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Preface

The EMNLP 2015 Workshop on Statistical Machine Translation (WMT 2015) took place on
Thursday and Friday, September 17-18, 2015 in Lisbon, Portugal, immediately preceding the
Conference on Empirical Methods in Natural Language Processing (EMNLP).

This was the tenth time this workshop has been held. The first time it was held at HLT-NAACL
2006 in New York City, USA. In the following years the Workshop on Statistical Machine Trans-
lation was held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA,
EACL 2009 in Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh,
Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia, Bulgaria, and ACL 2014 in
Baltimore, Maryland, USA.

The focus of our workshop was to use parallel corpora for machine translation. Recent ex-
perimentation has shown that the performance of SMT systems varies greatly with the source
language. In this workshop we encouraged researchers to investigate ways to improve the per-
formance of SMT systems for diverse languages, including morphologically more complex lan-
guages, languages with partial free word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presenta-
tion, we conducted five shared tasks: a general translation task, an automatic post-editing task,
a quality estimation task, a metrics task, and a tuning task. The automatic post-editing task was
introduced this year as a pilot to examine the capabilities of automatic methods for correcting
errors produced by machine translation systems. This year’s tuning task is a follow up of the
WMT 2011 invitation-only tunable metrics task to assess a system’s ability to optimize the pa-
rameters of a given hierarchical MT system. The results of all shared tasks were announced at
the workshop, and these proceedings also include an overview paper for the shared tasks that
summarizes the results, as well as provides information about the data used and any procedures
that were followed in conducting or scoring the task. In addition, there are short papers from
each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept
for presentation. This year we have received 28 full paper submissions and 47 shared task
submissions. In total WMT 2015 featured 11 full paper oral presentations and 46 shared task
poster presentations.

The invited talk was given by Jacob Devlin (Microsoft Research), entitled "A Practical Guide to
Real-Time Neural Translation".

We would like to thank the members of the Program Committee for their timely reviews. We
also would like to thank the participants of the shared task and all the other volunteers who
helped with the evaluations.

Ondřej Bojar, Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias
Huck, Varvara Logacheva, Pavel Pecina, Philipp Koehn, Christof Monz, Matteo Negri, Matt
Post, Carolina Scarton, Lucia Specia, and Marco Turchi.
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Ondřej Bojar and Aleš Tamchyna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

CimS - The CIS and IMS Joint Submission to WMT 2015 addressing morphological and syntactic differ-
ences in English to German SMT

Fabienne Cap, Marion Weller, Anita Ramm and Alexander Fraser . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

The Karlsruhe Institute of Technology Translation Systems for the WMT 2015
Eunah Cho, Thanh-Le Ha, Jan Niehues, Teresa Herrmann, Mohammed Mediani, Yuqi Zhang and

Alex Waibel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

New Language Pairs in TectoMT
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Abstract

This paper presents the results of the
WMT15 shared tasks, which included a
standard news translation task, a metrics
task, a tuning task, a task for run-time
estimation of machine translation quality,
and an automatic post-editing task. This
year, 68 machine translation systems from
24 institutions were submitted to the ten
translation directions in the standard trans-
lation task. An additional 7 anonymized
systems were included, and were then
evaluated both automatically and manu-
ally. The quality estimation task had three
subtasks, with a total of 10 teams, submit-
ting 34 entries. The pilot automatic post-
editing task had a total of 4 teams, submit-
ting 7 entries.

1 Introduction

We present the results of the shared tasks of
the Workshop on Statistical Machine Translation
(WMT) held at EMNLP 2015. This workshop
builds on eight previous WMT workshops (Koehn
and Monz, 2006; Callison-Burch et al., 2007,
2008, 2009, 2010, 2011, 2012; Bojar et al., 2013,
2014). This year we conducted five official tasks:
a translation task, a quality estimation task, a met-
rics task, a tuning task1, and a automatic post-
editing task.

In the translation task (§2), participants were
asked to translate a shared test set, optionally re-
stricting themselves to the provided training data.
We held ten translation tasks this year, between
English and each of Czech, French, German,
Finnish, and Russian. The Finnish translation

1The metrics and tuning tasks are reported in separate pa-
pers (Stanojević et al., 2015a,b).

tasks were new this year, providing a lesser re-
sourced data condition on a challenging language
pair. The system outputs for each task were evalu-
ated both automatically and manually.

The human evaluation (§3) involves asking
human judges to rank sentences output by
anonymized systems. We obtained large num-
bers of rankings from researchers who contributed
evaluations proportional to the number of tasks
they entered. We made data collection more ef-
ficient and used TrueSkill as ranking method.

The quality estimation task (§4) this year in-
cluded three subtasks: sentence-level prediction
of post-editing effort scores, word-level prediction
of good/bad labels, and document-level prediction
of Meteor scores. Datasets were released with
English→Spanish news translations for sentence
and word level, English↔German news transla-
tions for document level.

The first round of the automatic post-editing
task (§5) examined automatic methods for cor-
recting errors produced by an unknown machine
translation system. Participants were provided
with training triples containing source, target and
human post-editions, and were asked to return
automatic post-editions for unseen (source, tar-
get) pairs. This year we focused on correcting
English→Spanish news translations.

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dis-
seminate common test sets and public training data
with published performance numbers, and to re-
fine evaluation and estimation methodologies for
machine translation. As before, all of the data,
translations, and collected human judgments are
publicly available.2 We hope these datasets serve
as a valuable resource for research into statistical

2http://statmt.org/wmt15/results.html
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machine translation and automatic evaluation or
prediction of translation quality.

2 Overview of the Translation Task

The recurring task of the workshop examines
translation between English and other languages.
As in the previous years, the other languages in-
clude German, French, Czech and Russian.

Finnish replaced Hindi as the special language
this year. Finnish is a lesser resourced language
compared to the other languages and has challeng-
ing morphological properties. Finnish represents
also a different language family that we had not
tackled since we included Hungarian in 2008 and
2009 (Callison-Burch et al., 2008, 2009).

We created a test set for each language pair by
translating newspaper articles and provided train-
ing data, except for French, where the test set was
drawn from user-generated comments on the news
articles.

2.1 Test data

The test data for this year’s task was selected from
online sources, as before. We took about 1500 En-
glish sentences and translated them into the other
5 languages, and then additional 1500 sentences
from each of the other languages and translated
them into English. This gave us test sets of about
3000 sentences for our English-X language pairs,
which have been either written originally written
in English and translated into X, or vice versa.

For the French-English discussion forum test
set, we collected 38 discussion threads each from
the Guardian for English and from Le Monde for
French. See Figure 1 for an example.

The composition of the test documents is shown
in Table 1.

The stories were translated by the professional
translation agency Capita, funded by the EU
Framework Programme 7 project MosesCore, and
by Yandex, a Russian search engine company.3

All of the translations were done directly, and not
via an intermediate language.

2.2 Training data

As in past years we provided parallel corpora
to train translation models, monolingual cor-
pora to train language models, and development
sets to tune system parameters. Some train-
ing corpora were identical from last year (Eu-

3http://www.yandex.com/

roparl4, United Nations, French-English 109 cor-
pus, CzEng, Common Crawl, Russian-English
parallel data provided by Yandex, Russian-English
Wikipedia Headlines provided by CMU), some
were updated (News Commentary, monolingual
data), and new corpora was added (Finnish Eu-
roparl), Finnish-English Wikipedia Headline cor-
pus).

Some statistics about the training materials are
given in Figure 2.

2.3 Submitted systems

We received 68 submissions from 24 institu-
tions. The participating institutions and their en-
try names are listed in Table 2; each system did
not necessarily appear in all translation tasks. We
also included 1 commercial off-the-shelf MT sys-
tem and 6 online statistical MT systems, which we
anonymized.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

3 Human Evaluation

Following what we had done for previous work-
shops, we again conduct a human evaluation
campaign to assess translation quality and deter-
mine the final ranking of candidate systems. This
section describes how we prepared the evaluation
data, collected human assessments, and computed
the final results.

This year’s evaluation campaign differed from
last year in several ways:

• In previous years each ranking task compared
five different candidate systems which were
selected without any pruning or redundancy
cleanup. This had resulted in a noticeable
amount of near-identical ranking candidates
in WMT14, making the evaluation process
unnecessarily tedious as annotators ran into
a fair amount of ranking tasks containing
very similar segments which are hard to in-
spect. For WMT15, we perform redundancy
cleanup as an initial preprocessing step and

4As of Fall 2011, the proceedings of the European Parlia-
ment are no longer translated into all official languages.
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This is perfectly illustrated by the UKIP numbties banning people with HIV.
You mean Nigel Farage saying the NHS should not be used to pay for people coming to the UK as
health tourists, and saying yes when the interviewer specifically asked if, with the aforementioned
in mind, people with HIV were included in not being welcome.
You raise a straw man and then knock it down with thinly veiled homophobia.
Every time I or my family need to use the NHS we have to queue up behind bigots with a sense of
entitlement and chronic hypochondria.
I think the straw man is yours.
Health tourism as defined by the right wing loonies is virtually none existent.
I think it’s called democracy.
So no one would be affected by UKIP’s policies against health tourism so no problem.
Only in UKIP La La Land could Carswell be described as revolutionary.
Quoting the bollox The Daily Muck spew out is not evidence.
Ah, shoot the messenger.
The Mail didn’t write the report, it merely commented on it.
Whoever controls most of the media in this country should undead be shot for spouting populist
propaganda as fact.
I don’t think you know what a straw man is.
You also don’t know anything about my personal circumstances or identity so I would be very
careful about trying to eradicate a debate with accusations of homophobia.
Farage’s comment came as quite a shock, but only because it is so rarely addressed.
He did not express any homophobic beliefs whatsoever.
You will just have to find a way of getting over it.
I’m not entirely sure what you’re trying to say, but my guess is that you dislike the media reporting
things you disagree with.
It is so rarely addressed because unlike Fararge and his Thatcherite loony disciples who think aids
and floods are a signal from the divine and not a reflection on their own ignorance in understanding
the complexities of humanity as something to celebrate,then no.

Figure 1: Example news discussion thread used in the French–English translation task.

Language Sources (Number of Documents)
Czech aktuálně.cz (4), blesk.cz (1), blisty.cz (1), ctk.cz (1), denı́k.cz (1), e15.cz (1), iDNES.cz (19), ihned.cz (3), li-

dovky.cz (6), Novinky.cz (2), tyden.cz (1).
English ABC News (4), BBC (6), CBS News (1), Daily Mail (1), Euronews (1), Financial Times (1), Fox News (2), Globe and

Mail (1), Independent (1), Los Angeles Times (1), News.com Australia (9), Novinite (2), Reuters (2), Sydney Morning
Herald (1), stv.tv (1), Telegraph (8), The Local (1), The Nation (1), UPI (1), Washington Post (3).

German Abendzeitung Nürnberg (1), Aachener Nachrichten (1), Der Standard (2), Deutsche Welle (1), Frankfurter Neue
Presse (1), Frankfurter Rundschau (1), Generalanzeiger Bonn (2), Göttinger Tageblatt (1), Haller Kreisblatt (1), Hell-
weger Anzeiger (1), Junge Welt (1), Kreisanzeiger (1), Mainpost (1), Merkur (3), Mittelbayerische Nachrichten (2),
Morgenpost (1), Mitteldeutsche Zeitung (1), Neue Presse Coburg (1), Nürtinger Zeitung (1), OE24 (1), Kölnische
Rundschau (1), Tagesspiegel (1), Volksfreund (1), Volksstimme (1), Wiener Zeitung (1), Westfälische Nachrichten (2).

Finnish Aamulehti (2), Etelä-Saimaa (1), Etelä-Suomen Sanomat (3), Helsingin Sanomat (13), Ilkka (7), Ilta-Sanomat (18),
Kaleva (4), Karjalainen (2), Kouvolan Sanomat (1), Lapin Kansa (3), Maaseudun Tulevaisuus (1).

Russian 168.ru (1), aif (6), altapress.ru (1), argumenti.ru (8), BBC Russian (1), dp.ru (2), gazeta.ru (4), interfax (2), Kommer-
sant (12), lenta.ru (8), lgng (3), mk (5), novinite.ru (1), rbc.ru (1), rg.ru (2), rusplit.ru (1), Sport Express (6), vesti.ru (10).

Table 1: Composition of the test set. For more details see the XML test files. The docid tag gives the source and the date for
each document in the test set, and the origlang tag indicates the original source language.
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Europarl Parallel Corpus
French↔ English German↔ English Czech↔ English Finnish↔ English

Sentences 2,007,723 1,920,209 646,605 1,926,114
Words 60,125,563 55,642,101 50,486,398 53,008,851 14,946,399 17,376,433 37,814,266 52,723,296

Distinct words 140,915 118,404 381,583 115,966 172,461 63,039 693,963 115,896

News Commentary Parallel Corpus
French↔ English German↔ English Czech↔ English Russian↔ English

Sentences 200,239 216,190 152,763 174,253
Words 6,270,748 5,161,906 5,513,985 5,499,625 3,435,458 3,759,874 4,394,974 4,625,898

Distinct words 75,462 71,767 157,682 74,341 142,943 58,817 172,021 67,402

Common Crawl Parallel Corpus
French↔ English German↔ English Czech↔ English Russian↔ English

Sentences 3,244,152 2,399,123 161,838 878,386
Words 91,328,790 81,096,306 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122

Distinct words 889,291 859,017 1,640,835 823,480 210,170 128,212 764,203 432,062

United Nations Parallel Corpus
French↔ English

Sentences 12,886,831
Words 411,916,781 360,341,450

Distinct words 565,553 666,077

109 Word Parallel Corpus
French↔ English

Sentences 22,520,400
Words 811,203,407 668,412,817

Distinct words 2,738,882 2,861,836

Yandex 1M Parallel Corpus
Russian↔ English

Sentences 1,000,000
Words 24,121,459 26,107,293

Distinct words 701,809 387,646

CzEng Parallel Corpus
Czech↔ English

Sentences 14,833,358
Words 200,658,857 228,040,794

Distinct words 1,389,803 920,824

Wiki Headlines Parallel Corpus
Russian↔ English Finnish↔ English

Sentences 514,859 153,728
Words 1,191,474 1,230,644 269,429 354,362

Distinct words 282,989 251,328 127,576 96,732

Europarl Language Model Data
English French German Czech Finnish

Sentence 2,218,201 2,190,579 2,176,537 668,595 2,120,739
Words 59,848,044 63,439,791 53,534,167 14,946,399 39,511,068

Distinct words 123,059 145,496 394,781 172,461 711,868

News Language Model Data
English French German Czech Russian Finnish

Sentence 118,337,431 42,110,011 135,693,607 45,149,206 45,835,812 1,378,582
Words 2,744,428,620 1,025,132,098 2,427,581,519 745,645,366 823,284,188 16,501,511

Distinct words 4,895,080 2,352,451 13,727,336 3,513,784 3,885,756 925,201

Test Set
French↔ English German↔ English Czech↔ English Russian↔ English Finnish↔ English

Sentences 1500 2169 2656 2818 1370
Words 29,858 27,173 44,081 46,828 46,005 54,055 55,655 65,744 19,840 27,811

Distinct words 5,798 5,148 9,710 7,483 13,013 7,757 15,795 8,695 8,553 5,279

Figure 2: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.
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ID Institution
AALTO Aalto University (Grönroos et al., 2015)
ABUMATRAN Abu-MaTran (Rubino et al., 2015)
AFRL-MIT-* Air Force Research Laboratory / MIT Lincoln Lab (Gwinnup et al., 2015)
CHALMERS Chalmers University of Technology (Kolachina and Ranta, 2015)
CIMS University of Stuttgart and Munich (Cap et al., 2015)
CMU Carnegie Mellon University
CU-CHIMERA Charles University (Bojar and Tamchyna, 2015)
CU-TECTO Charles University (Dušek et al., 2015)
DFKI Deutsches Forschungszentrum für Künstliche Intelligenz (Avramidis et al., 2015)
ILLINOIS University of Illinois (Schwartz et al., 2015)
IMS University of Stuttgart (Quernheim, 2015)
KIT Karsruhe Institut of Technology (Cho et al., 2015)
KIT-LIMSI Karsruhe Institut of Technology / LIMSI (Ha et al., 2015)
LIMSI LIMSI (Marie et al., 2015)
MACAU University of Macau
MONTREAL University of Montreal (Jean et al., 2015)
PROMT ProMT
RWTH RWTH Aachen (Peter et al., 2015)
SHEFF* University of Sheffield (Steele et al., 2015)
UDS-SANT University of Saarland (Pal et al., 2015a)
UEDIN-JHU University of Edinburgh / Johns Hopkins University (Haddow et al., 2015)
UEDIN-SYNTAX University of Edinburgh (Williams et al., 2015)
USAAR-GACHA University of Saarland, Liling Tan
UU Uppsala University (Tiedemann et al., 2015)
COMMERCIAL-1 Commercial machine translation system
ONLINE-
[A,B,C,E,F,G]

Six online statistical machine translation systems

Table 2: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.
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create multi-system translations. As a con-
sequence, we get ranking tasks with vary-
ing numbers of candidate systems. To avoid
overloading the annotators we still allow a
maximum of five candidates per ranking task.
If we have more multi-system translations,
we choose randomly.

A brief example should illustrate this more
clearly: say we have the following two can-
didate systems:

sysA="This, is ’Magic’"

sysX="this is magic"

After lowercasing, removal of punctuation
and whitespace normalization, which are our
criteria for identifying near-identical outputs,
both would be collapsed into a single multi-
system:

sysA+sysX="This, is ’Magic’"

The first representative of a group of near-
identical outputs is used as a proxy represent-
ing all candidates in the group throughout the
evaluation.

While there is a good chance that users would
have used some of the stripped information,
e.g., case to differentiate between the two
systems relative to each other, the collapsed
system’s comparison result against the other
candidates should be a good approximation
of how human annotators would have ranked
them individually. We get a near 2x increase
in the number of pairwise comparisons, so
the general approach seems helpful.

• After dropping external, crowd-sourced
translation assessment in WMT14 we ended
up with approximately seventy-five percent
less raw comparison data. Still, we were able
to compute good confidence intervals on
the clusters based on our improved ranking
approach.

This year, due to the aforementioned cleanup,
annotators spent their time more efficiently,
resulting in an increased number of final
ranking results. We collected a total of
542,732 individual “A > B” judgments this
year, nearly double the amount of data com-
pared to WMT14.

• Last year we compared three different mod-
els of producing the final system rankings:
Expected Wins (used in WMT13), Hopkins
and May (HM) and TrueSkill (TS). Overall,
we found the TrueSkill method to work best
which is why we decided to use it as our only
approach in WMT15.

We keep using clusters in our final system rank-
ings, providing a partial ordering (clustering) of
all evaluated candidate systems. Semantics remain
unchanged to previous years: systems in the same
cluster could not be meaningfully distinguished
and hence are considered to be of equal quality.

3.1 Evaluation campaign overview

WMT15 featured the largest evaluation campaign
to date. Similar to last year, we decided to collect
researcher-based judgments only. A total of 137
individual annotator accounts have been actively
involved. Users came from 24 different research
groups and contributed judgments on 9,669 HITs.

Overall, these correspond to 29,007 individual
ranking tasks (plus some more from incomplete
HITs), each of which would have spawned exactly
10 individual “A > B” judgments last year, so
we expected at least >290,070 binary data points.
Due to our redundancy cleanup, we are able to
get a lot more, namely 542,732. We report our
inter/intra-annotator agreement scores based on
the actual work done (otherwise, we’d artificially
boost scores based on inferred rankings) and use
the full set of data to compute clusters (where the
inferred rankings contribute meaningful data).

Human annotation effort was exceptional and
we are grateful to all participating individuals and
teams. We believe that human rankings provide
the best decision basis for machine translation
evaluation and it is great to see contributions on
this large a scale. In total, our human annotators
spent 32 days and 20 hours working in Appraise.

The average annotation time per HIT amounts
to 4 minutes 53 seconds. Several annotators
passed the mark of 100 HITs annotated, some
worked for more than 24 hours. We don’t take this
enormous amount of effort for granted and will
make sure to improve the evaluation platform and
overall process for upcoming workshops.

3.2 Data collection

The system ranking is produced from a large set
of pairwise judgments on the translation quality of
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candidate systems. Annotations are collected in
an evaluation campaign that enlists participants in
the shared task to help. Each team is asked to con-
tribute one hundred “Human Intelligence Tasks”
(HITs) per primary system submitted.

Each HIT consists of three so-called ranking
tasks. In a ranking task, an annotator is presented
with a source segment, a human reference trans-
lation, and the outputs of up to five anonymized
candidate systems, randomly selected from the set
of participating systems, and displayed in random
order. This year, we perform redundancy cleanup
as an initial preprocessing step and create multi-
system translations. As a consequence, we get
ranking tasks with varying numbers of candidate
outputs.

There are two main benefits to this approach:

• Annotators are more efficient as they don’t
have to deal with near-identical translations
which are notoriously hard to differentiate;
and

• Potentially, we get higher quality annotations
as near-identical systems will be assigned the
same “A > B” ranks, improving consistency.

As in previous years, the evaluation campaign
is conducted using Appraise5 (Federmann, 2012),
an open-source tool built using Python’s Django
framework. At the top of each HIT, the following
instructions are provided:

You are shown a source sentence fol-
lowed by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

Annotators can decide to skip a ranking task but
are instructed to do this only as a last resort, e.g.,
if the translation candidates shown on screen are
clearly misformatted or contain data issues (wrong
language or similar problems). Only a small num-
ber of ranking tasks has been skipped in WMT15.
A screenshot of the Appraise ranking interface is
shown in Figure 3.

Annotators are asked to rank the outputs from 1
(best) to 5 (worst), with ties permitted. Note that
a lower rank is better. The joint rankings provided
by a ranking task are then reduced to the fully ex-
panded set of pairwise rankings produced by con-
sidering all

(
n
2

) ≤ 10 combinations of all n ≤ 5
outputs in the respective ranking task.

5https://github.com/cfedermann/Appraise

For example, consider the following annotation
provided among outputs A,B, F,H , and J :

1 2 3 4 5
F •
A •
B •
J •
H •

As the number of outputs n depends on the num-
ber of corresponding multi-system translations in
the original data, we get varying numbers of re-
sulting binary judgments. Assuming that outputs
A and F from above are actually near-identical,
the annotator this year would see a shorter ranking
task:

1 2 3 4 5
AF •
B •
J •
H •

Note that AF is a multi-system translation cover-
ing two candidate systems.

Both examples would be reduced to the follow-
ing set of pairwise judgments:

A > B,A = F,A > H,A < J

B < F,B < H,B < J

F > H,F < J

H < J

Here,A > B should be read is “A is ranked higher
than (worse than) B”. Note that by this procedure,
the absolute value of ranks and the magnitude of
their differences are discarded. Our WMT15 ap-
proach including redundancy cleanup allows to
obtain these judgments at a lower cognitive cost
for the annotators. This partially explains why we
were able to collect more results this year.

For WMT13, nearly a million pairwise anno-
tations were collected from both researchers and
paid workers on Amazon’s Mechanical Turk, in
a roughly 1:2 ratio. Last year, we collected data
from researchers only, an ability that was en-
abled by the use of TrueSkill for producing the
partial ranking for each task (§3.4). This year,
based on our redundancy cleanup we were able to
nearly double the amount of annotations, collect-
ing 542,732. See Table 3 for more details.

3.3 Annotator agreement
Each year we calculate annotator agreement
scores for the human evaluation as a measure of
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Figure 3: Screenshot of the Appraise interface used in the human evaluation campaign. The annotator is presented with a
source segment, a reference translation, and up to five outputs from competing systems (anonymized and displayed in random
order), and is asked to rank these according to their translation quality, with ties allowed.

the reliability of the rankings. We measured pair-
wise agreement among annotators using Cohen’s
kappa coefficient (κ) (Cohen, 1960). If P (A) be
the proportion of times that the annotators agree,
and P (E) is the proportion of time that they would
agree by chance, then Cohen’s kappa is:

κ =
P (A)− P (E)

1− P (E)

Note that κ is basically a normalized version of
P (A), one which takes into account how mean-
ingful it is for annotators to agree with each other
by incorporating P (E). The values for κ range
from 0 to 1, with zero indicating no agreement and
1 perfect agreement.

We calculate P (A) by examining all pairs of
outputs6 which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A < B, A = B, or A > B. In

6regardless if they correspond to an individual system or
to a set of systems (“multi-system”) producing nearly identi-
cal translations

other words, P (A) is the empirical, observed rate
at which annotators agree, in the context of pair-
wise comparisons.

As for P (E), it captures the probability that two
annotators would agree randomly. Therefore:

P (E) = P (A<B)2 + P (A=B)2 + P (A>B)2

Note that each of the three probabilities in P (E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is
computed empirically, by observing how often an-
notators actually rank two systems as being tied.

Table 4 shows final κ values for inter-annotator
agreement for WMT11–WMT15 while Table 5
details intra-annotator agreement scores, includ-
ing the division of researchers (WMT13r) and
MTurk (WMT13m) data. The exact interpretation
of the kappa coefficient is difficult, but according
to Landis and Koch (1977), 0–0.2 is slight, 0.2–0.4
is fair, 0.4–0.6 is moderate, 0.6–0.8 is substantial,
and 0.8–1.0 is almost perfect.
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Language Pair Systems Rankings Average
Czech→English 17 85,877 5,051.6
English→Czech 16 136,869 8,554.3
German→English 14 40,535 2,895.4
English→German 17 55,123 3,242.5
French→English 8 29,770 3,721.3
English→French 8 34,512 4,314.0
Russian→English 14 46,193 3,299.5
English→Russian 11 49,582 4,507.5
Finnish→English 15 31,577 2,105.1
English→Finnish 11 32,694 2,972.2
Totals WMT15 131 542,732 4,143.0
WMT14 110 328,830 2,989.3
WMT13 148 942,840 6,370.5
WMT12 103 101,969 999.6
WMT11 133 63,045 474.0

Table 3: Amount of data collected in the WMT15 manual evaluation campagin. The final four rows report summary information
from previous editions of the workshop. Note how many rankings we get for Czech language pairs. These include systems from
the tuning shared task. Finnish, as a new language, sees a shortage of rankings for Finnnish→English Interest in French seems
to have lowered this year with only seven systems. Overall, we see a nice increase in pairwise rankings, especially considering
that we have dropped crowd-source annotation and are instead relying on researchers’ judgments exclusively.

The inter-annotator agreement rates improve
for most language pairs. On average, these are
the best scores we have ever observed in one of
our evaluation campaigns, including in WMT11,
where results were inflated due to inclusion of the
reference in the agreement rates. The results for
intra-annotator agreement are more mixed: some
improve greatly (Czech and German) while others
degrade (French, Russian). Our special language,
Finnish, also achieves very respectable scores. On
average, again, we see the best intra-annotator
agreement scores since WMT11.

It should be noted that the improvement is not
caused by the “ties forced by our redundancy
cleanup”. If two systems A and F produced near-
identical outputs, they are collapsed to one multi-
system outputAF and treated jointly in our agree-
ment calculations, i.e. only in comparison with
other outputs. It is only the final TrueSkill scores
that include the tie A = F .

3.4 Producing the human ranking
The collected pairwise rankings are used to pro-
duce the official human ranking of the systems.
For WMT14, we introduced a competition among
multiple methods of producing this human rank-
ing, selecting the method based on which could
best predict the annotations in a portion of the
collected pairwise judgments. The results of this
competition were that (a) the competing metrics

produced almost identical rankings across all tasks
but that (b) one method, TrueSkill, had less vari-
ance across randomized runs, allowing us to make
more confident cluster predictions. In light of
these findings, this year, we produced the human
ranking for each task using TrueSkill in the fol-
lowing fashion, following procedures adopted for
WMT12: We produce 1,000 bootstrap-resampled
runs over all of the available data. We then com-
pute a rank range for each system by collecting the
absolute rank of each system in each fold, throw-
ing out the top and bottom 2.5%, and then clus-
tering systems into equivalence classes containing
systems with overlapping ranges, yielding a par-
tial ordering over systems at the 95% confidence
level.

The full list of the official human rankings for
each task can be found in Table 6, which also re-
ports all system scores, rank ranges, and clusters
for all language pairs and all systems. The official
interpretation of these results is that systems in the
same cluster are considered tied. Given the large
number of judgments that we collected, it was pos-
sible to group on average about two systems in a
cluster, even though the systems in the middle are
typically in larger clusters.

In Figure 4 and 5, we plotted the human eval-
uation result against everybody’s favorite metric
BLEU (some of the outlier online systems are
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Language Pair WMT11 WMT12 WMT13 WMT13r WMT13m WMT14 WMT15
Czech→English 0.400 0.311 0.244 0.342 0.279 0.305 0.458
English→Czech 0.460 0.359 0.168 0.408 0.075 0.360 0.438
German→English 0.324 0.385 0.299 0.443 0.324 0.368 0.423
English→German 0.378 0.356 0.267 0.457 0.239 0.427 0.423
French→English 0.402 0.272 0.275 0.405 0.321 0.357 0.343
English→French 0.406 0.296 0.231 0.434 0.237 0.302 0.317
Russian→English — — 0.278 0.315 0.324 0.324 0.372
English→Russian — — 0.243 0.416 0.207 0.418 0.336
Finnish→English — — — — — — 0.388
English→Finnish — — — — — — 0.549
Mean 0.395 0.330 0.260 0.403 0.251 0.367 0.405

Table 4: κ scores measuring inter-annotator agreement for WMT15. See Table 5 for corresponding intra-annotator agreement
scores. WMT13r and WMTm refer to researchers’ judgments and crowd-sourced judgments obtained using Mechanical Turk,
respectively. WMT14 and WMT15 results are based on researchers’ judgments only (hence, comparable to WMT13r).

Language Pair WMT11 WMT12 WMT13 WMT13r WMT13m WMT14 WMT15
Czech→English 0.597 0.454 0.479 0.483 0.478 0.382 0.694
English→Czech 0.601 0.390 0.290 0.547 0.242 0.448 0.584
German→English 0.576 0.392 0.535 0.643 0.515 0.344 0.801
English→German 0.528 0.433 0.498 0.649 0.452 0.576 0.676
French→English 0.673 0.360 0.578 0.585 0.565 0.629 0.510
English→French 0.524 0.414 0.495 0.630 0.486 0.507 0.426
Russian→English — — 0.450 0.363 0.477 0.629 0.506
English→Russian — — 0.513 0.582 0.500 0.570 0.492
Finnish→English — — — — — — 0.562
English→Finnish — — — — — — 0.697
Mean 0.583 0.407 0.479 0.560 0.464 0.522 0.595

Table 5: κ scores measuring intra-annotator agreement, i.e., self-consistency of judges, across for the past few years of the
human evaluation campaign. Scores are much higher for WMT15 which makes sense as we enforce annotation consistency
through our initial preprocessing which joins near-identical translation candidates into multi-system entries. It seems that the
focus on actual differences in our annotation tasks as well as the possibility of having “easier” ranking scenarios for n < 5
candidate systems results in a higher annotator agreement, both for inter- and intra-annotator agreement scores.

not included to make the graphs viewable). The
plots cleary suggest that a fair comparison of
systems of different kinds cannot rely on auto-
matic scores. Rule-based systems receive a much
lower BLEU score than statistical systems (see for
instance English–German, e.g., PROMT-RULE).
The same is true to a lesser degree for statisti-
cal syntax-based systems (see English–German,
UEDIN-SYNTAX) and online systems that were not
tuned to the shared task (see Czech–English, CU-
TECTO vs. the cluster of tuning task systems TT-
*).

4 Quality Estimation Task

The fourth edition of the WMT shared task on
quality estimation (QE) of machine translation
(MT) builds on the previous editions of the task

(Callison-Burch et al., 2012; Bojar et al., 2013,
2014), with tasks including both sentence and
word-level estimation, using new training and test
datasets, and an additional task: document-level
prediction.

The goals of this year’s shared task were:

• Advance work on sentence- and word-
level quality estimation by providing larger
datasets.

• Investigate the effectiveness of quality labels,
features and learning methods for document-
level prediction.

• Explore differences between sentence-level
and document-level prediction.

• Analyse the effect of training data sizes and
quality for sentence and word-level predic-

10



Czech–English
# score range system
1 0.619 1 ONLINE-B
2 0.574 2 UEDIN-JHU
3 0.532 3-4 UEDIN-SYNTAX

0.518 3-4 MONTREAL
4 0.436 5 ONLINE-A
5 -0.125 6 CU-TECTO
6 -0.182 7-9 TT-BLEU-MIRA-D

-0.189 7-10 TT-ILLC-UVA
-0.196 7-11 TT-BLEU-MERT
-0.210 8-11 TT-AFRL
-0.220 9-11 TT-USAAR-TUNA

7 -0.263 12-13 TT-DCU
-0.297 13-15 TT-METEOR-CMU
-0.320 13-15 TT-BLEU-MIRA-SP
-0.320 13-15 TT-HKUST-MEANT
-0.358 15-16 ILLINOIS

English–Czech
# score range system
1 0.686 1 CU-CHIMERA
2 0.515 2-3 ONLINE-B

0.503 2-3 UEDIN-JHU
3 0.467 4 MONTREAL
4 0.426 5 ONLINE-A
5 0.261 6 UEDIN-SYNTAX
6 0.209 7 CU-TECTO
7 0.114 8 COMMERCIAL1
8 -0.342 9-11 TT-DCU

-0.342 9-11 TT-AFRL
-0.346 9-11 TT-BLEU-MIRA-D

9 -0.373 12 TT-USAAR-TUNA
10 -0.406 13 TT-BLEU-MERT
11 -0.563 14 TT-METEOR-CMU
12 -0.808 15 TT-BLEU-MIRA-SP

Russian–English
# score range system
1 0.494 1 ONLINE-G
2 0.311 2 ONLINE-B
3 0.129 3-6 PROMT-RULE

0.116 3-6 AFRL-MIT-PB
0.113 3-6 AFRL-MIT-FAC
0.104 3-7 ONLINE-A
0.051 6-8 AFRL-MIT-H
0.010 7-10 LIMSI-NCODE
-0.021 8-10 UEDIN-SYNTAX
-0.031 8-10 UEDIN-JHU

4 -0.218 11 USAAR-GACHA
5 -0.278 12 USAAR-GACHA
6 -0.781 13 ONLINE-F

German–English
# score range system
1 0.567 1 ONLINE-B
2 0.319 2-3 UEDIN-JHU

0.298 2-4 ONLINE-A
0.258 3-5 UEDIN-SYNTAX
0.228 4-5 KIT

3 0.141 6-7 RWTH
0.095 6-7 MONTREAL

4 -0.172 8-10 ILLINOIS
-0.177 8-10 DFKI
-0.221 9-10 ONLINE-C

5 -0.304 11 ONLINE-F
6 -0.489 12-13 MACAU

-0.544 12-13 ONLINE-E

French–English
# score range system
1 0.498 1-2 ONLINE-B

0.446 1-3 LIMSI-CNRS
0.415 1-3 UEDIN-JHU

2 0.275 4-5 MACAU
0.223 4-5 ONLINE-A

3 -0.423 6 ONLINE-F
4 -1.434 7 ONLINE-E

English–French
# score range system
1 0.540 1 LIMSI-CNRS
2 0.304 2-3 ONLINE-A

0.258 2-4 UEDIN-JHU
0.215 3-4 ONLINE-B

3 -0.001 5 CIMS
4 -0.338 6 ONLINE-F
5 -0.977 7 ONLINE-E

English–Russian
# score range system
1 1.015 1 PROMT-RULE
2 0.521 2 ONLINE-G
3 0.217 3 ONLINE-B
4 0.122 4-5 LIMSI-NCODE

0.075 4-5 ONLINE-A
5 0.014 6 UEDIN-JHU
6 -0.138 7 UEDIN-SYNTAX
7 -0.276 8 USAAR-GACHA
8 -0.333 9 USAAR-GACHA
9 -1.218 10 ONLINE-F

English–German
# score range system
1 0.359 1-2 UEDIN-SYNTAX

0.334 1-2 MONTREAL
2 0.260 3-4 PROMT-RULE

0.235 3-4 ONLINE-A
3 0.148 5 ONLINE-B
4 0.086 6 KIT-LIMSI
5 0.036 7-9 UEDIN-JHU

0.003 7-11 ONLINE-F
-0.001 7-11 ONLINE-C
-0.018 8-11 KIT
-0.035 9-11 CIMS

6 -0.133 12-13 DFKI
-0.137 12-13 ONLINE-E

7 -0.235 14 UDS-SANT
8 -0.400 15 ILLINOIS
9 -0.501 16 IMS

Finnish–English
# score range system
1 0.675 1 ONLINE-B
2 0.280 2-4 PROMT-SMT

0.246 2-5 ONLINE-A
0.236 2-5 UU
0.182 4-7 UEDIN-JHU
0.160 5-7 ABUMATRAN-COMB
0.144 5-8 UEDIN-SYNTAX
0.081 7-8 ILLINOIS

3 -0.081 9 ABUMATRAN-HFS
4 -0.177 10 MONTREAL
5 -0.275 11 ABUMATRAN
6 -0.438 12-13 LIMSI

-0.513 13-14 SHEFFIELD
-0.520 13-14 SHEFF-STEM

English–Finnish
# score range system
1 1.069 1 ONLINE-B
2 0.548 2 ONLINE-A
3 0.210 3 UU
4 0.042 4 ABUMATRAN-COMB
5 -0.059 5 ABUMATRAN-COMB
6 -0.143 6-7 AALTO

-0.184 6-8 UEDIN-SYNTAX
-0.212 6-8 ABUMATRAN

7 -0.342 9 CMU
8 -0.929 10 CHALMERS

Table 6: Official results for the WMT15 translation task. Systems are ordered by their inferred system means, though systems
within a cluster are considered tied. Lines between systems indicate clusters according to bootstrap resampling at p-level
p ≤ .05. Systems with grey background indicate use of resources that fall outside the constraints provided for the shared task.
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Figure 4: Human evaluation scores versus BLEU scores for the German–English and Czech–English language pairs illustrate
the need for human evaluation when comparing systems of different kind. Confidence intervals are indicated by the shaded
ellipses. Rule-based systems and to a lesser degree syntax-based statistical systems receive a lower BLEU score than their
human score would indicate. The big cluster in the Czech-English plot are tuning task submissions.

12



English–French

30 32 34

BLEU

.0

.2

.4

.6

HUMAN

LIMSI-CNRS

ONLINE-A

ONLINE-B

UEDIN-JHU

CIMS

French–English

30 32 34

BLEU

.2

.4

.6
HUMAN

LIMSI-CNRS

ONLINE-A

ONLINE-B

MACAU

UEDIN-JHU

Russian–English

20 22 24 26 28 30

BLEU-.4

-.2

.0

.2

.4

.6
HUMAN

PROMT-RULE AFRL-MIT-PB

LIMSI-NCODE

USAAR-GACHA

AFRL-MIT-FAC

AFRL-MIT-H

USAAR-GACHA2

ONLINE-G

UEDIN-JHU

ONLINE-B

ONLINE-A

UEDIN-SYNTAX

English–Russian

20 22 24 26

BLEU

-.4

-.2

.0

.2

.4

.6

.8

1.0

HUMAN

LIMSI-NCODE

PROMT-RULE

USAAR-GACHA

ONLINE-B

UEDIN-JHU

UEDIN-SYNTAX

ONLINE-A

ONLINE-G

USAAR-GACHA2

Finnish–English

12 14 16 18 20 22

BLEU
-.6

-.4

-.2

.0

.2

.4

.6

.8
HUMAN

UU-UNC

ABUMATRAN-HFS

ABUMATRAN-COMB

SHEFFIELD SHEFF-STEM

UEDIN-SYNTAX

ONLINE-A

MONTREAL

PROMT-SMT

UEDIN-JHU

ONLINE-B

LIMSI

ILLINOIS

ABUMATRAN

English–Finnish

4 6 8 10 12 14 16

BLEU

-1.0

-.8

-.6

-.4

-.2

.0

.2

.4

.6

.8

1.0

1.2
HUMAN

UEDIN-SYNTAX

ONLINE-A

AALTO

ONLINE-B

ABUMATRAN-UNC-COMB

UU-UNC

CHALMERS

ABUMATRAN-UNC

ABUMATRAN-COMB

CMU

Figure 5: Human evaluation versus BLEU scores for the French–English, Russian–English, and Finnish-English language pairs.
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tion, particularly the use of annotations ob-
tained from crowdsourced post-editing.

Three tasks were proposed: Task 1 at sentence
level (Section 4.3), Task 2 at word level (Sec-
tion 4.4), and Task 3 at document level (Section
4.5). Tasks 1 and 2 provide the same dataset with
English-Spanish translations generated by the sta-
tistical machine translation (SMT) system, while
Task 3 provides two different datasets, for two
language pairs: English-German (EN-DE) and
German-English (DE-EN) translations taken from
all participating systems in WMT13 (Bojar et al.,
2013). These datasets were annotated with differ-
ent labels for quality: for Tasks 1 and 2, the labels
were automatically derived from the post-editing
of the machine translation output, while for Task
3, scores were computed based on reference trans-
lations using Meteor (Banerjee and Lavie, 2005).
Any external resource, including additional qual-
ity estimation training data, could be used by par-
ticipants (no distinction between open and close
tracks was made). As presented in Section 4.1,
participants were also provided with a baseline set
of features for each task, and a software package
to extract these and other quality estimation fea-
tures and perform model learning, with suggested
methods for all levels of prediction. Participants,
described in Section 4.2, could submit up to two
systems for each task.

Data used to build MT systems or internal sys-
tem information (such as model scores or n-best
lists) were not made available this year as multi-
ple MT systems were used to produce the datasets,
especially for Task 3, including online and rule-
based systems. Therefore, as a general rule, par-
ticipants could only use black-box features.

4.1 Baseline systems
Sentence-level baseline system: For Task 1,
QUEST7 (Specia et al., 2013) was used to ex-
tract 17 MT system-independent features from the
source and translation (target) files and parallel
corpora:

• Number of tokens in the source and target
sentences.

• Average source token length.

• Average number of occurrences of the target
word within the target sentence.

7https://github.com/lspecia/quest

• Number of punctuation marks in source and
target sentences.

• Language model (LM) probability of source
and target sentences based on models for the
WMT News Commentary corpus.

• Average number of translations per source
word in the sentence as given by IBM Model
1 extracted from the WMT News Commen-
tary parallel corpus, and thresholded such
that P (t|s) > 0.2/P (t|s) > 0.01.

• Percentage of unigrams, bigrams and tri-
grams in frequency quartiles 1 (lower fre-
quency words) and 4 (higher frequency
words) in the source language extracted from
the WMT News Commentary corpus.

• Percentage of unigrams in the source sen-
tence seen in the source side of the WMT
News Commentary corpus.

These features were used to train a Support Vec-
tor Regression (SVR) algorithm using a Radial
Basis Function (RBF) kernel within the SCIKIT-
LEARN toolkit.8 The γ, ε and C parameters were
optimised via grid search with 5-fold cross valida-
tion on the training set. We note that although the
system is referred to as “baseline”, it is in fact a
strong system. It has proved robust across a range
of language pairs, MT systems, and text domains
for predicting various forms of post-editing effort
(Callison-Burch et al., 2012; Bojar et al., 2013,
2014).

Word-level baseline system: For Task 2, the
baseline features were extracted with the MAR-
MOT tool9. For the baseline system we used a
number of features that have been found the most
informative in previous research on word-level
quality estimation. Our baseline set of features
is loosely based on the one described in (Luong
et al., 2014). It contains the following 25 features:

• Word count in the source and target sen-
tences, source and target token count ratio.
Although these features are sentence-level
(i.e. their values will be the same for all
words in a sentence), but the length of a
sentence might influence the probability of a
word being incorrect.

8http://scikit-learn.org/
9https://github.com/qe-team/marmot
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• Target token, its left and right contexts of one
word.

• Source token aligned to the target token,
its left and right contexts of one word.
The alignments were produced with the
force align.py script, which is part of
cdec (Dyer et al., 2010). It allows to
align new parallel data with a pre-trained
alignment model built with the cdec word
aligner (fast align). The alignment model
was trained on the Europarl corpus (Koehn,
2005).

• Boolean dictionary features: whether target
token is a stopword, a punctuation mark, a
proper noun, a number.

• Target language model features:

– The order of the highest order n-gram
which starts or ends with the target to-
ken.

– Backoff behaviour of the n-grams
(ti−2, ti−1, ti), (ti−1, ti, ti+1),
(ti, ti+1, ti+2), where ti is the tar-
get token (the backoff behaviour is
computed as described in (Raybaud
et al., 2011)).

• The order of the highest order n-gram which
starts or ends with the source token.

• Boolean pseudo-reference feature: 1 if the
token is contained in a pseudo-reference, 0
otherwise. The pseudo-reference used for
this feature is the automatic translation gen-
erated by an English-Spanish phrase-based
SMT system trained on the Europarl corpus
with standard settings.10

• The part-of-speech tags of the target and
source tokens.

• The number of senses of the target and source
tokens in WordNet.

We model the task as a sequence prediction
problem and train our baseline system using the
Linear-Chain Conditional Random Fields (CRF)
algorithm with the CRF++ tool.11

10http://www.statmt.org/moses/?n=Moses.
Baseline

11http://taku910.github.io/crfpp/

Document-level baseline system: For Task 3,
the baseline features for sentence-level prediction
were used. These are aggregated by summing
or averaging their values for the entire document.
Features that were summed: number of tokens
in the source and target sentences and number of
punctuation marks in source and target sentences.
All other features were averaged. The imple-
mentation for document-level feature extraction is
available in QUEST++ (Specia et al., 2015).12

These features were then used to train a SVR al-
gorithm with RBF kernel using the SCIKIT-LEARN

toolkit. The γ, ε and C parameters were optimised
via grid search with 5-fold cross validation on the
training set.

4.2 Participants

Table 7 lists all participating teams submitting sys-
tems to any of the tasks. Each team was allowed
up to two submissions for each task and language
pair. In the descriptions below, participation in
specific tasks is denoted by a task identifier.

DCU-SHEFF (Task 2): The system uses the
baseline set of features provided for the task.
Two pre-processing data manipulation tech-
niques were used: data selection and data
bootstrapping. Data selection filters out sen-
tences which have the smallest proportion of
erroneous tokens and are assumed to be the
least useful for the task. Data bootstrapping
enhances the training data with incomplete
training sentences (e.g. the first k words
of a sentence of the length N , where k <
N ). This technique creates additional data
instances and boosts the importance of er-
rors occurring in the training data. The com-
bination of these techniques doubled the F1

score for the “BAD” class, as compared to a
models trained on the entire dataset given for
the task. The labelling was performed with a
CRF model trained using the CRF++ tool, as
in the baseline system.

HDCL (Task 2): HDCL’s submissions are based
on a deep neural network that learns continu-
ous feature representations from scratch, i.e.
from bilingual contexts. The network was
pre-trained by initialising the word lookup-
table with distributed word representations,

12https://github.com/ghpaetzold/
questplusplus
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ID Participating team
DCU-SHEFF Dublin City University, Ireland and University of Sheffield, UK (Logacheva

et al., 2015)
HDCL Heidelberg University, Germany (Kreutzer et al., 2015)

LORIA Lorraine Laboratory of Research in Computer Science and its Applications,
France (Langlois, 2015)

RTM-DCU Dublin City University, Ireland (Bicici et al., 2015)
SAU-KERC Shenyang Aerospace University, China (Shang et al., 2015)
SHEFF-NN University of Sheffield Team 1, UK (Shah et al., 2015)

UAlacant Alicant University, Spain (Esplà-Gomis et al., 2015a)
UGENT Ghent University, Belgium (Tezcan et al., 2015)

USAAR-USHEF University of Sheffield, UK and Saarland University, Germany (Scarton et al.,
2015a)

USHEF University of Sheffield, UK (Scarton et al., 2015a)
HIDDEN Undisclosed

Table 7: Participants in the WMT15 quality estimation shared task.

and fine-tuned for the quality estimation clas-
sification task by back-propagating word-
level prediction errors using stochastic gra-
dient descent. In addition to the continuous
space deep model, a shallow linear classifier
was trained on the provided baseline features
and their quadratic expansion. One of the
submitted systems (QUETCH) relies on the
deep model only, the other (QUETCHPLUS)
is a linear combination of the QUETCH sys-
tem score, the linear classifier score, and bi-
nary and binned baseline features. The sys-
tem combination yielded significant improve-
ments, showing that the deep and shallow
models each contributes complementary in-
formation to the combination.

LORIA (Task 1): The LORIA system for Task
1 is based on a standard machine learning
approach where source-target sentences are
described by numerical vectors and SVR is
used to learn a regression model between
these vectors and quality scores. Feature vec-
tors used the 17 baseline features, two La-
tent Semantic Indexing (LSI) features and 31
features based on pseudo-references. The
LSI approach considers source-target pairs as
documents, and projects the TF-IDF words-
documents matrix into a reduced numerical
space. This leads to a measure of simi-
larity between a source and a target sen-
tence, which was used as a feature. Two
of these features were used based on two
matrices, one from the Europarl corpus and

one from the official training data. Pseudo-
references were produced by three online
systems. These features measure the inter-
section between n-gram sets of the target sen-
tence and of the pseudo-references. Three
sets of features were extracted from each on-
line system, and a fourth feature was ex-
tracted measuring the inter-agreement among
the three online systems and the target sys-
tem.

RTM-DCU (Tasks 1, 2, 3): RTM-DCU systems
are based on referential translation machines
(RTM) (Biçici, 2013; Biçici and Way, 2014).
RTMs propose a language independent ap-
proach and avoid the need to access any task-
or domain-specific information or resource.
The submissions used features that indicate
the closeness between instances to the avail-
able training data, the difficulty of translat-
ing them, and the presence of acts of transla-
tion for data transformation. SVR was used
for document and sentence-level prediction
tasks, also in combination with feature selec-
tion or partial least squares, and global linear
models with dynamic learning were used for
the word-level prediction task.

SAU (Task 2): The SAU submissions used a CRF
model to predict the binary labels for Task
2. They rely on 12 basic features and 85
combination features. The ratio between OK
and BAD labels was found to be 4:1 in the
training set. Two strategies were proposed to
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solve this problem of label ratio imbalance.
The first strategy is to replace “OK” labels
with sub-labels to balance label distribution,
where the sub-labels are OK B, OK I, OK E,
OK (depending on the position of the token
in the sentence). The second strategy is to
reconstruct the training set to include more
“BAD” words.

SHEFF-NN (Tasks 1, 2): SHEFF-NN sub-
missions were based on (i) a Continuous
Space Language Model (CSLM) to extract
additional features for Task 1 (SHEF-GP
and SHEF-SVM), (ii) a Continuous Bag-
of-Words (CBOW) model to produce word
embeddings as features for Task 2 (SHEF-
W2V), and (iii) a combination of features
produced by QUEST++ and a feature pro-
duced with word embedding models (SHEF-
QuEst++). SVR and Gaussian Processes
were used to learn prediction models for Task
1, and a CRF algorithm for binary tagging
models in Task 2 (Pystruct Linear-chain CRF
trained with a structured SVM for system
SHEF-W2V, and CRFSuite Adaptive Reg-
ularisation of Weight Vector (AROW) and
Passive Aggressive (PA) algorithms for sys-
tem SHEF-QuEst++). Interesting findings
for Task 1 were that (i) CSLM features al-
ways bring improvements whenever added to
either baseline or complete feature sets and
(ii) CSLM features alone perform better than
the baseline features. For Task 2, the results
obtained by SHEF-W2V are promising: al-
though it uses only features learned in unsu-
pervised fashion (CBOW word embeddings),
it was able to outperform the baseline as well
as many other systems. Further, combining
the source-to-target cosine similarity feature
with the ones produced by QUEST++ led to
improvements in the F1 of “BAD” labels.

UAlacant (Task 2): The submissions of the Uni-
versitat d’Alacant team were obtained by ap-
plying the approach in (Esplà-Gomis et al.,
2015b), which uses any source of bilingual
information available as a black-box in or-
der to spot sub-segment correspondences be-
tween a sentence S in the source language
and a given translation hypothesis T in the
target language. These sub-segment corre-
spondences are used to extract a collection of

features that is then used by a multilayer per-
ceptron to determine the word-level predicted
score. Three sources of bilingual informa-
tion available online were used: two online
machine translation systems, Apertium13 and
Google Translate; and the bilingual concor-
dancer Reverso Context.14 Two submissions
were made for Task 2: one using only the
70 features described in (Esplà-Gomis et al.,
2015b), and one combining them with the
baseline features provided by the task organ-
isers.

UGENT (Tasks 1, 2): The submissions for
the word-level task used 55 new features
in combination with the baseline feature set
to train binary classifiers. The new fea-
tures try to capture either accuracy (mean-
ing transfer from source to target sentence)
using word and phrase alignments, or flu-
ency (well-formedness of target sentence) us-
ing language models trained on word sur-
face forms and on part-of-speech tags. Based
on the combined feature set, SCATE-MBL
uses a memory-based learning (MBL) al-
gorithm for binary classification. SCATE-
HYBRID uses the same feature set and forms
a classifier ensemble using CRFs in combi-
nation with the MBL system for predicting
word-level quality. For the sentence-level
task, SCATE-SVM-single uses a single fea-
ture to train SVR models, which is based
on the percentage of words that are labelled
as “BAD” by the word-level quality estima-
tion system SCATE-HYBRID. SCATE-SVM
adds 16 new features to this single feature and
the baseline feature set to train SVR models
using an RBF kernel. Additional language re-
sources are used to extract the new features
for both tasks.

USAAR-USHEF (Task 3): The systems sub-
mitted for both EN-DE and DE-EN (called
BFF) were built by using a exhaustive search
for feature selection over the official baseline
features. In order to select the best features,
a Bayesian Ridge classifier was trained for
each feature combination and the classifiers
were evaluated in terms of Mean Average Er-
ror (MAE): the classifier with the smallest

13http://www.apertium.org
14http://context.reverso.net/translation/
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MAE was considered the best. For EN-DE,
the selected features were: average source to-
ken length, percentage of unigrams and of tri-
grams in fourth quartile of frequency in a cor-
pus of the source language. For DE-EN, the
best features were: number of occurrences
of the target word within the target hypoth-
esis, percentage of unigrams and of trigrams
in first quartile of frequency in a corpus of
the source language. This provide an indica-
tion of which features of the baseline set con-
tribute for document-level quality estimation.

USHEF (Task 3): The system submitted for
the EN-DE document-level task was built by
using the 17 official baseline features, plus
discourse features (repetition of words, lem-
mas and nouns and ratio of repetitions – as
implemented in QUEST++. For DE-EN, a
combination of the 17 baseline features, the
discourse repetition features and discourse-
aware features extracted from syntactic and
discourse parsers was used. The new dis-
course features are: number of pronouns,
number of connectives, number of satellite
and nucleus relations in the RST (Rhetori-
cal Structure Theory) tree for the document
and number of EDU (Elementary Discourse
Units) breaks in the text. A backward fea-
ture selection approach, based on the fea-
ture rank of SCIKIT-LEARN’s Random For-
est implementation, was also applied. For
both languages pairs, the same algorithm as
that of the baseline system was used: the
SCIKIT-LEARN implementation of SVR with
RBF kernel and hyper-parameters optimised
via grid-search.

HIDDEN (Task 3): This submission, whose cre-
ators preferred to remain anonymous, esti-
mates the quality of a given document by
explicitly identifying potential translation er-
rors in it. Translation error detection is im-
plemented as a combination of human expert
knowledge and different language process-
ing tools, including named entity recognition,
part-of-speech tagging and word alignments.
In particular, the system looks for patterns
of errors defined by human experts, taking
into account the actual words and the addi-
tional linguistic information. With this ap-
proach, a wide variety of errors can be de-

tected: from simple misspellings and typos to
complex lack of agreement (in genre, number
and tense), or lexical inconsistencies. Each
error category is assigned an “importance”,
again according to human knowledge, and
the amount of error in the document is com-
puted as the weighted sum of the identified
errors. Finally, the documents are sorted ac-
cording to this figure to generate the final
submission to the ranking variant of Task 3.

4.3 Task 1: Predicting sentence-level quality
This task consists in scoring (and ranking) transla-
tion sentences according to the percentage of their
words that need to be fixed. It is similar to Task 1.2
in WMT14. HTER (Snover et al., 2006b) is used
as quality score, i.e. the minimum edit distance
between the machine translation and its manually
post-edited version in [0,1].

As in previous years, two variants of the results
could be submitted:

• Scoring: An absolute HTER score for each
sentence translation, to be interpreted as an
error metric: lower scores mean better trans-
lations.

• Ranking: A ranking of sentence translations
for all source sentences from best to worst.
For this variant, it does not matter how the
ranking is produced (from HTER predictions
or by other means). The reference ranking is
defined based on the true HTER scores.

Data The data is the same as that used for the
WMT15 Automatic Post-editing task,15 as kindly
provided by Unbabel.16 Source segments are to-
kenized English sentences from the news domain
with at least four tokens. Target segments are to-
kenized Spanish translations produced by an on-
line SMT system. The human post-editions are a
manual revision of the target, collected using Un-
babel’s crowd post-editing platform. HTER labels
were computed using the TERCOM tool17 with
default settings (tokenised, case insensitive, exact
matching only), but with scores capped to 1.

As training and development data, we pro-
vided English-Spanish datasets with 11, 271 and
1, 000 source sentences, their machine transla-
tions, post-editions and HTER scores, respec-
tively. As test data, we provided an additional

15http://www.statmt.org/wmt15/ape-task.html
16https://unbabel.com/
17http://www.cs.umd.edu/˜snover/tercom/
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set of 1, 817 English-Spanish source-translations
pairs produced by the same MT system used for
the training data.

Evaluation Evaluation was performed against
the true HTER label and/or ranking, using the
same metrics as in previous years:

• Scoring: Mean Average Error (MAE) (pri-
mary metric, official score for ranking
submissions), Root Mean Squared Error
(RMSE).

• Ranking: DeltaAvg (primary metric) and
Spearman’s ρ rank correlation.

Additionally, we included Pearson’s r correla-
tion against the true HTER label, as suggested by
Graham (2015).

Statistical significance on MAE and DeltaAvg
was computed using a pairwise bootstrap resam-
pling (1K times) approach with 95% confidence
intervals. 18 For Pearson’s r correlation, we mea-
sured significance using the Williams test, as also
suggested in (Graham, 2015).

Results Table 8 summarises the results for the
ranking variant of Task 1. They are sorted from
best to worst using the DeltaAvg metric scores as
primary key and the Spearman’s ρ rank correlation
scores as secondary key.

The results for the scoring variant are presented
in Table 9, sorted from best to worst by using the
MAE metric scores as primary key and the RMSE
metric scores as secondary key.

Pearson’s r coefficients for all systems against
HTER is given in Table 10. As discussed in
(Graham, 2015), the results according to this met-
ric can rank participating systems differently. In
particular, we note the SHEF/GP submission, are
which is deemed significantly worse than the base-
line system according to MAE, but substantially
better than the baseline according to Pearson’s
correlation. Graham (2015) argues that the use
of MAE as evaluation score for quality estima-
tion tasks is inadequate, as MAE is very sensitive
to variance. This means that a system that out-
puts predictions with high variance is more likely
to have high MAE score, even if the distribution
follows that of the true labels. Interestingly, ac-
cording to Pearson’s correlation, the systems are

18http://www.quest.dcs.shef.ac.uk/wmt15_
files/bootstrap-significance.pl

ranked exactly in the same way as according to
our DeltaAvg metric. The only difference is that
the 4th place is now considered significantly dif-
ferent from the three winning submissions. She
also argues that the significance tests used with
MAE, based on randomised resampling, assume
that the data is independent, which is not the case.
Therefore, we apply the suggested Williams sig-
nificance test for this metric.

4.4 Task 2: Predicting word-level quality
The goal of this task is to evaluate the extent to
which we can detect word-level errors in MT out-
put. Often, the overall quality of a translated seg-
ment is significantly harmed by specific errors in
a small proportion of words. Various classes of
errors can be found in translations, but for this
task we consider all error types together, aiming
at making a binary distinction between ’GOOD’
and ’BAD’ tokens. The decision to bucket all er-
ror types together was made because of the lack of
sufficient training data that could allow considera-
tion of more fine-grained error tags.

Data This year’s word-level task uses the same
dataset as Task 1, for a single language pair:
English-Spanish. Each instance of the training,
development and test sets consists of the follow-
ing elements:

• Source sentence (English).

• Automatic translation (Spanish).

• Manual post-edition of the automatic transla-
tion.

• Word-level binary (“OK”/“BAD”) labelling
of the automatic translation.

The binary labels for the datasets were acquired
automatically with the TERCOM tool (Snover
et al., 2006b).19 This tool computes the edit dis-
tance between machine-translated sentence and its
reference (in this case, its post-edited version).
It identifies four types of errors: substitution of
a word with another word, deletion of a word
(word was omitted by the translation system), in-
sertion of a word (a redundant word was added by
the translation system), and word or sequence of
words shift (word order error). Every word in the
machine-translated sentence is tagged with one of
these error types or not tagged if it matches a word
from the reference.

19http://www.cs.umd.edu/˜snover/tercom/
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System ID DeltaAvg ↑ Spearman’s ρ ↑
English-Spanish
• LORIA/17+LSI+MT+FILTRE 6.51 0.36

• LORIA/17+LSI+MT 6.34 0.37
• RTM-DCU/RTM-FS+PLS-SVR 6.34 0.37

• RTM-DCU/RTM-FS-SVR 6.09 0.35
UGENT-LT3/SCATE-SVM 6.02 0.34

UGENT-LT3/SCATE-SVM-single 5.12 0.30
SHEF/SVM 5.05 0.28

SHEF/GP 3.07 0.28
Baseline SVM 2.16 0.13

Table 8: Official results for the ranking variant of the WMT15 quality estimation Task 1. The winning submissions are
indicated by a •. These are the top-scoring submission and those that are not significantly worse according to pairwise bootstrap
resampling (1K times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.

System ID MAE ↓ RMSE ↓
English-Spanish
• RTM-DCU/RTM-FS+PLS-SVR 13.25 17.48
• LORIA/17+LSI+MT+FILTRE 13.34 17.35
• RTM-DCU/RTM-FS-SVR 13.35 17.68

• LORIA/17+LSI+MT 13.42 17.45
• UGENT-LT3/SCATE-SVM 13.71 17.45

UGENT-LT3/SCATE-SVM-single 13.76 17.79
SHEF/SVM 13.83 18.01

Baseline SVM 14.82 19.13
SHEF/GP 15.16 18.97

Table 9: Official results for the scoring variant of the WMT15 quality estimation Task 1. The winning submissions are indicated
by a •. These are the top-scoring submission and those that are not significantly worse according to bootstrap resampling (1K
times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system at a statistically
significant level according to the same test.

System ID Pearson’s r ↑
• LORIA/17+LSI+MT+FILTRE 0.39

• LORIA/17+LSI+MT 0.39
• RTM-DCU/RTM-FS+PLS-SVR 0.38

RTM-DCU/RTM-FS-SVR 0.38
UGENT-LT3/SCATE-SVM 0.37

UGENT-LT3/SCATE-SVM-single 0.32
SHEF/SVM 0.29

SHEF/GP 0.19
Baseline SVM 0.14

Table 10: Alternative results for the scoring variant of the WMT15 quality estimation Task 1. The winning submissions are
indicated by a •. These are the top-scoring submission and those that are not significantly worse according to Williams test with
95% confidence intervals. The systems in the gray area are not different from the baseline system at a statistically significant
level according to the same test.

All the untagged (correct) words were tagged
with “OK”, while the words tagged with substi-
tution and insertion errors were assigned the tag
“BAD”. The deletion errors are not associated
with any word in the automatic translation, so we

could not consider them. We also disabled the
shift errors by running TERCOM with the option
‘-d 0’. The reason for that is the fact that search-
ing for shifts introduces significant noise in the
annotation. The system cannot discriminate be-
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tween cases where a word was really shifted and
where a word (especially common words such as
prepositions, articles and pronouns) was deleted in
one part of the sentence and then independently
inserted in another part of this sentence, i.e. to
correct an unrelated error. The statistics of the
datasets are outlined in Table 11.

Sentences Words
% of “BAD”
words

Training 11,271 257,548 19.14
Dev 1,000 23,207 19.18
Test 1,817 40,899 18.87

Table 11: Datasets for Task 2.

Evaluation Submissions were evaluated in
terms of classification performance against the
original labels. The main evaluation metric is the
average F1 for the “BAD” class. Statistical signif-
icance on F1 for the “BAD” class was computed
using approximate randomization tests.20

Results The results for Task 2 are summarised
in Table 12. The results are ordered by F1 score
for the error (BAD) class.

Using the F1 score for the word-level estimation
task has a number of drawbacks. First of all, we
cannot use it as the single metric to evaluate the
system’s quality. The F1 score of the class “BAD”
becomes an inadequate metric when one is also
interested in the tagging of correct words. In fact,
a naive baseline which tags all words with the class
“BAD” would yield 31.75 F1 score for the “BAD”
class in the test set of this task, which is close to
some of the submissions and by far exceeds the
baseline, although this tagging is uninformative.

We could instead use the weighted F1 score,
which would lead to a single F1 figure where ev-
ery class is given a weight according to its fre-
quency in the test set. However, we believe the
weighted F1 score does not reflect the real qual-
ity of the systems either. Since there are many
more instances of the “GOOD” class than there
are of the “BAD” class, the performance on the
“BAD” class does not contribute much weight to
the overall score, and changes in accuracy of error
prediction on this less frequent class can go un-
noticed. The weighted F1 score for the strategy
which tags all words as “GOOD” would be 72.66,

20http://www.nlpado.de/˜sebastian/software/
sigf.shtml

which is higher than the score of many submis-
sions. However, similar to the case of tagging all
words as “BAD”, this strategy is uninformative. In
an attempt to find more intuitive ways of evaluat-
ing word-level tasks, we introduce a new metric
called sequence correlation. It gives higher im-
portance to the instances of the “BAD” class and
is robust against uninformative tagging.

The basis of the sequence correlation metric is
the number of matching labels in the reference and
the hypothesis, analogously to a precision metric.
However, it has some additional features that are
aimed at making it more reliable. We consider
the tagging of each sentence separately as a se-
quence of tags. We divide each sequence into
sub-sequences tagged by the same tag, for exam-
ple, the sequence “OK BAD OK OK OK” will be
represented as a list of 3 sub-sequences: [ “OK”,
“BAD”, “OK OK OK” ]. Each subsequence has
also the information on its position in the origi-
nal sentence. The sub-sequences of the reference
and the hypothesis are then intersected, and the
number of matching tags in the corresponding sub-
sequences is computed so that every sub-sequence
can be used only once. Let us consider the follow-
ing example:

Reference: OK BAD OK OK OK
Hypothesis: OK OK OK OK OK

Here, the reference has three sub-sequences, as
in the previous example, and the hypothesis con-
sists of only one sub-sequence which coincides
with the hypothesis itself, because all the words
were tagged with the “OK” label. The precision
score for this sentence will be 0.8, as 4 of 5 labels
match in this example. However, we notice that
the hypothesis sub-sequence covers two match-
ing sub-sequences of the reference: word 1 and
words 3–5. According to our metric, the hypoth-
esis sub-sequence can be used for the intersection
only once, giving either 1 of 5 or 3 of 5 match-
ing words. We choose the highest value and get
the score of 0.6. Thus, the intersection procedure
downweighs the uninformative hypotheses where
all words are tagged with one tag.

In order to compute the sequence correlation we
need to get the set of spans for each label in both
the prediction and the reference, and then intersect
them. A set of spans of each tag t in the string w
is computed as follows:
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weighted F1 F1 F1

System ID All Bad ↑ GOOD
English-Spanish
• UAlacant/OnLine-SBI-Baseline 71.47 43.12 78.07

• HDCL/QUETCHPLUS 72.56 43.05 79.42
UAlacant/OnLine-SBI 69.54 41.51 76.06

SAU/KERC-CRF 77.44 39.11 86.36
SAU/KERC-SLG-CRF 77.4 38.91 86.35
SHEF2/W2V-BI-2000 65.37 38.43 71.63

SHEF2/W2V-BI-2000-SIM 65.27 38.40 71.52
SHEF1/QuEst++-AROW 62.07 38.36 67.58

UGENT/SCATE-HYBRID 74.28 36.72 83.02
DCU-SHEFF/BASE-NGRAM-2000 67.33 36.60 74.49

HDCL/QUETCH 75.26 35.27 84.56
DCU-SHEFF/BASE-NGRAM-5000 75.09 34.53 84.53

SHEF1/QuEst++-PA 26.25 34.30 24.38
UGENT/SCATE-MBL 74.17 30.56 84.32

RTM-DCU/s5-RTM-GLMd 76.00 23.91 88.12
RTM-DCU/s4-RTM-GLMd 75.88 22.69 88.26

Baseline 75.31 16.78 88.93

Table 12: Official results for the WMT15 quality estimation Task 2. The winning submissions are indicated by a •. These are
the top-scoring submission and those that are not significantly worse according to approximate randomization tests with 95%
confidence intervals. Submissions whose results are statistically different from others according to the same test are grouped
by a horizontal line.

St(w) = {w[b:e]}, ∀i s.t. b 6 i 6 e : wi = t

where w[b:e] is a substring wb, wb+1, ..., we−1, we.
Then the intersection of spans for all labels is:

Int(y, ŷ) =
∑

t∈{0;1}
λt

∑
sy∈St(y)

∑
sŷ∈St(ŷ)

|sy ∩ sŷ|

Here λt is the weight of a tag t in the overall
result. It is inversely proportional the number of
instances of this tag in the reference:

λt =
|y|
ct(ŷ)

where ct(ŷ) is the number of words labelled with
the label t in the prediction. Thus we give the
equal importance to all tags.

The sum of matching spans is also weighted by
the ratio of the number of spans in the hypothe-
sis and the reference. This is done to downweigh
the system tagging if the number of its spans dif-
fers from the number of spans provided in the gold
standard. This ratio is computed as follows:

r(y, ŷ) = min(
|y|
|ŷ| ;
|ŷ|
|y|)

This ratio is 1 if the number of spans is equal
for the hypothesis and the reference, and less than
1 otherwise.

The final score for a sentence is produced as fol-
lows:

SeqCor(y, ŷ) =
r(y, ŷ) · Int(y, ŷ)

|y| (1)

Then the overall sequence correlation for the
whole dataset is the average of sentence scores.

Table 13 shows the results of the evaluation ac-
cording to the sequence correlation metric. The re-
sults for the two metrics are quite different: one of
the highest scoring submissions according to the
F1-BAD score is only the third under the sequence
correlation metric, and vice versa: the submissions
with the highest sequence correlation feature in
3rd place according to F1-BAD score. However,
the system rankings produced by two metrics are
correlated — their Spearman’s correlation coeffi-
cient between them is 0.65.
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Sequence
System ID Correlation

English-Spanish
• SAU/KERC-CRF 34.22

• SAU/KERC-SLG-CRF 34.09
• UAlacant/OnLine-SBI-Baseline 33.84

UAlacant/OnLine-SBI 32.81
HDCL/QUETCH 32.13

HDCL/QUETCHPLUS 31.38
DCU-SHEFF/BASE-NGRAM-5000 31.23

UGENT/SCATE-HYBRID 30.15
DCU-SHEFF/BASE-NGRAM-2000 29.94

UGENT/SCATE-MBL 28.43
SHEF2/W2V-BI-2000 27.65

SHEF2/W2V-BI-2000-SIM 27.61
SHEF1/QuEst++-AROW 27.36

RTM-DCU/s5-RTM-GLMd 25.92
SHEF1/QuEst++-PA 25.49

RTM-DCU/s4-RTM-GLMd 24.95
Baseline 0.2044

Table 13: Alternative results for the WMT15 quality estimation Task 2 according to the sequence correlation metric. The win-
ning submissions are indicated by a •. These are the top-scoring submission and those that are not significantly worse according
to approximate randomization tests with 95% confidence intervals. Submissions whose results are statistically different from
others according to the same test are grouped by a horizontal line.

The sequence correlation metric gives prefer-
ence to systems that use sequence labelling (mod-
elling dependencies between the assigned tags).
We consider this a desirable feature, as we are gen-
erally not interested in maximising the prediction
accuracy for individual words, but in maximising
the accuracy for word-level labelling in the context
of the whole sentence. However, using the TER
alignment to tag errors cannot capture “phrase-
level errors”, and each token is considered inde-
pendently when the dataset is built. This is a fun-
damental issue with the current definition of the
word-level quality estimation that we intend to ad-
dress in future work.

Our intuition is that the sequence correlation
metric should be closer to human perception of
word-level QE than F1 scores. The goal of word-
level QE is to identify incorrect segments of a sen-
tence — and the sequence correlation metric eval-
uates how good the segmentation of the sentence
is into correct and incorrect phrases. A system can
get very high F1 score by (almost) randomly as-
signing a correct tag to a word, and giving very
little information on correct and incorrect areas in
the text. That was illustrated by the WMT14 word-
level QE task results, where the baseline strategy

that assigned tag “BAD” to all words had signif-
icantly higher F1 score than any of the submis-
sions. fundamental problem with the current task.
I added a sentence about it at the end of the para-
graph before this one.

4.5 Task 3: Predicting document-level quality

Predicting the quality of units larger than sen-
tences can be useful in many scenarios. For ex-
ample, consider a user searching for information
about a product on the web. The user can only find
reviews in German but he/she does not speak the
language, so he/she uses an MT system to translate
the reviews into English. In this case, predictions
on the quality of individual sentences in a trans-
lated review are not as informative as predictions
on the quality of the entire review.

With the goal of exploring quality estimation
beyond sentence level, this year we proposed a
document-level task for the first time. Due to
the lack of large datasets with machine translated
documents (by various MT systems), we consider
short paragraphs as documents. The task consisted
in scoring and ranking paragraphs according to
their predicted quality.
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Data The paragraphs were extracted from the
WMT13 translation task test data (Bojar et al.,
2013), using submissions from all participating
MT systems. Source paragraphs were randomly
chosen using the paragraph markup in the SGML
files. For each source paragraph, a translation was
taken from a different MT system such as to select
approximately the same number of instances from
each MT system. We considered EN-DE and DE-
EN as language pairs, extracting 1, 215 paragraphs
for each language pair. 800 paragraphs were used
for training and 415 for test.

Since no human annotation exists for the qual-
ity of entire paragraphs (or documents), Meteor
against reference translations was used as quality
label for this task. Meteor was calculated using
its implementation within the Asyia toolkit, with
the following settings: exact match, tokenised and
case insensitive (Giménez and Màrquez, 2010).

Evaluation The evaluation of the paragraph-
level task was the same as that for the sentence-
level task. MAE and RMSE are reported as eval-
uation metrics for the scoring task, with MAE as
official metric for systems ranking. For the rank-
ing task, DeltaAvg and Spearman’s ρ correlation
are reported, with DeltaAvg as official metric for
systems ranking. To evaluate the significance of
the results, bootstrap resampling (1K times) with
95% confidence intervals was used. Pearson’s r
correlation scores with the Williams significance
test are also reported.

Results Table 14 summarises the results of the
ranking variant of Task 3.21 They are sorted from
best to worst using the DeltaAvg metric scores as
primary key and the Spearman’s ρ rank correla-
tion scores as secondary key. RTM-DCU sub-
missions achieved the best scores: RTM-SVR
was the winner for EN-DE, and RTM-FS-SVR
for DE-EN. For EN-DE, the HIDDEN system
did not show significant difference against the
baseline. For DE-EN, USHEF/QUEST-DISC-BO,
USAAR-USHEF/BFF and HIDDEN were not sig-
nificantly different from the baseline.

The results of the scoring variant are given in
Table 15, sorted from best to worst by using the
MAE metric scores as primary key and the RMSE
metric scores as secondary key. Again the RTM-
DCU submissions scored the best for both lan-

21Results for MAE, RMSE and DeltaAvg are multiplied by
100 to improve readability.

guage pairs. All systems were significantly bet-
ter than the baseline. However, the difference be-
tween the baseline system and all submissions was
much lower in the scoring evaluation than in the
ranking evaluation.

Following the suggestion in (Graham, 2015),
Table 16 shows an alternative ranking of sys-
tems considering Pearson’s r correlation results.
The alternative ranking differs from the official
ranking in terms of MAE: for EN-DE, RTM-
DCU/RTM-FS-SVR is no longer in the winning
group, while for DE-EN, USHEF/QUEST-DISC-
BO and USAAR-USHEF/BFF did not show statis-
tically significant difference against the baseline.
However, as with Task 1 these results are the same
as the official ones in terms of DeltaAvg.

4.6 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Advances in sentence- and word-level QE

For sentence-level prediction, we used similar
data and quality labels as in previous editions of
the task: English-Spanish, news text domain and
HTER labels to indicate post-editing effort. The
main differences this year were: (i) the much
larger size of the dataset, (ii) the way post-editing
was performed – by a large number of crowd-
sourced translators, and (iii) the MT systems used
– an online statistical system. We will discuss
items (i) and (ii) later in this section. Regarding
(iii), the main implication of using an online sys-
tem was that one could not have access to many of
the resources commonly used to extract features,
such as the SMT training data and lexical tables.
As a consequence, surrogate resources were used
for certain features, including many of the baseline
ones, which made them less effective. To avoid
relying on such resources, novel features were ex-
plored, for example those based on deep neural
network architectures (word embeddings and con-
tinuous space language models by SHEFF-NN)
and those based on pseudo-references (n-gram
overlap and agreement features by LORIA).

While it is not possible to compare results di-
rectly with those published in previous years, for
sentence level we can observe the following with
respect to the corresponding task in WMT14 (Task
1.2):
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System ID DeltaAvg ↑ Spearman’s ρ ↑
English-German

• RTM-DCU/RTM-SVR 7.62 −0.62
RTM-DCU/RTM-FS-SVR 6.45 −0.67

USHEF/QUEST-DISC-REP 4.55 0.32
USAAR-USHEF/BFF 3.98 0.27

Baseline SVM 1.60 0.14
HIDDEN 1.04 0.05

German-English
• RTM-DCU/RTM-FS-SVR 4.93 −0.64

RTM-DCU/RTM-FS+PLS-SVR 4.23 −0.55
USHEF/QUEST-DISC-BO 1.55 0.19

Baseline SVM 0.59 0.05
USAAR-USHEF/BFF 0.40 0.12

HIDDEN 0.12 −0.03

Table 14: Official results for the ranking variant of the WMT15 quality estimation Task 3. The winning submissions are
indicated by a •. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (1K times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.

System ID MAE ↓ RMSE ↓
English-German
• RTM-DCU/RTM-FS-SVR 7.28 11.96
• RTM-DCU/RTM-SVR 7.5 11.35

USAAR-USHEF/BFF 9.37 13.53
USHEF/QUEST-DISC-REP 9.55 13.46

Baseline SVM 10.05 14.25
German-English
• RTM-DCU/RTM-FS-SVR 4.94 8.74

RTM-DCU/RTM-FS+PLS-SVR 5.78 10.70
USHEF/QUEST-DISC-BO 6.54 10.10

USAAR-USHEF/BFF 6.56 10.12
Baseline SVM 7.35 11.40

Table 15: Official results for the scoring variant of the WMT15 quality estimation Task 3. The winning submissions are
indicated by a •. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (1K times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.

• In terms of scoring, according to the primary
metric – MAE, in WMT15 all systems except
one were significantly better than the base-
line. In both WMT14 and WMT15 only one
system was significantly worse than the base-
line. However, in WMT14 four others (out of
nine) performed no different than the base-
line. This year, no system tied with the base-
line: the remaining seven systems were sig-
nificantly better than the baseline. One could
say systems are consistently better this year.
It is worth mentioning that the baseline re-
mains the same, but as previously noted, the
resources used to extract baseline features are

likely to be less useful this year given the mis-
match between the data used to produce them
and the data used to build the online SMT
system.

• In terms of ranking, in WMT14 one system
was significantly worse than the baseline, and
the four remaining systems were significantly
better. This year, all eight submissions are
significantly better than the baseline. This
can once more be seen as progress from last
year’s results. These results as well as the
general ranking of systems were also found
following Pearson’s correlation as metric, as
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System ID Pearson’s r ↑
English-German

• RTM-DCU/RTM-SVR 0.59
RTM-DCU/RTM-FS-SVR 0.53

USHEF/QUEST-DISC-REP 0.30
USAAR-USHEF/BFF 0.29

Baseline SVM 0.12
German-English
• RTM-DCU/RTM-FS-SVR 0.52

RTM-DCU/RTM-FS+PLS-SVR 0.39
USHEF/QUEST-DISC-BO 0.10

USAAR-USHEF/BFF 0.08
Baseline SVM 0.06

Table 16: Alternative results for the scoring variant of the WMT15 quality estimation Task 3. The winning submissions are
indicated by a •. These are the top-scoring submission and those that are not significantly worse according to the Williams
test with 95% confidence intervals. The systems in the gray area are not different from the baseline system at a statistically
significant level according to the same test.

suggested by Graham (2015).

For the word level task, a comparison with the
WMT14 corresponding task is difficult to perform,
as in WMT14 we did not have a meaningful base-
line. The baseline used then for binary classifica-
tion was to tag all words with the label “BAD”.
This baseline outperformed all the submissions in
terms of F1 for the “BAD” class, but it cannot be
considered an appropriate baseline strategy (see
Section 4.4). This year the submissions were com-
pared against the output of a real baseline system
and the set of baseline features was made avail-
able to participants. Although the baseline system
itself performed worse than all the submitted sys-
tems, some other systems benefited from adding
baseline features to their feature sets (UAlacant,
UGENT, HDCL).

Considering the feature sets and methods used,
the number of participants in the WMT14 word-
level task was too small to draw reliable conclu-
sion: four systems for English–Spanish and one
system for all other three language pairs. The
larger number of submissions this year is already a
positive result: 16 submissions from eight teams.
Inspecting the systems submitted this and last
year, we can speculate about the most promising
techniques. Last year’s winning system used a
neural network trained on pseudo-reference fea-
tures (namely, features extracted from n-best lists)
(Camargo de Souza et al., 2014). This year’s win-
ning systems are also based on pseudo-reference
features (UAlacant) and deep neural network ar-
chitectures (HDCL). Luong et al. (2013) had pre-

viously reported that pseudo-reference features
improve the accuracy of word-level predictions.
The two most recent editions of this shared task
seem to indicate that the state of the art in word-
level quality estimation relies upon such features,
as well as the ability to model the relationship be-
tween the source and target languages using large
datasets.

Effectiveness of quality labels, features and
learning methods for document-level QE

The task of paragraph-level prediction received
fewer submissions than the other two tasks: four
submissions for the scoring variant and five for
the ranking variant, for both language pairs. This
is understandable as it was the first time the task
was run. Additionally, paragraph-level QE is still
fairly new as a task. However, we were able to
draw some conclusions and learn valuable lessons
for future research in the area.

By and large, most features are similar to those
used for sentence-level prediction. Discourse-
aware features showed only marginal improve-
ments relative to the baseline system (USHEF sys-
tems for EN-DE and DE-EN). One possible rea-
son for that is the way the training and test data
sets were created, including paragraphs with only
one sentence. Therefore, discourse features could
not be fully explored as they aim to model rela-
tionships and dependencies across sentences, as
well as within sentences. In future, data will be
selected more carefully in order to consider only
paragraphs or documents with more sentences.
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Systems applying feature selection techniques,
such as USAAR-USHEF/BFF, did not obtain ma-
jor improvements over the baseline. However,
they provided interesting insights by finding a
minimum set of baseline features that can be used
to build models with the same performance as the
entire baseline feature set. These are models with
only three features selected as the best combina-
tion by exhaustive search.

The winning submissions for both language
pairs and variants – RTM-DCU – explored fea-
tures based on the source and target side informa-
tion. These include distributional similarity, close-
ness of test instances to the training data, and in-
dicators for translation quality. External data was
used to select “interpretants”, which contain data
close to both training and test sets to provide con-
text for similarity judgements.

In terms of quality labels, one problem ob-
served in previous work on document-level QE
(Scarton et al., 2015b) is the low variation of
scores (in this case, Meteor) across instances of
the dataset. Since the data collected for this task
included translations from many different MT sys-
tems, this was not the case. Table 17 shows the av-
erage and standard deviation (STDEV) values for
the datasets (both training and test set together).
Although the variation is substantial, the average
value of the training set is a good predictor. In
other words, if we consider the average of the
training set scores as the prediction value for all
data points in the test set, we obtain results as good
as the baseline system. For our datasets, the MAE
figure for EN-DE is 10, and for DE-EN 7 – the
same as the baseline system. We can only spec-
ulate that automatically assigned quality labels
based on reference translations such as Meteor are
not adequate for this task. Other automatic metrics
tend to behave similarly to Meteor for document-
level (Scarton et al., 2015b). Therefore, finding
an adequate quality label for document-level QE
remains an open issue. Having humans directly
assign quality labels is much more complex than
in the sentence and word level cases. Annotation
of entire documents, or even paragraphs, becomes
a harder, more subjective and much more costly
task. For future editions of this task, we intend
to collect datasets with human-targeted document-
level labels obtained indirectly, e.g. through post-
editing.

No submission focused on exploring learning

EN-DE DE-EN
AVG STDEV AVG STDEV

Meteor (↑) 0.35 0.14 0.26 0.09
Table 17: Average metric scores for automatic metrics in the
corpus for Task 3.

algorithms specifically targeted at document-level
prediction.

Differences between sentence-level and
document-level QE
The differences between sentence and document-
level prediction have not been explored to a great
extent. Apart from the discourse-aware features by
USHEF, the baseline and other features explored
by participating teams for document level predic-
tion were simple aggregations of sentence level
feature values.

Also, none of the submitted systems use
sentence-level predictions as features for
paragraph-level QE. Although this technique
is possible in principle, its effectiveness has
not yet been proved. (Specia et al., 2015) re-
port promising results when using word-level
prediction for sentence-level QE, but inclusive
results when using sentence-level prediction for
document-level QE. They considered BLEU, TER
and Meteor as quality labels, all leading to similar
findings. Once more the use of inadequate quality
labels for document-level prediction could have
been the reason.

No submission evaluated different machine
learning algorithms for this task. The same algo-
rithms as those used for sentence-level prediction
were applied by all participating teams.

Effect of training data sizes and quality for
sentence and word-level QE
As it was previously mentioned, the post-editions
used for this year’s sentence and word-level tasks
were obtained through a crowdsourcing platform
where translators volunteered to post-edit machine
translations. As such, one can expect that not all
post-editions will reach the highest standards of
professional translation. Manual inspection of a
small sample of the data, however, showed that the
post-editions were high quality, although stylis-
tic differences are evident in some cases. This is
likely due to the fact that different editors, with
different styles and levels of expertise, worked on
different segments. Another factor that may have
influenced the quality of the post-editions is the
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fact that segments were fixed out of context. For
word level, in particular, a potential issue is the
fact that the labelling of the words was done com-
pletely automatically, using a tool for alignment
based on minimum edit distance (TER).

On the positive side, this dataset is much larger
dataset than any we have used before for predic-
tion at any level: nearly 12K segments for train-
ing/development, as opposed to maximum 2K in
previous years. For sentence-level prediction we
did not expect massive gains from larger datasets,
as it has been shown that small amounts of data
can be as effective or even more effective than the
entire collection, if selected in a clever way (Beck
et al., 2013a,b). However, it is well known that
data sparsity is an issue for word-level prediction,
so we expected a large dataset to improve results
considerably for this task.

Unfortunately, having access to a large number
of samples did not seem to bring much improve-
ment for word-level predictions accuracy. The
main reason for that was the fact that the num-
ber of erroneous words in the training data was
too small, as compared to the number of correct
words: 50% of the sentences had zero incorrect
words (15% of the sentences) or fewer than 15%
incorrect words (35% of the sentences). Partici-
pants used various data manipulation strategies to
improve results: filtering of the training data, as
in DCU-SHEFF systems, alternative labelling of
the data which discriminates between “OK” label
in the beginning, middle, and end of a good seg-
ment, and insertion of additional incorrect words,
as in SAU-KERC submissions. Additionally, most
participants in the word-level task leveraged ad-
ditional data in some way, which points to the
need for even larger but more varied post-edited
datasets in order to make significant progress in
this task.

5 Automatic Post-editing Task

This year WMT hosted for the first time a shared
task on automatic post-editing (APE) for machine
translation. The task requires to automatically cor-
rect the errors present in a machine translated text.
As pointed out in Parton et al. (2012) and Chat-
terjee et al. (2015b), from the application point of
view, APE components would make it possible to:

• Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-

forming deeper text analysis that is too ex-
pensive at the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

The first pilot round of the APE task focused on
the challenges posed by the “black-box” scenario
in which the MT system is unknown and cannot
be modified. In this scenario, APE methods have
to operate at the downstream level (that is after
MT decoding), by applying either rule-based tech-
niques or statistical approaches that exploit knowl-
edge acquired from human post-editions provided
as training material. The objectives of this pilot
were to: i) define a sound evaluation framework
for the task, ii) identify and understand the most
critical aspects in terms of data acquisition and
system evaluation, iii) make an inventory of cur-
rent approaches and evaluate the state of the art
and iv) provide a milestone for future studies on
the problem.

5.1 Task description

Participants were provided with training and de-
velopment data consisting of (source, target, hu-
man post-edition) triplets, and were asked to re-
turn automatic post-editions for a test set of unseen
(source, target) pairs.

Data
Training, development and test data were cre-
ated by randomly sampling from a collection
of English-Spanish (source, target, human post-
edition) triplets drawn from the news domain.22

Instances were sampled after applying a series of
data cleaning steps aimed at removing duplicates
and those triplets in which any of the elements
(source, target, post-edition) was either too long
or too short compared to the others, or included
tags or special problematic symbols. The main
reason for random sampling was to induce some
homogeneity across the three datasets and, in turn,

22The original triplets were provided by Unbabel (https:
//unbabel.com/).
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to increase the chances that correction patterns
learned from the training set can be applied also
to the test set. The downside of losing informa-
tion yielded by text coherence (an aspect that some
APE systems might take into consideration) has
hence been accepted in exchange for a higher error
repetitiveness across the three datasets. Table 18
provides some basic statistics about the data.

The training and development sets respectively
consist of 11, 272 and 1, 000 instances. In each
instance:

• The source (SRC) is a tokenized English
sentence having a length of at least 4 to-
kens. This constraint on the source length
was posed in order to increase the chances
to work with grammatically correct full sen-
tences instead of phrases or short keyword
lists;

• The target (TGT) is a tokenized Spanish
translation of the source, produced by an un-
known MT system;

• The human post-edition (PE) is a manually-
revised version of the target. PEs were col-
lected by means of a crowdsourcing platform
developed by the data provider.

Test data (1, 817 instances) consists of (source,
target) pairs having similar characteristics of those
in the training set. Human post-editions of the test
target instances were left apart to measure system
performance.

The data creation procedure adopted, as well as
the origin and the domain of the texts pose specific
challenges to the participating systems. As dis-
cussed in Section 5.4, the results of this pilot task
can be partially explained in light of such chal-
lenges. This dataset, however, has three major ad-
vantages that made it suitable for the first APE pi-
lot: i) it is relatively large (hence suitable to apply
statistical methods), ii) it was not previously pub-
lished (hence usable for a fair evaluation), iii) it is
freely available (hence easy to distribute and use
for evaluation purposes).

Evaluation metric
System performance is evaluated by comput-
ing the distance between automatic and human
post-editions of the machine-translated sentences
present in the test set (i.e. for each of the 1,817
target test sentences). This distance is measured

in terms of Translation Error Rate (TER) (Snover
et al., 2006a), an evaluation metric commonly
used in MT-related tasks (e.g. in quality estima-
tion) to measure the minimum edit distance be-
tween an automatic translation and a reference
translation.23 Systems are ranked based on the av-
erage TER calculated on the test set by using the
TERcom24 software: lower average TER scores
correspond to higher ranks. Each run is evalu-
ated in two modes, namely: i) case insensitive and
ii) case sensitive. Evaluation scripts to compute
TER scores in both modalities have been made
available to participants through the APE task web
page.25

Baseline
The official baseline is calculated by averaging the
distances computed between the raw MT output
and the human post-edits. In practice, the base-
line APE system is a system that leaves all the
test targets unmodified.26 Baseline results com-
puted for both evaluation modalities (case sensi-
tive/insensitive) are reported in Tables 20 and 21.

Monolingual translation as another term of
comparison. To get further insights about the
progress with respect to previous APE meth-
ods, participants’ results are also analysed with
respect to another term of comparison: a re-
implementation of the state-of-the-art approach
firstly proposed by Simard et al. (2007).27 For
this purpose, a phrase-based SMT system based
on Moses (Koehn et al., 2007) is used. Trans-
lation and reordering models were estimated fol-
lowing the Moses protocol with default setup us-
ing MGIZA++ (Gao and Vogel, 2008) for word
alignment. For language modeling we used the

23Edit distance is calculated as the number of edits (word
insertions, deletions, substitutions, and shifts) divided by the
number of words in the reference. Lower TER values indicate
better MT quality.

24http://www.cs.umd.edu/˜snover/tercom/
25http://www.statmt.org/wmt15/ape-task.html
26In this case, since edit distance is computed between

each machine-translated sentence and its human-revised ver-
sion, the actual evaluation metric is the human-targeted TER
(HTER). For the sake of clarity, since TER and HTER com-
pute edit distance in the same way (the only difference is in
the origin of correct sentence used for comparison), hence-
forth we will use TER to refer to both metrics.

27This is done based on the description provided in Simard
et al. (2007). Our re-implementation, however, is not meant
to officially represent such approach. Discrepancies with the
actual method are indeed possible due to our misinterpreta-
tion or to wrong guesses about details that are missing in the
paper.
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Tokens Types Lemmas
SRC TGT PE SRC TGT PE SRC TGT PE

Train (11,272) 238,335 257,643 257,879 23,608 25,121 27,101 13,701 7,624 7,689
Dev (1,000) 21,617 23,213 23,098 5,482 5,760 5,966 3,765 2,810 2,819
Test (1,817) 38,244 40,925 40,903 7,990 8,498 8,816 5,307 3,778 3,814

Table 18: Data statistics.

KenLM toolkit (Heafield, 2011) for standard n-
gram modeling with an n-gram length of 5. Fi-
nally, the APE system was tuned on the devel-
opment set, optimizing TER with Minimum Er-
ror Rate Training (Och, 2003). The results of this
additional term of comparison, computed for both
evaluation modalities (case sensitive/insensitive),
are also reported in Tables 20 and 21.

For each submitted run, the statistical signifi-
cance of performance differences with respect to
the baseline and the re-implementation of Simard
et al. (2007) is calculated with the bootstrap
test (Koehn, 2004).

5.2 Participants

Four teams participated in the APE pilot task by
submitting a total of seven runs. Participants are
listed in Table 19; a short description of their sys-
tems is provided in the following.

Abu-MaTran. The Abu-MaTran team submit-
ted the output of two statistical post-editing
(SPE) systems, both relying on the MOSES

phrase-based statistical machine translation toolkit
(Koehn et al., 2007) and on sentence level clas-
sifiers. The first element of the pipeline, the
SPE system, is trained on the automatic trans-
lation of the News Commentary v8 corpus from
English to Spanish aligned with its reference.
This translation is obtained with an out-of-the-
box phrase-based SMT system trained on Europarl
v7. Both translation and post-editing systems use
a 5-gram Spanish LM with modified Kneser-Ney
smoothed trained on News Crawl 2011 and 2012
with KenLM (Heafield, 2011). For the second el-
ement of the pipeline, a binary classifier to select
the best translation between the given MT output
or its automatic post-edition is used. Two different
approaches are investigated: a 180-hand-crafted-
based regression model trained with a Support
Vector Machine (SVM) with a radial basis func-
tion kernel to estimate the sentence-level HTER
score, and a Recurrent Neural Network (RNN)
classifier using context word embeddings as input

and classifying each word of a sentence as good
or bad. An automatic translation to be post-edited
is first decoded by our SPE system, then fed into
one of the classifiers identified as SVM180feat and
RNN. The HTER estimator selects the translation
with the lower score while the binary word-level
classifier selects the translation with the fewer
amount of bad tags. The official evaluation of the
shared task show an advantage of the RNN ap-
proach compared to SVM.

FBK. The two runs submitted by FBK (Chat-
terjee et al., 2015a) are based on combining the
statistical phrase-based post-editing approach pro-
posed by Simard et al. (2007) and its most sig-
nificant variant proposed by Béchara et al. (2011).
The APE systems are built-in an incremental man-
ner. At each stage of the APE pipeline, the best
configuration of a component is decided and then
used in the next stage. The APE pipeline begins
with the selection of the best language model from
several language models trained on different types
and quantities of data. The next stage addresses
the possible data sparsity issues raised by the rel-
atively small size of the training data. Indeed, an
analysis of the original phrase table obtained from
the training set revealed that a large part of its en-
tries is composed of instances that occur only once
in the training. This has the obvious effect of col-
lecting potentially unreliable “translation” (or, in
the case of APE, correction) rules. The problem is
exacerbated by the “context-aware” approach pro-
posed by Béchara et al. (2011), which builds the
phrase table by joining source and target tokens
thus breaking down the co-occurrence counts into
smaller numbers. To cope with this problem, a
novel feature (neg-impact) is designed to prune the
phrase table by measuring the usefulness of each
translation. The higher is the value of the neg-
impact feature, the less useful is the translation
option. After pruning, the final stage of the APE
pipeline tries to raise the capability of the decoder
to select the correct translation rule by the intro-
duction of new task specific features integrated in
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ID Participating team
Abu-MaTran Abu-MaTran Project (Prompsit)
FBK Fondazione Bruno Kessler, Italy (Chatterjee et al., 2015a)
LIMSI Laboratoire d’Informatique pour la Mécanique et les Sciences de

l’Ingénieur, France (Wisniewski et al., 2015)
USAAR-SAPE Saarland University, Germany & Jadavpur University, India (Pal et al., 2015b)

Table 19: Participants in the WMT15 Automatic Post-editing pilot task.

the model. These features measure the similarity
and the reliability of the translation options and
help to improve the precision of the resulting APE
system.

LIMSI. For the first edition of the APE shared
task LIMSI submitted two systems (Wisniewski
et al., 2015). The first one is based on the approach
of Simard et al. (2007) and considers the APE task
as a monolingual translation between a transla-
tion hypothesis and its post-edition. This straight-
forward approach does not succeed in improving
translation quality. The second submitted system
implements a series of sieves, each applying a sim-
ple post-editing rule. The definition of these rules
is based on an analysis of the most frequent er-
ror corrections and aims at: i) predicting word
case; ii) predicting exclamation and interrogation
marks; and iii) predicting verbal endings. Exper-
iments with this approach show that this system
also hurts translation quality. An in-depth analy-
sis revealed that this negative result is mainly ex-
plained by two reasons: i) most of the post-edition
operations are nearly unique, which makes very
difficult to generalize from a small amount of data;
and ii) even when they are not, the high variability
of post-editing, already pointed out by Wisniewski
et al. (2013), results in predicting legitimate cor-
rections that have not been made by the annota-
tors, therefore preventing from improving over the
baseline.

USAAR-SAPE. The USAAR-SAPE sys-
tem (Pal et al., 2015b) is designed with three basic
components: corpus preprocessing, hybrid word
alignment and a state-of-the-art phrase-based
SMT system integrated with the hybrid word
alignment. The preprocessing of the training
corpus is carried out by stemming the Spanish
MT output and the PE data using Freeling (Padr
and Stanilovsky, 2012). The hybrid word align-
ment method combines different kinds of word
alignment: GIZA++ word alignment with the

grow-diag-final-and (GDFA) heuristic (Koehn,
2010), SymGiza++ (Junczys-Dowmunt and Szal,
2011), the Berkeley aligner (Liang et al., 2006),
and the edit distance-based aligners (Snover et al.,
2006a; Lavie and Agarwal, 2007). These different
word alignment tables (Pal et al., 2013) are
combined by a mathematical union method. For
the phrase-based SMT system various maximum
phrase lengths for the translation model and
n–gram settings for the language model are used.
The best results in terms of BLEU (Papineni et al.,
2002) score are achieved by a maximum phrase
length of 7 for the translation model and a 5-gram
language model.

5.3 Results
The official results achieved by the participating
systems are reported in Tables 20 and 21. The
seven runs submitted are sorted based on the aver-
age TER they achieve on test data. Table 20 shows
the results computed in case sensitive mode, while
Table 21 provides scores computed in the case in-
sensitive mode.

Both rankings reveal an unexpected outcome:
none of the submitted runs was able to beat the
baselines (i.e. average TER scores of 22.91 and
22.22 respectively for case sensitive and case in-
sensitive modes). All differences with respect to
such baselines, moreover, are statistically signif-
icant. In practice, this means that what the sys-
tems learned from the available data was not reli-
able enough to yield valid corrections of the test
instances. A deeper discussion about the possible
causes of this unexpected outcome is provided in
Section 5.4.

Unsurprisingly, for all participants the case in-
sensitive evaluation results are slightly better than
the case sensitive ones. Although the two rank-
ings are not identical, none of the systems was
particularly penalized by the case sensitive eval-
uation. Indeed, individual differences in the two
modes are always close to the same value (∼ 0.7
TER difference) measured for the two baselines.

31



ID Avg. TER
Baseline 22.913
FBK Primary 23.228
LIMSI Primary 23.331
USAAR-SAPE 23.426
LIMSI Contrastive 23.573
Abu-MaTran Primary 23.639
FBK Contrastive 23.649
(Simard et al., 2007) 23.839
Abu-MaTran Contrastive 24.715

Table 20: Official results for the WMT15 Automatic
Post-editing task – average TER (↓) case sensitive.

ID Avg. TER
Baseline 22.221
LIMSI Primary 22.544
FBK Primary 22.551
USAAR-SAPE 22.710
Abu-MaTran Primary 22.769
LIMSI Contrastive 22.861
FBK Contrastive 22.949
(Simard et al., 2007) 23.130
Abu-MaTran Contrastive 23.705

Table 21: Official results for the WMT15 Automatic
Post-editing task – average TER (↓) case insensitive.

In light of this, and considering the importance of
case sensitive evaluation in some language settings
(e.g. having German as target), future rounds of
the task will likely prioritize this more strict eval-
uation mode.

Overall, the close results achieved by partici-
pants reflect the fact that, despite some small vari-
ations, all systems share the same underlying sta-
tistical approach of Simard et al. (2007). As an-
ticipated in Section 5.1, in order to get a rough
idea about the extent of the improvements over
such state-of-the-art method, we replicated it and
considered its results as another term of compari-
son in addition to the baselines. As shown in Ta-
bles 20 and 21, the performance results achieved
by our implementation of Simard et al. (2007) are
23.839 and 23.130 in terms of TER for the re-
spective case sensitive and insensitive evaluations.
Compared to these scores, most of the submitted
runs achieve better performance, with positive av-
erage TER differences that are always statistically
significant. We interpret this as a good sign: de-
spite the difficulty of the task, the novelties in-
troduced by each system allowed to make signifi-
cant steps forward with respect to a prior reference
technique.

5.4 Discussion

To better understand the results and gain useful in-
sights about this pilot evaluation round, we per-
form two types of analysis. The first one is focused
on the data, and aims to understand the possible
reasons of the difficulty of the task. In particular,
by analysing the challenges posed by the origin
and the domain of the text material used, we try
to find indications for future rounds of the APE
task. The second type of analysis focuses on the
systems and their behaviour. Although they share

the same underlying approach and achieve similar
results, we aim to check if interesting differences
can be captured by a more fine grained analysis
that goes beyond rough TER measurements.

Data analysis
In this section we investigate the possible rela-
tion between participants’ results and the nature
of the data used in this pilot task (e.g. quan-
tity, sparsity, domain and origin) . For this pur-
pose, we take advantage of a new dataset – the
Autodesk Post-Editing Data corpus28 – which has
been publicly released after the organisation of the
APE pilot task. Although it was not usable for
this first round, its characteristics make it partic-
ularly suitable for our analysis purposes. In par-
ticular: i) Autodesk data predominantly covers the
domain of software user manuals (that is, a
restricted domain compared to a general one like
news), and ii) post-edits come from professional
translators (that is, at least in principle, a more re-
liable source of corrections compared to crowd-
sourced workforce). To guarantee a fair compari-
son, English-Spanish (source, target, human post-
edition) triplets drawn from the Autodesk corpus
are split in training, development and test sets un-
der the constraint that the total number of target
words and the TER in each set should be similar
to the APE task splits. In this setting, performance
differences between systems trained on the two
datasets will only depend on the different nature
of the data (e.g. domain). Statistics of the training
sets are reported in Table 22 (those concerning the

28The corpus (https://autodesk.app.box.com/
Autodesk-PostEditing) consists of parallel English
source-MT/TM target segments post-edited into several
languages (Chinese, Czech, French, German, Hungarian,
Italian, Japanese, Korean, Polish, Brazilian Portuguese,
Russian, Spanish) with between 30K to 410K segments per
language.
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APE Task Autodesk

Tokens
SRC 238,335 220,671
TGT 257,643 257.380
PE 257,879 260,324

Types
SRC 23,608 11,858
TGT 25,121 11,721
PE 27,101 12,399

Lemmas
SRC 13,701 5,092
TGT 7,624 3,186
PE 7,689 3,334

RR
SRC 2.905 6.346
TGT 3.312 8.390
PE 3.085 8.482

Table 22: WMT APe Task and Autodesk training data statis-
tics.

APE task data are the same of Table 18).

The impact of data sparsity. A key issue in
most evaluation settings is the representativeness
of the training data with respect to the test set used.
In the case of the statistical approach at the core of
all the APE task submissions, this issue is even
more relevant given the limited amount of train-
ing data available. In the APE scenario, data rep-
resentativeness relates to the fact that the correc-
tion patterns learned from the training set can be
applied also to the test set (as mentioned in Sec-
tion 5.1, in the data creation phase random sam-
pling from an original data collection was applied
for this purpose). From this point of view, dealing
with restricted domains such as software user
manuals should be easier than working with news
data. Indeed, restricted domains are more likely
to feature smaller vocabularies, be more repetitive
(or, in other terms, less sparse) and, in turn, de-
termine a higher applicability of the learned error
correction patterns.

To check the relation between task difficulty and
data repetitiveness, we compared different mono-
lingual indicators (i.e. number of types and lem-
mas, and repetition rate29 – RR) computed on the
APE and the Autodesk source, target and post-
edited sentences. Although both the datasets have
the same amount of target tokens, Table 22 shows
that the APE training set has nearly double of
types and lemmas compared to the Autodesk data,

29Repetition rate measures the repetitiveness inside a text
by looking at the rate of non-singleton n-gram types (n=1. .
.4) and combining them using the geometric mean. Larger
value means more repetitions in the text. For more details
see Cettolo et al. (2014)

which indicates the presence of less repeated in-
formation. A similar conclusion can be drawn by
observing that the Autodesk dataset has a repeti-
tion rate that is more than twice the value com-
puted for the APE task data.

This monolingual analysis does not provide any
information about the level of repetitiveness of the
correction patterns made by the post-editors, be-
cause it does not link the target and the post-edited
sentences. To investigate this aspect, two instances
of the re-implemented approach of Simard et al.
(2007) introduced in Section 5.1 are respectively
trained on the APE and the Autodesk training sets.
We consider the distribution of the frequency of
the translation options in the phrase table as a good
indicator of the level of repetitiveness of the cor-
rections in the data. For instance, a large number
of translation options that appear just one or only
few times in the data indicates a higher level of
sparseness. As expected due to the limited size
of the training set, the vast majority of the trans-
lation options in both phrase tables are singletons
as shown in Table 23. Nevertheless, the Autodesk
phrase table is more compact (731k versus 1,066k)
and contains 10% fewer singletons than the APE
task phrase table. This confirms that the APE task
data is more sparse and suggests that it might be
easier to learn more applicable correction patterns
from the Autodesk domain-specific data.

To verify this last statement, the two APE sys-
tems are evaluated on their own test sets. As previ-
ously shown, the system trained on the APE task
data is not able to improve over the performance
achieved by a system that leaves all the test targets
unmodified (see Table 20). On the contrary, start-
ing from a baseline of 23.57, the system trained
on the Autodesk data is able to reduce the TER by
3.55 points (20.02). Interestingly, the Autodesk
APE system is able to correctly fix the target sen-
tences and improve the TER by 1.43 points even
with only 25% of the training data. These re-
sults confirm our intuitions about the usefulness of
repetitive data and show that, at least in restricted-
domain scenarios, automatic post-editing can be
successfully used as an aid to improve the output
of an MT system.

Professional vs. Crowdsourced post-editions
Differently from the Autodesk data, for which the
post-editions are created by professional transla-
tors, the APE task data contains crowdsourced MT
corrections collected from unknown (likely non-
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Percentage of Phrase Pairs
Phrase Pair APE 2015

Autodesk
Count Training
1 95.2% 84.6%
2 2.5% 8.8%
3 0.7% 2.7%
4 0.3% 1.2%
5 0.2% 0.6%
6 0.15% 0.4%
7 0.10% 0.3%
8 0.07% 0.2%
9 0.06% 0.2%
10 0.04% 0.1%
> 10 0.3% 0.9%
Total Entries 1,066,344 703,944

Table 23: Phrase pair count distribution in two phrase tables
built using the APE 2015 training and the Autodesk dataset.

expert) translators. One risk, given the high vari-
ability of valid MT corrections, is that the crowd-
sourced workforce follows post-editing attitudes
and criteria that differ from those of professional
translators. Professionals tend to: i) maximize
productivity by doing only the necessary and suf-
ficient corrections to improve translation quality,
and ii) follow consistent translation criteria, es-
pecially for domain terminology. Such a ten-
dency will likely result in coherent and minimally
post-edited data from which learning and draw-
ing statistics is easier. This is not guaranteed by
crowdsourced workers which do not have specific
time or consistency constraints. This suggests that
non-professional post-editions and the correction
patterns learned from them will feature less coher-
ence, higher noise and higher sparsity.

To assess the potential impact of these issues on
data representativeness (and, in turn, on the task
difficulty), we analyse a subset of the APE test in-
stances (221 triples randomly sampled) in which
target sentences were post-edited by professional
translators. The analysis focuses on TER scores
computed between:

1. The target sentences and their crowdsourced
post-editions (avg. TER = 26.02);

2. The target sentences and their professional
post-editions (avg. TER = 23.85);

3. The crowdsourced post-editions and the pro-
fessional ones, using the latter as references
(avg. TER = 29.18).

The measured values indicate an attitude of non-
professionals to correct more often and differ-
ently from the professional translators. Interest-
ingly, and similar to the findings of Potet et al.
(2012), crowdsourced post-editions feature a dis-
tance from the professional ones that is even
higher than the distance between the original tar-
get sentences and the experts’ corrections (29.18
vs. 23.85). If we consider the output of profes-
sional translators as a gold standard (made of co-
herent and minimally post-edited data), these fig-
ures suggest a higher difficulty in handling crowd-
sourced corrections.

Further insights can be drawn from the anal-
ysis of the word level corrections produced by
the two translator profiles. To this aim, word in-
sertions, deletions, substitutions and phrase shifts
are extracted using the TERcom software similar
to Blain et al. (2012) and Wisniewski et al. (2013).
For each error type, the ratio between the num-
ber of edit operations and the total number of oc-
curred errors operations performed is computed.
This quantity provides us with a measure of the
level of repetitiveness of the errors, with 100%
indicating that all the error patterns are unique,
and small values indicating that most of the errors
are repeated. Our results show that non-experts
have generally larger ratio values than the pro-
fessional translators (insertion +6%, substitution
+4%, deletion +4%). This seems to support our
hypothesis that, independently from their quality,
post-editions collected from non-experts are less
coherent than those derived from professionals.
It is unlikely that different crowdsourced work-
ers will apply the same corrections in the same
contexts. If this hypothesis holds, the difficulty
of this APE pilot task could be partially ascribed
to this unavoidable intrinsic property of crowd-
sourced data. This aspect, however, should be fur-
ther investigated to draw definite conclusions.

System/performance analysis
The TER results presented in Tables 20 and 21 ev-
idence small differences between participants, but
they do not shed light on the real behaviour of the
systems. To this aim, in this section the submitted
runs are analysed by taking into consideration the
changes made by each system to the test instances
(case sensitive evaluation mode). In particular, Ta-
ble 24 provides the number of modified, improved
and deteriorated sentences, together with the per-
centage of edit operations performed (insertions,
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Modified Improved Deteriorated Edit operations
ID Sentences Sentences Sentences Ins Del Sub Shifts
FBK Primary 276 64 147 17.8 17.8 55.9 8.5
LIMSI Primary 339 75 217 19.4 16.8 55.2 8.6
USAAR-SAPE 422 53 229 17.6 17.4 56.7 8.4
LIMSI Contrastive 454 61 260 17.4 19.0 55.3 8.3
Abu-MaTran Primary 275 8 200 17.7 17.2 56.8 8.2
FBK Contrastive 422 52 254 18.4 17.0 56.2 8.4
Abu-MaTran Contrastive 602 14 451 17.8 16.4 57.7 8.0
(Simard et al., 2007) 488 55 298 18.3 17.0 56.4 8.3

Table 24: Number of test sentences modified, improved and deteriorated by each submitted run, together with the correspond-
ing percentage of insertions, deletions, substitutions and shifts (case sensitive).

deletions, substitutions, shifts). Looking at these
numbers, the following conclusions can be drawn.
Although it varies considerably between the sub-
mitted runs, the number of modified sentences is
quite small. Moreover, a general trend can be ob-
served: the best systems are the most conservative
ones. This situation likely reflects the aforemen-
tioned data sparsity and coherence issues. A small
fraction of the correction patterns found in the
training set seems to be applicable also to the test
set, and the risk of performing corrections that are
either wrong, redundant, or different from those in
the reference post-editions is rather high.

From the system point of view, the context in
which a learned correction pattern will be applied
is crucial. For instance, the same word substitu-
tion (e.g. “house”→ “home”) is not applicable in
all contexts. While sometimes it will be necessary
(Example 1: “The house team won the match”), in
some contexts it is optional (Example 2: “I was in
my house”) or wrong (Example 3: “He worked for
a brokerage house”). Unfortunately, the unneces-
sary word replacement in Example 2 (human post-
editors would likely leave it untouched) would in-
crease the TER of the sentence exactly as in the
clearly wrong replacement in Example 3.

From the evaluation point of view, not penal-
ising such correct but unnecessary corrections is
also crucial. Similar to MT, where a source sen-
tence can have many valid translations, in the APE
task a target sentence can have many valid post-
editions. Indeed, nothing prevents that in our eval-
uation some correct post-editions are considered
as “deteriorated” sentences simply because they
differ from the human post-editions used as ref-
erences. As in MT, this well known variability
problem might penalise good systems, thus call-
ing for alternative evaluation criteria (e.g. based

on multiple references or sensitive to paraphrase
matches). Interestingly, for all the systems the
number of modified sentences is higher than the
sum of the improved and the deteriorated ones.
Such difference is represented by modified sen-
tences for which the corrections do not yield TER
variations. This grey area makes the evaluation
problem related to variability even more evident.

The analysis of the edit operations performed by
each system is not particularly informative. Sim-
ilar to the overall performance results, also the
proportion of correction types they perform re-
flects the adoption of the same underlying statisti-
cal approach. The distribution of the four types of
edit operations is almost identical, with a predom-
inance lexical substitutions (55.7%-57.7%) and
rather few phrasal shifts (8.0%-8.6%).

5.5 Lessons learned and outlook

The objectives of this pilot APE task were to: i)
define a sound evaluation framework for future
rounds, ii) identify and understand the most criti-
cal aspects in terms of data acquisition and system
evaluation, iii) make an inventory of current ap-
proaches, evaluate the state of the art and iv) pro-
vide a milestone for future studies on the problem.
With respect to the first point, improving the eval-
uation is possible, but no major issues emerged
or requested radical changes in future evaluation
rounds. For instance, using multiple references or
a metric sensitive to paraphrase matches to cope
with variability in the post-editing would certainly
help.

Concerning the most critical aspects of the eval-
uation, our analysis highlighted the strong de-
pendence of system results on data repetitive-
ness/representativeness. This calls into ques-
tion the actual usability of text material coming
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from general domains like news and, probably, of
post-editions collected from crowdsourced work-
ers (this aspect, however, should be further investi-
gated to draw definite conclusions). Nevertheless,
it’s worth noting that collecting a large, unpub-
lished, public, domain-specific and professional-
quality dataset is a hardly achievable goal that will
always require compromise solutions.

Regarding the approaches proposed, this first
experience was a conservative but, at the same
time, promising first step. Although participants
performed the task sharing the same statistical ap-
proach to APE, the slight variants they explored al-
lowed them to outperform the widely used mono-
lingual translation technique. Moreover, results’
analysis also suggests a possible limitation of this
state-of-the-art approach: by always performing
all the applicable correction patterns, it runs the
risk of deteriorating the input translations that it
was supposed to improve. This limitation, com-
mon to all the participating systems, is a clue of
a major difference between the APE task and the
MT framework. In MT the system must always
process the entire source sentence by translating
all of its words into the target language. In the
APE scenario, instead, the system has another op-
tion for each word: keeping it untouched. A rea-
sonable (and this year unbeaten) baseline is in
fact a system that applies this conservative strat-
egy for all the words. By raising this and other
issues as promising research directions, attracting
researchers’ attention to a challenging application-
oriented task, and establishing a sound evaluation
framework to measure future advancements, this
pilot has substantially achieved its goals, paving
the way for future rounds of the APE evaluation
exercise.
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ONLINE-B – .46† .52 .46† .39‡ .25‡ .21‡ .21‡ .21‡ .21‡ .20‡ .20‡ .19‡ .17‡ .16‡ .17‡
UEDIN-JHU .54† – .48 .47? .44‡ .26‡ .21‡ .22‡ .20‡ .21‡ .20‡ .19‡ .19‡ .19‡ .19‡ .19‡

UEDIN-SYNTAX .48 .52 – .51 .46? .28‡ .21‡ .22‡ .22‡ .21‡ .21‡ .19‡ .18‡ .20‡ .19‡ .17‡
MONTREAL .54† .53? .49 – .45† .28‡ .24‡ .25‡ .24‡ .24‡ .25‡ .24‡ .21‡ .20‡ .20‡ .23‡

ONLINE-A .61‡ .56‡ .54? .55† – .29‡ .24‡ .26‡ .25‡ .25‡ .24‡ .23‡ .22‡ .23‡ .23‡ .22‡
CU-TECTO .75‡ .74‡ .72‡ .72‡ .71‡ – .48 .47 .47 .46† .48 .44‡ .43‡ .43‡ .43‡ .41‡

TT-BLEU-MIRA-D .79‡ .79‡ .79‡ .76‡ .76‡ .52 – .51 .41† .43? .38† .43† .41‡ .39‡ .39‡ .43‡
TT-ILLC-UVA .79‡ .78‡ .78‡ .75‡ .74‡ .53 .49 – .48 .47 .45 .41‡ .45? .42‡ .40‡ .42‡

TT-BLEU-MERT .79‡ .80‡ .78‡ .76‡ .75‡ .53 .59† .52 – .51 .48 .44† .45† .41‡ .40‡ .41‡
TT-AFRL .79‡ .79‡ .79‡ .76‡ .75‡ .54† .57? .53 .49 – .49 .45? .43† .42‡ .42‡ .41‡

TT-USAAR-TUNA .80‡ .80‡ .79‡ .75‡ .76‡ .52 .62† .55 .52 .51 – .45? .45† .41‡ .41‡ .42‡
TT-DCU .80‡ .81‡ .81‡ .76‡ .77‡ .56‡ .57† .59‡ .56† .55? .55? – .47 .45† .44† .45†

TT-METEOR-CMU .81‡ .81‡ .82‡ .79‡ .78‡ .57‡ .59‡ .55? .55† .57† .55† .53 – .48 .49 .48
TT-BLEU-MIRA-SP .83‡ .81‡ .80‡ .80‡ .77‡ .57‡ .61‡ .58‡ .59‡ .58‡ .59‡ .55† .52 – .53 .50
TT-HKUST-MEANT .84‡ .81‡ .81‡ .80‡ .77‡ .57‡ .61‡ .60‡ .60‡ .58‡ .59‡ .56† .51 .47 – .48

ILLINOIS .82‡ .81‡ .83‡ .77‡ .78‡ .59‡ .57‡ .58‡ .59‡ .59‡ .58‡ .55† .52 .50 .52 –
score .61 .57 .53 .51 .43 -.12 -.18 -.18 -.19 -.21 -.22 -.26 -.29 -.32 -.32 -.35
rank 1 2 3-4 3-4 5 6 7-9 7-10 7-11 8-11 9-11 12-13 13-15 13-15 13-15 15-16

Table 25: Head to head comparison, ignoring ties, for Czech-English systems

A Pairwise System Comparisons by Human Judges

Tables 25–34 show pairwise comparisons between systems for each language pair. The numbers in each
of the tables’ cells indicate the percentage of times that the system in that column was judged to be better
than the system in that row, ignoring ties. Bolding indicates the winner of the two systems.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine
differences (rather than differences that are attributable to chance). In the following tables ? indicates sta-
tistical significance at p ≤ 0.10, † indicates statistical significance at p ≤ 0.05, and ‡ indicates statistical
significance at p ≤ 0.01, according to the Sign Test.

Each table contains final rows showing how likely a system would win when paired against a randomly
selected system (the expected win ratio score) and the rank range according bootstrap resampling (p ≤
0.05). Gray lines separate clusters based on non-overlapping rank ranges.
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CU-CHIMERA – .42‡ .43‡ .44‡ .38‡ .33‡ .29‡ .27‡ .15‡ .15‡ .15‡ .14‡ .14‡ .11‡ .10‡
ONLINE-B .58‡ – .50 .50 .44‡ .40‡ .37‡ .32‡ .16‡ .17‡ .17‡ .17‡ .16‡ .13‡ .08‡

UEDIN-JHU .57‡ .50 – .51 .44‡ .39‡ .41‡ .35‡ .18‡ .18‡ .18‡ .18‡ .16‡ .13‡ .10‡
MONTREAL .56‡ .50 .49 – .46† .43‡ .39‡ .36‡ .22‡ .21‡ .21‡ .21‡ .19‡ .19‡ .16‡

ONLINE-A .62‡ .56‡ .56‡ .54† – .43‡ .40‡ .36‡ .20‡ .19‡ .20‡ .18‡ .17‡ .15‡ .12‡
UEDIN-SYNTAX .67‡ .60‡ .61‡ .57‡ .57‡ – .48 .43‡ .25‡ .25‡ .26‡ .25‡ .23‡ .23‡ .17‡

CU-TECTO .71‡ .62‡ .59‡ .61‡ .60‡ .52 – .44‡ .29‡ .30‡ .28‡ .28‡ .28‡ .23‡ .17‡
COMMERCIAL1 .73‡ .68‡ .65‡ .64‡ .64‡ .57‡ .56‡ – .29‡ .28‡ .28‡ .27‡ .27‡ .22‡ .18‡

TT-DCU .85‡ .84‡ .82‡ .78‡ .80‡ .75‡ .71‡ .71‡ – .52 .48 .45† .40‡ .36‡ .27‡
TT-AFRL .85‡ .83‡ .82‡ .79‡ .81‡ .75‡ .70‡ .72‡ .48 – .49 .46? .37‡ .33‡ .29‡

TT-BLEU-MIRA-D .85‡ .83‡ .82‡ .79‡ .80‡ .74‡ .72‡ .72‡ .52 .51 – .39‡ .36‡ .36‡ .27‡
TT-USAAR-TUNA .86‡ .83‡ .82‡ .79‡ .82‡ .75‡ .72‡ .73‡ .55† .54? .61‡ – .36‡ .37‡ .28‡

TT-BLEU-MERT .86‡ .84‡ .84‡ .81‡ .83‡ .77‡ .72‡ .73‡ .60‡ .63‡ .64‡ .64‡ – .39‡ .28‡
TT-METEOR-CMU .89‡ .87‡ .87‡ .81‡ .85‡ .77‡ .77‡ .78‡ .64‡ .67‡ .64‡ .63‡ .61‡ – .32‡

TT-BLEU-MIRA-SP .90‡ .92‡ .90‡ .84‡ .88‡ .83‡ .83‡ .82‡ .73‡ .71‡ .73‡ .72‡ .72‡ .68‡ –
score .68 .51 .50 .46 .42 .26 .20 .11 -.34 -.34 -.34 -.37 -.40 -.56 -.80
rank 1 2-3 2-3 4 5 6 7 8 9-11 9-11 9-11 12 13 14 15

Table 26: Head to head comparison, ignoring ties, for English-Czech systems
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ONLINE-B – .41‡ .43‡ .39‡ .39‡ .33‡ .38‡ .25‡ .26‡ .27‡ .26‡ .19‡ .22‡
UEDIN-JHU .59‡ – .51 .46? .45† .43† .44† .31‡ .33‡ .36‡ .30‡ .28‡ .27‡

ONLINE-A .57‡ .49 – .52 .53 .48 .44‡ .36‡ .32‡ .31‡ .28‡ .29‡ .26‡
UEDIN-SYNTAX .61‡ .54? .48 – .49 .48 .45† .23‡ .33‡ .34‡ .35‡ .27‡ .26‡

KIT .61‡ .55† .47 .51 – .47 .46? .35‡ .38‡ .36‡ .35‡ .26‡ .32‡
RWTH .67‡ .57† .52 .52 .53 – .46? .38‡ .39‡ .40‡ .36‡ .31‡ .35‡

MONTREAL .62‡ .56† .56‡ .55† .54? .54? – .42‡ .43‡ .41‡ .35‡ .32‡ .34‡
ILLINOIS .75‡ .69‡ .64‡ .77‡ .65‡ .62‡ .58‡ – .48 .49 .48 .38‡ .42‡

DFKI .74‡ .67‡ .68‡ .67‡ .62‡ .61‡ .57‡ .52 – .43† .46? .39‡ .37‡
ONLINE-C .73‡ .64‡ .69‡ .66‡ .64‡ .60‡ .59‡ .51 .57† – .46? .42‡ .39‡
ONLINE-F .74‡ .70‡ .72‡ .65‡ .65‡ .64‡ .64‡ .52 .54? .54? – .44‡ .40‡

MACAU .81‡ .72‡ .71‡ .73‡ .74‡ .69‡ .68‡ .62‡ .61‡ .58‡ .56‡ – .50
ONLINE-E .78‡ .73‡ .74‡ .74‡ .68‡ .65‡ .66‡ .58‡ .63‡ .61‡ .60‡ .50 –

score .56 .31 .29 .25 .22 .14 .09 -.17 -.17 -.22 -.30 -.48 -.54
rank 1 2-3 2-4 3-5 4-5 6-7 6-7 8-10 8-10 9-10 11 12-13 12-13

Table 27: Head to head comparison, ignoring ties, for German-English systems
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UEDIN-SYNTAX – .52 .47 .48 .42‡ .36‡ .36‡ .33‡ .37‡ .32‡ .29‡ .32‡ .31‡ .33‡ .19‡ .21‡
MONTREAL .48 – .47 .44† .41‡ .35‡ .35‡ .42‡ .37‡ .35‡ .33‡ .33‡ .37‡ .35‡ .24‡ .27‡

PROMT-RULE .53 .53 – .46? .45† .46? .40‡ .35‡ .42‡ .41‡ .37‡ .36‡ .33‡ .37‡ .29‡ .24‡
ONLINE-A .52 .56† .54? – .40‡ .43† .37‡ .42‡ .39‡ .39‡ .41‡ .36‡ .36‡ .33‡ .27‡ .28‡
ONLINE-B .58‡ .59‡ .55† .60‡ – .45† .45† .45† .44† .39‡ .42‡ .37‡ .41‡ .35‡ .29‡ .32‡
KIT-LIMSI .64‡ .65‡ .54? .57† .55† – .52 .49 .44† .40‡ .47 .38‡ .39‡ .37‡ .29‡ .30‡

UEDIN-JHU .64‡ .65‡ .60‡ .63‡ .55† .48 – .47 .51 .46? .43† .45? .44† .41‡ .34‡ .30‡
ONLINE-F .67‡ .58‡ .65‡ .58‡ .55† .51 .53 – .50 .46? .49 .44† .46? .39‡ .36‡ .36‡
ONLINE-C .63‡ .63‡ .58‡ .61‡ .56† .56† .49 .50 – .52 .48 .45 .40‡ .42‡ .36‡ .35‡

KIT .68‡ .65‡ .59‡ .61‡ .61‡ .60‡ .54? .54? .48 – .51 .43‡ .47 .37‡ .35‡ .33‡
CIMS .71‡ .67‡ .62‡ .59‡ .58‡ .53 .57† .51 .52 .49 – .47 .45† .44† .23‡ .34‡
DFKI .68‡ .67‡ .64‡ .64‡ .63‡ .62‡ .55? .56† .55 .57‡ .53 – .50 .44† .41‡ .36‡

ONLINE-E .69‡ .63‡ .67‡ .64‡ .59‡ .61‡ .56† .54? .60‡ .53 .55† .50 – .45† .42‡ .38‡
UDS-SANT .67‡ .65‡ .63‡ .67‡ .65‡ .63‡ .59‡ .61‡ .58‡ .63‡ .56† .56† .55† – .45† .41‡

ILLINOIS .81‡ .76‡ .71‡ .73‡ .71‡ .71‡ .66‡ .64‡ .64‡ .65‡ .77‡ .59‡ .58‡ .55† – .48
IMS .79‡ .73‡ .76‡ .72‡ .68‡ .70‡ .70‡ .64‡ .65‡ .67‡ .66‡ .64‡ .62‡ .59‡ .52 –

score .35 .33 .26 .23 .14 .08 .03 .00 -.00 -.01 -.03 -.13 -.13 -.23 -.40 -.50
rank 1-2 1-2 3-4 3-4 5 6 7-9 7-11 7-11 8-11 9-11 12-13 12-13 14 15 16

Table 28: Head to head comparison, ignoring ties, for English-German systems
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ONLINE-B – .50 .49 .47† .44‡ .35‡ .22‡
LIMSI-CNRS .50 – .49 .46‡ .45‡ .37‡ .25‡
UEDIN-JHU .51 .51 – .47† .46† .35‡ .26‡

MACAU .53† .54‡ .53† – .48 .39‡ .28‡
ONLINE-A .56‡ .55‡ .54† .52 – .38‡ .26‡
ONLINE-F .65‡ .63‡ .65‡ .61‡ .62‡ – .37‡
ONLINE-E .78‡ .75‡ .74‡ .72‡ .74‡ .63‡ –

score .49 .44 .41 .27 .22 -.42 -1.43
rank 1-2 1-3 1-3 4-5 4-5 6 7

Table 29: Head to head comparison, ignoring ties, for French-English systems
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LIMSI-CNRS – .45‡ .44‡ .45‡ .38‡ .36‡ .28‡
ONLINE-A .55‡ – .49 .48? .45‡ .37‡ .32‡

UEDIN-JHU .56‡ .51 – .48? .44‡ .41‡ .31‡
ONLINE-B .55‡ .52? .52? – .46‡ .40‡ .31‡

CIMS .62‡ .55‡ .56‡ .54‡ – .45‡ .36‡
ONLINE-F .64‡ .63‡ .59‡ .60‡ .55‡ – .41‡
ONLINE-E .72‡ .68‡ .69‡ .69‡ .64‡ .59‡ –

score .54 .30 .25 .21 -.00 -.33 -.97
rank 1 2-3 2-4 3-4 5 6 7

Table 30: Head to head comparison, ignoring ties, for English-French systems
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ONLINE-B – .36‡ .32‡ .35‡ .29‡ .35‡ .35‡ .29‡ .29‡ .31‡ .17‡ .18‡ .15‡ .15‡
PROMT-SMT .64‡ – .49 .49 .48 .46 .44† .43† .36‡ .34‡ .25‡ .28‡ .25‡ .24‡

ONLINE-A .68‡ .51 – .50 .46 .42‡ .47 .45? .38‡ .40‡ .32‡ .30‡ .25‡ .25‡
UU-UNC .65‡ .51 .50 – .50 .45? .47 .47 .37‡ .34‡ .35‡ .26‡ .26‡ .26‡

UEDIN-JHU .71‡ .52 .54 .50 – .49 .50 .47 .42‡ .38‡ .33‡ .31‡ .24‡ .24‡
ABUMATRAN-COMB .65‡ .54 .58‡ .55? .51 – .49 .46 .33‡ .38‡ .23‡ .33‡ .24‡ .24‡

UEDIN-SYNTAX .65‡ .56† .53 .53 .50 .51 – .44† .41‡ .42‡ .36‡ .29‡ .30‡ .30‡
ILLINOIS .71‡ .57† .55? .53 .53 .54 .56† – .45? .41‡ .37‡ .33‡ .28‡ .27‡

ABUMATRAN-HFS .71‡ .64‡ .62‡ .63‡ .58‡ .67‡ .59‡ .55? – .42‡ .43† .38‡ .38‡ .37‡
MONTREAL .69‡ .66‡ .60‡ .66‡ .62‡ .62‡ .58‡ .59‡ .58‡ – .48 .43† .39‡ .39‡

ABUMATRAN .83‡ .75‡ .68‡ .65‡ .67‡ .77‡ .64‡ .63‡ .57† .52 – .46 .41‡ .41‡
LIMSI .82‡ .72‡ .70‡ .74‡ .69‡ .67‡ .71‡ .67‡ .62‡ .57† .54 – .52 .52

SHEFFIELD .85‡ .75‡ .75‡ .74‡ .76‡ .76‡ .70‡ .72‡ .62‡ .61‡ .59‡ .48 – .00
SHEFF-STEM .85‡ .76‡ .75‡ .74‡ .76‡ .76‡ .70‡ .73‡ .63‡ .61‡ .59‡ .48 1.00 –

score .67 .28 .24 .23 .18 .16 .14 .08 -.08 -.17 -.27 -.43 -.51 -.52
rank 1 2-4 2-5 2-5 4-7 5-7 5-8 7-8 9 10 11 12-13 13-14 13-14

Table 31: Head to head comparison, ignoring ties, for Finnish-English systems
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ONLINE-B – .40‡ .31‡ .28‡ .24‡ .26‡ .25‡ .25‡ .23‡ .18‡
ONLINE-A .60‡ – .40‡ .41‡ .36‡ .33‡ .36‡ .34‡ .29‡ .26‡

UU-UNC .69‡ .60‡ – .47? .43‡ .41‡ .37‡ .41‡ .36‡ .27‡
ABUMATRAN-UNC-COM .72‡ .59‡ .53? – .45† .46† .45‡ .40‡ .41‡ .32‡

ABUMATRAN-COMB .76‡ .64‡ .57‡ .55† – .45† .46† .47 .42‡ .34‡
AALTO .74‡ .67‡ .59‡ .54† .55† – .47 .47? .46† .33‡

UEDIN-SYNTAX .75‡ .64‡ .63‡ .55‡ .54† .53 – .49 .44‡ .34‡
ABUMATRAN-UNC .75‡ .66‡ .59‡ .60‡ .53 .53? .51 – .50 .39‡

CMU .77‡ .71‡ .64‡ .59‡ .58‡ .54† .56‡ .50 – .40‡
CHALMERS .82‡ .74‡ .73‡ .68‡ .66‡ .67‡ .66‡ .61‡ .60‡ –

score 1.06 .54 .21 .04 -.05 -.14 -.18 -.21 -.34 -.92
rank 1 2 3 4 5 6-7 6-8 6-8 9 10

Table 32: Head to head comparison, ignoring ties, for English-Finnish systems
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ONLINE-G – .40‡ .39‡ .35‡ .38‡ .38‡ .34‡ .32‡ .36‡ .33‡ .25‡ .24‡ .21‡
ONLINE-B .60‡ – .41‡ .44† .42‡ .43† .40‡ .38‡ .37‡ .35‡ .29‡ .31‡ .22‡

PROMT-RULE .61‡ .59‡ – .46? .47 .51 .47 .47 .46† .48 .40‡ .41‡ .24‡
AFRL-MIT-PB .65‡ .56† .54? – .49 .53 .46 .48 .44† .44† .33‡ .33‡ .29‡

AFRL-MIT-FAC .62‡ .58‡ .53 .51 – .50 .48 .45† .45† .46? .34‡ .28‡ .29‡
ONLINE-A .62‡ .57† .49 .47 .50 – .44† .49 .48 .44† .36‡ .36‡ .29‡

AFRL-MIT-H .66‡ .60‡ .53 .54 .52 .56† – .50 .47 .46? .40‡ .34‡ .30‡
LIMSI-NCODE .68‡ .62‡ .53 .52 .55† .51 .50 – .48 .49 .43† .39‡ .33‡

UEDIN-SYNTAX .64‡ .63‡ .54† .56† .55† .52 .53 .52 – .48 .40‡ .40‡ .34‡
UEDIN-JHU .67‡ .65‡ .52 .56† .54? .56† .54? .51 .52 – .36‡ .38‡ .33‡

USAAR-GACHA .75‡ .71‡ .60‡ .67‡ .66‡ .64‡ .60‡ .57† .60‡ .64‡ – .44? .38‡
USAAR-GACHA .76‡ .69‡ .59‡ .67‡ .72‡ .64‡ .66‡ .61‡ .60‡ .62‡ .56? – .40‡

ONLINE-F .79‡ .78‡ .76‡ .71‡ .71‡ .71‡ .70‡ .67‡ .66‡ .67‡ .62‡ .60‡ –
score .49 .31 .12 .11 .11 .10 .05 .01 -.02 -.03 -.21 -.27 -.78
rank 1 2 3-6 3-6 3-6 3-7 6-8 7-10 8-10 8-10 11 12 13

Table 33: Head to head comparison, ignoring ties, for Russian-English systems
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PROMT-RULE – .39‡ .29‡ .27‡ .28‡ .26‡ .21‡ .21‡ .21‡ .07‡
ONLINE-G .61‡ – .40‡ .38‡ .33‡ .36‡ .30‡ .25‡ .24‡ .12‡
ONLINE-B .71‡ .60‡ – .49 .44‡ .44‡ .37‡ .33‡ .32‡ .19‡

LIMSI-NCODE .73‡ .62‡ .51 – .49 .46† .38‡ .36‡ .34‡ .22‡
ONLINE-A .72‡ .67‡ .56‡ .51 – .47? .43‡ .40‡ .36‡ .18‡

UEDIN-JHU .74‡ .64‡ .56‡ .54† .53? – .46† .40‡ .36‡ .25‡
UEDIN-SYNTAX .79‡ .70‡ .63‡ .62‡ .57‡ .54† – .45† .39‡ .25‡
USAAR-GACHA .79‡ .75‡ .67‡ .64‡ .60‡ .60‡ .55† – .46 .29‡
USAAR-GACHA .79‡ .76‡ .68‡ .66‡ .64‡ .64‡ .61‡ .54 – .28‡

ONLINE-F .93‡ .88‡ .81‡ .78‡ .82‡ .75‡ .75‡ .71‡ .72‡ –
score 1.01 .52 .21 .12 .07 .01 -.13 -.27 -.33 -1.21
rank 1 2 3 4-5 4-5 6 7 8 9 10

Table 34: Head to head comparison, ignoring ties, for English-Russian systems

46



Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 47–57,
Lisboa, Portugal, 17-18 September 2015. c©2015 Association for Computational Linguistics.

Statistical Machine Translation
with Automatic Identification of Translationese

Naama Twitto-Shmuel
Dept. of Computer Science

University of Haifa
Israel

naama.twitto@gmail.com

Noam Ordan
Cluster of Excellence, MMCI

Universität des Saarlandes
Germany

noam.ordan@gmail.com

Shuly Wintner
Dept. of Computer Science

University of Haifa
Israel

shuly@cs.haifa.ac.il

Abstract

Translated texts (in any language) are so
markedly different from original ones that
text classification techniques can be used
to tease them apart. Previous work has
shown that awareness to these differences
can significantly improve statistical ma-
chine translation. These results, how-
ever, required meta-information on the on-
tological status of texts (original or trans-
lated) which is typically unavailable. In
this work we show that the predictions
of translationese classifiers are as good as
meta-information. First, when a monolin-
gual corpus in the target language is given,
to be used for constructing a language
model, predicting the translated portions
of the corpus, and using only them for the
language model, is as good as using the
entire corpus. Second, identifying the por-
tions of a parallel corpus that are translated
in the direction of the translation task, and
using only them for the translation model,
is as good as using the entire corpus. We
present results from several language pairs
and various data sets, indicating that these
results are robust and general.

1 Introduction

Research in Translation Studies suggests that
translated texts are considerably different from
original texts, constituting a sublanguage known
as Translationese (Gellerstam, 1986). Awareness
to translationese can significantly improve statis-
tical machine translation (SMT). Kurokawa et al.
(2009) showed that French-to-English SMT sys-
tems whose translation models were constructed

from human translations from French to English
yielded better translation quality than ones cre-
ated from translations in the other direction. These
results were corroborated by Lembersky et al.
(2012a, 2013), who showed that translation mod-
els can be adapted to translationese, thereby im-
proving the quality of SMT even further. Aware-
ness to translationese also benefits the language
models used in SMT: Lembersky et al. (2011,
2012b) showed that language models complied
from translated texts better fit the reference sets in
term of perplexity, and SMT systems constructed
from such language models perform much better
than those constructed from original texts.

To benefit from these results, however, one has
to know whether the texts used for training SMT
systems are original or translated, and previous
work indeed used such meta-information. Unfor-
tunately, annotation reflecting the status of texts,
or the direction of translation, is typically unavail-
able. The research question we investigate in this
work is whether the predictions of translationese
classifiers can replace manual annotation. In a va-
riety of evaluation scenarios, we demonstrate that
this is indeed the case. When a monolingual cor-
pus in the target language is given for constructing
a language model for SMT, we show that automat-
ically identifying the translated portions of the cor-
pus, and using only them for the language model,
is as good as using the entire corpus. Similarly,
when a parallel corpus is given, we show that au-
tomatically identifying the portions of the corpus
that are translated in the direction of the translation
task, and using only them for training the transla-
tion model, is again as good as using the entire
corpus. We present results from several language
pairs and various data sets, indicating that the ap-
proach we advocate is general and robust.
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The main contribution of this work is a general
approach that, provided labeled data for training
classifiers, can be applied to any corpus before it
is used for constructing SMT systems, resulting in
systems that are as good as (or better than) those
that use the entire corpus, but that rely on signifi-
cantly smaller language and translation models.

We briefly review related work in Section 2.
Section 3 describes our methodology and exper-
imental setup. Section 4 details the experiments
and their results. We conclude with an analysis of
the results and suggestions for future research.

2 Related work

Until recently, SMT systems were agnostic to
the ontological status of a text (as original vs.
translated). Several recent works, however, un-
derscore the relevance of translationese for SMT.
Kurokawa et al. (2009) were the first to show that
translationese matters for SMT. They defined two
translation tasks, English-to-French and French-
to-English, and used a parallel corpus in which
the translation direction of each text was indi-
cated. They showed that for the English-to-French
task, translation models compiled from English-
translated-to-French texts were better than transla-
tion models compiled from texts translated in the
reverse direction; and the same holds for the re-
verse translation task. These results were corrobo-
rated by Lembersky et al. (2012a, 2013), who fur-
ther demonstrated that translation models can be
adapted to translationese, thereby improving the
quality of SMT even further.

Lembersky et al. (2011, 2012b) focused on the
language model (LM). They built several SMT
systems for several pairs of languages. For each
language pair they built two systems, one in which
the LM was compiled from original English text,
and another in which the LM was compiled from
text translated to English from each of the lan-
guages. They showed that LMs complied from
translated texts better fit the reference set in term
of perplexity. Moreover, SMT systems that were
constructed from translationese-based LMs per-
form much better than those constructed from
original LMs. In fact, an original corpus must be
as much as ten times larger in order to yield the
same translation quality as a translated corpus.

To benefit from these results, one has to know
whether the texts used for training SMT systems
are original or translated; such meta-information

is typically unavailable. Due to the unique prop-
erties of translationese, however, this informa-
tion can be determined automatically using text-
classification techniques. Several works address
this task, using various feature sets, and reporting
excellent accuracy (Baroni and Bernardini, 2006;
van Halteren, 2008; Ilisei et al., 2010; Eetemadi
and Toutanova, 2014). Some of these works, how-
ever, only conduct in-domain evaluation; much
evidence suggests that out-of-domain accuracy is
much lower (Koppel and Ordan, 2011; Islam and
Hoenen, 2013; Avner et al., Forthcoming).

A thorough investigation was conducted by
Volansky et al. (2015), who focused on the fea-
tures of translationese (in English) from a trans-
lation theory perspective. They defined sev-
eral classifiers based on various linguistically-
informed features, implementing several hypothe-
ses of Translation Studies. We adopt some of their
best-performing classifiers in this work.1

3 Experimental setup

The experiments we describe in Section 4 con-
sist of three parts: 1. Training classifiers to tease
apart original from translated texts. 2. Construct-
ing SMT systems with language models compiled
from the predicted translations, comparing them
with similar SMT systems whose language models
consist of the entire monolingual corpora. 3. Con-
structing SMT systems with translation models
compiled from bitexts that are predicted as trans-
lated in the same direction as the direction of the
SMT task, comparing them with similar SMT sys-
tems whose translation models consist of the en-
tire parallel corpora. In this section we describe
the language resources and tools required for per-
forming these experiments.

3.1 Tools

Our first task is text classification; to ensure
that the length of each text does not influence
the classification, we partition the training cor-
pus in most experiments into chunks of approxi-
mately 2000 tokens (ending on a sentence bound-
ary). We henceforth use chunk units to define the
size of a sub-corpus. Our major experiments in-
volve 2,500 chunks (of approximately 2,000 to-
kens each, hence 5M tokens). To detect sentence

1Volansky et al. (2015) only identified English transla-
tionese; we extend the experimentation also to French and
adapt their classifiers accordingly.

48



boundaries, we use the UIUC CCG tool.2

We use MOSES (Koehn et al., 2007) for tok-
enization and case normalization. Part-of-speech
(POS) tagging is done with OpenNLP3 for English
and the Stanford tagger4 for French. For classifica-
tion we use Weka (Hall et al., 2009) with the SMO
algorithm, a support-vector machine with a linear
kernel, in its default configuration.

To construct language models and measure per-
plexity, we use SRILM (Stolcke, 2002) with inter-
polated modified Kneser-Ney discounting (Chen
and Goodman, 1996) and with a fixed vocabu-
lary. We limit language models to a fixed vocab-
ulary and map out-of-vocabulary (OOV) tokens to
a unique symbol to overcome sparsity and better
control the OOV rates among various corpora.

We train and build the SMT systems using
MOSES. For evaluation we use MultEval (Clark
et al., 2011), which takes machine translation hy-
potheses from several runs of an optimizer and
provides three popular metric scores, BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2011), and TER (Snover et al., 2006)), as
well as standard deviations and p-values.

3.2 Corpora
To construct SMT systems we need both monolin-
gual corpora (for the language model) and bilin-
gual ones (for the translation model). The main
corpora we use are Europarl (Koehn, 2005) and
the Canadian Hansard. Europarl is a multilingual
corpus recording the proceedings of the European
Parliament. Some portions of the corpus are anno-
tated with the original language of the utterances,
and we use the method of Lembersky et al. (2012a)
to identify the source language of other segments.
The Hansard is a parallel corpus consisting of tran-
scriptions of the Canadian parliament in English
and (Canadian) French from 2001-2009. We use
a version that is annotated with the original lan-
guage of each parallel sentence.5 We also use the
News Commentary corpus (Callison-Burch et al.,
2007), a French-English corpus in the domain of
politics, economics and science. The direction of
translation of this corpus is not annotated.6

2http://cogcomp.cs.illinois.edu/page/
tools_view/2, accessed 11.10.2013.

3http://opennlp.apache.org, 24.08.2012.
4http://nlp.stanford.edu/software/

tagger.shtml, accessed 08.02.2013.
5We are grateful to Cyril Goutte, George Foster and Pierre

Isabelle for providing us with this version of the corpus.
6The precise data sets we used will be made available.

3.2.1 Language model experiments
Our main experiments focus on French translated
to English (FR→EN), and we define a classifier
that can identify English translationese. However,
to further establish the robustness of our approach,
we also experiment with German translated to En-
glish (DE→EN) and with English translated to
French (EN→FR). We also conduct cross-corpus
experiments in which we train translationese clas-
sifier on one corpus (Europarl) and test its contri-
bution to SMT on another (Hansard, News). These
experiments are crucial for evaluating the robust-
ness of our approach, in light of the findings that
translationese classification is much less accurate
outside the training domain.

From the Europarl corpus we use several por-
tions, collected over the years 1996 to 1999 and
2001 to 2009. In all experiments, the split of
the monolingual corpora to translated vs. original
texts is balanced (in terms of chunks). The paral-
lel corpora are divided to two sections according to
the direction of the translation (when it is known).
For example, for the French-to-English translation
task, we divide the Europarl corpus to a French-
original section (FR→EN) and an English-original
section. We also use portions of Europarl to de-
fine reference sets for evaluating the perplexity of
LMs. For this task we only use translated texts.

For constructing translation models we use par-
allel corpora. For the FR→EN and EN→FR tasks
we use original French text, aligned with its trans-
lation to English (FR→EN). For the DE→EN
translation task we use original German text,
aligned with its translation to English (DE→EN).
The parallel portions we use are disjoint from
those used for the language model and are evenly
balanced between the original text and the aligned
translated text. From Europarl we use portions
from the period of January to September 2000.

To tune and evaluate SMT systems we use refer-
ence sets that are extracted from a parallel, aligned
corpus. These include 1000 sentence pairs for tun-
ing and 1000 (different) sentence pairs for evalu-
ation. The sentences are randomly extracted from
another portion of the Europarl corpus, collected
over the period of October to December 2000, and
another portion of Hansard. All tuning and refer-
ences sets are disjoint from the training materials.

3.2.2 Translation model experiments
In this set of experiments we focus again on
FR→EN systems, but also experiment with
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DE→EN and EN→FR. We conduct in-domain ex-
periments using the Europarl corpus, and a cross-
corpus experiment in which we train on one corpus
and test on another. From the Europarl corpus we
use several portions, collected over the years 1996
to 1999 and 2001 to 2009.

To construct language models for the in-domain
experiments we use Europarl portions from the
period of January to September 2000 (this is the
English/French side of the training data used for
building the translation model in the language
model experiments). For cross-corpus experi-
ments we use the LM built from translated texts
that we use in the Hansard language model exper-
iments. For tuning and evaluation we use the same
sets used in the language model experiments.

4 Experiments and results

4.1 Language models experiments
We build several SMT systems that use the same
translation model, but differ in their language
models. This involves three tasks detailed below.

4.1.1 Classification of translationese
The first task is to train a classifier to detect trans-
lationese. This has been done before, and we adapt
some of the classifiers of Volansky et al. (2015).
Specifically, our classifier is based on Contextual
function words: we use counts of (contiguous) tri-
grams 〈w1, w2, w3〉, where each element wi is ei-
ther a word or its part of speech (POS), at least two
of the elements are function words, and at most
one is a POS tag. An example feature is the triple
〈in,the,Noun〉. This feature set combines lexical
and shallow syntactic information in a way that
was proven useful for identifying translationese.
We also add counts of punctuation marks, another
feature that was shown accurate.7 We evaluate the
accuracy of this classifier intrinsically, using ten-
fold cross-validation.

Then, we use the prediction of the classifier to
determine whether test texts are original or trans-
lated. The classifier thus defines a partition of the
training corpus to (predicted) originals vs. trans-
lations. Based on the classifier’s prediction, we
build language models from the sub-corpus deter-
mined as translated. We then evaluate the fitness
of this sub-corpus to the reference set, in terms of
perplexity. Specifically, we train 1-, 2-, 3-, and 4-
gram LMs for this sub-corpus and measure their

7The code for feature generation will be released.

perplexity on the reference set. This provides an
extrinsic evaluation for the quality of the classifier.

The results are reported in Table 1. Replicating
the results of Volansky et al. (2015), we demon-
strate that the classifier is indeed excellent. Not
surprisingly, good classification yields good lan-
guage models. The rightmost columns of Table 1
list the perplexity of language models trained on
the sub-corpus that was predicted as translated,
when applied to the reference set. For compar-
ison, we provide in Table 1 also the perplex-
ity of language models compiled from the entire
training set; from the actual (as opposed to pre-
dicted) translated texts; and from the actual orig-
inal texts. Clearly, and consistently with the re-
sults of Lembersky et al. (2012b), the original texts
yield the worst language models (highest perplex-
ity), whereas the actual translated texts yield an
upper bound (lowest perplexity). Still, due to the
high accuracy of the classifier, its perplexity is
very similar to this upper bound. The model that
is built from all texts, both original and translated,
is twice as large as the corpus used for the other
models, hence the lower perplexity rates.

To further establish the robustness of these re-
sults, we repeat the experiments with other cor-
pora, this time consisting of German translated
to English (DE→EN), and also English translated
to French (EN→FR). We only report results for
the 4-gram LMs (Table 2). The accuracies of
the classifiers are high, comparable to the case
of FR→EN. Moreover, the perplexities of the in-
duced language models are very close to the upper
bound obtained by taking actual translated texts.

4.1.2 Language models compiled from
predicted translationese

We established the fact that translated texts can be
identified with high accuracy, and that language
models compiled from predicted translations fit
the reference sets well. Next, we construct SMT
systems with these language models. Our hypoth-
esis is that language models compiled from (pre-
dicted) translationese will perform as well as (or
even better than) language models compiled from
the entire corpus. We evaluate this hypothesis in
several scenarios: when the corpus used for the
language model is the same corpus used for train-
ing the classifiers; or a different one, but of the
same type; or from a completely different domain.

We begin with a French-to-English translation
task. We use the same (4-gram) language models
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Perplexity
Data set Chunks Acc. (%) 1-gram 2-gram 3-gram 4-gram

Predicted translations 1245 98.96 463.51 94.81 71.60 68.76
Translated texts 1255 463.58 94.59 71.24 68.37
Original texts 1258 500.56 115.48 91.14 88.31
All texts 2513 473.00 93.34 67.84 64.47

Table 1: Classification of translationese, and fitness to the reference set of FR→EN language models
compiled from texts predicted as translated

DE→EN EN→FR
Data set Chunks Acc. (%) Ppl Chunks Acc. (%) Ppl
Predicted translations 1,146 99.08 62.23 1,410 98.47 47.92
Translated texts 1,153 62.07 1,413 47.89
Original texts 1,153 76.68 1,411 59.75
All 2,306 57.48 2,824 44.49

Table 2: Accuracy of the classification, and fitness of language models compiled from texts predicted as
translated to the reference set, DE→EN and EN→FR

described in Section 4.1.1, constructed from the
predictions of the classifier. We also fix a single
translation model, compiled from the parallel por-
tion of the training corpus (Section 3.2). We then
train a French-to-English SMT system with the
(predicted) LM. As a baseline, we build an SMT
system that uses the entire training corpus for its
language model; we refer to this system as All. As
an upper bound (for a system that uses only a por-
tion of the corpus), we build a system that uses the
(actual) translated texts for its LM. We also report
results on a system that uses only original texts for
its LM. All systems are tuned on the same tuning
set of 1000 parallel sentences, and are tested on
the same reference set of 1000 parallel sentences.

We evaluate the quality of each of the SMT sys-
tems using MultEval (Section 3.1). The results are
presented in Table 3, reporting the BLEU, ME-
TEOR (MET), and TER evaluation measures, as
well as the p-value defining the statistical signifi-
cance with which the system is different from the
baseline (with respect to the BLEU score only).

Replicating some of the results of Lembersky
et al. (2011, 2012b), we find that using only trans-
lated texts for the language model is not infe-
rior to using the entire corpus (although the size
of the latter is double the size of the former).
In terms of BLEU scores, both yield the same
score, 29.1. Similarly, as reported by Lembersky
et al. (2011, 2012b), using only original texts is
markedly worse, with a BLEU score of 27.8. The

main novelty of our current results, however, is the
observation that the language model that only uses
predicted, rather than actual translated texts, per-
forms just as well.8

For completeness, we repeat the same experi-
ments with two more language pairs: German to
English and English to French. The setup is iden-
tical, and we report the same evaluation metrics.
The results are presented in Table 4. The emerg-
ing pattern is identical to that of French to English.

The results of all the experiments confirm our
hypothesis; SMT systems built from predicted
translationese language models perform as well as
SMT systems built from (actual) translated lan-
guage models, and similarly to (twice as large)
mixed language models.

4.1.3 Cross-corpus experiments
The experiments discussed above all use the same
type of corpus both for training the translationese
classifiers and for training the SMT systems (the
actual portions differ, but all are taken from the
same corpus). In a typical translation scenario, a
monolingual corpus is available for constructing a
language model, but the status of its texts (original
or translated) is unknown, and has to be predicted
by a classifier that was trained on a potentially dif-

8In Table 3 and henceforth we highlight in boldface en-
tries that correspond to classifiers whose performance is bet-
ter than, or not significantly worse than, the performance of
the All classifier, which is considered the baseline against
which all other systems are compared.
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Data set BLEU↑ MET↑ TER↓ p

Predicted translations 28.9 33.2 53.8 0.16
Translated texts 29.1 33.3 53.6 0.58
Original texts 27.8 32.9 54.7 0.00
All 29.1 33.3 53.8

Table 3: Evaluation of the FR→EN SMT system built from LMs compiled from predicted translationese

DE→EN EN→FR
Data set BLEU↑ MET↑ TER↓ p BLEU↑ MET↑ TER↓ p

Predicted translations 21.9 28.6 63.8 0.87 26.3 47.8 58.3 0.47
Translated texts 21.8 28.6 63.9 0.37 26.1 47.7 58.5 0.03
Original texts 21.0 28.4 64.6 0.00 25.1 47.0 59.5 0.00
All 21.9 28.6 63.7 26.3 48.0 58.7

Table 4: Evaluation of the DE→EN and EN→FR SMT systems built from LMs compiled from predicted
translationese

ferent domain. The question we investigate here,
then, is whether a classifier trained on texts in one
domain is useful for predicting translationese in a
different domain.

As a first experiment, we use an (English) trans-
lationese classifier that is trained on the Europarl
training data, but use the Hansard training data for
constructing the SMT system. In this experiment,
we do not use the meta-information of the Hansard
corpus, but instead use the predictions of the clas-
sifier. Based on these predictions, we define a par-
tition of the Hansard training corpus to (predicted)
originals vs. translations and use the text chunks
that were classified as translated to build 4-grams
language models.

Again, as in the in-domain experiment, we con-
struct a single, fixed translation model from the
parallel portion of the (Hansard) corpus. We then
train a French-to-English SMT system with the
(predicted) LM. As a baseline, we build an SMT
system that uses the entire Hansard training corpus
for its language model (All). As an upper bound,
we build a system that uses the (real) translated
texts for its LM. We also report results on a sys-
tem that uses only original texts for its LM. All
systems are tuned and tested on the same tuning
and evaluation reference set.

The results (Table 5) are consistent with the
findings of the in-domain experiments. Although
the classifier only performs at 78% accuracy, its
predictions are sufficient for defining a language
model whose BLEU score (37.8) is statistically in-
distinguishable with the score (38.0) of LMs based

on real translations or the entire corpus.
We repeat the cross-corpus experiments with

the News Commentary corpus, a French-English
parallel corpus for which the direction of transla-
tion is not annotated; we only use its English side.
Presumably, most of the texts in this corpus con-
sist of original English, but we hypothesize that
the classifier may be able to select chunks with
translationese-like features and consequently pro-
vide a better SMT system. Additionally, as the
News Commentary corpus is a collection of edito-
rials, we partition the corpus into (not necessarily
equal-length) articles, rather than to 2000-token
chunks, to maintain the coherence of chunks.

The results (Table 6) reveal the same pattern:
the predicted-translationese system yields a BLEU
score of 27.0, statistically insignificant difference
compared with the All system that uses the entire
corpus (27.2). This is obtained with much smaller
corpora, only 1,470 chunks (58% of the entire cor-
pus of 2,527 chunks).

4.2 Translation model experiments

We now move to experiments that address the
translation model. We build SMT systems that use
a fixed language model but differ in their transla-
tion model training data. For all systems we use
fixed tuning and evaluation sets.

4.2.1 Translation models compiled from
predicted translationese

We first train a classifier to detect the direction of
the translation (FR→EN vs. EN→FR). We clas-
sify the English side of the parallel corpus; for the
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Data set Chunks Acc. (%) BLEU↑ MET↑ TER↓ p

Predicted translations 1,321 78.22 37.8 37.7 45.9 0.11
Translated texts 2001 38.0 37.8 45.7 0.86
Original texts 2001 37.5 37.6 46.1 0.00
All 4002 38.0 37.7 45.8

Table 5: Cross-corpus evaluation: Hansard-based SMT system, Europarl-based classification

Data set Chunks BLEU↑ MET↑ TER↓ p

Predicted translations 1,470 27.0 33.0 55.2 0.02
All 2,527 27.2 33.0 55.2

Table 6: Cross-corpus evaluation: News Commentary corpus

FR→EN and DE→EN tasks, chunks predicted as
translated are assumed to be translated in the right
direction (S → T ). For the EN→FR task, chunks
predicted as original are assumed to be translated
in the right direction. Then, we use the predic-
tion of the classifier to construct translation mod-
els: we only use the chunks predicted as translated
in the right direction. For each partition, we match
the English with the aligned French (or German)
sentences, thereby defining the SMT training data.

We hypothesize that translation models built
from such training data are better for SMT. To
explore this hypothesis we fix a single language
model (Section 3.2), and train an SMT system
with the (predicted) partitions and their aligned
sentences. As a baseline, we build an SMT sys-
tem, All, that uses the entire training corpus for its
translation model. As an upper bound, we build a
system that uses for its translation model the por-
tion of the parallel corpus that was indeed trans-
lated in the right direction (S → T ). We also re-
port results on a system that uses only the portion
of the parallel corpus that was translated in the op-
posite direction (T → S) for its translation model.
All systems are tuned on the same tuning set and
are tested on the same reference set.

The results are presented in Table 7. They are
consistent with previous works that showed that
SMT systems trained on S → T parallel texts
outperformed systems trained on T → S texts
(Kurokawa et al., 2009; Lembersky et al., 2012a,
2013). Indeed, the best-performing systems use
either (actual) S → T texts (BLEU score of 31.3),
or the entire corpus (31.3); the worst system uses
(actual) T → S texts (28.4). What we add to pre-
vious results is the corroboration of the hypothe-
sis that a predicted-translationese system performs

just as well as the actual ones.

As in the language model experiments, we re-
peat the same experiments with two more trans-
lation tasks: German to English and English to
French. The setup is identical, and we report the
same evaluation metrics. The emerging pattern
(Table 7) confirms our hypothesis: SMT systems
built from predicted S → T systems perform as
well as SMT systems built from the entire corpus.

4.2.2 Cross-corpus experiments

The above results are not very surprising given the
high accuracy of the translationese classifier. The
question we investigate in this section is whether a
classifier trained on texts in one domain is useful
for predicting translationese in a different domain.

We train an (English) translationese classifier
on the Europarl training data, but use the Hansard
corpus for the translation model. We apply the
classifier to the English side of the Hansard cor-
pus, and based on its predictions, define a partition
of the Hansard training corpus to use for the trans-
lation model. As in the in-domain experiment, we
construct a single, fixed language model from a
portion of the (Hansard) corpus. We then train
a French-to-English SMT system with the (pre-
dicted) translation model, comparing it to systems
that use the entire Hansard training corpus, the (ac-
tual) S → T texts and the actual T → S texts.

Table 8 reports the results. The best-performing
systems use either actual S → T texts or the entire
corpus (BLEU score of 37.3). The classifier per-
forms worse, at 36.3, but still much better than the
system that is based on T → S texts. This should
be attributed to the very small number of chunks
predicted by the classifier as S → T .
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Task Data set Chunks Acc. (%) BLEU↑ MET↑ TER↓ p

FR→EN

Predicted S → T 1,678 98.93 31.1 34.7 52.1 0.13
S → T 1,690 31.3 34.8 51.7 0.94
T → S 1,689 28.4 33.3 54.4 0.00
All 3,379 31.3 34.7 51.9

DE→EN

Predicted S → T 1,607 99.44 23.7 30.3 61.6 0.00
S → T 1,613 24.0 30.4 61.3 0.05
T → S 1,612 21.7 29.0 63.9 0.00
All 3,225 24.2 30.5 61.1

EN→FR

Predicted S → T 1,678 98.93 29.4 50.7 55.3 0.11
S → T 1,689 29.3 50.8 56.1 0.18
T → S 1,690 26.7 48.2 58.2 0.00
All 3,379 29.1 50.6 56.0

Table 7: Accuracy of the classification and evaluation of SMT systems built from translation models
compiled from predicted translationese

Data set Chunks Acc. (%) BLEU↑ MET↑ TER↓ p

Predicted S → T 1,840 79.36 36.3 36.9 46.6 0.00
S → T 3,000 37.3 37.3 46.2 0.94
T → S 3,000 34.1 35.8 48.9 0.00
All 6,000 37.3 37.4 46.0

Table 8: Cross-corpus evaluation: Hansard-based SMT system, Europarl-based classification

5 Conclusion

Two fundamental insights, motivated by research
in Translation Studies, drive our work:

1. Direction matters. When constructing trans-
lation models from parallel texts it is impor-
tant to identify which side of the bitext is the
source and which is the target. Translation
from the source of the SMT task to its target
is always better than the reverse option. In
fact, direction itself was utilized as features
for classification of translationese by select-
ing alignment patterns from O to T and vice
versa (Eetemadi and Toutanova, 2014, 2015).

2. Translationese matters. When constructing
language models, translated texts (especially
from the source language, but not only) are
preferable to texts written originally in the
target language of the task at hand.

Our main hypothesis was that these benefits to
SMT still hold when meta-information on the sta-
tus of the texts is unavailable, and has to be pre-
dicted, especially in light of the deterioration in
the accuracy of translationese classifiers in the
face of out-of-domain texts. We trained classi-
fiers to identify translationese, and then used their
predictions to construct language- and translation-

models for SMT, demonstrating that attention to
translationese can yield state-of-the-art translation
quality with only a fraction of the corpora. We find
that one can generally rely on classifiers that iden-
tify at least half of the data as translated for both
the language model and the translation model.

In future work we would like to improve our
classifiers such that smaller chunks of text suffice
for accurate identification of translationese. We
also believe that combining various feature sets is
a key to improving the accuracy, and especially
the robustness, of translationese classifiers. In this
work we combined two complementary feature
sets; more work should be done in this direction.
In particular, there is ample evidence that features
should be sensitive to language family, as trans-
lations from similar languages look more similar
than translations from unrelated languages (Pym
and Chrupała, 2005; Koppel and Ordan, 2011).
To further improve the generality and domain-
independence, we currently experiment with unsu-
pervised classification of translationese, with very
encouraging preliminary results (Rabinovich and
Wintner, 2015).

Finally, we mainly experimented with English
and French in this work, but we are confident that
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many language pairs can benefit from the method-
ology we propose.
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Abstract

We present a method that improves
data selection by combining a hybrid
word/part-of-speech representation for
corpora, with the idea of distinguishing
between rare and frequent events. We
validate our approach using data selection
for machine translation, and show that it
maintains or improves BLEU and TER
translation scores while substantially im-
proving vocabulary coverage and reducing
data selection model size. Paradoxically,
the coverage improvement is achieved
by abstracting away over 97% of the
total training corpus vocabulary using
simple part-of-speech tags during the data
selection process.

1 Introduction

Data selection uses a small set of domain-relevant
data to select additional training items from a
much larger, out-of-domain dataset. Its goal is to
filter Big Data down to Good Data: finding the
best, most relevant data to use to train a model for
a particular task.

The prevalent data selection method, cross-
entropy difference (Moore and Lewis, 2010), can
produce domain-specific systems that are usually
as good as or better than systems using all avail-
able training data (Axelrod et al., 2011). The size
of these domain-specific systems scales roughly
linearly with the amount of selected data: a system
trained on the most domain-relevant 10% of the
full out-of-domain dataset will be only one tenth
of the size of a system trained using all the avail-
able data. This can be a large win in settings where
training time matters, and also where compactness
of the final system matters, e.g. running speech
recognition or translation on mobile devices.

While data selection thus eliminates the need to
train systems on the entire pool of available data,

the data selection process itself does not scale well
(it still requires a language model built on the en-
tire pool) and, more significantly, it comes at a
cost: training on selected subsets leads to reduc-
tions in vocabulary coverage compared to training
on the full out-of-domain data pool. This coverage
is important, because most NLP systems face the
problem of handling words that were not seen in
training the system, i.e. out-of-vocabulary (OOV)
words. In automatic speech recognition (ASR), for
example, OOV words pose a substantial problem,
since the system will hallucinate a phonetically
similar word in its vocabulary when an OOV word
is encountered. In machine translation (MT), our
focal application in this paper, OOVs can some-
times be transliterated, but often they are ignored
or passed through without translation, and gaps in
vocabulary coverage can have a significant effect
on MT performance (Daumé III and Jagarlamudi,
2011; Irvine and Callison-burch, 2013).

We introduce a method that preserves the data
selection benefit of reducing translation system
size. Our method performs as well or better than
the standard cross-entropy difference method, as
measured by downstream MT results. To this we
add the benefits of substantially improved lexical
coverage, as well as lower memory requirements
for the data selection model itself.

This improvement stems from constructing a
hybrid representation of the text that abstracts
away words that are infrequent in either of the in-
domain and general corpora. They are replaced
with their part-of-speech (POS) tags, permitting
their n-gram statistics to be robustly aggregated:
intuitively, if a domain-relevant sentence includes
a rare word in some non-rare context (e.g. “An
earthquake in Port-au-Prince”), then another sen-
tence with the same context but a different rare
word is probably also just as relevant (e.g. “An
earthquake in Kodari”). While this method re-
quires pre-processing the corpora to POS tag the
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data, the idea should generalize to automatically-
derived word classes.

We present results using data selection to train
domain-relevant SMT systems, yielding favorable
performance compared against the standard ap-
proaches of Moore and Lewis (2010) and Axel-
rod et al. (2011). Paradoxically, this is achieved
by a selection process in which the specific lexical
items for infrequent words – up to 97% of the total
vocabulary – are replaced with POS tags.

2 Related Work

Data selection is a widely-used variant of domain
adaptation that requires quantifying the relevance
to the domain of the sentences in a pooled cor-
pus of additional data. The pool is sorted by rel-
evance score, the highest ranked portion is kept,
and the rest discarded.This process – also known
as “rank-and-select” in language modeling (Sethy
et al., 2009) – identifies the subset of the data pool
that is most like the in-domain corpus and keeps it
for translation system training, in lieu of using the
entire data pool. The resulting translation systems
are more compact and cheaper to train and run
than the full-corpus system. The catch, of course,
is that any large data pool can be expected to con-
tain sentences that are at best irrelevant to the do-
main, and at worst detrimental: the goals of fi-
delity (matching in-domain data as closely as pos-
sible) and broad coverage are often at odds (Gascó
et al., 2012). As a result, much work has focused
on fidelity. Mirkin and Besacier (2014) survey the
difficulties of increasing coverage while minimiz-
ing impact on model performance.

We build on the standard approach for data se-
lection in language modeling, which uses cross-
entropy difference as the similarity metric (Moore
and Lewis, 2010). The Moore-Lewis procedure
first trains an in-domain language model (LM) on
the in-domain data, and another LM on the full
pool of general data. It assigns to each full-pool
sentence s a cross-entropy difference score,

HLMIN
(s)−HLMPOOL

(s), (1)

where Hm(s) is the per-word cross entropy of s
according to language model m. Lower scores
for cross-entropy difference indicate more relevant
sentences, i.e. those that are most like the target
domain and unlike the full pool average. In bilin-
gual settings, the bilingual Moore-Lewis criterion,
introduced by Axelrod et al. (2011), combines the

cross-entropy difference scores from each side of
the corpus; i.e. for sentence pair 〈s1, s2〉:

(HLMIN1
(s1)−HLMPOOL1

(s1))

+(HLMIN2
(s2)−HLMPOOL2

(s2)) (2)

After sorting on the relevant criterion, the top-n
sentences (or sentence pairs) are added to the in-
domain data to create the new, combined training
set. Typically a range of values for n is considered,
selecting the n that performs best on held-out in-
domain data.

While shown to be effective, however, word-
based scores may not capture all facets of rele-
vance. The strategy of a hybrid word/POS rep-
resentation was first explored by Bulyko et al.
(2003), who used class-dependent weights for
mixing multi-source language models. The
classes were a combination of the 100 most fre-
quent words and POS tags. Bisazza and Fed-
erico (2012) target in-domain coverage by using
a hybrid word/POS representation to train an ad-
ditional LM for decoding in an MT pipeline. Toral
(2013) uses a hybrid word/class representation for
data selection for language modeling; he replaces
all named entities with their type (e.g. ’person’,
’organization’), and experiments with also lemma-
tizing the remaining words.

3 Our Approach: Abstracting Away
Words in the Long Tail

Our approach is motivated by the observation that
domain mismatches can have a strong register
component, and this comprises both lexical and
syntactic differences. We are inspired, as well,
by work in stylometry, observing that attempts to
quantify differences between text datasets try to
learn too much from the long tail (Koppel et al.,
2003): most words occur very rarely, meaning that
empirical statistics for them are probably overes-
timating their seen contexts and underestimating
unseen ones.

We therefore adopt a hybrid word/POS repre-
sentation strategy, but, crucially, we focus not
on restricting attention to frequent words, but on
avoiding the undue effects of infrequent words.
The proposal can be realized straightforwardly:
after part-of-speech tagging the in-domain and
pool corpora, we identify all words that appear in-
frequently in either one of the two corpora, and re-
place each of their word tokens with its POS tag.
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Relevance computation, sentence ranking and sub-
set selection then proceed as usual according to the
Moore-Lewis or bilingual Moore-Lewis criterion.

As an example, consider again the phrases “an
earthquake in Port-au-Prince” and “an earth-
quake in Kodari”, and suppose that the words
an, in, and earthquake are above-threshold in fre-
quency. Our hybrid word/POS representation for
both sentences would be the same: “an earth-
quake in NNP”.

Our approach differs from the standard data
selection method most significantly in its han-
dling of rare words in frequent contexts. Consider
a domain-specific n-gram context c that appears
with a rare word w. For example, in a hypothetical
news domain, let c = “an earthquake in”, made
up of common words, and let w = Port-au-Prince.
Suppose that the in-domain corpus contains the
phrase “an earthquake in Port-au-Prince” eight
times. The word w does not appear any other times
in the in-domain corpus, and the word w′ = Ko-
dari never appears at all.

Now suppose the out-of-domain pool corpus
contains a sentence with “an earthquake in Ko-
dari”. The standard Moore-Lewis method consid-
ers Kodari to be an unknown word, and so only
credits that pool sentence with matching the ele-
ments of c. In contrast, our method replaces both
rare words w and w′ with their POS tag, NNP,
so that the pool sentence contains “an earthquake
in NNP”. Our method thus credits c from the
in-domain corpus, like Moore-Lewis, but we also
credit the sentence with matching the 4-gram “an
earthquake in NNP”, which appears eight times
in the in-domain corpus. Despite not appearing
in the pool corpus, the rare word w from the in-
domain corpus now provides us information about
the relevance of pool sentences containing a syn-
tactically similar rare word w′ that shares the same
context c.

4 Experimentation

We evaluate our data selection approach in a real-
istic small-in-domain-corpus setting, in two ways.
First, as an intrinsic evaluation, we look at vo-
cabulary coverage of the selected data relative to
the in-domain training set, i.e. how many words
from the in-domain corpus are out-of-vocabulary
for selected data, since models trained on those
data would not not be able to handle those words.
Second, as an extrinsic evaluation, we use statisti-

cal machine translation as a downstream task.

4.1 Evaluation Framework

We define our in-domain corpus as the TED talk
translations in the WIT3 TED Chinese-English
corpus (Cettolo et al., 2012), a good example of
a subdomain with little available training data. We
used the IWSLT dev2010 and test2010 sets (also
from WIT3) for tuning and evaluation. The larger
pool from which we selected data was constructed
from an aggregation of 47 LDC Chinese-English
parallel datasets.1 Table 1 contains the corpus
statistics for the task and pool bilingual corpora.

Vocab Vocab
Corpus Sentences (En) (Zh)
TED (task) 145,901 49,323 64,616
LDC (pool) 6,025,295 458,570 714,628

Table 1: Chinese-English Parallel Data.

We used the KenLM toolkit (Heafield, 2011)
to build all language models used in this work
(i.e., both for data selection and for the MT sys-
tems used for extrinsic evaluation). In all cases
the models were 4-gram LMs. We used the Stan-
ford part-of-speech tagger (Toutanova et al., 2003)
when constructing our hybrid representations, to
generate the POS tags for each of the English and
Chinese sides of the corpora.2

We consider three ways of applying data se-
lection using the standard (fully lexicalized) cor-
pus representation and our hybrid representa-
tion. The first two use the monolingual Moore-
Lewis method (Equation 1) to respectively com-
pute relevance scores using the English (output)
side and the Chinese (input) side of the parallel
corpora. The third uses bilingual Moore-Lewis
(Equation 2) to compute the bilingual score over
both sides.

Each of these three variants produces a ver-
sion of the full pool in which the sentences are
ranked by relevance score, from lowest score

1Specifically: LDC2000T47 LDC2002T01 LDC2003E07 LDC2003T17

LDC2004E12 LDC2004T07 LDC2005T06 LDC2006T04 LDC2007E101 LDC2007T09

LDC2007T23 LDC2008E40 LDC2008E56 LDC2008T06 LDC2008T08 LDC2008T18

LDC2009E16 LDC2009E95 LDC2009T02 LDC2009T06 LDC2009T15 LDC2010T03

LDC2010T10 LDC2010T11 LDC2010T12 LDC2010T14 LDC2010T17 LDC2010T21

LDC2012T16 LDC2012T20 LDC2012T24 LDC2013E119 LDC2013E125 LDC2013E132

LDC2013E83 LDC2013T03 LDC2013T05 LDC2013T07 LDC2013T11 LDC2013T16

LDC2014E08 LDC2014E111 LDC2014E50 LDC2014E69 LDC2014E99 LDC2014T04

LDC2014T11.
2The Stanford NLP tools use the Penn tagsets, which

comprise 43 tags for English and 35 for Chinese.
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English Chinese
TED vocab 49,323 64,616
LDC vocab 458,570 714,628
Joint vocab 470,154 729,283
LDC minus singletons 243,882 373,381
Baseline selection vocab 257,744 388,927

Table 2: Chinese and English vocabulary for the
baseline selection process.

(most domain-like) to highest score (least domain-
like). For each of those ranked pools, we con-
sider increasingly larger subsets of the data: the
best n = 50K, the best n = 100K, and so on.
The largest subset we consider consists of the best
n = 4M sentence pairs out of the 6M available.

4.1.1 Cross-Entropy Difference Baseline
In addition to comparing against a system trained
on all the data, we compare against systems
trained on data selected via the standard cross-
entropy difference method. The joint vocabu-
lary for the TED and LDC data is shown in Ta-
ble 2. However, when training the language mod-
els used for the baseline selection process, we first
pruned the singletons from the LDC vocabulary.
This step is not necessary, but provides a slightly
stronger baseline. The rationale is that ignoring
LDC singletons avoids reserving too much prob-
ability mass for rare words outside of the domain
of interest. Unlike the experimental systems be-
low, pruning the lexicon simply ignores the words
in the corpus and does not replace them with any-
thing. This process removed 47% of the LDC
vocabulary in each language. We then merged
the remaining words from LDC with the complete
TED lexicon. This produced a final vocabulary of
257,744 (En) and 388,927 (Zh) words for the base-
line cross-entropy difference selection process, as
shown in Table 2.

4.1.2 Hybrid Representation Systems
As our infrequent-word threshold (selected ahead
of our experimentation), we retained words with a
count of 10 or more in each corpus, and replaced
all other words with their POS tags to create the
hybrid corpus representation. The minimum count
requirement reduced the vocabulary to 10,036 En-
glish words and 11,440 Chinese words, as shown
in Table 3. All other words were replaced, thus
a minimum count of 10 in each corpus eliminates
over 97% of the vocabulary in each language. We

English Chinese
Joint vocab 470,154 729,283
Vocab with count ≥ 10 10,036 11,440
POS tags 42 35
Hybrid vocab 10,078 11,475

Table 3: Chinese and English vocabulary for the
proposed selection process.

previously found that setting the threshold to 10 is
slightly better than a minimum count of 20 (Axel-
rod, 2014), and varying the threshold further is a
topic for future work; see Section 5.

4.2 Results

4.2.1 Intrinsic Evaluation
As noted, each of the bilingual Moore-Lewis
method and our hybrid word/POS variation pro-
duces a version of the additional training pool in
which sentences are ranked by relevance. We then
select increasingly larger slices of the data from
50k to 4M, as described in Section 4.1, and report
results. As shown in Figures 1 and 2, the hybrid-
selected models show consistently improved vo-
cabulary coverage when compared head-to-head
with models trained on data selected via a Moore-
Lewis method, across all subsets. The only excep-
tion is when examining the vocabulary coverage
in one language while selecting data based on the
other one (e.g. selecting data using the English
half but measuring the TED vocabulary cover-
age in Chinese), where our method provides only
negligible improvement. Overall, the in-domain
(TED) vocabulary coverage is up to 10% better
with our proposed method, and the general-data
(LDC) vocabulary coverage is up to 20% better.

Table 4 illustrates what this looks like in more
detail for a single slice containing the top 2M sen-
tence pairs. The table shows how many more vo-
cabulary items are covered by the 2M sentence
slice selected using our hybrid representation (the
Hyb columns) than are covered by the best 2M
sentences selected using the standard lexical rep-
resentation (the Std columns).

Our method shows this improved vocabulary
coverage regardless of whether one compares the
vocabulary coverage of the methods on the En-
glish side (the first three rows) or the Chinese side
(the second three rows) of the corpora. Further-
more, the results also hold regardless of which
of the three ways of performing cross-entropy-
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TED Coverage LDC Coverage
Lang Method Std Hyb Std Hyb

En
Mono-en 67% 72% 42% 52%
Mono-Zh 70% 71% 48% 54%
Bilingual 68% 72% 42% 52%

Zh
Mono-En 70% 71% 38% 46%
Mono-Zh 69% 73% 43% 62%
Bilingual 69% 73% 37% 54%

Table 4: Vocabulary coverage comparison be-
tween standard and hybrid-based data selection,
for data-selected samples of 2M sentences.

based data selection one uses. The three ways
are: monolingual Moore-Lewis for the English
and Chinese sides of the parallel corpus (Mono-En
and Mono-Zh, respectively), as well as bilingual
Moore-Lewis (Bilingual).

When selecting 2M sentences, Table 4 shows
that the hybrid representation provides up to an ex-
tra 4-5% in-domain vocabulary coverage in either
language. Furthermore, the hybrid-based methods
obtain up to 10% more general-domain vocabu-
lary coverage for English, and up to 19% more
Chinese general-domain vocabulary coverage. All
improvements are absolute percentage increases.

Figure 2 shows that our hybrid method’s pool
vocabulary coverage increases more rapidly than
the baseline. The standard approach shows vo-
cabulary coverage increasing more or less linearly
with the amount of selection data. By contrast,
our proposed method appears to asymptotically
approach full in-domain vocabulary coverage, par-
ticularly for Chinese. Similarly, Figure 1 shows
that our hybrid method also increases more rapidly
to asymptotically approach full in-domain vocab-
ulary coverage as well.

4.2.2 Extrinsic Evaluation
Improved vocabulary coverage is a positive re-
sult, but we are also interested in downstream ap-
plication performance. Accordingly, we trained
SMT systems using cdec (Dyer et al., 2010) on
subsets of selected data. All SMT systems were
tuned using MIRA (Chiang et al., 2008) on the
dev2010 data from IWSLT (Federico et al., 2011),
and then evaluated on the test2010 IWSLT test
set using both BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006). To isolate the impact
of the data selection method, we present results
just using the selected data, without the combining
with the in-domain data into a multi-model sys-

tem. Note that the hybrid word/POS representa-
tions were only used to compute the cross-entropy
difference scores for determining sentences’ rele-
vance; the MT systems themselves are trained us-
ing the sentences containing the original words.

Figure 3 shows our MT results using both
BLEU and TER. The horizontal line is a static
baseline that uses all the available training data
without data selection. The dashed grey line
is from systems trained on data selected via the
standard Moore-Lewis cross-entropy-difference
method, and the black line is from systems trained
on data selected with our hybrid approach. To
account for variability in MT tuning, each of the
curves in Figure 3 is the average of three tun-
ing/decoding runs.

In terms of system accuracy, our results con-
firm prior work on data selection, demonstrating
that in comparison to training using all available
data, comparable or even better MT performance
can be obtained using only a fraction of the out-
of-domain data available.

Table 5 shows SMT results for the same sub-
set size of 2M sentences used for the coverage
results in Table 4. Systems trained on data se-
lected using the hybrid representation are up to
+0.5 BLEU better, regardless of whether the se-
lection process is monolingual or bilingual. In-
deed, at least for BLEU, it appears that our hy-
brid method may tend to converge to comparable
performance more quickly, a possibility worthy of
future experimentation.

The TER results are mixed for this data se-
lection subset size. The MT evaluation scores
are low in absolute terms, due to only using the
general-domain data, yet are still not inconsistent
with prior research done using this dataset (Fed-
erico et al., 2011). Fluctuations in the perfor-
mance curves are also consistent with prior work,
as IWSLT scores are very jittery. We averaged
results over three tuning runs, for stability. De-
spite that, Figure 3 shows how high-variance TER
scores are on this task.

4.2.3 Selection Model Size
The resulting translation system sizes conform
with prior work: selecting smaller subsets yields
smaller downstream MT systems. For example,
an MT system trained on 1M selected sentences
is ∼2.3GB in size, a factor of 5 smaller than the
11.3GB baseline MT system trained on all 6M
sentences. In addition, we observe a healthy re-
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Figure 1: Percentage of TED vocabulary covered vs. number of selected sentences by method.

Figure 2: Percentage of LDC vocabulary covered vs. number of selected sentences by method.
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Figure 3: SMT system scores on the TED Zh-En test2010 set vs. number of selected sentences by
method.

Metric Method Std Hyb

BLEU
Mono-en 8.55 8.95
Mono-Zh 7.70 8.22
Bilingual 8.34 8.68

TER
Mono-En 84.44 82.15
Mono-Zh 80.16 84.51
Bilingual 81.27 81.44

Table 5: SMT system score comparison between
standard and hybrid-based data selection, for data-
selected samples of 2M sentences.

duction in the memory requirements for the data
selection process, which requires training a lan-
guage model on the entire data pool. The bina-
rized language model built using the standard data
selection baseline on the full corpus of 6M sen-
tences requires about 2GB, whereas the equiva-
lent all-data LM for our approach is 25% smaller.3

This means that for any given amount of avail-
able memory, the hybrid method can scale up data
selection to a larger out-of-domain sentence pool.
As a rough example, an 8GB desktop machine can
be used to train an LM on 32M sentences using
the hybrid representation rather than 24M using

3Our back-of-the-envelope estimates ignore the in-
domain LM, which is tiny in comparison.

the standard text; for a large-memory 128GB ma-
chine, our method would allow us to increase the
size of the corpus used to train the full-data LM
from a maximum of 384M sentences to more than
half a billion sentences.

5 Conclusions

We have presented a new method for data selection
that retains the existing advantages of the state-
of-the-art approach, while improving vocabulary
coverage and also improving the ability to scale up
to larger out-of-domain datasets. Our motivation
is in the practical application of NLP technology,
which often requires working with constrained re-
sources and in specific domains with limited train-
ing data. The proposal is conceptually simple,
uses widely available tools, and is easily applied.
A drawback of the proposed approach is that it re-
quires an additional pre-processing step of tagging
all of the training data. For languages for which a
POS tagger is not available, we expect that data-
driven word classes would be a good substitute. In
future work we plan to explore hybrid represen-
tations further, e.g. abstracting away from infre-
quent lexical items via distributional clustering or
morphological analysis, rather than using part-of-
speech information.

64



Acknowledgments

We gratefully thank the anonymous reviewers and
Timo Baumann for their detailed feedback.

References

Axelrod, A. (2014). Data Selection for Statistical
Machine Translation. PhD thesis, University of
Washington.

Axelrod, A., He, X., and Gao, J. (2011). Domain
Adaptation Via Pseudo In-Domain Data Selec-
tion. EMNLP (Empirical Methods in Natural
Language Processing).

Bisazza, A. and Federico, M. (2012). Cutting the
Long Tail : Hybrid Language Models for Trans-
lation Style Adaptation. EACL (European As-
sociation for Computational Linguistics), pages
439–448.

Bulyko, I., Ostendorf, M., and Stolcke, A. (2003).
Getting More Mileage From Web Text Sources
For Conversational Speech Language Model-
ing Using Class-Dependent Mixtures. NAACL
(North American Association for Computa-
tional Linguistics).

Cettolo, M., Girardi, C., and Federico, M. (2012).
WITˆ3 : Web Inventory of Transcribed and
Translated Talks. EAMT (European Association
for Machine Translation).

Chiang, D., Marton, Y., and Resnik, P. (2008). On-
line large-margin training of syntactic and struc-
tural translation features. EMNLP (Empirical
Methods in Natural Language Processing).
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Abstract

DFKI participated in the shared transla-
tion task of WMT 2015 with the German-
English language pair in each translation
direction. The submissions were gener-
ated using an experimental hybrid system
based on three systems: a statistical Moses
system, a commercial rule-based system,
and a serial coupling of the two where
the output of the rule-based system is fur-
ther translated by Moses trained on paral-
lel text consisting of the rule-based output
and the original target language. The out-
puts of three systems are combined using
two methods: (a) an empirical selection
mechanism based on grammatical features
(primary submission) and (b) IBM1 mod-
els based on POS 4-grams (contrastive sub-
mission).

1 Introduction

The system architecture we will describe has been
developed within the QTLEAP project.1 The goal
of the project is to explore different combinations
of shallow and deep processing for improving MT

quality. The system presented in this paper is the
first of a series of MT system prototypes developed
in the project. Figure 1 shows the overall architec-
ture that includes:

• A statistical Moses system,

• the commercial transfer-based system Lucy,

• their serial combination (”LucyMoses”), and

• an informed selection mechanism (”ranker”).

The components of this hybrid system will be
detailed in the sections below.

1http://qtleap.eu/

Figure 1: Architecture of System Combination.

2 Translation systems

Moses
Our statistical machine translation system was
based on a vanilla phrase-based system built with
Moses (Koehn et al., 2007) trained on the cor-
pora Europarl ver. 7, News Commentary ver. 9
(Bojar et al., 2014), Commoncrawl (Smith et al.,
2013) and MultiUN (Eisele and Chen, 2010). Lan-
guage models of order 5 have been built and inter-
polated with SRILM (Stolcke, 2002) and KenLM
(Heafield, 2011). For German to English, we also
experimented with the method of pre-ordering
the source side based on the target-side grammar
(Popović and Ney, 2006). As a tuning set we used
the news-test 2013.

Lucy
The transfer-based Lucy system (Alonso and
Thurmair, 2003) includes the results of long lin-
guistic efforts over the last decades and that has
been used in previous projects including EURO-
MATRIX, EUROMATRIX+ and QTLAUNCHPAD,
while relevant hybrid systems have been submit-
ted to WMT (Chen et al., 2007; Federmann et
al., 2010; Hunsicker et al., 2012). The transfer-
based approach has shown good results that com-
pete with pure statistical systems, whereas it fo-
cuses on translating according to linguistic struc-
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tures. Its functionality is based on hand-written
linguistic rules and there are no major empirical
components. Translations are processed on three
phases:

• the analysis phase, where the source-
language text is parsed and a tree of the
source language is constructed

• the transfer phase, where the analysis tree is
used for the transfer phase, where canonical
forms and categories of the source are trans-
ferred into similar representations of the tar-
get language

• the generation phase, where the target sen-
tence is formed out of the transfered repre-
sentations by employing inflection and agree-
ment rules.

LucyMoses
As an alternative way of automatic post-editing
of the transfer-based system, a serial trans-
fer+SMT system combination is used, as described
in (Simard et al., 2007). For building it, the first
stage is translation of the source language part of
the training corpus by the transfer-based system.
In the second stage, an SMT system is trained using
the transfer-based translation output as a source
language and the target language part as a target
language. Later, the test set is first translated by
the transfer-based system, and the obtained trans-
lation is translated by the SMT system. In previ-
ous experiments, however, the method on its own
could not outperform Moses trained on a large par-
allel corpus. The example in Figure 1 (taken from
the QTLEAP corpus used in the project) nicely il-
lustrates how the serial coupling operates. While
the SMT output used the right terminology (“Menü
Einfügen” – “insert menu”), the instruction is not
formulated in a very polite manner. In contrast,
the output of the transfer-based system is formu-
lated politely, yet mistranslating the menu type.
The serial system combination produces a perfect
translation. In this particular case, the machine
translation is even better than the human reference
(“Wählen Sie im Einfügen Menü die Tabelle aus.”)
as the latter is introducing a determiner for “table”,
which is not justified by the source.

2.1 Sentence level selection
We present two methods for performing sentence
level selection, one with pairwise classifier and
one based on POS 4-gram IBM1 models.

2.1.1 Empirical machine learning classifier
(primary submission)

The machine learning (ML) selection mecha-
nism is based on encouraging results of previous
projects including EUROMATRIX+ (Federmann
and Hunsicker, 2011), META-NET (Federmann,
2012), QTLAUNCHPAD (Avramidis, 2013; Shah
et al., 2013). It has been extended to include sev-
eral features that can only be generated on a sen-
tence level and would otherwise blatantly increase
the complexity of the transfer or decoding algo-
rithm. In the architecture at hand, automatic syn-
tactic and dependency analysis is employed on a
sentence level, in order to choose the sentence that
fulfills the basic quality aspects of the translation:
(a) assert the fluency of the generated sentence, by
analyzing the quality of its syntax (b) ensure its ad-
equacy, by comparing the structures of the source
with the structures of the generated sentence.

All produced features are used to build
a machine-learned ranking mechanism (ranker)
against training preference labels. Preference la-
bels are part of the training data and rank dif-
ferent system outputs for a given source sentence
based on the translation quality. Preference labels
are generated either by automatic reference-based
metrics, or derived from human preferences. The
ranker was a result of experimenting with various
combinations of feature sets and machine learn-
ing algorithms and choosing the one that performs
best on the development corpus.

The implementation of the selection mechanism
is based on the “Qualitative” toolkit that was pre-
sented at the MT Marathon, as an open-source con-
tribution by QTLEAP (Avramidis et al., 2014).

Feature sets We experimented with feature sets
that performed well in previous experiments. In
particular:

• Basic syntax-based feature set: unknown
words, count of tokens, count of alternative
parse trees, count of verb phrases, PCFG
parse log likelihood. The parsing was per-
formed with the Berkeley Parser (Petrov and
Klein, 2007) and features were extracted
from both source and target. This feature set
has performed well as a metric in WMT-11
metrics task (Avramidis et al., 2011).

• Basic feature set + 17 QuEst baseline fea-
tures: this feature set combines the ba-
sic syntax-based feature set described above
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with the baseline feature set of the QuEst
toolkit (Specia et al., 2013) as per WMT-13
(Bojar et al., 2013). This feature set combina-
tion got the best result in WMT-13 quality es-
timation task (Avramidis and Popović, 2013).
The 17 features set includes shallow features
such as the number of tokens, LM probabili-
ties, number of occurences of the target work
within the target probability, average num-
bers of translations per source word in the
sentence, percentages of unigrams, bigrams
and trigrams in quartiles 1 and 4 of frequency
of source words in a source language corpus
and the count of punctuation marks.

Machine Learning As explained above, the
core of the selection mechanism is a ranker which
reproduces ranking by aggregating pairwise de-
cisions by a binary classifier (Avramidis, 2013).
Such a classifier is trained on binary comparisons
in order to select the best out of two different MT
outputs given one source sentence at a time. As a
training material, we used the evaluation dataset of
the WMT shared tasks (years 2008-2014), where
each source sentence was translated by many sys-
tems and their outputs were consequently ranked
by human annotators. These preference labels pro-
vided the binary pairwise comparisons for training
the classifiers. Additionally to the human labels,
we also experimented on training the classifiers
against automatically generated preference labels,
after ranking the outputs with METEOR (Banerjee
and Lavie, 2005). In each translation direction, we
chose the label type (human vs. METEOR) which
maximizes if possible all automatic scores on our
development set, including document-level BLEU.

We exhaustively tested all suggested feature sets
with many machine learning methods, including
Support Vector Machines (with both RBF and lin-
ear kernel), Logistic Regression, Extra/Decision
Trees, k-neighbors, Gaussian Naive Bayes, Lin-
ear and Quadratic Discriminant Analysis, Ran-
dom Forest and Adaboost ensemble over Deci-
sion Trees. The binary classifiers were wrapped
into rankers using the soft pairwise recomposi-
tion (Avramidis, 2013) to avoid ties between the
systems. When ties occurred, the system se-
lected based on a predefined system priority (Lucy,
Moses, LucyMoses). The predefined priority was
defined manually based on preliminary observa-
tions in order to prioritize the transfer-based sys-
tem, due to its tension to achieve better grammat-

icality. Further analysis on this aspect may be re-
quired.

Best combination The optimal systems are us-
ing:

1. the Basic feature set + 17 QuEst baseline fea-
tures for GermanrightarrowEnglish, trained
with Suppor Vector Machines (Basak et al.,
2007) against human ranking labels.

2. the basic syntax-based feature set for
English→German, trained with Support Vec-
tor Machines against METEOR scores. ME-
TEOR was chosen since for this language pair,
the empirical mechanism trained on human
judgments had very low performance in term
of correlation with humans.

2.1.2 POS 4-gram IBM1 models (contrastive
submission)

Using the IBM1 scores (Brown et al., 1993) for
automatic evaluation of MT outputs without ref-
erence translations has been proposed in Popović
et al. (2011), and the best variant in terms of cor-
relation with human ranking was the target-from-
source direction based on POS 4-grams. There-
fore, we investigated this variant for our sentence
selection, and we submitted the obtained transla-
tion outputs as contrastive.

The IBM1 scores are defined in the following
way:

IBM1 =
1

(S + 1)H

H∏
i=1

S∑
j=0

p(hi|sj) (1)

where sj are the POS 4-grams of the source lan-
guage sentence, S is the POS 4-gram length of this
sentence, hi are the POS 4-grams of the target lan-
guage translation output (hypothesis), and H is the
POS 4-gram length of this hypothesis.

A parallel bilingual corpus for the desired lan-
guage pair and a tool for training the IBM1 model
are required in order to obtain IBM1 probabilities
p(hi|sj). For the POS n-gram scores, appropriate
POS taggers for each of the languages are neces-
sary. The POS tags cannot be only basic but must
have all details (e.g. verb tenses, cases, number,
gender, etc.).

The bilingual IBM1 probabilities used in our
experiments are learnt from the German-English
part of the WMT 2010 News Commentary bilin-
gual corpora. Both German and English POS tags
were produced using TreeTagger (Schmid, 1994).
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3 Experimental results

Table 1 presents BLEU scores (Papineni et al.,
2002), word F-scores and POS F-scores (Popović,
2011) for all individual systems and system com-
binations for both translation directions. The fol-
lowing interesting tendencies can be observed:

• German→English:

– Moses and LucyMoses are comparable
on the word level (BLEU and WORDF)

– LucyMoses is best on the syntactic
(POS) level

– LucyMoses achieves better scores than
both its components

– using all three systems with a selection
mechanism is the best option

• English→German:

– Lucy is comparable with Moses on the
word level and better on syntactic level

– LucyMoses improves all scores
– LucyMoses+Moses (LM+M) is the best

combination for word level scores
– Lucy+LucyMoses (L+LM) is compara-

ble with the combination of all three sys-
tems (L+LM+M) for the syntactic ori-
ented POSF score

We submitted the combination of all three sys-
tems for both selection mechanisms and for both
translation directions. It should be noted that the
ML classifier is used for the project’s first official
prototype, whereas the IBM1 classifier has been
investigated only recently in the framework of the
project – therefore the primary submission for the
shared task is the ML classifier although it yielded
lower automatic scores than the IBM1 classifier.

In order to estimate the limits of the classi-
fiers for the given three MT systems, upper bound
scores are presented in the last two rows, when se-
lecting criteria were the WORDF and POSF scores
themselves. It can be seen that there is a room for
improvement for both selection methods. Further
investigation, tuning and extension of the selec-
tion mechanisms will provide more insights and
has potential for future improvements of the selec-
tion itself as well as of the MT systems.

Preliminary results concerning analysis of dif-
ferences between the systems and behaviour of
classifiers are shown in the following section.

3.1 Analysis of the results

First step towards better understanding of the se-
lection mechanisms is to investigate the contribu-
tion of each of the individual systems in the final
translation output. The results are presented in Ta-
ble 2 in the form of percentage of sentences se-
lected from each system. It is notable that:

• the ML classifier mostly favors the transfer-
based output;

• for the English→German translation, the
same holds for the IBM1 classifier; for the
other translation direction, Lucy is selected
very rarely – for less than 2% sentences;

• upper bound selection yields a more or less
uniform distribution, however WORDF is
clearly biased towards LucyMoses and POSF
towards Lucy.

First indication is that the deep features of the
ML classifier are active and therefore this classi-
fier has a bias towards the transfer-based output.
Furthermore, system contributions of upper bound
selection methods indicate that the transfer-based
outputs are more grammatical and thus favored
by the syntax-oriented POSF score, whereas the
LucyMoses system, which can be seen as a lexi-
cal reparation of a grammatical output, is favored
by the lexical WORDF score. Nevertheless, these
first hypotheses need to be confirmed by further
studies that are planned.

Table 3 shows examples of differences between
the selection methods as well as between the three
individual MT systems. The sentences are taken
from the WMT-15 test set. First column denotes
the selection method which choose the particular
translation output. Sentence 1 illustrates the differ-
ences between two classifiers as well as between
two F-scores; POSF score and ML classifier opt
for the transfer-based translation, whereas IBM1
choses Moses and WORDF score prefers Lucy-
Moses. Sentences 2-4 show the discrepance be-
tween the ML classifier and the automatic scores;
the IBM1 score selection differs from the upper
bound selections only for the sentence 4. Such
sentences are the most probable reason for lower
overall MLC performance in terms of automatic
scores. The last sentence shows an example where
both classifiers agree, but they disagree with both
F-scores.
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(a) De→En
German→English BLEU WORDF POSF
individual Lucy (L) 20.8 25.9 42.6
systems Moses (M) 23.2 28.2 42.7

LucyMoses (LM) 23.2 27.9 44.2
selection ML classifier L+LM+M 22.6 27.4 43.6
mechanism POS 4-gram IBM1 L+M 23.2 28.2 42.8

L+LM 23.2 27.9 44.2
LM+M 23.7 28.6 44.5
L+LM+M 23.7 28.6 44.5

upper max(WORDF) L+LM+M 26.9 30.8 46.8
bounds max(POSF) L+LM+M 25.6 30.7 48.6

(b) En→De
English→German BLEU WORDF POSF
individual Lucy (L) 17.3 22.9 44.5
systems Moses (M) 17.1 23.1 41.9

LucyMoses (LM) 18.9 24.4 45.3
selection ML classifier L+LM+M 18.1 23.7 44.4
mechanism POS 4-gram IBM1 L+M 18.2 23.6 44.7

L+LM 18.6 24.0 45.7
LM+M 19.1 24.4 45.1
L+LM+M 18.9 24.1 45.4

upper max(WORDF) L+LM+M 22.4 26.6 47.1
bounds max(POSF) L+LM+M 21.0 26.1 49.4

Table 1: Translation results [%] for the German-English language pair.

(a) De→En
German→English Lucy Moses LucyMoses
ML classifier 42.1 36.6 21.3
POS 4-gram IBM1 L+M 2.8 97.2 /

L+LM 2.5 / 97.5
LM+M / 42.4 57.6
L+LM+M 1.7 56.0 42.3

WORDF L+LM+M 29.3 31.8 38.9
POSF L+LM+M 34.5 33.7 31.8

(b) En→De
English→German Lucy Moses LucyMoses
ML classifier 44.0 8.0 48.0
POS 4-gram IBM1 L+M 56.5 43.5 /

L+LM 63.3 / 36.7
LM+M / 45.5 54.5
L+LM+M 41.5 22.1 36.3

WORDF L+LM+M 34.2 29.4 36.3
POSF L+LM+M 42.3 27.1 30.5

Table 2: Percentage of selected sentences from each individual system.
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The table also illustrates advantages of the se-
rial LucyMoses system – this system produces the
best translation output for all presented sentences
except for sentence 3.

4 Summary and outlook

We described a hybrid MT system based on three
different individual systems where the final trans-
lation output is produced by a sentence level se-
lection mechanism, with the possibility to include
deep linguistic and grammatical features. Prelim-
inary analysis suggests that various improvements
are possible, starting from improvements on the
transfer-based system (handling of lexical items
such as terminology, MWEs, OOVs and robust-
ness of parsing), the serial combination (e.g., im-
proved disambiguation), up to more detailed anal-
ysis and testing and improvement of the selection
mechanism (e.g., integrating more ”deep” infor-
mation from external parsing).
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ref: A new round of indirect talks is expected to begin

later this month in Egypt.
MLC Lucy: A new round of indirect conversations will probably

still begin in this month in Egypt.
Moses: A new round of indirect talks is likely to begin in this month in Egypt.

WORDF, POSF, IBM1 LucyMoses: A new round of indirect talks is likely to begin this month in Egypt.
3) src: Ich denke schon.

ref: I think so.
Lucy: I already think.

WORDF, POSF, IBM1 Moses: I think so.
MLC LucyMoses: I have already think.
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Abstract

We build parallel FDA5 (ParFDA) Moses
statistical machine translation (SMT) sys-
tems for all language pairs in the workshop
on statistical machine translation (Bojar et
al., 2015) (WMT15) translation task and
obtain results close to the top with an av-
erage of 3.176 BLEU points difference us-
ing significantly less resources for build-
ing SMT systems. ParFDA is a paral-
lel implementation of feature decay algo-
rithms (FDA) developed for fast deploy-
ment of accurate SMT systems (Biçici,
2013; Biçici et al., 2014; Biçici and
Yuret, 2015). ParFDA Moses SMT sys-
tem we built is able to obtain the top
TER performance in French to English
translation. We make the data for build-
ing ParFDA Moses SMT systems for
WMT15 available: https://github.
com/bicici/ParFDAWMT15.

1 Parallel FDA5 (ParFDA)

Statistical machine translation performance is in-
fluenced by the data: if you already have the
translations for the source being translated in your
training set or even portions of it, then the transla-
tion task becomes easier. If some token does not
appear in your language model (LM), then it be-
comes harder for the SMT engine to find its cor-
rect position in the translation. The importance of
ParFDA increases with the proliferation of train-
ing material available for building SMT systems.
Table 1 presents the statistics of the available train-
ing and LM corpora for the constrained (C) sys-
tems in WMT15 (Bojar et al., 2015) as well as the
statistics of the ParFDA selected training and LM
data.

ParFDA (Biçici, 2013; Biçici et al., 2014) runs
separate FDA5 (Biçici and Yuret, 2015) models on

randomized subsets of the training data and com-
bines the selections afterwards. FDA5 is avail-
able at http://github.com/bicici/FDA. We run
ParFDA SMT experiments using Moses (Koehn et
al., 2007) in all language pairs in WMT15 (Bojar
et al., 2015) and obtain SMT performance close
to the top constrained Moses systems. ParFDA al-
lows rapid prototyping of SMT systems for a given
target domain or task.

We use ParFDA for selecting parallel training
data and LM data for building SMT systems. We
select the LM training data with ParFDA based on
the following observation (Biçici, 2013):

No word not appearing in the training
set can appear in the translation.

Thus we are only interested in correctly ordering
the words appearing in the training corpus and col-
lecting the sentences that contain them for build-
ing the LM. At the same time, a compact and more
relevant LM corpus is also useful for modeling
longer range dependencies with higher order n-
gram models. We use 3-grams for selecting train-
ing data and 2-grams for LM corpus selection.

2 Results

We run ParFDA SMT experiments for all lan-
guage pairs in both directions in the WMT15
translation task (Bojar et al., 2015), which include
English-Czech (en-cs), English-German (en-de),
English-Finnish (en-fi), English-French (en-fr),
and English-Russian (en-ru). We truecase all of
the corpora, set the maximum sentence length to
126, use 150-best lists during tuning, set the LM
order to a value in [7, 10] for all language pairs,
and train the LM using SRILM (Stolcke, 2002)
with -unk option. For GIZA++ (Och and Ney,
2003), max-fertility is set to 10, with the num-
ber of iterations set to 7,3,5,5,7 for IBM mod-
els 1,2,3,4, and the HMM model, and 70 word
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S → T
Training Data LM Data

Data #word S (M) #word T (M) #sent (K) SCOV TCOV #word (M) TCOV
en-cs C 253.8 224.1 16083 0.832 0.716 841.2 0.862
en-cs ParFDA 49.0 42.1 1206 0.828 0.648 447.2 0.834
cs-en C 224.1 253.8 16083 0.716 0.832 5178.5 0.96
cs-en ParFDA 42.0 46.3 1206 0.71 0.786 1034.2 0.934
en-de C 116.3 109.8 4525 0.814 0.72 2380.6 0.899
en-de ParFDA 37.6 33.1 904 0.814 0.681 513.1 0.854
de-en C 109.8 116.3 4525 0.72 0.814 5111.2 0.951
de-en ParFDA 33.3 33.1 904 0.72 0.775 969.1 0.923
en-fi C 52.8 37.9 2072 0.684 0.419 52.7 0.559
en-fi ParFDA 37.2 26.4 1035 0.684 0.41 79.1 0.559
fi-en C 37.9 52.8 2072 0.419 0.684 5054.2 0.951
fi-en ParFDA 25.1 34.5 1035 0.419 0.669 985.9 0.921
en-fr C 1096.9 1288.5 40353 0.887 0.905 2989.4 0.956
en-fr ParFDA 58.8 63.2 1261 0.882 0.857 797.1 0.937
fr-en C 1288.5 1096.9 40353 0.905 0.887 5961.6 0.962
fr-en ParFDA 72.4 60.1 1261 0.901 0.836 865.3 0.933
en-ru C 51.3 48.0 2563 0.814 0.683 848.7 0.881
en-ru ParFDA 37.2 33.1 1281 0.814 0.672 434.8 0.857
ru-en C 48.0 51.3 2563 0.683 0.814 5047.8 0.958
ru-en ParFDA 33.8 36.0 1281 0.683 0.803 996.3 0.933

Table 1: Data statistics for the available training and LM corpora in the constrained (C) setting compared
with the ParFDA selected training and LM data. #words is in millions (M) and #sents in thousands (K).

classes are learned over 3 iterations with the mk-
cls tool during training. The development set con-
tains up to 5000 sentences randomly sampled from
previous years’ development sets (2010-2014) and
remaining come from the development set for
WMT15.

2.1 Statistics

The statistics for the ParFDA selected training
data and the available training data for the con-
strained translation task are given in Table 1. For
en and fr, we have access to the LDC Gigaword
corpora (Parker et al., 2011; Graff et al., 2011),
from which we extract only the story type news.
The size of the LM corpora includes both the
LDC and the monolingual LM corpora provided
by WMT15. Table 1 shows the significant size
differences between the constrained dataset (C)
and the ParFDA selected data and also present the
source and target coverage (SCOV and TCOV) in
terms of the 2-grams of the test set. The quality
of the training corpus can be measured by TCOV,
which is found to correlate well with the BLEU
performance achievable (Biçici, 2011).

The space and time required for building the

ParFDA Moses SMT systems are quantified in Ta-
ble 2 where size is in MB and time in minutes. PT
stands for the phrase table. We used Moses ver-
sion 3.0, from www.statmt.org/moses. Building
a ParFDA Moses SMT system can take about half
a day.

2.2 Translation Results

ParFDA Moses SMT results for each translation
direction together with the LM order used and
the top constrained submissions to WMT15 are
given in Table 3 1, where BLEUc is cased BLEU.
ParFDA significantly reduces the time required for
training, development, and deployment of an SMT
system for a given translation task. The average
difference to the top constrained submission in
WMT15 is 3.176 BLEU points whereas the dif-
ference was 3.49 BLEU points in WMT14 (Biçici
et al., 2014). Performance improvement over last
year’s results is likely due to using higher order
n-grams for data selection. ParFDA Moses SMT
system is able to obtain the top TER performance
in fr-en.

1We use the results from matrix.statmt.org.
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S → T
Time (Min) Space (MB)

ParFDA Moses
Overall

Moses
Train LM Total Train Tune Total PT LM ALL

en-cs 10 73 83 999 1085 2154 2237 3914 4826 41930
cs-en 11 524 535 965 413 1445 1980 3789 6586 39661
en-de 9 146 155 852 359 1279 1434 3333 4867 36638
de-en 6 232 238 797 421 1285 1523 3065 6233 34316
en-fi 7 0 7 591 569 1212 1219 2605 18746 24948
fi-en 5 308 313 543 164 744 1057 2278 6115 22933
en-fr 22 233 255 2313 331 2730 2985 5628 7359 76970
fr-en 26 330 356 2810 851 3749 4105 6173 6731 86442
en-ru 11 463 474 704 643 1429 1903 4081 4719 43479
ru-en 42 341 383 704 361 1140 1523 4039 6463 40948

Table 2: The space and time required for building the ParFDA Moses SMT systems. The sizes are in
MB and time in minutes. PT stands for the phrase table. ALL does not contain the size of the LM.

BLEUc
S → en en→ T

cs-en de-en fi-en fr-en ru-en en-cs en-de en-fi en-fr en-ru
ParFDA 0.204 0.2441 0.1541 0.3263 0.2598 0.148 0.1761 0.1135 0.3195 0.22
TopC 0.262 0.293 0.179 0.331 0.279 0.184 0.249 0.127 0.336 0.243
diff 0.058 0.0489 0.0249 0.0047 0.0192 0.036 0.0729 0.0135 0.0165 0.023
LM order 8 8 8 8 8 8 8 10 8 8

Table 3: BLEUc for ParFDA results, for the top constrained result in WMT15 (TopWMTC, from
matrix.statmt.org), their difference, and the ParFDA LM order used are presented. Average
difference is 3.176 BLEU points

2.3 LM Data Quality

A LM selected for a given translation task allows
us to train higher order language models, model
longer range dependencies better, and achieve
lower perplexity as shown in Table 4. We compare
the perplexity of the ParFDA selected LM with a
LM trained on the ParFDA selected training data
and a LM trained using all of the available training
corpora. We build LM using SRILM with inter-
polated Kneser-Ney discounting (-kndiscount
-interpolate). We also use -unk option to
build open-vocabulary LM. We are able to achieve
significant reductions in the number of OOV to-
kens and the perplexity, reaching up to 78% reduc-
tion in the number of OOV tokens and up to 63%
reduction in the perplexity. ParFDA can achieve
larger reductions in perplexity than the 27% that
can be achieved using a morphological analyzer
and disambiguator for Turkish (Yuret and Biçici,
2009) and can decrease the OOV rate at a similar
rate. Table 4 also presents the average log prob-
ability of tokens and the log probability of token
<unk>. The increase in the ratio between them in

the last column shows that OOV in ParFDA LM
are not just less but also less likely at the same
time.

3 Conclusion

We use ParFDA for solving computational scala-
bility problems caused by the abundance of train-
ing data for SMT models and LMs and still
achieve SMT performance that is on par with the
top performing SMT systems. ParFDA raises the
bar of expectations from SMT with highly accu-
rate translations and lower the bar to entry for
SMT into new domains and tasks by allowing fast
deployment of SMT systems. ParFDA enables
a shift from general purpose SMT systems to-
wards task adaptive SMT solutions. We make the
data for building ParFDA Moses SMT systems for
WMT15 available: https://github.com/
bicici/ParFDAWMT15.
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OOV Rate perplexity avg log probability <unk> log probability <unk>
avg

S → T order
C

train
FDA5
train

FDA5
LM %red

C
train

FDA5
train

FDA5
LM %red

C
train

FDA5
train

FDA5
LM

C
train

FDA5
train

FDA5
LM %inc

en-cs

3

.038 .055 .014 .64

763 694 444 .42 -2.91 -2.89 -2.66

-4.94 -5.58 -5.69

.26
4 716 668 403 .44 -2.89 -2.87 -2.62 .27
5 703 662 396 .44 -2.88 -2.87 -2.61 .27
8 699 660 394 .44 -2.88 -2.86 -2.61 .27

cs-en

3

.035 .046 .014 .62

281 255 196 .3 -2.46 -2.42 -2.3

-4.84 -5.33 -5.83

.29
4 260 243 157 .39 -2.43 -2.4 -2.2 .33
5 251 237 150 .4 -2.41 -2.39 -2.18 .33
8 247 236 148 .4 -2.41 -2.39 -2.18 .33

en-de

3

.092 .107 .034 .63

425 383 303 .29 -2.68 -2.64 -2.5

-5.69 -5.92 -5.52

.04
4 414 377 268 .35 -2.67 -2.64 -2.45 .06
5 412 376 262 .37 -2.67 -2.64 -2.44 .06
8 412 376 261 .37 -2.67 -2.64 -2.43 .06

de-en

3

.05 .06 .025 .5

289 265 205 .29 -2.48 -2.45 -2.32

-5.69 -5.85 -5.81

.09
4 277 258 164 .41 -2.46 -2.44 -2.22 .13
5 275 257 156 .43 -2.46 -2.43 -2.2 .14
8 275 257 154 .44 -2.46 -2.43 -2.2 .14

en-fi

3

.203 .213 .128 .37

1413 1290 1347 .05 -3.44 -3.42 -3.31

-4.17 -5.45 -4.2

.05
4 1403 1285 1323 .06 -3.44 -3.41 -3.3 .05
5 1401 1284 1320 .06 -3.44 -3.41 -3.3 .05
8 1400 1284 1319 .06 -3.44 -3.41 -3.3 .05

fi-en

3

.087 .107 .019 .78

505 465 228 .55 -2.75 -2.72 -2.37

-4.34 -5.86 -5.91

.58
4 485 449 188 .61 -2.73 -2.71 -2.28 .63
5 482 447 179 .63 -2.73 -2.71 -2.26 .64
8 481 446 177 .63 -2.73 -2.71 -2.26 .65

en-fr

3

.019 .031 .01 .49

196 146 155 .21 -2.3 -2.18 -2.19

-5.28 -5.56 -5.36

.07
4 173 137 125 .27 -2.25 -2.15 -2.1 .08
5 167 136 119 .29 -2.23 -2.15 -2.08 .09
8 165 136 117 .29 -2.23 -2.15 -2.07 .09

fr-en

3

.022 .031 .01 .52

290 217 220 .24 -2.47 -2.35 -2.35

-5.28 -5.44 -5.31

.06
4 266 208 187 .3 -2.44 -2.33 -2.28 .08
5 260 207 181 .3 -2.43 -2.33 -2.26 .08
8 258 207 180 .3 -2.42 -2.33 -2.26 .08

en-ru

3

.049 .054 .014 .71

547 515 313 .43 -2.77 -2.75 -2.51

-3.57 -4.87 -5.45

.69
4 537 507 273 .49 -2.77 -2.75 -2.44 .73
5 536 507 264 .51 -2.77 -2.74 -2.43 .74
8 535 507 259 .52 -2.77 -2.74 -2.42 .74

ru-en

3

.041 .046 .017 .58

225 214 188 .16 -2.37 -2.35 -2.28

-3.65 -4.9 -5.79

.65
4 216 207 148 .31 -2.35 -2.33 -2.18 .71
5 215 206 140 .35 -2.35 -2.33 -2.15 .73
8 215 206 138 .36 -2.34 -2.33 -2.15 .73

Table 4: Perplexity comparison of the LM built from the training corpus (train), ParFDA selected training
data (FDA5 train), and the ParFDA selected LM data (FDA5 LM). %red is proportion of reduction.
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Ergun Biçici. 2011. The Regression Model of Machine
Translation. Ph.D. thesis, Koç University. Supervi-
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Ergun Biçici. 2013. Feature decay algorithms for fast
deployment of accurate statistical machine trans-
lation systems. In Proc. of the Eighth Workshop
on Statistical Machine Translation, Sofia, Bulgaria,
August.

Ondrej Bojar, Rajan Chatterjee, Christian Federmann,

77



Barry Haddow, Chris Hokamp, Matthias Huck,
Pavel Pecina, Philipp Koehn, Christof Monz, Mat-
teo Negri, Matt Post, Carolina Scarton, Lucia Spe-
cia, and Marco Turchi. 2015. Findings of the
2015 workshop on statistical machine translation. In
Proc. of the Tenth Workshop on Statistical Machine
Translation, Lisbon, Portugal, September.

David Graff, ngelo Mendona, and Denise DiPersio.
2011. French Gigaword third edition, Linguistic
Data Consortium.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics Com-
panion Volume Proceedings of the Demo and Poster
Sessions, pages 177–180. Association for Computa-
tional Linguistics.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword fifth edi-
tion, Linguistic Data Consortium.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. In Proc. Intl. Conf. on Spo-
ken Language Processing, pages 901–904.

Deniz Yuret and Ergun Biçici. 2009. Modeling mor-
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Ondřej Bojar and Aleš Tamchyna
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Abstract

This paper describes our WMT15 system
submission for the translation task, a hy-
brid system for English-to-Czech transla-
tion. We repeat the successful setup from
the previous two years.

1 Introduction

CHIMERA (Bojar et al., 2013; Tamchyna et al.,
2014) is our English-to-Czech MT system de-
signed as a combination of three very different
components:

• TectoMT (Popel and Žabokrtský, 2010), a
deep-syntactic transfer-based system,

• Moses (Koehn et al., 2007), where we use
a factored phrase-based setup with large lan-
guage models,

• Depfix (Rosa et al., 2012), an automatic post-
editing system, aimed at correcting mainly
errors in morphological agreement but suc-
cessful also in semantic corrections, esp. re-
covery of lost negation.

The overall setup as well as the details on each
of the components have been described in the past.
We nevertheless briefly review it here, to make the
paper self-contained.

This year, our submission mainly differed in the
additional data we were able to collect. We thus
evaluate how much do the additional data help
in contrast with an identical setup using WMT15
training data only.1 For the manual evaluation in
WMT15, we submitted the non-constrained sys-
tem, and even the “constrained” setup might not
qualify as such, since it is a system combination
and both TectoMT and Depfix rely on handcrafted
rules to some extent.

1http://www.statmt.org/wmt15/
translation-task.html

In the following, we provide various details of
the setup. We leave Depfix aside, since we simply
applied it as a post-processing step and the rele-
vant analysis of its rules was published previously
(Bojar et al., 2013).

2 Chimera in WMT15

2.1 Factored Setup

We use our established setup, translating from
English word form in one translation step to the
Czech word form and morphological tag. This al-
lows us to use language models over morphologi-
cal tags, see §2.5 below.

Our word forms are in truecase, i.e. the words
at sentence beginnings are lowercased, unless they
are names. We rely on Czech and English lemma-
tizers2 to select the true case.

Otherwise, our setup is fairly standard. We do
not use any models of reordering, relying on basic
distortion penalty.

2.2 Our System Combination

The first two components of CHIMERA, Tec-
toMT (which appears in WMT evaluations as CU-
TECTOMT) and Moses are independent MT sys-
tems on their own. CHIMERA combines them in
a way remotely similar to standard system combi-
nation techniques (Matusov et al., 2008) and adds
the third component, Depfix, for automatic correc-
tion of some grammar and semantic errors. For
clarity, we will use the abbreviation CH to refer
to the basic Moses setup without CU-TECTOMT.
CH refers to the first stage, where CU-TECTOMT

has been added, and CH is the complete combi-
nation.

To obtain the output of CH from CH and
CU-TECTOMT, we could have used some of the
standard system combination tools, e.g. Barrault

2http://ufal.mff.cuni.cz/morphodita
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TectoMT

Synthetic Parallel Data
(for Both Dev and Test)

Plain System

Plain System (optimized) = CH0

Baseline Output

Combined System

Combined System (optimized) = CH1

Combined Output

Test Set: en

Baseline Parallel Data

Dev Set: en cs

Figure 1: “Poor man’s” system combination: adding CU-TECTOMT outputs to CH in a separate phrase
table, optimizing the combination with standard MERT and translating the test set.

(2010) or Heafield and Lavie (2010). Instead, we
simply use Moses to do the job.

Figure 1 provides a graphical summary of the
technique. To obtain the combined system CH,
we add one additional phrase table to the primary
phrase-based system CH. This new phrase table
is “synthetic”, its source side comes from the in-
put text and the target side comes from the output
of CU-TECTOMT. The process to construct this
phrase table is straightforward: we translate the
source side of the development sets and the test
set with CU-TECTOMT and treat it as a standard
parallel corpus. We align it with GIZA++, using
lemmas instead of word forms, but aligning only
this relatively small corpus, not the main parallel
training data. After symmetrization (grow-diag-
final-and), we extract phrases without any smooth-
ing. Moses is set up to use simultaneously the two
phrase tables, the CH one and the new from CU-
TECTOMT, in two alternative decoding paths.

The main and only trick is to include the devel-
opment set(s) and the test set in this phrase table.
Covering the development set ensures that MERT
will correctly assess the relative importance of the
two tables. And covering the test set is essential in
the main run.

We dub the approach “poor man’s” system com-
bination, but we have recently found that this ap-
proach has surprising benefits over the standard
approaches. It allows the combined system CH
to react to (usually longer) phrases coming from
CU-TECTOMT and use words and phrases from the
standard CH phrase table that were not previously
selected to CH single-best output but make the
sentence overall more fluent. See Tamchyna and

Bojar (2015) for a detailed analysis.
This year, we translated the source side of all

WMT news test sets from the years 2007 till 2015
with CU-TECTOMT, contributing to the phrase ta-
ble. The MERT is tuned only on WMT newstest
2013. We used newstest2014 to decide which ex-
act configuration to submit and the final results of
WMT are obviously based on newstest2015.

2.3 Parallel Data and Phrase Tables

Table 1 summarizes the parallel data used in
our experiments. We use the CzEng 1.0 corpus
and Europarl in both the constrained and uncon-
strained setting.

Our full system additionally uses OpenSubtitles
datasets from OPUS.3 We downloaded all three
corpora (2011, 2012, 2013) and ran context-aware
de-duplication on the whole dataset. (A sentence
is removed only if it was already seen in the con-
text of one preceding and one following sentence.
The same sentence can thus appear in the corpus
many times, if its context was different.)

For DGT Acquis, we do not rely on OPUS. In-
stead, we downloaded the corpus from the official
website, aligned the sentences using HunAlign
(Varga et al., 2005) and de-duplicated them.

We also use the small translation memories
from ECDC4 and EAC.5

3http://opus.lingfil.uu.se/
4https://ec.europa.eu/jrc/

en/language-technologies/
ecdc-translation-memory

5https://ec.europa.eu/jrc/
en/language-technologies/
eac-translation-memory
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Source # sents # en tokens # cs tokens Constrained?
CzEng 1.0 14.83M 235.19M 206.05M D

Europarl 0.65M 17.62M 15.00M D

OpenSubtitles 33.25M 291.38M 237.61M -
DGT Acquis 3.82M 93.44M 84.81M -
EAC-TM 3351 24330 23106 -
ECDC-TM 2499 4092 41591 -

Table 1: Summary of parallel data used in our constrained and full setup.

Full Constrained
# sents # tokens long big morph longmorph long morph longmorph

Czech Press 305.41M 4852.59M - D - - - - -
CWC articles 38.42M 627.97M - D - - - - -
CzEng news 0.20M 4.22M - D D D - D D

RSS 4.81M 73.68M D D D D - - -
WMT mono 44.08M 738.88M D D D D D D D

Table 2: Monolingual data sources and LMs.

2.4 Monolingual Data

Table 2 summarizes the monolingual data that we
use in the full and in the constrained setup. Czech
Press is a very large collection of news texts ac-
quired in 2012. From CzEng 1.0, we use only the
news section. CWC stands for Czech Web Cor-
pus collected at our department from various web
sites; here, we restrict it to articles (as opposed to
discussion fora). RSS are our own collected news
from six Czech web news sites and WMT are the
standard monolingual data collected by WMT or-
ganizers in the years 2007–2014. Only CzEng and
WMT data are allowed in the constrained runs.

Note that several of the resources are likely to
overlap, e.g. our RSS collection probably follows
the same sources as WMT data and Czech Web
Corpus is also likely to be gathered from similar
websites.

Except CWC, all the LM texts are strictly from
the news domain. In other words, while we use as
much and as diverse parallel texts as possible, we
keep our LM in domain. We believe that at our
current order of data size, preserving the domain
is more important than using more monolingual
data.

2.5 Language Models

As detailed in Table 2, we build several separate
language models from the data. The constrained
setup uses three LMs and the full setup uses four:

Long is a 7-gram model based on our truecased
word forms. While the remaining LMs
are trained directly with KenLM (Heafield,
2011), this 7-gram LMs is interpolated with
SRILM from separate (KenLM) ARPA files
estimated from each of the years separately.
The lambdas for the interpolation are set
to optimize the perplexity on WMT new-
stest2012. This approach allows us to use the
relatively high order of the model and proba-
bly serves also as a kind of smoothing, dis-
tributing more probability mass to n-grams
that are important across several years.

Big is a 4-gram LM based on our truecased word
forms. It uses all our data, and as such, it can-
not be included in the constrained setup. The
motivation for using both “big” and “long”
models is to cover long sequences as well
as to have as precise statistics for shorter se-
quences as possible. We would not be able to
train a 7-gram model using all our data.

Morph is a 10-gram LM based on Czech morpho-
logical tags. There are around 4000 distinct
morphological tags, so we can afford training
such a high order of the LM.

LongMorph is a 15-gram variation of “morph”.
We were hoping that given again some more
training data this year, the morphological tags
would be dense enough to capture sentence
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patterns within 15-grams. As it turns out,
standard n-gram modelling techniques were
not able to reach this goal.

Table 3 lists the BLEU scores (newstest2014)
for all sensible (non-constrained) combinations of
the LMs in CH. We see that the LMs indeed have
some complementary effect. The absolute differ-
ences in BLEU scores are rather small (and most
of them are probably not statistically significant),
but arguably using “big”, “long” and one of the
morphological LMs is the most beneficial setup.

LMs BLEU
long 21.32
long morph longmorph 22.00
big 22.00
long morph 22.01
long longmorph 22.14
big morph 22.21
big long 22.26
big morph longmorph 22.28
big longmorph 22.29
big long morph 22.48
big long longmorph 22.69
all 22.59

Table 3: Complementary effect of adding Tec-
toMT and language models.

3 Results

Table 4 shows (tokenized) BLEU scores on the
WMT14 test set, comparing CH (i.e. plain fac-
tored phrase-based Moses setup) and CH (i.e.
the combination with CU-TECTOMT), in the con-
strained and full-data runs. The BLEU scores are
case-sensitive. The scores indicate that adding
CU-TECTOMT is more important than the addi-
tional training data. With more data, the benefit of
CU-TECTOMT slightly decreases, but still remains
rather high, 1.65 BLEU points absolute.

In Table 5, we list scores of different vari-
ants of CHIMERA and competing MT systems for
WMT15. Our system ranked first according to
both automatic and manual evaluation. Some of
the gains are due to large training data (other aca-
demic submissions were constrained systems). On
the other hand, we also outperform Google Trans-
late which likely uses all data available.

Constrained Full Delta
CH 21.28 22.59 1.31
CH 23.37 24.24 0.87
Delta 2.09 1.65 -

Table 4: BLEU scores on WMT newstest2014 of
the first two components of Chimera.

System BLEU TER Manual
CH 18.8 0.715 0.686
CH 18.7 0.717 –
JHU-SMT 18.2 0.725 0.503
CH 17.6 0.730 –
GOOGLE TRANSLATE 16.4 0.750 0.515
CU-TECTOMT 13.4 0.763 0.209

Table 5: Automatic scores and results of man-
ual ranking in WMT 2015 (preliminary re-
sults). BLEU (cased) and TER from matrix.
statmt.org. The top other system JHU-SMT

and GOOGLE TRANSLATE are reported for refer-
ence.

4 Conclusion

We briefly described our submission to the
WMT15 translation shared task. Our setup is
fairly standard with the exception of our language
model suite and the system combination with a
transfer-based system. We showed that we ben-
efit both from the large training data and from the
system combination. Our submission ranked first
according to both automatic and manual evalua-
tion.
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Abstract

We present the CimS submissions to the
WMT 2015 Shared Task for the transla-
tion direction English to German. Simi-
lar to our previous submissions, all of our
systems are aware of the complex nomi-
nal morphology of German. In this pa-
per, we combine source-side reordering
and target-side compound processing with
basic morphological processing in order to
obtain improved translation results. We
also report on morphological processing
for English to French.

1 Introduction

This paper presents our submissions to the WMT
shared task 2015. We use customised solutions to
address morphological challenges in the English
to German translation direction. Our goal is to
make German and English as similar as possible in
order to obtain better word alignments and hence
an improved translation quality. We base our work
on three main components, which we have care-
fully investigated separately in the past.

(i) Nominal Inflection We use context-based
prediction of German inflectional endings. This
improves fluency and enables the creation of mor-
phological forms which have not occurred in the
training data.

(ii) Source-side Reordering We reorder the En-
glish source text in order to make it more sim-
ilar to the German word order. This improves
word alignment and thus translation quality. It also
makes the reordering task in decoding easier.

(iii) Compound Processing We split German
compounds into simple words for training. In
decoding, we translate only simple words, some
of which are re-combined into compounds after-
wards in post-processing. This allows us to create

compounds which have not occurred in the train-
ing data.
This year, our main focus is on combining nominal
inflection prediction and source-side reordering.
We investigated both of these components sepa-
rately in the past and expect an additive positive
effect on translation quality when combined. We
then added compound processing, which we al-
ready have investigated in combination with nomi-
nal inflection before, but not together with source-
side reordering. Here, we also expect the com-
bination to outperform the single components in
terms of translation quality.

2 Methodology

The underlying idea of all of our systems is to
improve translation quality by making the source
and target languages more similar than they usu-
ally are. We address three common problems in
English to German SMT: morphological richness
in terms of inflectional variants, productive com-
pounding and different word orders. In Figure 1,
we illustrate the latter two of these problems using
an example sentence which contains both a Ger-
man compound (“Mehrheitsvotum” = “majority
vote”) and different word orders.

The methods we use to solve all three of
these problems are implemented as pre- and post-
processing steps. For nominal inflection and
compound handling, the German data is trans-
formed into an underspecified representation prior
to training. After translation we transform the un-
derspecified output into fluent German by merging
some adjacent words into compounds and generat-
ing suitable inflectional endings. As for the differ-
ing word orders of German and English, only one
pre-processing step is required, reordering the En-
glish source sentences into German word order.

In this section, we describe the different steps in
more detail.
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target: Unterdessen können wir der Kommission ein .Mehrheitsvotum anbieten

we,Meanwhile can offer the Commission a majority vote . source:

Figure 1: Illustration of structural differences between English and German. Dashed and dotted lines
indicate a different word order, while the bold lines indicates a potentially problematic 1:n alignment
due to a compound. Such structural differences may lead to erroneous word alignments.

stemmed SMT output with feature markup morph. features generated forms gloss
auf[APPR-auf-Dat] – auf on
die<+ART><Def>[ARTdef] Fem.Dat.Sg.St der the
Tag<NN>Ordnung<+NN><Fem><Sg>[NN] Fem.Dat.Sg.Wk Tagesordnung agenda
stehen[VVFIN] – stehen are
die<+ART><Def>[ARTdef] Masc.Nom.Pl.St die the
Plan<+NN><Masc><Pl>[NN] Masc.Nom.Pl.Wk Pläne plans
für[APPR-für-Acc] – für for
eine<+ART><Indef>[ARTindef] Fem.Acc.Sg.St eine a
groß<+ADJ><Comp>[ADJA] Fem.Acc.Sg.St größere bigger
nuklear<+ADJ><Pos>[ADJA] Fem.Acc.Sg.St nukleare nuclear
Zusammenarbeit<+NN><Fem><Sg>[NN] Fem.Acc.Sg.Wk Zusammenarbeit co-operation

Table 1: Overview of the morphology-aware SMT system for the input sentence “... on the agenda are
plans for greater nuclear co-operation”.

2.1 Morphology-aware SMT

In order to build an SMT system which is aware of
German nominal inflection, the German data is re-
duced to a lemmatised representation, which con-
tains translation-relevant morphological features
(stem-markup, cf. first column in Table 1). This
stem-markup consists of number and gender an-
notated at nouns: gender is considered as part of
the lemma of a noun. The annotation of num-
ber onto target-side nouns aims at preserving the
number of the source phrase during translation, as
we expect nouns to be translated with their ap-
propriate number value. This markup is only ap-
plied to nouns, i.e. the head of NPs or PPs, be-
cause the grammatical features of adjectives and
determiners are dependent on the translation con-
text in which they appear. For nominal inflec-
tion, the morphological features number, gender,
case and strong/weak inflection need to be mod-
elled. For each of the four morphological fea-
tures, we use a linear chain CRF (Lafferty et al.
(2001)) trained on stems/lemmas and the respec-
tive feature, using the Wapiti toolkit (Lavergne et
al., 2010). During feature prediction, the features
that are set by the stem-markup (number, gender
on nouns) are propagated over the rest of the lin-
guistic phrase. In contrast, grammatical case de-
pends on the role of the NP in the sentence (e.g.
subject or direct/indirect object) and is therefore

determined entirely from the surrounding context
in the sentence. The value for strong/weak inflec-
tion depends on the combination of the other fea-
tures, cf. second column in Table 1. Based on the
lemma and the predicted features, inflected forms
are then generated using the rule-based morpho-
logical analyser SMOR (Schmid et al., 2004), cf.
third column in Table 1.

Even though this basic nominal inflection does
not handle compounds, it is able to model simple
word formation processes: portmanteau preposi-
tions (prepostion+determiner, e.g. zum=zu+dem
“to the”) are split in pre-processing and re-merged
in the post-processing step, following a simple set
of rules (e.g. merging only in singular, never in
plural for a limited set of prepositions).

2.2 Reordering

The different word order of clauses in English
and German may often lead to misaligned ver-
bal elements. While German verbs often occur
in clause-final position, English verbs mostly ap-
pear in rigid SVO order. We parsed the English
section of the parallel data with (Charniak and
Johnson, 2005) using a model we trained on the
standard Penn Treebank sections. The scripts we
used for reordering the English input are similar
to the ones we previously described in (Gojun and
Fraser, 2012). Figure 2 illustrates how reordering
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,Meanwhile wecan

we,Meanwhile can

the Commission are−ordered source:

original source:

split target: Unterdessen können wir der Kommission ein anbieten .

Unterdessen können wir der Kommission ein .

Mehrheit Votum

Mehrheitsvotum

majority vote offer .

offer the Commission a majority vote .

anbietenoriginal target:

Figure 2: Illustration of how re-ordering the English input may help to reduce crossing and long-distance
alignments and how target-side compound splitting may transform 1:n into 1:1 alignments.

the English input sentence can lead to less crossing
and long-distance alignments.

2.3 Compound Processing

German allows for closed compounds where in
English two or more words are required to ex-
press a certain content. This asymmetry can lead
to alignment and thus translation errors. More-
over, German allows for productive compound-
ing, i.e. new compounds can be generated from
scratch and may not have occurred in the train-
ing data. Compound processing solves these two
problems through splitting compounds for trans-
lation and, when translating into German, decid-
ing whether to recombine words into compounds
based on the context.

For compound splitting we use a rule-based
morphological analyser where ambiguous anal-
yses are disambiguated using corpus statistics.
In general, we follow the method described in
(Fritzinger and Fraser, 2010) for splitting: we
disambiguate multiple analyses using context-
sensitive POS and corpus-based word frequencies.
The example given in Figure 2 shows how com-
pound splitting can transform a 1:n alignment into
a 1:1 alignment.

Note that for English to German translation, we
always combine compound processing with nom-
inal inflection prediction in order to maximise the
generalisation over seen word parts in the train-
ing corpus. We thus translate from English into a
split and underspecified version of German. Then,
in a second step, compounds are merged using
sequence prediction of good merge points (based
on source language and target language features).
Finally, words taking nominal inflection are re-
inflected using the nominal inflection procedure.

More details can be found in (Cap et al., 2014a).

3 Experimental Settings

For the WMT shared task, we combined the three
components which we have described in the previ-
ous section. An overview of all systems we trained
can be found in Table 2.
Data For all of our systems, we exclusively used
data distributed for the WMT shared task 2015.
We used all of the available monolingual data for
German and all of the available parallel data for
German and English.
UTF8 Cleaning Even though the submitted train-
ing data is provided in UTF-8 encoding, it contains
a considerable number of characters that are not
cleanly encoded into UTF8. We identified these
characters and sequences thereof by reading all
data bytewise and mapping it to the main UTF-
8 encoding tables covering the Western European
languages. All lines that contained one or more
characters which did not fit these tables – either
because they have been broken or because they
belong to non-latin scripts like, e.g., Chinese or
Arabic, were removed from the corpora as we ex-
pected those lines to lead to erroneous analyses in
the subsequent preprocessing steps of our pipeline.

Length Constraints To ensure good alignment
quality, we removed sentence pairs where one lan-
guage is considerably longer than the other (pairs
exceeding the ratio 1:9 words), as well as sen-
tences containing many special characters (e.g.
several dashes in row) indicating that the line in
question is part of e.g. a table. Furthermore, we
removed all sentences with a sentence length of
more than 100 words. Table 3 gives an overview of
the parallel data after cleaning and pre-processing.
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Experiment
portmanteau nominal source-side compound

merging inflection re-ordering merging
InflectionContrastive + +
Inflection ReorderingPrimary + + +
Inflection Compounds + + +
Inflection Reordering Compounds + + + +

Table 2: Names and components of our SMT systems; the submitted system are named CIMS-primary
and CIMS.

original encoding
length not

cleaned
or ratio parseable

News 272,807 203 1,381 12,095 259,128
Europarl 1,920,209 24 17,637 3,855 1,898,693
CommonCrawl 2,399,123 17,508 7,489 26,623 2,347,503
parallel data 4,592,139 17,735 37,221 289,606 4,505,324

Table 3: Overview of the parallel data after cleaning and pre-processing.

English Variants The English source-side is
mapped into British English in order to make the
data as consistent as possible.

Linguistic Preprocessing The abstract repre-
sentation for the nominal inflection requires the
annotation of morphological features. After tok-
enization, we thus parsed all target-side data with
BitPar (Schmid, 2004). To obtain the lemmas and
suitable compound splittings, we applied SMOR
(Schmid et al., 2004).

Language Model We trained 5-gram Language
Models for each of the available German monolin-
gual corpora and the German sections of the par-
allel data. For each corpus (the monolingual news
corpora 07-14 and the parallel corpora europarl,
commoncrawl and news), we built separate lan-
guage models using the SRILM toolkit (Stolcke,
2002) with Kneser-Ney smoothing and then inter-
polated1 them using weights optimized on devel-
opment data (cf. tuning set 08-13). We then used
KenLM (Heafield, 2011) for faster processing.

We performed this language model training for
two different kinds of experiments: those with-
out compound processing are trained on the un-
derspecified (= lemmatised) representation, while
those with compound processing are trained on a
split underspecified representation.

Phrase-based Translation Model For word
alignment, we use the multi-threaded GIZA++
toolkit (Och and Ney, 2003; Gao and Vogel, 2008).

1/mosesdecoder/scripts/ems/support/interpolate-lm.perl

Our translation models were trained using Moses
(Koehn et al., 2007), following the instructions for
a baseline shared task system, using default set-
tigs. All our systems are trained identically – what
differs is the degree to which the underlying train-
ing data has been modified.

Tuning We tuned feature weights using batch-
mira with ’safe–hope’ (Cherry and Foster, 2012)
until convergence (or up to 25 runs). We used
the tuning data of all previous shared tasks from
2008 to 2013, which gave us 16,071 sentences
for tuning. We tuned each experiment separately
against an underspecified (i.e. lemmatised) ver-
sion of the tuning reference optimising BLEU
scores (Papineni et al., 2002). Note also that we in-
tegrated the CRF-based compound prediction and
merging procedure for each experiment with com-
pound processing into each tuning iteration and
thus scored the output against a non-split lemma-
tised reference.

Testing After decoding, some post-processing
is required in order to retransform the underspec-
ified representation into fluent German text. Our
post-processing consists of the following steps:

1) translate into (split) underspecified German
2) merge compounds
3) predict nominal inflection
4) merge portmanteaus

Finally, the output was recapitalised and deto-
kenised using the shared task tools and all
available German training data. We calculated
BLEU scores using the NIST script version 11b.
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Experiment
news2014 news2015
BLEUci BLEUci

submitted contrastive: Inflection – 21.46
submitted primary: Inflection Reordering – 21.65
Raw 19.92 21.44
Raw Portmanteau 19.83 21.54
Inflection 19.86 21.49
Inflection Reordering 20.35 21.64
Inflection Compounds 19.08 20.43
Inflection Reordering Compounds 19.65 21.19

Table 4: BLEU scores for all our systems. The upper part lists the submitted results (using a language
model built on a subset of the available data), the lower part compares all our variants which have been
computed after the deadline with a language model based on all available data for the constrained task.

4 Results

For evaluation, we used the 3,003 sentences of the
2014 shared task as well as the 2,169 sentences of
this year’s shared task. The results are given in
Table 4. In the upper part of the table we present
the results for the submitted systems, in the lower
part we compare all variants of our systems. Note
that we compare our systems against two base-
lines: Raw denotes a system built on all parallel
and monolingual data available for the shared task,
while Raw Portmanteau denotes a system based
on the same data, though restricted to parseable
sentences, as we split portmanteaus based on POS
tags.

It can be seen that dealing with nominal in-
flection alone does not considerably improve or
decrease the BLEU scores of the two baselines.
However, the combination of nominal inflection
and source-side reordering has a positive effect on
translation quality. When it comes to the combina-
tion of compound processing and nominal inflec-
tion, which we have successfully applied in the
past (Cap et al., 2014a; Cap et al., 2014b), we
do not see any improvement in terms of BLEU
score for this combination here. This does not
necessarily mean that the compound systems qual-
ity is worse, as previous manual evaluations have
shown that BLEU scores do not adequately re-
flect all compound-related improvements in trans-
lation quality (Cap et al., 2014a). Finally the re-
sults given in Table 4 show that adding source-side
reordering to the combination of compound pro-
cessing and nominal inflection does improve the
BLEU scores, even though they still remain lower
than for nominal inflection and source-side re-
ordering without compound processing. We have

never combined all three components before, but
despite the lower performance in terms of BLEU
scores we will further pursue this combination in
the future.

4.1 Comparison to Other Shared Task
Submissions

In addition to automatic metrics, the shared task
submissions are also manually evaluated. In this
evaluation, our primary system (BLEU score of
21.65) was placed in a cluster with 4 other sys-
tems, of which at least two have BLEU scores
of 23 and higher. Furthermore, our system was
placed in a cluster ranked higher in the manual
evaluation than a cluster containing a single sys-
tem with a BLEU score of 22.6 (one BLEU point
higher than our system). This shows clearly that
BLEU underestimates the quality of our submis-
sion. Despite its comparatively low BLEU scores
it is perceived to be of similar or better quality than
systems with considerably higher BLEU scores
when judged by human annotators. This sup-
ports our hypothesis that morphological modeling
in combination with reordering improves transla-
tion quality and is consistent with human evalua-
tions of morphological modeling we have carried
out in the past, see, e.g., (Weller et al., 2013; Cap
et al., 2014a).

5 Additional Experiments: English to
French translation

In an additional set of experiments, we applied
the nominal inflection system also to an English–
French system.

Nominal Inflection for French The general
pipeline is the same as for translation into German.
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We used RFTagger for French (Schmid and Laws,
2008) for morphological tagging and a French ver-
sion of SMOR to generate inflected forms. The
stem-markup on the French data corresponds to
that of the German markup (number and gender
on nouns). In contrast to four morphological fea-
tures for nominal inflection in German, only num-
ber and gender need to be modelled for French.

Data The EN–FR data set is much larger than
that for EN–DE; after applying the same pre-
processing steps, we obtained a parallel corpus
of more than 36 million sentence pairs. For the
language model, we used an additional 45.9 mil-
lion lines (news07-14 and newsdiscuss corpus).
The language model was interpolated over sepa-
rate language models built on the different cor-
pora using the development set to obtain optimal
weights.

Results The results of the submitted systems are
shown in the table below:

Raw Nominal InflectionP

BLEUci BLEUcs BLEUci BLEUcs

32.24 31.19 32.26 31.22

The nominal inflection system is our primary sys-
tem. Due to the large amount of EN–FR parallel
training data, we assume that here the BLEU score
correctly shows that there is not much difference
in performance between the two systems.

6 Previous Work

Nominal Inflection The approach we use for
nominal inflection prediction which was first de-
scribed by (Toutanova et al., 2008). The approach
consists of two steps: i) translate into an under-
specified representation of German (most words
being lemmatised) and ii) after translation predict
inflectional endings depending on the actual con-
text of the word(s). While developed for Russian
and Arabic morphology, we adapted the approach
of Toutanova et al. (2008) to the needs of German
in (Fraser et al., 2012). In (Weller et al., 2013), we
extended this work to use subcategorisation infor-
mation and source-side syntactic features in order
to improve the accuracy of case prediction. Note
that we did not use this extension of our pipeline
in the present shared task.

Reordering Different word orders have already
been addressed in previous approaches. For exam-
ple, Collins et al. (2005) reordered German prior

to translating into English, which lead to improved
translations. In (Gojun and Fraser, 2012), we
switched the translation direction and reordered
the English input sentence before translating into
German, which in turn resulted in improved trans-
lation quality.

Compound Processing In the past, there have
been numerous attempts to address compound
splitting for German to English. Almost every
German to English SMT system nowadays incor-
porates some kind of compound processing, ei-
ther using corpus-based word frequencies (Koehn
and Knight, 2003), POS-contraints (Stymne et al.,
2008), lattice-based approaches (Dyer, 2009) or
language-independent segmentation (Macherey et
al., 2011). In our work we have been using a
rule-based morphological analyser combined with
corpus statistics for compound splitting (Fritzinger
and Fraser, 2010), a procedure which we have up-
dated since that work. Details can be found in
(Cap et al., 2014a).

For compound merging, we translate from En-
glish into split and lemmatized German. Then, in a
second step, compounds are merged using a CRF-
based approach based on (Stymne and Cancedda,
2011) and then re-inflected using the nominal in-
flection procedure as described above. More de-
tails of our compound merging approach can be
found in (Cap et al., 2014a).

7 Conclusion and Future Work

In our submission to WMT 2015, we combined
the three components nominal inflection, source-
side reordering and compound processing. We
expected a positive effect on translation quality
above the performance of each of these compo-
nents when applied in isolation.

While this effect was not evident in the obtained
BLEU scores, the manual evaluation, in which our
system was found to be of equal or better qual-
ity than systems achieving higher BLEU scores,
makes it clear that in fact our approaches do im-
prove translation quality.

Our current systems are built on the standard
version of Moses with default settings; as part of
future work we plan to investigate better strategies
to exploit Moses’ numerous methods for optimiza-
tion.
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Abstract

In this paper, the KIT systems submitted to
the Shared Translation Task are presented.
We participated in two translation direc-
tions: from German to English and from
English to German. Both translations are
generated using phrase-based translation
systems.

The performance of the systems was
boosted by using language models built
based on different tokens such as word,
part-of-speech, and automacally generated
word clusters. The difference in word or-
der between German and English is ad-
dressed by part-of-speech and syntactic
tree-based reordering models. In addition
to a discriminative word lexicon, we used
hypothesis rescoring using the ListNet al-
gorithm after generating the translation
with the phrase-based system. We evalu-
ated the rescoring using only the baseline
features as well as using additional com-
putational complex features.

1 Introduction

We describe the KIT systems submitted to the
Shared Translation Task of the EMNLP 2015
Tenth Workshop on Statistical Machine Transla-
tion. They are phrase-based English→German
and German→English systems.

In order to clean a large amount of noisy web-
crawled data, we applied a filtering technique us-
ing an SVM classifier. Language models are built
based on different tokens, such as word, part-
of-speech, and automacally generated word clus-
ters. Final systems also include bilingual lan-
guage models, part-of-speech and syntactic tree-
based reordering models as well as a lexicalized
reordering model. For language modeling, a data
selection strategy is also applied. A discriminative

word lexicon using source context information is
used for both translation directions. In this eval-
uation campaign we also show that rescoring us-
ing the ListNet algorithm improves the translation
performance for both directions.

This paper is organized as follows. In Section
2, we describe the data we used for training the
systems. A detailed description of the systems is
given in Section 3. Section 4 shows experimental
setups and results along with an analysis. Finally,
Section 5 concludes this paper.

2 Data

For training data, we use the European Parliament
(EPPS), News Commentary (NC) and Common
Crawl parallel corpora for both translation direc-
tions. For training the language models, we utilize
the monolingual target side of the parallel corpora.
The News Shuffle data is also used for language
modeling. For German→English, we use the Gi-
gaword corpus in addition.

The systems are optimized on the newstest2013
set and tested on the newstest2014 set.

3 System Description

A preprocessing step is applied to the raw data
before the actual training. It includes remov-
ing excessively long sentences. Sentences with
a length mismatch are also filtered out based
on a threshold, and special symbols, dates and
numbers are normalized. The preprocessing in-
cludes smart-casing of the first letter of every sen-
tence. For German→English translation, we ap-
ply compound splitting (Koehn and Knight, 2003)
on the source side, in order to handle the out-
of-vocabulary (OOV) issue of German compound
words.

The web-crawled Common Crawl corpus often
contains sentence pairs which are not matching. In
order to remove such noisy parts of the corpus, we
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use an SVM classifier for both translation tasks as
described in Mediani et al. (2011).

Language models (LM) are built using the
SRILM toolkit (Stolcke, 2002) with modified
Kneser-Ney smoothing and scored in the decod-
ing process with KenLM (Heafield, 2011). The
in-house phrase-based translation system (Vogel,
2003) is used for generating translations. For op-
timization, we use minimum error rate training
(MERT) (Och, 2003; Venugopal et al., 2005). For
German→English, the GIZA++ Toolkit (Och and
Ney, 2003) is used to generate the word alignment
of the parallel corpora. Discriminative word align-
ment (DWA), as described in Niehues and Vogel
(2008), is used for the English→German direc-
tion.

We build the phrase tables (PT) using the Moses
toolkit (Koehn et al., 2007).

3.1 Word Reordering Models

Reordering rules encode how the words in the
source sentence are to be ordered according to the
target word order. They are learned automatically
based on part-of-speech (POS) as well as syntac-
tic parse tree constituents. In order to learn the
rules, we use POS tags (Schmid, 1994) of the
source side and the word alignment information.
The rules cover short range reorderings (Rottmann
and Vogel, 2007) as well as long range reorderings
(Niehues and Kolss, 2009).

The differences in word order between Ger-
man and English can be better addressed by us-
ing a tree-based reordering model as shown in
Herrmann et al. (2013). The tree-based reorder-
ing rules are learned from a word alignment and
syntactic parse trees (Rafferty and Manning, 2008;
Klein and Manning, 2003) from the source side of
the training corpus. The rules encode the informa-
tion on how to reorder constituents in the syntactic
tree of the source sentence.

Before translation, the POS-based and tree-
based reordering rules are applied to the each sen-
tence. The variants of differently reordered sen-
tences, including the original order of the sen-
tence, are encoded in a word lattice. The word
lattice is then used as an input to the decoder.

Lattice phrase extraction (LPE) (Niehues et al.,
2010) is applied on the training corpus, in order
to get phrase pairs that match the reordered sen-
tences. In this scheme, we use the reordered sen-
tences to extract the phrases from, instead of the

original sentences.
The lexicalized reordering (Koehn et al., 2005)

encodes reordering probabilities for each phrase
pair. By using the lexicalized reordering model,
the reordering orientation of each phrase pair at
the phrase boundaries can be determined during
decoding. The probability for the respective ori-
entation with respect to the original position of the
words is included as an additional score in the log-
linear model of the translation system.

3.2 Language Models
In addition to word-based language models, we
use different types of non-word language models
for each of the systems.

The bilingual language model (Niehues et al.,
2011) is designed to increase the bilingual context
between source and target words beyond phrase
boundaries. Target words and all their aligned
source words form bilingual tokens on which a
LM is trained. The tokens are then ordered ac-
cording to the target language word order.

For the English→German system, we use lan-
guage models based on fine-grained POS tags
(Schmid and Laws, 2008). In addition, we use
language models based on word classes learned by
clustering the words of the corpus using the MK-
CLS algorithm (Och, 1999). Using such language
models, we can generalize better and therefore al-
leviate the sparsity problem for surface words. In
order to build these language models, we replace
each word token of the target language corpus by
its corresponding POS tag or cluster ID. The n-
gram language models are then built on this new
corpus consisting of either POS tags or cluster IDs.
During decoding, these language models are used
as additional models in the log-linear combination.

For the German→English system, the data se-
lection language model is trained on data auto-
matically selected using cross-entropy differences
between development sets from previous WMT
workshops and the English side of all data, includ-
ing the filtered crawled data (Moore and Lewis,
2010). We selected the top 10M sentences to train
this language model. For building all non-word
language models used in this work smoothing is
applied.

3.3 Discriminative Word Lexicon
First introduced by Mauser et al. (2009), a dis-
criminative word lexicon (DWL) models the prob-
ability of a target word appearing in the translation
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given the words of the source sentence. For every
target word, a maximum entropy model is trained
to determine whether this target word should be in
the translated sentence or not using one feature per
source word.

Two simplifications of this model are used to
improve the translation quality while maintain-
ing the time efficiency as shown in Mediani et
al. (2011). First, the score for every phrase pair
is calculated before translation. Then we restrict
the negative training examples to words that occur
within matching phrase pairs.

In this evaluation, the DWL is further extended
with n-gram source context features proposed
by Niehues and Waibel (2013). In this paper, this
model will be referred to as source-context DWL.
The source sentence is represented as a bag-of-n-
grams, instead of a bag-of-words. By doing so it is
possible to include information about source word
order in the model. We used one feature per n-
gram up to the order of three and applied count
filtering for bigrams and trigrams.

In addition to this DWL, we integrated a DWL
in the reverse direction in rescoring. We will re-
fer to this model as source DWL. This model pre-
dicts the target word for a given source word as
described in detail in (Herrmann, 2015).

In a first step, we identify the 20 most frequent
translations of each word. Then we build a multi-
class classifier to predict the correct translation.
For the classifier, we used a binary maximum-
entropy classifier1 trained using the one-against-
all approach.

As features for the classifier, we used the previ-
ous and following three words. Each word is rep-
resented by a continuous vector of 100 dimensions
as described in (Mikolov et al., 2013).

Using the predictions, we calculated four addi-
tional features. The first two features are the abso-
lute and relative number of words, where the trans-
lation predicted by the classifier and the translation
in the hypothesis is the same. The third feature is
the sum of the word to word translation probabil-
ities predicted by the classifier that occur in the
hypothesis. Given the translation used in the hy-
pothesis, we determine their rank in the ranking by
the classifier and use the sum of these ranks as the
last feature.

1http://hal3.name/megam/

3.4 ListNet-based Rescoring

In order to facilitate more complex models like
neural network translation models, we rescored
the n-best lists. In our experiments we gener-
ated 300 best lists for the development and test
data respectively. We used the same data to train
the rescoring that we have used for optimizing the
translation system.

We trained the weights for the log-linear com-
bination used during rescoring using the ListNet
algorithm (Cao et al., 2007; Niehues et al., 2015).
This technique defines a probability distribution
on the permutations of the list based on the scores
of the log-linear model and one based on a ref-
erence metric. In our experiments we used the
BLEU+1 score introduced by Liang et al. (2006).
Then we use the cross entropy between both dis-
tributions as the loss function for our training.

Using this loss function, we can compute the
gradient and use stochastic gradient descent. We
used batch updates with ten samples and tuned the
learning rate on the development data.

The range of the scores of the different mod-
els may greatly differ and many of these values
are negative numbers with high absolute value
since they are computed as the logarithm of rel-
atively small probabilities. Therefore, we rescale
all scores observed on the development data to the
range of [−1, 1] prior to rescoring.

3.5 RBM Translation Model

In rescoring, we used an restricted Boltzmann ma-
chine (RBM)-based translation model inspired by
the work of Devlin et al. (2014).

The model is based on the RBM-based language
model introduced in Niehues and Waibel (2012).
The RBM models the joint probability of eight tar-
get words and a set of attached source words. The
set of attached source words is calculated as fol-
lows: We first use the source word aligned to the
last target word in the 8-gram. If this does not ex-
ist, we take the source word aligned to the nearest
target word. The set of source words consists then
of this source word, its previous five source words
and its following five source words.

We create this set of 8 target and 11 source
words for every target 8-gram in the parallel cor-
pus and train the model using unigram sampling
as described in Niehues et al. (2014). In rescor-
ing, we then calculate the free energy of the RBM
given the 8-gram and its source set as input. The
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sum of all free energies in the sentence is used as
an additional feature for rescoring.

4 Results

In this section, we present a summary of our ex-
periments in the evaluation campaign. Individ-
ual components that lead to improvements in the
translation performance are described step by step.

The scores are reported in case-sensitive BLEU
(Papineni et al., 2002).

4.1 English-German

Table 1 shows the results of our system for
English→German translation task.

The baseline system consists of a phrase ta-
ble derived from DWA, the word-based language
models built from different parts of the corpus and
POS-based long-range reordering rules. Reorder-
ing rules, however, are extracted from the POS-
tagged EPPS and NC only, and encoded as word
lattices.

The parallel data used to build the word align-
ments and the PT are EPPS, NC and the filtered
Crawl data. Similarly, the data used to train the
language models includes the monolingual ver-
sions of EPPS, NC and the filtered Crawl data.
The BLEU scores of the baseline system over the
development and test sets are 19.70 and 19.38, re-
spectively.

The system gains 0.2 points on the develop-
ment set and 0.13 on the test set in BLEU when
adding non-word language models, such as a 4-
gram bilingual language model, which is based
on bilingual word tokens, two 5-gram POS-based
language models and a 4-gram cluster language
model. The bilingual language model is trained on
the Crawl corpus and the other models are trained
on the monolingual parts of all corpora. In case
of the cluster language model, MKCLS is used to
group of words into 1,000 clusters as mentioned in
Section 3.2.

A further improvement can be observed when
we apply tree-based and lexicalized reorderings.
The improvement is considerable on the develop-
ment set, gaining 0.6 BLEU points, but the system
performs similar on the test set.

Adding source-context DWL helps to improve
the score, especially on the test set, with the differ-
ence of 0.67 BLEU points compared to the above-
mentioned system.

Finally, we use the new ListNet-based rescoring

described in Section 3.4 for the log-linear com-
bination of features. By doing so, we improve
the translation performance by another 0.8 BLEU
points on the test set. This system was submitted
to WMT 2015 and used for the translation of the
official test set.

System Dev Test
Baseline 19.70 19.38
+ Non-word LMs 19.90 19.51
+ Tree + Lex. Reorderings 20.50 19.52
+ Source–context DWL 20.58 20.19
+ ListNet rescoring 19.95 20.98

Table 1: Experiments for English→German

4.2 German-English

Table 2 shows the development steps of the
German→English translation system.

The baseline system uses EPPS, NC, and fil-
tered web-crawled data for training the translation
model. The phrase table is built using GIZA++
word alignment and lattice phrase extraction.

Altogether four language models are used in the
baseline system. As described in Section 3.2, we
build a cluster language model using the MKCLS
algorithm. Words from EPPS, NC, and the fil-
tered crawl data are clustered into 1, 000 different
classes. It also includes a language model trained
on 10M of selected data from the monolingual cor-
pora. All language models are 4-gram.

The word lattices are generated using short and
long-range reordering rules, as well as tree-based
reordering rules. A lexicalized reordering model
is also included in the baseline system.

The baseline system uses a DWL with source
context.

Using the ListNet-based rescoring increased the
score on the test set by 0.1 BLEU point. Transla-
tion predictions based on source DWL improve the
system performance by 0.3 BLEU points. Finally,
adding an RBM-based translation model gave an-
other small improvement. This system was used
to generate the translation submitted to the evalu-
ation.

5 Conclusion

In this paper, we have described the systems de-
veloped for our participation in the Shared Trans-
lation Task of the EMNLP 2015 evaluation for
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System Dev Test
Baseline 28.38 27.77
+ ListNet rescoring 28.00 27.87
+ Source DWL 27.89 28.18
+ RBMTM 27.94 28.28

Table 2: Experiments for German→English

English→German and German→English transla-
tion. Both translations were generated using a
phrase-based translation system which was ex-
tended by additional models such as bilingual and
cluster-based language models. Discriminative
word lexica with source context proved beneficial.

For English→German translation, adding
source-context information to guide word choice
and using a new method to rescore the translation
candidates brought the most improvements.

Rescoring based on ListNet and using source
DWL as well as applying an RBM-based trans-
lation model helped improve the system perfor-
mance for German→English translation.
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Abstract

The TectoMT tree-to-tree machine transla-
tion system has been updated this year to
support easier retraining for more transla-
tion directions. We use multilingual stan-
dards for morphology and syntax annota-
tion and language-independent base rules.
We include a simple, non-parametric way
of combining TectoMT’s transfer model
outputs.

We submitted translations by the English-
to-Czech and Czech-to-English TectoMT
pipelines to the WMT shared task. While
the former offers a stable performance, the
latter is completely new and will require
more tuning and debugging.

1 Introduction

The TectoMT tree-to-tree machine translation
(MT) system (Žabokrtský et al., 2008) has been
competing in WMT translation tasks since 2008
and has seen a number of improvements. Un-
til now, the only supported translation direction
was English to Czech. This year, as a part of
the QTLeap project,1 we have enhanced TectoMT
and its underlying natural language processing
(NLP) framework, Treex (Popel and Žabokrtský,
2010), to support more language pairs. We simpli-
fied the training pipeline to be able to retrain the
translation models faster, and we use abstracted
language-independent rules with the help of Inter-
set (Zeman, 2008) where possible.

Together with our partners on the QTLeap
project, we have implemented translation systems
for other language pairs (English to and from
Dutch, Spanish, Basque, and Portuguese) which
are not part of WMT shared Translation Task this
year. However, we were also able to submit the
results of a newly built Czech-English translation

1http://qtleap.eu

system in the shared task. The performance of the
current version leaves a lot of room for improve-
ment, but proves the potential of TectoMT for dif-
ferent language pairs.

The original TectoMT system for English-
Czech translation has seen just small changes,
e.g., adding specialized translation models for se-
lected pronouns (Novák et al., 2013a; Novák et
al., 2013b) and fine-tuning of a handful of rules.
Therefore, its performance is virtually identical to
that of the last year’s version.

This paper is structured as follows: in Section 2,
we introduce the TectoMT basic architecture. In
Section 3, we describe the improvements to Tec-
toMT that were added for an easier support of
new language pairs. Section 4 then details the
Czech-to-English TectoMT system submitted to
WMT15. We discuss TectoMT’s performance in
the task and examine the most severe error sources
in Section 5. Section 6 then concludes the paper.

2 The TectoMT Translation System

TectoMT (Žabokrtský et al., 2008) is a tree-to-
tree MT system system consisting of an analysis-
transfer-synthesis pipeline, with transfer on the
level of deep syntax. It is based on the Prague Tec-
togrammatics theory (Sgall et al., 1986) and dis-
tinguishes two levels of syntactic description (see
Figure 1):

• Surface dependency syntax (a-layer) – sur-
face dependency trees containing all the to-
kens in the sentence.

• Deep syntax (t-layer) – dependency trees
that contain only content words (nouns, main
verbs, adjectives, adverbs) as nodes. Each
node has a deep lemma (t-lemma), a semantic
function label (functor), a morpho-syntactic
form label (formeme), and various grammat-
ical attributes (grammatemes), such as num-
ber, gender, tense, or modality.
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a+tree
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Tak
Adv
Db
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AuxP
RR6

tím
Adv
PDZS6
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VB+SiPA
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Pred
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t+tree
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#
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singular 1st person singular

consider
think
wonder
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+i#wI6
+i#2If
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v0fin
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+f#8hi
+g#2I8
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+O#ii6
+O#IgI

Adv Obj

Figure 1: Example TectoMT translation.
From the left to the right: (1) source Czech sentence analyzed to surface dependencies (a-layer), (2) Czech sentence analyzed
to deep syntax (t-layer), with t-lemmas (black), functors (capitals), formemes (purple), and grammatemes (teal), (3) translated
English t-layer tree (with MaxEnt model logarithmic probabilities for t-lemmas and formemes shown in red for a selected
node), (4) generated English surface dependency tree.

Formemes are not part of the t-layer accord-
ing to the original theory; they have been added
in TectoMT to work around the difficult task
of functor assignment (semantic role labeling).
Formemes are much simpler to obtain – they are
assigned by rules based on the surface dependency
trees (Dušek et al., 2012). Apart from a few spe-
cific cases, functors are not used in TectoMT, and
formemes are used instead.

T-layer representations of the same sentence in
different languages are closer to each other than
the surface texts; in many cases, there is a 1:1
node correspondence among the t-layer trees. Tec-
toMT’s transfer exploits this by translating the tree
isomorphically, i.e., node-by-node and assuming
that the shape will not change in most cases (apart
from a few exceptions handled by specific rules).

The translation is further factorized – t-lemmas,
formemes, and grammatemes are translated us-
ing separate models. The t-lemma and formeme
translation models are an interpolation of maxi-
mum entropy discriminative models (MaxEnt) of
Mareček et al. (2010) and simple conditional prob-
ability models. The MaxEnt models are in fact
an ensemble of models, one for each individual
source t-lemma/formeme. The combined transla-
tion models provide several translation options for
each node along with their estimated probability
(see Section 1). The best options are then selected
using a Hidden Markov Tree Model (HMTM)
with a target-language tree model (Žabokrtský
and Popel, 2009), which roughly corresponds to
the target-language n-gram model in phrase-based
MT. Grammateme transfer is rule-based; in most
cases, grammatemes remain the same as in the
source language.

3 Adding New Language Pairs

Using different languages in an MT system with
deep transfer is mainly hindered by differences in
the analysis and synthesis of the individual lan-
guages. To overcome these problems, we decided
to use existing multilingual annotation standards
(see Section 3.1) and to simplify and automate
translation model training (see Section 3.2). In
addition, we introduce an easier way of combin-
ing the results of the individual translation models
than HMTM (in Section 3.3).

3.1 Annotation Standards for Language
Independence

We decided to use Interset (Zeman, 2008) as
the standard morphological representation since
its features capture all important morphological
phenomena in many different languages, includ-
ing all languages required in the QTLeap project.
The Interset Perl library includes conversions from
many commonly used language-specific tagsets.
To represent surface dependency syntax, we use
the HamleDT 1.5 annotation style (Zeman et al.,
2012; Zeman et al., 2014), which also supports
many different languages and comes with tools for
the conversion of various pre-existing treebanks.
This allows us to use existing taggers and parsers
without retraining them – analyzed sentences are
simply converted to Interset+HamleDT annotation
style.

Most TectoMT/Treex rules for the conversion
from surface dependencies to deep syntax (t-layer)
have been adapted to expect Interset morpholog-
ical features and HamleDT-style dependencies,
which improves their usability for different lan-
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guages. Their implementation involves a common
language-independent base class and language-
specific derived classes.2

For t-layer representation, we stick to the Tec-
toMT annotation style as used for Czech and
English, which is originally based on PDT and
Prague Czech-English Dependency Treebank an-
notation (Hajič et al., 2006; Hajič et al., 2012).
However, we are aware that this annotation style
has problems in other languages (e.g., gram-
matemes cannot express all required grammatical
meaning), and that changing or extending it will
probably be required.

3.2 Support for Training New Language
Pairs

Other improvements to support adding new lan-
guage pairs quickly are rather technical. We au-
tomated the translation model training in a set of
makefiles. To train a new translation pair, one
only needs to implement analysis and synthesis
pipelines for both languages and edit a configu-
ration file. Debugging and testing of the new anal-
ysis and synthesis pipelines is supported by mono-
lingual “roundtrip” experiments: a development
data set is first analyzed up to t-layer, then synthe-
sized back to word forms. BLEU score measure-
ments (Papineni et al., 2002) and a direct compar-
ison of the results are then used to improve per-
formance before the translation models are trained
and other transfer blocks are implemented.3

3.3 Combining Transfer Models More
Simply

The t-lemma and formeme translation models are
independent of each other to simplify their deci-
sions and reduce data sparsity. This often results in
the best translation alternatives suggested by both
models being incompatible with each other, which
leads to disfluent outputs.

In English-to-Czech translation, an HMTM is
used to select compatible t-lemma–formeme pairs
(see Section 2). However, the HMTM needs to be
trained on a large monolingual data set annotated
on the t-layer. To simplify and speed up devel-

2Some Czech and English TectoMT blocks have not been
converted to Interset yet; they use the Czech positional tagset
from the Prague Dependency Treebank (PDT) of Hajič et al.
(2006) and the Penn Treebank tagset (Santorini, 1990).

3The “roundtrip” experiments are not necessarily needed
for the translation. We just consider them a best practice
which helps to quickly reveal bugs that could deteriorate the
translation, but remain unnoticed for a long time.

opment of TectoMT translation for new language
pairs, we have introduced a simpler method of se-
lecting a compatible t-lemma–formeme pair which
does not require any training. In this approach,
t-lemma and formeme probabilities of congruous
pairs4 are combined by a non-parametric function
into a single score that is then used to select the
best translation option. Incongruous combinations
are discarded.5

We evaluated five non-parametric functions
combining the two translation models’ outputs:

• AM-P – arithmetic mean of probabilities,

• GM-P – geometric mean of probabilities,6

• HM-P – harmonic mean of probabilities,

• GM-Log-P – geometric mean of logarithmic
probabilities,7

• HM-Log-P – harmonic mean of logarithmic
probabilities.8

We compared the functions against a baseline
of just using the first option given by each of
the models (regardless of compatibility). We
used corpora of 1,000 sentences from the IT do-
main collected in the QTLeap project to evalu-
ate all variants in English-to-Czech, English-to-
Spanish, and English-to-Portuguese translation.
For the English-to-Czech direction, we could also
compare our combination functions to using an
HMTM. The results are given in Tables 1, 2, and 3
for English to Czech, Spanish, and Portuguese, re-
spectively.

We can see that the performance of the individ-
ual variants is very similar and that they bring an
improvement over the baseline in almost all cases.

4The “congruency” of t-lemma and formeme is based on
the syntactic part-of-speech encoded in the formeme and the
Interset part-of-speech of the t-lemma. There are five sim-
ple rules, e.g., verbal t-lemmas are compatible only with
formemes beginning with “v:”.

5The non-parametric functions are weaker than the
HMTM with the target-language tree model, which considers
the context of the parent t-lemma and models the compatibil-
ity with real-valued probabilities.

6Maximizing GM-P gives the same result as maximizing
the product of probabilities P (t-lemma) ·P (formeme), which
is the theoretically sound approach.

7Logarithmic probabilities are negative and geometric
mean of two negative numbers is positive, so we actually use
negative GM-Log-P, so the best option has the highest score.

8AM-Log-P, the arithmetic mean of logarithmic probabil-
ities, seems to be missing from the list above, but since maxi-
mizing over AM-Log-P gives the same results as maximizing
over GM-P, we omit AM-Log-P from our experiments.
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Function NIST BLEU
Baseline 6.7500 0.2785
HMTM 6.8212 0.2876
AM-P 6.7602 0.2811
GM-P 6.7690 0.2818
HM-P 6.7713 0.2820
GM-Log-P 6.7707 0.2817
HM-Log-P 6.7580 0.2810

Table 1: NIST and BLEU scores for non-
parametric combining functions in English-to-
Czech translation.

Function NIST BLEU
Baseline 5.2757 0.1670
AM-P 5.4342 0.1808
GM-P 5.4315 0.1806
HM-P 5.4306 0.1806
GM-Log-P 5.4314 0.1809
HM-Log-P 5.4336 0.1808

Table 2: NIST and BLEU scores for non-
parametric combining functions in English-to-
Spanish translation.

HMTM in the English-to-Czech translation per-
forms better as expected.

4 Czech to English Translation

This section is a detailed description of the Tec-
toMT Czech-to-English translation pipeline as
used in the WMT translation task. The analysis
part (Section 4.1) is not new and thus is described
only briefly, we focus more on the simple trans-
fer (Section 4.2) and the English synthesis (Sec-
tion 4.3).

Function NIST BLEU
Baseline 5.1584 0.1677
AM-P 5.2612 0.1719
GM-P 5.2219 0.1711
HM-P 5.0613 0.1620
GM-Log-P 5.2452 0.1719
HM-Log-P 5.2583 0.1719

Table 3: NIST and BLEU scores for non-
parametric combining functions in English-to-
Portuguese translation.

4.1 Czech Analysis
The Czech analysis is a slightly improved version
of the pipeline used to train previous versions of
the English-to-Czech translation in TectoMT as
well as to analyze the Czech part of the CzEng 1.0
parallel corpus (Bojar et al., 2012).

The first part, the surface syntactic analysis,
consists of a rule-based sentence segmenter and
tokenizer, followed by a part-of-speech tagger –
we use MorphoDiTa (Straková et al., 2014) in
the current version – and a dependency parser
(McDonald et al., 2005; Novák and Žabokrtský,
2007).

The surface dependency trees are then con-
verted into deep syntactic (t-layer) trees using a
series of mostly rule-based modules that collapse
auxiliary words and decide upon the t-lemma,
formeme, and grammatemes. They also recon-
struct pro-drop pronoun subjects based on verbal
morphology.

4.2 Transfer
The Czech-to-English transfer is relatively basic
and does not contain many components besides
the translation models for t-lemmas and formemes
(see Section 2). Due to limited time to train the
system for the new translation direction, we used
the non-parametric t-lemma–formeme combina-
tion functions as described in Section 3.3 instead
of a Hidden Markov Tree Model (cf. Section 2).
We chose the HM-P setting based on performance
on the development set.9

The additional components are rule-based and
are listed below:

• Overrides and additions to the translation
models, tuned on the development set,

• Removing Czech gender from common
nouns not referring to persons,

• Fixing translation of names based on a lexi-
con compiled from Wikipedia (in particular,
reverting the Czech female surname ending
-ová in non-Czech names),

• Removing subjects of verbs where the trans-
lation model chose an infinitival form,

• Removing double negatives (which are the
rule in Czech but not in English),

9We used the WMT news-test2012 data to tune our sys-
tem.
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• Fixing grammatemes, in particular number
and negation, for some translations, such as
těstoviny (pl.)→ pasta (sg.), or nedbalý (neg-
ative)→ sloppy (positive).

4.3 English Synthesis

The English synthesis (surface realization)
pipeline has been newly developed for TectoMT
translation into English; it is mostly rule-based
and is inspired by the Czech synthesis pipeline.
Besides the Czech-to-English translation, it is
used in other TectoMT systems translating into
English within the QTLeap project and in the
TGen natural language generator (Dušek and
Jurčíček, 2015).

In the synthesis pipeline, a new surface depen-
dency (a-layer) tree is created as a copy of the
source t-layer tree, with lemmas copied from t-
lemmas and dependency labels, word forms, and
morphology left undecided. All further changes
are performed on the surface dependency tree,
consulting information from the t-layer tree. The
pipeline consists of the following steps:

1. Morphological attributes are filled in based
on grammatemes.

2. Subjects are marked (to support subject-
predicate agreement).

3. Basic English word order for declarative sen-
tences is enforced. This only contains very
general rules, e.g., SVO-order or adjective-
noun order, but preliminary tests with source-
language ordering from several different lan-
guages indicated that it is sufficient in most
cases.

4. Subject-predicate agreement in number and
person is enforced – predicates have their
number and person filled based on their sub-
ject(s).

5. Auxiliary words are added. These are
based on the contents of formemes (prepo-
sitions, subordinating conjunction, infinitive
particles, possessive markers) and t-lemmas
(phrasal verb particles).

6. English articles are added based on a hand-
ful of rules from an older surface realizer by
Ptáček (2008).

7. Auxiliary verbs are added, expressing the
voice, tense, and modality. Auxiliaries are
also added for questions and sentences with
existential there.

8. Imperative subjects are removed, question
subjects are moved after the auxiliary verb.

9. Negation particles are added for verbs as well
as selected adjectives and adverbs.

10. Punctuation is added to the end of the sen-
tence, into coordinations and appositions, af-
ter clause-initial phrases preceding the sub-
ject, and in selected phrases (based on
formemes).

11. Words are inflected based on their lemma and
morphological attributes. We use rules for
personal pronouns, MorphoDiTa (Straková et
al., 2014) English dictionary for unambigu-
ous words, and Flect (Dušek and Jurčíček,
2013) for all remaining words requiring in-
flection.10

12. The indefinite article a is changed into an
based on the following word.

13. Repeated coordinated prepositions and con-
junctions are deleted.

14. The first word in the sentence is capitalized.

The output sentence is then obtained by just com-
bining all the nodes in the resulting surface depen-
dency tree.

5 WMT 2015 Translation Task Results

TectoMT reached a BLEU score of 13.9 for the
English-to-Czech direction in the WMT 2015
Translation Task. This ranks it among the last sys-
tems, which is consistent with results from previ-
ous years. However, English-to-Czech TectoMT
has also been used in the Chimera system com-
bination, which ranks first in both automatic and
human evaluation results. TectoMT plays a very
important role in Chimera (Tamchyna and Bojar,
2015).

TectoMT’s Czech-to-English translation
reached a BLEU score of 12.8, and finished last

10Alternatively, an n-gram language model could be used
to select the word forms. Flect uses just a short context of
neighboring lemmas, but it generalizes also to unseen words
(thanks to morphological features). Currently, no n-gram lan-
guage model is used in the whole TectoMT system.
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in the automatic evaluation; human evaluation
scores indicate a second-to-last position.

We believe that the major cause for the lower
scores does not lie in TectoMT’s basic architec-
ture, but that improvements to translation mod-
els are required, as well as better tuning and de-
bugging of the whole pipeline for the Czech-to-
English direction. We examined closely a sample
of the translation output (in both directions) and
identified the following error sources:

• Translation models will require more tuning
and possibly more powerful features. The
English-to-Czech model leaves many rela-
tively common words untranslated, which
suggests that pruning has been too strict.11

• The non-parametric t-lemma–formeme com-
bination functions are not ideal; training
an HMTM will be necessary to improve
English-to-Czech performance.

• Word ordering rules need to be improved, and
more different cases need to be covered. We
consider using a statistical ranker for local
node ordering.

• The rule-based article assignment in English
synthesis is lacking; indefinite articles are as-
signed much more often than they should be.
This will probably not be possible without us-
ing a statistical module.

There are also other, rather technical issues re-
lated to punctuation or tokenization that will re-
quire more debugging.

6 Conclusions and Future Work

We presented TectoMT, a tree-to-tree machine
translation system with deep transfer, and its new
features in this year’s edition of the WMT shared
task, the main one being opening the system to
new language pairs. TectoMT in the English-to-
Czech direction is stable and provides useful trans-
lations though its results are worse than that of
other systems; it is also used in the Chimera sys-
tem combination. The new Czech-to-English sys-
tem requires more development but shows that it

11Same as for the English-to-Czech direction, the MaxEnt
model was trained only for (source) lemmas occurring at least
100 times in the training data and only with translations (tar-
get lemmas) occurring at least 5 times. For the simple condi-
tional (“static”) model, we used the same constants (by mis-
take).

is possible to adapt TectoMT to a new translation
direction in a very short amount of time.

In future, we plan to tune the current Czech-
to-English setup, and to include further improve-
ments. We intend to use Interset instead of gram-
matemes on the t-layer to support categories of
grammatical meaning not present in grammatemes
(see Section 3.1). We also consider switching the
TectoMT annotation style to Universal Dependen-
cies. To improve translation models, we are plan-
ning to use Vowpal Wabbit (Langford et al., 2007)
and to include word embeddings from word2vec
(Mikolov et al., 2013) as features. We are also
investigating the possibilities of non-isomorphic
transfer in TectoMT.
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J. Toman, Z. Urešová, and Z. Žabokrtský. 2012.
Announcing Prague Czech-English Dependency
Treebank 2.0. In Proceedings of LREC, pages 3153–
3160, Istanbul.
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Abstract
This article describes the Aalto Uni-
versity entry to the English-to-Finnish
shared translation task in WMT 2015.
The system participates in the con-
strained condition, but in addition we
impose some further constraints, using
no language-specific resources beyond
those provided in the task. We use
a morphological segmenter, Morfessor
FlatCat, but train and tune it in an un-
supervised manner. The system could
thus be used for another language pair
with a morphologically complex tar-
get language, without needing modifi-
cation or additional resources.

1 Introduction
In isolating languages, such as English, suit-
able smallest units of translation are easy to
find using whitespace and punctuation char-
acters as delimiters. This approach of us-
ing words as the smallest unit of transla-
tion is problematic for synthetic languages
with rich inflection, derivation or compound-
ing. Such languages have very large vocabu-
laries, leading to sparse statistics and many
out-of-vocabulary words.

A synthetic language uses fewer words than
an isolating language to express the same
sentence, by combining several grammatical
markers into each word and using compound
words. This difference in granularity is prob-
lematic in alignment, when a word in the iso-
lating language properly aligns with only a
part of a word in the synthetic language.

In order to balance the number of tokens
between target and source, it is often possi-

ble to segment the morphologically richer side.
Oversegmentation is detrimental, however, as
longer windows of history need to be used,
and useful phrases become more difficult to
extract. It is therefore important to find a
balance in the amount of segmentation. A
linguistically accurate segmentation may be
oversegmented for the task of translation, if
some of the distinctions are either unmarked
or marked in a similar way in the other lan-
guage.

An increase in the number of tokens means
that the distance spanned by dependencies
becomes longer. Recurrent Neural Network
(RNN) based language models have been
shown to perform well for English (Mikolov
et al., 2011). Their strength lies in being the-
oretically capable of modeling arbitrarily long
dependencies.

Moreover, a huge vocabulary is particularly
detrimental for neural language models due to
their computationally heavy training and need
to marginalize over the whole vocabulary dur-
ing prediction. As morphological segmenta-
tion can reduce the vocabulary size consider-
ably, using RNN language models seems even
more suitable for this approach.

Our system is designed for translation in the
direction from a morphologically less complex
to a more complex language. The opposite
direction – simplifying morphology – has re-
ceived more attention, especially with English
as the target language.

Of the target languages in this year’s task,
Finnish is the most difficult to translate into,
shown by Koehn (2005) and reconfirmed by
the evaluations of this shared task. Even
though the use of supervised linguistic tools
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(such as taggers, parsers, or morphological an-
alyzers) was allowed in the constrained con-
dition, our method does not use them. It is
therefore applicable to other morphologically
complex target languages.

1.1 Related work
The idea of transforming morphology to im-
prove statistical machine translation (SMT) is
well established in the literature. An early ex-
ample is Nießen and Ney (2004), who apply
rule-based morphological analysis to enhance
German→English translation.

In particular, many efforts have focused on
increasing the symmetry between languages
in order to improve alignment. Lee (2004)
uses this idea for Arabic→English translation.
In this translation direction, symmetry is in-
creased through morphological simplification.

It has been shown that a linguistically cor-
rect segmentation does not coincide with the
optimal segmentation for purposes of align-
ment, both using rule-based simplification of
linguistic analysis (Habash and Sadat, 2006),
and through the use of statistical methods
(Chung and Gildea, 2009).

Using segmented translation with unsuper-
vised statistical segmentation methods has
yielded mixed results. Virpioja et al. (2007)
used Morfessor Categories-MAP in transla-
tion between three Nordic languages, in-
cluding Finnish, while Fishel and Kirik
(2010) used Morfessor Categories-MAP in
English↔Estonian translation. In these stud-
ies, segmentation has in many cases worsened
BLEU compared to word-based translation.
The main benefit of segmentation has been a
decrease in the ratio of untranslated words.

Salameh et al. (2015) translate
English→Arabic, and find that segmen-
tation is most useful when the extracted
phrases are morphologically productive, and
that using a word-level language model
reduces this productivity (albeit increasing
the BLEU score).

The desegmentation process, and the ef-
fect of different strategies for marking the
word-internal token boundaries, have mostly
been examined in recombining split compound
words. Stymne and Cancedda (2011) explore
different marking strategies, including use of
part-of-speech tags, in order to allow the trans-

lation system to produce compounds unseen in
the training data.

2 System overview
An overview of the system is shown in Fig-
ure 1. The four main contributions of this
work are indicated by numbered circles:

1. Use of unsupervised Morfessor FlatCat
(Grönroos et al., 2014) for morphological
segmentation,

2. Tuning the morphological segmentation
directly to balance the number of trans-
lation tokens between source and target,

3. A new marking strategy for morph
boundaries,

4. Rescoring n-best lists with RNNLM
(Mikolov et al., 2010).

Our system extends an existing phrase-
based SMT system to perform segmented
translation, by adding pre-processing and
post-processing steps, with no changes to the
decoder. As translation system to be ex-
tended, we used the Moses release 3.0 (Koehn
et al., 2007). We used GIZA++ alignment,
and a 5-gram LM with modified-KN smooth-
ing. Many Moses settings were left at their
default values: phrase length 10, grow-diag-
final-and alignment symmetrization, msd-
bidirectional-fe reordering, and distortion
limit 6.

The standard pre-processing steps not spec-
ified in Figure 1 consist of normalization
of punctuation, tokenization, and statistical
truecasing. All three of these were performed
with the tools included in Moses.

In addition, the parallel data was cleaned
and duplicate sentences were removed. Clean-
ing was performed after morphological seg-
mentation, as the segmentation can increase
the length in tokens of a sentence.

The post-processing steps are the reverse
of the pre-processing steps: desegmentation,
detruecasing, and detokenization. Rescor-
ing of the n-best list was done before post-
processing.

The feature weights were tuned using
MERT (Och, 2003), with BLEU (Papineni
et al., 2002) of the post-processed hypothesis
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Figure 1: A pipeline overview of training and testing of the system. Main contributions are
hilighted with numbers 1-4.

against a tuning set as the metric. 20 random
restarts per MERT iteration were used, with
iterations repeated until convergence.

A similar MERT procedure was also used for
choosing the interpolation weights for rescor-
ing, with 100 random restarts in a single iter-
ation. A single-iteration approach was chosen,
as there was no need to translate a new n-best
list during the MERT for rescoring.

2.1 Morphological segmentation

For morphological segmentation, we use the
latest Morfessor variant, FlatCat (Grönroos
et al., 2014). Morfessor FlatCat is a proba-
bilistic method for learning morphological seg-
mentations, using a prior over morph lexicons
inspired by the Minimum Description Length
principle (Rissanen, 1989).

Morfessor FlatCat applies a Hidden Markov
model for morphotactics. Compared to
Morfessor Baseline, it provides morph cat-
egory tags (stem, prefix, suffix) and has
superior consistency especially in compound
word splitting. In contrast to Categories-
MAP (Creutz and Lagus, 2005), used for sta-
tistical machine translation e.g. by Clifton
and Sarkar (2011), it supports semi-supervised

learning and hyper-parameter tuning.
No annotated data was used in the training

of Morfessor FlatCat, neither in training nor
parameter tuning. Instead of aiming for a lin-
guistic morphological segmentation, our goal
was to balance the number of translation to-
kens between source and target languages.

In order to bring the number of tokens
on the Finnish target side closer to the En-
glish source side, we segmented the Finnish
text with an unsupervised Morfessor FlatCat
model, tuned specifically to achieve this bal-
ance. The corpus weight hyper-parameter α
was chosen by minimizing the sentence-level
difference in token counts between the English
and the segmented Finnish sides of the parallel
corpus

α = arg min
α

∑
(e,f)∈(E,F )

∣∣∣#(e)−#
(
M(f ; α)

)∣∣∣,
(1)

where # gives the number of tokens in the sen-
tence, and M(f ; α) is the segmentation with a
particular α.

Numbers and URLs occurring in the parallel
corpus were passed through Morfessor unseg-
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mented, but translated by Moses without any
special handling.

2.2 Morph boundary marking strategy
In the desegmentation step, consecutive to-
kens are concatenated either with or with-
out an intermediary space. Morph boundaries
must be distinguished from word boundaries,
so that the desegmentation step can recon-
struct the words correctly. There are various
ways to mark the boundaries, some of them
shown in Table 1.

A common way is to attach a symbol to all
morphs on the right (or left) side of the morph
boundary. We call this strategy right-only.

Alternatively both-sides of the boundary can
be marked. In this strategy, a decision must
be made whether to be aggressive or conserva-
tive in joining morphs, if the translation sys-
tem outputs an incorrect sequence where the
markers do not match up on both sides. For
these experiments we chose the conservative
approach, removing the unmatched marker
from a half-marked boundary, and treating it
as a word boundary.

A downside of the right-only and both-sides
strategies is that a stem is marked differently
depending on whether it has a prefix attached
or not, even if the surface form of the stem
does not change.

The morph categories produced by FlatCat
can be used for marking boundaries according
to the structure of the word. We can mark
affixes from the side that points towards the
stem, leaving stems unmarked regardless of
the presence of affixes. However, this would
leave the boundaries between compound parts
indistinguishable from word boundaries, mak-
ing some additional marking necessary.

Marking affixes by category and compound
boundaries with a special linking token is
called the compound-symbol strategy. Instead
marking the last morpheme in the compound
modifiers (non-final compound parts), results
in the compound-left strategy.

After initial unimpressive results with the
compound marking strategies, we concluded
that segmenting the compound modifiers does
not lead to productive translation phrases,
in contrast to boundaries between compound
parts and boundaries separating inflective af-
fixes. In response, we formulated the advanced

Strategy Example
Surface form supistamistavoitteistaan
Segmentation supistaSTMmisSUFtavoitteistaSTManSUF
Translation of their reduction targets
right-only supista +mis +tavoitteista +an
both-sides supista+ +mis+ +tavoitteista+ +an
compound-sym supista +mis +@+ tavoitteista +an
compound-left supista +mis@ tavoitteista +an
advanced supistamis+ tavoitteista +an

Table 1: Morph boundary marking strategies.

marking strategy, which goes beyond bound-
ary marking to modify the segmentation, by
rejoining the morphs in the modifier parts of
compounds.

The sequence of morph categories is used for
grouping the morphs into compound parts. A
word consists of one or more compound parts.
Each compound part consists of exactly one
stem, and any number of preceding prefixes
and following suffixes.

CompoundPart = Pre∗ Stm Suf∗

Word = CompoundPart+ (2)

For all compound parts except the last one,
the affixes are rejoined to their stem. Morphs
of length 5 or above were treated as stems,
regardless of the category assigned to them by
FlatCat.

Prefixes and compound modifiers are
marked with a trailing ’+’, suffixes are marked
with a leading ’+’, and the stems of the word-
final compound parts are left unmarked.

2.3 Rescoring n-best lists
Segmentation of the word forms increases
the distances spanned by dependencies that
should be modeled by the language model. To
compensate this, we apply a strong recurrent
neural network language model (RNNLM)
(Mikolov et al., 2010). The additional lan-
guage model is used in a separate rescoring
step, to speed up translation, and for ease of
implementation.

The RNNLM model was trained on morpho-
logically segmented data. Morphs occurring
only once were removed from the vocabulary,
and replaced with <UNK>. The parameters
were set to 300 nodes in the hidden layer, 500
vocabulary classes, 2M direct connections of
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Monolingual data Parallel data
Purpose news2014 v2 europarl v8 wikititles newsdev2015 test2006
Training Morfessor fi fi fi
Training LMs fi fi fi
Training Moses en – fi en – fi
Tuning Morfessor en – fi
Tuning RNNLM fi
Tuning Moses en – fi
Development testing en – fi

Sentences 1378582 1926114 153728 1500 2000

Table 2: The data sets used for different purposes. “en–fi” signifies that parallel data was used,
“fi” signifies monolingual data, or using only the Finnish side of parallel data.

order 4, backpropagation through 5 time steps,
with blocksize 25.

At translation time, 1000-best lists of morph
segmented hypotheses produced by Moses
were scored using the RNNLM.

The Moses features were extended by in-
cluding the RNNLM score as an additional fea-
ture. A new linear combination of the features
was optimized with MERT, and used for the
final hypothesis ranking. For the BLEU mea-
surement in MERT the segmented hypothe-
sis was post-processed (including desegmenta-
tion) and compared to an un-preprocessed ref-
erence.

3 Data

The data sets used in training and tuning are
shown in Table 2. Both europarl v8 and wik-
ititles were used as parallel training data, but
only europarl was used for tuning the hyper-
parameter α, as the titles do not follow a typ-
ical sentence structure.

The Finnish side of the parallel sets was
used to extend the monolingual training data.
The monolingual data were concatenated for
LM training, instead of interpolating different
n-gram models.

After cleaning, the combined parallel train-
ing data contained 2,004,450 sentences. The
parallel set used for testing during develop-
ment is test2006, a europarl subset of 2000
sentences sampled from three last months of
2000.1

1http://matrix.statmt.org/test_sets/list

dev-test test
test2006 newstest2015

Configuration BLEU BLEU
advanced, α = 0.7 .147 .112

+rescoring .147 .116
advanced, α = 0.4 .145 .112
both-sides .141 .114
compound-left .140 .113
compound-sym .139 .111
right-only .139 .111
(word) .146 .100

Table 3: Results of evaluation.

4 Results

Table 3 shows cased BLEU scores on the in-
domain development set and out-of-domain
test set, for various configurations. The en-
try marked word is a baseline system without
segmentation.

When evaluating on the in-domain develop-
ment set, most configurations that use seg-
mentation achieve worse BLEU compared to
the word baseline. Only the best configura-
tions, using the advanced strategy, are able to
achieve slightly higher BLEU.

Switching domains to the test corpus leads
to a larger difference, in favor of the segment-
ing methods. The choice of morph boundary
marking strategy and the sentence-based tun-
ing of the segmentation had a moderate effect
on BLEU. The addition of rescoring did not
improve BLEU on the in-domain dev-test cor-
pus, but resulted in a slight improvement on
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the out-of-domain test corpus.
The proportion of word tokens that were

segmented into at least two parts was 19.8%.
The joining of compound modifiers did not
have a large effect on the total number of to-
kens, causing a reduction from 49,524,520 to
49,475,291 (0.1%).

Using the sentence-level balancing, the op-
timal value for the corpus weight hyper-
parameter α was 0.7. The change in the num-
ber of tokens caused by the joining of com-
pound modifiers did not affect the optimum.
Balancing the token count of the whole cor-
pus yielded a much lower α of 0.4, leading to
oversegmentation and lower BLEU.

The weight of the RNNLM in the final linear
combination was 0.092, compared to 0.119 of
the n-gram LM. This indicates that it is able
to complement the n-gram model, but does
not dominate it.

In the human evaluation of WMT15, the
system with advanced morph boundary mark-
ing strategy and RNNLM rescoring was
ranked in tied second place of five methods
participating in the constrained condition.

5 Conclusions

To improve English-to-Finnish translation in a
phrase-based machine translation system, we
tuned an unsupervised morphological segmen-
tation preprocessor to balance the token count
between source and target languages. Ap-
propriate choice of morph boundary marking
strategy and amount of segmentation brought
the BLEU score slightly above a word-based
baseline, in contrast to some previous work
with unsupervised segmentation (Virpioja et
al., 2007; Fishel and Kirik, 2010).

To compensate for the need of longer con-
texts, we added a recurrent neural network
language model as a rescoring step. It did not
help for the in-domain development corpus,
but improved results on the out-of-domain test
corpus.

Possible directions for future work include
Minimum Bayes Risk combination of trans-
lation hypotheses from systems trained with
different segmentations and marking strate-
gies (De Gispert et al., 2009), using morphol-
ogy generation instead of segmented transla-
tion (Clifton and Sarkar, 2011), and improving

the alignment directly in addition to balancing
of token counts (Snyder and Barzilay, 2008).
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Abstract

This paper describes the AFRL-MITLL
statistical MT systems and the improve-
ments that were developed during the
WMT15 evaluation campaign. As part of
these efforts we experimented with a num-
ber of extensions to the standard phrase-
based model that improve performance on
the Russian to English translation task cre-
ating three submission systems with differ-
ent decoding strategies. Out of vocabulary
words were addressed with named entity
postprocessing.

1 Introduction

As part of the 2015 Workshop on Machine
Translation (WMT15) shared translation task, the
MITLL and AFRL human language technol-
ogy teams participated in the Russian–English
translation task. Our machine translation sys-
tems represent enhancements to both our sys-
tems from IWSLT2014 (Kazi et al., 2014) and
WMT14 (Schwartz et al., 2014), the addition of
hierarchical decoding systems (Hoang and Koehn,
2008), neural network joint models (Devlin et al.,
2014) and the utilization of Drem (Erdmann and
Gwinnup, 2015), a method of scaled derivative-
free trust-region optimization, during the system
tuning process.

2 System Description

We submitted systems for the Russian-to-English
machine translation shared task. In all submitted
systems, we used either phrase-based or hierarchi-
cal variants of the moses decoder (Koehn et al.,

†This work is sponsored by the Air Force Research Labo-
ratory under Air Force contract FA-8650-09-D-6939-029.

‡This work is sponsored by the Air Force Research Labo-
ratory under Air Force contract FA-8721-05-C-0002.

2007). As in previous years, our submitted sys-
tems used only the constrained data supplied when
training.

2.1 Data Usage

In training our Russian–English systems we uti-
lized the following corpora to train translation and
language models: Yandex1, Commoncrawl (Smith
et al., 2013), LDC Gigaword English v5 (Parker et
al., 2011) and News Commentary. The Wikipedia
Headlines corpus2 was reserved to train named en-
tity recognizers.

2.2 Data Preprocessing

As with our WMT14 submission systems, prepro-
cessing to address issues with the training data was
required to ensure optimal system performance.
Unicode characters in the private use, control char-
acter(C0, C1, zero-width, non-breaking, joiner,
directionality and paragraph markers), and unal-
located ranges were removed. Punctuation nor-
malization and tokenization using Moses prepro-
cessing scripts were then applied before lower-
casing the data. The Commoncrawl corpus was
further processed as in Schwartz et al. (2014)
to exclude wrong-language text and to normalize
mixed-alphabet spellings.

2.3 Factored Data Generation

We generated a class-factored version of the paral-
lel Russian–English training data by using mkcls
to produce 600 word classes for each side of the
data. The factored data was then used to create a
factored translation model and an in-domain class
language model (Brown et al., 1993) for the En-
glish portion.

1https://translate.yandex.ru/corpus?lang=en
2http://statmt.org/wmt15/wiki-titles.tgz
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2.4 Phrase and Rule Table Training
Phrase tables and rule tables were trained on the
preprocessed data using scripts provided with the
moses distribution. Both rule tables and phrase
tables utilized Good-Turing discounting (Gale,
1995). Hierarchical lexicalized reordering mod-
els (Galley and Manning, 2008) were also trained
for use in the phrase-based systems.
An additional phrase table was trained on the

lemmatized forms of the Russian training data.
These lemmatized forms were generated by the
mystem3 tool.

2.5 Language Model Training
The English data sources listed in §2.1 were
used to train a very large 6-gram language model
(BigLM15). The English portion of the parallel
data was processed into class form as outlined in
§2.3 to generate an in-domain 600 class language
model. kenlm (Heafield, 2011) was used to train
these 6-gram models. These models were then bi-
narized and stored on local solid-state disks for
each machine in our cluster to improve load time
and reduce fileserver traffic.

2.6 Operation Sequence Models
Using both the Russian and English data generated
in §2.3, we trained order-5 Operation Sequence
models (Durrani et al., 2011) for both the surface
and class-factored forms of the data. These models
improve translation quality by introducing infor-
mation on the sequence of operations occuring at
both the surface and class factor level. These mod-
els were then used in our factored phrase-based
system.

2.7 Neural Network Joint Models
Neural network joint models (Devlin et al., 2014)
are neural network based language models with a
source window context. We trained these mod-
els on the alignments produced by mgiza (Gao
and Vogel, 2008) over the parallel training data
and then used them to rescore n-best lists. As
in (Devlin et al., 2014), we trained four different
models. The standard model is “source-to-target,
left-to-right,” (s2t, ltr) which evaluates p(ti|T, S)
with target window T = (ti−1, ti−2, . . . , ti−n) and
S = (sk−m, . . . sk, . . . , sk+m), where sk is word-
aligned to ti. The four permutations of this are de-
fined by (a) whether to count upwards from i, in-

3https://tech.yandex.ru/mystem

stead of downwards (this is left-to-right vs right-to-
left), and (b) whether to swap the sources and tar-
gets entirely (source-to-target vs target-to-source).
We experimented with NNJM decoding (via a

simple feature function in Moses). We achieved
some benefit (+0.48 BLEU) with this approach but
rescoring a single NNJM source-to-target on 200-
best lists produced better results in this case (+0.90
BLEU). This was on a single system tuned on
newstest2013, tested on newstest2014 (base-
line 29.07 BLEU). In testing, 2-hidden layer
rescoring models outperformed the 1-hidden layer
decoding model.
The vocabulary for the NNJMs were created by

using all words that appeared at least a certain
number of times in the training data. We experi-
mented with minimum counts of 20 and 25. Us-
ing 20, our vocabulary was approximately 80,000
Russian words and 40,000 English; with 25, it was
70,000 and 34,000, respectively. We compared
rescoring with a single, standard model (s2t, l2r)
to rescoring with all directions with results listed
in Table 1.

Baseline 1 NNJM 4 NNJMs
20 25 20 25

max 27.71 27.90 28.05 27.90 28.07
mean 27.48 27.61 27.81 27.67 27.60

Table 1: NNJM Rescoring on newstest2015,
optimizing on newstest2014, case-insensitive
BLEU.

2.8 Processing of Unknown Words
In our submission systems, we allowed words
unknown to the decoder to be passed through
to the translated output. We developed three
post-processing techniques to address unknown
words: named entity (NE) tagging and transla-
tion (§2.8.2), permissive NE translation (§2.8.3),
and selective transliteration of the remaining OOV
words (§2.8.4). The first two techniques rely on
our in-house transliteration mining of NE pairs,
which is described in §2.8.1.
We applied all three post-processing steps to

the output of our factored phrase-based submis-
sion system; due to time constraints, only the last
two steps were applied to the output of our phrase-
based and hierarchical submission systems.
Score improvements in uncased BLEU are re-

ported in Table 2. We see that application of
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permissive lookup and selective transliteration
yielded an improvement of +0.48 BLEU versus a
baseline system, while the application of named
entity tagging and translation, permissive lookup
and selective transliteration yielded a +0.57 BLEU
gain.

2.8.1 Transliteration Mining
Both NE processing steps (§2.8.2 and §2.8.3)
make use of a NE pairs list that we developed
through transliteration mining of the Russian-
English CommonCrawl. In transliteration mining
(Kumaran et al., 2010; Zhang et al., 2012), we use
transliteration as a tool to detect similar-sounding
words in the parallel text that may correspond to
names. Our process for detecting transliterated NE
is generative and rule-based. We used mystem to
tag NE in the Russian text, and then used capital-
ization and transliteration as clues to find match-
ing NE in the parallel English sentences. English
words were considered candidate matches if they
were capitalized, but not sentence-initial; we ex-
cluded all-caps words, since acronyms often do not
transliterate well. We also required the English
candidate words to match the initial sound of the
Russian NE.
We checked the initial sound match by translit-

erating the Russian words according to the text-
book values of the Russian letters, and then check-
ing for matches with the English spellings, allow-
ing certain spelling variations. These variations
include instances where Russian lacks an English
sound, and substitutes a similar sound (e.g., En-
glish h written in Russian with the letters for x or
g, and English w written with the Russian letters
for v or u), as well as common English spelling al-
ternations like n/kn, s/c, c/k, etc.
An iterative process of refining spelling alter-

nations was applied by manual observation of
known NE pairs that were not matched via exist-
ing rules; notably, this introduced spelling varia-
tions for words originating from a third language.
For example, English j typically represents [dƷ]
but may also indicate [h] in words of Spanish ori-
gin, so we need to allow the spelling alternation
x/j . Similarly, the letters gi may represent [dƷ] in
Italian names like Giovanni, so we need to allow
transliterated Russian dzh to match English gi.
At this point in the transliteration mining pro-

cess, we have derived a list of capitalized English
words that have initial spellings potentially match-
ing the initial sound of the Russian NEword. If the

English sentence contains more than one such can-
didate, we select the word with the smallest edit
distance from the Russian transliteration, using a
length-normalized Levenshtein distance. For this
calculation, any spelling variation counts as an edit
distance change, so we penalize variations such as
k for c.
For NE tagging and translation (§2.8.2), we re-

turn only the NE pairs with zero edit distance. For
permissive NE translation, we allow some varia-
tion, as described in §2.8.3.

2.8.2 Named Entity Tagging and Translation
The named entity post-process uses Russian–
English pairs in the combined names and titles
lists from the Wikipedia Headlines corpus (the
“Wiki pairs list”) and the transliteration-mined
list (§2.8.1) to replace unknown words with En-
glish equivalents. We began by stemming each
list to remove Russian noun and adjective end-
ings. To the Wiki pairs list, we added additional
pairs yielded by replacing word-internal punctu-
ation marks in existing Wiki pairs with spaces.
We used giza++ (Och and Ney, 2003) to align
Russian–English phrases from the Wiki list. We
then used these alignments to start a generated list
of pairs with only one Russian word and one En-
glish word in a pair. Of the aligned pairs, we only
included pairs that were aligned with one another
three or more times. Only one-to-one alignments
would count toward the three alignment rule. We
also removed entries where the English word in
the pair occurred in a list of stop-words as well as
where the English word consisted of only digits.
To the generated list, we also added pairs directly
from the Wiki list with both single Russian words
and single English words. Finally, we also added
the highest quality pairs from the transliteration-
mined list.
Upon encountering a single word without word-

internal punctuation, the system first searches
through the generated list, and returns a list of
found guesses. If no items are found in the gen-
erated list, the Wiki list is then searched. If still no
guesses are found, then the transliteration-mined
list is searched. The same process occurs for a
word containing word-internal punctuation, but af-
ter a failed iteration of the search process, the punc-
tuation is replaced with a space and the Wiki lists
are searched. Finally if that iteration fails, then
the search process occurs on each individual word
and a concatenation of English definitions is added
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to the guess list for every possible combination of
guesses for each component word. An English lan-
guage model is used to choose among the guesses.

2.8.3 Permissive Named Entity Translation
Permissive NE look-up is applied to translate OOV
words that remain untranslated after NE tagging
and translation (§2.8.2), or when the NE tagging
and translation step is unavailable. In this second
step, we expand the NE pairs list to include pairs
with greater edit distance when they are validated
by repeat occurrence.
While the NE tagging and translation step only

uses transliteration-mined NE pairs which match
exactly, the permissive step allows NE pairs that
have some spelling variation. We apply two addi-
tional restrictions to ensure good quality matches,
length disparity and instance ratio. We restrict the
output to words which come from sentences that
do not differ too much in length. A large length
disparity suggests a sentence alignment error in the
parallel text, which would make the NE match un-
reliable.
We also restrict the output to words which are

fairly frequent among other matches for the same
Russian words, calculating an instance ratio as the
number of times we see this English word with
this Russian word, divided by the total number of
English matches we record for this Russian word.
Rare instances may be mistakes or spelling vari-
ants that we would prefer to exclude. For example,
we found the Russian nameКонстантинmatched
with English Constantine 117 times, and matched
with the spelling Konstantine only 1 time, so we
do not want to collect Константин/Konstantine
as a NE pair.
We keep the NE pairs if:

1. The length-normalized edit distance < 0.2

2. The length-normalized edit distance falls be-
tween 0.2 and 0.5, inclusive, and sentence
length disparity < 2 and instance ratio > 0.01

With these restrictions, we derived 32,560 poten-
tial NE pairs.
Subsequently, an additional transliteration min-

ing step was conducted, to collect NE pairs from
any capitalized Russian words, not just the words
tagged as NE by mystem. We excluded Russian
acronyms, sentence-initial words, and personal
pronouns (which are capitalized in some styles

of Russian writing). Applying the previously de-
scribed restrictions for edit distance, instance ra-
tio, and sentence length disparity, we derived an
additional 22,370 capitalized-word NE pairs. The
combined mystem tagged and capitalized-word
NE pairs lists were used in the permissive transla-
tion of OOV words, considering both the original
form of the Russian OOV word and its stemmed
form.
For the phrase-based and hierarchical systems,

which were processed without the NE tagging and
translation step, the wiki pairs list was added to the
mined NE pairs list for permissive OOV transla-
tion.

2.8.4 Selective Transliteration of Remaining
Out-of-Vocabulary Words

As a final post-processing step, we transliterate
some of the remaining OOV words. We attempt to
distinguish OOV NE from common words, drop-
ping commonwords and transliterating names. We
hypothesize that retaining transliterated forms of
NE will improve readability, even if the output is
not a direct match to the English reference.
We attempt to distinguish NE from common

words on the basis of capitalization in the Russian
source file. Capitalized words that do not begin a
sentence are assumed to be NE, and are translit-
erated. For example, transliteration is the source
of the name Kostenok in first example sentence
shown in Figure 1. Lowercased words, and cap-
italized words that begin a sentence, are assumed
to be commonwords and are dropped from the out-
put.

3 Results

We submitted three systems for evaluation, each
employing a different decoding strategy: tradi-
tional phrased-based, hierarchical, and factored
phrased-based. Each system is described be-
low. Automatically scored results reported in
BLEU (Papineni et al., 2002) for our submission
systems can be found in Table 3.
Finally, as part of WMT15, the results of our

submission systems listed in Tables 3 were ranked
by monolingual human judges against the machine
translation output of other WMT15 participants.
These judgements are reported in WMT (2015).

3.1 Phrased-Based
We used a standard phrase-based approach, using
lowercased data. The lemma-based phrase table
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System Process Applied baseline BLEU postproc BLEU ∆ BLEU

phrase-based PermLookup + SelTranslit 27.72 28.20 +0.48
hiero PermLookup + SelTranslit 27.43 27.91 +0.48
pb-factored NEProc + PermLookup+ SelTranslit 27.18 27.75 +0.57

Table 2: NE post-processing improvement measured in uncased BLEU

described in §2.4 was used as a backoff phrase
table. We trained a hierarchical lexicalized re-
ordering model, and used two separate class based
(factored) language models; one using 600 classes
on the in-domain target-side parallel data, and the
other using the LDC Gigaword-English v5 NYT
corpus. N-best lists from moses were rescored
with 4-way NNJMs, and the system weights were
tuned with PRO (Hopkins and May, 2011). Selec-
tive transliteration as described in §2.8.4 was then
applied to the decoder output.

3.2 Hierarchical
New for this year, we trained a hierarchical system
using the same parallel data as our phrase-based
systems. The rule table was created as outlined in
§2.4 and then filtered to only contain rules relat-
ing to the Russian content of the newstest test
set for years 2012–2015. This filtering was per-
formed in order to reduce the size of the rule table
for both system memory requirements and expedi-
ency. The incremental-search algorithm (Heafield
et al., 2013) and BigLM15were used to decode the
dev (newstest2014) and test (newstest2015)
data. Drem was employed to tune feature weights,
optimizing the sum of the expected sentence-
level BLEU and expected sentence-level Meteor
(Denkowski and Lavie, 2014) metrics. Finally, se-
lective transliteration was employed as described
in §2.8.4.

3.3 Factored Phrase-Based
For our last system, we used a factored phrase-
based approach (Koehn and Hoang, 2007) where
the surface form of the training data was aug-
mented with word classes. These classes were
generated on the parallel training data outlined in
§2.4 using mkcls to group the words into 600
classes for both English and Russian portions of
the parallel training corpus. A phrase table and hi-
erarchical reordering model was then trained us-
ing the moses training process on both the surface
form and the class factor. Order-5 operation se-
quence models were separately trained on the sur-

face forms and the class factors. An order-6 class-
factor LM (Shen et al., 2006) was also trained on
the English portion of the parallel training data to
supplement the use of BigLM15. NNJMs as out-
lined in §2.7 were used to rescore the n-best lists
from the decode. Following this rescoring, Drem
was employed to tune feature weights, optimizing
expected corpus-level BLEU (Smith and Eisner,
2006). After optimization and decoding of the test
set, remaining unknown words were processed as
described in §2.8.2 and §2.8.4.

System Cased BLEU Uncased BLEU

phrase-based 27.0 28.2
hiero 26.7 27.9
pb-factored 26.4 27.8

Table 3: MT Submission Systems decoding
newstest2015

4 Discussion

Our three submitted systems all scored similarly
against the official test set. Manual examination of
our systems’ output shows that there are significant
differences in sentence structure and content.

4.1 Comparing Submitted Systems for
Similarity

We scored one system output against another (as
reference) with mteval13a.pl in both directions
as BLEU scores are not symmetric. Results are
listed in Table 4. Interestingly, the factored phrase-
based and hierarchical systems were more similar
to each other than to the traditional phrase-based
system. This suggests that the addition of class
factors serves a similar function to the use of hi-
erarchical decoding.

4.2 A Closer Analysis of Performance
between Submission Systems

We now examine two sentences translated with
each of our submission systems and compare them
with the supplied reference translation and a literal
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Test Ref BLEU

PB Hiero 57.18
PBFac Hiero 76.34
Hiero PB 57.09
PBFac PB 60.54
PB PBFac 60.47
Hiero PBFac 70.18

Table 4: Submission system similarity measured
in uncased BLEU

translation. These comparisons are shown in Fig-
ure 1.
In the first sentence, the reference transla-

tion shows a reordering of the first clause to
the end. The phrase-based system drops this
clause. The pb-factored system has informed in-
stead of reported which shifts the meaning; per-
haps the translation was influenced by the fluent
but different-meaning phrase informed the Minis-
ter. The hierarchical system follows the original
order of the source sentence clauses; while miss-
ing the, it reads the best overall.
In the second sentence, Учебный “school” (ad-

jective) is the probable source of school, academic,
and teach. The phrase-based system handles this
word best; the phrase-based factored system gen-
erates academic and teach but separates them; the
hierarchical system generates year to teach. The
hierarchical system does the best job with no ear-
lier than October. The phrase-based factored sys-
tem generates no earlier and October but reorders
them (perhaps influenced by the common phrase,
in October); and the phrase-based system creates
before October, which reverses the meaning. The
phrase-based system would have read best here,
had it not neglected the negative particle.

5 Conclusion

In this paper, we present data preparation and pro-
cessing techniques for our Russian–English sub-
missions to the 2015Workshop onMachine Trans-
lation (WMT15) shared translation task. Our sub-
missions examine three different decoding strate-
gies and the effectiveness of sophisticated han-
dling of unknown words. While scoring similarly,
each system produced markedly different output.

Opinions, interpretations, conclusions and recommenda-
tions are those of the authors and are not necessarily endorsed
by the United States Government. Cleared for public release
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Abstract

This paper presented the joined submis-
sion of KIT and LIMSI to the English to
German translation task of WMT 2015. In
this year submission, we integrated a neu-
ral network-based translation model into a
phrase-based translation model by rescor-
ing the n-best lists.

Since the computation complexity is one
of the main issues for continuous space
models, we compared two techniques to
reduce the computation cost. We inves-
tigated models using a structured output
layer as well as models trained with noise
contrastive estimation. Furthermore, we
evaluated a new method to obtain the best
log-linear combination in the rescoring
phase.

Using these techniques, we were able to
improve the BLEU score of the baseline
phrase-based system by 1.4 BLEU points.

1 Introduction

In this paper, we present the English→German
joint translation system from KIT and LIMSI par-
ticipating in the Shared Translation Task of the
EMNLP 2015 - Tenth Workshop on Statistical
Machine Translation (WMT2015). Our system
is the combination of two different approaches.
First, a strong phrase-based system from KIT is
used to generate a k-best list of translated candi-
dates. Second, an n-gram translation model from
LIMSI, named SOUL (Structured OUtput Layer),
helps to rescore the k-best list by utilizing features
extracted from translated tuples. In this year par-
ticipation, we also use a version of the neural net-
work translation models (Le et al., 2012) trained
using NCE algorithm (Gutmann and Hyvärinen,
2010) as counterpart to SOUL models. A ListNet-

based rescoring method is then applied to integrate
two abovementioned approaches.

Section 2 describes the KIT phrase-based trans-
lation system which is conducted over the phrase
pairs. Section 3 describes the LIMSI SOUL and
NCE translation models estimated on source-and-
target n-gram tuples. We explain the rescoring ap-
proach in Section 4. Finally, Section 5 summa-
rizes the experimental results of our joint system
submitted to WMT2015.

2 KIT Phrase-based Translation System

The KIT translation system uses a phrase-based
in-house decoder (Vogel, 2003) which finds the
best combinations of features in a log-linear
framework. The features consist of translation
scores, distortion-based and lexicalized reorder-
ing scores as well as conventional and non-word
language models. In addition, several reorder-
ing rules, including short-range, long-range and
tree-based reorderings, are applied before decod-
ing step as they are encoded as word lattices. The
decoder then generates a list of the best candidates
from the lattices. To optimize the factors of indi-
vidual features on a development dataset, we use
minimum error rate training (MERT) (Venugopal
et al., 2005). We are going to describe those com-
ponents in detail as follows.

2.1 Data and Preprocessing

The parallel data mainly used are the corpora ex-
tracted from Europarl Parliament (EPPS), News
Commentary (NC) and the common part of web-
crawled data (Common Crawl). The monolingual
data are the monolingual part of those corpora.

A preprocessing step is applied to the raw data
before the actual training. It includes removing ex-
cessively long and length-mismatched sentences
pairs. Special symbols and nummeric data are
normalized, and smartcasing is applied. Sentence
pairs which contain textual elements in different
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languages to some extent, are also taken away.
The data is further filtered by using an SVM clas-
sifier to remove noisy sentences which are not the
actual translation from their counterparts.

2.2 Phrase-table Scores
We obtain the word alignments using the GIZA++
toolkit (Och and Ney, 2003) and Discrimina-
tive Word Alignment method (Niehues and Vo-
gel, 2008) from the parallel EPPS, NC and Com-
mon Crawl. Then the Moses toolkit (Koehn et al.,
2007) is used to build the phrase tables. Transla-
tion scores, which are used as features in our log-
linear framework, are derived from those phrase
tables. Additional scores, e.g. distortion infor-
mation, word penalties and lexicalized reordering
probabilities (Koehn et al., 2005), are also ex-
tracted from the phrase tables.

2.3 Discriminative Word Lexicon
The presence of words in the source sentence
can be used to guide the choice of target words.
(Mauser et al., 2009) build a maximum entropy
classifier for every target words, taking the pres-
ence of source words as its features, in order to
predict whether the word should appear in the tar-
get sentence or not. In KIT system, we use an ex-
tended version described in Niehues and Waibel
(2013), which utilizes the presence of source n-
grams rather than source words. The parallel data
of EPPS and NC are used to train those classifiers.

2.4 Language Models
Besides word-based n-gram language models
trained on all preprocessed monolingual data,
the KIT system includes several non-word lan-
guage models. A 4-gram bilingual language
model (Niehues et al., 2011) trained on the parallel
corpora is used to exploit wider bilingual contexts
beyond phrase boundaries. 5-gram Part-of-Speech
(POS) language models trained on the POS-tagged
parts of all monolingual data incorporate some
morphological information into the decision pro-
cess. They also help to reduce the impact of the
data sparsity problem, as cluster language models
do. Our 4-gram cluster language model is trained
on monolingual EPPS and NC as we use MKCLS
algorithm (Och, 1999) to group the words into
1,000 classes and build the language model of the
corresponding class IDs instead of the words.

All of the language models are trained using the
SRILM toolkit (Stolcke, 2002); The word-based

language model scores are estimated by KenLM
toolkit (Heafield, 2011) while the non-word lan-
guage models are estimated by SRILM.

2.5 Prereorderings

The short-range reordering (Rottmann and Vo-
gel, 2007) and long-range reordering (Niehues and
Kolss, 2009) rules are extracted from POS-tagged
versions of parallel EPPS and NC. The POS tags
of those corpora are produced using the TreeTag-
ger (Schmid, 1994). The learnt rules are used to
reorder source sentences based on the POS se-
quences of their target sentences and to build re-
ordering lattices for the translation model. Addi-
tionally, a tree-based reordering model (Herrmann
et al., 2013) trained on syntactic parse trees (Klein
and Manning, 2003) is applied to the source side
to better address the differences in word order be-
tween English and German.

3 Continuous Space Translation Models

Neural networks, working on top of conventional
n-gram back-off language models (BOLMs), have
been introduced in (Bengio et al., 2003; Schwenk,
2007) as a potential means to improve discrete lan-
guage models. More recently, these techniques
have been applied to statistical machine transla-
tion in order to estimate continuous-space transla-
tion models (CTMs) (Schwenk et al., 2007; Le et
al., 2012; Devlin et al., 2014)

3.1 n-gram Translation Models

The n-gram-based approach in machine trans-
lation is a variant of the phrase-based ap-
proach (Koehn et al., 2003). Introduced
in (Casacuberta and Vidal, 2004), and extended
in (Mariño et al., 2006; Crego and Mariño, 2006),
this approach is based on a specific factorization
of the joint probability of parallel sentence pairs,
where the source sentence has been reordered be-
forehand as illustrated in Figure 1.

Let (s, t) denote a sentence pair made of a
source s and target t sides. This sentence pair is
decomposed into a sequence of L bilingual units
called tuples defining a joint segmentation. In
this framework, tuples constitute the basic trans-
lation units: like phrase pairs, a matching between
a source and target chunks. The joint probabil-
ity of a synchronized and segmented sentence pair
can be estimated using the n-gram assumption.
During training, the segmentation is obtained as a
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 s̅8: à 

 t̅8: to 

 s̅9: recevoir 

 t̅9: receive 

 s̅10: le 

 t̅10: the 

 s̅11: nobel de la paix 

 t̅11: nobel peace 

 s̅12: prix 

 t̅12: prize 

 u8  u9  u10  u11  u12 

s :   .... 

t :   .... 

à recevoir le prix nobel de la paixorg :   ....

....

....

Figure 1: Extract of a French-English sentence pair segmented into bilingual units. The original (org)
French sentence appears at the top of the figure, just above the reordered source s and the target t. The
pair (s, t) decomposes into a sequence of L bilingual units (tuples) u1, ..., uL. Each tuple ui contains a
source and a target phrase: si and ti.

by-product of source reordering, (see (Crego and
Mariño, 2006) for details). During the inference
step, the SMT decoder is assumed to output for
each source sentence a set of hypotheses along
with their derivations, which allow CTMs to score
the generated sentence pairs.

Note that the n-gram translation model manipu-
lates bilingual tuples. The underlying set of events
is thus much bigger than for word-based models,
whereas the training data (parallel corpora) are
typically order of magnitude smaller than mono-
lingual resources. As a consequence, data spar-
sity issues for this model are particularly severe.
Effective workarounds consist in factorizing the
conditional probabitily of tuples into terms involv-
ing smaller units: the resulting model thus splits
bilingual phrases in two sequences of respectively
source and target words, synchronised by the tuple
segmentation. Such bilingual word-based n-gram
models were initially described in (Le et al., 2012)
and extended in (Devlin et al., 2014). We assume
here the same decomposition.

3.2 Neural Architectures

In such models, the size of output vocabulary is
a bottleneck when normalized distributions are
needed (Bengio et al., 2003; Schwenk et al.,
2007). Various workarounds have been proposed,
relying for instance on a structured output layer
using word-classes (Mnih and Hinton, 2008; Le et
al., 2011). A different alternative, which however
only delivers quasi-normalized scores, is to train
the network using the Noise Contrastive Estima-
tion or NCE for short (Gutmann and Hyvärinen,
2010; Mnih and Teh, 2012). This technique is
readily applicable for CTMs. Therefore, NCE
models deliver a positive score, by applying the
exponential function to the output layer activities,

instead of the more costly softmax function. We
propose here to compare these both approaches,
SOUL and NCE to estimate CTMs. The only dif-
ference relies on the output structure of the net-
works. In terms of computation cost, while the
training using the two approaches takes quite sim-
ilar amounts of time, the inference with NCE is
slightly faster than the one with SOUL as it ig-
nores the score normalization. While the CTMs
under study in this paper were initially intro-
duced within the framework of n-gram-based sys-
tems (Le et al., 2012), they could be used with any
phrase-based system.

Initialization is an important issue when opti-
mizing neural networks. For CTMs, a solution
consists in pre-training monolingual n-gram mod-
els. Their parameters are then used to initialize
bilingual models.

3.3 Integration CTMs

Given the computational cost of computing
n-gram probabilities with neural network models,
a solution is to resort to a two-pass approach as de-
scribed in Section 4: the first pass uses a conven-
tional system to produce a k-best list (the k most
likely hypotheses); in the second pass, probabili-
ties are computed by the CTMs for each hypoth-
esis and added as new features. Since the phrase-
based system described in Section 2 uses source
reordering, the decoder was modified to gener-
ate k-best lists containing necessary word align-
ment information between the reordered source
sentence and its associated translation. The goal
is to recover the information that allows us to ap-
ply the n-gram decomposition of a sentence pair.
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4 Rescoring

After generating translation probabilities using the
neural network translation models, we need to
combine them with the baseline scores of the
phrase-based system in order to select better trans-
lations from the k-best lists. As it is done in the
baseline decoder, we used a log-linear combina-
tion of all features. We trained the model using
the ListNet algorithm (Niehues et al., 2015; Cao
et al., 2007).

This technique defines a probability distribution
on the permutations of the list based on the scores
of the log-linear model and one based on a ref-
erence metric. Therefore, a sentence-based trans-
lation quality metric is necessary. In our exper-
iments we used the BLEU+1 score introduced by
Liang et al. (2006). Then the model was trained by
minimizing the cross entropy between both distri-
butions on the development data.

Using this loss function, we can compute the
gradient with respect to the weight ωk as follows:

∆ωk =
n(i)∑
j=1

fk(x(i)
j ) ∗ (1)

(
exp(fω(x(i)

j ))∑n(i)

j′=1 exp(fω(x(i)
j′ ))

− exp(BLEU(x(i)
j ))∑ni

j′=1 exp(BLEU(x(i)
j′ )

)

When using the ith sentence, we calculate the
derivation by summing over all n(i) items of the k-
best lists. The kth feature value fk(x(i)

j ) is multi-
plied with the difference. This difference depends
on fω(x(i)

j ), the score of the log-linear model for
the j hypothesis of the list and the BLEU score
BLEU(x(i)

j ) assigned to this item. Using this
derivation, we used stochastic gradient descent to
train the model. We used batch updates with ten
samples and tuned the learning rate on the devel-
opment data. The training process ends after 100k
batches and the final model is selected according
to its performance on the development data.

The range of the scores of the different mod-
els may greatly differ and many of these values
are negative numbers with high absolute value
since they are computed as the logarithm of rel-
atively small probabilities. Therefore, we rescale
all scores observed on the development data to the
range of [−1, 1] prior to reranking.

5 Results

System Dev Test
Baseline 20.58 20.19
+ ListNet rescoring 19.95 20.98
+ NCE 21.00 21.51
+ SOUL 21.02 21.54
+ NCE + SOUL 21.14 21.63

Table 1: Results of English→German joint system

In this section we present the experimental
results of the joint system we submitted for
the English→German Shared Translation Task
for WMT2015. The systems are tuned on
newtest2013 (Dev) and the BLEU scores we get
when applying them over newtest2014 (Test) are
reported in Table 1.

KIT phrase-based system, labeled as the Base-
line, reaches 20.58 and 20.19 BLEU points on Dev
and Test sets, respectively. Using our new rescor-
ing ListNet-based instead of traditional MERT
yields upto 0.8 BLEU points. Adding features
estimated from different neural architectures of
CTMs gains a further 0.56 BLEU point improve-
ment. More precisely, when CTMs scores are
computed using neural networks trained with NCE
output layer and added to the new k-best list for
rescoring, we can observe that the BLEU score on
the test set achieves 21.51. With similar proce-
dures using SOUL output layer, the gain is slightly
better, reaching 21.54. Finally, adding all of the
scores derived from those two alternative output
structures results to our submitted system with the
BLEU of 21.63, which is 1.4 BLEU points differ-
ent from the baseline system.

Expensive computational cost is an important
issue while using CTMs estimated on large vocab-
ularies (Section 3.2). Table 2 compares the train-
ing and inference speed for SOUL and NCE mod-
els. While the two kinds of models have a same
speed in training, in inference the NCE models
benefit from their un-normalized scoring. Both ap-

training speed inference speed
SOUL 1000 / s 15500 / s
NCE 1000 / s 19400 / s

Table 2: Speeds of the training and the inference
corresponding to SOUL and NCE models, ex-
pressed in number of processed words per second.

123



proaches are plausible workarounds to overcome
the computational difficulty by speeding up both
the training and the inference, contrary to some
propositions in the literature which only reduces
the inference time (Devlin et al., 2014).

6 Conclusion

In the experiments we showed that a strong base-
line phrase-based translation system, which al-
ready used several models during decoding, could
be improved significantly by adding computa-
tional complex models in a rescoring step.

Firstly, in our experiments, the translation qual-
ity was improved by rescoring the n-best list of
the baseline system. We could improve the BLEU
score by 0.8 points without adding additional fea-
tures. When adding CTMs features, additional
gains of 0.6 BLEU points were achieved.

Secondly, we compared two approaches to limit
the computation complexity of continuous space
models. The SOUL and NCE models perform
similarly; both improved the translation quality by
0.5 points. Small additional gains of 0.1 BLEU
points were achieved by using both models to-
gether.
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and Ben Taskar. 2006. An End-to-end Discrimina-
tive Approach to Machine Translation. In Proceed-
ings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics,
pages 761–768. Association for Computational Lin-
guistics.
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Abstract
This paper describes the submission of
the University of Edinburgh and the Johns
Hopkins University for the shared transla-
tion task of the EMNLP 2015 Tenth Work-
shop on Statistical Machine Translation
(WMT 2015). We set up phrase-based sta-
tistical machine translation systems for all
ten language pairs of this year’s evaluation
campaign, which are English paired with
Czech, Finnish, French, German, and Rus-
sian in both translation directions.

Novel research directions we investigated
include: neural network language mod-
els and bilingual neural network language
models, a comprehensive use of word
classes, and sparse lexicalized reordering
features.

1 Introduction

The Edinburgh/JHU phrase-based translation sys-
tems for our participation in the WMT 2015
shared translation task1 are based on the open
source Moses toolkit (Koehn et al., 2007). We
built upon Edinburgh’s strong baselines from
WMT submissions in previous years (Durrani et
al., 2014a) as well as our recent research within
the framework of other evaluation campaigns
and projects such as IWSLT2 and EU-BRIDGE3

(Birch et al., 2014; Freitag et al., 2014a; Freitag et
al., 2014b).

We first discuss novel features that we in-
tegrated into our systems for the 2015 Edin-
burgh/JHU submission. Next we give a gen-
eral system overview with details on our train-
ing pipeline and decoder configuration. We fi-
nally present empirical results for the individual
language pairs and translation directions.

1http://www.statmt.org/wmt15/
2http://workshop2014.iwslt.org
3http://www.eu-bridge.eu

2 Novel Methods

2.1 Neural Network LM with NPLM

For some language pairs (notably
French↔English and Finnish↔English) we ex-
perimented with feed-forward neural network lan-
guage models using the NPLM toolkit (Vaswani
et al., 2013). This toolkit enables such language
models to be trained efficiently on large datasets,
and provides a querying API which is fast enough
to be used during decoding. NPLM is fully inte-
grated into Moses, including appropriate wrapper
scripts for training the language models within the
Moses experiment management system.

2.2 Bilingual Neural Network LM

We also experimented with our re-implementation
of the “joint” model by Devlin et al. (2014). Re-
ferred to as bilingual LM in Moses, this was pre-
viously employed in the Edinburgh IWSLT system
submissions, although with limited success (Birch
et al., 2014).

The idea of the bilingual LM is quite straight-
forward. We define a language model where each
target token is conditioned on the previous (n−1)
target tokens (as in a standard n-gram language
model) as well as its aligned source token, and a
window of m tokens on either side of the aligned
source token. At training time, the aligned source
token is found from the automatic alignment, and
at test time the alignment is supplied by the de-
coder. The bilingual LM is trained using a feed-
forward neural network and we use the NPLM
toolkit for this.

Prior to submission we tested bilingual
LMs on the French↔English tasks and on
English→Russian task. For French↔English,
we had resource issues4 in training such large

4These can now be addressed using the -mmap option
to create a binarized version of the corpus which is then
memory-mapped.
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models so we randomly subsampled 10% of the
data for training. Since we did not observe gains
in translation quality, the bilingual LM was not
integrated into our primary system submissions.
In post-submission experiments, we tried training
bilingual LM on a 10% domain-specific portion of
the training data selected using modified Moore-
Lewis (Moore and Lewis, 2010; Axelrod et al.,
2011), but only observed a small improvement in
translation performance.

2.3 Comprehensive Use of Word Classes
In Edinburgh’s submission from the previous year,
we used automatically generated word classes in
additional language models and in additional op-
eration sequence models (Durrani et al., 2014b).
This year, we pushed the use of word classes into
the remaining feature functions: the reordering
model and the sparse word features.

We generated Och clusters (Och, 1999) — a
variant of Brown clusters — using mkcls. We
have to choose a hyper parameter: the number
of clusters. Our experiments and also prior work
(Stewart et al., 2014) suggest that instead of com-
mitting to a single value, it is beneficial to use
multiple numbers and use them in multiple feature
functions concurrently. We used 50, 200, 600, and
2000 clusters, hence having 4 additional interpo-
lated language models, 4 additional operation se-
quence models, 4 additional lexicalized reordering
models, and 4 additional sets of sparse features.

The feature functions for word classes were
trained exactly the same way as the correspond-
ing feature functions for words. For instance,
this means that the word class language model re-
quired training of individual models on the sub-
corpora, and then interpolation.

We carried out a study to assess the contribution
of the use of such word class feature functions. Ta-
ble 1 summarizes the results. Use of word classes
in each of the models yields small gains, except for
the reordering model, where there is no observable
difference. The biggest gains were observed in the
language model. Note that the English–German
baseline already included additional feature func-
tions based on POS and morphological tags, and
basically no additional gains were observed due to
the class based feature functions.

2.4 Sparse Lexicalized Reordering
We implemented sparse lexicalized reordering
features (Cherry, 2013) in Moses and evaluated

them in English↔German setups. The experi-
ments were conducted on top of the standard hier-
archical lexicalized reordering model (Galley and
Manning, 2008). We applied features based on
Och clusters with 200 classes on both source and
target side. Active feature groups are between,
phrase, and stack.

In addition to optimizing the feature weights
directly with k-best MIRA (Cherry and Foster,
2012), we also examined maximum expected
BLEU training of the sparse lexicalized reorder-
ing features via stochastic gradient descent (Auli
et al., 2014).

3 System Overview

3.1 Preprocessing

The training data was preprocessed us-
ing scripts from the Moses toolkit.
We first normalized the data using the
normalize-punctuation.perl script,
then performed tokenization (using the -a op-
tion), and then truecasing. We did not perform
any corpus filtering other than the standard Moses
method, which removes sentence pairs with
extreme length ratios.

3.2 Word Alignment

For word alignment we used either fast_align
(Dyer et al., 2013) or MGIZA++ (Gao and
Vogel, 2008), followed by the standard
grow-diag-final-and symmetrization
heuristic. An empirical comparison of
fast_align and MGIZA++ on the Finnish-
English and English-Russian language pairs
using the constrained data sets did not reveal any
significant difference.

3.3 Language Model

We used all available monolingual data to train 5-
gram language models with modified Kneser-Ney
smoothing (Chen and Goodman, 1998). Typically,
language models for each monolingual corpus
were first trained using either KenLM (Heafield et
al., 2013) or the SRILM toolkit (Stolcke, 2002)
and then linearly interpolated using weights tuned
to minimize perplexity on the development set.

3.4 Baseline Features

We follow the standard approach to SMT of scor-
ing translation hypotheses using a weighted linear
combination of features. The core features of our
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de-en en-de cs-en en-cs ru-en en-ru avg ∆
Baseline (no clusters) 28.0 20.5 29.1 21.2 31.8 29.1 -
Comprehensive setup 28.5 (+.5) 20.5 (±.0) 29.7 (+.6) 21.8 (+.6) 32.3 (+.5) 29.7 (+.6) +.5
w/o sparse features 28.2 (–.3) 20.4 (–.1) 29.6 (–.1) 21.7 (–.1) 32.2 (–.1) 30.0 (+.3) –.2
w/o language model 28.3 (–.2) 20.5 (±.0) 29.5 (–.2) 21.4 (–.4) 31.5 (–.8) 29.2 (–.6) –.4
w/o reordering model 28.5 (±.0) 20.5 (±.0) - 21.8 (±.0) 32.3 (±.0) 29.8 (+.1) ±.0
w/o operation sequence model 28.3 (–.2) 20.3 (–.1) 29.7 (±.0) 21.7 (–.1) 32.0 (–.3) 29.5 (–.2) –.2

Table 1: Use of additional feature functions based on Och clusters (see Section 2.3). The last four
lines refer to ablation studies where one of the sets of clustered feature functions is removed from the
comprehensive setup. Note that the word-based feature functions are used in all cases. BLEU scores on
newstest2014 are reported.

model are a 5-gram LM score, phrase translation
and lexical translation scores, word and phrase
penalties, and a linear distortion score. The phrase
translation probabilities are smoothed with Good-
Turing smoothing (Foster et al., 2006). We used
the hierarchical lexicalized reordering model (Gal-
ley and Manning, 2008) with 4 possible orienta-
tions (monotone, swap, discontinuous left and dis-
continuous right) in both left-to-right and right-
to-left direction. We also used the operation se-
quence model (OSM) (Durrani et al., 2013) with
4 count based supportive features. We further em-
ployed domain indicator features (marking which
training corpus each phrase pair was found in), bi-
nary phrase count indicator features, sparse phrase
length features, and sparse source word deletion,
target word insertion, and word translation fea-
tures (limited to the top K words in each language,
typically with K = 50).

3.5 Tuning

Since our feature set (generally around 500 to
1000 features) was too large for MERT, we used
k-best batch MIRA for tuning (Cherry and Fos-
ter, 2012). To speed up tuning we applied thresh-
old pruning to the phrase table, based on the direct
translation model probability.

3.6 Decoding

In decoding we applied cube pruning (Huang and
Chiang, 2007) with a stack size of 5000 (reduced
to 1000 for tuning), Minimum Bayes Risk de-
coding (Kumar and Byrne, 2004), a maximum
phrase length of 5, a distortion limit of 6, 100-
best translation options and the no-reordering-
over-punctuation heuristic (Koehn and Haddow,
2009).

4 Experimental Results

In this section we describe peculiarities of individ-
ual systems and present experimental results.

4.1 French↔English

Our submitted systems for the French-English lan-
guage pair are quite similar for the two transla-
tion directions. We used all the constrained paral-
lel data to build a phrase-based translation model
and the language model was build from the target
side of this data, the monolingual news data and
the LDC GigaWord corpora. During system de-
velopment we used the newsdiscussdev2015
for tuning and development testing, using 2-fold
cross validation. For tuning the submitted system,
and the post-submission experiments, we tuned on
the whole of newsdiscussdev2015, and re-
port cased BLEU on newsdiscusstest2015.

Prior to submission we experimented with bilin-
gual LM and an NPLM-based neural network lan-
guage model (Sections 2.2 and 2.1) but did not
obtain positive results. These were trained on
a randomly selected 10% portion of the parallel
training data. We also experimented with class-
based language models (using Och clusters from
mkcls), including the 50 class language model
in the English→French submission but not in the
French→English one, since it helped in our devel-
opment setup in the former but not the latter.

In the post-submission experiments (Table 2),
we show the comparison of the baseline system
(as described in Section 3) with systems enhanced
with bilingual LM, NPLM and class-based lan-
guage models. For the class-based language mod-
els, we tested with 50 Och clusters, 200 Och clus-
ters, and with both class-based LMs. For the bilin-
gual LM, we created both “combined” (a 5-gram
on the target and a 9-gram on the source) and
“source” (1-gram on the target and 15-gram on
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System fr-en en-fr
Baseline 33.0 33.5
Submitted 32.7 33.6
50 classes 32.8 33.8
200 classes 32.9 33.9
50+200 classes 32.9 33.7
BiLM combined 32.9 33.6
BiLM source & combined 33.2 33.5
NPLM 33.0 34.2

Table 2: Comparison of baseline with post-
submission experiments on class-based language
models, bilingual LM and NPLM. Note that
for French→English the submitted system was
the same as the baseline (retuned) whilst for
English→French it was the same as the third line
(retrained).

source) models. The bilingual LMs are trained on
10% of the available parallel data, selected using
modified Moore-Lewis data selection (Moore and
Lewis, 2010; Axelrod et al., 2011). The NPLM is
a 5-gram model trained on all available language
model data.

We observe from Table 2 that the bilingual LM
has a minimal effect on BLEU, only showing an
increase for one language pair, one configuration,
and the margin of improvement is probably within
the margin of tuning variation. We do not have a
good explanation for the lack of success with bilin-
gual LM, in contrast to (Devlin et al., 2014), how-
ever we note that all reports of improvements with
this type of model are for distantly related lan-
guage pairs. We also did not observe any improve-
ment with the class-based language models for
French→English, although we did observe small
gains from English→French. Building an NPLM
model for all data gives a reasonable improvement
(+0.7) for the French target, but not the English. In
fact French→English was the only language pair
where NPLM did not improve BLEU after building
the LM on all data. It is possible that the limited
morphology of English means that the improved
generalisation of the NPLM is not as helpful, and
also that the conventional n-gram LM is already
strong for this language pair.

4.2 Finnish↔English

For the Finnish-English language pair we built
systems using only the constrained data, and sys-
tems using all the OPUS (Tiedemann, 2012) par-

System fi-en en-fi
Baseline 19.6 13.4
Submitted 19.7 n/a
Without OPUS 17.0 11.5
50 classes 19.4 13.2
200 classes 19.8 13.3
50+200 classes 19.7 13.3
BiLM combined 19.1 13.5
BiLM source & combined 19.1 13.4
NPLM 20.0 13.8

Table 3: Comparison of baseline with post-
submission experiments on class-based language
models, bilingual LM and NPLM. Note that the
submitted system for Finnish→English was the
same as the baseline (but retuned).

allel data. Our baselines include this extra data,
but we also show results just using the constrained
parallel data. We did not employ the morpholog-
ical splitting as in Edinburgh’s syntax-based sys-
tem (Williams et al., 2015) and consequently the
English→Finnish systems performed poorly in de-
velopment and we did not submit a phrase-based
system for this pair.

Our development setup was similar to
French↔English; we used the newsdev2015
for tuning and test during system development (in
2-fold cross-validation) then for the submission
and subsequent experiments we used the whole of
newsdev2015 for tuning. Also in common with
our work on French↔English, we performed sev-
eral post-submission experiments to examine the
effect of class-based language models, bilingual
LM and NPLM. We show the results in Table 3.
For training bilingual LM and NPLM models we
encountered some numerical issues, probably due
to the large vocabulary size in Finnish. These
were partially addressed by employing dropout
to prevent overfitting (Srivastava et al., 2014),
enabling us to train the models for at least 2
epochs.

We note that, as with French↔English, our ap-
plication of bilingual LM did not result in signif-
icant improvement. Finnish and English are quite
distantly related, but we can speculate that using
words as a representation for Finnish is not appro-
priate. The NPLM, however, offers modest (+0.4)
improvements over the baseline in both directions.

129



4.3 Czech↔English

The development of the Czech↔English systems
followed the ideas in Section 2.3, i.e., with a fo-
cus on word classes (50, 200, 600 classes) for all
component models. We combined the test sets
from 2008 to 2012 for tuning. No neural language
model or bilingual language model was used.

4.4 Russian↔English

To Russian. For the English→Russian system,
we used all the parallel data specified in the task.
The Wiki Headlines data was appended onto the
combined parallel corpus. For the monolingual
corpora, we used all the constrained track cor-
pora except for Newscrawl 2008-2010 which were
overlooked as they were much smaller than other
resources. We trained word classes with three dif-
ferent settings (50, 200, and 600 clusters) on both
source and target languages. On applying clusters,
we trained 6-gram language models on the target
side. We used all four factors (words and clus-
ters) in both source and target languages for the the
translation model and the OSM, but we used only
the word factor for the alignment and the reorder-
ing models. We performed transliteration (Durrani
et al., 2014c) after decoding for all three experi-
mental conditions. We used newstest2012 for
LM interpolation and batch MIRA model tuning.
In Table 4, the only difference between the base-
line system and the official submission is that the
baseline has no cluster factors. The final model
(BiLM source & combined & NPLM) is the same
as the submitted system, apart from the fact that
we applied two bilingual neural network models:
one over the source and one over the source and
target, and an NPLM language model over the tar-
get. This did not improve over the factored model
and so was not submitted for the evaluation.

From Russian. The Russian→English system
used the same settings as the Czech system, except
for the addition of a factor over 2000 word classes
and a smaller tuning set (just newstest2012).

4.5 German↔English

Our German-English training corpus com-
prises all permissible parallel data of the
constrained track for this language pair. A
concatenation of newssyscomb2009 and
newstest2008-2012 served as tuning set.

System en-ru
Baseline 25.0
Submitted 25.2
BiLM source & combined & NPLM 25.1

Table 4: Experimental results (cased
BLEU) for English→Russian averaged over
newstest2013 and newstest2014.

From German. For translation from German,
we applied syntactic pre-reordering (Collins et
al., 2005) and compound splitting (Koehn and
Knight, 2003) in a preprocessing step on the
source side. A rich set of translation factors was
exploited in addition to word surface forms: Och
clusters (50 classes), morphological tags, part-
of-speech tags, and word stems on the German
side (Schmid, 2000), as well as Och clusters (50
classes), part-of-speech tags (Ratnaparkhi, 1996),
and word stems (Porter, 1980) on the English
side. The factors were utilized in the translation
model and in OSMs. The lexicalized reorder-
ing model was trained on stems. Individual 7-
gram Och cluster LMs were trained with KenLM’s
--discount_fallback --prune '0 0 1'
parameters,5 then interpolated with the SRILM
toolkit and added to the log-linear model as a sec-
ond LM feature. Our 5-gram word LM was trained
on all English data at once, also with pruning of
singleton n-grams of order 3 and higher. We in-
cluded the English LDC Gigaword Fifth Edition.
Sparse lexical features (source word deletion, tar-
get word insertion, word translation) were limited
to the top K = 200 words for German→English.

To German. Translation factors for the
English→German translation direction are
word surface forms, Och clusters (50 classes),
morphological tags, and part-of-speech tags.
Morphological tags were employed on the target
side only, all other factors on both source and
target side. The lexicalized reordering model
was trained on word surface forms. We added
an interpolated 7-gram Och cluster LM and a
7-gram LM over morphological tags. LMs were
trained in a similar way as the ones for translation
from German. Sparse phrase length features
and sparse lexical features were not used for
English→German.

5http://www.statmt.org/mtm14/uploads/
Projects/KenLMFunWithLanguageModel_
MTM2014p9.pdf
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System de-en en-de
2013 2014 2013 2014

Baseline 27.3 28.6 20.6 20.9
+ sparse LR (MIRA) 27.2 28.8 20.7 20.8
+ sparse LR (SGD) 27.2 28.5 20.8 21.1

Table 5: Experimental results for
German→English and English→German. We re-
port cased BLEU scores on the newstest2013
and newstest2014 sets. Primary submission
results are highlighted in bold.

Sparse lexicalized reordering. We investi-
gated sparse lexicalized reordering features (Sec-
tion 2.4) on the German-English language pair
in both translation directions. Two methods for
learning the weights of the sparse lexicalized re-
ordering feature set have been compared: (1.) di-
rect tuning in MIRA along with all other features
in the model combination (sparse LR (MIRA)),
and (2.) separate optimization with stochastic gra-
dient descent (SGD) with a maximum expected
BLEU objective (sparse LR (SGD)). For the lat-
ter variant, we used the MT tuning set for train-
ing (13 573 sentence pairs) and otherwise followed
the approach outlined by Auli et al. (2014). We
tuned the baseline feature weights with MIRA be-
fore SGD training and ran two final MIRA itera-
tions after it. SGD training was stopped after 80
epochs.

Empirical results for the German-English lan-
guage pair are presented in Table 5. We observe
minor gains of up to +0.2 points BLEU. The re-
sults are not consistent in the two translation di-
rections: The MIRA-trained variant seems to per-
form better when translating from German, the
SGD-trained variant when translating to German.
However, in both cases the baseline score is almost
identical to the best results with sparse lexicalized
reordering features.

In future work we plan to adopt hypergraph
MIRA, as well as larger training sets for maximum
expected BLEU training. We also consider scaling
the method to word surface forms in addition to
Och clusters, and trying RPROP instead of SGD.

5 Conclusion

The Edinburgh/JHU team built phrase-based
translation systems using the open source Moses
toolkit for all language pairs of the WMT 2015
shared translation task. Our submitted system

outputs ranked first according to cased BLEU

on the newstest2015 evaluation set on six
out of ten language pairs:6 Czech→English,
German→English, Finnish→English, Russian→
English, English→French, and English→Russian.
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Sébastien Jean?

University of Montreal
jeasebas@iro.umontreal.ca

Orhan Firat?
Middle East Technical University, Turkey
orhan.firat@ceng.metu.edu.tr

Kyunghyun Cho
University of Montreal

Roland Memisevic
University of Montreal

firstname.lastname@umontreal.ca

Yoshua Bengio
University of Montreal
CIFAR Senior Fellow

Abstract

Neural machine translation (NMT)
systems have recently achieved re-
sults comparable to the state of the art
on a few translation tasks, including
English→French and English→German.
The main purpose of the Montreal In-
stitute for Learning Algorithms (MILA)
submission to WMT’15 is to evaluate
this new approach on a greater variety of
language pairs. Furthermore, the human
evaluation campaign may help us and the
research community to better understand
the behaviour of our systems. We use
the RNNsearch architecture, which adds
an attention mechanism to the encoder-
decoder. We also leverage some of the
recent developments in NMT, including
the use of large vocabularies, unknown
word replacement and, to a limited degree,
the inclusion of monolingual language
models.

1 Introduction

Neural machine translation (NMT) is a recently
proposed approach for machine translation that re-
lies only on neural networks. The NMT system
is trained end-to-end to maximize the conditional
probability of a correct translation given a source
sentence (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2015). Although NMT has only recently been
introduced, its performance has been found to be
comparable to the state-of-the-art statistical ma-
chine translation (SMT) systems on a number of
translation tasks (Luong et al., 2015; Jean et al.,
2015). The main purpose of our submission to
WMT’15 is to test the NMT system on a greater

? equal contribution

variety of language pairs. As such, we trained sys-
tems on Czech↔English, German↔English and
Finnish→English. Furthermore, the human evalu-
ation campaign of WMT’15 will help us better un-
derstand the quality of NMT systems which have
mainly been evaluated using the automatic evalu-
ation metric such as BLEU (Papineni et al., 2002).

Most NMT systems are based on the encoder-
decoder architecture (Cho et al., 2014; Sutskever
et al., 2014; Kalchbrenner and Blunsom, 2013).
The source sentence is first read by the encoder,
which compresses it into a real-valued vector.
From this vector representation the decoder may
then generate a translation word-by-word. One
limitation of this approach is that a source sen-
tence of any length must be encoded into a fixed-
length vector. To address this issue, our systems
for WMT’15 use the RNNsearch architecture from
(Bahdanau et al., 2015). In this case, the encoder
assigns a context-dependent vector, or annotation,
to every source word. The decoder then selectively
combines the most relevant annotations to gener-
ate each target word.

NMT systems often use a limited vocabu-
lary of approximately 30, 000 to 80, 000 target
words, which leads them to generate many out-
of-vocabulary tokens (〈UNK〉). This may easily
lead to the degraded quality of the translations.
To sidestep this problem, we employ a variant of
importance sampling to help increase the target
vocabulary size (Jean et al., 2015). Even with
a larger vocabulary, there will almost assuredly
be words in the test set that were unseen during
training. As such, we replace generated out-of-
vocaulbary tokens with the corresponding source
words with a technique similar to those proposed
by (Luong et al., 2015).

Most NMT systems rely only on parallel data,
ignoring the wealth of information found in large
monolingual corpora. On Finnish→English, we
combine our systems with a recurrent neural net-
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work (RNN) language model by recently proposed
deep fusion (Gülçehre et al., 2015). For the other
language pairs, we tried reranking n-best lists with
5-gram language models (Chen and Goodman.,
1998).

2 System Description

In this section, we describe the RNNsearch ar-
chitecture as well as the additional techniques we
used.

Mathematical Notations Capital letters are
used for matrices, and lower-case letters for
vectors and scalars. x and y are used for a
word in source and target sentences, respectively.
We boldface them into x, y and ŷ to denote
their continuous-space representation (word em-
beddings).

2.1 Bidirectional Encoder
To encode a source sentence (x1, . . . , xTx) of
length Tx into a sequence of annotations, we use
a bidirectional recurrent neural network (Schus-
ter and Paliwal, 1997). The bidirectional recur-
rent neural network (BiRNN) consists of two re-
current neural networks (RNN) that read the sen-
tence either forward (from left to right) or back-
ward. These RNNs respectively compute the
sequences of hidden states (

−→
h 1, . . . ,

−→
h Tx) and

(
←−
h 1, . . . ,

←−
h Tx). These two sequences are con-

catenated at each time step to form the annota-
tions (h1, . . . , hTx). Each annotation hi summa-
rizes the entire sentence, albeit with more empha-
sis on word xi and the neighbouring words.

We built the BiRNN with gated recurrent
units (GRU, (Cho et al., 2014)), although long
short-term memory (LSTM) units could also be
used (Hochreiter and Schmidhuber, 1997), as in
(Sutskever et al., 2014). More precisely, for the
forward RNN, the hidden state at the i-th word is
computed as

−→
h i =

{
(1−−→z i)�−→h i−1 +−→z i �−→h i , if i > 0
0 , if i = 0

where

−→
h i = tanh

(−→
Wxi +

−→
U
[−→r i �−→h i−1

]
+
−→
b
)

−→z i =σ
(−→
W zxi +

−→
U z
−→
h i−1

)
−→r i =σ

(−→
W rxi +

−→
U r
−→
h i−1

)
.

To form the new hidden state, the network first
computes a proposal

−→
h i. This is then additively

combined with the previous hidden state
−→
h i−1,

and this combination is controlled by the update
gate −→z i. Such gated units facilitate capturing
long-term dependencies.

2.2 Attentive Decoder
After computing the initial hidden state
s0 = tanh

(
Ws
←−
h 1

)
+ bs, the RNNsearch

decoder alternates between three steps: Look,
Generate and Update.

During the Look phase, the network determines
which parts of the source sentence are most rele-
vant. Given the previous hidden state si−1 of the
decoder recurrent neural network (RNN), each an-
notation hj is assigned a score eij :

eij = v>a tanh (Wasi−1 + Uahj) .

Although a more complex scoring function can
potentially learn more non-trivial alignments, we
observed that this single-hidden-layer function is
enough for most of the language pairs we consid-
ered.

These scores eij are then normalized to sum to
1:

αij =
exp (eij)∑Tx

k=1 exp (eik)
, (1)

which we call alignment weights.
The context vector ci is computed as a weighted

sum of the annotations (h1, ..., hTx) according to
the alignment weights:

ci =
Tx∑
j=1

αijhj .

This formulation allows the annotations with
higher alignment weights to be more represented
in the context vector ci.

In the Generate phase, the decoder predicts the
next target word. We first combine the previous
hidden state si−1, the previous word yi−1 and the
current context vector ci into a vector t̃i:

t̃i = Uosi−1 + Voyi−1 + Coci + bo.

We then transform t̃i into a hidden statemi with an
arbitrary feedforward network. In our submission,
we apply the maxout non-linearity (Goodfellow et
al., 2013) to t̃i, followed by an affine transforma-
tion.
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Phase Output← Input
Look ci ← si−1, (h1, ..., hTx)
Generate yi ← si−1, yi−1, ci
Update si ← si−1, yi, ci

Table 1: Summary of RNNsearch decoder phases

For a target vocabulary V , the probability of
word yi is then

p(yi|si−1, yi−1, ci) =
exp

(
ŷ>i mi + byi

)∑
y∈V exp (ŷ>mi + by)

.

(2)
Finally, in the Update phase, the decoder com-

putes the next recurrent hidden state si from the
context ci, the generated word yi and the previ-
ous hidden state si−1. As with the encoder we use
gated recurrent units (GRU).

Table 1 summarizes this three-step procedure.
We observed that it is important to have Update to
follow Generate. Otherwise, the next step’s Look
would not be able to resolve the uncertainty em-
bedded in the previous hidden state about the pre-
viously generated word.

2.3 Very Large Target Vocabulary Extension

Training an RNNsearch model with hundreds of
thousands of target words easily becomes pro-
hibitively time-consuming due to the normaliza-
tion constant in the softmax output (see Eq. (2).)
To address this problem, we use the approach pre-
sented in (Jean et al., 2015), which is based on
importance sampling (Bengio and Sénécal, 2008).
During training, we choose a smaller vocabulary
size τ and divide the training set into partitions,
each of which contains approximately τ unique
target words. For each partition, we train the
model as if only the unique words within it existed,
leaving the embeddings of all the other words
fixed.

At test time, the corresponding subset of target
words for each source sentence is not known in
advance, yet we still want to keep computational
complexity manageable. To overcome this, we
run an existing word alignment tool on the train-
ing corpus in advance to obtain word-based con-
ditional probabilities (Brown et al., 1993). During
decoding, we start with an initial target vocabu-
lary containing the K most frequent words. Then,
reading a few sentences at once, we arbitrarily re-
place some of these initial words by the K ′ most

likely ones for each source word.1

No matter how large the target vocabulary is,
there will almost always be those words, such as
proper names or numbers, that will appear only in
the development or test set, but not during train-
ing. To handle this difficulty, we replace un-
known words in a manner similar to (Luong et
al., 2015). More precisely, for every predicted
out-of-vocabulary token (〈UNK〉), we determine
its most likely origin by choosing the source word
with the largest alignment weight αij (see Eq. (1).)
We may then replace 〈UNK〉 by either the most
likely word according to a dictionary, or simply
by the source word itself. Depending on the lan-
guage pairs, we used different heuristics according
to performance on the development set.

2.4 Integrating Language Models

Unlike some data-rich language pairs, most of
the translation tasks do not have enough paral-
lel text to train end-to-end machine translation
systems. To overcome with this issue of low-
resource language pairs, external monolingual cor-
pora is exploited by using the method of deep fu-
sion (Gülçehre et al., 2015).

In addition to the RNNsearch model, we train a
separate language model (LM) with a large mono-
lingual corpus. Then, the trained LM is plugged
into the decoder of the trained RNNsearch with
an additional controller network which modulates
the contributions from the RNNsearch and LM.
The controller network takes as input the hidden
state of the LM, and optionally RNNsearch’s hid-
den state, and outputs a scalar value in the range
[0, 1]. This value is multiplied to the LM’s hid-
den state, controlling the amount of information
coming from the LM. The combined model, the
RNNsearch, the LM and the controller network, is
jointly tuned as the final translation model for a
low-resource pair.

In our submission, we used recurrent neural net-
work language model (RNNLM). More specif-
ically, let sLM

i be the hidden state of a pre-
trained RNNLM and sTM

i be that of a pre-trained
RNNsearch at time i. The controller network is
defined as

gt = σ
(
V >g s

LM
t +W>g s

TM
t + bg

)
,

1This step differs very slightly from (Jean et al., 2015),
where the sentence-specific words were added on top of the
K common ones instead of replacing them.
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where σ is a logistic sigmoid function, vg, wg and
bg are model parameters. The output of the con-
troller network is multiplied to the LM’s hidden
state sLM

i :
pLM

t = sLM
t � gt.

The Generate phase in Sec. 2.2 is updated as,

t̃i = UTM
o sTM

i−1 +ULM
o pLM

t−1 + Voyi−1 +Coci + bo.

This lets the decoder fully use the signal from the
translation model, while the the signal from the
LM is modulated by the controller output.

Among all the pairs of languages in WMT’15,
Finnish↔English translation has the least amount
of parallel text, having approximately 2M aligned
sentences only. Thus, we use the deep fusion for
the Fi-En in the official submission. However, we
further experimented German→English, having
the second least parallel text, and Czech→English,
which has comparably larger data. We include
the results from these two language pairs here for
completeness.

3 Experimental Details

We now describe the settings of our experiments.
Except for minor differences, all the settings were
similar across all the considered language pairs.

3.1 Data

All the systems, except for the English→German
(En→De) system, were built using all the data
made available for WMT’15. The En→De sys-
tem, which was showcased in (Jean et al., 2015),
was built earlier than the others, using only the
data from the last year’s workshop (WMT’14.)

Each corpus was tokenized, but neither lower-
cased nor truecased. We avoided badly aligned
sentence pairs by removing any source-target sen-
tence pair with a large mismatch between their
lengths. Furthermore, we removed sentences that
were likely written in an incorrect language, ei-
ther with a simple heuristic for En→De, or with
a publicly available toolkit for the other language
pairs (Shuyo, 2010). In order to limit the memory
use during training, we only trained the systems
with sentences of length up to 50 words only. Fi-
nally, for some but not all models, we reshuffled
the data a few times and concatenated the differ-
ent segments before training.

In the case of German (De) source, we
performed compound splitting (Koehn and

Knight, 2003), as implemented in the Moses
toolkit (Koehn et al., 2007). For Finnish (Fi),
we used Morfessor 2.0 for morpheme segmenta-
tion (Virpioja et al., 2013) by using the default
parameters.

An Issue with Apostrophes In the training data,
apostrophes appear in many forms, such as a
straight vertical line (U+0027) or as a right sin-
gle quotation mark (U+0019). The use of, for
instance, the normalize-punctuation script2 could
have helped, but we did not use it in our exper-
iments. Consequently, we encountered an issue
of the tokenizer from the Moses toolkit not apply-
ing the same rule for both kinds of apostrophes.
We fixed this issue in time for Czech→English
(Cs→En), but all the other systems were affected
to some degree, in particular, the system for
De→En.

3.2 Settings

We used the RNNsearch models of size identi-
cal to those presented in (Bahdanau et al., 2015;
Jean et al., 2015). More specifically, all the
words in both target and source vocabularies were
projected into a 620-dimensional vector space.
Each recurrent neural network (RNN) had a 1000-
dimensional hidden state. The models were
trained with Adadelta (Zeiler, 2012), and the norm
of the gradient at each update was rescaled (Pas-
canu et al., 2013). For the language pairs other
than Cs→En and Fi→En, we held the word em-
beddings fixed near the end of training, as de-
scribed in (Jean et al., 2015).

With the very large target vocabulary technique
in Sec. 2.3, we used 500K source and target
words for the En→De system, while 200K source
and target words were used for the De→En and
Cs↔En systems.3 During training we set τ be-
tween 15K and 50K, depending on the hardware
availability. As for decoding, we mostly used
K = 30, 000 and K ′ = 10.

Given the small sizes of the Fi→En corpora, we
simply used a fixed vocabulary size of 40K to-
kens to avoid any adverse effect of including ev-
ery unique target word in the vocabulary. The in-
clusion of every unique word would prevent the
network from decoding out 〈UNK〉 at all, even if

2http://www.statmt.org/wmt11/
normalize-punctuation.perl

3This choice was made mainly to cope with the limited
storage availability.
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Language pair
BLEU-c BLEU-c ranking

Human ranking
single ensemble constrained unconstrained

En→Cs 15.7 18.3 1/6 2/7 4/8
En→De 22.4 24.8 1/11 1/13 1-2/16
Cs→En 20.2 23.3 3/6 3/6 3-4/7
De→En 25.6 27.6 6/9 6/10 6-7/13
Fi→En 10.1 13.6 7/9 9/12 10/14

Table 2: Results on the official WMT’15 test sets for single models and primary ensemble submissions.
All our own systems are constrained. When ranking by BLEU, we only count one system from each
submitter. Human rankings include all primary and online systems, but exclude those used in the Cs↔En
tuning task.

out-of-vocabulary words will assuredly appear in
the test set.

For each language pair, we trained a total of four
independent models that differed in parameter ini-
tialization and data shuffling, monitoring the train-
ing progress on either newstest2012+2013, new-
stest2013 or newsdevs2015.4 Translations were
generated by beam search, with a beam width of
20, trying to find the sentence with the highest log-
probability (single model), or highest average log-
probability over all models (ensemble), divided by
the sentence length (Boulanger-Lewandowski et
al., 2013). This length normalization addresses the
tendency of the recurrent neural network to output
shorter sentences.

For Fi→En, we augmented models by deep fu-
sion with an RNN-LM. The RNN-LM, which was
built using the LSTM units, was trained on the En-
glish Gigaword corpus using the vocabulary com-
prising of the 42K most frequent words in the En-
glish side of the intersection of the parallel cor-
pora of Fi→En, De→En and Cs→En. Impor-
tantly, we use the same RNN-LM for both Fi→En,
Cs→En and De→En. In the experiments with
deep fusion, we used the randomly selected 2/3
of newsdev2015 as a validation set and the rest as
a held-out set. In the case of De→En, we used
newstest2013 for validation and newstest2014
for test.

For all language pairs except Fi→En, we also
simply built 5-gram language models, this time on
all appropriate provided data, with the exception
of the English Gigaword (Heafield, 2011). In our
contrastive submissions only, we re-ranked our 20-
best lists with the LM log-probabilities, once again
divided by sentence length. The relative weight of
the language model was manually chosen to max-

4For En→De, we created eight semi-independent models.
See (Jean et al., 2015) for more details.

imize BLEU on the development set.

4 Results

Results for single systems and primary ensem-
ble submissions are presented in Table 2.5 When
translating from English to another language, neu-
ral machine translation works particularly well,
achieving the best BLEU-c scores among all the
constrained systems. On the other hand, NMT is
generally competitive even in the case of trans-
lating to English, but it not yet as good as well
as the best SMT systems according to BLEU. If
we rather rely on human judgement instead of au-
tomated metrics, the NMT systems still perform
quite well over many language pairs, although
they are in some instances surpassed by other sta-
tistical systems that have slightly lower BLEU
scores.

In our contrastive submissions for Cs↔En and
De↔En where we re-ranked 20-best lists with a 5-
gram language model, BLEU scores went up mod-
estly by 0.1 to 0.5 BLEU, but interestingly transla-
tion error rate (TER) always worsened. One possi-
ble drawback about the manner we integrated lan-
guage models here is the lack of translation mod-
els in the reverse direction, meaning we do not
implicitely leverage the Bayes’ rule as most other
translation systems do.

In our further experiments, which are not part
of our WMT’15 submission, for single models
we observed the improvements of approximately
1.0/0.5 BLEU points for dev/test in {Cs,De}→En
tasks, when we employ deep fusion for incorporat-
ing language models.6

5Also available at http://matrix.statmt.org/
matrix/

6Improvements are for single models only. See (Gülçehre
et al., 2015) for more details.
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5 Conclusion

We presented the MILA neural machine trans-
lation (NMT) systems for WMT’15, using the
encoder–decoder model with the attention mech-
anism (Bahdanau et al., 2015) and the recent de-
velopments in NMT (Jean et al., 2015; Gülçehre
et al., 2015). We observed that the NMT sys-
tems are now competitive against the conventional
SMT systems, ranking first by BLEU among the
constrained submission on both the En→Cs and
En→De tasks. In the future, more analysis is
needed on the influence of the source and target
languages for neural machine translation. For in-
stance, it would be interesting to better understand
why performance relative to other approaches was
somewhat weaker when translating into English,
or how the amount of reordering influences the
translation quality of neural MT systems.
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Abstract

This paper describes the GF Wide-
coverage MT system submitted to WMT
2015 for translation from English to
Finnish. Our system uses a interlingua
based approach, in which the interlingua
is a shared formal representation, that ab-
stracts syntactic structures over multiple
languages. Our final submission is a re-
ranked system in which we combine this
baseline MT system with a factored LM
model.

1 Introduction

Interlingual translation is an old idea that has been
suggested numerous times and refuted almost as
many times. A typical criticism is that the very
idea is utopistic: that one can never build an inter-
lingua that faithfully represents meaning in all lan-
guages of the world. However, as the focus in ma-
chine translation has shifted from the perfect ren-
dering of meaning to less modest goals, the idea of
an interlingua can be reconsidered.

In the current paper, we describe our sys-
tem submission to the WMT shared task in
the English-Finnish track. Our system is an
interlingua-based system, the interlingua based on
an abstract syntax in the sense of Grammatical
Framework (GF) (Ranta, 2011). GF has been pre-
viously shown to work for domain-specific MT
outperforming state-of-art systems using semantic
interlinguas (Ranta et al., 2011). Departing from
this, the GF wide-coverage Translator is an at-
tempt following the current mainstream in the field
of MT: we are content with browsing quality in
the output of the MT systems, while achieving the
low cost of interlingual MT systems. As such, the
shared abstract syntax is mapped to different “sur-
face” languages representing an abstraction of the
deep syntactic structure for each of the languages.

The abstraction from word order, morphology and
certain deep syntactic phenomena, allows the in-
terlingua to cope with unrelated languages. At the
same time, these systems are scalable beyond toy
examples, into wide-coverage systems.

We submit this system as our baseline over the
English Finnish language pair for the WMT shared
task. In addition, we also submitted a “re-ranked”
variant of the same system as our primary submis-
sion, using statistical language models to re-score
the translations from the baseline. Automatic eval-
uation metrics have shown small improvements
from re-ranking our baseline system 1.

The paper is organized as follows: we describe
our baseline system in Section 2 and the re-ranked
variant in Section 3. We present our experiments
and relevant discussion in Section 4.

2 GF Wide-coverage Translator

The GF Translator pipeline has three main phases:

• Parsing converts the source sentence into a
forest of abstract syntax trees (AST), i.e. in-
terlingual representations.

• Disambiguation selects the most probable
AST.

• Linearization converts the AST into a sen-
tence in each of the target languages.

Disambiguation is for efficiency reasons inte-
grated in the parser, which enumerates the results
lazily in order of decreasing probability (Angelov
and Ljunglöf, 2014). Our current system performs
disambiguation by using tree probabilities esti-
mated from the Penn Treebank, converted into GF
abstract syntax (Angelov, 2011). Unlike most K-
best parsers, there is no upper limit on how many

1Scores obtained from http://matrix.statmt.
org/
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results can be obtained. Additionally, we use re-
versible mappings in our interlingua, thus reduc-
ing the work to define multilingual grammars for
MT.

Translation is performed using the following
components:

• A PGF grammar consisting of an abstract
syntax (defining the ASTs) and, for each lan-
guage, a concrete syntax that defines lin-
earization and (by reversibility) parsing for
the language.

• A probabilistic model for disambiguation

• The PGF interpreter, that consists of a generic
parser and linearizer.

Since the PGF grammar forms a vital compo-
nent of the MT system, we will now describe the
wide-coverage grammar used in our system sub-
mission. All our submissions use this grammar
as the “baseline”. There is a large-scale single
generic grammar based on the GF Resource Gram-
mar Library (Ranta, 2009) that forms the central
“backbone” of the wide-coverage grammar. As
a whole, the grammar has the following compo-
nents:

1. RGL, defining morphology and most of the
syntax.

2. Syntax extensions, about 10% addition to
RGL.

3. Dictionary, mapping abstract word senses
to concrete words using open resources such
as linked wordnets and wiktionaries (Virk et
al., 2014); morphology mostly by the RGL’s
”smart paradigms” (Détrez and Ranta, 2012).
Abstract dictionary entries are presented as
English words split into distinct senses.

4. Chunk grammar, to make the translation ro-
bust for input that does not parse as complete
sentences. It is inspired by Apertium(Forcada
et al., 2011), which is a rule-based system
operating only using chunks rather than deep
syntactic analyses. In GF, it is derived from
the RGL by enabling sub-sentential cate-
gories as start categories. The result can con-
tain local agreement and reordering.

5. Probabilities, estimated from the Penn Tree-
bank.

6. CNL using Semantic grammars, an optional
part enabling domain adaptation via Embed-
ded CNLs (Ranta, 2014). If something is
parsable in the CNL, the CNL translation is
given priority.

The GF Translator is not meant to be yet an-
other browsing-quality system on the market. GF
was originally designed for high-quality systems
on specific domains. The novelty in our cur-
rent system is that we can combine both cover-
age and quality in one and the same system. From
the point of view of domain-specific applications,
this means that the system does not just fail with
out-of-grammar input as before, but offers robust-
ness. From the open-domain point of view, the
system offers a clear recipe for quality improve-
ments by domain adaptation. In other words, the
system we have built incorporates three levels of
the Vauquois triangle in one and the same system:
semantic, syntactic, and chunk-based translation,
each of which and not just the highest level is
based on its own part of the interlingua:

3 System Description

As mentioned in Section 1, our submission uses
the GF Wide-coverage translator described in Sec-
tion 2 as a baseline.
We are aware of one short-coming in the disam-
biguation model used in the baseline: the infer-
ence by the parser is carried out by context-free
approximations. The context-free approximation
is a reasonable approximation in the monolingual
parsing scenario as shown by previous works in
parsing literature. However, in the translation
problem, the context-free assumption provides a
poor approximation for inference. A simple ex-
ample to illustrate this is the problem of sense se-
lection by the parser. The choice of selecting a
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particular word sense depends on both local con-
texts and entire sentential context. For e.g. the
word “time” can refer to the sense that refers to
temporality or the number of an attempt (as in first
time or hundredth time). The choice of sense in
this example can be made using surface context or
n-gram information. Motivated primarily by this,
we developed a re-ranked variant of the baseline
system as described below.

Our re-ranked system re-estimates the scores of
the K-best translations from the baseline using a
linear mixture model. The mixture model uses
the tree probability score obtained from the dis-
ambiguation model of the baseline system as the
primary component. Each hypothesis in the K-
best list is augmented using scores from n-gram
language model (LM) that estimates the likelihood
of the surface translations. Since our baseline sys-
tem is an interlingua-based system, it is possible
to integrate LM over multiple languages as differ-
ent components in our mixture model. The result-
ing model selects the best translation by choosing
the hypothesis with both the highest scoring ab-
stract syntax tree and the best linearization of the
abstract syntax tree.

4 Experiments

As part of the shared task contest, we carried out
experiments with the wide-coverage translator and
its re-ranked variant on the English-Finnish track.
Table 1 shows the scores obtained by automatic
evaluation for our system submissions.

On the devel set, the baseline system takes 27
minutes to carry out the translation pipeline i.e.
the 1-best parsing of the English sentences com-
bined with the 1-best linearization into Finnish.
In comparison, the test set takes about 22 minutes
for the pipeline. Of the 1500 sentences in the de-
vel dataset, 600 sentences are parsed by the full
RGL grammar, while the rest of the 900 sentences
are parsed using the chunking grammar. We ob-
tained similar statistics on the test dataset, where
560 sentences were parsed by the RGL and 810
sentences using the chunking grammar. This ver-
sion of our translation pipeline is available online2.
Manual evaluation and error analysis on a small
sample from the devel dataset showed that the
loss in MT quality from the chunking grammar
was small, but significant. This is because the

2http://cloud.grammaticalframework.
org/wc.html

chunking grammar still allows for local agreement
and reordering, while relaxing the RGL grammar.
Nonetheless, we decided to use this version of the
chunking grammar, without extending the RGL
with new syntactic constructions. One reason for
this decision was the speed up in the pipeline
obtained by relaxing the full RGL grammar and
adding the chunking grammar. It should be noted
here that the quality of the MT system can be fur-
ther improved by adding the full RGL at an addi-
tional computational cost. Evaluation experiments
also showed that automatic evaluation metrics like
BLEU substantially under-evaluate the perform of
our system when used with a static translation as
reference.

In the next round of experiments, we ran the
parser and the linearizer in K-best modes, collect-
ing the 50-best abstract syntax trees and the 30-
best linearizations for each abstract syntax tree.
Since the parsing and the linearization are car-
ried out independent of one another, the 1500 hy-
pothesis obtained from this run often contained
identical translations. The overall number of dis-
tinct hypothesis in the K-best lists was typically
found to be between 300 and 400. Collecting the
K-best lists took about 93 minutes on the devel
dataset and 80 minutes on the test dataset. We re-
order these K-best lists using our reranking mod-
els, which consists of a re-scoring the hypothe-
sis translations using a language model (LM) and
estimating the mixed score for each hypothesis.
The reordering combined with the re-scoring takes
about 3-4 minutes on our lists of 1500-best hy-
potheses.

The LM for Finnish was trained on the Europarl
corpus. Finnish sentences were morphologically
analyzed and converted into a lemmatized cor-
pus with morphological factors tagged along with
the lemmas. We train a factored language model
on this corpus, using the lemma and the part-of-
speech and suffix as factors. In our current ex-
periments, the hypothesis are re-scored using the
Finnish language model alone, though in principle
the re-scoring can be carried out using language
models for multiple languages.

We train a ordinal regression model using the
parse tree probability estimated using the GF dis-
ambiguation model and the factored LM score to
re-order the K-best lists. A small set of 2500 sen-
tences from the Europarl corpus were randomly
taken and used as training samples for the regres-
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System BLEU TER
Baseline 4.7 1.138
Reranked 4.8 1.135

Table 1: BLEU (11b) and TER scores obtained on
the newstest2015 dataset

sion model. The K-best lists in the training sam-
ples are ranked based on BLEU scores and TER
scores.

Experiments with the devel dataset showed
small improvements from using the LM to rescore
the hypothesis. Comparatively, reranking resulted
in even smaller improvements on the the test
dataset. At this point, we carried out a analysis
of the K-best lists on the devel set. We found that
there was a very small variation in the K-best lists
given the number of distinct hypothesis that were
considered. Most of the variation was attributed
to punctuation and orthography rather than word
senses or word order as we initially expected.

Following this, we experimented with random
sampling in the parse forests to evaluate the ora-
cle quality of our translation system. The results
of this study are pending error analysis and evalu-
ation.

5 Conclusions

We described our system submission to the WMT
shared task in the English-Finnish track in the cur-
rent paper. Our system uses as interlingual-based
approach, in which the interlingual is based on a
shared representation of surface structures across
languages. Our final submission is a hybrid system
in which the K-best translations from the baseline
system are re-ranked using a factored language
model. We explain why our system results in a
low-scoring baseline and discuss reasons why re-
ranking provides minor improvements compared
to previous approaches.

We plan to work on two extensions to the work
described in this paper: first, we plan on increas-
ing the variation in our K-best lists using sampling
and incorporating heuristics into the parser. We
hope that this will result in better improvements
from re-ranking the K-best lists using a language
model. Another extension we would like to ex-
periment is the use of multiple language LMs to
rescore the translations, this is uniquely possible
only in our system since it allows for translation
into multiple languages with little cost compared

to other MT systems.
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2Université Paris-Sud, 91 403 Orsay, France

3Lingua et Machina
4Centre Cochrane français
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Abstract

This paper describes LIMSI’s submis-
sions to the shared WMT’15 translation
task. We report results for French-English,
Russian-English in both directions, as well
as for Finnish-into-English. Our submis-
sions use NCODE and MOSES along with
continuous space translation models in a
post-processing step. The main novelties
of this year’s participation are the follow-
ing: for Russian-English, we investigate a
tailored normalization of Russian to trans-
late into English, and a two-step process to
translate first into simplified Russian, fol-
lowed by a conversion into inflected Rus-
sian. For French-English, the challenge is
domain adaptation, for which only mono-
lingual corpora are available. Finally, for
the Finnish-to-English task, we explore
unsupervised morphological segmentation
to reduce the sparsity of data induced by
the rich morphology on the Finnish side.

1 Introduction

This paper documents LIMSI’s participation to the
machine translation shared task for three language
pairs: French-English and Russian-English in both
directions, as well as Finnish-into-English. Each
of these tasks poses its own challenges.

For French-English, the task differs slightly
from previous years as it considers user-generated
news discusssions. While the domain remains the
same, the texts that need to be translated are of
a less formal type. To cope with the style shift,
new monolingual corpora have been made avail-
able; they represent the only available in-domain
resources to adapt statistical machine translation
(SMT) systems.

For Russian-English, the main source of diffi-
culty is the processing of Russian, a morphologi-

cally rich language with a much more complex in-
flectional system than English. To mitigate the ef-
fects of having too many Russian word forms, we
explore ways to normalize Russian prior to trans-
lation into English, so as to reduce the number of
forms by removing some ”redundant” morpholog-
ical information. When translating into Russian,
we consider a two-step scenario. A conventional
SMT system is first built to translate from En-
glish into a simplified version of Russian; a post-
processing step then restores the correct inflection
wherever needed.

Finally, for Finnish-into-English, we report pre-
liminary experiments that explore unsupervised
morphological segmentation techniques to reduce
the sparsity issue induced by the rich morphology
of Finnish.

2 Systems Overview

Our experiments use NCODE1, an open source im-
plementation of the n-gram approach, as well as
MOSES, which implements a vanilla phrase-based
approach.2 For more details about these toolkits,
the reader can refer to (Koehn et al., 2007) for
MOSES and to (Crego et al., 2011) for NCODE.

2.1 Tokenization and word alignments

Tokenization for French and English text relies
on in-house text processing tools (Déchelotte et
al., 2008). All bilingual corpora provided by
the organizers were used, except for the French-
English tasks where the UN corpus was not con-
sidered.3 We also used a heavily filtered version
of the Common Crawl corpus, where we discard
all sentences pairs that do not look like proper
French/English parallel sentences. For all cor-

1http://ncode.limsi.fr
2http://www.statmt.org/moses/
3In fact, when used in combination with the Giga Fr-En

corpus, no improvement could be observed (Koehn and Had-
dow, 2012).
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pora, we finally removed all sentence pairs that did
not match the default criteria of the MOSES script
clean-corpus-n.pl or that contained more
than 70 tokens.

Statistics regarding the parallel corpora used
to train SMT systems are reported in Ta-
ble 1 for the three language pairs under
study. Word-level alignments are computed using
fast align (Dyer et al., 2013) with options ”-d
-o -v”.

2.2 Language Models

The English language model (LM) was trained on
all the available English monolingual data, plus
the English side of the bilingual data for the Fr-En,
Ru-En and Fi-En language pairs. For the French
language model, we also used all the provided
monolingual data and the French side of the bilin-
gual En-Fr data. We removed all duplicate lines4

and trained a 4-gram language model, pruning all
singletons, with lmplz (Heafield et al., 2013).

2.3 SOUL

Neural networks, working on top of conventional
n-gram back-off language models, have been in-
troduced in (Bengio et al., 2003; Schwenk et al.,
2006) as a potential means to improve conven-
tional language models. As in our previous par-
ticipations (Le et al., 2012b; Allauzen et al., 2013;
Pécheux et al., 2014), we take advantage of the
proposal of (Le et al., 2011). Using a specific
neural network architecture, the Structured OUt-
put Layer (SOUL), it becomes possible to esti-
mate n-gram models that use large output vocab-
ulary, thereby making the training of large neural
network language models feasible both for target
language models and translation models (Le et al.,
2012a). Moreover, the peculiar parameterization
of continuous models allows us to consider longer
dependencies than the one used by conventional
n-gram models (e.g. n = 10 instead of n = 4).

3 Experiments for French-English

This year, the French-English translation task fo-
cuses on user-generated News discusssions, a less
formal type of texts than the usual News articles of
the previous WMT editions. Therefore, the main

4Experiments not reported in this paper showed no
changes in BLEU score between keeping or removing dupli-
cate lines, but removing duplicate lines conveniently reduced
the size of the models due to singleton pruning.

challenge for this task is domain adaptation, for
which only monolingual data are distributed.

3.1 Development and test sets
Since this is the first time this translation task is
considered, only a small development set of news-
discusssions is available. In order to properly tune
and test our systems, we performed a 3-fold cross-
validation, splitting the 1,500 in-domain sentences
in two parts. Each random split respects doc-
ument boundary, and yields roughly 1,000 sen-
tences for tuning and 500 sentences for testing.
The source of the documents, the newspapers Le
Monde and The Guardian are also known. This
allows us to balance the proportion of documents
from each source in the development and test sets.
The BLEU scores for the French-English experi-
ments are computed on the concatenation of each
test set decoded using weights tuned on the corre-
sponding 1,000 sentence tuning set.

3.2 Domain adaptation
The vast majority of bilingual data distributed for
the translation task are News articles, meaning that
they correspond to a more formal register than the
News discussions. The only in-domain texts pro-
vided for this task are monolingual corpora. Nev-
ertheless, these monolingual data have been used
to adapt both the translation and language models.
To adapt the bilingual data, we subsampled the
concatenation of the noisy Common Crawl and
Giga Fr-En corpus, which represent around 90%
of all our bilingual data, using the so-called Mod-
ified Moore-Lewis (Axelrod et al., 2011) filter-
ing method (MML). We kept all the Europarl and
News-Commentary data. MML expects 4 LMs to
score sentence pairs in the corpus we wish to fil-
ter: for the source and target languages, it requires
a LM trained with in-domain data, along with an
out-of-domain LM estimated on the data to fil-
ter.5 The MML score of a sentence pair is the sum
of the source and target’s perplexity differences
for both in-domain and out-of-domain LMs. Sen-
tences pairs are ranked according to the MML score
and the top N parallel sentences are used to learn
the translation table used during decoding.

For LM adaptation, we used a log-linear combi-
nation of our large LM with a smaller one trained
only on the monolingual in-domain corpus.6

5All language models for the MML scoring are 4-grams
trained with lmplz.

6Corresponding respectively to 3.5 and 50 millions sen-
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Corpus
Fr-En Ru-En Fi→En

Sentences Tokens (Fr-En) Sentences Tokens (Ru-En) Sentences Tokens (Fi-En)

parallel data 24.3M 712.8M-597.7M 2.3M 45.7M-47.3M 2M 37.3M-51.7M
monolingual data 2.2B-2.7B 834.7M-2.7B -2.7B

Table 1: Statistical description of the training corpora

3.3 Reranking
The N-best reranking steps uses the following fea-
ture sets to find a better hypothesis among the
1,000-best hypotheses of the decoder:

• IBM1: IBM1 features (Hildebrand and Vo-
gel, 2008);
• POSLM: 6-gram Witten-Bell smoothed POS

LM trained with SRILM on all the monolin-
gual news-discussions corpus;
• SOUL: Five features, one monolingual tar-

get language model and 4 translation models,
see section 2.3 for details;
• TagRatio: ratio of translation hypothesis by

number of source tokens tagged as verb, noun
or adjective;
• WPP: count-based word posterior probabil-

ity (Ueffing and Ney, 2007);

POS tagging is performed using the Stanford
Tagger7. The reranking system is trained us-
ing the kb-mira algorithm (Cherry and Foster,
2012) implemented in MOSES.

3.4 Experimental results
For all French-English experiments, we used
MOSES and NCODE with the default options, in-
cluding lexicalized reordering models. Tuning is
performed using kb-mira with default options
on 200-best hypotheses.

Table 2 reports experimental results for filter-
ing the bilingual data using MML before or after
learning the word alignment step. Results for fil-
tering are always lower when the word alignments
are learnt only on the filtered data. The baseline
system, which uses all the bilingual data, yields
better performance than all our filtered systems,
even though keeping only 25% of the bi-sentences,
gives almost similar results. However, since there
is no clear gain in filtering, we kept all the data
without any MML filtering for the following exper-
iments. The additional LM learned only on the
in-domain data gives a slight improvement, +0.18

tences for French and English.
7http://nlp.stanford.edu/software/tagger.shtml

Configuration Fr-En

baseline 29.33

before
10% 28.63
25% 29.09
50% 28.96

after
10% 29.14
25% 29.31
50% 29.11

Table 2: Results (BLEU) for keeping the top 10%,
25% or 50% of the bi-sentences scored with MML,
before and after word alignment. The baseline sys-
tem uses all the bilingual data.

Configuration Fr-En En-Fr

w/o additional LM 29.15 29.56
w/ additional LM 29.33 30.22

Table 3: Results (BLEU) with and without the ad-
ditional in-domain language model.

BLEU, for Fr-En, and a larger improvement for
En-Fr (+0.66 BLEU, see Table 3).

Table 4 reports the comparison between NCODE

and MOSES. MOSES outperforms NCODE on our
in-house test set using the 3-fold cross-validation
procedure. However, when tuning on the complete
development set and testing on the official test set,
we observed a different result where NCODE out-
performs MOSES for Fr-En (+0.69 BLEU), while
MOSES remains the best choice for En-Fr (+0.74
BLEU). These differences between the results ob-
tained with our dev/test configuration and the of-
ficial ones may be due to the lack of tuning data
when performing the 3-fold cross-validation, leav-
ing only 1,000 sentences for tuning. Nonetheless,
further investigations will be helpful to better un-
derstand these discrepancies.

Regarding reranking, results in Table 5 show
that SOUL is the most useful feature and sig-
nificantly improves translation performance when
reranking a 1,000-best list generated by the de-
coder: we observe an improvement of nearly +0.9
BLEU for both translation directions. These re-
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System
in-house test official test

Fr-En En-Fr Fr-En En-Fr

MOSES 29.33 30.22 32.16 35.74
NCODE 28.66 30.17 32.85 35.00

Table 4: Results (BLEU) for NCODE and MOSES

on respectively the in-house and official test set.

Feature sets Fr-En En-Fr

baseline 29.33 30.22

+ IBM1 29.24 30.25
+ POSLM 29.45 30.28
+ SOUL 30.20 31.15
+ TagRatio 29.33 30.30
+ WPP 29.40 30.20

all 30.45 31.25

Table 5: Reranking results (BLEU) using differ-
ent feature sets individually and their combination.
For the all configurations these features are in-
troduced during a reranking step.

sults can be further improved by adding more fea-
tures during the reranking phase, with a final gain
of +1.12 and +1.03 BLEU, for respectively Fr-En
and En-Fr.

Our primary submissions for Fr-En and En-Fr
use MOSES to generate n-best list, with phrase
and reordering tables learned from all our bilin-
gual data; the reranking step includes all the fea-
tures presented in section 3.3.

4 Russian-English

Russian is a morphologically rich language char-
acterized notably by a much more complex inflec-
tion system than English. This observation was
the starting point of our work and led us to explore
ways to process Russian in order to make it closer
to English.

4.1 Preprocessing Russian

Inflections in Russian encode much more infor-
mation than in English. For instance, while En-
glish adjectives are invariable, their Russian coun-
terparts surface as twelve distinct word forms, ex-
pressing variations in gender (3), number (2) and
case (6). Such a diversity of forms creates data
sparsity issues, since many word forms are not ob-
served in training corpora. When translating from
Russian, the number of unknown words is accord-
ingly high, making it impossible to translate many

forms, even when they exist in the training corpus
with a different inflection mark. Conversely, when
translating into Russian, the system may not be
able to generate the correct word form in a given
context. Finally note that training translation mod-
els for such a language pair causes each English
word to be typically paired with a lot of transla-
tions of low probability, corresponding to morpho-
logical variants on the Russian side.

To address this issue, we decided to normalize
Russian by replacing all case marks by the cor-
responding nominative inflection: this applies to
nouns, adjectives and pronouns. For these word
types, the case information is thus lost, but the
gender and number marks are preserved.

4.2 Predicting Case Marks
When translating into Russian, the normalization
scheme described above is not well suited because
of its lossy reduction of Russian word forms. Its
use therefore requires a post processing step which
aims to recover the inflected forms from the output
of the SMT system. Since normalization essen-
tially removes the case information, this last step
consists in predicting the right case for a given nor-
malized word before generating the correctly in-
flected form.

For this purpose, we designed a cascade of Con-
ditional Random Fields (CRFs) models. A first
model predicts POS tags, which are then used by
a second model to predict the gender and number
information. A last model is then used to in-
fer the case from this information. POS, gender
and number prediction are used to disambiguate
the normalized words, which is necessary to gen-
erate the correct word forms. All predictions were
performed considering only the target side output,
meaning that no information from the source was
used. The first two models use standard features
for POS tagging as described in (Lavergne et al.,
2010). The last one (for case prediction) addition-
ally contains features testing the presence of a verb
or a preposition in the close vicinity of the word
under consideration.

4.3 Experimental results
Standard NCODE and MOSES configurations with
lexicalized reordering models were used for all
the English-Russian and Russian-English experi-
ments. Alignments in both directions were com-
puted with normalized Russian. The models were
tuned with kb-mira using 300-best lists.
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The results reported in Table 6 show a similar
trend for NCODE and MOSES in both translation
directions. Note that MOSES outperforms NCODE

(+0.72 BLEU) for Ru-En task. Using normal-
ized Russian as the source language allows us to
achieve a slight gain of +0.4 over the baseline for
both systems. Moreover, the addition of SOUL
models yields a further improvement of 1.1 BLEU
score (see Table 7). The English-into-normalized-
Russian task has been performed for the sake of
comparison, to assess the gain we could expect if
we were able to always predict the right case for
the normalized Russian output. The comparison
of BLEU scores between translating directly into
Russian and producing an intermediate normal-
ized Russian shows differences of 3.15 BLEU for
NCODE and 3.44 BLEU for MOSES. These scores
represent an upper-bound that unfortunately we
were not able to reach with our post-processing
scheme.

System MOSES NCODE

Baseline 26.85 26.02
+ Normalized Ru 27.27 26.44

+ SOUL 27.28

Table 6: Results (BLEU) for Russian-English
with NCODE and MOSES on the official test.

System MOSES NCODE

Baseline 22.91 22.97
+ SOUL 24.08

En-Rx 26.35 26.12
En-Rx-Ru 19.99 19.88

Table 7: Results (BLEU) for English-Russian (Rx
stands for normalized Russian) with NCODE and
MOSES on the official test. The score for En-Rx
was obtained over the normalized test.

4.4 Error Analysis

As Russian is a morphologically rich language,
which has many features not observed in the En-
glish language, we conducted a simple error anal-
ysis to better understand the possible morpholog-
ical mistakes made by our NCODE baseline. We
used METEOR to automatically align the outputs
with the original references at the word level, dis-
carding multiple alignment links. About 56.3%
of the words in the NCODE output have a coun-

terpart in the human references, which is consis-
tent with the BLEU unigram precision (53.3%).
Among those, 85.4% are identical and 9.8% are
different but share a common lemma. This last sit-
uation happens when our system fails to predict
the correct form. The remaining 4.8% (different
word forms with no common lemma), correspond
either to synonyms or to METEOR alignment er-
rors. Figure 1 also suggests that, within the 9.8%
word form errors, most morphological errors are
related to case prediction. Figure 1 displays de-
tailed results split by POS. Results for MOSES or
when rescoring NCODE outputs with SOUL are
very similar.

case

52.5%

number

21.0%

gender

14.9%
tense

5.6%

voice
4.5%

others

2.5%

(a) Incorrectly predicted inflections

noun

44.6%

verb

12.6%

long-form adjective

35.1%

long-form participle

4.2%

others

3.5%

(b) Word form errors wrt POS

Figure 1: Distribution of mispredictions for
NCODE outputs, according to the mispredicted in-
flection (a) and their POS (b).

5 Translating Finnish into English

This is our first attempt to translate from Finnish
to English. The provided development set con-
tains only 1,500 parallel sentences. Therefore all
the results are computed using a two-fold cross
validation. The baseline system is a conventional
phrase-based system built with the MOSES toolkit.
Experimental results are in Table 8. The first two
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Configuration dev. test
Baseline 13.2 12.8
+ large LM 16.1 15.7
+ Morph. segmentation 16.2 15.9

Table 8: BLEU scores for the Finnish to English
translation task, obtained with different configura-
tions after a two-fold cross-validation.

lines give the BLEU scores obtained with a basic
tokenization of the Finnish side. When the English
LM is only estimated on the parallel data, the sys-
tem achieves a BLEU score of 12.8, while using
a LM estimated on all the available monolingual
data yields a 1.8 BLEU point improvement.

Finnish is a synthetic language that employs ex-
tensive regular agglutination. This peculiarity im-
plies a large variety of word forms and, again, se-
vere sparsity issues. For instance, we observed on
the available parallel training data 860K different
Finnish forms for 37.3M running words and only
2M sentences. Among these forms, more than half
are hapax. For comparison purposes, we observed
in English 208K word forms for 51.7M running
words. To address this issue, we have tried to re-
duce the number of forms in the Finnish part of the
data. For that purpose, we use Morfessor 8 to
perform an unsupervised morphological segmen-
tation. The new Finnish corpus therefore con-
tains 67K types for 77M running words. With
this new version, we obtain only a slight improve-
ment of 0.2 BLEU point. We assume that the
Finnish data was over-segmented and that a bet-
ter tradeoff can be found with an extensive tuning
of Morfessor.

6 Discussion and Conclusion

This paper described LIMSI’s submissions to the
shared WMT’15 translation task. We reported re-
sults for French-English, Russian-English in both
direction, as well as for Finnish-into-English. Our
submissions used NCODE and MOSES along with
continuous space translation models in a post-
processing step. Most of our efforts for this years
participation were dedicated to domain adaptation
and more importantly to explore different strate-
gies when translating from and into a morpholog-
ically rich language.

For French-English, we experimented adapta-

8https://github.com/aalto-speech/
morfessor

tion using only monolingual data that represents
the targeted text, i.e news-discussions. Our at-
tempt to filter the available parallel corpora did
not bring any gain, while the use of an additional
language model estimated on news-discussions
yielded slight improvement.

When translating from Russian into English,
small improvements were observed with a tailored
normalization of Russian. This normalization was
designed to reduce the number of word forms and
to make it closer to English. However, experi-
ments in the other direction were disappointing.
While the first step that translates from English to
the normalized version of Russian showed positive
results, the second step designed to recover Rus-
sian inflected forms failed. This failure may be
related to the cascade of statistical models, work-
ing solely on the target side. However, the reasons
need to be better understood with a more detailed
study.

To translate from Finnish into English, we
explored the use of unsupervised morphological
segmentation. Our attempt to reduce the num-
ber of forms on the Finnish side did not sig-
nificantly change the the BLEU score. This
under-performance can be explained by an over-
segmentation of the Finnish data, and maybe a bet-
ter tradeoff can be found with a more adapted seg-
mentation strategy.

We finally reiterate our past observations that
continuous space translation models used in a
post-processing step always yielded significant
improvements across the board.
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2011. N-code: an open-source bilingual N-gram
SMT toolkit. Prague Bulletin of Mathematical Lin-
guistics, 96.
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Abstract

This paper describes the UdS-Sant
English–German Hybrid Machine Trans-
lation (MT) system submitted to the
Translation Task organized in the Work-
shop on Statistical Machine Translation
(WMT) 2015. Our proposed hybrid
system brings improvements over the
baseline system by incorporating ad-
ditional knowledge such as extracted
bilingual named entities and bilingual
phrase pairs induced from example-based
methods. The reported final submission
is the result of a hybrid system obtained
from confusion network based system
combination that combines the best per-
formance of each individual system in a
multi-engine pipeline.

1 Introduction

In this paper, we present Universität des Saarlan-
des (UdS) submission (named UdS-Sant) to WMT
2015 using a Hybrid MT framework. We partici-
pated in the generic translation shared task for the
English-German (EN-DE) language pair.

Corpus-based MT (CBMT) has delivered pro-
gressively improved quality translations since its
inception. There are two main approaches to
corpus-based MT – Example Based Machine
Translation (EBMT) (Carl and Way, 2003) and
Statistical Machine Translation (SMT) (Brown et
al., 1993; Koehn, 2010). Out of these two, in terms
of large-scale evaluations, SMT is the most suc-
cessful MT paradigm. However, each approach
has its own advantages and disadvantages along
with its own methods of applying and acquiring
translation knowledge from the bilingual parallel
training data. EBMT phrases tend to be more lin-
guistically motivated compared to SMT phrases
which essentially operate on n-grams. The knowl-
edge extraction as well as representation process,

in both EBMT and SMT, uses very different tech-
niques in order to extract resources. Even though,
SMT is the most popular MT paradigm, it some-
times fails to deliver sufficient quality in transla-
tion output for some languages, since each lan-
guage has its own difficulties.

Multiword Expressions (MWEs) and Named
Entities (NEs) offer challenges within a language.
MWEs are defined as idiosyncratic interpretations
that cross word boundaries (Sag et al., 2002).
Named entities on the other hand often consist of
more than one word, so that they can be consid-
ered as a specific type of MWEs such as noun
compounds (Jackendoff, 1997). Traditional ap-
proaches to word alignment such as IBM Mod-
els (Brown et al., 1993) are unable to tackle NEs
and MWEs properly due to their inability to han-
dle many-to-many alignments. In another well-
known word alignment approach, Hidden Markov
Model (HMM: (Vogel et al., 1996)), the alignment
probabilities depend on the alignment position of
the previous word. It does not explicitly consider
many-to-many alignment either.

We address this alignment problem indirectly.
The objective of the present work is threefold.
Firstly, we would like to determine how treat-
ment of MWEs as a single unit affects the over-
all MT quality (Pal et al., 2010; Pal et al., 2011).
Secondly, whether a prior automatic NE aligned
parallel corpus as well as example based parallel
phrases can bring about any further improvement
on top of that. And finally, whether system com-
bination can provide any additional advantage in
terms of translation quality and performance.

The remainder of the paper is organised as fol-
lows. Section 2 details the components of our sys-
tem, in particular named entity extraction, transla-
tion memory, and EBMT, followed by description
of 3 types of Hybrid systems and the system com-
bination module. In Section 3, we outline the com-
plete experimental setup for the shared task and
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provide results and analysis on the performance on
the test set in Section 4. Section 5 concludes the
proposed research.

2 System Description

Our system is designed with three basic compo-
nents: (i) preprocessing, (ii) hybrid systems and
(iii) system combination.

2.1 Preprocessing
Data pre-processing plays a very crucial part in
any data-driven approach. We carried out prepro-
cessing in two steps:

• Cleaning and clustering sentences based on
sentence length.

• Effective preprocessing of data in the form of
explicit alignment of bilingual terminology
(viz. NEs and MWEs).

The preprocessing has been shown (cf. Section
2.1.2) to improve the output quality of the base-
line PB-SMT system (Pal et al., 2013; Tan and Pal,
2014).

2.1.1 Corpus cleaning
We utilized all the parallel training data provided
by the WMT 2015 shared task organizers for
English–German translation. The training data in-
clude Europarl, News Commentary and Common
Crawl. The provided corpus is noisy and con-
tains some non-German as well as non-English
words and sentences. Therefore, we applied a
Language Identifier (Shuyo, 2010) on both bilin-
gual English–German parallel data and monolin-
gual German corpora. We discarded those par-
allel sentences from the bilingual training data
which were detected as belonging to some differ-
ent language by the language identifier. The same
method was also applied to the monolingual data.

Successively, the corpus cleaning process was
carried out first by calculating the global mean ra-
tio of the number of characters in a source sen-
tence to that in a target sentence and then filter-
ing out sentence pairs that exceed or fall below
20% of the global ratio (Tan and Pal, 2014). We
sorted the entire parallel training corpus based on
their sentence length.Tokenisation and punctua-
tion normalisation were performed using Moses
scripts. In the final step of cleaning, we filtered
the parallel training data on maximum allowable
sentence length of 100 and sentence length ratio

of 1:2 (either direction). Approximately 36% sen-
tences were removed from the total training data
during the cleaning process.

2.1.2 Explicit Preprocessing of Terminologies

Two kinds of terminologies, viz. NEs and MWEs,
were considered in the present work. Intuitively,
MWEs should be both aligned in the parallel cor-
pus and translated as a whole. However, state-of-
the-art PB-SMT (or any other approaches to SMT)
does not generally treat MWEs as special tokens.
This is the motivation behind considering MWEs
for special treatment in this work. By converting
the MWEs into single tokens, we make sure that
PB-SMT also treats them as a whole.

NE Alignment (NEA): For NE alignment, we
first identify NEs on both sides of the parallel cor-
pus using Stanford NER1. Next, we try to align
the extracted source and target NEs. If both sides
contain only one NE then the alignment is triv-
ial, and we add such NE pairs to seed another
parallel NE corpus that contains examples having
only one token in both sides. Otherwise, we es-
tablish alignments between the source and target
NEs using minimum edit distance method. For
language pairs having different orthographies (e.g.
English–Hindi) NE alignments can be established
through transliteration (Pal et al., 2010). If both
the source and target sides contain n number of
NEs, and the alignments of n − 1 NEs can be es-
tablished through minimum edit distance method
or by means of already existing alignments, then
the nth alignment is trivial. The bilingual NE pairs
extracted thus serve as additional training material
and they improve the word alignment at the start
of the MT pipeline.

MWE Identification: Translation correspon-
dences between English MWEs and German
MWEs are mainly many-to-one correspondences.
Therefore, instead of extracting a bilingual MWE
list between source and target, we identify the
MWEs from the English training sentences and
prepare an English MWE list. Once the MWEs
are identified, they are converted into single tokens
by replacing the spaces with underscores (“ ”) so
that their alignments can be mapped to single to-
kens . Before decoding, MWEs in the source side
of the testset are also single tokenized by look-
ing up the extracted MWE list. In this experi-
ment, we have followed Point-wise Mutual Infor-

1http://nlp.stanford.edu/software/CRF-NER.shtml
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mation (PMI), Log-likelihood Ratio (LLR), Phi-
coefficient and Co-occurrence measures for iden-
tification of MWEs on the English side. Finally,
a system combination model has been developed
which provides a normalized score for each of
the extracted MWEs. A predefined cut-off score
has been considered and the candidates having
scores above the threshold value are considered as
MWEs.

Example Based Phrase Extraction: We use
EBMT techniques to extract additional phrase
pairs from the training data to augment the SMT
(baseline) phrase pairs in our experiments. We ex-
tract EBMT phrase pairs based on the work de-
scribed in (Cicekli and Güvenir, 2001), a com-
piled approach of EBMT to automatically extract
translation templates from sentence-aligned bilin-
gual text. They observed the similarities and dif-
ferences between two example pairs. Two types of
translation templates, i.e. generalized and atomic
templates, are extracted by applying this approach.
A generalized translation template replaces sim-
ilar or differing sequences with variables while
an atomic translation template does not contain
any variable. The atomic translation templates are
used as additional phrase pairs for our Hybrid MT
system. This particular approach has a cubic run-
time complexity with respect to the number of sen-
tences in the parallel corpus. It takes a significant
amount of time to extract phrase pairs even from a
small corpus. Therefore we used heuristics to re-
duce the time complexity. We divided the entire
corpus into n clusters based on sentence length
such that similar length sentences belong to the
same cluster. We extract atomic translations from
each of these clusters. For this task, we applied
EBMT phrases as addition parallel training ex-
ample to explicitly enhanced the word alignment
model of the MT pipeline.

2.2 Hybrid System

The Hybrid approach is investigated by combining
multiple knowledge sources such as NEA, EBMT
Phrases and MWEs and followed different strate-
gies. As mentioned earlier, we implemented sev-
eral different systems, namely:

(1) Baseline PB-SMT,

(2) Baseline PB-SMT with NE alignment
(NEA),

(3) NEA with EBMT phrase extraction (NEA–
EBMT),

(4) NEA with EBMT phrase extraction and
single-tokenised MWE (NEA–EBMT–
MWE) and

(5) LM–NEA–EBMT–MWE hybrid system
(see Section 2.2.1).

The baseline SMT system is trained on the cleaned
English-German parallel corpus. The NEA sys-
tem makes use of NE aligned parallel data as addi-
tional parallel examples. Similarly, EBMT phrase
pairs as well as NE aligned data are also used as
additional training example in the NEA–EBMT
system. The NEA–EBMT–MWE system is very
similar to the above mentioned the NEA–EBMT
system, the only difference being that the identi-
fied source side English MWEs are converted into
single tokens for NEA–EBMT–MWE. In order to
achieve optimal performance from the component
modules, we finally generated a composite transla-
tion output using confusion network-based system
combination (cf. Section 2.3).

2.2.1 LM-NEA-EBMT-SMT hybrid system
In this system, we experiment with the above de-
scribed models with varying size of monolingual
data. We experimented with 4 folds of monolin-
gual data to train the language Models (LM):

• LM1: Only using the target side (i.e. Ger-
man) of the parallel training data (L) for lan-
guage modeling

• LM2: L + double size of L in terms of num-
ber of sentences, collected from the cleaned
monolingual corpus

• LM3: L + triple size of L from the cleaned
monolingual corpus

• LM4: L + all the cleaned monolingual data

Therefore, finally there were 16 different sys-
tems (4 systems, i.e., Baseline, NEA, NEA–
EBMT and NEA–EBMT–MWE, each with 4 LM
settings) output available for system combination.

2.2.2 Post-processing
As a final step, we try to generate translations of
out-of-vocabulary (OOV) words that remain un-
translated in the output. These OOV words may
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include some NEs that are already there in the par-
allel NE list, however they might remain untrans-
lated during decoding. Our system post processed
the output by replacing each such OOV NE with
the corresponding target language NE after look-
ing up the extracted NE list from the parallel cor-
pus (cf. Section 2.1.2).

2.3 System Combination

System Combination is a technique, which com-
bines translation hypotheses (outputs) produced
by multiple MT systems. We applied a system
combination method on the outputs of the dif-
ferent MT system described earlier. We imple-
ment the Minimum Bayes Risk coupled with Con-
fusion Network (MBR-CN) framework described
in (Du et al., 2009). The MBR decoder (Kumar
and Byrne, 2004) selects the single best hypoth-
esis from amongst the multiple candidate transla-
tions by minimising BLEU (Papineni et al., 2002)
loss. This single best hypothesis serves as the
backbone (also referred to as skeleton) of the con-
fusion network and determines the general word
order of the confusion network. A confusion net-
work (Matusov et al., 2006) is built from the back-
bone while the remaining hypotheses are aligned
against the backbone using METEOR (Lavie and
Agarwal, 2007) and the TER metric (Snover et
al., 2006). The features used to score each arc
in the confusion network are word posterior prob-
ability, target language model (3-gram, 4-gram),
and length penalties. Minimum Error Rate Train-
ing (MERT) (Och, 2003) is applied to tune the CN
weights (Pal et al., 2014).

3 Experiment Setup

3.1 Baseline Settings

The effectiveness of the present work is demon-
strated by using the standard log-linear PB-SMT
model as our baseline system. For building the
baseline system, we used a maximum phrase
length of 7 and a 5-gram language model. The
other experimental settings were: SymGIZA++
aligner (Junczys-Dowmunt and Szał, 2012), which
is a modified version of GIZA++ word align-
ment models by updating the symmetrizing mod-
els between chosen iterations of the original
word alignment training algorithms and phrase-
extraction (Koehn et al., 2003). The reordering
model was trained on hier-mslr-bidirectional (i.e.
using both forward and backward models) and

conditioned on both source and target language.
The reordering model was built by calculating
the probabilities of the phrase pairs being asso-
ciated with the given orientation such as mono-
tone (m), swap (s) and discontinuous (d). The
5-gram target language model was trained using
KENLM (Heafield, 2011). Parameter tuning was
carried out using both k-best MIRA (Cherry and
Foster, 2012) and Minimum Error Rate Training
(MERT) (Och, 2003) on a held-out development
set. After the parameters were tuned, decoding
was carried out on the held out testset.

Note that all the systems described in Section 2
employ the same PB-SMT settings (apart from the
feature weights which are obtained via MERT) as
the Baseline system.

4 Results and Analysis

As described in Section 2.2.1, we developed 16
different systems. Instead of using all these 16 dif-
ferent systems, we apply only the 6 best perform-
ing systems for system combination. Performance
is measured on the devset. Table 1 reports the final
evaluation results obtained on the test dataset. The
best 6 systems are as follows:

• System 1: NEA–EBMT (selective high fre-
quency phrases) with baseline PB-SMT set-
tings and LM1.

• System 2: System 1 experimental settings +
single tokenised source MWEs (i.e. NEA–
EBMT–MWE, cf. Section 2.2).

• System 3: System 2 with MIRA-MERT cou-
pled tuning.

• System 4: System 3 with LM2.

• System 5: System 3 with LM3.

• System 6: System 3 with LM4.

System 6 provides the individual best system. Sys-
tem combination (System-7 in Table 1) of the 6
best performing individual systems brings consid-
erable improvements over each of the individual
component systems.

5 Conclusions and Future Work

A hybrid system (System 6) with NE alignment,
EBMT phrases, single-tokenized source MWEs,
and MIRA-MERT coupled tuning results in the
best performing system. However, confusion
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Systems BLEU BLEU(Cased) TER
Baseline 16.7 16.2 89.6
System 1 18.1 17.5 88.2
System 2 18.1 17.6 87.8
System 3 19.0 18.4 85.3
System 4 20.0 19.5 84.1
System 5 20.3 19.7 83.8
System 6 20.7 20.2 83.5
System 7 22.6 22.1 82.3

Table 1: Results.

network-based system combination outperforms
all the individual MT systems. The fact that the
systems were tuned with BLEU scores may be one
of the reasons behind the poor TER scores pro-
duced by the systems. In future, we will carry
out in depth investigation of the impacts of MWEs
within the current experimental settings. We will
also analyze the usability and contribution of the
novel EBMT phrases in the SMT decoder.
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Abstract

This paper describes the statistical
machine translation system developed
at RWTH Aachen University for the
German→English translation task of
the EMNLP 2015 Tenth Workshop on
Statistical Machine Translation (WMT
2015). A phrase-based machine transla-
tion system was applied and augmented
with hierarchical phrase reordering and
word class language models. Further, we
ran discriminative maximum expected
BLEU training for our system. In addition,
we utilized multiple feed-forward neural
network language and translation models
and a recurrent neural network language
model for reranking.

1 Introduction

For the WMT 2015 shared translation task1,
RWTH utilized a state-of-the-art phrase-based
translation system. We participated in the
German→English translation task. The system
included a hierarchical reordering model, a word
class (cluster) language model, and discrimina-
tive maximum expected BLEU training. Further,
we reranked the nbest lists produced by our sys-
tem with three feed-forward neural network mod-
els and a recurrent neural language model.

This paper is structured as follows: First, we
briefly describe our preprocessing pipeline for
the language pair German→English in Section 2,
which is based on our 2014 pipeline. Next,
morpho-syntactic analysis for preprocessing the
data is described in Section 2.3. Different align-
ment methods are discussed in Section 3. In Sec-
tion 4, we present a summary of all methods used
in our submission. More details are given about

1http://www.statmt.org/wmt15/
translation-task.html

the language models (Section 4.2), maximum ex-
pected BLEU training (Section 4.4), the hierarchi-
cal reordering model (Section 4.5), feed-forward
neural network training (Section 4.6), and recur-
rent neural network language model (Section 4.7).
Experimental results are discussed in Section 5.
We conclude the paper in Section 6.

2 Preprocessing

In this section we briefly describe our preprocess-
ing pipeline, which is a modification of our WMT
2014 German→English preprocessing pipeline
(Peitz et al., 2014).

2.1 Categorization

We worked on the categorization of the digits and
written numbers for the translation task. All writ-
ten numbers were categorized. As the training
data and also the test sets contain several errors for
numbers in the source as well as in the target part,
we put effort into producing correct English num-
bers. In addition, ’,’ and ’.’ marks were inverted in
most cases, as in German the former mark is the
decimal mark and the latter is the thousand sepa-
rator.

2.2 Remove Foreign Languages

The WMT German→English Common Crawl cor-
pora contains bilingual sentence pairs with non-
German source or non-English target sentences.
By using an ASCII filtering, we removed all sen-
tences with more than 5% non-ASCII characters
from the Common Crawl corpus. Chinese, Arabic
and Russian are among the languages which can
be easily filtered by deleting the sentences con-
taining too many non-ASCII words. Our experi-
ments showed that the translation quality does not
change by removing sentences with wrong lan-
guages. Nevertheless, this method reduced the
training data size and also the vocabulary size
without introducing any degradation in translation
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Table 1: Comparison of a simple GIZA++ alignment vs. merging multiple alignments. Even though the
multiple alignment approach did not improve the GIZA++ alignment for the baseline system, it improved
translation quality in combination with a neural network joint model (NNJM). BLEU and TER are given
in percentage.

newstest2011 newstest2012 newstest2013 newstest2014

BLEU TER BLEU TER BLEU TER BLEU TER

GIZA++ 23.1 58.8 23.7 58.2 26.5 54.7 25.9 54.2
+ NNJM 23.3 58.4 24.0 57.7 26.6 54.3 26.2 53.7

Multiple alignment 23.0 58.9 23.8 58.2 26.6 54.6 25.9 54.2
+ NNJM 23.3 58.4 24.1 57.8 27.0 54.3 26.3 53.8

quality. Further, this method prevents us from gen-
erating words from these languages.

2.3 Compound Splitting and POS-based
Word Reordering

We reduced the source vocabulary size for the
German→English translation and split the Ger-
man compound words with the frequency-based
method described in Koehn and Knight (2003). To
reduce translation complexity, we employed the
long-range part-of-speech based reordering rules
proposed by Popović and Ney (2006). In this re-
gard, we did no further morphological analysis in
our preprocessing pipeline.

3 Alignment

We experimented with creating multiple align-
ments and merging them via a majority vote. For
the majority voting to work in a meaningful way
we need obviously more than two different align-
ments. A larger number of alignments gives us
more confidence that the alignment points are cor-
rect.

To create these different alignments, we used
fast align (Dyer et al., 2013) and two imple-
mentations of GIZA++ (Och and Ney, 2003). The
alignment was trained in both source to target di-
rection and target to source direction. To double
the number of alignments, we trained each setup
also with a reverse ordered source side and re-
versed it back after the alignment process finished
(Freitag et al., 2013). Using a reversed source
side usually creates a different alignment since the
word order influences the results of fast align
and GIZA++. This gave us a total of 12 differ-
ent alignments (three toolkits × two translation
directions × two source side direction). These

alignments were merged by keeping all alignment
points generated by at least 5 of the methods.

We compared this setup with an alignment gen-
erated by GIZA++. The voting setup did not im-
prove directly on the baseline system as shown
in Table 1. However, in combination with a
feed-forward neural network joint model (Section
4.6) the results on newstest2013 improved by
0.4% BLEU after reranking. We stuck in the fol-
lowing experiments to the multiple alignments ap-
proach.

4 Translation System

In this evaluation, we used the open source ma-
chine translation toolkit Jane2 (Vilar et al., 2012;
Wuebker et al., 2012). This open-source toolkit
was developed at the RWTH Aachen University
and includes a phrase-based decoder used in all of
our experiments.

4.1 Phrase-based System

Our phrase based decoder includes an implemen-
tation of the source cardinality synchronous search
procedure described in Zens and Ney (2008). We
used the standard set of models with phrase trans-
lation probabilities, lexical smoothing in both di-
rections, word and phrase penalty, distance-based
distortion model, a 4-gram target language model
and enhanced low frequency feature (Chen et al.,
2011). Additional models used in this evaluation
were the hierarchical reordering model (HRM)
(Galley and Manning, 2008) and a word class lan-
guage model (wcLM) (Wuebker et al., 2013). The
parameter weights were optimized with minimum
error rate training (MERT) (Och, 2003). The op-

2http://www.hltpr.rwth-aachen.de/jane/
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timization criterion was BLEU (Papineni et al.,
2002).

4.2 Language Models

We used a 4-gram language model trained on the
target side of the bilingual data, 1

2 of the Shuffled
News Crawl corpus, 1

2 of the 109 French-English
corpus and 1

4 of the LDC Gigaword Fifth Edition
corpus. The monolingual data selection was based
on cross-entropy difference as described in Moore
and Lewis (2010). For this language model, we
trained separate language models using SRILM
for each corpus, which were then interpolated.
The interpolation weights are tuned by minimiz-
ing the perplexity of the interpolated model on the
development data. In addition, a word class lan-
guage model was utilized. We trained 200 classes
on the target side of the bilingual training data
(Brown et al., 1992; Och, 1999). We used the
same data as the 4-gram language model for train-
ing a 7-gram wcLM. Furthermore, we also trained
a single unpruned language model on the con-
catenation of all monolingual data using KenLM,
which was used as an extra model in our final ex-
periments. All language models used interpolated
Kneser-Ney smoothing.

4.3 Evaluation

All setups were evaluated with MultEval (Clark et
al., 2011). To evaluate our models, we used the
average of three MERT optimization runs for case
sensitive BLEU (Papineni et al., 2002) and case in-
sensitive TER3 (Snover et al., 2006).

4.4 Maximum Expected BLEU Training

In our baseline translation system the phrase ta-
bles were extracted from word alignments and
the probabilities were estimated as relative fre-
quencies, which is still the state-of-the-art for
many standard SMT systems. For the WMT 2015
German→English task, we applied discriminative
maximum expected BLEU training as described by
Wuebker et al. (2015). The expected BLEU objec-
tive function is optimized with the resilient back-
propagation algorithm (RPROP) (Riedmiller and
Braun, 1993). Similar to He and Deng (2012),
the objective function is computed on n-best lists
(here: n = 100) generated by the translation
decoder. To avoid over-fitting due to spurious

3TER is always evaluated in case insensitive form by Mul-
tEval.

Output Layer

2nd Hidden Layer

Projection Layer

Input Layer

p(w|h)

0 1 0
v

Figure 1: LM neural network

segmentations, we apply a leave-one-out heuris-
tic (Wuebker et al., 2010) during the n-best list
generation step. Using these n-best lists, we it-
eratively trained the phrasal and lexical feature
sets, denoted as (a) and (b) in Wuebker et al.
(2015). Each of the two feature types are con-
densed into a single model within the log-linear
model combination. After every five iterations we
ran MERT, and finally selected the iteration per-
forming best on newstest2013. In this work,
we used a subset of the training data to gener-
ate the n-best lists, namely the concatenation of
newstest2008 through newstest2010 and
the News-Commentary corpus.

4.5 Hierarchical Reordering Model

In Galley and Manning (2008), a hierarchical re-
ordering model for phrase-based machine trans-
lation was introduced. The model scores mono-
tone, swap, and discontinuous phrase orientations
in the manner of the one presented by Tillmann
(2004). The orientation classes are determined
based on phrase blocks, which can subsume mul-
tiple phrase pairs and are computed with an SR-
parser. The model has proven effective in previ-
ous evaluations. As the word order is more flexi-
ble in German compared to English, we expected
that an additional reordering model could improve
the translation quality.

4.6 Feed-Forward Neural Network Training

We used three feed-forward neural network
(FFNN) models with a similar structure as the net-
work models used by Devlin et al. (2014) and Le
et al. (2012). All networks were trained with dif-
ferent input features:

• Translation Model (TM), the 5 source words
around the alignment source word
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Table 2: Results for the German→English translation task. The results are the average of three optimiza-
tion runs. newstest2011 and newstest2012 were used as development data. The submission
system used all models and the best optimization run on the development data. BLEU and TER are given
in percentage.

newstest2011 newstest2012 newstest2013 newstest2014

BLEU TER BLEU TER BLEU TER BLEU TER

Baseline 23.0 58.9 23.8 58.2 26.6 54.6 25.9 54.2
+ max. exp. BLEU 23.1 58.6 24.0 57.8 26.8 54.4 26.2 53.9

+ updated LM 23.2 58.7 24.0 57.9 26.8 54.3 26.3 53.7
+ unpruned LM 23.2 59.0 24.1 58.1 26.9 54.6 26.6 54.0

+ 3 × FFNN 23.7 58.4 24.5 57.7 27.4 54.0 27.1 53.3
+ LSTM 23.8 58.4 24.7 57.4 27.5 53.8 27.1 53.2

Submission System 24.1 57.6 25.0 56.5 28.1 52.9 27.6 52.3

• Language Model (LM), the 7 last words on
the target side

• Joint Model (JM), the 5 source words around
the alignment source word and the 4 last
words on the target side

The TM and LM were trained with two hidden
layers (1000 and 500 nodes) while the JM con-
tained three hidden layers with 2000 nodes each.
The output layer was in all cases a softmax layer
with a short list of 10000. All remaining words
were clustered into 1000 classes and their class
probabilities were predicted. The neural networks
were applied to rerank 1000-best lists.

4.7 Recurrent Neural Network Language
Model

In addition to the feed-forward neural network
model we employed a recurrent neural network
model. The recurrency was handled with the long
short-term memory (LSTM) architecture (Hochre-
iter and Schmidhuber, 1997) and we used a class-
factored output layer for increased efficiency as
described in Sundermeyer et al. (2012). The topol-
ogy of the network is illustrated in Figure 1. All
neural network models were trained on the bilin-
gual data with 2000 word classes. The language
models were set up with 500 nodes in both the
projection layer and the hidden LSTM layer. The
recurrent network models were applied together
with the feed-forward models to rerank 1000-best
lists.

5 Setup

We trained the phrase-based system on all avail-
able bilingual training data. The preprocessed
bilingual corpus contained around 4 million sen-
tences. The preprocessed data contained a source
vocabulary size of 814K and a target vocabulary
size of 733K.

We used the target side of the bilingual data
along with the monolingual corpora for training
the language models. First, we started using our
old language models from our WMT 2014 setup as
baseline. Then we updated our system to the new
language models trained according to Section 4.2.
All results are reported as average of three opti-
mization runs.

5.1 Experimental Results

The results of the phrase-based system are summa-
rized in Table 2. It was tuned on the concatenation
of newstest2011 and newstest2012.

The phrase-based baseline system, which in-
cluded the hierarchical reordering model (Gal-
ley and Manning, 2008) and a word class lan-
guage model (wcLM) (Wuebker et al., 2013),
reached a performance of 25.9% BLEU on
newstest2014. Maximum expected BLEU

training selected on newstest2013 improved
the results on newstest2014 by 0.3% BLEU

absolute.
There was improvement of 0.1% in BLEU on

newstest2014 by replacing the old language
models from WMT 2014 with an updated gen-
eral 4-gram LM and word class LM. Further-
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more, adding an extra unpruned language model
trained on the concatenation of the monolingual
data improved the results on newstest2014 by
0.3% BLEU.

Adding three feed-forward neural network
models yielded an improvement of 0.5% BLEU on
newstest2013 and newstest2014. Adding
the LSTM language model improved the TER by
an additional 0.1% on newstest2014 and by
0.2% on newstest2013.

The submission system used all models and we
chose the best optimization run on the develop-
ment data. This optimization run by itself was
0.5% BLEU stronger on newstest2014 com-
pared to the average across three optimization runs
which included this run.

6 Conclusion

For the participation in the WMT 2015 shared
translation task, RWTH experimented with a
phrase-based translation system. For this ap-
proach, we applied a hierarchical phrase reorder-
ing model and a word class language model.
fast align and two versions of GIZA++ were
used for training word alignments, and a voting
setup was implemented, which improved the re-
sults in combination with neural network models.
We also employed discriminative maximum ex-
pected BLEU training. Additionally, we utilized
feed-forward and recurrent neural networks mod-
els for our phrase-based system, which improved
the performance. Furthermore, we adapted our
preprocessing pipeline based on our WMT 2014
setup. Filtering the corpus for non-ASCII letters
gave us lower vocabulary sizes for both source and
target side without loss in performance.
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Abstract

We present an experimental statistical
tree-to-tree machine translation system
based on the multi-bottom up tree trans-
ducer including rule extraction, tuning and
decoding. Thanks to input parse forests
and a “no pruning” strategy during decod-
ing, the obtained translations are compet-
itive. The drawbacks are a restricted cov-
erage of 70% on test data, in part due to
exact input parse tree matching, and a rel-
atively high runtime. Advantages include
easy redecoding with a different weight
vector, since the full translation forests can
be stored after the first decoding pass.

1 Introduction

In this contribution, we present an implementation
of a translation model that is based on `-XMBOT
(the multi bottom-up tree transducer of Arnold and
Dauchet (1982) and Lilin (1978)).1 Intuitively, an
MBOT is a synchronous tree sequence substitution
grammar (STSSG, Zhang et al. (2008a); Zhang et
al. (2008b); Sun et al. (2009)) that has discon-
tiguities only on the target side (Maletti, 2011).
From an algorithmic point of view, this makes the
MBOT more appealing than STSSG as demon-
strated by Maletti (2010). Formally, MBOT is
expressive enough to express all sensible trans-
lations (Maletti, 2012)2. Figure 2 displays sam-
ple rules of the MBOT variant, called `-XMBOT,

∗This work was supported by Deutsche Forschungsge-
meinschaft grant MA/4959/1–1.

1The system presented in this paper is variant of the sys-
tem presented at last year’s workshop (Quernheim and Cap,
2014), without morphological enhancements.

2A translation is sensible if it is of linear size increase
and can be computed by some (potentially copying) top-down
tree transducer.

that we use (in a graphical representation of the
trees and the alignment). Recently, a shallow ver-
sion of MBOT has been integrated into the popular
Moses toolkit (Braune et al., 2013). Our imple-
mentation is exact in the sense that it does abso-
lutely no pruning during decoding and thus pre-
serves all translation candidates, while having no
mechanism to handle unknown structures. (We
added dummy rules that leave unseen lexical ma-
terial untranslated.) The coverage is thus limited,
but still considerably high. Source-side and target-
side syntax restrict the search space so that decod-
ing stays tractable. Only the language model scor-
ing is implemented as a separate reranker. This
has several advantages: (1) We can use input parse
forests (Liu et al., 2009). (2) Not only is the out-
put optimal with regard to the theoretical model,
also the space of translation candidates can be ef-
ficiently stored as a weighted regular tree gram-
mar. The best translations can then be extracted
using the k-best algorithm by Huang and Chiang
(2005). Rule weights can be changed without the
need for explicit redecoding, the parameters of the
log-linear model can be changed, and even new
features can be added. These properties are espe-
cially helpful in tuning, where only the k-best al-
gorithm has to be re-run in each iteration. A model
in similar spirit has been described by Huang et al.
(2006); however, it used target syntax only (using
a top-down tree-to-string transducer backwards),
and was restricted to sentences of length at most
25. We do not make such restrictions.

The theoretical aspects of `-XMBOT and their
use in our translation model are presented in Sec-
tion 2. Based on this, we implemented a machine
translation system that we are going to make avail-
able to the public. Section 4 presents the most im-
portant components of our `-XMBOT implemen-
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tation, and Section 5 presents our submission to
the WMT15 shared translation task.

2 Theoretical Model

In this section, we present the theoretical genera-
tive model that is used in our approach to syntax-
based machine translation: the multi bottom-up
tree transducer (Maletti, 2011). It is a variant of
the linear and nondeleting extended multi bottom-
up tree transducers without states. We omit the
technical details and give graphical examples only
to illustrate how the device works, but refer to the
literature for the theoretical background. Roughly
speaking, a local multi bottom-up tree transducer
(`MBOT) has rules that replace one nonterminal
symbol N on the source side by a tree, and a se-
quence of nonterminal symbols on the target side
linked to N by one tree each. These trees again
have linked nonterminals, thus allowing further
rule applications.

Our `MBOT rules are obtained automatically
from data like that in Figure 1. Thus, we (word)
align the bilingual text and parse it in both the
source and the target language. In this manner we
obtain sentence pairs like the one shown in Fig-
ure 1. To these sentence pairs we apply the rule
extraction method of Maletti (2011). The rules
extracted from the sentence pair of Figure 1 are
shown in Figure 2. Note the discontiguous align-
ment of went to ist and gegangen, resulting in dis-
contiguous rules.

The application of those rules is illustrated in
Figure 3 (a pre-translation is a pair consisting of a
source tree and a sequence of target trees). While
it shows a synchronous derivation, our main use
case of `MBOT rules is forward application or in-
put restriction, that is the calculation of all target
trees that can be derived given a source tree. For
a given synchronous derivation d, the source tree
generated by d is s(d), and the target tree is t(d).
The yield of a tree is the string obtained by con-
catenating its leaves.

The theoretical justification for decomposing
the translation model into a source model and a
target model is a theorem that states that every
`MBOT can be replaced by a composition of a
linear nondeleting extended top-down tree trans-
ducer (XTOP) and a linear homomorphic MBOT
(Engelfriet et al., 2009). We implemented the first
step of the composition as an XTOP that gener-
ates possible derivation trees. States in this de-

vice are linked nonterminals in the `MBOT rules,
and it translates left-hand sides into rule identi-
fiers. The second step is implemented as a homo-
morphic multi bottom-up tree transducer. While
we construct the first step of the composition ex-
plicitly, we only use the second device to evaluate
single trees.

Apart from `MBOT application to input trees,
we can even apply `MBOT to parse forests and
even weighted regular tree grammars (RTGs)
(Fülöp and Vogler, 2009). RTGs offer an ef-
ficient representation of weighted forests, which
are sets of trees such that each individual tree is
equipped with a weight. This representation is
even more efficient than packed forests (Mi et al.,
2008) and moreover can represent an infinite num-
ber of weighted trees. The most important prop-
erty that we utilize is that the output tree language
is regular, so we can represent it by an RTG (cf.
preservation of regularity (Maletti, 2011)). In-
deed, every input tree can only be transformed into
finitely many output trees by our model, so for a
given finite input forest (which the output of the
parser is) the computed output forest will also be
finite and thus regular.

3 Translation Model

Given a source language sentence e and corre-
sponding weighted parse forest F (e), our trans-
lation model aims to find the best corresponding
target language translation ĝ;3 i.e.,

ĝ = arg maxg p(g|e) .
We estimate the probability p(g|e) through a log-
linear combination of component models with pa-
rameters λm scored on the derivations d such that
the source tree s(d) of d is in the parse forest of e
and the yield of the target tree t(d) reads g. With

D(e, g) = {d | s(d) ∈ F (e) and yield(t(d)) = g},
we thus have: 4

p(g|e) ∝
∑

d∈D(e,g)

11∏
m=1

hm(d)λm

Our model uses the following features hm(·) for a
derivation:

3Our main translation direction is English to German.
4While this is the clean theoretical formulation, we make

two approximations to D(e, g): (1) The parser we use returns
a pruned parse forest. (2) We only sum over derivations with
the same target sentence that actually appear in the k-best list.
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ADJD-HD-Pos/N
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VVPP-HD

gegangen

Figure 1: Aligned parsed sentences.
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Figure 2: Extracted rules.

(1) Translation weight normalized by source root
symbol

(2) Translation weight normalized by all root
symbols

(3) Lexical translation weight source→ target
(4) Lexical translation weight target→ source
(5) Target side language model: p(g)
(6) Input parse tree probability assigned to s(t) by

the parser of e

The rule weights required for (1) are relative
frequencies normalized over all extracted rules
with the same root symbol on the left-hand side. In
the same fashion the rule weights required for (2)
are relative frequencies normalized over all rules
with the same root symbols on both sides. The
lexical weights for (3) and (4) are obtained by mul-
tiplying the word translations w(gi|ej) [respec-
tively, w(ej |gi)] of lexically aligned words (gi, ej)
across (possibly discontiguous) target side se-
quences.5 Whenever a source word ej is aligned
to multiple target words, we average over the word

5The lexical alignments are different from the links used
to link nonterminals.

translations:6

h3(d)

=
∏

lexical item
e occurs in s(d)

average {w(g|e) | g aligned to e}

4 Implementation

Our implementation is very close to the theoretical
model and consists of several independent compo-
nents, most of which are implemented in Python.
The system does not have any dependencies other
than the need for parsers for the source and target
language, a word alignment tool and optionally an
implementation of some tuning algorithm.

Rule extraction From a parallel corpus of
which both halves have been parsed and word
aligned, multi bottom-up tree transducer rules are
extracted according to the procedure laid out in
(Maletti, 2011). In order to handle unknown
words, we add dummy identity translation rules
for lexical material that was not present in the
training data.

6If the word ej has no alignment to a target word, then
it is assumed to be aligned to a special NULL word and this
alignment is scored.
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Figure 3: Synchronous rule application.

Translation model building Given a set of
rules, translation weights (see above) are com-
puted for each unique rule. The translation model
is then converted into a source, a weight and a tar-
get model. The source model (an RTG represented
in an efficient binary format) is used for decod-
ing and maps input trees to trees over rule iden-
tifiers representing derivations. The weight model
and the target model can be used to reconstruct the
weight and the target realization of a given deriva-
tion.

Decoder For every input sentence, the decoder
transforms a forest of parse trees to a forest of
translation derivations by means of forward appli-
cation. These derivations are trees over the set of
rules (represented by rule identifiers). One of the
most useful aspects of our model is the fact that de-
coding is completely independent of the weights,
as no pruning is performed and all translation
candidates are preserved in the translation forest.
Thus, even after decoding, the weight model can
be changed, augmented by new features, etc.; even
the target model can be changed, e.g. to support
parse tree output instead of string output. In all
of our experiments, we used string output, but it is
conceivable to use other realizations. For instance,
a syntactic language model could be used for out-
put tree scoring. Also, recasing is extremely easy
when we have part-of-speech tags to base our de-
cision on (proper names are typically uppercase,
as are all nouns in German).

Another benefit of having a packed representa-
tion of all candidates is that we can easily check
whether the reference translation is included in the
candidate set (“force decoding”). The freedom to

allow arbitrary target models that rewrite deriva-
tions is related to current work on interpreted reg-
ular tree grammars (Koller and Kuhlmann, 2011),
where arbitrary algebras can be used to compute a
realization of the output tree.

k-best extractor From the translation derivation
RTGs, a k-best list of derivations can be extracted
(Huang and Chiang, 2005) very efficiently. This
is the only step that has to be repeated if the rule
weights or the parameters of the log-linear model
change. The derivations are then mapped to tar-
get language sentences (if several derivations re-
alize the same target sentence, their weights are
summed) and reranked according to a language
model (as was done in Huang et al. (2006)). This
is the only part of the pipeline where we deviate
from the theoretical log-linear model, and this is
where we might make search errors. In principle,
one could integrate the language model by inter-
section with the translation model (as the stateful
MBOT model is closed under intersection with fi-
nite automata), but this is (currently) not computa-
tionally feasible due to the size of models.

Tuning Minimum error rate training (Och,
2003) is implemented using Z-MERT7 (Zaidan,
2009). A set of source sentences is (forest-)parsed
and decoded; the translation forests are stored on
disk. Then, in each iteration of Z-MERT, it suf-
fices to extract k-best lists from the translation
forests according to the current weight vector.

7http://cs.jhu.edu/˜ozaidan/zmert/
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5 WMT15 Experimental setup

We used the training data that was made avail-
able for the WMT15 shared translation task on
English–German8. It consists of three parallel cor-
pora (1.8M sentences of European parliament pro-
ceedings, 216K sentences of newswire text, and
2.3M sentences of web text after cleanup) and
additional monolingual news data for language
model training.

The English half of the parallel data was parsed
using Egret9 which is a re-implementation of the
Berkeley parser (Petrov et al., 2006). For the Ger-
man parse, we used the BitPar parser (Schmid,
2004; Schmid, 2006). The BitPar German gram-
mar is highly detailed, which makes the syntac-
tic information contained in the parses extremely
useful. Part-of-speech tags and category label are
augmented by case, number and gender informa-
tion, as can be seen in the German parse tree in
Figure 1. We only kept the best parse for each
sentence during training.

We then trained a 5-gram language model
on monolingual data using KenLM10 (Heafield,
2011; Heafield et al., 2013). Word alignment was
achieved using the fast align11 word aligner
from cdec (Dyer et al., 2010). As usual, we dis-
carded sentence pairs where one sentence was sig-
nificantly longer than the other, as well as those
that were too long or too short.

For tuning, we chose the WMT12 test set (3,003
sentences of newswire text), available as part
of the development data for the WMT13 shared
translation task. Since our system had limited cov-
erage on this tuning set, we limited ourselves to
the first a subset of sentences we could translate.

When translating the test set, our models used
parse trees delivered by the Egret parser. After
translation, recasing was done by examining the
output syntax tree, using a simple heuristics look-
ing for nouns and sentence boundaries as well as
common abbreviations. Since coverage on the
test set was also limited, we used a simple word-
based fallback system whenever an untranslated
state was encountered in a derivation tree.

8http://www.statmt.org/wmt15/
translation-task.html

9https://sites.google.com/site/
zhangh1982/egret

10http://kheafield.com/code/kenlm/
11http://www.cdec-decoder.org/guide/

fast_align.html

BLEU BLEU-cased TER
15.3 14.4 .777

Table 1: BLEU and TER scores of our system.

6 Results

We report the overall translation quality, as listed
on http://matrix.statmt.org/, mea-
sured using BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006), in Table 1.

Results are significantly worse compared to last
year’s system which used morphological enhance-
ments such as compound splitting (Quernheim and
Cap, 2014) and a phrase-based fallback system for
sentences that the exact decoder could not han-
dle. However, we should note that where the fall-
back system was not needed, we achieved a BLEU
score of 16.7.

From a linguistic point of view, constructions
that involve long-distance reordering and agree-
ment are typically handled well. Figure 4 shows
some example sentences from the WMT13 test set
in comparison to a phrase-based baseline system.

On the other hand, our system frequently makes
mistakes in lexical choice, and often uses rules that
have been extracted from erroneous alignments.
Sometimes, these mistakes cannot be alleviated by
the language model due to data sparsity (no com-
peting good candidate translation).

7 Conclusion and further work

We presented our submission to the WMT15
shared translation task based on a novel, promising
“full syntax, no pruning” tree-to-tree approach to
statistical machine translation, inspired by Huang
et al. (2006). There are, however, still major draw-
backs and open problems associated with our ap-
proach. Firstly, the coverage can still be signifi-
cantly improved. In these experiments, our model
was able to translate only 70% of the test sen-
tences. To some extent, this number can be im-
proved by providing more training data. Also,
more rules can be extracted if we not only use the
best parse for rule extraction, but multiple parse
trees, or even switch to forest-based rule extrac-
tion (Mi and Huang, 2008). Finally, the size of the
input parse forest plays a role. For instance, if we
only supply the best parse to our model, transla-
tion will fail for approximately half of the input.

However, there are inherent coverage limits.
Since our model is extremely strict, it will never
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Verb missing:
(M) wir haben zwei spezialisten für ihre stellungnahme gebeten .
(“we have two specialists for their statement asked .”)
(P) wir haben zwei spezialisten für ihre stellungnahme .
(“we have two specialists for their statement .”)
(R) wir haben die meinung von zwei fachärzten eingeholt .
(S) We asked two specialists for their opinion.

Plural noun with singular verb:
(M) auch das technische personal hat mir sehr viel gebracht .
(“also the technical staff has me much brought .”)
(P) auch die technischen mitarbeiter hat mir sehr viel gebracht .
(“also the technical co-workers has me much brought .”)
(R) das technische personal hat mir ebenfalls viel gegeben .
(S) The technical staff has also brought me a lot.

No agreement between noun and adjective:
(M) in diesem sinne werden die maßnahmen zum teil das amerikanische demokratische system untergraben .
(“in this sense will the measures to part (the american democratic system)NEUT undermine .”)
(P) in diesem sinne werden die maßnahmen teilweise , die amerikanischen demokratische system untergraben .
(“in this sense will the measures partially , theFEM american democratic systemNEUT undermine .”)
(R) in diesem sinne untergraben diese maßnahmen teilweise das demokratische system der usa .
(S) In this sense, the measures will partially undermine the American democratic system.

Long-distance reordering:
(M) er zögert nicht , zu antworten , dass er einen antrag von einer unbekannten person nie akzeptieren würde .
(“he hesitates not , to reply , that he a request from an unknown person never accept would .”)
(P) er zögert nicht , sagen , dass er niemals akzeptieren würde einen antrag von einer unbekannten person .
(“he hesitates not , say , that he never accept would a request from an unknown person .”)
(R) gefragt antwortet er , dass er nie eine einladung von einem unbekannten annehmen würde .
(S) He does not hesitate to reply that he would never accept a request from an unknown person.

Garbled output:
(M) wie ich versprochen habe , ist meine tätigkeit teilweise reduziert worden .
(“as I promised have , has my activity partially reduced been .”)
(P) wie ich ihnen zugesichert hatte , bestätigte , die meine aktivitäten wurden teilweise reduziert .
(“as I you assured had , confirmed , the my activities were partially reduced .”)
(R) wie versprochen , habe ich meine aktivitäten teilweise zurückgefahren .
(S) As I promised, my activities have been partially reduced.

Figure 4: Examples from the test set where our `MBOT system performed better, linguistically speaking;
(M = `MBOT system; P = phrase-based baseline system; R = reference translation; S = source sentence).
Rough interlinear glosses are provided.

be able to translate sentences whose parse trees
contain structures it has never seen before, since
it has to match at least one input parse tree ex-
actly. While we implemented a simple solution to
handle unknown words, the issue with unknown
structures is not so easy to solve without breaking
the otherwise theoretically sound approach. Pos-
sibly, glue rules can help.

The second drawback is runtime. We were
able to translate about 20 sentences per hour on
one processor. Distributing the translation task on
different machines, we were able to translate the
WMT15 test set (3k sentences) in roughly three
days. Given that the trend goes towards paral-
lel programming, and considering the fact that
our decoder is written in the rather slow language
Python, we are confident that this is not a major
problem. We were able to run the whole pipeline
of training, tuning and evaluation on the WMT15

shared task data in less than one week. We are cur-
rently investigating whether A* k-best algorithms
(Pauls and Klein, 2009; Pauls et al., 2010) can help
to guide the translation process while maintaining
optimality.

Thirdly, currently the language model is not in-
tegrated, but implemented as a separate rerank-
ing component. We are aware that an integrated
language model might improve translation quality
(see e.g. Chiang (2007) where 3–4 BLEU points
are gained by LM integration). Some research on
this topic already exists, e.g. (Rush and Collins,
2011) who use dual decomposition, and (Aziz et
al., 2013) who replace intersection with an upper
bound which is easier to compute. It might also
be feasible to intersect the language model (repre-
sented by a regular string grammar) lazily.
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Abstract

This paper provides an overview of the
Sheffield University submission to the
WMT15 Translation Task for the Finnish-
English language pair. The submitted
translations were created from a system
built using the CDEC decoder. Finnish is
a morphologically rich language with ele-
ments such as nouns and verbs carrying a
large number of inflectional types. Con-
sequently, our improvements are based
on morphology and include preprocessing
steps to handle of morphological inflec-
tions inherent in the language, and which
otherwise result in lexical sparsity and loss
of information.

1 Introduction

This paper outlines The University of Sheffield’s
submission for the shared translation task, which
is part of the 2015 Workshop on Machine Trans-
lation. We participated in the Finnish-English lan-
guage pair task which used news-test-2015 data.
23 systems from 12 organisations took part in this
task.

Finnish is an inflectional language containing a
productive morphology. The morphological phe-
nomena can lead to a great many inflectional
forms. This complex productive morphology can
be a barrier to machine translation, with many
forms unseen at training. As such, our work was
focussed on handling the morphological variation
in Finnish with the aim of extracting and transfer-
ring as much information as possible - in terms of
nominal forms and declensions.

For this paper we describe our baseline system
in Section 3, followed by our improvements in
Section 4 and potential gains in Section 5. We re-
port our results in Section 6.

2 Related work

In terms of previous work in the translation of
morphologically rich languages in MT, Finnish-
English has previously featured as a language pair,
in the 2005 shared task (Koehn and Monz, 2005).

Chahuneau et al. (2013) experimented specifi-
cally with models into morphologically rich lan-
guages, we opted to do from Finnish, as a mor-
phologically rich language, into English. Their ap-
proach is, however, more systematic, deploying a
morphological grammar.

Another approach, used by Ammar et al. (2013)
is that of synthetic translation options, supple-
menting the phrase tables to compensate for the
sparseness in translating from/to highly inflected
languages.

Luong et al. (2010) also investigate morpheme-
level extraction, but integrate this into the decod-
ing process itself, instead of the pre-processing
step we have. They also incorporate unsuper-
vised morphological analysis and do not rely
on language-specific tools, whereas we used a
Finnish parser for our morphological analysis

3 Baseline system

For our decoder we used CDEC (Dyer et al.,
2010), which essentially is used for rule extraction
and decoding. CDEC uses synchronous context-
free grammars (SCFGs) as the model for natural
language syntax.

The initial tokenization and lower casing were
performed using the ‘tokenize-anything’ and ‘low-
ercase.pl’ scripts respectively. They are both in-
cluded as part of the CDEC suite of tools (simi-
lar to those provided with Moses). Fast-align was
used to learn the word alignments.

To train the translation model we used the Eu-
roparl data set provided. We additionally investi-
gated some of the newly available DCEP corpus
(Hajlaoui et al., 2014). This is a resource contain-

172



ing multilingual output from the European Parlia-
ment beyond the plenary sessions of Europarl that
has recently been made available for use. It con-
tains the parliamentary reports (from the parlia-
mentary committees of the European Parliament),
oral and written questions, and press releases, and
alignments can be derived for any language pairs
in the language matrix. However, through exper-
imentation we discovered issues with misalign-
ments and determined better alignments when iso-
lating the parliamentary reports from the questions
and deriving them separately. We subsequently
also isolated the press releases and aligned those
as well. Although taken as a whole, the system
seemed to actually cope with poor alignments - we
subsequently experimented with the entire DCEP
corpus (Hajlaoui et al., 2014) and achieved com-
parable results.

The grammar extraction is made up of SCFGs,
which generate strings in two languages. The pro-
cess ultimately builds an SCFG translation gram-
mar (typically from a word-aligned parallel cor-
pus) and in this case is a HIERO grammar . For the
purposes of increased speed, per-sentence gram-
mars (PSGs) were used in the translation. PSGs
only contain rules that match a single sentence (fil-
tered from larger grammars) and, despite the fact
that rules are created for each individual sentence
to be translated, they are quickly loadable.

For our Language Model we examined two dif-
ferent approaches. The basic approach purely used
the given Europarl dataset, whilst the enhanced ap-
proach incorporated a partial selection of mono-
lingual Newscrawl data (provided) taken from the
Gigaword corpus in addition to the Europarl data.
During experimentation we found that adding the
extra Newscrawl data to the language model sig-
nificantly improved the BLEU score (+0.5). How-
ever, due to time constraints we were unable to test
this improvement alongside our stemming experi-
ments (Section 4) so did not obtain a compound
score (for stemming coupled with the additional
monolingual data), which we believe could have
been significantly better.

The final output translation initially only had
the first letter in every sentence changed to upper-
case. The translation was then converted into the
SGML format using the ‘wrap-xml.perl’ script.
Unfortunately, just simply converting the initial
letter in each of the sentences led to a compara-
tively poor BLEU-cased score, which we decided

had to be improved (see True-casing in section 4)

4 Improvements

4.1 Morphological stemming

Our main improvement to the system was based on
the idea that there is a need to deal with the highly
inflectional nature of Finnish, as the source lan-
guage. The fact that Finnish is a morphologically
rich language is problematic for machine transla-
tion systems. For example, it has 15 grammati-
cal cases which results in a great many declen-
sions of the nouns. This in turn leads to a great
deal of lexical sparsity when estimating parame-
ters for the translation model. Ultimately, there is
a high incidence of out of vocabulary words, and
valuable linguistic information is lost. While in-
flected forms may have occurred at training time,
this means that the simple base form will not nec-
essarily be resolved at decoding time. Even if base
forms occurred in training, the inflectional form at
decoding time will generally fail to match. The
agglutinative nature of Finnish increases the prob-
lem further, as many nouns are compounded.

We therefore parsed our data using the Turku
Finnish Dependency Parser (Haverinen et al.,
2014) which is now available1. This parser works
efficiently and we were able to process raw input
text. The resulting parsed files allowed us to ex-
tract the base form of each inflected noun in ad-
dition to the parts of speech, dependencies, and
grammatical case information. Of this we used the
base form and grammatical case information to re-
place each inflected noun occurring in the test data
with its base form, in addition to a place marker
for cases deemed relevant. By this we mean that
the nominative form, for example, does not result
in inflectional variation, nor does it incorporate
additional grammatical information, which would
be of relevance in English. Often the inflections
in Finnish become prepositions in English, so our
hope was to retain this additional grammatical in-
formation and rely on the case placemarker being
aligned to the relevant preposition in English. We
decided not to include declensions where the de-
clined form could be ambiguous, and left those
unmodified.

We subsequently trained the alignments with
our marked up test data. We used the base form
and grammatical case information for each noun

1http://turkunlp.github.io/Finnish-dep-parser/
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occurring in the training and test data and ex-
tracted lists of nouns where appropriate.

4.2 Issues encountered with stemming
Of course there is also inflectional variation within
some cases, so a strict one-to-one mapping will not
necessarily hold true. We did not substitute the
base form for plural inflections, which did how-
ever result in losses, and which we would attempt
to handle better in any future task. More prob-
lematic is the fact that a noun can decline in a
similar manner for different cases - for example,
the word ‘kirjan’ can be the base form of ‘kirja’,
which means ‘book’, inflected in the genitive and
accusative case - both have the same inflectional
form. We dealt with this by only substituting the
forms where there was no ambiguity. We de-
termined that this was why we were not seeing
improvements that were as significant as we had
hoped. In addition, our attempts to rectify the is-
sue were not sufficiently tuned.

Interestingly, we got good results when we only
stemmed the nouns in the training set that also ap-
peared in the dev and test sets (not submitted).
This suggests that when we stemmed as many
nouns as we could, it appeared to do as much harm
as good and effectively cancelled itself out.

4.3 Filtering
We attempted an experiment with filtering, based
on research proving that the translation direction
of the training data makes a significant differ-
ence for both the translation model and the lan-
guage model (Kurokawa et al., 2009; Lembersky
et al., 2013; Lembersky et al., 2012). This re-
search indicates a qualitative improvement with
much less data. It would seem logical that train-
ing on translated data already incorporates some of
the crosslingual transfer which is performed by a
human translator, and therefore is valuable to cap-
ture.

To this end we constructed a directional corpus,
filtering the whole of the Europarl for excerpts
which were originally in the Finnish language. We
did this by tracking the ‘language’ attribute in the
markup to filter out any contributions which had
originally been in Finnish. Once we had filtered
these out we matched them with corresponding ex-
cerpts in the target language, in our case English.
One major issue here was that due to the fact that
there are only 26 Finnish members of the Euro-
pean Parliament out of a total number of 750, the

amount of data that is in Finnish is relatively small.
Our resulting filtered data corpus contained just
81,444 lines or sentences. This seemed to prove
insufficient to influence the overall score. Unfor-
tunately the DCEP data (Hajlaoui et al., 2014) has
no way of determining what the original language
was, and thus we had no additional sources for our
filtered data.

4.4 True-casing (for BLEU-cased scores)
Due to an initial low BLEU-cased score it was
decided that the true-casing had to be enhanced
beyond simply capitalising the first letter of each
sentence. In addition, time constraints and limited
experience with available casing tools led to the
creation of a relatively short script in order to im-
prove the casing for the translated sentences. Two
simple methods were implemented:

• Firstly, capitalisation statistics (ignoring first
words) were taken from the unmodified Eu-
roparl corpus and applied to each individual
word in the automated translation. For ex-
ample, there would be instances in the corpus
where ‘The’ appears with a capital ‘T’ as part
of a name, and if this was applied directly
then all occurrences of ‘the’ in the output
translation would then be capitalised. Clearly
this would not be acceptable and so a ratio of
capitalised ‘The’ versus lower-case ‘the’ was
recorded and if it was over a set limit then all
occurrences of ‘the’ would be capitalised or
else none would be. By itself this still has a
number of limitations, but it was surprisingly
accurate in this case, improving our original
BLEU-cased score by nearly +2.0.

• Secondly, each sentence from our automated
translation was then cross referenced with its
respective sentence in the unmodified source
text. Then, for each capitalised word in the
source that also appeared in the output trans-
lation the capitalisation was carried over and
applied. This was particularly effective for
items such as place names and other named
entities. This second option further enhanced
the BLEU-cased score and bought the dis-
parity levels (between cased and non-cased)
largely in line with the other submissions
(e.g. roughly -1.0).

It should be noted that this approach has its lim-
itations and in the future it is anticipated that ro-
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bust, tried and tested tools such as the Moses True-
caser/Recaser will be used to undertake any re-
quired casing tasks.

5 Alternative enhancements

5.1 Compound splitting

We also attempted to address the issue of com-
pound splitting, given that Finnish is agglutinative
in nature and so has many compound nouns which
compact the grammatical inflections. The parsed
files usefully gave us the compound forms of our
nouns, however, due to lack of time we could not
refine our implementation sufficiently.

5.2 Improved Language Model

The primary experimentation of using an en-
hanced language model that incorporated some
of the Newscrawl data showed promising results.
Ideally it would have been useful to spend time ex-
perimenting with various language models in or-
der to gauge which aspects either positively or ad-
versely affected the output translation. Clearly, for
this task the Newscrawl data was largely in do-
main, and so the full set could have been an ap-
propriate addition to be used in order to further
enhance the language model and ultimately pro-
duce a more fluid output.

6 Results

Our primary results are displayed in Table 1.

System BLEU Cased TER
Europarl only 12.9 12.3 0.791
Europarl+Newscrawl 13.4 12.5 0.792
Europarl+Stemming 13.4 12.4 0.792

Table 1: Showing the respective BLEU, BLEU-
Cased, and Translation Error Rate scores of the
three different systems.

Essentially the improvements over the baseline
(Europarl only: 12.9) are fairly significant in both
cases. This does appear to suggest that extending
the language model and applying stemming (sep-
arately in this case) are both pertinent enhance-
ments that can be used to improve the overall out-
put translation. However, the fact that the system
with fairly extensive stemming is comparable to a
standard Europarl system with a slightly enhanced
language model highlights a couple of points:

• Further extending the language model
should carry significant gains and produce a
smoother final translation.

• Stemming has potential, but our methods
were a little too simplistic and some of the is-
sues we encountered appeared to cause dam-
age. This suggests using more robust and
complex methods to handle the problems and
ambiguity could produce much stronger im-
provements.

• There is potential to combine an extended
language model and stemming information in
the same system, which again should produce
significant improvements.

7 Conclusions

In this paper we presented our submission, which
was produced from a system built using the CDEC
decoder. Our improvements included prepro-
cessing to deal with morphological variation in
Finnish, as the source language, and an attempt
at directional filtering. It appeared that as this was
our first submission, we were starting from scratch
and had significant time consuming groundwork
preparation to perform before any enhancements
could me made. Ultimately, a number of im-
provements were made, but the results were not as
strong as initially hoped, and we found that am-
biguity and other issues encountered during the
stemming introduced a degree of damage, which
in turn seemed to put a glass ceiling on our BLEU
scores. As such, these problems need to be dealt
with in a more concrete and elegant manner.

Finally, using a lightly extended (in domain)
language model produced a positive result and so
there is scope to explore this avenue further. It is
anticipated that experimenting with, and manag-
ing the language model could well produce signif-
icant gains.
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Abstract

This paper describes baseline systems for
Finnish-English and English-Finnish ma-
chine translation using standard phrase-
based and factored models including mor-
phological features. We experiment with
compound splitting and morphological seg-
mentation and study the effect of adding
noisy out-of-domain data to the parallel
and the monolingual training data. Our re-
sults stress the importance of training data
and demonstrate the effectiveness of mor-
phological pre-processing of Finnish.

1 Introduction

The basic goal of our submissions is to establish
some straightforward baselines for the translation
between Finnish and English using standard tech-
nology such as phrase-based and factored statisti-
cal machine translation, in preparation for a more
focused future effort in combination with the state-
of-the-art techniques in SMT for morphologically
complex languages (see e.g. (Fraser et al., 2012)).
The translation between Finnish and English (in
both directions) is a new task in this year’s work-
shop adding a new exciting challenge to the es-
tablished setup. The main difficulty in this task is
to manage the rich morphology of Finnish which
has several implications on training and expected
results with standard SMT models (see the illus-
tration in Figure 1). Moreover, the monolingual
and parallel training data is substantially smaller
which makes the task even tougher compared with
other languages pairs in the competition. In our
contribution, we focus on Finnish-English empha-
sizing the need of additional training data and the
necessity of morphological pre-processing. In par-
ticular, we explore the use of factored models with
multiple translation paths and the use of morpho-
logical segmentation based on proper morpholog-
ical annotation and simple rule-based heuristics.

Syksyllä taidemuseossa avataan uudet näyttelyt
Autumn+ADE art museum+INE open+PASS new+PL exhibi-
tion+PL
In autumn in art museum will be opened new exhibitions
New exhibitions will be opened in the art museum in autumn

Figure 1: A sentence illustrating the inflective and
compounding nature of Finnish in contrast to En-
glish. (ADE, INE: adessive, inessive cases, PASS:
passive, PL: plural)

We also add noisy out-of-domain data for better
coverage and show the impact of that kind of data
on translation performance. We also add a system
for English-Finnish but without special treatment
of Finnish morphology. In this translation direc-
tion we only consider the increase of training data
which results in significant improvements without
any language-specific optimization.

In the following, we will first present our sys-
tems and the results achieved with our models be-
fore discussing the translation produced in more
detail. The latter analyses pinpoint issues and prob-
lems that provide valuable insights for future devel-
opment.

2 Basic Setup and Data Sets

All our translation systems are based on Moses
(Koehn et al., 2007) and standard components
for training and tuning the models. We apply
KenLM for language modeling (Heafield et al.,
2013), fast align for word alignment (Dyer et al.,
2013) and MERT for parameter tuning (Och, 2003).
All our models use lowercased training data and the
results that we report refer to lowercased output of
our models. All language models are of order five
and use the standard modified Kneser-Ney smooth-
ing implemented in KenLM. All phrase tables are
pruned based on significance testing (Johnson et al.,
2007) and reducing translation options to at most
30 per phrase type. The maximum phrase length is
seven.
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For processing Finnish, we use the Finnish de-
pendency parser pipeline1 developed at the Univer-
sity of Turku (Haverinen et al., 2014). This pipeline
integrates all pre-processing steps that are neces-
sary for data-driven dependency parsing including
tokenization, morphological analyses and part-of-
speech tagging, and produces dependency analyses
in a minor variant of the Stanford Dependencies
scheme (de Marneffe et al., 2014). Especially use-
ful for our purposes is the morphological compo-
nent which is based on OMorfi - an open-source
finite-state toolkit with a large-coverage morphol-
ogy for modern Finnish (Lindén et al., 2009). The
parser has recently been evaluated to have LAS
(labeled attachment score) of 80.1% and morpho-
logical tagging accuracy of 93.4% (Pyysalo et al.,
2015).

The data sets we apply are on the one hand the
official data sets provided by WMT and, on the
other hand, additional parallel corpora from OPUS
and large monolingual data sets for Finnish coming
from various sources. OPUS includes a variety of
parallel corpora coming from different domains and
we include all sources that involve Finnish and En-
glish (Tiedemann, 2012). The most important cor-
pora in terms of size are the collection of translated
movie subtitles (OpenSubtitles) and EU publica-
tions (DGT, EUbookshop, EMEA). Some smaller
corpora provide additional parallel data with vary-
ing quality. Table 1 lists some basic statistics of
Finnish-English corpora included in OPUS. The
final two rows in the table compare the overall size
after cleaning the corpora with the pre-processing
scripts provided by Moses with the training data
provided by WMT for Finnish-English. We can
see that OPUS adds a substantial amount of par-
allel training data, more than ten times as many
sentence pairs with over six times more tokens. A
clear drawback of the data sets in OPUS is that they
come from distant domains such as movie subti-
tles and that their quality is not always very high.
User contributed subtitle translations, for example,
include many spelling errors and the alignment is
also quite noisy. EUbookshop and EMEA docu-
ments are converted from PDF leading to various
problems as well (Tiedemann, 2014; Skadiņš et
al., 2014). Software localization data (GNOME,
KDE4) contains variables and code snippets which
are not appropriate for the WMT test domain. One

1http://turkunlp.github.io/
Finnish-dep-parser

of the main questions we wanted to answer with our
experiments is whether this kind of data is useful
at all despite the noise it adds.

corpus sentences en-words fi-words
Books 3.6K 69.7K 54.5K
DGT 3.1M 61.8M 46.9M
ECB 157.6K 4.5M 3.4M
EMEA 1.1M 14.2M 11.9M
EUbookshop 2.0M 51.4M 37.6M
JRC-Acquis 19.7k 388.7k 273.6k
GNOME 62.2K 313.3K 254.6K
KDE4 108.1K 596.0K 578.6K
OpenSubtitles 110.1K 856.3K 604.7K
OpenSubtitles2012 12.9M 111.5M 74.4M
OpenSubtitles2013 9.8M 87.8M 55.7M
Tatoeba 12.2K 103.2K 77.0K
WMT-clean 2.1M 52.4M 37.6M
OPUS-clean 29.4M 328.1M 227.6M

Table 1: Finnish-English data in OPUS. WMT-
clean and OPUS-clean refer to the entire parallel
training data set from WMT and OPUS, respec-
tively, after pre-processing with the standard Moses
cleanup script.

Table 1 also illustrates the morphological dif-
ferences between English and Finnish. Based on
the token counts we can clearly see that word for-
mation is quite different in both languages which
has significant implications for word alignment and
translation. Due to the rich morphology in Finnish
we expect that adding more training data is even
more crucial than for morphologically less com-
plex languages. To verify this assumption we also
include additional monolingual data for language
modeling for the English-Finnish translation direc-
tion taken from the Finnish Internet Parsebank,2 a
3.7B token corpus gathered from an Internet crawl
and parsed with the abovementioned dependency
parser pipeline (Kanerva et al., 2014). For English
we include the fifth edition of the LDC Giga-Word
corpus.

3 Factored Models for
Finnish-to-English

Our baseline models apply a standard pipeline to
extract phrase-based translation models from raw
lowercased text. We use constrained settings with
WMT data only and unconstrained settings with
additional OPUS data. Our primary systems ap-
ply factored models that include three competing
translation paths:

• Surface form translation
2http://bionlp.utu.fi/

finnish-internet-parsebank.html

178



• Translation of lemmatized input
• Translation of lemmatized and morphosyntac-

tically tagged input

The unconstrained system replaces the first trans-
lation path with a phrase table extracted from the
entire corpus including all OPUS data. However,
we did not parse the OPUS data and take the other
two models from WMT data only. We tuned our
systems with half of the provided development data
(using every second sentence) and tested our mod-
els on the other half of the development data. Ta-
ble 2 lists various models that we tested during
development and the various components are ex-
plained in more detail in the sections below.

system BLEU
constrained
baseline 16.2
factored 17.8
factored+pseudo 18.2
unconstrained
baseline+WordNetTrans 16.5
baseline+WordNetTrans&Syn 16.6
baseline+opus 19.0
baseline+opus+WordNetTrans 19.1
baseline+opus+WordNetTrans&Syn 19.1
factored+opus 19.2
factored+opus+pseudo 19.9
factored+opus+pseudo+word2vec 20.0
factored+opus+pseudo+WordNetSyn 20.1

Table 2: The performance of various Finnish-
English translation models on development data.
Pseudo indicates the use of inflection pseudo-
tokens, word2vec refers to the use of word2vec
synonyms and WordNetSyn refers to the inclusion
of WordNet synonyms for out-of-vocabulary words.
WordNetTrans refers to translations added from
the bilingual Finnish-English WordNet for OOV
words.

3.1 Inflection Pseudo-Tokens
Due to the highly inflective nature of the language,
a Finnish morphological marker often corresponds
to a separate English word. This is especially
prominent for many Finnish cases which typically
correspond to English prepositions. For example,
the Finnish word talossakin has the English trans-
lation also in a/the house where the inessive case
(ssa marker) corresponds to the English preposi-
tion in and the clitic kin corresponds to the English
adverb also. To account for this phenomenon, we
pre-process the Finnish data by inserting dummy
tokens for certain morphological markers, allow-
ing them to be aligned with the English words in

system training phase. These dummy tokens are
always inserted in front of the text span dominated
by the word from which the token was generated in
the dependency parse. Thus, for instance, the case
marker of the head noun of a nominal phrase pro-
duces a dummy token in front of this phrase, where
the corresponding English preposition would be
expected. The pseudo-tokens are generated rather
conservatively in these three situations:

• a case marker other than nominative, partitive,
and genitive on a head of a nominal phrase
(nommod and nommod-own dependency rela-
tions in the SD scheme version produced by
the parser)
• a possessive marker (eng. my, our, etc.) in any

context
• the clitic kin/kaan (eng. also) in any context

To shed some further light on the effectiveness of
the pseudo-token generation, we carry out a fo-
cused manual evaluation on the test dataset. In
randomly selected 100 sentences, we marked every
nominal phrase head inflected in other than nomina-
tive, partitive, and genitive case and checked in the
system output whether this exact phrase head was
translated correctly (as judged by the annotator, not
the reference translation), regardless of the correct-
ness of the remainder of the sentence. We compare
the final system with and without the dummy token
generation component, in a randomized fashion
such that it was not possible to distinguish during
the annotation which of the two systems the trans-
lation originated from. In total, the 100 sentences
contained 148 inflected phrase heads of interest.
Of these, the system with pseudo-token generation
translated correctly 100/148 (68%) and without
pseudo-token generation 89/148 (60%). This dif-
ference is, however, not statistically significant at
p=0.12 (two-tail McNemar’s test). In addition to
this manual evaluation, we have also observed a
small advantage for the pseudo-token generation
in terms of development set BLEU score. Some-
what surprisingly, we find that only 85/148 (57%)
of these inflected heads were translated using a
prepositional phrase in the reference translation,
showing that the correspondence of Finnish cases
with English prepositions is not as strong as might
intuitively seem. Of those inflected heads which
were translated as a prepositional phrase in the ref-
erence, 57/85 (67%) were correct for the system
with pseudo-tokens and 49/85 (58%) for the sys-
tem without, whereas for those that have not been
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translated as a prepositional phrase in the refer-
ence, the proportions are 43/63 (68%) and 40/63
(63%). Due to the small sample size, it is difficult to
draw solid conclusions but the numbers at least hint
at the intuitive expectation that the pseudo-token
generation would give better results especially in
cases where the translation corresponds to a prepo-
sitional phrase. The overall quality of translation
of inflected nominal phrase heads however leaves
much room for improvement.

3.2 Compounds

Finnish is a compounding language, once again
leading to a situation whereby a single Finnish
word corresponds to multiple English words. Fur-
ther, compounding in Finnish is highly produc-
tive and reliable translations cannot be learned
but for the most common compounds. In most
cases, the compounds are correctly analyzed by
the Finnish parsing pipeline, including the bound-
aries of the lemmas which form the compound. To
assist the alignment as well as the translation pro-
cess itself, we split the compound lemmas into the
constituent parts as a pre-processing step in the
Finnish-English direction. The following exam-
ple illustrates this process (“EU support for enter-
prises”) taken from the development data:

compound: EU-yritystukien
segmented lemma: EU|yritys|tuki

PoS: N
morphology: NUM Pl|CASE Gen

factored segments: EU|EU| |
yritys|yritys| |
tukien|tuki|N|NUM Pl+CASE Gen

As shown above, PoS and morphology are only
attached to the final component of the compound
and string matching heuristics are used to split sur-
face forms as well based on the segmentation of
the lemma.

3.3 Synonyms and Lexical Resources

One of the major problems for statistical machine
translation with limited resources is the treatment
of out-of-vocabulary (OOV) words. This problem
is even more severe with morphologically rich lan-
guages such as Finnish. Table 3 shows the OOV ra-
tio in the development data that we used for testing
our models. We can see that the factored models
significantly reduce the amount of unknown word
type and tokens.

In our final setup we tried to address the problem
of remaining OOVs by expanding the input with

OOVs types tokens
constrained
baseline 2,451 (28.7%) 2,869 (14.5%)
factored 847 (14.5%) 958 (6.7%)
unconstrained
baseline 1,212 (14.2%) 1,414 (7.1%)
factored 386 (6.6%) 442 (3.1%)

Table 3: OOV ratios in the development test data
(half of the WMT 2015 development data).

synonyms from external resources. We looked at
two possible sources: distributional models trained
on large monolingual data sets and manually cre-
ated lexico-semantic databases. For the former, we
trained distributed continuous-vector space mod-
els using the popular word2vec toolkit3 (Mikolov
et al., 2013) on the 3.7B tokens of the Finnish In-
ternet Parsebank data, using the default settings
and the skip-gram model. We tested the use of
the ten most similar words for each unknown word
coming from our word2vec model (according to
cosine similarity in their vector representations) to
replace OOV words in the input. The second al-
ternative uses the Finnish WordNet4 (Niemi et al.,
2012) to replace OOV words with synonyms that
are provided by the database. We apply the HFST-
based thesaurus for efficient WordNet lookup that
enables the lookup and generation of inflected syn-
onyms.5 Table 4 shows the statistics of unknown
words that can be expanded in the development test
data. The table shows that word2vec expansion has
a better coverage than WordNet but both resources
propose a large number of synonyms that are not in-
cluded the phrase table and, hence, cannot be used
to improve the translations. However, both strate-
gies produce a large number of spurious (context-
independent) synonyms and discarding them due
to the lack of phrase table coverage is not neces-
sarily a bad thing. The results of applying our two
OOV-handling strategies on the same data set are
shown in Table 2.

FinnWordNet also includes a bilingual thesaurus
based on the linked Finnish WordNet (Niemi and
Lindén, 2012). The HFST tools provide a con-
venient interface for querying this resource with
inflected word forms. We applied this external re-
sources as yet another module for handling OOV
words in the input. For this we used the XML

3http://code.google.com/p/word2vec/
4http://www.ling.helsinki.fi/en/lt/

research/finnwordnet/
5http://www.ling.helsinki.fi/en/lt/

research/finnwordnet/download.shtml#hfst
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OOVs synonyms
constrained (factored)
word2vec 626 6,260
- covered by phrase table 371 968
WordNetSyn 318 17,742
- covered by phrase table 262 1,380
unconstrained (factored)
word2vec 210 2,100
- covered by phrase table 140 480
WordNetSyn 67 2,883
- covered by phrase table 66 361

Table 4: Synonyms extracted from WordNet and
word2vec word embeddings for OOVs in the devel-
opment test data.

markup functionality of Moses to provide transla-
tions along with the source language input. The
lookup usually leads to several alternative trans-
lations including repeated entries (see Table 5 for
some statistics). We use relative frequencies and an
arbitrary chosen weight factor of 0.1 to determine
the probability of the WordNet translation option
given to the Moses decoder. The bilingual strategy
can also be combined with the synonym approach
described above. Here, we prefer translations from
the bilingual WordNet and add synonyms if no
translation can be found. The results on the devel-
opment test set are shown in Table 2 as well. Note
that we could not use XML markup in connection
with factored input. There is, to our knowledge,
no obvious way to combine non-factored XML
markup with factored input.

WordNetTrans OOVs translations
constrained (factored) 336 3,622
unconstrained (factored) 78 532

Table 5: Translations extracted for OOVs in the
development test data from the bilingual Finnish-
English WordNet.

3.4 Untranslated Words
To evaluate the overall impact of our OOV ap-
proach, we inspect untranslated Finnish words in
200 random sentences in the Finnish-English test
set output and assign these words into several cate-
gories. The corresponding counts are presented in
Table 6. Inflected forms account for the vast major-
ity of untranslated output, and of these, inflected
proper names constitute more than half. Given
that the inflection rules in Finnish are highly pro-
ductive, a focused effort especially on resolving
inflected proper names should be able to account
for the majority of the remaining untranslated out-

put. However, since only 52 of the 200 inspected
sentences contained untranslated output, no major
gains in translation quality can be expected.

category count
Inflected proper name 35
Inflected non-compound form 13
Inflected compound 9
Other 5
Typo 3
Base form 3
Proper name base form 1

Table 6: Categorization of untranslated Finnish
words in the Finnish-English system output.

3.5 Final Results
Our results on the 2015 newstest set are shown in
Table 7. Our primary system is the unconstrained
factored model with pseudo-tokens and WordNet
synonyms. Contrastive runs include the phrase-
based baselines and constrained settings in factored
and non-factored variants. In the human evaluation,
the primary system ranked first shared with five
other systems, but this cluster of systems was out-
performed by one of the online baselines.

system BLEU TER
unconstrained
baseline 18.9 0.737
primary 19.3 0.728
constrained
baseline 15.5 0.780
factored 17.9 0.749

Table 7: Our final systems tested with the newstest
2015 data set (lowercased BLEU).

4 English-to-Finnish with OPUS

The main purpose of running the other translation
direction was to test the impact of additional train-
ing data on translation performance. Once again,
we simply used the entire database of English-
Finnish parallel data sets provided by WMT and
OPUS and tested a straightforward phrase-based
model without any special treatment and language-
specific tools. Again, we relied on lowercased mod-
els and used standard procedures to train and tune
model parameters. The results are shown in Ta-
ble 8. In the human evaluation, the primary system
ranked first, but was outperformed by both online
baselines.
Similar to Finnish-English we can see a strong ef-
fect of additional training data. This is not surpris-
ing but re-assuring that even noisy data from distant
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system BLEUdev BLEU TER
constrained 12.7 10.7 0.842

unconstrained 15.7 14.8 0.796

Table 8: English-Finnish translation with (uncon-
strained) or without (constrained) OPUS (low-
ercased BLEU and TER on newstest 2015;
BLEUdev on development test data).

Feature Reference System Difference
Case Nom 3701/10289 4739/9996 +11.44pp
Person Sg3 1620/3947 1991/3867 +10.44pp
Mood Ind 2216/3947 2461/3867 +7.50pp
Tense Prs 1259/3947 1470/3867 +6.12pp
Voice Act 3388/3947 3414/3867 +2.45pp
Punct 2874/19772 2283/20004 +2.38pp
Infinitive 1 274/3947 352/3867 +2.16pp
Unknown 1239/19772 1611/20004 +1.79pp
Tense Prt 957/3947 991/3867 +1.38pp
Pers pron 344/10289 453/9996 +1.19pp
Case Gen 2637/10289 2050/9996 -5.12pp
Pcp Prs 227/3947 87/3867 -3.50pp
Cmp Pos 1917/10289 1546/9996 -3.17pp
Pcp Prf 647/3947 515/3867 -3.07pp
Person Pl3 403/3947 277/3867 -3.05pp
Voice Pass 436/3947 317/3867 -2.85pp
Case Ela 517/10289 219/9996 -2.83pp
Uppercase 3126/19772 2624/20004 -2.69pp
Prop noun 1675/10289 1399/9996 -2.28pp
Case Ine 771/10289 530/9996 -2.19pp

Table 9: The ten most over- and under-represented
morphological features in the system output as com-
pared to the reference translation. The relative fre-
quency of each feature is calculated with respect
to the token count of the word category which ex-
hibits it: nouns, adjectives, pronouns and numerals
for case and number, verbs for features like person
and tense, and all tokens for generic features like
unknown and uppercase.

domains can contribute significantly when training
statistical MT models with scarce in-domain train-
ing data. The overall quality, however, is still poor
as our manual inspections reveal as well. The fol-
lowing section discusses some of the issues that
may guide developments in the future.

4.1 Morphological Richness

To study how well the morphological variation is
handled in the English-to-Finnish translation di-
rection, we compare the morphological richness
of the system output and reference translations.
Most over- and under-represented morphological
features are shown in Table 9.

For words inflecting in case and number, the
nominative case is highly over-represented in the
system output. As the nominative case corre-

sponds to the basic form of a word (canonical
form), presumably the translation system fails to
produce correct inflections when translating from
English to Finnish and uses the basic form too often.
This naturally leads to the under-representation of
other cases. From Table 9 we can see that, e.g.,
the genitive, elative and inessive cases are under-
represented in the system output. Similar behavior
can be seen with verb features as well. Frequent
verb inflections are over-represented to the detri-
ment of rarer variants. For example, third person
singular and first infinitive (canonical form) are
over-represented compared to other persons. Addi-
tionally, active forms dominate over passive, and
present and past tenses over participial counter-
parts. Both of these word categories indicate that
the morphological variation is weaker in the system
output than in reference translations. This shows
that the system is not fully able to account for the
rich morphology of the Finnish language.

From Table 9 we can also notice several fea-
tures not directly related to morphology. As ex-
pected, the proportion of words not recognized by
the Finnish morphological analyzer (Unknown row)
is higher in system output than in reference trans-
lations. This likely reflects words passed through
the pipeline untranslated. Moreover, system output
has more punctuation tokens and less uppercased
words, which is due to the re-capitalization proce-
dure we apply on the originally lowercased output
of the decoder.

5 Conclusions

This paper presents baseline systems for the transla-
tion between Finnish and English in both directions.
Our main effort refers to the inclusion of additional
training data and morphological pre-processing for
the translation from Finnish to English. We can
show that additional noisy and unrelated training
data has a significant impact on translation perfor-
mance and that morphological analyses is essential
in this task. Our models perform well relative to
other systems submitted to WMT but still underper-
form in quality as manual inspections reveal. The
challenge of translating from and to morphologi-
cally rich languages with scarce domain-specific
resources is still far from being solved with cur-
rents standard technology in statistical machine
translation and provides an exciting research field
for future work.
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Abstract

This paper presents the machine transla-
tion systems submitted by the Abu-MaTran
project for the Finnish–English language
pair at the WMT 2015 translation task. We
tackle the lack of resources and complex
morphology of the Finnish language by
(i) crawling parallel and monolingual data
from the Web and (ii) applying rule-based
and unsupervised methods for morpholog-
ical segmentation. Several statistical ma-
chine translation approaches are evaluated
and then combined to obtain our final sub-
missions, which are the top performing
English-to-Finnish unconstrained (all au-
tomatic metrics) and constrained (BLEU),
and Finnish-to-English constrained (TER)
systems.

1 Introduction

This paper presents the statistical machine transla-
tion (SMT) systems submitted by the Abu-MaTran
project for the WMT 2015 translation task. The
language pair concerned is Finnish–English with
a strong focus on the English-to-Finnish direction.
The Finnish language is newly introduced this year
as a particular translation challenge due to its rich
morphology and to the lack of resources available,
compared to e.g. English or French.

Morphologically rich languages, and especially
Finnish, are known to be difficult to translate us-
ing phrase-based SMT systems mainly because of
the large diversity of word forms leading to data
scarcity (Koehn, 2005). We assume that data acqui-

sition and morphological segmentation should con-
tribute to decrease the out-of-vocabulary rate and
thus improve the performance of SMT. To gather
additional data, we decide to build on previous
work conducted in the Abu-MaTran project and
crawl the Web looking for monolingual and paral-
lel corpora (Toral et al., 2014). In addition, mor-
phological segmentation of Finnish is used in our
systems as pre- and post-processing steps. Four
segmentation methods are proposed in this paper,
two unsupervised and two rule-based.

Both constrained and unconstrained translation
systems are submitted for the shared task. The
former ones are trained on the data provided by
the shared task, while the latter ones benefit from
crawled data. For both settings, we evaluate the im-
pact of the different SMT approaches and morpho-
logical segmentation methods. Finally, the outputs
of individually trained systems are combined to
obtain our primary submissions for the translation
tasks.

This paper is structured as follows: the methods
for data acquisition from the Web are described
in Section 2. Morphological segmentation is pre-
sented in Section 3. The data and tools used in our
experiments are detailed in Section 4. Finally, the
results of our experiments are shown in Section 5,
followed by a conclusion in Section 6.

2 Web Crawling

In this section we describe the process we followed
to collect monolingual and parallel data through
Web crawling. Both types of corpora are gathered
through one web crawl of the Finnish (.fi) top-level

184



domain (TLD) with the SPIDERLING crawler1 (Su-
chomel and Pomikálek, 2012). This crawler per-
forms language identification during the crawling
process and thus allows simultaneous multilingual
crawling. The whole unconstrained dataset gath-
ered from the Web is built in 40 days using 16
threads. Documents written in Finnish and English
are collected during the crawl.

2.1 Monolingual Data

The Finnish and English data collected during
the crawl amounts to 5.6M and 3.9M documents,
containing 1.7B and 2.0B words for Finnish and
English respectively (after processing, which in-
cludes removing near-duplicates). Interestingly, the
amount of Finnish and English data on the Finnish
TLD is quite similar. For comparison, on the Croa-
tian domain only 10% of the data is written in
English (Ljubešić and Klubička, 2014). While the
Finnish data is used in further steps for building
the target-language model, both datasets are used
in the task of searching for parallel data described
in the next subsection.

2.2 Parallel Data

In our experiments, we adapt the BITEXTOR2

tool to detect parallel documents from a collec-
tion of downloaded and pre-processed websites.
The pre-processing performed by SPIDERLING in-
cludes language detection, boilerplate removal, and
HTML format cleaning. Therefore, the only mod-
ules of BITEXTOR used for this task are those per-
forming document and segment alignment, relying
on HUNALIGN3 (Varga et al., 2005) and an English–
Finnish bilingual lexicon.4 Confidence scores for
aligned segments are computed thanks to these two
resources.

From a total of 12.2K web domains containing
both Finnish and English documents, BITEXTOR

is able to identify possible parallel data on 10.7k
domains (87.5%). From these domains, 2.1M seg-
ment pairs are extracted without any additional
restrictions, and 1.2M when additional restrictions
on the document pairing are set. Namely, these
restrictions discard (i) document pairs where less
than 5 segments are aligned; and (ii) those with
an alignment score lower than 0.2 according to

1http://nlp.fi.muni.cz/trac/spiderling
2http://sf.net/p/bitextor/
3http://mokk.bme.hu/resources/hunalign
4http://sf.net/p/bitextor/files/

bitextor/bitextor-4.1/dictionaries/

HUNALIGN. The first collection can be consid-
ered recall-oriented and the second one precision-
oriented.

In this first step, a large amount of potentially
parallel data is obtained by post-processing data
collected with a TLD crawl, which is not primar-
ily aimed at finding parallel data. To make use of
this resource in a more efficient way, we re-crawl
some of the most promising web sites (we call them
multilingual hotspots) with the ILSP-FC crawler
specialised in locating parallel documents during
crawling. According to Esplà-Gomis et al. (2014),
BITEXTOR and ILSP-FC have shown to be com-
plementary, and combining both tools leads to a
larger amount of parallel data.

ILSP-FC (Papavassiliou et al., 2013) is a mod-
ular crawling system allowing to easily acquire
domain-specific and generic corpora from the
Web.5 This crawler includes a de-duplicator which
checks all documents in a pairwise manner to iden-
tify near-duplicates. This is achieved by comparing
the quantised word frequencies and the paragraphs
of each pair of candidate duplicate documents. A
document-pair detector also examines each docu-
ment in the same manner and identifies pairs of
documents that could be considered parallel. The
main methods used by the pair detector are URL
similarity, co-occurrences of images with the same
filename in two documents, and the documents’
structural similarity.

In order to identify the multilingual hotspots, we
process the output of the Finnish TLD and generate
a list containing the websites which have already
been crawled and the number of stored English and
Finnish webpages for each website. Assuming that
a website with comparable numbers of webpages
for each language is likely to contain bitexts of
good quality, we keep the websites with Finnish
to English ratio over 0.9. Then, ILSP-FC pro-
cesses the 1, 000 largest such websites, considered
the most bitext-productive multilingual websites, in
order to detect parallel documents. We identify a to-
tal of 58, 839 document pairs (8, 936, 17, 288 and
32, 615 based on URL similarity, co-occurrences
of images and structural similarity, respectively).
Finally, HUNALIGN is applied on these document
pairs, resulting in 1.2M segment pairs after dupli-
cate removal. The parallel corpus used in our exper-
iments is the union without duplicates of the largest

5http://nlp.ilsp.gr/redmine/projects/
ilsp-fc
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corpora collected with BITEXTOR and ILSP-FC,
leading to 2.8M segment pairs.

3 Morphological Segmentation

Morphological segmentation is a method of analy-
sis of word-forms in order to reduce morphological
complexity. There are few variations on how to de-
fine morphological segmentation, we use the most
simple definition: a morphological segmentation
of a word is defined by 0 or more segmentation
points from where the word can be split into seg-
ments. The letter sequences between segmentation
points are not modified, i.e. no lemmatisation or
segment analysis is performed (or retained) in the
actual SMT data. An example of a linguistically
derived morphological segmentation of an English
word-form cats would be cat→ ←s, where→
← denotes the segmentation point,6 and cat and
s are the segments.

We use four segmentation approaches that can
be divided in two categories: (i) rule-based, based
on morphological dictionaries and weighted finite-
state technology HFST (Lindén et al., 2009)7, fur-
ther detailed in subsection 3.1, and (ii) statistical,
based on unsupervised learning of morphologies,
further detailed in subsection 3.2. All segments are
used as described in subsection 3.3.

3.1 Rule-based Segmentation
Rule-based morphological segmentation is
based on linguistically motivated computational
descriptions of the morphology by dividing the
word-forms into morphs (minimal segments
carrying semantic or syntactic meaning). The
rule-based approach to morphological segmen-
tation uses a morphological dictionary of words
and an implementation of the morphological
grammar to analyse word-forms. In our case, we
use OMORFI (Pirinen, 2015), an open-source imple-
mentation of the Finnish morphology.8 OMORFI’s
segmentation produces named segment boundaries:
stem, inflection, derivation, compound-word and
other etymological. The two variants of rule-based
segmentation we use are based on selection of
the boundary points: compound segmentation
uses compound segments and discards the rest
(referred in tables and figures to as HFST Comp),
and morph segmentation uses compound and

6we follow this arrow notation throughout the paper as
well as in the actual implementation

7http://hfst.sf.net
8http://github.com/flammie/omorfi/

inflectional morph segments (HFST Morph
in tables and figures). In cases of ambiguous
segments, the weighted finite-state automata 1-best
search is used with default weights.9 For example,
the words kuntaliitoksen selvittämisessä (“exam-
ining annexation”) is segmented by hfst-comp
as ‘kunta→←liitoksen selvittämisessä’ and
hfst-morph as ‘kunta→←liitokse→←n
selvittämise→←ssä’.

3.2 Unsupervised Segmentation

Unsupervised morphological segmentation is
based on a statistical model trained by minimising
the number of different character sequences
observed in a training corpus. We use two different
algorithms: MORFESSOR Baseline 2.0 (Virpioja
et al., 2013) and FLATCAT (Grönroos et al.,
2014). The segmentation models are trained
using the Europarl v8 corpus. Both systems
are used with default settings. However, with
FLATCAT we discard the non-morph boundaries
and we have not used semi-supervised features.
For example, the phrase given in previous
sub-section: morfessor produces 1-best
segmentation: and ‘Kun→←ta→←liito→←ksen
selvittä→←misessä’ and flatcat
‘Kun→←tali→←itoksen selvittämis→←essä’

3.3 Segments in the SMT Pipeline

The segmented data is used exactly as the word-
form-based data during training, tuning and test-
ing of the SMT systems,10 except during the pre-
processing and post-processing steps. For pre-
processing, the Finnish side is segmented prior to
use. For the post-processing of segmented-Finnish-
to-English, boundary markers are removed. For the
other direction, two types of tokens with boundary
markers are observed: matching arrows a→ ←b
and stray arrows a→ x or x ←b. For matching
arrows, an empty string is used to join the morphs,
while the morphs with stray arrows are deleted.

4 Datasets and Tools

This section presents the tools, the monolingual and
parallel data used to train our SMT systems. All
the corpora are pre-processed prior to training the

9For details of implementation and reproducibility, the
code is available in form of automake scriptlets at http://
github.com/flammie/autostuff-moses-smt/.

10The parameters of the word alignment, phrase extraction
and decoding algorithms have not been modified to take into
account the nature of the segmented data.
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language and translation models. We rely on the
scripts included in the MOSES toolkit (Koehn et al.,
2007) and perform the following operations: punc-
tuation normalisation, tokenisation, true-casing and
escaping of problematic characters. The truecaser
is lexicon-based, trained on all the monolingual
and parallel data. In addition, we remove sentence
pairs from the parallel corpora where either side is
longer than 80 tokens.

4.1 Translation Models

We empirically evaluate several types of SMT sys-
tems: phrase-based SMT (Och and Ney, 2004)
trained on word forms or morphs as described in
Section 3, Factored Models (Koehn and Hoang,
2007) including morphological and suffix informa-
tion as provided by OMORFI,11 in addition to sur-
face forms, and finally hierarchical phrase-based
SMT (Chiang, 2005) as an unsupervised tree-based
model. All the systems are trained with MOSES, re-
lying on MGIZA (Gao and Vogel, 2008) for word
alignment and MIRA (Watanabe et al., 2007) for
tuning. This tuning algorithm was shown to be
faster and as efficient as MERT for model core
features, as well as a better stability with larger
numbers of features (Hasler et al., 2011).

In order to compare the individually trained SMT
systems, we use the same parallel data for each
model, as well as the provided development set to
tune the systems. The phrase-based SMT system is
augmented with additional features: an Operation
Sequence Model (OSM) (Durrani et al., 2011) and
a Bilingual Neural Language Model (BiNLM) (De-
vlin et al., 2014), both trained on the parallel data
used to learn the phrase-table. All the translation
systems also benefit from two additional reorder-
ing models, namely a phrase-based model with
three different orientations (monotone, swap and
discontinuous) and a hierarchical model with four
orientations (non merged discontinuous left and
right orientations), both trained in a bidirectional
way (Koehn et al., 2005; Galley and Manning,
2008).

Our constrained systems are trained on the data
available for the shared task, while unconstrained
systems are trained with two additional sets of par-
allel data, the FIENWAC crawled dataset (cf. Sec-
tion 2.2) and Open Subtitles, henceforth OSUBS.12

The details about the corpora used to train the trans-

11using the script omorfi-factorise.py
12http://opus.lingfil.uu.se/
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Figure 1: Effects of segmentation on unique token
counts for Finnish.

Words (M)
Corpus Sentences (k) Finnish English

Constrained System
Europarl v8 1,901.1 36.5 50.9

Unconstrained System
fienwac.in 640.1 9.2 13.6
fienwac.outt 838.9 12.5 18.1
fienwac.outb 838.9 13.9 18.1
osubs.in 492.2 3.6 5.6
osubs.outt 1,169.6 8.8 14.4
osubs.outb 1,169.6 7.8 13.0

Table 1: Parallel data used to train the translation
models, after pre-processing.

lation models are presented in Table 1. Figure 1
shows how different segmentation methods affect
the vocabulary size; given that linguistic segmen-
tation have larger vocabularies as statistical their
contribution to translation models may be at least
partially complementary.

The two unconstrained parallel datasets are split
into three subsets: pseudo in-domain, pseudo out-
of-domain top and pseudo out-of-domain bottom,
henceforth in, outt and outb. We rank the sen-
tence pairs according to bilingual cross-entropy dif-
ference on the devset (Axelrod et al., 2011) and cal-
culate the perplexity on the devset of LMs trained
on different portions of the top ranked sentences
(the top 1/64, 1/32 and so on). The subset for which
we obtain the lowest perplexities is kept as in (this
was 1/4 for fienwac (403.89 and 3610.95 for
English and Finnish, respectively), and 1/16 for
osubs (702.45 and 7032.2). The remaining part
of each dataset is split in two sequential parts in
ranking order of same number of lines, which are
kept as outt and outb.

The out-of-domain part of osubs is further
processed with vocabulary saturation (Lewis and
Eetemadi, 2013) in order to have a more efficient
and compact system (Rubino et al., 2014). We tra-
verse the sentence pairs in the order they are ranked
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Corpus Sentences (k) Words (M)

Europarl v8 2,218.2 59.9
News Commentary v10 344.9 8.6
News Shuffled

2007 3 782.5 90.2
2008 12 954.5 308.1
2009 14 680.0 347.0
2010 6 797.2 157.8
2011 15 437.7 358.1
2012 14 869.7 345.5
2013 21 688.4 495.2
2014 28 221.3 636.6

Gigaword 5th 28,178.1 4,831.5

Table 2: English monolingual data, after pre-
processing, used to train the constrained language
model.

and filter out those for which we have seen already
each 1-gram at least 10 times. This results in a
reduction of 3.2x on the number of sentence pairs
(from 7.3M to 2.3M ) and 2.6x on the number of
words (from 114M to 44M ).

The resulting parallel datasets (7 in total: Eu-
roparl and 3 sets for each fienwac and osubs)
are used individually to train translation and re-
ordering models before being combined by linear
interpolation based on perplexity minimisation on
the development set. (Sennrich, 2012)

4.2 Language Models

All the Language Models (LM) used in our experi-
ments are 5-grams modified Kneser-Ney smoothed
LMs trained using KenLM (Heafield et al., 2013).
For the constrained setup, the Finnish and the En-
glish LMs are trained following two different ap-
proaches. The English LM is trained on the con-
catenation of all available corpora while the Finnish
LM is obtained by linearly interpolating individ-
ually trained LMs based on each corpus. The
weights given to each individual LM is calculated
by minimising the perplexity obtained on the de-
velopment set. For the unconstrained setup, the
Finnish LM is trained on the concatenation of all
constrained data plus the additional monolingual
crawled corpora (noted FiWaC). The data used to
train the English and Finnish LMs are presented in
Table 2 and Table 3 respectively.

5 Results

We tackle the English-to-Finnish direction in the
unconstrained task, while both directions are pre-
sented for the constrained task. Systems’ outputs
are combined using MEMT (Heafield and Lavie,

Corpus Sentences (k) Words (M)

Constrained System
News Shuffle 2014 1,378.8 16.5

Unconstrained System
FiWaC 146,557.4 1,996.3

Table 3: Finnish monolingual data, after pre-
processing, used to train the language models.

Dev Test
System BLEU TER BLEU TER

Phrase-Based 13.51 0.827 12.33 0.843
Factored Model 13.08 0.827 11.89 0.847
Hierarchical 13.05 0.822 12.11 0.830
HFST Comp 13.57 0.814 12.66 0.828
HFST Morph 13.19 0.818 12.77 0.819
Morfessor 12.21 0.860 11.58 0.864
Flatcat 12.67 0.844 12.05 0.849

Combination 14.61 0.786 13.54 0.801

Table 4: Results obtained on the development and
test sets for the constrained English-to-Finnish
translation task. Best individual system in bold.

2010) using default settings, except for the beam
size (set to 1, 500) and radius (5 for Finnish and 7
for English), following empirical results obtained
on the development set.

5.1 Constrained Results
Individual systems trained on the provided data
are evaluated before being combined. The results
obtained for the English-to-Finnish direction are
presented in Table 4.13 The BLEU (Papineni et
al., 2002) and TER (Snover et al., 2006) scores
obtained by the system trained on compound-
segmented data (HFST Comp) show a positive im-
pact of this method on SMT according to the de-
velopment set, compared to the other individual
systems. The unsupervised segmentation methods
do not improve over phrase-based SMT, while the
hierarchical model shows an interesting reduction
of the TER score compared to a classic phrase-
based approach. On the test set, the use of in-
flectional morph segments as well as compounds
(HFST Morph) leads to the best results for the in-
dividual systems on both evaluation metrics. The
combination of these 7 systems improves substan-
tially over the best individual system for the devel-
opment and the test sets.

The results for the other translation direction
(Finnish to English) are shown in Table 5 and

13We use NIST mteval v13 and TERp v0.1, both with de-
fault parameters.
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Dev Test
System BLEU TER BLEU TER

Phrase-Based 17.19 0.762 16.90 0.759
Hierarchical 16.98 0.768 15.93 0.773
HFST Comp 17.87 0.748 16.68 0.753
HFST Morph 18.64 0.735 17.22 0.752
Morfessor 16.83 0.769 15.96 0.756
Flatcat 16.78 0.766 17.33 0.741

Combination 19.66 0.719 18.77 0.726

Table 5: Results obtained on the development and
test sets for the constrained Finnish-to-English
translation task. Best individual system in bold.

follow the same trend as observed with Finnish
as target: the morphologically segmented data
helps improving over classic SMT approaches.
The two metrics indicate better performances of
HFST Morph on the development set, while Flat-
cat reaches the best scores on the test set. The re-
sults obtained with the segmented data on the two
translation directions and the different segmenta-
tion approaches are fluctuating and do not indicate
which method is the best. Again, the combination
of all the systems results in a substantial improve-
ment over the best individual system across both
evaluation metrics. The top 3 systems presented in
Table 5, namely Combination, HFST Morph and
Phrase-Based correlates with the results reported
by the manual evaluation.14

5.2 Unconstrained Results
We present the results obtained on the uncon-
strained English-to-Finnish translation task in Ta-
ble 6. Two individual systems are evaluated, using
word-forms and compound-based data, and show
that the segmented data leads to lower TER scores,
while higher BLEU are reached by the word-based
system. The combination of these two systems in
addition to the constrained outputs of the remain-
ing systems (hierarchical, factored model, HFST
Morph, Morfessor and Flatcat) is evaluated in the
last row of the table, and shows .3pt BLEU gain on
the test set over the phrase-based approach using
word forms.

The human evaluation conducted on the English–
Finnish translation direction shows interesting re-
sults. While our unconstrained Combination sys-
tem outperforms our other manually evaluated
systems, the quality of the unconstrained Phrase-
Based output is lower than the constrained Combi-

14http://www.statmt.org/wmt15/results.
html

Dev Test
System BLEU TER BLEU TER

Phrase-Based 16.16 0.804 16.07 0.801
HFST Comp 15.80 0.796 15.06 0.800

Combination 17.25 0.776 16.38 0.779

Table 6: Results obtained on the development and
test sets for the unconstrained English-to-Finnish
translation task. Best individual system in bold.

nation one. The opposite is observed on the auto-
matic metrics, with a difference of 2.5pts BLEU
and .2pt TER.

6 Conclusion

Our participation in WMT15’s translation task fo-
cus on investigating the use of several morpholog-
ical segmentation methods and Web data acquisi-
tion in order to handle the data scarcity and the rich
morphology of Finnish. We evaluate several SMT
approaches, showing the usefulness of morpholog-
ical segmentation for Finnish SMT. In particular,
the rule-based methods lead to the best results on
the constrained English–Finnish task compared to
our other individual systems.

In addition, the manual evaluation results indi-
cate that combining diverse SMT systems’ outputs,
including morphologically segmented ones, can
outperform a classic phrase-based approach trained
on larger parallel and monolingual corpora. The
combination of the different SMT systems leads
to the best results for both translation directions,
as shown by automatic metrics and manual evalua-
tion. Finally, the acquisition of additional training
data improves over the constrained systems and is
a successful example of the Abu-MaTran crawling
pipeline. However, the discrepancy observed on
the results using the different segmentation meth-
ods requires a deeper analysis of the SMT output,
which is planned as future work.
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Sergio Ortiz-Rojas, Vassilis Papavassiliou, and
Prokopis Prokopidis. 2014. Comparing two acqui-
sition systems for automatically building an english-
croatian parallel corpus from multilingual websites.
In Proceedings of the 9th International Conference
on Language Resources and Evaluation, LREC’14,
Reykjavik, Iceland.

Michel Galley and Christopher D Manning. 2008. A
simple and effective hierarchical phrase reordering
model. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 848–856. Association for Computational Lin-
guistics.

Qin Gao and Stephan Vogel. 2008. Parallel Implemen-
tations of Word Alignment Tool. In Software Engi-
neering, Testing, and Quality Assurance for Natural
Language Processing, pages 49–57.

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and
Mikko Kurimo. 2014. Morfessor flatcat: An hmm-
based method for unsupervised and semi-supervised
learning of morphology. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics, pages 1177–1185.

Eva Hasler, Barry Haddow, and Philipp Koehn. 2011.
Margin Infused Relaxed Algorithm for Moses. The
Prague Bulletin of Mathematical Linguistics, 96:69–
78.

Kenneth Heafield and Alon Lavie. 2010. Combining
machine translation output with open source: The
carnegie mellon multi-engine machine translation
scheme. The Prague Bulletin of Mathematical Lin-
guistics, 93:27–36.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable Mod-
ified Kneser-Ney Language Model Estimation. In
Proceedings of ACL, pages 690–696.

Philipp Koehn and Hieu Hoang. 2007. Factored Trans-
lation Models. In Proceedings of EMNLP-CoNLL,
pages 868–876.

Philipp Koehn, Amittai Axelrod, Alexandra Birch,
Chris Callison-Burch, Miles Osborne, David Talbot,
and Michael White. 2005. Edinburgh system de-
scription for the 2005 iwslt speech translation evalu-
ation. In IWSLT, pages 68–75.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In Pro-
ceedings of ACL, pages 177–180.

Philipp Koehn. 2005. Europarl: A Parallel Corpus
for Statistical Machine Translation. In MT summit,
volume 5, pages 79–86.

William D Lewis and Sauleh Eetemadi. 2013. Dramat-
ically reducing training data size through vocabulary
saturation. In Proceedings of the Eighth Workshop
on Statistical Machine Translation, pages 281–291.

Krister Lindén, Miikka Silfverberg, and Tommi Piri-
nen. 2009. Hfst tools for morphology–an efficient
open-source package for construction of morpholog-
ical analyzers. In State of the Art in Computational
Morphology, pages 28–47. Springer.
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Abstract

In  this  year’s  WMT translation  task,

Finnish-English was introduced as a lan-

guage pair of competition for the first time.

We present  experiments  examining  sev-

eral variations on a morphologically-aware

statistical  phrase-based  machine  transla-

tion  system  for  translating  Finnish  into

English. Our  system variations  attempt

to  mitigate  the  issue  of  rich  agglutina-

tive  morphology  when  translating  from

Finnish  into  English. Our  WMT sub-

mission for Finnish-English preprocesses

Finnish data with omorfi (Pirinen, 2015), a

Finnish morphological analyzer. We also

present results for two other language pairs

with  morphologically  interesting  source

languages, namely  German-English  and

Czech-English.

1 Introduction

Students  enrolled  in  the  Spring  2015  graduate-

level course in statistical machine translation (MT)

at the University of Illinois were invited to develop

MT systems within the context of the 2015 Work-

shop on Statistical Machine Translation (WMT)

shared translation task. Each group of 2-3 stu-

dents chose one language pair, developed a base-

line MT system for that language pair using Moses

(Koehn et al., 2007), and chose one specific lin-

guistic dimension along which to experiment. In

this work, we present the results of four groups

of experiments — two Finnish-English (§3.1 and

§3.2), and one each for Czech-English (§4) and

German-English (§5).

The first author was the instructor, and the subsequent

authors were students in the work described here.

2 Methodology

We use the current stable release (v3) of Moses,

a state-of-the-art statistical phrase-based machine

translation system.

We  trained  translation  models  using  the  Eu-

roparl corpus (Koehn, 2005), using the latest avail-

able versions (v7 for German-English and Czech-

English, and  v8  for  Finnish-English), as  well

as  the Common Crawl corpus and News Com-

mentary  (v10)  corpus  for  German-English  and

Czech-English, and the Wiki Headlines corpus for

Finnish-English.

We trained  a  back-off  language  model  (LM)

with modified Kneser-Ney smoothing (Katz, 1987;

Kneser and Ney, 1995; Chen and Goodman, 1998)

on the English Gigaword v5 corpus (Parker et al.,

2011) using lmplz from KenLM (Heafield et al.,

2013).

3 Finnish-English

We  tried  various  morphological  tokenization

schemes on the source language (Finnish) in or-

der to mitigate its strong agglutination. The target

language (English) was tokenized with the default

Moses tokenizer script.

3.1 Finnish tokenization using Morfessor and

word-lattices

We begin by adapting the lattice technique of Dyer

et al. (2009) to Finnish. We train a standard phrase-

based machine translation model on a new corpus:

on the source side we concatenate the original data

with its one-best segmentation according to a Mor-

fessor (Creutz and Lagus, 2007) model trained on

the original data, and on the target side we simply

concatenate it with itself. The result is a corpus

that is twice as long as the original data, but that

aligns both segmented and unsegmented Finnish

sentences with their English counterparts. This

ensures that we will have phrases in our phrase
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Figure 1: A word lattice that represents the top five

segmentations for the Finnish word vilpittömän.

table that correspond with both the original un-

segmented words as well as for individual mor-

phemes.

At tuning and test time, we then decompose our

input into a word lattice input that reflects the un-

certainty of the decomposition of each word in the

sentence (Dyer et al., 2008). We construct the lat-

tice by considering the top five best segmentations

for each word according to our Morfessor model.

The start and end of each word in the original sen-

tence is a node, and we place edges and nodes be-

tween the two such that the edge is labeled with a

string output and its target is a node that represents

the partial output of the word thus far. Each of

the edges is also weighted with a certain probabil-

ity, reflecting the likelihood of using that specific

edge, given that we are at a specific node.

We calculate edge probabilities as follows. Let

p(v|u,Θ) be the probability of going to node v
given that we are at node u under the trained Mor-

fessor model Θ (we only concern ourselves with

the case where v is an adjacent to u). Let s be a

segmentation for the current word, represented as

a set of edges (n1, n2) through the graph. Then,

we set

p(v | u,Θ) =
∑

s:(u,v)∈s p(s | Θ)∑
s′:(u,v′)∈s′ p(s′ | Θ)

,

where the numerator is a summation of the Morfes-

sor segmentation probabilities for segmentations

that use the edge (u, v), and the denominator is a

summation of the Morfessor segmentation prob-

abilities  for  all  segmentations that  pass through

node u.

However, Morfessor  gives  us  log  likelihood

scores for its segmentations. Call these ℓs. We then

compute the following, in order to avoid roundoff

System LM TM BLEU -cased

Baseline 5 5 16.95 15.09

Morfessor 5 8 15.67 14.88

Hiero 6 5 14.99 14.45

Lattice (n = 2) 6 8 14.67 14.00

Lattice (n = 5) 6 8 14.68 13.95

Table 1: Results for Finnish-English (§3.1).

errors as much as possible:

p(v | u, Θ) =
∑

s:(u,v)∈s 2ℓs−ℓmax∑
s′:(u,v′)∈s′ 2ℓs′−ℓmax

,

where ℓmax is the highest log likelihood segmen-

tation for the current word. This can be seen as

simply multiplying the numerator and denomina-

tor by the fixed constant 2−ℓmax . The code for per-

forming this lattice generation is freely available

online.1 We use a Morfessor model trained on the

Finnish side of the Europarl parallel training data

with α = 0.5.

Table 1 shows the  output  of  our  systems on

the  testing  data  from  WMT 2015. We  report

the scores that were obtained from Moses eval-

uation scripts using multi-BLEU; the numbers in

the shared task are slightly different as they use

the NIST BLEU scripts. Our baseline is a phrase-

based default Moses configuration with the 5-gram

language model, and we found this outperformed

a hierarchical phrase based configuration with the

same maximum phrase length and a 6-gram lan-

guage model. Among the segmentation methods,

using a single one-best segmentation with Morfes-

sor performed the best — the word lattice method

had disappointing performance using either the top

five or top two best segmentations for the lattice

generation. We were unable to combine the word

lattice and hierarchical phrase-based approaches

together as Moses does not yet support these two

features at the same time.

3.2 Finnish tokenization using omorfi

In addition to the experiments described above,

we build  three  variations  utilizing omorfi (Piri-

nen, 2015) to morphologically segment the Finnish

data. We use omorfi to decompose each aggluti-

nated Finnish word into its component morphemes

and each morpheme to a default case or form. In-

flectional morphemes which capture information

1https://github.com/smassung/uiuc-wmt15
/tree/master/chase
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Istuntokauden
Istuntokauden Istunto#kausi N Gen Sg

Figure 2: The first word of Finnish Europarl cor-

pus, as processed by omorfi.

such as the person, number, tense, voice, and mood

of verbs as well as the number and case of nouns

is lost in the lemmatization, and therefore, when

lemmatization has taken place, all of this infor-

mation is lost to the system. Figure 2 illustrates

this  process; the  token  “Istuntokauden”  is  bro-

ken into two morpheme lemmas, separated by a

“#” sign. We discard the inflectional information,

which here denotes that the original token was a

singular noun in genitive case.

As a baseline, we build a system using Moses

and provided the data described above with none of

the Finnish data having been processed by omorfi.

Tuning was done using MERT (Och, 2003).

In the first variation (V1), all Finnish data is first

segmented by omorfi. The intuition behind this

technique is simply that there are more words in

the target text than would align well with aggluti-

native words in the source text. By using the mor-

phemes of the source language rather than the un-

segmented words, the output source tokens might

more easily align with the target tokens.

In  the  second  variation  (V2), the  omorfi-

segmented Finnish data from the first variation is

concatenated with the unprocessed Finnish. Target

language data is concatenated with itself in training

to align each target sentence with both the unpro-

cessed and morphologically-analyzed variations of

its source sentence. The intuition here is that any

Finnish tokens which are their own lemmas (i.e. do

not inflect) will potentially align with the same tar-

get token twice, and will bear a stronger alignment

probability than with other tokens in the transla-

tion model. Function words and adpositions would

be among those which undergo such double align-

ment, and which may serve  as  anchors  for  the

alignment of the entire sentence.

In the third variation (V3), the translation table

created during the second variation is consulted

during segmentation of the tuning and test data. If

an original token could be found in the table before

being broken into morphemes by omorfi, then that

token is left unprocessed. If a token could not be

found, then it was passed to omorfi and the mor-

phemes returned replaced the token in the data.

System LM TM BLEU -cased

Baseline 5 5 16.14 15.25

V1-omorfi 5 5 14.79 14.00

V2-omorfi 5 5 15.14 14.32

V3-omorfi 5 5 16.90 15.98

Table 2: Results for Finnish-English (§3.2).

The resulting tuning and testing datasets are thus

partially analyzed for morphemes. In this way,

more common Finnish agglutinations are retained

while less common ones are broken into poten-

tially more common individual morphemes.

Results are shown in Table 2. Only V3 per-

formed better than the baseline of using default

Moses tokenization for  Finnish. This  variation

comes closest to a balance between alignment with

shorter  target  phrases  — achieved  by  breaking

down agglutinative words into morphemes — and

retaining what inflectional information can be re-

tained — since unprocessed and therefore unlem-

matized words retain all grammatical inflection.

3.2.1 Variation 1: All data fully processed by

omorfi

For the first variation on our system, we pass to

omorfi all of the Finnish data described above used

for training, tuning, and testing. Therefore, for

each token in the text, either the lemma of the orig-

inal token was returned by omorfi if the token was

not found to be an agglutination of stem and mor-

phemes, or, if the token was found to be an aggluti-

nation, a lemmatized token of each morpheme was

returned, and these new tokens stood in place of the

agglutinative token found in the original text.

The intuition behind this  technique is  simply

that there are more words in the target text than

would align well with agglutinative words in the

source  text. By  creating  more  tokens  out  of

the original source tokens, the smaller source to-

kens might more easily align with the target to-

kens. The new tokens returned by omorfi were al-

ways present in the source text in their non-lemma

forms, but because the same morpheme could be

added to different stems, the unique word forma-

tion may hide a relation between the appearance

of that morpheme in a source sentence and a sin-

gle word of English in the target sentence.

Using only source data which has been fully pro-

cessed by omorfi in the training, tuning, and testing

stages, BLEU scores were 14.00 (case-sensitive)

and 14.79 (case-insensitive), that is 1.25 and 1.35
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points below the baseline respectively.

3.2.2 Variation 2: Concatenated original

source data and omorfi-processed data

For the second variation on our system, we used

the same omorfi-processed Finnish data which was

used for the first variation. This time, however, the

omorfi-processed training, tuning, and testing data

was concatenated with the original training, tun-

ing, and testing data respectively. So for example,

the data used for training was the original set of

sentences from Europarl, followed by the same set

of sentences but processed by omorfi as described

above. Each of the training, tuning, and testing

sets therefore contained exactly twice as many sen-

tences as the original testing data. Likewise, the

set of target sentences in each case was twice as

many, but the target data was not processed for

morphology, such that the second half of the tar-

get language training, tuning, and testing sets was

exactly the same as the first half.

Designing the datasets in this way effected that,

in the case of alignment for example, both the orig-

inal Finnish sentence was aligned with the English

as well as the omorfi-processed Finnish sentence.

The intuition here is that Finnish tokens which are

their own lemmas (i.e. do not inflect) will poten-

tially align with the same target token twice, and

will bear a stronger alignment proability than other

tokens in the translation model. Function words

and adpositions would be among those which un-

dergo such double alignment, and which may serve

as anchors for the alignment of the entire sentence.

For all other words — those for which omorfi

returns morphologically analyzed output - two po-

tentially useful alignments could be formed: First,

there would be an alignment of the unprocessed

source token with several  target  tokens, and so

a phrasal  alignment  in  which the English word

aligns with the agglutinative word containing the

proper  morpheme. Second, there  would  be  an

alignment closer to one-to-one between the target

word and the proper morpheme lemma returned by

omorfi. Concatenating the unprocessed training,

tuning, and testing sets in the source language with

the omorfi-processed training, tuning, and testing

sets respectively resulted in BLEU scores of 14.32

(case-sensitive) and 15.14 (case-insensitive), that

is 0.93 and 1.00 points below the baseline respec-

tively.

3.2.3 Variation 3: Consultation of the

baseline translation table

For the third and final variation of our system, we

preprocess the tuning and testing sets in the source

language by consulting the translation table cre-

ated for the second variation. For each token in the

Finnish tuning and testing data, the translation ta-

ble was consulted for the presence of that token as

a unigram. If the token was found in the translation

table, then it was rendered as is in the output of this

step. If the token was not found in the translation

table, then the token was passed to omorfi and the

resulting morpheme lemmas were rendered as out-

put. The resulting tuning and testing sets, therefore

contained either an agglutinative form as found in

the original Finnish or a processed string of mor-

pheme lemmas (or perhaps simply the lemma) re-

turned by omorfi from the original token, but not

both.

The intuition here was to overcome the lemma-

tization process which occurs from passing all of

the data through omorfi. It may be the case that

different inflections of the same lemma tune bet-

ter to different English words, but the lemmatiza-

tion process effects that different English words

tune to the same Finnish lemma, causing confu-

sion. Leaving known inflected forms in the tun-

ing and testing data gives this variation an advan-

tage over the first variation. By tuning and test-

ing on known tokens and morphologically ana-

lyzing unknown tokens in these datasets, the re-

sulting BLEU scores were 15.98 (case-sensitive)

and 16.90 (case-insensitive), 0.73 and 0.76 points

above the baseline respectively.

4 Czech-English

For Czech-English, we train baseline phrase-based

systems with no special handling of Czech mor-

phology. We also consider experimental variants

in which Czech words are morphologically seg-

mented. We use Morphessor (Creutz and Lagus,

2007) for morphological segmentation.

Finally, we  consider  a  re-ranking  technique

based  on  the  degree  of  commonality  between

parts-of-speech (POS) in each source sentence and

each respective translation of that source sentence.

To this end, we use MorphoDiTa (Straková et al.,

2014) and the Stanford CoreNLP toolkit (Manning

et al., 2014) to POS tag the Czech and English sen-

tences, respectively. We next construct a dictio-

nary that maps POS tags from one language to tags
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in the other. After translating with Moses, each

English translation in the n-best list is augmented

with a POS intersection score, and rerank taking

this new score into account. We define the POS

intersection score as simply the number of iden-

tical POS tags between a Czech sentence and the

hypothesized English translation.

System BLEU BLEU-c

Moses trained on Europarl 18.59 17.72

Moses  trained  on  Eu-

roparl, Common  Crawl

and News Commentary

20.69 19.83

Stemming  as  pre-

processing, Moses

trained on Europarl

17.88 17.08

Morfessor trained on Eu-

roparl, Moses trained on

Europarl

16.48 15.74

POS intersection, Moses

trained on Europarl

15.68 13.46

Morfessor trained on Eu-

roparl, POS intersection,

Moses trained on Europarl

13.43 13.74

Table 3: Results for Czech into English.

5 German-English and English-German

For German-English and English-German, we fo-

cus primarily on the effects of source clause re-

ordering transformations. In this  approach, we

transform source language s into s′, such that the

clause structure of sentences in s′ more closely fol-

low the clause structure of target language t.

5.1 English to German

With the goal of restructuring English source sen-

tences to have more German-like structure, we de-

fine the following transformation rules:

1. Detect all clauses in a sentence which might

require transformation. We selected spans of

text, which were labeled as S or SBAR by the

parser. We do not include clauses which be-

gin with “to”.

2. For each clause, we apply the following rules

in order :

(a) If there exists a verb phrase (detected by

a shallow parser) with “to”, we move

the remaining portion of the verb phrase

(starting with token “to”) to the end of

the clause.

(b) If  there exists a verb phrase (detected

by a shallow parser) with a token with

VBN part of speech tag, we move the re-

maining portion of the verb phrase (start-

ing with VBN token) to the end of the

clause.

(c) If there exists a verb phrase (detected by

a shallow parser) starting with a modal

verb, we leave the modal verb but move

the rest of the verb phrase to the end of

the clause.

We used a  state-of-the-art  shallow parser  (Pun-

yakanok and Roth, 2001) in conjunction with a

constituent  parser  (Socher  et  al., 2013)  to  im-

plement the above transformation rules. For the

purposes  of  the  English-German  language  pair,

we  pre-process  all  English  data  into  equivalent

English′ data using the above transformation rules.

We  train  a  German  language  model  on  the

German  side  of  the  Europarl, Common Crawl,

and News Commentary corpora, and a translation

model on the English′-German Europarl corpus.

Our  development  set  for  tuning  was  the  WMT

newstest data from 2008–2014. Results for the

WMT newtest-2015 data set  under the baseline

(en-de)  and  restructured  (en′-de)  conditions  are

shown in Table 4.

System BLEU BLEU-cased TER

en-de 16.6 16.3 0.933

en′-de 17.9 17.2 0.731

Table 4: Results for English and English′ trans-

lated into German.

5.2 German to English

Holmqvist et al. (2011) report improvements on

German-English when modifying German text to

be more like English. To this end, we utilize a sub-

set of the clause restructuring rules (rules 4 & 6)

from Collins et al. (2005):

• If  a  finite  verb  (VVFIN) and  a  particle

(PTKVZ) are found in the same clause (sub-

tree labeled as S), then move the particle to

precede the verb.

• Before applying rule 6, we first remove all in-

ternal VP nodes, and replace them by their
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children in the tree. Then, for every clause

which dominates a finite verb, infinitival verb

and a negative particle (PTKNEG), then the

negative particle is moved to directly follow

the finite verb.

We used the Stanford Parser (Manning et al.,

2014) for parsing German sentences and then ap-

plied the relevant rules. The reordered sentences

were the yield of the transformed tree. The re-

ordered sentences were then segmented using the

jWordSplitter 2 for compound splitting.

We train an English 6-gram language model on

the Gigaword corpus, and a translation model on

the German′-English Europarl corpus. Our devel-

opment set for tuning was the WMT newstest data

from 2008–2014. Results for the WMT newtest-

2015 data set under the baseline (de-en) and re-

structured  (de′-en)  conditions  are  shown in  Ta-

ble 5.

System BLEU BLEU-cased TER

de-en 21.4 22.2 0.938

de′-en 24.9 23.8 0.641

Table 5: Results for German and German′ trans-

lated into English.

6 Discussion and Conclusion

Overall, tackling the rich morphology of Finnish

proved to be effective in improving upon the base-

line, but not by much, and only in the case where

the  translation  model  could  be  consulted  as  to

whether source words in the tuning and testing data

were known.

The  variation  of  our  Finnish-English  system

in  §3.2.1 breaks  down  the  Finnish  data  into

those components which make up the agglutinated

words, treating  the  morphemes, rather  than the

original tokens, as the words. In teasing out the

morphemes from the original data, more individ-

ual word alignments can be created between source

and target tokens, but inflectional data such as the

case of nouns and the person and tense of verbs, is

lost. In this case, different English tokens which

may truthfully align to differently inflected forms

of the same lemma may instead compete for align-

ment with the lemma in the translation table, thus

creating confusion and resulting in evaluation be-

low the baseline.

2http://sourceforge.net/projects/jwordsplitter/

The  second  variation  (in  §3.2.2)  creates  the

potential  for  alignments  between  agglutinated

Finnish words with groups of English words, but

also between Finnish lemmas and single English

words. While there is more potential for a correct

alignments — still despite inflectional information

being lost — the approach is still brute force, and

there is still confusion created in the translation

table since some of the probability given to the

correct alignment, whatever that may be, is taken

by the alignment of some English words with the

agglutinated or non-agglutinated Finnish counter-

part.

The third variation (in §3.2.3), while addressing

the issue of over-lemmatization created in the first

variation, does in fact improve on the baseline. In

this final case, inflected forms found in the training

data retain their inflection, and so the first person

singular form of the verb “to be” in Finnish has

greater chance of being translated into “am” rather

than the lemmatized form being translated into the

most prevalent form of “to be” in the target lan-

guage training data — “is” for example.

Still the problem of Finnish morphology is very

hard for a translation system into English. Our sys-

tem has only addressed the derivational morphol-

ogy of Finnish agglutination. We have not at all

addressed the inflectional morphology of Finnish,

and so much information about the role of certain

tokens in the source sentence is lost. Some nec-

essary English words, such as personal pronouns,

may be lost on the system because the presence of

an English pronoun such as “I” in the best English

translation may only be encoded in the inflectional

morphology of the Finnish.

In further research, we may try a factored model

for our system which encodes not only the lemma

or lemmas produced by omorfi, but also the gram-

matical information from the original inflectional

morphology. Further still, our system has not ad-

dressed the potential problems of reordering be-

tween the source and target languages.

At the very least, a rule could be implemented

which places Finnish postpositions in front of their

objects as a preprocessing step. As Finnish is a

head-final language like English, it is possible that

no further rule-based reordering would have to be

done, but more research is warranted to make this

claim. With  these  complications  yet  to  be  ad-

dressed, there is certainly more that we may do in

the future to improve evaluation.
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Abstract

This paper describes the syntax-based sys-
tems built at the University of Edinburgh
for the WMT 2015 shared translation task.
We developed systems for all language
pairs except French-English. This year
we focused on: translation out of En-
glish using tree-to-string models; contin-
uing to improve our English-German sys-
tem; and source-side morphological seg-
mentation of Finnish using Morfessor.

1 Introduction

This year’s WMT shared translation task featured
five language pairs: English paired with Czech,
Finnish, French, German, and Russian. We built
syntax-based systems in both translation direc-
tions for all language pairs except English-French.

For English → German, we continued to de-
velop our string-to-tree system, which has proven
highly competitive in previous years. Additions
this year included the use of a dependency lan-
guage model, an alternative tuning metric, and soft
source-syntactic constraints.

For translation from English into Czech,
Finnish, and Russian, we built STSG-based tree-
to-string systems. Support for this type of model
is a recent addition to the Moses toolkit. In previ-
ous years, our systems have all used string-to-tree
models and have only translated into English and
German.

For Finnish → English, we experimented with
unsupervised morphological segmentation using
Morfessor 2.0 (Virpioja et al., 2013).

For the remaining systems (Czech → English,
German→ English, and Russian→ English), our
systems were essentially the same as last year’s
(Williams et al., 2014) except for the addition of
this year’s training data.

2 System Overview

2.1 Pre-processing

The training data was pre-processed using scripts
from the Moses toolkit. We first normalized
the data using the normalize-punctuation.perl
script then performed tokenization, parsing, and
truecasing. To parse the English data, we used
the Berkeley parser (Petrov et al., 2006; Petrov
and Klein, 2007). To parse the German data, we
used the ParZu dependency parser (Sennrich et
al., 2013).

2.2 Word Alignment

For word alignment we used either MGIZA++
(Gao and Vogel, 2008), a multi-threaded imple-
mentation of GIZA++ (Och and Ney, 2003), or
fast_align (Dyer et al., 2013). In preliminary
experiments, we found that the tree-to-string sys-
tems were particularly sensitive to the choice of
word aligner, echoing a previous observation by
Neubig and Duh (2014). See the individual tree-
to-string system descriptions in Section 3.

2.3 Language Model

We used all available monolingual data to train one
interpolated 5-gram language model for each sys-
tem. Using either lmplz (Heafield et al., 2013)
or the SRILM toolkit (Stolcke, 2002), we first
trained an individual language model for each of
the supplied monolingual training corpora. These
models all used modified Kneser-Ney smoothing
(Chen and Goodman, 1998). We then interpolated
the individual models using SRILM, providing the
target-side of the system’s tuning set (Section 2.7)
for perplexity-based weight optimization.

2.4 String-to-Tree Model

For English→ German and the systems that trans-
late into English, we used a string-to-tree model.
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2.4.1 Grammar
The string-to-tree translation model is based on a
synchronous context-free grammar (SCFG) with
linguistically-motivated labels on the target side.

SCFG rules were extracted from the word-
aligned parallel data using the Moses implemen-
tation (Williams and Koehn, 2012) of the GHKM
algorithm (Galley et al., 2004; Galley et al., 2006).

Minimal GHKM rules were composed into
larger rules subject to restrictions on the size of
the resulting tree fragment. We used the settings
shown in Table 1, which were chosen empirically
during the development of 2013’s systems (Nade-
jde et al., 2013).

Parameter Unbinarized Binarized
Rule depth 5 7
Node count 20 30
Rule size 5 7

Table 1: Parameter settings for rule composition.
The parameters were relaxed for systems that used
binarization to allow for the increase in tree node
density.

Further to the restrictions on rule composition,
fully non-lexical unary rules were eliminated us-
ing the method described in Chung et al. (2011)
and rules with scope greater than 3 (Hopkins and
Langmead, 2010) were pruned from the trans-
lation grammar. Scope pruning makes parsing
tractable without the need for grammar binariza-
tion.

2.4.2 Feature Functions
Our core set of string-to-tree feature functions is
unchanged from previous years. It includes the n-
gram language model’s log probability for the tar-
get string, the target word count, the rule count,
and various pre-computed rule-specific scores.
For a grammar rule r of the form

C → 〈α, β,∼〉
where C is a target-side non-terminal label, α is a
string of source terminals and non-terminals, β is
a string of target terminals and non-terminals, and
∼ is a one-to-one correspondence between source
and target non-terminals, we score the rule accord-
ing to (logarithms of) the following functions:

• p (C, β | α,∼) and p (α | C, β,∼), the direct
and indirect translation probabilities.

• plex (β | α) and plex (α | β), the direct and
indirect lexical weights (Koehn et al., 2003).

• ppcfg (π), the monolingual PCFG probability
of the tree fragment π from which the rule
was extracted.

• exp(−1/count(r)), a rule rareness penalty.

2.5 Tree-to-String Model
For English→ Czech, English→ Finnish, and En-
glish→ Russian, we used a tree-to-string model.

2.5.1 Grammar
In the tree-to-string model, the translation gram-
mar is a synchronous tree-substitution gram-
mar (Eisner, 2003) with parse tree fragments on
the source-side and strings of terminals and non-
terminals on the target-side.

As with the string-to-tree models, the grammar
was extracted from the word-aligned parallel data
using the Moses implementation of the GHKM al-
gorithm. Minimal GHKM rules were composed
into larger rules subject to the same size restric-
tions (Table 1). Unlike string-to-tree rule extrac-
tion, fully non-lexical unary rules were included
in the grammar and scope pruning was not used.

2.5.2 Feature Functions
The tree-to-string feature functions are similar to
those of the string-to-tree model. For a grammar
rule r of the form

〈π, β,∼〉
where π is a source-side tree fragment, β is a string
of target terminals and non-terminals, and ∼ is
a one-to-one correspondence between source and
target non-terminals, we score the rule according
to (logarithms of) the following functions:

• p (β | π,∼) and p (π | β,∼), the direct and
indirect translation probabilities.

• plex (β | π) and plex (π | β), the direct and
indirect lexical weights (Koehn et al., 2003).

• exp(−1/count(r)), a rule rareness penalty.

2.6 Decoding
Decoding for the string-to-tree models is based on
Sennrich’s (2014) recursive variant of the CYK+
parsing algorithm combined with LM integration
via cube pruning (Chiang, 2007). Decoding for the
tree-to-string models is based on the rule matching
algorithm by Zhang et al. (2009) combined with
LM integration via cube pruning.
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2.7 Tuning
The feature weights were tuned using the Moses
implementation of MERT (Och, 2003) for all sys-
tems except English-to-German, for which we
used k-best MIRA (Cherry and Foster, 2012) due
to the use of sparse features.

For the tree-to-string systems, we used all of
the previous years’ test sets as tuning data (except
newstest2014, which was used as the development
test set). For the string-to-tree systems, we used
subsets of the test data to speed up decoding.

3 Individual Systems

In this section we describe individual systems and
present experimental results. In many cases, the
only difference from the generic setup of the pre-
vious section is that we perform right binarization
of the training and test parse trees.

We also built hierarchical phrase-based systems
(Chiang, 2007), which we refer to in tables as ‘Hi-
ero.’ These systems were built using the Moses
toolkit, with standard settings. They were not used
in the submission and are included for comparison
only.

For each system, we present results for both the
development test set (newstest2014 in most cases)
and for the test set (newstest2015) for which ref-
erence translations were provided after the system
submission deadline. We refer to these as ‘devtest’
and ‘test’, respectively.

3.1 English to Czech
For English → Czech we built a tree-to-string
system. We used fast_align for word align-
ment due to the large training data size and on the
strength of its performance for English→ Finnish
and English→ Russian. We used all test sets from
2008 to 2013 as tuning data. Table 2 gives the
mean BLEU scores, averaged over three MERT
runs. Our submitted system was the right bina-
rized system that, out of the three runs, scored
highest on devtest.

system devtest test
Hiero 20.2 16.8
Tree-to-string 19.0 15.7
+ right binarization 19.5 16.1

Table 2: English to Czech translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

3.2 English to Finnish
In preliminary English → Finnish experi-
ments, we compared the use of MGIZA++ and
fast_align. Since there was only one test
set provided, in these initial experiments we split
newsdev2015 into two halves, using the first half
for tuning and the second half for testing. Table 3
gives the mean BLEU scores, averaged over three
MERT runs.

MGIZA++ fast_align

Hiero 11.7 11.6
Tree-to-string 11.5 12.3
+ right binarization 11.9 12.8

Table 3: Comparison of word alignment tools for
English to Finnish. BLEU on subset of news-
dev2015.

For our final system, we used fast_align
for word alignment and we used the full news-
dev2015 test set as tuning data. Table 4 gives the
mean BLEU scores for this setup. Our submitted
system was the right binarized system that, out of
the three MERT runs, scored highest on devtest.

system dev test
Hiero 11.4 11.5
Tree-to-string 11.9 11.8
+ right binarization 12.2 12.3

Table 4: Final English to Finnish translation
results (BLEU) on dev (newsdev2015) and test
(newstest2015) sets.

3.3 English to German
We experiment with the following additions to last
year’s submission system: a relational dependency
language model (RDLM) (Sennrich, 2015); tuning
on the syntactic metric HWCM (Liu and Gildea,
2005; Sennrich, 2015); soft source-syntactic con-
straints (Huck et al., 2014); a large-scale n-
gram Neural Network language model (NPLM)
(Vaswani et al., 2013); treebank binarization (Sen-
nrich and Haddow, 2015); particle verb restructur-
ing (Sennrich and Haddow, 2015). We do not in-
clude syntactic constraints in this year’s baseline.
Our string-to-tree baseline uses a dependency rep-
resentation of compounds, as described in (Sen-
nrich and Haddow, 2015).

RDLM is a relational dependency language
model which predicts the dependency relations
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system BLEU 2+ SUBJ
original trees 20.1 0
+ RDLM 21.0 0
+ RDLM (bidir.) 21.2 0
right binarization 20.4 272
head binarization 20.5 152
+ RDLM 21.3 43
+ RDLM (bidir.) 21.5 32

Table 5: English to German translation results
(on newstest2013) with different binarizations and
language models. 2+ SUBJ: number of finite
clauses with more than one subject.

and words in the translation hypotheses based on
the dependency relations and words of the ances-
tor and sibling nodes in the dependency tree. Our
model contains several extensions over the origi-
nal paper (Sennrich, 2015). Like the original pa-
per, we use an ancestor context size of 2, but we
increase the sibling context size from 1 to 3, and
allow bidirectional context, using the 3 closest sib-
lings to both the left and right of the current node.
The original model predicts a virtual stop node as
the last child of each tree, which models the prob-
ability that a node has no more children. This is
mirrored by a virtual start node in the bidirectional
model.

We binarize the treebanks before rule extrac-
tion. We note that treebank binarization allows the
extraction of rules that overgeneralize, e.g. allow-
ing structures with zero, or multiple, preterminals
per node, effectively allowing verb clauses with-
out verb and similar. We use head binarization
(Sennrich and Haddow, 2015), which ensures that
each constituent contains exactly one head. Dur-
ing decoding, the generated target trees are un-
binarized to allow scoring with RDLM. Table 5
shows that both right binarization and head bi-
narization overgeneralize, exemplified by the fact
that they allow finite clauses to have multiple sub-
jects1. The RDLM reduces this problem, and the
bidirectional RDLM slightly outperforms the uni-
directional variant, both in terms of BLEU and the
number of overgeneralizations.

For the soft source-syntactic constraints, we an-
notate the source text with the Stanford Neural
Network dependency parser (Chen and Manning,
2014), along with heuristic projectivization (Nivre
and Nilsson, 2005).

1Compound subjects are represented as a single node.

system devtest test
Hiero 19.2 21.0
String-to-tree baseline 19.8 21.4
+ HWCM+BLEU

2 tuning 20.1 21.6
+ head binarization 20.5 22.3
+ RDLM (bidirectional) 21.5 23.3
+ source-syntactic constraints 21.6 23.8
+ 5-gram NPLM 22.0 24.1
+ less pruning (submission) 22.0 24.0
+ particle verb restructuring 22.0 24.4

Table 6: English to German translation results
(BLEU) on devtest (newstest2013) and test (news-
test2015) sets.

The NPLM is a 5-gram feed-forward neural lan-
guage model, and for both RDLM and NPLM
we use a single hidden layer of size 750, a 150-
dimensional input embedding layer with a vocab-
ulary size of 500000, noise-contrastive estimation
with 100 noise samples, and 2 iterations over the
monolingual training set. Estimating LM proba-
bilities for OOV words is a well-known problem,
and we avoid this by filtering the translation model
according to the vocabulary of the neural models.

The impact of all experimental components is
shown in Table 6. Each system in Tables 5 and 6
was tuned separately with MIRA. For our submis-
sion system, we increased the Moses parameters
cube-pruning-pop-limit from 1000 to 4000, and
rule-limit from 100 to 400, but this had little effect
on devtest, and gave even slightly lower BLEU on
test. Particle verb restructuring, which was done
after the submission deadline, increases BLEU on
test. In total, we observe substantial improvements
over our baseline, which roughly corresponds to
last year’s submission systems: 2.2 BLEU on dev-
test, and 3.0 BLEU on test.

3.4 English to Russian

For English → Russian we built a tree-to-string
system. During preliminary experiments we found
that fast_align gave consistent gains over
MGIZA++ (albeit smaller than Finnish→ English
at around 0.3 BLEU). In final experiments we used
fast_align for word alignment and we used
the 2012 and 2013 test sets as tuning data. Table 7
gives the mean BLEU scores, averaged over three
MERT runs. Our submitted system was the right
binarized system that, out of the three runs, scored
highest on devtest.
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system devtest test
Hiero 29.8 23.8
Tree-to-string 27.5 22.1
+ right binarization 28.3 23.0

Table 7: English to Russian translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

3.5 Czech to English
For Czech→ English we built a string-to-tree sys-
tem. We used all test sets from 2008 to 2013 as
tuning data. Table 8 gives the mean BLEU scores,
which are averaged over three MERT runs. Our
submitted system was the right binarized system
that, out of the three runs, scored highest on dev-
test.

system devtest test
Hiero 28.5 24.9
String-to-tree 27.8 24.4
+ right binarization 27.8 24.5

Table 8: Czech to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

3.6 Finnish to English
In preliminary Finnish→ English experiments, we
tried using Morfessor to segment Finnish words
into morphemes. We used Morfessor 2.0 (with de-
fault settings) to learn an unsupervised segmenta-
tion model from all of the available Finnish data,
which was then used to segment all words in the
source-side training and test data. We compared
systems with and without segmentation and using
a system combination of the two — an approach
that has been shown to improve translation quality
for this language pair (de Gispert et al., 2009).

As with English → Finnish, we split news-
dev2015 into two halves, using the first half for
tuning and the second half for testing. Table 9
shows the results: the column headed ‘word’ gives
BLEU scores for the unsegmented systems; the
column headed ‘morph’ gives scores for systems
trained on segmented data; and the column headed
‘syscomb’ gives results for a system combination
using MEMT (Heafield and Lavie, 2010).

For our final system, we used morphological
segmentation but not system combination. We
used the full newsdev2015 test as tuning data. Ta-
ble 10 gives mean BLEU scores for this setup, av-

word morph syscomb
Hiero 17.8 19.1 19.2
String-to-tree 17.6 18.5 18.7
+ right binarization 17.8 18.9 18.9

Table 9: Finnish to English experiments with mor-
phological segmentation.

system dev test
Hiero 18.6 17.5
String-to-tree 18.3 17.2
+ right binarization 18.5 17.7

Table 10: Finnish to English translation results
(BLEU) on dev (newsdev2015) and test (news-
test2015) sets.

eraged over three MERT runs. Our submitted sys-
tem was the right binarized system that, out of the
three, scored highest on newsdev2015.

3.7 German to English

For German → English we built a tree-to-string
system with similar setup as last year’s (Williams
et al., 2014). Our submitted system was right bi-
narized with the following extraction parameters:
Rule Depth = 7, Node Count = 100, Rule Size =
7. At decoding time we used the following non-
default parameter value: max-chart-span = 25.
This limits sub derivations to a maximum span of
25 source words. For the Hiero baseline system we
used max-chart-span = 15. For tuning we used a
random subset of 2000 sentences drawn from the
full tuning set.

We performed some preliminary experiments
with neural bilingual language models, our re-
implementation of the “joint” model of (Devlin
et al., 2014). The bilingual language models are
trained with the NPLM toolkit (Vaswani et al.,
2013). We used 250-dimensional input embedding
and hidden layers, and input and output vocabu-
lary sizes of 500000 and 250000 respectively. One
bilingual language model was a 5-gram model
with an additional context of 9 source words, the
affiliated source word and a window of 4 words on
either side. A second model was a 1-gram model
with an additional context of 13 source words. The
language models were trained on the available par-
allel corpora.

We also added a 7-gram class-based language
model, with 50 word classes trained using mkcls
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system devtest test
Hiero 27.7 28.0
String-to-tree 28.7 28.7
+ bilingual LMs 28.6 28.7
+ bilingual & class LMs 28.3 28.7

Table 11: German to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

(Och, 1999). The language model was trained
on all available monolingual corpora, filtering out
singletons.

Table 11 shows the results. As the preliminary
results were not encouraging, we did not include
the bilingual LMs and class LMs in our submitted
system.

3.8 Russian to English
For Russian → English we built a string-to-tree
system, using the 2012 and 2013 test sets as tun-
ing data. Table 12 gives the mean BLEU scores,
averaged over three MERT runs. Our submitted
system was the right binarized system that, out of
the three runs, scored highest on devtest.

system devtest test
Hiero 31.2 27.1
String-to-tree 30.5 25.9
+ right binarization 30.6 26.2

Table 12: Russian to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

4 Manual Error Analysis

Our syntax-based systems for the German–
English language pairs have greatly improved
over the last years and outperformed traditional
phrase-based statistical machine translation sys-
tems. Translating between German and English
is a challenge for those systems, since extensive
long distance reordering and long distance agree-
ment constraints do not fit that approach. Are our
syntax-based systems tackling these problems bet-
ter? And what are the main remaining problems?

For both German–English and English–
German, we analyzed 100 sentences, we carried
out an error analysis using linguistic error cate-
gories that roughly match other efforts in this area
(Vilar et al., 2006; Toral et al., 2013; Herrmann et

al., 2014; Lommel et al., 2014; Aranberri, 2015).
We used the following error annotation protocol:

1. A bilingual speaker corrects the machine
translation output with minimal necessary ed-
its to render an acceptable translation. This is
done in view of the human reference transla-
tion, but typically a much more literal trans-
lation was obtained.

2. Each edit is noted in a list in the form "old
string→ new string", where either old or new
string may also be empty or discontinuous.

3. In a second pass, all edits are classified with
error categories.

Such an error analysis is subjective. There are
many ways to correct errors (step 1), many ways
to split corrections into units (step 2), and many
ways to classify the errors (step 3). Moreover, an-
alyzing only 100 sentences does not lead to strong
statistically significant findings. With this in mind,
the following analysis is broadly indicative of the
main error types in our syntax-based systems.

Occasionally, parts of a machine translation are
just too muddled that a sequence of edits could be
established. This happened in 8 German–English
sentences, and 7 English–German sentences.

4.1 German–English
16 sentences have no error, while 18 sentences
have only one error. These are of course typically
the shorter ones. The longest sentence without er-
ror is:

• Source: Der Oppositionspolitiker Imran
Khan wirft Premier Sharif vor, bei der Par-
lamentswahl im Mai vergangenen Jahres be-
trogen zu haben.

• MT: The opposition politician Imran Khan
accuses Premier Sharif of having cheated
in the parliamentary election in May of last
year.

This is not a trivial sentence, since it requires the
translation of the complex subclause construction
accuses ... of having cheated, which is rendered
quite differently in German as wirft ... vor ... bet-
rogen zu haben.

An overview of the major error categories is
shown is Figure 13. On average, 2.85 errors per
sentence were identified. This gives us guidance
on the major problems we should be working on
in the future.
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Count Category
29 Wrong content word - noun
25 Wrong content word - verb
22 Wrong function word - preposition
21 Inflection - verb
14 Reordering: verb
13 Reordering: adjunct
12 Missing function word - preposition
10 Missing content word - verb
9 Wrong function word - other
9 Wrong content word - wrong POS
9 Added punctuation
8 Muddle
8 Missing function word - connective
8 Added function word - preposition
7 Missing punctuation
7 Wrong content word - adverb

Count Category
6 Wrong content word - phrasal verb
6 Added function word - determiner
5 Unknown word - noun
5 Missing content word - adverb
5 Missing content word - noun
5 Inflection - noun
4 Reordering: NP
3 Missing content word - adjective
3 Inflection - wrong POS
3 Casing
2 Unknown word - verb
2 Reordering: punctuation
2 Reordering: noun
2 Reordering: adverb
2 Missing function word - determiner
2 Inflection - adverb

Table 13: Main error types in German–English system (count in 100 sentences).

Lexical choice The biggest group of error types
concern translation of basic concepts. On average,
such errors occur 0.76 times per sentence. Given
the vast number of content words that need to be
translated, the actual performance on the task of
lexical translation is pretty high, but it is by no
means solved.

Count Category
29 Wrong content word - noun
25 Wrong content word - verb
9 Wrong content word - wrong POS
7 Wrong content word - adverb
6 Wrong content word - phrasal verb

Prepositions We were surprised by the large
number of errors revolving prepositions. Prepo-
sitions are frequent, but not as frequent as con-
tent words, so the performance on the preposi-
tion translation task is not as good. Prepositions
mostly mark relationships of adjuncts, which in-
volve quite complex considerations — the adjunct,
the modified verb or noun phrase, identifying the
relationship between them in the source sentence,
and the fuzzy meaning of prepositions.

Count Category
22 Wrong function word - preposition
12 Missing function word - preposition
8 Added function word - preposition

Reordering We were also surprised by the low
number of reordering errors. The different word
order between German and English has hampered

translation quality for this language pair histori-
cally. While we cannot declare complete success,
our syntax-based systems constitute great progress
in this area.

Count Category
14 Reordering: verb
13 Reordering: adjunct

4 Reordering: NP
2 Reordering: noun
2 Reordering: adverb

Other issues with verbs Reordering errors in-
volving verbs top the list in the previous group
of error types, but there are also other problems
with verbs: their inflection and the unacceptable
frequency of dropping verbs. The latter has its
roots in faulty word alignment which are based
on IBM Models which often fail to align the out-
of-English-order German verb, thus enabling the
translation model to drop them, which the lan-
guage model often prefers. Inflection is here to
be understood broadly, including the need for the
right function words to form a grammatical correct
verb complex (e.g., will have been resolved).

Count Category
21 Inflection - verb
10 Missing content word - verb

Overall, the main thrust of future research
should be focused on lexical choice, selecting cor-
rect prepositions, and producing the correct verb.
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Count Category
41 Wrong content word - verb
37 Wrong content word - noun
33 Reordering - verb
30 Inflection - verb
22 Missing function word - preposition
17 Inflection - np
14 Wrong function word - preposition
12 Wrong content word - phrasal verb
12 Wrong content word - wrong POS
12 Wrong function word - clausal connective
11 Reordering - pp
11 Inflection - noun
10 Wrong function word - pronoun
10 Missing function word - pronoun
10 Missing function word - determiner
9 Reordering - noun

Count Category
9 Compound merging
8 Added function word - preposition
7 Punctuation - inserted
7 Muddle
7 Missing function word - clausal connective
7 Added function word - determiner
5 Punctuation - missing
5 Missing content word - verb
4 Reordering - adverb
4 Wrong content word - adverb
3 Missing content word - adjective
2 Reordering - pronoun
2 Wrong content word - name
2 Missing content word - adverb
2 Wrong content word - adjective
2 Added function word - pronoun

Table 14: Main error types in English–German system (count in 100 sentences).

4.2 English–German

12 Sentences had no error, 13 sentences only one
error. Less than German–English, which supports
the general contention that translating into Ger-
man is harder. On average, a total of 3.8 errors
per sentence were marked, one error per sentence
more than German–English. An overview of the
major error categories is shown is Figure 14.

The longest sentence with no error is:

• Source: Congressmen Keith Ellison and John
Lewis have proposed legislation to protect
union organizing as a civil right.

• Target: Die Kongressabgeordneten Keith El-
lison und John Lewis haben Gesetze zum
Schutz der gewerkschaftlichen Organisation
als Bürgerrecht vorgeschlagen.

In terms of word order, this is not a
complicated sentence (besides the verb move-
ment proposed→vorgeschlagen), but it does
involve switching of part-of-speech for two
content words: protect→Schutz (verb→noun),
union→gewerkschaftlichen (noun→adjective).

Lexical choice As with German–English, this is
biggest group of error types, with 1.08 errors per
sentence. Verb sense errors tend to be more subtle,
such that a media outlet does not sagt (says) but
berichtet (reports) a news item. For nouns, there
were several stark errors, such the mis-translation

of patient as Geduld (patience) in a medical con-
text. In general, there is no reason to believe that
models that more strongly draw on a wider context
could not resolve many of these cases.

Count Category
41 Wrong content word - verb
37 Wrong content word - noun
12 Wrong content word - phrasal verb
12 Wrong content word - wrong POS
4 Wrong content word - adverb
2 Wrong content word - adjective

Role and order of adjuncts and arguments
While the overall sentence structure is mostly cor-
rect, there are often problems with the handling of
adjunct and argument phrases. Their role is iden-
tified in German by a preposition or the case of a
noun phrase (the main cause of inflection errors).
Their position in the sentence is less strict, but mis-
takes can be and are made.

Count Category
22 Missing function word - preposition
17 Inflection - np
14 Wrong function word - preposition
11 Reordering - pp
11 Inflection - noun

8 Added function word - preposition

Verbs Reordering errors of verbs mainly oc-
cur in complex subclause constructions. German
verbs are more strongly inflected for count and
person, and often a few function words are needed
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in just the right order and placement for a correct
verb complex.

33 Reordering - verb
30 Inflection - verb
5 Missing content word - verb

Pronouns Due to grammatical gender of nouns
in German, translating it and they is a complex un-
dertaking. German verbs also require more fre-
quently reflexive pronouns.

Count Category
10 Wrong function word - pronoun
10 Missing function word - pronoun
2 Added function word - pronoun

Clausal connectives A specific problem of
English–German translations are clausal connec-
tives. In English, the relationship of the sub clause
is often not explicitly marked (e.g., Police say the
rider), while German requires a function word.

Count Category
12 Wrong function word - clausal connective

7 Missing function word - clausal connective
Overall, while there are more structural prob-

lems than for German–English, often the remain-
ing challenge is the disambiguation of lexical
choices and the correct labelling of syntactic re-
lationships.

5 Conclusion

This year we submitted syntax-based systems for
all language pairs except English-French. Our
English → German system included significant
improvements over last year’s and we intend to
continue developing this system. We presented
the first results using Moses’ STSG-based tree-to-
string model.
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Abstract

In this paper, we describe the “FBK English-
Spanish Automatic Post-editing (APE)” systems
submitted to the APE shared task at the WMT
2015. We explore the most widely used statistical
APE technique (monolingual) and its most signif-
icant variant (context-aware). In this exploration,
we introduce some novel task-specific dense fea-
tures through which we observe improvements
over the default setup of these approaches. We
show these features are useful to prune the phrase
table in order to remove unreliable rules and help
the decoder to select useful translation options
during decoding. Our primary APE system sub-
mitted at this shared task performs significantly
better than the standard APE baseline.

1 Introduction

Over the last decade a lot of research has been
carried out to mimic the human post-editing pro-
cess in the field of Automatic Post-Editing (APE).
The objective of APE is to learn how to cor-
rect machine translation (MT) errors leveraging
the human post-editing feedback. The variety of
data generated by human feedback, in terms of
post editing, possess an unprecedented wealth of
knowledge about the dynamics (practical and cog-
nitive) of the translation process. APE leverages
the potential of this knowledge to improve MT
quality. The problem is appealing for several rea-
sons. On one side, as shown by Parton et al.
(2012), APE systems can improve MT output by
exploiting information unavailable to the decoder,
or by performing deeper text analysis that is too
expensive at the decoding stage. On the other
side, APE represents the only way to rectify er-
rors present in the “black-box” scenario where the
MT system is unknown or its internal decoding in-
formation is not available.

The goal of the APE task is to challenge the re-
search groups to improve the MT output quality
by the use of a dataset consisting of triplets of sen-
tences (source, MT output, human post-edition).
We are facing the “MT-as-Black-box” scenario, so
neither we have access to the MT engine nor do
we have any decoding trace. The data for this pi-
lot task belongs to generic news domain which
reflects data sparseness, and the post-edition of
the MT output is obtained through crowdsourcing
which makes it vulnerable to noise thus making
this task even more challenging.

To begin with, §2 discusses the statistical APE
methods used to implement the APE systems. §3
describes the data set available for this shared
task, and provides detail of the experimental setup.
§4 is our major contribution which discusses the
FBK-APE pipeline and shows that incorporation
of task-specific dense features can be useful to en-
hance APE systems. Our final submitted system is
reported in §5 followed by conclusion in §6.

2 Statistical APE Methods

In this paper we examine the most widely used
statistical phrase-based post-editing strategy pro-
posed by Simard et al. (2007) and its most signifi-
cant variant proposed by Béchara et al. (2011). We
describe the two methods and there pros and cons
in the following subsections.

2.1 APE-1 (Simard et al., 2007)

In this approach APE systems are trained in the
same way as the statistical machine translation
(SMT) system. But, as contrast to SMT which
makes use of the source and target language par-
allel corpus, APE uses the MT output and its cor-
responding human post-edited data in the form of
parallel corpus. One of the most important miss-
ing concepts in this “monolingual translation” is
the inclusion of source information, which has
been incorporated in the next approach.
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2.2 APE-2 (Béchara et al., 2011)

This technique is the most significant variant
of (Simard et al., 2007), where they come up
with a new data representation to include the
source information along with the MT output on
the source side of the parallel corpus. For each
MT word f ′, the corresponding source word (or
phrase) e is identified through word alignment and
used to obtain a joint representation f ′#e. This
results in a new intermediate language F ′#E
that represents the new source side of the parallel
data used to train the statistical APE system.
This “context-aware” variant seems to be more
precise but faces two potential problems. First,
preserving the source context comes at the cost of
a larger vocabulary size and, consequently, higher
data sparseness that will eventually reduce the
reliability of the translation rules being learned.
Second, the joint representation f ′#e may be
infected by the word alignment errors which may
mislead the learning of translation option.

Recently, Chatterjee et al. (2015) showed a fair
systematic comparison of these two approaches
over multiple language pairs and revealed that
inclusion of source information in the form
of context-aware variant is useful to improve
translation quality over standard monolingual
translation approach. They also showed that
using monolingual translation alignment to build
context-aware APE helps to mitigate the sparsity
issue at the level of word alignment and for this
reasons, we use this configuration to implement
APE-2 method.

3 Data set and Experimental setup

Data: In this shared task we are provided with a
tri-parallel corpus consisting of source (src), MT
output (mt), and human post-edits (pe). While
APE-1 uses only the last two elements of the
triplet, all of them are used in the context-aware
APE-2. To obtain joint representation (f ′#e)
in APE-2, word alignment model is trained on
src-mt parallel corpus of the training data. The
training set consist of∼11K triplets, we divide the
development set into dev and test set consisting of
500 triplets each. Our evaluation is based on the
performance achieved on this test set. We tokenize
the data set using the tokenizer available in the
MOSES(Koehn et al., 2007) toolkit. Training and
evaluation of our APE systems are performed on

the true-case data.

Experiment Settings: To develop the APE
systems we use the phrase-based statistical ma-
chine translation toolkit MOSES(Koehn et al.,
2007). For all the experiments mentioned in this
paper we use “grow-diag-final-and” as alignment
heuristic and “msd-bidirectional-fe” heuristic for
reordering model. MGIZA++ (Gao and Vogel,
2008) is used for word alignment. The APE
systems are tuned to optimize TER(Snover et al.,
2006) with MERT(Och, 2003).

We follow an incremental strategy to develop
the APE systems, at each stage of the APE
pipeline we find the best configuration of a
component and then proceed to explore the next
component. Our APE pipeline consist of various
stages like language model selection, phrase table
pruning, and feature designing as discussed in the
following sections.

Evaluation Metric: We select TER (Snover
et al., 2006) as our evaluation metric because it
mimics the human post-editing effort by measur-
ing the edit operation needed to translate the MT
output into its human-revised version.

Apart from TER as an evaluation metric we also
compute number of sentences being modified1

in the test set and then compute the precision as
follow:
Precision =

NumberofSentencesImproved

NumberofSentencesModified

Baseline: Our baseline is the MT output as-
is. To evaluate, we use the corresponding human
post-edited corpus which gives us 23.10 TER
score.

4 APE Pipeline

In this section we describe various components
that we explore at each stage of the pipeline. At
each stage, we study the effect of several configu-
ration of each component on both the APE meth-
ods (APE-1 and APE-2)

4.1 Language Model Selection (APE-LM)

We use various data set to train multiple language
models to see which of them have high impact on
the translation quality. All the LMs are trained us-

1For each sentence in the test set, if the TER score of APE
system is different than the baseline then we consider it as a
modified sentence
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ing IRSTLM toolkit (Federico et al., 2008) having
order of 5 gram with kneser-ney smoothing. The
data set varies in quality and quantity as described
below:

• LM 1 contains only the training data(∼11K)
provided in this shared task. Although the
data set contains few sentences to train a lan-
guage model compared to the data used in
MT, it is quite reliable because it is sampled
from the same distribution of the test set.

• LM 2 consists of News Commentary having
∼200K sentences, downloaded from WMT
2013 translation task.2 This corpus belongs
to the same domain of the APE data, but it
is created under different conditions (i.e. in-
volving professional translators and translat-
ing from scratch the source sentence) making
it significantly different from the data used to
build LM1.

• LM 3 (Big data) contains News Crawl data
from 2007-2012 contributing to ∼13M sen-
tences, downloaded from WMT 2013 trans-
lation task 2. This data set has huge amount
of news crawled from the Web and covering
several topics.

• LM1+LM2+LM3: All the previous lan-
guage models are simultaneously used by the
APE systems. A log-linear weight is assigned
to each language model during the tuning
stage.

APE-1 APE-2
LM1 23.95 24.59
LM2 23.96 24.62
LM3 24.06 24.66
LM1+LM2+LM3 24.05 24.69

Table 1: Performance (TER score) of the APE sys-
tems using various LMs

Results of both the APE systems are shown in
Table 1. We notice that the performance of the
APE systems do not show much variation for dif-
ferent LMs. This can come from the fact that the
news commentary and new crawl data might not
resemble well the shared task data. For this rea-
son, the in-domain LM1 is selected and used in
the next stages.

2http://www.statmt.org/wmt13/translation-task.html

4.2 Pruning Strategy (APE-LM1-Prun)

To remove unreliable translation rules generated
from the data obtained through crowd-sourcing,
pruning strategies are investigated. First, we test
the classic pruning technique by Johnson et al.
(2007) which is based on the significance testing
of phrase pair co-occurrence in the parallel cor-
pus. According to our experiments, this technique
is too aggressive when applied on limited amounts
of sparse data. Nearly 5% of the phrase table is re-
tained after pruning with mostly self-rules (trans-
lation options that contain same source and target
phrase).

For this reason we develop a novel feature
for pruning which measures the usefulness of a
translation option present in the phrase table. For
each translation option in the phrase table, all the
parallel sentences are retrieved from the training
set such that the source phrase of the translation
option is present in the source sentence of the
parallel corpus. We then substitute the target
phrase of the translation option in the source
sentence of the parallel corpus and then compute
the TER score wrt. the corresponding target
sentence. If TER increases then we increment
the neg-count by 1, and if TER decreases we
increment the pos-count by 1. Finally, we com-
pute the neg-impact and the pos-impact as follows:

neg-impact =
neg-count

NumberofRetrievedSentences

pos-impact =
pos-count

NumberofRetrievedSentences

Once these ratios are computed for all trans-
lation options, we filter the phrase table by
thresholding on the neg-impact to remove rules
which are not useful (higher the neg-impact less
useful it is). All translation options greater than
or equal to the threshold value are filtered out.
We apply this pruning strategy for both the APE
methods over various threshold values.

Table 2 and Table 3 show the performance af-
ter pruning the APE-1-LM1 and APE-2-LM1 sys-
tems respectively. In Table 2, we observe that TER
score for various threshold values are very close
to each other, so in order to select the best thresh-
old value we base our decision on precision. So
for APE-1, we select the threshold value of 0.4
which shows the highest precision, namely APE-
1-LM1-Prun0.4. For APE-2, it is evident from
the result in Table 3 that the threshold value of 0.2
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Threshold TER Number of
sentences
modified

Precision

0.8 23.90 88 0.12
0.6 23.91 90 0.13
0.4 23.98 94 0.15
0.2 23.77 70 0.12

Table 2: Performance (TER score) of the APE-1-
LM1 after pruning at various threshold values

Threshold TER Number of
sentences
modified

Precision

0.8 24.29 130 0.20
0.6 23.99 103 0.18
0.4 23.66 70 0.18
0.2 23.46 50 0.22

Table 3: Performance (TER score) of the APE-2-
LM1 after pruning at various threshold values

proves to be the best in terms of TER score (re-
duction by 1.13 point) as well as in terms of pre-
cision (APE-2-LM1-Prun0.2). These results sug-
gest that our pruning technique has a larger impact
on the APE-2 method compared to APE-1. This is
motivated by the fact that the context-aware ap-
proach is affected by the data sparseness problem
resulting in a large number of unreliable transla-
tion options that can be removed from the phrase
table.

4.3 New Dense Features Design

The final stage of our APE pipeline is the feature
design. When a translation system is trained using
Moses, it generates translation model consisting of
default dense features like phrase translation prob-
ability (direct and indirect) and lexical translation
probability (direct and indirect). In the task of Au-
tomatic Post-editing where we have the source and
target phrases in the same language, we can lever-
age this information to provide the decoder with
some useful insights. In the light of this direction
we design four task-specific dense features to raise
the “awareness” of the decoder.

• Similarity (f1):
This feature (f1) is quite similar to the one
proposed in (Grundkiewicz and Junczys-
Dowmunt, 2014) which measures the

similarity between the source and target
phrase of the translation options. The score
for f1 is computed as follows:

f1score = e1−ter(s,t)

where ter measures the number of edit oper-
ations required to translate the source phrase
s to the target phrase t and it is computed
using TER(Snover et al., 2006).

• Reliability (f2.1 and f2.2) :
We allow the model to learn the reliability of
the translation option by providing it with the
statistics of the quality (in terms of HTER) of
the parallel sentences used to learn that par-
ticular translation option. Better the quality,
higher the likelihood to learn reliable rules.
For each translation option in the phrase ta-
ble, all the parallel sentence pairs from the
training data containing the source phrase in
the machine translated sentence of the pair
and target phrase in the post-edited sentence
are retrieved along with their HTER score.
These scores are then used to compute the
following two features:
Median (f2.1): The median of the HTER
values of all the retrieved pairs.
Standard Deviation (f2.2): The standard
deviation of the HTER values of all the re-
trieved pairs.

• Usefulness (f3) : As discussed in Section 4.2
we use pos-impact as a feature to measure the
positive impact of a translation option over
the training set. Higher the positive impact,
higher is its usefulness.

We study the impact of individual features when
applied one at a time and when used all together.

Features TER Number of
sentences
modified

Precision

f1 23.87 81 0.16
f2.1, f2.2 23.92 94 0.19

f3 23.88 82 0.14
f1, f2.1,
f2.2, f3

23.97 85 0.12

Table 4: Performance (TER score) of the APE-1-
LM1-Prun0.4 for different features

Table 4 and Table 5 show the performance
of various features for APE-1-LM1-prun0.4 and
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Features TER Number of
sentences
modified

Precision

f1 23.50 52 0.27
f2.1, f2.2 23.50 53 0.20

f3.1 23.52 59 0.22
f1, f2.1,
f2.2, f3.1

23.52 54 0.19

Table 5: Performance (TER score) of the APE-2-
LM1-Prun0.2 for different features

APE-2-LM1-Prun0.2 systems respectively. We
observe, on this data set, that the use of these
features retains the APE performance in terms of
TER score but slight improvement is observed
in terms of precision over both the APE sys-
tems, which indicate its contribution to improve
the translation quality.

5 Final Submitted Systems

Our primary system is the best system in Table 5
i.e. APE-2-LM1-Prun0.2-f1 and contrastive sys-
tem is the best system in Table 4 i.e. APE-1-LM1-
Prun0.4-f2.1-f2.2. According to the shared task
evaluation report the scores of our submitted sys-
tems are shown in Table 6

Systems Case
Sensitive

Case In-
sensitive

Baseline (MT) 22.91 22.22
APE Baseline
(Simard et al., 2007)

23.83 23.13

Primary 23.22 22.55
Contrastive 23.64 22.94

Table 6: APE shared task evaluation score (TER)

Although we could not beat the Baseline (MT),
but we see a clear improvement over APE baseline
(Simard et al., 2007) by the inclusion of our novel
features and the use of the pruning strategy.

6 Conclusion

The APE shared task was challenging in many
terms (black-box MT, generic news domain
data, crowdsourced post-editions). Though we
were unable to beat the MT baseline but we
gained some positive experience through this
shared task. First, our primary APE system

performed significantly better (0.61 TER reduc-
tion) over the standard APE baseline (Simard et
al., 2007) as reported in Table 6. Second, our
novel dense feature (neg-impact) used to prune
phrase table shows significant improvement in
the context-aware APE performance. Third,
other task-specific dense features which measure
similarity and reliability of the translation op-
tions help to improve the precision of our APE
systems. To encourage the use of our features
we have publicly released the scripts at https:
//bitbucket.org/turchmo/apeatfbk/
src/master/papers/WMT2015/APE_
2015_System_Scripts.zip.
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Abstract

We describe the USAAR-SAPE English–
Spanish Automatic Post-Editing (APE)
system submitted to the APE Task orga-
nized in the Workshop on Statistical Ma-
chine Translation (WMT) in 2015. Our
system was able to improve upon the
baseline MT system output by incorporat-
ing Phrase-Based Statistical MT (PBSMT)
technique into the monolingual Statisti-
cal APE task (SAPE). The reported final
submission crucially involves hybrid word
alignment. The SAPE system takes raw
Spanish Machine Translation (MT) output
provided by the shared task organizers and
produces post-edited Spanish text. The
parallel data consist of English Text, raw
machine translated Spanish output, and
their corresponding manually post-edited
versions. The major goal of the task is to
reduce the post-editing effort by improv-
ing the quality of the MT output in terms
of fluency and adequacy.

1 Introduction

In this paper, we present the submission of Saar-
land University (USAAR) to the WMT2015 APE
task. The system combines a hybrid word align-
ment system implementation with a monolingual
PBSMT for the language pair English-Spanish
(EN-ES), translating from English into Spanish.

In order to achieve the desired translation qual-
ity, translations provided by MT systems need to
be corrected by human translators. Automatic MT
post-editing (APE) (Knight and Chander, 1994) is
the method of improving raw MT output, before
performing human post-editing on it. The objec-
tive is to decreases the amount of errors produced
by the MT systems, achieving in the end a produc-
tivity increase in the translation process.

Usually APE tasks focus on fluency errors pro-
duced by the MT system. The most frequent ones
are incorrect lexical choices, incorrect word or-
dering, the insertion of a word, the deletion of a
word. For the WMT2015 APE task, we adapted
our system in order to automatically post-edit lex-
ical choice errors, word insertions and deletions.
The method is also able to correct to some extent
word ordering.

The remainder of the paper is organized as fol-
lows. Section 2 gives an overview of the related
work, Section 3 describes the various components
of our system, in particular the corpus preprocess-
ing module, the hybrid word alignment module
and the PBSMT model. In Section 4, we out-
line the complete experimental setup. Section 5
presents the results of the automatic and human
evaluation, followed by conclusion in Section 6.

2 Related Work

In order to implement the correction of repeti-
tive errors in the MT output, various automatic
or semi-automatic post-processing or automatic
PE techniques have been developed. Although
MT output needs to be post-edited by humans to
produce publishable quality translation (Roturier,
2009; TAUS/CNGL Report, 2010), it is faster
and cheaper to post-edit MT output than to per-
form human translation from scratch. In some
cases, recent studies have shown that the qual-
ity of MT output plus PE can exceed the qual-
ity of human translation (Fiederer and O’Brien,
2009; Koehn, 2009; De Palma and Kelly, 2009)
as well as the productivity (Zampieri and Vela,
2014). Aimed at cost-effective and timesaving use
of MT, the PE process needs to be further opti-
mised (TAUS/CNGL Report, 2010). Post-editing
can be also used as a MT evaluation method, im-
plying at least source and target language skills,
different from ranking, that does nor require spe-
cific skills, a homogeneous group of evaluators be-
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ing enough to perform the task (Vela and van Gen-
abith, 2015) .

The aim of automatic post-editing (APE) is to
improve the output of MT by post-processing it.
One of the first approaches was the one introduced
by Chen and Chen (1997) who proposed a com-
bination of rule-based MT (RBMT) and statistical
MT (SMT) systems aiming at merging the positive
properties of each system type for a better machine
translation output.

Simard et al. (2007a) and Simard et al. (2007b)
have shown how a PBSMT system can be used
for automatic post-editing of an RBMT system for
translations from English to French and French
to English. Because RBMT systems tend to pro-
duce repetitive errors, they train a SMT system to
correct errors, with the aim of reducing the post-
editing effort. The SMT system trains on the out-
put of the RBMT system as the source language
and the reference human translations as the target
language. The evaluation of their system shows
that the post-edited output had a better quality than
the output of the RBMT system as well as the out-
put of the same SMT system used in standalone
translation mode.

Lagarda et al. (2009) use an approach similar to
Simard et al. (2007a) for translations from English
to Spanish. The evaluation of the method was per-
formed automatically and manually by comparing
the APE output with the output from an RBMT
system and a SMT system. The two corpora used
in the evaluation were transcriptions of parliamen-
tary speeches and medical protocols. The evalu-
ation results have shown that on transcriptions of
parliamentary speeches the method improves the
RBMT system.

Rosa et al. (2012) and Mareček et al. (2011)
applied APE on English-to-Czech MT outputs on
morphological level. Based on word alignment,
the method learns during the training phase 20
hand-written rules based on the most frequent er-
rors encountered in translation. The method ad-
dresses fluency in translation and corrects mor-
phosyntactic categories of a word such as number,
gender, case, person and dependency label.

Parton et al. (2012) present an approach to APE
consisting of three stages: detecting errors, sug-
gesting and ranking corrections for the errors,
and applying the developed suggestions. For the
last stage of their method, applying the correc-
tions, Parton et al. (2012) developed two different

methodologies, a rule-abased APE and a feedback
APE. The rule-based APE performs either inser-
tions or replacement to address an identified error.
The feedback APE, an approach similar to the one
proposed by Parton and McKeown (2010), passes
the possible correction to the MT system, letting
the MT decoder decide whether the errors should
be corrected and about the method of correcting
it. Parton et al. (2012) evaluated their approach
with human evaluators and found that the ade-
quacy of post-edited MT output improved both for
rule-based and feedback APE. In terms of fluency
the human evaluation has shown that adequacy in-
crease in feedback APE is related to fluency but
not for rule-based APE.

Denkowski (2015) has developed a method for
integrating in real time post-edited MT output into
a translation model, by extracting for each input
sentence a grammar. The method, based on Lev-
enberg et al. (2010) and Lopez (2008), allows the
indexing of the the source and post-edited MT
output, as well as the union of the already exist-
ing sentence pairs with the new post-edited data.
The system can also remember the rules that are
consistent with the post-edited data. This way,
rules learned from human corections can be pre-
ferred. The experiments Denkowski (2015) ran on
from English into and out of Spanish and Arabic
data show that the process of translating with an
adaptive grammar improves performance on post-
editing tasks.

3 System Description

Our system is designed with three basic compo-
nents: corpus preprocessing, hybrid word align-
ment and a PBSMT system integrated with the
hybrid word alignment. The hybrid word align-
ment consists of the combination of multiple word
alignments into a single word alignment table
which is later used in a phrase-based SMT (PB-
SMT) system. Our SMT based SAPE systems
were trained on monolingual Spanish MT output
and the manually post-edited output.

3.1 Corpus Preprocessing

For training our system we used the sentence
aligned training data provided by the organizers of
the WMT2015 APE task. The training data consist
of 11,272 parallel segments of English to Spanish
MT translations as well as the post-edited transla-
tions of the MT output. The English source text,
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the machine translated Spanish output and the cor-
responding post-edited version contain 238,335,
257,644 and 257,881 tokens respectively.

The preprocessing of the training corpus was
carried out first by stemming the Spanish MT out-
put and the PE data using Freeling (Padró and
Stanilovsky, 2012).

3.2 Hybrid Word Alignment

3.2.1 Statistical Word Alignment

GIZA++ (Och and Ney, 2003) is a statistical word
alignment tool which implements maximum like-
lihood estimators for all the IBM-1 to IBM-5
models, a HMM alignment model as well as the
IBM-6 model covering many to many alignments.
GIZA++ facilitates fast development of statisti-
cal machine translation (SMT) systems. Like
GIZA++, the Berkley Aligner (Liang et al., 2006)
is also used to align words across sentence pairs.
The Berkeley word aligner uses an extension of
Cross Expectation Maximization and is jointly
trained with HMM models. We use a third sta-
tistical word aligner called SymGiza++ (Junczys-
Dowmunt and Szał, 2012), which modifies the
counting phase of each model of Giza++ allow-
ing for updating the symmetrized models between
the chosen iterations of the original training algo-
rithms. It computes symmetric word alignment
models with the capability of taking advantage of
multi-processor systems.

3.2.2 Edit Distance-Based Word Alignment

We use two different kind of edit distance based
word aligners, where alignment is based on TER
(Translation Edit Rate) and the METEOR word
aligner. TER (Snover et al., 2006) was developed
for automatic evaluation of MT outputs. TER can
align two strings such as the reference (in this case
the PE translation) and the hypothesis (MT out-
put). In the our work, the reference string has
been chosen to be the confusion network skeleton,
and the hypotheses are aligned independently us-
ing the skeleton. These pair-wise alignments may
be consolidated to form a confusion network. TER
measures the ratio between the number of edit
operations that are required to turn a hypothesis
H into the corresponding reference R to the total
number of words in the R. The allowable edit types
include insertion (Ins), substitution (Sub), deletion
(Del) and phrase shifts (Shft). TER is computed as

TER(H, R) =
(Ins + Del + Sub + Shft) ∗ 100%

total number of words in R
(1)

METEOR Alignment (Lavie and Agarwal,
2007) is also an automatic MT evaluation metric
which provides an alignment between hypothesis
(here the MT output) and reference (here the PE
translation). Given a pair of strings such as H and
R to be compared, METEOR initially establishes
a word alignment between them. The alignment is
provided by a mapping method between the words
in the hypothesis H an reference R transaltion,
which is built incrementally by the following se-
quence of word-mapping modules:

• Exact: maps if they are exactly the same

• Porter stem: maps if they are the same after
they are stemmed using the Porter stemmer

• WN synonymy: maps if they are considered
synonyms in WordNet

If multiple alignments exist, METEOR selects
the alignment for which the word order in the two
strings is most similar (i.e. having fewest cross-
ing alignment links). The final alignment is pro-
duced between H and R as the union of all stage
alignments (e.g. exact, Porter stemming and WN
synonymy).

3.2.3 Hybridization
The hybrid word alignment method combines two
different kinds of word alignment: the statisti-
cal alignment tools such as GIZA++ word align-
ment with grow-diag-final-and (GDFA) heuris-
tic (Koehn, 2010) and SymGiza++ (Junczys-
Dowmunt and Szał, 2012) and the Berkeley
aligner (Liang et al., 2006), as well as edit
distance-based aligners (Snover et al., 2006; Lavie
and Agarwal, 2007). In order to combine these
different word alignment tables (Pal et al., 2013)
we used a mathematical union method. For the
union method, we hypothesise that all alignments
are correct. Duplicate entries are removed.

3.3 Phrase-Based SMT

Translation is modelled in SMT as a decision pro-
cess, in which the translation

eL1 = e1...ei...eI (2)
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of a source sentence

fJ
1 = f1...fj ...fJ (3)

is chosen to maximize in equation (4):

argmaxI,eL
1
P (eL1 |fJ

1 ) = (4)

argmaxI,eL
1
P (fJ

1 |eL1 ) ∗ P (eL1 )

where P (fJ
1 |eL1 ) is the translation model and

P (eL1 ) the target language model. In log-linear
phrase-based SMT, the posterior probability is di-
rectly modeled as a log-linear combination of fea-
tures (Och and Ney, 2003), involving M trans-
lational features, and the language model, as in
equation (5):

logP (eL1 |fJ
1 ) = (5)

M∑
m=0

λmhm(fJ
1 , e

L
1 , s

k
1) + λLM logP (eL1 )

where sk
1 = s1 . . . sk denotes a segmentation of

the source and target sentences respectively into
the sequences of phrases (êk1 = ê1 . . . êk ) and
(f̂k

1 = f̂1 . . . f̂k ) such that (we set i0 = 0) in
equation (6):

∀1 ≤ k ≤ K, sk = (ik, bk, jk), (6)

êk = eik−1+1...eik , f̂k = fbk
...fjk

and each feature ĥm in (5) can be rewritten as
in (7):

hm(fJ
1 , e

L
1 , s

k
1) =

K∑
k=1

ĥm(f̂k, êk, sk) (7)

where ĥm is a feature that applies to a single
phrase-pair. It thus follows (8):

M∑
m=1

λm

K∑
k=1

ĥm(f̂k, êk, sk) =
K∑

k=1

ĥ(f̂k, êk, sk)

(8)

where ĥ =
∑K

k=1 λm ĥm.

4 Experiments

We performed experiments on the development set
provided by the organizers of the APE task in the
WMT2015.

4.1 Data
Table 1 presents the statistics of the training, de-
velopment and test sets released for the English–
Spanish SAPE Task organized in WMT’2015.
These data sets did not require any preprocessing
in terms of encoding or alignment.

SEN Tokens
EN ES-MT ES-PE

Train 11,272 238,335 257,644 257,881
Dev 1,000 21,617 23,213 23,098
Test 1,817 38,244 40,925 –

Table 1: Statistics. SEN: Sentences, EN: English
and ES: Spanish

4.2 Experimental Settings
The effectiveness of the present work is demon-
strated by using the standard log-linear PBSMT
model. For building our SAPE system, we experi-
mented with various maximum phrase lengths for
the translation model and n–gram settings for the
language model. We found that using a maximum
phrase length of 7 for the translation model and a
5-gram language model produces the best results
in terms of BLEU (Papineni et al., 2002) scores
for our SAPE model.

The other experimental settings were con-
cerned with hybrid word alignment training algo-
rithms (described in Section 3) and the phrase-
extraction (Koehn et al., 2003). The reordering
model was trained with the hierarchical, mono-
tone, swap, left to right bidirectional (hier-mslr-
bidirectional) (Galley and Manning, 2008) method
and conditioned on both source and target lan-
guage. The 5-gram target language model was
trained using KenLM (Heafield, 2011). Phrase
pairs that occur only once in the training data
are assigned an unduly high probability mass (i.e.
1). To alleviate this shortcoming, we performed
smoothing of the phrase table using the Good-
Turing smoothing technique (Foster et al., 2006).
System tuning was carried out using Minimum Er-
ror Rate Training (MERT) (Och, 2003) optimised
with k-best MIRA (Cherry and Foster, 2012) on
a held out development set. After the parameters
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were tuned, decoding was carried out on the held
out test set.

5 Evaluation

The evaluation of our SAPE system was per-
formed on the 1817 Spanish sentences. The base-
line consisted of two systems, an MT baseline
system and the APE the system of (Simard et
al., 2007a). The evaluation was carried out us-
ing HTER (TER with human targeted references)
score. In this year’s WMT seven groups made a
submission to the APE task. From the seven sys-
tems, our system was ranked on the third place,
achieving a HTER score of 23.426 for case sensi-
tive evaluation and 22.710 for the case insensitive
evaluation, outperforming the baseline APE sys-
tem scoring 23.839 for the case sensitive evalua-
tion and 23.130 for the case insensitive evaluation.

6 Conclusion

This paper presents our system submitted in the
English–Spanish APE Task for WMT2015. The
system demonstrates the crucial role hybrid word
alignment can play in SAPE tasks. Edit-distance
based monolingual aligner provides alignment
for our SAPE system. Incorporating hybrid
word alignment into the state-of-the-art PBSMT
pipeline provides additional improvements over
the baseline APE system.
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Abstract

This paper describes the two systems sub-
mitted by LIMSI to the WMT’15 Shared
Task on Automatic Post-Editing. The first
one relies on a reformulation of the APE
task as a Machine Translation task; the
second implements a simple rule-based
approach. Neither of these two systems
manage to improve the automatic transla-
tion. We show, by carefully analyzing the
failure of our systems that this counter-
performance mainly results from the in-
consistency in the annotations.

1 Introduction

This paper describes LIMSI submission to the
WMT’15 Shared Task on Automatic Post-Editing
(APE). This task aims at automatically correcting
errors produced by an unknown Machine Transla-
tion (MT) system by learning from human post-
editions.

For the first edition of this Shared Task we have
submitted two APE systems. The first one, de-
scribed in Section 3, is based on the approach
of Simard et al. (2007) and considers the APE
task as the automatic translation between a transla-
tion hypothesis and its post-edition. This straight-
forward approach does not succeed in improving
translation quality. To understand the reasons of
this failure, we present, in Section 4 a detailed
analysis of the training data that highlights some
of the difficulties of training an APE system.

The second submitted system implements a se-
ries of sieves, applying, each, a simple post-
editing rule. The definition of these rules is based
on our analysis of the most frequent error correc-
tions. Experiments with this approach (Section 5)
show that this system also hurts translation quality.
However, analyzing its failures allows us to show
that the main difficulties in correcting MT errors

result from the inconsistency between the differ-
ent post-editions.

2 Data Preprocessing

The Shared Task organizers provide training and
development data that consist of respectively
11,272 and 1,000 examples. Each example is
made of an English source sentence, its automatic
translation in Spanish by an unknown MT sys-
tem and a human revision of this translation. All
sentences are tokenized. There are, on average,
22.88 words in each post-edition, the longest post-
edition having 199 words and the shortest 3.

In a first pre-processing step we have removed
all examples for which the ratio between the length
of the automatic translation and the length of the
corresponding post-edition was higher than 1.2 or
lower than 0.8. As shown in Table 1, these ex-
amples correspond mainly to errors in sentence
boundaries or to ‘over-translation’ (e.g. when the
post-editor added the translated title in the third
example of Table 1), that could have a negative
impact on the training of an APE system. At the
end, the training set we used in all our experiments
is made of 10,404 sentences.

The source sentences and the automatic trans-
lation of the training and development set have
been aligned at the word level using FASTAL-
IGN (Dyer et al., 2013) and the grow-diag-final
symmetrization heuristic. To improve alignment
quality, the sources and the translations have been
first concatenated to the English-Spanish Europarl
dataset and the resulting corpus has been aligned
as a whole. Spanish MT outputs and post-editions
have also been PoS-tagged using FREELING,1 a
state-of-the-art rule-based PoS tagger for Spanish.
We used a CRF-based model trained on the Penn
Treebank for the English source sentences. All
PoS tags have been mapped to the universal PoS

1http://nlp.lsi.upc.edu/freeling/
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src no3334 Gomez Flies To Miami To Be With Bieber !
tgt no3334 Gómez Vuela a Miami para estar con Bieber !
pe no3334 Gómez Vuela hasta Miami para estar con Bieber ! AQUÍ estan las Pruebas !

Parece que estos dos tortolitos están juntos de nuevo y esta vez , podrian estar
cantando .. La pelea de Twitter entre Demi Lovato y Kathy Griffin fue tan
serio que hasta se involucro la policia y hubieron amenazas de muerte !

src no517 that are sooooo good !
tgt no517 que son taaaan bueno !
pe no517 La favorita de Perezcious , Lissie , acaba de lanzar un nuevo EP de covers ...

¡ que están taaaan buenos !

src no4444 MAJOR Amazing Spider-Man 2 Spoiler Alert !
tgt no4444 MAJOR Amazing Spider-Man 2 Spoiler Alert !
pe no4444 GRAN Alerta de Spoiler para The Amazing Spider-Man 2 ( El maravilloso

Hombre Araña 2 ) !

Table 1: Examples of automatic translations and their post-editions for which the ratio between their
length is higher than 1.2.

tagset of Petrov et al. (2012) to make interpretation
easier. Note that these two procedures are error-
prone (especially as we have no information about
the tokenization) and may introduce some noise in
our analysis (cf. Section 4).

We have also computed an edit distance be-
tween the automatic translations and their post-
editions using Python standard difflib mod-
ule that allows us to define an ‘alignment’,
at the phrase-level,2 between these two sen-
tences. The difflib module implements the
Ratcliff-Obershelp algorithm (Ratcliff and Met-
zener, 1988) that finds a sequence of edits trans-
forming a sentence into another. While this se-
quence is not necessarily of minimal length, it is
faster to compute, easier to use and, above all,
more interpretable than the one computed using
the standard minimum edit distance algorithm. In
particular, difflib is able to automatically find
edits between ‘phrases’ rather than between single
words.

3 Automatic Post-Editing as Machine
Translation

The first system we have developed for the Shared
Task is inspired by the approach of Simard et al.
(2007) and reduces the Automatic Post-Edition
task as a Machine Translation task. Ignoring
the source sentence, we train a standard phrase-
based machine translation system using the auto-

2As usual in MT, we use ‘phrase’ to denote a sequence of
consecutive words.

matic translation as a source sentence and its post-
edition as the target sentence.

The word alignment between the automatic
translation and the post-edited sentence, used as
input in our APE-MT pipeline, has been computed
using Meteor (Denkowski and Lavie, 2014). The
APE-MT system has then been trained following
the usual steps.3 In our experiments, we used our
in-house MT system NCODE (Crego et al., 2011)
that implements a n-gram based translation model.
As main features we used a 3-gram bilingual lan-
guage model on words, a 4-gram bilingual lan-
guage model on PoS factors and a 4-gram target
language model trained only on the post-editions
sentences, along with the conventional features (4
lexical features, 6 lexicalized reordering, distor-
tion model, word and phrase penalty). We did
allow reorderings during decoding. The training
data is used to extract and compute the different
models while the development data is used to per-
form the tuning step.

The results, evaluated by the hTER score4 be-
tween the predicted and the human post-editions,
are summarized in Table 2. This straightforward
approach actually hurts performance and the re-
sults show that we are not able to predict post-
editions: the output of the MT system is closer
to the post-edition than the prediction of our APE-

3see, for instance, https://ncode.limsi.fr
4All reported hTER scores are case-sensitive and have

been computed using the scripts provided by the Shared Task
organizers.
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train development test

MT output 23.32 23.21 22.91
APE-MT output 21.64 23.95 23.57

Table 2: hTER score achieved by MT system train
to predict the post-edition from the MT output.

MT system. This is true even for the development
data on which our system was tuned.

4 Data Analysis

To understand the results of our first APE model,
we analyzed thoughtfully the data provided by the
shared task organizers.

The risk of over-correcting The first important
observation is that the MT system used to translate
the source sentences achieves an hTER score of
23.32 on the training data, meaning that, roughly,
more than three words out of four are correct and
must not be modified. As a consequence, predict-
ing which words must be post-edited is an highly
unbalanced problem. It is, therefore, very likely
that any modifications of the MT output could
hurt translation quality. Let n denote the num-
ber of word of in the dataset and a the percent-
age of words that are mistranslated. If we are able
to detect mistranslated words with a precision p
and a recall r and to correct them with precision
c, the number of errors after the automatic post-
editing equals to the sum of the number of errors
that have not been corrected (n× a× (1− r)),
the number of errors the correction of which
is erroneous (n× a× r × (1− c)) and of the
number correct words that have been modified
(n× a× r × (1− p)÷ p). For the shared task
training data, n = 238, 332, a = 0.25 and we
assume that c = 0.8, which is an optimistic esti-
mate. To avoid introducing new error, the F1 score
of the system detecting mistranslated word must
be higher that 0.7, which is far better than the per-
formance achieved by most state-of-the-art word-
level confidence estimation system.

Uniqueness of edits To characterize annotators
edits, we have computed the distribution of the
three basic operations (Table 3) as well as the 20
most frequent ‘lexicalized’ edits (Table 4). Sev-
eral observations, similar to the findings of our
analysis of an English-French post-editions cor-
pus (Wisniewski et al., 2013), can be made from

operation count %

deletion 4, 795 15.56%
insertion 5, 873 19.07%

substitution 20, 129 65.37%

total 30, 797 100%

Table 3: Distribution of the edit types in the train-
ing set.

edits occurrences edits occurrences

+¡ 286 +la 108
+, 267 -el 107
+de 247 +el 102
+que 231 -los 101
-, 202 +los 92
-que 164 -se 92
-la 164 +en 88
+a 156 +se 85
-de 146 su→ tu 71
+’ 117 +las 68

Table 4: Most frequent post-edits on the training
set. Additions and deletion are denoted by ‘+’ and
‘-’; substitutions by ‘→’ .

these two tables. First, and most importantly, it
appears that most edits are unique: even the most
frequent edit (insertion of ‘¡’) only accounts for a
negligible part of all edits. Overall, 24.74% of all
edits are unique. As a consequence, it is very un-
likely that any approach, such as the one described
in Section 3, that relies solely on word-level pat-
tern recognition and transformation, will be able
to generalize the observed corrections to new sen-
tences. This explains why our APT-MT systems
improves on the training data, on which transfor-
mation where learned, but fails to generalize (Ta-
ble 2).

Importance of edits related to punctuation
Second, it appears that the most frequent edits are
mainly insertions or deletions of either a frequent
word or a punctuation. Table 5 shows the dis-
tribution of edits that concern only punctuations.
These edits account for an important part of all the
modifications made by the post-editors: correct-
ing them automatically would reduce the hTER
score by more than 3 points. Some of these edits
correspond to genuine translation errors that must
be corrected for the output sentence to be gram-
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edits count %

addition 581 1.88
deletion 394 1.27

substitution 85 0.27

Total 1,060 3.42

Table 5: Number of edits involving only punctua-
tion.

Accesorios→ accesorios Guı́a→ guı́a
Campo→ campo está loco→ Está Loco
algas→ alGAS Inglés→ inglés
legión→ Legión poderes→ PODERES
thefamily→ TheFamily mucho→MUCHO

Table 6: Examples of substitutions that involve
only changes in case.

matically correct. In particular, in Spanish, all in-
terrogative and exclamatory sentences or clauses
have to begin with an inverted question mark (¿)
or exclamation mark (¡). These long-range depen-
dencies are difficult to capture with a phrase-based
system, which explains why inverted punctuation
often have to be inserted by the post-editors. How-
ever, many other modifications (especially the in-
sertion and deletion of comas) are more an im-
provement of style and their presence in a ‘min-
imal’ post-edition can be questioned.

We will now consider the most frequent types
of edits and focus on three different kind of substi-
tutions.

Importance of edits related to change in case
We first looked at changes in case: it appears that
1.16% of all edits are solely a change in case. Ta-
ble 6 gives some examples of such edits. The high
proportion of edits related to case is not really sur-
prising as it can be assumed that the MT system
has been trained on lower-cased data and its output
has been re-cased in a second, independent step,
which is a difficult task. However, as for the punc-
tuations, word case rarely affects the meaning of a
sentence and its correction can be considered more
as ‘normalization’ rather than ‘mandatory’ edits.

Correcting verb endings To better character-
ize the different kind of substitutions, we have
represented, Table 7, the PoS of the words in-
volved in a substitution. This table shows that
many of the substitutions that occur during post-
edition keep the grammatical structure of the sen-

substitution count

VERB→ VERB 2,372
NOUN→ NOUN 1,243
ADP→ ADP 605
ADJ→ ADJ 571
PRON VERB→ VERB 225
DET→ DET 224
VERB→ NOUN 178
NOUN→ VERB 169
DET NOUN→ DET NOUN 151
NOUN→ ADJ 147
NOUN→ DET NOUN 146
ADV→ ADV 136
DET NOUN→ NOUN 119
PRON→ PRON 109
ADJ→ NOUN 89
VERB ADP→ VERB 76

total 6,560

Table 7: PoS of the words involved in a substitu-
tion.

tence unchanged and only modify lexical choices:
in 26.7% of the substitutions, the PoS of the words
that are edited are kept unchanged. Interestingly,
as for lexicalized edits presented in Table 4 most
of the ‘PoS substitutions’ are unique. But, when
looking at the tail of the distribution, it appears
that many of these unique transformations are due
to error in alignment (e.g. when a single word is
replaced by 6 or 7 words) or to error in PoS pre-
diction.

Looking more closely at verb modifications, it
appears that, in 39.68% of them, the prefix5 of the
words is the same, suggesting that a lot of edits
consist in changing the verb conjugation, which
might be surprising as it could be expected that the
language model would resolve such difficulties.
Table 8 gives some examples of verb post-editings.
Surprisingly, this observation is no longer true for
modifications of nouns: in less than 10% of them,
the prefix is the same before and after post-editing.

5 A Multi-Sieve Approach to Automatic
Post-Editing

5.1 Main Principles

We consider a simple Automatic Post-Edition ar-
chitecture based on a sieve that applies simple
post-editing rules. Using such a simple rule-based
approach has two main motivations. First, by fo-
cusing on very precise categories of errors, we ex-
pect to avoid ‘over-correcting’ the translation hy-
potheses as our APE-MT model; second, analyz-

5The prefix is defined as the first five letters of a word.
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same prefix different prefix

piensa→ piense (thinks) significa→ representa (means)

escritos→ escritas (NULL) significa→ representa (NULL)

guardar→ guardan (save) superar→ batir beat

afeitado→ afeitadas (shaven) preocupa→ ocupa preoccupies

visita→ visitas (visit) Ofender→ ofendiendo Offending

tratando→ tratar (trying) metió→ metı́ (NULL)

adecuado→ adecuada (suited) tengo→ conseguı́ (I)

presentan→ presente (come) dejar→ deje (quit)

pregunta→ preguntaste (asking) seguir→ cumplir (keep)

enseñado→ enseñó (taught) invertido→ investido (invested)

Table 8: Example of verb substitutions with the
source word they are aligned with.

ing the errors of these simple rules will be much
easier than analyzing the output of a complete MT
system such as the one presented in Section 3 and
we expect to gain some insights about the interplay
between the different factors at stake.

In this work, we have considered three post-
editing rules that correspond to the main cate-
gories of errors identified in Section 4. These rules
aim at:

• predicting word case;

• predicting exclamation and interrogation
marks;

• predicting verbal endings.

Prediction of word case We used a very naive
approach to predict the case of a word by assuming
that a translated word should have the same case
as the source word it is aligned with. We there-
fore converted all words that were aligned with
a lower-cased, upper-cased or title-cased word to
their lower-cased, upper-cased or title-cased ver-
sion, respectively. To account for missing align-
ment links, we also converted all target word in
upper-case when all the words of the source sen-
tence were upper-cased.

Prediction of exclamation and interrogation
marks As explained in Section 4, in Spanish, in-
terrogative and exclamatory sentences or clauses
have to begin with an inverted question mark (¿)
or exclamation mark (¡). We use the method de-
scribed in Algorithm 1 to insert question marks6

at the beginning and end of clauses. This method
simply inserts the same punctuation mark as in the
source sentence7 at the end of the sentence and

6The same method was used to insert exclamation marks.
7Only inserting the inverted punctuation mark slightly

hurts performance: it appears that not all interrogative sen-
tence are translated into an interrogative sentence.

finds the beginning of the clause by looking for
a set of specific characters to insert the inverted
punctuation mark right after it. When the begin-
ning of the clause can not be found, the inverted
punctuation mark is inserted at the beginning of
the sentence.

Algorithm 1: Insert question marks at end and
beginning of clauses .

input: s = (si)
|s|
i=1 a source sentence

remove ‘?’ and ‘¿’ from target sentence
if ‘?’ /∈ s then

return s

add ‘?’ at end of target sentence
for i ∈ J|s|, 0K do

if i = 0 or si ∈ ‘–:,”“-’ then
insert ‘¿’ at the (i+1)th position
break

Correcting Verbs Ending We used a two-step
models to correct verb endings. In a first step
we generate, for each verb identified in the trans-
lation hypothesis, a list of candidates containing
conjugation variants for this verb form. We then
choose the verb form which maximizes the lan-
guage model score of the modified sentence as the
correction. To generate the list of candidates, we
extracted automatically the conjugation tables of
Spanish Wiktionary8, building a list of 587,832
verb forms with their lemma. We used, as a scor-
ing model, a 5-gram language model trained on
the Spanish data of the WMT campaign.

This post-edition rule is more prone to errors
than the previous two rules as it relies on a lan-
guage model (that was trained on data with a dif-
ferent tokenization) and on an external resource to
generate the candidates (that is neither complete
nor completely accurate).

5.2 Experimental Results

Table 9 shows the result, evaluated on the Shared
Task development set, of the multi-sieve approach
described in the previous section. As for the
MT model presented in Section 3, our model de-
grades translation quality, even if it makes only a
small number of precise modifications, showing
that there are more errors introduced by our multi-

8es.wiktionary.org
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hTER

baseline 23.320
+case correction 23.396
+punctuation correction 23.708
+verb correction 24.217

Table 9: hTER score achieved by our multi-sieve
approach on the development data.

sieve approach than there are errors that are cor-
rected.

The analysis of our errors shows that the ob-
served drop in performance can be explained by
the inconsistencies in the post-editions. For in-
stance, in the case of interrogative sentences, there
are 558 translation hypotheses in the training set
that end with an interrogative mark, 203 of which
do not contain an inverted mark. Applying Algo-
rithm 1, will correct all of them. However, it also
appears that, in 108 of these 203 sentences (53%)
no inverted interrogative marks were added by the
post-editors — resulting in ‘un-grammatical’ sen-
tences. At the end, even the correct introduction
of inverted question marks would make translation
hypotheses less similar to the human post-edition.
A similar observation can be made for the exclam-
atory sentences.

Regarding the correction of case, the proposed
post-edition rule achieves very good performance
when its application is restricted to the word that
have to be post-edited (i.e. when using the post-
edition as an oracle to identify which words must
be corrected): it is able to correctly predict the
case of the word in almost 85% of the case. The er-
roneous corrections mainly result from alignment
errors. However, when applied on the whole cor-
pora it will also change the case of many words the
post-editors have not modified. When we looked
at these words we did not see any reasons why they
should not have been modified.

6 Discussion and Conclusion

We described two different approaches to Auto-
matic Post-Editing: the first one casts the prob-
lem as a monolingual MT task; the second one
uses a series of simple, yet effective, post-edition
sieves. Unfortunately, none of our systems was
able to outperform the simplest do-nothing base-
line. While better post-editions methods have yet
to be found, we argue that this negative result is

mainly explained by the difficulty of the task at
hand and the small amount of available data. In-
deed, none of the participants to this pilot Shared
Task managed to outperform the baseline. This
is confirmed by an in-depth analysis of the task
which shows that: (a) most of the post-edition op-
erations are nearly unique, which makes very dif-
ficult to generalize from a small amount of data;
and (b) even when they are not, inconsistencies in
the annotations between the different post-editions
prevent from improving over the baseline.
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Abstract

We present a hierarchical statistical ma-
chine translation system which supports
discontinuous constituents. It is based on
synchronous linear context-free rewriting
systems (SLCFRS), an extension to syn-
chronous context-free grammars in which
synchronized non-terminals span k ≥ 1
continuous blocks on either side of the
bitext. This extension beyond context-
freeness is motivated by certain complex
alignment configurations that are beyond
the alignment capacity of current transla-
tion models and their relatively frequent
occurrence in hand-aligned data. Our
experiments for translating from German
to English demonstrate the feasibility of
training and decoding with more expres-
sive translation models such as SLCFRS
and show a modest improvement over a
context-free baseline.

1 Introduction

In statistical machine translation, phrase-based
translation models with a beam search decoder
(Koehn et al., 2003) and tree-based models with
a CYK decoder represent two prominent types of
approaches. The latter usually employ some form
of synchronous context-free grammar (SCFG).
They can be grouped into so-called hierarchi-
cal phrase-based models that are formally syntax-
based, such as in Chiang (2007), and models
where hierarchical units are somehow linguisti-
cally motivated, e.g. in Zollmann and Venugopal
(2006) and Hoang and Koehn (2010).

The adequacy of all of these models has been
questioned, as the space of alignments that they
generate is limited. Inside-out alignments are be-
yond the alignment capacity of SCFG of rank
2 (henceforth 2-SCFG) and inversion transduc-

(i)

a b c d

b d a c

(ii)

a b

a1 b1 a2 b2

(iii)

a1 b a2

b1 a b2

Figure 1: Complex alignment configurations: (i)
inside-out alignment; (ii) CDTU; (iii) bonbon.
The configurations can also occur upside down.

tion grammar (Wu, 1997), but they can be gener-
ated with phrase-based translation models thanks
to the reordering component of standard de-
coders. Cross-serial discontinuous translation
units (CDTU) (Søgaard and Kuhn, 2009) and bon-
bon configurations (Simard et al., 2005) in con-
trast can neither be generated by a phrase-based
translation system nor by an SCFG-based one. It
is thereby assumed that a translation unit, the tran-
sitive closure of a set of nodes of the bipartite
alignment graph, represents minimal translational
equivalence, and therefore that an adequate trans-
lation grammar formalism should be able to gen-
erate each translation unit separately.

The aforementioned problematic alignment
configurations are schematically depicted in Fig-
ure 1. Alignment (i) is an inside-out alignment; it
is formed by four translation units (a, b, c and d).
CDTUs (ii) and bonbons (iii) each consist of two
intertwined discontinuous translation units.

Several studies have investigated the alignment
capacity of SCFG-based and phrase-based trans-
lation models in different setups (Wellington et
al., 2006; Søgaard and Kuhn, 2009; Søgaard and
Wu, 2009; Søgaard, 2010; Kaeshammer, 2013).
For example, Wellington et al. (2006) find that
inside-out alignments occur in 5% of their manu-
ally aligned English-Chinese sentence pairs. In the
study of Kaeshammer (2013), 9% of the sentence
pairs in a Spanish-French data set and 5.5% of the
sentence pairs in an English-German data set can-
not be generated by a 2-SCFG. In addition, Kaes-
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hammer and Westburg (2014) qualitatively inves-
tigate the instances of the complex alignment con-
figurations in the same English-German data set
and find that even though some of them are due to
annotation errors, most of them are correctly an-
notated phenomena that one would like to be able
to generate when translating.

To be able to induce the alignment configu-
rations in question, more expressive translation
models and corresponding decoding algorithms
are necessary. For the phrase-based models, Gal-
ley and Manning (2010) propose a translation
model that uses discontinuous phrases and a cor-
responding beam search decoder. For tree-based
models, a grammar formalism beyond the power
of context-free grammar is necessary. Søgaard
(2008) proposes to apply range concatenation
grammar; Kaeshammer (2013) puts forward the
idea of using synchronous linear context-free
rewriting systems (SLCFRS), a direct extension of
SCFG to discontinous constituents. To the best of
our knowledge, neither of the two proposals have
resulted in an actual machine translation system.

With this work, we extend the line of research
proposed in Kaeshammer (2013), and present the
first full tree-based statistical machine translation
system that allows for discontinuous constituents.
It is thus able to produce the complex alignment
configurations in Figure 1. As such, it combines
the advantage of being able to learn and gener-
ate discontinuous phrases with the benefits of tree-
based translation models.

Currently, our system is hierarchical phrase-
based, i.e. it does not make use of linguistically
motivated syntactic annotation. However, it will
be straightforward to transfer methods to inte-
grate linguistic constituency information from the
SCFG-based machine translation literature (such
as Zollmann and Venugopal (2006)) to our ap-
proach. This is particularly interesting, since, in
the monolingual parsing community, approaches
that are able to produce constituency trees with
discontinuous constituents have become increas-
ingly popular (Maier, 2010; van Cranenburgh and
Bod, 2013; Kallmeyer and Maier, 2013). Re-
cently, such parsers have reached a speed with
which it would actually be feasible to parse the
training set of a machine translation system (Ver-
sley, 2014; Maier, 2015; Fernández-González and
Martins, 2015), which is necessary to train syntac-
tically motivated translation grammars.

In this work, we define a translation model
based on SLCFRS, explain the training of a corre-
sponding hierarchical phrase-based grammar, pro-
vide details about a corresponding decoder and re-
sults of experiments for translating from German
to English.

2 Model

Our translation model is a weighted synchronous
LCFRS. Conceptually, this grammar formalism is
very close to synchronous CFG, with the addition
that non-terminals span tuples of strings (instead
of just strings) on either side of the bitext. Just as
SCFGs, an SLCFRS can be used for synchronous
parsing of parallel sentences as well as for trans-
lating monolingual sentences. For the latter, the
source side of the synchronous grammar is used to
parse the input text, thereby generating target side
derivations from which the translations can be read
off.

2.1 Synchronous LCFRS

An LCFRS1 (Vijay-Shanker et al., 1987; Weir,
1988) is a tuple G = (N,T, V, P, S) where N
is a finite set of non-terminals with a function
dim: N → N determining the fan-out of each
A ∈ N ; T and V are disjoint finite sets of ter-
minals and variables; S ∈ N is the start symbol
with dim(S) = 1; and P is a finite set of rewrit-
ing rules

A(α1, . . . , αdim(A))→ A1(Y (1)
1 , . . . , Y

(1)
dim(A1))

· · ·Am(Y (m)
1 , . . . , Y

(m)
dim(Am))

where A,A1, . . . , Am ∈ N , Y (i)
j ∈ V for 1 ≤

i ≤ m, 1 ≤ j ≤ dim(Ai) and αi ∈ (T ∪ V )∗ for
1 ≤ i ≤ dim(A), for a rankm ≥ 0. For all r ∈ P ,
it holds that every variable Y in r occurs exactly
once in the left-hand side (LHS) and exactly once
in the right-hand side (RHS) of r.

A non-terminal is instantiated with respect to
some input string w such that terminals and vari-
ables are consistently mapped to w. A rule r ex-
plains how an instantiated LHS non-terminal can
be rewritten by its instantiated RHS non-terminals.
A derivation starts with the start symbol S instan-
tiated to the input string w. All strings that can

1We use the syntax of simple range concatenation gram-
mars (Boullier, 1998), an equivalent formalism.
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〈A(a, c)→ ε , C(a, c)→ ε〉
〈B(b, d)→ ε , D(bd)→ ε〉
〈A(aX, cZ)→ A 1 (X, Z) , C(aX, Zc)→ C 1 (X, Z)〉
〈B(bY, dU)→ B 1 (Y, U) , D(bY d)→ D 1 (Y )〉
〈S(XY ZU)→ A 1 (X, Z)B 2 (Y, U) ,

S(XY Z)→ C 1 (X, Z)D 2 (Y )〉

Figure 2: Rules of an SLCFRS for L =
{〈anbmcndm, anbmdmcn〉 |n,m > 0}, taken
from Kaeshammer (2013).

be rewritten to ε are in the language of the gram-
mar. For more formal definitions, see for example
Kallmeyer (2010).

The rank of a grammar G is the maximal rank
of any of its rules, and its fan-out is the maximal
fan-out of any of its non-terminals. G is called a
(u, v)-LCFRS if it has rank u and fan-out v. A
CFG is the special case of an LCFRS with fan-out
v = 1. An LCFRS is monotone if, for every rule
and every RHS non-terminal, the order of the vari-
ables in the arguments of this non-terminal is the
same as the order of these variables in the argu-
ments of the LHS non-terminal of this rule. This
means that the order of (instantiated) arguments
of the LHS non-terminal of a rule always corre-
sponds to their order in the input sentence. An
LCFRS is called ε-free if all of its rules in P are
ε-free, which means that none of their LHS argu-
ments is the empty string ε.2

The definition of synchronous LCFRS
(SLCFRS) follows the definition of synchronous
CFG, as for example in Satta and Peserico (2005).
An SLCFRS (Kaeshammer, 2013) is a tuple
G = (Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St) where Ns,
Ts, Vs, Ss, resp. Nt, Tt, Vt, St are defined as for
LCFRS. They denote the alphabets for the source
and target side respectively. P is a finite set of
synchronous rewriting rules 〈rs, rt,∼〉 where
rs and rt are LCFRS rewriting rules based on
Ns, Ts, Vs and Nt, Tt, Vt respectively, and ∼ is
a bijective mapping of the non-terminals in the
RHS of rs to the non-terminals in the RHS of rt.
This link relation is represented by co-indexation
in the synchronous rules. During a derivation, the
yields of two co-indexed non-terminals have to
be explained from one synchronous rule. 〈Ss, St〉
is the start pair. In such a derivation, we call the
yield of Ss the source side yield and the yield of
St the target side yield. SLCFRS are equivalent to

2An LCFRS is also ε-free if it contains a rule S(ε) → ε,
but S does not appear in any RHS of the rules in P .

〈S 1 (aabccd), S 1 (aabdcc)〉
⇒ 〈A 2 (aa, cc)B 3 (b, d), C 2 (aa, cc)D 3 (bd)〉
⇒ 〈A 2 (aa, cc), C 2 (aa, cc)〉
⇒ 〈A 4 (a, c), C 4 (a, c)〉
⇒ ε

Figure 3: Derivation of 〈aabccd, aabdcc〉 using
the rules in Figure 2.

simple range concatenation transducers (Bertsch
and Nederhof, 2001).

Figure 2 shows an example. The syn-
chronous rules translate cross-serial dependencies
into nested ones. A sample derivation is shown in
Figure 3.

The tuple (Ns, Ts, Vs, Ps, Ss) is called the
source side grammar Gs and (Nt, Tt, Vt, Pt, St)
the target side grammar Gt, where Ps is the set
of all rs in P and Pt is the set of all rt in P . The
rank u of a SLCFRS G is the maximal rank of Gs
and Gt, and the fan-out v of G is the sum of the
fan-outs of Gs and Gt. One may write vvGs |vGt

to
make clear how the fan-out ofG is distributed over
the source and the target side. As in the monolin-
gual case, a corresponding grammar G is called
a (u, v)-SLCFRS. The rank of the corresponding
grammar in Figure 2 is 2 and its fan-out 42|2. We
call an SLCFRS monotone if the source side gram-
mar as well as the target side grammar is mono-
tone. We call an SLCFRS ε-free if the source side
grammar as well as the target side grammar is ε-
free.

We further define some terms which will be
used in the following sections. A range in a string
wn1 is a pair 〈l, r〉 with 0 ≤ l ≤ r ≤ n. Its yield
〈l, r〉(w) is the string wrl+1. The yield of a vector
of ranges ρ(w) is the vector of the yields of the
single ranges.

2.2 Definition

Given a source sentence f and an SLCFRS, gen-
erally, many derivations will have f as the source
side yield, leading to many (different) target side
yields, i.e. possible translations e. As it is standard
in statistical machine translation, we use a log-
linear model over derivations D to weight those
translation options. The definition closely follows
the model definition for SCFG, see Chiang (2007)
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for example.

P (D) ∝
∏
i

φi(D)λi

∝ PLM (e)λLM · w(D)

where φi are features defined on the derivations,
and λi are feature weights to be set during tun-
ing. An n-gram language model provides a fea-
ture PLM (e) for the probability of seeing the tar-
get sentence e as derived by D. The other features
(i 6= LM ) are defined on the rules of a weighted
SLCFRS which are used in the derivation D.

A weighted SLCFRS is an SLCFRS that is addi-
tionally equipped with a weight function w which
assigns a weight to each synchronous rule r ∈ P .
To fit the log-linear model, we define w as

w(r) =
∏
i 6=LM

φi(r)λi

The weight of a derivation D is then

w(D) =
∏
r∈D

w(r)

2.3 Features
We use the following standard features φi(r):

• translation probabilities in both directions
P (rs|rt) and P (rt|rs),

• lexical weights lex(rs|rt) and lex(rt|rs)
(Koehn et al., 2003) that estimate how well
the terminals in the rule translate to each
other,

• a rule penalty exp(1),

• a word penalty exp(−|wt|) where |wt| is the
number of terminals that occur in rt.

In addition, we devise features that character-
ize the amount of expressivity beyond context-
freeness of the applied rules. The source gap de-
gree of r is the fan-out of rs minus 1, and the target
gap degree of r is the fan-out of rt minus 1. See
Maier and Lichte (2011) for more details about
gap degree. These features can be read off the
rules r directly. They allow the model to learn a
preference for or against using the more powerful
rules.

We also use glue rules, as proposed by Chiang
(2005), which allow for a monotone combination
of synchronous constituents as in a phrase-based
model. A glue rule feature of value exp(1) with
its weight λglue controls their usage.

3 Training

The synchronous rules are extracted from a cor-
pus of parallel sentences that have already been
word-aligned. Following Och and Ney (2004) and
Chiang (2005), we extract all rules that are con-
sistent with the word alignment A of a sentence
pair 〈f, e〉 in a two-step procedure. First, initial
phrase pairs are extracted; they correspond to ter-
minal rules. Second, hierarchical rules are created
by replacing phrase pairs that are contained within
other phrase pairs with non-terminals/variables.

The crucial difference to previous work on
translation with SCFG is that initial phrases do not
have to be continuous. Instead, a phrase is a set of
word indices, as in Galley and Manning (2010).
Given 〈f, e〉 and a corresponding word alignment
A, a phrase pair (s̄, t̄) is consistent with A if the
following holds:

∀(i, j) ∈ A : i ∈ s̄↔ j ∈ t̄
∧ ∃i ∈ s̄, j ∈ t̄ : (i, j) ∈ A

For each initial phrase pair (s̄, t̄), a terminal
synchronous rule of the following form is created
and added to P :

〈X(ρs(f))→ ε,X(ρt(e))→ ε〉
ρs and ρt are range vectors, applied to the source
sentence f and target sentence e respectively. ρs
(respectively ρt) is obtained by partitioning s̄ (re-
spectively t̄) such that each subset contains all and
only consecutive indices, designating a continuous
block of the discontinuous phrase. Such a subset
X is turned into a range 〈l, r〉 with l = min(X)
and r = max(X). The ranges obtained from s̄
(respectively t̄), in ascending order, form ρs (re-
spectively ρt).

Furthermore, if P contains a rule 〈X(α) →
Ψ, X(β) → Θ〉 that has been built from a phrase
pair (s̄, t̄) and the set of phrase pairs contains a
pair (s̄′, t̄′) such that s̄′ ⊂ s̄ and t̄′ ⊂ t̄, we add the
following new rule to P :

〈X(α′)→ ΨX k (Y1, . . . , Yhs),

X(β′)→ ΘX k (Z1, . . . , Zht)〉
A new non-terminal X is added to the RHS of
rs and rt. k is an index that is not yet used in
the bijective mapping of non-terminals in Ψ and
Θ. Range vectors ρs′ and ρt′ are deduced from s̄′

and t̄′ as described above. Each range in ρs′ (re-
spectively ρt′) is associated with a variable Yi for
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je ne veux plus jouer

I do not want to play anymore

Initial phrase pairs:
1. jouer — to play

2. veux — do . . . want

3. ne veux plus — do not want . . . anymore

4. ne veux plus jouer — do not want to play anymore

. . .

Rules:
1. 〈X(jouer)→ ε, X(to play)→ ε〉
2. 〈X(veux)→ ε, X(do, want)→ ε〉
3. 〈X(ne veux plus)→ ε, X(do not want, anymore)→ ε〉
4. 〈X(ne veux plus jouer)→ ε,

X(do not want to play anymore)→ ε〉
5. 〈X(ne Y1 plus)→ X 1 (Y1),

X(Z1 not Z2, anymore)→ X 1 (Z1, Z2)〉
6. 〈X(ne veux plus Y1)→ X 1 (Y1),

X(do not want Z1 anymore)→ X 1 (Z1)〉
7. 〈X(ne Y1 plus Y2)→ X 1 (Y1)X 2 (Y2),

X(Z1 not Z2Z3 anymore)→ X 1 (Z1, Z2)X 2 (Z3)〉
. . .

Figure 4: Sample rules that are extracted from the
provided aligned sentence pair.

1 ≤ i ≤ hs (respectively Zj for 1 ≤ j ≤ ht),
where hs (respectively ht) is the length of ρs′ (re-
spectively ρs′). They have to be variables that
are not yet in use in α (respectively β). Those
variables constitute the arguments of the new syn-
chronous non-terminal X . Accordingly, hs and ht
are the fan-outs of X on the source and the target
side respectively. α′ (respectively β′) is created
from α (respectively β) by replacing the termi-
nals that correspond to ranges in ρs′ (respectively
ρt′) with the variable Yi (respectively Zj) that as
been associated to the range. Note that this extrac-
tion yields only monotone and ε-free (S)LCFRS,
which simplifies parsing.

The discontinuous rule extraction procedure is
exemplified in Figure 4. Rule #5 for example was
created from rule #3 by substituting phrase pair #2.
Note that phrase pairs #1 and #4 are also extracted
by a phrase-based system, and rules #1, #4 and #6
are also generated by a hierarchical phrase-based,
i.e. SCFG-based, system. Rule #6 would usually
be written down as

X → 〈ne veux plusX 1 , do not want toX 1 anymore〉

However, just as Galley and Manning (2010), we

extract many more rules that also capture discon-
tinuous translation units. In addition, we also ex-
tract rules which are discontinuous and hierarchi-
cal at the same time. They capture relationships
between possibly discontinuous translation units.

Enumerating all discontinuous phrase pairs is
exponential in the maximum phrase length. There-
fore, in addition to the constraints that are gener-
ally set for SCFG extraction (e.g. phrase length,
number of non-terminals, adjacent non-terminals
on the source side, unaligned words at phrase
edges, see Chiang (2007)), we also restrict the
number of words that can be in a gap, we disal-
low unaligned blocks, and we restrict the number
of continuous blocks in a phrase to 2. The latter is
motivated by the results presented in Kaeshammer
(2013) where a fan-out of 42|2 is enough to derive
the alignments in all data sets. We furthermore
analyse the alignments of the training data before
running the extraction and only allow discontinu-
ous phrase pairs in synchronous spans which con-
tain any of the alignment configurations that are
beyond the power of SCFG.

As derivations are not observable in the train-
ing data, we use the method described in Chi-
ang (2007) to hypothesize a distribution based
on the counts of the extracted rules and then use
relative-frequency estimation to obtain P (rs|rt)
and P (rt|rs).

4 Decoder

Our decoder closely follows the methodology of
current SCFG decoders, with the difference that
it is able to handle source and target discontinu-
ities in the form of SLCFRS rules. The goal is
to find the target sequence e of the highest scor-
ing derivationD according to the model defined in
Section 2.2 that yields 〈f, e〉, where f is the given
input sentence.

We parse the input sentence with a bottom-up
CYK parser using the source side of the SLCFRS
translation grammar. This corresponds to mono-
lingual probabilistic LCFRS parsing, which has
been described for example in Kallmeyer and
Maier (2013). Using the rules, parse items are
built. They are of the form [A,ρ], where A is a
non-terminal label and ρ is a range vector indicat-
ing which part of the input is covered by this item.
For the label, we use a combination of the source
side label and the target side label in order to en-
sure valid target side derivations. Smaller items,
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i.e. items that cover less input words, are created
before larger items. Equal items are combined,
thereby retaining their origin via hyperedges.

When creating a new item using a specific rule,
the variables and arguments in the rule have to be
replaced consistently with ranges 〈l, r〉 of the in-
put sentence. Roughly, this means that terminals
and variables are instantiated with ranges such
that for ranges that are adjacent in an argument
of the LHS non-terminal, the concatenation of the
two ranges has to be defined, i.e. r1 = l2 for
〈l1, r1〉 and 〈l2, r2〉. For example, given the input
0il1ne2mange3plus4, X(〈1, 4〉)→ X(〈2, 3〉) is an
instantiation of the source side of rule #5 from Fig-
ure 4. We can make further assumptions about rule
instantiations, as our rules are all monotone, ε-free
and we do not allow for empty gaps to avoid spu-
rious ambiguity.

In the implementation, we first replace all ter-
minals with all possible ranges with respect to the
input sentence in an initialisation step; for instance
X(〈1, 2〉Y1 〈3, 4〉) → X(Y1) for the previous ex-
ample. During the actual parsing, we are then only
concerned with how variables are instantiated. We
implement different pruning methods, such as lim-
iting the number of target side rules for the same
source side rule, and limiting the number of in-
coming hyperedges for one parse item.

Because of the specific form of the grammar
that we have extracted (rank 2, fan-out 42|2), we
implement a specific parser for (2, 2)-LCFRS. Ac-
cordingly, the range vector ρ of an item has the
form 〈〈i1, j1〉, 〈i2, j2〉〉, where i2 and j2 are un-
defined if the yield of the item is continuous.
Such range vectors can be stored and retrieved
more efficiently than general range vectors, i.e. for
full LCFRS (which are typically implemented as
bit vectors of the size of the input sentence).
Also parsing time complexity is directly depen-
dent on the fan-out vs of the monolingual gram-
mar: O(|Gs| · |f |vs·(u+1)) with rank u = 2 and
fan-out vs = 2 in our case.

Finally, the parse hypergraph that we obtain
from parsing with the source side of the gram-
mar is intersected with an n-gram language model
to also integrate PLM (e). We use cube prun-
ing for this step (Chiang, 2007; Huang and Chi-
ang, 2007). The difference to SCFG-based im-
plementations is that the target string of a hy-
pothesis that is scored by the language model is
not necessarily continuous, but consists of a tu-

ple of continuous blocks of target words, e.g.
〈do not want, anymore〉 if we would like to score
a hypothesis which has been built from rule #3
in Figure 4. Therefore, each continuous block is
scored separately and contributes its score to the
overall score of the hypothesis. Furthermore, we
need to store one language model state (simply put
remembering the first and last n − 1 words of the
block) for each block. This means that a language
model state in our implementation is a vector of
conventional language model states of the length
of the size of the target tuple of the hypothesis.
Note that since our grammar has a target fan-out
of 2, this vector has a maximal length of 2, but this
is not a fixed limit in the implementation.

Since obtaining the k-best translations for a
given input sentence is essential for tuning, we im-
plement k-best extraction on the hypergraph that
we obtain after cube pruning. We adopt the lazy
strategy from Huang and Chiang (2005).

The decoder is implemented in C++, including
code from KenLM3 for language modelling.

5 Experiments

5.1 Setup
We run experiments for German-to-English, based
on data that has been used in the WMT 2014 trans-
lation task4. For training of the translation mod-
els, we use the parallel sentences from Europarl
and the News Commentary Corpus up to a length
of 30 words (1.3M sentence pairs). For language
modeling, we use the KenLM Language Model
Toolkit5. We train a 3-gram language model
on all available monolingual English data (Eu-
roparl, News Commentary, News Crawl, 92.7M
sentences). From the available development data,
we use newstest2013 as the development test
set (max. 25 words). From the rest, we ran-
domly select 3000 sentence pairs of a maximal
length of 25 words as development set. We fur-
ther refine this set to sentences without out-of-
vocabulary source words by decoding the develop-
ment set once and selecting the corresponding sen-
tences. We thus end up with 1694 sentence pairs
for tuning. As our test set, we use the cleaned test
set that has been made available (2280 sentence
pairs with a maximal length of 30 words).

3http://kheafield.com/code/kenlm/
developers/

4http://www.statmt.org/wmt14/
translation-task.html

5http://kheafield.com/code/kenlm/
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We normalize the punctuation, tokenize and
truecase all our data using the scripts that are avail-
able in Moses6 (Koehn et al., 2007). Furthermore,
we perform compound splitting for German, also
with the script provided in Moses.

The training data is word-aligned by run-
ning multi-threaded GIZA++ in both directions
and then symmetrizing the alignments using the
grow-diag-final-and heuristics as imple-
mented in the Moses training script (step 1–4).
Lexical translation probabilities are also emitted
as part of this pipeline. For grammar extraction,
we limit the length of initial phrases and the num-
ber of words in a gap to 10. We neither allow un-
aligned words at edges of initial phrases nor un-
aligned blocks.

Before decoding a data set with our decoder,
we filter the large translation grammar with re-
spect to the input data by extracting per-sentence-
grammars. These only contain rules whose termi-
nals match the words in the sentence to translate.

For the reported results, we set the buffer size
for cube pruning to 400. We do not limit the num-
ber of words a non-terminal can span. We neither
restrict the number of incoming hyperedges for the
parse items nor the number of target side rules for
the same source side rule.

Tuning the feature weights is done with mini-
mum error rate training (Och, 2003), maximizing
BLEU-4 (Papineni et al., 2002) and using the 200
best translations. For our own decoder, we use
the very flexible implementation Z-MERT v1.50
(Zaidan, 2009). For Moses, we use the provided
tuning script mert-moses.pl.

All reported BLEU scores have been calculated
with the Moses script multi-bleu.perl, us-
ing the lowercase option -lc. Because of the
variance that is introduced by tuning, we repeated
each experiment four times and report the average
of the final BLEU scores as well as the standard
deviation.

5.2 Results

We compare different versions of our system
against each other. The baseline is a system which
uses only SCFG rules, i.e. a hierarchical phrase-
based system. We refer to it as SYS(1,1), as it uses
an SLCFRS of fan-out 21|1. SYS(1,2) is a system
which uses a grammar of fan-out 31|2, i.e. it builds
only continuous constituents on the source side,

6http://www.statmt.org/moses/

devtest test
system feat BLEU std BLEU std

SYS(1,1) - 24.13 0.10 23.23 0.11
SYS(1,2) - 23.39 0.32 23.24 0.09
SYS(2,1) - 24.17 0.09 23.41 0.06
SYS(2,2) - 23.90 0.13 22.90 0.03

SYS(2,2) S 24.06 0.23 23.17 0.19
SYS(2,2) T 24.20 0.15 23.35 0.04
SYS(2,2) S+T 24.18 0.20 23.32 0.13

MOSES 24.33 0.08 23.34 0.20

Table 1: Averaged BLEU scores over four tuning
runs; the feat column indicates whether additional
source/target gap degree features have been used

but allows for discontinuous constituents with two
blocks on the target side. SYS(2,1) is the analo-
gous system which restricts the target side to con-
tinuous constituents. Finally, SYS(2,2) uses an
SLCFRS of fan-out 42|2.

Table 1 displays the main results. Allowing
gaps on the source and the target side (SYS(2,2))
leads to a decline in BLEU score compared to
the baseline. We hypothesize that this is due to
weak probability estimates because of data sparse-
ness and the additional ambiguity that is caused
by the new rules with discontinuities. However,
when adding the features about the gap degree of
the rules used in the derivation, the model has an
additional way of influencing which kind of rules
are used. Especially controlling for the target gap
degree turns out to be important and leads to a
small improvement in BLEU score. Note, how-
ever, that rules with target gaps are not totally dis-
missed when this feature is switched on. Usage
of rules with a target gap goes down from on av-
erage 734.5 rules in SYS(2,2) to on average 76.5
rules in SYS(2,2)-T in the test set. They are used
less often, but, it seems, in a more controlled and
sensible way.

This tendency is further confirmed with the ex-
periments in which the discontinuous rules are
only used on one side. While restricting the source
side derivations to continuous yields does not im-
prove the BLEU score (it rather severely degrades
it in the case of the devtest set), restricting the tar-
get side derivations leads to a small improvement
in BLEU score, and even to the best system for the
test set. This is in particular interesting with re-
spect to translation times since restricting the tar-
get side to continuous yields means removing the
additional complexity that target gaps mean for the
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SYS(1,1) SYS(2,1) =

e1 43 49 3
e2 46 47 2

Table 2: Result of the manual system comparison

e2
SYS(1,1) SYS(2,1) =

e1
SYS(1,1) 29 13 1
SYS(2,1) 15 33 1

= 2 1 0

Table 3: Confusion matrix of the decisions of the
manual evaluation

language model integration (see Section 4).
We also report results for the hierarchical

phrase-based system in Moses trained on the same
data as our systems. We tried to use the same
settings as for our comparable system SYS(1,1).
However, given the number of parameters dur-
ing training and decoding, the various interpre-
tations thereof and numerous implementation de-
tails to consider, it is not too surprising that the
Moses system actually produces different trans-
lations than ours. The reported numbers merely
serve as a point of reference, indicating that the
translations produced by our system are not totally
far off.

5.3 Manual Evaluation
We furthermore performed a manual evaluation in
form of a system comparison using our own instal-
lation of the Appraise tool (Federmann, 2012). We
compare the baseline SYS(1,1) against SYS(2,1),
the best-performing setup on the test set. For each
of them, we randomly selected one of the four
configurations that lead to the reported averaged
BLEU score. We then selected those translations
of the test set where SYS(2,1) uses at least one
SLCFRS rule with a discontinuity (95 sentences).

We asked two native speakers of English (e1,
e2) with basic knowledge of German to evaluate
our test sentences. They were shown the source
sentence, a reference translation, the SYS(1,1)
translation and the SYS(2,1) translation. The latter
two were presented anonymized and in random or-
der. The options for the evaluators were (a) trans-
lation A is better than B, (b) translation B is better
than A, and (c) translations A and B are of equal
quality. We specifically asked them to use option
(c) as rarely as possible.

Table 2 shows the results. While our human

evaluators do not demonstrate a clear preference
for one of the systems, there is, however, a slight
preference for the system that uses discontinuous
rules (SYS(2,1)). In spite of the inter-annotator
agreement being not very high (Cohen’s κ =
0.338), the tendency for SYS(2,1) is also perceiv-
able for the translations for which the evaluators
agree in their decisions, see Table 3.

5.4 Translation Example
We finish this section with an actual translation ex-
ample. It is picked because it makes crucial use of
the discontinuous SLCFRS rules. It is taken from
the test set.

In Figure 5, the following rule, which has a fan-
out of 2 on the source side, leads to an overall
grammatical sentence structure and a meaningful
translation:
〈X(wäre , Y1 gewesen Y2)→ X 1 (Y1)X 2 (Y2) ,

X(would have been Y1Y2)→ X 1 (Y1)X 2 (Y2) 〉
The rule derives the synchronous constituent la-
belledX 4 in Figure 5. Besides providing a correct
verbal translation in a specific tense, it also estab-
lishes a relationship to the adjective (X 1 ) and the
infinitive subordinate clause (X 2 ), thereby still
leaving room for the adverb in terms of the gap
on the source side. The adverb is then introduced
with the following rule, leading to the constituent
labelled X 5 in Figure 5:

〈X(Y1 damit auch Y2)→ X 1 (Y1, Y2) ,

X(also Y1)→ X 1 (Y1) 〉
This rule can be seen as capturing the different
placement of the adverb auch/also in German and
English.

Note that the alignment that is induced by the
SYS(2,1) derivation is also derivable with a 21|1-
SLCFRS. One general possibility is to allow rules
of rank u > 2. Another possibility is to put the in-
dividual phrases together in a different order and
hierarchy. For example, in an SCFG rule, the dis-
continuous verb phrase could be combined with
the adjective and the adverb first, which leads to
a continuous constituent. Then the subordinate
clause would be added in a later derivation step.
However, in the derivation for the best transla-
tion of SYS(1,1), this does not happen because a
corresponding specific rule has not been learned.
The translation produced by SYS(1,1) is not gram-
matical and misses important concepts, such as
geeignet (suitable).
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X 6

X 5

X 4

X 2

X 3 X 1

er wäre damit auch geeignet gewesen , um . . . zu fördern

he also would have been appropriate to promote . . .

X 3 X 1

X 2

X 4

X 5

X 6

Source: er wäre damit auch geeignet
gewesen , um die . . . zu fördern

Reference: it would thus be suitable
to assist . . .

SYS(1,1): it would also have to be ,
in order to promote the . . .

SYS(2,1): he also would have been
appropriate to promote the . . .

Figure 5: Test sentence with translations provided by the SCFG and the SLCFRS system, including the
derivation of the SLCFRS system SYS(2,1).

6 Related Work

Several other translation models have been pro-
posed which are expressive enough to generate
the complex alignment configurations in Figure 1.
Most notably, Galley and Manning (2010) propose
a phrase-based translation system which allows for
discontinuous phrase pairs, building upon the idea
of a translation model proposed by Simard et al.
(2005). They evaluate their system on a Chinese-
to-English translation task and achieve some im-
provement in BLEU score over a phrase-based
and a hierarchical phrase-based system. Unfortu-
nately, we could not evaluate directly against their
approach since the current documentation7 of their
system, Phrasal (Green et al., 2014), does not men-
tion the discontinuous phrases anymore. We also
could not obtain the data sets they used for their
experiments.

In some sense, our work is the hierarchical, tree-
based counterpart to the phrase-based approach
of Galley and Manning (2010). This means that
our translation grammar rules unify two types of
“gaps” of previous approaches: (a) gaps in the
sense of non-terminals that are inserted into longer
phrases when hierarchical rules are created, as in
Chiang (2007); their purpose is a better general-
ization of the translation rules, and (b) gaps in the

7http://www-nlp.stanford.edu/wiki/
Software/Phrasal, accessed on June 27, 2015

sense of discontinuities in the yield of a translation
rule, on the source side, on the target side or both,
driven by the idea of allowing for more flexible
phrases such that generated alignment structures
are not restricted.

Besides the suggestion of Kaeshammer (2013)
to use SLCFRS as the translation grammar formal-
ism, which we have detailed and implemented in
this work, Søgaard (2008) proposes to apply range
concatenation grammar, an even more expressive
formalism than LCFRS, and to use its ability to
copy substrings during the derivation. This ap-
proach has downsides, such as no tight probabil-
ities estimators, which are mentioned in Søgaard
and Kuhn (2009).

An early advocate of translation model-
ing beyond context-free grammar formalisms is
Melamed, who proposes to use Generalized Mul-
titext Grammars, which are weakly equivalent to
LCFRS (Melamed, 2004; Melamed et al., 2004).
The incentive for this lies in linguistically moti-
vated translation grammars and the general obser-
vation that discontinuous constituents are neces-
sary for monolingual modelling of syntax.

7 Conclusions and Future Work

With this work, we extend the hierarchical phrase-
based machine translation approach to discontin-
uous phrases, using SLCFRS as the translation
grammar formalism. Since SLCFRS is a direct
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extension to SCFG, previous work on hierarchical
phrase-based translation, in particular the model
definition, training and decoding, can be extended
to SLCFRS in a more or less direct manner. Eval-
uating our new system on a German-to-English
translation task revealed a modest improvement
in BLEU score over the SCFG baseline. Human
evaluators showed a slight preference for transla-
tions produced by the SLCFRS system.

In the future, we will evaluate our approach on
other language pairs, for example Chinese-English
which has been used in related work. Furthermore,
we would like to make use of recent advances in
monolingual parsing of discontinuous constituents
and use phrase-structure trees supporting discon-
tinuous constituents for tree-based machine trans-
lation.
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Abstract

For several languages only potentially
non-projective dependency parses are
readily available. Projectivizing the parses
and utilizing them in syntax-based trans-
lation systems often yields particularly
bad translation results indicating that those
translation models cannot properly utilize
such information. We demonstrate that
our system based on multi bottom-up tree
transducers, which can natively handle
discontinuities, can avoid the large transla-
tion quality deterioration, achieve the best
performance of all classical syntax-based
translation systems, and close the gap to
phrase-based and hierarchical systems that
do not utilize syntax.

1 Introduction

Syntax-based machine translation, in which the
transfer is achieved from and/or to the level of
syntax, has become widely used in the statisti-
cal machine translation community (Bojar et al.,
2014). Different grammar formalisms have been
proposed and evaluated as translation models driv-
ing the translation systems. We use a variant of
the local multi bottom-up tree transducer as pro-
posed by Maletti (2011). More precisely, we use a
string-to-tree variant of it, which offers two imme-
diate advantages: (i) The source side of the rules
is a simple string containing terminal symbols
and the unique non-terminal X. Consequently, we
do not need to match an input sentence parse,
which allows additional flexibility. It has been
demonstrated that this flexibility in the input of-
ten yields improved translation quality (Chiang,
2010). (ii) The target language side offers discon-
tinuities because rules can contain a sequence of
target tree fragments instead of a single tree frag-
ment. These fragments are applied synchronously,

which allows the model to synchronously develop
discontinuous parts in the output (e.g., to realize
agreement). Overall, this translation model al-
ready proved to be useful when translating from
English into German, Chinese, and Arabic as
demonstrated by Seemann et al. (2015). The goal
of the current contribution is to adjust the approach
and the system to Eastern European languages, for
which we expect discontinuities to occur. The ex-
isting system (Seemann et al., 2015) cannot read-
ily be applied since it requires constituent-like
parses for the target side in our string-to-tree set-
ting. However, for the target languages discussed
here (Polish and Russian), only dependency parses
are readily available. Those parses relate the lexi-
cal items of the sentence via edges that are labeled
with the syntactic function between the head and
its dependent. Overall, these structures also form
trees, but they are often non-projective for our tar-
get languages. Such non-projective dependency
trees do not admit a constituent-like tree represen-
tation, so we first need to convert them into pro-
jective dependency trees, which can be converted
easily into a constituent-like tree representation.
The conversion into projective dependency trees
is known to preserve discontinuities, so we expect
that out model is an ideally suited syntax-based
translation model for those target languages.

We evaluate our approach in 2 standard trans-
lation tasks translating from English to both Pol-
ish and Russian. Those two target languages have
rather free word order, so we expect discontinu-
ities to occur frequently. For both languages, we
use a (non-projective) dependency parser to ob-
tain the required target trees, which we projec-
tivize. Indeed, we confirm that non-projective
parses are a frequent phenomenon in both lan-
guages. We then train our translation model on
the constituent-like parse trees obtained from the
projective dependency trees and evaluate the ob-
tained machine translation systems. In both cases,
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our system significantly outperforms the string-to-
tree syntax-based component (Hoang et al., 2009)
of MOSES. To put our evaluation scores into per-
spective, we also report scores for a vanilla phrase-
based system (Och and Ney, 2004), a GHKM-
based system (Galley et al., 2004), and a hierarchi-
cal phrase-based system (Chiang, 2007). It shows
that our system suffers much less from the syntac-
tic discontinuities and is thus much better suited
for syntax-based translation systems in such set-
tings.

2 Related work

Modern statistical machine translation sys-
tems (Koehn, 2009) are build using various
different translation models as their core. Syntax-
based systems are widely used nowadays due to
their innate ability to handle non-local reordering
and other linguistic phenomena. For certain
language pairs they even outperform phrase-based
models (Och and Ney, 2004) and constitute the
state-of-the-art (Bojar et al., 2014). Our MBOT
is a variant of the shallow local multi bottom-up
tree transducer presented by Braune et al. (2013).
Alternative models include the synchronous tree
substitution grammars of Eisner (2003), which
use a single source and target tree fragment
per rule. Our MBOT rules similarly contain a
single source tree fragment, but a sequence of
target tree fragments. The latter feature enables
discontinuous translations. Another model that
offers this feature for the source and the target
language side is the non-contiguous synchronous
tree-sequence substitution grammar of Sun et al.
(2009), which offers sequences of tree fragments
on both sides.

The idea of utilizing dependency trees in ma-
chine translation is not novel. Bojar and Hajič
(2008) built a system based on synchronous tree
substitution grammars for English-to-Czech that
uses projective dependency trees. Xie et al.
(2011) present a dependency-to-string model that
extracts head-dependent rules with reordering in-
formation. Their model requires a custom de-
coder to deal with the dependency information
in the input. Li et al. (2014) follow up on
this work by transforming these dependency trees
into (a kind of) constituency trees. In this ap-
proach, they are able to use the conventional
syntax-based models of MOSES. In contrast to
our work, these two models do not use the syn-

tactic functions provided by the parser but rather
extract head-dependent rules based on the lexical
items. Sennrich et al. (2015) transformed (non-
projective) dependency trees into constituency
trees using the syntactic functions provided by
the parser. They used the string-to-tree GHKM
model (Williams and Koehn, 2012) of MOSES and
evaluated their approach on an English-to-German
translation task. It shows that the system utiliz-
ing the (transformed) dependency parses outper-
forms competing systems utilizing various vari-
ants of constituent parses for the German side.
We follow up on their work for translation tasks,
where constituent parses are not readily available,
and achieve translation quality that is comparable
to phrase-based systems for two language pairs
(English-to-Polish and English-to-Russian).

3 Transformation of Dependency Trees
into Constituency Trees

In this section, we present a short overview of de-
pendency parsing and introduce the non-projective
tree structures that occur as parses. We need to
transform these structures into projective trees,
which are then converted into the shape of clas-
sical constituency trees.

3.1 Description

The syntax of languages with relatively free word
order, which includes Polish and Russian, is of-
ten difficult to express in terms of constituency
structure (Kallestinova, 2007). Since the parts that
need to (grammatically) agree can occur spread
out over the whole sentence, constituents cannot
be hierarchically organized as in a classical con-
stituency parse tree. Dependency parses do not
pre-suppose such a hierarchical structure and are
thus often more suitable for languages with free
word order.

In a dependency parse each occurrence of a lex-
ical item (i.e., token) in the input sentence forms
a node. The dependency parser constructs a tree
structure over those nodes by relating them via
edges pointing from a head node h to its depen-
dent node d. Such an edge is denoted by h → d.
In addition, each edge is assigned a label indicat-
ing the type of the syntactic dependence. Often an
artificial root node is added for convenience. An
example parse for a Polish sentence is depicted in
Figure 1.

Next, we distinguish between projective and
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S A P S S I S I
konwencja haska w sprawie obligacji ( głosowanie )

ROOT

ADJUNCT ADJUNCT

COMP

MWE

PAR
MWE

PAR

Figure 1: Non-projective Polish dependency tree [gloss: hague convention on securities (vote)].

S A P S S I S I
konwencja haska w sprawie obligacji ( głosowanie )

ROOT

ADJUNCT ADJUNCT

COMP

MWE↓
PAR

MWE↑

PAR

Figure 2: Projective dependency parse obtained by ‘path’-lifting.

non-projective edges. The edge h → d is pro-
jective if and only if its head node h dominates1

all nodes representing the tokens in the linear
span between h and d. For example, the edge
‘obligacji → głosowanie’ is non-projective be-
cause ‘obligacji’ does not dominate ‘(’, which oc-
curs in the relevant linear span. A dependency
parse is projective if and only if all its edges are
projective. A non-projective dependency parse is
easily recognized in graphical representations be-
cause it has a crossing edge provided that all the
edges are drawn on one side of the sentence as in
Figure 1.

Non-projective dependency structures cannot
be directly used in the translation framework
MOSES (Koehn et al., 2007), so we first have to
turn them into projective trees. To this end, Ka-
hane et al. (1998) came up with the idea of lift-
ing. Given a non-projective edge h → d there ex-
ists (at least) one node n that occurs in the linear
span between h and d such that n is not dominated
by h. In the lifting process, the edge h → d is
replaced by an edge g → d, where g is the low-
est node that dominates both h and n (i.e., the
least common ancestor of h and n). Repeating
this process for all non-projective edges eventually
yields a projective tree. Nivre and Nilsson (2005)
refined this approach and introduced three addi-

1A node n dominates a node d iff n is an ancestor of d;
i.e., there is a path from n to d.

tional ways of lifting: ‘head’, ‘head+path’, and
‘path’, which perform the same replacement but
annotate different information in the labels to doc-
ument the lifting process. The annotation schemes
‘head’ and ‘head+path’ might increase the number
of labels quadratically, whereas ‘path’ only intro-
duces a linear number of new labels. Since we deal
with millions of trees in our syntax-based machine
translation experiments, we need to select a com-
promise between (i) inflating the number of labels
and (ii) documenting the lifts. We decided to use
the ‘path’ scheme to obtain projective parse trees
for our experiments (see Section 5).

Let us explain the ‘path’ scheme. In the situa-
tion described earlier, in which the edge h → d
was replaced by the edge g → d, we set the label
of g → d to the label of the original edge h → d
annotated by ↑ to indicate that this edge was lifted.
Additionally, all edges connecting the new head g
and the syntactical head h are annotated with ↓ in-
dicating where the syntactic head is found. Fig-
ure 2 shows the projective tree obtained from the
non-projective parse of Figure 1. In it we have
the new edge ‘sprawie → głosowanie’ with la-
bel ‘MWE↑’. Moreover, the edge ‘sprawie →
obligacji’ now has the label MWE↓ because it is
the edge that connects the new head with the syn-
tactical head of ‘głosowanie’.

In principle, one can imagine other ways to pro-
jectivize a tree; e.g., we can just replace the head
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of a non-projective edge by the root. From a lin-
guistic point of view, it makes more sense to at-
tach it (as described) to the least common ancestor,
which in a sense is the minimal required change
that leaves the remaining edges in place. Fur-
thermore, the used implementation always lifts the
most nested2 non-projective edge until the tree is
projective. In this way, the minimal number of
lifts required to projectivize the tree is achieved
as demonstrated by Buch-Kromann (2005).

3.2 Implementation

We aim to investigate string-to-tree machine trans-
lation systems, so we need syntactic annotations
on the target side. First, the target-side sen-
tences (in Polish and Russian) are annotated with
part-of-speech tags with the help of TREETAG-
GER (Schmid, 1994). The TREETAGGER out-
put is then converted into the (comma-separated)
CONNL-X format3, which lists each token of
the sentence in one line with 10 attributes like
word position, word form, lemma, and part-of-
speech tag. A new sentence is started by an empty
line. This representation is passed to the MALT

parser (Nivre et al., 2006; Sharoff and Nivre,
2011), which fills the remaining attribute fields
like position of the head and the label of depen-
dency edges. The resulting output represents the
(potentially) non-projective dependency parses of
the target-side sentences.

In the next step, we apply the ‘path’-lifting as
described in Section 3.1. In total, we performed
500,507 lifts for Polish (corpus size: 14,147,378
tokens) and 137,893 lifts for Russian (corpus size:
30,808,946 tokens) to make the corresponding
parses projective. As described in Section 3.1 we
introduce at most 3 additional labels for each ex-
isting label. In Table 1 we report for each corpus
the exact number of original parse labels and the
number of labels newly introduced by the transfor-
mation into projective parses.

Finally, we transform the projective dependency
parse trees directly into the standard representa-
tion of constituent parse trees in MOSES.4 We use
the part-of-speech tags as pre-terminal nodes. Ad-
ditionally, we make the labels and part-of-speech
tags more uniform as follows:

2deepest or most distant from the root
3documented on http://ilk.uvt.nl/conll/
4http://www.ims.uni-stuttgart.

de/forschung/ressourcen/werkzeuge/
mbotmoses.html

Number of labels
Corpus Lang. original new
EUROPARL PL 25 67
YANDEX RU 75 118
Commoncrawl RU 71 84
News commentary RU 71 84
Patronymic names RU 13 0
Names RU 31 0
WIKI headlines RU 54 19

Table 1: Number of parse labels before and after
the ‘path’-lifting.

• All parentheses are labeled ‘PAR’.
• All slashes, quotation marks, and dashes are

labeled ‘PUNCT’ and their part-of-speech
tag is ‘INTJ’.
• All punctuation marks are labeled ‘PUNC’

and their part-of-speech tag is ‘,’.
• If the tagger did not assign a part-of-speech

tag, then we label it ‘UNK’.
The final constituency tree representation obtained
from the projective dependency tree of Figure 2 is
shown in Figure 3.

4 Translation Model

We use the string-to-tree variant (Seemann et
al., 2015) of the multi bottom-up tree trans-
ducer (Maletti, 2010) as translation model. For
simplicity, we call the variant ‘MBOT’. A more
detailed discussion of the model can be found
in (Seemann et al., 2015; Maletti, 2011). Let us at-
tempt a high-level description. An MBOT is a syn-
chronous grammar (Chiang, 2006) that is similar
to a synchronous context-free grammar. Instead
of a single source and target fragment in each rule,
MBOT rules are of the form s→ (t1, . . . , tn) con-
taining a single source string s and potentially sev-
eral target tree fragments t1, . . . , tn. The source
string is built from the lexical items and the special
placeholder X, which can also occur several times.
Each occurrence of X is linked to some non-lexical
leaves in the target tree fragments. In contrast to
most synchronous grammars, each placeholder oc-
currence can link to several leaves in the target
tree fragments indicating that these parts are sup-
posed to develop synchronously. However, each
non-lexical leaf in the target tree fragments links
to exactly one placeholder occurrence (see top rule
in Figure 4). A finite set of such rules constitutes
an MBOT. Several rules of an MBOT for trans-
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(
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I

)

Figure 3: Final constituency representation for the
parse of Figure 2.

it needs to X →
( ADJUNCT

musi MWE
, PUNCT

)

there are X that X →
( IMP

sa MWE
, ADJUNCT

)

technologies X →
( ADJUNCT

technologii MWE

)

motivated by →
( P

motywowane

)
this is not something that →

( ADJUNCT

nie jest to coś
, I

,
, S

co

)

Figure 4: Several rules of an MBOT.

lating from English (source) to Polish (target) are
shown in Figure 4. The bottom rule is both lexi-
cal and discontinuous. Note that it can be used in
a continuous manner, but it is as well possible to
plug additional material between the three target
tree fragments.

The rules were extracted with the method de-
scribed and the implementation provided by See-
mann et al. (2015). The standard log-linear
model (Koehn, 2009) is used with the following
features:
(1) forward translation weight
(2) indirect translation weight
(3) forward lexical translation weight
(4) indirect lexical translation weight
(5) target-side language model
(6) word penalty
(7) rule penalty
(8) gap penalty 1001−c, where c is the number of

target tree fragments used in the derivation of
the output tree.

All those features are standard except for the
gap penalty, which is intended to discourage
derivations that involve large numbers of target

tree fragments, thus providing a feature to favor
or disfavor continuous derivations. As usual, the
(forward and indirect) translation weights are ob-
tained as products of corresponding rule weights,
which are obtained by maximum likelihood es-
timation. All rules that were extracted at most
10 times are smoothed using GOOD-TURING

smoothing (Good, 1953). Both lexical transla-
tion weights are obtained from the co-occurrence
statistics obtained during word alignment. The
standard decoder of MBOT-MOSES by Braune
et al. (2013) is used to generate translations us-
ing our model. As in the standard syntax-based
component (Hoang et al., 2009), this decoder is
a CYK+ chart parser based on standard X-style
parse trees with integrated language model scor-
ing that is accelerated by cube pruning (Chiang,
2007).

5 Experimental Results

We evaluate the MBOT-based system (see Sec-
tion 4) on two translation tasks: English-to-Polish
and English-to-Russian. For both target lan-
guages only (potentially) non-projective depen-
dency parses are easily available. Our goal is to
evaluate whether the discontinuity offered by the
MBOT model helps in tasks involving such de-
pendency parses. Consequently, the baseline sys-
tem is the syntax-based component (Hoang et al.,
2009) of the MOSES toolkit (Koehn et al., 2007),
which uses a translation model that only permits
continuous rules. Both systems are string-to-tree
in the sense that the projectivized parses are only
used on the target side. As mentioned in Section 3,
the non-projective parses are obtained using the
MALT parser and then converted to constituent-
like trees. Glue-rules in both systems ensure that
partial translation candidates can always be con-
catenated without any reordering.

5.1 Setup

We use standard and freely available resources to
build our machine translation systems. In sum-
mary, for Russian we use the resources provided
by the 2014 Workshop on Statistical Machine
Translation (Bojar et al., 2014). The Polish data is
taken from the EUROPARL corpus (Koehn, 2005).

Next, let us describe the preparation and evalua-
tion for both tasks (English-to-Polish and English-
to-Russian). An overview of the used resources is
presented in Table 2. First, the training data was
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English to Polish English to Russian
training data size ≈ 618K sentence pairs ≈ 1.7M sentence pairs
target-side parser Malt parser (Nivre et al., 2006; Sharoff and Nivre, 2011)

parser grammar (Wróblewska and Przepiórkowski, 2012) (Nivre et al., 2008)
language model (LM) 5-gram SRILM (Stolcke, 2002)

additional LM data Polish sentences in EuroParl WMT 2014
LM data size ≈ 626K sentences ≈ 43M sentences

development test size 3,030 sentences 3,000 sentences
test size 3,029 sentences 3,003 sentences

Table 2: Summary of the experimental setup.

length-ratio filtered, tokenized, and lowercased.
We used GIZA++ (Och, 2003) with the ‘grow-
diag-final-and’ heuristic (Koehn et al., 2005) to
automatically derive the word alignments. The
feature weights of the log-linear models were
trained with the help of minimum error rate train-
ing (Och and Ney, 2003) and optimized for 4-
gram BLEU (Papineni et al., 2002) on the devel-
opment test set (lowercased, tokenized). In the
end, the systems were evaluated (also using 4-
gram BLEU) on the test set. Significance judg-
ments of the differences in the reported translation
quality (as measured by BLEU) were computed
with the pairwise bootstrap resampling technique
of Koehn (2004) on 1,000 samples. Table 2 sum-
marizes the setup information.

A particular detail is worth mentioning. The
authors were unable to identify standard develop-
ment and test sets for the English-to-Polish trans-
lation task. Consequently, we manually removed
one session of the EUROPARL corpus. After re-
moving duplicate sentences, we used the odd num-
bered sentences as development set and the even
numbered sentences as test set.

5.2 Analysis

We present the quantitative evaluation for both ex-
periments in Table 3. In both cases (English-to-
Polish and English-to-Russian) the MBOT system
significantly outperforms the baseline, which is
the syntax-based component of MOSES. For Pol-
ish we obtain a BLEU score of 23.43 resulting in a
gain of 2.14 points over the baseline. Similarly, for
Russian we achieve a BLEU score of 26.13, which
is an increase of 1.47 points over the baseline. To
put our results in perspective, we also trained a
GHKM system, a phrase-based system, and a hi-
erarchical phrase-based system (Hiero) with stan-

Translation task System BLEU

English-to-Polish

Baseline 21.29
MBOT 23.43
GHKM 23.31
Phrase-based 24.35
Hiero 24.56

English-to-Russian
Baseline 24.66
MBOT 26.13
GHKM 25.97
Phrase-based 27.90
Hiero 27.72

Table 3: Evaluation results incl. MOSES phrase-
based system, GHKM-based system, and hierar-
chical system for reference. The bold MBOT
results are statistically significant improvements
over the baseline (at confidence p < 1%).

dard settings for each translation task on the same
resources as described in Table 2 and present their
evaluation also in Table 3.

Based on the observed BLEU scores, it seems
likely that our MBOT-based approach can al-
most completely avoid the large quality drop ob-
served between a (hierarchical) phrase-based sys-
tem, which does not utilize the syntactic annota-
tion, and a continuous string-to-tree syntax-based
model. The availability of discontinuous tree frag-
ments yields significant improvements in transla-
tion quality (as measured by BLEU) and an overall
performance similar to (hierarchical) phrase-based
systems. However, we also observe that outscor-
ing a (hierarchical) phrase-based remains a chal-
lenge, so it remains to be seen whether syntactic
information can actually help the translation qual-
ity in those translation tasks.
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To quantitatively support our claim that the mul-
tiple target tree fragments (and the discontinuity)
of an MBOT are useful, we provide statistics on
the MBOT rules that were used to decode the test
set. To this end, we distinguish several types of
rules. A rule is continuous if it has only 1 tar-
get tree fragment, and all other rules are (poten-
tially) discontinuous. Additionally, we distinguish
lexical rules, which only contain lexical items as
leaves, and structural rules, which contain at least
one non-lexical leaf. In Table 4 we report how
many rules of each type are used during decod-
ing.5

For Polish, 41% of all used rules were dis-
continuous and only 4% were structural. Sim-
ilarly, 35% of the used Russian rules were dis-
continuous and again only 4% were structural.
The low proportion of structural rules is not very
surprising since both languages are known to be
morphologically rich and thus have large lexicons
(167,657 lexical items in Polish and 911,397 lexi-
cal items in Russian). Another interesting point is
the distribution of discontinuous structural rules.
Polish and Russian use 83% and 62%, respec-
tively, showing that the majority of the used struc-
tural rules is discontinuous in both tasks. Addi-
tionally using the data of Seemann et al. (2015),
we can confirm that morphologically rich lan-
guages have a small minority of structural rules
(4%, 4%, and 5% for Polish, Russian, and Ger-
man, respectively), whereas Arabic and Chinese
use a much larger proportion of structural rules
(26% and 18%, respectively). In addition, we sus-
pect that the additional non-projectivity of Polish
makes discontinuous rules more useful (as an indi-
cator for induced discontinuity). Whereas for Rus-
sian, German, Arabic and Chinese approx. 2 out
of 3 used structural rules are discontinuous (62%,
64%, 67%, and 68%, respectively), more than
4 out of 5 (83%) used structural rules are discon-
tinuous for Polish.

Finally, we present a fine-grained analysis based
on the number of target tree fragments in Table 4.
Useful Polish rules have at most 6 target tree frag-
ments, whereas Russian rules with up to 9 tar-
get tree fragments have been used. Similar num-
bers have been reported in (Seemann et al., 2015).

5The provided analysis tools currently do not support an
analysis whether a discontinuous rule was actually used in a
discontinuous manner or whether the components were later
combined in a continuous manner. The reported numbers
thus represent potential discontinuity.

Using their data, we also note that Polish, Rus-
sian, and Chinese seem to use a larger percent-
age of discontinuous rules with 2 output tree frag-
ments (80%–90%) compared to German and Ara-
bic (50%–60%).

6 Conclusion

We presented an application of string-to-tree lo-
cal multi bottom-up tree transducers as translation
model of a syntax-based machine translation sys-
tem. The obtained system uses rules with a string
on the source language side and a sequence of
target tree fragments on the target language side.
The availability of several target tree fragments
in a single rule enables the model to realize dis-
continuous translations. We expected that partic-
ularly translation into languages with discontin-
uous constituents would benefit from our model.
However, such languages often have rather free
word order and often only dependency parsers are
available for them. The mentioned discontinuities
often produce non-projective parses, which we
need to transform into projective constituent-like
parse trees before they can be utilized in MOSES.
Hence, we (i) applied a lifting technique to projec-
tivize the dependency trees, which stores informa-
tion about the performed lift operations in the new
labels, and (ii) transformed the obtained projective
dependency trees into constituent-like trees.

Next, we demonstrated that the discontinu-
ous string-to-tree system significantly outperforms
the standard MOSES string-to-tree system on two
different translation tasks (English-to-Polish and
English-to-Russian) with large gains of 2.14 and
1.47 BLEU points, respectively. We also trained a
vanilla phrase-based system, a GHKM-based sys-
tem, and a hierarchical system for each transla-
tion task. In comparison to the string-to-string
phrase-based system, the discontinuous string-to-
tree system is only 0.92 BLEU points worse on
English-to-Polish and 1.77 BLEU points worse for
English-to-Russian. It thus remains to be seen
whether machine translation systems can bene-
fit from syntactic information in those translation
tasks, but the proposed model at least avoids the
large quality drop observed for the continuous
string-to-tree system.

Finally, we analyzed the rules used by our sys-
tem to decode the test sets. In summary, it shows
that both our target languages (Polish and Rus-
sian) require a lot of lexical rules, which is most
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Target tree fragments
Translation task Type Lex Struct Total 2 3 4 5 ≥ 6

English-to-Polish
cont. 25,327 307 25,634

discont. 16,312 1,595 17,907 15,805 1,818 254 27 3

English-to-Russian
cont. 24,100 664 24764

discont. 12,767 1,108 13,875 11,087 2,308 412 58 10

Table 4: Number of rules per type used when decoding test (Lex = lexical rules; Struct = structural rules;
[dis]cont. = [dis]contiguous).

likely due to the morphological richness of the lan-
guages. Furthermore, they use a lot of discontinu-
ous structural rules, which confirms our assump-
tion that a system allowing discontinuous target
tree fragments is the right choice for such lan-
guages.
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Abstract

The log-linear combination of different
features is an important component of
SMT systems. It allows for the easy in-
tegartion of models into the system and
is used during decoding as well as for n-
best list rescoring. With the recent suc-
cess of more complex models like neural
network-based translation models, n-best
list rescoring attracts again more attention.
In this work, we present a new technique
to train the log-linear model based on the
ListNet algorithm. This technique scales
to many features, considers the whole list
and not single entries during learning and
can also be applied to more complex mod-
els than a log-linear combination.

Using the new learning approach, we im-
prove the translation quality of a large-
scale system by 0.8 BLEU points during
rescoring and generate translations which
are up to 0.3 BLEU points better than
other learning techniques such as MERT
or MIRA.

1 Introduction

Nowadays, statistical machine translation is the
most promising approach to translate from one
natural language into another one, when sufficient
training data is available. While there are several
powerful approaches to model the translation pro-
cess, nearly all of them rely on a log-linear com-
bination of different models. This approach al-
lows the system an easy integration of additional
models into the translation process and therefore a
great flexibility to address the various issues and
the different language pairs.

The log-linear model is used during decoding
and for n-best list rescoring. Recently, the success
of rich but computationally complex models, such

as neural network based translation models (Le et
al., 2012), leads to an increased interest in rescor-
ing. It was shown that the n-best list rescoring
is an easy and efficient way to integrate complex
models.

From a machine learning perspective the log-
linear model is used to solve a ranking problem.
Given a list of candidates associated with different
features, we need to find the best ranking accord-
ing to a reference ranking. In machine translation,
this ranking is, for example, given by an automatic
evaluation metric. One promising approach for
this type of problems is the ListNet algorithm (Cao
et al., 2007), which has already been applied suc-
cessfully to the information retrieval task. Using
this algorithm it is possible to train many features.
In contrast to other algorithms, which work only
on single pairs of entries, it considers the whole
list during learning. Furthermore, in addition to
train the weights of a linear combination, it can
be used for more complex models such as neural
networks.

In this paper, we present an adaptation of this al-
gorithm to the task of machine translation. There-
fore, we investigate different methods to normal-
ize the features and adapt the algorithm to directly
optimize a machine translation metric. We used
the algorithm to train a rescoring model and com-
pared it to several existing training algorithms.

In the following section, we first review the re-
lated work. Afterwards, we introduce the ListNet
algorithm in Section 3. The adaptation to the prob-
lem of rescoring machine translation n-best lists
will be described in the next section. Finally, we
will present the results on different language pairs
and domains.

2 Related Work

The first approach to train the parameters of the
log-linear combination model in statistical ma-
chine translation was the minimum error rate train-
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ing (MERT) (Och, 2003). Although new meth-
ods have been presented, this is still the standard
method in many machine translation systems. One
problem of this technique is that it does not scale
well with many features. More recently, Watan-
abe et al. (2007) and Chiang et al. (2008) pre-
sented a learning algorithm using the MIRA tech-
nique. A different technique, PRO, was presented
in (Hopkins and May, 2011). Additionally, sev-
eral techniques to maximize the expected BLEU
score (Rosti et al., 2011; He and Deng, 2012) have
been proposed. The ListNet algorithm, in contrast,
minimizes the difference between the model and
the reference ranking. All techniques have the ad-
vantage that they can scale well to many features
and an intensive comparison of these methods is
reported in (Cherry and Foster, 2012).

The problem of ranking is well studied in the
machine learning community (Chen et al., 2009).
These methods can be grouped into pointwise,
pairwise and listwise algorithms. The PRO algo-
rithm is motivated by a pairwise technique, while
the work presented in this paper is based on the
listwise algorithm ListNet presented in (Cao et al.,
2007). Other methods based on more complex
models have also been presented, for example (Liu
et al., 2013), which uses an additive neural net-
work instead of linear models.

3 ListNet

The ListNet algorithm (Cao et al., 2007) is a list-
wise approach to the problem of ranking. Every
list of candidates that need to be ranked is used
as an instance during learning. The algorithm has
already been successfully applied to the task of in-
formation retrieval.

In order to use the listwise approach for learn-
ing, we need to define a loss function that consid-
ers a whole list. The idea in the ListNet algorithm
is to define two probability distributions respec-
tively on the hypothesized and reference ranking.
Then a metric that compares both distributions can
define the loss function. In this case, we will learn
a scoring function that defines a probability distri-
bution over the possible permutations of the candi-
date list which is similar to the reference ranking.

For a given set of m candidate lists l =
{l(1), . . . , l(m)}, each list l(i) contains a set of n(i)

features vectors x(i) = {x(i)
1 . . . , x

(i)

n(i)} associated

to a set of reference scores y(i) = {y(i)
1 . . . , y

(i)

n(i)},
where n(i) is the number of elements in the list l(i).

The aim is then to find a function fω that assigns a
score to every feature vector x(i)

j . This function is
fully defined by its set of parameters ω. Using the
vector of scores z(i) = {fω(x(i)

1 ) . . . , fω(x(i)

n(i))}
and the reference scores y(i), a listwise loss func-
tion must be defined to learn the function fω.

Since the number of permutations is n! hence
prohibitive, Cao et al. (2007) suggests to replace
the probability distribution over all the permuta-
tions by the probability that an object is ranked
first. This can be defined as:

Ps(j) =
exp(sj)∑n

k=1 exp(sk)
, (1)

where sj is a score assigned to the j-th entry of
the list, either z(i)

j or y(i)
j . Then a loss function is

defined by the cross entropy to compare the dis-
tribution of the reference ranking with the induced
ranking:

L(y(i), z(i)) = −
n∑

j=1

Py(i)(j) log(Pz(i)(j)) (2)

The gradient of the loss function with respect to
the parameters ω can be computed as follows:

∆ω =
δL(y(i), z(i))

δω
= (3)

−
n(i)∑
j=1

Py(i)(x(i)
j )

δfω(x(i)
j )

δω

+
1∑n(i)

j=1 exp(fω(x(i)
j ))

n(i)∑
j=1

exp(fω(x(i)
j ))

δfω(x(i)
j )

δω

4 Rescoring

In this work, we used a log-linear model to rescore
the hypothesis of the n-best lists. The log-linear
model selects the hypothesis translations êi of
source sentence fi according to Equation 4.

êi = argmax
j∈{1...n(i)}

K∑
k=1

ωkhk(eji , fi) (4)

K is the number of features, hk are the different
features and ωk are the parameters of the model
that need to be learned using the ListNet algo-
rithm.
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In this case, the sets of candidate lists l are the
n-best lists generated for the development data.
The scores x(i)

j = {h1(eji , fi) . . . hK(eji , fi)} are
the features of the translation hypothesis ranked in
position j for the sentence i. The features include
conventional scores calculated during decoding, as
well as additional models such as neural network
translation models.

4.1 Score normalization

The scores (x(i)
j )k are, for example, language

model log-probabilities. Since the language model
probabilities are calculated as the product of sev-
eral n-gram probabilities, these values are typi-
cally very small. Therefore, the log-probabilities
are negative numbers with a high absolute value.
Furthermore, the range of feature values may
greatly differ. This can lead to problems in the cal-
culation of exp(fω(x(i)

j )). Therefore, we investi-
gated two techniques to normalize the scores, fea-
ture normalization and final score normalization

In the feature normalization, all values of scores
observed on the development data are rescaled into
the range of [−1, 1] using a linear transformation.
Let mk = mini,j{(x(i)

j )k} denote the minimum
value of the feature k observed on the development
set and similarly Mk for the maximum. The orig-
inal scores are replaced by their rescaled version
(x̂(i)

j )k as follows:

(x̂(i)
j )k =

2 ∗ (x(i)
j )k − (Mk +mk)
Mk −mk

(5)

The same transformation based on the minimal
and maximal feature values on the development
data is applied to the test data.

When using the final score normalization, we
normalize the resulting scores fω(x(i)

j ). This is
done separately for every n-best list. We calculate
the highest absolute value Mi by:

Mi =
n(i)

max
j=1

(|fω(x(i)
j )|) (6)

Then we use the rescaled scores denoted fω and
defined as follows:

fω(x(i)
j ) = fω(x(i)

j ) ∗ r

Mi
, (7)

where r is the desired target range of possible
scores.

Although both methods could be applied to-
gether, we did only use one of them, since both
methods have similar effects.

If not stated differently, we use the feature nor-
malization method in our experiments.

4.2 Metric

To estimate the weights, we need to define a prob-
ability distribution Py associated to the reference
ranking y following Euqation 1. In this work, we
propose a distribution based on machine transla-
tion evaluation metrics.

The most widely used evaluation metric is
BLEU (Papineni et al., 2002), which only pro-
duces a score at the corpus level. As proposed by
Hopkins and May (2011), we will use a smoothed
sentence-wise BLEU score to generate the refer-
ence ranking. In this work, we use the BLEU+1
score introduced by Liang et al. (2006). When
using sj = BLEU(x(i)

j ) in Equation 1, whe get
the follwing defintion of the probability distribu-
tion Py:

Py(i)(x(i)
j ) =

exp(BLEU(x(i)
j ))∑ni

j′=1 exp(BLEU(x(i)
j′ )

(8)

However, the raw use of BLEU+1 may lead to
a very flat probability distribution, since the dif-
ference in BLEU among translation candidates in
the n-best list is in general relatively small. Mo-
tivated by initial experiments, we use instead the
BLEU+1 percentage of each sentence.

4.3 Training

Since the loss function defined in Equation 2 is dif-
ferentiable and convex w.r.t the parameters ω, the
stochastic gradient descent can be applied for op-
timization purpose. The model is trained by ran-
domly selecting sentences from the development
set and by applying batch updates after rescoring
ten source sentences. The training process ends af-
ter 100,000 batches and the final model is selected
according to its performance on the development
data. The learning rate was empirically selected
using the development data. We investigated fixed
learning rates around 1 as well as dynamically up-
dating the learning rate.

5 Evaluation

The proposed approach is evaluated in two widely
known translation tasks. The first is the large scale
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translation task of WMT 2015 for the German–
English language pair in both directions. The sec-
ond is the task of translating English TED lec-
tures into German using the data from the IWSLT
2015 evaluation campaign (Cettolo et al., 2014).
The systems using the ListNet-based rescoring
were submitted to this evaluation campaigns and
when evaluated using the BLEU score they were
all ranking within the top 3. Before discussing
the results, we summarize the translation systems
used for experiments along with the additionnal
features that rely on continuous space translation
models.

5.1 Systems

The baseline system is an in-house implementa-
tion of the phrase-based approach. The system
used to generate n-best lists for the news tasks
is trained on all the available training corpora of
the WMT 2015 Shared Translation task. The sys-
tem uses a pre-reordering technique and facilitates
several translation and language models. A full
system description can be found in (Cho et al.,
2015). The German to English baseline system
uses 19 features and the English to German sys-
tems uses 22 features. Both systems are tuned
on news-test2013 which also serves to train the
rescoring step using ListNet. The news-test2014
is dedicated for evaluation purpose. On both sets,
300-best lists are generated.

In addition to baseline features, we also analyze
the influence of features calculated on the n-best
list after decoding. Since we only need to calcu-
late the scores for the entries in the n-best lists and
not for all partial derivations considered during de-
coding, we can use more complex models.

For the English to German translation task, we
used neural network translation models as intro-
duced in (Le et al., 2012). This model decomposes
the sequence of phrase pairs proposed by the trans-
lation system in two sequences of source and tar-
get words respectively, synchronized by the seg-
mentation into phrase pairs. This decomposition
defines four different scores to evaluate a hypoth-
esis. In such architecture, the size of the output
vocabulary is a bottleneck when normalized dis-
tributions are needed. For efficient computation,
these models rely on a tree-structured output layer
called SOUL (Le et al., 2011). An effective al-
ternative, which however only delivers unnormal-
ized scores, is to train the network using the Noise

Contrastive Estimation (Gutmann and Hyvärinen,
2010; Mnih and Teh, 2012) denoted by NCE in the
rest of the paper. In this work, we used these both
solutions as well as their combination.

For the German to English translation task, we
added a source side discriminative word lexicon
(Herrmann, 2015). This model used a multi-class
maximum entropy classifier for every source word
to predict the translation given the context of the
word. In addition, we used a neural network trans-
lation model using the technique of RBM (Re-
stricted Boltzman Machine)-based language mod-
els (Niehues and Waibel, 2012).

The baseline system for the TED translation
task uses the IWSLT 2015 training data. The
system was adapted to the domain by using lan-
guage model and translation model adaptation
techniques. A detailed description of all models
used in this system can be found in (Slawik et al.,
2014). Overall, the baseline system uses 23 dif-
ferent features. The system is tuned on test2011
and test2012 was used to evaluate the different ap-
proaches. In the additional experiments, n-best
lists generated for dev2010 and test2010 are used
as additional training data for the rescoring.

5.2 Other optimization techniques

For comparison, experimental results include per-
formance obtained with the most widely used al-
gorithms: MERT, KB-MIRA (Cherry and Foster,
2012) as implemented in Moses (Koehn et al.,
2007), along with the PRO algorithm. For the
latter, we used the MegaM1 version (Daumé III,
2004). All the results correspond to three random
restarts and the weights are chosen according to
the best performance on the development data.

5.3 WMT – English to German

The results for the English to German news trans-
lation task are summarized in Table 1. The transla-
tions generated by the phrase-based decoder reach
a BLEU score of 20.19. We compared the pre-
sented approach with MERT, KB-MIRA and PRO.
KB-MIRA and MERT improve the performance
by at most 0.3 BLEU points. In contrast, the PRO
technique and the ListNet algorithm presented in
this paper improve the translation quality by 0.8
BLEU points to 21 BLEU points.

Using the NCE-based or SOUL-based neural
network translation models improve the perfor-

1http://www.umiacs.umd.edu/˜hal/megam/
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Baseline NCE SOUL SOUL+NCE
System Dev Test Dev Test Dev Test Dev Test
Baseline 20.19
MERT 20.63 20.52 21.24 20.92 21.36 20.84 21.36 20.94
KB-MIRA 20.64 20.38 21.51 20.96 21.65 20.83 21.71 21.06
PRO 20.17 21.01 21.04 21.25 21.18 21.31 21.14 21.34
ListNet 19.95 20.98 21.00 21.51 21.02 21.54 21.14 21.63

Table 1: WMT Results for English to German

Baseline SDWL SDWL+RBMTM
System Dev Test Dev Test Dev Test
Baseline 27.77
MERT 28.18 27.80 28.24 27.65 28.23 27.64
KB-MIRA 28.23 28.06 28.18 28.00 28.00 27.88
PRO 27.38 28.01 27.56 28.14 28.68 28.04
ListNet 28.00 27.87 27.89 28.18 27.94 28.28

Table 2: WMT Results for German to English

mance up to 21.31 using one of the existing algo-
rithms. Again, the best performance was reached
using the PRO algorithm. If we use the ListNet
algorithm, we can improve the translation score to
21.54 BLEU points. For this condition, this algo-
rithm outperforms the other by 0.2 BLEU point.
When using the two models, the ListNet algorithm
achieves an additional gain of 0.1 BLEU point.
Moreover, we can observe that MERT and KB-
MIRA always yield the best results on the devel-
opment set, whereas BLEU scores on the test set
are lower. The opposite trend is observed with
ListNet2 showing a better generalization power.

In summary, in all conditions, the ListNet algo-
rithm outperforms MERT and KB-MIRA. Only in
one condition the PRO algorithm generates trans-
lations with a BLEU score as high as the List-
Net algorithm. The ListNet algorithm outperforms
to the best other algorithms by up to 0.3 BLEU
points. The baseline translation is improved by 0.8
BLEU points with only conventional features, and
by 1.4 BLEU points when using additional mod-
els. Furthmore, as shown by the lower scores on
the development data, the ListNet algorithm seems
to be less prone to overfitting.

5.4 WMT – German to English

The German to English news translation task re-
sults are shown in Table 2. The baseline sys-
tem yields a BLEU score of 27.77 on the test

2and with PRO to a lesser extent

set. This is slightly outperformed by the List-
Net algorithm by 0.1 BLEU point. In this con-
figuration, the KB-MIRA-based rescoring and the
PRO algorithm slightly outperform the ListNet
algorithm by 0.2 BLEU points. MERT gener-
ates a BLEU score worse than the ListNet algo-
rithm. When adding the source discriminative
word lexicon (SDWL) only or adding this model
and the RBM-based translation model, the ListNet
based algorithm outperforms again all other mod-
els. While the other algorithms could only gain
slightly from these models, the ListNet-based op-
timization improves the BLEU score up to 28.28
points. This is the best performance reached on
this task with a 0.1 BLEU point improvement over
other optimization algorithms.

5.5 TED – English to German

In addition to the experiments on the news domain,
we performed experiments on the task of translat-
ing English TED talks into German. The results of
these experiments are summarized in Table 3.

In this task, the MERT algorithm performs bet-
ter than the KB-MIRA and PRO algorithms and
generates translations with a BLEU score of 23.46
points. By optimizing the weights of the log-
linear model using the ListNet algorithm, we in-
creased the BLEU score slightly to 23.51 points.
But in this condition all optimization could not im-
prove the system over the initial translation, which
reaches a BLEU score of 23.67 points.
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Baseline extra Dev Data
System Dev Test Dev Test
Baseline 23.67
MERT 27.69 23.46 25.63 23.36
KB-MIRA 27.47 23.19 25.65 23.76
PRO 26.67 23.10 25.00 23.65
ListNet 27.37 23.51 25.49 24.08

Table 3: TED Results for English to German

In addition to the integration of additional fea-
tures, the rescoring technique also allows an easy
facilitation of additional development data. For
this task, additional development data is available.
Therefore, we also trained all rescoring algorithms
on the concatenation of the original development
data and the additional two development sets.

The KB-MIRA and PRO algorithm can facili-
tate this data and generate translation with a higher
BLEU score. In contrast, when using the MERT
algorithm, the BLEU score is not improved by the
additional data. Therefore, the KB-MIRA algo-
rithm performs better than MERT and PRO and
can improve the baseline system by 0.1 BLEU
points. With the ListNet algorithm it is possible
to select translations with a BLEU score that is
0.6 points better than system trained on the smaller
development set. The ListNet rescoring improves
the baseline system by 0.4 BLEU points and the
best other learning algorithm, KB-MIRA, by 0.3
BLEU points.

5.6 Convergence of the ListNet algorithm

To assess the convergence speed of the ListNet al-
gorithm, the Figure 1 plots the evolution of the
BLEU+1 score measured on the development set
for the English to German translation task. We can
observe a fast convergence along with a satisfac-
tory stability. This is an important characteristic of
this algorithm in comparison with the randomness
exhibited by some usual tuning algorithm such as
MERT.

5.7 Score normalization

On the German to English translation task, we
compared the normalization of the features used
in the previous experiments with normalizing the
final score as described in Section 4.1. We eval-
uated different target feature ranges between 0.5
and 100. The results for these experiments are
summarized in Figure 2.

Figure 1: Evolution of the BLEU+1 score mea-
sured on the development set as a function of the
number of training sentences.

As shown in the graph, if the range of possible
scores is too low, no learning is possible. The best
performance on the development is reached at a
value of ten with 20.21 BLEU points on the de-
velopment data and 20.64 on the test data. This is
also nearly the best performance on the test data.

In comparison, the feature normalization
achieves a BLEU score of 19.95 on the develop-
ment data and 20.98 on the test data as shown in
Table 1. Although the normalization of the final
score can outperform the feature normalization on
the development data, the feature normalization
performs best on the test data in this task.

6 Conclusion

We presented in this paper a new way to train the
log-linear model of a statistical machine transla-
tion system based on an adaptation of the List-
Net algorithm to the task of ranking translation hy-
potheses. This algorithm can be applied to many
features and considers the whole n-best list for
training. The algorithm can also be applied for
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Figure 2: Score normalization

more complex models than the log-linear model
used in most machine translation systems.

Using this technique translation quality is im-
proved as measured in BLEU scores on large scale
translation tasks. Without any additional feature,
we improved the BLEU score by 0.8 points and
0.1 points compared to the initial translations. Fur-
ther 0.6 BLEU points was gained by using ad-
ditional models in the rescoring. The algorithm
outperformed the MERT training in all configura-
tions and other algorithms in most configurations.
Moreover, experimental results show that our ap-
proach is less prone to overfitting which is an im-
portant issue of many optimization techniques.
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Abstract

This paper presents the results of the
WMT15 Metrics Shared Task. We asked
participants of this task to score the out-
puts of the MT systems involved in the
WMT15 Shared Translation Task. We col-
lected scores of 46 metrics from 11 re-
search groups. In addition to that, we
computed scores of 7 standard metrics
(BLEU, SentBLEU, NIST, WER, PER,
TER and CDER) as baselines. The col-
lected scores were evaluated in terms of
system level correlation (how well each
metric’s scores correlate with WMT15 of-
ficial manual ranking of systems) and in
terms of segment level correlation (how
often a metric agrees with humans in com-
paring two translations of a particular sen-
tence).

1 Introduction

Automatic machine translation metrics play a very
important role in the development of MT systems
and their evaluation. There are many different
metrics of diverse nature and one would like to
assess their quality. For this reason, the Met-
rics Shared Task is held annually at the Work-
shop of Statistical Machine Translation1, starting
with Koehn and Monz (2006) and following up to
Macháček and Bojar (2014).

The systems’ outputs, human judgements and
evaluated metrics are described in Section 2. The
quality of the metrics in terms of system level cor-
relation is reported in Section 3. Section 4 is de-
voted to segment level correlation.

2 Data

We used the translations of MT systems involved
in WMT15 Shared Translation Task (Bojar et al.,

1http://www.statmt.org/wmt15

2015) together with reference translations as the
test set for the Metrics Task. This dataset con-
sists of 87 systems’ outputs and 10 reference trans-
lations in 10 translation directions (English from
and into Czech, Finnish, French, German and Rus-
sian). The number of sentences in system and ref-
erence translations varies among language pairs
ranging from 1370 for Finnish-English to 2818 for
Russian-English. For more details, please see the
WMT15 overview paper (Bojar et al., 2015).

2.1 Manual MT Quality Judgements

During the WMT15 Translation Task, a large scale
manual annotation was conducted to compare the
translation quality of participating systems. We
used these collected human judgements for the
evaluation of the automatic metrics.

The participants in the manual annotation were
asked to evaluate system outputs by ranking trans-
lated sentences relative to each other. For each
source segment that was included in the proce-
dure, the annotator was shown five different out-
puts to which he or she was supposed to assign
ranks. Ties were allowed.

These collected rank labels for each five-tuple
of outputs were then interpreted as pairwise com-
parisons of systems and used to assign each sys-
tem a score that reflects how high that system was
usually ranked by the annotators. Several meth-
ods have been tested in the past for the exact score
calculation and WMT15 has adopted TrueSkill as
the official one. Please see the WMT15 overview
paper for details on how this score is computed.

For the metrics task in 2014, we were still using
the “Pre-TrueSkill” method called “> Others”, see
Bojar et al. (2011). Since we are now moving to
the golden truth calculated by TrueSkill, we report
also the average “Pre-TrueSkill” score in the rele-
vant tables for comparison.
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Metric Participant
BEER, BEER TREEPEL ILLC – University of Amsterdam (Stanojević and Sima’an, 2015)

BS University of Zurich (Mark Fishel; no corresponding paper)
CHRF, CHRF3 DFKI (Popović, 2015)

DPMF, DPMFCOMB Chinese Academy of Sciences and Dublin City University (Yu et al., 2015)
DREEM National Research Council Canada (Chen et al., 2015)

LEBLEU-DEFAULT, LEBLEU-OPTIMIZED Lingsoft and Aalto University (Virpioja and Grönroos, 2015)
METEOR-WSD, RATATOUILLE LIMSI-CNRS (Marie and Apidianaki, 2015)

UOW-LSTM University of Wolverhampton (Gupta et al., 2015a)
UPF-COBALT Universitat Pompeu Fabra (Fomicheva et al., 2015)

USAAR-ZWICKEL-* Saarland University (Vela and Tan, 2015)
VERTA-W, VERTA-EQ, VERTA-70ADEQ30FLU University of Barcelona (Comelles and Atserias, 2015)

Table 1: Participants of WMT15 Metrics Shared Task

2.2 Participants of the Metrics Shared Task

Table 1 lists the participants of the WMT15 Shared
Metrics Task, along with their metrics. We have
collected 46 metrics from a total of 11 research
groups.

Here we give a short description of each metric
that performed the best on at least one language
pair.

2.2.1 BEER and BEER TREEPEL

BEER is a trained metric, a linear model that
combines features capturing character n-grams
and permutation trees. BEER has participated
last year in sentence-level evalution. The main
additions this year are corpus-level aggregation
of sentence-level scores and a syntactic version
called BEER TREEPEL. BEER TREEPEL in-
cludes features checking the match of each type
of arc in the dependency trees of the hypothesis
and the reference.

BEER was the best for en-de and en-ru at the
system level and en-fi and en-ru at the sentence
level. BEER TREEPEL was the best for system-
level evaluation of ru-en.

2.2.2 BS
The metric BS has no corresponding paper, so
we include a summary by Mark Fishel here: The
BS metric was an attempt of moving in a dif-
ferent direction than most state-of-the-art metrics
and reduce complexity and language resource de-
pendence to the minimum. The score is obtained
from the number and lengths of “bad segments”:
continuous subsequences of words that are present
only in the hypothesis or the reference, but not
both. To account for morphologically complex
languages and smooth the score for sparse word
forms poor man’s lemmatization is added: the
floor of one third of each word’s characters are re-

moved from the word’s end. The final score is ei-
ther the log-sum of the bad segment lengths (BS)
or a simple sum (TOTAL-BS).

BS and DPMF were the best for system-level
English-French evaluation.

2.2.3 CHRF3
CHRF3 calculates a simple F-score combination of
the precision and recall of character n-grams of
length 6. The F-score is calculated with β = 3,
giving triple the weight to recall.

CHRF3 was the best for en-fi and en-cs at the
system level and en-cs at the sentence level.

2.2.4 DPMF and DPMFCOMB

DPMF is a syntax-based metric but unlike many
syntax-based metrics, it does not compute score
on substructures of the tree returned by a syntac-
tic parser. Instead, DPMF parses the reference
translation with a standard parser and trains a new
parser on the tree of the reference translation. This
new parser is then used for scoring the hypothesis.
Additionally, DPMF uses F-score of unigrams in
combination with the syntactic score.

DPMFCOMB is a combination of DPMF with
several other metrics available in the evaluation
tool Asiya2.

DPMF and BS were the best for system-level
evaluation of English-French. DPMF also tied
for the best place with UOW-LSTM for French-
English. DPMFCOMB was the best for fi-en, de-
en and cs-en at the sentence level.

2.2.5 DREEM
DREEM uses distributed word and sentence rep-
resentations of three different kinds: one-hot rep-
resentation, a distributed representation learned
with a neural network and a distributed sentence

2http://asiya-faust.cs.upc.edu/
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representation learned with a recursive autoen-
coder. The final score is the cosine similarity of
the representation of the hypothesis and the refer-
ence, multiplied with a length penalty.

DREEM was the best for fi-en system-level
evaluation.

2.2.6 LEBLEU-OPTIMIZED

LEBLEU is a relaxation of the strict word n-gram
matching that is used in standard BLEU. Unlike
other similar relaxations, LEBLEU uses fuzzy
matching of longer chunks of text that allows, for
example, to match two independent words with a
compound. LEBLEU-OPTIMIZED applies fuzzy
match threshold and n-gram length optimized for
each language pair.

LEBLEU-OPTIMIZED was the best for en-de at
the sentence level.

2.2.7 RATATOUILLE
RATATOUILLE is a metric combination of
BLEU, BEER, Meteor and few more metrics out
of which METEOR-WSD is a novel contribution.
METEOR-WSD is an extension of Meteor that in-
cludes synonym mappings to languages other than
English based on alignments and rewards seman-
tically adequate translations in context.

RATATOUILLE was the best for sentence-
level French-English evaluation in both directions.

2.2.8 UOW-LSTM

UOW-LSTM uses dependency-tree recursive neu-
ral network to represent both the hypothesis and
the reference with a dense vector. The final
score is obtained from a neural network trained on
judgements from previous years converted to sim-
ilarity scores, taking into account both the distance
and angle of the two representations.

UOW-LSTM tied for the best place in fr-en
system-level evaluation with DPMF.

2.2.9 UPF-COBALT

UPF-COBALT pays an increased attention to syn-
tactic context (for example arguments, comple-
ments, modifiers etc.) both in aligning the words
of the hypothesis and reference as well as in scor-
ing of the matched words. It relies on additional
resources including stemmers, WordNet synsets,
paraphrase databases and distributed word repre-
sentations. UPF-COBALT system-level score was
calculated by taking the ratio of sentences in
which each system from a set of competitors was
assigned the highest sentence-level score.

UPF-COBALT was the best on system-level eval-
uation for de-en and, together with VERTA-
70ADEQ30FLU, for cs-en.

2.2.10 VERTA-70ADEQ30FLU

VERTA-70ADEQ30FLU aims at the combination
of adequacy and fluency features that use many
sources of different linguistic information: syn-
onyms, lemmas, PoS tags, dependency parses and
language models. On previous works VERTA’s
linguistic features combination were set depend-
ing on whether adequacy or fluency was evaluated.
VERTA-70ADEQ30FLU is a weighted combina-
tion of VERTA setups for adequacy (0.70) and flu-
ency (0.30).

VERTA-70ADEQ30FLU was, together with
UPF-COBALT, the best on cs-en on system level.

2.2.11 Baseline Metrics
In addition to the submitted metrics, we have com-
puted the following two groups of standard met-
rics as baselines for the system level:

• Mteval. The metrics BLEU (Papineni
et al., 2002) and NIST (Dodding-
ton, 2002) were computed using the
script mteval-v13a.pl3 which is
used in the OpenMT Evaluation Cam-
paign and includes its own tokeniza-
tion. We run mteval with the flag
--international-tokenization
since it performs slightly better (Macháček
and Bojar, 2013).

• Moses Scorer. The metrics TER (Snover et
al., 2006), WER, PER and CDER (Leusch et
al., 2006) were computed using the Moses
scorer which is used in Moses model opti-
mization. To tokenize the sentences, we used
the standard tokenizer script as available in
Moses toolkit.

For segment level baseline, we have used the
following modified version of BLEU:

• SentBLEU. The metric SentBLEU is com-
puted using the script sentence-bleu, part of
the Moses toolkit. It is a smoothed version
of BLEU that correlates better with human
judgements for segment level.

3http://www.itl.nist.gov/iad/mig/
tools/
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We have normalized all metrics’ scores such
that better translations get higher scores.

For computing the scores we used the same
script from the last year metric task.

3 System-Level Results

Same as last year, we used Pearson correlation co-
efficient as the main measure for system level met-
rics correlation. We use the following formula to
compute the Pearson’s r for each metric and trans-
lation direction:

r =
∑n

i=1(Hi − H̄)(Mi − M̄)√∑n
i=1(Hi − H̄)2

√∑n
i=1(Mi − M̄)2

(1)
where H is the vector of human scores of all

systems translating in the given direction, M is the
vector of the corresponding scores as predicted by
the given metric. H̄ and M̄ are their means re-
spectively.

Since we have normalized all metrics such that
better translations get higher score, we consider
metrics with values of Pearson’s r closer to 1 as
better.

You can find the system-level correlations for
translations into English in Table 2 and for transla-
tions out of English in Table 3. Each row in the ta-
bles contains correlations of a metric in each of the
examined translation directions. The upper part of
each table lists metrics that participated in all lan-
guage pairs and it is sorted by average Pearson cor-
relation coefficient across translation directions.
The lower part contains metrics limited to a subset
of the language pairs, so the average correlation
cannot be directly compared with other metrics
any more. The best results in each direction are in
bold. The reported empirical confidence intervals
of system level correlations were obtained through
bootstrap resampling of 1000 samples (confidence
level of 95%).

The move to TrueSkill golden truth slightly in-
creased the correlations and changed the rank-
ing of the metrics a little, but the general pat-
terns hold. (The correlation between “Average”
and “Pre-TrueSkill Average” is .999 for both di-
rections.)

Both tables also include the average Spearman’s
rank correlation, which used to be the evaluation
measure in the past. Spearman’s rank correlation
considers only the ranking of the systems and not

the distances between them. It is thus more sus-
ceptible to instability if several systems have sim-
ilar scores.

3.1 System-Level Discussion

As in the previous years, many metrics outperform
BLEU both into as well as out of English. Note
that the original BLEU was designed to work with
4 references and WMT provides just one; see Bo-
jar et al. (2013) for details on BLEU correlation
with varying number of references, up to several
thousands. This year, BLEU with one reference
reaches the average correlation of .92 into English
or .78 out of English. The best performing metrics
get up to .98 into English and .92 out of English.
CDER is the best of the baselines, reaching .94
into English and .81 out of English.

The winning metric for each language pair is
different, with interesting outliers: DREEM per-
formed best when evaluating English translations
from Finnish but on average, 12 other metrics
into English performed better and DREEM appears
to be among the worst metrics out of English.
RATATOUILLE is fifth to tenth when evaluated
by average Pearson but wins in both directions in
average Spearman’s rank correlation.

Two metrics confirm the effectiveness of
character-level measures, esp. the winners for out
of English evaluation: CHRF3 and BEER. The
metric CHRF3 is particularly interesting because
it does not require any resources whatsoever. It is
defined as a simple F-measure of character-level 6-
grams (spaces are ignored), with recall weighted 3
times more than precision. The balance between
the precision and recall seems important depend-
ing on morphological richness of the target lan-
guage: for evaluations into English, CHRF (equal
weights) performs better than CHRF3.

As we already observed in the past, the winning
metrics are trained on previous years of WMT.
This holds for DPMFCOMB, UOW-LSTM and
BEER including BEER TREEPEL. DPMF and
UPF-COBALT are not combination or trained met-
rics of any kind, DPMF is based on dependency
analysis of the candidate and reference sentences
and UPF-COBALT uses contextual information of
compared words in the candidate and the refer-
ence.

We see an interesting difference in the perfor-
mance of UOW-LSTM. It is the second metric in
system-level correlation but falls among the worst
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ones in segment-level correlations, see Table 4 be-
low. Gupta et al. (2015b) suggest that the discrep-
ancy in performance could be based by low inter-
annotator agreement and Kendall’s τ not reflecting
the distances in translation quality between candi-
dates, an issue similar to what we see with Pearson
vs. Spearman’s rank correlations.

Another dense-representation metric, DREEM,
seems to suffer a similar discrepancy when evalu-
ating into English. Out of English, DREEM did
not perform very well.

An untested speculation is that the dense
sentence-level representation present in some
form in both UOW-LSTM as well as in DREEM
confuses the metrics in their judgements of indi-
vidual sentences.

3.2 Comparison with BLEU

In Appendix A, we provide two correlation plots
for each language pair. The first plot visualizes
the correlation of BLEU and manual judgements,
the second plot shows the correlation for the best
performing metric for that pair.

The BLEU plots include grey ellipses to indi-
cate the confidence intervals of both BLEU as well
as manual judgements. The ellipses are tilted only
to indicate that BLEU and the manual score are
dependent variables. Only the width and height
of each ellipse represent a value, that is the confi-
dence interval in each direction. The same verti-
cal confidence intervals hold for plots in the right-
hand column, but since we don’t have any con-
fidence estimates for the individual metrics, we
omit them.

Czech-English plots indicate that UPF-COBALT

was able to account for the very different be-
haviour of the transfer-based deep-syntactic sys-
tem CU-TECTO. It was also able to appreciate the
higher translation quality of montreal, UEDIN-*
and online-b. The big cluster of systems labelled
TT-* are submissions to the WMT15 Tuning Task
(Stanojević et al., 2015).

For English-Czech, we see that UEDIN-JHU and
MONTREAL are overfit for BLEU. In terms of
BLEU, they are very close to the winning system
CU-CHIMERA (a combination of CU-TECTO and
phrase-based Moses, followed by automatic post-
editing). CHRF3 is able to recognize the overfitting
for MONTREAL, a neural-network based system,
but not for UEDIN-JHU. CHRF3 also better recog-
nizes the distance in quality between larger sys-

tems (from COMMERCIAL1 above) and the small-
data tuning task systems.

For German-English, we see the same over-
fit of UEDIN-JHU towards BLEU. While neither
UPF-COBALT nor CHRF3 could recognize this for
translations involving Czech, the issue is spot-
ted by UPF-COBALT for systems involving Ger-
man. Syntax-based systems like UEDIN-SYNTAX

for English-German and (presumably) ONLINE-B

for German-English are among those where the
correlation got most improved over BLEU.

The French dataset was in a different domain,
which may explain why the best performing met-
ric DPMF does actually not improve much above
BLEU. DPMF uses a syntactic parser on the ref-
erence, and the performance of parsers on discus-
sions is likely to be lower than the generally used
news domain.

In Finnish results, we see again UEDIN-JHU and
ABUMATRAN (Rubino et al., 2015) overvalued by
BLEU. DREEM based on distributed representa-
tion of words and sentences is able to recognize
this for translation into English but it falls among
the worst metrics in the other direction. For trans-
lation into Finnish, character-based n-grams of
CHRF3 are much more reliable. Variants of ABU-
MATRAN were again those most overvalued by
BLEU. ABUMATRAN uses several types of mor-
phological segmentation and reconstructs Finnish
words from the segments by concatenation. ABU-
MATRAN is loaded with many other features, like
web-crawled data and domain handling, and sys-
tem combination of several approaches. The opti-
mization towards BLEU (unreliable for Finnish, as
we have learned in this task), could be among the
main reasons behind the comparably lower man-
ual scores.

For Russian, BEER is the best metric, in its
syntax-aware variant BEER TREEPEL for evalu-
ating English. Compared to BLEU, the improve-
ment in correlation is not that striking for Russian-
English. (It would be interesting to know whether
ONLINE-G is better than ONLINE-B because of En-
glish syntax or addressing source-side morphol-
ogy better. BEER TREEPEL captures both as-
pects.) In the other direction, targetting Russian,
BLEU was effectively unable to rank the systems
at all. It is probably the character-level features in
BEER that allow it to reach a very good correla-
tion, .97.
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4 Segment-Level Results

We measure the quality of metrics’ segment-level
scores using Kendall’s τ rank correlation coeffi-
cient. In this type of evaluation, a metric is ex-
pected to predict the result of the manual pairwise
comparison of two systems. Note that the golden
truth is obtained from a compact annotation of five
systems at once, while an experiment with text-to-
speech evaluation techniques by Vazquez-Alvarez
and Huckvale (2002) suggest that a genuine pair-
wise comparison is likely to lead to more stable
results.

The basic formula for Kendall’s τ is:

τ =
|Concordant| − |Discordant|
|Concordant| + |Discordant| (2)

where Concordant is the set of all human com-
parisons for which a given metric suggests the
same order and Discordant is the set of all human
comparisons for which a given metric disagrees.
The formula is not specific with respect to ties, i.e.
cases where the annotation says that the two out-
puts are equally good.

The way in which ties (both in human and
metric judgment) were incorporated in comput-
ing Kendall τ changed each year of WMT metric
tasks. Here we adopt the version from WMT14.
For a detailed discussion on other options, see
Macháček and Bojar (2014).

The method is formally described using the fol-
lowing matrix:

Metric
< = >

H
um

an < 1 0 -1
= X X X
> -1 0 1

Given such a matrix Ch,m where h, m ∈ {<,=
, >}4 and a metric, we compute the Kendall’s τ for
the metric the following way:

We insert each extracted human pairwise com-
parison into exactly one of the nine sets Sh,m ac-
cording to human and metric ranks. For example
the set S<,> contains all comparisons where the
left-hand system was ranked better than right-hand
system by humans and it was ranked the other way
round by the metric in question.

To compute the numerator of Kendall’s τ , we
take the coefficients from the matrix Ch,m, use

4Here the relation < always means ”is better than“ even
for metrics where the better system receives a higher score.

them to multiply the sizes of the corresponding
sets Sh,m and then sum them up. We do not in-
clude sets for which the value of Ch,m is X. To
compute the denominator of Kendall’s τ , we sim-
ply sum the sizes of all the sets Sh,m except those
where Ch,m = X. To define it formally:

τ =

∑
h,m∈{<,=,>}

Ch,m ̸=X

Ch,m|Sh,m|

∑
h,m∈{<,=,>}

Ch,m ̸=X

|Sh,m| (3)

To summarize, the WMT14 matrix specifies to:

• exclude all human ties,

• count metric’s ties only for the denominator
of Kendall τ (thus giving no credit for giving
a tie),

• all cases of disagreement between hu-
man and metric judgements are counted as
Discordant,

• all cases of agreement between human
and metric judgements are counted as
Concordant.

You can find the system-level correlations for
translations into English in Table 4 and for trans-
lations out of English in Table 5. Again, the upper
part of each table contains metrics participating in
all language pairs and it is sorted by average τ
across translation directions. The lower part con-
tains metrics limited to a subset of the language
pairs, so the average cannot be directly compared
with other metrics any more.

4.1 Segment-Level Discussion
As usual, segment-level correlations are signifi-
cantly lower than system-level ones. The highest
correlation is reached by DPMFCOMB on Czech-
to-English: .495 of Kendall’s τ . The correlations
reach on average .447 into English and .400 out of
English.

DPMFCOMB is the clear winner into English,
followed by BEER TREEPEL, both of which con-
sider syntactic structure of the sentence, combined
with several other independent features or metrics.

RATATOUILLE, also a combined metric, is
the best option for evaluation to and from French.

Metrics considering character-level n-grams
(BEER and CHRF3) are particularly good for
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2014 2015 Delta
B

E
E

R
Average en→* .319±.011 .401±.009 0.082
en-cs .344±.009 .435±.006 0.091
en-de .268±.009 .396±.008 0.128
en-fr .292±.012 .352±.010 0.060
en-ru .440±.013 .440±.012 0.000
Average *→en .362±.013 .423±.010 0.061
cs-en .284±.016 .457±.008 0.173
de-en .337±.014 .438±.010 0.101
fr-en .417±.013 .393±.012 -0.024
ru-en .333±.011 .406±.009 0.073

S
E

N
T

B
L

E
U

Average en→* .269±.011 .310±.009 0.041
en-cs .290±.009 .360±.005 0.070
en-de .191±.009 .296±.010 0.105
en-fr .256±.012 .318±.011 0.062
en-ru .381±.013 .347±.010 -0.034
Average *→en .285±.013 .351±.011 0.066
cs-en .213±.016 .391±.006 0.178
de-en .271±.014 .360±.011 0.089
fr-en .378±.013 .358±.013 -0.020
ru-en .263±.011 .340±.012 0.077

Average 0.07±0.06

Table 6: Kendall’s τ scores for two metrics across
years.

evaluation out of English and their margin seems
to the highest for English-to-Finnish, up to .06
points.

Only two segment-level metrics took part in
2014 and 2015, BEER in a slightly improved
implementation (with some small effect on the
scores) and SENTBLEU in exactly the same im-
plementation. Table 6 documents that this year,
the scores are on average slightly higher. The main
reason lies probably in the test set, which may be
somewhat easier this year. French is different, the
correlations decreased somewhat this year, which
can be easily explained by the domain change:
news in 2014 and discussions in 2015. The in-
crease should not be caused by the redundancy
cleanup of WMT manual rankings, see Bojar et al.
(2015), since the collapsed systems get a tie after
expanding and our implementation ignores all tied
manual comparisons.

5 Conclusion

In this paper, we summarized the results of the
WMT15 Metrics Shared Task, which assesses the
quality of various automatic machine translation
metrics. As in previous years, human judgements
collected in WMT15 serve as the golden truth and
we check how well the metrics predict the judge-
ments at the level of individual sentences as well
as at the level of the whole test set (system-level).

Across the two types of evaluation and the
10 language pairs, we saw great performance

of trained and combined metrics (DPMFCOMB,
BEER, RATATOUILLE and others). Neural net-
works for continuous word and sentence repre-
sentations have also shown their generalization
power, with an interesting discrepancy in system-
vs. segment-level performance of UOW-LSTM

and to a smaller degree of DREEM.
We value high the metric CHRF or CHRF3 for

its extreme simplicity and very good performance
at both system and segment level and especially
out of English. We are curious to see if CHRF3
has the potential of becoming “the BLEU for the
next five years”. It would be very interesting to test
its usability in system tuning. It is known that in
tuning, metrics putting too much attention to recall
can be easily tricked, but perhaps a careful setting
of CHRF’s β will be sufficient.

The WMT Metrics Task again attracted a good
number of participants and the majority of submit-
ted metrics are actually new ones. This is good
news, indicating that MT metrics are an active
field of research. Most, if not all metrics come
with the source code, so it should be relatively
easy to use them in own experiments. Still, we
would expect much wider adoption of the metrics,
if they made it for example to the standard Moses
scorer or at least to the Asyia toolkit.
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Západočeská univerzita v Plzni, Springer Verlag.
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Matouš Macháček and Ondřej Bojar. 2013. Results
of the WMT13 Metrics Shared Task. In Proceed-
ings of the Eighth Workshop on Statistical Machine

Translation, pages 45–51, Sofia, Bulgaria, August.
Association for Computational Linguistics.
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2015. Results of the WMT15 Tuning Shared Task.
In Proceedings of the Tenth Workshop on Statistical
Machine Translation, Lisboa, Portugal, September.
Association for Computational Linguistics.

Yolanda Vazquez-Alvarez and Mark Huckvale. 2002.
The reliability of the ITU-t p.85 standard for the
evaluation of text-to-speech systems. In Proc. of IC-
SLP - INTERSPEECH.

267



Mihaela Vela and Liling Tan. 2015. Predicting Ma-
chine Translation Adequacy with Document Embed-
dings. In Proceedings of the Tenth Workshop on
Statistical Machine Translation, Lisboa, Portugal,
September. Association for Computational Linguis-
tics.

Sami Virpioja and Stig-Arne Grönroos. 2015.
LeBLEU: N-gram-based Translation Evaluation
Score for Morphologically Complex Languages. In
Proceedings of the Tenth Workshop on Statistical
Machine Translation, Lisboa, Portugal, September.
Association for Computational Linguistics.

Hui Yu, Qingsong Ma, Xiaofeng Wu, and Qun Liu.
2015. CASICT-DCU Participation in WMT2015
Metrics Task. In Proceedings of the Tenth Workshop
on Statistical Machine Translation, Lisboa, Portu-
gal, September. Association for Computational Lin-
guistics.

268



A System-Level Correlation Plots

The following figures plot the system-level results of BLEU (left-hand plots) and the best performing
metric for the given language pair (right-hand plots) against manual score. See the discussion in Sec-
tion 3.2.
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Abstract

This paper presents the results of the
WMT15 Tuning Shared Task. We pro-
vided the participants of this task with a
complete machine translation system and
asked them to tune its internal parameters
(feature weights). The tuned systems were
used to translate the test set and the out-
puts were manually ranked for translation
quality. We received 4 submissions in the
English-Czech and 6 in the Czech-English
translation direction. In addition, we ran
3 baseline setups, tuning the parameters
with standard optimizers for BLEU score.

1 Introduction

Almost all modern statistical machine translation
(SMT) systems internally consider translation can-
didates from several aspects. Some of these as-
pects can be very simple and one parameter is suf-
ficient to capture them, such as the word penalty
incurred for every word produced or the phrase
penalty controlling whether the sentence should be
translated in fewer or more independent phrases,
leading to more or less word-for-word translation.
Other aspects try to assess e.g. the fidelity of the
translation, the fluency of the output or the amount
of reordering. These are far more complex and for-
mally captured in a model such as the translation
model or language model.

Both the simple penalties as well as the scores
from the more complex models are called features
and need to be combined to a single score to allow
for ranking of translation candidates. This is usu-
ally done using a linear combination of the scores:

score(e) =
M∑

m=1

λmhm(e, f) (1)

where e and f are the candidate translation and
the source, respectively, and hm(·, ·) is one of the

M penalties or models. The tuned parameters are
λm ∈ R, called feature weights.

Feature weights have a tremendous effect on
the final translation quality. For instance the sys-
tem can produce extremely long outputs, fabulat-
ing words just in order to satisfy a negatively-
weighted word penalty, i.e. a bonus for each word
produced. An inherent part of the preparation
of MT systems is thus some optimization of the
weight settings.

If we had to set the weights manually, we would
have to try a few configurations and pick one that
leads to reasonable outputs. The common prac-
tice is to use an optimization algorithm that ex-
amines many settings, evaluating the produced
translations automatically against reference trans-
lations using some evaluation measure (tradition-
ally called “metric” in the MT field). In short,
the optimizer tunes model weights so that the final
combined model score correlates with the metric
score.

The metric score, in turn, is designed to cor-
relate well with human judgements of translation
quality, see Stanojević et al. (2015) and the pre-
vious papers summarizing WMT metrics tasks.
However, a metric that correlates well with hu-
mans on final output quality may not be usable
in weight optimization for various technical rea-
sons. BLEU (Papineni et al., 2002) was shown to
be very hard to surpass (Cer et al., 2010) and this is
also confirmed by the results of the invitation-only
WMT11 Tunable Metrics Task (Callison-Burch et
al., 2010)1. Note however, that some metrics have
been successfully used for system tuning (Liu et
al., 2011; Beloucif et al., 2014).

The aim of the WMT15 Tuning Task2 is to at-
tract attention to the exploration of all the three

1http://www.statmt.org/wmt11/
tunable-metrics-task.html

2http://www.statmt.org/wmt15/
tuning-task/
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Sentences Tokens Types
Source cs en cs en cs en

LM corpora News Commentary v8 162309 247966 3.6M 6.2M 162K 81K
TM corpora Europarl v7, CCrawl and News Comm. v9 911952 17.7M 20.8M 652K 361K
Dev set newstest2014 3003 51K 60K 19K 13K
Test set newstest2015 2656 39K 47K 16K 11K

Table 1: Data used in the WMT15 tuning task.

Dev Test
Direction Token Type Token Type

en-cs 2570 2032 2003 1655
cs-en 3891 3415 3381 3011

Table 2: Out of vocabulary word counts

aspects of model optimization: (1) the set of fea-
tures in the model, (2) optimization algorithm, and
(3) MT quality metric used in optimization.

For (1), we provide a fixed set of “dense” fea-
tures and also allow participants to add additional
“sparse” features. For (2), the optimization al-
gorithm, task participants are free to use one of
the available algorithms for direct loss optimiza-
tion (Och, 2003; Zhao and Chen, 2009), which are
usually capable of optimizing only a dozen of fea-
tures, or one of the optimizers handling also very
large sets of features (Cherry and Foster, 2012;
Hopkins and May, 2011), or a custom algorithm.
And finally for (3), participants can use any estab-
lished evaluation metric or a custom one.

1.1 Tuning Task Assignment

Tuning task participants were given a complete
model for the hierarchical variant of the machine
translation system Moses (Hoang et al., 2009)
and the development set (newstest2014), i.e. the
source and reference translations. No “dev test”
set was provided, since we expected that partic-
ipants will internally evaluate various variants of
their method by manually judging MT outputs. In
fact, we offered to evaluate a certain number of
translations into Czech for free to ease the partici-
pation for teams without any access to speakers of
Czech; only one team used this service once.

A complete model consists of a rule table ex-
tracted from the parallel corpus, the default glue
grammar and the language model extracted from
the monolingual data. As such, this defines a fixed
set of dense features. The participants were al-
lowed to add any sparse features implemented in
Moses Release 3.0 (corresponds to Github com-
mit 5244a7b607) and/or to use any optimization
algorithm and evaluation metric. Fully manual

optimization was also not excluded but nobody
seemed to take this approach.

Each submission in the tuning task consisted of
the configuration of the MT system, i.e. the addi-
tional sparse features (if any) and the values of all
the feature weights, λm.

2 Details of Systems Tuned

The systems that were distributed for tuning are
based on Moses (Hoang et al., 2009) implementa-
tion of hierarchical phrase-based model (Chiang,
2005). The language models were 5-gram mod-
els with Kneser-Ney smoothing (Kneser and Ney,
1995) built using KenLM (Heafield et al., 2013).
For word alignments, we used Mgiza++ (Gao and
Vogel, 2008).

The parallel data used for training translation
models consisted of the Europarl v7, News Com-
mentary data (parallel-nc-v9) and Com-
monCrawl, as released for WMT14.3 We excluded
CzEng because we wanted to keep the task small
and accessible to more groups.

Since the test set (newstest2015) and the de-
velopment set (newstest2014) are in the news do-
main, we opted to exclude Europarl from the lan-
guage model data. We did not add any monolin-
gual news on top of News Commentary, which are
quite close to the news domain. In retrospect, we
should have added also some of the monolingual
news data as released by WMT, esp. since we used
a 5-gram LM.

Before any further processing, the data was to-
kenized (using Moses tokenizer) and lowercased.
We also removed sentences longer than 60 words
or shorter than 4 words. Table 1 summarizes the
final dataset sizes and Table 2 provides details on
out-of-vocabulary items.

Aside from the dev set provided, the partici-
pants were free to use any other data for tuning
(making their submission “unconstrained”), but no
participant decided to do that. All tuning task sub-
missions are therefore also constraint in terms of

3http://www.statmt.org/wmt14/
translation-task.html
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System Participant
BLEU-* baselines
AFRL United States Air Force Research Laboratory (Erdmann and Gwinnup, 2015)
DCU Dublin City University (Li et al., 2015)

HKUST Hong Kong University of Science and Technology (Lo et al., 2015)
ILLC-UVA ILLC – University of Amsterdam (Stanojević and Sima’an, 2015)

METEOR-CMU Carnegie Mellon University (Denkowski and Lavie, 2011)
USAAR-TUNA Saarland University (Liling Tan and Mihaela Vela; no corresponding paper)

Table 3: Participants of WMT15 Tuning Shared Task

the WMT15 Translation Task (Bojar et al., 2015).
We leave all decoder settings (n-best list size,

pruning limits etc.) at their default values. While
the participants may have used different limits dur-
ing tuning, the final test run was performed at our
site with the default values. It is indeed only the
feature weights that differ.

3 Tuning Task Participants

The list of participants and the names of the sub-
mitted systems are shown in Table 3, along with
references to the details of each method.

USAAR-TUNA by Liling Tan and Mihaela
Vela has no accompanying paper, so we sketch
it here. The method sets each weight as the har-
monic mean ( 2xy

x+y ) of the weight proposed by
batch MIRA and MERT. Batch MIRA and MERT
are run side by side and the harmonic mean is
taken and used in moses.ini at every iteration.
The optimization stops when the averaged weights
change only very little, which happened around it-
eration 17 or 18 in this case (Liling Tan, pc).

ILLC-UVA (Stanojević and Sima’an, 2015)
was tuned using KBMIRA with modified version of
BEER evaluation metric. The authors claim that
standard trained evaluation metrics learn to give
too much importance to recall and thus lead to
overly long translations in tuning. For that reason
they modify the training of BEER to value recall
and precision equally. This modified version of
BEER is used to train the MT system.

DCU (Li et al., 2015) is tuned with RED, an
evaluation metric based on maching of depen-
dency n-grams. Authors have tried tuning with
both MERT and KBMIRA and found that KBMIRA

gives better results so the submitted system uses
KBMIRA.

HKUST (Lo et al., 2015) is with an improved
version of MEANT. MEANT is an evaluation met-
ric that pays more attention to semantic aspect
of translation. Better correlation on the sentence
level was achieved by integrating distributional se-

mantics into MEANT and handling failures of the
underlying semantic parser. The submission of
HKUST contained a bug that was discovered af-
ter human evaluation period so the corrected sub-
mission HKUST-LATE is evaluated only with
BLEU.

METEOR-CMU (Denkowski and Lavie,
2011) is a system tuned for an adapted version of
Meteor. Meteor’s parameters are set to give an
equal importance to precision and recall.

AFRL (Erdmann and Gwinnup, 2015) is the
only submission trained with a new tuning al-
gorithm “Drem” instead of the standard MERT

or KBMIRA. Drem uses scaled derivative-free
trust-region optimization instead of line search or
(sub)gradient approximations. For weight settings
that were not tested in the decoder yet, it interpo-
lates the decoder output using the information of
which settings produced which translations. The
optimized metric is a weighted combination of
NIST, Meteor and Kendall’s τ .

In addition to the systems submitted, we pro-
vided three baselines:

• BLEU-MERT-DENSE – MERT tuning with
BLEU without additional features

• BLEU-MIRA-DENSE – KBMIRA tuning with
BLEU without additional features

• BLEU-MIRA-SPARSE – KBMIRA tuning
with BLEU with additional sparse features

Since all the submissions including the base-
lines were subject to manual evaluation, we did
not run the MERT or MIRA optimizations more
than once (as is the common practice for estimat-
ing variance due to optimizer instability). We sim-
ply used the default settings and stopping criteria
and picked the weights that performed best on the
dev set according to BLEU.

Of all the submissions, only the submission
METEOR-CMU used sparse features. For a
more interesting comparison, we set our baseline
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(BLEU-MIRA-SPARSE) to use the very same set
of sparse features. These features are automati-
cally constructed using Moses’ feature templates
named PhraseLengthFeature0, SourceWordDele-
tionFeature0, TargetWordInsertionFeature0 and
WordTranslationFeature0. They were made for
the 50 most frequent words in the training data.
For both language pairs these feature templates
produce around 1000 features.

4 Results

We used the submitted moses.ini and (option-
ally) sparse weights files to translate the test set.
The test set was not available to the participants at
the time of their submission (not even the source
side). We used the Moses recaser trained on the
target side of the parallel corpus to recase the out-
puts of all the models.

Finally, the recased outputs were manually eval-
uated, jointly with regular translation task submis-
sions of WMT (Bojar et al., 2015). This was not
enough to reliably separate tuning systems in the
Czech-to-English direction, so we asked task par-
ticipants to provide some further rankings.

The resulting human rankings were used to
compute the overall manual score using the
TrueSkill method, same as for the main translation
task (Bojar et al., 2015). We report two variants
of the score: one is based on manual judgements
related to tuning systems only and one is based
on all judgements. Note that the actual ranking
tasks shown to the annotators were identical, mix-
ing tuning systems with regular submissions.

Tables 4 and 5 contain the results of the submit-
ted systems sorted by their manual scores.

The horizonal lines represent separation be-
tween clusters of systems that perform similarly.
Cluster boundaries are established by the same
method as for the main translation task. Inter-
estingly, cluster boundaries for Czech-to-English
vary as we change the set of judgements.

Some systems do not have the TrueSkill
score because they were either submitted af-
ter the deadline (HKUST-LATE) or served as
additional baselines and performed similarly to
our baselines (USAAR-BASELINE-MIRA and
USAAR-BASELINE-MERT).

5 Discussion

There are a few interesting observations that can
be made about the baseline results. Various details

System Name TrueSkill Score BLEU
Tuning-Only All

BLEU-MIRA-DENSE 0.153 -0.182 12.28
ILLC-UVA 0.108 -0.189 12.05

BLEU-MERT-DENSE 0.087 -0.196 12.11
AFRL 0.070 -0.210 12.20

USAAR-TUNA 0.011 -0.220 12.16
DCU -0.027 -0.263 11.44

METEOR-CMU -0.101 -0.297 10.88
BLEU-MIRA-SPARSE -0.150 -0.320 10.84

HKUST -0.150 -0.320 10.99
HKUST-LATE — — 12.20

Table 4: Results on Czech-English tuning

System Name TrueSkill Score BLEU
Tuning-Only All

DCU 0.320 -0.342 4.96
BLEU-MIRA-DENSE 0.303 -0.346 5.31

AFRL 0.303 -0.342 5.34
USAAR-TUNA 0.214 -0.373 5.26

BLEU-MERT-DENSE 0.123 -0.406 5.24
METEOR-CMU -0.271 -0.563 4.37

BLEU-MIRA-SPARSE -0.992 -0.808 3.79
USAAR-BASELINE-MIRA — — 5.31
USAAR-BASELINE-MERT — — 5.25

Table 5: Results on English-Czech tuning

of the submissions including the exact weight set-
tings are in Table 6.

5.1 Dense vs. Sparse Features
It is surprising how well the baseline based on KB-
MIRA and BLEU tuning (BLEU-MIRA-DENSE)
performs on both language pairs. On Czech-
English, it is better than all the other submitted
systems while on English-Czech, only one system
outperforms it (staying in the same performance
cluster anyway).

Using BLEU-MIRA-DENSE for tuning dense
features is becoming more common in the MT
community, compared to the previous standard of
using MERT. Our results confirm this practice.
Preferring KBMIRA to MERT is often motivated by
possibility to include sparse features, but we see
that even for dense features only KBMIRA is better
than MERT.

The sparse models, BLEU-MIRA-SPARSE and
METEOR-CMU, however, perform rather poorly
even though they were trained with KBMIRA. Both
of the sparse submissions use the same set of fea-
tures and the same tuning algorithm, although the
optimization was run at different sites. The only
difference is the metric they optimize. Tuning
for Meteor (Denkowski and Lavie, 2011) gives
better results than tuning for BLEU (Papineni et
al., 2002). Unfortunately, we had no system with
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dense features tuned for Meteor so we could not
see if Meteor outperforms BLEU in the dense-only
setting as well.

It is not clear why the sparse methods perform
badly. One explanation could be the relatively
small development set or some pruning settings.
In any case, we find it unfortunate that sparse fea-
tures in the hierarchical model harm performance
in the default configuration4.

5.2 Some Observations on Weight Settings
We tried to find some patterns in the weight set-
tings and the performance of the system, but ad-
mittedly, it is difficult to make much sense of the
few points in the 8-dimensional space.

For English-to-Czech, we can see a gist of a
bell-like shape when normalizing the weights with
L2 norm and plotting the word penalty and the

4MERT and two MIRA runs reached BLEU of not more
than +0.02 points higher when the size of n-best list was in-
creased from 100 to 200. So n-best list size does not seem to
be the problem.

C
ze

ch
-t

o-
E

ng
lis

h
Ty

pe
M

an
ua

lS
co

re
Te

st
B

L
E

U
D

ev
B

L
E

U
L

M
0

Ph
rP

en
T

M
0

T
M

1
T

M
2

T
M

3
G

lu
e

W
rd

Pe
n

A
FR

L
de

ns
e

0.
07

00
12

.2
0

14
.8

3
0.

15
88

-0
.3

33
0

0.
05

45
0.

08
59

0.
19

58
0.

17
16

0.
63

09
-0

.6
22

7
bl

eu
M

E
R

T
de

ns
e

0.
08

70
12

.1
1

14
.6

4
0.

09
92

-0
.0

50
7

0.
06

88
0.

03
50

0.
12

96
0.

09
19

0.
18

20
-0

.3
42

8
bl

eu
M

IR
A

de
ns

e
de

ns
e

0.
15

30
12

.2
8

14
.8

5
0.

06
71

-0
.1

68
9

0.
03

63
0.

04
13

0.
07

47
0.

06
80

0.
29

82
-0

.2
45

4
bl

eu
M

IR
A

sp
ar

se
sp

ar
se

-0
.1

50
0

10
.8

4
13

.1
6

0.
09

06
-0

.0
56

8
0.

04
31

0.
05

56
0.

09
28

0.
09

33
0.

35
84

-0
.2

09
3

D
C

U
de

ns
e

-0
.0

27
0

11
.4

4
13

.5
8

0.
05

58
-0

.1
40

7
0.

03
60

0.
05

17
0.

08
56

0.
06

71
0.

24
81

-0
.3

15
0

H
K

U
ST

M
E

A
N

T
de

ns
e

-0
.1

50
0

10
.9

9
13

.2
3

0.
13

33
0.

08
68

0.
13

18
0.

01
15

0.
05

34
0.

12
21

0.
05

00
-0

.4
11

0
H

K
U

ST
M

E
A

N
T

L
A

T
E

de
ns

e
—

12
.2

0
14

.4
2

0.
06

38
-0

.1
69

6
0.

06
55

0.
02

17
0.

07
13

0.
06

77
0.

30
74

-0
.2

33
0

IL
L

C
U

vA
de

ns
e

0.
10

80
12

.0
5

14
.5

7
0.

09
18

-0
.1

21
5

0.
04

52
0.

06
24

0.
11

03
0.

06
97

0.
22

95
-0

.2
69

6
M

E
T

E
O

R
C

M
U

sp
ar

se
-0

.1
01

0
10

.8
8

13
.3

5
0.

09
36

-0
.0

10
3

0.
06

02
0.

05
09

0.
11

62
0.

11
87

0.
29

46
-0

.2
55

6
U

SA
A

R
-T

un
a

de
ns

e
0.

01
10

12
.1

6
14

.5
7

0.
07

89
-0

.0
71

5
0.

03
83

0.
05

75
0.

10
39

0.
07

44
0.

18
39

-0
.2

95
2

E
ng

lis
h-

to
-C

ze
ch

Ty
pe

M
an

ua
lS

co
re

Te
st

B
L

E
U

D
ev

B
L

E
U

L
M

0
Ph

rP
en

T
M

0
T

M
1

T
M

2
T

M
3

G
lu

e
W

rd
Pe

n
A

FR
L

de
ns

e
0.

30
30

5.
34

6.
96

0.
05

43
-0

.4
32

6
-0

.0
02

5
0.

03
82

0.
26

96
0.

07
88

0.
83

32
-0

.1
87

8
bl

eu
M

E
R

T
de

ns
e

0.
12

30
5.

24
7.

11
0.

05
10

-0
.1

35
3

0.
00

48
0.

01
69

0.
17

72
0.

04
08

0.
35

08
-0

.2
23

1
bl

eu
M

IR
A

de
ns

e
de

ns
e

0.
30

30
5.

31
7.

20
0.

03
80

-0
.2

04
6

-0
.0

00
4

0.
02

86
0.

13
38

0.
03

20
0.

39
36

-0
.1

68
9

bl
eu

M
IR

A
sp

ar
se

sp
ar

se
-0

.9
92

0
3.

79
5.

19
0.

03
64

-0
.1

23
2

-0
.0

05
3

0.
03

50
0.

09
05

0.
04

80
0.

55
24

-0
.1

09
3

D
C

U
de

ns
e

0.
32

00
4.

96
6.

87
0.

02
47

-0
.1

94
9

-0
.0

02
2

0.
03

67
0.

13
70

0.
03

45
0.

37
67

-0
.1

93
2

M
E

T
E

O
R

C
M

U
sp

ar
se

-0
.2

71
0

4.
37

5.
86

0.
03

94
-0

.0
93

5
-0

.0
08

7
0.

03
31

0.
16

11
0.

06
73

0.
45

48
-0

.1
42

1
Sa

ar
la

nd
ba

se
lin

e
m

er
t

de
ns

e
—

5.
25

7.
16

0.
03

94
-0

.1
61

9
-0

.0
01

1
0.

02
18

0.
19

47
0.

02
11

0.
39

73
-0

.1
62

8
Sa

ar
la

nd
ba

se
lin

e
m

ir
a

de
ns

e
—

5.
31

7.
11

0.
03

77
-0

.2
02

3
-0

.0
00

7
0.

02
93

0.
13

04
0.

03
44

0.
39

36
-0

.1
71

4
U

SA
A

R
-T

un
a

de
ns

e
0.

21
40

5.
26

7.
15

0.
03

86
-0

.1
79

9
-0

.0
00

8
0.

02
50

0.
15

62
0.

02
62

0.
39

54
-0

.1
67

0

Table 6: Detailed scores and weights of Czech-
to-English (left) and English-to-Czech (right) sys-
tems.
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manual score, see Figure 1. The middle values
seemed to be a good setting. For the other transla-
tion direction or other weights, no such clear rela-
tion is apparent.

We tried to interpret the weight settings also
using principal component analysis (PCA), de-
spite the low number of observations. (Ideally,
we would like to have at least 40–80 systems, we
have 7 or 9). Before running PCA, we normalized
the weights with L2 norm. After running Cattell
Scree test, the results showed that two components
would be appropriate to summarize the dataset. To
make components more interpretable, we applied
varimax rotation.

Figure 2 plots the two principal components of
the set of systems for English-to-Czech. We see
that the first component (PC1) explains the perfor-
mance almost completely with middle values be-
ing the best. Looking at loadings (correlations of
components with the original feature function di-
mensions) in Table 7, we learn, that PC1 primar-
ily accounts for the first two weights of transla-
tion model (TM 0 and TM 1, which correspond
to phrase and lexically-weighted inverse probabil-
ities, resp.) and the word penalty (WrdPen) and
language model weight (LM0). Knowing that in
almost all systems the weight of word penalty is
several times bigger than weights of TM 0, TM 1,
and LM0, we conclude that tuning of word penalty
(in balance with LM weight) was the most appar-
ent decisive factor of English-Czech tuning task.
The second component (PC2) primarily covers the
weights of the remaining features, that is the direct
translation probabilites and phrase penalty. Unfor-
tunately, PC2 is not very informative about the fi-
nal quality of the translation.

The Czech-to-English results in Figure 3 do not

PC1 PC2
LM0 -0.69 0.44
PhrasePenalty0 0.15 -0.63
TranslationModel0 0 -0.91 -0.13
TranslationModel0 1 0.91 -0.03
TranslationModel0 2 -0.55 0.72
TranslationModel0 3 0.36 0.75
TranslationModel1 0.42 0.84
WordPenalty0 0.84 0.27

Table 7: Loadings (correlations) of each compo-
nent with each feature function for English-Czech

seem to lend themselves to any simple conclusion.
Based on closeness of systems in the PCA

plots, we can say that for English-Czech, two out
of three best systems (BLEU-MIRA-DENSE and
DCU) found similar settings while AFRL stands
out. Czech-English results show that systems of
very similar weight settings give translations of
very different quality. Again, AFRL stands out
while leading to very good outputs.

6 Conclusion

This paper presented the WMT shared task in opti-
mizing parameters of a given hierarchical phrase-
based system (WMT Tuning Task) when translat-
ing from English to Czech and vice versa. The
underlying system was intentionally restricted to
small data setting and somewhat unusually, the
data for the language model were smaller than for
the translation model.

Overall, six teams took part in one or both direc-
tions, sticking to the constrained setting, with only
METEOR-CMU and our baseline BLEU-MIRA-
SPARSE using sparse features.

The submitted configurations were manually
evaluated jointly with the systems of the main
WMT translation task. Given the small data set-
ting, we did not expect the tuning task systems to
perform competitively to other submissions in the
WMT translation task.

The results confirm that KBMIRA with the stan-
dard (dense) features optimized towards BLEU
should be preferred over MERT. Two other sys-
tems (DCU and AFRL) performed equally well in
English-to-Czech translation. The two systems us-
ing sparse features (METEOR-CMU and BLEU-
MIRA-SPARSE) performed poorly, but the sam-
ple is too small to draw any conclusions from
this. Overall, the variance in translation quality
obtained using various weight settings is apparent
and justifies the efforts put into optimization tech-
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niques.
Since the task attracted a good number of sub-

missions and was generally considered interesting
and useful by our colleagues, we plan to run the
task again for WMT in 2016. The next year’s un-
derlying systems will use all data available in the
WMT constraint setting, to test the tuning methods
in the range where state-of-the-art systems oper-
ate.
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Abstract

We propose a novel extended translation
model (ETM) to counteract some prob-
lems in phrase-based translation: The lack
of translation context when using single-
word phrases and uncaptured dependen-
cies beyond phrase boundaries. The ETM
operates on word-level and augments the
IBM models by an additional bilingual
word pair and a reordering operation. Its
implementation in a phrase-based decoder
introduces translation and reordering de-
pendencies for single-word phrases and
dependencies across phrase boundaries.
More, the model incorporates an explicit
treatment of multiple and empty align-
ments. Its integration outperforms com-
petitive systems that include lexical and
phrase translation models as well as hier-
archical reordering models on 4 language
pairs significantly by +0.7% BLEU on av-
erage. Although simpler and using fewer
dependencies, the ETM proves to be on
par with 7-gram operation sequence mod-
els (Durrani et al., 2013b).

1 Introduction

The first successful steps in Statistical Ma-
chine Translation have been taken by applying
word-based models in a source-channel approach
(Brown et al., 1990; Brown et al., 1993). Within
this framework, the language model (LM) is esti-
mated on monolingual n-grams, whereas the trans-
lation models IBM-1 to IBM-5 are trained on
bilingual data using word alignments. The dis-
advantage of word-to-word translation is over-
come by phrase-based translation (PBT) (Och et
al., 1999; Zens et al., 2002; Koehn et al., 2003)
and log-linear model combination (Och and Ney,
2002).
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Figure 1: Relative frequency of words dependent
on the length of the phrase they were decoded with
for the IWSLT dev2010 German→English and
English→French corpora.

Nevertheless, phrase-based translation models
have several drawbacks: (i) Single-word phrases
are translated without any context. (ii) Dependen-
cies beyond phrase boundaries are not modelled at
all. (iii) Phrase-based translation models have dif-
ficulties modelling long-distance dependencies on
source words with large gaps inbetween.

The open question is how much actual lex-
ical context is included in decoding. Figure
1 depicts the relative word frequencies plotted
against the length of the phrase they were trans-
lated with for the IWSLT 20141 German→English
and English→French tasks. For English→French,
more than 40% of the words are translated us-
ing single- or two-word phrases, i.e. with a
lexical context of at most one word. For the
German→English task, more reorderings occur
and lead to less monotone alignments. Here, even
60% of all words are translated with a lexical con-
text of at most one single word and over 20% are
translated without any lexical context at all.

1http://www.iwslt2014.org
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We address this problem by developing two
variants of extended translation models (ETM),
the direct (EdTM) for the Source→Target and the
inverse (EiTM) for the Target→Source direction.
They operate on word-level and augment the IBM
models by an additional bilingual word pair and
a reordering operation. We introduce them into
the log-linear framework of a PBT system. Thus,
the decoding of single-word phrases can benefit
from lexical and reordering context. Moreover,
the ETM allows to capture dependencies across
phrase boundaries and long-range source depen-
dencies. It incorporates reordering information for
non-monotone and multiple alignments including
unaligned words.

As a first step, we implement the ETM as
a count model with interpolated Kneser-Ney
smoothing (Chen and Goodman, 1998) using the
Viterbi alignment and apply it in phrase-based de-
coding. Nevertheless, the long-term goal of this
approach is to replace the phrases used in decod-
ing by translation units that predict a single target
word, but may depend on several source words,
previously translated target words and the reorder-
ing context.

2 Previous Work

Various approaches have been taken to compen-
sate the downside of the phrase translation model.
Mariño et al. (2006) introduce a translation model
based on n-grams of bilingual word pairs, i.e. a
bilingual language model (BILM), with an n-gram
decoder that requires monotone alignments. In
(Niehues et al., 2011), this is further advanced
by BILMs operating on non-monotone alignments
within a PBT framework.

However, this differs from our approach:
BILMs treat jointly aligned source words as
atomic units, ignore source deletions and do not
include reordering context.

The Operation Sequence Model (OSM) intro-
duced in (Durrani et al., 2011; Durrani et al.,
2013a) includes n-grams of both translation and
reordering operations in a consistent framework.
It utilizes minimal translation units (MTUs) and
is applied in a corresponding OSM decoder. Ex-
periments in (Durrani et al., 2013b) show that a
slightly enhanced version of OSM performs best
when integrated into the log-linear framework of a
phrase-based decoder. Both the BILM (Stewart et
al., 2014) and the OSM (Durrani et al., 2014) can

be smoothed using word clusters.

In comparison, the ETM is much simpler: Since
it predicts probabilities of single words, it has a
lower vocabulary size. More, it does not make
use of reordering gaps, i.e. it utilizes a simpler
reordering approach. The OSM uses one joint
model for reorderings and translations. In con-
trast, the ETM incorporates separate models to
estimate the probability of words and the proba-
bility of reorderings. Furthermore, the OSM has
the drawback that it extracts the MTUs sentence-
wise, thus one word can appear in several MTUs
extracted from different sentence pairs. Since an
MTUs is treated as an atomic unit, this results in
a distribution of probability mass on overlapping
events. The ETM overcomes this drawback by op-
erating on single words.

Guta et al. (2015) propose the conversion of
bilingual sentence pairs and word alignments into
joint translation and reordering (JTR) sequences.
They investigate n-gram models with modified
Kneser-Ney smoothing, feed-forward and recur-
rent neural networks trained on JTR sequences. In
comparison to the OSM, JTR models have smaller
vocabulary sizes, as they operate on words, and
incorporate simpler reordering structures. Never-
theless, they are shown to perform slightly better
than the OSM when included into the log-linear
framework of a phrase-based decoder.

Although our approach is similar, there are
the following significant differences: On the one
hand, the ETM estimates the probability of single
words conditioned on an extended lexical and re-
ordering context, whereas the JTR n-gram model
predicts the probability of bilingual word pairs.
On the other hand, we do not assume linear se-
quences of dependencies, but propose and explicit
treatment of multiply aligned words.

Deng and Byrne (2005) present an HMM ap-
proach for word-to-phrase alignments, which per-
forms similar to IBM-4 on the task of bitext align-
ment and can also be applied for more powerful
phrase induction. Feng et al. (2013) introduce an
reordering model based on sequence labeling tech-
niques by converting the reordering problem into a
a tagging task. Zhang et al. (2013) explore differ-
ent Markov chain orderings for an n-gram model
on MTUs. These are not integrated into decod-
ing, but used in N-best rescoring. Another gener-
ative, word-based Markov chain translation model
is presented by Feng and Cohn (2013). It exploits
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a hierarchical Pitman-Yor process for smoothing,
but is only applied to induce word alignments.
Their follow-up work (Feng et al., 2014) intro-
duces a Markov-model on MTUs, similar to the
OSM described above.

Finally, there has been recent research on apply-
ing neural network models for extended context
(Le et al., 2012; Auli et al., 2013; Hu et al., 2014;
Devlin et al., 2014; Sundermeyer et al., 2014). All
of these papers focus on lexical context and ignore
the reordering aspect covered in our work.

3 Extended Translation Models

Given a source sentence f J
1 and its translation eI

1,
EiTM models the inverse probability p( f J

1 |eI
1) and

EdTM the direct probability p(eI
1| f J

1 ). We allow
for source words to be translated to multiple target
words and vice versa. The inverted alignment bi

denotes the sequence of source positions j aligned
to target position i for i = 1, . . . , I. Its subsequence
b< j

i includes all source positions in bi preceding a
given source position j:

b< j
i =

{
j̄ ∈ bi : j̄ < j

}
.

Unaligned target words are aligned to the empty
source word f0, unaligned source words to the
empty target word e0. b0 denotes the unaligned
source positions. We introduce the fertility φi of a
target word ei. It determines the number of source
words aligned to the target word ei:

φi =

{
0, bi = {0}
|bi|, else

By analogy, we use φ< j
i to denote the number of

source positions in b< j
i . Similar to the approach in

(Feng and Cohn, 2013), we generalize reorderings
to the following jump classes ∆φi

j′, j:

∆φi
j′, j =



↓ (’insert’), φi = 0
• (’stay’), φi > 0, j = j′

→ (’forward’), φi > 0, j = j′+1
y (’jump forward’), φi > 0, j > j′+1
← (’backward’), φi > 0, j = j′−1
x (’jump backward’), φi > 0, j < j′−1.

Figure 2 outlines the jump classes for subsequent
target positions i′ and i. As shown in Figure 3,
for source positions j̄ < j which are aligned to the

(a) forward (b) jump forward

Figure 3: Overview of the jump classes ∆ j̄, j.

same target position i, there are two possible jump
classes:

∆ j̄, j =

{
→ (’step forward’), j = j̄ +1
y (’jump forward’), j > j̄ +1.

In the following, we depict the derivations of the
EiTM and the EdTM. Although they operate in op-
posite translation directions, both models incorpo-
rate the inverted alignment bI

1.

3.1 Extended Inverse Translation Model
In order to model the inverse probability p( f J

1 |eI
1),

the unknown inverted alignment bI
1 is introduced

as a hidden variable and approximated by the
Viterbi alignment.

p( f J
1 |eI

1) = ∑
bI

1

p( f J
1 ,bI

1|eI
1)

u max
bI

1

{
p( f bI

b0
,bI

1|eI
1)
}

= max
bI

1

{
p( f bI

b1
,bI

1|eI
1) · p( fb0 | f bI

b1
,bI

1,e
I
1)︸ ︷︷ ︸

deletion probability

}

The inverse probability has been decomposed into
the deletion probability p( fb0 | f bI

b1
,bI

1,e
I
1) and the

joint probability p( f bI
b1

,bI
1|eI

1). The latter is refor-
mulated using the Markov chain rule:

p( f bI
b1

,bI
1|eI

1) =
I

∏
i=1

p( fbi ,bi|eI
1, f bi−1

b1
,bi−1

1 ).

In order to restrict the history, we assume the prob-
ability of ( fbi ,bi) to be dependent only on the cur-
rent target word ei, its last aligned predecessor
ei′ , the corresponding alignment bi′ and the source
words fbi′ :

p( f bI
b1

,bI
1|eI

1) =
I

∏
i=1

p( fbi ,bi|ei′ ,ei, fbi′ ,bi′).

The conditional joint probability is factorized as

p( fbi ,bi|ei′ ,ei, fbi′ ,bi′) =
p( fbi |ei′ ,ei, fbi′ ,bi′ ,bi)︸ ︷︷ ︸

lexicon probability

· p(bi|ei′ ,ei, fbi′ ,bi′)︸ ︷︷ ︸
alignment probability

,
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(a) insert (b) stay (c) forward (d) jump forward (e) backward (f) jump backward

Figure 2: Overview of the jump classes ∆φi
j′, j.

resulting in the lexicon probability of fbi and the
alignment probability of bi. In a nutshell, we have
decomposed the inverse probability into the fol-
lowing three probabilities:

• deletion: p( fb0 | f bI
b1

,bI
1,e

I
1)

• lexicon:
I

∏
i=1

p( fbi |ei′ ,ei, fbi′ ,bi′ ,bi)

• alignment:
I

∏
i=1

p(bi|ei′ ,ei, fbi′ ,bi′)

Below, we show how to estimate these probabil-
ities using the EiTM deletion, lexicon and align-
ment models.

3.1.1 EiTM: Deletion Model
Due to its artificiality, e0 has no preceding target
word. We condition the deletion of fb0 only on e0
and assume conditional independence between the
unaligned source words fb0 :

p( fb0 | f bI
b1

,bI
1,e

I
1) = ∏

j∈b0

p( f j|e0).

3.1.2 EiTM: Lexicon Model
Firstly, we apply the Markov chain rule to obtain
the factorized probabilities of single words f j.

p( fbi |ei′ ,ei, fbi′ ,bi′ ,bi) =

∏
j∈bi

p( f j|ei′ ,ei, fbi′ , fb< j
i

,bi′ ,bi)

Each source word f j is dependent on all predeces-
sors fb< j

i
aligned to the same target word ei and

all previously aligned source words fbi′ . If we
modelled the probability conditioned on the sets
of source words fbi′ and fb< j

i
, this would lead to

sparsity problems due to the arbitrary number of
source words contained in the sets.

In order to avoid this, we therefore condition the
probability on the individual words contained in
fbi′ , fb< j

i
. Without any additional information, we

assume all words fbi′ , fb< j
i

to be equally important

for the prediction of f j. Thus, we average over the
probabilities conditioned on:

• all source words f j′ aligned to the preceding
target word ei′ ,

• all preceding source words f j̄ aligned to the
current target word ei.

Moreover, we reduce the alignments (bi′ ,bi) to
their corresponding jump classes. As a final result
we obtain:

p( f j|ei′ ,ei, fbi′ , fb< j
i

,bi′ ,bi) =

1

φi′ +φ< j
i

(
∑

j′∈bi′
p( f j|ei, f j′ ,ei′ ,∆

φi
j′, j)

+ ∑
j̄∈b< j

i

p( f j|ei, f j̄,∆ j̄, j)
)

.

3.1.3 EiTM: Alignment Model
In principle, we follow the same derivation as for
the lexicon model above. The probability of a
source position j ∈ bi is computed as the average
probability of a jump from a previously aligned
source position, which either has to be aligned to
the target predecessor i′ or is a preceeding source
position aligned to the same target word ei.

p(bi|ei′ ,ei, fbi′ ,bi′) =

∏
j∈bi

1

φi′ +φ< j
i

(
∑

j′∈bi′
p(∆φi

j′, j|ei, f j′ ,ei′)

+ ∑
j̄∈b< j

i

p(∆ j̄, j|ei, f j̄)
)

.

To emphasize the core idea, Figure 4 demonstrates
the application on a German→English translation
example. Thin blue arcs denote the probabilities
conditioned on distinct target words ei′ and ei, the
thick red arc denotes the probabilities conditioned
on a previous source word f j̄ aligned to the cur-
rent target word. The shape of an arc symbolizes
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Figure 4: EiTM scoring for a sentence from the
IWSLT German→English corpus including the
word alignment.

the jump class, see Figures 2 and 3. The empty
words are shown at positions j, i = 0. The deletion
is indicated by a violet circle. The EiTM proba-
bility for the whole sentence pair is computed as
follows:

p( f 9
1 ,b9

1|e9
1) =

p( f1|e1,<s>,<s>,→) · p(→ |e1,<s>,<s>)
· p( f5|e2, f1,e1,y) · p(y |e2, f1,e1) (1)

· p( f6|e2, f1,e1,y)+ p( f6|e2, f5,→)
2

· p(y |e2, f1,e1)+ p(→ |e2, f5)
2

(2)

· p( f8|e3, f5,e2,y)+ p( f8|e3, f6,e2,y)
2

· p(y |e3, f5,e2)+ p(y |e3, f6,e2)
2

(3)

·p( f7|e4, f8,e3,←) · p(← |e4, f8,e3)
· p( f0|e5, f7,e4,↓) · p(↓ |e5, f7,e4) (4)

· p( f2|e6, f7,e4,x) · p(x |e6, f7,e4) (5)

·p( f4|e7, f2,e6,y) · p(y |e7, f2,e6)
· p( f4|e8, f4,e7,•) · p(•|e8, f4,e7) (6)

· p( f9|e9, f4,e8,y) · p(y |e9, f4,e8) (7)

·p(</s>|</s>, f9,e9,→) · p(→ |</s>, f9,e9)
· p( f3|e0). (8)

Lines (1), (2), (3) and (7) are dependencies in-
cluded in the EiTM but not in phrase translation
models due to the phrase extraction heuristics. The
dependency on multiple preceding word pairs is
exemplified in (2) and (3). (4) depicts the inser-
tion of the target word e5 = up conditioned on
the word pair (e4 = us, f7 = uns). Note that in
(5) there is no dependency of e6 = is on its pre-
decessor e5 = up and the empty word f0, but on
its last aligned predecessor e4 = us and the cor-
responding source word f7 = uns. (6) shows an
example of a source word aligned to multiple tar-
get words. The deletion probability of the source
word f3 = es is presented in (8).

3.2 Extended Direct Translation Model

So far, we have introduced the EiTM, which mod-
els the inverse translation probability p( f J

1 |eI
1).

Besides modelling p( f J
1 |eI

1) using extended trans-
lation models, our aim is to employ them to model
the direct probability p(eI

1| f J
1 ) as well.

For a start, the direct probability p(eI
1| f J

1 ) can be
modelled using the EiTM: Simply put, source and
target corpora have to be swapped for the training
of the EiTM. By doing so, the alignment has to
be inverted as well, i.e. one has to use the direct
alignment a j which denotes the sequence of target
positions i aligned to source position j. As a result,
the EiTM models p(eaJ

a0
,aJ

1| f J
1 ) when trained with

inverted corpora and alignments.
During the decoding process, the partial hy-

potheses are generated successively. Thus, for
each target word ei that is hypothesized, all its
predecessors have already been translated, i.e. its
last aligned predecessor ei′ and the corresponding
alignment bi′ and source words fbi′ are known.

Nevertheless, source words do not have to be
translated in monotone order. In general, it cannot
be guaranteed that the predecessor f j−1 of the first
word f j of a source phrase has been translated yet.
Therefore, the last aligned predecessor of f j and
its aligned target words are generally unknown.

As a result, when applying the EiTM within
phrase-based decoding for modelling the direct
probability p(eI

1| f J
1 ), dependencies beyond phrase

boundaries cannot be captured.
Thus, we additionally develop the EdTM which

models the direct translation probability p(eI
1| f J

1 ).
In comparison to the EiTM trained with swapped
corpora and alignments, EdTM incorporates de-
pendencies beyond phrase boundaries by keep-
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ing the inverted alignment bI
1 instead of using aJ

1.
Analogue to the EiTM, the hidden alignment bI

1 is
approximated by the Viterbi alignment.

p(eI
1| f J

1 ) u max
bI

1

{
p(e0| f bI

b0
)︸ ︷︷ ︸

deletion probability

·p(eI
1,b

I
1| f bI

b0
,e0)

}

Applying the Markov chain rule and assuming
(ei,bi) to be dependent only on the aligned source
words fbi , the previously aligned target word ei′

as well as the corresponding alignment bi′ and the
source words fbi′ , we obtain:

p(eI
1,b

I
1| f bI

b0
,e0) =

I

∏
i=1

p(ei,bi| fbi′ , fbi ,ei′ ,bi′).

We factorize the joint probability to obtain the lex-
icon probability of ei and the alignment probabil-
ity of bi.

p(ei,bi| fbi′ , fbi ,ei′ ,bi′) =
p(ei| fbi′ , fbi ,ei′ ,bi′ ,bi)︸ ︷︷ ︸

lexicon probability

· p(bi| fbi′ , fbi ,ei′ ,bi′)︸ ︷︷ ︸
alignment probability

The direct probability has been decomposed into
the following three probabilities.

• deletion: p(e0| f bI
b0

)

• lexicon:
I

∏
i=1

p(ei| fbi′ , fbi ,ei′ ,bi′ ,bi)

• alignment:
I

∏
i=1

p(bi| fbi′ , fbi ,ei′ ,bi′)

Next, we introduce the corresponding EdTM dele-
tion, lexicon and alignment models.

3.2.1 EdTM: Deletion Model
The EdTM deletion model approximates the prob-
ability of e0 conditioned on all unaligned source
words fb0 and is obtained by averaging over all
unaligned source words:

p(e0| f bI
b0

) = ∑
j∈b0

p(e0| f j)
φ0

.

3.2.2 EdTM: Lexicon Model
In contrast to the derivation of EiTM, the Markov
chain rule cannot be applied at this point, since we
do not model the probability of fbi , but the prob-
ability of ei conditioned on fbi . Thus, we average

over all aligned source words fbi , which results in:

p(ei| fbi′ , fbi ,ei′ ,bi′ ,bi) =
1
φi

∑
j∈bi

1

φi′ +φ< j
i

(
∑

j′∈bi′
p(ei| f j,ei′ , f j′ ,∆

φi
j′, j)

+ ∑
j̄∈b< j

i

p(ei| f j, f j̄,∆ j̄, j)
)

.

3.2.3 EdTM: Alignment Model
Applying the same assumptions as for the lexicon
model, the EdTM alignment model results in:

p(bi| fbi′ , fbi ,ei′ ,bi′) =
1
φi

∑
j∈bi

1

φi′ +φ< j
i

(
∑

j′∈bi′
p(∆φi

j′, j| f j,ei′ , f j′)

+ ∑
j̄∈b< j

i

p(∆ j̄, j| f j, f j̄)
)

.

3.3 Count Models and Smoothing

So far, we have introduced the ETM and shown
how to include unaligned words and multiple word
dependencies. However, there are various possi-
bilities to train the lexicon and alignment proba-
bilities derived in Subsections 3.1 and 3.2.

As a starting point, we apply relative frequen-
cies obtained from bilingual training data, where
the Viterbi alignment is estimated using GIZA++

(Och and Ney, 2003). In order to address data
sparseness, we apply interpolated Kneser-Ney
smoothing as described in (Chen and Goodman,
1998). In comparison to monolingual n-grams
used in LMs, we lack any clear order of e, f , e′,
f ′ and ∆, since they include bilingual and reorder-
ing information. Similar to the approach taken by
Mariño et al. (2006), we model the probability of
the bilingual word pair (e, f ) given its predecessor
(e′, f ′,∆) which also includes the jump class. The
EdTM lexicon model for dependencies on previ-
ously aligned target words is computed as

p(e| f ,e′, f ′,∆) =
p(e, f |e′, f ′,∆)
p(·, f |e′, f ′,∆)

, (9)

where p(e, f |e′, f ′,∆) is the bigram distribution
of (e, f ) given its predecessor (e′, f ′,∆) with in-
terpolated Kneser-Ney smoothing. The denomi-
nator p(·, f |e′, f ′,∆) is obtained by marginalizing
p(e, f |e′, f ′,∆) over all target words e. We follow
the same approach for all other models in analogy.
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IWSLT IWSLT BOLT BOLT
German English English French Chinese English Arabic English

Sentences 4.32M 26.05M 4.08M 0.92M
Run. Words 108M 109M 698M 810M 78M 86M 14M 16M
Vocabulary 836K 792K 2119K 2139K 384K 817K 285K 203K

Table 1: Statistics for the bilingual training data of the IWSLT 2014 German→English, English→French
and the DARPA BOLT Chinese→English, Arabic→English translation tasks.

4 Integration into Phrase-based
Decoding

In this work, we apply a standard phrase-based
translation system (Koehn et al., 2003). The de-
coding process is implemented as a beam search
for the best translation given a set of models
hm(eI

1,s
K
1 , f J

1 ). The goal of search is to maximize
the log-linear feature score (Och and Ney, 2004):

êÎ
1 = argmax

I,eI
1,s

K
1

{
M

∑
m=1

λmhm(eI
1,s

K
1 , f J

1 )

}
, (10)

where sK
1 = s1 . . .sK is the hidden phrase align-

ment. The feature weights λm are tuned with mini-
mum error rate training (MERT) (Och, 2003). The
models hm, that are part of all baselines presented
in this work, are phrasal and lexical translation
scores in both directions, an n-gram LM, a sim-
ple distance-based distortion model and word and
phrase penalties. All phrase pairs that are licensed
by the word alignment are extracted from the train-
ing corpus and their probabilities estimated as rel-
ative frequencies. Moreover, the word alignment
each phrase pair has been extracted from is mem-
orized in the phrase table.

Our extended translation models are integrated
into this framework as additional features hm.
They are trained in both directions on a bilin-
gual corpus and the Viterbi alignment, result-
ing in four additional features. When train-
ing in the Target→Source direction, the align-
ment direction is also swapped. Thus, EiTM and
EdTM have the advantage of including context be-
yond phrase boundaries only when trained in the
Source→Target direction.

To include the extended translation models into
the phrasal decoder, the source position aligned
to the last (not inserted) target word of the pre-
viously translated phrase has to be memorized in
the search state of a partial hypothesis. Although
this slightly affects hypothesis recombination and

therefore leads to a larger search space, in prac-
tice it does not degrade the search accuracy, as
experiments with relaxed pruning parameters have
shown.

5 Evaluation

We perform experiments on the large-
scale IWSLT 20142 (Cettolo et al., 2014)
German→English, English→French and the
large-scale DARPA BOLT Chinese→English,
Arabic→English tasks. As mentioned in Section
4, all baseline systems include phrasal and lexical
smoothing scores trained in both directions.
Word alignments are trained with GIZA++, by
sequentially running 5 iterations each for the
IBM-1, HMM and IBM-4 alignment models.

The domain of IWSLT consists of lecture-type
talks presented at TED conferences which are
also available online3. The baseline systems are
trained on all provided bilingual data. All sys-
tems are optimized on the dev2010 and eval-
uated on the test2010 corpus. The ETM is
trained on the TED portions of the data: 138K sen-
tences for German→English and 185K sentences
for English→French.

For German→English, to estimate the 4-gram
LM, we additionally make use of parts of the
Shuffled News, LDC English Gigaword and 109-
French-English corpora, selected by a cross-
entropy difference criterion (Moore and Lewis,
2010). In total, 1.7 billion running words are
taken for LM training. For English→French, we
use a large general domain 5-gram LM and an in-
domain 5-gram LM. Both are estimated with the
KenLM toolkit (Heafield et al., 2013) using inter-
polated Kneser-Ney smoothing. For the general
domain LM, we first select 1

2 of the English Shuf-
fled News, 1

4 of the French Shuffled News as well
as both the English and French Gigaword corpora

2http://www.iwslt2014.org
3http://www.ted.com/
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by the same cross-entropy difference criterion. By
concatenating this selection with all available re-
maining monolingual data, we build an unpruned
LM.

The BOLT tasks are evaluated on the ”discus-
sion forum” domain. For Chinese→English, the
baseline is trained on 4.08M general domain sen-
tence pairs and the 5-gram LM on 2.9 billion run-
ning words in total. The ETM is trained on an in-
domain subset of 67.8K sentences and the test set
contains 1844 sentences. For the Arabic→English
BOLT task, we use only the in-domain data for
training the baseline and the ETM. The training
and test sets contain text drawn from discussion
forums in Egyptian Arabic. The evaluation set
contains 1510 bilingual sentence pairs.

The baseline systems for all tasks - except the
Arabic→English BOLT task, where preliminary
experiments showed no improvement - contain a
7-gram word cluster language model (Wuebker et
al., 2013) and for comparison, we also experiment
with a hierarchical reordering model (HRM) (Gal-
ley and Manning, 2008). When integrated into a
phrase-based decoder, Durrani et al. (2013b) have
shown the OSM to outperform bilingual LMs on
MTUs. Therefore, we directly compare ourselves
with a 7-gram OSM implemented into our phrase-
based decoder as an additional feature. The OSM
is trained on the same data as the ETM for all
tasks. Bilingual data statistics for all tasks are
shown in Table 1. For each system setting we eval-
uate three MERT runs using multeval (Clark et
al., 2011). Results are reported in BLEU (Papineni
et al., 2001) and TER (Snover et al., 2006). The
optimization criterion for all experiments is BLEU.

5.1 Model parameters

To measure the complexity of the extended trans-
lation models in comparison to the phrase-based
translation model, we count the number of param-
eters to be trained for each.

Table 2 illustrates the phrase-table and ETM
count table entries for the BOLT Arabic→English
translation task, where both the phrase-based base-
line and the ETM are trained on the same bilin-
gual data consisting of 0.92M bilingual sentence
pairs. Here, we only show the numbers for the
Source→Target direction, as the numbers for the
Target→Source direction are similar. The EdTM
and EiTM each have roughly 35M parameters to
be trained, i.e. there are approximately 70M pa-

model # parameters

phrase-based translation 57,155,149

EdTM 35,511,396
lexicon 19,899,812
alignment 15,276,718
deletion 334,866

EiTM 34,994,534
lexicon 20,153,114
alignment 14,791,722
deletion 49,698

Table 2: The number of model parameters for the
BOLT Arabic→English bilingual training data af-
ter filtering.

BLEU TER

Baseline + HRM 30.7 49.3

+ EiTM + EdTM
Ge↔En none 31.4 48.3
none Ge↔En 31.6 48.1
Ge→En Ge→En 31.6 48.2
Ge↔En Ge↔En 31.8 48.2

Table 3: Results for the German→English IWSLT
data. The systems are optimized with MERT on
the dev2010 set. All results are statistically sig-
nificant with ≥99% confidence.

rameters to be trained for the ETM in total. This
is slightly more than the 57M parameters for the
phrase translation model.

5.2 Results
In order to compare the effect of the EiTM and
EdTM used in a phrase-based decoder, we have
trained the baseline including the HRM as de-
scribed above on the full German→English bilin-
gual data of the IWSLT task and the extended
translation models on the TED data. The results
evaluated on test2010 are shown in Table 3.

Including the EiTM trained in both
German→English and English→German di-
rections into the phrasal decoder yields an
absolute improvement of +0.7 BLEU and -1.0
TER, whereas including the EdTM yields +0.9
BLEU and -1.2 TER. This underlines that the
EdTM is more suitable for translation than the
EiTM because it predicts the direct probability
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Ge-En En-Fr Zh-En Ar-En

Baseline 30.6 32.8 16.5 23.8

+ ETM 31.4 33.8 16.8 24.1
+ OSM 31.6 34.1 17.3 24.1
+ HRM 30.7 33.1 17.0 24.0

+ ETM 31.8 33.9 17.5 24.4
+ OSM 31.8 34.5 17.6 24.1

Table 4: Comparison of ETM to the HRM and
OSM measured in BLEU. Statistically significant
improvements with ≥99% confidence are printed
in boldface.

of a target word, which corresponds to the actual
translation direction. Note, that both EiTM and
EdTM lose the advantage of modelling dependen-
cies beyond phrase boundaries when trained in the
inverse direction English→German. Therefore,
we have evaluated their joint performance when
trained only in German→English direction,
which is similar to the performance of EdTM
trained in both directions. This can be due to
the fact that even though the EiTM trained in
German→English direction incorporates depen-
dencies beyond phrase boundaries, the EdTM
trained in English→German direction profits from
the better suited direct translation probability. The
full ETM, i.e. EiTM and EdTM trained in both
directions, yields the best overall performance
gain of +1.1 BLEU and -1.1 TER over the baseline.

Moreover, we evaluate the performance of the
(full) ETM compared to the HRM and a 7-gram
OSM, which are all introduced as additional fea-
tures into the log-linear framework of the base-
line phrase-based decoder. The results are pre-
sented in Table 4. The ETM performs simi-
larly to the HRM for the Chinese→English and
Arabic→English tasks, resulting in +0.3 BLEU

over the PBT baseline. For both IWSLT tasks,
the ETM outperforms the HRM by +0.7 BLEU,
gaining +0.8 BLEU for the German→English and
+1.0 BLEU for the German→English task over the
PBT baseline. The context captured by the ETM
corresponds roughly to the context captured by a
3-gram OSM. Bearing this in mind, we compare
the ETM to a 7-gram OSM, which yields +0.25
BLEU more than the ETM averaged over the four
language pairs. Comparing the OSM vocabulary
of 1.5M words for the Arabic→English task to the

285K words in the Arabic corpus, this results in
an ETM vocabulary 5-times smaller than the OSM
vocabulary.

We also compare the ETM to the OSM on top of
a PBT system that also includes the HRM, which
is shown in the last two lines of Table 4. The per-
formance of the ETM benefits from the informa-
tion introduced by the HRM, as the gain of us-
ing the ETM is further increased by +0.15 BLEU

on average. Overall, the ETM gains consistent
and statistically significant improvements of +0.7
BLEU on average for all four language pairs over
a state-of-the-art phrase-based decoder including
the HRM. On the other hand, OSM seems to have
a higher overlap with HRM, as the gain of OSM
compared to ETM is reduced to +0.1 BLEU on av-
erage. Thus, on top of the phrase-based system in-
cluding the HRM, the ETM including a bilingual
word pair and the corresponding reordering jump
class proves to be competitive to a 7-gram OSM.

6 Discussion

We have integrated two variants of a novel ex-
tended translation model into a state-of-the-art
phrase-based decoder. The ETM captures lexical
and reordering context beyond phrase boundaries
in both the Source→Target and Target→Source
directions. Further, the model potentially captures
long-range reorderings and utilizes multiple and
empty alignments, allowing for target insertions
and source deletions. As an initial step, we have
implemented the ETM using relative frequencies
with interpolated Kneser-Ney smoothing. Its con-
sistent and statistically significant improvement
of up to +1.1 BLEU and -1.1 TER respectively
+0.7 BLEU on average has been shown for four
large-scale translation tasks, outperforming com-
petitive phrase-based systems that include lexical
and phrase translation models and hierarchical re-
ordering models.

Compared to a 7-gram OSM, the ETM is much
simpler in design: It uses a smaller vocabulary
size, estimates the probability of single words in-
stead of bilingual MTUs, avoids the need of re-
ordering gaps and includes less lexical and re-
ordering context, thus being less sparse. For
all that, it performs competitively to a 7-gram
OSM on top of phrase-based systems including
the HRM. This fact underlines the advantages in-
troduced by the ETM: It operates on words rather
than MTUs, explicitly models multiple alignments
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instead of incorporating linear dependencies and
models reorderings in a less complex way.

So far we have used the ETM as an additional
feature in a phrase-based decoder, but we believe
that the usage of such a decoder is a limitation.
First, the ETM is estimated on alignments, which
themselves are optimized for the IBM models.
Second, decoding is performed using phrases that
are extracted from the alignments using heuristics.
Therefore, the potential of a phrase-based decoder
is also limited by these heuristics.

Based on these facts, we believe that the ETM
will show its full potential when it is also inte-
grated into the training of the alignment, leading
not only to a higher alignment quality, but also to a
joint optimization of the alignments and the ETM.
Further, directly applying the ETM within a word-
based decoder utilizing an extended translation
and reordering context will redundantize phrases
and thus any extraction heuristics. We believe that
a consistent framework where the ETM is applied
in both training the alignments and decoding will
significantly advance machine translation.

For the short term, we will investigate better
smoothing strategies and the possibilities of using
neural networks instead of count models.
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Abstract

This work explores the application of re-
current neural network (RNN) language
and translation models during phrase-
based decoding. Due to their use of un-
bounded context, the decoder integration
of RNNs is more challenging compared to
the integration of feedforward neural mod-
els. In this paper, we apply approxima-
tions and use caching to enable RNN de-
coder integration, while requiring reason-
able memory and time resources. We an-
alyze the effect of caching on translation
quality and speed, and use it to integrate
RNN language and translation models into
a phrase-based decoder. To the best of
our knowledge, no previous work has dis-
cussed the integration of RNN translation
models into phrase-based decoding. We
also show that a special RNN can be inte-
grated efficiently without the need for ap-
proximations. We compare decoding us-
ing RNNs to rescoring n-best lists on two
tasks: IWSLT 2013 German→English,
and BOLT Arabic→English. We demon-
strate that the performance of decoding
with RNNs is at least as good as using
them in rescoring.

1 Introduction

Applying neural networks to statistical machine
translation has been gaining increasing attention
recently. Neural network language and translation
models have been successfully applied to rescore
the first-pass decoding output (Le et al., 2012;
Sundermeyer et al., 2014; Hu et al., 2014; Guta
et al., 2015). These models include feedforward
and recurrent neural networks.

A more ambitious move is to apply neural net-
works directly during decoding, which in principle

should give the models a better chance to influence
translation in comparison to rescoring, as rescor-
ing is limited to scoring and reranking fixed n-
best lists. Recently, neural networks were used for
standalone decoding using a simple beam-search
word-based decoder (Sutskever et al., 2014; Bah-
danau et al., 2015). Another approach is to apply
neural models directly in a phrase-based decoder.
We focus on this approach, which is challeng-
ing since phrase-based decoding typically involves
generating tens or even hundreds of millions of
partial hypotheses. Scoring such a number of hy-
potheses using neural models is expensive, mainly
due to the usually large output layer. Nevertheless,
decoder integration has been done in (Vaswani et
al., 2013) for feedforward neural language models.
Devlin et al. (2014) integrate feedforward transla-
tion models into phrase-based decoding reporting
major improvements, which highlight the strength
of the underlying models.

In related fields like e. g. language model-
ing, RNNs has been shown to perform consid-
erably better than standard feedforward architec-
tures (Mikolov et al., 2011; Arisoy et al., 2012;
Sundermeyer et al., 2013; Liu et al., 2014). Sun-
dermeyer et al. (2014) also show that RNN trans-
lation models outperform feedforward networks in
rescoring. Given the success of feedforward trans-
lation models in phrase-based decoding, it is natu-
ral to ask how RNN translation models perform if
they are integrated in decoding.

This paper investigates the performance of
RNN language and translation models in phrase-
based decoding. For RNNs that depend on an
unbounded target context, their integration into
a phrase-based decoder employing beam search
requires relaxing the pruning parameters, which
makes translation inefficient. Therefore, we ap-
ply approximations to integrate RNN translation
models during phrase-based decoding. Auli and
Gao (2014) use approximate scoring to integrate

294



an RNN language model (LM), but to the best
of our knowledge, no work yet has explored the
integration of RNN translation models. In addi-
tion to approximate models, we integrate a spe-
cial RNN model that only depends on the source
context, allowing for exact, yet efficient integra-
tion into the decoder. We provide a detailed com-
parison between using the RNN models in de-
coding vs. rescoring on two tasks: IWSLT 2013
German→English and BOLT Arabic→English. In
addition, we analyze the approximation effect on
translation speed and quality.

Our integration follows (Huang et al., 2014),
which uses caching strategies to apply an RNN
LM in speech recognition. This can be viewed
as a modification of the approximation introduced
by Auli and Gao (2014), allowing for a flexible
choice between translation quality and speed. We
choose to integrate the word-based RNN transla-
tion models that were introduced in (Sundermeyer
et al., 2014), due to their success in rescoring n-
best lists.

The rest of this paper is structured as follows. In
Section 2 we review the related work. The RNN
LM integration and caching strategies are dis-
cussed in Section 3, while Section 4 discusses the
integration of exact and approximate RNN transla-
tion models. We analyze the effect of approxima-
tion and caching on translation quality and speed
in Section 5. The section also includes the transla-
tion experiments comparing decoding vs. rescor-
ing. Finally we conclude with Section 6.

2 Related Work

Schwenk (2012) proposed a feedforward net-
work that predicts phrases of a fixed maximum
length, such that all phrase words are predicted at
once. The prediction is conditioned on the source
phrase. The model was used to compute additional
phrase table scores, and the phrase table was used
for decoding. No major difference was reported
compared to rescoring using the model. Our work
focuses on neural network scoring performed on-
line during decoding, capturing dependencies that
extend beyond phrase boundaries.

Online usage of neural networks during decod-
ing requires tackling the costly output normaliza-
tion step. Vaswani et al. (2013) avoid this step by
training feedforward neural language models us-
ing noise contrastive estimation. Auli and Gao
(2014) propose an expected BLEU criterion in-

stead of the usual cross-entropy. They train recur-
rent neural LMs without the need to normalize the
output layer, but training becomes computation-
ally more expensive as each training example is an
n-best list instead of a sentence. At decoding time,
however, scoring with the neural network is faster
since normalization is not needed. Furthermore,
they integrate cross-entropy RNNs without affect-
ing state recombination. They report results over
a baseline having a LM trained on the target side
of the parallel data. The results for the RNN LM
trained with cross-entropy indicated that decoding
improves over rescoring, with the difference rang-
ing from 0.4% to 0.8% BLEU. In this work, we
stick to RNNs trained using cross-entropy, with a
class-factored output layer to reduce the normal-
ization cost.

Devlin et al. (2014) augment the cross-entropy
training objective function to produce approxi-
mately normalized scores directly. They also pre-
compute the first hidden layer beforehand, result-
ing in large speedups. Major improvements over
strong baselines were reported. While their work
focuses on feedforward translation models, we in-
vestigate the decoder integration of RNN models
instead, which poses additional challenges due to
the unbounded history used by RNNs.

Huang et al. (2014) truncate the history and use
it to cache the hidden RNN states, the normaliza-
tion factors and the probability values. This is ap-
plied to an RNN LM in a speech recognition task.
In this work, we apply these caching strategies to
a recurrent LM for translation tasks. Furthermore,
we analyze the degree of approximation and its in-
fluence on the search problem. We also extend
caching and apply it to RNN translation models
that are conditioned on source and target words.

Sundermeyer et al. (2014) proposed word- and
phrase-based RNN translation models and applied
them to rescore n-best lists, reporting major im-
provements. The RNN word-based models were
shown to outperform a feedforward neural net-
work. This work aims to enable the use of the
word-based RNN models in phrase-based decod-
ing, and to explore their effect on the search space
during decoding.

3 RNN Language Model Integration

In this section we discuss the integration of
the RNN LM using caching in details. These
caching techniques will also be applied to the joint
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RNN translation model in Section 4.2 with minor
changes.

First, we will briefly introduce the RNN LM.
The LM probability p(ei|ei−1

1 ) of the target word
ei at position i depends on the unbounded target
history ei−1

1 . The probability can be computed us-
ing an RNN LM of a single hidden layer as fol-
lows:

yi−1 = A1êi−1 (1)

h(ei−1
1 ) = ξ(yi−1;A2, h(ei−2

1 )) (2)

o(ei−1
1 ) = A3h(ei−1

1 ) (3)

Z(ei−1
1 ) =

|V |∑
w=1

eow(ei−1
1 ) (4)

p(ei|ei−1
1 ) =

eoei (e
i−1
1 )

Z(ei−1
1 )

(5)

where A1, A2 and A3 denote the neural network
weight matrices, êi−1 is the one-hot vector en-
coding the word ei−1, and yi−1 is its word em-
bedding vector. h is a vector of the hidden layer
activations depending on the unbounded context,
and it is computed recurrently using the function
ξ, which we use to represent a generic recurrent
layer. o ∈ R|V | is a |V |-dimensional vector con-
taining the raw unnormalized output layer values,
where |V | is the vocabulary size. The probability
in Eq. 5 is computed using the softmax function,
which requires the normalization factor Z. In this
work, we use a class-factored output layer consist-
ing of a class layer and a word layer (Goodman,
2001; Morin and Bengio, 2005). In this case, the
LM probability is the product of the two:

p(ei|ei−1
1 ) = p(ei|c(ei), ei−1

1 ) · p(c(ei)|ei−1
1 )

where c denotes a word mapping from any target
word to its unique class. Such factorization is used
to reduce the normalization cost.

Phrase-based decoding involves the generation
of a search graph consisting of nodes. Each node
represents a search state uniquely identified by a
triple (C, ẽ, j), where C denotes the coverage set,
ẽ is the language model history, and j is the po-
sition of the last translated source word. During
decoding, equivalent nodes are recombined. The
degree of recombination is affected by the order
of the LM history, where higher orders result in
fewer recombinations. Our phrase-based decoder
is based on beam search, where the search space

is pruned and a limit is imposed on the number of
hypotheses to explore. Since an RNN LM depends
on the full target history ei−1

1 , a naı̈ve integration
of the RNN LM would define ẽ = ei−1

1 , but this
leads to an explosion in the number of nodes in
the search graph, which in turn leads to reducing
the variance between the hypotheses lying within
the beam, and focusing the decoding effort on hy-
potheses that are similar to each other.

Since the RNN LM computes a hidden state
h(ei−1

1 ) encoding the sequence ei−1
1 , another way

is to extend the search state of the node to
(C, ẽ, j, h(ei−1

1 )). However, such extension would
pose the same problem for recombination as the
one encountered if the full history sequence is
stored. Therefore, we resort to approximate RNN
LM evaluation in decoding. An approximation
proposed in (Auli et al., 2013) is to extend the
search node with the RNN hidden state, but to ig-
nore the hidden state when deciding which nodes
to recombine. That is, two search nodes are
deemed equivalent if they share the same triple
(C, ẽ, j), even if they have different RNN hidden
states. Upon recombination, one of the two hid-
den states is kept and stored in the resulting re-
combined node.

3.1 Caching Strategies

In this work, we follow a modification of the ap-
proach by (Auli et al., 2013). Instead of storing the
RNN hidden state in the search nodes, we truncate
the RNN history to the most recent n words ei−1

i−n,
and store this word sequence in the node instead.
As in (Auli et al., 2013), the added information is
ignored when deciding on recombination. When
the RNN hidden state is needed, it is retrieved
from a cache using the truncated history as a key.
The cache is shared between all nodes. While this
might seem as an unnecessary complication, it in-
troduces the flexibility of choosing the degree of
approximation. The parameter n can be used to
control the trade-off between accuracy and speed;
more accurate RNN scores are obtained if n is set
to a large value, or faster decoding is achieved if
n is set to a small value. In principle, we can still
simulate the case of storing the hidden RNN state
directly in the search nodes by using large n val-
ues as we will see later. We will refer to n as the
caching order.

During decoding, we use the cache Cstate to
store the hidden state h(ei−1

1 ) using the key ei−1
i−n.
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The state h(ei−1
1 ) is computed once, using the hid-

den state h(ei−2
1 ) as given in Eq. 2, and the cached

state is reused whenever it is needed. Note that
the n-gram key is only used to look up the hidden
state, which will have been computed recurrently
encoding an unbounded history. This is differ-
ent from a feedforward network which uses the n-
gram as direct input to compute its output. We also
introduce a cacheCnorm to store the output layer’s
normalization factor Z(ei−1

1 ) using the same key
ei−1
i−n, hence avoiding the sum of Eq. 4, which re-

quires the expensive computation of the full raw
output layer values o(ei−1

1 ) using Eq. 3. If the nor-
malization factor is found in the cache, comput-
ing Eq. 5 only requires the output value oei corre-
sponding to word ei, which involves a dot product
rather than a matrix-vector product. Since we use
a class-factored output layer, we cache the normal-
ization factor of the class layer. Finally, the cache
Cprob is introduced to store the word probability
using the caching key (ei, ei−1

i−n).

Fig. 1 shows the percentage of cache hits for
different caching orders. We count a cache hit if a
look up is performed on that cache and the entry
is found, otherwise the look up counts as a cache
miss. We observe high hit ratios even for high
caching orders. This is due to the fact that most
of the hits occur upon node expansion, where a
node is extended by a new phrase, and where all
candidates share the same history. We also ob-
serve that word probabilities are retrieved from the
cache 70% of the time for high enough caching or-
ders, which can be explained due to the similarities
between the phrase candidates in their first word.
Note also that the reported Cnorm hit ratio is for
the cases where the cache Cprob produces a cache
miss. We report this hit ratio since the original
Cnorm hit ratio is equal to Cstate’s hit ratio as they
both use the same caching key.

We report the effect of caching on translation
speed in Tab. 1, where we use a large caching order
of 30 to simulate the search space covered when no
caching is used. Using none of the caches and stor-
ing the hidden state in the search node instead has
a speed of 0.03 words per second. This increases
to 0.05 words per second when caching the hid-
den state. This is because caching computes each
hidden state once, while storing the hidden state in
the search node may lead to computing the same
hidden state multiple times, as no global view of
what has been computed is available. Caching the
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Figure 1: Cache hits for different caching orders
when using an RNN LM in the decoder.

Cache Speed [words/second]

none 0.03
Cstate 0.05
Cstate + Cnorm 0.19
Cstate + Cnorm + Cprob 0.19

Table 1: The effect of using caching on translation
speed. A large caching order of 30 is used to re-
duce the approximation effect of caching, leading
to the same translation quality for all table entries.

normalization constant yields a large speedup, due
to the reduction of the number of times the full
output layer is computed. Finally, caching word
probabilities does not speed up translation further.
This is due to the class-factored output layer we
use, where computing the softmax for the word
layer part (given a word class) uses a small ma-
trix corresponding to the words that belong to the
same class of the word in question. Overall, a
speedup factor of 6 is achieved over the case where
no caching is used. Achieving this speedup does
not lead to a loss in translation quality, in fact, for
all cases, the translation quality is the same due to
the large caching order used.

4 RNN Translation Model Integration

One of the main contributions of this work is to in-
tegrate RNN translation models into phrase-based
decoding. To the best of our knowledge, no such
integration has been done before. We integrate two
models that work on the word level. The mod-
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els were proposed in (Sundermeyer et al., 2014).
They assume a one-to-one alignment between the
source sentence f I

1 = f1 . . . fI and the target sen-
tence eI1 = e1 . . . eI . Such alignment is obtained
using heuristics that make use of IBM 1 lexica.
In the following, we discuss the integration of the
bidirectional translation model (BTM), which can
be done exactly and efficiently without resorting
to approximations. In addition, we propose an
approximate integration of the joint model (JM)
which makes use of the same caching strategies
discussed in Section 3.

4.1 Bidirectional Translation Model
The bidirectional translation model (BTM) is con-
ditioned on the full source sentence, without de-
pendence on previously predicted target words:

p(eI1|f I
1 ) ≈

I∏
i=1

p(ei|f I
1 ). (6)

This equation is realized by a network that uses
forward and backward recurrent layers to capture
the complete source sentence. The forward layer is
a recurrent hidden layer that processes the source
sequence from left to right, while a backward layer
does the processing backwards, from right to left.
The source sentence is basically split at a given
position i, then past and future representations of
the sentence are recursively computed by the for-
ward and backward layers, respectively. Due to
recurrency, the forward layer encodes f i

1, and the
backward layer encodes f I

i , and together they en-
code the full source sentence f I

1 , which is used to
score the output target word ei.

Including the BTM in the decoder is efficient
and scores can be computed exactly. This is be-
cause the model has no dependence on previous
target words hypothesized during decoding. For a
sentence of length I , and a target vocabulary size
|V |, the number of distinct evaluations is at most
I · |V |. The term I corresponds to the number
of possibilities where the source sentence may be
split into past and future parts, and the term |V |
is the different possible target words that may be
hypothesized. In phrase-based decoding, the num-
ber of distinct evaluations is in the order of thou-
sands, as the number of target word candidates per
sentence is limited by the phrase table. Since the
input to the network is completely known at the
beginning of decoding, it is enough that the full
network is computed I times per source sentence,

once per split position i for 1 ≤ i ≤ I . Computing
p(ei = e|f I

1 ) amounts to looking up the normal-
ized output layer value corresponding the word e
from the network computed using the split posi-
tion i.

4.2 Joint Model
The joint model (JM) conditions target word pre-
dictions on the hypothesized target history in ad-
dition to the source history and the current source
word:1

p(eI1|f I
1 ) =

I∏
i=1

p(ei|ei−1
1 , f i

1). (7)

This equation can be modeled using a network
similar to the RNN LM. While the RNN LM has
the previous target word ei−1 as direct input to
score the current target word ei, the JM aggregates
the word embeddings of the previous target word
ei−1 and the current source word fi. Due to recur-
rency, the hidden state will encode the sequence
pair (ei−1

1 , f i
1).

Since the JM is similar to the RNN LM in its
dependence on the unbounded history, we apply
caching strategies similar to those used with the
RNN LM. JM computations are shared between
instances that have a truncated source and target
history in common. The cache key in this case is
(ei−1

i−n, f
i
i−n+1) for the Cstate and Cnorm caches,

and (ei, ei−1
i−n, f

i
i−n+1) for the Cprob cache.

5 Experiments

5.1 Setup
We carry out experiments on the IWSLT 2013
German→English shared translation task.2 The
baseline system is trained on all available bilin-
gual data, 4.3M sentence pairs in total, and uses
a 4-gram LM with modified Kneser-Ney smooth-
ing (Kneser and Ney, 1995; Chen and Goodman,
1998), trained with the SRILM toolkit (Stolcke,
2002). As additional data sources for the LM,
we selected parts of the Shuffled News and LDC
English Gigaword corpora based on the cross-
entropy difference (Moore and Lewis, 2010), re-
sulting in a total of 1.7 billion running words for

1We use a unidirectional rather than a bidirectional JM,
dropping the future source information fI

i+1. This is because
the models we integrate reorder the source sentence following
the target order, which can only be done for the past part of
the source sentence at decoding time.

2http://www.iwslt2013.org
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LM training. The state-of-the-art baseline is a
standard phrase-based SMT system (Koehn et al.,
2003) tuned with MERT (Och, 2003). It contains
a hierarchical reordering model (Galley and Man-
ning, 2008) and a 7-gram word cluster language
model (Wuebker et al., 2013). All neural networks
are trained on the TED portion of the data (138K
segments). The experiments are run using an ob-
servation histogram size of 100, with a maximum
of 16 lexical hypotheses per source coverage and a
maximum of 32 reordering alternatives per source
cardinality.

Additional experiments are performed on the
Arabic→English task of the DARPA BOLT
project. The system is a standard phrase-based
decoder trained on 921K segments, amounting to
15.5M running words, and using 17 dense fea-
tures. The neural network training is performed
using the same data. We evaluate results on two
data sets from the ‘discussion forum’ domain,
test1 and test2. The sizes of the data sets are:
1219 (dev), 1510 (test1), and 1137 (test2)
segments. An additional development set contain-
ing 2715 segments is used during RNN training.
The experiments are run using an observation his-
togram size of 100, with a maximum of 32 lexical
hypotheses per source coverage and a maximum
of 8 reordering alternatives per source cardinality.

The BTM consists of a linear projection layer,
forward and backward long-short term memory
(LSTM) layers and an additional LSTM to com-
bine them. Each of the LM and JM has a pro-
jection layer and a single LSTM layer. All lay-
ers have 200 nodes, with 2000 classes used for the
class-factored output layer.

All results are measured in case-insensitive
BLEU [%] (Papineni et al., 2002) and TER [%]
(Snover et al., 2006) on a single reference. The
reported decoding results are averages of 3 MERT
optimization runs. Rescoring experiments are per-
formed using 1000-best lists (without duplicates),
where an additional MERT iteration is performed.
20 such trials are carried out and the average re-
sults are reported. We used the multeval toolkit
(Clark et al., 2011) for evaluation.

5.2 Approximation Analysis

First, we will analyze the caching impact on de-
coding. We compare RNN LM rescoring and de-
coding by marking a win for the method find-
ing the better search score. Decoding with the

2 4 6 8 10 12 14 16

10

20

30

40

Caching order

Im
pr

ov
ed

hy
po

th
es

es
[%

]

Decoding
Rescoring

Figure 2: A comparison between applying the
RNN LM in decoding using caching, and apply-
ing it exactly in rescoring.

RNN LM uses approximate scores while rescor-
ing with same model uses the exact scores. Fig. 2
shows the percentage of improved hypotheses for
RNN decoding (compared to RNN rescoring) and
for RNN rescoring (compared to RNN decoding).
The figure does not include tie cases, which oc-
cur when RNN LM decoding and rescoring yield
the same hypothesis as their best finding. For
the caching order n = 8, decoding finds a better
search score for 33% of the sentences compared
to rescoring, while rescoring has a better score in
17% of the cases compared to decoding. The re-
maining 50% cases (not shown in the figure) cor-
respond to ties where both search methods select
the same hypotheses. Increasing the caching order
improves the decoding quality. For the caching
order n = 16, rescoring outperforms decoding in
12% of the cases, i.e. for the remaining 88% cases,
decoding is at least as good as rescoring.

Even for high caching orders, we observe that
decoding does not completely beat rescoring. This
can be attributed to the recombination approxima-
tion, as recombination disregards the RNN his-
tory. We performed another experiment to de-
termine the effect of recombination on the RNN
scores. In this experiment the RNN hidden state is
stored in the search nodes, and no caching is used.
This leaves recombination as the only source of
approximation. We generated 1000-best lists us-
ing the approximate RNN LM scores during de-
coding. Afterwards, we computed the exact RNN
scores of the 1000-best lists and compared them
to the approximate scores. Fig. 3 shows the cu-
mulative distribution of the absolute relative dif-
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Figure 3: The cumulative distribution of the abso-
lute relative difference between the approximate
and true RNN score with respect to the true score.
The distribution was generated using around 233k
sentences, obtained from n-best lists generated by
decoding the dev set of the IWSLT task.

ference between the approximate and true RNN
scores with respect to the true scores. The figure
suggests that recombining search nodes while ig-
noring the RNN hidden state leads to inexact RNN
scores in most cases. For 66% of the cases the ab-
solute relative error is at most 1%, and the error
is at most 6% for 99% of the cases. As expected,
ignoring the RNN during recombination leads to
inexact RNN scores.

In Tab. 2, we compare between caching the
RNN hidden state and the approach proposed in
(Auli et al., 2013), which stores the RNN hidden
state in the search node. The experiment aims to
compare the two approaches in terms of transla-
tion quality. If the caching order is at least 6, no
considerable difference is observed. This result is
in favor of caching due to the speedup it achieves
(cf. Tab. 1).

5.3 Translation Results

The IWSLT results are given in Tab. 3. We ob-
serve that decoding with RNNs improves the base-
line by 1.0− 1.7% BLEU and 0.9− 1.9% TER on
the test set. These improvements are at least as
good as those of rescoring. This applies both for
the exact BTM as well as the approximate LM and
JM cases. In the case of BTM decoding, we ob-
serve an improvement of 0.1 BLEU and 0.5 TER

compared to the corresponding rescoring exper-

Caching Order dev test

2 33.1 30.8
4 33.4 31.2
6 33.9 31.6
8 33.9 31.5
16 34.0 31.5
30 33.9 31.5

- 33.9 31.5

Table 2: A comparison between storing the RNN
state in the search nodes (last entry) or caching it
using different caching orders (remaining entries).
We report the BLEU [%] scores for the IWSLT
2013 German→English task.

dev test
BLEU TER BLEU TER

baseline 33.4 46.1 30.6 49.2

LM Resc. 34.1 45.7 31.5 48.6
LM Dec. 33.9 45.7 31.6 48.3
+LM Resc. 34.1 45.8 31.9 48.4

BTM Resc. 34.4 45.3 32.2 47.8
BTM Dec. 34.4 44.9 32.3 47.3

JM Resc. 34.3 45.4 31.6 48.3
JM Dec. 34.4 45.6 31.6 48.2
+ JM Resc. 34.6 45.3 31.8 47.9

Table 3: IWSLT 2013 German→English results.
Caching orders: n = 8 (LM), n = 5 (JM).

iment. The decoding improvements in the LM
and JM cases are minor compared to rescoring.
We also experimented with rescoring the RNN
decoding output, where rescoring was performed
using the same RNN used in decoding to obtain
exact scores. We took the best on dev among
the 3 MERT runs and rescored it. This is indi-
cated by the “+” sign. The results show that RNN
LM rescoring can be improved if decoding is per-
formed including the RNN LM. On test the gain
is 0.4 BLEU and 0.2 TER, while the improvement
is 0.2 BLEU and 0.4 TER in the JM case. This
indicates that using the RNN model in decoding
improves the n-best lists, allowing rescoring after-
wards to choose better hypotheses. Overall, BTM
decoding improves over the baseline by 1.7 BLEU

and 1.9 TER.
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test1 test2
BLEU TER BLEU TER

baseline 23.9 59.7 26.4 59.8

LM Resc. 24.3 59.3 26.9 59.3
LM Dec. 24.6 59.0 27.0 59.2
+LM Resc. 25.0 58.8 27.2 59.1

BTM Resc. 24.7 58.9 27.0 58.9
BTM Dec. 24.8 58.9 27.0 58.9

JM Resc. 24.4 59.0 27.2 59.0
JM Dec. 24.5 59.0 27.3 59.0
+ JM Rec. 24.5 59.0 27.3 59.0

Table 4: BOLT Arabic→English results. Caching
orders: n = 8 (LM), n = 10 (JM).

Tab. 4 shows the results of the Arabic→English
BOLT task. Again, the LM, JM and BTM mod-
els in decoding are at least as good as in rescor-
ing. For the LM, we observe an improvement of
0.7 BLEU when LM rescoring is applied on the
LM decoding output. The best result improves the
baseline by 1.1 BLEU on test1 and 0.9 BLEU on
test2.

In a final experiment to examine the power of
the recurrent neural translation models, we per-
formed phrase-based decoding without the con-
ventional phrasal and lexical translation scores.
Instead, we performed decoding with the BTM
as described in Section 4.1, and augmented the
phrase table with four additional features derived
from the bidirectional translation model, the joint
model, and the phrase-based translation and joint
models described in (Sundermeyer et al., 2014).
This was done by scoring each phrase pair in the
phrase table as if it were a sentence pair. For this
specific experiment, we trained the phrase-based
models on phrase pairs obtained from forced-
decoding the training data. That is, each training
instance was a phrase pair instead of a sentence
pair. For the sake of comparison, we trained the
baseline translation model on the TED portion of
the data; the same data used for neural training.
The results are shown in Tab. 5. We observe a
gap of only 1.2 BLEU on dev and 1.0 BLEU on
test, with almost no difference in TER. We con-
sider this an encouraging result, as it is possible
that the word-based recurrent neural models used
here are not capable of expressing their full poten-
tial due to their use in the phrase-based framework,

dev test
BLEU TER BLEU TER

baseline 32.2 46.6 30.5 48.7
RNN 31.0 46.8 29.5 48.6

Table 5: The in-domain baseline has a translation
model trained on the TED portion of the data only,
while RNN denotes decoding with the BTM, in
addition to 4 offline word- and phrase-based neu-
ral scores in the phrase table . The phrase-based
models were trained on forced-aligned phrase-
pairs rather than full sentences.

which only allows phrases given by the phrase ta-
ble. Therefore, it would be interesting to examine
the performance of the models outside the phrase-
based framework.

5.4 Discussion

We observe that integrating RNN models into
phrase-based decoding slightly outperforms ap-
plying them in a rescoring step. This is unlike
the case of feedforward networks, which where
integrated into phrase-based decoding in (Devlin
et al., 2014), and resulted in large improvements
compared to rescoring. Even when we use large
caching orders, we observe no major improve-
ments over rescoring. This can be attributed to
the fact that deciding on recombining search nodes
completely ignores the RNN hidden state, which
could be a harsh approximation, given that the
RNN hidden state encodes the complete history.
We experimented with changing the LM order
used to make recombination decisions, which we
refer to as the recombination order. However, sim-
ply increasing the recombination order does not
enhance the translation quality, and it starts to even
have a negative impact. This can be explained due
to the fact that our phrase-based decoder is based
on beam search, which has fixed pruning parame-
ters that allow a fixed number of hypotheses to be
explored. Simply increasing the recombination or-
der limits the variety in the beam. When the beam
size is doubled,3 both RNN decoding and rescor-
ing improve, but the difference between them is
still insignificant. To be able to benefit from the
increase in recombination order, the beam size

3We doubled each of the observation histogram size, the
number of lexical hypotheses per source coverage and the
number of reordering alternatives per source cardinality.

301



should be appropriately increased. But using large
beam sizes makes translation costly and infeasi-
ble. This calls for other more selective ways to
make recombination decisions dependent on the
RNN hidden state.

6 Conclusion

We investigated the integration of RNN language
and translation models into a phrase-based de-
coder. We integrated exact RNN translation mod-
els that are conditioned on the source context only,
and used caching to integrate approximate RNN
translation models that are dependent on the tar-
get context. This is the first time RNN transla-
tion models are integrated into phrase-based de-
coding. We analyzed the effect of caching on
translation quality and speed, and demonstrated
that it achieves equivalent translation results com-
pared to having the RNN hidden states stored in
the decoder’s search nodes, while being 6 times
faster. Translation results indicated that applying
the models in decoding is at least as good as apply-
ing them in rescoring n-best lists, but we observed
no major advantage for RNN decoding. Future
work will investigate approaches to make recom-
bination dependent on the RNN hidden state in a
feasible way, furthermore, we will explore how the
RNN models perform in word-based decoding.
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Abstract

We use referential translation machines
(RTMs) for predicting translation perfor-
mance. RTMs pioneer a language inde-
pendent approach to all similarity tasks
and remove the need to access any task or
domain specific information or resource.
We improve our RTM models with the
ParFDA instance selection model (Biçici
et al., 2015), with additional features
for predicting the translation performance,
and with improved learning models. We
develop RTM models for each WMT15
QET (QET15) subtask and obtain im-
provements over QET14 results. RTMs
achieve top performance in QET15 rank-
ing 1st in document- and sentence-level
prediction tasks and 2nd in word-level pre-
diction task.

1 Referential Translation Machine
(RTM)

Referential translation machines are a computa-
tional model effectively judging monolingual and
bilingual similarity while identifying translation
acts between any two data sets with respect to in-
terpretants. RTMs achieve top performance in au-
tomatic, accurate, and language independent pre-
diction of machine translation performance and re-
duce our dependence on any task dependent re-
source. Prediction of translation performance can
help in estimating the effort required for correct-
ing the translations during post-editing by human
translators. We improve our RTM models (Biçici
and Way, 2014):

• by using improved ParFDA instance selec-
tion model (Biçici et al., 2015) allowing bet-
ter language models (LM) in which similarity
judgments are made to be built with improved
optimization and selection of the LM data,

• by selecting TreeF features over source and
translation data jointly instead of taking their
intersection,

• with extended learning models including
bayesian ridge regression (Tan et al., 2015),
which did not obtain better performance than
support vector regression in training results
(Section 2.2).

We present top results with Referential Trans-
lation Machines (Biçici, 2015; Biçici and Way,
2014) at quality estimation task (QET15) in
WMT15 (Bojar et al., 2015). RTMs pioneer
a computational model for quality and semantic
similarity judgments in monolingual and bilin-
gual settings using retrieval of relevant training
data (Biçici and Yuret, 2015) as interpretants for
reaching shared semantics. RTMs use Machine
Translation Performance Prediction (MTPP) Sys-
tem (Biçici et al., 2013; Biçici, 2015), which is
a state-of-the-art performance predictor of trans-
lation even without using the translation by using
only the source. We use ParFDA for selecting the
interpretants (Biçici et al., 2015; Biçici and Yuret,
2015) and build an MTPP model. MTPP derives
indicators of the closeness of test sentences to the
available training data, the difficulty of translating
the sentence, and the presence of acts of transla-
tion for data transformation. We view that acts of
translation are ubiquitously used during commu-
nication:

Every act of communication is an act of
translation (Bliss, 2012).

Figure 1 depicts RTM. Our encouraging results in
QET provides a greater understanding of the acts
of translation we ubiquitously use and how they
can be used to predict the performance of transla-
tion. RTMs are powerful enough to be applicable
in different domains and tasks while achieving top
performance.
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Figure 1: RTM depiction.

Task Train Test
Task 1 (en-es) 12271 1817
Task 2 (en-es) 12271 1817
Task 3 (en-de) 800 415
Task 3 (de-en) 800 415

Table 1: Number of sentences in different tasks.

2 RTM in the Quality Estimation Task

We participate in all of the three subtasks of the
quality estimation task (QET) (Bojar et al., 2015),
which include English to Spanish (en-es), English
to German (en-de), and German to English (de-
en) translation directions. There are three sub-
tasks: sentence-level prediction (Task 1), word-
level prediction (Task 2), and document-level pre-
diction (Task 3). Task 1 is about predicting HTER
(human-targeted translation edit rate) (Snover et
al., 2006) scores of sentence translations, Task 2 is
about binary classification of word-level quality,
and Task 3 is about predicting METEOR (Lavie
and Agarwal, 2007) scores of document transla-
tions.

Instance selection for the training set and
the language model (LM) corpus is handled by
ParFDA (Biçici et al., 2015), whose parameters
are optimized for each translation task. LM are
trained using SRILM (Stolcke, 2002). We tok-
enize and truecase all of the corpora using code
released with Moses (Koehn et al., 2007) 1. Ta-
ble 1 lists the number of sentences in the training
and test sets for each task.

1mosesdecoder/scripts/

2.1 RTM Prediction Models and
Optimization

We present results using support vector regres-
sion (SVR) with RBF (radial basis functions) ker-
nel (Smola and Schölkopf, 2004) for sentence
and document translation prediction tasks and
Global Linear Models (GLM) (Collins, 2002) with
dynamic learning (GLMd) (Biçici, 2013; Biçici
and Way, 2014) for word-level translation per-
formance prediction. We also use these learning
models after a feature subset selection (FS) with
recursive feature elimination (RFE) (Guyon et al.,
2002) or a dimensionality reduction and mapping
step using partial least squares (PLS) (Specia et
al., 2009), or PLS after FS (FS+PLS).

GLM relies on Viterbi decoding, perceptron
learning, and flexible feature definitions. GLMd
extends the GLM framework by parallel percep-
tron training (McDonald et al., 2010) and dynamic
learning with adaptive weight updates in the per-
ceptron learning algorithm:

w = w + α (Φ(xi, yi)− Φ(xi, ŷ)) , (1)

where Φ returns a global representation for in-
stance i and the weights are updated by α, which
dynamically decays the amount of the change dur-
ing weight updates at later stages and prevents
large fluctuations with updates.

The learning rate updates the weight values with
weights in the range [a, b] using the following
function taking error rate as the input:

f(x) = (loga b− 1)x2 + 1 (2)

Learning rate curve for a = 0.5 and b = 1.0 is
provided in Figure 2:

2.2 Training Results

We use mean absolute error (MAE), relative
absolute error (RAE), root mean squared error
(RMSE), and correlation (r) as well as relative
MAE (MAER) and relative RAE (MRAER) to
evaluate (Biçici, 2015; Biçici, 2013). MAER is
mean absolute error relative to the magnitude of
the target and MRAER is mean absolute error rela-
tive to the absolute error of a predictor always pre-
dicting the target mean assuming that target mean
is known (Biçici, 2015). RTM test performance
on various tasks sorted according to MRAER can
help identify which tasks and subtasks may re-
quire more work. DeltaAvg (Callison-Burch et al.,
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Task Translation Model r MAE RAE MAER MRAER

Task1
en-es FS SVR 0.355 0.1387 0.895 0.782 0.821
en-es FS+PLS SVR 0.362 0.1389 0.896 0.784 0.824

Task3

en-de FS SVR 0.517 0.0737 0.734 0.289 0.678
en-de SVR 0.503 0.0765 0.761 0.307 0.737
de-en FS SVR 0.479 0.0473 0.738 0.267 0.665
de-en FS+PLS SVR 0.391 0.0515 0.804 0.288 0.81

Table 2: Training performance of the top 2 individual RTM models prepared for different tasks.
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Figure 2: Learning rate curve.

Model # splits % error weight range
GLMd 4 0.0227 [0.5, 2]
GLMd 5 0.0234 [0.5, 2]

Table 3: RTM-DCU Task 2 training results.

2012) calculates the average quality difference be-
tween the top n−1 quartiles and the overall quality
for the test set.

Table 2 presents the training results for Task 1
and Task 3. Table 3 presents Task 2 training re-
sults. We refer to GLMd parallelized over 4 splits
as GLMd s4 and GLMd with 5 splits as GLMd s5.

2.3 Test Results
Task 1: Predicting the HTER for Sentence
Translations The results on the test set are given
in Table 4. Rank lists the overall ranking in the
task out of about 9 submissions. We obtain the
rankings by sorting according to the predicted

scores and randomly assigning ranks in case of
ties. RTMs with FS followed by PLS and learn-
ing with SVR is able to achieve the top rank in
this task.

Task 2: Prediction of Word-level Translation
Quality Task 2 is about binary classification
of word-level quality. We develop individual
RTM models for each subtask and use GLMd
model (Biçici, 2013; Biçici and Way, 2014), for
predicting the quality at the word-level. The re-
sults on the test set are in Table 5 where the ranks
are out of about 17 submissions. RTMs with
GLMd becomes the second best system this task.

Task 3: Predicting METEOR of Document
Translations Task 3 is about predicting ME-
TEOR (Lavie and Agarwal, 2007) and their rank-
ing. The results on the test set are given in Table 4
where the ranks are out of about 6 submissions us-
ing wF1. RTMs achieve top rankings in this task.
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Task Translation Model DeltaAvg r MAE RAE MAER MRAER Rank

Task1
en-es FS SVR 0.61 0.3665 0.1325 0.8963 0.8344 0.8488 3
en-es FS+PLS SVR 0.63 0.349 0.1335 0.903 0.8284 0.8353 1

Task3

en-de FS SVR 0.65 0.6668 0.0728 0.7279 0.3249 0.6467 2
en-de SVR 0.76 0.6247 0.075 0.7499 0.3623 0.7245 1
de-en FS SVR 0.49 0.5521 0.0578 0.8763 0.395 0.9159 1
de-en FS+PLS SVR 0.42 0.6373 0.0494 0.7482 0.2996 0.68 2

Table 4: Test performance of the top 2 individual RTM models prepared for different tasks.

Model wF1 Rank F1 GOOD F1 BAD
GLMd s5 0.76 3 0.2391 0.8812
GLMd s4 0.7588 4 0.2269 0.8826

Table 5: RTM-DCU Task 2 results on the test set.
wF1 is the average weighted F1 score.

2.4 RTMs Across Tasks and Years
We compare the difficulty of tasks according to
MRAER levels achieved. In Table 6, we list the
RTM test results for tasks and subtasks that predict
HTER or METEOR from QET15, QET14 (Biçici
and Way, 2014), and QET13 (Biçici, 2013). The
best results when predicting HTER are obtained
this year.

3 Conclusion

Referential translation machines achieve top per-
formance in automatic, accurate, and language in-
dependent prediction of document-, sentence-, and
word-level statistical machine translation (SMT)
performance. RTMs remove the need to access
any SMT system specific information or prior
knowledge of the training data or models used
when generating the translations. RTMs achieve
top performance when predicting translation per-
formance.
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Abstract

This paper describes the Universitat
d’Alacant submissions (labelled as UAla-
cant) for the machine translation quality
estimation (MTQE) shared task in WMT
2015, where we participated in the word-
level MTQE sub-task. The method we used
to produce our submissions uses external
sources of bilingual information as a black
box to spot sub-segment correspondences
between a source segment S and the trans-
lation hypothesis T produced by a machine
translation system. This is done by seg-
menting both S and T into overlapping sub-
segments of variable length and translating
them in both translation directions, using
the available sources of bilingual informa-
tion on the fly. For our submissions, two
sources of bilingual information were used:
machine translation (Apertium and Google
Translate) and the bilingual concordancer
Reverso Context. After obtaining the sub-
segment correspondences, a collection of
features is extracted from them, which are
then used by a binary classifer to obtain the
final “GOOD” or “BAD” word-level qual-
ity labels. We prepared two submissions
for this year’s edition of WMT 2015: one
using the features produced by our system,
and one combining them with the baseline
features published by the organisers of the
task, which were ranked third and first for
the sub-task, respectively.

1 Introduction

Machine translation (MT) post-editing is nowadays
an indispensable step that allows to use machine

translation for dissemination. Consequently, MT
quality estimation (MTQE) (Blatz et al., 2004; Spe-
cia et al., 2010; Specia and Soricut, 2013) has
emerged as a mean to minimise the post-editing ef-
fort by developing techniques that allow to estimate
the quality of the translation hypotheses produced
by an MT system. In order to boost the scientific
efforts on this problem, the WMT 2015 MTQE
shared task proposes three tasks that allow to com-
pare different approaches at three different levels:
segment-level (sub-task 1), word-level (sub-task 2),
and document-level (sub-task 3).

Our submissions tackle the word-level MTQE
sub-task, which proposes a framework for evalu-
ating and comparing different approaches. This
year, the sub-task used a dataset obtained by trans-
lating segments in English into Spanish using MT.
The task consists in identifying which words in the
translation hypothesis had to be post-edited and
which of them had to be kept unedited by applying
the labels “BAD” and “GOOD”, respectively. In
this paper we describe the approach behind the two
submissions of the Universitat d’Alacant team to
this sub-task. For our submissions we applied the
approach proposed by Esplà-Gomis et al. (2015b),
who use black-box bilingual resources from the
Internet for word-level MTQE. In particular, we
combined two on-line MT systems, Apertium1 and
Google Translate,2 and the bilingual concordancer
Reverso Context3 to spot sub-segment correspon-
dences between a sentence S in the source lan-
guage (SL) and a given translation hypothesis T
in the target language (TL). To do so, both S and
T are segmented into all possible overlapping sub-

1http://www.apertium.org
2http://translate.google.com
3http://context.reverso.net/

translation/
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segments up to a certain length and translated into
the TL and the SL, respectively, by means of the
sources of bilingual information mentioned above.
These sub-segment correspondences are used to
extract a collection of features that is then used by
a binary classifier to determine the final word-level
MTQE labels.

One of the novelties of the task this year is that
the organisation provided a collection of baseline
features for the dataset published. Therefore, we
submitted two systems: one using only the fea-
tures defined by Esplà-Gomis et al. (2015b), and
another combining them with the baseline features
published by the organisers of the shared task. The
results obtained by our submissions were ranked
third and first, respectively.

The rest of the paper is organised as follows.
Section 2 describes the approach used to produce
our submissions. Section 3 describes the experi-
mental setting and the results obtained. The paper
ends with some concluding remarks.

2 Sources of bilingual information for
word-level MTQE

The approach proposed by Esplà-Gomis et al.
(2015b), which is the one we have followed in
our submissions for the MTQE shared task in
WMT 2015, uses binary classification based on
a collection of features computed for each word
by using available sources of bilingual informa-
tion. These sources of bilingual information are
obtained from on-line tools and are used on-the-fly
to detect relations between the original SL seg-
ment S and a given translation hypothesis T in the
TL. This method has been previously used by the
authors in other cross-lingual NLP tasks, such as
word-keeping recommendation (Esplà-Gomis et al.,
2015a) or cross-lingual textual entailment (Esplà-
Gomis et al., 2012), and consists of the following
steps: first, all the overlapping sub-segments σ of
S up to given length L are obtained and translated
into the TL using the sources of bilingual informa-
tion available. The same process is carried out for
all the overlapping sub-segments τ of T , which are
translated into the SL. The resulting collections of
sub-segment translations MS→T and MT→S are
then used to spot sub-segment correspondences be-
tween T and S. In this section we describe a collec-
tion of features designed to identify these relations
for their exploitation for word-level MTQE.

2.1 Positive features

Given a collection of sub-segment translations
M = {σ, τ}, such as the collections MS→T and
MT→S) described above, one of the most obvious
features consists in computing the amount of sub-
segment translations (σ, τ) ∈M that confirm that
word tj in T should be kept in the translation of S.
We consider that a sub-segment translation (σ, τ)
confirms tj if σ is a sub-segment of S, and τ is
a sub-segment of T that covers position j. Based
on this idea, we propose the collection of positive
features Posn:

Posn(j, S, T,M) =
|{τ : (σ, τ) ∈ confn(j, S, T,M)}|
|{τ : τ ∈ segn(T ) ∧ j ∈ span(τ, T )}|

where segn(X) represents the set of all possible
n-word sub-segments of segment X and func-
tion span(τ, T ) returns the set of word positions
spanned by the sub-segment τ in the segment T .4

Function confn(j, S, T,M) returns the collection
of sub-segment pairs (σ, τ) that confirm a given
word tj , and is defined as:

confn(j, S, T,M) = {(σ, τ) ∈M :
τ ∈ segn(T ) ∧ σ ∈ seg∗(S) ∧ j ∈ span(τ, T )}

where seg∗(X) is similar to segn(X) but without
length constraints.5

We illustrate this collection of features with
an example. Suppose the Catalan segment
S =“Associació Europea per a la Traducció
Automàtica”, an English translation hypothesis
T =“European Association for the Automatic
Translation”, and the most adequate (reference)
translation T ′=“European Association for Machine
Translation”. According to the reference, the words
the and Automatic in the translation hypothesis
should be marked as BAD: the should be removed
and Automatic should be replaced by Machine. Fi-
nally, suppose that the collection MS→T of sub-
segment pairs (σ, τ) is obtained by applying the
available sources of bilingual information to trans-
late into English the sub-segments in S up to length
3:6

4Note that a sub-segment τ may be found more than once
in segment T : function span(τ, T ) returns all the possible
positions spanned.

5Esplà-Gomis et al. (2015b) conclude that constraining
only the length of τ leads to better results than constraining
both σ and τ .

6The other translation direction is omitted for simplicity.
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MS→T ={(“Associació”, “Association”),
(“Europea”, “European”), (“per”, “for”),

(“a”, “to”), (“la”, “the”),
(“Traducció”, “Translation”),
(“Automàtica”, “Automatic”),

(“Associació Europea”, “European
Association”),

(“Europea per”, “European for”),
(“per a”, “for”), (“a la”, “to the”),
(“la Traducció”, “the Translation”),

(“Traducció Automàtica”, “Machine Translation”),
(“Associació Europea per”, “European

Association for”),
(“Europea per a”, “European for the”),

(“per a la”, “ for the”),
(“a la Traducció”, “to the Translation”),

(“la Traducció Automàtica”, “the Machine
Translation”)}

Note that the sub-segment pairs (σ, τ) in bold
are those confirming the translation hypothesis T ,
while the rest contradict some parts of the hypoth-
esis. For the word Machine (which corresponds
to word position 5), there is only one sub-segment
pair confirming it (“Automàtica”, “Automatic”)
with length 1, and no one with lengths 2 and 3.
Therefore, we have that:

conf1(5, S, T,M) = {(“Automàtica”,
“Automatic” )}

conf2(5, S, T,M) = ∅
conf3(5, S, T,M) = ∅

In addition, we have that the sub-segments τ in
seg∗(T ) covering the word Automatic for lengths
in [1, 3] are:

{τ : τ ∈ seg1(T ) ∧ j ∈ span(τ, T )} =
{“Automatic”}

{τ : τ ∈ seg2(T ) ∧ j ∈ span(τ, T )} =
{“the Automatic” ,

“Automatic Translation”}
{τ : τ ∈ seg3(T ) ∧ j ∈ span(τ, T )} =

{“for the Automatic” ,
“the Automatic Translation”}

Therefore, the resulting positive features for this
word would be:

Pos1(5, S, T,M) =
conf3(5, S, T,M)

{τ : τ ∈ seg1(T ) ∧ j ∈ span(τ, T )} =
1
1

Pos2(5, S, T,M) =
conf2(5, S, T,M)

{τ : τ ∈ seg2(T ) ∧ j ∈ span(τ, T )} =
0
2

Pos3(5, S, T,M) =
conf3(5, S, T,M)

{τ : τ ∈ seg3(T ) ∧ j ∈ span(τ, T )} =
0
2

A second collection of features, which use the in-
formation about the translation frequency between
the pairs of sub-segments in M is also used. This
information is not available for MT, but it is for
the bilingual concordancer we have used (see Sec-
tion 3). This frequency determines how often σ
is translated as τ and, therefore, how reliable this
translation is. We define Posfreqn to obtain these
features as:

Posfreqn (j, S, T,M) =∑
∀(σ,τ)∈confn(j,S,T,M)

occ(σ, τ,M)∑
∀(σ,τ ′)∈M occ(σ, τ ′,M)

where function occ(σ, τ,M) returns the number of
occurrences in M of the sub-segment pair (σ, τ).

Following the running example, we may have an
alternative and richer source of bilingual informa-
tion, such as a sub-segmental translation memory,
which contains 99 occurrences of word Automàtica
translated as Automatic, as well as the following
alternative translations: Machine (11 times), and
Mechanic (10 times). Therefore, the positive fea-
ture using these frequencies for sub-segments of
length 1 would be:

Posfreq1 (5, S, T,M) =
99

99 + 11 + 10
= 0.825

Both positive features, Pos(·) and Posfreq(·), are
computed for tj for all the values of sub-segment
length n ∈ [1, L]. In addition, they can be com-
puted for both MS→T and MT→S ; this yields 4L
positive features in total for each word tj .

2.2 Negative features
The negative features, i.e. those features that help
to identify words that should be post-edited in the
translation hypothesis T , are also based on sub-
segment translations (σ, τ) ∈M , but they are used
in a different way. Negative features use those sub-
segments τ that fit two criteria: (a) they are the
translation of a sub-segment σ from S but are not
sub-segments of T ; and (b) when they are aligned
to T using the edit-distance algorithm (Wagner and
Fischer, 1974), both their first word θ1 and last
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word θ|τ | can be aligned, therefore delimiting a
sub-segment τ ′ of T . Our hypothesis is that those
words tj in τ ′ which cannot be aligned to τ are
likely to need postediting. We define our negative
feature collection Negmn′ as:

Negmn′(j, S, T,M) =∑
∀τ∈NegEvidencemn′ (j,S,T,M)

1
alignmentsize(τ, T )

where alignmentsize(τ, T ) returns the length of
the sub-segment τ ′ delimited by τ in T . Func-
tion NegEvidencemn′(·) returns the set of sub-
segments τ of T that are considered negative evi-
dence and is defined as:

NegEvidencemn′(j, S, T,M) = {τ : (σ, τ) ∈M
∧σ ∈ segm(S) ∧ |τ ′| = n′ ∧

τ /∈ seg∗(T ) ∧ IsNeg(j, τ, T )}
In this function length constraints are set so that
sub-segments σ take lengths m ∈ [1, L]. While
for the positive features, only the length of τ was
constrained, the experiments carried out by Esplà-
Gomis et al. (2015b) indicate that for the negative
features, it is better to constrain also the length of σ.
On the other hand, the case of the sub-segments τ
is slightly different: n′ does not stand for the length
of the sub-segments, but the number of words in τ
which are aligned to T .7 Function IsNeg(·) defines
the set of conditions required to consider a sub-
segment τ a negative evidence for word tj :

IsNeg(j, τ, T ) = ∃j′, j′′ ∈ [1, |T |] : j′ < j < j′′

∧ aligned(tj′ , θ1) ∧ aligned(tj′′ , θ|τ |)∧
6 ∃θk ∈ seg1(τ) : aligned(tj , θk)

where aligned(X,Y ) is a binary function that
checks whether words X and Y are aligned or not.

For our running example, only two sub-segment
pairs (σ, τ) fit the conditions set by function
IsNeg(j, τ, T ) for the word Automatic: (“la Tra-
ducció”, “the Translation”), and (“la Traducció
Automàtica”, “the Machine Translation”). As can
be seen, for both (σ, τ) pairs, the words the and
Translation in the sub-segments τ can be aligned
to the words in positions 4 and 6 in T , respectively,
which makes the number of words aligned n′ = 2.
In this way, we would have the evidences:

NegEvidence2,2(5, S, T,M) =
{“the Translation”}

7That is, the length of longest common sub-segment of τ
and T .

NegEvidence3,2(5, S, T,M) =
{“the Machine Translation”}

As can be seen, in the case of sub-segment τ =
“the Translation” , these alignments suggest that
word Automatic should be removed, while for the
sub-segment τ = the Machine Translation” they
suggest that word Automatic should be replaced by
word Machine. The resulting negative features are:

Neg2,2(5, S, T,M) = 1
3

Neg3,2(5, S, T,M) = 1
3

Negative features Negmn′(·) are computed for
tj for all the values of SL sub-segment lengths
m ∈ [1, L] and the number of TL words n′ ∈ [2, L]
which are aligned to words θk in sub-segment τ .
Note that the number of aligned words between
T and τ cannot be smaller than 2 given the con-
straints set by function IsNeg(j, τ, T ). This results
in a collection of L × (L − 1) negative features.
Obviously, for these features only MS→T is used,
since inMT→S all the sub-segments τ can be found
in T .

3 Experiments

This section describes the dataset provided for the
word-level MTQE sub-task and the results obtained
by our method on these datasest. This year, the task
consisted in measuring the word-level MTQE on
a collection of segments in Spanish that had been
obtained through machine translation from English.
The organisers provided a dataset consisting of:

• training set: a collection of 11,272 segments
in English (S) and their corresponding ma-
chine translations in Spanish (T ); for every
word in T , a label was provided: BAD for the
words to be post-edited, and GOOD for those
to be kept unedited;

• development set: 1,000 pairs of segments
(S, T ) with the corresponding MTQE labels
that can be used to optimise the binary classi-
fier trained by using the training set;

• test set: 1,817 pairs of segments (S, T ) for
which the MTQE labels have to be estimated
with the binary classifier trained on the train-
ing and the development sets.
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3.1 Binary classifier
A multilayer perceptron (Duda et al., 2000, Section
6) was used for classification, as implemented in
Weka 3.6 (Hall et al., 2009), following the approach
by Esplà-Gomis et al. (2015b). A subset of 10%
of the training examples was extracted from the
training set before starting the training process and
used as a validation set. The weights were itera-
tively updated on the basis of the error computed in
the other 90%, but the decision to stop the training
(usually referred as the convergence condition) was
based on this validation set, in order to minimise
the risk of overfitting. The error function used was
based on the the optimisation of the metric used for
ranking, i.e. the FBAD

1 metric.
Hyperparameter optimisation was carried out

on the development set, by using a grid search
(Bergstra et al., 2011) in order to choose the hyper-
parameters optimising the results for the metric to
be used for comparison, F1 for class BAD:

• Number of nodes in the hidden layer: Weka
(Hall et al., 2009) makes it possible to choose
from among a collection of predefined net-
work designs; the design performing best in
most cases happened to have a single hidden
layer containing the same number of nodes in
the hidden layer as the number of features.

• Learning rate: this parameter allows the di-
mension of the weight updates to be regulated
by applying a factor to the error function after
each iteration; the value that best performed
for most of our training data sets was 0.1.

• Momentum: when updating the weights at
the end of a training iteration, momentum
smooths the training process for faster conver-
gence by making it dependent on the previous
weight value; in the case of our experiments,
it was set to 0.03.

3.2 Evaluation
As already mentioned, two configurations of our
system were submitted: one using only the features
defined in Section 2, and one combining them with
the baseline features. In order to obtain our fea-
tures we used two sources of bilingual information,
as already mentioned: MT and a bilingual concor-
dancer. As explained above, for our experiments
we used two MT systems which are freely available
on the Internet: Apertium and Google Translate.
The bilingual concordancer Reverso Context was

also used for translating sub-segments. Actually,
only the sub-sentential translation memory of this
system was used, which provides the collection
of TL translation alternatives for a given SL sub-
segment, together with the number of occurrences
of the sub-segments pair in the translation memory.

Four evaluation metrics were proposed for this
task:

• The precision P c, i.e. the fraction of instances
correctly labelled among all the instances la-
belled as c, where c is the class assigned (ei-
ther GOOD or BAD in our case);

• The recall Rc, i.e. the fraction of instances
correctly labelled as c among all the instances
that should be labelled as c in the test set;

• The F c1 score, which is defined as

F c1 =
2× P c ×Rc
P c +Rc

;

although the F c1 score is computed both for
GOOD and for BAD, it is worth noting that
the F1 score for the less frequent class in the
data set (label BAD, in this case) is used as
the main comparison metric;

• The Fw1 score, which is the version of F c1
weighted by the proportion of instances of a
given class c in the data set:

Fw1 =
NBAD

NTOTAL
FBAD

1 +
NGOOD

NTOTAL
FGOOD

1

where NBAD is the number of instances of
the class BAD, NGOOD is the number of in-
stances of the class GOOD, and NTOTAL is
the total number of instances in the test set.

3.3 Results
Table 1 shows the results obtained by our system,
both on the development set during the training
phase and on the test set. The table also includes
the results for the baseline system as published by
the organisers of the shared task, which uses the
baseline features provided by them and a standard
logistic regression binary classifier.

As can be seen in Table 1, the results obtained on
the development set and the test set are quite simi-
lar and coherent, which highlights the robustness
of the approach. The results obtained clearly out-
perform the baseline on the main evaluation metric
(FBAD

1 ). It is worth noting that, on this metric, the
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Data set System PBAD RBAD FBAD
1 PGOOD RGOOD FGOOD

1 Fw
1

development set SBI 31.2% 63.7% 41.9% 88.5% 66.7% 76.1% 69.5%
SBI+baseline 33.4% 60.9% 43.1% 88.5% 71.1% 78.8% 72.0%

test set
baseline — — 16.8% — — 88.9% 75.3%
SBI 30.8% 63.9% 41.5% 88.8% 66.5% 76.1% 69.5%
SBI+baseline 32.6% 63.6% 43.1% 89.1% 69.5% 78.1% 71.5%

Table 1: Results of the two systems submitted to the WMT 2015 sub-task on word-level MTQE: the one using only sources of
bilingual information (SBI) and the one combining these sources of information with the baseline features (SBI+baseline). The
table also includes the results of the baseline system proposed by the organisation; in this case only the F1 scores are provided
because, at the time of writing this paper, the rest of metrics remain unpublished.

SBI and SBI+baseline submissions scored first and
third among the 16 submissions to the shared task.8

The submission scoring second obtained very simi-
lar results; for FBAD

1 it obtained 43.05%, while our
submission obtained 43.12%. On the other hand,
using the metric Fw1 for comparison, our submis-
sions ranked 10 and 11 in the shared task, although
it is worth noting that our system was optimised us-
ing only the FBAD

1 metric, which is the one chosen
by the organisers for ranking submissions.

4 Concluding remarks

In this paper we described the submissions of the
UAlacant team for the sub-task 2 in the MTQE
shared task of the WMT 2015 (word-level MTQE).
Our submissions, which were ranked first and third,
used online available sources bilingual of informa-
tion in order to extract relations between the words
in the original SL segments and their TL machine
translations. The approach employed is aimed at
being system-independent, since it only uses re-
sources produced by external systems. In addition,
adding new sources of information is straightfor-
ward, which leaves considerable room for improve-
ment. In general, the results obtained support the
conclusions obtained by Esplà-Gomis et al. (2015b)
regarding the feasibility of this approach and its
performance.
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Abstract

This paper describes the system submit-
ted by the University of Heidelberg to the
Shared Task on Word-level Quality Esti-
mation at the 2015 Workshop on Statis-
tical Machine Translation. The submit-
ted system combines a continuous space
deep neural network, that learns a bilin-
gual feature representation from scratch,
with a linear combination of the manually
defined baseline features provided by the
task organizers. A combination of these
orthogonal information sources shows sig-
nificant improvements over the combined
systems, and produces very competitive
F1-scores for predicting word-level trans-
lation quality.

1 Introduction

This paper describes the University of Heidel-
berg submission to the Shared Task on Word-
level Quality Estimation (QE Task 2) at the
2015 Workshop on Statistical Machine Transla-
tion (WMT15). The task consists of predict-
ing the word-level quality level (“OK”/“BAD”) of
English-to-Spanish machine translations, without
the use of human references, and without insight
into the translation derivations, that is, by treat-
ing the Machine Translation (MT) system that pro-
duced the translations as a black box.

The task organizers provided training and de-
velopment data comprising tokenized MT outputs
that were automatically annotated for errors as edit
operations (replacements, insertions, or deletions)
with respect to human post-edits (Snover et al.,
2006). Furthermore, a set of 25 baseline features
that operate on source and target translation, but
do not use features of the SMT pipeline that pro-
duced the translations, was provided. Even though
the distribution of binary labels is skewed towards

“OK” labels, even more so than in the previous
QE task at WMT141, the most common approach
is to treat the problem as a supervised classifica-
tion task. Furthermore, most approaches rely on
manually designed features, including source and
target contexts, alignments, and generalizations by
linguistic categories (POS, syntactic dependency
links, WordNet senses) as reported by Bojar et al.
(2014), similar to the 25 feature templates pro-
vided by the organizers.

We apply the framework of Collobert et al.
(2011) to learn bilingual correspondences “from
scratch”, i.e. from raw input words. To this
aim, a continuous space deep neural network is
pre-trained by initializing the lookup-table with
distributed word representations (Mikolov et al.,
2013b), and fine-tuned for the QE classification
task by back-propagating word-level prediction er-
rors using stochastic gradient descent (Rumelhart
et al., 1986). Moreover, we train a linear combi-
nation of the manually defined baseline features
provided by the task organizers. A combination of
the orthogonal information based on the continu-
ous space features and the manually chosen base-
line features shows significant improvements over
the combined systems, and produces very compet-
itive F1 scores for predicting word-level transla-
tion quality.

2 Deep Learning for Quality Estimation

Continuous space neural network models are cred-
ited with the advantage of superior modeling
power by replacing discrete units such as words
or n-grams by vectors in continuous space, allow-
ing similar words to have similar representations,
and avoiding data sparsity issues. These advan-
tages have been demonstrated experimentally by
showcasing meaningful structure in vector space

1A factor of 4.22 on WMT15 train, and 4.21 on WMT15
dev, as opposed to 1.84 for WMT14 train and 1.81 for
WMT14 test for the same language pair.
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representations (Mikolov et al. (2013c), Penning-
ton et al. (2014) inter alia), or by producing state-
of-the-art performance in applications such as lan-
guage modeling (Bengio et al. (2003), Mikolov et
al. (2010), inter alia) or statistical machine trans-
lation (Kalchbrenner and Blunsom (2013), Bah-
danau et al. (2015), inter alia). The property
that makes these models most attractive for vari-
ous applications is the ability to learn continuous
space representations “from scratch”(Collobert et
al., 2011), and to infuse the representation with
non-linearity. The deep layers of the neural net-
work capture these representations – even a single
hidden layer is sufficient (Hornik et al., 1989).

We present an approach to address the chal-
lenges of word-level translation quality estimation
by learning these continuous space bilingual rep-
resentations instead of relying on manual feature
engineering. While the neural network architec-
ture presented by Collobert et al. (2011) is lim-
ited to monolingual word-labeling tasks, we ex-
tend it to the bilingual context of QE. The multi-
layer feedforward neural network is pre-trained in
an unsupervised fashion by initializing the lookup-
table with word2vec representations (Mikolov et
al., 2013b). This is not only an effective way of
guiding the learning towards minima that still al-
low good generalization in non-convex optimiza-
tion (Bengio, 2009; Erhan et al., 2010), but it also
proves to yield considerably better results in our
application. In addition, we train a linear com-
bination of the manually defined baseline features
provided by the task organizers. We combine these
orthogonal information sources and find signifi-
cant improvements over each individual system.

3 QUETCH

Our QUality Estimation from scraTCH
(QUETCH) system is based on a neural net-
work architecture built with Theano (Bergstra
et al., 2010). We design a multilayer percep-
tron (MLP) architecture with one hidden layer,
non-linear tanh activation functions and a lookup-
table layer as proposed by Collobert et al. (2011).
The lookup-table has the function of mapping
word to continuous vectors and is updated during
training. Figure 1 illustrates the connections
between the input, hidden lookup-table and linear
layer, and the output.

Training is done by optimizing the log-
likelihood of the model given the training data

Input Layer

Hidden Layers

Lookup-Table
Layer

Linear Layer
+ non-linear
transformation

Output Layer

target
source

t1 t2 t3 t4 t5 s1 s2 s3 s4 s5

t2  t3  t4 s3  s4  s5

align

|V|

dwrd

concatenate

tanh(W1   +b1)

tanh(W2   +b2)

"OK"     "BAD"

Figure 1: Neural network architecture for predict-
ing word-level translation quality given aligned
source and target sentences. The lookup-table ma-
trix M contains dwrd-dimensional vectors for each
word in the vocabulary V. In this example, the con-
text window sizes |winsrc| and |wintgt| are set to
three and the target word t3 is classified “OK”.

via back-propagation and stochastic gradient de-
scent (Rumelhart et al., 1986). Trainable param-
eters are the bias vectors (b1,b2) and weight ma-
trices (W1,W2) of the linear layers and the matrix
M ∈ Rdwrd×|V | that represents the lookup-table.
Tunable hyper-parameters are the number of units
of the hidden linear layer, the lookup-table dimen-
sionality dwrd and the learning rate. The number
of output units is set to two, since the QE task 2
requires binary classification. The softmax over
the activation of these output units is interpreted
as score for the two classes.

3.1 Bilingual Representation Learning
Given a target word, we consider bilingual con-
text information: From the target sentence we ex-
tract a fixed-size word window wintgt centered at
the target word. From the aligned source sentence
we extract a fixed-size word window winsrc cen-
tered at a position that is either estimated heuristi-
cally or via word alignments. Concatenating target
and source windows, we obtain a bilingual context
vector for a given target word. This context vector
is the input for the lookup-table layer, which maps
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each context word to a dwrd-dimensional vector2.
All lookup-table output vectors are concatenated
to form the input to the MLP hidden layer. Since
the lookup-table representations of words are up-
dated during training, QUETCH learns represen-
tations of words in bilingual contexts that are op-
timized for QE.

3.2 Unsupervised Pre-training

Usually, the parameters of a neural network are
initialized with zeros or random numbers, i.e. no
a-priori knowledge is captured in the network.
However, the learning process can benefit from
knowledge that is encoded into the architecture
prior to training (Saxe et al., 2011). In case of
QE, we want the model to know what well-written
source and target sentences look like – before actu-
ally seeing translations. word2vec (Mikolov et
al., 2013b; Mikolov et al., 2013a) offers efficient
methods to pre-train word representations in an
unsupervised fashion such that they reflect word
similarities and relations. Initializing the lookup-
table with pre-trained word2vec vectors allows
us to incorporate prior linguistic knowledge about
source and target language into QUETCH. During
the learning process, these representations are fur-
ther optimized for QE and the vocabulary encoun-
tered during training.

4 Baseline Features and System
Combination

In contrast to word-based quality estimation tasks
from previous years, this year’s data addition-
ally provides a number of baseline features. A
straightforward approach would be to integrate
the baseline features in the deep learning sys-
tem on the same level as word-features and train
lookup-tables for each feature class (Collobert et
al., 2011). While this certainly works for word-
similar features like POS-tags, this is not suitable
for continuous numerical features. Preliminary
tests of extending QUETCH with a lookup-table
for POS-tags did not result in better F1 scores.
Also, training took considerably longer, because
of (1) the additional lookup-table to train and (2)
the larger dimensionality of the vector represent-
ing a target word with its context. If we added all

2All words are indexed within a vocabulary V . The vo-
cabulary contains the entire training, development and test
data of the QE task and is realized as a gensim dictionary
(Řehůřek and Sojka, 2010).

25 features for each target word in the context win-
dow, the input to the first linear layer would grow
by 25 ∗ |wintgt| ∗ dwrd dimensions.

For these reasons, we decided to design a sys-
tem combination that treats the QUETCH system
and the baseline features individually and inde-
pendently. For many complex applications, sys-
tem combination has proven to be effective strat-
egy to boost performance. In machine transla-
tion tasks, Heafield and Lavie (2011) and Karakos
et al. (2008), inter alia, increased overall perfor-
mance by cleverly combining the outputs of sev-
eral MT systems. In cross-lingual information re-
trieval, Schamoni and Riezler (2015) empirically
showed that it is more beneficial to combine sys-
tems that are most dissimilar than those that have
highest single scores.

Our approach is to train separate systems, one
based on the deep learning approach described in
Section 3, and one based solely on the baseline
features provided for the shared task. In a final
step, we combine both systems together with bina-
rized versions of selected baseline features. From
this modular combination of both systems, we can
furthermore gain knowledge about their individual
contribution to the combined system which will
help to understand their usefulness for the QE task.

4.1 Baseline Features System
To obtain a system for baseline features that is
most complementary to QUETCH, we used the
Vowpal Wabbit (VW) toolkit (Goel et al., 2008) to
train a linear classifier, i.e. a single-layer percep-
tron. We built new features by “pairing” baseline
features, thus we quadratically expand the feature
space and learn a weight for each possible pair.

Assuming two feature vectors p ∈ {0, 1}P and
q ∈ {0, 1}Q of sizes P and Q where the nth di-
mension indicates the occurrence of the nth fea-
ture, we define our linear model as

f(p,q) = p>Wq =
P∑

i=1

Q∑
j=1

piWijqj ,

where W ∈ RP×Q encodes a feature matrix (Bai
et al., 2010; Schamoni et al., 2014). The value
of f(·, ·) is the prediction of the classifier given a
target vector p and a vector of related features q.

To address the problem of data sparsity, we
reduced the number of possible feature pairs by
restricting the feature expansion to two groups:
(1) target words are combined with target context
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words and source aligned words, and (2) target
POS tags are combined with source aligned POS
tags. In total, we observed 3.5M different features
during training of the VW model.

4.2 System Combination

For the final system combination, we reused the
VW toolkit. The combined systems comprises 82
features: the QUETCH-score, the VW-score, and
the remaining 80 features are binary features de-
rived from the baseline feature set. The QUETCH-
score is the system’s prediction combined with its
likelihood, for VW we directly utilize the raw pre-
dictions with clipping at ±1. Binarized features
were inserted to enrich the classifier with addi-
tional non-linearity. They consist of (1) the bi-
nary features from the baseline feature set, and
(2) binned versions of the numerical features from
the same set. For small groups of discrete val-
ues we assigned a binary feature to each possible
value, for larger groups and real-valued features
we heuristically defined intervals (“bins”) contain-
ing roughly the same number of instances. The in-
tegration of the single components for the system
combination is illustrated in Figure 2.

T

Baseline Features

QUETCH

q

Context, POS

binarized

w     + b

“OK” / “BAD”

W

p

target

source

Systems

Combination

Figure 2: Architecture of the QUETCHPLUS sys-
tem combination.

5 Experiments

5.1 WMT14
We first ran experiments on the WMT14 task 2
data to compare QUETCH’s performance with the
WMT14 submissions. With outlook to this year’s
task we considered only the binary classification
task where words are labeled either ”BAD” or
”OK”.

In contrast to the WMT15 data, the WMT14’s
data covers not only English to Spanish transla-
tions (en-es) but also German to English (de-en)
and vice versa. Since the plain QUETCH sys-
tem does not rely on language-specific features,
we simply use the same deep learning architecture
for all of these language pairs.

QUETCH is trained on the WMT14 training
set, with a source and target window size of 3,
a lookup-table dimensionality of 10, 300 hid-
den units, and a constant learning rate of 0.001.
Test and training data were lowercased. The
alignments used for positioning the target win-
dow as described in Section 3.1 were created with
fast align from the cdec toolkit (Dyer et al.,
2010). The collection of corpora provided with
WMT13’s translation task3 is utilized as source for
unsupervised pre-training: Europarl v7 (Koehn,
2005), Common Crawl corpus, and News Com-
mentary. Note that we did not use these corpora
because of their parallel structure, but because
they are large, multilingual, and are commonly
used in WMT submissions.

Following the WMT14 evaluation (Bojar et al.,
2014), we report on accuracy and BAD F1-score,
the latter being the task’s primary evaluation met-
ric. The WMT14 baselines trivially predict either
only BAD or only OK labels. Table 1 presents the
best F1-scores during training and the according
accuracies for QUETCH under different configu-
rations.

The plain QUETCH system yields an accept-
able accuracy, but the BAD F1-scores are not com-
petitive. Adding alignment information further
improves the accuracy for all language pairs but
de-en. It improves the F1-score only for es-en
and en-de, which indicates that the model is still
prone to local optima. It is in fact pre-training that
boosts the BAD F1-score – this initial positioning
in the parameter space appears to have a larger im-
pact on the training outcome than the introduction

3http://www.statmt.org/wmt13/
translation-task.html
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configuration BAD F1 Accuracy
en

-e
s

(v) 0.4378 0.5087
(a) 0.4164 0.5107
(p) 0.5206 0.4026

(a), (p) 0.5228 0.4196

es
-e

n

(v) 0.2197 0.7604
(a) 0.2470 0.7749
(p) 0.3203 0.8051

(a), (p) 0.3396 0.8076

en
-d

e

(v) 0.3743 0.6090
(a) 0.4197 0.6381
(p) 0.4684 0.6060

(a), (p) 0.4863 0.6271

de
-e

n

(v) 0.2482 0.7001
(a) 0.2426 0.6837
(p) 0.3734 0.6657

(a), (p) 0.3791 0.6792

Table 1: QUETCH results on WMT14 task 2 test data un-
der different configurations: (v)anilla system, (p)retraining
of word embeddings, (a)lignments from an SMT system.

of translation knowledge via alignments. How-
ever, we can achieve further improvement when
combining both pre-training and alignments. As
a result, QUETCH outperforms the official win-
ning systems of the WMT14 QE task (see Table
2) and the trivial baselines for all language pairs.
The fact that the overall tendencies are consistent
across languages proves that QUETCH is capable
of language-independent quality estimation.

submission BAD F1 Acc.

en-es FBK-UPV-UEDIN/RNN 0.4873 0.6162
es-en RTM-DCU/RTU-GLMd 0.2914 0.8298
en-de RTM-DCU/RTU-GLM 0.4530 0.7297
de-en RTM-DCU/RTU-GLM 0.2613 0.7614

Table 2: Winning submissions of the WMT14 Quality Esti-
mation Task 2 (Bojar et al., 2014).

5.2 WMT15

With the insights from the experiments on the
WMT14 data we proceed to the experiments on
the WMT15 en-es data. We introduce a weight
w for BAD training samples, such that QUETCH
is trained on each BAD sample w times. In this
way, we easily counterbalance the skewed distri-
bution of labels, without modifying the classifier’s
loss function. Also, we utilize the larger and non-
parallel Wikicorpus (Reese et al., 2010) in English

and Spanish for pre-training. As described in Sec-
tion 1, 25 baseline features are supplied with train-
ing, development and test data. This allows us to
evaluate the approach for system combination in-
troduced in Section 4.

During training of the VW-system, we ex-
perimented with various loss functions (hinge,
squared, logistic) and found the model trained on
squared loss to return the highest accuracy. Un-
wanted collisions in VW’s hashed weight vector
were reduced by increasing the size of the hash to
28 bits. To prevent the model from degenerating
towards OK-labels, we utilized VW’s option to set
the weight for each training instance individually
and increased the weights of the BAD-labeled in-
stances to 4.0.

The VW-system and the system combination
were trained in a 10-fold manner, i.e. the VW-
system was trained on 9 folds and the weights for
system combination were tuned on the 10th fold of
the training data. The final weights of the model
for evaluation were averaged among all 10 folds.

Table 3 presents the results on the WMT15
data for both QUETCH, the baseline feature VW
model, and the system combination referred to
as QUETCH+. The QUETCH results were pro-
duced under the same parameter conditions as in
the WMT14 experiments, and the newly intro-
duced w is set to 2 for the submitted and the com-
bined model, and 5 for another model that was ex-
plicitely designed for a high BAD F1-score.

configuration BAD F1 Accuracy

Q
U

E
T

C
H

(v) 0.2535 0.7104
(a) 0.2628 0.7099
(p) 0.2535 0.7668

(a), (p) 0.2793 0.7716
†(a), (p), (w) 0.3527 0.7508
(a), (p), (w) 0.3876 0.6031
‡(a), (p), (w) 0.2985 0.7888
‡VW 0.4084 0.7335

†QUETCH+ 0.4305 0.6977

Table 3: QUETCH results on en-es WMT15 task 2 test
data under different configuration setting: (v)anilla model
vs. models using (p)re-training, (a)lignments from an SMT-
System, and (w)eighting of the BAD-instances. Submit-
ted systems are preceded by †, components of the final
QUETCH+ system are marked with ‡.

Although proceeding in the same manner as in
the WMT14 experiments, we see slightly different
tendencies here: Adding alignments has a positive
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effect on the BAD F1-score, whereas pre-training
improves mainly the accuracy. Still, the combina-
tion of both yields both a high BAD F1-score and a
high accuracy, which indicates that QUETCH suc-
ceeds in integrating both contributions in a com-
plementary way. Adding BAD weights further-
more improves the BAD F1-score, yet losing some
accuracy. Further increasing the weight up to 5
strengthens this effect, such that we obtain a model
with very high BAD F1-score, but rather low ac-
curacy.

The stand-alone VW model yields gener-
ally higher BAD F1-score, but does not reach
QUETCH’s accuracy. To enhance the orthogonal-
ity of the two models for combination, we select
a QUETCH model with extremely high accuracy
for the system combination4. Interestingly, the
system combination appears to profit from both
models, resulting in the overall best BAD F1-
score. The resulting VW weights of 1.188 for
QUETCH and 0.951 for VW underline each sys-
tem’s contribution. The next most important fea-
tures for the combination were pseudo reference
and is proper noun with weights of 0.2208 and
0.1557, respectively.

system BAD F1 OK F1 All F1

baseline 0.1678 0.8893 0.7531
QUETCH 0.3527 0.8456 0.7526
QUETCH+ 0.4305 0.7942 0.7256
UAlacant/OnLine-SBI-Baseline 0.4312 0.7807 0.7147

Table 4: Official test results on WMT15 task 2 for word level
translation quality. The All F1-score is the weighted aver-
age of BAD F1 and OK F1, where the weights are deter-
mined by the frequency of the classes in the test data. The
UAlacant/OnLine-SBI-Baseline and the QUETCH+ predic-
tions show no significant difference at p=0.05 and are both
announced official winners.

Table 4 shows the final test results on the
WMT15 task 2 for the main evaluation metric
of F1 for predicting BAD word level translation
quality, the F1 for predicting OK translations and
their weighted average. Both submitted systems,
QUETCH and QUETCH+, yield considerable im-
provements over the baseline. The QUETCH+
system that combines the neural network with the
linearly weighted baseline features is nominally

4We observe that the training process first produces high
BAD F1-score models, then further improves the accuracy
whilst slowly decreasing the BAD F1-score. This is due to
the fact that we do not optimize on the BAD F1-score di-
rectly, but the log-likelihood of the data, which is skewed to-
wards the OK label. This behavior allows us to select models
with individual trade-offs between BAD F1-score and accu-
racy at different stages of training.

outperformed by one other system by 0.07% BAD
F1 points, but their difference is not significant at
p=0.05.

6 Conclusion

We successfully applied a continuous space deep
neural network to the task of quality estimation.
With QUETCH we built a language-independent
neural network architecture that learns representa-
tions for words in bilingual contexts from scratch.
Furthermore we showed how this architecture ben-
efits from unsupervised pre-training on large cor-
pora. Winning the WMT15 QE task we found
evidence that the combination of such a contin-
uous space deep model with a discrete shallow
model benefits from their orthogonality and pro-
duces very competitive F1-scores for quality es-
timation. Further work will address the transfer
to sentence-based predictions and the introduction
of convolution and recurrence into the neural net-
work architecture.
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Abstract

We describe our system for WMT2015
Shared Task on Quality Estimation, task
1, sentence-level prediction of post-edition
effort. We use baseline features, Latent
Semantic Indexing based features and fea-
tures based on pseudo-references. SVM
algorithm allows to estimate the linear re-
gression between the features vectors and
the HTER score. We use a selection al-
gorithm in order to put aside needless fea-
tures. Our best system leads to a perfor-
mance in terms of Mean Absolute Error
equal to 13.34 on official test while the
official baseline system leads to a perfor-
mance equal to 14.82.

1 Introduction

This paper describes the LORIA submission to the
WMT’15 Shared Task on Quality Estimation. We
participated to the Task 1. This task consists in
predicting the edition effort needed to correct a
translated sentence. The organizers provide En-
glish sentences automatically translated into Span-
ish, and the corresponding post-edited sentences.
The edition effort is measured by edit-distance rate
(HTER (Snover et al., 2006)) between the trans-
lated sentence and its post-edited version.

Classically, our system extracts numerical fea-
tures from sentences and applies a machine learn-
ing approach between numeric vectors and HTER
scores.

As last year, no information is given about the
Machine Translation (MT) system used to build
data. Therefore, it is only possible to use blackbox
features, or to use other MT systems whom output
is compared to the evaluated target sentence.

Our submission deals with the both kinds of fea-
tures. First, we use a Latent Semantic Analysis ap-
proach to measure the lexical similarity between a

source and a target sentence. To our knowledge,
this approach has never been used in the scope of
Quality Estimation. Second, we use the output of
3 online MT systems, and we extract information
about the intersection between the evaluated target
sentence and the 3 translated sentences by online
systems. This intersection is measured in terms of
shared 1,2,3,4-grams.

The paper is structured as follows. Section 2
give details about experimental protocol and used
data. We describe the features we use in Section 3.
Then, we give results (Section 4) and we conclude.

2 Experimental protocol and used corpus

In this section, we describe how we obtain re-
sults starting from training, development and test
corpus. The training and development corpus are
composed of a set of triplets. Each triplet is made
up of a source sentence, its automatic translation,
and a score representing the translation quality.

For our experiments, we use the corpora the
organizers provide. The source language is En-
glish, the target language is Spanish. For each
source sentence s, a machine translation system
(unknown to the participants) gives a translation t
(we keep notations s and t throughout this article
for source and target sentences from the evaluation
campaign data). t is manually post-edited into pe.
The score of (s, t) is the HTER score between t
and pe (noted hter).

We use the official training corpus tr composed
of 11272 triplets (s, t, hter), and the official de-
velopment corpus dev composed of 1000 triplets.

For each triplet (si, ti, hteri) in tr, we extract
the features vector from (si, ti) (see Section 3 for
the list of the features we use), this leads to v(si,ti).
Then, we use the SVM algorithm in order to esti-
mate the regression between the v(si,ti) (i from 1
to 11272) and the hteri. For this estimation, we
use the LibSVM tool (Chang and Lin, 2011), with
a Radial Basis Function (with default parameters:
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C = 1, λ = 1
|v(si,ti)

| ).
Then, we use the obtained linear regression in

order to predict the edit effort rate for each couple
(s, t) from dev (or test corpus for final evaluation).

Filtering the features some features may not be
useful because they provide more noise than in-
formation, or because training data is not suffi-
ciently big to estimate the link between them and
the scores. Therefore, it may be useful to apply
an algorithm in order to select interesting features.
For that, we use a backward algorithm (Guyon and
Elisseeff, 2003) we yet described in (Langlois et
al., 2012). This year, we did not use the initial
step consisting in evaluating the correlations be-
tween features (see (Langlois et al., 2012)). The
algorithm is applied on the dev corpus in order to
minimise the MAE (Mean Absolute Error) score
defined by MAE(r, r′) =

∑n
i=1 |ri−r′i|

n where r is
the set of n predicted scores on dev, and r′ is the
set of HTER reference scores.

3 The features

We use three sources for our features. The first
source is the baseline features. The second is
based on information provided by Latent Semantic
approach, and the third one is based on the infor-
mation provided by 3 online MT systems.

3.1 The baseline features
These 17 features are provided by the organizers
of the Quality Estimation Shared Task. They are
extracted by the QuEst tool (Specia et al., 2013).
We can find the list of these features in the QuEst
website1, (Specia et al., 2013) describe them pre-
cisely. Table 1 shows the list of these features. We
can remark that no glassbox feature is used (no
information about the translation process of the
MT system is used). Moreover, there is not fea-
ture taking into account both the source and target
sentences (basing on an external translation table
for example). 13 features describe the source side,
while only 4 describe the target side.

3.2 Latent Semantic Indexing Based Features
Latent Semantic Indexing (LSI) allows to measure
the similarity between two documents. This mea-
sure is based on lexical contents of the both docu-
ments. To achieve this measure, the documents are

1http://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox_baseline_
17

id S/T description
1 S number of tokens in s
2 T number of tokens in t
3 S average source token length
4 S LM probability of source sentence
5 T LM probability of target sentence
6 T av. freq. of the target word in t
7 S av. number of translations per word

in s (as given by IBM 1 table thresh-
olded such that prob(t|s) > 0.2)

8 S same as 7 but with prob(t|s) >
0.01 and weighted by the inverse fre-
quency of each word in the source
corpus

9 S % of unigrams in quartile 1 of fre-
quency extracted from an external
corpus

10 S same as 9 for quartile 4
11 S same as 9 for bigrams and quartile 1
12 S same as 9 for bigrams and quartile 4
13 S same as 9 for trigrams and quartile 1
14 S same as 9 for trigrams and quartile 4
15 S % of unigrams in s seen in an exter-

nal corpus
16 S number of punctuation marks in s
17 T number of punctuation marks in t

Table 1: List of baseline features. id are given to
refer later to a specific feature. S, T are for ’source’
or ’target’ feature.

projected into a Vector Space Model: one docu-
ment is described by a numerical vector, two doc-
uments are compared by computing the distance
between their corresponding vectors.

LSI has been applied to bilingual parallel
corpora in the scope of Information Retrieval
(Littman et al., 1998) and of measure of compara-
bility of documents (Saad et al., 2014). Each doc-
ument is composed of the pair (source, target).
The method describes the corpus by a n ×m ma-
trix M . n is the number of words in the union of
source and target vocabularies. m is the number of
parallel sentences (a ’document’ can be simply a
sentence). M [i, j] is a numeric value representing
the ”presence” of word i in document j. This value
can be the frequency of i in j, or the tfidf value.
This matrix is strongly sparse. Therefore, the LSI
method applies a reduction of dimensions. Finally,
it is possible to project a new document into the
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obtained low-dimension numeric space (called the
LSI model).

The LSI method may be interesting for Qual-
ity Estimation because LSI allows to project a s
sentence, and a t sentence into the same numeric
space. In this space, each document is described
by a numeric vector. We can compute the similar-
ity between two vectors (two documents) by co-
sine distance. Two documents are similar if their
lexical content is close. The interesting point for
Quality Estimation is that similarity can model the
’proximity’ between ”dog” and ”bark”, ”chien”,
”aboyer”, (or ”perro”, ”ladrar” in Spanish) for ex-
ample because the input documents for building
the LSI model are bilingual.

We propose to use this similarity as a feature for
Quality Estimation. For that, we use a training set
of (source, target) sentences (actually, we use 2
different training corpus, see below). We build a
corpus in which each document is made up of the
concatenation of a source sentence and its corre-
sponding target sentence. We build the matrix M
of the tfidf scores of the words in the source-
target sentences. This matrix has n lines (the
number of different source words + the number
of different targetwords occurring more than 1 in
the training corpus) andm columns (the number of
source-target couples). Then, we have to choose
the dimension of the reduced numeric space (this
dimension is called the number of topics). We ap-
plied the LSI reduction to obtain a LSI model. In
this LSI model, it is possible to project a source
sentence, or a target sentence into the same nu-
meric space. Then, the feature corresponding to
a (source, target) couple in development or test
corpus is the cosine distance between the LSI vec-
tor corresponding to source, and the LSI vector
corresponding to target.

We use two training corpus. the first one is tr
the training corpus from the Quality Estimation
Shared Task (target is here pe because pe is a
correct translation of s). This corpus is close to
the experimental conditions, but it contains only
11272 sentences couples. This is quite low for the
LSI approach. Therefore, we use also the English-
Spanish part of the Europarl (Koehn, 2005) corpus
composed of 2M sentences couples2. Each train-
ing corpus leads to one LSI model.

To synthesize, we extract a feature from a (s, t)

2Release v7, http://www.statmt.org/
europarl/

couple in four steps:

1. LSI = buildLSI(training corpus,number of
topics)

2. LSIs = LSI(s)

3. LSIt = LSI(t)

4. feature = cosine distance between LSIs and
LSIt

LSI is a function which projects a sentence into
the numeric LSI space. The number of topics is
one crucial parameter of the LSI approach. In
Section 4, we explore the performance of the LSI
based features according to this parameter.

3.3 The Machine Translation systems based
features

We propose here to use pseudo-references. The
idea is to compare t with other translations of s,
provided by other MT systems. We hypothesise
that the more t and other target sentences from the
same s share parts, the more correct t is.

Several online translation systems yet exist on
the web, and a few of them provide API allowing
to request translations. We used three online sys-
tems noted A, B and C3. We used each system
A, B and C to translate the sentences from tr and
dev. Therefore, from each sentence s, we have
four target sentences: t from the system we want
to estimate the quality, tA from system A, tB from
system B, and tC from system C.

For each online system, we define 9 features to
describe how much t and tX (X is A, B or C) share
n-grams. Moreover, we define 4 features taking
into account the three online systems together.

Pseudo-references has yet been used for Qual-
ity Estimation. (Luong et al., 2014) decide of the
correctness of each word in t by checking its pres-
ence in two pseudo-references. The binary fea-
ture is based on the number of pseudo-references
containing the evaluated word. (Wisniewski et
al., 2014) define binary features for word-level
Quality Estimation. These binary features indi-
cate if the evaluated word occurs in a n-gram (n

3We do not give the identity of these systems because one
of them precises that its online service can not be used for
evaluation purpose. Indeed, in the following experiments, we
give results using or not each of the systems. These results
do not allow to conclude that a system is better than another
one (see Section 4), but a quick reading could lead to such a
conclusion.
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from 1 to 3) shared by t and the pseudo-reference
sentence. (Wisniewski et al., 2014) do not pre-
cise the number of pseudo-references, but they
use the lattice produced by their in-house system,
this leads certainly to a high number of pseudo-
references. (Luong et al., 2014; Wisniewski et
al., 2014) works are applied to word-level Qual-
ity Estimation while we deal with sentence-level
Quality Estimation. (Scarton and Specia, 2014)
use features from pseudo-reference sentences for
sentence-level quality estimation. The features
they extract are classical measures of translation
quality (BLEU, TER, METEOR, ROUGE) be-
tween t and pseudo-reference. (Scarton and Spe-
cia, 2014) cite different works (Soricut et al.,
2012; Shah et al., 2013) using also these measures
for Quality Estimation. Differently, in our work,
we use n-grams statistics in order to measure the
consensus between t and pseudo-references.

3.3.1 Amount of shared n-grams between t
and tX

We describe the intersection between t and each of
tA, tB and tC by 9 features.

The first four ones are recall n-gram RX,n :

RX,n(t, tX) =

∑
ng∈t, |ng|=n

δ(ng, tX)

|tX | (1)

where X is A, B or C, ng is a n-gram of length
n, δ(ng, tX) is equal to 1 if ng is in tX and equal
to 0 otherwise, and |tX | is the number of n-gram in
tX . n takes its values between 1 and 4. Therefore,
there are 4 features for each system.

The following four features are precision n-
gram PX,n, which are equivalent to RX,n(t, tX),
but the denominator is |t|. Here also, there are 4
features for each system.

For these 8 features, a n-gram in tX is taken into
account only one time. For example, if t = a b a,
and tX = a b, there is only one match for a when
n = 1, even if there are two a in t.

The last feature is the maximum length words
sequence from t that is also in tX :

M(t, tX) =
max[|ng|, s.t. ng ∈ t and ng ∈ tX ]

|t|
(2)

Each system leads to 9 features.

3.3.2 Taking into account the three online
system together

We define 4 additional features which describe
how many pseudo-references include a n-gram of
t (n varies from 1 to 4). The idea is that if a n-
gram from t occurs in 3 pseudo-references, it is
likely a correct n-gram whereas if it occurs only in
one pseudo-reference, it is more doubtful. These
features are formalized by the following formula:

Inter(t, tA, tB, tC, n) =
i≤|t|−n+1∑

i=1

∑
X∈{A,B,C}

δ(ti+n−1
i ,tX)

3×(|t|−n+1)

(3)

where tba is the words sequence from t starting
at position a and ending at position b, and other
notations are defined as previously. n takes values
from 1 to 4. Therefore, this leads to 4 additional
features. In the following, we use the acronym
Inter to refer to these 4 features.

Overall, our system deals with 50 features: 17
from baseline, 2 from LSI approach, 9 for each of
the three online systems, and 4 from the combina-
tion of these three systems.

4 Results

4.1 Baseline features
Table 2 shows the results in terms of MAE on de-
velopment corpus of each baseline feature used
alone (only one feature is used to predict the
HTER score). The feature ids refer to the line
number in Table 1. Source/Target information in-
dicates if the feature is a ’source’ one (S) or a ’tar-
get’ one (T). The last line of Table 2 shows the
MAE performance when all the 17 baseline fea-
tures are used (’whole’ line). The baseline system
leads to a performance of 14.59. Interestingly, a
feature alone leads to performance between 14.76
and 14.99. Thus, using only one feature allows to
obtain good performance compared with using the
whole set of features.

4.2 LSI based features
We use the dev corpus in order to estimate the
number of topics for each LSI model leading to
the best performance. For that, we test several val-
ues for the number of topics. We build one LSI
model according to each of these values. Then,
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S/T id MAE S/T id MAE
(×100) (×100)

S 9 14.99 T 17 14.95
T 6 14.99 S 16 14.94
T 2 14.98 S 15 14.94
S 7 14.98 S 13 14.93
T 5 14.97 S 3 14.91
S 1 14.97 S 12 14.82
S 4 14.96 S 8 14.80
S 10 14.96 S 14 14.76
S 11 14.95 whole 14.59

Table 2: MAE score on dev of each baseline fea-
ture, and of the whole 17 baseline features

we compute the LSI score of each (s, t) in tr. We
add this score as a new feature to the 17 baseline.
We apply the protocol of Section 2 in order to ob-
tain the MAE score on the dev corpus. We show
in Table 3 the results.

Nb Topics
LSI Training Corpus
tr Europarl

10 14.55 14.54
20 14.55 14.54
30 14.52 14.57
40 14.52 14.59
50 14.51 14.58
60 14.50 14.58
70 14.49 14.57
80 14.48 14.56
90 14.49 14.55
100 14.49 14.56
150 14.50 14.53
200 14.50 14.50
250 14.51 14.50
300 14.51 14.50
350 14.50 14.49
400 14.52 14.49
500 14.52 14.48

Table 3: Performance in terms of MAE on dev
of LSI feature according to the number of topics.
The LSI feature is associated with the 17 baseline
features.

The best performance are obtained for a number
of topics equal to 80 for the tr corpus, and equal to
500 for the Europarl corpus. This is not surprising
because Europarl corpus is strongly bigger than tr.
Compared to baseline MAE (14.59), the LSI fea-

tures leads to an improvement of 0.11 points.

4.3 Online systems based features

Table 4 shows the performance when online sys-
tems based features are used with the 17 base-
line features. For each line, a ’X’ indicates that
the used features set includes the 9 features corre-
sponding to the system of the column (A, B or C).
The ’X’ in column ’Inter’ indicates that the fea-
tures taking into account the three systems (for-
mula 3) are used. The table shows that B is the
most useful system, and that C is the less useful for
prediction. Be careful that this does not give indi-
cation about the relative translation performance
of online systems, but this indicates how the out-
put quality of each system is correlated to the qual-
ity of the unknown system used by the organiz-
ers. The lack of usefulness of C for prediction is
confirmed when the features from A, B and C are
combined. We obtain a better performance (13.93)
when C is not used. Finally, adding the ’Inter’ fea-
tures does not lead to improvement. This may be
because these features are correlated with ’A’, ’B’
and ’C’: if a sentence is easy to translate, then, all
systems should propose the same translation, this
leads to high values for ’A’, ’B’ and ’C’, and also
for ’Inter’.

Baseline A B C Inter MAE (×100)
X X 14.38
X X 14.28
X X 14.02
X X X X 13.95
X X X X X 13.95
X X X 13.93

Table 4: MAE Score on dev corpus of online sys-
tems based features.

4.4 Whole set of features and filtering

In this section, we use the whole set of features:
baseline, LSI based, and online system based. For
the LSI features, we use the LSI models leading to
best performance (see Section 4.2): with 80 topics
for the tr corpus, with 500 topics for the Europarl
corpus. Table 5 shows the performance in terms
of MAE. In this table, we present results when fil-
tering is applied, and when it is not applied. We
present several combinations. If we do not use fil-
tering we obtain best performance when we do not
use ’C’ features (13.87, line 6). But if we use fil-
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Features
Baseline

LSI online system based features MAE (×100)
set

tr 80 Europarl 500 A B C Inter
without with
filtering filtering

1 X X X X X 13.92
2 X X X X X 13.91
3 X X X X X X 13.90
4 X X X X X X X 13.90 13.70
5 X X X X X X 13.88
6 X X X X X 13.87 13.72

Table 5: Performance in terms of MAE on dev of the whole set of features

tering, it is is better to use the 50 features (13.90,
line 4) and let the algorithm to automatically select
the useful features: this leads to a performance of
13.70, better than 13.72 obtained by filtering the
features set 6.

When we filter features set 4, we obtain 29 final
features. 11 baseline features are kept (8 ’S’ and
3 ’T’). Therefore, ’T’ features are not numerous,
but they are essential (3 are kept among 4). The
LSI feature from tr is kept, but not the one from
Europarl, maybe because the Europarl corpus is
external to the Quality Estimation task. The se-
lection of online systems based features confirms
the relative usefulness of online systems A, B, and
C: only 2 ’C’ features are kept, 4 ’A’ features are
kept, and 8 ’B’ features are kept. Last, 3 ’Inter’
features among 4 are selected.

Finally, the baseline system (17 features) ob-
tained a MAE score equal to 14.82 on the offi-
cial test corpus. We submitted two systems, cor-
responding to line 4 in Table 5 (without and with
filtering). The system without filtering led to a per-
formance equal to 13.42 on the test corpus, and the
same one after filtering led to a better performance
equal to 13.34. Therefore, the results on the devel-
opment corpus are confirmed by the test corpus.

5 Conclusion and perspectives

In this paper, we present our submission to the
WMT2015 Quality Estimation Shared Task. Our
system estimates quality at sentence level. In ad-
dition to the 17 baseline features, we use Latent
Semantic Indexing based features which allow to
measure the similarity between source and target
sentences. Moreover we use pseudo-references
from online machine translation systems, we ex-
tract n-gram statistics measuring the consensus be-
tween the target sentence and pseudo-references.

The features based on pseudo-references are

more helpful for prediction than LSI based fea-
tures. But there is a bias here, because we use only
2 LSI based features. We have now to extend the
LSI approach. One first possibility is to use other
ways to describe the latent semantic space, such
as Latent Dirichlet Allocation (Blei et al., 2003).
Second, the main drawback of LSI approach is
that only lexical information is taken into account.
One promising way is to include words sequence
into the LSI model because Machine Translation is
phrase based. We have yet tested this direction, but
words sequences should be integrated carefully to
obtain a tractable model.
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Abstract

This paper describes the DCU-SHEFF
word-level Quality Estimation (QE) sys-
tem submitted to the QE shared task at
WMT15. Starting from a baseline set of
features and a CRF algorithm to learn a
sequence tagging model, we propose im-
provements in two ways: (i) by filtering
out the training sentences containing too
few errors, and (ii) by adding incomplete
sequences to the training data to enrich the
model with new information. We also ex-
periment with considering the task as a
classification problem, and report results
using a subset of the features with Random
Forest classifiers.

1 Introduction

The WMT shared task on Quality estimation (QE)
for Machine Translation (MT) has included the
sub-task on the QE at the word level since the year
2013. The goal of this task is to assign a quality
label to each word of an automatically translated
sentence without using its reference translations.
The set of possible output labels can vary. Labels
can specify the edit action which should be per-
formed on the word in order to improve the sen-
tence (substitution, deletion, insertion) — these la-
bels were used in the WMT13 QE task (Bojar et
al., 2013). Labels can be further refined to spec-
ify the type of error: grammar error, wrong termi-
nology, untranslated word, etc., motivated by the
MQM error typology 1 — this tagging was used in
last year’s task (Bojar et al., 2014). In both cases,
tags can be generalised to a binary label, “GOOD”
or “BAD”, indicating whether or not the word is
correct.

1http://www.qt21.eu/launchpad/content/
multidimensional-quality-metrics

This year, the word-level QE task (Task 2 in
WMT15 QE shared task2) consists in assigning
only a binary label (“GOOD” or “BAD”) to every
word in automatically translated sentences — that
is, to identify if a word is suitable for this sentence
or should be modified. The possible errors are sub-
stitution (word replacement) or insertion. This for-
mulation of the task cannot detect deletions in the
MT hypothesis, because there is a one-to-one cor-
respondence between tokens in the hypothesis and
output tags.

The data for the word-level QE task was pro-
duced for one translation direction, namely from
English into Spanish. The training, development
and test datasets have been translated automati-
cally with an online statistical MT system, and
then post-edited by human translators. Besides
the datasets themselves, baseline feature sets were
provided. The suggested baseline training model
is conditional random fields (CRF) (Lafferty et
al., 2001), which is one of the most widely used
techniques for sequence labelling. The baseline
tagging for this task was done with CRF model
trained using CRF++ tool3.

Our system uses the baseline features released
for the task and the same tool which was used
for baseline model generation. However, we
performed data selection and bootstrapping tech-
niques that led to significant improvement over the
baseline.

2 Baseline setting

The goal of the system was to estimate the qual-
ity of machine-translated sentences at the word-
level, i.e. to assign every word a label “GOOD” or
“BAD” depending on its quality. Therefore, the
training and test data contains the following in-
formation: the source sentences, their automatic

2http://www.statmt.org/wmt15/
quality-estimation-task.html

3https://code.google.com/p/crfpp/
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translations into the target language, the manual
post-editions (corrections) of the automatic trans-
lations, and the word-level tags for the automatic
translations.

The tags were acquired by aligning the machine
translations with their post-editions using the TER
tool (Snover et al., 2006). Unchanged words were
assigned the label “GOOD”, words which were
substituted with another word or deleted by a post-
editor were assigned the label “BAD”. The “BAD”
labels thus correspond to the “addition” and “sub-
stitution” edit operations in the word-level string
alignment between the MT hypothesis and the
post-edited segment.

The dataset contains automatic translations
from English into Spanish. The training data con-
sists of 11,271 sentences, the development and test
sets have 1,000 and 1,817 sentences, respectively.
The post-editions and tags for the test data were
not made available until after the end of the evalu-
ation period.

2.1 Features

We used a subset of features described by Luong
et al. (2014), mainly the features that were listed
as the most informative. This corresponds to the
baseline feature set released for the shared task.
The full list of features is the following:

• Word count features:

– source and target token counts
– source and target token count ratio

• Lexical features:

– target token
– target token’s left and right contexts of 1

word

• Alignment features:

– source word aligned to the target token
– source word’s left and right contexts of

1 word

• Boolean dictionary features:

– target token is a stopword
– target token is a punctuation mark
– target token is a proper noun
– target token is a number

• Target language model features:

– order of the highest order ngram which
ends with the target token

– order of the highest order ngram which
starts with the target token

– backoff behaviour of the ngram
(ti−2, ti−1, ti), where ti is the target
token (backoff behaviour is computed
as described in Raybaud et al. (2011))

– backoff behavior of the ngram
(ti−1, ti, ti+1)

– backoff behavior of the ngram
(ti, ti+1, ti+2)

• Source language model features:

– order of the highest order ngram which
ends with the source token

– order of the highest order ngram which
starts with the source token

• Boolean pseudo-reference feature: 1 if the to-
ken is contained in the pseudo-reference, 0
otherwise4

• Part-of-speech features5:

– POS of the target token
– POS of the source token

• WordNet features:

– Number of senses for the target token
– Number of senses for the source token

2.2 Alternative system
We performed additional experiments with a re-
duced feature set which does not contain lexical
and alignment features. These features were ex-
cluded in order to enable the use of classifiers im-
plemented in the scikit-learn6 toolkit. The
implementations in this toolkit can only deal with
scalar features directly. Therefore, in order to use
categorical features (e.g. strings), these need to be
converted into one-hot vector representation.

The one-hot representation of a categorical fea-
ture is the representation of every possible feature

4The pseudo-reference used for this feature extraction is
the automatic translation generated by an English-Spanish
phrase-based statistical MT system trained on the Eu-
roparl corpus (Koehn, 2005) using Moses system with stan-
dard settings (http://www.statmt.org/moses/?n=
Moses.Baseline).

5POS tagging was performed with TreeTagger tool
http://www.cis.uni-muenchen.de/˜schmid/
tools/TreeTagger/

6http://scikit-learn.org/
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value from a domain D as a vector of 0s and a
single 1. The length of such vector is |D| (length
of the set of possible values of the feature), every
position in the vector corresponds to a value from
D. Each instance of this feature should correspond
to a vector which has only one element with value
1 at the position of the categorical value taken by
this instance of the feature. Since the categorical
features used rely on a very large vocabulary, con-
verting them into one-hot vectors would have in-
creased the feature space significantly, resulting in
very sparse feature vectors.

Systems using shorter feature sets (i.e. without
lexical and alignment features) were trained with
the Random Forest classifier in scikit-learn
with default settings. This scenario considers each
(feature vector, token, tag) tuple as a separate in-
stance, so that we no longer explicitly model the
dependencies in the sequence. However, contex-
tual information about the token is still included
in the feature set via several other features (see
Section 2.1), so sequence information is not com-
pletely disregarded in this scenario.

2.3 Baseline results

The baseline results for our systems on the de-
velopment set are outlined in Table 1. Since in-
stances of the “GOOD” class are much more nu-
merous than instances tagged as “BAD”, the av-
erage F1-score is dominated by the F1-GOOD.
However, the F1-GOOD is high for any system, as
even a naive system tagging all words as “GOOD”
would score high. This metric is thus uninforma-
tive. Therefore, the primary quality metric for this
task is F1-BAD. The performance of the Random
Forest classifier is significantly higher than that of
CRF model, although it uses a smaller feature set
and does not take the labelling context into ac-
count.

F1-BAD F1-GOOD Weighted F1
Baseline
(CRF) 0.18 0.88 0.75

Reduced
(Random
Forest)

0.24 0.86 0.78

Table 1: Baseline results.

The scores given here and further in the paper
are for the development set, as this dataset was
used for tuning the systems and choosing the set-
tings to be submitted for the task. The scores for
the test set on the official submissions are given in

Section 5. These are a bit lower, but they main-
tain the relative trend (i.e. the systems that per-
form better on the development set perform better
on the test set as well).

3 Generating Data by Bootstrapping
New Examples

Although the size of training data is considerably
larger than the size of datasets that have been
used before, it may still be too sparse to perform
QE at the word level. This is because not all
tokens are shared between the training and test
datasets. Instead of using a data selection method
to choose training examples which correspond to
the dev/test sets, we decided to enhance the train-
ing data with additional samples generated from
the initial dataset. This corresponds more closely
with a realistic deployment scenario for a word-
level QE system, where the test set is unknown.

We tested two methods of additional data gen-
eration:

• In addition to every complete sentence from
the training data we used sequences that con-
sist of the first n words of this sentence,
where n ∈ [1, N ] (N = number of words in
the sentence). For example, for each sentence
of 10 words we added nine new training ex-
amples: a sequence that consists of the first
word only, a sequence that consists of the first
two words, the first three words, etc. This
strategy is further referred to as 1-to-N.

• For every sentence from the training data we
used all trigrams of this sentence as training
examples. This strategy will be denoted as
ngram.

Another idea is to perform bootstrapping not
only to expand the training data, but also to break
the test set into smaller chunks for tagging.

Bootstrapping for the test set is produced as fol-
lows. In order to tag a sequence s = s1s2 ... sn

we convert it into a list of n sub-sequences
Ls = [s1; s1s2; s1s2s3; ... ; s1s2...sn]. Each
sub-sequence from Ls is tagged by the system.
The final tagging for every word si ∈ s is taken
from a sub-sequence where si is the last symbol,
so that we compose the final tagging for the se-
quence s from the tags for words si listed in bold:
[s1; s1s2; s1s2s3; ... ; s1s2...sn].

The described scenario refers to the 1-to-N
bootstrapping method for the test set. The ngram
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bootstrapping method for the test set can be used
analogously.

The intuition behind this approach is the follow-
ing. If we train a system on a set of incomplete
sequences (1-to-N or ngrams), it might capture lo-
cal dependencies which do not hold for complete
sentences. Therefore, in order to improve the pre-
diction accuracy we should test the system on in-
complete sequences as well. There are many pos-
sibilities for combining the partial sequence pre-
dictions (e.g. averaging the scores of one word in
different incomplete sequences or training a linear
regression model to find a weight for every pre-
diction), but in this experiment we tested only one
strategy: taking the score of the i-th word from the
i-th sequence.

Training plain 1-to-N ngram
Test ↓
plain 0.170 0.238 0.213
1-to-N 0.221 0.251 0.212CRF
ngram 0.170 0.238 0.226
plain 0.236 0.239
1-to-N 0.255 0.237Random

Forest ngram 0.234 0.255

Table 2: Experiments with bootstrapped data (F1-
score for “BAD” class). ‘plain’ setting means no
bootstrapping (original data).

We tested all the training and test data boot-
strapping techniques. The results are outlined in
Table 2. We used three different training sets: the
original dataset with no bootstrapping (denoted as
‘plain’ in the table), a dataset bootstrapped with
the 1-to-N strategy, and one bootstrapped with the
ngram strategy, and three different test sets (anal-
ogously, plain, 1-to-N, and ngram). We trained
two systems for every combination of datasets:
one system performs sequence labelling with CRF,
the other classifies words with a Random Forest
classifier. That would give us 3× 3× 2 = 18 sys-
tems. However, the experiments with training data
enhanced with 1-to-N strategy could not be per-
formed for Random Forest classifier due to com-
putational complexity, so we are effectively com-
paring 15 combinations of labelling strategies and
bootstrapping techniques.

The CRF model benefits from both strategies:
when bootstrapping only training data the F1-
score increases from 0.17 to 0.21 (ngram) and
0.23 (1-to-N). Bootstrapping of test data brings an
additional improvement: even when the training
set is not changed, applying 1-to-N strategy to the

test increases the score from 0.17 to 0.22. How-
ever, ngram bootstrapping of the test proved inef-
fective unless it was applied to the training data as
well.

We assume that bootstrapping the training data
helps due to the fact that in the CRF model all in-
stances within a sequence are influenced by each
other: the choice of tag for a word is dependent
on all other words, and not only the neighbours of
the current word. Therefore, incomplete sentences
create new dependencies that improve overall pre-
diction accuracy.

As shown also in Table 2, we performed the
same experiment with the Random Forest classi-
fier in order to check if the incomplete data in-
stances have a positive effect in the CRF model be-
cause of the properties of the algorithm or simply
because of the increased dataset size. Our assump-
tion was that since the Random Forest classifier
output depends only on local context of a tagged
word, it should not be influenced by the new train-
ing sequences. This hypothesis was corroborated
by our experiment: the classifier trained on the ex-
tended dataset performed slightly better, but this
difference is much smaller than the one observed
for the CRF model with the additional data.

In order to check that the improvements are
not only due to the increased dataset size, we
performed the same experiments with duplicated
training sentences. The output of this duplicated
system is identical to the baseline system, show-
ing the key component of the improvement are in-
deed the incomplete sentences. Our intuition is
that since the new training sentences differ from
the original ones, they provide new information to
the sequence labelling model.

4 Data selection

An inspection of the training and development
data showed that 15% of the sentences contain no
errors and are thus less useful for model learning.
In addition, the majority of the sentences have low
edit distance (HTER) score, i.e. contain very few
edits/errors. Figure 1 shows the HTER scores dis-
tribution for the training dataset: 50% of the sen-
tences have HTER of 0.15 or lower (points below
the bottom orange line in the figure), 75% of the
sentences have HTER of 0.28 or lower (points be-
low the middle green line). The distributions for
the development and test sets are similar.

A large number of sentences with few or no ed-

333



Figure 1: Distribution of HTER scores for the
training data: each blue dot represents a training
sentence. Dots below the orange line make 50%
of the data, dots below the green line, 75% of
data, dots above red line, the worst 2000 sentences
(18% of the data).

its bias the models to tag more words as “GOOD”,
i.e. the tagging is too optimistic, which results in
higher F1 score for the “GOOD” class and lower
F1 score for the “BAD” class. Since our primary
goal is improved F1 score for the “BAD” class, we
modified the training set to increase the percentage
of “BAD” labels.

In order to filter out sentences that have too few
errors, we performed a simple training data se-
lection strategy: we used only sentences with the
highest amount of editing. To define the optimal
number of sentences to select, we built models on
different number of training sentences from 1,000
to 11,000 (the entire dataset). Figure 2 shows the
learning curves for systems trained on increasing
numbers of sentences. Note that the sentences
we choose are sorted by their HTER score in de-
creasing order, i.e. the system trained on 1,000
sentences uses 1,000 sentences with the highest
HTER scores (1,000 worst sentences).

Models built trained using only the 2,000 worst
sentences have the best F1-BAD score using all
learning algorithms. These 2,000 sentences rep-
resent 18% of the total available data (data points
above the red line in Figure 1). This subset has
sentences with HTER scores ranging from 0.34 to
1 and mean value of 0.49.

The highest score is achieved by the CRF model
trained on ngram-bootstrapped data. However,
the data selection strategy changes the effect of
bootstrapping that we saw previously: the CRF

Figure 2: Performance of models trained on sub-
sets of training data (F1 for the “BAD” class).

Figure 3: Performance of systems trained on sub-
sets of training data (F1 for the “GOOD” class).

model without bootstrapping performs very simi-
larly on small data subsets (up to 5,000 sentences),
and even outperforms the CRF model with 1-to-N
bootstrapping. On the other hand, a CRF model
without bootstrapping is less stable: its quality
drops faster as new data is added. The Ran-
dom Forest classifier has lower prediction accu-
racy than CRF models, but is more stable than the
two models that have the highest scores on 2,000
sentences.

As shown in Figure 3, the learning curves in
terms of the F1-score for the “GOOD” class are
very different: the scores keeps increasing as
we add more training instances. However, after
adding 5,000 sentences the growth slows down.
Note also that the models that have the least stable
F1-BAD scores (CRF without bootstrapping and
with ngram bootstrapping) show the highest F1-
GOOD scores.
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5 Official results of shared task

The experiments with data selection (Section 4)
showed that all models achieve their highest scores
when trained on a subset of 2,000 sentences of the
training data with highest HTER. The CRF model
with ngram bootstrapping yielded the highest F1-
BAD of 0.375. We selected this setting as our first
submission. Since we could not be sure that the
distribution of classes is the same in the develop-
ment and test sets, for the second submission we
chose the same model trained on 5,000 sentences,
to reach a balance between the F1-scores for the
“BAD” and the “GOOD” classes.

Table 3 summarises the final results. The F1-
BAD score of our first system for the test set is
0.366. This submission was ranked 4-th best out of
8. The second system performed worse at tagging
the test set: the final F1-BAD score is 0.345, which
places it in the 5-th position overall.

F1-BAD F1-GOOD Weigted F1
CRF ngram
2000 sent.

dev 0.375 0.738 0.669
test 0.366 0.744 0.673

CRF ngram
5000 sent.

dev 0.339 0.837 0.742
test 0.345 0.845 0.75

Table 3: Final submission results. Scores in bold
were used to compare systems submitted to the
shared task.

6 Conclusions

We presented the systems submitted by the
DCU-SHEFF team to the word-level QE task at
WMT15. Our systems were trained on a set of
baseline features released by the organisers of the
shared task. We predicted the QE labels using a
CRF model trained with CRF++ tool, which was
also used to produce the baseline scores.

The main difference between the baseline and
our models is that in our systems the training data
is filtered prior to training. We use only a small
subset of the training sentences which have the
highest HTER scores (i.e. the highest percentage
of words tagged with the “BAD” label). This led
to an increase in the F1 score for the “BAD” class
from 0.17 to 0.37.

We also suggested two bootstrapping strategies
based on using sub-sequences from the training
data as new training instances. These incom-
plete examples are particularly effective for train-
ing CRF models: we were able to improve the F1
score for the “BAD” class from 0.17 to 0.25. How-

ever, we were not able to achieve any improvement
when the bootstrapping was performed on top of
data filtering.
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Abstract

We present the results of the USHEF
and USAAR-USHEF submissions for the
WMT15 shared task on document-level
quality estimation. The USHEF sub-
missions explored several document and
discourse-aware features. The USAAR-
USHEF submissions used an exhaustive
search approach to select the best features
from the official baseline. Results show
slight improvements over the baseline with
the use of discourse features. More inter-
estingly, we found that a model of compa-
rable performance can be built with only
three features selected by the exhaustive
search procedure.

1 Introduction

Evaluating the quality of Machine Translation
(MT) systems outputs is a challenging topic. Sev-
eral metrics have been proposed so far comparing
the MT outputs to human translations (references)
in terms of ngrams matches (such as BLEU (Pa-
pineni et al., 2002)) or error rates (such as TER
(Snover et al., 2006)). However, in some scenar-
ios, human references are not available. For ex-
ample, the use of machine translation in a work-
flow where good enough translations are given to
humans for post-editing. Another example is ma-
chine translation for gisting by users of online sys-
tems.

Quality Estimation (QE) approaches aim to pre-
dict the quality of MT outputs without relying on
human references (Blatz et al., 2004; Specia et al.,
2009). Features from source (original document)
and target (MT outputs) and, when available, from
the MT system are used to train supervised ma-
chine learning models (classifiers or regressors).
A number of data points need to be annotated for
quality (by humans or automatically) for training,
using a given quality metric.

Most QE research is done at sentence level.
This task has been a track at WMT shared task
for the last four years (Callison-Burch et al., 2012;
Bojar et al., 2013; Bojar et al., 2014). In addi-
tion to sentence level, the current edition offers for
the first time a track on paragraph-level QE. Ex-
ploring quality beyond sentence level is interesting
for completely automatic translation applications,
i.e. without human review. For instance, consider
a user looking for information on a product that
has several reviews automatically translated into
his/her language. This user have no knowledge
about the source language. To ensure that the main
message of the review is preserved, for this user
the quality of each word or sentence individually
is not as important as the quality of the review as
a whole. Therefore, predicting the quality of the
whole document (or paragraph, considering para-
graph as short documents) becomes necessary.

This paper presents the University of Sheffield
(USHEF) and University of Saarland (USAAR)
submissions to the Task 3 of the WMT15 QE
shared task: paragraph-level scoring and ranking.
We submitted systems for both language pairs:
English-German (EN-DE) and German-English
(DE-EN).

Little previous research has been done to ad-
dress document-level QE. Soricut and Echihabi
(2010) proposed document-aware features in or-
der to rank machine translated documents. Sori-
cut and Narsale (2012) use sentence-level fea-
tures and predictions to improve document-level
QE. Finally, Scarton and Specia (2014) and
Scarton (2015) introduced discourse-aware fea-
tures, which are combined with baseline features
adapted from sentence-level work, in order to pre-
dict the quality of full documents. Previous work
led to some improvements over the baselines used.
However, several problems remain to be addressed
for improving document-level QE, such as the
choice of quality label, as discussed by Scarton et
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al. (2015).
Our approach focuses on extracting various fea-

tures and building models with different combina-
tion of these features. Two feature selection ap-
proaches are considered. The first one is based on
Random Forests and backward feature selection.
The second performs an exhaustive search on the
entire feature space. Features are either based on
previous work for sentence-level QE (e.g. number
of tokens in the target document) or are discourse-
aware (e.g. lexical repetition counts).

2 Document-level features

Along with the official baseline features, we use
two different sets of features. The first set contains
document-aware features, based on QuEst features
for sentence-level QE (Specia et al., 2013; Specia
et al., 2015). The second set are features that en-
compass discourse information, following previ-
ous work of Scarton and Specia (2014) and Scar-
ton (2015).

2.1 Document-aware features
The 17 baseline features made available by the
organisers are the same baseline features used
for sentence-level QE, adapted for document-
level.1 However, as part of the QuEst frame-
work, other sentence-level features can be easily
adapted for document-level QE. Our complete set
of document-aware features include:
• ratio of number of tokens in source and target

(and in target and source)
• absolute difference between number tokens

in source and target, normalised by source
length
• language model (LM) perplexity of

source/target document (with and with-
out end of sentence marker)
• average number of translations per source

word in the document (threshold: prob
>0.01/0.05/0.1/0.2/0.5)
• average number of translations per source

word in the document (threshold: prob
>0.01/0.05/0.1/0.2/0.5) weighted by the fre-
quency/inverse frequency of each word in the
source corpus
• average unigram/bigram/trigram frequency

in quartile 1/2/3/4 of frequency in the corpus
of the source language

1http://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox_baseline_
17

• percentage of distinct uni-
grams/bigrams/trigrams seen in a corpus of
the source language (in all quartiles)
• average word frequency: on average, each

type (unigram) in a source document appears
n times in the corpus (in all quartiles)
• percentage of punctuation marks in

source/target document
• percentage of content words in the

source/target document
• ratio of percentage of content words in the

source and target
• LM log probability of POS of the

source/target document
• percentage of nouns in the source/target doc-

ument
• percentage of verbs in the source/target doc-

ument
• ratio of percentage of nouns in the source and

target documents
• ratio of percentage of verbs in the source and

target documents
• ratio of percentage of pronouns in the source

and target documents
• number of dependencies with aligned con-

stituents normalised by the total number of
dependencies (maximum between source and
target)
• number of sentences (source and target

should be the same).

2.2 Discourse-aware features

Discourse is a linguistic phenomenon that hap-
pens document-wide and should be considered
for document-level evaluation purposes. We con-
sidered the discourse-aware features presented in
Scarton and Specia (2014), which are already im-
plemented in the QuEst framework (called herein
as discourse repetition features):
• word/lemma/noun repetition in the

source/target document
• ratio of word/lemma/noun repetition between

source and target documents.
Other discourse features were also explored

(following the work of Scarton (2015)):
• number of pronouns in the source/target doc-

ument
• number of discourse connectives in the

source/target document
• number of pronouns of each type according

to Pitler and Nenkova (2009)’s classification:
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Expansion, Temporal, Contingency, Compar-
ison and Non-discourse
• number of EDU (elementary discourse units)

breaks in the source (target) document
• number of RST (Rhetorical Structure The-

ory) Nucleus relations in the source/target
document
• number of RST Satellite relations in the

source/target document.
In order to extract the last set of features we

use existing NLP tools: For identifying pronouns,
we use the output of Charniak’s parser (Charniak,
2000) (we count the PRP tags). Discourse con-
nectives are automatically extracted by the parser
of Pitler and Nenkova (2009). RST trees and
EDUs are extracted by the discourse parser and
discourse segmenter of Joty et al. (2013).

3 Experiments and results

Our systems use only the data provided by the task
organisers. For features that require corpora or
resources, only those provided by the organisers
were used.

Tasks we participate in Task 3 (paragraph-level
QE) in both subtasks, scoring and ranking. The
evaluation for the scoring task was done using
Mean Absolute Error (MAE) and the evaluation
for the ranking task was done by DeltaAvg (offi-
cial metrics of the competition).

Data the official data of Task 3 - WMT15 QE
shared task consist of 1215 paragraphs for EN-
DE and DE-EN, extracted from the corpora of
WMT13 machine translation shared task (Bojar
et al., 2013). For training, 800 paragraphs were
used and, for test, 415 paragraphs were consid-
ered. METEOR (Banerjee and Lavie, 2005) was
used as quality labels.

Feature combination we experimented with
different feature sets:
• baseline (17 baseline features only)
• baseline + discourse repetition features2

• baseline + document-aware features
• baseline + discourse-aware features
• all features.

Backward feature selection3 in order to per-
form feature selection, we used the Random For-
est algorithm, as implemented in the scikit-learn

2Official submission of USHEF team for EN-DE
3Official submission of USHEF team for DE-EN

toolkit (Pedregosa et al., 2011), to rank the fea-
tures. Once this feature ranking is produced,
we apply a backward feature selection approach.
Starting with the features with lower positition in
the rank, the method consists in consistently elim-
inate features, aiming to obtain a feature set that
better fit the predictions.

For both EN-DE and DE-EN, 38 features were
selected. The set of features selected for both lan-
guages is:

• LM probability of source document
• LM perplexity of source document
• average trigram frequency in quartile 1/2/3/4

of frequency in a corpus of the source lan-
guage
• percentage of distinct trigrams seen in a cor-

pus of the source language (in all quartiles)
• ratio of percentage of pronouns in the source

and target documents
• average number of translations per source

word in the document (threshold: prob >0.1)
• average number of translations per source

word in the document (threshold: prob >0.1)
weighted by the frequency of each word in
the source corpus
• noun/word/lemma repetition in the source

document
• noun/lemma repetition in the target document
• ratio of noun/lemma/word repetition between

source and target
• number of punctuation marks in the target

document
• number of sentences in the source document
• number of connectives in the source docu-

ment
• number of connectives in the Expan-

sion/Contingency/Comparison/Temporal/Non-
discourse class
• number of pronouns
• number of EDU breaks in the source docu-

ment
• number of RST Nucleus/Satellite relations in

the source document.

Features selected for EN-DE only:

• LM probability of target document
• LM perplexity of target document (with and

without sentence markers)
• type/token ration
• average number of translations per source

word in the document (threshold: prob
>0.2/0.5)
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• number of punctuation marks in the source
document.

Features selected for DE-EN only:
• average source token length
• LM perplexity of source document (without

sentence markers)
• average bigram frequency in quartile 1/2/3/4

of frequency in a corpus of the source lan-
guage
• average number of translations per source

word in the document (threshold: prob
>0.01)
• average number of translations per source

word in the document (threshold: prob >0.2)
weighted by the inverse frequency of each
word in the source corpus
• ratio of percentage of verbs in the source and

target.

Exhaustive search4 We investigate the efficacy
of the baseline features by learning one Bayesian
Ridge classifier for each feature and evaluating the
classifiers based on MAE.

To examine the best set of features among the
baseline features, we implemented an exhaustive
feature selection search by enumerating all possi-
ble feature combinations. Given n number of fea-
tures, S, there are 2n-1 number of possible feature
combinations since a k-combination of a set forms
a subset of k distinct elements of S. The set of n
elements, the number of k-combination is equal to
the binomial coefficient:

( nk) =
n(n− 1) ... (n− k + 1)

k(k − 1)...1
(1)

And the sum of all possible k-combinations:

∑
0≤k≤n

( nk) = 2n − 1 (2)

We note that the exhaustive search for feature
selection is only possible in low feature space but
from the results above, it is possible to approx-
imate the best feature combination by using the
N-best performing features when the classifier is
trained solely on each of the feature.

For both languages, the exhaustive search se-
lected three features only. For EN-DE:
• average source token length

4Official submission of USAAR-USHEF team for both
language pairs - called BFF

• percentage of unigrams in quartile 4 of fre-
quency of source words in a corpus of the
source language
• percentage of trigrams in quartile 4 of fre-

quency of source words in a corpus of the
source language.

For DE-EN:
• type/token ratio
• percentage of unigrams in quartile 1 of fre-

quency of source words in a corpus of the
source language
• percentage of trigrams in quartile 1 of fre-

quency of source words in a corpus of the
source language.

Machine learning algorithms for the feature
combination experiments (with backward feature
selection) we used the SVR implementation in the
scikit-learn toolkit with parameters optimised via
grid search.

3.1 Results

Table 1 shows the results of all experiments, for
both language directions (EN-DE and DE-EN)
and for scoring (MAE) and ranking (DeltaAvg)
subtasks.5

For EN-DE, BFF showed the best result for
scoring, and Baseline + discourse repetition
showed the best result for ranking. For DE-EN,
Backward feature selection showed the best re-
sults for both scoring and ranking (although BFF
showed similar results for scoring).

However, no statistically significant difference
was found between the systems. This means that
the use of sophisticated discourse-aware features
did not lead to improvements, with a simple com-
bination of three features from the baseline set
able to produce similar results. The reason for
these results is most likely connected to the data.
We expect the discourse-aware features to work
better with documents, since they naturally con-
tain discourse phenomena. However, the data
of the shared task consists of short paragraphs,
many with only one sentence only. In this case,
discourse-aware features are less effective.

BFF systems investigate the efficacy of the
baseline features by learning one Bayesian Ridge
classifier for each feature and evaluating the clas-
sifiers based on the Mean Average Error (MAE).

5All experiments were applied to the official test set of
Task 3. In order to improve readability, results for MAE and
DeltaAvg were multiplied by 100.
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English-German German-English
Experiment MAE ↓ DeltaAvg ↑ MAE ↓ DeltaAvg ↑
Baseline 10.05 1.6 7.35 0.59
Baseline + discourse repetition 9.55 4.55 6.60 1.02
Baseline + discourse-aware 9.67 4.38 7.06 1.31
Baseline + document-aware 9.57 4.55 7.68 0.37
All 9.58 4.47 6.63 0.91
Backward feature selection 10.00 3.40 6.54 1.55
BFF 9.37 3.98 6.56 0.4

Table 1: Results of all combinations of features

No. Baseline Feature MAE MAE
(DE-EN) (EN-DE)

1 number of tokens in the source document 7.21 11.69
2 number of tokens in the target document 7.31 10.81
3 average source token length 7.02 9.97
4 LM probability of source document 7.32 11.39
5 LM probability of target document 7.93 11.79
6 type/token ratio 6.61 9.95
7 average number of translations per source word in the document (threshold: prob >0.2) 7.49 10.70
8 average number of translations per source word in the document (threshold: prob >0.01)

6.67 9.84
weighted by the inverse frequency of each word in the source corpus

9 percentage of unigrams in quartile 1 of frequency in a corpus of the source language 6.61 10.11
10 percentage of unigrams in quartile 4 of frequency in a corpus of the source language 6.72 9.81
11 percentage of bigrams in quartile 1 of frequency in a corpus of the source language 6.62 10.00
12 percentage of bigrams in quartile 4 of frequency in a corpus of the source language 6.64 10.05
13 percentage of trigrams in quartile 1 of frequency in a corpus of the source language 6.59 10.01
14 percentage of trigrams in quartile 4 of frequency in a corpus of the source language 6.62 9.97
15 percentage of unigrams in the source document seen in a corpus (SMT training corpus) 6.76 9.75
16 number of punctuation marks in source document 6.71 10.10
17 number of punctuation marks in target document 6.72 10.00

Table 2: MAE of classifiers trained with one baseline feature - the top three features are shown in bold

Table 2 shows the MAE of these classifiers.
We note that the exhaustive feature selection

search is only possible in low feature spaces.
However from the results above it is possible to
approximate the best feature combination by us-
ing the N-best performing features when the clas-
sifier is trained solely on each of the feature. Un-
surprisingly, the best feature set for DE-EN cor-
responds to the top three features that are most ef-
fective individually (when classifiers were built for
these features individually). In the reverse direc-
tion (EN-DE), the best feature combination corre-
sponds to the top 6 features that are most effective
individually. The classifier trained on the top 3
features (8, 10, 15) for EN-DE yielded an MAE of
9.72.

4 Conclusions

In this paper we presented the submissions
from the USHEF and USAAR-USHEF teams for
WMT15 QE shared task. We experimented with
several feature combinations and used two types

MAE MAE
(DE-EN) Feature Set (EN-DE) Feature Set

6.56 (6, 9, 13) 9.37 (3, 10, 14)
6.57 (6, 13) 9.42 (3, 10, 13, 14)
6.59 (13) 9.43 (3, 8, 10, 11, 13, 14)
6.60 (9, 11, 13) 9.43 (3, 10, 11, 13, 14)
6.60 (9, 13, 17) 9.45 (3, 8, 10, 11, 13)

Table 3: Top five feature combinations with the
lowest MAE

of feature selection methods: backward based on
Random Forests and exhaustive search.

With the exhaustive search results, we showed
that it is possible to build good quality regressors
that outperform the baseline.
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Abstract

We describe our systems for Tasks 1 and
2 of the WMT15 Shared Task on Qual-
ity Estimation. Our submissions use (i)
a continuous space language model to ex-
tract additional features for Task 1 (SHEF-
GP, SHEF-SVM), (ii) a continuous bag-
of-words model to produce word embed-
dings as features for Task 2 (SHEF-W2V)
and (iii) a combination of features pro-
duced by QuEst++ and a feature produced
with word embedding models (SHEF-
QuEst++). Our systems outperform the
baseline as well as many other submis-
sions. The results are especially encour-
aging for Task 2, where our best perform-
ing system (SHEF-W2V) only uses fea-
tures learned in an unsupervised fashion.

1 Introduction

Quality Estimation (QE) aims at measuring the
quality of the Machine Translation (MT) output
without reference translations. Generally, QE is
addressed with various features indicating fluency,
adequacy and complexity of the source-translation
text pair. Such features are then used along with
Machine Learning methods in order for models to
be learned.

Features play a key role in QE. A wide range
of features from the source segments and their
translations, often processed using external re-
sources and tools, have been proposed. These
go from simple, language-independent features, to
advanced, linguistically motivated features. They
include features that rely on information from the
MT system that generated the translations, and
features that are oblivious to the way translations
were produced. This leads to a potential bottle-
neck: feature engineering can be time consuming,
particularly because the impact of features vary

across datasets and language pairs. Also, most
features in the literature are extracted from seg-
ment pairs in isolation, ignoring contextual clues
from other segments in the text. The focus of our
contributions this year is to introduce a new set of
features which are language-independent, require
minimal resources, and can be extracted in unsu-
pervised ways with the use of neural networks.

Word embeddings have shown their poten-
tial in modelling long distance dependencies in
data, including syntactic and semantic informa-
tion. For instance, neural network language mod-
els (Bengio et al., 2003) have been success-
fully explored in many problems including Au-
tomatic Speech Recognition (Schwenk and Gau-
vain, 2005; Schwenk, 2007) and Machine Transla-
tion (Schwenk, 2012). While neural network lan-
guage models predict the next word given a pre-
ceding context, (Mikolov et al., 2013b) proposed
a neural network framework to predict the word
given the left and right contexts, or to predict the
word’s left and right contexts in a given sentence.
Recently, it has been shown that these distributed
vector representations (or word embeddings) can
be exploited across languages to predict transla-
tions (Mikolov et al., 2013a). The word represen-
tations are learned from large monolingual data in-
dependently for source and target languages. A
small seed dictionary is used to learn mapping
from the source into the target space. In this paper,
we investigate the use of such resources in both
sentence-level (Task 1) and word-level QE (Task
2). As we describe in what follows, we extract
features from such resources and use them to learn
prediction models.

2 Continuous Space Language Model
Features for QE

Neural networks model non-linear relationships
between the input features and target outputs.
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They often outperform other techniques in com-
plex machine learning tasks. The inputs to the
neural network language model used here (called
Continuous Space Language Model (CSLM)) are
the hj context words of the prediction: hj =
wj−n+1, ..., wj−2, wj−1, and the outputs are the
posterior probabilities of all words of the vocab-
ulary: P (wj |hj) ∀i ∈ [1, N ] where N is the vo-
cabulary size. CSLM encodes inputs using the so
called one-hot coding, i.e., the ith word in the vo-
cabulary is coded by setting all element to 0 except
the ith element. Due to the large size of the output
layer (vocabulary size), the computational com-
plexity of a basic neural network language model
is very high. Schwenk et al. (2012) proposed an
implementation of the neural network with effi-
cient algorithms to reduce the computational com-
plexity and speed up the processing using a subset
of the entire vocabulary called short list.

As compared to shallow neural networks, deep
neural networks can use more hidden layers and
have been shown to perform better. In all CSLM
experiments described in this paper, we use deep
neural networks with four hidden layers: a first
layer for the word projection (320 units for each
context word) and three hidden layers of 1024
units for the probability estimation. At the output
layer, we use a softmax activation function ap-
plied to a short list of the 32k most frequent words.
The probabilities of the out of the short list words
are obtained using a standard back-off n-gram lan-
guage model. The training of the neural network is
done by the standard back-propagation algorithm
and outputs are the posterior probabilities. The pa-
rameters of the models are optimised on a held out
development set.

Our CSLM models were trained with the CSLM
toolkit 1. We extracted the probabilities for Task
1’s training, development and test sets for both
source and its translation with their respective op-
timised models and used them as features along
with other available features in a supervised learn-
ing algorithm. In Table 1, we report detailed
statistics on the monolingual data used to train the
back-off LM and CSLM. The training dataset con-
sists of Europarl, News-commentary and News-
crawl corpora with the Moore-Lewis data selec-
tion method (Moore and Lewis, 2010) to select the
CSLM training data with respect to a Task’s devel-
opment set. The CSLM models are tuned using a

1http://www-lium.univ-lemans.fr/cslm/

concatenation of newstest2012 and newstest2013
of WMT’s translation track.

Lang. Train Dev LM px CSLM px
en 4.3G 137.7k 164.63 116.58
es 21.2M 149.4k 145.49 87.14

Table 1: Training and dev datasets size (in number
of tokens) and models perplexity (px).

3 Word Embedding Features for QE

The word embeddings used in our experiments
are learned with the word2vec tool2, introduced
by (Mikolov et al., 2013b). The tool pro-
duces word embeddings using the Distributed
Skip-Gram or Continuous Bag-of-Words (CBOW)
models. The models are trained through the use
of large amounts of monolingual data with a neu-
ral network architecture that aims at predicting the
neighbours of a given word. Unlike standard neu-
ral network-based language models for predict-
ing the next word given the context of preceding
words, a CBOW model predicts the word in the
middle given the representation of the surrounding
words, while the Skip-Gram model learns word
embedding representations that can be used to pre-
dict a word’s context in the same sentence. As sug-
gested by the authors, CBOW is faster and more
adequate for larger datasets, so we used this model
in our experiments.

We trained 500-dimensional representations
with CBOW for all words in the vocabulary. We
consider a 10-word context window to either side
of the target word, sub-sampling option to 1e-05,
and estimate the probability of a target word with
the negative sampling method, drawing 10 sam-
ples from the noise distribution. The data used to
train the models is the same as presented in Ta-
ble 1. We then extracted word embeddings for
all words in the Task 2 training, development and
test sets from these models to be used as fea-
tures. These distributed numerical representations
of words as features aim at locating each word as
a point in a 500-dimensional space.

Inspired by the work of (Mikolov et al.,
2013a), we extracted another feature by map-
ping the source space onto a target space using
a seed dictionary (trained with Europarl + News-
commentary + News-crawl). A given word and

2https://code.google.com/p/word2vec/
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its continuous vector representation a could be
mapped to the other language space by comput-
ing z = Ma, where M is a transformation matrix
learned with stochastic gradient descent. The as-
sumption is that the vector representations of sim-
ilar words in different languages are related by a
linear transformation because of similar geomet-
ric arrangements. The words whose representa-
tion are closest to a in the target language space,
using cosine similarity, are considered as poten-
tial translations for a given word in the source lan-
guage. Since the goal of QE is not to translate
content, but to measure the quality of translations,
we take the source-to-target similarity scores as a
feature itself. To calculate it, we first learn word
alignments (see Section 4.2.2), and then compute
the similarity scores between target word and the
source word aligned to it.

4 Experiments

We present experiments on the WMT15 QE Tasks
1 and 2, with CSLM features for Task 1, and word
embedding features for Task 2.

4.1 Task 1

4.1.1 Dataset
Task 1’s English-Spanish dataset consists respec-
tively of a training set and development set with
11, 271 and 1, 000 source segments, their ma-
chine translations, the post-editions of the lat-
ter, and edit distance scores between between the
MT and its post-edited version (HTER). The test
set consists of 1, 817 English-Spanish source-MT
pairs. Translations are produced by a single on-
line statistical MT system. Each of the translations
was post-edited by crowdsourced translators, and
HTER labels were computed using the TER tool
(settings: tokenised, case insensitive, exact match-
ing only, with scores capped to 1).

4.1.2 Feature set
We extracted the following features:

• AF: 80 black-box features using the QuEst
framework (Specia et al., 2013; Shah et al.,
2013a) as described in Shah et al. (2013b).

• CSLM: A feature for each source and target
sentence using CSLM as described in Sec-
tion 2.

• FS(AF): Top 20 features selected from the
above 82 features with Gaussian Processes

(GPs) by the procedure described in (Shah et
al., 2013b).

4.1.3 Learning algorithms
We use the Support Vector Machines implemen-
tation in the scikit-learn toolkit (Pedregosa
et al., 2011) to perform regression (SVR) on each
feature set with either linear or RBF kernels and
parameters optimised using grid search.

We also apply GPs with similar settings to those
in our WMT13 submission (Beck et al., 2013) us-
ing GPy toolkit 3. For models with feature selec-
tion, we train a GP, select the top 20 features ac-
cording to the produced feature ranking, and then
retrain a SparseGP on the full training set using
these 20 features and 50 inducing points. To eval-
uate the prediction models we use Mean Absolute
Error (MAE), its squared version – Root Mean
Squared Error (RMSE), and Spearman’s Correla-
tion.

4.2 Task 2

4.2.1 Dataset
The data for this is the same as the one provided
in Task 1. All segments have been automatically
annotated for errors with binary word-level labels
(“GOOD” and “BAD”) by using the alignments
provided by the TER tool (settings: tokenised,
case insensitive, exact matching only, disabling
shifts by using the ‘-d 0‘ option) between machine
translations and their post-edited versions. The
edit operations considered as errors (“BAD”) are
replacements and insertions.

4.2.2 Word alignment training
To extract word embedding features, as explained
in Section 3, we need word-to-word alignments
between source and target data. As word-level
alignments between the source and target corpora
were not made available by WMT, we first aligned
the QE datasets with a bilingual word-level align-
ment model trained on the same data used for
the word2vec modelling step, with the help of the
GIZA++ toolkit (Och and Ney, 2003). Working
on target side, we refined the resulting n-m target-
to-source word alignments to a set of 1-m align-
ments by filtering potential spurious source-side
candidates out. To do so, the decision was based
on the lexical probabilities extracted from the pre-
vious alignment training step. Hence, each target-

3http://sheffieldml.github.io/GPy/
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side token has been aligned to the source-side can-
didate with the highest lexical probability. To map
our two monolingual vector spaces trained with
word embedding models, we extracted a bilingual
dictionary with the same settings used for word-
alignment.

4.2.3 Data filtering
An inspection of the training and development
data showed that 15% of the sentences contain
no errors and are therefore less useful for model
learning. In addition, most sentences have very
low HTER score, showing that very few words are
considered incorrect. Figure 1 shows the HTER
scores distribution for the training dataset: 50%
of the sentences have the HTER of 0.15 or lower
(points below the bottom orange line on the Fig-
ure), 75% of the sentences have the score of 0.28
or lower (points below the middle green line). The
distributions for the development and test sets are
similar.

Figure 1: The distribution of HTER scores for the
training data. Below orange line – 50% of the data,
below green line – 75% of the data, above red line
– worst 2000 sentences (18% of the data).

Sentences with few or no edits lead to mod-
els that tag more words as “GOOD”, so the tag-
ging is too optimistic, resulting in higher F1 score
for the “GOOD” class but lower F1 score for the
“BAD” class. This is an issue as obtaining a good
F1 score for the “BAD” class is arguably the pri-
mary goal of a QE model (and also the main evalu-
ation criterion for the task). Therefore, we decided
to increase the percentage of “BAD” labels in the
training data by filtering out sentences which have
zero or too few errors. As a filtering strategy, we
took only sentences with the highest proportions

of editing.
We performed experiments with two subsets

of the training sentences with the highest HTER
score: 2, 000 samples (18% of the data, i.e., points
above the top red line in Figure 1); and 5, 000 sam-
ples (44% of the data). Since the F1-score for the
“BAD” class was higher on the dev set for the
model built from the smaller subset, we chose it
to perform the tagging for the official submission
of the shared task. This subset contains sentences
with HTER score from 0.34 to 1, an average score
of 0.49, and variance of 0.018.

4.2.4 Learning algorithms
We learned binary tagging models for both SHEF-
W2V and SHEF-QuEst++ using a Conditional
Random Fields (CRF) algorithm (Lafferty et al.,
2001). We used pystruct (Müller and Behnke,
2014) for SHEF-W2V, and CRFSuite (Okazaki,
2007) for SHEF-QuEst++. Both tools allow one to
train a range of models. For pystruct we used the
linear-chain CRF trained with a structured SVM
solver, which is the default setting. For CRFSuite
we used the Adaptive Regularization of Weight
Vector (AROW) and Passive Aggressive (PA) al-
gorithms, which have been shown to perform well
in the task (Specia et al., 2015).

Systems are evaluated in terms of classification
performance (Precision, Recall, F1) against the
“GOOD” and “BAD” labels, and their weighted
average of both F1 scores (W-F1). The main
evaluation metric is the average F1 score for the
“BAD” label.

4.3 Results

4.3.1 Task 1
We trained various models with different feature
sets and algorithms and evaluated the performance
of these models on the official development set.
The results are shown in Table 2. Some interesting
findings:

• SVM performed better than GP.

• SVM with linear kernel performed better
than with RBF kernel.

• CSLM features alone performed better than
the baseline features.

• CSLM features always bring improvements
whenever added to either baseline or com-
plete feature set.
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System. Kernel Features #. of Feats. MAE RMSE Spear. Corr
Baseline (SVM) RBF BL 17 0.1479 0.1965 0.1651

SHEF-SVM RBF CSLM 2 0.1474 0.1959 0.1911
SHEF-SVM RBF BL+CSLM 19 0.1464 0.1950 0.1924
SHEF-SVM RBF AF 80 0.1497 0.1944 0.2259
SHEF-SVM RBF AF+CSLM 82 0.1452 0.1920 0.2325
SHEF-SVM Linear AF+CSLM 82 0.1422 0.1889 0.2736
SHEF-SVM Linear AF(FS) 20 0.1459 0.1896 0.2465
SHEF-GP RBF AF(FS) 20 0.1493 0.1917 0.2187

Table 2: Results on development set of Task 1.

System. MAE RMSE DeltaAvg Spear. Corr
Baseline 0.15 0.19 0.22 0.13

SHEF-SVM 0.14 0.18 0.51 0.28
SHEF-GP 0.15 0.19 0.31 0.28

Table 3: Official results on test set of Task 1.

• Linear SVM with selected features by GP
achieves comparable results to linear SVM
with the full feature set (82).

• Both CSLM features appear in the top 20 se-
lected features by GP.

Based on these findings, as official submissions
for Task 1, we put forward a system with linear
SVM using 82 features, and another with GP on
the selected feature set. The official results are
shown in Table 3.

4.3.2 Task 2
For the SHEF-QuEst++ system, we combined all
40 features described in (Specia et al., 2015) with
the source-to-target similarity feature described in
Section 3. For the SHEF-W2V system, we tried
several settings on the development data in order
to define the best-performing set of features and
dataset size. We used two feature sets:

• 500-dimensional word embedding vectors
for the target word only.

• 500-dimensional word embedding vectors
for the target word and the source word
aligned to it.

In addition, both these feature sets included the
source-to-target similarity feature. We performed
the data filtering technique described in 4.2.3, and
tested the systems using:

• The full dataset.

• 5K sentences with the highest HTER score.

• 2K sentences with the highest HTER score.

System W-F1 F1 Bad F1 Good
Baseline 75.48 17.07 89.07

MONO-ALL 72.31 0.35 89.39
MONO-5000 74.47 14.82 88.63
MONO-2000 65.83 35.38 73.06

MONO-2000-SIM 65.87 35.53 73.07
BI-ALL 72.23 0.0 89.38
BI-5000 75.37 22.77 87.86
BI-2000 64.78 38.64 70.99

BI-2000-SIM 64.56 38.45 70.76
QuEst++-AROW-SIM 68.58 38.54 75.72

QuEst++-PA-SIM 26.42 34.86 24.42

Table 4: Results on development set of Task 2.

Results on the development set are outlined in
Table 4. The system names are formed as follows:
“MONO” or “BI” indicate that the SHEF-W2V
system was trained on the target or target+source
word embeddings feature set. “ALL”, “5000” and
“2000” indicate that we used the entire training
set, 5, 000 sentences or 2, 000 sentences, respec-
tively. The prefix “SIM” means that the feature
sets were enhanced with the vector similarity fea-
ture. Finally, “AROW” and “PA” correspond to the
two learning algorithms used by SHEF-QuEst++.

Combining the target and source-side word em-
bedding vectors was found to improve the per-
formance of SHEF-W2V compared to using only
target-side vectors. The impact of the similarity
feature is less clear: it slightly improved the per-
formance of the monolingual feature set, but de-
creased the scores for the bilingual feature set. We
can also notice that the AROW algorithm is much
more effective than the PA algorithm for SHEF-
QuEst++.

Filtering out sentences that are mostly correct
allowed to achieve much higher F1-scores for the
“BAD” class. The best results were achieved with
a relatively small subset of the data (18%). There-
fore, as our official submissions, we chose the
model using bilingual vectors trained on 2,000
sentences with the highest HTER score, and the
same model extended with the similarity feature.
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System. W-F1 F1 Bad F1 Good
Baseline 75.71 16.78 88.93
W2V-BI 65.73 38.43 71.63

W2V-Bi-SIM 65.27 38.40 71.52
QuEst++-AROW 64.69 37.69 71.11

QuEst++-AROW-SIM 62.07 38.36 67.58
QuEst++-PA 33.02 35.16 32.51

QuEst++-PA-SIM 26.25 34.30 24.38

Table 5: Official results on test set of Task 2.

The results on the test set are presented in Table 5,
in which it is shown that the source-to-target sim-
ilarity feature has gain 0.67% in F1 of “BAD” la-
bels for SHEF-QuEst++ system with the AROW
algorithm.

5 Conclusions

We have proposed several novel features for trans-
lation quality estimation, which are trained with
the use of neural networks. When added to large
standard feature sets for Task 1, the CSLM fea-
tures led to improvements in prediction. More-
over, CSLM features alone performed better than
baseline features on the development set. Com-
bining the source-to-target similarity feature with
the ones produced by QuEst++ improved its per-
formance in terms of F1 for the “BAD” class. Fi-
nally, the results obtained by SHEF-W2V are quite
promising: although it uses only features learned
in an unsupervised fashion, it was able to outper-
form the baseline as well as many other systems.
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Abstract 

This paper introduces our SAU-KERC 

system that achieved F1 score of 0.39 in the 

world-level quality estimation task in 

WMT2015. The goal is to assign each trans-

lated word a “OK” or “BAD” label indicating 

translation quality. We adopt the sequence 

labeling model, conditional random fields 

(CRF), to predict the labels. Since “BAD” la-

bels are rare in the training and development 

sets, recognition rate of "BAD" is low. To 

solve this problem, we propose two strategies. 

One is to replace “OK” label with sub-labels 

to balance label distribution. The other is to 

reconstruct the training set to include more 

"BAD" words. 

1 Introduction 

QE task is proposed to estimate the quality of 

machine translation without relying on reference 

translations. It contains three levels -- word, sen-

tence, and document and our work focuses on the 

word-level task. The word-level task was pro-

posed in 2013 and was divided into binary classi-

fication and multi-class classification. This year 

only binary classification was considered in 

WMT2015. 

OK/BAD: If a word need editing, then it is 

BAD. It is OK, otherwise. 

As a confidence estimation problem, methods 

aim to confidence estimation before 2013. A lot 

of researchers started to investigate confidence 

measures for machine translation for nearly a 

decade (Gandrabur and Foster, 2003; Quirk, 

2004; Ueffing et al., 2003). Many different con-

fidence measures are investigated in(Blatz et al 

2003). They are based on source and target lan-

guage models features, n-best list, word-lattices, 

translation tables, and so on. The authors also 

present efficient ways of classifying words 

as ”correct” or “incorrect” by using native Bayes, 

single- or multi-layer perceptron. (Blatz et al 

2003) combines several features and use neural 

network and naïve Bayes learning algorithms to 

predict whether a word is ok or bad. (Xiong et al., 

2010) combines syntax feature, vocabulary fea-

ture and word posterior probability feature, 

which are extracted based on LG parsing, and 

use the binary classifier based on Maximum En-

tropy Model to predict the label of each word in 

machine translation(ok or bad). 

Some good ideas are proposed in word-level 

QE task of WMT. (Luong et al., 2013) use both 

internal and external features into a conditional 

random fields(CRF) model to predict the label 

for each word in the MT hypothesis. (Wisniew-

skiet al., 2014) rely on a random forest classifier 

and 16 features to predict the label of a word. 

(Souza et al., 2014) train two classifier models 

by using bidirectional long short-term memory 

recurrent neural networks and CRF to complete 

word level QE Task. 

In WMT2015, the high ratio of OK labels in 

the training set and development set makes the 

task an unbalanced classification problem. Gen-

erally, it is hard to solve unbalanced classifica-

tion problem effectively using common machine 

learning algorithms and features. To balance the 

label distribution, we propose two strategies: re-

fining OK label(ROL) and changing training set 

structure(CTS). We augment the CRF model 

with these two strategies to improve the perfor-

mance. 

The rest of this paper is organized as follows. 

Section 2 gives the selected features. Section 3 

introduces the learning algorithm and the strate-

gies we used. Section 4 shows the structure of 

experimental data. Section 5 analyzes the exper-

348



 

iment results. The last part is our summary of 

this task. 

2 Feature 

The features used in this paper were from portion 

of features provided by organizer and portion of 

(Luong et al., 2014) features. 

2.1 Organizer’s Feature 

Target word: the combinations of target words 

in the window ±2(two before, two after of cur-

rent word ). 

First aligned word:  source word with maxi-

mum alignment probability with target word. 

Is stop word: whether the target word is a stop 

word, punctuation symbol, proper name or num-

ber. 

Back-off: a score assigned to the word according 

to how many times the target Language Model 

has to Back-off in order to assign a probability to 

the word sequence, as described in (Raybaud et 

al., 2011). 

Target/source pos: the target word pos and the 

source word pos; the bigram and trigram se-

quences. 

Polysemy count: the number of senses of each 

word. 

2.2  LIG System Feature 

Target pos /target LM: the longest target word 

n-gram length and the longest target pos n-gram 

length. 

Is in google: taking google translation as a pseu-

do-reference translation, we check whether a tar-

get word appear in the sentence generated by 

Google. 

2.3  Other Feature  

Target word frequency: the number of times 

the word appears in the machine translation re-

sult. 

The distance between source and target word: 
the distance between positions of a target word 

and its aligned word in the sentence; if a target 

has not aligned word, then the distance is maxi-

mum. 

2.4 Feature selection 

In the CRF feature template, we chose 85 com-

binations of features in total. In fact, there are 

thousands of combinations of features which can 

be extended by the ten basic features, but too 

many features combined together do not contrib-

uted to the MT estimation system, instead this 

will cause a negative impact. Another problem is 

that if too much features are combined together, 

the current data set will have a good effect, but if 

the data set will appear for a bad effect, which is 

characterized by over-fitting. Thus feature selec-

tion is very critical for each system, and it direct-

ly affects the classifier accuracy and generaliza-

tion ability. 

At present, (Yu S H et al. 2007) feature selec-

tion can be divided into three strategies accord-

ing to the formation of features subsets, namely 

global optimization, random search and heuristic 

search. Global optimization strategy commonly 

uses branch and bound algorithm, which search 

space is O(2𝑛), random search strategy common-

ly use a genetic algorithm, which search space is 

smaller than O(2𝑛 ). Heuristic search strategy 

commonly uses algorithms which have separate 

feature combination, the sequence former selec-

tion method (SFS), the sequence behind selection 

algorithms (SBS). Its search space is O(𝑁2), alt-

hough the heuristic search strategy has high effi-

ciency, the result of heuristic search is not the 

global optimum(Yao Xu et al. 2012). 

The selection method used in this paper is to 

add a feature to see if it has a contribution to the 

system. Eventually we keep 85 features, but it is 

not the optimal combination. We test data sets by 

using ten-fold cross-validation approach to pre-

vent overfitting. 

3 Labeling Method 

Word level QE task of WMT2015 aims at mark-

ing each word in MT as OK or BAD. There must 

be some corresponding relationship among 

words in a MT output, so we also can regard 

word-level QE task as Sequence labeling task. 

We combine the ML method of CRF(using 

pocket CRF toolkit) with features describes in 

section 2 to train a sequence labeling model to 

predict word label. 

The parameterization of CRF is shown as fol-

lows: 

P(y|x) =
1

𝑍(𝑥)
𝑒𝑥𝑝 (∑ 𝜆𝑘𝑡𝑘𝑖,𝑘 (𝑦𝑖−1, 𝑦𝑖 , 𝑥, 𝑖) + ∑ 𝜇𝑙𝑠𝑙𝑖,𝑙 (𝑦𝑖 , 𝑥, 𝑖))  

𝑡𝑘  is defined as characteristic function at the 

edge, called transfer features which depend on 

the current position and the previous one; 𝑠𝑙  is 

defined as characteristic function at the node, 

called state characteristics which depend on the 

current position. The conditional probability of 

each tag sequence equals to the sum of state 

probability and transfer probability of input se-

quence. 
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In QE task, the ratio between OK and BAD 

roughly equals to 4:1, which is very unbalanced. 

So it leads to two phenomena as fellows: 1. the 

probability labeling OK is much larger than the 

probability labeling BAD. 2. The probability that 

transfer to OK is much larger than the probability 

that transfer to BAD in train corpus; which will 

result in model bias. So the performance of the 

model trained just by using CRF and features of 

section 2 is not satisfactory. 

In order to solve the unbalanced problem of 

word label, we propose two strategies: 1. Refine 

OK label(ROL); 2. Change train set struc-

ture(CTS). 

3.1 Refine OK Label 

We divide OK into OK_B, OK_I, OK_E and OK. 

OK_B is the start of OK continuous sequence; 

OK_I is the middle section of OK continuous 

sequence; OK_E is the end of OK continuous 

sequence; OK indicates the discontinuous label 

of OK as shown in figure 1. ROL can reduce the 

probability that a word is marked as OK to a cer-

tain extent. When we regard each label of words 

as a state, we can draw that ROL can reduce the 

probability of transfer to OK and enhance the 

probability of transfer to BAD tags in each out-

put.    

 Figure 1:  Refine OK Label 

3.2 Change Train Set Structure 

Our first strategy smooths the ratio between la-

bels by refining OK label. However, even with 

refining, the proportion of BAD is still much 

smaller than other labels. So the second strategy 

we proposed will raise the proportion of bad by 

changing the structure of train set. 

Implementation of this strategy: 

 

a. Calculated the proportion of bad in each MT 

sentence in train set 

b. Delete MT sentence that has no BAD label in 

train set. 

c. MT sentence that BAD ratio is greater than 

threshold K be added repeatedly into train set. 

 

This strategy will reduce the number of OK 

and increase the number of BAD, consequently 

reducing the ratio between OK and BAD. 

4 Experiment 

4.1 Data 

There is just one translation corpus from English 

to Spanish in word-level QE task of WMT2015. 

The detail information of corpus shows in table 1: 

 
 EN-ES 

Train Dev Test 

Sentence 11271 1000 1817 

Word 257548 23207 40899 

OK : BAD 4.22 : 1 4.21 : 1 4.30 : 1 

Table 1:  Corpus structural information 

As shown in table 1, the proportion of OK and 

BAD unbalanced, which will lead to an offset 

model. It needs strategies in section 3 to balance 

the ratio between OK and BAD. The train set 

after processing show in table 2: 

 
Train set Pre-process Post-process 

sentence 11271 14559 

word 257548 311998 

OK/BAD 4.22  :  1 1:6.9 

OK_B/BAD /// 1:3.7 

OK_I/BAD /// 1.3:1 

OK_E/BAD /// 1:3.7 

OK_ALL/BAD 4.2:1 1.9:1 

Table 2: Training data information after change 

4.2 Threshold K Determination 

There is a threshold K in the strategy of changing 

training set structure. The size of threshold has 

influence on MT estimation performance, so we 

conducted a series of tests to analysis the size of 

K. Meaningful range of the threshold value of K 

should ensure reducing the proportion of OK and 

BAD. From table 1, the ratio between OK and 

BAD is 4.22/1, so we set threshold in range of 

[0.2,0.95] in experiment, its step size is 0.05. 

Experiments were carried out when OK label is 

not refined on the development set. The testing 

result is shown in table 3: 

 

 

 

 

 

 

 

 

Target : Es totalmente gratuito y esas cosas !

Label : OK OK OK OK BAD BAD OK

Refine label : OK_B OK_I OK_I OK_E BAD BAD OK
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K value F_BAD F_OK F_all 

0.20 0.348 0.871 0.771 

0.25 0.349 0.870 0.770 

0.30 0.350 0.872 0.772 

0.35 0.348 0.874 0.773 

0.40 0.344 0.873 0.772 

0.45 0.342 0.875 0.773 

0.50 0.333 0.877 0.773 

0.55 0.330 0.879 0.774 

0.60 0.327 0.879 0.774 

0.65 0.329 0.881 0.775 

0.70 0.325 0.881 0.774 

0.75 0.320 0.881 0.774 

0.80 0.317 0.882 0.773 

0.85 0.319 0.882 0.774 

0.90 0.318 0.882 0.774 

0.95 0.318 0.882 0.774 

Table 3: Threshold experiment 

 

 
Figure 2:  F score of BAD 

 
Figure 3: F score of OK 

As shown in Figure2 and Figure3, changing in 

the threshold K have a certain effect on BAD 

label, but has little effect on the F1 score of OK 

and all labels. In Figure 1, the F1 score of BAD 

is highest when threshold K takes 0.3. However, 

we had set the value of K at 0.6 due to time rea-

son during QE task. We believe that the score 

will be higher when K is equal to 0.3. 

4.3 QE Experimental Analysis 

There are four comparative experiments to prove 

the validity of the strategies proposed in this pa-

per. Experiment names are as follows: 

 

WY: do not change the structure of train set, 

not refine OK label. 

   WF: do not change the structure of train set, 

refine OK with OK_B, OK_I, OK_E, OK. 

ZY: change the structure of train set, do not re-

fine OK label. 

   ZF: change the structure of train set, refine OK 

label with OK_B, OK_I, OK_E, OK. 

strategy F_BAD F_OK F_AVG 

WY 28.56 88.58 77.12 

WF 34.53 87.63 77.44 

ZY 32.71 88.16 77.52 

ZF 38.34 86.84 77.53 

Table 4: The results on development corpus 

strategy F_BAD F_OK F_AVG 

WY 28.34 88.75 77.34 

WF 34.28 87.97 77.83 

ZY 32.69 88.3 77.80 

ZF 39.11 86.36 77.44 

Table 5: The results on test corpus 

In QE task of WMT2015, Label distribution dis-

equilibrium phenomenon can lead to Paranoid 

problem, which impacts the performance of QE 

system seriously. As shown in table 4 and table 5, 

the strategies that refine OK label and change 

structure of train set can solve label disequilibri-

um problem to a certain degree. The F_BAD is 

34.28 when using the strategy of refining OK label 

alone, and the F_BAD is 32.69 when using the strate-

gy of changing structure of training set. The strategy 

that refines OK label is more effective than the one 

that change the structure of  the training set. 

5 Conclusion 

For the problem of Label distribution disequilib-

rium in word-level QE task of WMT2015, We 

proposed two strategies: one is refining OK label, 

the other one is changing structure of train set. 

Combined with the strategies, we use CRF and 

some grammar features to train a model which 

can enhance the correct number of BAD label, 

and the strategy of ROL is more effective. But, 

from Table 5, the F1 scores of  the original 

method is that F_BAD is 28.34 and the F_OK is 

88.75. When we add the two strategies, the 

F_BAD increases to 39.11 and the F_OK reduces 

to 86.36. In the future, we hope to overcome the 

shortcomings of the two strategies to improve 

both F1 scores of  the two labels. 
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Abstract 

This paper describes the submission of 
the UGENT-LT3 SCATE system to the 
WMT15 Shared Task on Quality Estima-
tion (QE), viz. English-Spanish word and 
sentence-level QE. We conceived QE as 
a supervised Machine Learning (ML) 
problem and designed additional features 
and combined these with the baseline 
feature set to estimate quality. The sen-
tence-level QE system re-uses the word 
level predictions of the word-level QE 
system. We experimented with different 
learning methods and observe improve-
ments over the baseline system for word-
level QE with the use of the new features 
and by combining learning methods into 
ensembles. For sentence-level QE we 
show that using a single feature based on 
word-level predictions can perform better 
than the baseline system and using this in 
combination with additional features led 
to further improvements in performance. 

1 Introduction 

Machine Translation (MT) Quality Estimation 
(QE) is the task of providing a quality indicator 
for unseen automatically translated sentences 
without relying on reference translations 
(Gandrabur & Foster, 2003; Blatz et al., 2004). 
Predicting the quality of MT output has many 
applications in computer-aided translation work-
flows that utilize MT, including error analysis 
(Ueffing and Ney 2007), filtering translations for 
human post-editing (Specia et al., 2009) and 
comparing the quality of different MT systems 
(Rosti et al. 2007).  

The most common approach is to treat the QE 
problem as a supervised Machine Learning (ML) 
task, using standard regression or classification 

algorithms. A considerable amount of related 
work on both word and sentence-level QE is de-
scribed in the WMT shared tasks of previous 
years (Bojar et al., 2014; Bojar et al., 2013). 

The WMT 2015 QE shared task proposes 
three evaluation tasks: (1) scoring and ranking 
sentences according to predicted post-editing 
effort given a source sentence and its translation; 
(2) predicting the individual words that require 
post-editing; and (3) predicting the quality at 
document level. In this paper, we describe the 
UGENT-LT3 SCATE submissions to task 1 
(sentence-level QE) and task 2 (word-level QE).  

Sentence-level and word-level QE are related 
tasks. Sentence-level QE assigns a global score 
to an automatically translated sentence whereas 
word-level QE is more fine-grained and tries to 
detect the problematic word sequences. There-
fore we first developed a word-level QE system 
and incorporate the word-level predictions as 
additional features in the sentence-level QE sys-
tem. The usefulness of including word-level pre-
dictions in sentence-level QE has already been 
demonstrated by de Souza et al. (2014) 

For both tasks, we extracted additional fea-
tures and combine these with the baseline feature 
set to estimate quality. The new features try to 
capture either accuracy or fluency errors, where 
accuracy is concerned with how much of the 
meaning expressed in the source is also ex-
pressed in the target text, and fluency is con-
cerned with to what extent the translation is well-
formed, regardless of sentence meaning. This 
distinction is well known in quality assessment 
schemes for MT (White, 1995; Secară, 2005; 
Lommel et al., 2014). Some of the additional 
features are based on ideas that were explored in 
previous work on QE, such as; context features 
for the target word and of POS tags, (Xiong et 
al., 2010), alignment context features (Bach et 
al., 2011) and adequacy and fluency indicators 
(Specia et al., 2013).  
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The rest of this paper is organized as follows. 
Section 2 and Section 3 give an overview of the 
shared task on word-level QE and sentence-level 
QE respectively and describe also the features 
we extracted, the learning methods and the addi-
tional language resources we used and the exper-
iments we conducted. Finally, in Section 4, we 
discuss the results we obtained and the observa-
tions we made. 

2 Word-level Quality Estimation 

The word-level QE task is conceived as a binary 
classification task. The goal is to label translation 
errors at word level by marking words either as 
“GOOD” or “BAD”. The WMT2015 QE task 
focuses on the F1 score for the “BAD” class as 
the main evaluation metric. For the word-level 
QE task, the organizers provided a data set of 
English-Spanish sentence pairs generated by a 
statistical MT system, which consists of a train-
ing set of 11,271 sentences, a development set of 
1,000 sentences and a test set of 1,817 sentences. 
All the target sentences of the training and de-
velopment data sets contain binary reference la-
bels for each word, which were automatically 
derived by aligning the MT output and the post-
edited translations using TERCOM (Snover et 
al., 2006). The distribution of the binary labels in 
the training and development sets is provided in 
Table 1.  

 # Words % GOOD % BAD 
training set 257548 

 
80.85 19.15 

dev. set 23207 
 

80.82 19.18 

Table 1: Distribution of the binary labels on the 
training and development set for word-level QE 

2.1 Language Resources and Features 

In our experiments, in addition to the provided 
25 baseline features which were described in the 
WMT14 QE shared task (Bojar et al., 2014), we 
added 55 features to characterize each target 
word of the MT output. The new features were 
extracted from the provided training data and 
additional language resources we gathered. The 
new features try to model the two main MT error 
categories: accuracy and fluency. For fluency, we 
extracted surface-level features as well as more 
abstract PoS-based features and Named Entity 
(NE) information. For accuracy, we used bilin-
gual information. In the following subsections, 
we describe the additional language resources 
and list out the additional features we used in the 

WMT 2015 word-level QE task. Necessary pre-
processing operations are applied on the target 
sentences (depending on the feature type) prior 
to feature extraction.  

2.1.1 Additional Resources 

Since most of the new features rely on statistical 
information, we used two additional data re-
sources. As monolingual data resource, we used 
a corpus of more than 13 million Spanish sen-
tences collected from the News Crawl Corpus1 
(years 2007-2013) to build two types of language 
models: one based on surface forms and one 
based on PoS codes. The following prepro-
cessing steps have been applied on the data be-
fore building the language models: normalizing 
punctuation and numbers, tokenization, named 
entity recognition using the Stanford NER tool 
(Finkel et al., 2005), lowercasing, and PoS-
tagging using FreeLing (Padró and Stanilovsky, 
2012). The surface form LM has been built using 
KenLM (Heafield 2011). For the PoS LM, we 
used  IRSTLM with Witten-Bell smoothing 
(Federico et al., 2008) as the modified Kneser-
Ney smoothing, which is used by KENLM, is not 
well defined when there are no singletons (Chen 
and Goodman 1999), which leads to modeling 
issues in the PoS corpus.  

As bilingual data, we selected 6 million sen-
tence pairs from OPUS (Tiedemann 2012) from 
various domains and used the Moses toolkit 
(Koehn et al. 2006) to obtain word and phrase 
alignments. Even though there are more bilingual 
sentences available, to avoid a bias to one specif-
ic domain, a similar number of sentences of dif-
ferent domains were selected. The following 
preprocessing steps have been applied on the 
data prior to training: normalization on punctua-
tion and numbers, tokenization, NER (only the 
Spanish side) and lowercasing. The phrase table 
has been pruned to exclude alignments with a 
direct alignment probability 𝑃(𝑡|𝑠)  < 0.01, 
where 𝑠 denotes source and 𝑡 denotes target text.  

The resulting language models and phrase ta-
bles were stored in databases and indexed to 
speed up lookup. 

2.1.2 Fluency Features 

The fluency features try to capture whether the 
Spanish MT translations adhere to the norms of 
the Spanish language. Most of the fluency fea-
tures are derived from the two language models 
                                                
1 http://www.statmt.org/wmt13/translation-task.html 

354



described in section 2.1.1 and use the context 
around the focus word (𝑤!). To ensure computa-
tional feasibility, we limited the language models 
to 3-gram sequences. However, for each 𝑤!, for 
which we extract a contextual feature, we gener-
ate three 3-gram features depending on the posi-
tion of 𝑤! using a sliding window approach: 

• 𝑤!!!  𝑤!!!  𝑤!    
• 𝑤!!!  𝑤!   𝑤!!!   
• 𝑤!   𝑤!!!  𝑤!!! 

This sliding window approach (sw) is used for 
extracting all context features. In the table below, 
these features are indicated with “sw” together 
with the total number of features extracted by 
this approach.  

The following fluency features were used: 
• The LM score of 𝒘𝒊 (one feature); 
• (sw) The LM scores of the 3-gram context of 

𝒘𝒊 (three features); 
• (sw) Binary features indicating whether a 3-

gram context exists in the 3-gram database 
(three features); 

• Separate features of the PoS codes of 
𝑤!!!,𝑤! ,𝑤!!! (three features); 

• Separate features of the simplified PoS codes 
(only main category) of 𝑤!!!,𝑤! ,𝑤!!! (three 
features); 

• (sw) The PoS sequences of the 3-gram con-
text of 𝒘𝒊 (three features); 

• (sw) The simplified PoS sequences of the 3-
gram context of 𝒘𝒊 (three features); 

• The PoS LM score of PoS tag of 𝒘𝒊 (one 
feature); 

• (sw) The PoS LM scores of the 3-gram PoS 
context of 𝒘𝒊 (three features); 

• (sw) Binary features indicating whether a 3-
gram PoS context exists in the 3-gram PoS 
database (three features); 

• (sw) The Log-Likelihood Ratio (LLR) 2 of 
the 3-gram PoS context of 𝒘𝒊  (three fea-
tures); 

• (sw) Binary features indicating whether the 
LLR of the 3-gram PoS context of the focus 
word is above the critical value 3.84 (95th 
percentile; significant al the level of p < 
0.05) (three features); 

                                                
2 LLR compares frequencies weighted over two different 
corpora (in our case the Spanish MT output and the Spanish 
News Crawl Corpus) and assigns high LLR values to se-
quences in the Spanish MT output having much lower or 
higher frequencies than expected. 
 

• Binary features indicating whether 𝒘𝒊 is the 
first word or the last word in a sentence (two 
features); 

• Binary features indicating whether 𝒘𝒊!𝟏,𝒘𝒊 
or 𝒘𝒊!𝟏  is a NE (three features); 

• (sw) NE annotation of the 3-gram context of 
𝒘𝒊 (three features). 

2.1.3 Accuracy Features 

The accuracy features try to capture errors that 
can only be identified when comparing source 
and target sentences: wrong translations, addi-
tions and deletions. Some accuracy features are 
derived from the phrase table described in sec-
tion 2.1.1. Other accuracy features make use of 
the alignment features that were given in de 
baseline feature set. The following accuracy fea-
tures were used: 

• (sw) Phrase table alignment scores of any 
possible alignment of words in the source 
sentence with words in the target sentence, 
containing 𝒘𝒊, using direct translation prob-
ability (six features are defined for n-grams 
of size 1-3); 

• (sw) Same phrase table as above with the 
additional condition that the source align-
ment for each 𝒘𝒊  (which is provided as a 
baseline feature) is included in the align-
ments found (six features are defined similar-
ly); 

• Binary feature indicating whether 𝒘𝒊 is iden-
tical to its source alignment, the alignment 
given as in the baseline features (one fea-
ture); 

• Binary features indicating whether 𝒘𝒊 and its 
source alignment are either both content 
words or both function words, based on the 
PoS codes of 𝒘𝒊 and its source alignment, 
given as in the baseline features (two fea-
tures). 

2.2 Learning Methods 

We use Conditional Random Fields (CRFs) 
(Lafferty et al., 2001) and Memory-Based Learn-
ing (MBL) (Daelemans and Van den Bosch, 
2005) as ML methods for word-level QE. CRFs 
take an input sequence 𝑋 with its associated fea-
tures, and try to infer a hidden sequence 𝑌, con-
taining the class labels. They are as such compa-
rable to Hidden Markov Models (HMMs) and 
Maximum Entropy Markov Models (MEMMs). 
However, CRFs, unlike HMMs, do not assume 
that all features are independent, and they can 
take future observations into account using a 
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forward-backward algorithm, unlike MEMMs, 
thus avoiding two fundamental limitations of 
those models (Lafferty et al, 2001). We used the 
CRF++ toolkit, version 0.58 (Lafferty et al., 
2001). In MBL, on the other hand, a so-called 
lazy learner, which stores all training instances in 
memory and at classification time, a new test 
instance 𝑋 is compared to all instances 𝑌 in the 
memory. The similarity between the instances is 
computed using a distance metric ∆ 𝑋,𝑌 . The 
extrapolation is done by assigning the most fre-
quent category within the found set of most simi-
lar example(s) (the k-nearest neighbors) as the 
category of the new test example. We used 
TiMBL, version 6.4.2 (Daelemans et al., 2010) in 
our experiments. In addition, we used Gallop 
(Desmet et al, 2013), a genetic algorithm (GA) 
toolbox for optimizing the classifiers on two lev-
els: feature selection and hyper-parameter opti-
mization.  

2.3 Experiments 

We carried out experiments with the two ML 
methods and three different feature sets, namely 
the baseline features (b), the new features (n) we 
described in Section 2.2 and a merged feature set 
(m), which contain all features from the first two 
groups. We trained CRF models with basic uni-
gram (uni) and bigram (bi) templates and the de-
fault settings for the regularization algorithm and 
the hyper-parameters. While unigram templates 
use each feature as it is, bigram templates auto-
matically create additional features, combining 
the features for 𝒘𝒊!𝟏    and 𝒘𝒊,. TiMBL learning is 
performed with explicitly defined numerical fea-
tures. For a first round of experiments, both 
learners were applied relying on their default 
parameter settings. Figure 1 summarizes the 
classification results of the first round of experi-
ments, where evaluation metrics are defined as 
follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
tp + tn

tp + tn + fp + fn 

𝐹1  "BAD" =
2   ∙   𝑃!"#    ∙   𝑅!"#
𝑃!"# + 𝑅!"#

 

where 𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛  denote true positives, true 
negatives, false positives and false negatives re-
spectively, and 𝑃!"# and 𝑅!"# denote precision 
and recall for the “BAD” class. Figure 1 shows 
that merging the baseline features with the newly 
designed features improves the classification per-
formance on the “BAD” class for both learning 
methods (systems “CRF m-uni”, “CRF m-bi” 
and “TiMBL m”). For this experiment, the uni-

gram CRF systems generally have a better per-
formance than the bigram systems. 

 
Figure 1: Classification performance of different 
feature groups and learning methods.  
 
In order to gain more insight into which features 
are most informative for our task, we performed 
feature selection using a GA-based search. Given 
that it is by no means certain that the default pa-
rameters, in both learners, are also the optimal 
parameter settings for our classification task, we 
performed joint feature selection and parameter 
optimization. For this purpose, we used Gallop 
with 3-fold cross-validation, population size of 
100 and a maximum of 50 generations.   

Due to time limitations, we used a reduced 
training data set of 60,000 feature vectors for the 
Gallop experiments. Unfortunately, we were not 
able to improve the results of “TiMBL m” by 
using only the features or the hyper-parameters 
that are selected by Gallop. Some of the features 
that were consistently selected by Gallop in the 
5-best scoring feature sequences, are the follow-
ing: LM scores of 3-gram context, binary fea-
tures indicating whether the 3-gram context ap-
pears in the LM or POS-LM, binary feature indi-
cating whether the target word is identical to the 
source alignment, binary feature indicating 
whether the target word and the corresponding 
source alignment are both content or function 
words. 

Based on the hypothesis that both learners use 
a different learning strategy and might thus make 
different types of errors, we performed a final 
experiment with classifier ensembles, using two 
simple methods. While the first method uses the 
TiMBL word-level predictions as an additional 
feature in CRF (hybrid-1), the second method 
combines the labels of the best CRF and TiMBL 
systems (“CRF m-uni” and “TiMBL m”) by vot-
ing for the “BAD” label if (1) any of the systems 
labels the target word as “BAD” (hybrid-2A) or 
(2) both systems label the target word as “BAD” 
(hybrid-2B).  The classification performance of 
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the ensemble systems, together with the best 
TiMBL system, are provided in Table 2. 
 

 Accuracy F1 “BAD” 
TiMBL-m 0,74 

 
0.317 
 Hybrid 1 

 

0,79 
 

0.292 
Hybrid 2A 0,81 0.161 
Hybrid 2B 0,73 

 
0.375 

Table 2: Classification performance of the best 
TiMBL system, in comparison with the ensemble 
systems on the development set. 

Based on all the results, we selected the follow-
ing systems for the submission of this year’s 
shared task on word-level QE: 
• SCATE-HYBRID: Hybrid 2B 
• SCATE-MBL: TiMBL-m 

 
These two systems obtained comparable scores 
(F1 “BAD”) on the test set of 0.367 and 0.305 
respectively. 

3 Sentence-level Quality Estimation 

The sentence-level QE task aims at predicting 
Human mediated Translation Edit Rate (HTER) 
(Snover et al., 2006) between the raw MT output 
and its manually post-edited version. In addition 
to scoring the sentences for quality, a ranking 
variant of this task is defined as ranking all MT 
sentences, for all source sentences, from best to 
worst.  

3.1 Features and Language Resources 

In our experiments, in addition to 17 baseline 
features that were provided together with the da-
ta sets, we designed 17 additional features. In 
this section, we briefly list out the additional fea-
tures we used in WMT 2015 sentence-level QE 
task. We used the same additional language re-
sources as in the word-level QE task to extract 
additional features. As mentioned before, we in-
clude the word level predictions as features for 
sentence-level QE. The following additional fea-
tures were used: 
• The percentage of predicted “BAD” tokens 

in the target sentence (𝑝!"#).  
• The percentage of PoS n-grams in the target 

sentence that appear in the PoS n-gram da-
tabase more than once (𝑝!"#). Five features 
are extracted for n-grams of size 2-6. 

• The percentage of n-grams in the target sen-
tence that appear in the n-gram database at 

least once (𝑝!"#). Four features are extracted 
for n-grams of size 2-5. 

• The percentage of n-grams in the target sen-
tence that appear in the phrase table, being 
aligned to n-grams from the corresponding 
source sentence with direct alignment prob-
ability (EN-to-ES) 𝑃 𝑡 𝑠 > 0.01   ( 𝑝!" ). 
Seven features are extracted for n-grams of 
size 1-7. 

3.2 Learning Methods 

We use LibSVM (Chang and Lin 2011) to train a 
regression model using Support Vector Machines 
(SVMs) with a Radial Basis Function (RBF) 
kernel.  

3.3 Experiments 

In a first set of experiments we compare the per-
formance of a system using the baseline features 
with three systems using only a single feature 
( 𝑝!"# ), that is the percentage of predicted 
“BAD” tokens in the target sentence. We extract 
this feature from three different word-level QE 
systems “TiMBL m”, “CRF m-uni” and “HY-
BRID_2B”. The performance of these sentence-
level QE systems are measured with Mean 
Squared Error (MSE), Squared Correlation Coef-
ficient (𝑟!) and Mean Average Error (MAE), 
which are defined as follows: 

MSE =
1
𝑛 f x! − y! !

!

!!!

 

r! =
𝑛 𝑓 𝑥! 𝑦!   −!

!!! 𝑓 𝑥!!
!!! 𝑦!!

!!!
!

𝑛 𝑓 𝑥! ! −!
!!!    𝑓 𝑥!!

!!!
!    𝑛 𝑦!!!

!!! − 𝑦!!
!!!

!  

MAE =
1
𝑛 f x! − y!

!

!!!

 

 

where 𝑓 𝑥! ,… , 𝑓 𝑥!  are the decision values 
predicted by LibSVM and 𝑦!,… , 𝑦!  are the true 
values. We train the systems with default values 
for hyper-parameters and perform evaluation on 
the development set provided for the sentence-
level QE task. Figure 3 summarizes the perfor-
mance of baseline features in comparison with 
𝑃!"# , which is obtained from different word-
level QE systems. In addition to the systems 
above, we build a final system, which uses the 
given reference labels to extract 𝑃!"#  (𝑃!"#  -
ReferenceLabels). The purpose of building and 
evaluating this system is to show an upper 
boundary for the performance of 𝑃!"#, as a sin-
gle feature.  
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 MSE 𝑟! MAE 
baseline 

 

 

0,039 0,03
5 
 

0,147 
𝑃!"# – Timbl m 0,038 0,06  0,145 
𝑃!"# - CRF m-uni 

 

 

0,037 
 

0,08
2 

0,145 
𝑃!"# - HYBRID 2B 

 + 

0,036 0,10 0,144 
𝑃!"# - ReferenceLabels 

 

0,005 0,89 0,055 

Table 3: Sentence-level QE performance of SVM 
systems using baseline features vs. 𝑝!"# extract-
ed from three different systems. 
 
As a second set of experiments we enrich the 
baseline feature set by combining it with the ad-
ditional features that are described in Section 3.1. 
For the feature 𝑃!"#  we use the best output, 
coming from the system “HYBRID_2B”. Table 
4 shows the impact of the different feature sets 
on the overall performance. 
 
 MSE 𝑟! MAE 
basel. 

 

 

0,037 
 

0,03
5 
 

0,147 
𝑝!"# 0,036 0,07  0,147 
basel.+𝑝!"# 

 

 

0,037 
 

0,04
2 

0,147 
basel.+𝑝!"#+𝑝!" 

 + 

0,036 0,06 0,145 
basel.+𝑝!"#+𝑝!"+𝑝!"# 

 

0,036 0,07 0,143 
basel.+𝑝!"#+𝑝!"+𝑝!"#+𝑝!"# 

  

0,035 
 

0,10 0,142 

Table 4: Performance of the SVM systems on 
sentence-level QE, using different feature sets 

Based on the results, we selected the following 
two systems for the submission of this year’s 
shared task on sentence-level QE: 
• SCATE-SVM-single: SVM trained with the 

single feature 𝑝!"# 
• SCATE-SVM: SVM trained with baseline and 

new features (base.+𝑝!"#+𝑝!"+𝑝!"#+𝑝!"#) 
 
 MSE 𝑟! MAE 
𝑝!"# 0.035 0.07 0,146 
basel.+pos+pt+tok+𝑝!"# 

 + pt 

0.034 0.10 0,142 

Table 5: Performance of the submitted sentence-
level QE systems on development set, compared 
with the baseline system. 

We apply grid search to optimize the γ, ε and C 
parameters using 5-fold cross validation prior to 
building SVM models to use for our submis-
sions. We perform sentence ranking based on the 
predicted HTER scores for both systems. Table 5 
gives an overview of the performance of the two 
optimized systems we submit on the develop-
ment set. On the test set, the performance (MAE) 
of both of these systems was 0.14, based on the 
official results. 

4 Results and Discussion 

For the word-level QE task, we extracted addi-
tional features based on accuracy and fluency of 
translations, for labeling words for quality as a 
ML classification problem. The results showed 
that the additional features, as a whole, were 
found to be relevant for the two different learn-
ing methods. We obtained better results using 
both MBL and CRF when we used the additional 
features in combination with the baseline feature 
set. We also observe that MBL performs better 
than CRF when looking at the F1 scores on the 
“BAD” class for this task, even though it per-
forms worse when overall classification accuracy 
is considered. One possible explanation for MBL 
obtaining a better performance could be the use 
of similarity-based reasoning as a smoothing 
method for estimating low-frequency events, 
considering the heterogeneous nature of the 
“BAD” class for this specific task and the suita-
bility of MBL for handling exceptions 
(Daelemans and Van den Bosch, 2005). 

Finally, a simple combination of the two clas-
sifiers into an ensemble system provides a better 
system for classifying the “BAD” class, which 
encourages us to carry out more experiments 
with ensemble systems for the word-level QE 
task. 

For sentence-level QE, we trained regression 
models using additional features we extracted, in 
combination with the baseline feature set. We see 
in Table 4 that a single feature, which is based 
only on the predicted word labels, can lead to a 
sentence-level QE system with better perfor-
mance than a system built with 17 baseline fea-
tures. For demonstrating the potential of this sin-
gle feature further, we built a system based on 
the given correct word labels, which defines a 
high upper bound for quality estimations, as ex-
pected. As a result we show that a word-level QE 
system that is accurate “enough” can lead to suc-
cessful sentence-level QE. In the future, we 
would like to investigate more closely the rela-
tionship between word-level and sentence-level 
QE and examine the portability of the developed 
systems to English-Dutch.  
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Abstract

Translations generated by current statisti-
cal systems often have a large variance, in
terms of their quality against human ref-
erences. To cope with such variation, we
propose to evaluate translations using a
multi-level framework. The method varies
the evaluation criteria based on the clus-
ters to which a translation belongs. Our
experiments on the WMT metric task data
show that the multi-level framework con-
sistently improves the performance of two
benchmarking metrics, resulting in better
correlation with human judgment.

1 Introduction
The aims of automatic Machine Translation (MT)
evaluation metrics, which measure the quality
of translations against human references, are
twofold. Firstly, they enable rapid comparisons
between different statistical machine translation
(SMT) systems. Secondly, they are necessary
to the tuning of parameter values during system
trainings.

To attain these goals, many machine transla-
tion metrics have been introduced in recent years.
For example, metrics such as BLEU (Papineni et
al., 2002), NIST (Doddington, 2002), and TER
(Snover et al., 2006) rely on wordn-gram surface
matching. Also, metrics that make use of linguis-
tic resources such as synonym dictionaries, part-
of-speech tagging, or paraphrasing tables, have
been proposed, including Meteor (Banerjee and
Lavie, 2005) and its extensions, TER-Plus (Snover
et al., 2009), and TESLA (Liu et al., 2011). In ad-
dition, attempts to deploy syntactic features or se-
mantic information for evaluation have also been
made, giving rise to the STM and DSTM (Liu
and Gildea, 2005), DEPREF (Wu et al., 2013) and
MEANT family (Lo and Wu, 2011) metrics.

All these evaluation metrics deploy a single
evaluation criterion or use the same source of in-
formation to evaluate translations. Nevertheless,
translations generated by current statistical sys-
tems often have widely varying scores, in terms
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Figure 1: Distributions of translation quality. X-
axis is in the range of [0,1].
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Figure 2: Clusters of translations based on quality.
Both X-axis and Y-axis are in the range of [0,1].

of their quality against human references. As a re-
sult, current metrics often perform better for a por-
tion of translations but worse against the others.
Consider, for example, two widely used metrics,
namely the sentence-level Meteor and BLUE. Fig-
ure 1 depicts the distributions of the two metrics’
evaluation scores, computed on system outputs for
two WMT test sets, i.e., thenewstest2013.fr-en
andnewstest2012.en-cs. As shown in Figures 1,
the variances of the created evaluation scores are
large across evaluation metrics as well as test sets.

Such widely varying evaluation quality, how-
ever, may be clustered into multiple sub-regions,
as illustrated in Figure 2. Here, we sample
300 sentences from the system output of the
newstest2013.fr-en test set; we depict the F-
measure based on dependency triplet (dependency
type, governor word, and dependent word) on the
Y-axis against the word-based F-measure on the
X-axis. We observe a straight line at the bot-
tom left corner (blue box) of the graph represent-
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ing sentences which all have dependency triplet F-
score of zero; if we want to distinguish between
them in terms of their quality score, we must rely
on word matching rather than on syntax. The sit-
uation in the upper right corner (green box) of the
graph is quite different. Here, the word-based F-
measure and dependency-based F-measure have a
roughly linear correlation, suggesting that a com-
bination of word-based and syntactic information
might be a better measure of quality than either
alone. These observations imply that a metric may
benefit from applying different sources of infor-
mation at different quality levels.

In this paper, we propose a multi-level auto-
matic evaluation framework for MT. Our strategy
first roughly classifies the translations into differ-
ent quality levels. Next, it rates the translations by
exploiting several different information sources,
with the weight on each source depending on its
quality level. We apply our method to two met-
rics: the Meteor and a new metric, DREEM, which
is based on distributed representations. Our exper-
iments on the WMT metric task data show that the
multi-level framework consistently improves the
performance of these two metrics.

2 Multi-level Evaluation
The multi-level evaluation framework works on
the sentence level. Specifically, we first assign
each test sentence to one of the three categories:
low-, medium-, or high-quality translations. Next,
we evaluate the translations within each category
with a tailored set of weights of the metric on the
information sources.

To this end, we deploy a simple strategy for the
category clustering. Note that more sophisticate
strategies could be deployed; we leave this to our
future work. Here, we first use a scoring func-
tion to compute a score between the translation
and its reference. Next, the category assignment of
the translation is then determined by a pre-defined
score threshold.

In detail, suppose we have a translation (t) and
its reference (r). The multi-level metric scores the
translation pair as follows.

Score(t,r)=


M(t, r, wl) if (F (t, r) ≤ θ1)
M(t, r, wm) if (θ1 < F (t, r) ≤ θ2)
M(t, r, wh) otherwise

where M(t, r, w) is a metric, w is the weight,
F (t, r) is the simple classification scoring func-

tion. Also, θ is a threshold, and its value is auto-
matically tuned on development data set.

For the classification function, we employ a
formula which combines word-based F-measure
(denoted asFW (t, r)) and a F-measure (denoted
asFD(t, r)) based on dependency triplet (depen-
dency type, governor word, dependent word), as
follows:

F (t, r) = λ · FW (t, r) + (1− λ) · FD(t, r) (1)

where the free parameterλ is tuned on develop-
ment data.

It is worth noting that, for languages which de-
pendency parser is not available, we only use the
word-based F-measure as the classification func-
tion. Specifically, we use Equation 1 for Into-
English task, and the word-based F-measure for
Out-of-English task in this paper.

In a scenario where there are multiple refer-
ences, we compute the score with each reference,
then choose the highest one. In addition, we treat
the document-level score as the weighted average
of sentence-level scores, with the weights being
the reference lengths, as follows.

Scored =
∑D

i=1 len(ri)Scorei∑D
i=1 len(ri)

(2)

where Scorei is the score of sentencei, andD is
the number of sentences in the document.

3 Evaluation metrics
We apply our multi-level approach to two met-
rics. The first one is Meteor (Banerjee and
Lavie, 2005), which has been widely used for ma-
chine translation evaluations. The second one is
DREEM, a new metric based on distributed repre-
sentations generated by deep neural networks.

3.1 Metric Meteor
We use the latest version of Meteor, i.e. Me-
teor Universal (Denkowski and Lavie, 2014) in
this paper. Meteor computes a one-to-one align-
ment between matching words in a translation
and a reference. The space of possible align-
ments is constructed by exhaustively identifying
all possible matches of the following types: ex-
act word matches, word stem matches, synonym
word matches, and matches between phrases listed
as paraphrases. Alignment is then conducted as a
beam search.

From the final alignment, the translation’s Me-
teor score is calculated as follows. First, content
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and function words are identified in the hypoth-
esis and reference according to a function word
list. Next, the weighted precision and recall us-
ing match weights (wi ...wn) and content-function
word weight (δ) are computed, as follows:

P =

∑

i wi · (δ · mi(tc) + (1 − δ) · mi(tf ))

δ · |tc| + (1 − δ) · |tf | (3)

R =

∑

i wi · (δ · mi(rc) + (1 − δ) · mi(rf ))

δ · |rc| + (1 − δ) · |rf | (4)

These two are then combined into a weighted
harmonic mean, where a largeα means recall is
weighted more heavily.

Fmean=
P · R

α · P + (1 − α) · R (5)

To penalize reorderings, this value is then scaled
by a fragmentation penalty based on the number
of chunks and number of matched words.

Meteor(t, r) = (1 − γ · (#chunk
#match

)β) · Fmean (6)

In our studies, we fine-tune all the parameters
for both multi-level and non-multi-level scoring
frameworks.

3.2 Representation based metric
Distributed representations for words and sen-
tences have been shown to significantly boost
the performance of a NLP system (Turian et al.,
2010). A representation-based translation evalu-
ation metric, DREEM, is introduced in (Anony-
mous, 2015). The metric has shown to be able to
achieve state-of-the-art performance, compared to
popular metrics such as BLEU and Meteor. There-
fore, in this paper, we also adapt this metric for our
experiments.

In a nutshell, the DREEM metric evaluates
translations by employing three different types
of word and sentence representations: one-hot
representations, distributed word representations
learned from a neural network model, and dis-
tributed sentence representations computed with a
recursive autoencoder (RAE). Two different RAE-
based representations are used in this metric: one
is based on a greedy unsupervised RAE, while the
other is based on a syntactic parse tree. To com-
bine the advantages of these four different repre-
sentations, the authors concatenate them to form
one vector representation for each sentence.

In detail, suppose that we have the sentence
representations for the translations (t) and refer-
ences (r). The translation quality is measured by

DREEM with a similarity score computed with the
Cosine function and a length penalty. Let the size
of the vector beN . The quality score is calculated
as follows.

Score(t, r) = Cosα(t, r) × Plen (7)

Cos(t, r) =

∑i=N
i=1 vi(t) · vi (r)

√

∑i=N
i=1 v2

i (t)
√

∑i=N
i=1 v2

i (r)
(8)

Plen =

{
exp(1− lr/lt) if (lt < lr)
exp(1− lt/lr) if (lt ≥ lr)

(9)

whereα is a free parameter,vi(.) is the value of
the vector element,Plen is the length penalty, and
lr, lt are lengths of the translation and reference,
respectively.

To use this metric in the multi-level framework,
we keep the parameterα consistent for all levels,
but use different weights to combine the represen-
tations. That is, we construct the representation
vector as follows:

V =< w1 ·Voh, w2 ·Vwd, w3 ·VgRAE , w4 ·VtRAE > (10)

whereVoh is the one-hot representation,Vwd de-
notes the word representations, andVgRAE and
VtRAE are representations learned with greedy
RAE and tree-based RAE, respectively. The
weightsw1 ... w4 are tuned on development data.

4 Experiments
4.1 Settings
We conducted experiments on the WMT met-
ric task data. Development sets include WMT
2012 all-to-English, and English-to-all submis-
sions. Test sets contain WMT 2013, and WMT
2014 all-to-English, plus 2013, 2014 English-
to-all submissions. The languages “all” include
French, Spanish, German, Czech and Russian.
For training the word embedding and recursive
auto-encoder model, we used WMT 2014 train-
ing data1. We used the English, French, German
and Czech sentences in “Europarl v7” and “News
Commentary” for our experiments. To train the
representations for Russian, we used the “Yandex
1M corpus”.

4.2 Results
Following WMT 2014’s metric task (Machacek
and Bojar, 2014), to measure the correlation with

1http://www.statmt.org/wmt14/translation-task.html
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Into-English
metric segτ sysγ

Original BLEU – 0.821
Sentence BLEU 0.259 0.841
Original Meteor 0.279 0.849
Sentence Meteor 0.279 0.863

Multi− levelw Meteor 0.285 0.871
Multi− levelwd Meteor 0.294⋆ 0.885⋆

DREEM 0.287 0.875
Multi− levelw DREEM 0.293 0.880

Multi− levelwd DREEM 0.303⋆ 0.892⋆

Table 1: Correlations with human judgment on the WMT
data for the Into-English task. Results are averaged on all
into-English test sets.Multi − levelw stands for only using
word-based F-measure as the classification function, while
Multi − levelwd denotes the use of a combination of word-
based F-measure and dependency triplet based F-measure.⋆

indicates the improvement over the non-multi-level metric is
statistically significant, with a significance level of 0.05.

human judgment, we employed Kendall’s rank
correlation coefficientτ for the segment level, and
used Pearson’s correlation coefficient (γ in the be-
low tables) for the system-level. We tested the
significance through bootstrap resampling (confi-
dence level of 95%).

We tuned the weights for the Into-English and
Out-of-English tasks separately. According to the
tuned thresholds, about 25% of the translations are
classified to low-quality translations, around 20%
belong to high-quality translations, and the rest
fall in the medium-quality category.

Experimental results conducted on the Into-
English and Out-of-English tasks are reported in
Tables 1 and 2. We also compared to the standard
de facto metric BLEU (Papineni et al., 2002).

Results, as shown in Tables 1 and 2, indicate
that the representation-based metric DREEM ob-
tained better performance than BLEU and Meteor
on both tasks at both segment and system lev-
els. The multi-level versions of these metrics con-
sistently improved the performance over the non-
multi-level ones on both segment and system lev-
els.

4.3 Further Analysis
In addition to showing the superior performance
of the multi-level framework, our experiments also
indicate the following observations.

Firstly, for BLEU and Meteor, document-level
score computed by weighted averaging sentence-
level scores can get better system-level correla-
tion with human judgment, compared to that of the
original document-level score which is computed
from aggregate statistics accumulated over the en-

Out-of-English
metric segτ sysγ

Original BLEU – 0.843
Sentence BLEU 0.221 0.846
Original Meteor 0.228 0.845
Sentence Meteor 0.228 0.853

Multi− levelw Meteor 0.234 0.861
DREEM 0.236 0.904#

Multi− levelw DREEM 0.241 0.922⋆#

Table 2: Correlations with human judgment on the WMT
data for Out-of-English task. Results are averaged over all
out-of-English test sets.# indicates DREEM is significantly
better than its corresponding version of Meteor, with a sig-
nificance level of 0.05.⋆ indicates the improvement over the
non-multi-level metric is statistically significant.

tire document.

task low medium high
Into-En 0.93 0.81 0.75

Out-of-En 0.99 0.90 0.81

Table 3:The value of parameterα in multi-level Meteor.

Secondly, for Meteor, recall received a larger
weight for low-quality translations than for high-
quality translations. For instance, as depicted in
Table 3, the parameterα in Meteor is higher for
low-quality translations.

Finally, the syntax feature received higher
weight for high-quality translations than for low-
quality translations. In contrast, as shown in Table
4, the surfacen-gram feature was assigned larger
weight for low-quality translations .

task low medium high
one-hot 0.23 0.11 0.05

word vec 0.42 0.42 0.40
greedy RAE 0.18 0.20 0.20

tree RAE 0.17 0.27 0.35

Table 4: The weights of each representation in the multi-
level DREEM tuned for Into-English task. The syntax-based
tree RAE representation received higher weight for high-
quality translations, while one-hot representation received
higher weight for low-quality translations.

5 Conclusions
Translations generated by statistical systems typi-
cally have a large variance in terms of their scores
against human references. Motivated by such ob-
servation, we propose a multi-level framework. It
enables a metric to deploy different criteria for
various quality levels of translations. Our exper-
iments on the WMT metric task data show that
the multi-level strategy consistently improves the
performance of two benchmarking metrics on both
segment and system levels.
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Abstract 

This paper describes VERTa’s submis-

sion to the 2015 EMNLP Workshop on 

Statistical Machine Translation. VERTa 

is a linguistically-motivated metric that 

combines linguistic features at different 

levels. In this paper, VERTa is described 

briefly, as well as the three versions 

submitted to the workshop: VERTa-

70Adeq30Flu, VERTa-EQ and VERTa-

W. Finally, the experiments conducted 

with the WMT14 data are reported and 

some conclusions are drawn. 

1 Introduction 

In the last decade Automatic Machine Transla-

tion (MT) Evaluation has become a key field in 

Natural Language Processing due to the amount 

of texts that are translated over the world and the 

need for a quick, reliable and inexpensive way to 

evaluate the quality of the output text. Therefore, 

a large number of metrics have been developed, 

which range from very simple metrics to more 

complex ones. Within simple metrics there are 

those that do not use any type of linguistic in-

formation, such as BLEU (Papineni et al., 2002) 

which is one of the most well-known and widely 

used, since it is fast and easy to use. Other me-

trics though, rely on linguistic information used 

at lexical level such as METEOR (Denkowski 

and Lavie, 2014); at syntactic level, using either 

constituent analysis (Liu and Hildea, 2005) or 

dependency analysis (Owczarzack et al., 2007a 

and 2007b; He et al., 2010); while others use 

more complex information such as semantic 

roles (Giménez and Márquez, 2007 and 2008; Lo 

et al., 2012). However, all these metrics focus on 

partial aspects of language which might lead to a 

biased evaluation. As a consequence, in the last 

years researchers have been exploring different 

ways to combine a wide variety of linguistic fea-

tures, either using machine-learning techniques 

(Leusch and Ney, 2009; Albrecht and Hwa, 

2007a and 2007b; Gautam and Bhattacharyya, 

2014; Joty et al., 2014) or in a more simple and 

straightforward way (Giménez, 2008; Giménez 

and Márquez, 2010; Specia and Giménez, 2010, 

González et al., 2014). Nevertheless, little re-

search has been carried out in order to explore 

the suitability of the linguistic features used and 

how they should be combined, from a linguistic 

point of view. Therefore, this paper proposes a 

new version of VERTa, a linguistically-

motivated metric (Comelles and Atserias, 2014) 

which uses a wide variety of linguistic features at 

different levels and which aims at moving away 

from a biased evaluation and providing a more 

holistic approach to MT evaluation. Last year 

VERTa participated in the WMT15 and achieved 

promising results at system level, this year we 

would like to improve the metric’s performance 

at segment level. To this aim, a Language Model 

Module has been added, as well as a NERC 

component. 

In this paper we provide a brief description of 

the different modules in VERTa and how they 

are combined, section 3 present the three ver-

sions submitted to the WMT15 and reports the 

experiments performed with WMT14 data into 

English, and finally in section 4 some conclu-

sions are drawn. 

2 VERTa: A Linguistically-motivated 

Metric 

VERTa claims to be a linguistically-motivated 

metric because before its development a tho-

rough analysis was carried out in order to identi-

fy those linguistic phenomena that an MT evalu-
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ation metric should take into account when eva-

luating MT output by means of reference transla-

tions. With the results of this analysis (Comelles, 

2015) we decided on the linguistic features that 

would be more appropriate and on how they 

should be combined depending on whether Ade-

quacy or Fluency was evaluated. Therefore, 

VERTa consists of six modules which can work 

independently or in combination: Lexical Simi-

larity Module (L), Morphological Similarity 

Module (M), N-gram Similarity Module (N), De-

pendency Similarity Module (D), Semantic Simi-

larity Module (S) and Language Model (LM) 

Module. 

All metrics use a weighted precision and recall 

over the number of matches of the particular 

element of each level (words, dependency triples, 

n-grams, etc) as shown below. 
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hnmatchW
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W nmatch
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Where r is the reference, h is the hypothesis and 

∇ is a function that given a segment will return 

the elements of each level (e.g. words at lexical 

level and triples at dependency level). D is the 

set of different functions to project the level ele-

ment into the features associated to each level, 

such as word-form, lemma or partial-lemma at 

lexical level. nmatch ()is a function that returns 

the number of matches according to the feature ∂ 

(i.e. the number of lexical matches at the lexical 

level or the number of dependency triples that 

match at the dependency level). Finally, W is the 

set of weights [0 1] associated to each of the dif-

ferent features in a particular level in order to 

combine the different kinds of matches consid-

ered in that level.  

Next, all modules forming VERTa are de-

scribed. 

2.1 Lexical Similarity Module 

The Lexical Module matches lexical items in the 

hypothesis and reference sentences. This module 

does not only use superficial information such as 

the wordform, but it also takes into account 

lemmatization and lexical semantics. Hence, dif-

ferent types of matches are allowed and applied 

in the order established in Table 1. In addition, 

different weights can be assigned depending on 

their importance as regard semantics. 

 Match Examples 

HYP REF 

1 Word-form east east 

2 Synonym
1
 believed considered 

3 Hypernym barrel keg 

4 Hyponym keg barrel 

5 Lemma is_BE are_BE 

6 Part-lemma
2
 danger dangerous 

Table 1. Lexical matches and examples 

2.2 Morphological Similarity Module 

This module uses the information provided by 

the Lexical Module in combination with Part-of-

Speech (PoS) tags
3
. 

Similar to the Lexical Similarity Module, this 

module matches items in the hypothesis and ref-

erence segments and a set of weights can be as-

signed to each type of match (see Table 2). 

 

 Match Examples 

HYP REF 

1 (Word-

form, PoS) 

(he, PRP) (he, PRP) 

2 (Synonym, 

PoS) 

(VIEW, 

NNS) 

(OPINON, 

NNS) 

3 (Hypern., 

PoS) 

(PUBLICA-

TION, NN) 

(MAGA-

ZINE, NN) 

4 (Hypon., 

PoS) 

(MAGA-

ZINE, NN) 

(PUBLICA-

TION, NN) 

5 (LEMMA, 

PoS) 

can_(CAN, 

MD) 

Could_(CA

N, MD) 

Table 2. Morphological module matches 

 

This module aims at making up for the 

broader coverage of the Lexical Module, thus 

preventing matches such as invites and invite, 

which although similar in meaning do not share 

the same morphosyntactic features. 

2.3 Dependency Similarity Module 

The Dependency Module makes it possible to 

capture similarities beyond the external structure 

of a sentence and uses dependency structures to 

link syntax and semantics. Thus, this module 

allows for identifying sentences with the same 

meaning but different syntactic constructions 

                                                 
1
 Information on synonyms, lemmas, hypernyms and 

hyponyms is obtained from WordNet 3.0. 
2
 Lemmas that share the first four letters. 

3
 The corpus has been PoS tagged using the Stanford 

Parser (de Marneffe et al. 2006). 
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(e.g. active – passive alternations), as well as 

changes in word order. 
This module works at sentence level and fol-

lows the approach used by (Owczarzack et al., 
2007a and 2007b) and (He et al., 2010) with 
some linguistic additions in order to adapt it to 
our metric combination. Similar to the Morpho-
logical Module, the Dependency Similarity met-
ric also relies first on those matches established 
at lexical level − word-form, synonymy, hy-
pernymy, hyponymy and lemma − in order to 
capture lexical variation across dependencies and 
avoid relying only on surface word-form. Then, 
by means of flat triples with the form La-
bel(Head, Mod) obtained from the parser

4
, four 

different types of dependency matches have been 
designed (see Table 3) and weights can be as-
signed to each type of match. 
 

 Match Type Match Descr. 

1 Complete Label1=Label2 

Head1=Head2 

Mod1=Mod2 

2 Partial_no_label Label1≠Label2 

Head1=Head2 

Mod1=Mod2 

3 Partial_no_mod Label1=Label2 

Head1=Head2 

Mod1≠Mod2 

4 Partial_no_head Label1=Label2 

Head1≠Head2 

Mod1=Mod2 

Table 3. Dependency matches 

In addition, VERTa also enables the user to 

assign different weights to the dependency cate-

gories according to the type of evaluation per-

formed. 

Finally, a set of language-dependent rules has 

been implemented in order to a) widen the range 

of syntactically-different but semantically-

equivalent expressions, and b) restrict certain 

dependency relations (e.g. subject, object). 

2.4 N-gram Similarity Module 

This module matches chunks in the hypothesis 

and reference segments. N-grams can be calcu-

lated over lexical items (considering the informa-

tion provided by the Lexical Module), over PoS 

and over the combination of lexical items and 

PoS. The n-gram length can go from bigrams to 

sentence-length grams. This module is particular-

                                                 
4
 Both hypothesis and reference strings are annotated 

with dependency relations by means of the Stanford 

parser (de Marneffe et al. 2006). 

ly useful when evaluating Fluency because it 

deals with word order. 

2.5 Semantic Similarity Module 

The Semantic Similarity Module covers different 

features: Named Entities (NEs), Time Expression 

(TIMEX) and sentence polarity. 

As regards NEs, the module uses Named Enti-

ty Recognition and classification (NERC
5
) and 

Named Entity Linking (NEL
6
). By means of 

NERC NEs of the same type are identified and 

matched, whereas NEL helps in matching NEs 

referring to the same entity regardless of their 

external form. 

Regarding Time Expressions, the Stanford 

Temporal Tagger (Chang and Manning, 2012) is 

used to identify and match syntactically-different 

time expressions with the same referent. 

Finally, following Wetzel and Bond (2012), 

who reported that negation might pose a problem 

to SMT systems, the metric checks and compares 

the polarity of the hypothesis and reference seg-

ments using the dictionary strategy described in 

Atserias et al. (2012). 

It must be noticed, though, that in the different 

versions of VERTa submitted to the WMT15 

only NERC is used since the rest of features did 

not prove to be very effective. 

2.6 Language Model Module 

This is a new module in VERTa, which dramati-

cally differs from the rest of modules because the 

Language Model (LM) is only applied to the hy-

pothesis sentence. By using a language model we 

aim at accounting for those segments that, even 

being syntactically different from their corre-

sponding reference translations, are still fluent; 

in other words, we will be able to check the cor-

rect construction and plausibility of the hypothe-

sis, even if it is very different or not included in 

any of the reference segments. 

In this module we use the berkeleylm
7
 imple-

mentation (Pauls and Klein, 2011), which allows 

for uploading LMs in different formats (e.g. arpa 

LM, google LM). In the experiments presented 

in section 3, the LM used is the NewsLM
8
 re-

                                                 
5
 In order to identify NEs we use the Supersense Tag-

ger (Ciaramita and Altun, 2006). 
6
 The NEL Module uses a graph-based NEL tool 

(Hachey, Radford and Curran, 2010) which links NEs 

in a text with those in Wikipedia pages. 
7
 https://code.google.com/p/berkeleylm/ 

8
 http://www.quest.dcs.shef.ac.uk/quest_files/de-

en/news.3gram.en.lm 
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leased in the WMT13 Quality Estimation Task as 

a baseline feature. 

3 Experiments 

The experiments reported in this section were 

carried out on the data released in WMT14, all 

languages into English. Language “all” includes 

Czech (cs), French (fr), German (de), Hindi (hi) 

and Russian (ru). All experiments were carried 

out at segment level and the evaluation sets pro-

vided by WMT organizers were used to calculate 

segment-level correlations. 

Our goal in these experiments was two-fold: 

first, we wanted to test if the combination of 

Adequacy and Fluency features reported in 

Comelles (2015) was suitable for the ranking of 

sentences; and second, we wanted to study if the 

best weights for each module varied depending 

on the language pair. 

3.1 Adequacy & Fluency Combination 

This combination derives from the experiments 

reported in Comelles (2015), where VERTa was 

used to find the best combination of linguistic 

features in order to evaluate Adequacy and Flu-

ency separately. 

In those experiments we found out that in or-

der to evaluate Adequacy the most effective 

modules were the Lexical Module, the Depen-

dency Module, the N-gram Module and the Se-

mantic Module (see Table 4). The strongest in-

fluence of the Lexical and the Dependency Mod-

ules is not surprising since the former accounts 

for lexical semantics and the latter links syntax 

and semantics. It must be highlighted that in the 

Dependency Module all types of matches were 

used in order to allow for matching different syn-

tactic structures conveying the same meaning. As 

for the N-gram Module, n-grams were calculated 

over lexical items and the n-gram length was re-

stricted to bigrams. Both N-gram and Semantic 

Modules showed a minor influence since the N-

gram Module is more fluency-oriented and the 

Semantic Module focuses on very partial aspects 

of the evaluation. 

As for the evaluation of Fluency, the ideal 

combination was achieved when the Dependency 

Module, the Language Model Module, the N-

gram Module and the Morphological Module 

were combined (see Table 4). Some adjustments 

had to be performed in the Dependency and N-

gram Modules. In the former only the Exact 

match was used so as to prevent matching con-

structions conveying similar meaning but which 

might not be completely grammatical. In the lat-

ter, n-grams were calculated over PoS and the n-

grams length ranged from bigrams to sentence-

length grams. The highest influence of the De-

pendency, N-gram and LM Modules is clear 

since they account for syntactic structures, mor-

phosyntax and word order. On the other hand, 

the low impact of the Morphological Module is 

due to the fact that English does not show a rich 

inflectional morphology and SMT systems do 

not seem to have problem when dealing with it. 

 

 Adequacy Fluency 

Module Weight Weight 

Lexical 0.47 -- 

Morphological -- 0.04 

Dependency 0.43 0.37 

N-gram 0.05 0.29 

Semantic 0.05 -- 

LM -- 0.30 

Table 4. Modules combination for Adequacy 

and Fluency 

 

Since our aim was finding the best way to 

combine Adequacy and Fluency, we performed 

several experiments until we found that the best 

correlation was obtained when the combination 

was Adequacy (0.70) and Fluency (0.30) (see 

Table 5). This indicates that semantics has a 

stronger influence than syntax even when dealing 

with ranking of segments. 

 

Language Pair Correlation Coef. 

fr-en 0.406 

de-en 0.323 

hi-en 0.387 

cz-en 0.268 

ru-en 0.312 

Average 0.339 

Table 5. Kendall’s Correlation for the  

Adequacy-Fluency Combination 

 

After analyzing these results we decided to 

submit VERTa-70Adeq30Flu, which combined 

Adequacy and Fluency features with the weight 

combination reported above: Adequacy (0.70) 

and Fluency (0.30). 

3.2 Language-dependent Weights 

A second experiment was performed in order to 

study if the best weights of the modules varied 

depending on the language pair. To this aim, we 

tried all modules in VERTa with different weight 

combinations (see Table 6). Last year's data was 
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used to estimate the best weights for VER-

Ta's  modules by systematically testing all the 

different weight combinations (all integer weight 

combinations totaling 100 using a step of 5). 

According to the results obtained, the module 

that influences the most in almost all language 

pairs (i.e. de-en, cz-en and ru-en) is the Depen-

dency Module. This might be due to the fact that 

the dependency relations are a halfway stage be-

tween syntax and semantics. They help to link 

the surface structure of a sentence with its deep 

structure, closer to semantics. In addition, the 

Dependency Module relies on information pro-

vided by the Lexical Module which is related to 

lexical semantics, again escaping the word-form 

and moving towards meaning. The exceptions to 

the remarkable influence of the Dependency 

Module are the fr-en pair, where the LM Module 

shows a stronger influence than the rest of mod-

ules, and the hi-en pair, where the Lexical Mod-

ule is assigned the highest weight. As for the 

Lexical Module, its influence is rather low for 

most of the languages – with the exception of the 

hi-en pair – however, it shows a good perfor-

mance when the average correlation is calcu-

lated. Regarding the N-gram Module, its influ-

ence is similar in most language pairs (i.e. hi-en, 

cz-en and ru-en), as well as the average score, 

which might be explained by the importance of 

word order. The Morphological Module does not 

seem to be very suitable because it only proves 

efficient for the de-en pair, and up to a certain 

point for the cz-en pair. Finally, the Semantic 

Module does not show any impact, which might 

be due to the fact that only NEs were used and, 

as already mentioned, they only account for a 

very partial aspect of the translation. 

 

Lang. Weight Combination
9
 Corr. 

L M D N S LM 

fr-en 0 10 10 10 0 70 0.427 

de-en 10 20 50 10 0 10 0.323 

hi-en 40 0 20 20 0 20 0.390 

cz-en 10 10 50 20 10 0 0.269 

ru-en 20 0 30 30 0 20 0.318 

Aver. 30 0 40 20 0 10 0.339 

Table 6. Kendall’s Correlation for language-

dependent weight combinations 

                                                 
9
 Weights corresponding to: Lexical Module (L), 

Morphological Module (M), Dependency Module 

(D), N-gram Module (N), Semantic Module (S) and 

LM Module (LM). 

Given the results obtained, we decided to 

submit two more versions of  VERTa: 

 

 VERTa-W. This version uses the following 

settings, except for the fr-en pair: Lexical 

Module (0.30), Dependency Module (0.40), 

N-gram Module (0.20) and Language Model 

Module (0.10). The reason why these mod-

ules and weights are chosen is that they were 

the settings that obtained the best average 

correlation at segment level (see Table 6). As 

regards the fr-en language pair, since it 

showed a completely different behaviour to 

the rest of language pairs, different modules 

and weights were used. Hence the settings 

used for the fr-en pair are those reported in 

Table 6, which involve a really strong influ-

ence of the Language Model Module. Using 

these settings to evaluate the rest of language 

pairs drops the average correlation of all lan-

guages significantly, from 0.339 to 0.310. 

 

 VERTa-EQ. In line with last year’s submis-

sion, this submission combines all modules 

in VERTa with equal weights assigned to 

each module, thus combining linguistic fea-

tures in a more simple and straightforward 

way. 

3.3 Comparing Different Versions of VER-

Ta 

In this section the different versions of VERTa 

submitted to the WMT15 are compared to those 

submitted to the WMT14 (see Table 7). In addi-

tion, the best and worst systems of the 2014 edi-

tion are also included for the sake of comparison. 

WMT15 results show that both VERTa-W and 

VERTa-70Adeq30Flu achieve similar results in 

the average correlation and for the hi-en lan-

guage pair. However, VERTa-W performs better 

for the fr-en and, especially, for the ru-en pair. 

The reason why VERTa-W performs better for 

the fr-en pair is that, as explained in section 3.2, 

the settings used differ completely from those 

used for the rest of language pairs, since experi-

ments showed that a higher influence of the LM 

Modules was advisable. As for the ru-en pair, the 

more efficient performance might be due to the 

fact that in VERTa-W the Morphological Mod-

ule and the Semantic Module are disregarded, 

which coincides with the best setting for ru-en 

shown in Table 6. 

On the other hand, VERTa-70Adeq30Flu per-

forms better for the de-en and cz-en pairs. In 

both cases this is due to the fact that both 
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Metric fr-en de-en hi-en cz-en ru-en Average 

WMT14 

VERTa-W 0.399 0.321 0.386 0.263 0.315 0.337 

VERTa-EQ 0.407 0.315 0.384 0.263 0.312 0.336 

Best-WMT14 0.433 0.380 0.434 0.328 0.355 0.386 

Worst-WMT14 0.005 0.001 0.000 0.002 0.001 0.002 

WMT15 

VERTa-W 0.408 0.321 0.387 0.262 0.316 0.339 

VERTa-EQ 0.393 0.313 0.370 0.260 0.292 0.325 

VERTa-70Adeq30Flu 0.406 0.323 0.387 0.268 0.312 0.339 

Table 7. Comparison between VERTa’s submission to WMT14 and WMT15 

Morphological and Semantic Modules are used 

in this version which, according to the weight 

combination in Table 6, allows for a better per-

formance of the metric when evaluating those 

two language pairs. 

As for VERTa-EQ, the last version submitted 

to WMT15, its performance is the lowest of the 

three submissions. This is a direct consequence 

of assigning the same weights to all modules, 

when experiments have clearly shown that there 

are some modules more effective than others. 

As regards the difference between WMT14 

and WMT15 submissions, unfortunately our re-

sults have not improved as much as we expected. 

Nevertheless, both VERTa-W and VERTa-

70Adeq30Flu improve their average score in 

0.002, from 0.337 to 0.339. As for the scores 

obtained for each language pair, the cz-en pair 

undergoes the most remarkable improvement, 

moving from 0.263 up to 0.268. 

4 Conclusions and Future Work 

In this paper we have described VERTa, a lin-

guistically-motivated MT metric and the three 

versions submitted to the WMT15: VERTa-

70Adeq30Flu, VERTa-W and VERTa-EQ. 

VERTa-70Adeq30Flu combines Adequacy fea-

tures and Fluency features to rank MT segments; 

VERTa-W uses some of the modules in VERTa 

with different weights assigned to each module; 

and finally, VERTa-EQ uses all modules in 

VERTa with equal weights assigned. 

Two first versions of VERTa were submitted 

last year; however, our current submissions to 

WMT15 include two more modules: the first 

new module uses a NERC component whereas 

the second uses a Language Model. 

By means of our experiments we have been 

able to study two key areas in automatic MT 

evaluation: a) how Adequacy and Fluency fea-

tures can be used and adapted to ranking-based 

evaluation; and b) how VERTa behaves when 

different pairs of languages are considered. 

Our experiments have shown that VERTa 

shows a stable performance for almost all lan-

guage pairs evaluated, with the exception of the 

fr-en pair, for which the LM Module seemed to 

be the most effective one. Such high influence 

might indicate that when translating from French 

into English word order plays an important role 

and MT evaluation metrics should handle it ef-

fectively. 

Finally, we have compared our new versions 

to the versions submitted last year, and although 

results are not outstanding, VERTa’s perfor-

mance at segment level has improved slightly, 

especially in the case of VERTa-70Adeq30Flu 

and VERTa-W. 

In the future we would like to apply machine-

learning techniques to the combination of mod-

ules since we think our metric could greatly ben-

efit from this approach. In addition, since our 

metric uses a wide range of NLP tools, we would 

like to explore how NLP tool errors influence the 

performance of the metric. 
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Abstract

An important limitation of automatic eval-
uation metrics is that, when comparing
Machine Translation (MT) to a human ref-
erence, they are often unable to discrimi-
nate between acceptable variation and the
differences that are indicative of MT er-
rors. In this paper we present UPF-Cobalt
evaluation system that addresses this issue
by penalizing the differences in the syntac-
tic contexts of aligned candidate and refer-
ence words. We evaluate our metric using
the data from WMT workshops of the re-
cent years and show that it performs com-
petitively both at segment and at system
levels.

1 Introduction

Current automatic MT evaluation methods are
grounded on the following key idea: the closer
an MT is to a professional Human Translation
(HT), the higher its quality. Thus, metrics typ-
ically calculate evaluation scores based on some
sort of similarity between machine and human
translations. The performance of evaluation sys-
tems is in its turn evaluated by calculating the
correlation with human judgments. Manual qual-
ity assessment can be conducted in various ways:
adequacy and fluency scoring, calculating post-
editing cost or post-editing time, error analysis,
ranking, etc. In the latter case, humans are asked
to compare the outputs of different MT systems
and rank them in terms of quality. Ranking-
based evaluation has gained a lot of attention in
the recent years and is used in important evalu-
ation campaigns such as the Metrics task at the
Workshop on Machine Translation (WMT). This

This work was supported by IULA (UPF) and the FI-
DGR grant program of the Generalitat de Catalunya.

setting is preferred, since it has been shown to
yield higher inter-annotator agreement than ab-
solute quality assessment (Callison-Burch et al.,
2007).

In our opinion, one of the main reasons why the
correlation between automatic evaluation and hu-
man rankings is still not satisfactory is that met-
rics’ scores are not discriminative enough to ap-
proximate human comparisons. Given various
candidate translations of the same source sentence,
all of them different from the reference, evaluation
systems are often unable to determine which trans-
lation is better as they cannot tell apart candidate-
reference differences related to acceptable linguis-
tic variation and the differences induced by MT
errors. Furthermore, if all candidate translations
contain a number of translation errors, metrics fail
to predict the human ranking because they make
no estimation of the relative importance of differ-
ent types of MT errors for the overall translation
quality.

We suggest that the aforementioned limitations
can be addressed by means of enhancing word
comparison with contextual information. Varia-
tion between two translation options is acceptable
if semantically similar words in the corresponding
sentences occur in equivalent contexts. In case of
translation errors either the lexical choice is inap-
propriate or the syntactic contexts of the words are
different (incorrect choice of function words, word
order errors, etc.).

Our evaluation metric, UPF-Cobalt1 exploits
contextual information by means of weighting the
contribution of each pair of lexically similar words
in candidate and reference translations depending
on whether they occur in similar syntactic environ-
ments. Syntactic functions of the words in context
are taken into consideration. In this way, more

1The metric is freely available for download at
https://github.com/amalinovskiy/
upf-cobalt.
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fine-grained distinctions can be made regarding
the relative importance of mistranslated material.

In this paper we present UPF-Cobalt submis-
sion to the WMT15 Metrics task. Experiments
show that UPF-Cobalt achieves competitive re-
sults, both at segment and at system levels. On
WMT14 data, our metric would have been ranked
as second-best performing metric at segment level,
and tied with the first best-performing metric at
system level.

The rest of this paper is organized as follows.
Section 2 describes UPF-Cobalt. In Section 3
we present the experiments and analyze the re-
sults. Section 4 examines relevant pieces of re-
lated work. Finally, in Section 5 we give the con-
clusions and suggest directions for future work.

2 Metric Description

Following MacCartney et al. (2006), we argue
that for measuring sentence similarity and related
tasks, identifying similar words and deciding on
the relation between the two sentences should be
kept separate. This is especially relevant for MT
evaluation where system output may share a high
number of similar words with the reference and
still be grammatically ill-formed and totally un-
acceptable. Thus, not only the number but also
the characteristics of the correspondences between
candidate and reference words must be taken into
consideration. Therefore, we follow a two-stage
approach to evaluation. First, MT is aligned to the
reference. Next, the candidate translation is scored
taking into account both the number of aligned
words and their roles in the corresponding sen-
tences.

2.1 Monolingual Word Aligner

We assume that using better candidate-reference
alignment results in better MT evaluation. Re-
search in the area of monolingual alignment
demonstrates that exploiting syntactic context to
discriminate between candidate pairs for align-
ment significantly improves the results (MacCart-
ney et al., 2008; Thadani et al., 2012; Yao et al,
2013; Sultan et al., 2014). The alignment mod-
ule of UPF-Cobalt builds on an existing system
Monolingual Word Aligner (MWA)2 which takes
context information into account and has been

2https://github.com/ma-sultan/
monolingual-word-aligner.

shown to significantly improve on state-of-the-art
results (Sultan et al., 2014).

MWA exploits lexical similarity and contex-
tual evidence to make alignment decisions. Lex-
ical similarity component identifies possible can-
didates for alignment. In addition to exact and
lemma match, Paraphrase Database (Ganitkevitch
et al., 2013) of lexical and phrasal paraphrases
is employed to recognize semantically similar
words.3

We enhance MWA with additional lexical sim-
ilarity resources to maximize the coverage of the
alignment. In addition to the paraphrase database,
UPF-Cobalt employs WordNet synsets (Miller and
Fellbaum, 2007) and distributional similarity (Tur-
ney and Pantel, 2010). WordNet is commonly
used in MT evaluation and related fields for deal-
ing with lexical variation. By contrast, to the best
of our knowledge, distributional similarity has not
yet been exploited for the evaluation task.

We use publically available distributional simi-
larity resource (Levy and Goldberg, 2014), which
contains dependency-based word embeddings. To
minimize the noise, we establish the following re-
strictions. To be considered candidates for align-
ment the words must have the cosine similarity
higher than a threshold (based on data observa-
tion, we currently define it as 0.25). Also, they
must have at least one pair of exact matching con-
tent words in their contexts.

Contextual evidence is used to choose the best
alignment candidates and is defined as the number
of similar words in the contexts of the words to
be aligned. At syntactic level, the context is con-
stituted by the head and dependent nodes in a de-
pendency graph.4 Context words are considered as
evidence for alignment if they are lexically similar
and have the same or equivalent syntactic relations
with the words to be aligned.

Sultan et al. (2014) have developed a list of
mappings between different syntactic functions
that instantiate the same semantic relation. Thus,
for example, the dependency relation between
subject and predicate in an active clause and by-
agent and predicate in a passive clause are defined
to be equivalent. We consider that this function-
ality is helpful for addressing syntactic variation
in reference-based MT evaluation and reuse it for

3MWA does not support phrase-level alignments, but the
framework is flexible enough to integrate them in the future.

4The dependencies are extracted with Stanford depen-
dency parser (de Marneffe et al., 2006).
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scoring.

2.2 Scoring Method
Given a candidate-reference alignment, we further
need to know if the correspondences identified at
the alignment stage are actually indicative of MT
quality. UPF-Cobalt computes a score for each
pair of aligned words as a combination of their lex-
ical similarity and the differences of the syntactic
contexts in which the words occur.

Lexical Similarity. The weights for different
types of lexical similarity are established heuris-
tically, depending on the accuracy of the lexical
resource that was used for aligning them:5

• Word form: 1.0

• Lemma or stem: 0.9

• WordNet synsets: 0.8

• Paraphrase database: 0.6

• Distributional similarity: 0.5

Context Penalty. Context penalty is applied
in cases where aligned words play different roles
in the corresponding sentences. For each pair of
aligned nodes (h) in the candidate translation and
(r) in the reference translation context penalty is
calculated as follows:

CP (h, r) =

∑
1..i w(ci)

count(c)
× ln(count(c) + 1)

w(ci) =

{
0, if ci ∈ |A|
w(dep(ci)), otherwise

(1)

Where (c) refers to the words that belong to the
syntactic context of the reference word (r) (imme-
diate neighbors in the dependency graph).6 If the
context word is found in the set of aligned word
pairs |A| and its counterpart in the candidate trans-
lation has the same or equivalent syntactic rela-
tion with the word (h), the weight w(ci) equals to
0. Otherwise, the weight is defined according to
the relative importance of the dependency function
of the context word. Intuitively, mistranslating or
omitting words with syntactic functions that corre-
spond to arguments alters the context to a greater

5We experimented with optimizing the weights for differ-
ent types of lexical similarity, as well as for the classes of
dependency functions discussed below. However, the opti-
mization gave approximately the same values, showing that
our intuition was essentially correct.

6Context penalty is calculated both on reference and on
candidate sides and the resulting values are averaged.

extent than dropping a determiner or an adjunct.
We define three groups of syntactic functions ac-
cordingly and establish the corresponding weights
as follows:

• Arguments and complements: 1.0

• Modifiers and adjuncts: 0.8

• Specifiers and auxiliaries: 0.2

The natural logarithm of count(c) in Formula
(1) gives a higher value to the contextual differ-
ence when the number of context words is high,
while limiting the increase if the number of con-
text words continues to grow. The final value of
context penalty is normalized from 0 to 1 using
logarithmic function:

Pen(h, r) = 2× 1

1 + e−CP (h,r)
(2)

Given the values of lexical similarity and con-
text penalty, the score for each pair of aligned
word is defined as follows:

a(h, r) = LexSim(h, r)− Pen(h, r) (3)

Sentence-level score is then calculated as a
weighted combination of precision and recall over
the sum of the scores for aligned candidate and ref-
erence words. To obtain system-level scores, we
computed the ratio of sentences in which each sys-
tem was assigned the highest sentence-level score
by our metric.

3 Experiments

We conduct experiments with the data from
WMT13 and WMT14 Metrics tasks (Macháček
and Bojar, 2013; Macháček and Bojar, 2014).
To evaluate our metric’s performance at segment
level, we use Kendall’s Tau correlation (τ ) with
human rankings, as defined in (Macháček and Bo-
jar, 2014). At system level, we use Pearson cor-
relation coefficient (r). Table 1 presents the re-
sults averaged over all into-English translation di-
rections. For the sake of comparison, we provide
the results for the best performing metrics that par-
ticipated in WMT13 and WMT14 Metrics tasks,
as well as baseline metrics BLEU (Papineni et al.,
2002) and Meteor (Denkowski and Lavie, 2014).

As shown in Table 1, our approach is compet-
itive (UPF-Cobalt would have been ranked as the
best performing metric on WMT13 data and as the
second best on WMT14 data) and generalizes well
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Segment-level System-level
Metric WMT13 WMT14 WMT13 WMT14

DiscoTK-Party-Tuned (Guzman et al., 2014) - 0.386 - 0.944
BEER (Stanojević and Sima’an, 2014) - 0.362 - -

REDCombSent (Wu and Yu, 2014) - 0.356 - -
SimpBLEU-Recall (Song et al., 2013) 0.215 - 0.923 -

Depref-Align (Wu et al., 2013) 0.238 - 0.926 -
BLEU (Papineni et al., 2002) 0.197 0.285 0.854 0.888

Meteor (Denkowski and Lavie, 2014) 0.264 0.354 0.950 0.829
UPF-Cobalt 0.273 0.367 0.956 0.944

Table 1: Evaluation results on WMT13 and WMT14 datasets at segment and system levels

across different datasets with no need for parame-
ter optimization.

In addition to the overall evaluation, we per-
formed a series of ablation tests in order to as-
sess the impact of the individual features of UPF-
Cobalt. Each row in Table 2 below shows a
feature excluded from the metric and the aver-
aged Kendall’s tau segment-level correlation for
WMT14 dataset.

Kendall’s (τ )
UPF-Cobalt 0.367
(-) context penalty 0.319
(-) distrib. similarity 0.357
(-) weights on dep. functions 0.360
(-) equiv. dep. types 0.363

Table 2: Ablation test results

Context penalty. To estimate the benefit of us-
ing our context penalty we substituted it with frag-
mentation penalty from Meteor, which explicitly
penalizes differences in sequential word order. As
expected, this results in a significant drop in the
correlation. Thus, this new component is indeed
crucial for our metric’s performance.

MWA has been shown to outperform Meteor in
the alignment task. However, contrary to our ex-
pectations, simply using a more accurate aligner
does not suffice to improve the correlation (Me-
teor achieves 0.354 correlation on this dataset).
Manual inspection of the results shows that this is
primarily due to the fact that MWA does not sup-
port phrase-level alignments. This functionality is
highly relevant for the evaluation task as it allows
covering acceptable variation that involves multi-
word expressions. We plan to integrate phrasal
alignments in the metric in the future.

Distributional similarity. Removing this com-
ponent implies a considerable decrease in the cor-
relation. Qualitative analysis of the results shows

that its main contribution concerns cases of quasi-
synonyms, i.e. words that can be considered syn-
onymous only given the similarity of their con-
texts. The noise introduced by the component is
neutralized by context penalty. If unrelated words
are aligned, their context penalty will be high and
aligning them won’t increase sentence-level eval-
uation score. Also, in the ranking formulation of
the evaluation task, distributional similarity helps
to discriminate between low-quality translations.
That is to say, it allows distinguishing sentences
where words are at least minimally related from
sentences, in which, for instance, source-language
words are simply left untranslated.

Dependency weights. To test if giving different
weights to contextual differences according to the
dependency functions of the words involved, we
put the values of all the weights to 1. This neg-
atively affects the results, confirming that some
differences are stronger indicators of MT errors
than others. Thus, using the proposed weight-
ing scheme the metric is capable of discriminat-
ing more or less serious MT errors based on the
relative importance of mistranslated material.

Equivalence of syntactic constructions. Elim-
inating this functionality produces a smaller de-
crease in the correlation. Representing syntactic
context as immediate neighbors of the word in a
dependency graph allows covering a limited set of
equivalent constructions, which are not frequent
enough to have a significant impact on the results.
The framework is flexible and more complex con-
text equivalence definitions can be integrated in
the future.

To appreciate the advantages of the metric, Ta-
ble 3 provides a qualitative comparison of UPF-
Cobalt’s performance with strong baseline met-
ric Meteor.7 In this example, Meteor assigns low

7Stanford typed dependencies from Marneffe and Man-
ning, (2008) are used for the description of syntactic rela-
tions.
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Ref: An Obama voter ’s cry of despair.

nn poss Equivalent dep.
types

Scores

UPF-Cobalt Meteor

Cand1: The cry of despair of a voter for Obama.

prep for

prep of

prep of ≈ poss
prep for ≈ nn 0.804 0.389

Cand2: The cry of despair of a voter Obama.

appos

prep of

prep of ≈ poss
appos 6= nn 0.646 0.393

Table 3: Example of candidate and reference translations with the corresponding Meteor and
UPF-Cobalt scores

scores to both candidate translations, due to the
differences in word order and the presence of func-
tion words absent in the reference. However, it
is clear that Candidate 1 is perfectly acceptable,
whereas Candidate 2 contains an error concern-
ing the relation between the words “voter” and
“Obama”. UPF-Cobalt correctly assigns a higher
score to Candidate 1. Here all the content words
are aligned and no context penalty is applied,
since the syntactic contexts in which the words
occur are equal or equivalent. Thus, prep for re-
lation in the candidate translation is equivalent to
noun compound modifier relation nn in the ref-
erence and prep of label in the candidate corre-
sponds to possession modifier poss in the refer-
ence. UPF-Cobalt assigns a lower score to Can-
didate 2 due to the differences in the syntactic
contexts of the words “voter” (context penalty –
0.426) and “Obama” (context penalty – 0.286),
which constitute a translation error. Thus, context
penalty values calculated for each pair of aligned
words can be used for spotting and locating trans-
lation errors.

Qualitative analysis of the results also shows an
interesting pattern in cases where UPF-Cobalt is
outperformed by other metrics. This pattern is par-
ticularly relevant in the ranking evaluation setting.
Consider the following example.
Ref: Nevada has already completed a pilot.
Cand1: Nevada already has completed the pilot
project.
Cand2: Nevada has already completed the pilot
project.

When ranking translations humans intend to
avoid ties whenever possible. Both Candidate 1
and Candidate 2 are essentially correct, but the
second translation is more adequate with regards

to the norms and conventions of target language
use. UPF-Cobalt assigns equal scores to both
MTs. Thus, it successfully avoids penalizing ac-
ceptable differences in word order (the differences
that do not affect the output of the dependency
parser). However, it is not able to make more fine-
grained distinctions regarding the fluency of MT.
This issue can be addressed by integrating target
language model features in the metric.

4 Related Work

Metrics based on string-level comparison take
context into account in a simplistic manner. For
instance, BLEU (Papineni et al., 2002) uses n-
grams with length (1-4) and Meteor (Denkowski
and Lavie, 2014) addresses the differences in se-
quential word order by means of fragmentation
penalty, based on the number of adjacent aligned
words. This often leads to penalizing acceptable
differences induced by the use of semantically
equivalent expressions. At the same time, spu-
rious matches of the words that coincide in their
surface form but play totally different roles in the
corresponding sentences can incorrectly increase
evaluation score.

To address these limitations a series of linguis-
tically informed approaches have been proposed.
Amigó et al. (2006) measure the degree of over-
lap between the dependency trees of candidate
and reference translations. Giménez and Màrquez
(2010) propose a combination of specialized sim-
ilarity measures operating at different linguistic
levels (lexical, syntactic and semantic). Guzman
et al. (2014) further enrich this metric set with dis-
course level information. Padó et al. (2009) mea-
sure MT quality based on a rich set of features mo-
tivated by textual entailment.
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Our work follows this line of research and ex-
ploits syntactic context to characterize the corre-
spondences between the words in candidate and
reference translations. In addition, we address the
problem of syntactic variation that has rarely been
dealt with in linguistically-informed MT evalua-
tion. As shown in Fomicheva et al. (2015), this
kind of variation is a regular source of differ-
ences between human reference and MT. Struc-
tural shifts (Ahrenberg and Merkel, 2000) are
common practice in HT. Translators often intro-
duce optional changes to the original sentence in
order to adhere to specific principles of target lan-
guage use, including stylistic issues and discourse
processing conditions. MT may not contain such
shifts but still be grammatically well-formed and
perfectly deliver the contents of the source sen-
tence. By taking into consideration the equiva-
lence of syntactic constructions it is possible to
avoid penalizing MT in these cases.

5 Conclusions and Future Work

We have shown that using contextual informa-
tion helps to distinguish candidate translations that
are different from the reference and still essen-
tially correct from those that share high number
of words with HT but fail to preserve the meaning
of the source sentence due to translation errors.

Also, we enhanced existing methods for ad-
dressing meaning-preserving variation by exploit-
ing distributional similarity at lexical level and
classes of equivalent dependency types at syntac-
tic level. The results demonstrate that the metric
achieves competitive performance on WMT13 and
WMT14 data.

As future work, we consider improving the
metric by extending the alignment component to
phrase-level and refining the equivalent depen-
dency types to increase the coverage of linguistic
variation at syntactic level. Another interesting di-
rection would be to integrate target-language fea-
tures and take into consideration the properties of
non-aligned material. Finally, we plan to test if the
metric can be successfully used for error detection
and classification.
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Measures for Automatic Machine Translation Eval-
uation. Machine Translation, 24(3-4):77–86.

Francisco Guzman, Shafiq Joty, Lluı́s Màrquez,
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Abstract

This paper presents our metric (UoW-
LSTM) submitted in the WMT-15 met-
rics task. Many state-of-the-art Machine
Translation (MT) evaluation metrics are
complex, involve extensive external re-
sources (e.g. for paraphrasing) and require
tuning to achieve the best results. We
use a metric based on dense vector spaces
and Long Short Term Memory (LSTM)
networks, which are types of Recurrent
Neural Networks (RNNs). For WMT-
15 our new metric is the best performing
metric overall according to Spearman and
Pearson (Pre-TrueSkill) and second best
according to Pearson (TrueSkill) system
level correlation.

1 Introduction

Deep learning approaches have turned out to be
successful in many NLP applications such as para-
phrasing (Mikolov et al., 2013b; Socher et al.,
2011), sentiment analysis (Socher et al., 2013b),
parsing (Socher et al., 2013a) and machine trans-
lation (Mikolov et al., 2013a). While dense vec-
tor space representations such as those obtained
through Deep Neural Networks (DNNs) or Re-
current Neural Networks (RNNs) are able to cap-
ture semantic similarity for words (Mikolov et
al., 2013b), segments (Socher et al., 2011) and
documents (Le and Mikolov, 2014) naturally, tra-
ditional measures can only achieve this using re-
sources like WordNet and paraphrase databases.

This paper presents a novel, efficient and com-
pact MT evaluation measure based on RNNs. Our
metric (Gupta et al., 2015) is simple in the sense
that it does not require much machinery and re-
sources apart from the dense word vectors. This
cannot be said of most of the state-of-the-art MT
evaluation metrics, which tend to be complex and

require extensive feature engineering. Our met-
ric is based on RNNs and particularly on Tree
Long Short Term Memory (Tree-LSTM) networks
(Tai et al., 2015). LSTM is a sequence learning
technique which uses a memory cell to preserve
a state over a long period of time. This enables
distributed representations of sentences using dis-
tributed representations of words. Tree-LSTM
(Tai et al., 2015) is a recent approach, which
is an extension of the simple LSTM framework
(Hochreiter and Schmidhuber, 1997; Zaremba and
Sutskever, 2014).

2 Related Work

Many metrics have been proposed for MT eval-
uation. Earlier popular metrics are based on n-
gram counts (e.g. BLEU (Papineni et al., 2002)
and NIST (Doddington, 2002)) or word error rate.
Other popular metrics like METEOR (Denkowski
and Lavie, 2014) and TERp (Snover et al., 2008)
also use external resources like WordNet and para-
phrase databases. However, system-level cor-
relation with human judgements for these met-
rics remains below 0.90 Pearson correlation co-
efficient (as per WMT-14 results, BLEU-0.888,
NIST-0.867, METEOR-0.829, TER-0.826, WER-
0.821).

Recent best performing metrics in the WMT-
14 metric shared task (Machácek and Bojar, 2014)
used a combination of different metrics. The top
performing system DiskoTK-Party-Tuned (Joty et
al., 2014) in the WMT-14 task uses five differ-
ent discourse metrics and twelve different metrics
from the ASIYA MT evaluation toolkit (Giménez
and Màrquez, 2010). The metric computes the
number of common sub-trees between a reference
and a translation using a convolution tree kernel
(Collins and Duffy, 2001). The basic version of
the metric does not perform well but in combi-
nation with the other 12 metrics from the ASIYA
toolkit obtained the best results for the WMT-14
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metric shared task. Another top performing metric
LAYERED (Gautam and Bhattacharyya, 2014),
uses linear interpolation of different metrics. LAY-
ERED uses BLEU and TER to capture lexical sim-
ilarity, Hamming score and Kendall Tau Distance
(Birch and Osborne, 2011) to identify syntactic
similarity, and dependency parsing (De Marneffe
et al., 2006) and the Universal Networking Lan-
guage1 for semantic similarity.

For our participation in the WMT-15 task,
we used our metric ReVal (Gupta et al.,
2015). ReVal metric is based on dense vec-
tor spaces and Tree Long Short Term Mem-
ory networks. This metric achieved state of
the art results for the WMT-14 dataset. The
metric including training data is available at
https://github.com/rohitguptacs/ReVal.

3 LSTMs and Tree-LSTMs

Recurrent Neural Networks allow processing of
arbitrary length sequences, but early RNNs had
the problem of vanishing and exploding gradi-
ents (Bengio et al., 1994). RNNs with LSTM
(Hochreiter and Schmidhuber, 1997) tackle this
problem by introducing a memory cell composed
of a unit called constant error carousel (CEC) with
multiplicative input and output gate units. Input
gates protect against irrelevant inputs and output
gates against current irrelevant memory contents.
This architecture is capable of capturing important
pieces of information seen in a bigger context.
Tree-LSTM is an extension of simple LSTM. A
typical LSTM processes the information sequen-
tially whereas Tree-LSTM architectures enable
sentence representation through a syntactic struc-
ture. Equation (1) represents the composition of a
hidden state vector for an LSTM architecture. For
a simple LSTM, ct represents the memory cell and
ot the output gate at time step t in a sequence. For
Tree-LSTM, ct represents the memory cell and ot

represents the output gate corresponding to node
t in a tree. The structural processing of Tree-
LSTM makes it more favourable for representing
sentences. For example, dependency tree structure
captures syntactic features and model parameters
capture the importance of words (content vs. func-
tion words).

ht = ot ⊙ tanh ct (1)

1http://www.undl.org/unlsys/unl/unl2005/UW.htm

Figure 1 shows simple LSTM and Tree-LSTM
architectures.
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Figure 1: Tree-LSTM (left) and simple LSTM
(right)

4 Evaluation Metric

We used the ReVal (Gupta et al., 2015) metric for
this task. This metric represents both the reference
(href ) and the translation (htra) using a depen-
dency Tree-LSTM (Tai et al., 2015) and predicts
the similarity score ŷ based on a neural network
which considers both distance and angle between
href and htra:

h× = href ⊙ htra

h+ = |href − htra|
hs = σ

(
W (×)h× + W (+)h+ + b(h)

)
p̂θ = softmax

(
W (p)hs + b(p)

)
ŷ = rT p̂θ

(2)

where, σ is a sigmoid function, p̂θ is the estimated
probability distribution vector and rT = [1 2...K].
The cost function J(θ) is defined over probability
distributions p and p̂θ using regularised Kullback-
Leibler (KL) divergence.

J(θ) =
1
n

n∑
i=1

KL
(
p(i)||p̂(i)

θ

)
+

λ

2
||θ||22 (3)

In Equation 3, i represents the index of each train-
ing pair, n is the number of training pairs and p is
the sparse target distribution such that y = rT p is
defined as follows:

pj =


y − ⌊y⌋, j = ⌊y⌋+ 1
⌊y⌋ − y + 1, j = ⌊y⌋
0 otherwise
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for 1 ≤ j ≤ K. Where, y ∈ [1,K] is the
similarity score of a training pair. For example,
for y = 2.7, pT = [0 0.3 0.7 0 0]. In our case, the
similarity score y is a value between 1 and 5.

To compute our training data we automatically
convert the human rankings of the WMT-13 eval-
uation data into similarity scores between the ref-
erence and the translation. These translation-
reference pairs labelled with similarity scores are
used for training. We also augment the WMT-13
data with 4500 pairs from the SICK training set
(Marelli et al., 2014), resulting in a training dataset
of 14059 pairs in total.

The metric uses Glove word vectors (Penning-
ton et al., 2014) and the simple LSTM, the de-
pendency Tree-LSTM and neural network imple-
mentations by Tai et al. (2015). Training is per-
formed using a mini batch size of 25 with learning
rate 0.05 and regularization strength 0.0001. The
memory dimension is 300, hidden dimension is
100 and compositional parameters are 541,800.
Training is performed for 10 epochs. System level
scores are computed by aggregating and normal-
ising the segment level scores. Full details can be
found in (Gupta et al., 2015).2

5 Results

The results for WMT-15 are presented in Table 1
and Table 2.

Table 1 shows system-level Pearson correlation
(TrueSkill) (see (Bojar et al., 2013) for differ-
ence between TrueSkill and Pre-TrueSkill system-
ranking approaches) obtained on different lan-
guage pairs as well as average (PAvg) over all
language pairs. The second last column shows
average Pearson correlation (Pre-TrueSkill). The
last column shows average Spearman correlation
(SAvg). The 95% confidence level scores are
obtained using bootstrap resampling as used in the
WMT-2015 metric task evaluation. Table 2 shows
results on segment-wise Kendall tau correlation.

The first section of Table 1 and Table 2 shows
the results of our ReVal metric as UoW-LSTM, the
second section shows the other four top perform-
ing metrics and the third section shows baseline
metrics (BLEU, TER and WER for system-level
and SENTBLEU for segment level).

Table 1 shows that our metric obtains the best
results overall for both Pearson (Pre-TrueSkill)

2Please refer to L+Sick(100, 300) in (Gupta et al., 2015)
for more details and results on the WMT-14 settings.

and Spearman system-level correlation and second
best overall using Pearson (TrueSkill) correlation.
Table 2 shows that while improving over SENT-
BLEU our metric does not obtain high segment
level scores.

6 Conclusion and Future Work

Our dense-vector-space-based ReVal metric is
simple, elegant and fully competitive with the best
of the current complex alternative approaches that
involve system combination, extensive external re-
sources, feature engineering and tuning. In future
work we will investigate the difference between
system and segment level evaluation scores.
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abith. 2015. Reval: A simple and effective machine
translation evaluation metric based on recurrent neu-
ral networks. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), Lisbon, Portugal.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Shafiq Joty, Francisco Guzmán, Lluı́s Màrquez, and
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Abstract

This paper describes Meteor-WSD and
RATATOUILLE, the LIMSI submissions to
the WMT15 metrics shared task. Meteor-
WSD extends synonym mapping to lan-
guages other than English based on align-
ments and gives credit to semantically
adequate translations in context. We
show that context-sensitive synonym se-
lection increases the correlation of the
Meteor metric with human judgments
of translation quality on the WMT14
data. RATATOUILLE combines Meteor-
WSD with nine other metrics for eval-
uation and outperforms the best metric
(BEER) involved in its computation.

1 Introduction

The Meteor metric evaluates translation hypothe-
ses by aligning them to reference translations
and calculating sentence-level similarity scores
(Banerjee and Lavie, 2005; Denkowski and Lavie,
2010). The space of possible alignments for a
hypothesis-reference pair is constructed by identi-
fying all possible matches between the sentences
according to different matchers mapping words
with identical surface forms or having the same
stem, WordNet synonyms and paraphrases. These
modules add flexibility to the metric and im-
prove its correlation with human judgments of
translation quality but they fail to account for
important semantics-related aspects. For exam-
ple, Meteor and Meteor-NEXT treat all the vari-
ants available for a particular text fragment in
WordNet (Fellbaum, 1998) or a pivot paraphrase
database (Bannard and Callison-Burch, 2005) as
semantically equivalent. Consequently, erroneous
matches can be made by mapping synonyms found
in different WordNet synsets and describing dif-
ferent senses. Similarly, pivot paraphrase sets

merge sense boundaries in cases of polysemous
words (Apidianaki et al., 2014), which means that
paraphrases of different senses are considered as
equivalent and can be mapped during evaluation.
To avoid erroneous matches between text seg-
ments, it is thus important to restrict the available
word and phrase variants to the ones that are cor-
rect in a specific context.

Context-based synonym selection is the main
idea behind the Meteor-WSD metric submitted to
the WMT15 Metrics Shared Task. The mecha-
nism used for sense selection is described in detail
in the next section where we also present the re-
sults obtained by the Meteor-WSD metric on the
WMT14 evaluation dataset. Section 3 presents the
RATATOUILLE metric which integrates Meteor-
WSD together with nine other evaluation metrics.
We report results in all language pairs and direc-
tions of the WMT14 dataset, except for hi-en.

2 Meteor-WSD

2.1 Context-dependent sense selection

A first attempt to integrate context-based sense se-
lection in Meteor is described in Apidianaki and
Marie (2015). Word sense disambiguation (WSD)
was performed using the Babelfy tool (Moro et al.,
2014) which relies on the multilingual resource
BabelNet (Navigli and Ponzetto, 2012). BabelNet
is a wide coverage semantic network where senses
are described by synsets (synonym and paraphrase
sets) containing lexicographic and encyclopedic
knowledge extracted from various sources in many
languages and are linked between them by dif-
ferent types of relations. Depending on the lan-
guage, the lexical and phrase variants available in
the synsets come from different sources such as
WordNet, Wikipedia, Wiktionary, OmegaWiki as
well as Machine Translation output. The Babelfy
tool jointly performs WSD and Entity Linking
by exploiting BabelNet’s graph structure and se-
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lects multilingual BabelNet synsets that correctly
describe the semantics of words in context.1 In
Apidianaki and Marie (2015), Babelfy assigned
BabelNet synsets to words in the English refer-
ences of the WMT14 dataset. The WordNet lit-
erals found in the synset selected for an English
word served to filter the WordNet synonym set
used by the basic Meteor configuration in order
to keep only variants that were good in this spe-
cific context and discard the ones corresponding
to other senses. The reported MT evaluation re-
sults showed the beneficial impact of disambigua-
tion which improved the correlation of the metric
to human judgments from almost all languages in-
volved in the WMT14 evaluation into English (ex-
cept for Czech-English). Naturally, performance
strongly depends on the quality of the WSD anno-
tations.

In this work, we use a recent version of the
alignment-based WSD method proposed by Apid-
ianaki and Gong (2015) which gives better dis-
ambiguation results than Babelfy on the WMT14
data. Disambiguation is now applied to references
of all languages in the data, not only in English.
The WSD method used in our experiments still re-
lies on alignments but implements a mechanism
that improves WSD in languages other than En-
glish compared to the previous version. More pre-
cisely, Apidianaki and Gong (2015) showed that
the problematic sorting performed by the default
BabelNet sense ranking mechanism in languages
other than English has a strong negative impact
on WSD. 2 In our experiments, we implement an
alternative solution that eliminates the need for
sense ranking. Furthermore, the currently used
version integrates a multiword expression (MWE)
identification step prior to disambiguation.

2.2 Data preparation

The WMT14 shared task involved five language
pairs: English-French / German / Czech / Rus-
sian / Hindi. We provide results for all languages
except for Hindi, and for both translation direc-
tions. Source and reference texts are lemmatised
and part-of-speech tagged using the TreeTagger

1The Babelfy API can be downloaded from http://
babelfy.org

2The BabelNet API sorts English senses according to their
frequencies in WordNet, which are calculated from the sense
annotated English corpus SemCor. As frequency information
is not available for languages other than English, the Babel-
Net API sorts senses in lexicographic order, a criterion that
fails to reflect their importance.

(Schmid, 1994), except for Czech where the Mor-
phoDiTa tool (Straková et al., 2014) is used. The
texts are then aligned at the lemma level using
GIZA++ (Och and Ney, 2003).

2.3 Alignment-based MWE extraction

We identify candidate multiword expressions in
the reference texts prior to disambiguation using
word alignments and filter them using information
in the BabelNet resource (version 2.5).3 We con-
sider as a candidate MWE a sequence of words in
one language that is aligned to a single word in the
other language (a n : 1 alignment).4 For example,
téléphone portable is considered as a candidate
French MWE because both its parts are aligned
to cellphone. We validate a candidate MWE if
it constitutes a separate entry in the BabelNet re-
source either in its lemmatised or in its unlemma-
tised form (retrieved from the text), otherwise we
discard it. This procedure eliminates many noisy
MWEs but some good ones are also left out be-
cause they are not present in the resource.

If a BabelNet entry is found for the MWE, the
variants provided in the corresponding synset are
extracted. For instance, we extract téléphone mo-
bile, téléphone cellulaire, and GSM as variants of
téléphone portable. The variants retrieved from
BabelNet are used to annotate the instances of the
MWEs in the reference texts. A validated MWE is
thus considered as a unit and is excluded from dis-
ambiguation. The WSD step, that follows, assigns
a sense to all content words (nouns, verbs, adjec-
tives and adverbs) in the reference text that were
not identified as part of a MWE.

2.4 Alignment-based disambiguation

The procedure for selecting the most adequate Ba-
belNet synset for an occurrence of a word (w) in
context is described in Figure 1. First, we find the
synsets of w (Sw) in BabelNet 2.5 and filter them
to keep only synsets that contain both w and its
aligned translation t in this context (St

w ⊆ Sw).
If only one synset is retained, we keep the vari-
ants (synonyms and paraphrases) of the same lan-
guage as w provided in this synset. If several

3The resource can be found at http://babelnet.
org together with detailed statistics regarding the number of
lemmas, senses and named entities provided, and the knowl-
edge sources that were exploited for each language. Note that
BabelNet’s coverage varies a lot across languages.

4In future work, we intend to extend this heuristic to
n : m alignments linking sequences of two or more words
in the two languages as in de Caseli et al. (2010).
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Notation:
Sw: the set of BabelSynsets for w
t: a translation of w in context
St

w: the set of synsets in which t appears
Vw: the set of synonyms/paraphrases of w
l: language

The Sense Selection Algorithm:
St

w ← ∅
Sw ← getBabelSynsets(w)
for each BabelSynset s ∈ Sw do

if t ∈ s then
add s to St

w

if |St
w| ≥ 1 then

for each BabelSynset s ∈ St
w do

Vw ← getVariants(s, l)
return (Vw)

else
if l = English then

Vw ← getVariants(getBFS(Sw,l),l)
else

for each BabelSynset s ∈ Sw do
Vw ← getVariants(s, l)

return (Vw)

Figure 1: The getBabelSynsets function re-
trieves the synsets available for w in BabelNet.
The getVariants function returns the variants
of w in the same language found in the synsets. If
no synset is retained through alignment, the sys-
tem falls back to the BFS baseline. The getBFS
function ranks English synsets according to impor-
tance and returns the most frequent one (BabelNet
First Sense).

synsets are retained, we keep the variants found
in all synsets. Given the fine granularity of Ba-
belNet senses (similar to WordNet), the intuition
behind this merge is that different synsets contain-
ing the word and its translation describe closely-
related senses.5 Grouping the synsets that con-
tain the aligned translation eliminates the need for
sense sorting which is problematic in languages
other than English, as explained in Section 2.1.

The system falls back to the most fre-
quent sense provided by the default sense
comparator of the BabelNet 2.5 API
(BabelSynsetComparator) for unaligned
English words or when the aligned translation
is not found in any synset. To avoid applying
the sense sorting procedure to languages other
than English, we keep all available synsets for
unaligned words in these languages or for words
whose alignment is not found in any synset. In

5The merge would lead to errors only in cases of parallel
ambiguities where the word and its translation carry the same
distant senses. Using translations in multiple languages could
improve accuracy in these cases.

these cases, variants from all synsets are grouped
together and no disambiguation is performed.

Disambiguation is applied to all content words
in the texts (nouns, verbs, adjectives and adverbs).
We impose no constraints on the part-of-speech
category of the synsets where the word and its
translation need to be found. If, for example,
world and its French translation monde are found
in both nominal and adjectival synsets, we extract
all variants available in the synsets. This adds flex-
ibility to the matching given that a word of a cer-
tain grammatical category might be translated by
a word of a different category in another language.

The WSD method enriches each reference sen-
tence with semantic variants valid in this precise
context. For example, variants provided for the
sentence: Only healthcare workers allowed in, in-
clude {exclusively, solely, alone, ...}, {health care
practitioner, healthcare provider, health care pro-
fessionals, ...}, {let, permit}. The disambiguation
might fail, especially in cases where alignment in-
formation is not available or cannot be used be-
cause of the limited coverage of the BabelNet re-
source in languages other than English. When the
annotations are correct, they help the Meteor met-
ric reward translations in the hypothesis that are
different from the ones in the reference but still
semantically correct.

2.5 Results

Our results are reported using Kendall’s τ for
segment-level evaluation and Pearson’s correla-
tion coefficient for system-level evaluation, all
computed with the official scripts and human judg-
ments provided by the WMT14 shared metrics
task organizers. The xx column in the results ta-
bles shows the average of all the language pairs
involved. 6

The results of Meteor-WSD at the segment-
level are reported in Table 1. Meteor-WSD cor-
relates slightly better with human judgments than
standard Meteor when English is the target lan-
guage, with an average improvement of .001. The
results are also better than the results obtained
by our previous version of Meteor-WSD (Apidi-
anaki and Marie, 2015), especially for the cs-en
language pair where correlation goes from .278
to .282. The differences between Meteor and

6This means that the score given for xx-en is the average
of the scores of all language pairs with English as a target
language. For xx-xx, the score is the average of all scores for
all language pairs.
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Metric fr-en de-en cs-en ru-en xx-en en-fr en-de en-cs en-ru en-xx xx-xx

Meteor-1.5 .406 .334 .282 .329 .338 .280 .238 .318 .427 .316 .327
Meteor-WSD .410 .332 .282 .332 .339 .280 .240 .321 .437 .320 .330

Table 1: Segment-level Kendall’s τ correlations of Meteor-WSD and the official WMT14 human judg-
ments.

Metric fr-en de-en cs-en ru-en xx-en en-fr en-de en-cs en-ru en-xx xx-xx

Meteor-1.5 .975 .927 .980 .805 .922 .941 .263 .976 .923 .776 .849
Meteor-WSD .975 .927 .979 .828 .927 .946 .258 .981 .929 .779 .852

Table 2: System-level Pearson’s coefficient correlations of Meteor-WSD and the official WMT14 human
judgments.

Meteor-WSD scores are much larger when En-
glish is the source language, probably due to the
fact that we activate the synonymy module7 and
perform disambiguation in the other languages us-
ing the semantic information provided in Babel-
Net while Meteor uses synonyms only for English.
This means that the synonyms left after disam-
biguation in languages other than English are use-
ful and help to improve the correlation with hu-
man judgments. Table 2 presents our results at
the system-level. As for the segment-level task,
Meteor-WSD performs better than Meteor for al-
most all language pairs, with a significant im-
provement of .023 for the ru-en language pair.

3 A Metric Combination: RATATOUILLE

3.1 The Metrics

RATATOUILLE is a metric combination involv-
ing ten metrics mainly dedicated to segment-
level evaluation: PER, WER, CDER (Leusch
et al., 2006), TER (Snover et al., 2006),
GTM 1.3 (Melamed et al., 2003), sentence-
level BLEU, Meteor 1.5, Meteor-WSD, RIBES
1.03.1 (Echizen’ya et al., 2013) and BEER
1.0 (Stanojević and Sima’an, 2014). For the met-
rics PER, WER, CDER, TER and sentence-level
BLEU we used the implementations available in
MOSES (Koehn et al., 2007). For the metrics
RIBES8 and BEER9 we used the implementations
published by their authors, and the implementa-

7As the synonymy module has no pre-defined weight
for such translation directions, we tuned its weight on the
WMT13 human judgments for each translation direction,
searching empirically for the best weight between 0 and 1
with a 0.2 step size.

8http://www.kecl.ntt.co.jp/icl/lirg/
ribes/index.html

9https://github.com/stanojevic/beer/

tion available in the Asiya toolkit10 (Giménez and
Màrquez, 2010) for the GTM metric.

3.2 Tuning

Each metric of the combination gives a score for
the evaluated segment. The score computed by
RATATOUILLE is the result of the log-linear com-
bination of each metric’s score. The weight for
each metric score is tuned using a similar approach
to PRO (Hopkins and May, 2011), already used
by Guzmán et al. (2014) in the context of metric
combination evaluation. In this pairwise approach,
candidate translation pairs are classified into two
categories: correctly or incorrectly ordered, reduc-
ing the tuning to a binary classification problem.
We studied two configurations, retaining all possi-
ble translation pairs or only pairs including trans-
lations separated by at least three ranks in the hu-
man judgments. We follow PRO which uses only
pairs of translations of significant different qual-
ity and does not learn to tease apart translations of
similar quality. Translation pairs used to tune the
metric for a given language pair include transla-
tions in the same target language independently of
the source language. If no human judgments are
available for a given language pair, we use all the
translation pairs independently of the target and
source languages to tune the metric.11 The classi-
fier used is a MaxEnt from the scikit-learn python
library (Pedregosa et al., 2011).

10http://nlp.lsi.upc.edu/asiya/
11For the fi-en language pair in the WMT15 metrics task,

we used translation pairs from xx-en to tune the metric for
fi-en and from en-xx to tune the metric for en-fi.
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RATATOUILLE tuning set fr-en de-en cs-en ru-en xx-en en-fr en-de en-cs en-ru en-xx xx-xx

all .426 .336 .294 .337 .348 .292 .286 .352 .459 .347 .348
>=3 .425 .342 .297 .340 .351 .293 .292 .345 .456 .347 .349

Table 3: Segment-level Kendall’s τ correlations of RATATOUILLE and the official WMT14 human judg-
ments using all WMT13 human judgments (all) or only all the translation pairs containing translations
separated by at least 3 ranks (>=3).

Metric fr-en de-en cs-en ru-en xx-en en-fr en-de en-cs en-ru en-xx xx-xx

BEER .417 .337 .284 .333 .343 .292 .268 .344 .440 .336 .340
RATATOUILLE w/o Meteor-WSD .423 .343 .296 .338 .350 .293 .291 .344 .454 .346 .348
RATATOUILLE w/o Meteor-1.5 .425 .341 .297 .339 .351 .293 .292 .345 .458 .347 .349
RATATOUILLE .425 .342 .297 .340 .351 .293 .292 .345 .456 .347 .349

Table 4: Segment-level Kendall’s τ correlations of RATATOUILLE and the official WMT14 human judg-
ments.

Metric fr-en de-en cs-en ru-en xx-en en-fr en-de en-cs en-ru en-xx xx-xx

Meteor 1.5 .975 .927 .980 .805 .922 .941 .263 .976 .923 .776 .849
RATATOUILLE w/o Meteor-WSD .974 .900 .994 .804 .918 .955 .403 .979 .946 .821 .869
RATATOUILLE w/o Meteor-1.5 .974 .899 .993 .804 .918 .958 .408 .979 .945 .823 .870
RATATOUILLE .974 .901 .993 .804 .918 .959 .408 .979 .944 .823 .870

Table 5: System-level Pearson’s coefficient correlations of RATATOUILLE and the official WMT14 hu-
man judgments.

3.3 Results

To tune RATATOUILLE, we used only the human
judgments provided at WMT13.12 As shown by
Joty et al. (2014), using more data brings no im-
provements when tuning metric combinations. For
system-level scores, the RATATOUILLE score for
each sentence is first passed through a sigmoid
function13 and the final system score is the aver-
age of all sentence scores.

In the first experiments with RATATOUILLE,
we tried to find a better subset of tuning exam-
ples among all the WMT13 translation pairs. We
present in Table 3 our results when tuning on
all translation pairs or on a subset including only
translation pairs separated by at least three ranks
in the human judgments. In spite of an important
reduction in the number of translation pairs used
to tune, we observed slight improvements in the
average for xx-en, from .348 to .351, while the av-
erage for en-xx remains the same. We assume that

12http://www.statmt.org/wmt13/results.
html

13We found out that not converting the scores with a sig-
moid function leads to a slightly lower correlation. Indeed
without this conversion scores are not bounded and can be
very different between sentences especially for long sen-
tences for which scores are very high, giving them more
weight when computing the average for the system-level
score.

this is probably due to the small number of transla-
tion pairs remaining for tuning after filtering; these
are far less numerous for language pairs with En-
glish as source language than for language pairs
with English as target language. Since on average
the translation pair filtering gives better results, we
report results for our experiments where we used
the >=3 subsets to tune RATATOUILLE.

The results obtained for RATATOUILLE at the
segment-level are presented in Table 4 along with
the results of BEER, the best metric among the
metrics that participated in the WMT14 metrics
task for all language pairs. RATATOUILLE gives
significantly better results than BEER – as ex-
pected, since BEER is used by RATATOUILLE –
with an average improvement of .009. The largest
improvements are observed for en-de (+.024) and
en-ru (+.016). For en-fr and en-cs, RATATOUILLE

results are only slightly better than BEER results
(+.001), meaning probably that BEER is not as-
sisted by the other metrics in RATATOUILLE to im-
prove correlation with human judgments.

BEER did not participate in the WMT14
system-level evaluation. Meteor participated in
this evaluation for all language pairs, so in Ta-
ble 5 we present the RATATOUILLE results along
with the results for Meteor. At this level,
RATATOUILLE performs better than Meteor but
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not for all language pairs. We observe, for in-
stance, a loss of .026 for de-en while we notice
a strong improvement of .145 for en-de. This con-
firms the difficulty to have consistent results across
language pairs at the system level as shown in the
official results of the WMT14 metrics task where
only one metric (PER) performed best on more
than one translation directions, en-cs and en-ru,
while different metrics perfomed best for each of
the remaining en-xx translation directions.

For both segment and system levels, we
also observed that withdrawing Meteor-1.5 from
RATATOUILLE does not change the results on av-
erage, while withdrawing Meteor-WSD slightly
decreases RATATOUILLE performance. This
means that Meteor-WSD can successfully replace
Meteor-1.5 in RATATOUILLE giving slightly better
results.

4 Conclusion

We have shown the positive impact brought by
introducing a word sense disambiguation step in
an MT evaluation metric. Although lexical vari-
ation was addressed in previous metrics such as
Meteor and Meteor-NEXT, synonyms and para-
phrases were considered without taking the ac-
tual context into account. The improved correla-
tion of the Meteor-WSD metric to human judg-
ments of translation quality confirms the impor-
tant role of the context in sense and synonym se-
lection. The performance of the disambiguation
method remains a crucial factor determining the
performance of the MT evaluation metric. In fu-
ture work, we intend to experiment with ways of
improving disambiguation quality and increasing
its coverage. Moreover, we intend to integrate
context-based filtering of paraphrases to help the
Meteor-WSD metric establish better matches be-
tween the compared translations. Last but not
least, as BEER uses Meteor to align hypotheses
and reference translations, we plan to replace Me-
teor by Meteor-WSD in BEER to improve this
alignment and produce a better correlation with
human judgments than the original BEER metric.
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Jesús Giménez and Lluı́s Màrquez. 2010. Asiya: An
Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation. The Prague Bulletin of Mathe-
matical Linguistics.

390



Francisco Guzmán, Shafiq Joty, Lluı́s Màrquez, and
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Abstract

We propose the use of character n-gram
F-score for automatic evaluation of ma-
chine translation output. Character n-
grams have already been used as a part of
more complex metrics, but their individual
potential has not been investigated yet. We
report system-level correlations with hu-
man rankings for 6-gram F1-score (CHRF)
on the WMT12, WMT13 and WMT14 data
as well as segment-level correlation for 6-
gram F1 (CHRF) and F3-scores (CHRF3)
on WMT14 data for all available target lan-
guages. The results are very promising,
especially for the CHRF3 score – for trans-
lation from English, this variant showed
the highest segment-level correlations out-
performing even the best metrics on the
WMT14 shared evaluation task.

1 Introduction

Recent investigations have shown that character
level n-grams play an important role for auto-
matic evaluation as a part of more complex met-
rics such as MTERATER (Parton et al., 2011) and
BEER (Stanojević and Sima’an, 2014a; Stanojević
and Sima’an, 2014b). However, they have not
been investigated as an individual metric so far.
On the other hand, the n-gram based F-scores,
especially the linguistically motivated ones based
on Part-of-Speech tags and morphemes (Popović,
2011), are shown to correlate very well with hu-
man judgments clearly outperforming the widely
used metrics such as BLEU and TER.

In this work, we propose the use of the F-
score based on character n-grams, i.e. the CHRF
score. We believe that this score has a poten-
tial as a stand-alone metric because it is shown to
be an important part of the previously mentioned
complex measures, and because, similarly to the

morpheme-based F-score, it takes into account
some morpho-syntactic phenomena. Apart from
that, in contrast to the related metrics, it is sim-
ple, it does not require any additional tools and/or
knowledge sources, it is absolutely language inde-
pendent and also tokenisation independent.

The CHRF scores were calculated for
all available translation outputs from the
WMT12 (Callison-Burch et al., 2012),
WMT13 (Bojar et al., 2013) and WMT14 (Bojar et
al., 2014) shared tasks, and then compared with
human rankings. System-level correlation coef-
ficients are calculated for all data, segment-level
correlations only for WMT14 data. The scores
were calculated for all available target languages,
namely English, Spanish, French, German, Czech,
Russian and Hindi.

2 CHRF score

The general formula for the CHRF score is:

CHRFβ = (1 + β2)
CHRP · CHRR

β2 · CHRP + CHRR
(1)

where CHRP and CHRR stand for character n-
gram precision and recall arithmetically averaged
over all n-grams:

• CHRP
percentage of n-grams in the hypothesis
which have a counterpart in the reference;

• CHRR
percentage of character n-grams in the refer-
ence which are also present in the hypothesis.

and β is a parameter which assigns β times more
importance to recall than to precision – if β = 1,
they have the same importance.

392



3 Experiments on WMT12, WMT13 and
WMT14 test data

3.1 Experiments
As a first step, we carried out several experiments
regarding n-gram length. Since the optimal n
for word-based measures is shown to be n = 4,
MTERATER used up to 10-gram and BEER up to
6-gram, we investigated those three variants. In
addition, we investigated a dynamic n calculated
for each sentence as the average word length. The
best correlations are obtained for 6-gram, there-
fore we carried out further experiments only on
them.

Apart from the n-gram length, we investigated
the influence of the space treating it as an addi-
tional character. However, taking space into ac-
count did not yield any improvement regarding the
correlations and therefore has been abandoned.

words This is an example.
characters T h i s i s a n e x a m p l e .
+space T h i s i s a n e x a m p l e .

Table 1: Example of an English sentence with
its corresponding character sequences without and
with taking the space into account.

In the last stage of our current experiments, we
have compared two β values on the WMT14 data:
the standard CHRF with β = 1 i.e. the harmonic
mean of precision and recall, as well as CHRF3
where β = 3, i.e. the recall has three times more
weight. The number 3 has been taken arbitraly as
a preliminary value, and the CHRF3 is tested only
on WMT14 data – more systematic experiments in
this direction should be carried out in the future
work.

3.2 Correlations with human rankings
System-level correlations
The evaluation metrics were compared with hu-
man rankings on the system-level by means
of Spearman’s correlation coefficients ρ for the
WMT12 and WMT13 data and Pearson’s correla-
tion coefficients r for the WMT14 data. Spear-
man’s rank correlation coefficient is equivalent to
Pearson correlation on ranks, and it makes fewer
assumptions about the data.

Average system-level correlations for CHRF
score(s) together with the word n-gram F-score
WORDF and the three mostly used metrics BLEU

(Papineni et al., 2002), TER (Snover et al., 2006)
and METEOR (Banerjee and Lavie, 2005) are
shown in Table 2. It can be seen that the CHRF
score is comparable or better than the other met-
rics, especially the CHRF3 score.

Table 3 presents the percentage of transla-
tion outputs where the particular F-score metric
(WORDF, CHRF and CHRF3) has higher correla-
tion (no ties) than the particular standard metric
(BLEU, TER and METEOR). It can be seen that
the WORDF score outperforms BLEU and TER for
about 60% of documents, however METEOR only
in less than 40%. Standard CHRF is better than
METEOR for half of the documents, and better than
BLEU and TER for 68% of the documents thus
being definitely more promising than the word-
based metrics. Finally, CHRF3 score outperforms
all standard metric for about 70-80% of texts, thus
being the most promising variant.

Segment-level correlations
The segment-level quality of metrics is measured
using Kendall’s τ rank correlation coefficient. It
measures the metric’s ability to predict the results
of the manual pairwise comparison of two sys-
tems. The τ coefficients were calulated only on
the WMT14 data using the official WMT14 script,
and the obtained WMT14 variant is reported for
the WORDF score, both CHRF scores, as well as
for the best ranked metrics in the shared evalua-
tion task.

Table 4 shows the τ coefficients for trans-
lation into English (above) and for translation
from English (below). For translation into En-
glish, it can be seen that the CHRF3 score is
again the most promising F-score. Furthermore,
it can be seen that the correlations for both CHRF
scores are close to the two best ranked metrics
(DISCOTKPARTY and BEER) and the METEOR

metrics, which is very well ranked too. For trans-
lation from English, the CHRF3 score yields the
highest average correlation, and the CHRF score is
comparable with the best ranked BEER metric.

4 Conclusions

The results presented in this paper show that
the character n-gram F-score CHRF represents
a promising metric for automatic evaluation
of machine translation output for several rea-
sons: it is language-independent, tokenisation-
independent and it shows good correlations with
human judgments both on the system- as well as
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year WORDF CHRF CHRF3 BLEU TER METEOR

2014 (r) 0.810 0.805 0.857 0.845 0.814 0.822
2013 (ρ) 0.874 0.873 / 0.835 0.791 0.876
2012 (ρ) 0.659 0.696 / 0.671 0.682 0.690

Table 2: Average system-level correlations on WMT14 (Pearson’s r), WMT13 and WMT12 data (Spear-
man’s ρ) for word 4-gram F1 score, character 6-gram F1 score and character 6-gram F3 score together
with the three mostly used metrics BLEU, TER and METEOR.

rank> WORDF CHRF CHRF3
BLEU 64.3 67.9 80.0
TER 60.7 67.9 70.0
METEOR 39.3 50.0 70.0

Table 3: rank> for three F-scores (WORDF, CHRF and CHRF3) in comparison with three standard metrics
(BLEU, TER and METEOR) – percentage of translation outputs where the given F-score metrics has higher
correlation than the given standard metric.

Kendall’s τ fr-en de-en hi-en cs-en ru-en avg.
WORDF 0.356 0.258 0.276 0.200 0.262 0.270
CHRF 0.402 0.318 0.395 0.253 0.320 0.338
CHRF3 0.391 0.332 0.394 0.278 0.322 0.343
DISCOTKPARTY 0.433 0.380 0.434 0.328 0.355 0.386
BEER 0.417 0.337 0.438 0.284 0.333 0.362
METEOR 0.406 0.334 0.420 0.282 0.329 0.354

Kendall’s τ en-fr en-de en-hi en-cs en-ru avg.
WORDF 0.251 0.205 0.202 0.281 0.381 0.264
CHRF 0.296 0.247 0.253 0.331 0.443 0.314
CHRF3 0.304 0.269 0.294 0.331 0.457 0.331
BEER 0.292 0.268 0.250 0.344 0.440 0.319
METEOR 0.280 0.238 0.264 0.318 0.427 0.306

Table 4: Segment-level Kendall’s τ correlations on WMT 14 data for WORDF, CHRF and CHRF3 score
together with the best performing metrics on the shared evaluation task.

394



on the segment-level, especially the CHRF3 vari-
ant. Therefore both of the CHRF scores were sub-
mitted to the WMT15 shared metrics task. In fu-
ture work, different β values should be investi-
gated, as well as different weights for particular
n-grams. Apart from this, CHRF is so far tested on
only one non-European language (Hindi) – appli-
cation on more languages using different writing
systems such as Arabic, Chinese, etc. has to be
explored systematically.
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Abstract

We describe the submissions of ILLC
UvA to the metrics and tuning tasks on
WMT15. Both submissions are based
on the BEER evaluation metric origi-
nally presented on WMT14 (Stanojević
and Sima’an, 2014a). The main changes
introduced this year are: (i) extending
the learning-to-rank trained sentence level
metric to the corpus level (but still decom-
posable to sentence level), (ii) incorporat-
ing syntactic ingredients based on depen-
dency trees, and (iii) a technique for find-
ing parameters of BEER that avoid “gam-
ing of the metric” during tuning.

1 Introduction

In the 2014 WMT metrics task, BEER turned up as
the best sentence level evaluation metric on aver-
age over 10 language pairs (Machacek and Bojar,
2014). We believe that this was due to:

1. learning-to-rank - type of training that allows
a large number of features and also training
on the same objective on which the model is
going to be evaluated : ranking of translations

2. dense features - character n-grams and skip-
bigrams that are less sparse on the sentence
level than word n-grams

3. permutation trees - hierarchical decompo-
sition of word order based on (Zhang and
Gildea, 2007)

A deeper analysis of (2) is presented in (Stano-
jević and Sima’an, 2014c) and of (3) in (Stanojević
and Sima’an, 2014b).

Here we modify BEER by

1. incorporating a better scoring function that
give scores that are better scaled

2. including syntactic features and

3. removing the recall bias from BEER .

In Section 2 we give a short introduction to
BEER after which we move to the innovations for
this year in Sections 3, 4 and 5. We show the re-
sults from the metric and tuning tasks in Section 6,
and conclude in Section 7.

2 BEER basics

The model underying the BEER metric is flexible
for the integration of an arbitrary number of new
features and has a training method that is targeted
for producing good rankings among systems. Two
other characteristic properties of BEER are its hi-
erarchical reordering component and character n-
grams lexical matching component.

2.1 Old BEER scoring
BEER is essentially a linear model with which the
score can be computed in the following way:

score(h, r) =
∑
i

wi × φi(h, r) = ~w · ~φ

where ~w is a weight vector and ~φ is a feature
vector.

2.2 Learning-to-rank
Since the task on which our model is going to
be evaluated is ranking translations it comes natu-
ral to train the model using learning-to-rank tech-
niques.

Our training data consists of pairs of “good”
and “bad” translations. By using a feature vector
~φgood for a good translation and a feature vector
~φbad for a bad translation then using the following
equations we can transform the ranking problem
into a binary classification problem (Herbrich et
al., 1999):
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score(hgood, r) > score(hbad, r)⇔
~w · ~φgood > ~w · ~φbad ⇔

~w · ~φgood − ~w · ~φbad > 0⇔
~w · (~φgood − ~φbad) > 0

~w · (~φbad − ~φgood) < 0

If we look at ~φgood− ~φbad as a positive training
instance and at ~φbad− ~φgood as a negative training
instance, we can train any linear classifier to find
weight the weight vector ~w that minimizes mis-
takes in ranking on the training set.

2.3 Lexical component based on character
n-grams

Lexical scoring of BEER relies heavily on charac-
ter n-grams. Precision, Recall and F1-score are
used with character n-gram orders from 1 until
6. These scores are more smooth on the sentence
level than word n-gram matching that is present in
other metrics like BLEU (Papineni et al., 2002) or
METEOR (Michael Denkowski and Alon Lavie,
2014).

BEER also uses precision, recall and F1-score
on word level (but not with word n-grams).
Matching of words is computed over METEOR
alignments that use WordNet, paraphrasing and
stemming to have more accurate alignment.

We also make distinction between function and
content words. The more precise description of
used features and their effectiveness is presented
in (Stanojević and Sima’an, 2014c).

2.4 Reordering component based on PETs

The word alignments between system and refer-
ence translation can be simplified and considered
as permutation of words from the reference trans-
lation in the system translation. Previous work
by (Isozaki et al., 2010) and (Birch and Osborne,
2010) used this permutation view of word order
and applied Kendall τ for evaluating its distance
from ideal (monotone) word order.

BEER goes beyond this skip-gram based eval-
uation and decomposes permutation into a hierar-
chical structure which shows how subparts of per-
mutation form small groups that can be reordered
all together. Figure 1a shows PET for permuta-
tion 〈2, 5, 6, 4, 1, 3〉. Ideally the permutation tree
will be filled with nodes 〈1, 2〉 which would say

that there is no need to do any reordering (every-
thing is in the right place). BEER has features
that compute the number of different node types
and for each different type it assigns a different
weight. Sometimes there are more than one PET
for the same permutation. Consider Figure 1b and
1c which are just 2 out of 3 possible PETs for per-
mutation 〈4, 3, 2, 1〉. Counting the number of trees
that could be built is also a good indicator of the
permutation quality. See (Stanojević and Sima’an,
2014b) for details on using PETs for evaluating
word order.

3 Corpus level BEER

Our goal here is to create corpus level extension
of BEER that decomposes trivially at the sentence
level. More concretely we wanted to have a corpus
level BEER that would be the average of the sen-
tence level BEER of all sentences in the corpus:

BEERcorpus(c) =

∑
si∈cBEERsent(si)

|c| (1)

In order to do so it is not suitable to to use pre-
vious scoring function of BEER . The previous
scoring function (and training method) take care
only that the better translation gets a higher score
than the worse translation (on the sentence level).
For this kind of corpus level computations we have
an additional requirement that our sentence level
scores need to be scaled proportional to the trans-
lation quality.

3.1 New BEER scoring function
To make the scores on the sentence level better
scaled we transform our linear model into a prob-
abilistic linear model – logistic regression with the
following scoring function:

score(h, r) =
1

1 + e−
∑

i wi×φi(h,r)

There is still a problem with this formulation.
During training, the model is trained on the differ-
ence between two feature vectors ~φgood − ~φbad,
while during testing it is applied only to one fea-
ture vector ~φtest. ~φgood − ~φbad is usually very
close to the separating hyperplane, whereas ~φtest
is usually very far from it. This is not a problem
for ranking but it presents a problem if we want
well scaled scores. Being extremely far from the
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〈2, 4, 1, 3〉
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〈1, 2〉
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1 3

(a) Complex PET

〈2, 1〉
〈2, 1〉
4 3

〈2, 1〉
2 1

(b) Fully inverted PET 1

〈2, 1〉
〈2, 1〉

〈2, 1〉
4 3

2

1

(c) Fully inverted PET 2

Figure 1: Examples of PETs

separated hyperplane gives extreme scores such as
0.9999999999912 and 0.00000000000000213 as
a result which are obviously not well scaled.

Our model was trained to give a probability of
the “good” translation being better than the “bad”
translation so we should also use it in that way –
to estimate the probability of one translation being
better than the other. But which translation? We
are given only one translation and we need to com-
pute its score. To avoid this problem we pretend
that we are computing a probability of the test sen-
tence being a better translation than the reference
for the given reference. In the ideal case the sys-
tem translation and the reference translation will
have the same features which will make logistic
regression output probability 0.5 (it is uncertain
about which translation is the better one). To make
the scores between 0 and 1 we multiply this result
with 2. The final scoring formula is the following:

score(h, r) =
2

1 + e−
∑

i wi×(φi(h,r)−φi(r,r))

4 BEER + Syntax = BEER Treepel

The standard version of BEER does not use any
syntactic knowledge. Since the training method
of BEER allows the usage of a large number of
features, it is trivial to integrate new features that
would measure the matching between some syntax
attributes of system and reference translations.

The syntactic representation we exploit is a de-
pendency tree. The reason for that is that we can
easily connect the structure with the lexical con-
tent and it is fast to compute which can often be
very important for evaluation metrics when they
need to evaluate on large data. We used Stanford’s
dependency parser (Chen and Manning, 2014) be-
cause it gives high accuracy parses in a very short
time.

The features we compute on the dependency
trees of the system and its reference translation
are:

1. POS bigrams matching

2. dependency words bigram matching

3. arc type matching

4. valency matching

For each of these we compute precision, recall
and F1-score.

It has been shown by other researchers (Popović
and Ney, 2009) that POS tags are useful for ab-
stracting away from concrete words and measure
the grammatical aspect of translation (for example
it can captures agreement).

Dependency word bigrams (bigrams connected
by a dependency arc) are also useful for capturing
long distance dependencies.

Most of the previous metrics that work with de-
pendency trees usually ignore the type of the de-
pendency that is (un)matched and treat all types
equally (Yu et al., 2014). This is clearly not the
case. Surely subject and complement arcs are
more important than modifier arc. To capture this
we created individual features for precision, re-
call and F1-score matching of each arc type so our
system could learn on which arc type to put more
weight.

All words take some number of arguments (va-
lency), and not matching that number of argu-
ments is a sign of a, potentially, bad translation.
With this feature we hope to capture the aspect of
not producing the right number of arguments for
all words (and especially verbs) in the sentence.

This model BEER Treepel contains in total 177
features out of which 45 are from original BEER .

5 BEER for tuning

The metrics that perform well on metrics task are
very often not good for tuning. This is because
recall has much more importance for human judg-
ment than precision. The metrics that put more
weight on recall than precision will be better with
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tuning metric BLEU MTR BEER Length
BEER 16.4 28.4 10.2 115.7
BLEU 18.2 28.1 10.1 103.0
BEER no bias 18.0 27.7 9.8 99.7

Table 1: Tuning results with BEER without bias
on WMT14 as tuning and WMT13 as test set

correlation with human judgment, but when used
for tuning they will create overly long translations.

This bias for long translation is often resolved
by manually setting the weights of recall and pre-
cision to be equal (Denkowski and Lavie, 2011;
He and Way, 2009).

This problem is even bigger with metrics with
many features. When we have metric like
BEER Treepel which has 117 features it is not
clear how to set weights for each feature manu-
ally. Also some features might not have easy inter-
pretation as precision or recall of something. Our
method for automatic removing of this recall bias,
which is presented in (Stanojević, 2015), gives
very good results that can be seen in Table 1.

Before the automatic adaptation of weights
for tuning, tuning with standard BEER produces
translations that are 15% longer than the refer-
ence translations. This behavior is rewarded by
metrics that are recall-heavy like METEOR and
BEER and punished by precision heavy metrics
like BLEU. After automatic adaptation of weights,
tuning with BEER matches the length of reference
translation even better than BLEU and achieves
the BLEU score that is very close to tuning with
BLEU. This kind of model is disliked by ME-
TEOR and BEER but by just looking at the length
of the produced translations it is clear which ap-
proach is preferred.

6 Metric and Tuning task results

The results of WMT15 metric task of best per-
forming metrics is shown in Tables 2 and 3 for the
system level and Tables 4 and 5 for segment level.

On the sentence level for out of English lan-
guage pairs on average BEER was the best met-
ric (same as the last year). Into English it got 2nd
place with its syntactic version and 4th place as the
original BEER .

On the corpus level BEER is on average second
for out of English language pairs and 6th for into
English. BEER and BEER Treepel are the best for
en-ru and fi-en.

System Name TrueSkill Score BLEU
Tuning-Only All

BLEU-MIRA-DENSE 0.153 -0.177 12.28
ILLC-UVA 0.108 -0.188 12.05

BLEU-MERT-DENSE 0.087 -0.200 12.11
AFRL 0.070 -0.205 12.20

USAAR-TUNA 0.011 -0.220 12.16
DCU -0.027 -0.256 11.44

METEOR-CMU -0.101 -0.286 10.88
BLEU-MIRA-SPARSE -0.150 -0.331 10.84

HKUST -0.150 -0.331 10.99
HKUST-LATE — — 12.20

Table 6: Results on Czech-English tuning

The difference between BEER and
BEER Treepel are relatively big for de-en,
cs-en and ru-en while for fr-en and fi-en the
difference does not seem to be big.

The results of WMT15 tuning task is shown in
Table 6. The system tuned with BEER without re-
call bias was the best submitted system for Czech-
English and only the strong baseline outperformed
it.

7 Conclusion

We have presented ILLC UvA submission to the
shared metric and tuning task. All submissions
are centered around BEER evaluation metric. On
the metrics task we kept the good results we had
on sentence level and extended our metric to cor-
pus level with high correlation with high human
judgment without losing the decomposability of
the metric to the sentence level. Integration of syn-
tactic features gave a bit of improvement on some
language pairs. The removal of recall bias allowed
us to go from overly long translations produced
in tuning to translations that match reference rel-
atively close by length and won the 3rd place in
the tuning task. BEER is available at https:
//github.com/stanojevic/beer.
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Correlation coefficient Pearson Correlation Coefficient
Direction fr-en fi-en de-en cs-en ru-en Average

DPMFCOMB .995± .006 .951± .013 .949± .016 .992± .004 .871± .025 .952± .013
RATATOUILLE .989± .010 .899± .019 .942± .018 .963± .008 .941± .018 .947± .014

DPMF .997± .005 .939± .015 .929± .019 .986± .005 .868± .026 .944± .014
METEOR-WSD .982± .011 .944± .014 .914± .021 .981± .006 .857± .026 .936± .016

CHRF3 .979± .012 .893± .020 .921± .020 .969± .007 .915± .023 .935± .016
BEER TREEPEL .981± .011 .957± .013 .905± .021 .985± .005 .846± .027 .935± .016

BEER .979± .012 .952± .013 .903± .022 .975± .006 .848± .027 .931± .016
CHRF .997± .005 .942± .015 .884± .024 .982± .006 .830± .029 .927± .016

LEBLEU-OPTIMIZED .989± .009 .895± .020 .856± .025 .970± .007 .918± .023 .925± .017
LEBLEU-DEFAULT .960± .015 .895± .020 .856± .025 .946± .010 .912± .022 .914± .018

Table 2: System-level correlations of automatic evaluation metrics and the official WMT human scores
when translating into English.

Correlation coefficient Pearson Correlation Coefficient
Metric en-fr en-fi en-de en-cs en-ru Average
CHRF3 .949± .021 .813± .025 .784± .028 .976± .004 .913± .011 .887± .018
BEER .970± .016 .729± .030 .811± .026 .951± .005 .942± .009 .880± .017

LEBLEU-OPTIMIZED .949± .020 .727± .030 .896± .020 .944± .005 .867± .013 .877± .018
LEBLEU-DEFAULT .949± .020 .760± .028 .827± .025 .946± .005 .849± .014 .866± .018

RATATOUILLE .962± .017 .675± .031 .777± .028 .953± .005 .869± .013 .847± .019
CHRF .949± .021 .771± .027 .572± .037 .968± .004 .871± .013 .826± .020

METEOR-WSD .961± .018 .663± .032 .495± .039 .941± .005 .839± .014 .780± .022
BS −.977± .014 .334± .039 −.615± .036 −.947± .005 −.791± .016 −.600± .022

DPMF .973± .015 n/a .584± .037 n/a n/a .778± .026

Table 3: System-level correlations of automatic evaluation metrics and the official WMT human scores
when translating out of English.

Direction fr-en fi-en de-en cs-en ru-en Average
DPMFCOMB .367± .015 .406± .015 .424± .015 .465± .012 .358± .014 .404± .014

BEER TREEPEL .358± .015 .399± .015 .386± .016 .435± .013 .352± .013 .386± .014
RATATOUILLE .367± .015 .384± .015 .380± .015 .442± .013 .336± .014 .382± .014

BEER .359± .015 .392± .015 .376± .015 .417± .013 .336± .013 .376± .014
METEOR-WSD .347± .015 .376± .015 .360± .015 .416± .013 .331± .014 .366± .014

CHRF .350± .015 .378± .015 .366± .016 .407± .013 .322± .014 .365± .014
DPMF .344± .014 .368± .015 .363± .015 .413± .013 .320± .014 .362± .014
CHRF3 .345± .014 .361± .016 .360± .015 .409± .012 .317± .014 .359± .014

LEBLEU-OPTIMIZED .349± .015 .346± .015 .346± .014 .400± .013 .316± .015 .351± .014
LEBLEU-DEFAULT .343± .015 .342± .015 .341± .014 .394± .013 .317± .014 .347± .014

TOTAL-BS −.305± .013 −.277± .015 −.287± .014 −.357± .013 −.263± .014 −.298± .014

Table 4: Segment-level Kendall’s τ correlations of automatic evaluation metrics and the official WMT
human judgments when translating into English. The last three columns contain average Kendall’s τ
computed by other variants.

Direction en-fr en-fi en-de en-cs en-ru Average
BEER .323± .013 .361± .013 .355± .011 .410± .008 .415± .012 .373± .011
CHRF3 .309± .013 .357± .013 .345± .011 .408± .008 .398± .012 .363± .012

RATATOUILLE .340± .013 .300± .014 .337± .011 .406± .008 .408± .012 .358± .012
LEBLEU-DEFAULT .321± .013 .354± .013 .345± .011 .385± .008 .386± .012 .358± .011

LEBLEU-OPTIMIZED .325± .013 .344± .012 .345± .012 .383± .008 .385± .012 .356± .011
CHRF .317± .013 .346± .012 .315± .013 .407± .008 .387± .012 .355± .012

METEOR-WSD .316± .013 .270± .013 .287± .012 .363± .008 .373± .012 .322± .012
TOTAL-BS −.269± .013 −.205± .012 −.231± .011 −.324± .008 −.332± .012 −.273± .011

DPMF .308± .013 n/a .289± .012 n/a n/a .298± .013
PARMESAN n/a n/a n/a .089± .006 n/a .089± .006

Table 5: Segment-level Kendall’s τ correlations of automatic evaluation metrics and the official WMT
human judgments when translating out of English. The last three columns contain average Kendall’s τ
computed by other variants.
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Abstract

This paper describes USAAR’s submis-
sion to the the metrics shared task of the
Workshop on Statistical Machine Transla-
tion (WMT) in 2015. The goal of our sub-
mission is to take advantage of the seman-
tic overlap between hypothesis and ref-
erence translation for predicting MT out-
put adequacy using language independent
document embeddings. The approach pre-
sented here is learning a Bayesian Ridge
Regressor using document skip-gram em-
beddings in order to automatically evalu-
ate Machine Translation (MT) output by
predicting semantic adequacy scores. The
evaluation of our submission – measured
by the correlation with human judgements
– shows promising results on system-level
scores.

1 Introduction

Translation is becoming an utility in everyday life.
The increased availability of real-time machine
translation services relying on Statistical Machine
Translation (SMT) allows users who do not un-
derstand the language of the source text to quickly
gist the text and understand its general meaning.
For these users, accurate meaning of translated
words is more important than the fluency of the
translated sentence.

However, SMT suffers from poor lexical
choices. Fluent but inadequate translations are
commonly produced due to the strong bias to-
wards the language model component that prefers
consecutive words based on the data that the sys-
tem is trained on.

Current state of art MT evaluation metrics are
generally able to identify problems with grammat-
icality of the translation but less evidently accu-
racy of translated semantics, e.g. incorrect trans-
lation of ambiguous words or wrong assignment

of semantic roles. In the example below, the
ideal Machine Translation (MT) evaluation metric
should appropriately penalise poor lexical choice,
such as braked, and reward or at least allow lee-
way for semantically similar translations, such as
external trade.

Source (DE):
Auch der Auenhandel bremste die Konjunktur.

Phrase-based MT:
The foreign trade braked the economy.

Neural MT:
External trade also slowed the economy.

Reference (EN):
Foreign goods trade had slowed, too.

The German word bremste is commonly used
as braked in the context of driving, but the appro-
priate translation should have been slowed in the
example mentioned above. Although the phrase
external trade differs from foreign goods trade in
the reference sentence, it should be considered as
an acceptable translation.

We propose a semantically grounded, language
independent approach using Semantic Textual
Similarity (STS) to evaluate the adequacy of the
machine translation outputs with respect to their
reference translations.

The remainder of this paper is structured as fol-
lows. Section 2 gives an overview of the related
work in the field of MT evaluation. Section 3
presents the approach behind the USAAR submis-
sion to the metrics shared task. In Section 4 we
present the data and experiments for this submis-
sion. Section 5 covers the evaluation of our metric
by the WMT2015 metrics task organisers and in
Section 6 we conclude on our WMT2015 metrics
task submission.
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2 Related Work

Researchers in the field of MT evaluation have
proposed a large variety of methods for assess-
ing the quality of automatically produced trans-
lations. Approaches range from fully automatic
quality scoring to efforts aimed at the development
of ”human” evaluation scores that try to exploit the
(often tacit) linguistic knowledge of human evalu-
ators.

2.1 Automatic Evaluation of MT
MT output is usually evaluated by automatic
language-independent metrics that can be applied
to MT output, independent of the target language.
Automatic metrics typically compute the close-
ness (adequacy) of a hypothesis to a reference
translation and differ from each other by how this
closeness is measured. The most popular MT eval-
uation metrics are IBM BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002), used not
only for tuning MT systems, but also as evalua-
tion metrics for translation shared tasks, such as
the Workshop on Statistical Machine Translation
(WMT).

IBM BLEU uses n-gram precision by match-
ing machine translation output against one or more
reference translations. It accounts for adequacy
and fluency by calculating word precision, i.e. the
n-gram precision.

BLEU = BP · exp

(
N∑
n=1

wnlogpn

)
(1)

BP =

{
1 if c > r

−e(1−r/c) if c ≤ r (2)

In order to deal with the over generation of com-
mon words, precision counts are clipped, mean-
ing that a reference word is exhausted after it is
matched against the same word in the hypothesis.
This is then called the modified n-gram precision.
For BLEU, the modified n-gram precision is calcu-
lated with N=4, the results being combined by us-
ing the geometric mean. Instead of recall, BLEU
computes the Brevity Penalty (BP) (see formula
in 2), thus penalising candidate translations which
are shorter than the reference translations.

The NIST metric is derived from IBM BLEU.
The NIST score is the arithmetic mean of modified
n-gram precision for N=5 scaled by the BP. Addi-
tionally, NIST also considers the information gain

of each n-gram, giving more weight to more infor-
mative (less frequent) n-grams and less weight to
less informative (more frequent) n-grams.

Another often used machine translation evalu-
ation metric is METEOR (Denkowski and Lavie,
2014). Unlike IBM BLEU and NIST, METEOR
evaluates a candidate translation by calculating
precision and recall on the unigram level and com-
bining them into a parametrised harmonic mean.
The result from the harmonic mean is then scaled
by a fragmentation penalty which penalizes gaps
and differences in word order. METEOR is de-
scribed in detail in Section 3.1.

Besides these evaluation metrics, several other
metrics are used for the evaluation of MT out-
put. Some of these are the WER (word error-rate)
metric based on the Levensthein distance (Leven-
shtein, 1966), the position-independent error rate
metric PER (Tillmann et al., 1997) and the trans-
lation edit rate metric TER (Snover et al., 2006)
with its newer version TERp (Snover et al., 2009).

The semantics of both hypotheses and reference
translations is considered by MEANT (Lo et al.,
2012). MEANT, based on HMEANT (Lo and Wu,
2011a; Lo and Wu, 2011b; Lo and Wu, 2011c), is
a fully automatic semantic MT evaluation metric,
measuring semantic fidelity by determining the
degree of parallelism of verb frames and seman-
tic roles between hypothesis and reference trans-
lations. Some approaches aim at combining sev-
eral linguistic and semantic aspects. Gonzàlez et
al. (2014) as well as Comelles and Atserias (2014)
introduce their fully automatic approaches to ma-
chine translation evaluation using lexical, syntac-
tic and semantic information when comparing the
machine translation output with reference transla-
tions.

2.2 Human Evaluation of MT

Human MT evaluation approaches employ the
knowledge of human annotators to assess the qual-
ity of automatically produced translations along
the two axes of target language correctness and se-
mantic fidelity. The Linguistics Data Consortium
(LDC) introduced a MT evaluation task that elicits
quality judgement of MT output from human an-
notators using a numerical scale (Linguistics Data
Consortium, 2005). These judgements were split
into two categories: adequacy, the degree of mean-
ing preservation, and fluency, target language cor-
rectness.
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Adequacy judgements require annotators to rate
the amount of meaning expressed in the reference
translation that is also present in the translation hy-
pothesis. Fluency judgements require annotators
to rate how well the translation hypothesis in the
target language is formed, disregarding the sen-
tence meaning. Although evaluators are asked to
assess the fluency and adequacy of a hypothesis
translation on a Likert scale separately, Callison-
Burch et al. (2007) reported high correlation be-
tween annotators’ adequacy and fluency scores.

MT output is also evaluated by measuring hu-
man post-editing time for productivity (Guerberof,
2009; Zampieri and Vela, 2014), or by asking eval-
uators to rank MT system outputs (by ordering
a set of translation hypotheses according to their
quality). Vela and van Genabith (2015) show that
this task is very easy to accomplish for evaluators,
since it does not imply specific skills, a homoge-
neous group being enough to perform this task.
This is also the method applied during the last
years WMTs, where humans are asked to rank ma-
chine translation output by using APPRAISE (Fe-
dermann, 2012), a software tool that integrates fa-
cilities for such a ranking task.

An indirect human evaluation method, that is
also employed for error analysis, are reading com-
prehension tests (e.g. Maney et al. (2012), Weiss
and Ahrenberg (2012)). Other evaluation metrics
try to measure the effort that is necessary for “re-
pairing” MT output, that is, for transforming it
into a linguistically correct and faithful transla-
tion. One such metric is HTER (Snover et al.,
2006), which uses human annotators to generate
targeted reference translations by means of post-
editing, the rationale being that by this the shortest
path between a hypothesis and its correct version
can be found.

2.3 Semantic Textual Similarity

Given two snippets of text, the Semantic Textual
Similarity (STS) task attempts to measure their se-
mantic equivalence on a scale of 1 to 5 (Agirre et
al., 2014). The STS task is organized annually dur-
ing the SemEval workshop and systems are evalu-
ated based on their Pearson correlation coefficient
with the human annotations.

The STS is similar to the task of determining
the adequacy of a translation hypothesis with re-
spect to a reference translation. The STS task is
usually treated as a regression task where systems

are trained using features such as:

(i) linguistics annotation overlaps between the
two text snippets, e.g. syntactic dependency,
lexical paraphrases, part of speech (Šarić et
al., 2012; Han et al., 2012; Pilehvar et al.,
2013)

(ii) machine translation metrics as features in
training a supervised regressor (Rios et al.,
2012; Barrón-Cedeño et al., 2013; Huang and
Chang, 2014; Tan et al., 2015b)

(iii) word/document embeddings similarity (Sul-
tan et al., 2015; Arora et al., 2015).

Linguistic annotations are restricted by the
availability of the annotation tools, that are often
language dependent. Machine translation evalua-
tion metrics generally provide a shallow compari-
son between hypotheses and reference translations
focusing on capturing the grammatical similari-
ties between the texts, whereas the use of docu-
ment embeddings focuses on capturing the seman-
tic similarity between texts. Word embeddings
dates back to the traditional Latent Semantic Anal-
ysis (LSA) vector spaces used for information re-
trieval (Landauer and Dutnais, 1997) to the current
trend of using neural nets for NLP/MT tasks (Bor-
des et al., 2011; Huang et al., 2012; Bordes et al.,
2012; Chen and Manning, 2014; Bowman et al.,
2015).

3 Our Approach

Although consensus exists that lexical-based met-
rics cannot cover the entire range of linguistic phe-
nomena (Vela et al., 2014a; Vela et al., 2014b),
the goal in the MT community remains to have
a language independent metric that takes into ac-
count for lexical, syntactic and semantic infor-
mation when mapping the MT output against the
reference translation. The questions that have to
be accounted for in such a language-independent
metric are:

(i) Is there a lexical overlap between reference
and hypothesis translation?

(ii) Is there a syntactic overlap between reference
and hypothesis translation?

(iii) Is there a semantic overlap between reference
and hypothesis translation?
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In the ideal situation one would also take into
account lexical, syntactic and semantic informa-
tion from the source text. Specific information (on
lexical, syntactic, semantic level) from the source
text could help improving not only the translation
process, but also the evaluation.

As pointed out in Section 2, there are several
approaches which tend to cover the entire range
of linguistic phenomena in the evaluation process.
The approach presented in this paper is leaned on
the STS approach, mentioned in Section 2.3, aim-
ing to provide a language independent adequacy
score using document embedding similarity as op-
posed to the traditional synonyms and paraphrase
overlap approach used in METEOR. The match-
ing of synonyms in METEOR relies on Word-
Net (Miller, 1995), which is a limited resource,
making it impossible to use the synonymy mod-
ule from METEOR for other languages than En-
glish. The provided or self-extracted paraphrase
tables for METEOR are available only for lan-
guages for which big corpora are available, mak-
ing it difficult to provide paraphrases for under-
resourced languages. Since METEOR relies on
the WordNet synonymy and language dependent
paraphrase tables for its semantic component, our
goal is to substitute this components with a lan-
guage independent component.

Different from the STS task, the WMT metrics
task provides the ranks of the systems’ hypothe-
ses instead of absolute human evaluation scores of
the translation hypotheses. To generate the abso-
lute scores, we use the METEOR scores between
the translation hypotheses and the reference trans-
lations.

To induce the word embeddings, we
trained a skip-gram model phrasal word2vec
neural net (Mikolov et al., 2013) using
gensim (Řehůřek and Sojka, 2010). The
neural nets were trained to produce 400 dense
features for 100 epochs with a window size of 5
for all words from the WMT metrics task data.

v(doc) =
∑n

i v(wi)
n

(3)

doc = {w1, ..., wn}

To generate the document embeddings, v(doc),
we sum the word embeddings from the docu-
ment and normalised it by the number of words.
The setup for the skip-gram model and the docu-

ment vector is similar the techniques uses in STS
tasks (Sultan et al., 2015; Tan et al., 2015a).

sim(hyp, ref) = v(hyp) · v(ref) (4)

The document embedding similarity is achieved
by the dot product between the translation hypoth-
esis (hyp) and the reference translation (ref ). Ge-
ometrically, the dot product between the hypothe-
sis and the reference translation yields the cosine
similarity between two vectors. Alternatively, one
could also calculate the cosine similarity by sum-
ming the square of the word vector of the intersect-
ing word embeddings and normalise the document
by the root of the sum square for all words in the
documents (Tan, 2013)1.

Using the similarity scores between the hy-
pothesis and reference embeddings, we train a
Bayesian Ridge Regressor targeting the METEOR
scores as the desired output.

3.1 METEOR

METEOR (Metric for Evaluation of Translation
with Explicit ORdering) (Denkowski and Lavie,
2014) is an MT evaluation metric which tries to
consider both grammatical and semantic knowl-
edge. The metric is based on the alignment be-
tween a hypothesis translation and a reference
translation containing four modules. The num-
ber of modules to be used depends on the avail-
ability of resources for a specific language. The
first module generates the alignments based on the
surface forms of the words in the hypothesis and
reference translation. The next module performs
the alignment on word stems, followed by the
alignment of words listed as synonyms in Word-
Net (Miller, 1995). The last module is responsible
for the paraphrase matching between the hypoth-
esis and reference translation, based on the pro-
vided or the self-extracted paraphrase tables. For
the final score calculation all matches are gener-
alised to phrase/chunk matches with a start posi-
tion and phrase length in each sentence.

Different from other evaluation metrics, ME-
TEOR makes the distinction between content
words and function words in the hypothesis
(hc, hf ) and reference (rc, rf ) translation. This
distinction is made by a provided function words
list.

1An implementation of the alternative cosine can be fount
at http://tinyurl.com/pywsd-cosine. The origi-
nal implementation is reported in (Tan and Bond, 2013)

405



From the final alignment between hypothesis
and reference translation, precision (P ) and re-
call (R) is calculated by weighting content words
and function words differently. This is described
by Denkowski and Lavie (2014) as follows. For
each of the matchers (mi) count the number of
content and function words covered by matches
of this type in the hypothesis (mi(hc),mi(hr))
and reference (mi(rc),mi(rr)) translation. The
weighted precision (P ) and recall (R) is com-
puted by using the matcher weights wi...wn and
the function word weight γ as shown in 5 and 6.

P =
∑

iwi · (δ ·mi(hc) + (1− δ) ·mi(hc))
γ· | hc | +(1− γ)· | hf |

(5)

R =
∑

iwi · (δ ·mi(rc) + (1− δ) ·mi(rc))
γ· | rc | +(1− γ)· | rf |

(6)
The harmonic mean is calculated by the formula

in equation 7.

Fmean =
P ·R

α · P + (1− α) · P (7)

METEOR also accounts for word order differ-
ences and gaps by scaling Fmean by the fragmen-
tation penalty (Pen). The fragmentation penalty
(Pen) in equation 8 is computed by using the total
number of matched words (m) and the number of
chunks (ch).

Pen = γ ·
(
ch

m

)β
(8)

The final score is then:

Score = (1− Pen) · Fmean (9)

The parameters α, β, γ, δ and wi...wn are pa-
rameters that can be used for tuning METEOR for
a given task.

3.2 Cosine Similarity
Cosine similarity is a similarity measure that can
handle the fact that very similar documents (in our
case sentences) may have different lengths. The
cosine similarity of two documents is calculated
by deriving a vector (~V ) for each sentence or doc-
ument d, denoted as ~V (d)2. The set of documents

2The normalization of the terms in the vector is computed
by using using TF ∗ IDF

in a collection is viewed as a set of vectors in a
vector space, each term (meaning a word) having
its own axis. By this kind of representation the ini-
tial ordering of terms in the document is lost, since
cosine similarity does not incorporate context.

The cosine of two vectors can be derived by us-
ing the Euclidean dot product formula:

a · b =| a || b | cos θ (10)

Derived from the formula in (10) the similarity
between two documents d1 and d2 can be com-
puted by the cosine similarity of their vector rep-
resentations ~V (d1) and ~V (d2).

cos(θ) =
~V (d1) · ~V (d2)

| ~V (d1) || ~V (d2) |
(11)

The numerator in (11) represents the dot prod-
uct of the vectors ~V (d1) and ~V (d2) and is defined
as shown in equation (12).

~V (d1) · ~V (d2) =
n∑
i=1

~Vi(d1)× ~Vi(d2) (12)

The denominator corresponds to the product of
the Euclidean length of the vectors ~Vi(d1) and
~Vi(d1).

| ~V (d1) |=
√√√√ n∑

i=1

~Vi(d1) (13)

The vectors are length normalised by the formu-
las in (13) and (14).

| ~V (d2) |=
√√√√ n∑

i=1

~Vi(d2) (14)

3.3 ZWICKEL: A Regression-based Metric
Similar to the Semantic Textual Similarity (STS)
and MT Quality Estimation approaches (Scarton
et al., 2015), we treat the MT metric task as a re-
gression task with the aim of learning a Bayesian
Ridge function that maps the cosine similarity fea-
ture to the target METEOR score.

A Bayesian Regressor finds a maximum a pos-
teriori solution under a Gaussian prior N over the
parameters w with the precision of λ−1. The α
and λ parameters are treated as random variables
estimated from the data.

p(y|X,w, α) == N(y|X,w, α) (15)
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The Bayesian Ridge estimates a probabilistic
regression model with a zero-mean prior for the
parameter w, given by a spherical Gaussian:

p(w|λ) = N(w|0, λ−1Ip) (16)

Without the caveats of mathematical argot, we
refer to the cosine similarities as X, and to the
METEOR scores as Y. We aim to learn a regres-
sor that outputs the paraphrase and synonym ME-
TEOR scores using the cosine similarities, without
the paraphrase/synonym tables. Essentially, this
leads to a language independent METEOR mea-
sure based on cosine similarity between transla-
tion and reference vectors.

3.4 COMET: A Combination of METEOR and
ZWICKEL

We noticed that the outputs of the basic ZWICKEL
score is conservative and does not allow an ex-
treme 0.0 or 1.0 score unlike the METEOR score.
Thus, we created a ”switch-like metric”, COMET,
that treat the METEOR scores as oracle when ME-
TEOR reports 0.0 or 1.0 scores, otherwise it falls
back to ZWICKEL.

4 Experiments

This year’s USAAR submission to the WMT met-
rics shared task concentrated on evaluating trans-
lations into German and into English, assigning a
score both at sentence and system level.

4.1 Training Data
For training our system we used the available data
from the previous WMT shared tasks by conflat-
ing them into a single data set3. The into German
set consisted of 359545 sentence pairs and the into
English set consisted of 1194017 sentence pairs.

4.2 Test Data
The test data for our evaluation metrics consist of
all system outputs from this year’s translation task
performed on the newstest2015 data set. Depend-
ing on the source language the data sets consist of
a different number of sentences. Into English we
evaluated MT systems having the following source
languages:

• Czech with 10 system submissions and 2655
translated sentences per system

3We have compiled the WMT08-15 metrics task data sets
into a single python-readable library that is easily accessible
at https://github.com/alvations/warmth.

• German with 13 system submissions and
2168 translated sentences per system

• Finnish with 14 system submissions and
1369 translated sentences per system

• Russian with 13 system submissions and
2817 translated sentences per system

Into German we evaluated 16 systems with 2168
translated sentences per system.

Based on the sentence scores we provided also
a system score for each language pair. The sys-
tem score was calculated by using different means
(median, arithmetic mean, arithmetic geometric
mean, harmonic mean and root squared mean) for
each proposed metric.

4.3 USAAR’s Submission to the WMT2015
Metrics Shared Task

In order to evaluate the efficacy of our method we
contributed with three systems to the metrics task:

• COSINE: the raw document embedding sim-
ilarity, i.e. sim(hyp, ref)

• ZWICKEL: the cosine-based metric outputs
from the regressor described above

• COMET: the combination of ZWICKEL out-
puts from the regressor and METEOR

5 Evaluation

All submissions to the metrics task were evalu-
ated4 at system level by computing their Pearson
correlation coefficient with human judgements.
For the evaluation of translations into English our
best submission is COMET, achieving on average
a correlation coefficient of 0.788±0.026. For the
evaluation of translations from English into Ger-
man, COMET is again our best submission with a
correlation coefficient of 0.448±0.40.

Table 5 shows the system-level Pearson cor-
relation coefficient for COSINE, ZWICKEL and
COMET5 for each language pair into English and
for the language pair English-German.

Spearman’s correlation coefficient was also
computed, but just the average over all language

4The numbers reported in this section are provided by the
organisers of the WMT2015 metrics shared task

5For the translations into English the system-level score
is the root mean square of the sentence-level scores. For the
translations from English into German the best system-level
scores are achieved by the arithmetic geometric mean of the
sentence-level scores.
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Pearson Correlation Coefficient
Language pair COSINE ZWICKEL COMET
Finnish-English NaN -0.093±0.043 0.834±0.023
German-English 0.008±0.052 0.286±0.052 0.847±0.027
Czech-English 0.912±0.013 0.406±0.031 0.896±0.014
Russian-English NaN 0.264±0.052 0.603±0.041
English-German NaN -0.232±0.044 0.448±0.040

Table 1: Pearson correlation coefficient for COSINE, ZWICKEL and COMET.

Spearman’s Correlation Coefficient
Average COSINE ZWICKEL COMET
into English 0.122±0.079 0.066±0.087 0.665±0.069
into German 0.084±0.084 -0.235±0.069 0.588±0.072

Table 2: System-level Spearman’s correlation coefficient for COSINE, ZWICKEL and COMET.

pairs into English and into German. From the
results in Table 5 we notice that COMET was
the metric performing best for both translations
into English and German, achieving a coefficient
of 0.665±0.069 for translations into English and
0.588±0.072 for translations from German into
English.

6 Conclusion

This paper presents USAAR’s submission to the
WMT2015 metrics shared task. Our aim of our
submission was a language independent method
for predicting MT adequacy based on the semantic
similarity between hypothesis and reference trans-
lation by using document embeddings. We con-
tributed with three evaluation metrics, COMET, a
combination of a cosine-based metric and ME-
TEOR, being the one correlating best with the hu-
man evaluators.

Previous studies have shown that METEOR
systematically underestimate the quality of the
translations (Vela et al., 2014b). Future work on
our approach using document embeddings and co-
sine similarities could be used to also predict dif-
ferent scores (i.e. other than METEOR). Addi-
tionally, further experiments on document/word
embeddings would be beneficial to find the best-
fit solution for the cosine similarity calculation
between a machine translation and its reference
translation.
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Canada, June. Association for Computational Lin-
guistics.

Tucker Maney, Linda Sibert, Dennis Perzanowski,
Kalyan Gupta, and Astrid Schmidt-Nielsen. 2012.
Toward Determining the Comprehensibility of Ma-
chine Translations. In Proceedings of the 1st PITR,
pages 1–7.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv, 1301.3781.

George A. Miller. 1995. WordNet: A Lexical
Database for English. Communications of the ACM,
38(11):39–41, November.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 311–318.

409



Mohammad Taher Pilehvar, David Jurgens, and
Roberto Navigli. 2013. Align, Disambiguate and
Walk: A Unified Approach for Measuring Seman-
tic Similarity. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics, pages 1341–1351, Sofia, Bulgaria, August.

Miguel Rios, Wilker Aziz, and Lucia Specia. 2012.
UOW: Semantically Informed Text Similarity. In
The 1st Joint Conference on Lexical and Computa-
tional Semantics (SEM), pages 673–678, Montréal,
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Abstract

This paper describes the LeBLEU evalu-
ation score for machine translation, sub-
mitted to WMT15 Metrics Shared Task.
LeBLEU extends the popular BLEU score
to consider fuzzy matches between word
n-grams. While there are several variants
of BLEU that allow to non-exact matches
between words either by character-based
distance measures or morphological pre-
processing, none of them use fuzzy com-
parison between longer chunks of text.
The results on WMT data sets show that
fuzzy n-gram matching improves correla-
tions to human evaluation especially for
highly compounding languages.

1 Introduction

The quality of machine translation has improved
to the level that the translation hypotheses are
useful starting points for human translators for
almost any language pair. In the post-editing
task, the ultimate way to evaluate the machine
translation quality is to measure the editing time.
Editing times are naturally related to the num-
ber and types of the edits—and thus the number
of keystrokes (Frederking and Nirenburg, 1994)—
the post-editor needs to get the final translation
from the hypothesis. If we compare the raw trans-
lation hypothesis and its post-edited version, an
appropriate edit distance measure should correlate
to the edit time. However, implementing such a
measure is far from trivial.

In automatic speech recognition, common eval-
uation measures are Word Error Rate (WER) and
Letter Error Rate (LER) that are based on the Lev-
enshtein edit distance (Levenshtein, 1966). LER is
more reasonable measure than WER for morpho-
logically complex languages, in which the same
word can occur in many inflected and derived

forms (Creutz et al., 2007). However, both give
too high penalty for the variations in word order-
ing, which are frequent in translations. Even in
English, there are often at least two grammatically
correct orders for a complex sentence. For lan-
guages in which the grammatical roles are marked
by morphology and not the word order, there may
be many more options.

An edit distance measure suitable for machine
translation would require move operations. How-
ever, such measures are computationally very ex-
pensive: finding the minimum edit distance with
moves is NP-hard (Shapira and Storer, 2002),
making it cumbersome for evaluation and unsuit-
able for automatic tuning of the translation mod-
els. Possible solutions include limiting the move
operations or searching only for an approximate
solution. For example, Translation Edit Rate
(TER) by Snover et al. (2006) uses a shift oper-
ation that moves a contiguous sequence of words
to another location, as well as a greedy search al-
gorithm to find the minimum distance. Stanford
Probabilistic Edit Distance Evaluation (SPEDE)
by Wang and Manning (2012) applies a proba-
bilistic push-down automaton that captures non-
nested, limited distance word swapping.

A different approach to avoid the requirement
of exactly same word order in the hypothesis and
reference translations is to concentrate on compar-
ing only small parts of the full texts. For exam-
ple, the popular BLEU metric by Papineni et al.
(2002) considers only local ordering of words. To
be precise, it calculates the geometric mean pre-
cision of the n-grams of length between one and
four. As high precision is easy to obtain by provid-
ing a very short hypothesis translation, hypotheses
that are shorter than the reference are penalized by
a brevity penalty.

BLEU, TER and many other word-based meth-
ods assume that a single word (or n-gram) is ei-
ther correct or incorrect, nothing in between. This
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is problematic for inflected or derived words (e.g.
“translate” and “translated” are considered two
different words) as well as compound words (e.g.
“salt-and-pepper” vs. “salt and pepper”). This is
a minor issue for English, but it makes the evalua-
tion unreliable for many other languages. For ex-
ample, in English–German translation, producing
“Arbeits Geberverband” from “employers’ organi-
zation” would give no hits if the reference had the
compound “Arbeitgeberverband”.

A common approach to the problem of inflected
word forms—as well as to the simpler issues of
uppercase letters and punctuation characters—is
preprocessing. For example, METEOR (Baner-
jee and Lavie, 2005; Denkowski and Lavie, 2011)
uses a stemmer. Popović (2011) applies and com-
bines BLEU-style scores based on part-of-speech
(POS) tags as well as morphemes induced by the
unsupervised method by Creutz and Lagus (2005).
Also the AMBER score by Chen and Kuhn (2011)
combines many BLEU variants, and in some vari-
ants, the words are heuristically segmented.

Our approach is to extend the BLEU metric
to work better on morphologically complex lan-
guages without using any language-specific re-
sources. Instead of giving one point for exactly
same n-gram or zero points for any difference, we
include “soft” or “fuzzy” hits for word n-grams
based on letter edit distance. We call the score
LeBLEU; this name can be interpreted either as
“Letter-edit-BLEU” or “Levenshtein-BLEU”. Le-
BLEU has two main parameters, n-gram length
and fuzzy match threshold, that are easy to tune
for different types of languages.1

There are at least three previous approaches that
resemble LeBLEU in that they try not to over-
penalize different word orderings and word forms,
but do not require any preprocessing tools or re-
sources. Denoual and Lepage (2005) simply use
the standard BLEU score on the level of charac-
ters, treating word delimiters as any other charac-
ters. In order to capture long enough sequences of
text, they increase the maximum n-gram length to
18. Compared to word-based BLEU, their method
does not increase the correlations to human evalu-
ation in English.

Homola et al. (2009) propose a score that is a
weighted combination of two measures: an align-
ment score that applies letter edit distances be-

1In contrast, for example the AMBER score by Chen and
Kuhn (2011) includes nearly 20 weight parameters.

tween the word forms and a structural score that
measures the differences in word order. In con-
trast to LeBLEU, it still strongly penalizes errors
in compounding, as the alignment is word-to-word
and fuzzy matches are accepted only if the LER
between a pair of words is lower than 15%.

More recently, Libovický and Pecina (2014)
have proposed “tolerant BLEU”, a variant of
BLEU that similarly to LeBLEU finds fuzzy
matches between hypothesis and reference words.
Instead of Levenshtein edit distance, they apply
a specific affix distance measure that requires an
exact match in the middle of the words. More-
over, they apply a more complex procedure, in
which the words between the hypothesis and refer-
ence are first aligned using the Munkres algorithm.
Then the hypothesis words are replaced by the
matched reference words while applying a penalty
based on the affix distance, and finally standard
BLEU calculations are performed on the modified
hypothesis. Similarly to the method by Homola
et al. (2009), there is no matching between word
n-grams of different lengths.

2 Method

LeBLEU differs from the standard BLEU (Pap-
ineni et al., 2002) in the following aspects (in the
order of decreasing importance):

First, the matching of word n-grams is fuzzy:
for a close match, the hits are increased according
to a similarity score. The similarity score is one
minus letter edit distance normalized by the length
of the longer n-gram in characters. Even though
we use the term “letter edit”, the calculations are
based on all characters, including the spaces be-
tween the words. If the similarity score is lower
than the selected threshold parameter δ, the fuzzy
match is ignored.

In contrast to standard BLEU, there is no need
for lowercasing or even tokenization. For exam-
ple, a punctuation character following a word is
included in the n-gram as a part of the word. Thus,
with a reasonably low threshold parameter, miss-
ing the punctuation character will result only in a
relative small decrease in the score.

Second, to facilitate the matching of compound
words, the hypothesis n-grams are not matched
only to reference n-grams of the same order, but n-
grams of any order between one and 2n, where n
is highest order of hypothesis n-gram considered.

Third, the brevity penalty is not based on the
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number of word tokens but the number of charac-
ters in the data. By this, we try to avoid giving too
much penalty for mistakes in compound words.
Character-based penalty is also one of the penalty
variants in AMBER (Chen and Kuhn, 2011).

Fourth, when calculating mean over the differ-
ent n-gram orders, arithmetic mean is taken in-
stead of geometric mean. That the arithmetic
mean is often a better choice than the geometric
mean has been noted also by Song et al. (2013).

2.1 Algorithm

Our algorithm for calculating the LeBLEU score
consists of four phases: First, the hypothesis n-
grams and their frequencies are collected. Sec-
ond, hypothesis n-grams are matched to the refer-
ence n-grams, collecting the normalized letter-edit
scores. Third, the scores are summed up for each
n-gram order and normalized by the total number
of hypothesis n-grams. Finally, average precision
over n-gram orders is calculated and multiplied by
the brevity penalty.

Only the second phase differs significantly from
calculating the standard BLEU score. It is also
the most time-consuming part of the algorithm, so
we will describe the implemented optimizations in
more detail. We also discuss how further speed-
up can be obtained by sampling the hypothesis n-
grams in the first phase.

2.1.1 Calculating distances between n-grams
As we need to compare all hypothesis n-grams (up
to n) to all reference n-grams (up to 2n), the worst-
case complexity for the number of Levenshtein
calculations is O(n2HR) for hypothesis sentence
of H words, reference sentence of R words and
maximum n-gram order n. We use several strate-
gies to optimize this task without changing the re-
sulting scores.

To calculate the Levenshtein distances, we use a
modified version of python-Levenshtein, a Python
extension module written in C.2 The number of
function calls from Python to C is minimized by
passing in two lists of strings to compare: all ex-
tracted n-grams from the hypothesis and reference.
This strategy results in a large number of compar-
isons, making it attractive to prune comparisons
that will not affect the final score due to the thresh-
old parameter δ.

2Our fork is available from https://github.com/
Waino/python-Levenshtein.

Two lower bounds for Levenshtein distance
were used for pruning. The first lower bound
is given by the difference in lengths of the two
strings: the number of letter edits is at least the ab-
solute difference of the lengths. The second lower
bound is the bag distance (Bartolini et al., 2002),
which uses the difference between character his-
tograms calculated from the compared strings. In
addition to the lower bounds, we use early stop-
ping of the dynamic programming algorithm for
Levenshtein distance, if all possible paths have
grown past the pruning threshold.

For each hypothesis n-gram, the pruning thresh-
old is initially set to δ. As we are looking only
for the m-best matches (where m is the number of
times the hypothesis n-gram occurred in the sen-
tence), we can constraint the threshold whenever
better matches to the reference n-grams are found.
For example, if the two best matches are required,
a third score that is worse than the current second-
best cannot affect the score. Keeping track of the
desired number of best matches can be accom-
plished using for example a heap data structure.
However, most of the n-grams occur only once,
in which case the heap degenerates into a single
item. To simplify the implementation, we adjust
the threshold only in this case.

2.1.2 Sampling of n-grams

Regardless of the optimizations above, the eval-
uation speed may get impractically slow for very
long sentences. In such cases, a suitable approxi-
mation is to estimate the precision for only a sub-
set of the hypothesis n-grams. If the sample size
is limited to L n-grams, the time complexity be-
comes O(LnR). A sensible scheme is to select
n-grams evenly from the hypothesis sentence. In
practice, we exclude or include n-grams starting
from every kth word for a suitable value of k.3

If the gaps are never longer than n − 1 words,
all words in the hypothesis will influence the re-
sult. We set the maximum n-gram sample size L
to 2000. If n = 4, this means that we use all n-
grams if the number of words in the hypothesis
H ≤ 500. Some words in the hypothesis would
be completely discarded only if H > 2000.

3If L/H < 0.5, we set k = bH/Lc and include every
kth word. Otherwise we set k = bH/(H − L)c and exclude
every kth word.
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3 Experiments

We study the proposed evaluation score using the
data sets from the shared tasks of the Workshops
on Statistical Machine Translation (WMT). The
data sets contain human evaluations for different
machine translation systems and system combi-
nation outputs. The translation hypotheses are
ranked both in the level of segments (individual
sentences) and systems. The translation hypothe-
ses and references were used as inputs to the Le-
BLEU score as such: no preprocessing was per-
formed on the texts.

3.1 Parameter tuning

We tuned the two parameters of the evaluation
score on the data sets published from the WMT
2013 and 2014 shared tasks (Macháček and Bo-
jar, 2013; Macháček and Bojar, 2014). We ran a
grid search on the parameters for each language
and level. We tested four values of the maximum
n-gram length n (from 1 to 4) and six values of
the fuzzy match threshold δ (from 0.2 to 0.8 using
step size 0.1).

Our WMT 2015 submission includes two ver-
sions regarding the method parameters: “default”
and “optimized”. For the default submission, we
selected the parameters based on the smallest rank
sum over all languages, data sets (2013/2014) and
levels of evaluation (system/segment). These pa-
rameters, which we set as the default parameters
for our implementation, are n = 4 and δ = 0.4.

For the optimized submission, we took the pa-
rameters with the best average correlation over
WMT 2013 and 2014 data sets for each language
pair and level of evaluation. The results are shown
in Table 1. For the Finnish language that was
not present in the 2013 and 2014 shared tasks, we
took the best parameters for German, another lan-
guage with complex morphology and long com-
pound words.

3.2 Results for the WMT shared tasks

Table 2 shows the results from the WMT 2013,
WMT 2014, and WMT 2015. Topline for system-
level data of WMT 2013 is not included due to
the use of Spearman’s rank correlation instead of
Pearson’s product-moment correlation. Segment-
level results of WMT 2013 are dominated by sin-
gle submission, SIMPBLEU-RECALL by Song et
al. (2013). Considering morphologically com-
plex languages, LeBLEU would have ranked first

segment system

Source Target n δ n δ

English French 4 0.7 4 0.4
English German 3 0.2 4 0.2
English Czech 2 0.3 4 0.3
English Russian 2 0.3 2 0.2
French English 3 0.6 4 0.6
German English 4 0.5 4 0.4
Czech English 4 0.5 4 0.7
Russian English 4 0.5 4 0.3

Table 1: Results of parameter optimization for
each language pair and level of evaluation (seg-
ment or system).

in English–German and second in English–Czech
and English–Russian. For translations to English,
LeBLEU would have ranked in the top five among
the 10 methods.

For WMT 2014 segment-level data, optimized
LeBLEU provides the highest correlations for all
language pairs from English. It also outperforms
all the included methods for English–German and
English–Russian system-level data. For system-
level English–French, it would have ranked 5th.
For system-level English–Czech, the optimized
parameters yielded lower correlation than the de-
fault ones, and neither come close to the topline.
Somewhat surprisingly, LeBLEU provides the top
correlation for system-level German–English and
third best for system-level Czech–English transla-
tions. For other system-level pairs to English, and
all segment-level pairs to English, the correlations
are reasonably high but quite far from the respec-
tive toplines. We can also compare LeBLEU to
two related methods, standard BLEU and AMBER
(Chen and Kuhn, 2011). LeBLEU outperforms
both in almost all tasks already with the default pa-
rameters. The only exception is the system-level
English–Czech task, in which BLEU provided a
slightly higher correlation.

In the WMT 2015 evaluation, LeBLEU pro-
vides quite stable correlations across the differ-
ent language pairs: Segment-level correlations are
between 0.345–0.436 with default parameters and
0.347–0.438 with optimized parameters. System-
level correlations are between 0.850–0.955 with
default parameters and 0.842–0.984 with opti-
mized parameters, except for English–Finnish,
which gets 0.835 with the default parameters and
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WMT 2013 WMT 2014 WMT 2015

Source Target Level def. opt. top def. opt. ref-B ref-A top def. opt. top

English French segment .231 .234 .261 .292 .296 .256 .264 .293 .345 .347 .366
English Finnish segment – – – – – – – – .368 .368 .380
English German segment .247 .260 .254 .273 .273 .191 .227 .268 .398 .399 .398
English Czech segment .167 .168 .192 .342 .349 .290 .302 .344 .406 .410 .446
English Russian segment .230 .233 .245 .446 .449 .381 .397 .440 .404 .404 .439

French English segment .255 .259 .303 .380 .395 .378 .367 .433 .373 .376 .398
Finnish English segment – – – – – – – – .383 .391 .445
German English segment .256 .262 .318 .324 .320 .271 .313 .380 .402 .399 .482
Czech English segment .225 .227 .388 .278 .282 .213 .246 .328 .436 .438 .495
Russian English segment .229 .230 .234 .302 .309 .263 .294 .355 .376 .374 .418

English French system .971 .971 – .947 .947 .937 .928 .960 .933 .933 .964
English Finnish system – – – – – – – – .835 .803 .878
English German system .947 .919 – .451 .531 .216 .241 .357 .850 .868 .879
English Czech system .842 .857 – .973 .964 .976 .972 .988 .953 .952 .977
English Russian system .787 .870 – .926 .941 .915 .926 .941 .896 .908 .970

French English system .948 .956 – .964 .964 .952 .948 .981 .955 .984 .997
Finnish English system – – – – – – – – .900 .900 .977
German English system .933 .933 – .963 .963 .832 .910 .943 .916 .916 .981
Czech English system .960 .946 – .918 .988 .909 .744 .993 .947 .976 .993
Russian English system .836 .855 – .805 .799 .789 .797 .870 .908 .842 .981

Table 2: Performance of LeBLEU in recent WMT metrics shared tasks. Pearson’s correlation coefficients
(system-level data) and average Kendall’s tau correlation coefficients (segment-level data) for LeBLEU
with default parameters (def.), LeBLEU with optimized parameters (opt.), and topline method for the
shared task (top). For WMT 2014 data, also two reference methods are included: BLEU (ref-B) and
AMBER (ref-A).

only 0.803 with the German-optimized parame-
ters. The choice of German-based parameters was
clearly unsuccessful, and the effect of optimiza-
tion for evaluation in Finnish remains to be seen.
On average, optimization based on WMT 2013
and 2014 data sets improved the performance.

Compared to other methods submitted to WMT
2015, LeBLEU outperformed others in segment-
level English–German translation. It also ranked
second in system-level English–German and third
in segment-level English–French. Moreover, even
though unoptimized for the task, it ranked third in
segment-level and fourth in system-level English–
Finnish evaluations.

4 Conclusions

We have described the LeBLEU evaluation score
for machine translation. It is an extension of the
popular BLEU evaluation metric, but much more
suitable for evaluating machine translation to mor-
phologically complex languages. The extension
is conceptually simple and does not require any
language-specific resources. Instead, morpholog-
ical variants and mistakes in compound words
are accepted by using fuzzy matching between

the word n-grams in the hypothesis and reference
translations.

In the WMT15 shared task, LeBLEU provided
high correlations to the human evaluations espe-
cially when translating from English to a mor-
phologically more complex language. In particu-
lar, it outperformed other methods in the segment-
level evaluation of English–German translation.
The performance is equally good for WMT 2013
and 2014 data sets. This is remarkable especially
as the method uses neither rule-based nor data-
driven tools for morphological processing. As
German is a highly compounding language, this
indicates that the mistakes in compound words are
frequently over-penalized by the current evalua-
tion methods.

Implementation for the LeBLEU evaluation
score is available from https://github.
com/Waino/LeBLEU.
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Antti Puurula, Janne Pylkkönen, Vesa Siivola, Matti
Varjokallio, Ebru Arisoy, Murat Saraçlar, and An-
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Abstract

Human-designed sub-structures are re-
quired by most of the syntax-based ma-
chine translation evaluation metrics. In
this paper, we propose a novel evalua-
tion metric based on dependency parsing
model, which does not need this human in-
volvement. Experimental results show that
the new single metric gets better correla-
tion than METEOR on system level and is
comparable with it on sentence level. To
introduce more information, we combine
the new metric with many other metrics.
The combined metric obtains state-of-the-
art performance on both system level eval-
uation and sentence level evaluation on
WMT 2014.

1 Introduction

Automatic evaluation metrics play an important
role in machine translation research. At present,
most of the automatic evaluation metrics evaluate
the translation quality by comparing the similarity
between the hypothesis and the reference.

The lexicon-based metrics can only use lexical
information, such as BLEU (Papineni et al., 2002),
NIST(Doddington, 2002) and METEOR (Lavie
and Agarwal, 2007). To evaluate the hypothe-
sis on syntactic level, some researchers proposed
the syntax-based metrics. Liu and Gildea (2005)
proposed a constituent-tree-based metric STM
and a dependency-tree-based metric HWCM. The
syntax-based metric proposed by Owczarzak et
al (2007) uses the Lexical-Functional Grammar
(LFG) dependency tree. Some metrics introduce
the syntactic information on the basis of lexi-
cal information, such as MAXSIM (Chan and
Ng, 2008) and the metric proposed by Zhu et
al. (2010). These metrics evaluate the syntac-
tic similarity by comparing the sub-structures ex-

tracted from the trees of hypothesis and refer-
ence. To avoid parsing the hypothesis in order
to prevent translation error propagation, some re-
searchers propose a kind of syntax-based evalua-
tion metric which only uses the tree of reference,
such as BLEUÂTRE (Mehay and Brew, 2007) and
RED (Yu et al., 2014).

The syntax-based metrics either use the sub-
structures of both the reference and the hypothesis
tree, or only use that on the reference side. There-
fore, for these metrics, sub-structures designed by
human are required. In this paper, we propose
a novel dependency-parsing-model-based metric
in the view of dependency tree generation, which
completely avoids this human involvement. A de-
pendency parsing model is trained by the reference
dependency tree, through which we can obtain the
dependency tree of the hypothesis and the corre-
sponding score. The syntactic similarity between
the hypothesis and the reference can be evaluated
by this score. In order to obtain the lexicon sim-
ilarity, we also introduce the unigram F-score to
the new metric. The experimental results show
that the new metric gets the state-of-the-art per-
formance in the single metrics on system level
evaluation, and gets the comparable correlation
with METEOR on sentence level evaluation. We
also propose a combined metric1 which combines
the new metric with many other metrics together.
The combined metric obtains state-of-the-art per-
formance on both system level and sentence level.

The remainder of this paper is organized as fol-
lows: Section 2 describes the dependency-parsing-
model-based metric; Section 3 presents the com-
bined metric; Section 4 gives the experiment re-
sults; Conclusions are discussed in Section 5.

1Combined metrics directly use the scores of many kinds
of metrics, such as BLEU, TER, METEOR and some syntax-
based metrics. For the metrics using different kinds of infor-
mation types (lexicon, syntax and semantic information) as
features, we still think they are single metrics, because they
don’t use the score of other metrics.
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2 DPMF: Evaluation Metric Based on
Dependency Parsing Model

We evaluate the syntactic similarity via the
Dependency Paring Model score of hypothesis
and evaluate the lexical similarity via the unigram
F-score. So we name the new metric as DPMF.

There are four steps to obtain the dependency
parsing model score of the hypothesis. 1) Obtain
the reference dependency tree which can be gen-
erated by the automatic parsing tools or labeled by
human. 2) Train a dependency parsing model us-
ing the reference dependency tree. 3) Parse the hy-
pothesis using the dependency parsing model and
get the probability of the hypothesis dependency
tree. 4) Normalize the probability of the hypoth-
esis dependency tree. We define the normalized
probability of the hypothesis dependency tree as
the dependency parsing model score. After ob-
taining the dependency parsing model score of a
hypothesis, we multiply this score by unigram F-
score to get the final score of DPMF. The detailed
description of our metric will be found in paper Yu
et al. (2015a). We only give the experiment results
in this paper.

3 DPMFcomb: A Combined Evaluation
Metric

From the published results of WMT 2014, we can
see that the combined metrics such as DISCOTK-
PARTY (Joty et al., 2014) and UPC-STOUT
(Gonzàlez et al., 2014) obtained great success
which can make use of many single metrics. In
most of the cases, combined metrics can obtain
good correlations, so we also propose a combined
metric which combines DPMF with some other
single metrics. The combined metric is named
as DPMFcomb and it involves DPMF, REDp,
ENTFp2 and some metrics included in the open
source toolkit Asiya3.

We introduce REDp, ENTFp and Asiya briefly
in the rest of this section.

3.1 REDp
RED (Yu et al., 2014) employs the reference de-
pendency tree which contains both the lexical and
syntactic information, leaving the hypothesis side
unparsed to avoid error propagation. The score
of RED is obtained using F-score. The precision

2The source code of DPMF, REDp and ENTFp can be
found in http://github.com/YuHui0117/AMTE

3http://asiya-faust.cs.upc.edu/

and recall are calculated using the dependency tree
of the reference and the string of the hypothesis.
To extend the limited reference, they introduce
some linguistic resources into RED and propose
a new version REDp, which is employed in our
combined metric. We merge the extended version
REDp into our combined metric.

3.2 ENTFp

The widely-used lexicon-based evaluation metrics
cannot adequately reflect the fluency of the trans-
lations. The n-gram-based metrics, like BLEU,
limit the maximum length of matched fragments to
N and cannot catch the matched fragments longer
than N, so they can only reflect the fluency indi-
rectly. METEOR, which is not limited by n-gram,
uses the number of matched chunks but it does
not consider the length of each chunk. To avoid
this defect, we propose an entropy-based method
ENTF, which is a metric by introducing unigram
F-score on the base of ENT (Yu et al., 2015b).
ENT aims at reflecting the fluency of translations
through the distribution of matched words, while
the unigram F-score can evaluate the accuracy.
We introduce stem, synonym and paraphrase into
ENTF to extend the limited number of reference
and name it as ENTFp.

3.3 Asiya

We use Asiya MT evaluation toolkit (Giménez and
Màrquez, 2010) to produce the score of many met-
rics, which can be used in DPMFcomb. Asiya pro-
vides a rich set of specialized similarity metrics
that use different level of linguistic information,
namely lexical, syntactic and semantic.

In our experiment, we calculate scores of the
default metric set provided by Asiya. For the into-
English language pairs, the default metric set con-
tains 55 metrics, including lexicon-based metrics,
syntax-based metrics and semantic-based metrics.
The weights of all these 55 scores together with
the scores of DPMF, REDp and ENTFp are trained
with SVM-rank4.

4 Experiments

To evaluate the performance of DPMF and
DPMFcomb, we carry out the experiments on both
system level evaluation and sentence level evalua-
tion. In this section, we first describe the data sets

4http://www.cs.cornell.edu/People/tj/svm light/
svm rank.html
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and the baseline metrics in the experiments, and
then give and analyse the experimental results.

4.1 Data

We use the data from the WMT 2014 evaluation
campaign as test data. The language pairs are
Czech-to-English, German-to-English, French-to-
English and Russian-English. The number of
translation systems for each language pair are
shown in Table 1.

data cs-en de-en fr-en ru-en
WMT2014 5 13 8 13

Table 1: The number of translation systems
for each language pair on WMT 2014. cs-en
means Czech-to-English. de-en means German-
to-English. fr-en means French-to-English. ru-en
means Russian-to-English.

DPMFcomb is a combined metric which in-
cludes 58 single metrics. The training data used
to train the weight of each single metric are the
English-targeted language pairs in WMT 2012 and
WMT 2013.

4.2 Baseline

The baselines are the widely-used lexicon-based
metrics, such as BLEU5, TER6 and METEOR7.
In addition, according to the published results
of WMT 2014, we also give the correlation of
the metric with the best performance on average,
DISCOTK-PARTY-TUNED (Joty et al., 2014),
which is a combined metric including many kinds
of other metrics. For fairness, we also give the re-
sult of the metric with the best performance on av-
erage in the single metrics, VERTA-W(Comelles
and Atserias, 2014) on system level and BEER
(Stanojevic and Sima’an, 2014) on sentence level
respectively. For our combined metric, to evaluate
the effect of adding DPMF, REDp and ENTFp, we
also give the correlation of the metric only com-
bining the single metrics in Asiya.

4.3 System Level Correlation

To verify the effectiveness of DPMF, we carry out
the system level experiments on WMT 2014. To

5ftp://jaguar.ncsl.nist.gov/mt/
resources/mteval-v13a.pl

6http://www.cs.umd.edu/˜snover/tercom
7http://www.cs.cmu.edu/˜alavie/METEOR/

download/meteor-1.4.tgz

evaluate the correlation with human judges, Spear-
man’s rank correlation coefficient ρ is used. ρ is
calculated using Formula (1).

ρ = 1− 6
∑
d2

i

n(n2 − 1)
(1)

di is the difference between the human rank and
metrics rank for system i. n is the number of sys-
tems.

We give the system level correlations for ev-
ery metric in Table 2. From Table 2, we can see
that DPMF is better than BLEU and TER on all
the language pairs. The correlation of DPMF is
also better than METEOR and the best single met-
ric VERTA-W on average. But DPMF is lower
than the combined metrics DISCOTK-PARTY-
TUNED and Asiya. After combining DPMF with
other metrics, DPMFcomb obtains better correla-
tions than DISCOTK-PARTY-TUNED and Asiya
on average. We can see that DPMFcomb ob-
tains state-of-the-art performance on system level.
From the comparison between DPMFcomb and
Asiya, we can see that adding DPMF, REDp and
ENTFp into the combined metric is useful on sys-
tem level.

4.4 Sentence Level Correlation

To further evaluate the performance of DPMF and
DPMFcomb, we carry out the experiments on sen-
tence level. On sentence level, Kendall’s τ corre-
lation coefficient is used. τ is calculated using the
following equation.

τ =
num con pairs− num dis pairs
num con pairs + num dis pairs

num con pairs is the number of concordant pairs
and num dis pairs is the number of disconcor-
dant pairs.

Table 3 gives the correlations of all the met-
rics. We can see that DPMF is better than
BLEU on each language pair and it is com-
parable with METEOR on average. The stat-
of-the-art performance on sentence level is ob-
tained after combining DPMF with other met-
rics, namely, DPMFcomb, which outperforms the
combined metrics DISCO-PARTY-TUNED and
Asiya. From the comparison between DPMFcomb

and Asiya, we can see that adding DPMF, REDp
and ENTFp into the combined metric is useful on
sentence level.
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metrics cs-en de-en fr-en ru-en average
TER .976 .775 .952 .809 .878
BLEU .909 .832 .952 .789 .871
METEOR .980 .927 .975 .805 .922
DISCOTK-PARTY-TUNED .975 .943 .977 .870 .941
VERTA-W .934 .867 .959 .848 .902
Asiya .954 .936 .978 .871 .935
DPMF .999 .920 .967 .832 .930
DPMFcomb .974 .950 .978 .872 .944

Table 2: System level correlations on WMT 2014. Asiya represents the combined metric only using the
metrics in Asiya. The value in bold is the best result in each column. average stands for the average
result of all the language pairs for each metric on WMT 2014.

metrics cs-en de-en fr-en ru-en average
BLEU .216 .259 .367 .256 .275
METEOR .282 .334 .406 .329 .338
BEER .284 .337 .417 .333 .343
DISCOTK-PARTY-TUNED .328 .380 .433 .355 .374
Asiya .333 .388 .437 .355 .378
DPMF .283 .332 .404 .324 .336
DPMFcomb .332 .398 .443 .364 .384

Table 3: Sentence level correlations on WMT 2014. Asiya represents the combined metric only using
the metrics in Asiya. The value in bold is the best result in each column. average stands for the average
result of all the language pairs for each metric on WMT 2014.

5 Conclusion

In this paper, we propose a new dependency-
parsing-model-based metric DPMF and a com-
bined metric DPMFcomb. DPMF evaluates the
syntactic similarity through the dependency pars-
ing model and evaluates the lexical similarity by
unigram F-score. Experimental results show that
the correlation of DPMF is better than BLEU,
TER, METEOR and VERTA-w on system level.
On sentence level, DPMF is better than BLEU,
and comparable with METEOR. After combining
DPMF with other metrics, DPMFcomb obtains the
state-of-the-art performance on both system level
and sentence level on WMT 2014.
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Abstract

We define a new algorithm, named
“Drem”, for tuning the weighted linear
model in a statistical machine translation
system. Drem has two major innova-
tions. First, it uses scaled derivative-free
trust-region optimization rather than other
methods’ line search or (sub)gradient ap-
proximations. Second, it interpolates the
decoder output, using information about
which decodes produced which transla-
tions.

1 Introduction

While searching for the best translation of a text,
statistical machine translation systems generate
several different quantitative descriptors of the
translation, called “features”. These features are
combined into a single score, by weighting and
summing them. A tuning algorithm chooses the
weights used in this combination.

MERT (Och, 2003) is the standard tuning al-
gorithm. Many different varieties of error rate
training exist, with various techniques, includ-
ing expectation, line-search, Nelder–Mead sim-
plex (Zhao and Chen, 2009), particle swarm op-
timization (Suzuki et al., 2011), and stabilization
(Foster and Kuhn, 2009). It has been experienced
that MERT fails to perform well in larger feature
spaces, but recently there has been evidence of a
regularized MERT succeeding in high dimensions
(Galley et al., 2013).

Other methods have been designed as wholesale
replacements for MERT, including MIRA (Chiang
et al., 2008), k-best MIRA (Cherry and Foster,
2012), PRO (Hopkins and May, 2011), and Ram-
pion (Gimpel and Smith, 2012).

†This work is sponsored by the Air Force Research Labo-
ratory under Air Force contract FA-8650-09-D-6939-029.

MERT’s continued use indicates an improved
dense-feature optimizer for weighted linear mod-
els would be welcome. It is in this context that we
introduce our tuning algorithm, named “Drem”. In
contrast to known varieties of MERT, Drem is not
a line-search, simplex, or particle swarm optimiza-
tion method. It is a derivative-free trust-region
method, with several advancements to cater to the
particular nature of MT system optimization.

2 Background and definitions

A feature vector f ∈ Rk has the relative impor-
tance of its components determined by a weight
vector w ∈ Rk. For a weighted linear model, the
score used by the decoder to choose the best trans-
lation is the scalar product,

s(w,f) = wT f (1)

which we call the decoder score. The output of the
decoder run on a corpus C at a weight w is an n-
best list N (w, C). The n-best list can be thought
of as a collection of elements of the form (j, t, f),
where j ∈ J is the segment (typically sentence)
index within C, t is the text of the translation, and
f is the feature vector. The objective of tuning is
to choose the weights w such that the translation
with the highest decoder score (i.e., the “1-best”)
will be the segment’s best translation. For the test
error a human performs an evaluation.

In order to produce the best results on the test
set, it is important to optimize some measure of
error on a given bilingual development set, Cdev.
In tuning we will use the common practice of
iteratively decoding and optimizing, and we de-
fine w(m) to be the weight used in the m-th de-
code. During optimization, the development er-
ror metric at a weight w (where no decode has
been performed) is approximated using only re-
sults from prior decodings. At this un-decoded
weight we must perform a “pseudo-decoding” to
approximate the result of decoding at it.
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In Drem we define a pseudo-decoder scoring
function sdev, changed from the standard decoder
score (1) to incorporate a “fear” of including
a translation that was produced by decoding a
weight far from the weight under consideration.
Several different methods, including MIRA (Chi-
ang et al., 2008), k-best MIRA (Cherry and Foster,
2012), Rampion (Gimpel and Smith, 2012), and
Ultraconservative Updating (Liu et al., 2012), and
stabilization methods of Foster and Kuhn (2009),
include this fear by adding a distance penalty to
the error function being optimized. We believe
that changing the pseudo-decoder score, rather
than the error minimized, is a novel technique and
qualitatively different from other treatments.

Our optimization technique is novel in that it
is not a line search method like MERT, nor a
(sub)gradient approximation method, nor a sim-
plex method. Rather, it is a regression-based
derivative-free trust-region method. Use of re-
gression on scaled weights allows us to take
smooth approximations of the error function,
which should aid the method’s robustness. Trust-
region optimization supports the multiresolution
placement of regression points, providing a thor-
ough search.

3 Tuner description

We divide the tuner description into three sec-
tions. In §3.1 we describe optimization techniques
used to optimize efficiently, avoiding local optima.
In §3.2 we describe techniques used to make the
translations in optimization similar to the output
of the decoder. In §3.3 we give techniques used to
make the result of tuning robust to human evalua-
tion of test sets.

3.1 Optimization

3.1.1 Scaling
The scalar product (1) used in the determination
of the 1-best translation means that the decoder
output is scale-invariant. However, many tuning
algorithms (excluding MERT and Drem, but in-
cluding MIRA (Chiang et al., 2008), Ultraconser-
vative Updating (Liu et al., 2012), and others) are
impacted by the magnitude of the weight vectors.
In this section we show how we rescale all weights
and features to change to an intrinsic unit scaling.

Our first step in defining the coordinate system
is whitening the feature space, which is transform-
ing the features to be uncorrelated and have equal

variance. Whitening the features removes the
complications of features with dramatically differ-
ent scales and features that tend to move nearly in
lock-step with each other.

We perform the whitening of the feature space
by performing principal component analysis of the
matrix M , which we define to be the mean covari-
ance matrix. That is, M is the average of the sam-
ple covariance matrices for the different segments,
where we consider data from “relatively good” de-
codes1.

Principal component analysis of M provides the
scaling matrix A, which is used to produce the
whitened features φ:

φ = Af

In order to maintain ordering of the product wT f
under the new scaling of the features, we also
rescale the weights via

λ =
A−1w

∥A−1w∥
We will use the notational convenience of the

implicit transformation between the unscaled vari-
ables w and f and the scaled variables λ and
φ. The scaling matrix A is constant throughout
a Drem run, so this should produce no ambiguity.

With these scaled weights on the unit (k − 1)-
sphere, we can use a standard cosine difference be-
tween different weights:

dist(λ1, λ2) = acos(λT
1 λ2) (2)

which implies that all distances between vectors
will be between zero and π. This distance function
is appealing as a geometrically natural measure of
distance between direction vectors.

3.1.2 Derivative-free trust-region
optimization

Our tuning process can be summarized as per-
forming the development error minimization

w∗ = arg min
w

Edev(w, Cdev) (3)

We choose to perform this optimization using a
trust-region method (Conn et al., 2000). We re-
peatedly solve a problem of the form

λ∗ = arg min
λ:dist(λ,λ0)<δ

mδ(λ, λ0) (4)

1Defined by the user, and precise definition has little im-
pact. We use metrics scaled like BLEU, and weights are “rel-
atively good” if they give an error within 0.0025 of the best
decode’s.
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where δ is the so-called “trust-region radius”, and
mδ (to be defined in §3.1.3) is a simple model ap-
proximately equal to Edev.

When an improvement to Edev (or Edev,robust in
§4) is found via (4), a step is taken in that direction.
The trust-region radius is enlarged if the improve-
ment is significant, and maintained or decreased
otherwise.

Problem (4) is optimized repeatedly, with dif-
ferent central weights λ0 and different trust-region
radii δ. Convergence is declared if the trust-region
radius becomes small enough or the maximum
number of iterations is reached2.

A new, optimal weight w is the output of each
Drem run. It will be used to decode the develop-
ment corpus, and then Drem will be re-run. Over-
all convergence is achieved if the Drem output
weights converge.

This trust-region method is in stark contrast to
MERT’s line search methodology on a piecewise
continuous error. MERT relies heavily on search-
ing along a line, keeping track of where the one-
best translations (and therefore the error) change
on that line. MERT’s method is designed for a
piecewise constant error and would be inapplica-
ble for (4). Both our pseudo-decoder score and
development error metrics are continuous.

3.1.3 Error surface modeling via sampling
We choose to evaluate the error function at a few
sampled points around the current best weight and
fit a quadratic or linear model mδ to it (Conn et al.,
2009).

For a linear model, we choose the evaluation set
at the scale δ to be the 2(k−1)+1 points consisting
of the central point λ0 of the trust-region and the
2(k−1) points found by taking steps of±δ in each
of the k − 1 coordinate directions.

The model of the error is defined as the model
mδ(λ, λ0) that minimizes the squared error be-
tween the error evaluations and the model.

Using least-squares regularization to model the
error surface completely avoids the issue of need-
ing to approximate a gradient or subgradient of the
error function. This is by design and avoids the
tendency of local behavior to dominate global be-
havior, in both computational effort and final result
(Conn et al., 2009).

2Precise definitions of the many optimization parameters
have little impact. Our threshold for the minimum trust-
region radius is 0.001, and we allow up to 30 iterations of
solving (4) per Drem run.

The local coordinate basis on the unit sphere is
arbitrary in the definition of mδ(λ, λ0). We will
use this feature to our advantage, choosing a dif-
ferent random basis every time we perform an op-
timization iteration. This gives the benefit of func-
tion evaluation in many random directions at each
step, with negligible cost.

3.2 Pseudo-decoder improvement
We now turn to how we will use the information
available to Drem to simulate decoding at a new
weight.

3.2.1 Decode score interpolation
For development error, we include a penalty so
that a translation will get a lower score (“fade
away”) as one moves farther from the decode
weights that produced that translation. Our
pseudo-decoder score is an adjusted version of (1),

sdev(j, t,φ,λ) = s(w, f) + p(j, t,φ,λ) (5)

where p is the penalty for considering a transla-
tion at a weight which is distant from the weights
which produced it.

We have freedom in choosing the distance
penalty function p. Many optimizers, such as
MERT, have no such penalty function, so we can
replicate their pseudo-decoders by setting p iden-
tically equal to zero. We choose to interpolate in-
stead. That is, the decoder and the pseudo-decoder
will produce the same n-best list and scores at that
weight (modulo inclusion of translations with in-
finitely bad scores). In equations, this is

p(j, t,φ,λ(m))=

{
0, (j, t, f) ∈ N (w(m), Cdev)
−∞, otherwise

We give our standard choice for p here. Let
dmin(λ) be the distance of a weight λ from the
nearest weight where the current segment was de-
coded:

dmin(λ) = min
m

dist(λ, λ(m))

and let d(j, t, φ, λ) be the distance to the near-
est weight that produced the given translation
(j, t, φ). We define the maximum distance that
can produce a finite score to be a multiple of this
minimum distance, dmax = 1000dmin. Then we
define the penalty function to be

p(j, t,φ,λ) =


0, d = dmin
dmin−d
dmax−d , dmin < d < dmax

−∞, otherwise
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We find Drem’s decode score interpolation to be
extraordinarily beneficial when n-best list rerank-
ing is part of the system. If the ranking from the
initial decoder differs substantially from that of the
rescorer, we have seen other tuners have difficulty
producing translations which are both produced by
the first decoder and scored highly by the rescorer.

3.2.2 Tabu search
We, like Foster and Kuhn (2009), feel that early
tuning iterations should focus on exploring the
space. This helps to develop the psuedo-decoder’s
knowledge of the decoder’s output at various
weights. To this end, we have the option of con-
straining the output of a tuning iteration to be a
certain distance from all previous decodes. As in
Foster and Kuhn (2009), we reduce the effect in
later iterations, to allow convergence. We set this
distance to 0.25 for the first twenty iterations of
Drem, and zero for the final three iterations.

3.2.3 Historical restarts
We, like Foster and Kuhn (2009), have observed
that random restarts are often not valuable for tun-
ing. In Drem this may be due in part to the re-
peatedly randomized coordinate systems. How-
ever, historical restarts can sometimes help re-
cover from an early misstep. The set of starting
points will then consist of the given weight and
the three prior decode weights with the best devel-
opment error metric values. If enough distinct his-
torical restarts are not available, random restarts
will be added until four distinct starting points are
found.

3.2.4 Merging replicates
Our final option in this section is related to the
standard practice of running several replicates of
the tuning process and choosing to use the weights
output by just one of them. Instead of choosing
a single replicate’s result, we allow the user to
merge the n-best lists of all the replicates at some
mid-way point of Drem. This improves the knowl-
edge of the pseudo-decoder, allowing Drem to use
this information to select its final answer.

We allow ten replicates to proceed for twenty
iterations of Drem, then merge their n-best lists
and optimize for three further iterations.

3.3 Generalization to test data

We find that the weights found by Drem (and other
tuners) do not always generalize well to test data.

The proper choices here depend strongly on how
the development corpus and evaluation metric dif-
fer from the test corpus and evaluation metric.

3.3.1 Error function smoothing
To generalize from a development corpus to an un-
seen test corpus, we choose to smooth the metric
function optimized. We do this by using expected
metric scores, as in Smith and Eisner (2006), Och
(2003), Cherry and Foster (2012), and Liu et al.
(2012). We average the sufficient statistics of the
available translations, taking the weight of a trans-
lation as exp(αsdev(j, t, φ, λ))/Zj . Here Zj nor-
malizes the probability of the translations of seg-
ment j. The smoothing parameter α can vary, with
examples in the literature including α = 1 (Cherry
and Foster, 2012), α = 3 (Liu et al., 2012), and
α = ∞ (i.e., the standard 1-best score, which
would be used if the test set was identical to the
dev set). We choose our standard setting of α = 1.

3.3.2 Metric choice
The most difficult part of this tuning task may well
be choosing a development error to optimize that
will give a final result that will match well to hu-
man judgment. We choose to maximize a combi-
nation of NIST score (NIST Report, 2002), Me-
teor 1.5 score (Denkowski and Lavie, 2014), and
Kendall’s τ score (Birch and Osborne, 2011)3:

0.045 · NIST + 0.45 · Meteor + 0.1 · Kendall’s τ

where the weights are chosen based on experience,
and we smooth all metrics with α = 1. The com-
bined score aims to avoid pitfalls of any individual
metric. This metric was developed by performing
our own human evaluation of the Czech–English
direction and requesting human evaluation from
the task organizers for the English–Czech direc-
tion.

4 Unused options

Drem has several options that were not necessary
for this task, and we give a few of them here.

A quadratic model could be chosen in §3.1.3,
where we add the cross-terms to get an evaluation
set of 2(k−1)2+1 points. For the tuning task, tests
showed no improvement in the final result with the
quadratic model.

In addition to smoothing in the “depth” of the
n-best list, we can also smooth the error spatially.

3dev set alignments were created by GIZA++, trained on
the supplied training and dev corpora
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In §3.1.2, we would replace Edev with Edev,robust,
where Edev,robust is the average taken over a set of
nearby weights. For the tuning task, tests showed
no improvement in the final result with this spatial
smoothing.

We tested the ability of Drem to han-
dle sparse features, adding a total of 58
nontrivial TargetWordInsertion and
SourceWordDeletion features. Drem ran
successfully on this larger feature space, to
apparent convergence. However, the resulting
translations of the dev set were not qualitatively
better, despite the increased risk of overfitting to
the dev set.

5 Implementation

The Drem algorithm was programmed and run in
GNU Octave 3.6.4 in Scientific Linux. It is de-
signed to be called from the command prompt as a
drop-in replacement for the MERT executable that
is provided with Moses (Koehn et al., 2007). Ad-
ditional arguments, such as metric choice, expec-
tation parameter α, quadratic or linear error sur-
face model, etc., can be added to the command
line.

Tuning proceeded as described above. For this
task the test data are unavailable, so we do not
know how the test set differs from the develop-
ment set. We choose parameters for smoothing
and robustification that have generalized well in
the past, keeping in mind that we could make bet-
ter choices (such as paring down the dev set) if we
knew how the source text of the test differed from
the development text.

Convergence appeared to be achieved in both
translation directions.

It is noteworthy that for English–Czech the
weight for the feature TranslationModel0
was tuned to near zero. We restarted the tuning
process with it fixed at zero and achieved very sim-
ilar results.

A comparison of results of the Tuning Task can
be found in (WMT, 2015).

6 Discussion

In this paper we have introduced a new method
for tuning the weighted linear model which arises
in finding a statistical machine translation system.
We have created a new, lower-dimensional search
space in which all features are uncorrelated and
have approximately equal variation. We have cre-

ated a new method for extrapolating known n-best
lists to a new point, effectively reordering its simu-
lated n-best list by penalizing the pseudo-decoder
score of less trustworthy translations. Finally, we
have employed a new, multi-scale optimization
method which avoids approximating derivatives
and for robustness smooths the error function and
its local approximations.

Several different implementations fit within
Drem’s framework. This paper presents a batch
implementation of Drem. The algorithm requires
minor modifications if partial decodes are per-
formed, and this has promise for tuning more effi-
ciently.
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pages 221–231, Montréal, Canada, June. Associa-
tion for Computational Linguistics.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1352–1362, Edinburgh, Scotland, UK.,
July. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics Com-
panion Volume Proceedings of the Demo and Poster
Sessions, pages 177–180, Prague, Czech Republic,
June. Association for Computational Linguistics.

Lemao Liu, Tiejun Zhao, Taro Watanabe, Hailong Cao,
and Conghui Zhu. 2012. Expected error minimiza-
tion with ultraconservative update for SMT. In Pro-
ceedings of COLING 2012: Posters, pages 723–732,
Mumbai, India, December. The COLING 2012 Or-
ganizing Committee.

NIST Report. 2002. Automatic evaluation of machine
translation quality using n-gram co-occurrence
statistics. Technical report, National Institute of
Standards and Technology.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting of the Association for Com-
putational Linguistics, Sapporo, Japan, July.

David A. Smith and Jason Eisner. 2006. Minimum risk
annealing for training log-linear models. In Pro-
ceedings of the COLING/ACL 2006 Main Confer-
ence Poster Sessions, pages 787–794, Sydney, Aus-
tralia, July. Association for Computational Linguis-
tics.

Jun Suzuki, Kevin Duh, and Masaaki Nagata. 2011.
Distributed minimum error rate training of smt us-
ing particle swarm optimization. In Proceedings

of 5th International Joint Conference on Natural
Language Processing, pages 649–657, Chiang Mai,
Thailand, November. Asian Federation of Natural
Language Processing.

WMT. 2015. Findings of the 2015 workshop on sta-
tistical machine translation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation
(WMT ’15), Lisbon, Portugal, September. Associa-
tion for Computational Linguistics.

Bing Zhao and Shengyuan Chen. 2009. A simplex
Armijo downhill algorithm for optimizing statistical
machine translation decoding parameters. In Pro-
ceedings of Human Language Technologies: The
2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, Companion Volume: Short Papers, pages
21–24, Boulder, Colorado, June. Association for
Computational Linguistics.

427



Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 428–433,
Lisboa, Portugal, 17-18 September 2015. c©2015 Association for Computational Linguistics.

MT Tuning on RED: A Dependency-Based Evaluation Metric
Liangyou Li∗ Hui Yu† Qun Liu∗†
∗ ADAPT Centre, School of Computing

Dublin City University, Ireland
† Key Laboratory of Intelligent Information Processing

Institute of Computing Technology
Chinese Academy of Sciences, China

{liangyouli,qliu}@computing.dcu.ie
yuhui@ict.ac.cn

Abstract

In this paper, we describe our submis-
sion to WMT 2015 Tuning Task. We
integrate a dependency-based MT evalu-
ation metric, RED, to Moses and com-
pare it with BLEU and METEOR in con-
junction with two tuning methods: MERT
and MIRA. Experiments are conducted us-
ing hierarchical phrase-based models on
Czech–English and English–Czech tasks.
Our results show that MIRA performs bet-
ter than MERT in most cases. Using RED
performs similarly to METEOR when tun-
ing is performed using MIRA. We submit
our system tuned by MIRA towards RED
to WMT 2015. In human evaluations, we
achieve the 1st rank in all 7 systems on the
English–Czech task and 6/9 on the Czech–
English task.

1 Introduction

Statistical Machine Translation (SMT) is modeled
as a weighted combination of several features.
Tuning in SMT refers to learning a set of opti-
mized weights, which minimize a defined trans-
lation error on a tuning set. Typically, the er-
ror is measured by an automatic evaluation met-
ric. Thanks to its simplicity and language indepen-
dence, BLEU (Papineni et al., 2002) has served
as the optimization objective since the 2000s.
Although various lexical metrics, such as TER
(Snover et al., 2006) and METEOR (Lavie and
Denkowski, 2009) etc., have been proposed, none
of them can truly replace BLEU in a phrase-based
system (Cer et al., 2010).

However, BLEU has no proficiency to deal with
synonyms, paraphrases, and syntactic equivalent
etc. (Callison-Burch et al., 2006). In addition,
as a lexical and n-gram-based metric, BLEU may
be not suitable for optimization in a syntax-based
model.

In this paper, we integrate a reference
dependency-based MT evaluation metric, RED1

(Yu et al., 2014), into the hierarchical phrase-
based model (Chiang, 2005) in Moses (Koehn
et al., 2007). In doing so, we explore whether
a syntax-based translation system will perform
better when it is optimized towards a syntax-
based evaluation criteria. We compare RED with
two other evaluation metrics, BLEU and ME-
TEOR (Section 2). Two tuning algorithms are
used (Section 3). They are MERT (Och, 2003),
MIRA (Cherry and Foster, 2012). Experiments are
conducted on Czech–English and English–Czech
translation (Section 4).

2 Evaluation Metrics

An evaluation metric, which has a higher correla-
tion with human judgments, may be used to train
a better system. In this paper, we compare three
metrics: BLEU, METEOR, and RED.

2.1 BLEU
BLEU is the most widely used metric in SMT. It
is lexical-based and language-independent. BLEU
scores a hypothesis by combining n-gram pre-
cisions over reference translations with a length
penalty.

A n-gram precision pn is calculated separately
for different n-gram lengths. BLEU combines
these precisions using a geometric mean. The re-
sulting score is subsequently scaled by a length
penalty, which penalizes a hypothesis if it is
shorter than references. Equation (1) shows a for-
mula for calculating BLEU scores:

BLEU = BP ·
( N∏
n=1

pwn
n

)
, (1)

where,

BP = min{1.0, exp(1− |r|/|h|)},
1REference Dependency
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r and h are a reference and a hypothesis, respec-
tively. In this paper, we use N = 4 and uniform
weights wn = 1

N .
Even though widely used in SMT, BLEU has

some pitfalls. Because of strictly relying on lexical
sequences, BLEU cannot correctly score meaning
equivalents, such as synonyms and paraphrases. It
does not distinguish between content words and
functional words as well. In addition, the penalty
is not sufficient to be an equivalent replacement of
n-gram recall.

2.2 METEOR
METEOR relies on unigrams but considers both
precision and recall. It evaluates a hypothesis by
aligning it to a reference. METEOR identifies all
possible matches between a hypothesis-reference
pair with the following matchers:

• Exact: match words that have the same word
form.

• Stem: match words whose stems are identi-
cal.

• Synonym: match words when they are de-
fined as synonyms in the WordNet database2.

• Paraphrase: match a phrase pair when they
are listed as paraphrases in a paraphrase ta-
ble.

Typically, there is more than one possible align-
ment. In METEOR, a final alignment is obtained
by beam search in the entire alignment space.
Given the final alignment, METEOR calculates a
unigram precision P and a unigram recall R by
assigning different weights to function words and
content words to distinguish them, as in Equation
(2) and Equation (3).

P =
∑

iwi · (δ ·mi(hc) + (1− δ) ·mi(hf ))
δ · |hc|+ (1− δ) · |hf |

(2)

R =
∑

iwi · (δ ·mi(rc) + (1− δ) ·mi(rf ))
δ · |rc|+ (1− δ) · |rf |

(3)
where mi is the ith matcher, hc and rc are con-
tent words in a hypothesis and a reference, hf and
rf are functions words in a hypothesis and a ref-
erence, respectively. Then the precision and recall
are combined as in Equation (4).

2https://wordnet.princeton.edu/

Fmean =
P ·R

α · P + (1− α) ·R (4)

To consider differences in word order, a penalty
is calculated on the basis of the total number (m)
of matched words and the number (ch) of chunks.
A chunk is defined as a sequence of matches,
which are contiguous and have identical word or-
der. The penalty is formulated as in Equation (5):

Pen = γ ·
(
ch

m

)β
. (5)

The final METEOR score is calculated as fol-
lows:

Score = (1− Pen) · Fmean. (6)

α, β, γ, δ and wi are constants, which can be op-
timized to maximize the correlation with human
judgments.

By considering synonym, paraphrases, ME-
TEOR has shown to be highly correlated with
human judgments. However, these resources
are language-dependent. Besides, METEOR is
unigram-based and thus has a lack of incorporat-
ing syntactic structures.

2.3 RED
Instead of collecting n-grams from word se-
quences as in BLEU, RED extracts n-grams ac-
cording to a dependency structure of a refer-
ence, called dep-ngrams, which have two types:
headword chain (Liu and Gildea, 2005) and
fixed/floating structures (Shen et al., 2010). A
headword chain is a sequence of words which cor-
responds to a path in a dependency tree, while a
fixed/floating structure covers a sequence of con-
tiguous words. Figure 1 shows an example of dif-
ferent types of dep-ngrams.

A Fmean score is separately calculated for
each different dep-ngram lengths. Then, they are
linearly combined as follows:

RED =
N∑
n=1

wn · Fmeann (7)

Inspired by other metrics, such as TERp
(Snover et al., 2009) and METEOR, RED inte-
grates some resources as follows:

• Stem and synonym: used to align words.
This increases the possibility of matching a
dep-ngram. Different matchers are assigned
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ant
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with

magnifier
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saw
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an

saw

with

magnifier

I

magnifier

saw

ant

an

with

a

(a) (b)

(c) (d)

Figure 1: An illustration of dep-ngrams. (a) is a
dependency tree, (b) is a headword chain, (c) is a
fixed structure and (d) is a floating structure.

different weights, this results in a scale factor
for a dep-ngram as in Equation (8).

sm =
∑n

i=1wmi

n
(8)

• Paraphrase: used for extracting paraphrase-
ngrams. In this case, RED ignores the depen-
dency structure of a reference. A paraphrase-
ngram has a weight wpar.

• Function Word: used to distinguish content
words from function words. The function
word score of a dep-ngram or a paraphrase-
ngram can be calculated as follows:

sf =
cntf · wf + cntc · (1− wf )

cntf + cntc
, (9)

where cntf and cntc are the number of func-
tion words and the number of content words.

Ideally, both a precision score P and a recall
score R are based on the total number of dep-
ngrams in a hypothesis and a reference, respec-
tively. However, in RED only dependency struc-
tures on the reference are available. Therefore, it
uses the length of the hypothesis to approximate
the number of the dep-ngrams in the hypothesis to
calculate P . Formulas for P and R are as follows:

P =
scorepar + scoredep

|c| , (10)

R =
scorepar + scoredep

Countn(r) + Countn(par)
, (11)

where

scorepar =
∑

par∈Pn

wpar · sf , (12)

scoredep =
∑
d∈Dn

p(d, c) · sm · sf , (13)

r and c are the reference and the hypothesis, Pn
is the set of paraphrase-ngrams, Dn is the set of
dep-ngrams. p(d, c) is a match score which is 0 if
no match is found; otherwise, it is a value between
0 and 13.

3 Tuning Algorithms

Tuning algorithms in SMT are designed to op-
timize decoding weights so that a defined trans-
lation error, typically measured by an automatic
metric, is minimal on a development set. In this
paper, we compare two algorithms: MERT and
MIRA.

First, we introduce some notations. Let 〈x, y〉 ∈
D be a tuning set, where x and y are a source and
a target, respectively. Let δy(dx) be an error made
by a derivation d on the source x given y as a ref-
erence. Let `m(D,w) be the total error measured
by a metricm on the tuning setD with parameters
w.

3.1 MERT

MERT learns weights to rank candidate transla-
tions of each source sentence so that the final
document-level score measured by a specific met-
ric on the one-best translations is the highest. For-
mally, it tries to minimize the document-level error
on the translations produced by the highest scoring
translation derivation for each source sentence, as
in Equation 14.

`MERT (D,w) = ⊕〈x,y〉∈Dδy(d∗x), (14)

where
d∗x = argmax

dx

w · Φ(dx), (15)

Φ are feature functions of the decoding model,
w · Φ(dx) is a score assigned to a deviation dx

3If a headword chain ngram d in a reference r has a match

in a hypothesis c, p(d, c) = exp{−
∑n−1

i=1 distri
−distci

n−1
},

where distri and distci are relative distances between ith
word and (i + 1)th word in the reference and hypothesis, re-
spectively. If a fixed/floating structure is matched, p(d, c) =
1.
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by the decoding model, ⊕ represents the accu-
mulation of potentially non-decomposable senten-
tial errors, which then produces a document-level
evaluation score.

3.2 MIRA

MIRA is an online large margin learning algo-
rithm (Crammer and Singer, 2003). Its appli-
cation to MT decoding model tuning was firstly
explored by Watanabe et al. (2007) and then re-
fined by Chiang et al. (2008) and Cherry and Fos-
ter (2012). The MIRA we use tries to separate
a “fear” derivation d−(x, y) from a “hope” one
d+(x, y) by a margin propositional to their metric
difference (Chiang et al., 2008). The two deriva-
tions are defined as follows:

d+(x, y) = argmax
d

w · Φ(d)− δy(d) (16)

d−(x, y) = argmax
d

w · Φ(d) + δy(d) (17)

Their model-score difference and metric-score dif-
ference are defined in Equation (18) and Equation
(19), respectively.

∆s(x, y) = δy(d+(x, y))− δy(d−(x, y)) (18)

∆m(x, y) = w · (Φ(d+(x, y))− Φ(d−(x, y))}
(19)

Cherry and Foster (2012) adapt a batch strategy
in MIRA. The error, that batch MIRA tries to min-
imize is defined as below:

`MIRA(D,w) =
1

2C
||w− w0||+

∑
〈x,y〉∈D

L(x, y)

(20)
where C is a constant and L(x, y) is a loss over
a source x and a reference y, which is defined in
Equation (21).

L(x, y) = max{0,∆s(x, y)−∆m(x, y)} (21)

4 Experiments

We conduct experiments on Czech–English and
English–Czech hierarchical phrase-based transla-
tion systems built using Moses with default con-
figurations and default feature functions.

We use WMT newstest2014 as our development
data, while our test data consists of the concate-
nation of newstest2012 and newstest2013, which

BLEU METEOR RED

BLEU 18.90 28.38 19.91

METEOR 18.68 28.64 20.02

RED 18.07 28.17 19.97

BLEU 19.12 28.54 20.02

METEOR 19.10 28.56 20.05

RED 17.74 28.82 20.02

Train \ Eval.

MERT

MIRA

Table 1: Czech–English evaluation performance.
In each column, the intensity of shades indicates
the rank of values.

includes 6,003 sentence pairs in total4. English
sentences are parsed into dependency structures
by Stanford parser (Marneffe et al., 2006). Czech
sentences are parsed by a Perl implementation5 of
the MST parser (McDonald et al., 2005).

4.1 Metrics Setting
As described in Section 2.1, we use the standard
BLEU parameters6. We use METEOR 1.47 in
our experiments with default optimized parame-
ters. Specifically, for Czech to English translation,
we adopt all four lexical matching strategies with
parameter values: α = 0.85, β = 0.2, γ = 0.6,
δ = 0.75 and wi = 1.0, 0.6, 0.8, 0.6. For English
to Czech translation, we use two lexical matching
strategies, including exact and paraphrase, with
parameter values: α = 0.95, β = 0.2, γ = 0.6,
δ = 0.8 and wi = 1.0, 0.4.

In RED, we use all four matchers in the Czech–
English task while we do not use stem and syn-
onym in the English–Czech task. The same pa-
rameter values are used in both tasks. We set
N = 3, the corresponding wi = 0.6, 0.5, 0.1. We
set wmi = 0.9, 0.6, 0.6 for three matchers includ-
ing exact, stem and synonym and wpar = 0.6 for
the paraphrase matcher. We setwf = 0.2 for func-
tion words and α = 0.9 for combining P and R in
Fmean.

4.2 Results
Table 1 and Table 2 show our experimental results
on two tasks, respectively. We have several find-
ings as below:

• In both tasks best scores are achieved when
4http://statmt.org/wmt14/

translation-task.html
5http://search.cpan.org/˜rur/

Treex-Parser-MSTperl
6i.e., up to 4-gram matching with uniform weighting of

n-gram precisions.
7http://www.cs.cmu.edu/˜alavie/METEOR/
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BLEU METEOR RED

BLEU 11.25 17.36 14.95

METEOR 10.44 17.00 14.86

RED 9.51 16.81 14.58

BLEU 11.52 17.54 15.14

METEOR 11.43 17.56 15.26

RED 11.29 17.67 15.25

Train \ Eval.

MERT

MIRA

Table 2: English–Czech evaluation performance.
In each column, the intensity of shades indicates
the rank of values.

MIRA is used rather than MERT. In most
cases, MIRA is better than MERT.

• When RED is used in MERT, we obtain a
worse performance than that of BLEU and
METEOR in almost all cases, especially in
the English–Czech task.

• When BLEU is used as the evaluation metric,
the best score is obtained by using BLEU as
the optimization objective in tuning as well.
This follows the findings in Cer et al. (2010).

• The best METEOR score is achieved when
RED is used to tune our system while the best
RED score is obtained when METEOR is
used to tune. Taking that the same resources
are used in the two metrics into considera-
tion, this may indicate that the two metrics
are correlated.

5 Submission

We submit our system tuned by MIRA towards
RED. In human evaluations, we get 6th out of 9
systems on the Czech–English task and the 1st
rank in all 7 systems on the English–Czech task.

Such human judgments suggest that RED per-
forms better on Czech than English. We guess this
is because dependency n-grams have better capa-
bility of handling free word order in Czech sen-
tences. This hypothesis can be an avenue for fu-
ture work.

6 Conclusion

In this paper, we describe our submissions to
WMT 2015 tuning task on Czech–English and
English–Czech tasks. They are hierarchical
phrase-based models both tuned by MIRA to-
wards a dependency-based metric, RED. In hu-
man evaluations, our system gets the 1st rank in
the English–Czech task.
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Abstract

We show that, consistent with MEANT-
tuned systems that translate into Chinese,
MEANT-tuned MT systems that trans-
late into English also outperforms BLEU-
tuned systems across commonly used MT
evaluation metrics, even in BLEU. The re-
sult is achieved by significantly improv-
ing MEANT’s sentence-level ranking cor-
relation with human preferences through
incorporating a more accurate distribu-
tional semantic model for lexical similar-
ity and a novel backoff algorithm for eval-
uating MT output which automatic seman-
tic parser fails to parse. The surprising
result of MEANT-tuned systems having a
higher BLEU score than BLEU-tuned sys-
tems suggests that MEANT is a more accu-
rate objective function guiding the devel-
opment of MT systems towards producing
more adequate translation.

1 Introduction

Lo and Wu (2013) showed that MEANT-tuned
system for translating into Chinese outperforms
BLEU-tuned system across commonly used MT
evaluation metrics, even in BLEU. However, such
phenomena are not observed in MEANT-tuned
system for translating into English. In this pa-
per, for the first time, we present MT systems
for translating into English, which is tuned to a
improved version of MEANT, also outperforms
BLEU-tuned system across commonly used MT
evaluation metrics, even in BLEU. The improve-
ments in MEANT include incorporating more ac-
curate distributional semantic model for lexical
similarity and a novel backoff algorithm for eval-
uating MT output which the automatic semantic
parser failed to parse. Empirical results show that

∗This work was completed at HKUST.

the new version of MEANT is significantly im-
proved in terms of sentence-level ranking correla-
tion with human preferences.

The accuracy of MEANT relies heavily on the
accuracy of the model that determines the lexi-
cal similarities of the semantic role fillers. How-
ever, the discrete context vector model based on
the raw co-occurrence counts used in the original
proposal of MEANT does not work well in predict-
ing the similarity of the lexicons used in the ref-
erence and machine translations. Recent work by
Baroni et al. (2014) shows that word embeddings
trained by predict models outperforms the count
based models in various lexical semantic tasks.
Baroni et al. (2014) argues that predict models
such as word2vec (Mikolov et al., 2013) outper-
form count based models on a wide range of lexi-
cal semantic tasks. It is also common knowledge
that raw co-occurrence counts do not work very
well and performance can be improved when trans-
formed by reweighing the counts for context infor-
mativeness and dimensionality reduction. In con-
trast to conventional word vector models, predic-
tion based word vector models estimate the vectors
directly as a supervised task, where the weights in
a word vector are set to maximize the probability
of the contexts in which the word is observed in the
corpus (Bengio et al., 2006; Collobert and Weston,
2008; Collobert et al., 2011; Huang et al., 2012;
Mikolov et al., 2013; Turian et al., 2010).

In this paper, we show that MEANT’s correla-
tion with human adequacy judgments can be fur-
ther improved by incorporating the word embed-
dings trained by the predict models. Subsequently,
tuning MT system against the improved version of
MEANT produce more adequate translations than
tuning against BLEU.

2 The family of MEANT

MEANT and its variants (Lo et al., 2012) mea-
sure weighted f-scores over corresponding seman-
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Figure 1: Examples of automatic shallow semantic parses. Both the reference and machine translations
are parsed using automatic English SRL. There are no semantic frames for MT3 since there is no predicate
in the MT output.

tic frames and role fillers in the reference and ma-
chine translations. MEANT typically outperforms
BLEU, NIST, METEOR, WER, CDER and TER
in correlation with human adequacy judgment, and
is relatively easy to port to other languages, re-
quiring only an automatic semantic parser and a
monolingual corpus of the output language, which
is used to train the discrete context vector model
for computing the lexical similarity between the
semantic role fillers of the reference and transla-
tion. Lo et al. (2014) describe a cross-lingual qual-
ity estimation variant, XMEANT, capable of eval-
uating translation quality without the need for ex-
pensive human reference translations, by utilizing
semantic parses of the original foreign input sen-
tence instead of a reference translation. MEANT
is generally computed as follows:

1. Apply an automatic shallow semantic parser
to both the reference and machine transla-
tions. (Figure 1 shows examples of auto-
matic shallow semantic parses on both refer-
ence and MT.)

2. Apply the maximum weighted bipartite
matching algorithm to align the semantic
frames between the reference and ma-
chine translations according to the lexical
similarities of the predicates.

3. For each pair of the aligned frames, apply the
maximum weighted bipartite matching algo-
rithm to align the arguments between the ref-
erence and MT output according to the lexical
similarity of role fillers.

4. Compute the weighted f-score over the
matching role labels of these aligned predi-
cates and role fillers according to the follow-
ing definitions:

q0
i,j ≡ ARG j of aligned frame i in MT

q1
i,j ≡ ARG j of aligned frame i in REF

w0
i ≡ #tokens filled in aligned frame i of MT

total #tokens in MT

w1
i ≡ #tokens filled in aligned frame i of REF

total #tokens in REF
wpred ≡ weight of similarity of predicates

wj ≡ weight of similarity of ARG j

ei,pred ≡ the pred string of the aligned frame i of MT
fi,pred ≡ the pred string of the aligned frame i of REF
ei,j ≡ role fillers of ARG j of the aligned frame i of MT
fi,j ≡ role fillers of ARG j of the aligned frame i of REF

s(e, f) = lexical similarity of token e and f

prece,f =

∑
e∈e max

f∈f
s(e, f)

| e |

rece,f =

∑
f∈f max

e∈e
s(e, f)

| f |

si,pred =
2 · precei,pred,fi,pred

· recei,pred,fi,pred

precei,pred,fi,pred
+ recei,pred,fi,pred

si,j =
2 · precei,j ,fi,j

· recei,j ,fi,j

precei,j ,fi,j
+ recei,j ,fi,j

precision =

∑
i w0

i
wpredsi,pred+

∑
j wjsi,j

wpred+
∑

j wj |q0
i,j |∑

i w0
i

(1)

recall =

∑
i w1

i
wpredsi,pred+

∑
j wjsi,j

wpred+
∑

j wj |q1
i,j |∑

i w1
i

(2)

MEANT =
2 · precision · recall
precision + recall

(3)
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where wpred and wj are the weights of the lexical
similarities of the predicates and role fillers of the
arguments of type j of all frame between the ref-
erence translations and the MT output. There is a
total of 12 weights for the set of semantic role la-
bels in MEANT as defined in Lo and Wu (2011b).
The value of these weights are determined in su-
pervised manner using a simple grid search to
optimize the correlation with human adequacy
judgments (Lo and Wu, 2011a) for MEANT and
in unsupervised manner using relative frequency
of each semantic role label in the references for
UMEANT (Lo and Wu, 2012). Thus UMEANT is
useful when human judgments on adequacy of the
development set are unavailable. si,pred and si,j are
the phrasal similarities of the predicates and role
fillers of the arguments of type j between the ref-
erence translations and the MT output. Lo et al.
(2012) and Tumuluru et al. (2012) described how
the lexical similarities, s(e, f), are computed us-
ing a discrete context vector model and how the
phrasal similarities are computed by aggregating
the lexical similarities via various heuristics. In
the latest version of MEANT (Lo et al., 2014), as
shown in above, it uses f-score to aggregate indi-
vidual token similarities into the phrasal similar-
ities of semantic role fillers. Another MEANT’s
variant, IMEANT (Wu et al., 2014), which uses
ITG to constrain the token alignments between
the semantic role fillers of the reference and the
machine translations and is shown outperforming
MEANT (Lo et al., 2014).

3 Improvements to MEANT

We improve the performance of MEANT by incor-
porating a word embedding model for more accu-
rate evaluation of the semantic role filler similarity
and a novel backoff algorithm for evaluating trans-
lations when the automatic semantic parser fails to
reconstruct the semantic structure of the transla-
tions. Our evaluation results show that the new
version of MEANT is significantly improved in
correlating with human ranking preferences at both
the sentence-level and the document-level.

3.1 Discrete context vectors vs. word
embeddings

MEANT’s discrete context vector model is very
sparse because of the extremely high dimension
of the discrete context vector model. The number
of dimensions of a vector in the discrete context

vector model is the total number of token types
in the training corpus. The vector sparsity issue
makes the lexical similarity highly sensitive of ex-
act token matching and thus hurts the accuracy of
MEANT. We aim at tackling the sparse vector is-
sue by replacing the discrete context vector model
with the continuous word embeddings in order to
further improve the accuracy of MEANT.

We first train the word embeddings on the same
monolingual corpus as the discrete context vec-
tor model, i.e. Gigaword, for a fair comparison.
However, since the memory consumption of the
word embeddings is significantly reduced when
comparing with the discrete context vector model
due to the reduced dimension in the vectors, it
is now possible to increase the size of the train-
ing corpus of the word embeddings so as to im-
prove the token coverage of the lexical similarity
model. We compare the in-house Gigaword word
embeddings which covers 1.2 million words and
phrases with the Google pretrained word embed-
dings (Mikolov et al., 2013) that is trained on a 100
billion tokens news dataset and covers 3 million
words and phrases. We show that the high porta-
bility of MEANT is preserved when replacing the
discrete context vector model with word embed-
dings as the size of the monolingual training data
for the word embeddings does not significantly af-
fect the correlation of MEANT with human ade-
quacy judgments.

Another interesting property of the word embed-
dings is the compositionality of words vectors into
phrases. As described in Mikolov et al. (2013),
for example, the result of linear vector calcula-
tion vec(”Madrid”)-vec(”Spain”)+vec(”France”)
is closer to vec(”Paris”) than to any other vectors.
It seems to be natural that phrasal similarity of the
semantic role fillers could be more accurately com-
puted using the composite phrase vector than us-
ing the align-and-aggregate approach because the
vector composition approach is not affected by
the errors of token misalignment. However, we
show that surprisingly, the align-and-aggregate ap-
proach outperforms the naive linear word vector
composition in computing the phrasal similarities
of the semantic role fillers.

3.2 Backoff algorithm for evaluating
translations without semantic parse

MEANT fails to evaluate the quality of the trans-
lations if the automatic semantic parser fails to
reconstruct the semantic structure of the transla-
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tions. According to the error analysis in Lo and
Wu (2013) , the two main reasons for the auto-
matic shallow semantic parser failing to identify
the semantic frames are the failure to identify the
semantic frames for copula or existential senses of
”be” in a perfectly grammatical sentence and the
absence of any predicate verb at all in the sen-
tence. They showed that manually reconstructing
the ”be” semantic frames for MEANT yields sig-
nificantly higher correlation with human adequacy
judgment. Thus, we present a novel backoff algo-
rithm for MEANT to reconstruct the ”be” semantic
frame and evaluate the whole sentence using the
lexical similarity function and weigh it according
to the ratio of unlabeled tokens in the MT/REF.

The reconstruction of the ”be” semantic frame
is triggered when the automatic shallow semantic
parser fails to find a semantic frame in the sen-
tence. It utilizes the syntactic parse of the sentence
and labels the verb-to-be as the predicate. Then,
it labels the constituent of the NP subtree sibling
immediate left to the predicate as the ”who” role,
the constituent of the NP subtree sibling immedi-
ate right to the predicate as the ”what” role and any
constituent of other subtree siblings of the predi-
cate as ”other” role. The reconstructed ”be” frame
is then evaluated the same way as other semantic
frames using MEANT.

When there is no predicate verb in the whole
sentence, we evaluate the whole sentence using the
lexical similarity function and weighted according
to the amount of unlabeled tokens in the MT/REF.
Thus, equation (1), (2) and (3) are replaced by
equation (4), (5) and (6).

       w0
nf ≡ #tokens that are not fillers of any role in MT

total #tokens in MT

w1
nf ≡ #tokens that are not fillers of any role in REF

total #tokens in REF
esent ≡ the whole sentence string of MT
fsent ≡ the whole sentence string of REF 

ssent =
2 · precesent,fsent

· recesent,fsent

precesent,fsent
+ recesent,fsent 

precision =

∑
i w0

i
wpredsi,pred+

∑
j wjsi,j

wpred+
∑

j wj |q0
i,j |

+ w0
nfssent∑

i w0
i + w0

nf
(4)

recall =

∑
i w1

i
wpredsi,pred+

∑
j wjsi,j

wpred+
∑

j wj |q1
i,j |

+ w1
nfssent∑

i w1
i + w1

nf
(5)

MEANT =  precision · recall
α · precision + (1 − α) · recall

(6)

Note that we have also introduced the weight α
for the precision and recall. Later, we show that

optimal value of α for MT evaluation is different
from that for MT optimization.

3.3 Results
Table 1 shows the document-level Pearson’s score
correlation and table 2 shows the sentence-level
Kendall’s rank correlation with human preferences
of the improved version of MEANT with the pre-
vious version of MEANT (Lo et al., 2014) on
WMT2014 metrics task test set (Macháček and
Bojar, 2014). For the sake of stable performance
across all the tested language pairs, the weights of
the semantic role labels are estimated in unsuper-
vised manner.

First and the most importantly, the document-
level score correlation with human preferences of
all versions of MEANT consistently outperforms
all the submitted metrics in Macháček and Bojar
(2014). While the variations on document-level
correlation with human preferences of different
versions of MEANT are not significant, we focus
on discussing about the sentence-level results.

On sentence-level ranking, MEANT with Gi-
gaword word embeddings correlates significantly
better with human preference than MEANT with
Gigaword discrete context vectors. Although the
Google pretrained word embeddings covers more
than twice as many token types as the Gigaword
word embeddings, our results show that MEANT
incorporated with the Google pretrained word em-
beddings only marginally better that incorporated
with the Gigaword word embeddings. Our re-
sults show that MEANT’s portability to languages
with lower resources is preserved as MEANT with
Gigaword word embeddings achieves comparable
accuracy without using huge amount of resources.

While the linear vector composition property
of word embeddings receive a lot of atten-
tion recently, our results show that, surprisingly,
MEANT with word embeddings using the align-
and-aggregate approach in computing the phrasal
similarities significantly outperforms that using
the simple linear vector composition across all lan-
guage pairs in the test set. Our results suggest that
more investigation on using word embeddings is
necessary for it to be useful for efficient evalua-
tion of phrasal similarities.

Our results also show that MEANT with an
α value of 1, i.e. recall only, significantly out-
performs that with balanced precision and re-
call weighting, in correlation with human prefer-
ences. This could be due to the fact that MT sys-
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Table 1: System-level Pearson’s score correlation with human preferences of MEANT on WMT2014
metrics track test set

metric cs-en de-en fr-en hi-en ru-en ave.
MEANT (Lo et al., 2014) (i.e. α=0.5)
+ Gigaword discrete context vectors & fillers alignment 0.975 0.973 0.972 0.957 0.877 0.951
+ Gigaword word embeddings & fillers alignment 0.939 0.967 0.979 0.948 0.912 0.949
+ Google pretrained word embeddings & vector composition 0.919 0.955 0.981 0.941 0.940 0.947
+ Google pretrained word embeddings & fillers alignment 0.948 0.970 0.979 0.950 0.922 0.954
MEANT (α=1)
+ Google pretrained word embeddings & fillers alignment 0.990 0.965 0.977 0.921 0.909 0.952

+backoff 0.986 0.970 0.981 0.947 0.915 0.960

Table 2: Sentence-level Kendall’s rank correlation with human preferences of MEANT on WMT2014
metrics track test set

metric cs-en de-en fr-en hi-en ru-en ave.
MEANT (Lo et al., 2014) (i.e. α=0.5)
+ Gigaword discrete context vectors & fillers alignment 0.188 0.209 0.235 0.229 0.193 0.211
+ Gigaword word embeddings & fillers alignment 0.192 0.235 0.252 0.230 0.206 0.223
+ Google pretrained word embeddings & vector composition 0.195 0.222 0.242 0.231 0.201 0.218
+ Google pretrained word embeddings & fillers alignment 0.206 0.229 0.253 0.236 0.214 0.228
MEANT (α=1)
+ Google pretrained word embeddings & fillers alignment 0.229 0.257 0.285 0.243 0.239 0.251

+ backoff 0.267 0.301 0.336 0.324 0.266 0.299

tems tend to under-generate (i.e. missing meaning
in the translation output) rather than over-generate.
This also explains why the precision-oriented met-
rics, such as BLEU, usually correlate poorly with
human adequacy judgments.

Lastly, our results show that the novel backoff
algorithm significantly improves MEANT’s corre-
lation with human preferences.

4 Tuning against the new MEANT

Lo et al. (2013b) show that for MT system trans-
lating into Chinese, tuning against MEANT out-
performs the common practice of tuning against
BLEU or TER across commonly used MT eval-
uation metrics, i.e. beating BLEU-tuned systems
in BLEU and TER-tuned systems in TER. How-
ever, for MT system translating into English, pre-
vious work (Lo et al., 2013a; Lo and Wu, 2013)
show that tuning against MEANT only achieves
balanced performance in both n-gram based met-
rics and edit distance based metrics, without over-
fitting to either type of metrics. We argue with the
significant improvement in sentence-level correla-
tion with human preferences in evaluating trans-
lations in English, the performance of MT system
tuned against the newly improved MEANT would
also improved.

For WMT2015 tuning task, we tuned the basic
Czech-English baseline system against the newly
improved MEANT using the official development

set and k-best MERT (with 100-best hypothesis
list). Unfortunately, there is a bug in the integra-
tion of MEANT and Moses k-best MERT in the
submitted system. Table 3 and 4 shows the results
of both the submitted buggy system and the de-
bugged version of the experiments on the official
dev and test test.

In the previous section, MEANT with an α value
of 1, i.e. 100% recall, has the highest correlation
with human preferences on the test set. However,
surprisingly, our tuning experiment results show
that tuning against a balanced precision-recall ver-
sion of MEANT yields better scores across the
commonly used MT evaluation metrics. This is
because the optimization algorithm needs the guid-
ance from precision to avoid blindly generating too
many words which would achieve high recall.

More importantly, our results show that MT sys-
tem tuning against the improved MEANT beats
the BLEU-tuned system across the commonly used
MT evaluation metrics, even in BLEU.

5 Related Work

Most of the common used MT evaluation metrics
like BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002), CDER (Leusch et al., 2006), WER
(Nießen et al., 2000), and TER (Snover et al.,
2006) rely heavily on the exact match of the sur-
face form of the tokens in the reference and the MT
output. Thus, they do not only fail to capture the

438



Table 3: Translation quality of MT system tuned against MEANT and BLEU on WMT15 tuning task
dev set. MEANT reported here is the version using Google pretrained word embeddings with α=1 and
backoff algorithm.

system BLEU NIST WER PER CDER TER MEANT
BLEU-tuned 19.38 6.48 67.63 50.48 58.17 63.57 42.77
MEANT-tuned (official submitted buggy system) 18.20 6.27 70.09 51.84 59.93 65.53 42.23
MEANT-tuned (α=1) 18.96 6.44 68.41 50.77 58.74 64.30 43.43
MEANT-tuned (α=0.5) 19.74 6.62 66.31 49.22 57.20 62.28 43.62

Table 4: Translation quality of MT system tuned against MEANT and BLEU on WMT15 tuning task
test set. MEANT reported here is the version using Google pretrained word embeddings with α=1 and
backoff algorithm.

system BLEU NIST WER PER CDER TER MEANT
BLEU-tuned 17.06 5.99 69.67 52.86 59.85 65.71 40.10
MEANT-tuned (official submitted buggy system) 15.89 5.80 71.82 53.93 61.43 67.59 39.34
MEANT-tuned (α=1) 16.75 5.95 70.19 53.05 60.29 66.25 40.12
MEANT-tuned (α=0.5) 17.15 6.08 68.53 52.03 59.07 64.65 40.23

meaning similarities of lexicons that do not share
the same surface form, but also ignore the meaning
structures of the translations.

METEOR (Banerjee and Lavie, 2005;
Denkowski and Lavie, 2014) evaluates lexical
similarities beyond surface-form by incorporating
a large collection of linguistic resources, like
synonym table from hand-crafted WordNet and
paraphrase table learned from large parallel cor-
pus. Another trend of improving MT evaluation
metrics is incorporating the evaluation of meaning
structure of the translations. Owczarzak et al.
(2007a,b) improved the correlation with human
fluency judgments by using LFG to extend the
approach of evaluating syntactic dependency
structure similarity in Liu and Gildea (2005), but
did not improve the correlation with human ade-
quacy judgments when comparing to METEOR.
Similarly, TINE, an automatic recall-oriented
basic meaning event structured based evaluation
metric (Rios et al., 2011) correlated with hu-
man adequacy judgment comparable to that of
BLEU but not as high as that of METEOR. ULC
(Giménez and Màrquez, 2007, 2008) incorporates
several semantic similarity features and shows
improved correlation with human judgement of
translation quality (Callison-Burch et al., 2007;
Giménez and Màrquez, 2007; Callison-Burch et
al., 2008; Giménez and Màrquez, 2008) but no
work has been done towards tuning an MT system
using a pure form of ULC perhaps due to its
expensive run time.

By incorporating word embeddings into
MEANT, translations are evaluated via both the

structural and lexical semantics accurately and
thus, MT system tuned against the improved
MEANT beats BLEU-tuned system across
commonly used metrics, even in BLEU.

6 Conclusion

In this paper we presented the first results of using
word embeddings to improve the correlation with
human adequacy judgments of MEANT, the state-
of-the-art semantic MT evaluation metric. We also
showed that using a smaller and easy-to-obtain
monolingual corpus (e.g., Gigaword, Wikipedia)
for training the word embeddings does not sig-
nificantly affect the accuracy of MEANT. We
showed that the align-and-aggregate approach out-
performs the naive linear word vector composi-
tion, although the compositional property is highly
advertised as the advantage of using word embed-
dings. We also described a novel backoff algo-
rithm in MEANT for evaluating the meaning ac-
curacy of the MT output when automatic shal-
low semantic parser fails to parse the sentence.
In this tuning shared task, we successfully inte-
grate MEANT with the Moses framework. This
enable further investigation into tuning MT system
against MEANT using newer tuning techniques
and features. Most importantly, we show that tun-
ing MT system against the improved version of
MEANT outperforms BLEU-tuned system across
all commonly used MT evaluation metrics, even in
BLEU.
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Abstract

Through using knowledge bases, ques-
tion answering (QA) systems have come
to be able to answer questions accurately
over a variety of topics. However, knowl-
edge bases are limited to only a few ma-
jor languages, and thus it is often nec-
essary to build QA systems that answer
questions in one language based on an in-
formation source in another (cross-lingual
QA: CLQA). Machine translation (MT) is
one tool to achieve CLQA, and it is intu-
itively clear that a better MT system im-
proves QA accuracy. However, it is not
clear whether an MT system that is better
for human consumption is also better for
CLQA. In this paper, we investigate the re-
lationship between manual and automatic
translation evaluation metrics and CLQA
accuracy by creating a data set using both
manual and machine translations and per-
form CLQA using this created data set.1

As a result, we find that QA accuracy is
closely related with a metric that consid-
ers frequency of words, and as a result of
manual analysis, we identify 3 factors of
translation results that affect CLQA accu-
racy.

1 Introduction

Question answering (QA) is the task of searching
for an answer to question sentences using some
variety of information resource. Generally, docu-
ments, web pages, or knowledge bases are used as
these information resources. When the language
of the question differs from the language of the in-
formation resource, the task is called cross-lingual
question answering (CLQA) (Magnini et al., 2004;

1All data used in the experiments will be released upon
publishing of the paper.

Sasaki et al., 2007). Machine translation (MT)
is one of the most widely used tools to achieve
CLQA (Mori and Kawagishi, 2005; Fujii et al.,
2009; Kettunen, 2009).2

In the realm of monolingual question answer-
ing, recent years have seen a large increase in the
use of structured knowledge bases such as Free-
base (Bollacker et al., 2008), as they allow for
accurate answering of questions over a variety of
topics (Frank et al., 2007; Cai and Yates, 2013).
However, knowledge bases are limited to only a
few major languages. Thus, CLQA is particularly
important for QA using knowledge bases.

In contrast to the CLQA situation, where an MT
system is performing translation for a downstream
system to consume, in standard translation tasks
the consumer of results is a human (Matsuzaki et
al., 2015). In this case, it is important to define
an evaluation measure which has high correlation
with human evaluation, and the field of MT met-
rics has widely studied which features of MT re-
sults are correlated with human evaluation, and
how to reflect these features in automatic evalu-
ation (Mach́acek and Bojar, 2014).

However, translations which are good for hu-
mans may not be suitable for question answer-
ing. For example, according to the work of Hy-
odo and Akiba (2009), a translation model trained
using a parallel corpus without function words
achieved higher accuracy than a model trained us-
ing full sentences on CLQA using documents or
web pages, although it is not clear whether these
results will apply to more structured QA using
knowledge bases. There is also work on optimiz-
ing translation to improve CLQA accuracy (Rie-
zler et al., 2014; Haas and Riezler, 2015), but these
methods require a large set of translated question-
answer pairs, which may not be available in many

2MT is also used in mono-lingual QA tasks when ques-
tion sentences are translated into the formal language used to
query the information resource (Andreas et al., 2013).
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languages. Correspondingly, it is of interest to in-
vestigate which factors of translation output affect
CLQA accuracy, which is the first step towards de-
signing MT systems that achieve better accuracy
on the task.

In this paper, to investigate the influence of
translation on CLQA using knowledge bases, we
create a QA data set in which each question has
been translated both manually and by a number of
MT systems. We then perform CLQA using this
data set and investigate the relationship between
translation evaluation metrics and QA accuracy.
As a result, we find that QA accuracy is closely
related to NIST score, a metric that considers the
frequency of words, indicating that proper trans-
lation of infrequent words has an important role
in CLQA tasks using knowledge bases. In addi-
tion, as a result of fine-grained manual analysis,
we identify a number of factors of translation re-
sults that affect CLQA.

2 Data sets

　 To create data that allows us to investigate the
influence of translation on QA, we started with a
standard QA data set, and created automatic and
manual translations. In this section, we describe
the data construction in detail.

As our seed data, we used a data set called
Free917 (Cai and Yates, 2013). Free917 is a ques-
tion set made for QA using the large-scale knowl-
edge base “Freebase,” and is widely used in QA
research (Cai and Yates, 2013; Berant et al., 2013).
It consists of 917 pairs of question sentences and
“logical forms” which are computer-processable
expressions of the meaning of the question that can
be fired against the Freebase database to return the
correct answer. Following Cai and Yates (2013),
we divide this data into a training set (512 pairs),
dev set (129 pairs) and test set (276 pairs). In the
remainder of the paper, we refer to the questions in
the test set before translation as the original (OR)
set.

Next, to investigate the influence of translation
quality on the accuracy of QA, we created a ques-
tion set with five different varieties of translation
results. First we translated the question sentences
included in the OR set into Japanese manually (the
JA set). Then, we created translations of the JA set
into English by five different methods:

Manual translation We asked a professional
translation company to manually translate the

questions from Japanese to English (the HT
set).

GT and YT The questions are translated using
Google Translate3 (GT) and Yahoo Trans-
late4 (YT) systems, these commercial sys-
tems can be used via web pages. While the
details of these systems are not open to the
public, it is likely that Google takes a largely
statistical MT approach, while the Yahoo en-
gine is rule-based.

Moses The questions are translated us-
ing a phrase-based system built using
Moses (Koehn et al., 2007) (the Mo set). A
total of 277 million sentences from various
genres are used in training.

Travatar The questions are translated using Tra-
vatar (Neubig, 2013) (the Tra set), a tool for
forest-to-string MT that has achieved com-
petitive results on the Japanese-English lan-
guage pair. The training data is the same as
Moses.

Table 1: A sample of translations and logical
forms in the test set

Set Question Logical form
OR what is europe ’s area
JA ヨーロッパの面積は
HT what is the area of europe(location.location.area
GT the area of europe en.europe)
YT the area of europe
Mo the area of europe
Tra what is the area of europe

3 QA system

To perform QA, we used the framework of Be-
rant et al. (2013), as implemented in SEMPRE.5

SEMPRE is a QA system that has the ability to use
large-scale knowledge bases, such as Freebase.

In this section, we describe the framework
briefly and consider how translation may affect
each element of it. We show an example of how
this system works in Figure 1.

Alignment A lexicon, which is a mapping from
natural language phrases to logical pred-
icates, is constructed using a large text

3https://translate.google.co.jp/
4http://honyaku.yahoo.co.jp/
5http://nlp.stanford.edu/software/sempre/
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Figure 1: Framework of the SEMPRE semantic
parsing system used to perform QA

corpus, which is linked to the knowl-
edge base through the use of named en-
tity prediction. By default, SEMPRE uses
ClueWeb096 (Callan et al., 2009) as the large
text corpus and Freebase as the knowledge
base. During the QA process itself, this lex-
icon is used to convert entities into logical
forms through a process called alignment.

Translation has the potential to affect this part
by changing the words in the translation. Be-
cause the strings in the sentence are used to
look up which logical form to use, a mistrans-
lated word may result in a failure in lookup.

Bridging To create the query for the knowledge
base, SEMPRE merges neighboring logical
forms in a binary tree structure. Bridging is
an operation that generates predicates com-
patible with neighboring predicates.

Translation has the potential to affect this op-
eration by changing the word order in the
translation. Because adjacent logical forms
are combined in the bridging process, the dif-
ferent word order may cause changes in the
combination of logical forms.

Scoring and learning The previous two steps are
not deterministic, and thus the system must
select the best of many candidates. Scoring
evaluates candidates according to a scoring
function, and learning is optimization of the
weights used in the scoring function.

It is possible that translation also affects this
process, with a different set of weights be-

6http://www.lemurproject.org/clueweb09.php/

ing ideal for CLQA than monolingual QA.
On the other hand, to train these weights it is
necessary to have a translated version of the
QA training set, which represents a signifi-
cant investment, and thus we do not examine
this within the scope of this paper.

4 Experiments

In our experiments, we examine the effect of var-
ious features of translation quality on CLQA. To
do so, we use the data sets described in Section 2,
and we performed QA with the system described
in Section 3. In the experiments, we suppose
a situation in which Japanese question sentences
are translated into English and inputted into an
English-language QA system.

4.1 Result 1: Evaluation of translation
quality

First, we evaluate translation quality of each
system using 4 automatic evaluation measures
BLEU+1 (Lin and Och, 2004), WER (Leusch et
al., 2003), NIST (Doddington, 2002) and RIBES
(Isozaki et al., 2010) and manual evaluation of ac-
ceptability (Goto et al., 2013).

BLEU+1 BLEU (Papineni et al., 2002) is the
most popular automatic evaluation metric of
machine translation quality, and BLEU+1 is
a smoothed version that can be used with sin-
gle sentences. It is based onn-gram preci-
sion, and the score is from 0 to 1, where 0 is
the worst and 1 is the best.

WER Word error rate (WER) is the edit distance
between the translation and reference nor-
malized by the sentence length. The formula
of WER is as follows:

WER = S+D+I
N

where

• S is the number of substitutions.

• D is the number of deletions.

• I is the number of insertions.

• N is the number of word in the refer-
ence.

The score is a real number more than 0, and
can be over 1 when the length of the out-
put is larger than the reference. Like BLEU,
WER focuses on matches between words, but
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is less lenient with regards to word order-
ing, having a strong performance for linear
matches between the two sentences. WER
is an error rate, thus lower WER is better.
To adjust direction of axis to match the other
measures, we use the value of1−WER.

RIBES RIBES is a metric based on rank corre-
lation coefficient of word order in the trans-
lation and reference, and thus focuses on
whether the MT system was able to achieve
the correct ordering. It has been shown effec-
tive for the evaluation of language pairs with
greatly different structure such as Japanese
and English. The score is from 0 to 1, where
0 is the worst and 1 is the best.

NIST NIST is a metric based onn-gram precision
and eachn-gram’s weight. Rarern-grams
have a higher weight. Therefore, less fre-
quent words such as content words are given
more importance than function words such as
“of,” “in,” and others. The score is a real
number more than 0.

Acceptability Acceptability is a 5-grade manual
evaluation metric. It combines aspects of
both fluency and adequacy, with levels 1-3
evaluating semantic content, and 3-5 evalu-
ating syntactic correctness.

Figure 2 shows the result of the evaluation for
each system. Note that NIST and Acceptability
have been normalized between 0 and 1 by dividing
by the highest possible achievable value.
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Figure 2: Evaluation scores (mean)

From this, we can see that HT has the best score
on all metrics. Indicating that human translation
is still more accurate than machines in this lan-
guage pair and task. Next comes commercial sys-
tems, with GT being the 2nd best on BLEU and

NIST, while YT is higher than GT on RIBES and
manual evaluation. This confirms previous reports
(Isozaki et al., 2010) that RIBES is well corre-
lated with human judgments of acceptability for
Japanese-English translation tasks. In the next
section, we examine whether this observation also
holds when it is not a human but a computer doing
the language understanding.

4.2 Result 2: QA accuracy

Next, we performed QA using the created data
sets. We found that for 12 questions in the test
set even the correct logical form did not return any
answer, so we eliminate these questions and ana-
lyze the remaining 264 questions.

Figure 3 shows QA accuracy of each data set.
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Figure 3: QA accuracy of each data set

Here, we can see that accuracy of the OR set is
about 53%. Accuracy of the HT set is the highest
of the translated data sets. However, although HT
has high translation quality, its accuracy is signifi-
cantly (p < 0.01 according to the Student’s t-test)
lower than OR. YT is the second for acceptability
but its accuracy is lower than GT and Mo. This in-
dicates that there is, in fact, a significant difference
between translations that are good for humans, and
those that are good for QA systems.

In the next section, we analyze these phenom-
ena in detail.

5 Discussion

5.1 Correlation between translation quality
and QA accuracy

First, we analyze the sentence-level correlation be-
tween evaluation scores and QA accuracy to at-
tempt to gain more insights about the features of
translation results that affect QA accuracy, and po-
tential implications for evaluation. One thing to
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Figure 4: Correlation between QA accuracy and
evaluation score (correct group)
Horizontal axis: Range of evaluation score
Bar (left axis): Percentage of # questions
Line (right axis): Rate of QA accuracy (average in
the range)
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Figure 5: Correlation between QA accuracy and
evaluation score (incorrect group)
Horizontal axis: Range of evaluation score
Bar (left axis): Percentage of # questions
Line (right axis): Rate of QA accuracy (average in
the range)446



be noted first is that even with the original set OR,
only approximately half of the questions were an-
swered correctly, and thus in some cases the ques-
tion might be difficult to answer even with the cor-
rect translation result. To take this effect into ac-
count, we divide the questions in two groups. The
“correct” group consists of141 ∗ 5 = 705 trans-
lated questions of the 141 question answered cor-
rectly in OR and the “incorrect” group consists of
123 ∗ 5 = 615 translated questions of the remain-
ing 123 questions.

Figure 4 shows correlation between QA accu-
racy and evaluation score of the correct group. The
bar graphs indicate the percentage of the number
of the questions in each range of evaluation scores.
From these figures, we can first note that there
is some correlation between all investigated eval-
uation metrics and QA accuracy, demonstrating
that translation accuracy is, in fact, important for
CLQA. We can also see that QA accuracy is most
closely related to NIST score. Recall that NIST
is a metric that considers the frequency of each
word, resulting in content words being treated as
more important than function words. According to
this result, it seems that content words are impor-
tant for translation in CLQA tasks, which is nat-
ural given the importance of matching entities in
the alignment step of Section 3. It is also encour-
aging that NIST score also seems to be effective at
assessing this automatically.

On the other hand, RIBES, which has higher
correlation with human evaluation as shown in
Section 4, has the lowest correlation with CLQA
accuracy. Thus, we can see that the overall or-
der of words might not be as important in trans-
lation for CLQA. In other words, looking back at
the QA framework in Section 3, this means that
the “alignment” process is likely more sensitive to
errors than the “bridging” process, which may not
be affected as heavily by word order.

Figure 5 shows correlation between QA accu-
racy and evaluation score of the incorrect group.
In contrast to the correct group, in the incorrect
group, QA accuracy has very little correlation with
all of the scores. Even the manually evaluated ade-
quacy score has only moderate correlation. These
results show that if the reference sentences can-
not be answered correctly, the sentences are not
suitable, even for negative examples. Thus, when
evaluating MT systems for CLQA, we may benefit
from creating a set of references that are answered

correctly by the system before performing evalua-
tion.7

5.2 Case studies

In this section, we show some examples of QA
results that changed as a result of translation. In
addition, we consider what causes the change and
implications for evaluation.

Table 2: Examples of changes in content words
◦ OR when was interstate 579 formed
- JA 州間高速道路 579号が作られたのはいつですか
× HT when was interstate highway 579 made
× GT when is the interstate highway no. 579 has been made
× YT when is it that expressway 579 between states was made
× Mo interstate highway 579) was made when
◦ Tra when interstate 579) was built

◦ OR who was the librettist for the magic flute
- JA 魔笛の台本を作成したのは誰ですか
× HT who wrote the libretto to the magic flute
× GT who was it that created the script of the magic flute
× YT who is it to have made a script of the the magic flute
× Mo the magic flute scripts who prepared
× Tra who made of magic script
◦ - who librettist magic flute

Table 2 shows the examples of change of con-
tent words. In the first example, the phrase “in-
terstate 579” has been translated in various ways
(e.g. “interstate highway 579,” “expressway 579,”
...). Only OR and Tra have the phrase “interstate
579” and have been answered correctly. The out-
put logical forms of other translations lack the en-
tity of the highway “interstate 579,” mistaking it
for another entity. For example, the phrase “inter-
state highway 579” is instead aligned to the entity
of the music album “interstate highway.” Simi-
larly, in the second example, the translations that
don’t have “librettist” were answered incorrectly.
Here, we created a new sentence, “who librettist
magic flute,” which was answered correctly.

These observations show that the change of con-
tent words to the point that they do not match enti-
ties in the entity lexicon is a very important prob-
lem. To ameliorate this problem, it may be pos-
sible to modify the translation system to consider
the named entity lexicon as a feature in the trans-
lation process.

Next, we show examples of another common
cause of mis-answered questions in Table 3. In the

7It should be noted that the shapes of the translation ac-
curacy distributions of two groups are similar, therefore, it is
difficult for MT evaluation metrics to help to choose better
datasets.

447



Table 3: Examples of mis-translated question
words
◦ OR how many religions use the bible
- JA 聖書を使う宗教はいくつありますか
× HT how many religions use sacred scriptures
◦ GT how many religions that use the bible
◦ YT how many religion to use the bible are there
◦ Mo how many pieces of religion, but used the bible
× Tra use the bible religions do you have

◦ OR how many tv programs did danny devito produce
- JA ダニー・デヴィートは何件のテレビ番組をプロデュースしましたか
◦ HT how many television programs has danny devito produced

× GT danny devito or has produced what review television program

× YT did danni devito produce several tv programs
× Mo what kind of tv programs are produced by danny devito
× Tra danny devito has produced many tv programs

first example, the sentence of Tra has all the con-
tent words of OR, but was answered incorrectly.
Likewise, in the second example, “tv (television)
programs,” “danny devito,” and “produce(d)” have
appeared in all translations. However, these trans-
lations have been answered incorrectly, other than
HT. It can be seen that to answer these questions
correctly, the sentence must include a phrase such
as “how many,” which indicates the question type.
This demonstrates that correct translation of ques-
tion words is also important. It should be noted
that these words are frequent, and thus even NIST
score will not be able to perform adequate evalua-
tion, indicating that other measures may be neces-
sary.

Table 4: Examples of translations with mistaken
syntax
◦ OR what library system is the sunset branch library in
- JA サンセット・ブランチ図書館はどの図書館システムに所属しますか
◦ HT to what library system does sunset branch library belong
◦ GT sunset branch library do you belong to any library system
◦ YT which library system does the sunset branch library belong to

◦ Mo sunset branch library, which belongs to the library system
◦ Tra sunset branch library, belongs to the library system?

× OR what teams did babe ruth play for
- JA ベイブ・ルースはどのチームの選手でしたか
× HT what team did babe ruth play for
◦ GT did the players of any team babe ruth
◦ YT was babe ruth a player of which team
◦ Mo how did babe ruth team
◦ Tra babe ruth was a team player

Table 4 shows examples regarding syntax. In
the first example, all of the sentences were an-
swered correctly, while GT, Mo, and Tra are gram-
matically incorrect. On the other hand, in the sec-
ond example, the sentences of OR and HT are
grammatically correct, but were answered incor-

rectly. The OR and HT translations resulted in
the QA system outputting Babe Ruth’s batting
statistics, probably because “babe ruth” and “play”
are adjacent in sentences. These cases indicate
that, at least for the relatively simple questions
in Free917, achieving correct word ordering plays
only a secondary role in achieving high QA accu-
racy.

6 Conclusion

To investigate the influence of translation quality
on QA using knowledge bases, we created ques-
tion data sets using several varieties of translation
and compared them with regards to QA accuracy.
We found that QA accuracy has high correlation
with NIST score, which is sensitive to the change
of content words, although these results only hold
when evaluating with references that actually re-
sult in correct answers. In addition, by analy-
sis of examples, we found 3 factors which cause
changes of QA results: content words, question
types, and syntax. Based on these results, we can
make at least two recommendations for the evalua-
tion of MT systems constructed with cross-lingual
QA tasks in mind: 1) NIST score, or another met-
ric putting a weight an content words should be
used. 2) References that are actually answerable
by the QA system should be used.

We should qualify this result, however, noting
the fact that the results are based on the use solely
of the SEMPRE parsing system. While SEMPRE
has shown highly competitive results on standard
QA tasks, we also plan to examine other methods
such as Berant and Liang (2014)’s semantic pars-
ing through paraphrasing, which may be less sen-
sitive to superficial differences in surface forms of
the translation results. We also plan to to optimize
machine translation systems using this analysis,
possibly through incorporation into the response-
based learning framework of Riezler et al. (2014).
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Abstract
In English-to-Japanese translation,
BLEU (Papineni et al., 2002), the de facto
standard evaluation metric for machine
translation (MT), has very weak corre-
lation with human judgments (Goto et
al., 2011; Goto et al., 2013). Therefore,
RIBES (Isozaki et al., 2010; Hirao et
al., 2014) was proposed. RIBES mea-
sures similarity of the word order of a
machine-translated sentence and that of a
corresponding human-translated reference
sentence.
RIBES has much stronger correlation than
BLEU but most Japanese sentences have
alternative word orders (scrambling), and
one reference sentence is not sufficient for
fair evaluation. Isozaki et al. (2014) pro-
posed a solution to this problem. This
solution generates semantically equiva-
lent word orders of reference sentences.
Automatically generated word orders are
sometimes incomprehensible or mislead-
ing, and they introduced a heuristic rule
that filters out such bad sentences. How-
ever, their rule is too conservative and
generated alternative word orders for only
30% of reference sentences.
In this paper, we present a rule-free
method that uses a dependency parser to
check scrambled sentences and generated
alternatives for 80% of sentences. The ex-
perimental results show that our method
improves sentence-level correlation with
human judgments. In addition, strong
system-level correlation of single refer-
ence RIBES is not damaged very much.
We expect this method can be applied to
other languages such as German, Korean,
∗This work was done while the second author was a grad-

uate student of Okayama Prefectural University.

Spearman’s ρ with adequacy

NTCIR-7 JE RIBES
JE BLEU

NTCIR-9 JE RIBES
JE BLEU
EJ RIBES
EJ BLEU

NTCIR-10 JE RIBES
JE BLEU
EJ RIBES
EJ BLEU
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Figure 1: RIBES has better correlation with ade-
quacy than BLEU (system-level correlation)

Turkish, Hindi, etc.

1 Introduction

For translation among European languages,
BLEU (Papineni et al., 2002) has strong cor-
relation with human judgments and almost all
MT papers use BLEU for evaluation of trans-
lation quality. However, BLEU has very weak
correlation with human judgments in English-to-
Japanese/Japanese-to-English translation, and a
new metric RIBES (Isozaki et al., 2010; Hirao
et al., 2014) has strong correlation with human
judgments. RIBES measures similarity of the
word order of a machine translated sentence and
that of a human-translated reference sentence.
Figure 1 compares RIBES and BLEU in terms of
Spearman’s ρ with human judgments of adequacy
based on NTCIR-7/9/10 data (Isozaki et al., 2010;
Goto et al., 2011; Goto et al., 2013).

Japanese and English have completely different
word order, and phrase-based SMT systems tend
to output bad word orders. RIBES correctly points
out their word order problems.

In this paper, we propose a method to improve
“sentence-level correlation”, which is useful for
MT developers to find problems of their MT sys-
tems. If the sentence-level correlation is strong,
low RIBES scores indicate bad translations, and
we will find typical failure patterns from them.
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katta

John ga Tokyo de PC wo

(a) “John ga Tokyo de PC wo katta”

katta

John gaTokyo dePC wo

(b) “PC wo Tokyo de John ga katta”

atta

ato ni Alice kara denwa ga

katta

John ga PC wo

(c) “John ga PC wo katta ato ni Alice kara denwa
ga atta”

atta

ato ni denwa ga

katta

Alice kara John ga PC wo

(d) “Alice kara John ga PC wo katta ato ni denwa
ga atta”

Figure 2: Dependency trees

However, improvement of sentence-level corre-
lation is more difficult than system-level correla-
tion and current automatic evaluation metrics do
not have strong correlation. (Leusch et al., 2003;
Stanojević and Sima’an, 2014; Echizen-ya and
Araki, 2010; Callison-Burch et al., 2012)

1.1 Scrambling
As for Japanese translation, however, we should
consider “scrambling” or acceptable reordering of
phrases. For example, “John ga Tokyo de PC wo
katta” (John bought a PC in Tokyo) consists of the
main verb “katta” (bought) and its modifiers. “Ga”,
“de”, and “wo” are case markers.

• “Ga” is a nominative case marker.
• “De” is a locative case marker.
• “Wo” is an accusative case marker.

This sentence can be reordered as follows.
1. John ga Tokyo de PC wo katta . (1.00)
2. John ga PC wo Tokyo de katta . (0.86)
3. Tokyo de John ga PC wo katta . (0.86)

4. Tokyo de PC wo John ga katta . (0.71)
5. PC wo John ga Tokyo de katta . (0.71)
6. PC wo Tokyo de John ga katta . (0.57)

All of the above sentences are acceptable and
have the same meaning, and this is called “scram-
bling”. However, RIBES outputs different scores
for these sentences. When we use the first one as
the reference sentence, RIBES output scores in the
parentheses. Human judges will give almost equal
scores to all of them, and we should improve these
RIBES scores for better evaluation.

Scrambling is also observed in other lan-
guages such as German (Maier et al., 2014), Ko-
rean (Chun, 2013), Turkish (ldız et al., 2014),
Hindi (Sharma and Paul, 2014), etc.

Figure 2 (a) shows the dependency tree of “John
ga Tokyo de PC wo katta”. Each box indicates a bun-
setsu (chunk). Arrows indicate modification rela-
tions. The source node of an arrow modifies the
target node of the arrow. The root “katta” has three
modifiers (children), “John ga”, “Tokyo de”, and
“PC wo”. We can generate 3! = 6 word orders by
post-order traversal of this tree because the order
of siblings does not matter. Figure 2 (b) shows a
permutation and its dependency tree. In this case,
all permutations are acceptable.

However, more complex dependency trees tend
to generate misleading/incomprehensible sen-
tences. Figure 2 (c) shows such a sentence: “John
ga PC wo katta ato ni Alice kara denwa ga atta”. (Af-
ter John bought a PC, there was a phone call from
Alice). “X ato ni Y” means “After X, Y”. “Denwa”
means “a phone call”. “Atta” means “there was”.

This tree has 2! × 3! = 12 post-order permuta-
tions. Some of them are misleading. For exam-
ple, “Alice kara John ga PC wo katta ato ni denwa ga
atta” sounds like “After John bought a PC from
Alice, there was a phone call” because “Alice kara”
(from Alice) precedes “katta” (bought). This sen-
tence will have a dependency tree in Figure 2 (d).

1.2 Rule-based filtering of bad sentences
Isozaki et al. (2014) tried to solve the above prob-
lem by automatic generation of reordered sen-
tences and use of a heuristic rule (constraint) to
filter out bad sentences.

• Use a Japanese dependency parser to get de-
pendency trees of reference sentences.
• Check the dependency trees and manually

correct wrong ones because sentence-level
accuracy of dependency analyzers are still
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low.
• In order to get Japanese-like head final sen-

tences, output words in the corrected depen-
dency tree in post-order. That is, recursively
output all child nodes before a mother node.
They called this method “postOrder”.
• The above “postOrder” generates misleading/

incomprehensible sentences. In order to in-
hibit them, they introduced the following rule
called “Simple Case Marker Constraint”:

If a reordered sentence has a case
marker phrase of a verb that pre-
cedes another verb before the verb,
the sentence is rejected. “wo” case
markers can precede adjectives be-
fore the verb.

Here, we call this “rule2014”.

This “rule2014” improved sentence-level corre-
lation of NTCIR-7 EJ data. However, rule2014 is
so conservative that only 30% of reference sen-
tences obtained alternative word orders. In the
next section, we present a method that covers more
reference sentences.

2 Methodology

2.1 Our idea
We do not want to introduce more rules to cover
more sentences. Instead we present a rule-free
method. Our idea is simple: if a reordered sen-
tence is misleading or incomprehensible, a depen-
dency parser will output a dependency tree differ-
ent from the original dependency tree. That is, use
a dependency parser for detecting misleading sen-
tences.

We apply a dependency parser to the reordered
reference sentences. If the dependency parser out-
puts the same dependency tree with the original
reference sentence except sibling orders, accept
the word order as a new reference. Otherwise, it is
a misleading word order and reject it. (We do not
parse MT output because it is often broken and de-
pendency analysis will fail.)

For example, “PC wo Tokyo de John ga katta” has
the dependency tree in Figure 2 (b). This tree is
the same as (a) except the order of three siblings.
We don’t care about the order of siblings, and ac-
cept this as a new reference sentence. On the other
hand, the parser shows that “Alice kara John ga PC
wo katta ato ni denwa ga atta” has the dependency
tree in (d), which is different from (c) and we

reject this sentence. We call this method “com-
pDep” because it compares dependency trees of
reordered reference sentences with the original de-
pendency tree.

Each MT output sentence is evaluated by the
best of RIBES scores for remaining reordered ref-
erence sentences. This is a sentence-level score. A
system’s score (system-level score) is the average
of sentence-level scores of all test sentences.

2.2 Data and tools
We use NTCIR-7 PatentMT EJ data (Fujii et al.,
2008) and NTCIR-9 PatentMT EJ data (Goto et
al., 2011).1 NTCIR-7 EJ human judgment data
consists of 100 sentences × five MT systems.
NTCIR-9 EJ human judgment data consists of 300
sentences × 17 MT systems. NTCIR provided
only one reference sentence for each sentence.
When we use only the provided reference sen-
tences, we call it “single ref”.

We apply a popular Japanese dependency parser
CaboCha2 to the reference sentences, and man-
ually corrected its output just like Isozaki et al.
(2014). 40% of NTCIR-7 dependency trees and
50% of NTCIR-9 dependency trees were cor-
rected.

Based on the corrected dependency trees, we
generate all post-order permutations. Then we ap-
ply CaboCha to these reordered sentences. We
compare the dependency tree of the original ref-
erence sentence with that of a reordered reference
sentence.

We accept a reordered reference sentence only
when its tree is the same as that of the original
reference sentence except the sibling order.

This tree comparison is implemented by remov-
ing word IDs and chunk IDs from the trees keep-
ing their dependency structures and sorting chil-
dren of each node by their surface strings. These
sorted dependency trees are compared recursively
from their roots.

3 Experimental Results

Table 1 shows that our compDep method succeeded
in generating more reordered sentences (permuta-
tions) than rule2014. The column with #perms =
1 indicates failure of generation of reordered sen-
tences. As for NTCIR-7, rule2014 failed for 70%

1NTCIR-8 did not provide human judgments. NTCIR-10
submission data was not publicly available yet at the time of
writing this paper.

2http://code.google.com/p/cabocha/
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NTCIR-7 EJ
#perms 1 2–10 11–100 101–1000 >1000 total
single ref 100 0 0 0 0 100
rule2014 70 30 0 0 0 100
compDep 20 61 15 4 0 100
postOrder 1 41 41 13 4 100

NTCIR-9 EJ
#perms 1 2–10 11–100 101–1000 >1000 total
single ref 300 0 0 0 0 300
rule2014 267 25 7 1 0 300
compDep 41 189 63 5 2 300
postOrder 0 100 124 58 18 300

Table 1: Distribution of the number of generated
permutations (#perms=1 indicates the number of
sentences for which the method didn’t generate al-
ternative word orders)

tsbmt
moses

NTT
NICT-ATR

kuro

Spearman’s ρ with adequacy

single ref
compDep
rule2014

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Improvement of sentence-level correla-
tion with adequacy (NTCIR-7 EJ)

of reference sentences while compDep failed for
only 20%. As for NTCIR-9, rule2014 failed for
89% (267/300) while compDep failed for only 14%
(41/300).

From the viewpoint of the number of such fail-
ures, postOrder (§1.2) is the best method, but pos-
tOrder does not filter out bad sentences, and it leads
to the loss of system-level correlation with ade-
quacy (See §3.2).

3.1 Sentence-level correlation
Here, we focus on adequacy because it is easy
to generate fluent sentences if we disregard ade-
quacy. Figure 3 shows NTCIR-7 EJ results. our
compDep succeeded in improving sentence-level
correlation with adequacy for four MT systems
among five. The average of ρ was improved from
single ref’s 0.558 to 0.606.

Figure 4 shows NTCIR-9 EJ results. our com-
pDep succeeded in improving sentence-level cor-
relation of all 17 MT systems. The average of ρ
was improved from single ref’s 0.385 and rule2014’s
0.396 to compDep’s 0.420. The improvement from
single ref to compDep is statistically significant with
p = 0.000015 (two-sided sign test) for NTCIR-9
data. The improvement from rule2014 to compDep
is also statistically significant with p = 0.01273.

Spearman’s ρ with adequacy

NTT-UT-1
NTT-UT-3

RBMT6
JAPIO

RBMT4
RBMT5

ONLINE1
BASELINE1

TORI
BASELINE2

KLE
FRDC

ICT
UOTTS

KYOTO-2
KYOTO-1

BJTUX

single ref
compDep
rule2014

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Improvement of sentence-level correla-
tion with adequacy (NTCIR-9 EJ)

3.2 System-level correlation
Isozaki et al. (2014) pointed out that postOrder
loses system-level correlation with adequacy be-
cause it also generates bad word orders.

Figure 5 shows that system-level correlation of
compDep is comparable to that of single ref and
rule2014. Spearman’s ρ of compDep in NTCIR-
7 (0.90) looks slightly worse than single ref and
rule2014 (1.00). However, this is not a big prob-
lem because the NTCIR-7 correlation is based on
only five systems as described in §2.2, and the
NTCIR-9 correlation based on 17 systems did not
degrade very much (compDep: 0.690, single ref:
0.695, rule2014: 0.668).

Table 2 shows details of system-level correla-
tion of NTCIR-7 EJ. Single reference RIBES and
rule2014 completely follows the order of adequacy.
On the other hand, compDep slightly violates this
order at the bottom of the table. NICT-ATR and
kuro is swapped.

The “single ref” and “rule2014” scores of this ta-
ble are slightly different from that of Table 5 of
Isozaki et al. (2014). This difference is caused
by the difference of normalization of punctuation
symbols and full-width/half-width alphanumeric
letters.

Figure 6 shows that the effects of manual cor-
rection of dependency trees. The average of sin-
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Pearson with adequacy

NTCIR-7 single ref
compDep

rule2014
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Figure 5: System-level correlation with adequacy

Adequacy Averaged RIBES
single ref rule2014 compDep

tsbmt 3.527 0.722 0.726 0.750
Moses 2.897 0.707 0.720 0.745
NTT 2.740 0.670 0.682 0.722
NICT-ATR 2.587 0.658 0.667 0.706
kuro 2.420 0.633 0.643 0.711

Table 2: Details of system-level RIBES scores
(NTCIR-7 EJ)

gle ref, compDep, and compDep without correction are
0.388, 0.422, and 0.420, respectively. Thus, the
difference between compDep (with correction) and
compDep without correction is very small and we can
skip the manual correction step.

We used dependency analysis twice in the above
method. First, we used it for generation of re-
ordered reference sentences. Second, we used it
for detecting misleading word orders.

In the first usage, we manually corrected depen-
dency trees of the given reference sentences. In the
second usage, however, we did not correct depen-
dency trees of reordered reference sentences be-
cause some sentences have thousands of permuta-
tions (Table 1) and it is time-consuming to cor-
rect all of them manually. Moreover, some re-
ordered sentences are meaningless or incompre-
hensible, and we cannot make their correct depen-
dency trees. Therefore, we did not correct them.
Our experimental results have shown that we can
omit correction in the first step.

4 Related Work

Our method uses syntactic information. Use of
syntactic information in MT evaluation is not a

Spearman’s ρ with adequacy
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RBMT6
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ONLINE1
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KYOTO-2
KYOTO-1

BJTUX

single ref
compDep
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correction

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Effects of manual correction on comp-
Dep’s correlation with adequacy (NTCIR-9 EJ)

new idea.
Liu and Gildea (2005) compared parse trees

of reference sentences and MT output sentences.
They proposed four methods: STM, TKM,
HWCM, DSTM, and DTKM. STM measures sim-
ilarity by the number of matching subtrees. TKM
uses Tree Kernel for the measurement. HWCM
uses n-gram matches in dependency trees. DSTM
and DTKM are dependency tree versions of STM
and TKM respectively.

Owczarzak et al. (2007) used LFG-based typed
dependency trees. They also introduced process-
ing of paraphrases.

Chan and Ng (2008) proposed MAXSIM that is
based on a bipartite graph matching algorithm and
assigns different weights to matches. Dependency
relation are used as a factor in this framework.

Zhu et al. (2010) proposed an SVM-based MT
metric that uses different features in different gran-
ularities. Dependency relations are used as a fea-
ture in this framework.

We designed our method not to parse MT out-
puts because some MT outputs are broken and it is
difficult to parse them. Our method does not parse
MT outputs and we expect our method is more ro-
bust than these methods.

Recently, Yu et al. (2014) proposed RED, an
evaluation metric based on reference dependency
trees. They also avoided parsing of “results of
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noisy machine translations” and used only depen-
dency trees of reference sentences. However, their
research motivation is completely different from
ours. They did not mention scrambling at all,
and they did not try to generate reordered ref-
erence sentences, but it is closely related to our
method. It might be possible to make a better eval-
uation method by combining our method and their
method.

Some readers might think that adequacy is not
very reliable. WMT-2008 (Callison-Burch et al.,
2008) gave up using adequacy as a human judge-
ment score because of unreliability. NTCIR or-
ganizers used relative comparison to improve re-
liability of adequacy. The details are described in
Appendix A of Goto et al. (2011).

5 Conclusions

RIBES (Isozaki et al., 2010) is a new evaluation
metric of translation quality for distant language
pairs. It compares the word order of an MT output
sentence with that of a corresponding reference
sentence. However, most Japanese sentences can
be reordered and a single reference sentence is not
sufficient for fair evaluation. Isozaki et al. (2014)
proposed a rule-based method for this problem but
it succeeded in generating alternative word orders
for only 11–30% of reference sentences.

In this paper, we proposed a method that uses a
dependency parser to detect misleading reordered
sentences. Only when a reordered sentence has
the same dependency tree with its original refer-
ence sentence except the order of siblings, we ac-
cept the reordered sentence as a new reference sen-
tence. This method succeeded in generating al-
ternative word orders for 80–89% and improved
sentence-level correlation of RIBES with ade-
quacy and its system-level correlation is compa-
rable to the single reference RIBES.

In conventional MT evaluations, we have to pre-
pare multiple references for better evaluation. This
paper showed that we can automatically generate
multiple references without much effort.

Future work includes use of the generated refer-
ence sentences in other metrics such as BLUE. We
expect that this method is applicable to other lan-
guages such as German, Korean, Turkish, Hindi,
etc. because they have scrambling.
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Abstract

In this paper, we take a closer look at the
MT evaluation process from a glass-box
perspective using eye-tracking. We an-
alyze two aspects of the evaluation task
– the background of evaluators (monolin-
gual or bilingual) and the sources of in-
formation available, and we evaluate them
using time and consistency as criteria.
Our findings show that monolinguals are
slower but more consistent than bilinguals,
especially when only target language in-
formation is available. When exposed to
various sources of information, evaluators
in general take more time and in the case
of monolinguals, there is a drop in consis-
tency. Our findings suggest that to have
consistent and cost effective MT evalua-
tions, it is better to use monolinguals with
only target language information.

1 Introduction

Each year thousands of human judgments are used
to evaluate the quality of Machine Translation
(MT) systems to determine which algorithms and
techniques are to be considered the new state-of-
the-art. In a typical scenario human judges evalu-
ate a system’s output (or hypothesis) by comparing
it to a source sentence and/or to a reference trans-
lation. Then, they score the hypothesis according
to a set of defined criteria such as fluency and ad-
equacy (White et al., 1994); or rank a set of hy-
potheses in order of preference (Vilar et al., 2007;
Callison-Burch et al., 2007).

Evaluating MT output can be a challenging task
for a number of reasons: it is tedious and there-
fore evaluators can lose interest quickly; it is com-
plex, especially if the guidelines are not well de-
fined; and evaluators can have difficulty distin-
guishing between different aspects of the transla-
tions (Callison-Burch et al., 2007).

As a result, evaluations suffer from low inter- and
intra-annotator agreements (Turian et al., 2003;
Snover et al., 2006). Yet, as Sanders et al. (2011)
argue, using human judgments is essential to the
progress of MT because: (i) automatic translations
are produced for a human audience; and (ii) hu-
man understanding of the real world allows to as-
sess the importance of the errors made by MT sys-
tems.

Most of the research in human evaluation has
focused on analyzing the criteria to use for evalu-
ation, and has regarded the evaluation process as
a black-box, where the inputs are different sources
of information (i.e source text, reference transla-
tion, and translation hypotheses), and the output is
a score (or preference ranking).

In this paper, we focus on analyzing evalua-
tion from a different perspective. First, we regard
the process as a glass-box and use eye-tracking
to monitor the times evaluators spend digesting
different sources of information (scenarios) be-
fore making a judgment. Secondly, we contrast
how the availability of such sources can affect the
outcome of the evaluation. Finally, we analyze
how the background of the evaluators (in this case
whether they are monolingual or bilingual) has an
effect on the consistency and speed in which trans-
lations are evaluated. Our main research questions
are:

• Given different scenarios, what source of in-
formation do evaluators use to evaluate a
translation? Do they use the source text, the
target text, or both? Does the availability of
specific information changes the consistency
of the evaluation?

• Are there differences of behavior between
bilinguals (i.e. evaluators fluent in both
source and target languages) and monolin-
guals (i.e. evaluators fluent only in the target
language)? Which group is more consistent?
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Our goal is to provide actionable insights that
can help to improve the process of evaluation, es-
pecially in large-scale shared-tasks such as WMT.
In the next sections we summarize related work,
provide details of our experimental setup, and an-
alyze and discuss the results of our experiment.

2 Related Work

Previous work on human evaluation has focused
on various aspects of the evaluation process rang-
ing from categorization of the possible scenarios
(Sanders et al., 2011) to the effectiveness of the
evaluation criteria (Callison-Burch et al., 2007).
Callison-Burch et al. (2007) define several criteria
to evaluate the effectiveness of a MT evaluation
task: (i) The ease with which humans are able to
perform the task; (ii) the agreement with respect
to other annotators; and (iii) the speed with which
annotations can be collected.

Based on those criteria they recommended that
evaluations should be done in the form of ranking
translations against each other instead of assign-
ing absolute scores to individual translation be-
cause ranking is easier to perform, can be done
faster, and produces evaluations with higher levels
of inter-annotator agreement. As a result, recent
WMT evaluations have adopted this evaluation-
by-ranking approach and instructions are kept
minimal by only asking the evaluator to rank hy-
potheses from worst to best (Bojar et al., 2011).

In this work, we consider the three criteria
proposed by Callison-Burch et al. (2007): ease,
agreement and speed; but with a few differences.
Regarding ease, instructions are kept minimal, and
the evaluation criteria is left to the evaluator to
decide (or discover). Furthermore, by framing
the evaluation as a game we aim to keep partici-
pants engaged, and make the evaluation task eas-
ier. With respect to the other two criteria, we use
them to analyze two different aspects of the evalu-
ation process: the sources of information available
to the evaluator, and the background of the evalu-
ator.

Eye-tracking has been previously used in MT
evaluation research for different purposes. Do-
herty et al. (2010) used eye-tracking to evaluate
the comprehensibility of machine translation out-
put in French, by asking native speakers to read
MT output. They found that eye-tracking data had
a slight correlation with HTER scores.

Stymne et al. (2012) applied eye-tracking to ma-
chine translation error analysis. They found that
longer gaze time and and a higher number of fix-
ations correlate with high number of errors in the
MT output. Doherty and O’Brien (2014) used eye-
tracking to evaluate the quality of raw machine
translation output in terms of its usability by an
end user. They concluded that eye-tracking corre-
lates well with the other measures which they used
for their study. In this work, we use eye-tracking
to observe which sources of information evalua-
tors use while performing an MT evaluation task
and how this impacts the task completion time and
the consistency in their judgements.

3 Method

In order to understand how humans evaluate
MT, we ran an evaluation experiment using eye-
tracking, involving 20 human participants, half
of them monolingual in English and the other
half bilingual in Spanish-English. We chose
the Spanish-English language pair because of the
large amount of freely available data (e.g. WMT)
and the sizable pool of available participants in
our environment. In our setup, we contrasted the
evaluation procedure under alternative scenarios
in which different sources of information (e.g.
source sentence, reference translation) are avail-
able. To keep things simple, we only asked par-
ticipants to evaluate one translation at a time and
provide a single score representing the transla-
tion quality. To prevent biasing the behavior of
the participants, and to encourage them to eval-
uate translations naturally, participants were not
given any precise instructions regarding the re-
quirements of a good translation. To increase en-
gagement, we formulated the evaluation experi-
ment as a game, where participants are provided
feedback after each evaluation according to how
close their own score was to a precomputed quality
score. Below, we further describe the data used,
the different scenarios, the background of the par-
ticipants, and other details of our experiment.

3.1 Data

In our experiments we used the WMT12
(Callison-Burch et al., 2012) human evaluation
data for Spanish-English systems. The data con-
sists of 1141 ranking annotations, in which each
evaluator ranked five out of the 12 participating
systems.

458



The annotation effort generated a total of 5705
labels with an inter-annotator agreement of κ =
0.222. Unfortunately, many of the translations
have rankings coming from a single evaluator
only.In practical terms, this means that at least two
evaluators had to evaluate the translations of the
same source sentence, and at least two systems
were ranked by both of those evaluators. In the
WMT12 data, a total of 923 different source sen-
tences were evaluated. From these, we kept only
the 155 that complied with our requirement.

To control for length (i.e number of words),
we divided the sentences into three equally sized
groups based on the sentence length of their refer-
ence translations. Discarding the five longest ones
the resulting sets long, medium, and short aver-
aged 30.88, 18.18, and 10.18 words.

To have diversity in the quality of the transla-
tions, we collected two translations per source sen-
tence, one of superior quality (best), and another
one of inferior quality (worst). We measured qual-
ity according to the expected wins (Callison-Burch
et al., 2012). In total, we used 300 different trans-
lations.1

3.2 Sources of Information

Our evaluation setup is based on a typical Ap-
praise configuration (Federmann, 2012), where
evaluators are provided with different sources of
information in different areas of the screen: (i) the
hypothesis to be evaluated; (ii) the source sen-
tence; (iii) the context of the source sentence
(previous and next sentences in the same source
document); (iv) the reference translation for the
source sentence; and (v) the context of the refer-
ence translation (previous and next sentences in
the same reference document). Figure 1 presents a
snapshot of our experimental setup, along with the
labels for the corresponding areas of the screen.

To ease the scoring procedure, instead of pro-
viding a set of predefined levels of quality (e.g. 1
to 5), we used a continuous range (a slider from 0
to 100), and let the evaluator freely set the level of
translation quality.

To contrast the effect that different sources of
information have on the evaluation procedure, we
explored three different evaluation scenarios:

1For reproducibility, the full data matrix can be
obtained at https://github.com/Qatar-Computing-Research-
Institute/wmt15eyetracking

• Scenario 1 (source-only) shows participants
the translated sentence (in English) along
with the source text of the translation (in
Spanish), including the context of the source
sentence (one sentence before and one sen-
tence after the translated sentence).

• Scenario 2 (source+target) shows partici-
pants the translated sentence (in English),
along with the source text of the translation
(in Spanish), and a reference translation done
by a human (also in English), plus context for
both source and reference.

• Scenario 3 (target-only) shows the translated
sentence (in English) only with a reference
translation including its context (in English).

3.3 Feedback
To keep participants engaged, they were given
feedback according to a previously computed
quality score for each translation. This score
was calculated using a linear interpolation of the
expected wins score obtained from the ranking
evaluations (normalized to the range [0, 100])
and DISCOTKparty (Joty et al., 2014), a high-
performing automatic MT metric based on dis-
course (Guzmán et al., 2014), which won the
WMT 2014 metrics task. This was done because
expected wins only provide relative scores (i.e.
which of two translations is ranked better given the
same source sentence), while the participants were
evaluating absolute scores. To keep things sim-
ple, we provided feedback based on the difference
between the evaluator’s score and the computed
quality scores. Participants were given a five scale
feedback depending on the magnitude of these dif-
ferences (5: [0–10], 4: [11–20], 3: [21–30], 2:
[31–40], 1: [>40]). In Section 5.2 we analyze the
impact of feedback on the evaluator behavior.

3.4 Participants
In our experiment we had 20 participants 27 to 45
years old. Seven of the participants were female,
and 13 were male. Seventeen of our participants
were computer scientists; ten had experience with
manually translating documents; and four had ex-
perience with machine translation evaluation.

All the recruited participants were proficient in
English. However, half of the participants were
recruited taking into account their mastery of the
Spanish Language. For the analysis, participants
were divided into two groups of ten people each:
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Figure 1: Our modified evaluation layout showing: the translation (i) ; the source (ii) , (iii) ; the reference
(iv) , (v) ; and the scoring slider.

• Bilingual participants did speak the source
language (Spanish) at a native or advance
level of comprehension.

• Monolingual participants did not speak the
source language. Note that this group in-
cluded some speakers of other Romance lan-
guages. However, the participants insisted
that their understanding of Spanish was not
enough to correctly comprehend the source
text.

3.5 Experimental Design
We planned our experiment to collect 1200 eval-
uations, 60 from each of the 20 participants.
To do so, we designed an experimental ma-
trix in which we considered the following vari-
ables: (i) evaluator type: monolingual, bilingual;
(ii) length of reference: short, medium, long;
(iii) scenario: source-only, source+target, target-
only; and (iv) type of translation: worst, best.

In our experimental matrix, each participant
evaluated 60 translations evenly divided into: 20
translations in each of the scenario; 20 transla-
tions from each length type; 30 translations of
each quality type. On the other hand, each trans-
lation was evaluated by four different participants,
two bilingual and two monolingual. To avoid any
bias, we made sure that each evaluator saw each
source sentence only once.

3.6 Eye-tracking Setup

We used the EyeTribe eye-tracker 2 to collect gaze
information from the participants. The informa-
tion was sent in messages to a modified version
of Appraise3 at a rate of 60Hz (a packet in every
16ms).

Each message contained the gaze position in
the screen of both eyes, a flag indicating if the
point represented a fixation, a time stamp, and
other device-related information. To ensure opti-
mal readings, participants were asked to calibrate
the eye-tracking device before starting the exper-
iments, and a warning message was displayed
whenever the eye-tracker lost track of the partic-
ipant’s gaze.

3.7 Instructions and Exit Survey

Participants were asked to move as little as possi-
ble to not interrupt the readings of the eye-tracker,
and to not interrupt their work while working
through the translations belonging to one scenario,
as the time for executing all sentences in one sce-
nario was measured. Before conducting the eval-
uation, participants were shown two tutorials, one
showing how to calibrate the eye-tracker and one
showing how to conduct the experiment.

2http://dev.theeyetribe.com/api/
3Available at: https://github.com/Qatar-Computing-

Research-Institute/iAppraise

460



After the tutorials they were asked to perform a
warm-up exercise consisting of two sentences per
scenario. Then, the participants proceeded to eval-
uate the 20 translations in each of the scenarios
in the following order source-only, source+target
and target-only4.

After the experiment, the participants were
asked to fill in an on-line exit survey, which col-
lected their impressions about the experiment and
their physiological status during the experiment.

From the survey we learned about the physi-
ological state of the participants: 55% of them
were in a normal state, 15% were slightly tired
or sleepy, 25% were tired, and 10% were sleep-
deprived or sick. Yet, all these reports were evenly
distributed among bilinguals and monolinguals.

There were only few complaints about the
setup, and they were related to: (i) the lack of pre-
cise instructions of what constitutes a good trans-
lation, (ii) the large range of the evaluation score
(0-100), (iii) the difficulty to understand the con-
text of the translations, and (iv) the cognitive over-
head needed to evaluate long translations, espe-
cially in the source+target scenario. As expected,
some of the monolingual participants noted that
in the source-only scenario they mostly evaluated
the readability of the translation, as they had no
knowledge of the source language.

4 Results

In this section we analyze the process that partic-
ipants use to evaluate translation. We focus on
three different aspects. First, we use eye-tracking
data to observe in which areas do participants
spend most of their time. Next, we analyze the
time that participants take to complete the evalua-
tion. Finally, we analyze the scores given by the
participants, and their consistency.

4.1 How Long Does it Take?

One important aspect to take into account is
the time at which annotations can be collected
(Callison-Burch et al., 2007). To discount the time
a participant spends idle (be either by fatigue, dis-
traction, etc.), here we analyze only the focused
time, i.e. the amount of time a participant gaze is
focused in areas of interest.

4In hindsight, randomizing the order in which the
scenarios were performed would have allowed to answer an
additional set of questions.

In our experiments, we observed that on average
annotations take 26.06 seconds to be collected,
which is in line with the measurements reported
by Callison-Burch et al. (2007). In Table 1, we
further break down the task durations by: (i) type
of evaluator (i.e. monolingual and bilingual),
(ii) scenario (i.e. source-only, source+target, and
target-only); and (iii) the length of the source sen-
tence (i.e. short, medium, long).

scnr. usr type long med short avg

1 src biling 36.89 24.54 17.92 26.46
2 src mono 44.11 28.58 19.17 30.55
3 src+tgt biling 40.16 23.99 15.46 26.59
4 src+tgt mono 46.76 29.69 21.63 32.71
5 tgt biling 26.41 15.03 10.54 17.28
6 tgt mono 35.90 19.41 12.69 22.77

Table 1: Average task duration time (in seconds)
according to type of setup, type of evaluator and
source sentence length.

The first observation to make is that bilingual
evaluators are consistently faster than monolingual
evaluators in evaluation. This is true even in the
target-only condition, where both evaluators can
leverage the same amount of information (i.e. both
are fluent in English). This can have two possi-
ble explanations: (i) bilingual evaluators develop
internal rules that allow them to perform the task
faster, and (ii) since the order of the conditions was
fixed (i.e evaluators performed first the source-
only tasks, then the source+target tasks and lastly
the target-only tasks), this could mean that the
bilingual evaluators got more efficient sooner, just
because the source-only task wasn’t noise to them.
However, we show later that (i) is more plausible.

The second observation to make is that eval-
uators tend to take longer to evaluate scenarios
with more sources of information available.
This is true for monolingual if we analyze the
results either by scenario or by source length5.
Surprisingly, monolingual participants in the
source-only condition perform the task 7% faster
than in the source+target condition, which leads
to hypothesize that the more information is in the
screen, the longer the task will take, even if the
information is not particularly useful for the task
completion. On the other hand bilingual take the
least time when evaluating target-only scenario.

5Longer source sentences have more words.
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To measure the significance of our observations,
we fitted a random intercepts model and analyzed
the relationship between task duration time, length
of the sentences, type of evaluator and type of sce-
nario while taking into account the variability be-
tween evaluators. Therefore, as fixed effects, we
had the length of the sentences, the type of evalu-
ator (bilingual and monolingual) and the scenario
into the model. We also included the interaction
between the type of evaluator and the length of the
sentences. As random effects, we had intercepts
for each of the 20 evaluators. P-values were ob-
tained by likelihood ratio tests of the full model
with the effect in question against the model with-
out the effect in question.

In general, the effect of scenario is highly sig-
nificant (χ2

2 = 121.71, p = 2.2e−16), and for
long sentences the target-only scenario is 8.52
and 9.6 seconds faster than the source-only and
source+target scenarios, respectively. The effect
of the type of evaluator is also significant (χ2

3 =
7.45, p = 0.05), and on average bilingual are
faster than monolingual by 7.76 seconds for long
sentences. These results were obtained using R (R
Core Team, 2015) and lme4 (Bates et al., 2015),
following Winter (2013).

4.2 Where Do Evaluators Look?

The eye-tracking data allowed us to analyze the
behavior of the evaluators across different condi-
tions. In particular, we focused in the dwell time,
i.e. the amount of time an evaluator is looking
at a particular area of interest in the screen. In
Table 2, we present the proportional dwell time
(out of the focused time) that the evaluators spent
in the different areas of the screen: (i) translation,
(ii) source (with previous and next context),
(iii) reference (with previous and next context),
(iv) and the sum of the source and reference times.

From the table, the main observation is that
evaluators spend most of their time looking at re-
gions other than the translation (src+ref). This
supports the hypothesis that evaluators try to un-
derstand the source and reference before making a
judgment about the translation. However, there are
some peculiarities worth noting. First, bilingual
participants spend less time reading the translation
than their monolingual counterparts.

scnr. usr type tra ref src src+ref

1 src mono 0.18 - 0.82 0.82
2 src biling 0.12 - 0.88 0.88
3 src+tgt mono 0.13 0.24 0.63 0.87
4 src+tgt biling 0.07 0.16 0.78 0.93
5 tgt mono 0.26 0.74 - 0.74
6 tgt biling 0.19 0.81 - 0.81

Table 2: Proportional time spent by evaluators
while focusing in different regions of the screen:
translation (trans), reference and its context (ref),
source and its context (src), and the aggregate of
src and ref.

For example, this means that on average, in the
target-only condition, a bilingual evaluator would
spend 5 (0.19 ∗ 26.41) seconds6 focused on a long
translation while a monolingual evaluator would
spend 9.3 (0.26 ∗ 35.9) seconds, that is almost
double the time. In contrast, the difference times
both bilingual and monolingual evaluators would
spend reading the reference is only a factor of
1.2 (21.3 and 26.6 seconds, respectively). This
tells that bilingual are faster (mostly) because they
spend less time reading the translation.

Another interesting observation is that
monolingual spend a sizable proportion of
their time reading the source (which they suppos-
edly do not understand), even in the source+target
scenario. This suggests that monolingual evalua-
tors develop rules-of-thumb to analyze the source,
even if it is a foreign language (e.g. translation
of named entities, numbers, dates). This can be
an artifact of the relatedness between English
and Spanish, or an priming effect induced by the
order in which the tasks were done (i.e by asking
monolingual evaluators to score source-only
tasks first, we forced them into developing this
behavior). The analysis of such phenomena, while
interesting, is beyond the scope of this paper.

Finally, if we look across conditions, we
observe that evaluators spend a larger proportion
of their time evaluating the translation in the
target-only condition than in the source-only and
source+target conditions. Yet, when we calculate
the expected focused time in the translation region
for each condition (across different lengths and
evaluator types), we obtain 4.48, 4.35 and 2.85
seconds for each condition, respectively.

6This time does not need to be continuously spent on the
same region. For example, a evaluator might analyze a first
portion of a translation, then move back to the reference, and
then return to the translation.
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This tells us that having more information on
the screen (the case of source+target) decreases
the total amount of time spent reading the trans-
lation. In other words, if a evaluator has more
sources of information to evaluate a translation,
s/he’ll spend more time performing the task, but
less time evaluating the translation itself.

4.3 Score Consistency

Another important aspect to take into account is
how consistent are the scores provided by differ-
ent evaluators, and how this consistency varies de-
pending on the type of evaluator, and the scenario
that is used. Unlike other studies where categori-
cal and ordinal scores are produced, here each an-
notation generates a score in a continuous scale7.
Thus, using the standard inter-annotator agree-
ment is impractical. Instead, we evaluate consis-
tency as the standard deviation of scores for each
translation with respect to a class or group aver-
age (i.e. monolingual or bilingual). This quantity
gives us an idea of how much variation there is in
the score for a specific translation across different
groups of evaluators. To be able to compare across
evaluators, we normalized their individual scores
to a 0-1 range using minmax. Then, computed the
consistency as follows:

σ2
c =

1
Nc

∑
i∈T

∑
j∈C

(x̃ij − ¯̃xic)2 (1)

where x̃ij is the normalized score of translation
i by an evaluator j who belongs to class c (e.g.
monolingual), and ¯̃xic is the average score given
to translation i by evaluators in class c, and Nc

is the total number of translations scored by
evaluators in class c.

In Table 3 we present the consistency measure-
ments for monolingual and bilingual evaluators
across the different conditions.

First note that monolingual evaluators are
more consistent within their group (σc) than the
bilingual evaluators. This observation holds true
across all the different scenarios. Note also that
monolingual evaluators are the most consistent in
the target-only condition. We hypothesize that
this is due to the longer times spent analyzing the
translation in comparison to bilingual evaluators.

7Actually it is an ordinal scale from 0-100, but for practi-
cal purposes we treat it as continuous

scnr. usr type σc

1 src mono 15.14
2 src biling 16.17
3 src+tgt mono 14.88
4 src+tgt biling 15.96
5 tgt mono 14.13
6 tgt biling 16.81

Table 3: Consistency scores: standard deviation
with respect to the class average (σc) for the scores
produced by different types of evaluators across
different conditions. Lower scores means higher
consistency. Each measure is calculated overN =
200 points.

But also, we think this is related to the simplicity
of the task. There is less information to analyze.
On the other hand bilingual, have a larger varia-
tion, which can be attributed to the heterogeneity
of rules of thumb that the evaluators develop from
looking at the source. Finally, note how bilingual
have a problem of consistency with the target-only
task. Without more fine-grained information, we
can only hypothesize that this is due to the lack of
familiarity with the scenario. Before performing
tasks in the target-only scenario, they were relying
primarily on the source to evaluate.

4.4 Summary of Observations

We have observed that there are differences in how
translations are evaluated according to the type of
evaluator, and the scenario. In summary, the ob-
servations are:

• The bilingual evaluators perform the tasks
faster than the monolingual. They also spend
less time evaluating the translation.

• The monolingual evaluators are slower, but
more consistent in the scores they provide.

• The more information is displayed in the
screen, it will take to longer to complete the
evaluation, even though, less time will be
spent actually evaluating the translation. Dis-
playing more information also correlates with
lower consistency between evaluators.
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5 Discussion

Using eye-tracking allowed us to dive into the pro-
cess of evaluation and explore new aspects regard-
ing the behavior of evaluators. However, there
were a few additional questions that might arise
from our setup and experimental results. In this
section we address some of them.

5.1 Is Bilingual Adequacy Necessary?

Bilingual evaluators are considered to be the gold
standard for the evaluation of machine translation
(Dorr et al., 2011). However, the use of mono-
lingual evaluators has been previously advocated,
since the end-users of MT are in fact monolin-
gual (Sanders et al., 2011). The results obtained
in this paper lead us to challenge the inclusion of
bilingual evaluators for MT evaluation. As seen
in the results, monolingual evaluators were slower
than bilinguals, but they were more consistent in
their evaluations. Given the open-ended nature of
bilingual evaluation (e.g. given a source text, they
can formulate their own set of plausible transla-
tions), we believe that the evaluations of bilinguals
can be more subjective and prone to influence by
the evaluator’s background and knowledge of a
specific subject. Moreover, recruiting bilingual
evaluators can be harder and more expensive. We
consider that consistency should be a primary goal
of any evaluation task. Therefore, it seems more
practical to rely only on monolinguals for the eval-
uation of machine translation. Our findings are in
line with the observations in the post-editing com-
munity where monolinguals were more apt for the
task and improved the fluency and comprehensi-
bility of translations (Mitchell et al., 2013). Our
findings are also in partial agreement with White
et al. (1993) (which is not directly comparable to
our work, as it does not compare monolinguals and
bilinguals performing the same task), who state
that less time is spent in evaluation techniques that
use only target side information.

5.2 Can Feedback Bias the Evaluation?

The process of evaluation can be cumbersome, es-
pecially if the evaluation sessions last for long;
hence we used feedback to boost the engagement
of participants throughout the evaluation process.
This is a double-edged sword, as the feedback has
the potential to bias the evaluators and influence
their decision.

To rule-out any potential bias from the feed-
back, we investigated the effects that the progres-
sion in which the tasks were performed might have
on the differences between the evaluator scores
and the feedback scores.

If the evaluators learned to reproduce the feed-
back scores, we would expect that the feedback
error (τc) would decrease as a function of time.
We calculated the feedback error as follows:

τ2
c =

1
Nc

∑
i∈T

∑
j∈C

(x̃ij − fi)2 (2)

where fi is the feedback score for translation i,
and other variables are the same as in eq. 1.

We fitted a linear model to the data, using the
scenario, the evaluator type and the progression
(time) as predictors; and the feedback error as a
response. We did not find that the progression had
any significant effect (p = 0.2856) on the feed-
back error. This means that the feedback did not
bias the scoring behavior of the evaluators.

5.3 Can We do More with Eye-tracking?

Eye-tracking technology has proven useful in dif-
ferent scenarios related to translation. Yet, here we
have only used the eye-tracking device to measure
the dwell time an evaluator spends reading a spe-
cific portion of the screen. Nonetheless, one can
think of more refined uses for this technology.

Potentially, using eye-tracking can give us a
fine-grained insight on how evaluators differenti-
ate good from bad translations, making it easier
to learn the intrinsic rules of thumb that they use
during the evaluation process. The applications for
this are manifold. For example, by learning which
type of errors (e.g. morphological, syntactic, se-
mantic) can make a stronger impact on the read-
ing behavior while evaluating, we could help to
develop better automatic MT evaluation metrics.
Additionally, we can use gaze-data to model the
evaluation score (or rank) given by an evaluator,
and thus reduce the subjective score bias. This can
help to alleviate the high variance found in evalu-
ation.

However, there are several challenges that need
to be solved before moving forward in this nascent
area. The most important is related to the accuracy
of the eye-tracking devices, which is a requirement
to track which specific words are looked-at in the
screen.
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Eye-tracking errors can be divided into two cat-
egories: variable (device-related precision) and
systematic. Fortunately, the former has improved
over the past years, and high-precision devices can
be now acquired for only a few hundred dollars.
The latter, however is more complex. Often, a loss
in accuracy known as drift is observed as time pro-
gresses, requiring frequent re-calibrations of the
eye-tracking device.
This can be due to evaluator movements, and other
environmental factors. Reducing and eliminating
drift is imperative to make progress in this area.
Up to now, only heuristic approaches have been
proposed (Mishra et al., 2012), leaving plenty of
room for improvement.

6 Conclusion

In this paper, we analyzed the process of MT eval-
uation from a glass-box perspective, using eye-
tracking data. We contrasted two main aspects of
the evaluation tasks: the background of the eval-
uators, and the sources of information available
to them during the evaluation task. We used time
and consistency as our main criteria for compari-
son. Our results show that: (i) monolingual evalu-
ators take relatively longer to evaluate translations
(except when only the target language information
is available, then they complete the tasks in less
time), yet they are more consistent in their judge-
ments. (ii) The amount of information provided to
evaluators can affect their performance. We ob-
served that when more information is available,
the tasks take longer to complete, and yield less
consistent results.

Therefore, based on our empirical results,
we suggest that future evaluation campaigns be
done with monolingual evaluators in a target-only
scenario. We argue that this setting can increase
the consistency of results while reducing the po-
tential costs of recruiting bilinguals.

In future studies we would like to extend our
explorations into using eye-tracking to model the
behavior of evaluators and to help predict reli-
able and unreliable translations. In particular,
we would like to explore the application of eye-
tracking in ranking scenarios. We believe that
given the popularity and availability of low-cost
devices, eye-tracking can position itself as a use-
ful aid to reduce subjectivity in evaluation.
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Abstract

In this paper, we enhance the traditional
confusion network system combination
approach with an additional model trained
by a neural network. This work is moti-
vated by the fact that the commonly used
binary system voting models only assign
each input system a global weight which
is responsible for the global impact of
each input system on all translations. This
prevents individual systems with low sys-
tem weights from having influence on the
system combination output, although in
some situations this could be helpful. Fur-
ther, words which have only been seen by
one or few systems rarely have a chance
of being present in the combined output.
We train a local system voting model by
a neural network which is based on the
words themselves and the combinatorial
occurrences of the different system out-
puts. This gives system combination the
option to prefer other systems at different
word positions even for the same sentence.

1 Introduction

Adding more linguistic informed models (e.g.
language model or translation model) additionally
to the standard models into system combination
seems to yield no or only small improvements.
The reason is that all these models should have al-
ready been applied during the decoding process of
the individual systems (which serve as input hy-
potheses for system combination) and hence al-
ready fired before system combination. To im-
prove system combination with additional models,
we need to define a model which can not be ap-
plied by an individual system.

In state-of-the-art confusion network system
combination the following models are usually ap-
plied:

System voting (globalVote) models For each
word the voting model for system i (1≤ i≤ I)
is 1 iff the word is from system i, otherwise 0.

Binary primary system model (primary)
A model that marks the primary hypothesis.

Language model 3-gram language model (LM)
trained on the input hypotheses.

Word penalty Counts the number of words.

To gain improvements with additional models,
it is better to define models which are not used
by an individual system. A simple model which
can not be applied by any individual system is the
binary system voting model (globalVote). This
model is the most important one during system
combination decoding as it determines the impact
of each individual system. Each system i is as-
signed one globalVote model which fires if the
word is generated by system i. Nevertheless, this
simple model is independent of the actual words
and the score is only based on the global prefer-
ences of the individual systems. This disadvan-
tage prevents system combination from produc-
ing words which have only been seen by systems
with low system weights (low globalVote model
weights). To give systems and words with low
weights a chance to affect the final output, we de-
fine a new local system voting model (localVote)
which makes decisions based on the current word
options and not only on a general weight. The lo-
cal system voting model allows system combina-
tion to prefer different system outputs at different
word positions even for the same sentence.

Motivated by the success of neural networks in
language modelling (Bengio et al., 2006, Schwenk
and Gauvain, 2002) and translation modelling
(Son et al., 2012), we choose feedforward neural
networks to train the novel model. Instead of cal-
culating the probabilities in a discrete space, the
neural network projects the words into a continu-
ous space. This projection gives us the option to
assign probability also to input sequences which
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were not observed in the training data. In sys-
tem combination each training sentence has to be
translated by all individual system engines which
is time consuming. Due to this we have a small
amount of training data and thus it is very likely
that many input sequences of a test set have not be
seen during training.

The remainder of this paper is structured as fol-
lows: in Section 2, we discuss some related work.
In Section 3, the novel local system voting model
is described. In Section 4, experimental results are
presented which are analyzed in Section 5. The
paper is concluded in Section 6.

2 Related Work

In confusion network decoding, pairwise align-
ments between all system outputs are generated.
From the calculated alignment information, a con-
fusion network is built from which the system
combination output is determined using major-
ity voting and additional models. The hypothesis
alignment algorithm is a crucial part of building
the confusion network and many alternatives have
been proposed in the literature:

(Bangalore et al., 2001) use a multiple string
alignment (MSA) algorithm to identify the
unit of consensus and applied a posterior lan-
guage model to extract the consensus trans-
lations. In contrast to the following ap-
proaches, MSA is unable to capture word re-
orderings.

(Matusov et al., 2006) produce pairwise word
alignments with the statistical alignment al-
gorithm toolkit GIZA++ that explicitly mod-
els word reordering. The context of a whole
document of translations rather than a single
sentence is taken into account to produce the
alignments.

(Sim et al., 2007) construct a consensus network
by using TER (Snover et al., 2006) align-
ments. Minimum bayes risk decoding is ap-
plied to obtain a primary hypothesis to which
all other hypotheses are aligned.

(Rosti et al., 2007) extend the TER alignment ap-
proach and introduce an incremental TER

alignment which aligns one system at a time
to all previously aligned hypotheses.

(Karakos et al., 2008) use the inversion trans-
duction grammar (ITG) formalism (Wu,
1997) and treat the alignment problem as a

problem of bilingual parsing to generate the
pairwise alignments.

(He et al., 2008) propose an indirect hidden
markov model (IHMM) alignment approach
to address the synonym matching and word
ordering issues in hypothesis alignment.

(Heafield and Lavie, 2010) use the METEOR
toolkit to calculate pairwise alignments be-
tween the hypotheses.

All confusion network system combination ap-
proaches only use the global system voting mod-
els. Regarding to this chapter, there has been sim-
ilar effort in the area of speech recognition:

(Hillard et al., 2007) Similar work has been pre-
sented for system combination of speech
recognitions systems: the authors train a clas-
sifier to learn which system should be se-
lected for each output word. The learn-
ing target for each slot is the set of sys-
tems which match the reference word, or the
null class if no systems match the reference
word. Their novel approach outperforms the
ROVER baseline by up to 14.5% relatively
on an evaluation set.

3 Novel Local System Voting Model

In the following subsections we introduce
a novel local system voting model (localVote)
trained by a neural network. The purpose of this
model is to prefer one particular path in the con-
fusion network and therefore all local word deci-
sions between two nodes leading to this particular
path. More precisely, we want the neural network
to learn an oracle path extracted from the confu-
sion network graph which leads to the lowest error
score. In Subsection 3.1, we describe a polyno-
mial approximation algorithm to extract the best
sentence level BLEU (SBLEU) path in a confusion
network. Taking this path as reference path, we
define the model in Subsection 3.2 followed by
its integration in the linear model combination in
Subsection 3.3.

3.1 Finding SBLEU-optimal Hypotheses
In this section, we describe a polynomial ap-

proximation algorithm to extract the best SBLEU

hypothesis from a confusion network. (Leusch et
al., 2008) showed that this problem is generally
NP-hard for the popular BLEU (Papineni et al.,
2002) metric. Nevertheless, we need some paths
which serve as “reference paths“.
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Using BLEU as metric to extract the best pos-
sible path is problematic as in the original BLEU

definition there is no smoothing for the geomet-
ric mean. This has the disadvantage that the BLEU

score becomes zero already if the four-gram preci-
sion is zero, which can happen obviously very of-
ten with short or difficult translations. To allow for
sentence-wise evaluation, we use the SBLEU met-
ric (Lin and Och, 2004), which is basically BLEU

where all n-gram counts are initialized with 1 in-
stead of 0. The brevity penalty is calculated only
on the current hypothesis and reference sentence.

We use the advantage that confusion networks
can be sorted topologically. We walk the confu-
sion network from the start node to the end node,
keeping track of all n-grams seen so far. At each
node we keep a k-best list containing the partial
hypotheses with the most n-gram matches leading
to this node and recombine only partial hypothe-
ses containing the same translation. As the search
space can become exponentially large, we only
keep k possible options at each node. This prun-
ing can lead to search errors and hence yield non-
optimal results. If needed for hypotheses with the
same n-gram counts, we prefer hypotheses with a
higher translation score based on the original mod-
els. For the final node we add the brevity penalty
to all possible translations.

As we are only interested in arc decisions which
match a reference word, we simplify the confusion
network before applying the algorithm. If all arcs
between two adjacent nodes are not present in the
reference, we remove all of them and add a single
arc labeled with ”UNK”. This reduces the vocab-
ulary size and still gives us the same best SBLEU

scores as before. In Figure 1, a confusion network
of four input hypotheses is given. As the words
black, red, orange, and green are all not present in
the reference, all of them are mapped to one single
”UNK” arc (cf. Figure 2). The best SBLEU path is
the UNK car.

the black

an
a
a green

orange
red

cab

train
car
car

Figure 1: System A: the black cab ; System B: an
red train ; System C: a orange car ; System D: a
green car ; Reference: the blue car .

the

an
a
a

UNK

cab

train
car
car

Figure 2: As the words black, red, orange, and
green in Figure 1 are all not present in the refer-
ence (the blue car), they are mapped to one single
”UNK” arc.

3.2 localVote Model Training

The purpose of the new localVote model is to
prefer the best SBLEU path and therefore to learn
the word decisions between all adjacent nodes
which lead to this particular path. During the ex-
traction of the best SBLEU hypotheses from the
confusion network, we keep track of all arc de-
cisions. This gives us the possibility to generate
local training examples based only on the I arcs
between two nodes. For the confusion network il-
lustrated in Figure 2, we generate two training ex-
amples for the neural network training. Based on
the arcs the, an, a and a we learn the output the.
Based on the arcs cab, train, car and car we learn
the output car.

In all upcoming system setups, we use the open
source toolkit NPLM (Vaswani et al., 2013) for
training and testing the neural network models.
We use the standard setup as described in the pa-
per and use the neural network with one projection
layer and one hidden layer. For more details we
refer the reader to the original paper of the NPLM
toolkit. The inputs to the neural network are the I
words produced by the I different individual sys-
tems. The outputs are the posterior probabilities
of all words of the vocabulary. The input uses the
so-called 1-of-n coding, i.e. the i-th word of the
vocabulary is coded by setting the i-th element of
the vector to 1 and all the other elements to 0.

For a system combination of I individual sys-
tems, a training example consists of I + 1 words.
The first I words (input of the neural network) are
representing the words of the individual systems,
the last position (output of the neural network)
serves as slot for the decision we want to learn (ex-
tracted from the best SBLEU path). We do not add
the ”UNK” arcs to the neural network training as
they do not help to increase the SBLEU score. Fig-
ure 3 shows the neural network training example
for the last words of Figure 2. The output of each
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Figure 3: Unigram neural network training exam-
ple: System A produces cab, System B train, Sys-
tem C car, System D car, reference is car. 1-of-n
encoding was applied to map words to a suitable
neural network input.

Table 1: Training examples from Figure 2.

input layer
Sys A Sys B Sys C Sys D ref
the an a a the
cab train car car car

individual system provides one input word. In Ta-
ble 1 the two training examples for Figure 2 are
illustrated.

As a neural network training example only con-
sists of the I words between two adjacent nodes,
we are able to produce several training examples
for each sentences. For a system combination of I
systems and a development set of S sentences with
an average sentence length of L, we can generate
up to I ∗S∗L neural network training examples.

Further, we can expand the model to use arbi-
trary history size, if we take the predecessor words
into account. Instead of just using the local word
decision of a system, we add additionally the pre-
decessors of the individual systems into the train-
ing data. In Figure 4, we e.g. use the bigram red
train instead of the unigram train for system B into
the training data. In Table 2 all bigram training ex-
amples of Figure 2 can be seen.

3.3 localVote model Integration
Having a trained localVote model, we then add

it as an additional model into the confusion net-
work. We calculate for each arc the probability
of the word in the trained neural network. E.g. for
Figure 1, we extract the probabilities for all arcs by
the strings illustrated in Table 3. Finally, we add
the scores as a new model and assign it a weight
which is trained additionally to the standard model

green
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black P(w1| )
projection

hiddenlayer
layer P(w2| )

P(w3| )

P(wn| )

.

.

.

cab

train

car

car

Figure 4: Bigram neural network training exam-
ple: System A produces black cab, System B red
train, System C orange car, System D green car,
reference is car.

Table 2: Training examples (bigram) from Fig. 2.

input layer
Sys A Sys B Sys C Sys D ref
<s>the <s>an <s>a <s>a the
black cab red train orange car green car car

weights with MERT.

Table 3: Calculating the probability for all possi-
ble output words from Figure 1. The output layer
is the current generated word.

input layer
Sys A Sys B Sys C Sys D arc word
the an a a the
the an a a an
the an a a a
black red orange green black
black red orange green red
black red orange green orange
black red orange green green
cab train car car cab
cab train car car train
cab train car car car

3.4 Word Classes

The neural network training sets are relatively
small as all sentences have to be translated by all
individual system engines. This results in many
unseen words in the test sets. To overcome this
problem, we use word classes (Och, 1999) instead
of words which were trained (10 iterations) on the
target part of the bilingual training corpus in some
experiments. We use the trained word classes on
both input layer and output layer.
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4 Experiments

All experiments have been conducted with the
open source system combination toolkit Jane (Fre-
itag et al., 2014). For training and scoring neu-
ral networks, we use the open source toolkit
NPLM (Vaswani et al., 2013). NPLM is a toolkit
for training and using feedforward neural lan-
guage models. Variations in neural network ar-
chitecture have been tested. We tried various hid-
den layer sizes as well as projection layer sizes.
We achieved similar results for all setups and de-
cided to stick to 1 hidden layer whose size is 200,
a learning rate of 0.08 and let the training run 20
epochs in all experiments.

Translation quality is measured in lower-
case with BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) whereas the perfor-
mance of each setup is the best score on the tune
set across five different MERT runs. The system
combination weights of the linear model are opti-
mized with MERT on 200-best lists with (TER-
BLEU)/2 as optimization criterion. For all lan-
guage pairs we use three different test sets. In the
following the test set for extracting the training ex-
amples for the neural network training is labeled
as tune (NN). The test set tune (MERT) indicates
the tune set for MERT and test indicates the blind
test set.

The individual systems are different extensions
of phrase-based or hierarchical phrase-based sys-
tems. The systems are built on the same amount of
preprocessed training data and differ mostly in the
models which are used to score the translation op-
tions. Further, some systems are syntactical aug-
mented based on syntax trees on either source or
target side.

4.1 BOLT Chinese→English

For Chinese→English, we use the current
BOLT data set (corpus statistics are given in Ta-
ble 4). The test sets consist of text drawn from
”discussion forums” in Mandarin Chinese. We
use nine individual systems to perform the system
combination experiments. The lambda weights are
optimized on a tune set of 985 sentences (tune
(MERT)). We train the proposed localVote model
on 15,323,897 training examples extracted from
the 1844 sentences tune (NN) set.

As a first step we have to determine the k-best
pruning threshold for extracting the SBLEU opti-
mal path from the current confusion networks (cf.

Section 3.1). In Figure 5 the (TER-BLEU)/2 re-
sults of the SBLEU optimal hypotheses extracted
with different k-best sizes are given. Although,
the BLEU score improves by setting k to a higher
value, the computational time increases. To find
a tradeoff between running time and performance,
we set the k-best size to 1200 in the following ex-
periments.

Table 4: Corpus statistics Chinese→English.

Chinese English
Sentences 13M
Running words 255M 279M
Vocabulary 370K 833K
Tune sentences 1844 (NN), 985 (MERT)
Test sentences 1124
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Figure 5: (TER − BLEU)/2 scores for dif-
ferent k-best pruning thresholds on the BOLT
Chinese→English data set.

Experimental results are given in Table 5. The
baseline is a system combination run without any
localVote model of nine individual systems us-
ing the standard models as described in (Freitag
et al., 2014). The oracle score is calculated on
the hypothesis of the SBLEU best path extracted
with k = 1200. We train the neural network on
15,323,897 training examples generated from the
1844 tune (NN) sentences. By training a neu-
ral network based on unigram decisions (unigram
NN), we gain small improvements of -0.6 points
in TER. As we have only few sentences of training
data, many words have not been seen during neu-
ral network training. To overcome this problem,
we train 1500 word classes on the target part of
the bilingual data. Learning the localVote model
on word classes (unigram wcNN) gain improve-
ment of +0.7 points in BLEU and -0.6 points in
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Table 5: Results for the BOLT Chinese→English
translation task. The localVote models of the
systems +unigram NN and +unigram wcNN are
trained based on one word per system. The lo-
calVote models of the systems +bigram NN and
+bigram wcNN are trained based on two words
per system. For systems labeled with wcNN, the
neural network is trained on word classes. Sig-
nificance is marked with † for 95% confidence
and ‡ for 99% confidence, and is measured with
the bootstrap resampling method as described in
(Koehn, 2004).

system tune test
BLEU TER BLEU TER

baseline 17.9 61.5 18.3 60.9
+unigram NN 18.1 61.2 18.3 60.3†
+unigram wcNN 18.4 61.5 19.0‡ 60.3†
+bigram NN 18.1 61.3 18.6† 60.3†
+bigram wcNN 18.1 61.2 18.7† 59.9‡
oracle 28.6 62.3 31.1 57.2

TER. By taking a bigram history into the training
of the neural network, we reach only small fur-
ther improvement. Compared to the baseline, the
system combination +bigram NN outperforms the
baseline by +0.3 points in BLEU and -0.6 points
in TER. By using word classes (+bigram wcNN)
we gain improvement of +0.4 points in BLEU and
-1.0 points in TER.

All results are reached with a word class size
of 1500. In Figure 6 the (TER−BLEU)/2 scores
on tune(MERT) of system combinations including
one unigram localVote model trained with differ-
ent word class sizes are illustrated. Independent of
the word class size, system combination including
a localVote model always performs better com-
pared to the baseline. The best performance is
reached by a word class size of 1500. One rea-
son for the loss of performance when using no
word classes is the size of the neural network tune
set. Within a size of 1844 sentences, many words
of the test set have never been seen during neu-
ral network training. The test set has a vocab-
ulary size of 6106 within 2487 words (40.73%)
are not present in the training set (tune (NN)) of
the neural network. For the MERT tune set 2556
words (40.91%) are not present in the neural net-
work training set. Word classes tackle this prob-
lem and it is much more likely that each word class

has been seen during the training procedure of the
neural network.
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Figure 6: (TER− BLEU)/2 scores for different
word class sizes on the BOLT Chinese→English
tune (MERT) set.

4.2 BOLT Arabic→English

For Arabic→English, we use the current BOLT
data set (corpus statistics are given in Table 6).
The test sets consist of text drawn from ”discus-
sion forums” in Egyptian Arabic. We train the
neural network on 6,591,158 training examples
extracted from the 1510 sentences tune (NN) dev
set. The model weights are optimized on a 1080
sentences tune set. All results are system com-
binations of five individual systems. The test set
has a vocabulary size of 3491 within 1510 words
(43.25%) are not present in the training set (tune
(NN)) of the neural network. For the MERT tune
set 1549 words (43.24%) are not part of the neural
network training set.

We run the same experiment pipeline as for
Chinese→English and first determine the k-best
threshold for getting the oracle paths in the con-
fusion networks. As the Arabic→English system
combination is only based on 5 individual systems,
the confusion networks are much smaller. We set
the pruning threshold to 1000 (k = 1000) which
is a good tradeoff between running time and per-
formance. Figure 7 shows the (TER− BLEU)/2
scores for different k-best pruning thresholds. In-
creasing k to a higher value then 1000 improves
the (TER−BLEU)/2 only slightly.

Experimental results are given in Table 7. The
baseline is a system combination run without any
localVote model of five individual systems using
the standard models as described in (Freitag et
al., 2014). The oracle score represents the score
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Table 6: Corpus statistics BOLT Arabic→English.

Arabic English
Sentences 8M
Running words 189M 186M
Vocabulary 608K 519K
Tune sentences 1510 (NN), 1080 (MERT)
Test sentences 1137
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Figure 7: (TER − BLEU)/2 scores for dif-
ferent k-best pruning thresholds on the BOLT
Arabic→English tune (MERT) set.

of the SBLEU best path extracted with k = 1000.
Training a localVote model based on the best
SBLEU path (+unigram NN) gives us improve-
ment of +0.9 points in BLEU compared to the
baseline. Adding bigram context to the neural net-
work training (+bigram NN) yields improvement
of +0.8 points in BLEU compared to the baseline
system combination. By training word classes on
the bilingual part of the training data, we gain ad-
ditional improvements. When using word classes
and a history size of two, +bigram wcNN yields
the best performance with +1.1 points in BLEU

compared to the baseline.
All results are conducted with a word class size

of 1000. The tune set performance of different un-
igram localVote models trained on different word
class sizes are illustrated in Figure 8. The results
are fluctuating and we set the word class size to
1000 in all Arabic→English experiments.

5 Analysis

In this section we compare the final translations
of the Chinese→English system combination +bi-
gram wcNN with the baseline. The word occur-
rence distributions for both setups are illustrated
in Table 8. This table shows how many input sys-
tems produce a certain word and finally if it is part

Table 7: Results for the BOLT Arabic→English
translation task. The localVote models of the
systems +unigram NN and +unigram wcNN are
trained by a neural network based on one word per
system. The localVote models of the systems +bi-
gram NN and +bigram wcNN are trained by a neu-
ral network based on two words per system. For
systems labeled with wcNN, the neural network is
trained on word classes for both input and output
layer. Significance is marked with ‡ for 99% con-
fidence and is measured with the bootstrap resam-
pling method as described in (Koehn, 2004).

system tune test
BLEU TER BLEU TER

baseline 30.1 51.2 27.6 55.8
+unigram NN 31.4 51.2 28.5‡ 56.0
+unigram wcNN 31.1 51.1 28.3‡ 55.7
+bigram NN 31.3 51.1 28.4‡ 55.8
+bigram wcNN 31.4 51.2 28.7‡ 56.0
oracle 38.1 46.3 34.8 50.9
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Figure 8: (TER − BLEU)/2 tune set scores
for different word class sizes on the BOLT
Arabic→English task.

of the system combination output. As the original
idea of system combination is based on majority
voting, it should be more likely that a word which
is produced by more input systems is in the final
system combination output than a word which is
only produced by few input systems. E.g. 11008
words have been produced by all 9 individual sys-
tems from which all of them are in both the sys-
tem combination baseline and the advanced sys-
tem +bigram wcNN. If a word is only produced by
8 individual systems, a ninth system does not pro-
duce this word. 98,9% of the words produced by
only 8 different individual systems are in the final
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Table 8: Word occurrence distribution for the
Chinese→English setup. First column indicates
in how many systems a word appears. E.g.
120/14072 (0.9%) indicates that 14072 words only
appear in one individual input system from which
120 (0.9%) are present in the baseline system com-
bination hypothesis.

# baseline +bigram wcNN
1 120/14072 (0.9%) 214/14072 (1.5%)
2 592/ 6129 (9.7%) 764/ 6129 (12.5%)
3 1141/ 4159 (27.4%) 1319/ 4159 (31.7%)
4 1573/ 3241 (48.5%) 1669/ 3241 (51.5%)
5 2051/ 2881 (71.2%) 1993/ 2881 (69.2%)
6 2381/ 2744 (86.8%) 2332/ 2744 (85.0%)
7 2817/ 2965 (95.0%) 2820/ 2965 (95.1%)
8 3818/ 3860 (98.9%) 3815/ 3860 (98.8%)
9 11008/11008(100.0%) 11008/11008(100.0%)

baseline system combination output. The miss-
ing words result mostly from alignment errors pro-
duced by the pairwise alignment algorithm when
aligning the single systems together.

We observe the problem that the globalVote
models prevent words, which have only been pro-
duced by few systems, to be present in the system
combination output. In Table 8, you can see that
words which are only produced by 1-4 individual
systems are more likely to be present in the final
output when including the novel localVote model.
As e.g. in the baseline 592 of the 6129 words
which have only been produced by two individ-
ual system are in the output, the advanced +bi-
gram wcNN setup contains additional 172 words.
These statistics demonstrate the functionality of
the novel localVote model which does not only im-
prove the translation quality in terms of BLEU, but
also tackles the problem of the dominating glob-
alVote models.

The Arabic→English word occurrence distribu-
tion is illustrated in Table 9. A similar scenario as
for the Chinese→English translation task can be
observed. The words which only occur in few in-
dividual systems have a much higher chance to be
in the final output when using the novel local vot-
ing system model. It is also visible that the neural
network model prevents some words of being in
the combined output even if the word have been
produced by 4 of 5 systems. The novel local sys-
tem voting model gives system combination the

option to select words which have only be gener-
ated by few individual systems.

Table 9: Word occurrence distribution for the
Arabic→English setup. First column indicates in
how many systems a word appears. E.g. 214/5791
(3.7%) indicates that 5791 words only appear
in one individual input system from which 214
(3.7%) are present in the baseline system combi-
nation hypothesis.

# baseline +bigram wcNN
1 214/ 5791 (3.7%) 285/ 5791 (4.9%)
2 1225/ 3200 (38.3%) 1243/ 3200 (38.8%)
3 2162/ 2719 (79.5%) 2297/ 2719 (84.5%)
4 3148/ 3207 (98.2%) 3119/ 3207 (97.3%)
5 14602/14602(100.0%) 14602/14602(100.0%)

6 Conclusion

In this work we proposed a novel local system
voting model (localVote) which has been trained
by a feedforward neural network. In contrast to
the traditional globalVote model, the presented lo-
calVote model takes the word contents and their
combinatorial occurrences into account and does
not only promote global preferences for some in-
dividual systems. This advantage gives confusion
network decoding the option to prefer other sys-
tems at different positions even in the same sen-
tence. As all words are projected to a continuous
space, the neural network gives also unseen word
sequences a useful probability. Due to the rela-
tively small neural network training set, we used
word classes in some experiments to tackle the
data sparsity problem.

Experiments have been conducted with
high quality input systems for the BOLT
Chinese→English and Arabic→English trans-
lation tasks. Training an additional model by a
neural network with word classes yields trans-
lation improvement from up to +0.9 points in
BLEU and -0.5 points in TER. We also took word
context into account and added the predecessors
of the individual systems to the neural network
training which yield additional small improve-
ment. We analyzed the translation results and
the functionality of the localVote model. The
occurrence distribution shows that words which
have been produced by only few input systems are
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more likely to be part of the system combination
output when using the proposed model.
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