we set the threshold vector to # = (0.05,0.1,0.5)
by analysing the amount of false negatives depend-
ing on 8) for k = 1,2 and by determining a good
recall/precision trade-off for k = 3. The resulting
segmenter has a recall of 61.4% and a precision
of 64.1% on the original tst-:COMMON sentence
boundaries. Words are buffered for only 0.4 posi-
tions on average.

4.5.5 Simultaneous MT Results

The simultaneous MT systems are evaluated with
the SimulEval tool (Ma et al., 2020). The BLEU
and Average Lagging (AL) (Ma et al., 2019) met-
rics are used to score the different latency/quality
trade-offs. Beam size 12 is used in all cases.
Figure 1 shows the results for the text input con-
dition for MuST-C tst-HE and tst-COMMON. The
filled data points correspond to the main text-input
MT model. The points without fill show the re-
sults after low-latency fine-tuning with D = 1.
The different trade-offs are achieved by varying
the boundary threshold ¢, from 0.3 to 0.9 using
various decrements At;. The full list of trade-off
parameters is given in the appendix, Table 6. With
the low-latency system an AL value of 2 words is
achieved; however, at the cost of low BLEU scores
of 22.2 and 25.1 on tst-HE and tst-COMMUON, re-
spectively. A reasonable operation point could for
example be at an AL of 4, where BLEU scores
of around 29.8 and 31.6 are achieved. For higher
latency values, translation quality increases less
rapidly, peaking at 31.0 and 33.1 BLEU for the two
test sets. On tst-COMMON, a bump in the graph
can be observed between 4 and 6 AL. This corre-
lates with a problem of too short translations of up
to 3% less words than the reference in this range.
Below 4 AL, we are able to tune the hypothesis
lengths via the length normalization exponent .
But above 4 AL, the optimal « is already 1, and
setting & > 1 does not yield improvements.
Figure 2 shows the results for the speech input
condition. The trade-offs are achieved using sim-
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Figure 2: Results for English—German speech-to-text simultaneous translation

ilar parameters as for the text input (Table 7 in
the appendix shows the full list). Additionally, we
vary the ASR window size: for the 7 data points
with lowest latency Wasr = 250ms is used, for
the highest 3 Wagr = 1000ms. The remaining
points use a value of 500ms. The word error rates
for different Wgr are shown in Table 3. On tst-
COMMON, the general shape of the curve is sim-
ilar to text input. The lowest obtained AL is 1.8s.
For high latencies, BLEU saturates at 26.8. On tst-
HE, quality improves less rapidly with increased
latency and even decreases slightly for AL values
> 5s. This indicates that the trade-off parameters,
which have been tuned on dev, do not translate
perfectly to other test sets in all cases. When com-
paring text and speech input results for high latency
values, we conclude that recognition errors in the
ASR system lead to a drop in translation quality by
about 5-6% absolute in terms of BLEU.

Figure 2 also shows results for unsegmented in-
put’. Since no official scoring conditions have been
defined, we therefore create partly unsegmented
test sets ourselves by concatenating every 10 subse-

3For tst-COMMON we skip the 3 points with highest la-
tency for better visibility of the other points.
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quent sentences of the test sets. The AL scores are
taken as-is from SimulEval, the BLEU scores were
computed using the mwerSegmenter tool. (Scoring
the segmented results with mwerSegmenter leads
to unaltered scores.) In general, the missing seg-
mentation seems to lead to a drop of 2-3% BLEU.
For tst-HE, unsegmented input leads to better re-
sults in the low latency range which is unrealistic
and indicates that the AL values computed for sin-
gle and multiple sentences are not comparable. In
future work, we will analyze the scoring of the
unsegmented case further and use trade-off param-
eters which are tuned for this case.

5 Final Results

In comparison to last year’s submission (Bahar
et al., 2020), the result of offline speech transla-
tion models have improved. The official results on
the tst2020 and tst2021 test sets are shown in Ta-
ble 4, as evaluated by the IWSLT 2021 organizers.
This year, there are two references along with the
BLEU score using both of them together. Ref] is
the original one from the TED website, while Ref2
has been created to simulate shorter translations as
used in subtitles.



Our end-to-end direct (an ensemble of 4 models),
cascade (a single model) and posterior (a single
model) systems correspond to the lines 15, 6 and 7
of Table 2, respectively. We observe that the pro-
vided reference segmentation negatively affects the
ST quality regardless of the systems themselves. In
contrast, the segmentation obtained by our segmen-
tation model provides segments which apparently
are more sentence-like including less noise and
thus can be better translated. We note that our end-
to-end direct primary and contrastive systems have
the identical model parameters with an ensemble
of 4 models while they utilize different speech seg-
mentations. In the direct contrastive system, we
apply our last year’s segmentation which seems to
be slightly better than that of this year. Similar to
the MuST-C tst-COMMUON set in Table 2, the di-
rect model outperforms the cascaded-wise systems
on tst2020 whereas it is behind on tst2021 with
automatic segmentation. On the condition with ref-
erence segmentation, the difference between our
cascade and direct models is lower where both sys-
tems almost preform the same. More results can be
found in (Anastasopoulos et al., 2021).

TED TED

System tst2020 tst2021

Refl Ref2 both
reference segmentation
direct (submission 2020) 20.5 - - -
direct 22.2 202 17.1 28.7
cascade 21.4 20.7 17.1 28.6
posterior 20.6 20.1 16.8 283
automatic segmentation
direct (submission 2020) 23.5 - - -
direct primary 24.5 226 183 31.0
direct contrastive 25.1 22.8 189 32.0
cascade 24.0 233 192 321
posterior! 231 219 181 304

Table 4: AppTek IWSLT 2021 submission for offline
speech translation measured by BLEU [%]. t: our cas-
cade primary system at the time of submission.

Table 5 shows the official results for our simul-
taneous speech translation submission. The classi-
fication into different latency regimes is done by
the organizers based on results on tst-COMMON.
Due to dropping chunk boundaries in training, this
year we are able to provide systems in all latency
regimes, except for the speech track where a low-
latency system (AL < 1s) is not possible to achieve
with our cascade approach where the individual
components already have a relatively high minimal
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latency regime BLEU[%] AL
text-to-text

low 22.8 3.1
mid 25.7 6.2
high 26.6 12.0
speech-to-text

mid 16.6 2.0s
high 21.0 4.0s

Table 5: AppTek IWSLT 2021 official simultaneous
speech translation results on the blind text and speech
input test sets.

latency.

6 Conclusion

This work summarizes the results of AppTek’s par-
ticipation in the IWSLT 2021 evaluation campaign
for the offline and simultaneous speech translation
tasks. Compared to AppTek’s systems at IWSLT
2020, the cascade and direct systems present an
improvement of 0.9% and 2.6% in BLEU and TER,
respectively, averaging over 3 test sets. This shows
that we further decreased the gap in MT quality
between the cascade and direct models. We have
also explored the posterior model, which enables
generating translations along with transcripts. This
is particularly important for applications when both
sequences have to be displayed to users.

For the simultaneous translation systems, this
year we are able to provide configurations in a wide
latency range, starting at AL values of 2 words and
1.8s for text and speech input, respectively. For
speech input, a maximal translation quality of 25.8
BLEU is achieved on tst-HE, 3% BLEU improve-
ment compared to the previous system at a similar
latency. By using future context of variable length
we are able to do reliable sentence segmentation
of ASR output designed to introduce minimal addi-
tional delay to the system.
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Abstract

This paper describes the systems submitted to
IWSLT 2021 by the Volctrans team. We partic-
ipate in the offline speech translation and text-
to-text simultaneous translation tracks. For of-
fline speech translation, our best end-to-end
model achieves 7.9 BLEU improvements over
the benchmark on the MuST-C test set and is
even approaching the results of a strong cas-
cade solution. For text-to-text simultaneous
translation, we explore the best practice to op-
timize the wait—-k model. As a result, our
final submitted systems exceed the benchmark
at around 7 BLEU on the same latency regime.
We release our code and model to facilitate
both future research works and industrial ap-
plications'.

1 Introduction

This paper describes the neural speech translation
systems submitted to IWSLT 2021 by the Volctrans
team (also known as the team from ByteDance
Al Lab), including cascade and end-to-end speech
translation (ST) systems for the offline ST track and
a simultaneous neural machine translation (NMT)
system. We aim at finding the best practice for
these two tracks.

For offline ST, the cascaded system often out-
performs the fully end-to-end approach. Recent
studies on the fully end-to-end approaches obtain
promising results and attract a lot of interest. Last
year’s results have shown that an end-to-end model
achieves an even better performance (Ansari et al.,
2020) compared with the cascaded competitors.
However, they introduce pre-training (Bansal et al.,
2019; Stoian et al., 2020; Wang et al., 2020; Aline-
jad and Sarkar, 2020) and data augmentation tech-
niques (Jia et al., 2019; Pino et al., 2020) to end-to-
end models, while the cascaded is not that strong

'Code and models are available at

//github.com/bytedance/neurst/tree/
master/examples/iwslt21

https:
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enough. Hence, in this paper, we would like to
optimize the speech translation model in two as-
pects. First, we are devoted to building a strong
cascade competitor and learns the best practice
from WMT evaluation campaigns (Li et al., 2019;
Wu et al., 2020), such as back translation (Sennrich
et al., 2016a) and ensemble. Second, we explore
various self-supervised learning methods and in-
troduce as much semi-supervised data as possible
towards finding the best practice of training end-
to-end ST models. In our settings, ASR data, MT
data, and monolingual text data are all considered
in a progressively training framework. The results
are very promising, and the final performance on
the MuST-C test set surpasses the end-to-end base-
line by 7.9 BLUE scores, while it is still lagging
behind our cascade model by 1.5 BLUE scores. It
is not surprising since some well-optimized meth-
ods for MT can not be easily used on ST, such as
back translation. However, our experience shows
that the external data can effectively close the gap
between end-to-end models and cascade models.

In parallel, we also participate in the simultane-
ous NMT track, which translates in real-time. Our
system is based on an efficient wait -k model (El-
bayad et al., 2020). We investigate large-scale
knowledge distillation (Kim and Rush, 2016; Fre-
itag et al., 2017) and back translation methods. Spe-
cially, we develop a multi-path training strat-
egy, which enables a unified model serving differ-
ent wait—k paths. Our target is to obtain the best
translation quality at different latency levels.

The remaining part of the paper proceeds as fol-
lows. Section 2 and section 3 describe our cas-
cade and end-to-end systems respectively. Sec-
tion 4 presents the implementation of simultaneous
NMT models. Each section starts from the training
sources and how we synthesize large-scale data.
And then, we give details about the model structure
and techniques for training and inference. We con-
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Dataset #samples  #hours
MuST-C 250,942 450
LibriSpeech 281,241 961
Common Voice 562,517 899
iwslt-corpus 157,909 231
TED-LIUM 3 111,600 165

Table 1: The statistics of audio datasets to train the
ASR model. The iwslt-corpus and TED-LIUM 3 are
filtered by an ASR model trained on MuST-C, Lib-
riSpeech and Common Voice.

duct experiments using only the provided datasets
by IWSLT 2021, and results are shown in Section 5.

2 Cascaded Speech Translation

2.1 Automatic Speech Recognition

The ASR model is transformer-like and trained on
paired speech and transcript data

Datasets and Preprocessing We divide the al-
lowed ASR datasets into two parts: clean and noisy
and consider MuST-C?, LibriSpeech (Panayotov
et al., 2015), and Mozilla Common Voice as the
clean datasets, and use them for training an ASR
system to filter the noisy part, i.e., iwslt-corpus’
and TED-LIUM 3 (Hernandez et al., 2018). We
remove the training samples where the word error
rate (WER) score between the ASR output and En-
glish transcript exceeds 75%. The statistics of the
ASR datasets are shown in Table 1.

For model training, we extract 80-channel log
Mel-filterbank coefficients with windows of 25ms
and steps of 10ms on the audio input. The tran-
scripts are lowercased and we remove all punctua-
tion marks. Then, we apply Moses tokenizer* and
byte pair encoding (BPE) (Sennrich et al., 2016b)°
to the transcripts with 8,000 merge operations.

End-to-End ASR Model We refer to the recent
progress of transformer-based ASR (Dong et al.,
2018; Karita et al., 2019) and implement the speech
transformer model, as illustrated in Figure 1 a).
The feature extractor consists of two-layer CNN
with 256 channels, 3 x 3 kernel, and stride size

*In this paper, MuST-C denotes the newly released English-
German ST dataset (v2) by IWSLT 2021.

3The training corpus for INSLT evaluation campaign over
the last years.

*nttps://github.com/moses—-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

Shttps://github.com/rsennrich/
subword-nmt
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Figure 1: Overview of the cascaded speech translation
model.

2, each of which is followed by a layer normaliza-
tion and ReLLU activation. The major architecture
is the same as the transformer model, including
12 layers for the encoder and 6 layers for the de-
coder. The model width is 768, and the hidden
size of the feed-forward layer is 3,072. The at-
tention head is set to 12 for both self-attention
and cross-attention. To train the model, we use
Adam optimizer (Kingma and Ba, 2015) and set
the warmup steps to 25,000. Empirically, we scale
up the learning rate by 5.0 to accelerate the conver-
gence. The ASR model is trained on 8 NVIDIA
Tesla V100 GPUs with 320,000 frames per batch.
And we truncate the audio frames to 3,000 and
remove training samples whose transcript length
exceeds 120 for GPU memory efficiency. To fur-
ther improve the performance, we apply SpecAug-
ment technique (Park et al., 2019) with frequency
masking (mF = 2, F = 27) and time masking
(mT =2,T=70,p=0.2).

2.2 Neural Machine Translation

All MT models are based on transformer (Vaswani
et al., 2017). We employ data augmentation and
model ensemble techniques to improve the final
performance.

Datasets and Preprocessing We utilize English-
German (EN-DE) parallel sentences from WMT



20200, OpenSubtitles 20187, MuST-C and iwslt-
corpus for training. We filter the parallel corpora
following the rules listed in Li et al. (2019), with
a much stricter constrain on word alignment. Ad-
ditionally, we randomly select 10% sentences sep-
arately from both sides of the original WMT and
OpenSubtitles corpus for data augmentation (see
below), along with the transcripts in ASR datasets
described in sec 2.1.

As for text preprocessing, we apply Moses tok-
enizer and BPE with 32,000 merge operations on
each side.

Tagged Back-Translation Back-translation
(Sennrich et al., 2016a) is an effective way to
improve the translation quality by leveraging a
large amount of monolingual data and has been
widely used in WMT evaluation campaigns. In our
setting, we add a “<BT>" tag to the source side
of back-translated data to prevent overfitting on
the synthetic data, which is also known as tagged
back-translation (Caswell et al., 2019; Marie et al.,
2020).

Knowledge Distillation Sequence-level knowl-
edge distillation (Kim and Rush, 2016; Freitag
et al., 2017) is another useful technique to improve
performance. In this way, we enlarge the training
data by translating English sentences to German
using a good teacher model.

ASR Output Adaptation Traditionally, the out-
put of ASR systems is lowercased with no punctu-
ation marks, while the MT systems receive natural
texts. In our system, we attempt to make the MT
systems robust to these irregular texts. A simple
way to do so is to apply the same rules on the source
side of the MT training set. However, empirical
study shows it causes performance degradation. In-
spired by the tagged back-translation method, we
enhance the regular MT models with transcripts
from both ASR systems and the ASR datasets, as
illustrated in Figure 1 b). An extra tag “<ASR>"
indicates the irregular input. Note that the basic
idea to bridge the gap between the ASR output and
the MT input involves additional sub-systems, like
case and punctuation restoration. In our cascade
system, we prefer to use fewer sub-systems, and
the detailed comparison would be our future work.

Data Combination and Sampling Strategy We
train transformer models with different combina-

Shttp://www.statmt.org/wmt20/
translation-task.html, including Common Crawl,
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tions of data sets because increasing the model’s
diversity can benefit the model ensemble. The de-
tailed setups are listed in Table 2. We over-sample
the in-domain datasets (i.e., MuST-C/iwslt-corpus-
related portions) to improve the in-domain perfor-
mance. Specifically, to control the ratio of samples
from different data sources, we sample a fixed num-
Ns )%
Zs N ’
where Ny is the number of sentences from data
source s, and sampling temperature 7' is set to 5.
Note that the MT#1 is trained on lowercased source
texts without punctuation marks, while MT#2-5 use
the tagged transcripts.

ber of sentences being proportional to (

Model Setups
ting, except that

* we deepen the encoder layers to 16.

* the dropout rate is set 0.15.

* the model width is changed to 768, the hidden
size of the feed-forward layer is 3,072, and
the attention head is 12 for MT#5 only.

We use Adam optimizer with the same schedule
algorithm as Vaswani et al. (2017). All models are
trained with a global batch size of 65,536.

We follow the transformer big set-

2.3 Inference

We average the latest 10 checkpoints of a single
training process for all the above experiments. And
during inference, the “<ASR>" tag is added to the
front of the ASR output. The beamwidth is set to
10 for both ASR and MT tasks.

3 End-to-End Speech Translation

Recent studies show that the fully end-to-end so-
Iution achieves promising performance when com-
pared with the cascaded models (Ansari et al.,
2020). This section will introduce how we build
our end-to-end models for the offline ST task.

3.1 Training Data

The end-to-end model is trained on paired speech
and translation data. We collect MuST-C and iwslt-
corpus (after filtering described in section 2), with
a total of only 681 hours transcribed and trans-
lated speech. To address the data scarcity problem,
we explore the knowledge distillation technique
to augment the data by leveraging ASR datasets
and MT models, also known as pseudo labeling.
In detail, we distill from four MT models: MT#1,

Europarl v10, News Commentary v15, and ParaCrawl v5.1
"https://opus.nlpl.eu/
OpenSubtitles2018.php



MT#2

Dataset Size MT#1 . MT#3 MT#4 MTH#5
pretrain fine-tune
WMT 2020 13.7M P P / P / P
OpenSubtitles 2018 10.7M P P / P P /
MuST-C 0.25M P P/BT/SR  P/BT/SR P/SR/KD P/BT/SR P/BT/SR
iwslt-corpus 0.16M / P/BT/SR  P/BT/SR  P/SR/KD P/SR P/BT/SR
TED-LIUM 3 (EN) 0.11M / / / KD / /
Common Voice (EN) 0.56M / / / KD / /
extra monolingual (EN/DE)  6.77M / / BT KD BT BT

Table 2: The statistics of MT datasets after data filtering and the detailed combination modes of datasets for
difference MT models (MT#1-5). The MT#1 setting is used for training both DE—EN and EN—DE directions.
“P” denotes the parallel corpus. “BT” is the back-translated data using MT#1 (DE—EN). “SR” indicates the
irregular data from both ASR datasets and the ASR model. “KD” is the synthetic data generated by MT#2.

Dataset #samples  #hours
MuST-C 1,198,056 2,186
iwslt-corpus 746,714 1,112
LibriSpeech 1,117,394 3,833
Common Voice 2,212,581 3,546
TED-LIUM 3 384,389 577

Table 3: The size of audio datasets with data augmenta-
tion to train the end-to-end ST model.

MT#2, an ensemble of MT#3-5, and MT#3-R2L
which is trained with the same setting as MT#3
and generates the target translations in the right to
left fashion. We filter the augmented samples with
bad alignment scores as the same as data filtering
in MT. The statistics of training data is shown in
Table 3.

Moreover, two additional copies of the original
and the augmented training data are created by
modifying the speed to 110% and 90% of the initial
rate, which makes a 3-fold training set.

3.2 Speech Transformer for End-to-End ST

As a baseline system, the model architecture and
training configurations are the same as the end-to-
end ASR in our cascade system, except for the
learning rate, which is scaled up by 3.0 for ST. We
initialize the feature extractor and encoder from the
corresponding component of ASR.

We keep the cases and punctuation marks on the
target side and apply Moses tokenizer and BPE to
the translations with 32,000 merge operations.

3.3 Progressive Multi-task Learning

Inspired by the multi-task learning framework for
ST and the progressive training strategy (Tang et al.,
2020; Ye et al., 2021), we introduce PMTL-ST,
a progressive multi-task learning framework for
speech translation, which can leverage additional

67

Hello everyone ...

Transformer
Encoder Transformer

Decoder

Positional Encoding

<EN> Hello ...
b) decoding for ASR task

Modality
Embedding Layer

[ Feature Extractor ] [ Embedding Layer ]

Hallo zusammen ...

f

Fbank Feature

Transformer

Hello everyone. Decoder

<DE> Hallo ...
¢) decoding for MT/ST tasks

a) encoder with multi-modal input

Figure 2: Overview of the end-to-end ST model with
progressive multi-task learning. Note that the audio
and text inputs are unnecessary to be aligned during
training.

ASR and MT data for training. As illustrated in
Figure 2 a), the encoder accepts both audio and
text inputs. Then we add a modality embedding
to the representation to indicate audio input or text
before passing to the shared transformer encoder.
For decoding, we involve “<EN>" and “<DE>"
tokens to make the decoder compatible with ASR
and translation (MT/ST) tasks, as shown in 2 b)/c).

For progressive training, we separately train
an ASR model and an MT model via different
branches in Figure 2. Then, we initialize the fea-
ture extractor and the audio modality embedding
from the ASR model, and the rest of the model
parameters are initialized by the MT model. The
final model is trained jointly with ASR, MT, and
ST.

All other training configurations, such as batch
size and learning rate, are the same as the corre-
sponding single task described before. Addition-
ally, for the PMTL-ST models, we jointly learn the
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sentencepiece® model with 16,000 tokens on the
mixture of English and German texts.

3.4 Fbank2vec

Inspired by the recent progress of speech represen-
tation learning, like wav2vec 2.0 (Baevski et al.,
2020), we introduce a fbank2vec network to learn
contextualized audio representations from log Mel-
filterbank features, as shown in Figure 3.

Convolutional Feature Encoder The encoder
consists of two blocks containing a convolution
followed by layer normalization and a GELU ac-
tivation (Hendrycks and Gimpel, 2016). The con-
volution in each block has 512 channels with 3x3
kernel and stride size 2.

Relative Positional Encoding We use a group
convolution layer to model the relative positional
embeddings as Baevski et al. (2020) does. The
kernel size is 128, and the number of groups is 16.

Contextualized Encoder The final contextual-
ized audio representations are generated by several
transformer encoder blocks. In our setting, we
stack 6 layers of the post-norm transformer, and
the inner activation function for the feed-forward
layers is GELU. In turn, the number of shared en-
coder layers in Figure 2 is changed to 6.

We insert the fbank2vec network in the front of
the feature extractor. The feature extractor further
reduces the dimension of audio representations by
one convolution layer with 5x5 kernel and stride
size 2. The number of channels keeps the same as
the dimension of fbank2vec output.

$https://github.com/google/
sentencepiece
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We experiment with two setups, fbank2vec-768
and fbank2vec-512. The fbank2vec-768 means that

* the dimension of fbank2vec output is 768;

¢ inner the contextualized encoder, the hidden
size of feed-forward layers is 3,072, and the
head of the self-attention layers is 12.

For the fbank2vec-512, the numbers are 512, 2,048,
and 8, respectively. Note that the fbank2vec mod-
ule is pretrained by an ASR task and the overall
model follows the progressive multi-task learning
framework, so the configurations of word embed-
dings, the shared encoder and decoder vary accord-

ingly.
4 Simultaneous Translation

This section describes our submissions to the
text-to-text simultaneous speech translation track
for English to German (EN2DE) and English to
Japanese (EN2JA). For versatility, we adopt identi-
cal methods for these two language pairs.

4.1 Training Data

The training data for EN—DE is from MuST-C,
OpenSubtitles 2018, and WMT 2020 datasets. And
for EN—JA, we use the parallel and monolingual
data from the WMT 2020 news task.

Data Preprocessing We follow the data filtering
process proposed in WMT works (Li et al., 2019;
Wu et al., 2020), including language detection,
length ratio filtering, dictionary alignment, and so
on. For pre-processing, we first apply MeCab’ tok-
enizer to the Japanese sentences. Then, words are
segmented into subword units using sentencepiece
toolkit for both language pairs. We jointly learn
on the source and target side with a vocabulary of
10,000 tokens.

Data Augmentation Similar to section 2.2, we
utilize tagged back-translation (BT) and knowledge
distillation (KD) strategies to improve the perfor-
mance of simultaneous NMT. We experiment with
both LightConv (Wu et al., 2018) and transformer
models. The model with the best BLEU score on
the development set is chosen for data augmenta-
tion. The statistics of all training data and model
settings are presented in Table 4 and Table 5 re-
spectively.

‘https://github.com/taku910/mecab



Dataset Size MT#0 MT#1 MT#2 MT#3 MT#4 MT#5
EN — DE

WMT 2020(EN — DE) 41.14M P P P P P/FT FT
OpenSubtitles 2018 13.84M P P P P P/BT/FT FT/BT
MuST-C 0.23M P P/BT P/BT P/BT P/BT/FT FT/BT
monolingual(EN/DE) 10.25M P BT BT BT BT BT
EN — JA

WMT 2020(EN — JA) 18.19M P P/BT P/BT P/BT P/BT/FT BT/FT

Table 4: The statistics of MT datasets and the combination modes of datasets for simultaneous NMT models. “P”
indicates the parallel corpus. “BT” means the back-translated data generated by MT#0. “FT” is the forward-

translated data generated by MT#1-3.

# Model Arch Enc Dec Emb
0  Transformer 6 6 1024
1 Transformer 6 6 1024
2 Transformer 50 6 1024
3 LightConv 6 6 1024
4 Transformer 16 3 768

5  Transformer 16 3 768

Table 5: The model setups. “Enc”, “Dec” denote the
number of encoder and decoder layers. “Emb” means
the embedding size and the hidden size.

4.2 Efficient wait-k Model

Our simultaneous NMT systems are based on trans-
former wa it -k models, which first read k& source
tokens and then alternate between reading and writ-
ing (translating). Formally, when decoding the
sentence X, the number of visible source tokens is
constrained within min(k + ¢ — 1, |x|) at decoding
step t, where k is the hyper-parameter controlling
the latency. Furthermore, to avoid recomputing the
hidden states of the encoder each time a token is
read, we implement incremental unidirectional en-
coders (Elbayad et al., 2020). And multi-path
training is also applied to leverage more possible
wait—k paths which refers that hyper-parameter
k € [3,9] is random selected at each batch during
training.

Models are trained with a batch size of 32,000
tokens on Tesla V100 GPUs. We average the last 6
checkpoints once the model converges.

4.3 Inference

We explore the look-ahead beam search strategy for
inference. Specifically, we apply beam search to
generate M (M > 1) tokens at each decoding step
and pick the first token in the one with the highest
log-probability out of multiple decoding paths. The
look-ahead beam search achieves consistent perfor-
mance improvement when K.y, is small while its
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performance improvement is insignificant with a
large keya;. This search method is excluded from
our final submissions due to its higher latency, and
we choose the greedy search instead.

Additionally, we split the source sentences into
sub-sentences once the end-of-sentence punctua-
tion is recognized. Though it may result in a slight
performance drop due to the lack of context, we
can obtain a much lower latency.

For the final submissions, we use ensemble mod-
els. We train several models with different kiin
values and disjoint subsets of training data for data
diversity. Each model produces different latency-
quality trade-offs.

5 Experimental Results

We conduct all our experiments using NeurST
(Zhao et al., 2020) and report results for the sub-
mitted speech translation tasks in this section. It is
worth noting that all transcripts and translations in
the test sets are removed from the training data.

When evaluating the offline ST models, tags
such as applause and laughing are removed from
both hypothesis and reference. We use word error
rate (WER) to evaluate the ASR model and re-
port case-sensitive detokenized BLEU!? for MT.
No other data segmentation techniques are ap-
plied to the dev/test sets. Results on MuST-C
dev and tst-COMMON, as well as dev(vi) and
tst-COMMON(v1) from MuST-C v1 (Gangi et al.,
2019) are listed together, which serve as strong
baselines for comparison purpose in the end-to-end
speech translation field.

When evaluating the simultaneous translation,
we use the official SimulEval (Ma et al., 2020)
toolkit and report case-sensitive detokenized BLEU
(Post, 2018) and Average Lagging (Ma et al., 2019)

Ohttps://github.com/jniehues-kit/
sacrebleu



# System dev

tst-COM  dev(vl)

tst-COM(vl) Training data composition

Pure MT

1 MT (w/o punc. & Ic) 32.0 34.1 322 34.0

2 MT (w/ punc. & tc) 33.8 36.2 33.7 35.9 )

3 ensemble MT (w/o punc. & Ic) 338 352 338 353 MT (see Table 2)

4 ensemble MT (w/ punc. & tc) 34.7 36.7 34.6 36.2

Cascaded ASR — MT

5 AppTek/RWTH (Bahar et al., 2020) - - - 29.7 /

6 ASR—MT 29.9 32.1 28.4 31.3 ASR+MT

7 ASR — ensemble MT 31.7 333 30.1 323 /

End-to-End ST

8 direct ST baseline 239 239 - - MuST-C ONLY

9  direct ST 28.9 29.9 279 29.5 ST+ST Augm. by MT#1&2
10 direct ST++ 29.6 304 28.3 29.7 ST All

11 direct ST++* 30.0 30.2 28.2 29.6 ST All

12 XSTNet-768 (Ye et al., 2021) 30.4 31.1 - 30.3 ASR+MT+ST All

13 direct ST + fbank2vec-512 28.7 29.1 26.7 27.6 ST All

14 PMTL-ST + fbank2vec-768 29.6 29.6 26.9 28.1 ASR+MT+ST All

15 PMTL-ST + fbank2vec-768 ++ 30.8 311 28.8 30.1 ASR+MT+ST All+speed pertub
16  PMTL-ST + fbank2vec-768 ++* 30.9 311 28.8 30.1 ASR+MT+ST All+speed pertub
17  ensemble (9, 10, 11) 30.4 31.2 29.0 30.6 /

18 ensemble (15, 16) 31.0 31.1 28.8 30.1 /

19  ensemble (14, 15, 16) 31.4 31.5 293 30.6 /

20 ensemble (13, 14, 15, 16) 31.6 31.8 29.5 30.8 /

Table 6: The overall results of the offline speech translation. The MT model used in the cascade approach is
MT#2 and the ensemble MT model is formed by MT#2-MT#5. The direct ST++* is the same as direct ST++ with
different random seed for in-domain data over-sampling. The PMTL-ST + fbank2vec-768 ++* is continuously
trained from PMTL-ST + fbank2vec-768 ++. tst-COM is the abbreviation for tst-COMMON.

Testset WER
dev 52
tst-COMMON 5.7
dev(vl) 10.6

tst-COMMON(v1) 7.4

Table 7: The WER of the ASR system for the offline
ST.

on MuST-C tst-COMMON (EN2DE) and IWSLT21
dev set (EN2JA).

5.1 Offline Speech Translation

The overall performance of the offline ST and the
ASR component used in the cascade system are
listed in Table 6 and Table 7 respectively.

In Table 6, line 1-4 show the performance of our
pure MT systems, which translate the lowercased
ground truth transcripts with no punctuation marks,
and the natural texts. As seen, there may be no
essential improvements with the “<ASR>" tag on
the irregular input (up to 2 BLEU gap on the single
model), and it suggests that text restoration has the
potential to narrow the gap. Line 6-7 present the
results of translating the ASR output, and we see
our cascaded approach surpasses last year’s best
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cascade system (line 5) by 2.6 BLEU. However,
there is still a significant loss of up to 3 BLEU
scores than line 1/3 due to ASR errors.

The results of our end-to-end solutions are pre-
sented in line 8-20, where line 8 is a benchmark
model (Zhao et al., 2020) trained on the MuST-
C dataset only. With the growth of model capac-
ity (256d—768d) and data augmentation, we obtain
6 BLEU improvement on the tst-COMMON over
the benchmark (line 8). Then, increasing the size
of augmented data gains slight improvement, as
comparing line 9 to line 10/11 (+0.3~0.5 BLEU
scores). Line 13-16 show the results of our pro-
posed fbank2vec. As shown in line 15, we achieve
31.1 BLEU on tst-COMMON, the best single model
with fbank2vec, progressive multi-task learning,
and speed perturbation. We obtain 31.8 BLEU (line
20) for the final ensemble model, which surpasses
the end-to-end benchmark by 7.9 BLEU scores and
is approaching the cascade system with a nearly
1.5 BLEU gap.

Lastly, our primary cascade system is line 7,
and the primary end-to-end system is line 20 for
submission, which achieves higher performance
via model ensemble.
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Figure 4: Latency-quality trade-offs of the simultaneous NMT. k7/9 means kyn = 7/9. MT#X indicate the
aforementioned training datasets and model settings in Table 4 and 5. beam refers to our look-ahead beam search
strategy. seg means that the sentences are pre-splited during inference. multipath means that & is random

selected during training.

Low  Medium High

Ensemble 2586 3173 3321

EN=DE ™ e 2875 3287 3297
Ensemble 1481 1585  15.85

EN=JA e 1579 1579 1579

Table 8: Performance of our final submissions mod-
els on MuST-C tst-COMMON for English-German and
IWSLT21 dev set for English-Japanese.

5.2 Simultaneous Translation

We evaluate the simultaneous NMT systems with
different combinations of strategies and present our
results in Figure 4. Then we report the performance
on different latency regimes in Table 8.

As shown in Figure 4, we can obtain remark-
able BLEU improvements by training with only
the knowledge distilled data (black) comparing to
the filtered parallel data (green) and back-translated
data (magenta), on average 1.0 BLEU improvement
on EN—DE and 0.5 on EN—JA. The possible rea-
sons may be: 1) Noise in origin data is migrated,
like non-parallel sentence pairs. 2) Complex sen-
tences with diverging word order are excluded, and
the machine-translated texts, i.e., translationese,
sometimes have simpler expressions.

We can see that the proposed look-ahead beam
search (red) is competitive when ke, is relatively
small but is comparable with the greedy search
when K.y, is large. So overall considering transla-
tion latency, we use the greedy search for our final
submissions. As for multi-path training, we
see it achieves limited BLEU improvement in our
experiments.
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tst2021
# - System tst2020 ref2  refl  both
7 - Cascade (ensemble) 22.2 21.8 17.1 295
6 - Cascade (single) 21.0 203 164 27.7
20 - Direct (ensemble) 24.3 217 187 313
16 - Direct (single) 23.5 21.6 182 30.6
17 - Direct (ensemble) 22.4 21.1 175 292
10 - Direct (single) 21.6 204 17.0 28.1

Table 9: BLEU of the IWSLT 2021 submissions for of-
fline speech translation task. The rows in bold are our
primary systems. The refl of tst2021 is originally
from the TED website, while the ref2 is newly cre-
ated for this year’s campaign.

For our final submission of EN—DE, we use
the ensemble model, which consists of three trans-
former models trained on different dataset combi-
nations, with ki, = 7. For EN—JA, the submit-
ted model is formed by two transformer models,
with kgain = oo (trained on full sentences) and
multi-path training respectively. As presented
in Figure 4, the model ensemble technique leads
to at least 0.5 BLEU improvement on average (yel-
low). Additionally, with the sentence segmentation
(bleu), the average lagging is significantly reduced.
As aresult, our final submitted systems exceed the
baseline system at around 7 BLEU on the same
latency regime.

6 Final Results

Table 9 lists the final results of the IWSLT 2021
offline ST track. Surprisingly, we find that our end-
to-end models significantly surpass the cascade sys-
tems, which is different from our conclusions on



System BLEU AL AP DAL
EN — DE

MT(Low Latency) 2324  3.08 0.68 4.25
MT(Mid Latency) 2722 630 081 9.24
MT(High Latency) 26.82 12.03 092 12.39
EN — JA

MT(Low Latency)  16.91 6.54 089 11.26
MT(Mid Latency) 16.91 6.54 0.89 11.26
MT(High Latency) 1697 11.27 097 11.90

Table 10: Performance of the IWSLT 2021 submissions
for simultaneous NMT on the blind test set.

the MuST-C test sets. We think this may be caused
by the reference of tst2021. Since the refl of
tst2021 is the original one from the TED website,
the translations could be much shorter for subti-
tling, and our end-to-end models may fit well on
it.

Table 10 shows the official evaluation for our
simultaneous NMT systems.

7 Conclusion

This paper summarizes the results of the shared
tasks in the IWSLT 2021 produced by the Volctrans
team. We investigate the performance of the end-to-
end solutions with data augmentation and progres-
sively training framework for the offline ST task.
Our end-to-end approach surpasses the last year’s
best cascaded system by 1 BLEU, but it is still
lagging behind our cascade model by 1.5 BLEU
scores on MuST-C test sets. However, our end-
to-end solutions achieve promising performance
on tst2020 and tst2021. Afterwards, we develop
the efficient wait—-k model with multi-path
training, and large-scale knowledge distillation and
back translation methods. The final submitted sys-
tems exceed the baseline systems at 7 BLEU on
the same regime. We see the data augmentation
technique plays the most important role in these
tasks. In the future, we would like to explore a
more extensive data condition on both modality
and quantity. We hope our practice could facilitate
batch research works and industrial applications.
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Abstract

The paper describes BUT’s English to Ger-
man offline speech translation (ST) systems
developed for IWSLT2021. They are based on
jointly trained Automatic Speech Recognition-
Machine Translation models. Their perfor-
mances is evaluated on MustC-Common test
set. In this work, we study their efficiency
from the perspective of having a large amount
of separate ASR training data and MT train-
ing data, and a smaller amount of speech-
translation training data. Large amounts of
ASR and MT training data are utilized for pre-
training the ASR and MT models. Speech-
translation data is used to jointly optimize
ASR-MT models by defining an end-to-end
differentiable path from speech to translations.
For this purpose, we use the internal continu-
ous representations from the ASR-decoder as
the input to MT module. We show that speech
translation can be further improved by training
the ASR-decoder jointly with the MT-module
using large amount of text-only MT training
data. We also show significant improvements
by training an ASR module capable of gener-
ating punctuated text, rather than leaving the
punctuation task to the MT module.

1 Introduction

Speech Translation (ST) systems are intended
to generate text in target language from the
audio in source language. The conventional
ST systems are cascade ones, including (in the
most popular form) three blocks i.e., an ASR,
punctuation/segmentation module and an MT
model (Ngoc-Quan Pham, 2019; Pham et al.,
2020b; Jan et al., 2019; Ansari et al., 2020). Both
Automatic Speech Recognition system (ASR) and
Machine Translation (MT) models are indepen-
dently trained, and the MT model processes the
ASR output text (ASR hypotheses) to generate
translations. In a cascade system, the advance-
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ments in ASR and MT can be directly extended to
ST. These models can also leverage on the avail-
ability of large ASR and MT data-sets, and some
of the state-of-the art ST systems are still cascade
ones.

Recently, End-to-End ST systems have become
widely popular. An End-to-End ST can directly
generate text in target language from the audio
in source language. These models are simpler
in structure and they are more suitable for op-
erating in streaming fashion. Most End-to-End
speech translation systems are variants of encoder-
decoder architecture with attention models (Bah-
danau et al., 2015; Di Gangi et al., 2019; Zhao
et al., 2020). This category includes the popu-
lar Transformer models, which have been adapted
for training End-to-End ST in (Di Gangi et al.,
2019). In (Inaguma et al., 2020), a better perfor-
mance of ST was achieved by initializing the en-
coder and decoder modules from pre-trainied ASR
and MT systems, respectively. Very-deep trans-
former models have been trained with stochastic
depth for training End-to-End ST models in (Pham
etal., 2019). The use of relative positional embed-
dings has also improved the performance of trans-
former (Pham et al., 2020a).

One major drawback or end-to-end ST is the
data availability, i.e., paired speech-to-translation
data is scarce compared to ASR or MT data. Data
augmentations and use of synthetic data have been
explored in (Bahar et al., 2019, 2020) to mitigate
the issue. Unlike End-to-End ST systems, the data
for training cascade systems is easily available and
less costly.

A brief survey of existing approaches and their
principal limitations are discussed in (Sperber and
Paulik, 2020). Despite multiple advantages, the
cascade systems suffer from a major drawback:
propagating erroneous early decisions into MT
models, which then cause degradation in the trans-
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lation performance. To mitigate this degradation,
rather than passing a single ASR output sequence
to MT model, other forms such as lattices, n-best
hypotheses and continuous representations have
been explored in (Anastasopoulos and Chiang,
2018; Zhang et al., 2019; Sperber et al., 2019; Vy-
dana et al., 2021; Dong et al., 2020).

In this work, we use our jointly trained Au-
tomatic Speech Recognition-Machine Transla-
tion (Joint-ASR-MT) model previously described
in (Vydana et al., 2021). Joint-ASR-MT model
is a cascade system, but it has a differentiable
path between ASR and MT modules. To cre-
ate such differentible path, the continuous hidden
representations (corresponding to each output to-
ken) from the ASR decoder are passed to the MT-
Model. The hidden continuous tokens correspond-
ing to each output token are the attention-weighted
value vectors in the last layer of the transformer
decoder. We refer to these continuous representa-
tions as‘“‘context vectors” as proposed in (Sperber
etal., 2019).

Existing large separate ASR training data and
MT training data can be used to pre-train these
modules; then, the pre-trained modules are jointly
optimized using a small amount of speech trans-
lation data. The joint optimization mitigates the
degradation in performance due to erroneous early
decisions.

In this paper, we generate German translation
from English speech, and we focus on two main
contributions: (1) We train different MT mod-
els that can translate normalized text or punctu-
ated text. It is known that MT-models translat-
ing punctuated text provide superior performance,
therefore, we propose to train an ASR system that
can generate the punctuated text. We confirm that
such ASR system provides superior performance
in ASR-MT pipeline. (2) We use the internal con-
tinuous representations from the ASR-decoder as
the input to MT module. In section 6, we show
that speech translation can be further improved by
adapting ASR-decoder to the MT module. This is
achieved by training the ASR-decoder jointly with
the MT-module using a large amount of text-only
MT training data.

2 Datasets and Pre-processing

The Datasets used for training various models are
described in Table. 1. ASR-Train-set and MT-
Train-set are used for pre-training ASR and MT
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models respectively. The pre-trained models are
fine-tuned using ASR-MT-Train-set. All models
are evaluated using MustC-Common test set.

Table 1: Data used for training various models.

Source | Target
Corpora #Sentences |Audio| text | Text
MT |ParaCrawl v3 3IM v v
~Train-set| 5o nSubtitles 2018|  12M v | v
Rapid 2019 1.5M v v
Europarl v9 1.81M v v
News Commentary | 365K v v
Common Crawl 2.4M v v
Wikititles 1.3M v v
WIT3 196K v v
TED Talks 220K v v
ASR-MT |Europarl-ST 32K v v v
“Train-set] st v2 BK | v | v | v
IWSLT2018 171K v v v
ASR |Tedlium3 264K v v
~Train-set|; o opeech BIK | v | v

2.1 Pre-processing and Feature Extraction

From audio data, 80-Dimensional Mel-Filter bank
energies along with pitch features are extracted.
The Moses toolkit is used for text tokenization
and other standard text pre-processing. The um-
lauts from the German text are replaced by the
special tokens. All the non ASCII characters are
removed from the text data. The repetitions of
the same sentences are removed from the corpora.
We cleaned up the MT training data by identify-
ing and manually removing the sentences where
successive words were erroneously concatenated
in to very long erroneous words. Sentence-piece
models (Kudo and Richardson, 2018) are used for
training BPE-tokenizers. 40M lines of text are
used for training each BPE-tokenizer and all the
tokenizers have a vocabulary of 20K units. Three
separate tokenizers are trained using normalized
English text, punctuated English text and punctu-
ated German text. The output of MT module is al-
ways punctuated text, while input to MT (as well
as ASR output) can be either normalized or punc-
tuated text (see norm-MT and Punc-MT in sec-
tions 4).

2.2 Pruning Noisy ASR corpus

Some of the utterances in ASR-MT-Train-
set (MustC, IWSLT and Europarl) sets are erro-
neous due to the shift in alignments between audio
and text. Training an End-to-End ASR on this data



directly did not lead to convergence. To remove er-
roneous transcripts, a hybrid TDNN-LFMMI ASR
system based on KALDI (Povey et al., 2011, 2016)
was trained and this ASR system was used to de-
code the ASR-MT-train set. The Word Error Rate
(WER) for each sentence is computed and the sen-
tences with more than 50% WER are deleted from
the ASR-MT-Train-set (Potapczyk et al., 2019).
Even with this cleaning, training the ASR systems
only on ASR-MT-Train-set did not lead to con-
vergence. Pre-training the ASR models on ASR-
Train-set turned out to be crucial for convergence
as described in section 3.

3 Automatic Speech Recognition (ASR)

ASR systems trained in this work are built on
Transformer ASR models (Dong et al., 2018;
Karita et al., 2019; Vydana et al., 2021; Vaswani
et al., 2017). The ASR models have 12 encoder
and 6 decoder layers with 4096 feed-forward
units and 1024 attention dimension with 16 heads.
Models are initially trained with ASR-Train-set
and are later fine-tuned with ASR-MT-Train-set.
A thresholding mechanism is used for pruning
away the noisy end-of-sequence (EOS) tokens
from beam search (Kahn et al., 2019). Models are
trained with 30K warm-up updates and a check-
point is saved after every 8K updates. The train-
ing is stopped with an early stopping criterion. 8-
best check-points are averaged and the averaged
weights are used for decoding the hypothesis. Vec-
torized beam search (Seki et al., 2019) was used
for decoding the ASR hypotheses with a beam size
of 10. Further in this paper, ASR models described
in this section are referred to as Ext. ASR models
(Externally trained ASR models).

Two different ASR systems were trained for
generating normalized text (Norm-ASR) and
punctuated text (Punc-ASR), and their perfor-
mances are reported in Table 2. It can be observed
that the WER of Punc-ASR appears to be higher
than Norm-ASR. Punc-ASR is a obviously more
difficult task than Norm-ASR — the punctuation
tokens are considered as extra words and each er-
ror in those words contributes to the WER.

ASR-LM: A Transformer language model was
trained on English text (Irie et al., 2019). The
model has 6 layers, with 4096 feed-forward units
and 1024 attention dimension with 8 heads. The
model is initially pre-trained on Librispeech LM
corpus and it is later fine-tuned on English text
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Table 2: Performance of trained ASR systems reported
on MustC-Common set. For Punc-ASR, the errors in
punctuation tokens are considered, which makes it a
more difficult task.

Model WER
Norm-ASR 18.20

+LM 17.35
Punc-ASR  21.20

from MT-train-set and ASR-MT-train-set. An im-
provement in the performance is observed by shal-
low fusion of the ASR and language model (ASR-
LM). Performances of these language models are
presented in column 2 of Table. 5.

4 Machine Translation Systems(MT)

Transformer models (Vaswani et al., 2017) are also
at the core of MT-systems. They have 6-encoder
and 6-decoder layers with 4096 feed-forward units
and 1024 attention dimensions and have 16 heads.
The models are optimized with 30K warm-up up-
dates and a check-point is saved every 8k updates.
Training is stopped using an early stopping cri-
terion. 8-best check-points are averaged and the
averaged weights are used for decoding the hy-
potheses. The noisy EOS tokens are pruned out
using (Kahn et al., 2019). Vectorized beam (Seki
et al., 2019) search has been used for decoding
the hypotheses with a beam size of 8. A large
variance in the performance is observed w.r.t the
decoding hyper-parameters such as maximum tar-
get sequence length and length-bonus. The maxi-
mum length of the target sequence is computed by
multiplying the input sequence length with length-
ratio: 1.2 was found as optimal on the develop-
ment set. To control the length of the output se-
quence, the log-likelihood scores of the hypothe-
ses are penalized by additive token insertion penal-
ties. The optimal value for this penalty is tuned as
a hyper-parameter on the development set. The
hypothesis text is de-tokenized and BLEU score
is evaluated using Moses Toolkit. All the BLEU
scores reported in this paper are computed us-
ing the de-tokenized, punctuated German text us-
ing multi-bleu-detok.perl. The perfor-
mances of the MT systems are reported in Table. 3.
All BLEU scores reported in this paper are com-
puted using punctuated text as reference.

In Table 3, Norm-MT, Punc-MT are MT models
trained to predict punctuated German text. Norm-



Table 3: Performances of the MT systems reported on
MustC-Common set.

Model BLEU

Norm-MT
+pretrain  27.18
+finetune  27.98
+MT-LM  28.12

Punc-MT
+pretrain ~ 31.02
+finetune  35.00
+MT-LM  35.04

MT uses the normalized English text as input
while the Punc-MT uses the punctuated English
text. Punc-MT model has performed better than
Norm-MT. From Table 3, it can be observed that
the punctuation tokens in the text are adding ad-
ditional information for training the MT model.
Fine-tuning the Punc-MT on in-domain text has
improved the performance significantly. Further in
this paper, MT models described in this section are
referred to as Ext.MT models (Externally trained
MT models).

MT-LM: A transformer language model has
been trained on German text from MT-Train-set,
ASR-MT-train-set. This LM is also used while
decoding with the MT model (Irie et al., 2019).
The architecture of the model is same as ASR-LM
mentioned in section 3. A shallow fusion between
the MT-model and the MT-LM Language model is
performed. As shown in Table 3 and column 2 of
Table 5, the additional language model (MT-LM)
did not improve the performance significantly.

S Jointly Trained ASR-MT Systems

The model has two modules: ASR and MT; their
architecture is same as described in sections 3 and
4 respectively — see block diagram in Figure 1 and
full description of the model in (Vydana et al.,
2021). The context vectors from the final layer
of the ASR-decoder are used as inputs to the MT
module. Passing context vectors from ASR to
MT models while training has also been explored
in (Sperber et al., 2019). Both the models are
jointly optimized using a multi-task cross-entropy
(ASR cross-entropy and MT cross-entropy) — both
losses are also shown in Figure 1. During the in-
ference, beam search has been used to obtain the
ASR hypotheses, and the corresponding context
vectors obtained from the ASR model are used by
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Figure 1: Joint-training of ASR-MT system using
multi-task loss.

the MT model for generating translations. The MT
model also uses a beam search, and the final ST
hypotheses is obtained by a coupled search (Vy-
dana et al., 2021) using the joint-likelihood from
ASR and MT:

y* = argmax Z P(y|z)P(z|z)
z€Z(x)
= argmax arg max (log(P(y|z))
Y z€Z(x)

+ log(P(z]x))), (D

where x is the speech abnd z,y are the source
and target sequences respectively. Z is the n-best
source sequence and yx* is most likely decoded hy-
pothesis. In this equation, y* is always a discrete
sequence, while z is a discrete sequence when
we are using Ext.MT and a continuous one when
using Joint-MT. Note that similar coupled search
was used in (Tu et al., 2017), where the back trans-
lation likelihoods are used for re-scoring the hy-
pothesis of the MT-system.

6 Adapting ASR decoder to the MT
module

Joint-ASR-MT models are jointly optimized by
having an end-to-end differentiable path from
speech to translations. The internal continuous
representations from the ASR-decoder are used



as the input to MT module. Speech transla-
tion can be further improved by adapting ASR-
decoder to the MT module. This is achieved by
training the ASR-decoder jointly with the MT-
module using large amount of text-only MT train-
ing data. The weights for the model are initialized
from trained Joint-ASR-MT model. Speech trans-
lation data (ASR-MT-Train-set) is used to fine-
tune Joint-ASR-MT model using a multi-task loss.
Apart from that, the data from the MT-Train-set is
used to jointly train the ASR-decoder and the M'T-
module of Joint-ASR-MT model. We alternately
update the model using multi-task loss described
in section 4 and the adaptation loss as described in
this section.

A block diagram describing this training is pre-
sented in Figure 2. The input text sequence is
given to the ASR-decoder and a sequence of zeros
is considered as the encoder output sequence of
the ASR model (i.e.,H 45 in Figure 2). The con-
text vectors computed from these two sequences
are used for training the MT-module. Note that
similar method has been adopted in (Potapczyk
et al.,, 2019) for improving the performance of
ASR system using only text data. This training
further improves the performance as will be shown
in section 7.

Context

Hase Hur
Target Text
Speech_| ASR ASR | Vectors MT [l
. encoder decoder encoder decoder|
~—
ASR-MT Training
¥ J

v
Tightly-coupled Training of

ASR-decoder and MT model

Figure 2: Adaptation of ASR-decoder to the MT-
module in the Joint-ASR-MT model.

7 Speech Translation Results

Results for the various configurations of speech
translation systems are given in Table 4. First,
we focus on column A, where the Joint-ASR-MT
models are trained using ASR-MT-Train-set (only
speech translation data) with a multi-task loss
as described in section 5. Note, however, that
Ext.ASR and Ext.MT systems are trained on large
amounts of data and finetuned to ASR-MT-Train-
set as described in sections 3 and 4 respectively.
For systems in column-A, normalized (unpunc-
tuated) text is passed from ASR to MT model.
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Row 1 corresponds to the conventional cascade
system, where the Ext. ASR systems generates the
n-best hypotheses of discrete token sequences and
an Ext.MT uses these token sequences for gener-
ating the translations as described in Eq. 1. We
consider this system achieving BLEU 23.20 as a
baseline.

Usually, transformer-ASR decoder uses the par-
tial output hypothesis and extends it by a new
token with every autoregressive decoding step.
For the system in row 2, Ext. ASR generates the
complete hypothesis and ASR module from Joint-
ASR-MT is “asked” to extend it by one more to-
ken. As a byproduct “context vectors” (the contin-
uous representations) are generated for the whole
sequence — these are then passed to the MT-
module in joint-ASR-MT model to generate trans-
lation. Compared to row 1 of column A, we see a
degradation in performance (BLEU-20.19). This
can be attributed to having only small amount of
speech translation training data, which is not suffi-
cient for robustly training the Joint-ASR-MT sys-
tems.

For the systems in row 3, Ext. ASR generates the
ASR hypotheses which are used by Ext. MT simi-
lar to the system described in row 1; the hypothe-
ses from Ext.ASR are used by Joint-MT similarly
to the system described in row 2. To generate the
translation, the hypotheses form both models are
ensembled as follows: For each output token, a
weighted average of Log-softmax outputs from the
two MT models is computed. This weighted av-
erage is used in the beam-search to compute the
n-best partial hypotheses. These partial hypothe-
ses are further extended by both the models to
generate the Log-softmax outputs for next tokens.
We can see that this ensembling system achieves
a BLEU score of 24.02 and outperforms the cas-
caded baseline.

The systems in rows 4-6 are essentially the same
as the ones in rows 1-3, respectively, except that
now, the ASR module from joint-ASR-MT sys-
tem is directly used to produce the n-best ASR
hypotheses and the corresponding context vec-
tors. Rows 4-6 show the same trend as rows 1-
3 with slightly improved performance; these im-
provements are mainly due to better performing
ASR system: As described in Section 2.2, train-
ing ASR systems only on ASR-MT-Train-set (data
from Mustc, IWSLT and Europarl with erroneous
transcriptions) did not lead to convergence. How-



Table 4: Performances of Joint-ASR-MT systems under various ensemble combinations, the results are reported

on MustC-Common test set.

A B C D
pretraining
no-pretraining pre-training pre-training | +Punc-ASR/MT+
+Norm-ASR/MT | +Norm-ASR/MT | +Punc-ASR/MT | tightly-coupled
[ASR]=[MT] BLEU WER |BLEU WER |BLEU WER |BLEU WER
1. |[Ext-ASR]=[Ext-MT] 2320 1820 |23.20 1820 |26.15 21.54 |26.15 21.54
2. |[Ext-ASR]=-[Joint-MT] 20.19 - 22.59 - 28.56 - 29.00 -
3. |[Ext-ASR]=-[Joint-MT + Ext-MT] 24.02 - 24.13 - 29.07 - 29.44 -
4. | [Joint-ASR]=[Ext-MT] 23.86 16.14 | 2386 13.01 |29.70 15.71 |30.24 15.63
5. | [Joint-ASR]=-[Joint-MT] 20.75 - 23.97 - 31.23 - 32.68 -
6. |[Joint-ASR]=-[Joint-MT + Ext-MT] 24.65 - 25.95 - 32.51 - 33.68 -
7. |[Ext-ASR +Joint-ASR]=[Ext-MT] 24.60 14.84 | 2500 13.54 |29.00 1646 |29.35 16.19
8. | [Ext-ASR + Joint-ASR]=-[Joint-MT] 20.89 - 23.59 - 30.52 - 31.58 -
9. |[Ext-ASR +Joint-ASR]=-[Joint-MT + Ext-MT] | 25.11 - 25.65 - 31.86 - 32.67 -
[Ext-ASR + Joint-ASR]=-[Joint-MT + Ext-MT]
10. +ens* 2535 14.61 |26.14 13.05 |32.67 1571 |33.78 15.63

Table 5: Comparing the performance of Joint-ASR-MT systems while processing n-best hypotheses from the ASR.

A B C D
pretraining
no-pretraining pre-training pre-training | +Punc-ASR/MT+
+Norm-ASR/MT | +Norm-ASR/MT | +Punc-ASR/MT | tightly-coupled
[ASR]=[MT] BLEU WER |BLEU WER |BLEU WER |BLEU WER
[Ext-ASR + Joint-ASR]=[Joint-MT + Ext-MT]
+ens* 2535 14.61 |26.14 13.05 |32.67 1571 |33.78 15.63
+ASR-LM 2690 12.80
+MT-LM 27.16
+2-best-input - - 27.24 - 32.69 - 33.82 -
+4-best-input - - 27.35 - 32.80 - 33.87 -
+6-best-input - - 27.35 - 32.85 - 33.86 -
+8-best-input - - 27.46 - 32.94 - 33.77 -
+10-best-input - - 27.51 - 32.87 - 33.79 -

ever, when the same data is used to train Joint-
ASR-MT model for speech translation task, we
observe that the ASR module in this model trained
well. The reason for that is that the ASR-module
is not directly trained on erroneous transcriptions,
instead, it is trained to produce transcriptions that
lead to good translations. This training can be
seen as a form of light supervision which can miti-
gate the problem with the erroneous transcriptions.
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At the end, this system trained only on ASR-MT-
Train-set achieves better ASR performance (WER
16.14%) compared to Ext.ASR (WER 18.20%),
Which is pre-trained on ASR-Train-set (Approx
2000hrs) and fine-tuned on erroneous ASR-MT-
Train-set. Similar trend will be observed with the
systems in columns B, C and D.

The systems described in rows 7-9 are similar
to those from rows 1-3, except that the ASR hy-




potheses are obtained by ensembling the Ext. ASR
and ASR-module in Joint-ASR-MT model. The
ensembling is performed in a similar way as de-
scribed for the MT-system (row 2). All the ensem-
ble systems in rows 3, 6, and 7-9 are ensembled
giving equal weight to both the systems, except
for row 10, where the ensemble weights are tuned
on the development set. For all these systems, we
can see that the ensembling consistently improves
the performances.

The systems in column B are similar to the ones
in Column A, but for the Joint-ASR-MT model,
the weights of ASR and MT module are initial-
ized from the Ext. ASR and Ext.MT. Only then, the
Joint-ASR-MT model is fine-tuned using ASR-
MT-Train-set. Comparing column-A and column-
B, we can see that such pre-training has signifi-
cantly improved the performance.

We also see that the MT system using contin-
uous representations (Joint-MT) (row 5; BLEU
23.97) outperforms the system with the Ext.MT
(row 4; BLEU-23.86) and similar trend can be
seen in columns C and D. This is in contrast to the
system in column A where we did not use enough
data for training the Joint-ASR-MT model; now,
with the pre-training, the joint-ASR-MT model is
effectively trained on the same amount of data as
the Ext.MT systems.

The systems in column C are similar to the
ones in Column B, but the ASR and MT modules
used here are Punc-ASR (ASR systems which can
generate punctuated text) and Punc-MT (MT sys-
tems which can process punctuated text as input),
respectively. We can see that the systems from
column-C perform significantly and consistently
better than the corresponding ones in column-B.
This shows that it is more effective to train an
ASR module to generate punctuated text rather
than leaving the punctuation task to the MT mod-
ule. Note that the ASR performances reported in
columns C and D is computed including the punc-
tuation symbols, which results in higher WERs.

Finally, the systems in column D are the same
as the ones in column C except that we addition-
ally use the ASR decoder adaptation scheme de-
scribed in section 6. The consistent improvements
observed in column D as compared to column C
show the effectiveness of this adaptation scheme.
They are able to make use of the large amount of
text-only MT training data to train also the ASR
decoder in order to tighten the coupling between
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ASR-decoder and MT-module. Apart from im-
proving MT-module, this adaptation has also im-
proved the performance of ASR-decoder on its
own. This can be observed by comparing WER’s
of row 4 in columns C and D.

The results of passing the n-best hypotheses
from ASR to MT models are presented in Table 5.
Passing the n-best hypothesis from ASR to MT
module has better performance, but not signifi-
cantly. This result is not in line with out previous
studies (Vydana et al., 2021), where we have seen
significant gains from switching from 1-best to n-
best.

8 Conclusion

In this work, we have explored joint-training of
ASR-MT models for speech translation. Initializ-
ing these models from pre-trained ASR and MT
models has helped in better optimization. The
joint training has improved the performance of the
ASR module significantly as the additional MT
module has provided better (light) supervision in
the context of erroneous ASR transcripts. Adding
the punctuation information into the input text im-
proves the performance of the MT-model greatly.
In line with this observation, use of ASR system
generating punctuated text also improves the MT
performance significantly in a cascade pipeline.
Use of the MT text only data to adapt the ASR
decoder to the MT module in the joint-ASR-MT
model further improves the performances of these
systems. The systems trained in this work are of-
fline models and their performances needs to be
studied from the perspective of online or stream-
ing models.
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Abstract

This paper describes FBK’s system submis-
sion to the IWSLT 2021 Offline Speech Trans-
lation task. We participated with a direct
model, which is a Transformer-based architec-
ture trained to translate English speech audio
data into German texts. The training pipeline
is characterized by knowledge distillation and
a two-step fine-tuning procedure. Both knowl-
edge distillation and the first fine-tuning step
are carried out on manually segmented real
and synthetic data, the latter being generated
with an MT system trained on the available cor-
pora. Differently, the second fine-tuning step
is carried out on a random segmentation of the
MuST-C v2 En-De dataset. Its main goal is to
reduce the performance drops occurring when
a speech translation model trained on manu-
ally segmented data (i.e. an ideal, sentence-
like segmentation) is evaluated on automati-
cally segmented audio (i.e. actual, more re-
alistic testing conditions). For the same pur-
pose, a custom hybrid segmentation procedure
that accounts for both audio content (pauses)
and for the length of the produced segments
is applied to the test data before passing them
to the system. At inference time, we com-
pared this procedure with a baseline segmenta-
tion method based on Voice Activity Detection
(VAD). Our results indicate the effectiveness
of the proposed hybrid approach, shown by a
reduction of the gap with manual segmentation
from 8.3 to 1.4 BLEU points.

1 Introduction

Speech translation (ST) is the task of translating
a speech uttered in one language into its textual
representation in a different language. Unlike si-
multaneous ST, where the audio is translated as
soon as it is produced, in the offline setting the au-
dio is entirely available and translated at once. In
continuity with the last two rounds of the IWSLT
evaluation campaign (Niehues et al., 2019; Ansari
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et al., 2020), the IWSLT2021 Offline Speech Trans-
lation task (Anastasopoulos et al., 2021) focused
on the translation into German of English audio
data extracted from TED talks. Participants could
approach the task either with a cascade architecture
or with a direct end-to-end system. The former rep-
resents the traditional pipeline approach (Stentiford
and Steer, 1988; Waibel et al., 1991) comprising
an automatic speech recognition (ASR) followed
by a machine translation (MT) component. The
latter (Bérard et al., 2016; Weiss et al., 2017) relies
on a single neural network trained to translate the
input audio into target language text bypassing any
intermediate symbolic representation steps.

The two paradigms have advantages and disad-
vantages. Cascade architectures have historically
guaranteed higher translation quality (Niehues
et al., 2018, 2019) thanks to the large corpora avail-
able to train their ASR and MT sub-components.
However, a well-known drawback of pipelined so-
lutions is represented by error propagation: tran-
scription errors are indeed hard (and sometimes
impossible) to recover during the translation step.
Direct models, although being penalized by the
paucity of training data, have two theoretical com-
petitive advantages, namely: i) the absence of error
propagation as there are no intermediate processing
steps, and ii) a less mediated access to the source ut-
terance, which allows them to better exploit speech
information (e.g. prosody) without loss of informa-
tion.

The paucity of parallel (audio, translation) data
for direct ST has been previously addressed in dif-
ferent ways, ranging from model pre-training to
exploit knowledge transfer from ASR and/or MT
(Bérard et al., 2018; Bansal et al., 2019; Aline-
jad and Sarkar, 2020), knowledge distillation (Liu
et al., 2019; Gaido et al., 2021a), data augmenta-
tion (Jia et al., 2019; Bahar et al., 2019b; Nguyen
et al., 2020), and multi-task learning (Weiss et al.,
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2017; Anastasopoulos and Chiang, 2018; Bahar
et al., 2019a; Gaido et al., 2020b). Thanks to these
studies, the gap between the strong cascade models
and the new end-to-end ones has gradually reduced
during the last few years. As highlighted by the
IWSLT 2020 Offline Speech Translation challenge
results (Ansari et al., 2020), the rapid evolution of
the direct approach has eventually led it to perfor-
mance scores that are similar to those of cascade
architectures. In light of this positive trend, we de-
cided to adopt only the direct approach (described
in Section 3) for our participation in the 2021 round
of the offline ST task.

Another interesting finding from last year’s cam-
paign concerns the sensitivity of ST models to dif-
ferent segmentations of the input audio. The 2020
winning system (Potapczyk and Przybysz, 2020)
shows that, with a custom segmentation of the test
data, the same model improved by 3.81 BLEU
points the score achieved when using the basic seg-
mentation provided by the task organizers. This
noticeable difference is due to a well-known prob-
lem in MT, ST and in machine learning at large:
any mismatch between training and test data (in
terms of domain, text style or a variety of other
aspects) can cause unpredictable, often large, per-
formance drops at test time. In ST, this is a crit-
ical issue, inherent to the nature of the available
resources: while systems are usually trained on
corpora that are manually segmented at sentence
level, test data come in the form of unsegmented
continuous speech.

A possible solution to this problem is to automat-
ically segment the test data with a Voice Activity
Detection (VAD) tool (Sohn et al., 1999). This
strategy tries to mimic the sentence-based segmen-
tation observed in the training data using pauses as
an indirect (hence known to be sub-optimal) cue for
sentence boundaries. Custom segmentation strate-
gies, which are allowed to IWSLT participants, typ-
ically go in this direction with the aim to reduce the
data mismatch by working on evaluation data. An
opposite way to look at the problem is to work on
the training data. In this case, the goal is to “robus-
tify” the ST model to noisy inputs (i.e. sub-optimal
segmentations) at training time, by exposing it to
perturbed data where sentence-like boundaries are
not guaranteed. Our participation in the offline
ST task exploits both solutions (see Section 4): at
training time, by fine-tuning the model with a ran-
dom segmentation of the available in-domain data;
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at test time, by feeding it with a custom hybrid
segmentation of the evaluation data.

In a nutshell, our participation can be summa-
rized as follows. After a preliminary model selec-
tion phase that was carried out in order to select
the best architecture, we adopted a pipeline con-
sisting of: i) ASR pre-training, ii) ST training with
knowledge distillation with an MT teacher, and iii)
two-step fine-tuning by varying the type and the
amount of data between the two steps. The second
fine-tuning step, which was carried out on artifi-
cially perturbed data to increase model robustness,
represents the main aspect characterizing our par-
ticipation to this year’s round of the offline ST task
together with our custom automatic segmentation
of the test set (see Section 4). Our experimental
results proved the effectiveness of our solutions:
compared to a standard ST model and a baseline
VAD-based method, on the MuST-C v2 English-
German test set (Cattoni et al., 2021), the gap with
optimal manual segmentation is reduced from 8.3
to 1.4 BLEU.

2 Training data

To build our models, we used most of the training
data allowed for participation.! They include: MT
corpora (English-German text pairs), ASR corpora
(English audios and their corresponding transcripts)
and ST corpora (English audios with corresponding
English transcripts and German translations).

MT. Among all the available datasets, we se-
lected those allowed for WMT 2019 (Barrault et al.,
2019) and OpenSubtitles2018 (Lison and Tiede-
mann, 2016). Some pre-processing was required
to isolate and remove different types of potentially
harmful noise present in the data. These include
non-unicode characters, both on the source and tar-
get side of the parallel sentence pairs, which would
have led to an increased dictionary size hindering
model training, and whole non-German target sen-
tences (mostly in English). The cleaning of this two
types of noise, which was respectively performed
using a custom script and Modern MT (Bertoldi
et al., 2017), resulted in the removal of roughly
25% of the data, with a final dataset of ~49 million
sentence pairs.

ASR. ASR corpora, together with the ST ones
described below, were collected for the ASR train-
ing. In detail, the allowed native ASR datasets are:

"https://iwslt.org/2021/0ffline



LibriSpeech (Panayotov et al., 2015), TEDLIUM
v3 (Hernandez et al., 2018) and Mozilla Common
Voice.? In all of them, English texts were lower-
cased and punctuation was removed.

ST. The ST benchmarks we used are essentially
three: i) Europarl-ST (obtained from European Par-
liament debates — Iranzo-Sanchez et al. 2020), ii)
MuST-C v2 (built from TED talks — Cattoni et al.
2021), and iii) CoVoST 2 (containing the transla-
tions of a portion of the Mozilla Common Voice
dataset — Wang et al. 2020a). To cope with the
scarcity of ST data, we complemented these native
ST corpora with synthetic data. To this aim, we
used the MT system trained on the available MT
data to translate into German the English transcripts
of the aforementioned ASR datasets. The resulting
texts were used as reference material during the
ST model training. The combination of native and
generated data resulted in a total of about 1.26 mil-
lion samples. The transcription-translation pairs
were tokenized using, respectively, source/target-
language SentencePiece (Sennrich et al., 2016) un-
igram models trained on the MT corpora with a
vocabulary size of 32k tokens. Similar to our last
year’s IWSLT submission (Gaido et al., 2020b),
the entire dataset was used for training in a multi-
domain fashion, where the two domains were na-
tive (original ST data) and generated (synthetic
data).

Prior to the extraction of the speech features, the
audio was pre-processed with the SpecAugment
(Park et al., 2019) data augmentation technique,
which masks consecutive portions of the input both
in frequency and in time dimensions. From all
the audio files, 80 log Mel-filter banks features
were extracted using PyKaldi (Can et al., 2018),
filtering out those samples containing more than
3,000 frames. Finally, we applied utterance level
Cepstral Mean and Variance Normalization both
during ASR pre-training and ST training phases.
The configuration parameters used are the default
ones as set in (Wang et al., 2020b).

3 Model and training

In order to select the best performing architec-
ture, we trained several Transformer-based models
(Vaswani et al., 2017), which consist of 12 encoder
layers, 6 decoder layers, 8 attention heads, 512
features for the attention layers and 2,048 hidden

https://commonvoice.mozilla.org/en/
datasets
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units in the feed-forward layers. The ASR and ST
models are based on a custom version of the model
by (Wang et al., 2020b), which is a Transformer
whose encoder has two initial 1D convolutional lay-
ers with gelu activation functions (Hendrycks and
Gimpel, 2020). Also, the encoder self-attentions
were biased using a logarithmic distance penalty in
favor of the local context as per (Di Gangi et al.,
2019). A Connectionist Temporal Classification
(CTC) scoring function was applied as described
in (Gaido et al., 2020b). This was done by adding
a linear layer to either the 6th, 8th or 10th encoder
layer to map the encoder states to the vocabulary
size and compute the CTC loss. The choice of the fi-
nal architecture, depending on where the CTC loss
is applied, was made based on sacreBLEU score
(Post, 2018) after training the models on MuST-C
vl En-De (Cattoni et al., 2021). ST results com-
puted on the test set are reported on Table 1. As it
can be seen from the table, two models obtained the
highest, identical BLEU score (21.21): they both
use logarithmic distance penalty but apply CTC
loss to the 6th or the 8th encoder layer.

3.1 Training pipeline

In the following, we describe the pipeline used to
build our ST models, as anticipated in Section 1. In
details, the ASR model is trained and its encoder
used as starting point for the ST model, which is
first trained via knowledge distillation and then
fine-tuned on native and synthetic data. Then, a
second fine-tuning step is performed on a perturbed
version of a subset of the native data, focused on re-
ducing the model performance drop over different
segmentations. For the initial ST training, we opti-
mized KL divergence (Kullback and Leibler, 1951)
and CTC losses. For the first fine-tuning step, we
optimized label smoothed cross entropy (LSCE) or
CTC+LSCE while, for the second fine-tuning step,
the models were refined using LSCE only, with
a lower learning rate in order not to override the
knowledge acquired during the previous phases.

ASR pre-training. Due to the identical BLEU
score obtained by applying the CTC loss to the 6th
and 8th layer during the ST model selection phase,
we opted for training the ASR system using both
these architectures, and selected the final model by
looking at the Word Error Rate (WER) achieved
by averaging 7 checkpoints around the best one.
As shown in Table 2, the best overall performing
architecture is the one where the CTC is applied to



architecture CTC encoder layer distance penalty | BLEU
2d convolutional 6 no 19.04
1d convolutional 6 no 21.16
1d convolutional 6 log 21.21
1d convolutional 8 log 21.21
1d convolutional 10 log 21.08

Table 1: Results of 1d convolutional architectures trained computing CTC loss at different layers and with/without
distance penalty. Also the result of a 2d convolutional architecture is reported where the structure is exactly the
same except for the use of a different type of convolution.

model ‘ dev ‘ test
CTC on 6th encoder layer 8.67 | 12.19
CTC on 8th encoder layer | 7.52 | 10.70

Table 2: Results of ASR pre-training in terms of WER.
The dev and test sets used are, respectively, dev and
tst-COMMON of MuST-C v1 En-De.

the 8th encoder layer. Accordingly, we used this
architecture to perform all the successive training
phases.

Training with knowledge distillation. Two ST
models, one with 12 and one with 15 encoder lay-
ers, were trained by loading the pre-trained ASR
encoder weights and applying word-level Knowl-
edge Distillation (KD) as in (Kim and Rush, 2016).
In KD, a student model is trained with the goal of
learning how to produce the same output distribu-
tion as a feacher model, and this is obtained by
computing the KL divergence between the two out-
put distributions. In our setting, the student and the
teacher are respectively the ST system and an MT
system that we trained on the MT data described in
Section 2. It consists in a plain Transformer model
with 6 layers for both the encoder and the decoder,
16 attention heads, 1,024 features for the attention
layers and 4,096 hidden units in the feed-forward
layers. Evaluated on the MuST-C v2 En-De test set,
it achieved a BLEU score of 33.3. For ST training
with KD, we extracted only the top 8 tokens from
the teacher distribution. According to (Tan et al.,
2019), this choice results in a significant reduction
of the memory required, with no loss in final per-
formance. At the end of this phase, we decided to
keep the model with 15 encoder layers as it per-
forms better than the one with 12 encoder layers
by 1 BLEU point.

Fine-tuning step #1: using native and synthetic
data. Once the KD training phase was concluded,
we performed a multi-domain fine-tuning where
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the ST model was jointly trained on native and
synthetic data optimizing LSCE or its combination
with the CTC loss.

4 Coping with training/test data
mismatch

As mentioned in Section 1, the segmentation of
audio files is a crucial aspect in ST. In fact, mis-
matches between the manual segmentation of the
training data and the automatic one required when
processing the unsegmented test set can produce
significant performance drops. To mitigate this risk,
we worked on two complementary fronts: at train-
ing and inference time. At training time, we tried to
robustify our model by fine-tuning it on a randomly
segmented subset of the training data. At inference
time, we applied an automatic segmentation proce-
dure to the test set in order to feed the model with
input resembling, as much as possible, the gold
manual segmentation. These two solutions, which
characterize our final submission, are explained in
the following.

Fine-tuning step #2: wusing randomly seg-
mented data. For the second fine-tuning step,
we re-segmented the MuST-C v2 En-De training
set following the procedure described in (Gaido
et al., 2020a). The method consists in choosing
a random word in the transcript of each sample,
and using it as sentence boundary instead of the
linguistically-motivated (sentence-level) splits pro-
vided in the original data. The corresponding audio
segments are then obtained by means of audio-
text alignments performed with Gentle.®> Similarly,
the German translation of each re-segmented tran-
script is extracted with cross-lingual alignments
generated by a fast_align (Dyer et al., 2013) model
trained on all the MT data available for the task and
on MuST-C v2. In case either of the alignments is

*https://github.com/lowerquality/
gentle/



model MuST-C2 MuST-C2 MuST-C2 IWSLT2015  IWSLT2015
manual  VAD (WebRTC) hybrid VAD (LIUM) hybrid

1-FT LSCE 27.6 20.8 24.8 16.1 21.9

2-FT LSCE - 234  (42.6) 264 (+1.6) | 20.7 (+4.6) 227 (4+0.8)

1-FT LSCE+CTC 27.7 19.9 253 14.0 21.7

2-FT LSCE+CTC - 23.7  (#3.8) 263 (+1.0) | 209 (+6.9) 231 (+1.4)

Table 3: Results of the best architectures deriving from KD training after one or two fine-tuning steps. 1-FT stands
for one-step fine-tuning and 2-FT stands for two-step fine-tuning (see Section 3). MuST-C v2 results on manual
segmentation have been not computed for the 2-step fine-tuned models as we were interested in the evaluation of

the improvement on automatically segmented data.

not possible (because fast_align is not able to align
enough words or Gentle does not recognize the
position of the word in the audio), the sentence is
discarded. The resulting material, which contains
~ 5% less segments than the original MuST-C
release, was then used for our second (and final)
fine-tuning step. As already stated, we used only
the LSCE loss for this stage.

Automatic segmentation of the test data. Atin-
ference time, the test set was segmented with an
hybrid approach that considers both the audio con-
tent and the length of the resulting segment (Gaido
et al., 2021b). Specifically, every segment is en-
sured to be at least 17s and at most 20s long, but the
exact splitting position is determined by the longest
pause detected within this interval. Pauses are iden-
tified with the WebRTC VAD tool (Johnston and
Burnett, 2012), using 20ms as frame duration and
2 as aggressivity level.

5 Experimental settings

Our implementation is built on top of fairseq Py-
torch library (Ott et al., 2019). All our models were
trained using the Adam optimizer (Kingma and Ba,
2015) with 81 = 0.9, B2 = 0.98. During training,
the learning rate was set to increase linearly from
0 to 2e-3 for the first 10,000 warm-up steps and
then to decay with an inverse square root policy.
Differently, the learning rate was kept constant for
model fine-tuning, with a value of 1e-3 for the first
fine-tuning step and 1e-4 for the second one.

All the trainings were performed on 2 Tesla
V100 GPUs with 32GB RAM. We set the max-
imum number of tokens to 10k per batch and 8 as
update frequency. For generation, the maximum
number of tokens was increased to 50k, using a
single Tesla V100 GPU and by applying a standard
5-beam search strategy.

88

6 Results

For the evaluation of the fine-tuned models we
considered three different test sets: MuST-C v2
En-De tst-COMMON, IWSLT 2015 and 2019 test
sets (available on the Offline ST task Evaluation
Campaign web page*). While for MuST-C v2 we
originally had a manual segmentation of the audio
files, for the IWSLT 2015 and 2019 test sets the
organizers provided only automatic segmentations
obtained by the LIUM VAD tool (Meignier and
Merlin, 2010). Furthermore, we segmented MuST-
C v2 tst-COMMON using the WebRTC VAD tool
to have a comparable framework. Table 3 reports
the results before and after the second fine-tuning
step, which clearly show that performing the addi-
tional training on randomly segmented data highly
improves the performance in the non-manual seg-
mentation case, by up to 6 BLEU points. We also
created an ensemble with the best two models re-
ported in Table 3, whose KD training also used
CTC loss. Results are not reported here since en-
sembling did not bring any improvement in terms
of BLEU score compared to the two separate mod-
els. A possible motivation is that our two-step
fine-tuning process is already sufficient to build
a robust model, which is capable of generalizing
without the need of combining two or more model
outputs.

For our primary submission, we chose the two-
step fine-tuned model that uses the LSCE+CTC
losses for the first fine-tuning step (2-FT
LSCE+CTC) since it achieved the highest BLEU
on automatically segmented data. In order to mea-
sure the contribution of fine-tuning on randomly
segmented data also on the official evaluation set,
we selected the same model before the second fine-
tuning step (1-FT LSCE+CTC) as our contrastive
submission.

*https://iwslt.org/2021/0ffline



Our primary submission scored 30.6 BLEU on
the tst2021 test set considering both references
while our contrastive scored 29.3 BLEU, showing
the effectiveness of our fine-tuning step. In addi-
tion, our primary submission scored 24.7 BLEU on
the tst2020 test set.

7 Conclusions

We described FBK’s participation in the
IWSLT2021 Offline Speech Translation task
(Anastasopoulos et al., 2021). Our work focused
on a multi-step training pipeline involving data
augmentation (SpecAugment and MT-based syn-
thetic data), multi-domain transfer learning (KD
training first and then fine-tuning on synthetic and
native data) and ad-hoc fine-tuning on randomly
segmented data. Based on the experimental results,
our submission was characterized by the use of
the CTC loss on transcripts during word-level
knowledge distillation training, followed by a
two-stage fine-tuning aimed to fill the gap between
the performance of models when tested on manual
and automatically segmented data. This huge gap
was pointed out in our last year submission (Gaido
et al., 2020b), where we highlighted that some
strategies should have been adopted in order to
mitigate the problem. This paper demonstrates that,
following the above-mentioned pipeline, together
with some data-driven techniques, we can obtain
significant improvements in the performance of
end-to-end ST systems. Research in this direction
will help us to build models that are not only
competitive with cascaded solutions, but also able
to handle different segmentation strategies which
are going to be more frequently used in the future.
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Abstract

This paper describes the submission of the Ni-
uTrans end-to-end speech translation system
for the IWSLT 2021 offline task, which trans-
lates from the English audio to German text di-
rectly without intermediate transcription. We
use the Transformer-based model architecture
and enhance it by Conformer, relative position
encoding, and stacked acoustic and textual en-
coding. To augment the training data, the En-
glish transcriptions are translated to German
translations. Finally, we employ ensemble de-
coding to integrate the predictions from sev-
eral models trained with the different datasets.
Combining these techniques, we achieve 33.84
BLEU points on the MuST-C En-De test set,
which shows the enormous potential of the
end-to-end model.

1 Introduction

Speech translation (ST) aims to learn models that
can predict, given some speech in the source lan-
guage, the translation into the target language. End-
to-end (E2E) approaches have become popular re-
cently for its ability to free designers from cascad-
ing different systems and shorten the pipeline of
translation (Duong et al., 2016; Berard et al., 2016;
Weiss et al., 2017). This paper describes the sub-
mission of the NiuTrans E2E ST system for the
IWSLT 2021 (Anastasopoulos et al., 2021) offline
task, which translates from the English audio to the
German text translation directly without intermedi-
ate transcription.

Our baseline model is based on the DLCL Trans-
former (Vaswani et al., 2017; Wang et al., 2019)
model with Connectionist Temporal Classification
(CTC) (Graves et al., 2006) loss on the encoders
(Bahar et al., 2019). We enhance it with the supe-
rior model architecture Conformer (Gulati et al.,
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2020), relative position encoding (RPE) (Shaw
et al., 2018), and stacked acoustic and textual en-
coding (SATE) (Xu et al., 2021). To augment the
training data, the English transcriptions of the auto-
matic speech recognition (ASR) and speech trans-
lation corpora are translated to the German trans-
lation. Finally, we employ the ensemble decoding
method to integrate the predictions from multiple
models (Wang et al., 2018) trained with the differ-
ent datasets.

This paper is structured as follows. The training
data is summarized in Section 2, then we describe
the model architecture in Section 3 and data aug-
mentation in Section 4. We present the ensemble
decoding method in Section 5. The experimental
settings and final results are shown in Section 6.

2 Training Data

Our system is built under the constraint condition.
The training data can be divided into three cate-
gories: ASR, MT, and ST corpora’.

ASR corpora. ASR corpora are used to gener-
ate synthetic speech translation data. We only use
the Common Voice (Ardila et al., 2020) and Lib-
riSpeech (Panayotov et al., 2015) corpora. Fur-
thermore, we filter the noisy training data in the
Common Voice corpus by force decoding and keep
1 million utterances.

MT corpora. Machine translation (MT) corpora
are used to translate the English transcription. We
use the allowed English-German translation data
from WMT 2020 (Barrault et al., 2020) and Open-
Subtitles2018 (Lison and Tiedemann, 2016). We
filter the training bilingual data followed Li et al.
(2019), which includes length ratio, language de-
tection, and so on.

"We only described the training data used in our system.
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ST corpora. The ST corpora we used include
MuST-C (Gangi et al., 2019) English-German?,
CoVoST (Wang et al., 2020), Speech-Translation
TED corpus®, and Europarl-ST (Iranzo-Sénchez
et al., 2020).

The statistics of the final training data are shown
in Table 1. We augment the quantity of the ST
training data by translating the English transcrip-
tion (the details are unveiled in Section 4).

Task ‘ Corpora ‘ Size ‘ Time
LibriSpeech 281241 | 960h

ASR | Common Voice | 1000000 | 1387h
| Total | 1281241 | 2347h
CommonCrawl 2014304 -
Europarl 1802849 -

MT Pa.ra'Cran 31528317 -
Wiki 5714363 -
OpenSubtitles 14449099 -

Total 55508932 -
MuST-C 249462 | 435h
CoVoST 289411 | 329h

ST ST TED 170133 | 254h
Europarl 69537 | 155h

Total 778543 | 1173h

Table 1: Data statistics of the ASR, MT, and ST cor-
pora.

3 Model Architecture

In this section, we describe the baseline model
and the architecture improvements. Then, the ex-
perimental results are shown to demonstrate the
effectiveness.

3.1 Baseline Model

Our system is based on deep Transformer (Vaswani
et al., 2017) implemented on the fairseq toolkit (Ott
etal.,2019). Furthermore, dynamic linear combina-
tion of layers (DLCL) (Wang et al., 2019) method
is employed to train the deep model effectively (Li
et al., 2020a,b).

To reduce the computational cost, the input
speech features are processed by two convolutional
layers, which have a stride of 2. This downsamples

We use the latest MusST-C v2 dataset released by IWSLT
2021.
3http://i13pc106.ira.uka.de/ mmueller/ iwslt-corpus.zip
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Figure 1: The baseline model architecture.

the sequence by a factor of 4 (Weiss et al., 2017).
For strong systems, we use Connectionist Tempo-
ral Classification (CTC) (Graves et al., 2006) as
the auxiliary loss on the encoders(Watanabe et al.,
2017; Karita et al., 2019; Bahar et al., 2019). The
weight of CTC objective « is set to 0.3 for all ASR
and ST models. The model architecture is showed
in Figure 14,

3.2 Conformer

Conformer (Gulati et al., 2020) models both local
and global dependencies by combining the Convo-
lutional Neural Network and Transformers. It has
shown superiority and achieved promising results
in ASR tasks.

We replace the Transformer blocks in the en-
coder by the conformer blocks, which include
two macaron-like feed-forward networks, multi-
head self attention modules, and convolution mod-
ules. Note that we use the RPE proposed in Shaw
et al. (2018) rather than Transformer-XL (Dai et al.,
2019).

3.3 Relative Position Encoding

Due to the non-sequential modeling of the origi-
nal self attention modules, the vanilla Transformer
employs the position embedding by a deterministic
sinusoidal function to indicate the absolute posi-
tion of each input element (Vaswani et al., 2017).
However, this scheme is far from ideal for acoustic
modeling (Pham et al., 2020).

*https://github.com/NiuTrans/MTBook



Model tst-COMMON
Baseline 23.98
+ Conformer 24.43
+ RPE 24.69
+ SATE 25.35

Table 2: Effects of the architecture improvements.
We report SacreBLEU scores [%] on the MuST-C tst-
COMMON set.

The latest work (Pham et al., 2020; Gulati et al.,
2020) points out that the relative position encod-
ing enables the model to generalize better for the
unseen sequence lengths. It yields a significant im-
provement on the acoustic modeling tasks. We re-
implement the relative position encoding scheme
(Shaw et al., 2018). The maximum relative position
is set to 100 for the encoder and 20 for the decoder.
We use both absolute and relative positional repre-
sentations simultaneously.

3.4 Stacked Acoustic and Textual Encoding

The previous work (Bahar et al., 2019) employs the
CTC loss on the top layer of the encoder, which
forces the encoders to learn soft alignments be-
tween speech and transcription. However, the CTC
loss demonstrates strong preference for locally at-
tentive models, which is inconsistent with the ST
model (Xu et al., 2021).

In our systems, we use the stacked acoustic-and-
textual encoding (SATE) (Xu et al., 2021) method
to encode the speech features. It calculates the CTC
loss based on the hidden states of the intermediate
layer rather than the top layer. The layers below
CTC also extract the acoustic representation like an
ASR encoder, while the upper layers with no CTC
encode the global representation for translation. An
adaptor layer is introduced to bridge the acoustic
and textual encoding.

3.5 Experimental Results

We use the architecture described in Section 3.1
as the baseline model. The encoder consists of 12
layers and the decoder consists of 6 layers. Each
layer comprises 256 hidden units, 4 attention heads,
and 2048 feed-forward size. The encoder of SATE
includes an acoustic encoder of 8 layers and a tex-
tual encoder of 4 layers. The model is trained with
MuST-C English-German dataset and we test the
results on the tst-COMMON set based on the Sacre-
BLEU. The other experimental