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Preface

The EMNLP 2015 Workshop on Statistical Machine Translation (WMT 2015) took place on
Thursday and Friday, September 17-18, 2015 in Lisbon, Portugal, immediately preceding the
Conference on Empirical Methods in Natural Language Processing (EMNLP).

This was the tenth time this workshop has been held. The first time it was held at HLT-NAACL
2006 in New York City, USA. In the following years the Workshop on Statistical Machine Trans-
lation was held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA,
EACL 2009 in Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh,
Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia, Bulgaria, and ACL 2014 in
Baltimore, Maryland, USA.

The focus of our workshop was to use parallel corpora for machine translation. Recent ex-
perimentation has shown that the performance of SMT systems varies greatly with the source
language. In this workshop we encouraged researchers to investigate ways to improve the per-
formance of SMT systems for diverse languages, including morphologically more complex lan-
guages, languages with partial free word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presenta-
tion, we conducted five shared tasks: a general translation task, an automatic post-editing task,
a quality estimation task, a metrics task, and a tuning task. The automatic post-editing task was
introduced this year as a pilot to examine the capabilities of automatic methods for correcting
errors produced by machine translation systems. This year’s tuning task is a follow up of the
WMT 2011 invitation-only tunable metrics task to assess a system’s ability to optimize the pa-
rameters of a given hierarchical MT system. The results of all shared tasks were announced at
the workshop, and these proceedings also include an overview paper for the shared tasks that
summarizes the results, as well as provides information about the data used and any procedures
that were followed in conducting or scoring the task. In addition, there are short papers from
each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept
for presentation. This year we have received 28 full paper submissions and 47 shared task
submissions. In total WMT 2015 featured 11 full paper oral presentations and 46 shared task
poster presentations.

The invited talk was given by Jacob Devlin (Microsoft Research), entitled "A Practical Guide to
Real-Time Neural Translation".

We would like to thank the members of the Program Committee for their timely reviews. We
also would like to thank the participants of the shared task and all the other volunteers who
helped with the evaluations.

Ondrej Bojar, Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias
Huck, Varvara Logacheva, Pavel Pecina, Philipp Koehn, Christof Monz, Matteo Negri, Matt
Post, Carolina Scarton, Lucia Specia, and Marco Turchi.
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Abstract

This paper presents the results of the
WMTIS5 shared tasks, which included a
standard news translation task, a metrics
task, a tuning task, a task for run-time
estimation of machine translation quality,
and an automatic post-editing task. This
year, 68 machine translation systems from
24 institutions were submitted to the ten
translation directions in the standard trans-
lation task. An additional 7 anonymized
systems were included, and were then
evaluated both automatically and manu-
ally. The quality estimation task had three
subtasks, with a total of 10 teams, submit-
ting 34 entries. The pilot automatic post-
editing task had a total of 4 teams, submit-
ting 7 entries.

1 Introduction

We present the results of the shared tasks of
the Workshop on Statistical Machine Translation
(WMT) held at EMNLP 2015. This workshop
builds on eight previous WMT workshops (Koehn
and Monz, 2006; Callison-Burch et al., 2007,
2008, 2009, 2010, 2011, 2012; Bojar et al., 2013,
2014). This year we conducted five official tasks:
a translation task, a quality estimation task, a met-
rics task, a tuning task', and a automatic post-
editing task.

In the translation task (§2), participants were
asked to translate a shared test set, optionally re-
stricting themselves to the provided training data.
We held ten translation tasks this year, between
English and each of Czech, French, German,
Finnish, and Russian. The Finnish translation

!The metrics and tuning tasks are reported in separate pa-
pers (Stanojevi€ et al., 2015a,b).

Lucia Specia
Univ. of Sheffield

1

Marco Turchi
FBK

tasks were new this year, providing a lesser re-
sourced data condition on a challenging language
pair. The system outputs for each task were evalu-
ated both automatically and manually.

The human evaluation (§3) involves asking
human judges to rank sentences output by
anonymized systems. We obtained large num-
bers of rankings from researchers who contributed
evaluations proportional to the number of tasks
they entered. We made data collection more ef-
ficient and used TrueSkill as ranking method.

The quality estimation task (§4) this year in-
cluded three subtasks: sentence-level prediction
of post-editing effort scores, word-level prediction
of good/bad labels, and document-level prediction
of Meteor scores. Datasets were released with
English—Spanish news translations for sentence
and word level, English«=German news transla-
tions for document level.

The first round of the automatic post-editing
task (§5) examined automatic methods for cor-
recting errors produced by an unknown machine
translation system. Participants were provided
with training triples containing source, target and
human post-editions, and were asked to return
automatic post-editions for unseen (source, tar-
get) pairs. This year we focused on correcting
English—Spanish news translations.

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dis-
seminate common test sets and public training data
with published performance numbers, and to re-
fine evaluation and estimation methodologies for
machine translation. As before, all of the data,
translations, and collected human judgments are
publicly available.> We hope these datasets serve
as a valuable resource for research into statistical

2http ://statmt.org/wmtl5/results.html

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 1-46,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



machine translation and automatic evaluation or
prediction of translation quality.

2 Overview of the Translation Task

The recurring task of the workshop examines
translation between English and other languages.
As in the previous years, the other languages in-
clude German, French, Czech and Russian.

Finnish replaced Hindi as the special language
this year. Finnish is a lesser resourced language
compared to the other languages and has challeng-
ing morphological properties. Finnish represents
also a different language family that we had not
tackled since we included Hungarian in 2008 and
2009 (Callison-Burch et al., 2008, 2009).

We created a test set for each language pair by
translating newspaper articles and provided train-
ing data, except for French, where the test set was
drawn from user-generated comments on the news
articles.

2.1 Test data

The test data for this year’s task was selected from
online sources, as before. We took about 1500 En-
glish sentences and translated them into the other
5 languages, and then additional 1500 sentences
from each of the other languages and translated
them into English. This gave us test sets of about
3000 sentences for our English-X language pairs,
which have been either written originally written
in English and translated into X, or vice versa.

For the French-English discussion forum test
set, we collected 38 discussion threads each from
the Guardian for English and from Le Monde for
French. See Figure 1 for an example.

The composition of the test documents is shown
in Table 1.

The stories were translated by the professional
translation agency Capita, funded by the EU
Framework Programme 7 project MosesCore, and
by Yandex, a Russian search engine company.’?
All of the translations were done directly, and not
via an intermediate language.

2.2 Training data

As in past years we provided parallel corpora
to train translation models, monolingual cor-
pora to train language models, and development
sets to tune system parameters. Some train-
ing corpora were identical from last year (Eu-

3http ://www.yandex.com/

roparl*, United Nations, French-English 10° cor-
pus, CzEng, Common Crawl, Russian-English
parallel data provided by Yandex, Russian-English
Wikipedia Headlines provided by CMU), some
were updated (News Commentary, monolingual
data), and new corpora was added (Finnish Eu-
roparl), Finnish-English Wikipedia Headline cor-
pus).

Some statistics about the training materials are
given in Figure 2.

2.3 Submitted systems

We received 68 submissions from 24 institu-
tions. The participating institutions and their en-
try names are listed in Table 2; each system did
not necessarily appear in all translation tasks. We
also included 1 commercial off-the-shelf MT sys-
tem and 6 online statistical MT systems, which we
anonymized.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

3 Human Evaluation

Following what we had done for previous work-
shops, we again conduct a human evaluation
campaign to assess translation quality and deter-
mine the final ranking of candidate systems. This
section describes how we prepared the evaluation
data, collected human assessments, and computed
the final results.

This year’s evaluation campaign differed from
last year in several ways:

e In previous years each ranking task compared
five different candidate systems which were
selected without any pruning or redundancy
cleanup. This had resulted in a noticeable
amount of near-identical ranking candidates
in WMT14, making the evaluation process
unnecessarily tedious as annotators ran into
a fair amount of ranking tasks containing
very similar segments which are hard to in-
spect. For WMT15, we perform redundancy
cleanup as an initial preprocessing step and

*As of Fall 2011, the proceedings of the European Parlia-
ment are no longer translated into all official languages.



This is perfectly illustrated by the UKIP numbties banning people with HIV.

You mean Nigel Farage saying the NHS should not be used to pay for people coming to the UK as
health tourists, and saying yes when the interviewer specifically asked if, with the aforementioned
in mind, people with HIV were included in not being welcome.

You raise a straw man and then knock it down with thinly veiled homophobia.

Every time I or my family need to use the NHS we have to queue up behind bigots with a sense of
entitlement and chronic hypochondria.

I think the straw man is yours.

Health tourism as defined by the right wing loonies is virtually none existent.

I think it’s called democracy.

So no one would be affected by UKIP’s policies against health tourism so no problem.

Only in UKIP La La Land could Carswell be described as revolutionary.

Quoting the bollox The Daily Muck spew out is not evidence.

Ah, shoot the messenger.

The Mail didn’t write the report, it merely commented on it.

Whoever controls most of the media in this country should undead be shot for spouting populist
propaganda as fact.

I don’t think you know what a straw man is.

You also don’t know anything about my personal circumstances or identity so I would be very
careful about trying to eradicate a debate with accusations of homophobia.

Farage’s comment came as quite a shock, but only because it is so rarely addressed.

He did not express any homophobic beliefs whatsoever.

You will just have to find a way of getting over it.

I’'m not entirely sure what you're trying to say, but my guess is that you dislike the media reporting
things you disagree with.

It is so rarely addressed because unlike Fararge and his Thatcherite loony disciples who think aids
and floods are a signal from the divine and not a reflection on their own ignorance in understanding

the complexities of humanity as something to celebrate,then no.

Language

Figure 1: Example news discussion thread used in the French—English translation task.

Sources (Number of Documents)

Czech

aktudlné.cz (4), blesk.cz (1), blisty.cz (1), ctk.cz (1), denik.cz (1), el5.cz (1), iDNES.cz (19), ihned.cz (3), li-
dovky.cz (6), Novinky.cz (2), tyden.cz (1).

English

ABC News (4), BBC (6), CBS News (1), Daily Mail (1), Euronews (1), Financial Times (1), Fox News (2), Globe and
Mail (1), Independent (1), Los Angeles Times (1), News.com Australia (9), Novinite (2), Reuters (2), Sydney Morning
Herald (1), stv.tv (1), Telegraph (8), The Local (1), The Nation (1), UPI (1), Washington Post (3).

German

Abendzeitung Niirnberg (1), Aachener Nachrichten (1), Der Standard (2), Deutsche Welle (1), Frankfurter Neue
Presse (1), Frankfurter Rundschau (1), Generalanzeiger Bonn (2), Gottinger Tageblatt (1), Haller Kreisblatt (1), Hell-
weger Anzeiger (1), Junge Welt (1), Kreisanzeiger (1), Mainpost (1), Merkur (3), Mittelbayerische Nachrichten (2),
Morgenpost (1), Mitteldeutsche Zeitung (1), Neue Presse Coburg (1), Niirtinger Zeitung (1), OE24 (1), Kolnische
Rundschau (1), Tagesspiegel (1), Volksfreund (1), Volksstimme (1), Wiener Zeitung (1), Westfilische Nachrichten (2).

Finnish

Aamulehti (2), Eteld-Saimaa (1), Eteld-Suomen Sanomat (3), Helsingin Sanomat (13), Ilkka (7), Ilta-Sanomat (18),
Kaleva (4), Karjalainen (2), Kouvolan Sanomat (1), Lapin Kansa (3), Maaseudun Tulevaisuus (1).

Russian

168.ru (1), aif (6), altapress.ru (1), argumenti.ru (8), BBC Russian (1), dp.ru (2), gazeta.ru (4), interfax (2), Kommer-
sant (12), lenta.ru (8), Igng (3), mk (5), novinite.ru (1), rbc.ru (1), rg.ru (2), rusplit.ru (1), Sport Express (6), vesti.ru (10).

Table 1: Composition of the test set. For more details see the XML test files. The docid tag gives the source and the date for
each document in the test set, and the origlang tag indicates the original source language.



Europarl Parallel Corpus

French — English German — English Czech — English Finnish — English
Sentences 2,007,723 1,920,209 646,605 1,926,114
Words 60,125,563 | 55,642,101 | 50,486,398 | 53,008,851 | 14,946,399 | 17,376,433 | 37,814,266 | 52,723,296
Distinct words 140,915 118,404 381,583 115,966 172,461 63,039 693,963 115,896

News Commentary Parallel Corpus

French — English | German — English | Czech «— English | Russian < English
Sentences 200,239 216,190 152,763 174,253
Words 6,270,748 | 5,161,906 | 5,513,985 | 5,499,625 | 3,435,458 | 3,759,874 | 4,394,974 | 4,625,898
Distinct words | 75,462 71,767 157,682 | 74,341 142,943 | 58,817 172,021 67,402

Common Crawl Parallel Corpus

French < English German < English | Czech «— English | Russian < English
Sentences 3,244,152 2,399,123 161,838 878,386
Words 91,328,790 81,096,306 | 54,575,405 | 58,870,638 | 3,529,783 13,927,378 21,018,793 21,535,122
Distinct words| 889,291 | 859,017 | 1,640,835 | 823,480 | 210,170 | 128,212 | 764,203 | 432,062

United Nations Parallel Corpus

Yandex 1M Parallel Corpus

French < English Russian «— English
Sentences 12,886,831 Sentences 1,000,000
Words 411,916,781 | 360,341,450 Words 24,121,459 | 26,107,293
Distinct words 565,553 666,077 Distinct words 701,809 387,646

10° Word Parallel Corpus

CzEng Parallel Corpus

French — English Czech — English
Sentences 22,520,400 Sentences 14,833,358
Words 811,203,407 | 668,412,817 Words 200,658,857 | 228,040,794
Distinct words | 2,738,882 2,861,336 Distinct words 1,389,803 920,824
Wiki Headlines Parallel Corpus
Russian < English Finnish < English
Sentences 514,859 153,728
Words 1,191,474 | 1,230,644 | 269,429 | 354,362
Distinct words 282,989 251,328 127,576 | 96,732
Europarl Language Model Data
English French German Czech Finnish
Sentence 2,218,201 2,190,579 2,176,537 668,595 2,120,739
Words 59,848,044 | 63,439,791 | 53,534,167 | 14,946,399 | 39,511,068
Distinct words 123,059 145,496 394,781 172,461 711,868
News Language Model Data
English French German Czech Russian Finnish
Sentence 118,337,431 42,110,011 135,693,607 45,149,206 45,835,812 1,378,582
Words 2,744,428,620 | 1,025,132,098 | 2,427,581,519 | 745,645,366 | 823,284,188 | 16,501,511
Distinct words 4,895,080 2,352,451 13,727,336 3,513,784 3,885,756 925,201
Test Set
French < English | German < English | Czech < English | Russian < English | Finnish < English
Sentences 1500 2169 2656 2818 1370
Words 29,858 27,173 44,081 46,828 46,005 | 54,055 | 55,655 65,744 19,840 27,811
Distinct words | 5,798 5,148 9,710 7,483 13,013 7,157 15,795 8,695 8,553 5,279

Figure 2: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.



ID

Institution

AALTO Aalto University (Gronroos et al., 2015)

ABUMATRAN Abu-MaTran (Rubino et al., 2015)

AFRL-MIT-* Air Force Research Laboratory / MIT Lincoln Lab (Gwinnup et al., 2015)
CHALMERS Chalmers University of Technology (Kolachina and Ranta, 2015)

CIMS University of Stuttgart and Munich (Cap et al., 2015)

CMU Carnegie Mellon University

CU-CHIMERA Charles University (Bojar and Tamchyna, 2015)

CU-TECTO Charles University (Dusek et al., 2015)

DFKI Deutsches Forschungszentrum fiir Kiinstliche Intelligenz (Avramidis et al., 2015)
ILLINOIS University of Illinois (Schwartz et al., 2015)

IMS University of Stuttgart (Quernheim, 2015)

KIT Karsruhe Institut of Technology (Cho et al., 2015)

KIT-LIMSI Karsruhe Institut of Technology / LIMSI (Ha et al., 2015)

LIMSI LIMSI (Marie et al., 2015)

MACAU University of Macau

MONTREAL University of Montreal (Jean et al., 2015)

PROMT ProMT

RWTH RWTH Aachen (Peter et al., 2015)

SHEFF* University of Sheffield (Steele et al., 2015)

UDS-SANT University of Saarland (Pal et al., 2015a)

UEDIN-JHU University of Edinburgh / Johns Hopkins University (Haddow et al., 2015)

UEDIN-SYNTAX

University of Edinburgh (Williams et al., 2015)

USAAR-GACHA

University of Saarland, Liling Tan

uu

Uppsala University (Tiedemann et al., 2015)

COMMERCIAL-1

Commercial machine translation system

ONLINE-
[A’B’C’E’F’G]

Six online statistical machine translation systems

Table 2: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.



create multi-system translations. As a con-
sequence, we get ranking tasks with vary-
ing numbers of candidate systems. To avoid
overloading the annotators we still allow a
maximum of five candidates per ranking task.
If we have more multi-system translations,
we choose randomly.

A brief example should illustrate this more
clearly: say we have the following two can-
didate systems:

sysA="This, is ’'Magic’"
sysX="this is magic"

After lowercasing, removal of punctuation
and whitespace normalization, which are our
criteria for identifying near-identical outputs,
both would be collapsed into a single multi-
system:

sysA+sysX="This, is ’Magic’"

The first representative of a group of near-
identical outputs is used as a proxy represent-
ing all candidates in the group throughout the
evaluation.

While there is a good chance that users would
have used some of the stripped information,
e.g., case to differentiate between the two
systems relative to each other, the collapsed
system’s comparison result against the other
candidates should be a good approximation
of how human annotators would have ranked
them individually. We get a near 2x increase
in the number of pairwise comparisons, so
the general approach seems helpful.

After dropping external, crowd-sourced
translation assessment in WMT14 we ended
up with approximately seventy-five percent
less raw comparison data. Still, we were able
to compute good confidence intervals on
the clusters based on our improved ranking
approach.

This year, due to the aforementioned cleanup,
annotators spent their time more efficiently,
resulting in an increased number of final
ranking results. We collected a total of
542,732 individual “A > B” judgments this
year, nearly double the amount of data com-
pared to WMT14.

e Last year we compared three different mod-
els of producing the final system rankings:
Expected Wins (used in WMT13), Hopkins
and May (HM) and TrueSkill (TS). Overall,
we found the TrueSkill method to work best
which is why we decided to use it as our only
approach in WMT15.

We keep using clusters in our final system rank-
ings, providing a partial ordering (clustering) of
all evaluated candidate systems. Semantics remain
unchanged to previous years: systems in the same
cluster could not be meaningfully distinguished
and hence are considered to be of equal quality.

3.1 Evaluation campaign overview

WMT15 featured the largest evaluation campaign
to date. Similar to last year, we decided to collect
researcher-based judgments only. A total of 137
individual annotator accounts have been actively
involved. Users came from 24 different research
groups and contributed judgments on 9,669 HITs.

Overall, these correspond to 29,007 individual
ranking tasks (plus some more from incomplete
HITs), each of which would have spawned exactly
10 individual “A > B” judgments last year, so
we expected at least >290,070 binary data points.
Due to our redundancy cleanup, we are able to
get a lot more, namely 542,732. We report our
inter/intra-annotator agreement scores based on
the actual work done (otherwise, we’d artificially
boost scores based on inferred rankings) and use
the full set of data to compute clusters (where the
inferred rankings contribute meaningful data).

Human annotation effort was exceptional and
we are grateful to all participating individuals and
teams. We believe that human rankings provide
the best decision basis for machine translation
evaluation and it is great to see contributions on
this large a scale. In total, our human annotators
spent 32 days and 20 hours working in Appraise.

The average annotation time per HIT amounts
to 4 minutes 53 seconds. Several annotators
passed the mark of 100 HITs annotated, some
worked for more than 24 hours. We don’t take this
enormous amount of effort for granted and will
make sure to improve the evaluation platform and
overall process for upcoming workshops.

3.2 Data collection

The system ranking is produced from a large set
of pairwise judgments on the translation quality of



candidate systems. Annotations are collected in
an evaluation campaign that enlists participants in
the shared task to help. Each team is asked to con-
tribute one hundred “Human Intelligence Tasks”
(HITs) per primary system submitted.

Each HIT consists of three so-called ranking
tasks. In a ranking task, an annotator is presented
with a source segment, a human reference trans-
lation, and the outputs of up to five anonymized
candidate systems, randomly selected from the set
of participating systems, and displayed in random
order. This year, we perform redundancy cleanup
as an initial preprocessing step and create multi-
system translations. As a consequence, we get
ranking tasks with varying numbers of candidate
outputs.

There are two main benefits to this approach:

e Annotators are more efficient as they don’t
have to deal with near-identical translations
which are notoriously hard to differentiate;
and

e Potentially, we get higher quality annotations
as near-identical systems will be assigned the
same “A > B” ranks, improving consistency.

As in previous years, the evaluation campaign
is conducted using Appraise® (Federmann, 2012),
an open-source tool built using Python’s Django
framework. At the top of each HIT, the following
instructions are provided:

You are shown a source sentence fol-
lowed by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

Annotators can decide to skip a ranking task but
are instructed to do this only as a last resort, e.g.,
if the translation candidates shown on screen are
clearly misformatted or contain data issues (wrong
language or similar problems). Only a small num-
ber of ranking tasks has been skipped in WMT15.
A screenshot of the Appraise ranking interface is
shown in Figure 3.

Annotators are asked to rank the outputs from 1
(best) to 5 (worst), with ties permitted. Note that
a lower rank is better. The joint rankings provided
by a ranking task are then reduced to the fully ex-
panded set of pairwise rankings produced by con-
sidering all (g) < 10 combinations of all n < 5
outputs in the respective ranking task.

5https ://github.com/cfedermann/Appraise

For example, consider the following annotation
provided among outputs A, B, F, H, and J:

1 2 3 4 5

S s
[ ]

As the number of outputs n depends on the num-
ber of corresponding multi-system translations in
the original data, we get varying numbers of re-
sulting binary judgments. Assuming that outputs
A and F from above are actually near-identical,
the annotator this year would see a shorter ranking
task:

1 2 3 4 5
AF °
B °
J °
H °

Note that AF is a multi-system translation cover-
ing two candidate systems.

Both examples would be reduced to the follow-
ing set of pairwise judgments:

A>BA=FA>H A<J
B<F,B<HB<J
F>HF<J

H<J

Here, A > B should be read is “A is ranked higher
than (worse than) B”. Note that by this procedure,
the absolute value of ranks and the magnitude of
their differences are discarded. Our WMT15 ap-
proach including redundancy cleanup allows to
obtain these judgments at a lower cognitive cost
for the annotators. This partially explains why we
were able to collect more results this year.

For WMT13, nearly a million pairwise anno-
tations were collected from both researchers and
paid workers on Amazon’s Mechanical Turk, in
a roughly 1:2 ratio. Last year, we collected data
from researchers only, an ability that was en-
abled by the use of TrueSkill for producing the
partial ranking for each task (§3.4). This year,
based on our redundancy cleanup we were able to
nearly double the amount of annotations, collect-
ing 542,732. See Table 3 for more details.

3.3 Annotator agreement

Each year we calculate annotator agreement
scores for the human evaluation as a measure of



XoTuUTe CBeTALLerocs B
TEMHOTEe MOpOoXeHoro?
BpuTaHckKiA NpegnpuHUMaTeb
co30an Nepsoe B MUpe

Fancy a glow-in-the-dark ice
cream? A British entrepreneur has
created the world's first glow-in-
the-dark ice cream - using jellyfish.

CcBeTsLlEeeCH B TEMHOTE — Reference

MOPOXEHOE C NOMOLLILIO Mey3bl.
— Source

- 0 —0 —0 0 0 -CZ)

You do want ice cream luminous in the darkness?
— Translation 1

@) ~ 0 —=0 ~0 ~0 0 (L)

You want to glowing in the dark ice cream?
— Translation 2

@) 0 —0 ~0 o o (&)

You want the luminous in the dark ice cream?
— Translation 3

- 0 —0 —0 0o 0 -(E)

Want luminous in the dark ice cream?

— Translation 4

Best E3d

(E=00) (7520) (E=0) [E=20) (F=50) ~ (G

Want to llluminate the Dark with Ice Cream?

— Translation 5

Figure 3: Screenshot of the Appraise interface used in the human evaluation campaign. The annotator is presented with a
source segment, a reference translation, and up to five outputs from competing systems (anonymized and displayed in random
order), and is asked to rank these according to their translation quality, with ties allowed.

the reliability of the rankings. We measured pair-
wise agreement among annotators using Cohen’s
kappa coefficient () (Cohen, 1960). If P(A) be
the proportion of times that the annotators agree,
and P(F) is the proportion of time that they would
agree by chance, then Cohen’s kappa is:

_ P(A)—P(E)
- 1-P(E)

Note that x is basically a normalized version of
P(A), one which takes into account how mean-
ingful it is for annotators to agree with each other
by incorporating P(E). The values for x range
from O to 1, with zero indicating no agreement and
1 perfect agreement.

We calculate P(A) by examining all pairs of
outputs® which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A < B, A = B,or A > B. In

Sregardless if they correspond to an individual system or
to a set of systems (“multi-system”) producing nearly identi-
cal translations

other words, P(A) is the empirical, observed rate
at which annotators agree, in the context of pair-
wise comparisons.

As for P(E), it captures the probability that two
annotators would agree randomly. Therefore:

P(E) = P(4<B)* + P(A=B)* + P(4>B)?

Note that each of the three probabilities in P(E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is
computed empirically, by observing how often an-
notators actually rank two systems as being tied.

Table 4 shows final x values for inter-annotator
agreement for WMT11-WMT15 while Table 5
details intra-annotator agreement scores, includ-
ing the division of researchers (WMT13,) and
MTurk (WMT13,,,) data. The exact interpretation
of the kappa coefficient is difficult, but according
to Landis and Koch (1977), 0-0.2 is slight, 0.2-0.4
is fair, 0.4-0.6 is moderate, 0.6-0.8 is substantial,
and 0.8-1.0 is almost perfect.



Language Pair Systems Rankings Average
Czech—English 17 85,877 5,051.6
English—Czech 16 136,869  8,554.3
German—English 14 40,535 2,895.4
English—German 17 55,123 3,242.5
French—English 8 29770  3,721.3
English—French 8 34,512  4,314.0
Russian—English 14 46,193 3,299.5
English—Russian 11 49,582  4,507.5
Finnish—English 15 31,577  2,105.1
English—Finnish 11 32,694 2,972.2
Totals WMT15 131 542,732 4,143.0
WMT14 110 328,830 2,989.3
WMT13 148 942,840  6,370.5
WMT12 103 101,969 999.6
WMTI11 133 63,045 474.0

Table 3: Amount of data collected in the WMT15 manual evaluation campagin. The final four rows report summary information
from previous editions of the workshop. Note how many rankings we get for Czech language pairs. These include systems from
the tuning shared task. Finnish, as a new language, sees a shortage of rankings for Finnnish—English Interest in French seems
to have lowered this year with only seven systems. Overall, we see a nice increase in pairwise rankings, especially considering
that we have dropped crowd-source annotation and are instead relying on researchers’ judgments exclusively.

The inter-annotator agreement rates improve
for most language pairs. On average, these are
the best scores we have ever observed in one of
our evaluation campaigns, including in WMTT11,
where results were inflated due to inclusion of the
reference in the agreement rates. The results for
intra-annotator agreement are more mixed: some
improve greatly (Czech and German) while others
degrade (French, Russian). Our special language,
Finnish, also achieves very respectable scores. On
average, again, we see the best intra-annotator
agreement scores since WMT11.

It should be noted that the improvement is not
caused by the “ties forced by our redundancy
cleanup”. If two systems A and F' produced near-
identical outputs, they are collapsed to one multi-
system output AF’ and treated jointly in our agree-
ment calculations, i.e. only in comparison with
other outputs. It is only the final TrueSkill scores
that include the tie A = F.

3.4 Producing the human ranking

The collected pairwise rankings are used to pro-
duce the official human ranking of the systems.
For WMT14, we introduced a competition among
multiple methods of producing this human rank-
ing, selecting the method based on which could
best predict the annotations in a portion of the
collected pairwise judgments. The results of this
competition were that (a) the competing metrics

produced almost identical rankings across all tasks
but that (b) one method, TrueSkill, had less vari-
ance across randomized runs, allowing us to make
more confident cluster predictions. In light of
these findings, this year, we produced the human
ranking for each task using TrueSkill in the fol-
lowing fashion, following procedures adopted for
WMT12: We produce 1,000 bootstrap-resampled
runs over all of the available data. We then com-
pute a rank range for each system by collecting the
absolute rank of each system in each fold, throw-
ing out the top and bottom 2.5%, and then clus-
tering systems into equivalence classes containing
systems with overlapping ranges, yielding a par-
tial ordering over systems at the 95% confidence
level.

The full list of the official human rankings for
each task can be found in Table 6, which also re-
ports all system scores, rank ranges, and clusters
for all language pairs and all systems. The official
interpretation of these results is that systems in the
same cluster are considered tied. Given the large
number of judgments that we collected, it was pos-
sible to group on average about two systems in a
cluster, even though the systems in the middle are
typically in larger clusters.

In Figure 4 and 5, we plotted the human eval-
uation result against everybody’s favorite metric
BLEU (some of the outlier online systems are



Language Pair WMT11 WMTI12 WMT13 WMT13, WMT13,, WMT14 WMT15
Czech—English 0.400 0.311 0.244 0.342 0.279 0.305 0.458
English—Czech 0.460 0.359 0.168 0.408 0.075 0.360 0.438
German—English 0.324 0.385 0.299 0.443 0.324 0.368 0.423
English—German 0.378 0.356 0.267 0.457 0.239 0.427 0.423
French—English 0.402 0.272 0.275 0.405 0.321 0.357 0.343
English—French 0.406 0.296 0.231 0.434 0.237 0.302 0.317
Russian—English — — 0.278 0.315 0.324 0.324 0.372
English—Russian — — 0.243 0.416 0.207 0.418 0.336
Finnish—English — — — — — — 0.388
English—Finnish — — — — — — 0.549
Mean 0.395 0.330 0.260 0.403 0.251 0.367 0.405

Table 4: x scores measuring inter-annotator agreement for WMT15. See Table 5 for corresponding intra-annotator agreement
scores. WMT13, and WMT,, refer to researchers’ judgments and crowd-sourced judgments obtained using Mechanical Turk,
respectively. WMT14 and WMT15 results are based on researchers’ judgments only (hence, comparable to WMT13,.).

Language Pair WMT11 WMTI12 WMT13 WMT13, WMT13,, WMT14 WMT15
Czech—English 0.597 0.454 0.479 0.483 0.478 0.382 0.694
English—Czech 0.601 0.390 0.290 0.547 0.242 0.448 0.584
German—English 0.576 0.392 0.535 0.643 0.515 0.344 0.801
English—German 0.528 0.433 0.498 0.649 0.452 0.576 0.676
French—English 0.673 0.360 0.578 0.585 0.565 0.629 0.510
English—French 0.524 0.414 0.495 0.630 0.486 0.507 0.426
Russian—English — — 0.450 0.363 0.477 0.629 0.506
English—Russian — — 0.513 0.582 0.500 0.570 0.492
Finnish—English — — — — — — 0.562
English—Finnish — — — — — — 0.697
Mean 0.583 0.407 0.479 0.560 0.464 0.522 0.595

Table 5: k scores measuring intra-annotator agreement, i.e., self-consistency of judges, across for the past few years of the
human evaluation campaign. Scores are much higher for WMT15 which makes sense as we enforce annotation consistency
through our initial preprocessing which joins near-identical translation candidates into multi-system entries. It seems that the
focus on actual differences in our annotation tasks as well as the possibility of having “easier” ranking scenarios for n < 5
candidate systems results in a higher annotator agreement, both for inter- and intra-annotator agreement scores.

not included to make the graphs viewable). The
plots cleary suggest that a fair comparison of
systems of different kinds cannot rely on auto-
matic scores. Rule-based systems receive a much
lower BLEU score than statistical systems (see for
instance English-German, e.g., PROMT-RULE).
The same is true to a lesser degree for statisti-
cal syntax-based systems (see English—German,
UEDIN-SYNTAX) and online systems that were not
tuned to the shared task (see Czech—English, CU-
TECTO vs. the cluster of tuning task systems TT-

4 Quality Estimation Task

The fourth edition of the WMT shared task on
quality estimation (QE) of machine translation
(MT) builds on the previous editions of the task
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(Callison-Burch et al., 2012; Bojar et al., 2013,
2014), with tasks including both sentence and
word-level estimation, using new training and test
datasets, and an additional task: document-level
prediction.

The goals of this year’s shared task were:

e Advance work on sentence- and word-
level quality estimation by providing larger
datasets.

o Investigate the effectiveness of quality labels,
features and learning methods for document-
level prediction.

e Explore differences between sentence-level
and document-level prediction.

e Analyse the effect of training data sizes and
quality for sentence and word-level predic-



Czech-English

German-English

English-German

# score range system # score range system # score range system
1] 0.619 1 ONLINE-B 1| 0.567 1 ONLINE-B 1] 0.359 1-2 | UEDIN-SYNTAX
2| 0.574 2 UEDIN-JHU 21 0.319 2-3 | UEDIN-JHU 0.334 1-2 | MONTREAL
31 0.532 | 3-4 | UEDIN-SYNTAX 0.298 2-4 | ONLINE-A 21 0.260 | 3-4 | PROMT-RULE
0.518 3-4 | MONTREAL 0.258 3-5 | UEDIN-SYNTAX 0.235 3-4 | ONLINE-A
41 0.436 5 ONLINE-A 0.228 | 4-5 | KIT 31 0.148 5 ONLINE-B
51-0.125 6 CU-TECTO 31 0.141 6-7 | RWTH 4| 0.086 6 KIT-LIMSI
6[-0.182] 7-9 | TT-BLEU-MIRA-D 0.095 | 6-7 | MONTREAL 510.036 | 7-9 | UEDIN-JHU
-0.189 | 7-10 | TT-ILLC-UVA 41-0.172 | 8-10 | ILLINOIS 0.003 | 7-11 | ONLINE-F
-0.196 | 7-11 | TT-BLEU-MERT -0.177 | 8-10 | DFKI -0.001 | 7-11 | ONLINE-C
-0.210 | 8-11 | TT-AFRL -0.221 | 9-10 | ONLINE-C -0.018 | 8-11 | KIT
-0.220 | 9-11 | TT-USAAR-TUNA 5| -0.304 11 ONLINE-F -0.035 | 9-11 | ciMs
71-0.263 | 12-13 | TT-DCU 6| -0.489 | 12-13 | MACAU 6| -0.133 | 12-13 | DFKI
-0.297 | 13-15 | TT-METEOR-CMU -0.544 | 12-13 | ONLINE-E -0.137 | 12-13 | ONLINE-E
-0.320 | 13-15 | TT-BLEU-MIRA-SP 71-0235] 14 | UDS-SANT
-0.320 | 13-15 | TT-HKUST-MEANT . 8 | -0.400 15 ILLINOIS
-0.358 | 15-16 | ILLINOIS French-English 9105011 16 |1Ms
# | score | range | system
. 1| 0498 | 1-2 | ONLINE-B
English-Czech 0.446 | 1-3 | LIMSI-CNRS Finnish-English
# score | range | system 0.415 1-3 | UEDIN-JHU #| score | range | system
1 0.686 1 CU-CHIMERA 210275 | 4-5 | MACAU 1] 0.675 1 ONLINE-B
2 | 0.515 | 2-3 | ONLINE-B 0.223 | 4-5 | ONLINE-A 210280 | 2-4 | PROMT-SMT
0.503 2-3 | UEDIN-JHU 31-0.423 6 ONLINE-F 0.246 2-5 | ONLINE-A
3 0.467 4 MONTREAL 41 -1.434 7 ONLINE-E 0.236 2-5 | UU
4 | 0.426 5 ONLINE-A 0.182 | 4-7 | UEDIN-JHU
5 | 0.261 6 UEDIN-SYNTAX English-French 0.160 | 5-7 | ABUMATRAN-COMB
6 | 0.209 7 CU-TECTO 0.144 | 5-8 | UEDIN-SYNTAX
7 [0.114 | 8 | COMMERCIALI # | score | range | system 0.081 | 7-8 |ILLINOIS
8§ [-0342| 9-11 | TT-DCU 110540 | 1 | LIMSI-CNRS 3[-0081| 9 | ABUMATRAN-HFS
-0.342 | 9-11 | TT-AFRL 20304 | 2-3 | ONLINE-A 410177 10 | MONTREAL
-0.346 | 9-11 | TT-BLEU-MIRA-D 0.258 | 2-4 | UEDIN-JHU 5[-0275| 11 | ABUMATRAN
9 [-0373 | 12 | TI-USAAR-TUNA 0215 | 3-4 | ONLINE-B 6[-0.438 | 12-13 | LIMSI
10 | -0.406 13 | TT-BLEU-MERT -0.001 5 CIMS -0.513 | 13-14 | SHEFFIELD
11 [-0.563 | 14 | TT-METEOR-CMU -0.338| 6 | ONLINE-F -0.520 | 13-14 | SHEFF-STEM
12]-0.808 | 15 | TT-BLEU-MIRA-SP -0.977 7 QINILIONEAS
. . English-Finnish
Russian-English English-Russian # | score |range | system
# | score | range | system # | score | range | system 1| 1.069 1 | ONLINE-B
1] 0494 | 1 | ONLINE-G 1| 1015 | 1 |PROMT-RULE 200548 | 2 | ONLINE-A
200311 | 2 |ONLINE-B 2| 0521 | 2 |ONLINE-G 310210 | 3 |uu
3 0.129 | 3-6 | PROMT-RULE 310217 | 3 | ONLINE-B 410042 | 4 | ABUMATRAN-COMB
0.116 | 3-6 | AFRL-MIT-PB 410.122 | 4-5 | LIMSI-NCODE 50-0.059| 5 | ABUMATRAN-COMB
0.113 | 3-6 | AFRL-MIT-FAC 0.075 | 4-5 | ONLINE-A 6]-0.143 | 6-7 | AALTO
0.104 | 3-7 | ONLINE-A 510014 | 6 |UEDIN-JHU -0.184 | 6-8 | UEDIN-SYNTAX
0.051 | 6-8 | AFRL-MIT-H 6|-0.138 | 7 | UEDIN-SYNTAX -0.212 | 6-8 | ABUMATRAN
0.010 | 7-10 | LIMSI-NCODE 71-0276 | 8 | USAAR-GACHA 71-0342] 9 [cmu
-0.021 | 810 | UEDIN-SyNTAX 8| 0333 | 9 | USAAR-GACHA  "g100929 | 10 | CHALMERS
-0.031 | 8-10 | UEDIN-THU 9]-1218] 10 | ONLINE-F
41-0218| 11 | USAAR-GACHA
51-0.278 12 | USAAR-GACHA
6 | -0.781 13 | ONLINE-F

Table 6: Official results for the WMT15 translation task. Systems are ordered by their inferred system means, though systems
within a cluster are considered tied. Lines between systems indicate clusters according to bootstrap resampling at p-level
p < .05. Systems with grey background indicate use of resources that fall outside the constraints provided for the shared task.
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Figure 4: Human evaluation scores versus BLEU scores for the German—English and Czech—English language pairs illustrate
the need for human evaluation when comparing systems of different kind. Confidence intervals are indicated by the shaded
ellipses. Rule-based systems and to a lesser degree syntax-based statistical systems receive a lower BLEU score than their
human score would indicate. The big cluster in the Czech-English plot are tuning task submissions.
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Figure 5: Human evaluation versus BLEU scores for the French—-English, Russian—English, and Finnish-English language pairs.
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tion, particularly the use of annotations ob-
tained from crowdsourced post-editing.

Three tasks were proposed: Task 1 at sentence
level (Section 4.3), Task 2 at word level (Sec-
tion 4.4), and Task 3 at document level (Section
4.5). Tasks 1 and 2 provide the same dataset with
English-Spanish translations generated by the sta-
tistical machine translation (SMT) system, while
Task 3 provides two different datasets, for two
language pairs: English-German (EN-DE) and
German-English (DE-EN) translations taken from
all participating systems in WMT13 (Bojar et al.,
2013). These datasets were annotated with differ-
ent labels for quality: for Tasks 1 and 2, the labels
were automatically derived from the post-editing
of the machine translation output, while for Task
3, scores were computed based on reference trans-
lations using Meteor (Banerjee and Lavie, 2005).
Any external resource, including additional qual-
ity estimation training data, could be used by par-
ticipants (no distinction between open and close
tracks was made). As presented in Section 4.1,
participants were also provided with a baseline set
of features for each task, and a software package
to extract these and other quality estimation fea-
tures and perform model learning, with suggested
methods for all levels of prediction. Participants,
described in Section 4.2, could submit up to two
systems for each task.

Data used to build MT systems or internal sys-
tem information (such as model scores or n-best
lists) were not made available this year as multi-
ple MT systems were used to produce the datasets,
especially for Task 3, including online and rule-
based systems. Therefore, as a general rule, par-
ticipants could only use black-box features.

4.1 Baseline systems

Sentence-level baseline system: For Task 1,
QUEsT’ (Specia et al., 2013) was used to ex-
tract 17 MT system-independent features from the
source and translation (target) files and parallel
corpora:

e Number of tokens in the source and target
sentences.

e Average source token length.

e Average number of occurrences of the target
word within the target sentence.

7https://github.com/lspecia/quest

e Number of punctuation marks in source and
target sentences.

e Language model (LM) probability of source
and target sentences based on models for the
WMT News Commentary corpus.

e Average number of translations per source
word in the sentence as given by IBM Model
1 extracted from the WMT News Commen-
tary parallel corpus, and thresholded such
that P(t|s) > 0.2/P(t|s) > 0.01.

e Percentage of unigrams, bigrams and tri-
grams in frequency quartiles 1 (lower fre-
quency words) and 4 (higher frequency
words) in the source language extracted from
the WMT News Commentary corpus.

e Percentage of unigrams in the source sen-
tence seen in the source side of the WMT
News Commentary corpus.

These features were used to train a Support Vec-
tor Regression (SVR) algorithm using a Radial
Basis Function (RBF) kernel within the SCIKIT-
LEARN toolkit.® The v, e and C parameters were
optimised via grid search with 5-fold cross valida-
tion on the training set. We note that although the
system is referred to as “baseline”, it is in fact a
strong system. It has proved robust across a range
of language pairs, MT systems, and text domains
for predicting various forms of post-editing effort
(Callison-Burch et al., 2012; Bojar et al., 2013,
2014).

Word-level baseline system: For Task 2, the
baseline features were extracted with the MAR-
MOT tool’. For the baseline system we used a
number of features that have been found the most
informative in previous research on word-level
quality estimation. Our baseline set of features
is loosely based on the one described in (Luong
et al., 2014). It contains the following 25 features:

e Word count in the source and target sen-
tences, source and target token count ratio.
Although these features are sentence-level
(i.e. their values will be the same for all
words in a sentence), but the length of a
sentence might influence the probability of a
word being incorrect.

8http://scikit—learn.org/
9https://github.com/qe—team/marmot



e Target token, its left and right contexts of one
word.

Source token aligned to the target token,
its left and right contexts of one word.
The alignments were produced with the
force_align.py script, which is part of
cdec (Dyer et al, 2010). It allows to
align new parallel data with a pre-trained
alignment model built with the cdec word
aligner (fast_align). The alignment model
was trained on the Europarl corpus (Koehn,
2005).

Boolean dictionary features: whether target
token is a stopword, a punctuation mark, a
proper noun, a number.

Target language model features:

— The order of the highest order n-gram
which starts or ends with the target to-
ken.

— Backoff behaviour of the n-grams
(ti—2,ti—1,ti), (tiz1,tistign)s
(tiytit1,tiv2), where t; is the tar-
get token (the backoff behaviour is
computed as described in (Raybaud
etal., 2011)).

The order of the highest order n-gram which
starts or ends with the source token.

Boolean pseudo-reference feature: 1 if the
token is contained in a pseudo-reference, 0
otherwise. The pseudo-reference used for
this feature is the automatic translation gen-
erated by an English-Spanish phrase-based
SMT system trained on the Europarl corpus
with standard settings.'?

The part-of-speech tags of the target and
source tokens.

The number of senses of the target and source
tokens in WordNet.

We model the task as a sequence prediction
problem and train our baseline system using the
Linear-Chain Conditional Random Fields (CRF)
algorithm with the CRF++ tool.!!

Yhttp://www.statmt.org/moses/?n=Moses.
Baseline
"http://taku910.github.io/crfpp/
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Document-level baseline system: For Task 3,
the baseline features for sentence-level prediction
were used. These are aggregated by summing
or averaging their values for the entire document.
Features that were summed: number of tokens
in the source and target sentences and number of
punctuation marks in source and target sentences.
All other features were averaged. The imple-
mentation for document-level feature extraction is
available in QUEST++ (Specia et al., 2015).12

These features were then used to train a SVR al-
gorithm with RBF kernel using the SCIKIT-LEARN
toolkit. The , e and C parameters were optimised
via grid search with 5-fold cross validation on the
training set.

4.2 Participants

Table 7 lists all participating teams submitting sys-
tems to any of the tasks. Each team was allowed
up to two submissions for each task and language
pair. In the descriptions below, participation in
specific tasks is denoted by a task identifier.

DCU-SHEFF (Task 2): The system uses the
baseline set of features provided for the task.
Two pre-processing data manipulation tech-
niques were used: data selection and data
bootstrapping. Data selection filters out sen-
tences which have the smallest proportion of
erroneous tokens and are assumed to be the
least useful for the task. Data bootstrapping
enhances the training data with incomplete
training sentences (e.g. the first &k words
of a sentence of the length N, where k <
N). This technique creates additional data
instances and boosts the importance of er-
rors occurring in the training data. The com-
bination of these techniques doubled the F}
score for the “BAD” class, as compared to a
models trained on the entire dataset given for
the task. The labelling was performed with a
CRF model trained using the CRF++ tool, as
in the baseline system.

HDCL (Task 2): HDCL’s submissions are based
on a deep neural network that learns continu-
ous feature representations from scratch, i.e.
from bilingual contexts. The network was
pre-trained by initialising the word lookup-
table with distributed word representations,

Phttps://github.com/ghpaetzold/
questplusplus



ID | Participating team

USAAR-USHEF

DCU-SHEFF
et al., 2015)
HDCL
LORIA
France (Langlois, 2015)
RTM-DCU
SAU-KERC
SHEFF-NN
UAlacant
UGENT

2015a)
USHEF
HIDDEN

Undisclosed

Dublin City University, Ireland and University of Sheffield, UK (Logacheva

Heidelberg University, Germany (Kreutzer et al., 2015)
Lorraine Laboratory of Research in Computer Science and its Applications,

Dublin City University, Ireland (Bicici et al., 2015)

Shenyang Aerospace University, China (Shang et al., 2015)

University of Sheffield Team 1, UK (Shah et al., 2015)

Alicant University, Spain (Espla-Gomis et al., 2015a)

Ghent University, Belgium (Tezcan et al., 2015)

University of Sheffield, UK and Saarland University, Germany (Scarton et al.,

University of Sheffield, UK (Scarton et al., 2015a)

Table 7: Participants in the WMT15 quality estimation shared task.

and fine-tuned for the quality estimation clas-
sification task by back-propagating word-
level prediction errors using stochastic gra-
dient descent. In addition to the continuous
space deep model, a shallow linear classifier
was trained on the provided baseline features
and their quadratic expansion. One of the
submitted systems (QUETCH) relies on the
deep model only, the other (QUETCHPLUS)
is a linear combination of the QUETCH sys-
tem score, the linear classifier score, and bi-
nary and binned baseline features. The sys-
tem combination yielded significant improve-
ments, showing that the deep and shallow
models each contributes complementary in-
formation to the combination.

LORIA (Task 1): The LORIA system for Task

1 is based on a standard machine learning
approach where source-target sentences are
described by numerical vectors and SVR is
used to learn a regression model between
these vectors and quality scores. Feature vec-
tors used the 17 baseline features, two La-
tent Semantic Indexing (LSI) features and 31
features based on pseudo-references. The
LST approach considers source-target pairs as
documents, and projects the TF-IDF words-
documents matrix into a reduced numerical
space. This leads to a measure of simi-
larity between a source and a target sen-
tence, which was used as a feature. Two
of these features were used based on two
matrices, one from the Europarl corpus and
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one from the official training data. Pseudo-
references were produced by three online
systems. These features measure the inter-
section between n-gram sets of the target sen-
tence and of the pseudo-references. Three
sets of features were extracted from each on-
line system, and a fourth feature was ex-
tracted measuring the inter-agreement among
the three online systems and the target sys-
tem.

RTM-DCU (Tasks 1, 2, 3): RTM-DCU systems

are based on referential translation machines
(RTM) (Bigici, 2013; Bigici and Way, 2014).
RTMs propose a language independent ap-
proach and avoid the need to access any task-
or domain-specific information or resource.
The submissions used features that indicate
the closeness between instances to the avail-
able training data, the difficulty of translat-
ing them, and the presence of acts of transla-
tion for data transformation. SVR was used
for document and sentence-level prediction
tasks, also in combination with feature selec-
tion or partial least squares, and global linear
models with dynamic learning were used for
the word-level prediction task.

SAU (Task 2): The SAU submissions used a CRF

model to predict the binary labels for Task
2. They rely on 12 basic features and 85
combination features. The ratio between OK
and BAD labels was found to be 4:1 in the
training set. Two strategies were proposed to



SHEFF-NN (Tasks 1, 2):

solve this problem of label ratio imbalance.
The first strategy is to replace “OK” labels
with sub-labels to balance label distribution,
where the sub-labels are OK_B, OK_I, OK_E,
OK (depending on the position of the token
in the sentence). The second strategy is to
reconstruct the training set to include more
“BAD” words.

SHEFF-NN sub-
missions were based on (i) a Continuous
Space Language Model (CSLM) to extract
additional features for Task 1 (SHEF-GP
and SHEF-SVM), (ii) a Continuous Bag-
of-Words (CBOW) model to produce word
embeddings as features for Task 2 (SHEF-
W2V), and (iii) a combination of features
produced by QUEST++ and a feature pro-
duced with word embedding models (SHEF-
QuEst++). SVR and Gaussian Processes
were used to learn prediction models for Task
1, and a CRF algorithm for binary tagging
models in Task 2 (Pystruct Linear-chain CRF
trained with a structured SVM for system
SHEF-W2V, and CRFSuite Adaptive Reg-
ularisation of Weight Vector (AROW) and
Passive Aggressive (PA) algorithms for sys-
tem SHEF-QuEst++). Interesting findings
for Task 1 were that (i) CSLM features al-
ways bring improvements whenever added to
either baseline or complete feature sets and
(i) CSLM features alone perform better than
the baseline features. For Task 2, the results
obtained by SHEF-W2V are promising: al-
though it uses only features learned in unsu-
pervised fashion (CBOW word embeddings),
it was able to outperform the baseline as well
as many other systems. Further, combining
the source-to-target cosine similarity feature
with the ones produced by QUEST++ led to
improvements in the F of “BAD” labels.

UAlacant (Task 2): The submissions of the Uni-

versitat d’ Alacant team were obtained by ap-
plying the approach in (Espla-Gomis et al.,
2015b), which uses any source of bilingual
information available as a black-box in or-
der to spot sub-segment correspondences be-
tween a sentence S in the source language
and a given translation hypothesis 7" in the
target language. These sub-segment corre-
spondences are used to extract a collection of
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UGENT (Tasks 1, 2):

features that is then used by a multilayer per-
ceptron to determine the word-level predicted
score. Three sources of bilingual informa-
tion available online were used: two online
machine translation systems, Apertium!'3 and
Google Translate; and the bilingual concor-
dancer Reverso Context.'* Two submissions
were made for Task 2: one using only the
70 features described in (Espla-Gomis et al.,
2015b), and one combining them with the
baseline features provided by the task organ-
isers.

The submissions for
the word-level task used 55 new features
in combination with the baseline feature set
to train binary classifiers. The new fea-
tures try to capture either accuracy (mean-
ing transfer from source to target sentence)
using word and phrase alignments, or flu-
ency (well-formedness of target sentence) us-
ing language models trained on word sur-
face forms and on part-of-speech tags. Based
on the combined feature set, SCATE-MBL
uses a memory-based learning (MBL) al-
gorithm for binary classification. SCATE-
HYBRID uses the same feature set and forms
a classifier ensemble using CRFs in combi-
nation with the MBL system for predicting
word-level quality. For the sentence-level
task, SCATE-SVM-single uses a single fea-
ture to train SVR models, which is based
on the percentage of words that are labelled
as “BAD” by the word-level quality estima-
tion system SCATE-HYBRID. SCATE-SVM
adds 16 new features to this single feature and
the baseline feature set to train SVR models
using an RBF kernel. Additional language re-
sources are used to extract the new features
for both tasks.

USAAR-USHEF (Task 3): The systems sub-

mitted for both EN-DE and DE-EN (called
BFF) were built by using a exhaustive search
for feature selection over the official baseline
features. In order to select the best features,
a Bayesian Ridge classifier was trained for
each feature combination and the classifiers
were evaluated in terms of Mean Average Er-
ror (MAE): the classifier with the smallest

13http://www.apertium.org

14http://context.reverso.net/translation/



MAE was considered the best. For EN-DE,
the selected features were: average source to-
ken length, percentage of unigrams and of tri-
grams in fourth quartile of frequency in a cor-
pus of the source language. For DE-EN, the
best features were: number of occurrences
of the target word within the target hypoth-
esis, percentage of unigrams and of trigrams
in first quartile of frequency in a corpus of
the source language. This provide an indica-
tion of which features of the baseline set con-
tribute for document-level quality estimation.

USHEF (Task 3): The system submitted for
the EN-DE document-level task was built by
using the 17 official baseline features, plus
discourse features (repetition of words, lem-
mas and nouns and ratio of repetitions — as
implemented in QUEST++. For DE-EN, a
combination of the 17 baseline features, the
discourse repetition features and discourse-
aware features extracted from syntactic and
discourse parsers was used. The new dis-
course features are: number of pronouns,
number of connectives, number of satellite
and nucleus relations in the RST (Rhetori-
cal Structure Theory) tree for the document
and number of EDU (Elementary Discourse
Units) breaks in the text. A backward fea-
ture selection approach, based on the fea-
ture rank of SCIKIT-LEARN’s Random For-
est implementation, was also applied. For
both languages pairs, the same algorithm as
that of the baseline system was used: the
SCIKIT-LEARN implementation of SVR with
RBF kernel and hyper-parameters optimised
via grid-search.

HIDDEN (Task 3): This submission, whose cre-
ators preferred to remain anonymous, esti-
mates the quality of a given document by
explicitly identifying potential translation er-
rors in it. Translation error detection is im-
plemented as a combination of human expert
knowledge and different language process-
ing tools, including named entity recognition,
part-of-speech tagging and word alignments.
In particular, the system looks for patterns
of errors defined by human experts, taking
into account the actual words and the addi-
tional linguistic information. With this ap-
proach, a wide variety of errors can be de-
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tected: from simple misspellings and typos to
complex lack of agreement (in genre, number
and tense), or lexical inconsistencies. Each
error category is assigned an “importance”,
again according to human knowledge, and
the amount of error in the document is com-
puted as the weighted sum of the identified
errors. Finally, the documents are sorted ac-
cording to this figure to generate the final
submission to the ranking variant of Task 3.

4.3 Task 1: Predicting sentence-level quality

This task consists in scoring (and ranking) transla-
tion sentences according to the percentage of their
words that need to be fixed. It is similar to Task 1.2
in WMT14. HTER (Snover et al., 2006b) is used
as quality score, i.e. the minimum edit distance
between the machine translation and its manually
post-edited version in [0,1].

As in previous years, two variants of the results
could be submitted:

e Scoring: An absolute HTER score for each
sentence translation, to be interpreted as an
error metric: lower scores mean better trans-
lations.

Ranking: A ranking of sentence translations
for all source sentences from best to worst.
For this variant, it does not matter how the
ranking is produced (from HTER predictions
or by other means). The reference ranking is
defined based on the true HTER scores.

Data The data is the same as that used for the
WMT15 Automatic Post-editing task,' as kindly
provided by Unbabel.!® Source segments are to-
kenized English sentences from the news domain
with at least four tokens. Target segments are to-
kenized Spanish translations produced by an on-
line SMT system. The human post-editions are a
manual revision of the target, collected using Un-
babel’s crowd post-editing platform. HTER labels
were computed using the TERCOM tool'” with
default settings (tokenised, case insensitive, exact
matching only), but with scores capped to 1.

As training and development data, we pro-
vided English-Spanish datasets with 11,271 and
1,000 source sentences, their machine transla-
tions, post-editions and HTER scores, respec-
tively. As test data, we provided an additional

Bhttp://www.statmt.org/wmt15/ape-task.html

16https://unbabel.com/
17http://www.cs.umd.edu/~snover/tercom/



set of 1,817 English-Spanish source-translations
pairs produced by the same MT system used for
the training data.

Evaluation Evaluation was performed against
the true HTER label and/or ranking, using the
same metrics as in previous years:

e Scoring: Mean Average Error (MAE) (pri-
mary metric, official score for ranking
submissions), Root Mean Squared Error
(RMSE).

e Ranking: DeltaAvg (primary metric) and
Spearman’s p rank correlation.

Additionally, we included Pearson’s r correla-
tion against the true HTER label, as suggested by
Graham (2015).

Statistical significance on MAE and DeltaAvg
was computed using a pairwise bootstrap resam-
pling (1K times) approach with 95% confidence
intervals. '® For Pearson’s r correlation, we mea-
sured significance using the Williams test, as also
suggested in (Graham, 2015).

Results Table 8 summarises the results for the
ranking variant of Task 1. They are sorted from
best to worst using the DeltaAvg metric scores as
primary key and the Spearman’s p rank correlation
scores as secondary key.

The results for the scoring variant are presented
in Table 9, sorted from best to worst by using the
MAE metric scores as primary key and the RMSE
metric scores as secondary key.

Pearson’s r coefficients for all systems against
HTER is given in Table 10. As discussed in
(Graham, 2015), the results according to this met-
ric can rank participating systems differently. In
particular, we note the SHEF/GP submission, are
which is deemed significantly worse than the base-
line system according to MAE, but substantially
better than the baseline according to Pearson’s
correlation. Graham (2015) argues that the use
of MAE as evaluation score for quality estima-
tion tasks is inadequate, as MAE is very sensitive
to variance. This means that a system that out-
puts predictions with high variance is more likely
to have high MAE score, even if the distribution
follows that of the true labels. Interestingly, ac-
cording to Pearson’s correlation, the systems are

Bhttp://www.quest.dcs.shef.ac.uk/wmt15_
files/bootstrap-significance.pl
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ranked exactly in the same way as according to
our DeltaAvg metric. The only difference is that
the 4th place is now considered significantly dif-
ferent from the three winning submissions. She
also argues that the significance tests used with
MAE, based on randomised resampling, assume
that the data is independent, which is not the case.
Therefore, we apply the suggested Williams sig-
nificance test for this metric.

4.4 Task 2: Predicting word-level quality

The goal of this task is to evaluate the extent to
which we can detect word-level errors in MT out-
put. Often, the overall quality of a translated seg-
ment is significantly harmed by specific errors in
a small proportion of words. Various classes of
errors can be found in translations, but for this
task we consider all error types together, aiming
at making a binary distinction between *GOOD’
and 'BAD’ tokens. The decision to bucket all er-
ror types together was made because of the lack of
sufficient training data that could allow considera-
tion of more fine-grained error tags.

Data This year’s word-level task uses the same
dataset as Task 1, for a single language pair:
English-Spanish. Each instance of the training,
development and test sets consists of the follow-
ing elements:

Source sentence (English).

Automatic translation (Spanish).

Manual post-edition of the automatic transla-
tion.

Word-level binary (“OK”/“BAD”) labelling
of the automatic translation.

The binary labels for the datasets were acquired
automatically with the TERCOM tool (Snover
et al., 2006b).'° This tool computes the edit dis-
tance between machine-translated sentence and its
reference (in this case, its post-edited version).
It identifies four types of errors: substitution of
a word with another word, deletion of a word
(word was omitted by the translation system), in-
sertion of a word (a redundant word was added by
the translation system), and word or sequence of
words shift (word order error). Every word in the
machine-translated sentence is tagged with one of
these error types or not tagged if it matches a word
from the reference.

19http://www.cs.umd.edu/~snover/tercom/



System ID

DeltaAvg T \ Spearman’s p |

English-Spanish

e LORIA/17+LSI+MT+FILTRE

o LORIA/17+LSI+MT

e RTM-DCU/RTM-FS+PLS-SVR
¢ RTM-DCU/RTM-FS-SVR
UGENT-LT3/SCATE-SVM
UGENT-LT3/SCATE-SVM-single
SHEF/SVM

SHEF/GP

Baseline SVM

6.51 0.36
6.34 0.37
6.34 0.37
6.09 0.35
6.02 0.34
5.12 0.30
5.05 0.28
3.07 0.28
2.16 0.13

Table 8: Official results for the ranking variant of the WMT15 quality estimation Task 1. The winning submissions are
indicated by a e. These are the top-scoring submission and those that are not significantly worse according to pairwise bootstrap
resampling (1K times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system

at a statistically significant level according to the same test.

System ID | MAE | | RMSE |

English-Spanish

¢ RTM-DCU/RTM-FS+PLS-SVR | 13.25 17.48
e LORIA/17+LSI+MT+FILTRE | 13.34 17.35

¢ RTM-DCU/RTM-FS-SVR | 13.35 17.68

e LORIA/17+LSI+MT | 13.42 17.45

e UGENT-LT3/SCATE-SVM | 13.71 17.45
UGENT-LT3/SCATE-SVM-single | 13.76 17.79
SHEF/SVM | 13.83 18.01

Baseline SVM 14.82 19.13

SHEF/GP | 15.16 18.97

Table 9: Official results for the scoring variant of the WMT 15 quality estimation Task 1. The winning submissions are indicated
by a . These are the top-scoring submission and those that are not significantly worse according to bootstrap resampling (1K
times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system at a statistically

significant level according to the same test.

System ID | Pearson’s r T
e LORIA/17+LSI+MT+FILTRE 0.39
e LORIA/17+LSI+MT 0.39
e RTM-DCU/RTM-FS+PLS-SVR 0.38
RTM-DCU/RTM-FS-SVR 0.38
UGENT-LT3/SCATE-SVM 0.37
UGENT-LT3/SCATE-SVM-single 0.32
SHEF/SVM 0.29
SHEF/GP 0.19
Baseline SVM 0.14

Table 10: Alternative results for the scoring variant of the WMT15 quality estimation Task 1. The winning submissions are
indicated by a e. These are the top-scoring submission and those that are not significantly worse according to Williams test with
95% confidence intervals. The systems in the gray area are not different from the baseline system at a statistically significant

level according to the same test.

All the untagged (correct) words were tagged
with “OK”, while the words tagged with substi-
tution and insertion errors were assigned the tag
“BAD”. The deletion errors are not associated
with any word in the automatic translation, so we
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could not consider them. We also disabled the
shift errors by running TERCOM with the option
‘-d 0’. The reason for that is the fact that search-
ing for shifts introduces significant noise in the
annotation. The system cannot discriminate be-



tween cases where a word was really shifted and
where a word (especially common words such as
prepositions, articles and pronouns) was deleted in
one part of the sentence and then independently
inserted in another part of this sentence, i.e. to
correct an unrelated error. The statistics of the
datasets are outlined in Table 11.

Sentences Words % of "BAD”

words
Training 11,271 | 257,548 19.14
Dev 1,000 | 23,207 19.18
Test 1,817 | 40,899 18.87

Table 11: Datasets for Task 2.

Evaluation Submissions were evaluated in
terms of classification performance against the
original labels. The main evaluation metric is the
average I for the “BAD” class. Statistical signif-
icance on F for the “BAD” class was computed
using approximate randomization tests.?”

Results The results for Task 2 are summarised
in Table 12. The results are ordered by F} score
for the error (BAD) class.

Using the F score for the word-level estimation
task has a number of drawbacks. First of all, we
cannot use it as the single metric to evaluate the
system’s quality. The F} score of the class “BAD”
becomes an inadequate metric when one is also
interested in the tagging of correct words. In fact,
anaive baseline which tags all words with the class
“BAD” would yield 31.75 F score for the “BAD”
class in the test set of this task, which is close to
some of the submissions and by far exceeds the
baseline, although this tagging is uninformative.

We could instead use the weighted F} score,
which would lead to a single F figure where ev-
ery class is given a weight according to its fre-
quency in the test set. However, we believe the
weighted F score does not reflect the real qual-
ity of the systems either. Since there are many
more instances of the “GOOD” class than there
are of the “BAD” class, the performance on the
“BAD” class does not contribute much weight to
the overall score, and changes in accuracy of error
prediction on this less frequent class can go un-
noticed. The weighted F) score for the strategy
which tags all words as “GOOD” would be 72.66,

Phttp://wuw.nlpado.de/~sebastian/software/
sigf.shtml

21

which is higher than the score of many submis-
sions. However, similar to the case of tagging all
words as “BAD?, this strategy is uninformative. In
an attempt to find more intuitive ways of evaluat-
ing word-level tasks, we introduce a new metric
called sequence correlation. 1t gives higher im-
portance to the instances of the “BAD” class and
is robust against uninformative tagging.

The basis of the sequence correlation metric is
the number of matching labels in the reference and
the hypothesis, analogously to a precision metric.
However, it has some additional features that are
aimed at making it more reliable. We consider
the tagging of each sentence separately as a se-
quence of tags. We divide each sequence into
sub-sequences tagged by the same tag, for exam-
ple, the sequence “OK BAD OK OK OK” will be
represented as a list of 3 sub-sequences: [ “OK”,
“BAD”, “OK OK OK” ]. Each subsequence has
also the information on its position in the origi-
nal sentence. The sub-sequences of the reference
and the hypothesis are then intersected, and the
number of matching tags in the corresponding sub-
sequences is computed so that every sub-sequence
can be used only once. Let us consider the follow-
ing example:

OK BAD OK OK OK
OK OK OK OK OK

Reference:
Hypothesis:

Here, the reference has three sub-sequences, as
in the previous example, and the hypothesis con-
sists of only one sub-sequence which coincides
with the hypothesis itself, because all the words
were tagged with the “OK” label. The precision
score for this sentence will be 0.8, as 4 of 5 labels
match in this example. However, we notice that
the hypothesis sub-sequence covers two match-
ing sub-sequences of the reference: word 1 and
words 3-5. According to our metric, the hypoth-
esis sub-sequence can be used for the intersection
only once, giving either 1 of 5 or 3 of 5 match-
ing words. We choose the highest value and get
the score of 0.6. Thus, the intersection procedure
downweighs the uninformative hypotheses where
all words are tagged with one tag.

In order to compute the sequence correlation we
need to get the set of spans for each label in both
the prediction and the reference, and then intersect
them. A set of spans of each tag ¢ in the string w
is computed as follows:



weighted F} Fy Fy
System ID All | Bad T | GOOD

English-Spanish
e UAlacant/OnLine-SBI-Baseline 7147 | 43.12 78.07
¢ HDCL/QUETCHPLUS 72.56 | 43.05 79.42
UAlacant/OnLine-SBI 69.54 | 41.51 76.06
SAU/KERC-CRF 77.44 | 39.11 86.36
SAU/KERC-SLG-CRF 774 | 38.91 86.35
SHEF2/W2V-BI-2000 65.37 | 38.43 71.63
SHEF2/W2V-BI-2000-SIM 65.27 | 38.40 71.52
SHEF1/QuEst++-AROW 62.07 | 38.36 67.58
UGENT/SCATE-HYBRID 74.28 | 36.72 83.02
DCU-SHEFF/BASE-NGRAM-2000 67.33 | 36.60 74.49
HDCL/QUETCH 75.26 | 35.27 84.56
DCU-SHEFF/BASE-NGRAM-5000 75.09 | 34.53 84.53
SHEF1/QuEst++-PA 26.25 | 34.30 24.38
UGENT/SCATE-MBL 74.17 | 30.56 84.32
RTM-DCU/s5-RTM-GLMd 76.00 | 23.91 88.12
RTM-DCU/s4-RTM-GLMd 75.88 | 22.69 88.26
Baseline 75.31 | 16.78 88.93

Table 12: Official results for the WMT15 quality estimation Task 2. The winning submissions are indicated by a e. These are
the top-scoring submission and those that are not significantly worse according to approximate randomization tests with 95%
confidence intervals. Submissions whose results are statistically different from others according to the same test are grouped
by a horizontal line.

o rly.9) = min( 2 )
Si(w) = { Wiy}, Vist. b<i<e:w; =t 1yl |yl

This ratio is 1 if the number of spans is equal
for the hypothesis and the reference, and less than
1 otherwise.

where Wip:e] is a substring wp, W41, «-vy We—1, We.
Then the intersection of spans for all labels is:

The final score for a sentence is produced as fol-

Int(y,y) = Z At Z Z |sy N syl lows:

te{0;1}  sy€Si(y) sy€S:(¥)

Here )\; is the weight of a tag ¢ in the overall SeqCor(y,y) = r(y,y) - Intly.y)
result. It is inversely proportional the number of [yl
instances of this tag in the reference:

ey

Then the overall sequence correlation for the

ly] whole dataset is the average of sentence scores.

N =
T a®)

Table 13 shows the results of the evaluation ac-
cording to the sequence correlation metric. The re-
where ¢;(¥) is the number of words labelled with  sults for the two metrics are quite different: one of
the label ¢ in the prediction. Thus we give the  the highest scoring submissions according to the
equal importance to all tags. F1-BAD score is only the third under the sequence

The sum of matching spans is also weighted by  correlation metric, and vice versa: the submissions
the ratio of the number of spans in the hypothe-  with the highest sequence correlation feature in
sis and the reference. This is done to downweigh  3rd place according to F7-BAD score. However,
the system tagging if the number of its spans dif-  the system rankings produced by two metrics are
fers from the number of spans provided in the gold  correlated — their Spearman’s correlation coeffi-
standard. This ratio is computed as follows: cient between them is 0.65.
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Sequence

System ID | Correlation

English-Spanish
e SAU/KERC-CRF 34.22
e SAU/KERC-SLG-CRF 34.09
e UAlacant/OnLine-SBI-Baseline 33.84
UAlacant/OnLine-SBI 32.81
HDCL/QUETCH 32.13
HDCL/QUETCHPLUS 31.38
DCU-SHEFF/BASE-NGRAM-5000 31.23
UGENT/SCATE-HYBRID 30.15
DCU-SHEFF/BASE-NGRAM-2000 29.94
UGENT/SCATE-MBL 28.43
SHEF2/W2V-BI-2000 27.65
SHEF2/W2V-BI-2000-SIM 27.61
SHEF1/QuEst++-AROW 27.36
RTM-DCU/s5-RTM-GLMd 25.92
SHEF1/QuEst++-PA 25.49
RTM-DCU/s4-RTM-GLMd 24.95
Baseline 0.2044

Table 13: Alternative results for the WMT15 quality estimation Task 2 according to the sequence correlation metric. The win-
ning submissions are indicated by a . These are the top-scoring submission and those that are not significantly worse according
to approximate randomization tests with 95% confidence intervals. Submissions whose results are statistically different from
others according to the same test are grouped by a horizontal line.

The sequence correlation metric gives prefer-
ence to systems that use sequence labelling (mod-
elling dependencies between the assigned tags).
We consider this a desirable feature, as we are gen-
erally not interested in maximising the prediction
accuracy for individual words, but in maximising
the accuracy for word-level labelling in the context
of the whole sentence. However, using the TER
alignment to tag errors cannot capture “phrase-
level errors”, and each token is considered inde-
pendently when the dataset is built. This is a fun-
damental issue with the current definition of the
word-level quality estimation that we intend to ad-
dress in future work.

Our intuition is that the sequence correlation
metric should be closer to human perception of
word-level QE than F scores. The goal of word-
level QE is to identify incorrect segments of a sen-
tence — and the sequence correlation metric eval-
uates how good the segmentation of the sentence
is into correct and incorrect phrases. A system can
get very high F} score by (almost) randomly as-
signing a correct tag to a word, and giving very
little information on correct and incorrect areas in
the text. That was illustrated by the WMT 14 word-
level QE task results, where the baseline strategy
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that assigned tag “BAD” to all words had signif-
icantly higher F) score than any of the submis-
sions. fundamental problem with the current task.
I added a sentence about it at the end of the para-
graph before this one.

4.5 Task 3: Predicting document-level quality

Predicting the quality of units larger than sen-
tences can be useful in many scenarios. For ex-
ample, consider a user searching for information
about a product on the web. The user can only find
reviews in German but he/she does not speak the
language, so he/she uses an M T system to translate
the reviews into English. In this case, predictions
on the quality of individual sentences in a trans-
lated review are not as informative as predictions
on the quality of the entire review.

With the goal of exploring quality estimation
beyond sentence level, this year we proposed a
document-level task for the first time. Due to
the lack of large datasets with machine translated
documents (by various MT systems), we consider
short paragraphs as documents. The task consisted
in scoring and ranking paragraphs according to
their predicted quality.



Data The paragraphs were extracted from the
WMT13 translation task test data (Bojar et al.,
2013), using submissions from all participating
MT systems. Source paragraphs were randomly
chosen using the paragraph markup in the SGML
files. For each source paragraph, a translation was
taken from a different MT system such as to select
approximately the same number of instances from
each MT system. We considered EN-DE and DE-
EN as language pairs, extracting 1, 215 paragraphs
for each language pair. 800 paragraphs were used
for training and 415 for test.

Since no human annotation exists for the qual-
ity of entire paragraphs (or documents), Meteor
against reference translations was used as quality
label for this task. Meteor was calculated using
its implementation within the Asyia toolkit, with
the following settings: exact match, tokenised and
case insensitive (Giménez and Marquez, 2010).

Evaluation The evaluation of the paragraph-
level task was the same as that for the sentence-
level task. MAE and RMSE are reported as eval-
uation metrics for the scoring task, with MAE as
official metric for systems ranking. For the rank-
ing task, DeltaAvg and Spearman’s p correlation
are reported, with DeltaAvg as official metric for
systems ranking. To evaluate the significance of
the results, bootstrap resampling (1K times) with
95% confidence intervals was used. Pearson’s r
correlation scores with the Williams significance
test are also reported.

Results Table 14 summarises the results of the
ranking variant of Task 3.2! They are sorted from
best to worst using the DeltaAvg metric scores as
primary key and the Spearman’s p rank correla-
tion scores as secondary key. RTM-DCU sub-
missions achieved the best scores: RTM-SVR
was the winner for EN-DE, and RTM-FS-SVR
for DE-EN. For EN-DE, the HIDDEN system
did not show significant difference against the
baseline. For DE-EN, USHEF/QUEST-DISC-BO,
USAAR-USHEF/BFF and HIDDEN were not sig-
nificantly different from the baseline.

The results of the scoring variant are given in
Table 15, sorted from best to worst by using the
MAE metric scores as primary key and the RMSE
metric scores as secondary key. Again the RTM-
DCU submissions scored the best for both lan-

2 Results for MAE, RMSE and DeltaAvg are multiplied by
100 to improve readability.
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guage pairs. All systems were significantly bet-
ter than the baseline. However, the difference be-
tween the baseline system and all submissions was
much lower in the scoring evaluation than in the
ranking evaluation.

Following the suggestion in (Graham, 2015),
Table 16 shows an alternative ranking of sys-
tems considering Pearson’s r correlation results.
The alternative ranking differs from the official
ranking in terms of MAE: for EN-DE, RTM-
DCU/RTM-FS-SVR is no longer in the winning
group, while for DE-EN, USHEF/QUEST-DISC-
BO and USAAR-USHEF/BFF did not show statis-
tically significant difference against the baseline.
However, as with Task 1 these results are the same
as the official ones in terms of DeltaAvg.

4.6 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Advances in sentence- and word-level QE

For sentence-level prediction, we used similar
data and quality labels as in previous editions of
the task: English-Spanish, news text domain and
HTER labels to indicate post-editing effort. The
main differences this year were: (i) the much
larger size of the dataset, (ii) the way post-editing
was performed — by a large number of crowd-
sourced translators, and (iii) the MT systems used
— an online statistical system. We will discuss
items (i) and (ii) later in this section. Regarding
(iii), the main implication of using an online sys-
tem was that one could not have access to many of
the resources commonly used to extract features,
such as the SMT training data and lexical tables.
As a consequence, surrogate resources were used
for certain features, including many of the baseline
ones, which made them less effective. To avoid
relying on such resources, novel features were ex-
plored, for example those based on deep neural
network architectures (word embeddings and con-
tinuous space language models by SHEFF-NN)
and those based on pseudo-references (n-gram
overlap and agreement features by LORIA).

While it is not possible to compare results di-
rectly with those published in previous years, for
sentence level we can observe the following with
respect to the corresponding task in WMT14 (Task
1.2):



System ID | DeltaAvg T \ Spearman’s p T

English-German

¢ RTM-DCU/RTM-SVR 7.62 —0.62
RTM-DCU/RTM-FS-SVR 6.45 —0.67
USHEF/QUEST-DISC-REP 4.55 0.32
USAAR-USHEF/BFF 3.98 0.27
Baseline SVM 1.60 0.14
HIDDEN 1.04 0.05
German-English
o RTM-DCU/RTM-FS-SVR 4.93 —0.64
RTM-DCU/RTM-FS+PLS-SVR 4.23 —0.55
USHEF/QUEST-DISC-BO 1.55 0.19
Baseline SVM 0.59 0.05
USAAR-USHEF/BFF 0.40 0.12
HIDDEN 0.12 —0.03

Table 14: Official results for the ranking variant of the WMT15 quality estimation Task 3. The winning submissions are
indicated by a e. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (1K times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.

System ID | MAE | | RMSE |

English-German

e RTM-DCU/RTM-FS-SVR 7.28 11.96

e RTM-DCU/RTM-SVR 7.5 11.35
USAAR-USHEF/BFF 9.37 13.53
USHEF/QUEST-DISC-REP 9.55 13.46
Baseline SVM | 10.05 14.25

German-English

e RTM-DCU/RTM-FS-SVR | 4.94 8.74

RTM-DCU/RTM-FS+PLS-SVR 5.78 10.70

USHEF/QUEST-DISC-BO 6.54 10.10
USAAR-USHEF/BFF 6.56 10.12

Baseline SVM 7.35 11.40

Table 15: Official results for the scoring variant of the WMT15 quality estimation Task 3. The winning submissions are
indicated by a e. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (1K times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.

e In terms of scoring, according to the primary likely to be less useful this year given the mis-

metric — MAE, in WMT15 all systems except
one were significantly better than the base-
line. In both WMT14 and WMT15 only one
system was significantly worse than the base-
line. However, in WMT 14 four others (out of
nine) performed no different than the base-
line. This year, no system tied with the base-
line: the remaining seven systems were sig-
nificantly better than the baseline. One could
say systems are consistently better this year.
It is worth mentioning that the baseline re-
mains the same, but as previously noted, the
resources used to extract baseline features are
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match between the data used to produce them
and the data used to build the online SMT
system.

In terms of ranking, in WMT14 one system
was significantly worse than the baseline, and
the four remaining systems were significantly
better. This year, all eight submissions are
significantly better than the baseline. This
can once more be seen as progress from last
year’s results. These results as well as the
general ranking of systems were also found
following Pearson’s correlation as metric, as



System ID

Pearson’s r |

English-German

e RTM-DCU/RTM-SVR
RTM-DCU/RTM-FS-SVR
USHEF/QUEST-DISC-REP
USAAR-USHEF/BFF
Baseline SVM

0.59
0.53
0.30
0.29
0.12

German-English

e RTM-DCU/RTM-FS-SVR
RTM-DCU/RTM-FS+PLS-SVR
USHEF/QUEST-DISC-BO
USAAR-USHEF/BFF

Baseline SVM

0.52
0.39
0.10
0.08
0.06

Table 16: Alternative results for the scoring variant of the WMT15 quality estimation Task 3. The winning submissions are
indicated by a e. These are the top-scoring submission and those that are not significantly worse according to the Williams
test with 95% confidence intervals. The systems in the gray area are not different from the baseline system at a statistically

significant level according to the same test.

suggested by Graham (2015).

For the word level task, a comparison with the
WMT14 corresponding task is difficult to perform,
as in WMT14 we did not have a meaningful base-
line. The baseline used then for binary classifica-
tion was to tag all words with the label “BAD”.
This baseline outperformed all the submissions in
terms of F} for the “BAD” class, but it cannot be
considered an appropriate baseline strategy (see
Section 4.4). This year the submissions were com-
pared against the output of a real baseline system
and the set of baseline features was made avail-
able to participants. Although the baseline system
itself performed worse than all the submitted sys-
tems, some other systems benefited from adding
baseline features to their feature sets (UAlacant,
UGENT, HDCL).

Considering the feature sets and methods used,
the number of participants in the WMT14 word-
level task was too small to draw reliable conclu-
sion: four systems for English-Spanish and one
system for all other three language pairs. The
larger number of submissions this year is already a
positive result: 16 submissions from eight teams.
Inspecting the systems submitted this and last
year, we can speculate about the most promising
techniques. Last year’s winning system used a
neural network trained on pseudo-reference fea-
tures (namely, features extracted from n-best lists)
(Camargo de Souza et al., 2014). This year’s win-
ning systems are also based on pseudo-reference
features (UAlacant) and deep neural network ar-
chitectures (HDCL). Luong et al. (2013) had pre-
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viously reported that pseudo-reference features
improve the accuracy of word-level predictions.
The two most recent editions of this shared task
seem to indicate that the state of the art in word-
level quality estimation relies upon such features,
as well as the ability to model the relationship be-
tween the source and target languages using large
datasets.

Effectiveness of quality labels, features and
learning methods for document-level QE

The task of paragraph-level prediction received
fewer submissions than the other two tasks: four
submissions for the scoring variant and five for
the ranking variant, for both language pairs. This
is understandable as it was the first time the task
was run. Additionally, paragraph-level QE is still
fairly new as a task. However, we were able to
draw some conclusions and learn valuable lessons
for future research in the area.

By and large, most features are similar to those
used for sentence-level prediction. Discourse-
aware features showed only marginal improve-
ments relative to the baseline system (USHEF sys-
tems for EN-DE and DE-EN). One possible rea-
son for that is the way the training and test data
sets were created, including paragraphs with only
one sentence. Therefore, discourse features could
not be fully explored as they aim to model rela-
tionships and dependencies across sentences, as
well as within sentences. In future, data will be
selected more carefully in order to consider only
paragraphs or documents with more sentences.



Systems applying feature selection techniques,
such as USAAR-USHEF/BFF, did not obtain ma-
jor improvements over the baseline. However,
they provided interesting insights by finding a
minimum set of baseline features that can be used
to build models with the same performance as the
entire baseline feature set. These are models with
only three features selected as the best combina-
tion by exhaustive search.

The winning submissions for both language
pairs and variants — RTM-DCU - explored fea-
tures based on the source and target side informa-
tion. These include distributional similarity, close-
ness of test instances to the training data, and in-
dicators for translation quality. External data was
used to select “interpretants”, which contain data
close to both training and test sets to provide con-
text for similarity judgements.

In terms of quality labels, one problem ob-
served in previous work on document-level QE
(Scarton et al., 2015b) is the low variation of
scores (in this case, Meteor) across instances of
the dataset. Since the data collected for this task
included translations from many different MT sys-
tems, this was not the case. Table 17 shows the av-
erage and standard deviation (STDEV) values for
the datasets (both training and test set together).
Although the variation is substantial, the average
value of the training set is a good predictor. In
other words, if we consider the average of the
training set scores as the prediction value for all
data points in the test set, we obtain results as good
as the baseline system. For our datasets, the MAE
figure for EN-DE is 10, and for DE-EN 7 — the
same as the baseline system. We can only spec-
ulate that automatically assigned quality labels
based on reference translations such as Meteor are
not adequate for this task. Other automatic metrics
tend to behave similarly to Meteor for document-
level (Scarton et al., 2015b). Therefore, finding
an adequate quality label for document-level QE
remains an open issue. Having humans directly
assign quality labels is much more complex than
in the sentence and word level cases. Annotation
of entire documents, or even paragraphs, becomes
a harder, more subjective and much more costly
task. For future editions of this task, we intend
to collect datasets with human-targeted document-
level labels obtained indirectly, e.g. through post-
editing.

No submission focused on exploring learning
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EN-DE DE-EN
AVG | STDEV | AVG | STDEV
Meteor () | 0.35 0.14 0.26 0.09

Table 17: Average metric scores for automatic metrics in the
corpus for Task 3.

algorithms specifically targeted at document-level
prediction.

Differences between sentence-level and
document-level QE

The differences between sentence and document-
level prediction have not been explored to a great
extent. Apart from the discourse-aware features by
USHEEF, the baseline and other features explored
by participating teams for document level predic-
tion were simple aggregations of sentence level
feature values.

Also, none of the submitted systems use
sentence-level predictions as features for
paragraph-level QE. Although this technique
is possible in principle, its effectiveness has
not yet been proved. (Specia et al., 2015) re-
port promising results when using word-level
prediction for sentence-level QE, but inclusive
results when using sentence-level prediction for
document-level QE. They considered BLEU, TER
and Meteor as quality labels, all leading to similar
findings. Once more the use of inadequate quality
labels for document-level prediction could have
been the reason.

No submission evaluated different machine
learning algorithms for this task. The same algo-
rithms as those used for sentence-level prediction
were applied by all participating teams.

Effect of training data sizes and quality for
sentence and word-level QE

As it was previously mentioned, the post-editions
used for this year’s sentence and word-level tasks
were obtained through a crowdsourcing platform
where translators volunteered to post-edit machine
translations. As such, one can expect that not all
post-editions will reach the highest standards of
professional translation. Manual inspection of a
small sample of the data, however, showed that the
post-editions were high quality, although stylis-
tic differences are evident in some cases. This is
likely due to the fact that different editors, with
different styles and levels of expertise, worked on
different segments. Another factor that may have
influenced the quality of the post-editions is the



fact that segments were fixed out of context. For
word level, in particular, a potential issue is the
fact that the labelling of the words was done com-
pletely automatically, using a tool for alignment
based on minimum edit distance (TER).

On the positive side, this dataset is much larger
dataset than any we have used before for predic-
tion at any level: nearly 12K segments for train-
ing/development, as opposed to maximum 2K in
previous years. For sentence-level prediction we
did not expect massive gains from larger datasets,
as it has been shown that small amounts of data
can be as effective or even more effective than the
entire collection, if selected in a clever way (Beck
et al., 2013a,b). However, it is well known that
data sparsity is an issue for word-level prediction,
so we expected a large dataset to improve results
considerably for this task.

Unfortunately, having access to a large number
of samples did not seem to bring much improve-
ment for word-level predictions accuracy. The
main reason for that was the fact that the num-
ber of erroneous words in the training data was
too small, as compared to the number of correct
words: 50% of the sentences had zero incorrect
words (15% of the sentences) or fewer than 15%
incorrect words (35% of the sentences). Partici-
pants used various data manipulation strategies to
improve results: filtering of the training data, as
in DCU-SHEFF systems, alternative labelling of
the data which discriminates between “OK” label
in the beginning, middle, and end of a good seg-
ment, and insertion of additional incorrect words,
as in SAU-KERC submissions. Additionally, most
participants in the word-level task leveraged ad-
ditional data in some way, which points to the
need for even larger but more varied post-edited
datasets in order to make significant progress in
this task.

S Automatic Post-editing Task

This year WMT hosted for the first time a shared
task on automatic post-editing (APE) for machine
translation. The task requires to automatically cor-
rect the errors present in a machine translated text.
As pointed out in Parton et al. (2012) and Chat-
terjee et al. (2015b), from the application point of
view, APE components would make it possible to:

e Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-
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forming deeper text analysis that is too ex-
pensive at the decoding stage;

Cope with systematic errors of an MT system
whose decoding process is not accessible;

Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

The first pilot round of the APE task focused on
the challenges posed by the “black-box” scenario
in which the MT system is unknown and cannot
be modified. In this scenario, APE methods have
to operate at the downstream level (that is after
MT decoding), by applying either rule-based tech-
niques or statistical approaches that exploit knowl-
edge acquired from human post-editions provided
as training material. The objectives of this pilot
were to: i) define a sound evaluation framework
for the task, ii) identify and understand the most
critical aspects in terms of data acquisition and
system evaluation, iii) make an inventory of cur-
rent approaches and evaluate the state of the art
and iv) provide a milestone for future studies on
the problem.

5.1 Task description

Participants were provided with training and de-
velopment data consisting of (source, target, hu-
man post-edition) triplets, and were asked to re-
turn automatic post-editions for a test set of unseen
(source, target) pairs.

Data

Training, development and test data were cre-
ated by randomly sampling from a collection
of English-Spanish (source, target, human post-
edition) triplets drawn from the news domain.?
Instances were sampled after applying a series of
data cleaning steps aimed at removing duplicates
and those triplets in which any of the elements
(source, target, post-edition) was either too long
or too short compared to the others, or included
tags or special problematic symbols. The main
reason for random sampling was to induce some
homogeneity across the three datasets and, in turn,

22The original triplets were provided by Unbabel (https:
//unbabel.com/).



to increase the chances that correction patterns
learned from the training set can be applied also
to the test set. The downside of losing informa-
tion yielded by text coherence (an aspect that some
APE systems might take into consideration) has
hence been accepted in exchange for a higher error
repetitiveness across the three datasets. Table 18
provides some basic statistics about the data.

The training and development sets respectively
consist of 11,272 and 1,000 instances. In each
instance:

e The source (SRC) is a tokenized English
sentence having a length of at least 4 to-
kens. This constraint on the source length
was posed in order to increase the chances
to work with grammatically correct full sen-
tences instead of phrases or short keyword
lists;

The target (TGT) is a tokenized Spanish
translation of the source, produced by an un-
known MT system;

The human post-edition (PE) is a manually-
revised version of the target. PEs were col-
lected by means of a crowdsourcing platform
developed by the data provider.

Test data (1, 817 instances) consists of (source,
target) pairs having similar characteristics of those
in the training set. Human post-editions of the test
target instances were left apart to measure system
performance.

The data creation procedure adopted, as well as
the origin and the domain of the texts pose specific
challenges to the participating systems. As dis-
cussed in Section 5.4, the results of this pilot task
can be partially explained in light of such chal-
lenges. This dataset, however, has three major ad-
vantages that made it suitable for the first APE pi-
lot: i) it is relatively large (hence suitable to apply
statistical methods), ii) it was not previously pub-
lished (hence usable for a fair evaluation), iii) it is
freely available (hence easy to distribute and use
for evaluation purposes).

Evaluation metric

System performance is evaluated by comput-
ing the distance between automatic and human
post-editions of the machine-translated sentences
present in the test set (i.e. for each of the 1,817
target test sentences). This distance is measured
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in terms of Translation Error Rate (TER) (Snover
et al.,, 2006a), an evaluation metric commonly
used in MT-related tasks (e.g. in quality estima-
tion) to measure the minimum edit distance be-
tween an automatic translation and a reference
translation.?? Systems are ranked based on the av-
erage TER calculated on the test set by using the
TERcom?* software: lower average TER scores
correspond to higher ranks. Each run is evalu-
ated in two modes, namely: i) case insensitive and
ii) case sensitive. Evaluation scripts to compute
TER scores in both modalities have been made
available to participants through the APE task web
page.?

Baseline

The official baseline is calculated by averaging the
distances computed between the raw MT output
and the human post-edits. In practice, the base-
line APE system is a system that leaves all the
test targets unmodified.’® Baseline results com-
puted for both evaluation modalities (case sensi-
tive/insensitive) are reported in Tables 20 and 21.

Monolingual translation as another term of
comparison. To get further insights about the
progress with respect to previous APE meth-
ods, participants’ results are also analysed with
respect to another term of comparison: a re-
implementation of the state-of-the-art approach
firstly proposed by Simard et al. (2007).?’ For
this purpose, a phrase-based SMT system based
on Moses (Koehn et al., 2007) is used. Trans-
lation and reordering models were estimated fol-
lowing the Moses protocol with default setup us-
ing MGIZA++ (Gao and Vogel, 2008) for word
alignment. For language modeling we used the

2Edit distance is calculated as the number of edits (word
insertions, deletions, substitutions, and shifts) divided by the
number of words in the reference. Lower TER values indicate
better MT quality.

nttp://www.cs.umd. edu/~snover/tercom/

25http://www.statmt.org/wmtlS/ape—task.html

%1n this case, since edit distance is computed between
each machine-translated sentence and its human-revised ver-
sion, the actual evaluation metric is the human-targeted TER
(HTER). For the sake of clarity, since TER and HTER com-
pute edit distance in the same way (the only difference is in
the origin of correct sentence used for comparison), hence-
forth we will use TER to refer to both metrics.

"This is done based on the description provided in Simard
et al. (2007). Our re-implementation, however, is not meant
to officially represent such approach. Discrepancies with the
actual method are indeed possible due to our misinterpreta-
tion or to wrong guesses about details that are missing in the

paper.



Tokens Types Lemmas
SRC TGT PE SRC TGT PE SRC | TGT PE
Train (11,272) | 238,335 | 257,643 | 257,879 | 23,608 | 25,121 | 27,101 | 13,701 | 7,624 | 7,689
Dev (1,000) 21,617 | 23,213 | 23,098 | 5,482 | 5,760 | 5,966 | 3,765 | 2,810 | 2,819
Test (1,817) 38,244 | 40,925 | 40,903 | 7,990 | 8,498 | 8,816 | 5,307 | 3,778 | 3,814

Table 18: Data statistics.

KenLLM toolkit (Heafield, 2011) for standard n-
gram modeling with an n-gram length of 5. Fi-
nally, the APE system was tuned on the devel-
opment set, optimizing TER with Minimum Er-
ror Rate Training (Och, 2003). The results of this
additional term of comparison, computed for both
evaluation modalities (case sensitive/insensitive),
are also reported in Tables 20 and 21.

For each submitted run, the statistical signifi-
cance of performance differences with respect to
the baseline and the re-implementation of Simard
et al. (2007) is calculated with the bootstrap
test (Koehn, 2004).

5.2 Participants

Four teams participated in the APE pilot task by
submitting a total of seven runs. Participants are
listed in Table 19; a short description of their sys-
tems is provided in the following.

Abu-MaTran. The Abu-MaTran team submit-
ted the output of two statistical post-editing
(SPE) systems, both relying on the MOSES
phrase-based statistical machine translation toolkit
(Koehn et al., 2007) and on sentence level clas-
sifiers. The first element of the pipeline, the
SPE system, is trained on the automatic trans-
lation of the News Commentary v8 corpus from
English to Spanish aligned with its reference.
This translation is obtained with an out-of-the-
box phrase-based SMT system trained on Europarl
v7. Both translation and post-editing systems use
a 5-gram Spanish LM with modified Kneser-Ney
smoothed trained on News Crawl 2011 and 2012
with KenLM (Heafield, 2011). For the second el-
ement of the pipeline, a binary classifier to select
the best translation between the given MT output
or its automatic post-edition is used. Two different
approaches are investigated: a 180-hand-crafted-
based regression model trained with a Support
Vector Machine (SVM) with a radial basis func-
tion kernel to estimate the sentence-level HTER
score, and a Recurrent Neural Network (RNN)
classifier using context word embeddings as input
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and classifying each word of a sentence as good
or bad. An automatic translation to be post-edited
is first decoded by our SPE system, then fed into
one of the classifiers identified as SVM180feat and
RNN. The HTER estimator selects the translation
with the lower score while the binary word-level
classifier selects the translation with the fewer
amount of bad tags. The official evaluation of the
shared task show an advantage of the RNN ap-
proach compared to SVM.

FBK. The two runs submitted by FBK (Chat-
terjee et al., 2015a) are based on combining the
statistical phrase-based post-editing approach pro-
posed by Simard et al. (2007) and its most sig-
nificant variant proposed by Béchara et al. (2011).
The APE systems are built-in an incremental man-
ner. At each stage of the APE pipeline, the best
configuration of a component is decided and then
used in the next stage. The APE pipeline begins
with the selection of the best language model from
several language models trained on different types
and quantities of data. The next stage addresses
the possible data sparsity issues raised by the rel-
atively small size of the training data. Indeed, an
analysis of the original phrase table obtained from
the training set revealed that a large part of its en-
tries is composed of instances that occur only once
in the training. This has the obvious effect of col-
lecting potentially unreliable “translation” (or, in
the case of APE, correction) rules. The problem is
exacerbated by the “context-aware” approach pro-
posed by Béchara et al. (2011), which builds the
phrase table by joining source and target tokens
thus breaking down the co-occurrence counts into
smaller numbers. To cope with this problem, a
novel feature (neg-impact) is designed to prune the
phrase table by measuring the usefulness of each
translation. The higher is the value of the neg-
impact feature, the less useful is the translation
option. After pruning, the final stage of the APE
pipeline tries to raise the capability of the decoder
to select the correct translation rule by the intro-
duction of new task specific features integrated in




ID Participating team

Abu-MaTran Abu-MaTran Project (Prompsit)

FBK Fondazione Bruno Kessler, Italy (Chatterjee et al., 2015a)

LIMSI Laboratoire d’Informatique pour la Mécanique et les Sciences de
I’Ingénieur, France (Wisniewski et al., 2015)

USAAR-SAPE

Saarland University, Germany & Jadavpur University, India (Pal et al., 2015b)

Table 19: Participants in the WMT15 Automatic Post-editing pilot task.

the model. These features measure the similarity
and the reliability of the translation options and
help to improve the precision of the resulting APE
system.

LIMSI. For the first edition of the APE shared
task LIMSI submitted two systems (Wisniewski
etal., 2015). The first one is based on the approach
of Simard et al. (2007) and considers the APE task
as a monolingual translation between a transla-
tion hypothesis and its post-edition. This straight-
forward approach does not succeed in improving
translation quality. The second submitted system
implements a series of sieves, each applying a sim-
ple post-editing rule. The definition of these rules
is based on an analysis of the most frequent er-
ror corrections and aims at: i) predicting word
case; ii) predicting exclamation and interrogation
marks; and iii) predicting verbal endings. Exper-
iments with this approach show that this system
also hurts translation quality. An in-depth analy-
sis revealed that this negative result is mainly ex-
plained by two reasons: i) most of the post-edition
operations are nearly unique, which makes very
difficult to generalize from a small amount of data;
and ii) even when they are not, the high variability
of post-editing, already pointed out by Wisniewski
et al. (2013), results in predicting legitimate cor-
rections that have not been made by the annota-
tors, therefore preventing from improving over the
baseline.

USAAR-SAPE. The USAAR-SAPE  sys-
tem (Pal et al., 2015b) is designed with three basic
components: corpus preprocessing, hybrid word
alignment and a state-of-the-art phrase-based
SMT system integrated with the hybrid word
alignment. The preprocessing of the training
corpus is carried out by stemming the Spanish
MT output and the PE data using Freeling (Padr
and Stanilovsky, 2012). The hybrid word align-
ment method combines different kinds of word
alignment: GIZA++ word alignment with the
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grow-diag-final-and (GDFA) heuristic (Koehn,
2010), SymGiza++ (Junczys-Dowmunt and Szal,
2011), the Berkeley aligner (Liang et al., 2006),
and the edit distance-based aligners (Snover et al.,
2006a; Lavie and Agarwal, 2007). These different
word alignment tables (Pal et al., 2013) are
combined by a mathematical union method. For
the phrase-based SMT system various maximum
phrase lengths for the translation model and
n—gram settings for the language model are used.
The best results in terms of BLEU (Papineni et al.,
2002) score are achieved by a maximum phrase
length of 7 for the translation model and a 5-gram
language model.

5.3 Results

The official results achieved by the participating
systems are reported in Tables 20 and 21. The
seven runs submitted are sorted based on the aver-
age TER they achieve on test data. Table 20 shows
the results computed in case sensitive mode, while
Table 21 provides scores computed in the case in-
sensitive mode.

Both rankings reveal an unexpected outcome:
none of the submitted runs was able to beat the
baselines (i.e. average TER scores of 22.91 and
22.22 respectively for case sensitive and case in-
sensitive modes). All differences with respect to
such baselines, moreover, are statistically signif-
icant. In practice, this means that what the sys-
tems learned from the available data was not reli-
able enough to yield valid corrections of the test
instances. A deeper discussion about the possible
causes of this unexpected outcome is provided in
Section 5.4.

Unsurprisingly, for all participants the case in-
sensitive evaluation results are slightly better than
the case sensitive ones. Although the two rank-
ings are not identical, none of the systems was
particularly penalized by the case sensitive eval-
uation. Indeed, individual differences in the two
modes are always close to the same value (~ 0.7
TER difference) measured for the two baselines.



ID Avg. TER
Baseline 22.913
FBK Primary 23.228
LIMSI Primary 23.331
USAAR-SAPE 23.426
LIMSI Contrastive 23.573
Abu-MaTran Primary 23.639
FBK Contrastive 23.649
(Simard et al., 2007) 23.839
Abu-MaTran Contrastive | 24.715

Table 20: Official results for the WMT15 Automatic
Post-editing task — average TER (] ) case sensitive.

In light of this, and considering the importance of
case sensitive evaluation in some language settings
(e.g. having German as target), future rounds of
the task will likely prioritize this more strict eval-
uation mode.

Overall, the close results achieved by partici-
pants reflect the fact that, despite some small vari-
ations, all systems share the same underlying sta-
tistical approach of Simard et al. (2007). As an-
ticipated in Section 5.1, in order to get a rough
idea about the extent of the improvements over
such state-of-the-art method, we replicated it and
considered its results as another term of compari-
son in addition to the baselines. As shown in Ta-
bles 20 and 21, the performance results achieved
by our implementation of Simard et al. (2007) are
23.839 and 23.130 in terms of TER for the re-
spective case sensitive and insensitive evaluations.
Compared to these scores, most of the submitted
runs achieve better performance, with positive av-
erage TER differences that are always statistically
significant. We interpret this as a good sign: de-
spite the difficulty of the task, the novelties in-
troduced by each system allowed to make signifi-
cant steps forward with respect to a prior reference
technique.

5.4 Discussion

To better understand the results and gain useful in-
sights about this pilot evaluation round, we per-
form two types of analysis. The first one is focused
on the data, and aims to understand the possible
reasons of the difficulty of the task. In particular,
by analysing the challenges posed by the origin
and the domain of the text material used, we try
to find indications for future rounds of the APE
task. The second type of analysis focuses on the
systems and their behaviour. Although they share
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1D Avg. TER
Baseline 22.221
LIMSI Primary 22.544
FBK Primary 22.551
USAAR-SAPE 22.710
Abu-MaTran Primary 22.769
LIMSI Contrastive 22.861
FBK Contrastive 22.949
(Simard et al., 2007) 23.130
Abu-MaTran Contrastive | 23.705

Table 21: Official results for the WMT15 Automatic
Post-editing task — average TER (] ) case insensitive.

the same underlying approach and achieve similar
results, we aim to check if interesting differences
can be captured by a more fine grained analysis
that goes beyond rough TER measurements.

Data analysis

In this section we investigate the possible rela-
tion between participants’ results and the nature
of the data used in this pilot task (e.g. quan-
tity, sparsity, domain and origin) . For this pur-
pose, we take advantage of a new dataset — the
Autodesk Post-Editing Data corpus®® — which has
been publicly released after the organisation of the
APE pilot task. Although it was not usable for
this first round, its characteristics make it partic-
ularly suitable for our analysis purposes. In par-
ticular: i) Autodesk data predominantly covers the
domain of software user manuals (that is, a
restricted domain compared to a general one like
news), and ii) post-edits come from professional
translators (that is, at least in principle, a more re-
liable source of corrections compared to crowd-
sourced workforce). To guarantee a fair compari-
son, English-Spanish (source, target, human post-
edition) triplets drawn from the Autodesk corpus
are split in training, development and test sets un-
der the constraint that the total number of target
words and the TER in each set should be similar
to the APE task splits. In this setting, performance
differences between systems trained on the two
datasets will only depend on the different nature
of the data (e.g. domain). Statistics of the training
sets are reported in Table 22 (those concerning the

2The corpus  (https://autodesk.app.box.com/
Autodesk-PostEditing) consists of parallel English
source-MT/TM target segments post-edited into several
languages (Chinese, Czech, French, German, Hungarian,
Italian, Japanese, Korean, Polish, Brazilian Portuguese,
Russian, Spanish) with between 30K to 410K segments per
language.



APE Task | Autodesk
SRC | 238,335 220,671
Tokens TGT | 257,643 257.380
PE 257,879 260,324
SRC 23,608 11,858
Types TGT | 25,121 11,721
PE 27,101 12,399
SRC 13,701 5,092
Lemmas | TGT 7,624 3,186
PE 7,689 3,334
SRC 2.905 6.346
RR TGT 3.312 8.390
PE 3.085 8.482

Table 22: WMT APe Task and Autodesk training data statis-
tics.

APE task data are the same of Table 18).

The impact of data sparsity. A key issue in
most evaluation settings is the representativeness
of the training data with respect to the test set used.
In the case of the statistical approach at the core of
all the APE task submissions, this issue is even
more relevant given the limited amount of train-
ing data available. In the APE scenario, data rep-
resentativeness relates to the fact that the correc-
tion patterns learned from the training set can be
applied also to the test set (as mentioned in Sec-
tion 5.1, in the data creation phase random sam-
pling from an original data collection was applied
for this purpose). From this point of view, dealing
with restricted domains such as software user
manuals should be easier than working with news
data. Indeed, restricted domains are more likely
to feature smaller vocabularies, be more repetitive
(or, in other terms, less sparse) and, in turn, de-
termine a higher applicability of the learned error
correction patterns.

To check the relation between task difficulty and
data repetitiveness, we compared different mono-
lingual indicators (i.e. number of types and lem-
mas, and repetition rate?® — RR) computed on the
APE and the Autodesk source, target and post-
edited sentences. Although both the datasets have
the same amount of target tokens, Table 22 shows
that the APE training set has nearly double of
types and lemmas compared to the Autodesk data,

P Repetition rate measures the repetitiveness inside a text
by looking at the rate of non-singleton n-gram types (n=1. .
4) and combining them using the geometric mean. Larger
value means more repetitions in the text. For more details
see Cettolo et al. (2014)
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which indicates the presence of less repeated in-
formation. A similar conclusion can be drawn by
observing that the Autodesk dataset has a repeti-
tion rate that is more than twice the value com-
puted for the APE task data.

This monolingual analysis does not provide any
information about the level of repetitiveness of the
correction patterns made by the post-editors, be-
cause it does not link the target and the post-edited
sentences. To investigate this aspect, two instances
of the re-implemented approach of Simard et al.
(2007) introduced in Section 5.1 are respectively
trained on the APE and the Autodesk training sets.
We consider the distribution of the frequency of
the translation options in the phrase table as a good
indicator of the level of repetitiveness of the cor-
rections in the data. For instance, a large number
of translation options that appear just one or only
few times in the data indicates a higher level of
sparseness. As expected due to the limited size
of the training set, the vast majority of the trans-
lation options in both phrase tables are singletons
as shown in Table 23. Nevertheless, the Autodesk
phrase table is more compact (731k versus 1,066k)
and contains 10% fewer singletons than the APE
task phrase table. This confirms that the APE task
data is more sparse and suggests that it might be
easier to learn more applicable correction patterns
from the Autodesk domain-specific data.

To verify this last statement, the two APE sys-
tems are evaluated on their own test sets. As previ-
ously shown, the system trained on the APE task
data is not able to improve over the performance
achieved by a system that leaves all the test targets
unmodified (see Table 20). On the contrary, start-
ing from a baseline of 23.57, the system trained
on the Autodesk data is able to reduce the TER by
3.55 points (20.02). Interestingly, the Autodesk
APE system is able to correctly fix the target sen-
tences and improve the TER by 1.43 points even
with only 25% of the training data. These re-
sults confirm our intuitions about the usefulness of
repetitive data and show that, at least in restricted-
domain scenarios, automatic post-editing can be
successfully used as an aid to improve the output
of an MT system.

Professional vs. Crowdsourced post-editions
Differently from the Autodesk data, for which the
post-editions are created by professional transla-
tors, the APE task data contains crowdsourced MT
corrections collected from unknown (likely non-



Percentage of Phrase Pairs

Phrase Pair APE 2.01 5 Autodesk
Count Training

1 95.2% 84.6%
2 2.5% 8.8%

3 0.7% 2.7%

4 0.3% 1.2%

5 0.2% 0.6%

6 0.15% 0.4%

7 0.10% 0.3%

8 0.07% 0.2%

9 0.06% 0.2%
10 0.04% 0.1%
> 10 0.3% 0.9%
Total Entries | 1,066,344 703,944

Table 23: Phrase pair count distribution in two phrase tables
built using the APE 2015 training and the Autodesk dataset.

expert) translators. One risk, given the high vari-
ability of valid MT corrections, is that the crowd-
sourced workforce follows post-editing attitudes
and criteria that differ from those of professional
translators. Professionals tend to: i) maximize
productivity by doing only the necessary and suf-
ficient corrections to improve translation quality,
and ii) follow consistent translation criteria, es-
pecially for domain terminology. Such a ten-
dency will likely result in coherent and minimally
post-edited data from which learning and draw-
ing statistics is easier. This is not guaranteed by
crowdsourced workers which do not have specific
time or consistency constraints. This suggests that
non-professional post-editions and the correction
patterns learned from them will feature less coher-
ence, higher noise and higher sparsity.

To assess the potential impact of these issues on
data representativeness (and, in turn, on the task
difficulty), we analyse a subset of the APE test in-
stances (221 triples randomly sampled) in which
target sentences were post-edited by professional
translators. The analysis focuses on TER scores
computed between:

1. The target sentences and their crowdsourced
post-editions (avg. TER = 26.02);

2. The target sentences and their professional
post-editions (avg. TER = 23.85);

3. The crowdsourced post-editions and the pro-
fessional ones, using the latter as references
(avg. TER =29.18).
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The measured values indicate an attitude of non-
professionals to correct more often and differ-
ently from the professional translators. Interest-
ingly, and similar to the findings of Potet et al.
(2012), crowdsourced post-editions feature a dis-
tance from the professional ones that is even
higher than the distance between the original tar-
get sentences and the experts’ corrections (29.18
vs. 23.85). If we consider the output of profes-
sional translators as a gold standard (made of co-
herent and minimally post-edited data), these fig-
ures suggest a higher difficulty in handling crowd-
sourced corrections.

Further insights can be drawn from the anal-
ysis of the word level corrections produced by
the two translator profiles. To this aim, word in-
sertions, deletions, substitutions and phrase shifts
are extracted using the TERcom software similar
to Blain et al. (2012) and Wisniewski et al. (2013).
For each error type, the ratio between the num-
ber of edit operations and the total number of oc-
curred errors operations performed is computed.
This quantity provides us with a measure of the
level of repetitiveness of the errors, with 100%
indicating that all the error patterns are unique,
and small values indicating that most of the errors
are repeated. Our results show that non-experts
have generally larger ratio values than the pro-
fessional translators (insertion +-6%, substitution
+4%, deletion +4%). This seems to support our
hypothesis that, independently from their quality,
post-editions collected from non-experts are less
coherent than those derived from professionals.
It is unlikely that different crowdsourced work-
ers will apply the same corrections in the same
contexts. If this hypothesis holds, the difficulty
of this APE pilot task could be partially ascribed
to this unavoidable intrinsic property of crowd-
sourced data. This aspect, however, should be fur-
ther investigated to draw definite conclusions.

System/performance analysis

The TER results presented in Tables 20 and 21 ev-
idence small differences between participants, but
they do not shed light on the real behaviour of the
systems. To this aim, in this section the submitted
runs are analysed by taking into consideration the
changes made by each system to the test instances
(case sensitive evaluation mode). In particular, Ta-
ble 24 provides the number of modified, improved
and deteriorated sentences, together with the per-
centage of edit operations performed (insertions,



Modified | Improved | Deteriorated Edit operations

ID Sentences | Sentences Sentences Ins | Del | Sub | Shifts
FBK Primary 276 64 147 17.8 | 17.8 | 559 | 8.5
LIMSI Primary 339 75 217 194 | 16.8 | 552 | 8.6
USAAR-SAPE 422 53 229 17.6 | 17.4 | 56.7 8.4
LIMSI Contrastive 454 61 260 174 | 19.0 | 55.3 8.3
Abu-MaTran Primary 275 8 200 17.7 | 17.2 | 56.8 | 8.2
FBK Contrastive 422 52 254 184 | 17.0 | 56.2 8.4
Abu-MaTran Contrastive 602 14 451 17.8 | 16.4 | 57.7 8.0

(Simard et al., 2007) 488 55 298 183 | 17.0 | 56.4 | 8.3

Table 24: Number of test sentences modified, improved and deteriorated by each submitted run, together with the correspond-
ing percentage of insertions, deletions, substitutions and shifts (case sensitive).

deletions, substitutions, shifts). Looking at these
numbers, the following conclusions can be drawn.
Although it varies considerably between the sub-
mitted runs, the number of modified sentences is
quite small. Moreover, a general trend can be ob-
served: the best systems are the most conservative
ones. This situation likely reflects the aforemen-
tioned data sparsity and coherence issues. A small
fraction of the correction patterns found in the
training set seems to be applicable also to the test
set, and the risk of performing corrections that are
either wrong, redundant, or different from those in
the reference post-editions is rather high.

From the system point of view, the context in
which a learned correction pattern will be applied
is crucial. For instance, the same word substitu-
tion (e.g. “house” — “home’) is not applicable in
all contexts. While sometimes it will be necessary
(Example 1: “The house team won the match’), in
some contexts it is optional (Example 2: “I was in
my house’) or wrong (Example 3: “He worked for
a brokerage house”). Unfortunately, the unneces-
sary word replacement in Example 2 (human post-
editors would likely leave it untouched) would in-
crease the TER of the sentence exactly as in the
clearly wrong replacement in Example 3.

From the evaluation point of view, not penal-
ising such correct but unnecessary corrections is
also crucial. Similar to MT, where a source sen-
tence can have many valid translations, in the APE
task a target sentence can have many valid post-
editions. Indeed, nothing prevents that in our eval-
uation some correct post-editions are considered
as “deteriorated” sentences simply because they
differ from the human post-editions used as ref-
erences. As in MT, this well known variability
problem might penalise good systems, thus call-
ing for alternative evaluation criteria (e.g. based
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on multiple references or sensitive to paraphrase
matches). Interestingly, for all the systems the
number of modified sentences is higher than the
sum of the improved and the deteriorated ones.
Such difference is represented by modified sen-
tences for which the corrections do not yield TER
variations. This grey area makes the evaluation
problem related to variability even more evident.

The analysis of the edit operations performed by
each system is not particularly informative. Sim-
ilar to the overall performance results, also the
proportion of correction types they perform re-
flects the adoption of the same underlying statisti-
cal approach. The distribution of the four types of
edit operations is almost identical, with a predom-
inance lexical substitutions (55.7%-57.7%) and
rather few phrasal shifts (8.0%-8.6%).

5.5 Lessons learned and outlook

The objectives of this pilot APE task were to: i)
define a sound evaluation framework for future
rounds, ii) identify and understand the most criti-
cal aspects in terms of data acquisition and system
evaluation, iii) make an inventory of current ap-
proaches, evaluate the state of the art and iv) pro-
vide a milestone for future studies on the problem.
With respect to the first point, improving the eval-
uation is possible, but no major issues emerged
or requested radical changes in future evaluation
rounds. For instance, using multiple references or
a metric sensitive to paraphrase matches to cope
with variability in the post-editing would certainly
help.

Concerning the most critical aspects of the eval-
uation, our analysis highlighted the strong de-
pendence of system results on data repetitive-
ness/representativeness.  This calls into ques-
tion the actual usability of text material coming



from general domains like news and, probably, of
post-editions collected from crowdsourced work-
ers (this aspect, however, should be further investi-
gated to draw definite conclusions). Nevertheless,
it’s worth noting that collecting a large, unpub-
lished, public, domain-specific and professional-
quality dataset is a hardly achievable goal that will
always require compromise solutions.

Regarding the approaches proposed, this first
experience was a conservative but, at the same
time, promising first step. Although participants
performed the task sharing the same statistical ap-
proach to APE, the slight variants they explored al-
lowed them to outperform the widely used mono-
lingual translation technique. Moreover, results’
analysis also suggests a possible limitation of this
state-of-the-art approach: by always performing
all the applicable correction patterns, it runs the
risk of deteriorating the input translations that it
was supposed to improve. This limitation, com-
mon to all the participating systems, is a clue of
a major difference between the APE task and the
MT framework. In MT the system must always
process the entire source sentence by translating
all of its words into the target language. In the
APE scenario, instead, the system has another op-
tion for each word: keeping it untouched. A rea-
sonable (and this year unbeaten) baseline is in
fact a system that applies this conservative strat-
egy for all the words. By raising this and other
issues as promising research directions, attracting
researchers’ attention to a challenging application-
oriented task, and establishing a sound evaluation
framework to measure future advancements, this
pilot has substantially achieved its goals, paving
the way for future rounds of the APE evaluation
exercise.
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Table 25: Head to head comparison, ignoring ties, for Czech-English systems

A Pairwise System Comparisons by Human Judges

Tables 25-34 show pairwise comparisons between systems for each language pair. The numbers in each
of the tables’ cells indicate the percentage of times that the system in that column was judged to be better
than the system in that row, ignoring ties. Bolding indicates the winner of the two systems.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine
differences (rather than differences that are attributable to chance). In the following tables % indicates sta-
tistical significance at p < 0.10,  indicates statistical significance at p < 0.05, and I indicates statistical
significance at p < 0.01, according to the Sign Test.

Each table contains final rows showing how likely a system would win when paired against a randomly
selected system (the expected win ratio score) and the rank range according bootstrap resampling (p <
0.05). Gray lines separate clusters based on non-overlapping rank ranges.
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Table 29: Head to head comparison, ignoring ties, for French-English systems
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Table 30: Head to head comparison, ignoring ties, for English-French systems
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SHEFFIELD |.85% .75% .751 .74 .761 .761 .70%1 .72%1 .62%1 .61%1 .591 .48 - .00
SHEFF-STEM |.851 .76} .751 .741 .76}1 .76% .70% .731 .63 .61%1 .591 .48 1.00 -
score| .67 .28 24 23 .18 .16 .14 .08 -08 -17 -27 -43 -51 -52
rank| 1 2-4 2-5 2-5 4-7 57 58 7-8 9 10 11 12-13 13-14 13-14

Table 31: Head to head comparison, ignoring ties, for Finnish-English systems

o)

=
@)

231 18]
291 261

ONLINE-A
ABUMATRAN-COMB
AALTO

CHALMERS

ONLINE-B 401 311 . 241 261 .
ONLINE-A |. - 401 . 361 331 .

UU-UNC|. 607 —  47x 4317 411 371 . 361 271
ABUMATRAN-UNC-COM |.721 5391 .53x — .45t 467 .45% 401 411 321
ABUMATRAN-COMB |.76% .64%1 .571 5571 — 451 461 47 421 341
AALTO|.741 .67 591 547 .55t - .47 47 461 33%

UEDIN-SYNTAX |.751 .641 .631 .55f 547 .53 - 49 4471 34%
ABUMATRAN-UNC|.75% .66% .591 .601 .53 .53x .51 - .50 .39%
CMU|.77f 711 .641 .59 .581 .547 .561 50 - .40%

CHALMERS |.821 .741 .731 .68 .661 .67f .66% .61i .60% —

score|1.06 .54 21 .04 -.05 -.14 -18 -21 -34 -92

rank| 1 2 3 4 5 67 68 68 9 10

£ B ABUMATRAN-UNC-COM
L Bl UEDIN-SYNTAX

£ 2 B ABUMATRAN-UNC

b e

22 | | ONLINE-B
it

Table 32: Head to head comparison, ignoring ties, for English-Finnish systems
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ONLINE-F|.79% 781 .76} .71 .71% .71f .701 .671 .661 .67 .62} .60% -
score| .49 .31 .12 .11 .11 .10 .05 .01 -02 -03 -21 -27 -78
rank| 1 2 36 3-6 3-6 3-7 6-8 7-10 8-10 8-10 11 12 13

Table 33: Head to head comparison, ignoring ties, for Russian-English systems
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Table 34: Head to head comparison, ignoring ties, for English-Russian systems
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Abstract

Translated texts (in any language) are so
markedly different from original ones that
text classification techniques can be used
to tease them apart. Previous work has
shown that awareness to these differences
can significantly improve statistical ma-
chine translation. These results, how-
ever, required meta-information on the on-
tological status of texts (original or trans-
lated) which is typically unavailable. In
this work we show that the predictions
of translationese classifiers are as good as
meta-information. First, when a monolin-
gual corpus in the target language is given,
to be used for constructing a language
model, predicting the translated portions
of the corpus, and using only them for the
language model, is as good as using the
entire corpus. Second, identifying the por-
tions of a parallel corpus that are translated
in the direction of the translation task, and
using only them for the translation model,
is as good as using the entire corpus. We
present results from several language pairs
and various data sets, indicating that these
results are robust and general.

1 Introduction

Research in Translation Studies suggests that
translated texts are considerably different from
original texts, constituting a sublanguage known
as Translationese (Gellerstam, 1986). Awareness
to translationese can significantly improve statis-
tical machine translation (SMT). Kurokawa et al.
(2009) showed that French-to-English SMT sys-
tems whose translation models were constructed
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from human translations from French to English
yielded better translation quality than ones cre-
ated from translations in the other direction. These
results were corroborated by Lembersky et al.
(2012a, 2013), who showed that translation mod-
els can be adapted to translationese, thereby im-
proving the quality of SMT even further. Aware-
ness to translationese also benefits the language
models used in SMT: Lembersky et al. (2011,
2012b) showed that language models complied
from translated texts better fit the reference sets in
term of perplexity, and SMT systems constructed
from such language models perform much better
than those constructed from original texts.

To benefit from these results, however, one has
to know whether the texts used for training SMT
systems are original or translated, and previous
work indeed used such meta-information. Unfor-
tunately, annotation reflecting the status of texts,
or the direction of translation, is typically unavail-
able. The research question we investigate in this
work is whether the predictions of translationese
classifiers can replace manual annotation. In a va-
riety of evaluation scenarios, we demonstrate that
this is indeed the case. When a monolingual cor-
pus in the target language is given for constructing
a language model for SMT, we show that automat-
ically identifying the translated portions of the cor-
pus, and using only them for the language model,
is as good as using the entire corpus. Similarly,
when a parallel corpus is given, we show that au-
tomatically identifying the portions of the corpus
that are translated in the direction of the translation
task, and using only them for training the transla-
tion model, is again as good as using the entire
corpus. We present results from several language
pairs and various data sets, indicating that the ap-
proach we advocate is general and robust.

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 47-57,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



The main contribution of this work is a general
approach that, provided labeled data for training
classifiers, can be applied to any corpus before it
is used for constructing SMT systems, resulting in
systems that are as good as (or better than) those
that use the entire corpus, but that rely on signifi-
cantly smaller language and translation models.

We briefly review related work in Section 2.
Section 3 describes our methodology and exper-
imental setup. Section 4 details the experiments
and their results. We conclude with an analysis of
the results and suggestions for future research.

2 Related work

Until recently, SMT systems were agnostic to
the ontological status of a text (as original vs.
translated). Several recent works, however, un-
derscore the relevance of translationese for SMT.
Kurokawa et al. (2009) were the first to show that
translationese matters for SMT. They defined two
translation tasks, English-to-French and French-
to-English, and used a parallel corpus in which
the translation direction of each text was indi-
cated. They showed that for the English-to-French
task, translation models compiled from English-
translated-to-French texts were better than transla-
tion models compiled from texts translated in the
reverse direction; and the same holds for the re-
verse translation task. These results were corrobo-
rated by Lembersky et al. (2012a, 2013), who fur-
ther demonstrated that translation models can be
adapted to translationese, thereby improving the
quality of SMT even further.

Lembersky et al. (2011, 2012b) focused on the
language model (LM). They built several SMT
systems for several pairs of languages. For each
language pair they built two systems, one in which
the LM was compiled from original English text,
and another in which the LM was compiled from
text translated to English from each of the lan-
guages. They showed that LMs complied from
translated texts better fit the reference set in term
of perplexity. Moreover, SMT systems that were
constructed from translationese-based LMs per-
form much better than those constructed from
original LMs. In fact, an original corpus must be
as much as ten times larger in order to yield the
same translation quality as a translated corpus.

To benefit from these results, one has to know
whether the texts used for training SMT systems
are original or translated; such meta-information
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is typically unavailable. Due to the unique prop-
erties of translationese, however, this informa-
tion can be determined automatically using text-
classification techniques. Several works address
this task, using various feature sets, and reporting
excellent accuracy (Baroni and Bernardini, 2006;
van Halteren, 2008; Ilisei et al., 2010; Eetemadi
and Toutanova, 2014). Some of these works, how-
ever, only conduct in-domain evaluation; much
evidence suggests that out-of-domain accuracy is
much lower (Koppel and Ordan, 2011; Islam and
Hoenen, 2013; Avner et al., Forthcoming).

A thorough investigation was conducted by
Volansky et al. (2015), who focused on the fea-
tures of translationese (in English) from a trans-
lation theory perspective. They defined sev-
eral classifiers based on various linguistically-
informed features, implementing several hypothe-
ses of Translation Studies. We adopt some of their
best-performing classifiers in this work.!

3 Experimental setup

The experiments we describe in Section 4 con-
sist of three parts: 1. Training classifiers to tease
apart original from translated texts. 2. Construct-
ing SMT systems with language models compiled
from the predicted translations, comparing them
with similar SMT systems whose language models
consist of the entire monolingual corpora. 3. Con-
structing SMT systems with translation models
compiled from bitexts that are predicted as trans-
lated in the same direction as the direction of the
SMT task, comparing them with similar SMT sys-
tems whose translation models consist of the en-
tire parallel corpora. In this section we describe
the language resources and tools required for per-
forming these experiments.

3.1 Tools

Our first task is text classification; to ensure
that the length of each text does not influence
the classification, we partition the training cor-
pus in most experiments into chunks of approxi-
mately 2000 tokens (ending on a sentence bound-
ary). We henceforth use chunk units to define the
size of a sub-corpus. Our major experiments in-
volve 2,500 chunks (of approximately 2,000 to-
kens each, hence 5M tokens). To detect sentence

"Volansky et al. (2015) only identified English transla-
tionese; we extend the experimentation also to French and
adapt their classifiers accordingly.



boundaries, we use the UITUC CCG tool.2

We use MOSES (Koehn et al., 2007) for tok-
enization and case normalization. Part-of-speech
(POS) tagging is done with OpenNLP? for English
and the Stanford tagger” for French. For classifica-
tion we use Weka (Hall et al., 2009) with the SMO
algorithm, a support-vector machine with a linear
kernel, in its default configuration.

To construct language models and measure per-
plexity, we use SRILM (Stolcke, 2002) with inter-
polated modified Kneser-Ney discounting (Chen
and Goodman, 1996) and with a fixed vocabu-
lary. We limit language models to a fixed vocab-
ulary and map out-of-vocabulary (OOV) tokens to
a unique symbol to overcome sparsity and better
control the OOV rates among various corpora.

We train and build the SMT systems using
MOSES. For evaluation we use MultEval (Clark
et al., 2011), which takes machine translation hy-
potheses from several runs of an optimizer and
provides three popular metric scores, BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2011), and TER (Snover et al., 2006)), as
well as standard deviations and p-values.

3.2 Corpora

To construct SMT systems we need both monolin-
gual corpora (for the language model) and bilin-
gual ones (for the translation model). The main
corpora we use are Europarl (Koehn, 2005) and
the Canadian Hansard. Europarl is a multilingual
corpus recording the proceedings of the European
Parliament. Some portions of the corpus are anno-
tated with the original language of the utterances,
and we use the method of Lembersky et al. (2012a)
to identify the source language of other segments.
The Hansard is a parallel corpus consisting of tran-
scriptions of the Canadian parliament in English
and (Canadian) French from 2001-2009. We use
a version that is annotated with the original lan-
guage of each parallel sentence.” We also use the
News Commentary corpus (Callison-Burch et al.,
2007), a French-English corpus in the domain of
politics, economics and science. The direction of
translation of this corpus is not annotated.®

http://cogcomp.cs.illinois.edu/page/
tools_view/2, accessed 11.10.2013.

Shttp://opennlp.apache.org, 24.08.2012.

‘nttp://nlp.stanford.edu/software/
tagger.shtml, accessed 08.02.2013.

SWe are grateful to Cyril Goutte, George Foster and Pierre
Isabelle for providing us with this version of the corpus.

SThe precise data sets we used will be made available.
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3.2.1 Language model experiments

Our main experiments focus on French translated
to English (FR—EN), and we define a classifier
that can identify English translationese. However,
to further establish the robustness of our approach,
we also experiment with German translated to En-
glish (DE—EN) and with English translated to
French (EN—FR). We also conduct cross-corpus
experiments in which we train translationese clas-
sifier on one corpus (Europarl) and test its contri-
bution to SMT on another (Hansard, News). These
experiments are crucial for evaluating the robust-
ness of our approach, in light of the findings that
translationese classification is much less accurate
outside the training domain.

From the Europarl corpus we use several por-
tions, collected over the years 1996 to 1999 and
2001 to 2009. In all experiments, the split of
the monolingual corpora to translated vs. original
texts is balanced (in terms of chunks). The paral-
lel corpora are divided to two sections according to
the direction of the translation (when it is known).
For example, for the French-to-English translation
task, we divide the Europarl corpus to a French-
original section (FR—EN) and an English-original
section. We also use portions of Europarl to de-
fine reference sets for evaluating the perplexity of
LMs. For this task we only use translated texts.

For constructing translation models we use par-
allel corpora. For the FR—EN and EN—FR tasks
we use original French text, aligned with its trans-
lation to English (FR—EN). For the DE—EN
translation task we use original German text,
aligned with its translation to English (DE—EN).
The parallel portions we use are disjoint from
those used for the language model and are evenly
balanced between the original text and the aligned
translated text. From Europarl we use portions
from the period of January to September 2000.

To tune and evaluate SMT systems we use refer-
ence sets that are extracted from a parallel, aligned
corpus. These include 1000 sentence pairs for tun-
ing and 1000 (different) sentence pairs for evalu-
ation. The sentences are randomly extracted from
another portion of the Europarl corpus, collected
over the period of October to December 2000, and
another portion of Hansard. All tuning and refer-
ences sets are disjoint from the training materials.

3.2.2 Translation model experiments

In this set of experiments we focus again on
FR—EN systems, but also experiment with



DE—EN and EN—FR. We conduct in-domain ex-
periments using the Europarl corpus, and a cross-
corpus experiment in which we train on one corpus
and test on another. From the Europarl corpus we
use several portions, collected over the years 1996
to 1999 and 2001 to 2009.

To construct language models for the in-domain
experiments we use Europarl portions from the
period of January to September 2000 (this is the
English/French side of the training data used for
building the translation model in the language
model experiments). For cross-corpus experi-
ments we use the LM built from translated texts
that we use in the Hansard language model exper-
iments. For tuning and evaluation we use the same
sets used in the language model experiments.

4 Experiments and results

4.1 Language models experiments

We build several SMT systems that use the same
translation model, but differ in their language
models. This involves three tasks detailed below.

4.1.1 Classification of translationese

The first task is to train a classifier to detect trans-
lationese. This has been done before, and we adapt
some of the classifiers of Volansky et al. (2015).
Specifically, our classifier is based on Contextual
Jfunction words: we use counts of (contiguous) tri-
grams (w1, wa, w3), where each element w; is ei-
ther a word or its part of speech (POS), at least two
of the elements are function words, and at most
one is a POS tag. An example feature is the triple
(in,the,Noun). This feature set combines lexical
and shallow syntactic information in a way that
was proven useful for identifying translationese.
We also add counts of punctuation marks, another
feature that was shown accurate.” We evaluate the
accuracy of this classifier intrinsically, using ten-
fold cross-validation.

Then, we use the prediction of the classifier to
determine whether test texts are original or trans-
lated. The classifier thus defines a partition of the
training corpus to (predicted) originals vs. trans-
lations. Based on the classifier’s prediction, we
build language models from the sub-corpus deter-
mined as translated. We then evaluate the fitness
of this sub-corpus to the reference set, in terms of
perplexity. Specifically, we train 1-, 2-, 3-, and 4-
gram LMs for this sub-corpus and measure their

"The code for feature generation will be released.

50

perplexity on the reference set. This provides an
extrinsic evaluation for the quality of the classifier.

The results are reported in Table 1. Replicating
the results of Volansky et al. (2015), we demon-
strate that the classifier is indeed excellent. Not
surprisingly, good classification yields good lan-
guage models. The rightmost columns of Table 1
list the perplexity of language models trained on
the sub-corpus that was predicted as translated,
when applied to the reference set. For compar-
ison, we provide in Table 1 also the perplex-
ity of language models compiled from the entire
training set; from the actual (as opposed to pre-
dicted) translated texts; and from the actual orig-
inal texts. Clearly, and consistently with the re-
sults of Lembersky et al. (2012b), the original texts
yield the worst language models (highest perplex-
ity), whereas the actual translated texts yield an
upper bound (lowest perplexity). Still, due to the
high accuracy of the classifier, its perplexity is
very similar to this upper bound. The model that
is built from all texts, both original and translated,
is twice as large as the corpus used for the other
models, hence the lower perplexity rates.

To further establish the robustness of these re-
sults, we repeat the experiments with other cor-
pora, this time consisting of German translated
to English (DE—EN), and also English translated
to French (EN—FR). We only report results for
the 4-gram LMs (Table 2). The accuracies of
the classifiers are high, comparable to the case
of FR—EN. Moreover, the perplexities of the in-
duced language models are very close to the upper
bound obtained by taking actual translated texts.

4.1.2 Language models compiled from
predicted translationese

We established the fact that translated texts can be
identified with high accuracy, and that language
models compiled from predicted translations fit
the reference sets well. Next, we construct SMT
systems with these language models. Our hypoth-
esis is that language models compiled from (pre-
dicted) translationese will perform as well as (or
even better than) language models compiled from
the entire corpus. We evaluate this hypothesis in
several scenarios: when the corpus used for the
language model is the same corpus used for train-
ing the classifiers; or a different one, but of the
same type; or from a completely different domain.

We begin with a French-to-English translation
task. We use the same (4-gram) language models



Perplexity

Data set Chunks Acc. (%) 1-gram 2-gram 3-gram 4-gram
Predicted translations 1245 98.96 46351 9481 71.60 68.76
Translated texts 1255 463.58 9459 71.24  68.37
Original texts 1258 500.56 11548 91.14 88.31
All texts 2513 473.00 9334 67.84 6447

Table 1: Classification of translationese, and fitness to the reference set of FR—EN language models

compiled from texts predicted as translated

DE—EN EN—FR
Data set Chunks Acc. (%) Ppl Chunks Acc.(%) Ppl
Predicted translations 1,146 99.08 62.23 1,410 98.47 47.92
Translated texts 1,153 62.07 1,413 47.89
Original texts 1,153 76.68 1,411 59.75
All 2,306 57.48 2,824 44.49

Table 2: Accuracy of the classification, and fitness of language models compiled from texts predicted as

translated to the reference set, DE—EN and EN—FR

described in Section 4.1.1, constructed from the
predictions of the classifier. We also fix a single
translation model, compiled from the parallel por-
tion of the training corpus (Section 3.2). We then
train a French-to-English SMT system with the
(predicted) LM. As a baseline, we build an SMT
system that uses the entire training corpus for its
language model; we refer to this system as All. As
an upper bound (for a system that uses only a por-
tion of the corpus), we build a system that uses the
(actual) translated texts for its LM. We also report
results on a system that uses only original texts for
its LM. All systems are tuned on the same tuning
set of 1000 parallel sentences, and are tested on
the same reference set of 1000 parallel sentences.

We evaluate the quality of each of the SMT sys-
tems using MultEval (Section 3.1). The results are
presented in Table 3, reporting the BLEU, ME-
TEOR (MET), and TER evaluation measures, as
well as the p-value defining the statistical signifi-
cance with which the system is different from the
baseline (with respect to the BLEU score only).

Replicating some of the results of Lembersky
etal. (2011, 2012b), we find that using only trans-
lated texts for the language model is not infe-
rior to using the entire corpus (although the size
of the latter is double the size of the former).
In terms of BLEU scores, both yield the same
score, 29.1. Similarly, as reported by Lembersky
et al. (2011, 2012b), using only original texts is
markedly worse, with a BLEU score of 27.8. The
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main novelty of our current results, however, is the
observation that the language model that only uses
predicted, rather than actual translated texts, per-
forms just as well.®

For completeness, we repeat the same experi-
ments with two more language pairs: German to
English and English to French. The setup is iden-
tical, and we report the same evaluation metrics.
The results are presented in Table 4. The emerg-
ing pattern is identical to that of French to English.

The results of all the experiments confirm our
hypothesis; SMT systems built from predicted
translationese language models perform as well as
SMT systems built from (actual) translated lan-
guage models, and similarly to (twice as large)
mixed language models.

4.1.3 Cross-corpus experiments

The experiments discussed above all use the same
type of corpus both for training the translationese
classifiers and for training the SMT systems (the
actual portions differ, but all are taken from the
same corpus). In a typical translation scenario, a
monolingual corpus is available for constructing a
language model, but the status of its texts (original
or translated) is unknown, and has to be predicted
by a classifier that was trained on a potentially dif-

8In Table 3 and henceforth we highlight in boldface en-
tries that correspond to classifiers whose performance is bet-
ter than, or not significantly worse than, the performance of
the All classifier, which is considered the baseline against
which all other systems are compared.



Data set BLEUT METT TER| »p
Predicted translations 28.9 33.2 53.8 0.16
Translated texts 29.1 333 53.6 0.58
Original texts 27.8 329 547 0.00
All 29.1 333 538

Table 3: Evaluation of the FR—EN SMT system built from LMs compiled from predicted translationese

DE—EN EN—FR
Data set BLEUT MET]T TER| p BLEUT MET] TER] »p
Predicted translations 21.9 28.6 63.8 0.87 26.3 47.8 58.3 047
Translated texts 21.8 28.6 63.9 0.37 26.1 47.7 58.5 0.03
Original texts 21.0 28.4 64.6 0.00 25.1 47.0 59.5 0.00
All 21.9 28.6 63.7 26.3 48.0 58.7

Table 4: Evaluation of the DE—EN and EN—FR SMT systems built from LMs compiled from predicted

translationese

ferent domain. The question we investigate here,
then, is whether a classifier trained on texts in one
domain is useful for predicting translationese in a
different domain.

As a first experiment, we use an (English) trans-
lationese classifier that is trained on the Europarl
training data, but use the Hansard training data for
constructing the SMT system. In this experiment,
we do not use the meta-information of the Hansard
corpus, but instead use the predictions of the clas-
sifier. Based on these predictions, we define a par-
tition of the Hansard training corpus to (predicted)
originals vs. translations and use the text chunks
that were classified as translated to build 4-grams
language models.

Again, as in the in-domain experiment, we con-
struct a single, fixed translation model from the
parallel portion of the (Hansard) corpus. We then
train a French-to-English SMT system with the
(predicted) LM. As a baseline, we build an SMT
system that uses the entire Hansard training corpus
for its language model (A//). As an upper bound,
we build a system that uses the (real) translated
texts for its LM. We also report results on a sys-
tem that uses only original texts for its LM. All
systems are tuned and tested on the same tuning
and evaluation reference set.

The results (Table 5) are consistent with the
findings of the in-domain experiments. Although
the classifier only performs at 78% accuracy, its
predictions are sufficient for defining a language
model whose BLEU score (37.8) is statistically in-
distinguishable with the score (38.0) of LMs based
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on real translations or the entire corpus.

We repeat the cross-corpus experiments with
the News Commentary corpus, a French-English
parallel corpus for which the direction of transla-
tion is not annotated; we only use its English side.
Presumably, most of the texts in this corpus con-
sist of original English, but we hypothesize that
the classifier may be able to select chunks with
translationese-like features and consequently pro-
vide a better SMT system. Additionally, as the
News Commentary corpus is a collection of edito-
rials, we partition the corpus into (not necessarily
equal-length) articles, rather than to 2000-token
chunks, to maintain the coherence of chunks.

The results (Table 6) reveal the same pattern:
the predicted-translationese system yields a BLEU
score of 27.0, statistically insignificant difference
compared with the All system that uses the entire
corpus (27.2). This is obtained with much smaller
corpora, only 1,470 chunks (58% of the entire cor-
pus of 2,527 chunks).

4.2 Translation model experiments

We now move to experiments that address the
translation model. We build SMT systems that use
a fixed language model but differ in their transla-
tion model training data. For all systems we use
fixed tuning and evaluation sets.

4.2.1 Translation models compiled from
predicted translationese

We first train a classifier to detect the direction of

the translation (FR—EN vs. EN—FR). We clas-

sify the English side of the parallel corpus; for the



Data set Chunks Acc. (%) BLEUT METT TER| p
Predicted translations 1,321 78.22 37.8 37.7 459 0.11
Translated texts 2001 38.0 37.8 457 0.86
Original texts 2001 375 37.6 46.1 0.00
All 4002 38.0 37.7 458

Table 5: Cross-corpus evaluation: Hansard-based SMT system, Europarl-based classification

Data set Chunks BLEUT METT TER|] »p
Predicted translations 1,470 27.0 33.0 55.2 0.02
All 2,527 27.2 33.0 55.2

Table 6: Cross-corpus evaluation: News Commentary corpus

FR—EN and DE—EN tasks, chunks predicted as
translated are assumed to be translated in the right
direction (S — T'). For the EN—FR task, chunks
predicted as original are assumed to be translated
in the right direction. Then, we use the predic-
tion of the classifier to construct translation mod-
els: we only use the chunks predicted as translated
in the right direction. For each partition, we match
the English with the aligned French (or German)
sentences, thereby defining the SMT training data.

We hypothesize that translation models built
from such training data are better for SMT. To
explore this hypothesis we fix a single language
model (Section 3.2), and train an SMT system
with the (predicted) partitions and their aligned
sentences. As a baseline, we build an SMT sys-
tem, All, that uses the entire training corpus for its
translation model. As an upper bound, we build a
system that uses for its translation model the por-
tion of the parallel corpus that was indeed trans-
lated in the right direction (S — T'). We also re-
port results on a system that uses only the portion
of the parallel corpus that was translated in the op-
posite direction (1" — S) for its translation model.
All systems are tuned on the same tuning set and
are tested on the same reference set.

The results are presented in Table 7. They are
consistent with previous works that showed that
SMT systems trained on S — T parallel texts
outperformed systems trained on 7' — S texts
(Kurokawa et al., 2009; Lembersky et al., 2012a,
2013). Indeed, the best-performing systems use
either (actual) S — T texts (BLEU score of 31.3),
or the entire corpus (31.3); the worst system uses
(actual) T — S texts (28.4). What we add to pre-
vious results is the corroboration of the hypothe-
sis that a predicted-translationese system performs
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just as well as the actual ones.

As in the language model experiments, we re-
peat the same experiments with two more trans-
lation tasks: German to English and English to
French. The setup is identical, and we report the
same evaluation metrics. The emerging pattern
(Table 7) confirms our hypothesis: SMT systems
built from predicted S — T systems perform as
well as SMT systems built from the entire corpus.

4.2.2 Cross-corpus experiments

The above results are not very surprising given the
high accuracy of the translationese classifier. The
question we investigate in this section is whether a
classifier trained on texts in one domain is useful
for predicting translationese in a different domain.

We train an (English) translationese classifier
on the Europarl training data, but use the Hansard
corpus for the translation model. We apply the
classifier to the English side of the Hansard cor-
pus, and based on its predictions, define a partition
of the Hansard training corpus to use for the trans-
lation model. As in the in-domain experiment, we
construct a single, fixed language model from a
portion of the (Hansard) corpus. We then train
a French-to-English SMT system with the (pre-
dicted) translation model, comparing it to systems
that use the entire Hansard training corpus, the (ac-
tual) S — T texts and the actual 7' — S texts.

Table 8 reports the results. The best-performing
systems use either actual S — T’ texts or the entire
corpus (BLEU score of 37.3). The classifier per-
forms worse, at 36.3, but still much better than the
system that is based on 7" — S texts. This should
be attributed to the very small number of chunks
predicted by the classifier as § — T



Task Data set Chunks Acc. (%) BLEUT METT TER| »p

Predicted S — T 1,678 9893  31.1 347 521 0.13
ST 1.690 31.3 348 517 094

FR=EN . ¢ 1,689 284 333 544 0.00
All 3,379 31.3 347 519
Predicted S — 7 1,607 9944 237 303 61.6 0.00
ST 1,613 240 304 61.3 0.05

DE—EN | ¢ 1.612 217 290 639 0.00
All 3,225 242 305 61.1
Predicted S — 7 1,678 9893 294 50.7 553 0.11
ST 1.689 293 508 56.1 0.18

EN=FR ¢ 1,690 267 482 582 0.00
All 3,379 291  50.6 56.0

Table 7: Accuracy of the classification and evaluation of SMT systems built from translation models

compiled from predicted translationese

Data set Chunks Acc. (%) BLEUT METT TER| p
Predicted S — T 1,840 79.36 36.3 369 46.6 0.00
S —T 3,000 37.3 373 46.2 094
T— S8 3,000 341 358 489 0.00
All 6,000 373 374 46.0

Table 8: Cross-corpus evaluation: Hansard-based SMT system, Europarl-based classification

5 Conclusion

Two fundamental insights, motivated by research
in Translation Studies, drive our work:

1. Direction matters. When constructing trans-

lation models from parallel texts it is impor-
tant to identify which side of the bitext is the
source and which is the target. Translation
from the source of the SMT task to its target
is always better than the reverse option. In
fact, direction itself was utilized as features
for classification of translationese by select-
ing alignment patterns from O to T and vice
versa (Eetemadi and Toutanova, 2014, 2015).

. Translationese matters. When constructing
language models, translated texts (especially
from the source language, but not only) are
preferable to texts written originally in the
target language of the task at hand.

Our main hypothesis was that these benefits to
SMT still hold when meta-information on the sta-
tus of the texts is unavailable, and has to be pre-
dicted, especially in light of the deterioration in
the accuracy of translationese classifiers in the
face of out-of-domain texts. We trained classi-
fiers to identify translationese, and then used their
predictions to construct language- and translation-

54

models for SMT, demonstrating that attention to
translationese can yield state-of-the-art translation
quality with only a fraction of the corpora. We find
that one can generally rely on classifiers that iden-
tify at least half of the data as translated for both
the language model and the translation model.

In future work we would like to improve our
classifiers such that smaller chunks of text suffice
for accurate identification of translationese. We
also believe that combining various feature sets is
a key to improving the accuracy, and especially
the robustness, of translationese classifiers. In this
work we combined two complementary feature
sets; more work should be done in this direction.
In particular, there is ample evidence that features
should be sensitive to language family, as trans-
lations from similar languages look more similar
than translations from unrelated languages (Pym
and Chrupata, 2005; Koppel and Ordan, 2011).
To further improve the generality and domain-
independence, we currently experiment with unsu-
pervised classification of translationese, with very
encouraging preliminary results (Rabinovich and
Wintner, 2015).

Finally, we mainly experimented with English
and French in this work, but we are confident that



many language pairs can benefit from the method-
ology we propose.
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Abstract

We present a method that improves
data selection by combining a hybrid
word/part-of-speech representation for
corpora, with the idea of distinguishing
between rare and frequent events. We
validate our approach using data selection
for machine translation, and show that it
maintains or improves BLEU and TER
translation scores while substantially im-
proving vocabulary coverage and reducing
data selection model size. Paradoxically,
the coverage improvement is achieved
by abstracting away over 97% of the
total training corpus vocabulary using
simple part-of-speech tags during the data
selection process.

1 Introduction

Data selection uses a small set of domain-relevant
data to select additional training items from a
much larger, out-of-domain dataset. Its goal is to
filter Big Data down to Good Data: finding the
best, most relevant data to use to train a model for
a particular task.

The prevalent data selection method, cross-
entropy difference (Moore and Lewis, 2010), can
produce domain-specific systems that are usually
as good as or better than systems using all avail-
able training data (Axelrod et al., 2011). The size
of these domain-specific systems scales roughly
linearly with the amount of selected data: a system
trained on the most domain-relevant 10% of the
full out-of-domain dataset will be only one tenth
of the size of a system trained using all the avail-
able data. This can be a large win in settings where
training time matters, and also where compactness
of the final system matters, e.g. running speech
recognition or translation on mobile devices.

While data selection thus eliminates the need to
train systems on the entire pool of available data,
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the data selection process itself does not scale well
(it still requires a language model built on the en-
tire pool) and, more significantly, it comes at a
cost: training on selected subsets leads to reduc-
tions in vocabulary coverage compared to training
on the full out-of-domain data pool. This coverage
is important, because most NLP systems face the
problem of handling words that were not seen in
training the system, i.e. out-of-vocabulary (OOV)
words. In automatic speech recognition (ASR), for
example, OOV words pose a substantial problem,
since the system will hallucinate a phonetically
similar word in its vocabulary when an OOV word
is encountered. In machine translation (MT), our
focal application in this paper, OOVs can some-
times be transliterated, but often they are ignored
or passed through without translation, and gaps in
vocabulary coverage can have a significant effect
on MT performance (Daumé III and Jagarlamudi,
2011; Irvine and Callison-burch, 2013).

We introduce a method that preserves the data
selection benefit of reducing translation system
size. Our method performs as well or better than
the standard cross-entropy difference method, as
measured by downstream MT results. To this we
add the benefits of substantially improved lexical
coverage, as well as lower memory requirements
for the data selection model itself.

This improvement stems from constructing a
hybrid representation of the text that abstracts
away words that are infrequent in either of the in-
domain and general corpora. They are replaced
with their part-of-speech (POS) tags, permitting
their n-gram statistics to be robustly aggregated:
intuitively, if a domain-relevant sentence includes
a rare word in some non-rare context (e.g. “An
earthquake in Port-au-Prince”), then another sen-
tence with the same context but a different rare
word is probably also just as relevant (e.g. “An
earthquake in Kodari”). While this method re-
quires pre-processing the corpora to POS tag the

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 58—65,
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data, the idea should generalize to automatically-
derived word classes.

We present results using data selection to train
domain-relevant SMT systems, yielding favorable
performance compared against the standard ap-
proaches of Moore and Lewis (2010) and Axel-
rod et al. (2011). Paradoxically, this is achieved
by a selection process in which the specific lexical
items for infrequent words — up to 97% of the total
vocabulary — are replaced with POS tags.

2 Related Work

Data selection is a widely-used variant of domain
adaptation that requires quantifying the relevance
to the domain of the sentences in a pooled cor-
pus of additional data. The pool is sorted by rel-
evance score, the highest ranked portion is kept,
and the rest discarded.This process — also known
as “rank-and-select” in language modeling (Sethy
et al., 2009) — identifies the subset of the data pool
that is most like the in-domain corpus and keeps it
for translation system training, in lieu of using the
entire data pool. The resulting translation systems
are more compact and cheaper to train and run
than the full-corpus system. The catch, of course,
is that any large data pool can be expected to con-
tain sentences that are at best irrelevant to the do-
main, and at worst detrimental: the goals of fi-
delity (matching in-domain data as closely as pos-
sible) and broad coverage are often at odds (Gasco
et al., 2012). As a result, much work has focused
on fidelity. Mirkin and Besacier (2014) survey the
difficulties of increasing coverage while minimiz-
ing impact on model performance.

We build on the standard approach for data se-
lection in language modeling, which uses cross-
entropy difference as the similarity metric (Moore
and Lewis, 2010). The Moore-Lewis procedure
first trains an in-domain language model (LM) on
the in-domain data, and another LM on the full
pool of general data. It assigns to each full-pool
sentence s a cross-entropy difference score,

)

HLMIN (3) - HLMPOOL (3)7

where H,,(s) is the per-word cross entropy of s
according to language model m. Lower scores
for cross-entropy difference indicate more relevant
sentences, i.e. those that are most like the target
domain and unlike the full pool average. In bilin-
gual settings, the bilingual Moore-Lewis criterion,
introduced by Axelrod et al. (2011), combines the
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cross-entropy difference scores from each side of
the corpus; i.e. for sentence pair (s1, s2):

(HLMINl (s1) — HLMPOOLl (s1))

+(HrMy, (52) = HiMpoor, (52))  (2)

After sorting on the relevant criterion, the top-n
sentences (or sentence pairs) are added to the in-
domain data to create the new, combined training
set. Typically a range of values for n is considered,
selecting the n that performs best on held-out in-
domain data.

While shown to be effective, however, word-
based scores may not capture all facets of rele-
vance. The strategy of a hybrid word/POS rep-
resentation was first explored by Bulyko et al.
(2003), who used class-dependent weights for
mixing multi-source language models.  The
classes were a combination of the 100 most fre-
quent words and POS tags. Bisazza and Fed-
erico (2012) target in-domain coverage by using
a hybrid word/POS representation to train an ad-
ditional LM for decoding in an MT pipeline. Toral
(2013) uses a hybrid word/class representation for
data selection for language modeling; he replaces
all named entities with their type (e.g. ’person’,
’organization’), and experiments with also lemma-
tizing the remaining words.

3 Our Approach: Abstracting Away
Words in the Long Tail

Our approach is motivated by the observation that
domain mismatches can have a strong register
component, and this comprises both lexical and
syntactic differences. We are inspired, as well,
by work in stylometry, observing that attempts to
quantify differences between text datasets try to
learn too much from the long tail (Koppel et al.,
2003): most words occur very rarely, meaning that
empirical statistics for them are probably overes-
timating their seen contexts and underestimating
unseen ones.

We therefore adopt a hybrid word/POS repre-
sentation strategy, but, crucially, we focus not
on restricting attention to frequent words, but on
avoiding the undue effects of infrequent words.
The proposal can be realized straightforwardly:
after part-of-speech tagging the in-domain and
pool corpora, we identify all words that appear in-
frequently in either one of the two corpora, and re-
place each of their word tokens with its POS tag.



Relevance computation, sentence ranking and sub-
set selection then proceed as usual according to the
Moore-Lewis or bilingual Moore-Lewis criterion.

As an example, consider again the phrases “an
earthquake in Port-au-Prince” and “an earth-
quake in Kodari”, and suppose that the words
an, in, and earthquake are above-threshold in fre-
quency. Our hybrid word/POS representation for
both sentences would be the same:
quake in NNP”.

Our approach differs from the standard data
selection method most significantly in its han-
dling of rare words in frequent contexts. Consider
a domain-specific n-gram context c¢ that appears
with a rare word w. For example, in a hypothetical
news domain, let ¢ = “an earthquake in”, made
up of common words, and let w = Port-au-Prince.
Suppose that the in-domain corpus contains the
phrase “an earthquake in Port-au-Prince” eight
times. The word w does not appear any other times
in the in-domain corpus, and the word v’ = Ko-
dari never appears at all.

Now suppose the out-of-domain pool corpus
contains a sentence with “an earthquake in Ko-
dari”. The standard Moore-Lewis method consid-
ers Kodari to be an unknown word, and so only
credits that pool sentence with matching the ele-
ments of c. In contrast, our method replaces both
rare words w and w’ with their POS tag, NNP,
so that the pool sentence contains “an earthquake
in NNP”. Our method thus credits ¢ from the
in-domain corpus, like Moore-Lewis, but we also
credit the sentence with matching the 4-gram “an
earthquake in NNP”, which appears eight times
in the in-domain corpus. Despite not appearing
in the pool corpus, the rare word w from the in-
domain corpus now provides us information about
the relevance of pool sentences containing a syn-
tactically similar rare word w’ that shares the same
context c.

“an earth-

4 Experimentation

We evaluate our data selection approach in a real-
istic small-in-domain-corpus setting, in two ways.
First, as an intrinsic evaluation, we look at vo-
cabulary coverage of the selected data relative to
the in-domain training set, i.e. how many words
from the in-domain corpus are out-of-vocabulary
for selected data, since models trained on those
data would not not be able to handle those words.
Second, as an extrinsic evaluation, we use statisti-
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cal machine translation as a downstream task.

4.1 Evaluation Framework

We define our in-domain corpus as the TED talk
translations in the WIT® TED Chinese-English
corpus (Cettolo et al., 2012), a good example of
a subdomain with little available training data. We
used the IWSLT dev2010 and test2010 sets (also
from WIT?) for tuning and evaluation. The larger
pool from which we selected data was constructed
from an aggregation of 47 LDC Chinese-English
parallel datasets.! Table 1 contains the corpus
statistics for the task and pool bilingual corpora.

Vocab Vocab
Corpus Sentences (En) (Zh)
TED (task) 145,901 49,323 64,616
LDC (pool) 6,025,295 458,570 714,628

Table 1: Chinese-English Parallel Data.

We used the KenLM toolkit (Heafield, 2011)
to build all language models used in this work
(i.e., both for data selection and for the MT sys-
tems used for extrinsic evaluation). In all cases
the models were 4-gram LMs. We used the Stan-
ford part-of-speech tagger (Toutanova et al., 2003)
when constructing our hybrid representations, to
generate the POS tags for each of the English and
Chinese sides of the corpora.”

We consider three ways of applying data se-
lection using the standard (fully lexicalized) cor-
pus representation and our hybrid representa-
tion. The first two use the monolingual Moore-
Lewis method (Equation 1) to respectively com-
pute relevance scores using the English (output)
side and the Chinese (input) side of the parallel
corpora. The third uses bilingual Moore-Lewis
(Equation 2) to compute the bilingual score over
both sides.

Each of these three variants produces a ver-
sion of the full pool in which the sentences are
ranked by relevance score, from lowest score

'Specifically:  LDC2000T47 LDC2002T01 LDC2003E07 LDC2003T17
LDC2004E12 LDC2004T07 LDC2005T06 LDC2006T04 LDC2007E101 LDC2007T09
LDC2007T23 LDC2008E40 LDC2008E56 LDC2008T06 LDC2008T08 LDC2008T18
LDC2009E16 LDC2009E95 LDC2009T02 LDC2009T06 LDC2009T15 LDC2010T03
LDC2010T10 LDC2010T11 LDC2010T12 LDC2010T14 LDC2010T17 LDC2010T2!
LDC2012T16 LDC2012T20 LDC2012T24 LDC2013E119 LDC2013E125 LDC2013E132
LDC2013E83 LDC2013T03 LDC2013T05 LDC2013T07 LDC2013T11 LDC2013T16
LDC2014E08 LDC2014E111 LDC2014E50 LDC2014E69 LDC2014E99 LDC2014T04
LDC2014T11.

>The Stanford NLP tools use the Penn tagsets, which
comprise 43 tags for English and 35 for Chinese.



English  Chinese
TED vocab 49,323 64,616
LDC vocab 458,570 714,628
Joint vocab 470,154 729,283
LDC minus singletons 243,882 373,381
Baseline selection vocab 257,744 388,927

Table 2: Chinese and English vocabulary for the
baseline selection process.

(most domain-like) to highest score (least domain-
like). For each of those ranked pools, we con-
sider increasingly larger subsets of the data: the
best n = 50K, the best n 100K, and so on.
The largest subset we consider consists of the best
n = 4M sentence pairs out of the 6M available.

4.1.1 Cross-Entropy Difference Baseline

In addition to comparing against a system trained
on all the data, we compare against systems
trained on data selected via the standard cross-
entropy difference method. The joint vocabu-
lary for the TED and LDC data is shown in Ta-
ble 2. However, when training the language mod-
els used for the baseline selection process, we first
pruned the singletons from the LDC vocabulary.
This step is not necessary, but provides a slightly
stronger baseline. The rationale is that ignoring
LDC singletons avoids reserving too much prob-
ability mass for rare words outside of the domain
of interest. Unlike the experimental systems be-
low, pruning the lexicon simply ignores the words
in the corpus and does not replace them with any-
thing. This process removed 47% of the LDC
vocabulary in each language. We then merged
the remaining words from LDC with the complete
TED lexicon. This produced a final vocabulary of
257,744 (En) and 388,927 (Zh) words for the base-
line cross-entropy difference selection process, as
shown in Table 2.

4.1.2 Hybrid Representation Systems

As our infrequent-word threshold (selected ahead
of our experimentation), we retained words with a
count of 10 or more in each corpus, and replaced
all other words with their POS tags to create the
hybrid corpus representation. The minimum count
requirement reduced the vocabulary to 10,036 En-
glish words and 11,440 Chinese words, as shown
in Table 3. All other words were replaced, thus
a minimum count of 10 in each corpus eliminates
over 97% of the vocabulary in each language. We
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English  Chinese
Joint vocab 470,154 729,283
Vocab with count > 10 10,036 11,440
POS tags 42 35
Hybrid vocab 10,078 11,475

Table 3: Chinese and English vocabulary for the
proposed selection process.

previously found that setting the threshold to 10 is
slightly better than a minimum count of 20 (Axel-
rod, 2014), and varying the threshold further is a
topic for future work; see Section 5.

4.2 Results

4.2.1 Intrinsic Evaluation

As noted, each of the bilingual Moore-Lewis
method and our hybrid word/POS variation pro-
duces a version of the additional training pool in
which sentences are ranked by relevance. We then
select increasingly larger slices of the data from
50k to 4M, as described in Section 4.1, and report
results. As shown in Figures 1 and 2, the hybrid-
selected models show consistently improved vo-
cabulary coverage when compared head-to-head
with models trained on data selected via a Moore-
Lewis method, across all subsets. The only excep-
tion is when examining the vocabulary coverage
in one language while selecting data based on the
other one (e.g. selecting data using the English
half but measuring the TED vocabulary cover-
age in Chinese), where our method provides only
negligible improvement. Overall, the in-domain
(TED) vocabulary coverage is up to 10% better
with our proposed method, and the general-data
(LDC) vocabulary coverage is up to 20% better.

Table 4 illustrates what this looks like in more
detail for a single slice containing the top 2M sen-
tence pairs. The table shows how many more vo-
cabulary items are covered by the 2M sentence
slice selected using our hybrid representation (the
Hyb columns) than are covered by the best 2M
sentences selected using the standard lexical rep-
resentation (the Std columns).

Our method shows this improved vocabulary
coverage regardless of whether one compares the
vocabulary coverage of the methods on the En-
glish side (the first three rows) or the Chinese side
(the second three rows) of the corpora. Further-
more, the results also hold regardless of which
of the three ways of performing cross-entropy-



TED Coverage LDC Coverage

Lang Method Std  Hyb Std  Hyb
Mono-en 67% 72% 42% 52%
En Mono-Zh 70% 71% 48% 54%
Bilingual 68% 72% 42% 52%
Mono-En 70% 71% 38% 46%
Zh Mono-Zh 69% 73% 43% 62%
Bilingual 69% 73% 37% 54%

Table 4: Vocabulary coverage comparison be-
tween standard and hybrid-based data selection,
for data-selected samples of 2M sentences.

based data selection one uses. The three ways
are: monolingual Moore-Lewis for the English
and Chinese sides of the parallel corpus (Mono-En
and Mono-Zh, respectively), as well as bilingual
Moore-Lewis (Bilingual).

When selecting 2M sentences, Table 4 shows
that the hybrid representation provides up to an ex-
tra 4-5% in-domain vocabulary coverage in either
language. Furthermore, the hybrid-based methods
obtain up to 10% more general-domain vocabu-
lary coverage for English, and up to 19% more
Chinese general-domain vocabulary coverage. All
improvements are absolute percentage increases.

Figure 2 shows that our hybrid method’s pool
vocabulary coverage increases more rapidly than
the baseline. The standard approach shows vo-
cabulary coverage increasing more or less linearly
with the amount of selection data. By contrast,
our proposed method appears to asymptotically
approach full in-domain vocabulary coverage, par-
ticularly for Chinese. Similarly, Figure 1 shows
that our hybrid method also increases more rapidly
to asymptotically approach full in-domain vocab-
ulary coverage as well.

4.2.2 Extrinsic Evaluation

Improved vocabulary coverage is a positive re-
sult, but we are also interested in downstream ap-
plication performance. Accordingly, we trained
SMT systems using cdec (Dyer et al., 2010) on
subsets of selected data. All SMT systems were
tuned using MIRA (Chiang et al., 2008) on the
dev2010 data from IWSLT (Federico et al., 2011),
and then evaluated on the test2010 IWSLT test
set using both BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006). To isolate the impact
of the data selection method, we present results
just using the selected data, without the combining
with the in-domain data into a multi-model sys-
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tem. Note that the hybrid word/POS representa-
tions were only used to compute the cross-entropy
difference scores for determining sentences’ rele-
vance; the MT systems themselves are trained us-
ing the sentences containing the original words.

Figure 3 shows our MT results using both
BLEU and TER. The horizontal line is a static
baseline that uses all the available training data
without data selection. The dashed grey line
is from systems trained on data selected via the
standard Moore-Lewis cross-entropy-difference
method, and the black line is from systems trained
on data selected with our hybrid approach. To
account for variability in MT tuning, each of the
curves in Figure 3 is the average of three tun-
ing/decoding runs.

In terms of system accuracy, our results con-
firm prior work on data selection, demonstrating
that in comparison to training using all available
data, comparable or even better MT performance
can be obtained using only a fraction of the out-
of-domain data available.

Table 5 shows SMT results for the same sub-
set size of 2M sentences used for the coverage
results in Table 4. Systems trained on data se-
lected using the hybrid representation are up to
+0.5 BLEU better, regardless of whether the se-
lection process is monolingual or bilingual. In-
deed, at least for BLEU, it appears that our hy-
brid method may tend to converge to comparable
performance more quickly, a possibility worthy of
future experimentation.

The TER results are mixed for this data se-
lection subset size. The MT evaluation scores
are low in absolute terms, due to only using the
general-domain data, yet are still not inconsistent
with prior research done using this dataset (Fed-
erico et al., 2011). Fluctuations in the perfor-
mance curves are also consistent with prior work,
as IWSLT scores are very jittery. We averaged
results over three tuning runs, for stability. De-
spite that, Figure 3 shows how high-variance TER
scores are on this task.

4.2.3 Selection Model Size

The resulting translation system sizes conform
with prior work: selecting smaller subsets yields
smaller downstream MT systems. For example,
an MT system trained on 1M selected sentences
is ~2.3GB in size, a factor of 5 smaller than the
11.3GB baseline MT system trained on all 6M
sentences. In addition, we observe a healthy re-
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Figure 1: Percentage of TED vocabulary covered vs. number of selected sentences by method.
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Figure 2: Percentage of LDC vocabulary covered vs. number of selected sentences by method.
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Figure 3: SMT system scores on the TED Zh-En test2010 set vs. number of selected sentences by

method.
Metric Method  Std Hyb
Mono-en 8.55 8.95
BLEU Mono-Zh 7.70 8.22
Bilingual 8.34 8.68

Mono-En 84.44 82.15
TER Mono-Zh 80.16 84.51
Bilingual 81.27 81.44

Table 5: SMT system score comparison between
standard and hybrid-based data selection, for data-
selected samples of 2M sentences.

duction in the memory requirements for the data
selection process, which requires training a lan-
guage model on the entire data pool. The bina-
rized language model built using the standard data
selection baseline on the full corpus of 6M sen-
tences requires about 2GB, whereas the equiva-
lent all-data LM for our approach is 25% smaller.?
This means that for any given amount of avail-
able memory, the hybrid method can scale up data
selection to a larger out-of-domain sentence pool.
As arough example, an 8GB desktop machine can
be used to train an LM on 32M sentences using
the hybrid representation rather than 24M using

30ur back-of-the-envelope estimates ignore the in-
domain LM, which is tiny in comparison.
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the standard text; for a large-memory 128GB ma-
chine, our method would allow us to increase the
size of the corpus used to train the full-data LM
from a maximum of 384M sentences to more than
half a billion sentences.

5 Conclusions

We have presented a new method for data selection
that retains the existing advantages of the state-
of-the-art approach, while improving vocabulary
coverage and also improving the ability to scale up
to larger out-of-domain datasets. Our motivation
is in the practical application of NLP technology,
which often requires working with constrained re-
sources and in specific domains with limited train-
ing data. The proposal is conceptually simple,
uses widely available tools, and is easily applied.
A drawback of the proposed approach is that it re-
quires an additional pre-processing step of tagging
all of the training data. For languages for which a
POS tagger is not available, we expect that data-
driven word classes would be a good substitute. In
future work we plan to explore hybrid represen-
tations further, e.g. abstracting away from infre-
quent lexical items via distributional clustering or
morphological analysis, rather than using part-of-
speech information.
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Abstract

DFKI participated in the shared transla-
tion task of WMT 2015 with the German-
English language pair in each translation
direction. The submissions were gener-
ated using an experimental hybrid system
based on three systems: a statistical Moses
system, a commercial rule-based system,
and a serial coupling of the two where
the output of the rule-based system is fur-
ther translated by Moses trained on paral-
lel text consisting of the rule-based output
and the original target language. The out-
puts of three systems are combined using
two methods: (a) an empirical selection
mechanism based on grammatical features
(primary submission) and (b) IBM1 mod-
els based on POS 4-grams (contrastive sub-
mission).

1 Introduction

The system architecture we will describe has been
developed within the QTLEAP project.! The goal
of the project is to explore different combinations
of shallow and deep processing for improving MT
quality. The system presented in this paper is the
first of a series of MT system prototypes developed
in the project. Figure 1 shows the overall architec-
ture that includes:

e A statistical Moses system,

o the commercial transfer-based system Lucy,
o their serial combination ("LucyMoses”), and
e an informed selection mechanism (’ranker”).

The components of this hybrid system will be
detailed in the sections below.

"http://qtleap.eu/
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Input

In the Insert menu, select Table. >
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Transfer-based system, output 2
> >
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System combination, output 3

Wahlen Sie im Menii Einfligen Tabelle aus. il

Figure 1: Architecture of System Combination.

2 Translation systems

Moses

Our statistical machine translation system was
based on a vanilla phrase-based system built with
Moses (Koehn et al., 2007) trained on the cor-
pora Europarl ver. 7, News Commentary ver. 9
(Bojar et al., 2014), Commoncrawl (Smith et al.,
2013) and MultiUN (Eisele and Chen, 2010). Lan-
guage models of order 5 have been built and inter-
polated with SRILM (Stolcke, 2002) and KenLM
(Heafield, 2011). For German to English, we also
experimented with the method of pre-ordering
the source side based on the target-side grammar
(Popovi¢ and Ney, 2006). As a tuning set we used
the news-test 2013.

Lucy

The transfer-based Lucy system (Alonso and
Thurmair, 2003) includes the results of long lin-
guistic efforts over the last decades and that has
been used in previous projects including EURO-
MATRIX, EUROMATRIX+ and QTLAUNCHPAD,
while relevant hybrid systems have been submit-
ted to WMT (Chen et al., 2007; Federmann et
al., 2010; Hunsicker et al., 2012). The transfer-
based approach has shown good results that com-
pete with pure statistical systems, whereas it fo-
cuses on translating according to linguistic struc-

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 6673,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



tures. Its functionality is based on hand-written
linguistic rules and there are no major empirical
components. Translations are processed on three
phases:

e the analysis phase, where the source-
language text is parsed and a tree of the
source language is constructed

the transfer phase, where the analysis tree is
used for the transfer phase, where canonical
forms and categories of the source are trans-
ferred into similar representations of the tar-
get language

the generation phase, where the target sen-
tence is formed out of the transfered repre-
sentations by employing inflection and agree-
ment rules.

LucyMoses

As an alternative way of automatic post-editing
of the transfer-based system, a serial trans-
fer+SMT system combination is used, as described
in (Simard et al., 2007). For building it, the first
stage is translation of the source language part of
the training corpus by the transfer-based system.
In the second stage, an SMT system is trained using
the transfer-based translation output as a source
language and the target language part as a target
language. Later, the test set is first translated by
the transfer-based system, and the obtained trans-
lation is translated by the SMT system. In previ-
ous experiments, however, the method on its own
could not outperform Moses trained on a large par-
allel corpus. The example in Figure 1 (taken from
the QTLEAP corpus used in the project) nicely il-
lustrates how the serial coupling operates. While
the SMT output used the right terminology (“Menii
Einfiigen” — “insert menu”), the instruction is not
formulated in a very polite manner. In contrast,
the output of the transfer-based system is formu-
lated politely, yet mistranslating the menu type.
The serial system combination produces a perfect
translation. In this particular case, the machine
translation is even better than the human reference
(“Wihlen Sie im Einfiigen Menii die Tabelle aus.”)
as the latter is introducing a determiner for “table”,
which is not justified by the source.

2.1 Sentence level selection

We present two methods for performing sentence
level selection, one with pairwise classifier and
one based on POS 4-gram IBM1 models.
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2.1.1 Empirical machine learning classifier
(primary submission)

The machine learning (ML) selection mecha-
nism is based on encouraging results of previous
projects including EUROMATRIX+ (Federmann
and Hunsicker, 2011), META-NET (Federmann,
2012), QTLAUNCHPAD (Avramidis, 2013; Shah
et al., 2013). It has been extended to include sev-
eral features that can only be generated on a sen-
tence level and would otherwise blatantly increase
the complexity of the transfer or decoding algo-
rithm. In the architecture at hand, automatic syn-
tactic and dependency analysis is employed on a
sentence level, in order to choose the sentence that
fulfills the basic quality aspects of the translation:
(a) assert the fluency of the generated sentence, by
analyzing the quality of its syntax (b) ensure its ad-
equacy, by comparing the structures of the source
with the structures of the generated sentence.

All produced features are used to build
a machine-learned ranking mechanism (ranker)
against training preference labels. Preference la-
bels are part of the training data and rank dif-
ferent system outputs for a given source sentence
based on the translation quality. Preference labels
are generated either by automatic reference-based
metrics, or derived from human preferences. The
ranker was a result of experimenting with various
combinations of feature sets and machine learn-
ing algorithms and choosing the one that performs
best on the development corpus.

The implementation of the selection mechanism
is based on the “Qualitative” toolkit that was pre-
sented at the MT Marathon, as an open-source con-
tribution by QTLEAP (Avramidis et al., 2014).

Feature sets We experimented with feature sets
that performed well in previous experiments. In
particular:

e Basic syntax-based feature set: unknown
words, count of tokens, count of alternative
parse trees, count of verb phrases, PCFG
parse log likelihood. The parsing was per-
formed with the Berkeley Parser (Petrov and
Klein, 2007) and features were extracted
from both source and target. This feature set
has performed well as a metric in WMT-11
metrics task (Avramidis et al., 2011).

Basic feature set + 17 QuEst baseline fea-
tures: this feature set combines the ba-
sic syntax-based feature set described above



with the baseline feature set of the QuEst
toolkit (Specia et al., 2013) as per WMT-13
(Bojar et al., 2013). This feature set combina-
tion got the best result in WMT-13 quality es-
timation task (Avramidis and Popovic¢, 2013).
The 17 features set includes shallow features
such as the number of tokens, LM probabili-
ties, number of occurences of the target work
within the target probability, average num-
bers of translations per source word in the
sentence, percentages of unigrams, bigrams
and trigrams in quartiles 1 and 4 of frequency
of source words in a source language corpus
and the count of punctuation marks.

Machine Learning As explained above, the
core of the selection mechanism is a ranker which
reproduces ranking by aggregating pairwise de-
cisions by a binary classifier (Avramidis, 2013).
Such a classifier is trained on binary comparisons
in order to select the best out of two different MT
outputs given one source sentence at a time. As a
training material, we used the evaluation dataset of
the WMT shared tasks (years 2008-2014), where
each source sentence was translated by many sys-
tems and their outputs were consequently ranked
by human annotators. These preference labels pro-
vided the binary pairwise comparisons for training
the classifiers. Additionally to the human labels,
we also experimented on training the classifiers
against automatically generated preference labels,
after ranking the outputs with METEOR (Banerjee
and Lavie, 2005). In each translation direction, we
chose the label type (human vs. METEOR) which
maximizes if possible all automatic scores on our
development set, including document-level BLEU.

We exhaustively tested all suggested feature sets
with many machine learning methods, including
Support Vector Machines (with both RBF and lin-
ear kernel), Logistic Regression, Extra/Decision
Trees, k-neighbors, Gaussian Naive Bayes, Lin-
ear and Quadratic Discriminant Analysis, Ran-
dom Forest and Adaboost ensemble over Deci-
sion Trees. The binary classifiers were wrapped
into rankers using the soft pairwise recomposi-
tion (Avramidis, 2013) to avoid ties between the
systems. When ties occurred, the system se-
lected based on a predefined system priority (Lucy,
Moses, LucyMoses). The predefined priority was
defined manually based on preliminary observa-
tions in order to prioritize the transfer-based sys-
tem, due to its tension to achieve better grammat-
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icality. Further analysis on this aspect may be re-
quired.

Best combination The optimal systems are us-
ing:

1. the Basic feature set + 17 QuEst baseline fea-
tures for GermanrightarrowEnglish, trained
with Suppor Vector Machines (Basak et al.,
2007) against human ranking labels.

. the basic syntax-based feature set for
English—German, trained with Support Vec-
tor Machines against METEOR scores. ME-
TEOR was chosen since for this language pair,
the empirical mechanism trained on human
judgments had very low performance in term
of correlation with humans.

2.1.2 POS 4-gram IBM1 models (contrastive
submission)

Using the 1BM1 scores (Brown et al., 1993) for
automatic evaluation of MT outputs without ref-
erence translations has been proposed in Popovic¢
et al. (2011), and the best variant in terms of cor-
relation with human ranking was the target-from-
source direction based on POS 4-grams. There-
fore, we investigated this variant for our sentence
selection, and we submitted the obtained transla-
tion outputs as contrastive.

The 1BM1 scores are defined in the following
way:

IBM1 :W}jzp(hi’@i) (1)

where s; are the POS 4-grams of the source lan-
guage sentence, S is the POS 4-gram length of this
sentence, h; are the POS 4-grams of the target lan-
guage translation output (hypothesis), and H is the
POS 4-gram length of this hypothesis.

A parallel bilingual corpus for the desired lan-
guage pair and a tool for training the IBM1 model
are required in order to obtain IBM1 probabilities
p(hi|s;). For the POS n-gram scores, appropriate
POS taggers for each of the languages are neces-
sary. The POS tags cannot be only basic but must
have all details (e.g. verb tenses, cases, number,
gender, etc.).

The bilingual 1BM1 probabilities used in our
experiments are learnt from the German-English
part of the wMT 2010 News Commentary bilin-
gual corpora. Both German and English POS tags
were produced using TreeTagger (Schmid, 1994).



3 Experimental results

Table 1 presents BLEU scores (Papineni et al.,
2002), word F-scores and POS F-scores (Popovic,
2011) for all individual systems and system com-
binations for both translation directions. The fol-
lowing interesting tendencies can be observed:

e German—English:

— Moses and LucyMoses are comparable
on the word level (BLEU and WORDF)

— LucyMoses is best on the syntactic
(POS) level

— LucyMoses achieves better scores than
both its components

— using all three systems with a selection
mechanism is the best option

e English—German:

— Lucy is comparable with Moses on the
word level and better on syntactic level

— LucyMoses improves all scores

— LucyMoses+Moses (LM+M) is the best
combination for word level scores

— Lucy+LucyMoses (L+LM) is compara-
ble with the combination of all three sys-
tems (L+LM+M) for the syntactic ori-
ented POSF score

We submitted the combination of all three sys-
tems for both selection mechanisms and for both
translation directions. It should be noted that the
ML classifier is used for the project’s first official
prototype, whereas the IBM1 classifier has been
investigated only recently in the framework of the
project — therefore the primary submission for the
shared task is the ML classifier although it yielded
lower automatic scores than the IBM1 classifier.

In order to estimate the limits of the classi-
fiers for the given three MT systems, upper bound
scores are presented in the last two rows, when se-
lecting criteria were the WORDF and POSF scores
themselves. It can be seen that there is a room for
improvement for both selection methods. Further
investigation, tuning and extension of the selec-
tion mechanisms will provide more insights and
has potential for future improvements of the selec-
tion itself as well as of the MT systems.

Preliminary results concerning analysis of dif-
ferences between the systems and behaviour of
classifiers are shown in the following section.
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3.1 Analysis of the results

First step towards better understanding of the se-
lection mechanisms is to investigate the contribu-
tion of each of the individual systems in the final
translation output. The results are presented in Ta-
ble 2 in the form of percentage of sentences se-
lected from each system. It is notable that:

o the ML classifier mostly favors the transfer-
based output;

e for the English—German translation, the
same holds for the IBM1 classifier; for the
other translation direction, Lucy is selected
very rarely — for less than 2% sentences;

upper bound selection yields a more or less
uniform distribution, however WORDF is
clearly biased towards LucyMoses and POSF
towards Lucy.

First indication is that the deep features of the
ML classifier are active and therefore this classi-
fier has a bias towards the transfer-based output.
Furthermore, system contributions of upper bound
selection methods indicate that the transfer-based
outputs are more grammatical and thus favored
by the syntax-oriented POSF score, whereas the
LucyMoses system, which can be seen as a lexi-
cal reparation of a grammatical output, is favored
by the lexical WORDF score. Nevertheless, these
first hypotheses need to be confirmed by further
studies that are planned.

Table 3 shows examples of differences between
the selection methods as well as between the three
individual MT systems. The sentences are taken
from the WMT-15 test set. First column denotes
the selection method which choose the particular
translation output. Sentence 1 illustrates the differ-
ences between two classifiers as well as between
two F-scores; POSF score and ML classifier opt
for the transfer-based translation, whereas I1BM 1
choses Moses and WORDF score prefers Lucy-
Moses. Sentences 2-4 show the discrepance be-
tween the ML classifier and the automatic scores;
the 1BM1 score selection differs from the upper
bound selections only for the sentence 4. Such
sentences are the most probable reason for lower
overall MLC performance in terms of automatic
scores. The last sentence shows an example where
both classifiers agree, but they disagree with both
F-scores.



(a) De—En

[ German—English [[ BLEU | WORDF [ POSF |
individual Lucy (L) 20.8 25.9 42.6
systems Moses (M) 23.2 28.2 427

LucyMoses (LM) 23.2 279 44.2
selection ML classifier L+LM+M 22.6 27.4 43.6
mechanism | POS 4-gram IBM1 L+M 23.2 28.2 42.8
L+LM 23.2 27.9 44.2
LM+M 23.7 28.6 44.5
L+LM+M 23.7 28.6 44.5
upper max(WORDF) L+LM+M 26.9 30.8 46.8
bounds max(POSF) L+LM+M 25.6 30.7 48.6
(b) En—De

[ English—German [[ BLEU | WORDF [ POSF |
individual Lucy (L) 17.3 22.9 44.5
systems Moses (M) 17.1 23.1 41.9

LucyMoses (LM) 18.9 244 45.3
selection ML classifier L+LM+M 18.1 23.7 444
mechanism | POS 4-gram IBM1 L+M 18.2 23.6 44.7
L+LM 18.6 24.0 45.7
LM+M 19.1 24.4 45.1
L+LM+M 18.9 24.1 45.4
upper max(WORDF) L+LM+M 224 26.6 47.1
bounds max(POSF) L+LM+M 21.0 26.1 49.4

Table 1: Translation results [%] for the German-English language pair.

(a) De—En
[ German—English [[ Lucy | Moses [ LucyMoses |
ML classifier 42.1 36.6 21.3
POS 4-gram 1BM1  L+M 2.8 97.2 /
L+LM 2.5 / 97.5
LM+M / 424 57.6
L+LM+M 1.7 56.0 42.3
WORDF L+LM+M || 29.3 31.8 389
POSF L+LM+M || 34.5 33.7 31.8
(b) En—De
[ English—German [[ Lucy [ Moses | LucyMoses |
ML classifier 44.0 8.0 48.0
POS 4-gram IBM1 L+M 56.5 43.5 /
L+LM 63.3 / 36.7
LM+M / 45.5 54.5
L+LM+M || 41.5 22.1 36.3
WORDF L+LM+M || 34.2 294 36.3
POSF L+LM+M 423 27.1 30.5

Table 2: Percentage of selected sentences from each individual system.
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The table also illustrates advantages of the se-
rial LucyMoses system — this system produces the
best translation output for all presented sentences
except for sentence 3.

4 Summary and outlook

We described a hybrid MT system based on three
different individual systems where the final trans-
lation output is produced by a sentence level se-
lection mechanism, with the possibility to include
deep linguistic and grammatical features. Prelim-
inary analysis suggests that various improvements
are possible, starting from improvements on the
transfer-based system (handling of lexical items
such as terminology, MWEs, OOVs and robust-
ness of parsing), the serial combination (e.g., im-
proved disambiguation), up to more detailed anal-
ysis and testing and improvement of the selection
mechanism (e.g., integrating more “deep” infor-
mation from external parsing).
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1) src: Die Geschichte erinnert sich, und das sollten wir auch tun.

ref: History remembers, as should we.
POSF,MLC ~Lucy: =~ The history remembers, and we should also do that. ~ ~ ~ ~ ~ ~ ~ ~ ~
IBM1  Moses: Remembers the history, and we should do this.
WORDF  LucyMoses:  History remembers, and we should do the same.
2)  src: Eine neue Runde indirekter Gespriche wird voraussichtlich
noch in diesem Monat in Agypten beginnen .
ref: A new round of indirect talks is expected to begin
later this month in Egypt.
MLC ~Lucy: =~ Anew round of indirect conversations will probably ~— ~ =~~~ = =~
still begin in this month in Egypt.
Moses: A new round of indirect talks is likely to begin in this month in Egypt.
WORDF, POSF, IBM1  LucyMoses: A new round of indirect talks is likely to begin this month in Egypt.
3) src: Ich denke schon.
ref: I think so.
“Lucy: Talready think. o
WORDF, POSF, IBM1  Moses I think so.
MLC LucyMoses: I have already think.
4) src: Uber mehrere Jahre hatte niemand in dem Haus gelebt.
ref: No one had lived in the house for several years.
WORDF, POSF ~ Lucy: ~ ~ ~ Over several years nobody had Tived in the house. ~ ~ ~ ~ — ~ ~ ~ ~ ~
IBM1  Moses No one had over several years lived in the House.
MLC LucyMoses: For several years, no one had lived in the House.
5) src: Mach es nicht schlecht, wenn du nicht weiit, wovon du redest.
ref: Don’t slag it off if you don’t know what you’re talking about.
“Lucy: Do not make it bad if you do not know which you talk about. ~
MLC, IBM1  Moses Do it not bad, if you do not know what they are.
WORDF, POSF  LucyMoses: Do not make it bad if you do not know what they are talking about.

Table 3: Examples of differences between the selection results and between the three individual systems.
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Abstract

We build parallel FDAS (ParFDA) Moses
statistical machine translation (SMT) sys-
tems for all language pairs in the workshop
on statistical machine translation (Bojar et
al., 2015) (WMT15) translation task and
obtain results close to the top with an av-
erage of 3.176 BLEU points difference us-
ing significantly less resources for build-
ing SMT systems. ParFDA is a paral-
lel implementation of feature decay algo-
rithms (FDA) developed for fast deploy-
ment of accurate SMT systems (Bigici,
2013; Bicici et al.,, 2014; Bigici and
Yuret, 2015). ParFDA Moses SMT sys-
tem we built is able to obtain the top
TER performance in French to English
translation. We make the data for build-
ing ParFDA Moses SMT systems for
WMT15 available: https://github.
com/bicici/ParFDAWMT15.

1 Parallel FDAS (ParFDA)

Statistical machine translation performance is in-
fluenced by the data: if you already have the
translations for the source being translated in your
training set or even portions of it, then the transla-
tion task becomes easier. If some token does not
appear in your language model (LM), then it be-
comes harder for the SMT engine to find its cor-
rect position in the translation. The importance of
ParFDA increases with the proliferation of train-
ing material available for building SMT systems.
Table 1 presents the statistics of the available train-
ing and LM corpora for the constrained (C) sys-
tems in WMTT15 (Bojar et al., 2015) as well as the
statistics of the ParFDA selected training and LM
data.

ParFDA (Bigici, 2013; Bigici et al., 2014) runs
separate FDAS (Bicici and Yuret, 2015) models on

Dublin City University, Ireland

gliu@computing.dcu.ie
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randomized subsets of the training data and com-
bines the selections afterwards. FDAS is avail-
able at http://github.com/bicici/FDA. We run
ParFDA SMT experiments using Moses (Koehn et
al., 2007) in all language pairs in WMT15 (Bojar
et al., 2015) and obtain SMT performance close
to the top constrained Moses systems. ParFDA al-
lows rapid prototyping of SMT systems for a given
target domain or task.

We use ParFDA for selecting parallel training
data and LM data for building SMT systems. We
select the LM training data with ParFDA based on
the following observation (Bigici, 2013):

No word not appearing in the training
set can appear in the translation.

Thus we are only interested in correctly ordering
the words appearing in the training corpus and col-
lecting the sentences that contain them for build-
ing the LM. At the same time, a compact and more
relevant LM corpus is also useful for modeling
longer range dependencies with higher order n-
gram models. We use 3-grams for selecting train-
ing data and 2-grams for LM corpus selection.

2 Results

We run ParFDA SMT experiments for all lan-
guage pairs in both directions in the WMTI15
translation task (Bojar et al., 2015), which include
English-Czech (en-cs), English-German (en-de),
English-Finnish (en-fi), English-French (en-fr),
and English-Russian (en-ru). We truecase all of
the corpora, set the maximum sentence length to
126, use 150-best lists during tuning, set the LM
order to a value in [7,10] for all language pairs,
and train the LM using SRILM (Stolcke, 2002)
with —unk option. For GIZA++ (Och and Ney,
2003), max-fertility is set to 10, with the num-
ber of iterations set to 7,3,5,5,7 for IBM mod-
els 1,2,3,4, and the HMM model, and 70 word

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 7478,
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g7 Training Data LM Data
Data | #word S(M) #word T (M) #sent (K) | SCOV TCOV | #word (M) TCOV

en-cs C 253.8 224.1 16083 | 0.832  0.716 841.2 0.862
en-cs ParFDA 49.0 42.1 1206 | 0.828  0.648 447.2 0.834
cs-en C 224.1 253.8 16083 | 0.716  0.832 5178.5 0.96
cs-en ParFDA 42.0 46.3 1206 | 0.71 0.786 1034.2 0.934
en-de C 116.3 109.8 4525 | 0.814 0.72 2380.6 0.899
en-de  ParFDA 37.6 33.1 904 | 0.814  0.681 513.1 0.854
de-en C 109.8 116.3 4525 | 0.72 0.814 5111.2  0.951
de-en  ParFDA 333 33.1 904 | 0.72 0.775 969.1 0.923
en-fi C 52.8 37.9 2072 | 0.684 0.419 52.7 0.559
en-fi ParFDA 37.2 26.4 1035 | 0.684 0.41 79.1 0.559
fi-en C 379 52.8 2072 | 0.419 0.684 50542 0.951
fi-en ParFDA 25.1 34.5 1035 | 0.419  0.669 9859 0.921
en-fr C 1096.9 1288.5 40353 | 0.887  0.905 2989.4 0.956
en-fr ParFDA 58.8 63.2 1261 | 0.882  0.857 797.1 0.937
fr-en C 1288.5 1096.9 40353 | 0.905 0.887 5961.6 0.962
fr-en ParFDA 72.4 60.1 1261 | 0.901  0.836 865.3 0.933
en-ru C 51.3 48.0 2563 | 0.814  0.683 848.7 0.881
en-ru ParFDA 37.2 33.1 1281 | 0.814  0.672 434.8 0.857
ru-en C 48.0 51.3 2563 | 0.683 0.814 5047.8 0.958
ru-en ParFDA 33.8 36.0 1281 | 0.683  0.803 996.3 0.933

Table 1: Data statistics for the available training and LM corpora in the constrained (C) setting compared
with the ParFDA selected training and LM data. #words is in millions (M) and #sents in thousands (K).

classes are learned over 3 iterations with the mk-
cls tool during training. The development set con-
tains up to 5000 sentences randomly sampled from
previous years’ development sets (2010-2014) and
remaining come from the development set for
WMTI5.

2.1 Statistics

The statistics for the ParFDA selected training
data and the available training data for the con-
strained translation task are given in Table 1. For
en and fr, we have access to the LDC Gigaword
corpora (Parker et al., 2011; Graff et al., 2011),
from which we extract only the story type news.
The size of the LM corpora includes both the
LDC and the monolingual LM corpora provided
by WMT15. Table 1 shows the significant size
differences between the constrained dataset (C)
and the ParFDA selected data and also present the
source and target coverage (SCOV and TCOV) in
terms of the 2-grams of the test set. The quality
of the training corpus can be measured by TCOV,
which is found to correlate well with the BLEU
performance achievable (Bigici, 2011).

The space and time required for building the
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ParFDA Moses SMT systems are quantified in Ta-
ble 2 where size is in MB and time in minutes. PT
stands for the phrase table. We used Moses ver-
sion 3.0, from www.statmt .org/moses. Building
a ParFDA Moses SMT system can take about half
a day.

2.2 Translation Results

ParFDA Moses SMT results for each translation
direction together with the LM order used and
the top constrained submissions to WMT15 are
given in Table 3 !, where BLEUc is cased BLEU.
ParFDA significantly reduces the time required for
training, development, and deployment of an SMT
system for a given translation task. The average
difference to the top constrained submission in
WMT15 is 3.176 BLEU points whereas the dif-
ference was 3.49 BLEU points in WMT14 (Bigici
et al., 2014). Performance improvement over last
year’s results is likely due to using higher order
n-grams for data selection. ParFDA Moses SMT
system is able to obtain the top TER performance
in fr-en.

"We use the results from matrix.statmt.org.



Time (Min) Space (MB)

S—T ParFDA Moses Overall Moses

Train LM Total | Train Tune Total PT LM ALL
en-cs 10 73 83 999 1085 2154 2237 | 3914 4826 41930
cs-en 11 524 535 965 413 1445 1980 | 3789 6586 39661
en-de 9 146 155 852 359 1279 1434 | 3333 4867 36638
de-en 6 232 238 797 421 1285 1523 | 3065 6233 34316
en-fi 7 0 7 591 569 1212 1219 | 2605 18746 24948
fi-en 5 308 313 543 164 744 1057 | 2278 6115 22933
en-fr 22 233 255 | 2313 331 2730 2985 | 5628 7359 76970
fr-en 26 330 356 | 2810 851 3749 4105 | 6173 6731 86442
en-ru 11 463 474 | 704 643 1429 1903 | 4081 4719 43479
ru-en 42 341 383 704 361 1140 1523 | 4039 6463 40948

Table 2: The space and time required for building the ParFDA Moses SMT systems. The sizes are in
MB and time in minutes. PT stands for the phrase table. ALL does not contain the size of the LM.

S —en en — T
BLEUc cs-en de-en  fi-en fr-en ru-en en-cs en-de en-fi en-fr en-ru
ParFDA | 0.204 0.2441 0.1541 0.3263 0.2598 | 0.148 0.1761 0.1135 0.3195 0.22
TopC 0.262 0.293 0.179 0331 0279 | 0.184 0.249 0.127 0336 0.243
diff 0.058 0.0489 0.0249 0.0047 0.0192 | 0.036 0.0729 0.0135 0.0165 0.023
LM order | 8 8 8 8 8 8 8 10 8 8

Table 3: BLEUc for ParFDA results,

for the top constrained result in WMT15 (TopWMTC, from

matrix.statmt.org), their difference, and the ParFDA LM order used are presented. Average

difference is 3.176 BLEU points

2.3 LM Data Quality

A LM selected for a given translation task allows
us to train higher order language models, model
longer range dependencies better, and achieve
lower perplexity as shown in Table 4. We compare
the perplexity of the ParFDA selected LM with a
LM trained on the ParFDA selected training data
and a LM trained using all of the available training
corpora. We build LM using SRILM with inter-
polated Kneser-Ney discounting (-kndiscount
—interpolate). We also use —unk option to
build open-vocabulary LM. We are able to achieve
significant reductions in the number of OOV to-
kens and the perplexity, reaching up to 78% reduc-
tion in the number of OOV tokens and up to 63%
reduction in the perplexity. ParFDA can achieve
larger reductions in perplexity than the 27% that
can be achieved using a morphological analyzer
and disambiguator for Turkish (Yuret and Bicici,
2009) and can decrease the OOV rate at a similar
rate. Table 4 also presents the average log prob-
ability of tokens and the log probability of token
<unk>. The increase in the ratio between them in
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the last column shows that OOV in ParFDA LM
are not just less but also less likely at the same
time.

3 Conclusion

We use ParFDA for solving computational scala-
bility problems caused by the abundance of train-
ing data for SMT models and LMs and still
achieve SMT performance that is on par with the
top performing SMT systems. ParFDA raises the
bar of expectations from SMT with highly accu-
rate translations and lower the bar to entry for
SMT into new domains and tasks by allowing fast
deployment of SMT systems. ParFDA enables
a shift from general purpose SMT systems to-
wards task adaptive SMT solutions. We make the
data for building ParFDA Moses SMT systems for
WMTI15 available: https://github.com/

bicici/ParFDAWMT15.
Acknowledgments
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OOV Rate perplexity avg log probability <unk> log probability <%€§i’(>
C FDA5 FDA5 C FDA5 FDAS C FDA5 FDAS C FDA5 FDA5
S — T order | train train LM %red| train train LM %red| train train LM train train LM Poinc
3 763 694 444 42 291 -2.89 -2.66 .26
4 716 668 403 44 -2.89 -2.87 -2.62 27
en-cs 5 .038 .055 .014 .64 703 662 396 44 288 287 261 -4.94 -558 -5.69 57
8 699 660 394 44 -2.88 -2.86 -2.61 27
3 281 255 196 3 246 242 23 .29
4 260 243 157 .39 243 24 22 33
cs-en 5 .035 .046 .014 .62 251 237 150 4 241 239 218 -4.84 -533 -5.83 33
8 247 236 148 4 241 -2.39 -2.18 .33
3 425 383 303 .29 -2.68 -2.64 -2.5 .04
4 414 377 268 .35 -2.67 -2.64 -245 .06
en-de 5 .092 .107 .034 .63 412 376 262 37 267 264 244 -5.69 -592 -5.52 06
8 412 376 261 .37 -2.67 -2.64 -243 .06
3 280 265 205 .29 248 245 -2.32 .09
4 277 258 164 41 246 244 222 13
de-en 5 .05 .06 025 5 275 257 156 43 246 243 22 -5.69 -585 -5.81 14
8 275 257 154 44 246 243 22 .14
3 1413 1290 1347 .05 -3.44 -342 -3.31 .05
4 1403 1285 1323 .06 -3.44 341 -33 .05
en-fi 5 | 203 213 128 37 401 1284 1320 06 | 344 341 33 | 1T A 42 .05
8 1400 1284 1319 .06 -3.44 341 -33 .05
3 505 465 228 .55 275 272 237 .58
4 485 449 188 .61 273 271 -2.28 .63
fi-en 5 .087 .107 .019 .78 482 447 179 63 273 271 226 -4.34 -586 -591 64
8 481 446 177 .63 273 271 -2.26 .65
3 196 146 155 .21 23 2,18 -2.19 .07
4 173 137 125 27 225 2115 -2.1 .08
en-fr 5 .019 .031 .01 .49 167 136 119 29 2923 215 208 -5.28 -5.56 -5.36 09
8 165 136 117 .29 -2.23 -2.15 -2.07 .09
3 290 217 220 24 247 -2.35 -2.35 .06
4 266 208 187 3 244 233 -228 .08
fr-en 5 .022 .031 .01 52 260 207 181 3 243 233 296 -5.28 -5.44 -5.31 08
8 258 207 180 3 242 233 -226 .08
3 547 515 313 43 277 2775 -2.51 .69
4 537 507 273 49 277 275 244 73
en-ru 5 049 054 014 .71 536 507 264 51 277 274 243 -3.57 -4.87 -5.45 74
8 535 507 259 .52 277 274 242 .74
3 225 214 188 .16 237 235 228 .65
4 216 207 148 31 -2.35 -2.33 -2.18 71
ru-en 5 041 046 017 .58 215 206 140 35 235 233 215 -3.65 -49 -5.79 73
8 215 206 138 .36 -2.34 233 -2.15 73

Table 4: Perplexity comparison of the LM built from the training corpus (train), ParFDA selected training
data (FDAS train), and the ParFDA selected LM data (FDAS5 LM). %red is proportion of reduction.
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Abstract

This paper describes our WMT15 system
submission for the translation task, a hy-
brid system for English-to-Czech transla-
tion. We repeat the successful setup from
the previous two years.

1 Introduction

CHIMERA (Bojar et al., 2013; Tamchyna et al.,
2014) is our English-to-Czech MT system de-
signed as a combination of three very different
components:

e TectoMT (Popel and Zabokrtsky, 2010), a
deep-syntactic transfer-based system,

Moses (Koehn et al., 2007), where we use
a factored phrase-based setup with large lan-
guage models,

Depfix (Rosa et al., 2012), an automatic post-
editing system, aimed at correcting mainly
errors in morphological agreement but suc-
cessful also in semantic corrections, esp. re-
covery of lost negation.

The overall setup as well as the details on each
of the components have been described in the past.
We nevertheless briefly review it here, to make the
paper self-contained.

This year, our submission mainly differed in the
additional data we were able to collect. We thus
evaluate how much do the additional data help
in contrast with an identical setup using WMT15
training data only.! For the manual evaluation in
WMT15, we submitted the non-constrained sys-
tem, and even the “constrained” setup might not
qualify as such, since it is a system combination
and both TectoMT and Depfix rely on handcrafted
rules to some extent.

"nttp://www.statmt.org/wmt15/
translation—-task.html
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In the following, we provide various details of
the setup. We leave Depfix aside, since we simply
applied it as a post-processing step and the rele-
vant analysis of its rules was published previously
(Bojar et al., 2013).

2 Chimerain WMT15

2.1 Factored Setup

We use our established setup, translating from
English word form in one translation step to the
Czech word form and morphological tag. This al-
lows us to use language models over morphologi-
cal tags, see §2.5 below.

Our word forms are in truecase, i.e. the words
at sentence beginnings are lowercased, unless they
are names. We rely on Czech and English lemma-
tizers® to select the true case.

Otherwise, our setup is fairly standard. We do
not use any models of reordering, relying on basic
distortion penalty.

2.2 Our System Combination

The first two components of CHIMERA, Tec-
toMT (which appears in WMT evaluations as CU-
TECTOMT) and Moses are independent MT sys-
tems on their own. CHIMERA combines them in
a way remotely similar to standard system combi-
nation techniques (Matusov et al., 2008) and adds
the third component, Depfix, for automatic correc-
tion of some grammar and semantic errors. For
clarity, we will use the abbreviation CHo to refer
to the basic Moses setup without CU-TECTOMT.
CH1 refers to the first stage, where CU-TECTOMT
has been added, and CH2 is the complete combi-
nation.

To obtain the output of CH1 from CHo and
CU-TECTOMT, we could have used some of the
standard system combination tools, e.g. Barrault

http://ufal.mff.cuni.cz/morphodita

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 79-83,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



Dev Set:
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Figure 1: “Poor man’s” system combination: adding CU-TECTOMT outputs to CHo in a separate phrase
table, optimizing the combination with standard MERT and translating the test set.

(2010) or Heafield and Lavie (2010). Instead, we
simply use Moses to do the job.

Figure 1 provides a graphical summary of the
technique. To obtain the combined system CH1,
we add one additional phrase table to the primary
phrase-based system CHo. This new phrase table
is “synthetic”, its source side comes from the in-
put text and the target side comes from the output
of CU-TECTOMT. The process to construct this
phrase table is straightforward: we translate the
source side of the development sets and the test
set with CU-TECTOMT and treat it as a standard
parallel corpus. We align it with GIZA++, using
lemmas instead of word forms, but aligning only
this relatively small corpus, not the main parallel
training data. After symmetrization (grow-diag-
final-and), we extract phrases without any smooth-
ing. Moses is set up to use simultaneously the two
phrase tables, the CHo one and the new from CU-
TECTOMT, in two alternative decoding paths.

The main and only trick is to include the devel-
opment set(s) and the test set in this phrase table.
Covering the development set ensures that MERT
will correctly assess the relative importance of the
two tables. And covering the test set is essential in
the main run.

We dub the approach “poor man’s” system com-
bination, but we have recently found that this ap-
proach has surprising benefits over the standard
approaches. It allows the combined system CH1
to react to (usually longer) phrases coming from
CU-TECTOMT and use words and phrases from the
standard CHo phrase table that were not previously
selected to CHo single-best output but make the
sentence overall more fluent. See Tamchyna and
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Bojar (2015) for a detailed analysis.

This year, we translated the source side of all
WMT news test sets from the years 2007 till 2015
with CU-TECTOMT, contributing to the phrase ta-
ble. The MERT is tuned only on WMT newstest
2013. We used newstest2014 to decide which ex-
act configuration to submit and the final results of
WMT are obviously based on newstest2015.

2.3 Parallel Data and Phrase Tables

Table 1 summarizes the parallel data used in
our experiments. We use the CzEng 1.0 corpus
and Europarl in both the constrained and uncon-
strained setting.

Our full system additionally uses OpenSubtitles
datasets from OPUS.?> We downloaded all three
corpora (2011, 2012, 2013) and ran context-aware
de-duplication on the whole dataset. (A sentence
is removed only if it was already seen in the con-
text of one preceding and one following sentence.
The same sentence can thus appear in the corpus
many times, if its context was different.)

For DGT Acquis, we do not rely on OPUS. In-
stead, we downloaded the corpus from the official
website, aligned the sentences using HunAlign
(Varga et al., 2005) and de-duplicated them.

We also use the small translation memories
from ECDC* and EAC.?

Shttp://opus.lingfil.uu.se/

*https://ec.europa.eu/jrc/
en/language—-technologies/
ecdc-translation-memory

Shttps://ec.europa.eu/jrc/
en/language-technologies/
eac-translation-memory



Source #sents #entokens #cstokens Constrained?
CzEng 1.0 14.83M  235.19M  206.05M v
Europarl 0.65M 17.62M 15.00M v
OpenSubtitles 33.25M 291.38M 237.61M -

DGT Acquis 3.82M 93.44M 84.81M -
EAC-TM 3351 24330 23106 -
ECDC-TM 2499 4092 41591 -

Table 1: Summary of parallel data used in our constrained and full setup.

Full Constrained
# sents #tokens | long big morph longmorph | long morph longmorph

Czech Press | 305.41M 4852.59M - v - - - - -
CWC articles | 3842M 6279M | - - - - - -
CzEng news 0.20M a22M | -V v v -

RSS 48IM  7368M | vV V V v - - -
WMT mono 4408M 7388M | vV V v v v

Table 2: Monolingual data sources and LMs.
2.4 Monolingual Data Long is a 7-gram model based on our truecased

Table 2 summarizes the monolingual data that we
use in the full and in the constrained setup. Czech
Press is a very large collection of news texts ac-
quired in 2012. From CzEng 1.0, we use only the
news section. CWC stands for Czech Web Cor-
pus collected at our department from various web
sites; here, we restrict it to articles (as opposed to
discussion fora). RSS are our own collected news
from six Czech web news sites and WMT are the
standard monolingual data collected by WMT or-
ganizers in the years 2007-2014. Only CzEng and
WMT data are allowed in the constrained runs.

Note that several of the resources are likely to
overlap, e.g. our RSS collection probably follows
the same sources as WMT data and Czech Web
Corpus is also likely to be gathered from similar
websites.

Except CWC, all the LM texts are strictly from
the news domain. In other words, while we use as
much and as diverse parallel texts as possible, we
keep our LM in domain. We believe that at our
current order of data size, preserving the domain
is more important than using more monolingual
data.

2.5 Language Models

As detailed in Table 2, we build several separate
language models from the data. The constrained
setup uses three LMs and the full setup uses four:
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word forms. While the remaining LMs
are trained directly with KenLM (Heafield,
2011), this 7-gram LMs is interpolated with
SRILM from separate (KenLM) ARPA files
estimated from each of the years separately.
The lambdas for the interpolation are set
to optimize the perplexity on WMT new-
stest2012. This approach allows us to use the
relatively high order of the model and proba-
bly serves also as a kind of smoothing, dis-
tributing more probability mass to n-grams
that are important across several years.

Big is a 4-gram LM based on our truecased word
forms. It uses all our data, and as such, it can-
not be included in the constrained setup. The
motivation for using both “big” and “long”
models is to cover long sequences as well
as to have as precise statistics for shorter se-
quences as possible. We would not be able to
train a 7-gram model using all our data.

Morph is a 10-gram LM based on Czech morpho-
logical tags. There are around 4000 distinct
morphological tags, so we can afford training
such a high order of the LM.

LongMorph is a 15-gram variation of “morph”.
We were hoping that given again some more
training data this year, the morphological tags
would be dense enough to capture sentence



patterns within 15-grams. As it turns out,
standard n-gram modelling techniques were
not able to reach this goal.

Table 3 lists the BLEU scores (newstest2014)
for all sensible (non-constrained) combinations of
the LMs in CHo. We see that the LMs indeed have
some complementary effect. The absolute differ-
ences in BLEU scores are rather small (and most
of them are probably not statistically significant),
but arguably using “big”, “long” and one of the
morphological LMs is the most beneficial setup.

LMs BLEU
long 21.32
long morph longmorph  22.00
big 22.00
long morph 22.01
long longmorph 22.14
big morph 22.21
big long 22.26
big morph longmorph 22.28
big longmorph 22.29
big long morph 22.48
big long longmorph 22.69
all 22.59

Table 3: Complementary effect of adding Tec-
toMT and language models.

3 Results

Table 4 shows (tokenized) BLEU scores on the
WMT14 test set, comparing CHo (i.e. plain fac-
tored phrase-based Moses setup) and CH1 (i.e.
the combination with CU-TECTOMT), in the con-
strained and full-data runs. The BLEU scores are
case-sensitive. The scores indicate that adding
CU-TECTOMT is more important than the addi-
tional training data. With more data, the benefit of
CU-TECTOMT slightly decreases, but still remains
rather high, 1.65 BLEU points absolute.

In Table 5, we list scores of different vari-
ants of CHIMERA and competing MT systems for
WMTI15. Our system ranked first according to
both automatic and manual evaluation. Some of
the gains are due to large training data (other aca-
demic submissions were constrained systems). On
the other hand, we also outperform Google Trans-
late which likely uses all data available.
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Constrained  Full | Delta
CHo 21.28 22.59 | 1.31
CH1 23.37 2424 | 0.87
Delta 2.09 1.65 -

Table 4: BLEU scores on WMT newstest2014 of
the first two components of Chimera.

System BLEU TER Manual
CH2 18.8 0.715 0.686
CH1 18.7 0.717 -
JHU-SMT 18.2 0.725 0.503
CHoO 17.6 0.730 -
GOOGLE TRANSLATE 16.4 0.750 0.515
CU-TECTOMT 134 0.763 0.209

Table 5: Automatic scores and results of man-
ual ranking in WMT 2015 (preliminary re-
sults). BLEU (cased) and TER from matrix.
statmt.org. The top other system JHU-SMT
and GOOGLE TRANSLATE are reported for refer-
ence.

4 Conclusion

We briefly described our submission to the
WMTIS translation shared task. Our setup is
fairly standard with the exception of our language
model suite and the system combination with a
transfer-based system. We showed that we ben-
efit both from the large training data and from the
system combination. Our submission ranked first
according to both automatic and manual evalua-
tion.

Acknowledgements

This research was supported by the grants H2020-
ICT-2014-1-644402 (HimL), H2020-1CT-2014-1-
644753 (KConnect), and SVV 260 224. This
work has been using language resources devel-
oped, stored and distributed by the LINDAT/
CLARIN project of the Ministry of Education,
Youth and Sports of the Czech Republic (project
LM2010013).

References

Loic Barrault. 2010. MANY, Open Source Machine
Translation System Combination. In Prague Bul-
letin of Mathematical Linguistics - Special Issue
on Open Source Machine Translation Tools, num-
ber 93 in Prague Bulletin of Mathematical Linguis-
tics. Charles University, January.

Ondfej Bojar, Rudolf Rosa, and Ale§ Tamchyna. 2013.



Kenneth Heafield and Alon Lavie.

Chimera — Three Heads for English-to-Czech Trans-
lation. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, pages 92-98, Sofia,
Bulgaria, August. Association for Computational
Linguistics.

2010. Combin-
ing Machine Translation Output with Open Source,
The Carnegie Mellon Multi-Engine Machine Trans-
lation Scheme. In Prague Bulletin of Mathematical
Linguistics - Special Issue on Open Source Machine
Translation Tools, number 93 in Prague Bulletin of
Mathematical Linguistics. Charles University, Jan-
uary.

Peking, China, July. Association for Computational
Linguistics. in print.

Ale§ Tamchyna, Martin Popel, Rudolf Rosa, and

Ondrej Bojar. 2014. CUNI in WMT14: Chimera
still awaits bellerophon. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
195-200, Baltimore, MD, USA. Association for
Computational Linguistics.

Déniel Varga, Laszl6 Németh, Péter Haldcsy, Andras

Kornai, Viktor Trén, and Viktor Nagy. 2005. Paral-
lel corpora for medium density languages. In Pro-
ceedings of the Recent Advances in Natural Lan-

guage Processing RANLP 2005, pages 590-596,
Kenneth Heafield. 2011. Kenlm: Faster and smaller Borovets, Bulgaria.
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, Edin-
burgh, UK, July. Association for Computational Lin-

guistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In ACL 2007, Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguis-
tics Companion Volume Proceedings of the Demo
and Poster Sessions, pages 177-180, Prague, Czech
Republic, June. Association for Computational Lin-
guistics.

Evgeny Matusov, Gregor Leusch, Rafael E. Banchs,
Nicola Bertoldi, Daniel Dechelotte, Marcello Fed-
erico, Muntsin Kolss, Young-Suk Lee, Jose B.
Marino, Matthias Paulik, Salim Roukos, Holger
Schwenk, and Hermann Ney. 2008. System
Combination for Machine Translation of Spoken
and Written Language. [EEE Transactions on Au-
dio, Speech and Language Processing, 16(7):1222—
1237, September.

Martin Popel and Zdengk Zabokrtsky. 2010. Tec-
toMT: Modular NLP framework. In Hrafn Lofts-
son, Eirikur Rognvaldsson, and Sigrun Helgadot-
tir, editors, Lecture Notes in Artificial Intelligence,
Proceedings of the 7th International Conference
on Advances in Natural Language Processing (Ic-
eTAL 2010), volume 6233 of Lecture Notes in Com-
puter Science, pages 293-304, Berlin / Heidelberg.
Iceland Centre for Language Technology (ICLT),
Springer.

Rudolf Rosa, David Marecek, and Ondfej Dusek.
2012. DEPFIX: A System for Automatic Correc-
tion of Czech MT Outputs. In Proceedings of the
Seventh Workshop on Statistical Machine Transla-
tion, pages 362-368, Montréal, Canada, June. Asso-
ciation for Computational Linguistics.

AleS Tamchyna and Ondfej Bojar. 2015. What a
Transfer-Based System Brings to the Combination
with PBMT. In Proc. of ACL Workshop HyTra,

83



CimS - The CIS and IMS Joint Submission to WMT 2015
addressing morphological and syntactic differences
in English to German SMT

Fabienne Cap', Marion Weller'?, Anita Ramm' and Alexander Fraser!
1 CIS, Ludwig-Maximilian University of Munich — (cap|ramml|fraser) @cis.uni-muenchen.de
2 IMS, University of Stuttgart — wellermn @ims.uni-stuttgart.de

Abstract

We present the CimS submissions to the
WMT 2015 Shared Task for the transla-
tion direction English to German. Simi-
lar to our previous submissions, all of our
systems are aware of the complex nomi-
nal morphology of German. In this pa-
per, we combine source-side reordering
and target-side compound processing with
basic morphological processing in order to
obtain improved translation results. We
also report on morphological processing
for English to French.

1 Introduction

This paper presents our submissions to the WMT
shared task 2015. We use customised solutions to
address morphological challenges in the English
to German translation direction. Our goal is to
make German and English as similar as possible in
order to obtain better word alignments and hence
an improved translation quality. We base our work
on three main components, which we have care-
fully investigated separately in the past.

(i) Nominal Inflection We use context-based
prediction of German inflectional endings. This
improves fluency and enables the creation of mor-
phological forms which have not occurred in the
training data.

(ii) Source-side Reordering We reorder the En-
glish source text in order to make it more sim-
ilar to the German word order. This improves
word alignment and thus translation quality. It also
makes the reordering task in decoding easier.

(iii) Compound Processing We split German
compounds into simple words for training. In
decoding, we translate only simple words, some
of which are re-combined into compounds after-
wards in post-processing. This allows us to create
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compounds which have not occurred in the train-
ing data.

This year, our main focus is on combining nominal
inflection prediction and source-side reordering.
We investigated both of these components sepa-
rately in the past and expect an additive positive
effect on translation quality when combined. We
then added compound processing, which we al-
ready have investigated in combination with nomi-
nal inflection before, but not together with source-
side reordering. Here, we also expect the com-
bination to outperform the single components in
terms of translation quality.

2 Methodology

The underlying idea of all of our systems is to
improve translation quality by making the source
and target languages more similar than they usu-
ally are. We address three common problems in
English to German SMT: morphological richness
in terms of inflectional variants, productive com-
pounding and different word orders. In Figure 1,
we illustrate the latter two of these problems using
an example sentence which contains both a Ger-
man compound (“Mehrheitsvotum” = “majority
vote”) and different word orders.

The methods we use to solve all three of
these problems are implemented as pre- and post-
processing steps. For nominal inflection and
compound handling, the German data is trans-
formed into an underspecified representation prior
to training. After translation we transform the un-
derspecified output into fluent German by merging
some adjacent words into compounds and generat-
ing suitable inflectional endings. As for the differ-
ing word orders of German and English, only one
pre-processing step is required, reordering the En-
glish source sentences into German word order.

In this section, we describe the different steps in
more detail.

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 84-91,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.
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Figure 1: Illustration of structural differences between English and German. Dashed and dotted lines
indicate a different word order, while the bold lines indicates a potentially problematic 1:n alignment
due to a compound. Such structural differences may lead to erroneous word alignments.

stemmed SMT output with feature markup morph. features | generated forms | gloss
auf [APPR-auf-Dat] - auf on
die<+ART><Def>[ARTdef] Fem.Dat.Sg.St der the
Tag<NN>Ordnung<+NN><Fem><Sg>[NN] | Fem.Dat.Sg.Wk Tagesordnung agenda
stehen [VVFIN] - stehen are
die<+ART><Def>[ARTdef] Masc.Nom.P1.St die the
Plan<+NN><Masc><PIl> [NN] Masc.Nom.PLLWk | Pline plans
fir [APPR-flir—Acc] - fiir for
eine<+ART><Indef>[ARTindef] Fem.Acc.Sg.St eine a
groR<+ADJ><Comp> [ADJA] Fem.Acc.Sg.St groBere bigger
nuklear<+ADJ><Pos>[ADJA] Fem.Acc.Sg.St nukleare nuclear
Zusammenarbeit<+NN><Fem><Sg>[NN] | Fem.Acc.Sg.Wk Zusammenarbeit | co-operation

Table 1: Overview of the morphology-aware SMT system for the input sentence “...

plans for greater nuclear co-operation”.

2.1 Morphology-aware SMT

In order to build an SMT system which is aware of
German nominal inflection, the German data is re-
duced to a lemmatised representation, which con-
tains translation-relevant morphological features
(stem-markup, cf. first column in Table 1). This
stem-markup consists of number and gender an-
notated at nouns: gender is considered as part of
the lemma of a noun. The annotation of num-
ber onto target-side nouns aims at preserving the
number of the source phrase during translation, as
we expect nouns to be translated with their ap-
propriate number value. This markup is only ap-
plied to nouns, i.e. the head of NPs or PPs, be-
cause the grammatical features of adjectives and
determiners are dependent on the translation con-
text in which they appear. For nominal inflec-
tion, the morphological features number, gender,
case and strong/weak inflection need to be mod-
elled. For each of the four morphological fea-
tures, we use a linear chain CRF (Lafferty et al.
(2001)) trained on stems/lemmas and the respec-
tive feature, using the Wapiti toolkit (Lavergne et
al., 2010). During feature prediction, the features
that are set by the stem-markup (number, gender
on nouns) are propagated over the rest of the lin-
guistic phrase. In contrast, grammatical case de-
pends on the role of the NP in the sentence (e.g.
subject or direct/indirect object) and is therefore
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on the agenda are

determined entirely from the surrounding context
in the sentence. The value for strong/weak inflec-
tion depends on the combination of the other fea-
tures, cf. second column in Table 1. Based on the
lemma and the predicted features, inflected forms
are then generated using the rule-based morpho-
logical analyser SMOR (Schmid et al., 2004), cf.
third column in Table 1.

Even though this basic nominal inflection does
not handle compounds, it is able to model simple
word formation processes: portmanteau preposi-
tions (prepostion+determiner, e.g. zum=zu-+dem
“to the”) are split in pre-processing and re-merged
in the post-processing step, following a simple set
of rules (e.g. merging only in singular, never in
plural for a limited set of prepositions).

2.2 Reordering

The different word order of clauses in English
and German may often lead to misaligned ver-
bal elements. While German verbs often occur
in clause-final position, English verbs mostly ap-
pear in rigid SVO order. We parsed the English
section of the parallel data with (Charniak and
Johnson, 2005) using a model we trained on the
standard Penn Treebank sections. The scripts we
used for reordering the English input are similar
to the ones we previously described in (Gojun and
Fraser, 2012). Figure 2 illustrates how reordering



original source:  Meanwhile , we can offer the Commission a majority vote .
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split target:
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Unterdessen konnen wir der Kommission ein Mehrheitsvotum anbieten

Figure 2: Illustration of how re-ordering the English input may help to reduce crossing and long-distance
alignments and how target-side compound splitting may transform 1:n into 1:1 alignments.

the English input sentence can lead to less crossing
and long-distance alignments.

2.3 Compound Processing

German allows for closed compounds where in
English two or more words are required to ex-
press a certain content. This asymmetry can lead
to alignment and thus translation errors. More-
over, German allows for productive compound-
ing, i.e. new compounds can be generated from
scratch and may not have occurred in the train-
ing data. Compound processing solves these two
problems through splitting compounds for trans-
lation and, when translating into German, decid-
ing whether to recombine words into compounds
based on the context.

For compound splitting we use a rule-based
morphological analyser where ambiguous anal-
yses are disambiguated using corpus statistics.
In general, we follow the method described in
(Fritzinger and Fraser, 2010) for splitting: we
disambiguate multiple analyses using context-
sensitive POS and corpus-based word frequencies.
The example given in Figure 2 shows how com-
pound splitting can transform a 1:n alignment into
a 1:1 alignment.

Note that for English to German translation, we
always combine compound processing with nom-
inal inflection prediction in order to maximise the
generalisation over seen word parts in the train-
ing corpus. We thus translate from English into a
split and underspecified version of German. Then,
in a second step, compounds are merged using
sequence prediction of good merge points (based
on source language and target language features).
Finally, words taking nominal inflection are re-
inflected using the nominal inflection procedure.
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More details can be found in (Cap et al., 2014a).

3 Experimental Settings

For the WMT shared task, we combined the three
components which we have described in the previ-
ous section. An overview of all systems we trained
can be found in Table 2.

Data For all of our systems, we exclusively used
data distributed for the WMT shared task 2015.
We used all of the available monolingual data for
German and all of the available parallel data for
German and English.

UTF8 Cleaning Even though the submitted train-
ing data is provided in UTF-8 encoding, it contains
a considerable number of characters that are not
cleanly encoded into UTF8. We identified these
characters and sequences thereof by reading all
data bytewise and mapping it to the main UTF-
8 encoding tables covering the Western European
languages. All lines that contained one or more
characters which did not fit these tables — either
because they have been broken or because they
belong to non-latin scripts like, e.g., Chinese or
Arabic, were removed from the corpora as we ex-
pected those lines to lead to erroneous analyses in
the subsequent preprocessing steps of our pipeline.

Length Constraints To ensure good alignment
quality, we removed sentence pairs where one lan-
guage is considerably longer than the other (pairs
exceeding the ratio 1:9 words), as well as sen-
tences containing many special characters (e.g.
several dashes in row) indicating that the line in
question is part of e.g. a table. Furthermore, we
removed all sentences with a sentence length of
more than 100 words. Table 3 gives an overview of
the parallel data after cleaning and pre-processing.



Experiment portmapteau .nomil?al source—s'ide Compgund
merging inflection | re-ordering | merging

InﬂectionC(mtr(zstive T +

Inflection Reordering”" a7y + + +

Inflection_Compounds + + +

Inflection_Reordering_Compounds + + + +

Table 2: Names and components of our SMT systems; the submitted system are named CIMS-primary

and CIMS.
original | encoding lenth not cleaned
or ratio | parseable
News 272,807 203 1,381 12,095 259,128
Europarl 1,920,209 24 | 17,637 3,855 | 1,898,693
CommonCrawl | 2,399,123 17,508 7,489 26,623 | 2,347,503
parallel data 4,592,139 17,735 | 37,221 | 289,606 | 4,505,324

Table 3: Overview of the parallel data after cleaning and pre-processing.

English Variants The English source-side is
mapped into British English in order to make the
data as consistent as possible.

Linguistic Preprocessing The abstract repre-
sentation for the nominal inflection requires the
annotation of morphological features. After tok-
enization, we thus parsed all target-side data with
BitPar (Schmid, 2004). To obtain the lemmas and
suitable compound splittings, we applied SMOR
(Schmid et al., 2004).

Language Model We trained 5-gram Language
Models for each of the available German monolin-
gual corpora and the German sections of the par-
allel data. For each corpus (the monolingual news
corpora 07-14 and the parallel corpora europarl,
commoncrawl and news), we built separate lan-
guage models using the SRILM toolkit (Stolcke,
2002) with Kneser-Ney smoothing and then inter-
polated! them using weights optimized on devel-
opment data (cf. tuning set 08-13). We then used
KenLLM (Heafield, 2011) for faster processing.

We performed this language model training for
two different kinds of experiments: those with-
out compound processing are trained on the un-
derspecified (= lemmatised) representation, while
those with compound processing are trained on a
split underspecified representation.

Phrase-based Translation Model For word
alignment, we use the multi-threaded GIZA++
toolkit (Och and Ney, 2003; Gao and Vogel, 2008).

!/mosesdecoder/scripts/ems/support/interpolate-Im.perl
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Our translation models were trained using Moses
(Koehn et al., 2007), following the instructions for
a baseline shared task system, using default set-
tigs. All our systems are trained identically — what
differs is the degree to which the underlying train-
ing data has been modified.

Tuning We tuned feature weights using batch-
mira with ’safe-hope’ (Cherry and Foster, 2012)
until convergence (or up to 25 runs). We used
the tuning data of all previous shared tasks from
2008 to 2013, which gave us 16,071 sentences
for tuning. We tuned each experiment separately
against an underspecified (i.e. lemmatised) ver-
sion of the tuning reference optimising BLEU
scores (Papineni et al., 2002). Note also that we in-
tegrated the CRF-based compound prediction and
merging procedure for each experiment with com-
pound processing into each tuning iteration and
thus scored the output against a non-split lemma-
tised reference.

Testing After decoding, some post-processing
is required in order to retransform the underspec-
ified representation into fluent German text. Our
post-processing consists of the following steps:
1) translate into (split) underspecified German
2) merge compounds
3) predict nominal inflection
4) merge portmanteaus
Finally, the output was recapitalised and deto-
kenised using the shared task tools and all
available German training data. We calculated
BLEU scores using the NIST script version 11b.



Experiment news2014 | news2015
BLEU; BLEU;
submitted contrastive: Inflection - 21.46
submitted primary: Inflection_Reordering - 21.65
Raw 19.92 21.44
Raw_Portmanteau 19.83 21.54
Inflection 19.86 21.49
Inflection_Reordering 20.35 21.64
Inflection_Compounds 19.08 20.43
Inflection_Reordering_Compounds 19.65 21.19

Table 4: BLEU scores for all our systems. The upper part lists the submitted results (using a language
model built on a subset of the available data), the lower part compares all our variants which have been
computed after the deadline with a language model based on all available data for the constrained task.

4 Results

For evaluation, we used the 3,003 sentences of the
2014 shared task as well as the 2,169 sentences of
this year’s shared task. The results are given in
Table 4. In the upper part of the table we present
the results for the submitted systems, in the lower
part we compare all variants of our systems. Note
that we compare our systems against two base-
lines: Raw denotes a system built on all parallel
and monolingual data available for the shared task,
while Raw_Portmanteau denotes a system based
on the same data, though restricted to parseable
sentences, as we split portmanteaus based on POS
tags.

It can be seen that dealing with nominal in-
flection alone does not considerably improve or
decrease the BLEU scores of the two baselines.
However, the combination of nominal inflection
and source-side reordering has a positive effect on
translation quality. When it comes to the combina-
tion of compound processing and nominal inflec-
tion, which we have successfully applied in the
past (Cap et al., 2014a; Cap et al., 2014b), we
do not see any improvement in terms of BLEU
score for this combination here. This does not
necessarily mean that the compound systems qual-
ity is worse, as previous manual evaluations have
shown that BLEU scores do not adequately re-
flect all compound-related improvements in trans-
lation quality (Cap et al., 2014a). Finally the re-
sults given in Table 4 show that adding source-side
reordering to the combination of compound pro-
cessing and nominal inflection does improve the
BLEU scores, even though they still remain lower
than for nominal inflection and source-side re-
ordering without compound processing. We have
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never combined all three components before, but
despite the lower performance in terms of BLEU
scores we will further pursue this combination in
the future.

4.1 Comparison to Other Shared Task
Submissions

In addition to automatic metrics, the shared task
submissions are also manually evaluated. In this
evaluation, our primary system (BLEU score of
21.65) was placed in a cluster with 4 other sys-
tems, of which at least two have BLEU scores
of 23 and higher. Furthermore, our system was
placed in a cluster ranked higher in the manual
evaluation than a cluster containing a single sys-
tem with a BLEU score of 22.6 (one BLEU point
higher than our system). This shows clearly that
BLEU underestimates the quality of our submis-
sion. Despite its comparatively low BLEU scores
it is perceived to be of similar or better quality than
systems with considerably higher BLEU scores
when judged by human annotators. This sup-
ports our hypothesis that morphological modeling
in combination with reordering improves transla-
tion quality and is consistent with human evalua-
tions of morphological modeling we have carried
out in the past, see, e.g., (Weller et al., 2013; Cap
et al., 2014a).

5 Additional Experiments: English to
French translation

In an additional set of experiments, we applied
the nominal inflection system also to an English—
French system.

Nominal Inflection for French The general
pipeline is the same as for translation into German.



We used RFTagger for French (Schmid and Laws,
2008) for morphological tagging and a French ver-
sion of SMOR to generate inflected forms. The
stem-markup on the French data corresponds to
that of the German markup (number and gender
on nouns). In contrast to four morphological fea-
tures for nominal inflection in German, only num-
ber and gender need to be modelled for French.

Data The EN-FR data set is much larger than
that for EN-DE; after applying the same pre-
processing steps, we obtained a parallel corpus
of more than 36 million sentence pairs. For the
language model, we used an additional 45.9 mil-
lion lines (news07-14 and newsdiscuss corpus).
The language model was interpolated over sepa-
rate language models built on the different cor-
pora using the development set to obtain optimal
weights.

Results The results of the submitted systems are
shown in the table below:

Raw Nominal Inflection’’
BLEU, BLEU. | BLEU, BLEU.
32.24 31.19 32.26 31.22

The nominal inflection system is our primary sys-
tem. Due to the large amount of EN-FR parallel
training data, we assume that here the BLEU score
correctly shows that there is not much difference
in performance between the two systems.

6 Previous Work

Nominal Inflection The approach we use for
nominal inflection prediction which was first de-
scribed by (Toutanova et al., 2008). The approach
consists of two steps: 1) translate into an under-
specified representation of German (most words
being lemmatised) and ii) after translation predict
inflectional endings depending on the actual con-
text of the word(s). While developed for Russian
and Arabic morphology, we adapted the approach
of Toutanova et al. (2008) to the needs of German
in (Fraser et al., 2012). In (Weller et al., 2013), we
extended this work to use subcategorisation infor-
mation and source-side syntactic features in order
to improve the accuracy of case prediction. Note
that we did not use this extension of our pipeline
in the present shared task.

Reordering Different word orders have already
been addressed in previous approaches. For exam-
ple, Collins et al. (2005) reordered German prior
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to translating into English, which lead to improved
translations. In (Gojun and Fraser, 2012), we
switched the translation direction and reordered
the English input sentence before translating into
German, which in turn resulted in improved trans-
lation quality.

Compound Processing In the past, there have
been numerous attempts to address compound
splitting for German to English. Almost every
German to English SMT system nowadays incor-
porates some kind of compound processing, ei-
ther using corpus-based word frequencies (Koehn
and Knight, 2003), POS-contraints (Stymne et al.,
2008), lattice-based approaches (Dyer, 2009) or
language-independent segmentation (Macherey et
al., 2011). In our work we have been using a
rule-based morphological analyser combined with
corpus statistics for compound splitting (Fritzinger
and Fraser, 2010), a procedure which we have up-
dated since that work. Details can be found in
(Cap et al., 2014a).

For compound merging, we translate from En-
glish into split and lemmatized German. Then, in a
second step, compounds are merged using a CRF-
based approach based on (Stymne and Cancedda,
2011) and then re-inflected using the nominal in-
flection procedure as described above. More de-
tails of our compound merging approach can be
found in (Cap et al., 2014a).

7 Conclusion and Future Work

In our submission to WMT 2015, we combined
the three components nominal inflection, source-
side reordering and compound processing. We
expected a positive effect on translation quality
above the performance of each of these compo-
nents when applied in isolation.

While this effect was not evident in the obtained
BLEU scores, the manual evaluation, in which our
system was found to be of equal or better qual-
ity than systems achieving higher BLEU scores,
makes it clear that in fact our approaches do im-
prove translation quality.

Our current systems are built on the standard
version of Moses with default settings; as part of
future work we plan to investigate better strategies
to exploit Moses’ numerous methods for optimiza-
tion.
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Abstract

In this paper, the KIT systems submitted to
the Shared Translation Task are presented.
We participated in two translation direc-
tions: from German to English and from
English to German. Both translations are
generated using phrase-based translation
systems.

The performance of the systems was
boosted by using language models built
based on different tokens such as word,
part-of-speech, and automacally generated
word clusters. The difference in word or-
der between German and English is ad-
dressed by part-of-speech and syntactic
tree-based reordering models. In addition
to a discriminative word lexicon, we used
hypothesis rescoring using the ListNet al-
gorithm after generating the translation
with the phrase-based system. We evalu-
ated the rescoring using only the baseline
features as well as using additional com-
putational complex features.

1 Introduction

We describe the KIT systems submitted to the
Shared Translation Task of the EMNLP 2015
Tenth Workshop on Statistical Machine Transla-
tion. They are phrase-based English—German
and German—English systems.

In order to clean a large amount of noisy web-
crawled data, we applied a filtering technique us-
ing an SVM classifier. Language models are built
based on different tokens, such as word, part-
of-speech, and automacally generated word clus-
ters. Final systems also include bilingual lan-
guage models, part-of-speech and syntactic tree-
based reordering models as well as a lexicalized
reordering model. For language modeling, a data
selection strategy is also applied. A discriminative
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word lexicon using source context information is
used for both translation directions. In this eval-
uation campaign we also show that rescoring us-
ing the ListNet algorithm improves the translation
performance for both directions.

This paper is organized as follows. In Section
2, we describe the data we used for training the
systems. A detailed description of the systems is
given in Section 3. Section 4 shows experimental
setups and results along with an analysis. Finally,
Section 5 concludes this paper.

2 Data

For training data, we use the European Parliament
(EPPS), News Commentary (NC) and Common
Crawl parallel corpora for both translation direc-
tions. For training the language models, we utilize
the monolingual target side of the parallel corpora.
The News Shuffle data is also used for language
modeling. For German—English, we use the Gi-
gaword corpus in addition.

The systems are optimized on the newstest2013
set and tested on the newstest2014 set.

3 System Description

A preprocessing step is applied to the raw data
before the actual training. It includes remov-
ing excessively long sentences. Sentences with
a length mismatch are also filtered out based
on a threshold, and special symbols, dates and
numbers are normalized. The preprocessing in-
cludes smart-casing of the first letter of every sen-
tence. For German—ZEnglish translation, we ap-
ply compound splitting (Koehn and Knight, 2003)
on the source side, in order to handle the out-
of-vocabulary (OOV) issue of German compound
words.

The web-crawled Common Crawl corpus often
contains sentence pairs which are not matching. In
order to remove such noisy parts of the corpus, we
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use an SVM classifier for both translation tasks as
described in Mediani et al. (2011).

Language models (LM) are built using the
SRILM toolkit (Stolcke, 2002) with modified
Kneser-Ney smoothing and scored in the decod-
ing process with KenLM (Heafield, 2011). The
in-house phrase-based translation system (Vogel,
2003) is used for generating translations. For op-
timization, we use minimum error rate training
(MERT) (Och, 2003; Venugopal et al., 2005). For
German—English, the GIZA++ Toolkit (Och and
Ney, 2003) is used to generate the word alignment
of the parallel corpora. Discriminative word align-
ment (DWA), as described in Niehues and Vogel
(2008), is used for the English—German direc-
tion.

We build the phrase tables (PT) using the Moses
toolkit (Koehn et al., 2007).

3.1 Word Reordering Models

Reordering rules encode how the words in the
source sentence are to be ordered according to the
target word order. They are learned automatically
based on part-of-speech (POS) as well as syntac-
tic parse tree constituents. In order to learn the
rules, we use POS tags (Schmid, 1994) of the
source side and the word alignment information.
The rules cover short range reorderings (Rottmann
and Vogel, 2007) as well as long range reorderings
(Niehues and Kolss, 2009).

The differences in word order between Ger-
man and English can be better addressed by us-
ing a tree-based reordering model as shown in
Herrmann et al. (2013). The tree-based reorder-
ing rules are learned from a word alignment and
syntactic parse trees (Rafferty and Manning, 2008;
Klein and Manning, 2003) from the source side of
the training corpus. The rules encode the informa-
tion on how to reorder constituents in the syntactic
tree of the source sentence.

Before translation, the POS-based and tree-
based reordering rules are applied to the each sen-
tence. The variants of differently reordered sen-
tences, including the original order of the sen-
tence, are encoded in a word lattice. The word
lattice is then used as an input to the decoder.

Lattice phrase extraction (LPE) (Niehues et al.,
2010) is applied on the training corpus, in order
to get phrase pairs that match the reordered sen-
tences. In this scheme, we use the reordered sen-
tences to extract the phrases from, instead of the
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original sentences.

The lexicalized reordering (Koehn et al., 2005)
encodes reordering probabilities for each phrase
pair. By using the lexicalized reordering model,
the reordering orientation of each phrase pair at
the phrase boundaries can be determined during
decoding. The probability for the respective ori-
entation with respect to the original position of the
words is included as an additional score in the log-
linear model of the translation system.

3.2 Language Models

In addition to word-based language models, we
use different types of non-word language models
for each of the systems.

The bilingual language model (Niehues et al.,
2011) is designed to increase the bilingual context
between source and target words beyond phrase
boundaries. Target words and all their aligned
source words form bilingual tokens on which a
LM is trained. The tokens are then ordered ac-
cording to the target language word order.

For the English—German system, we use lan-
guage models based on fine-grained POS tags
(Schmid and Laws, 2008). In addition, we use
language models based on word classes learned by
clustering the words of the corpus using the MK-
CLS algorithm (Och, 1999). Using such language
models, we can generalize better and therefore al-
leviate the sparsity problem for surface words. In
order to build these language models, we replace
each word token of the target language corpus by
its corresponding POS tag or cluster ID. The n-
gram language models are then built on this new
corpus consisting of either POS tags or cluster IDs.
During decoding, these language models are used
as additional models in the log-linear combination.

For the German—English system, the data se-
lection language model is trained on data auto-
matically selected using cross-entropy differences
between development sets from previous WMT
workshops and the English side of all data, includ-
ing the filtered crawled data (Moore and Lewis,
2010). We selected the top 10M sentences to train
this language model. For building all non-word
language models used in this work smoothing is
applied.

3.3 Discriminative Word Lexicon

First introduced by Mauser et al. (2009), a dis-
criminative word lexicon (DWL) models the prob-
ability of a target word appearing in the translation



given the words of the source sentence. For every
target word, a maximum entropy model is trained
to determine whether this target word should be in
the translated sentence or not using one feature per
source word.

Two simplifications of this model are used to
improve the translation quality while maintain-
ing the time efficiency as shown in Mediani et
al. (2011). First, the score for every phrase pair
is calculated before translation. Then we restrict
the negative training examples to words that occur
within matching phrase pairs.

In this evaluation, the DWL is further extended
with n-gram source context features proposed
by Niehues and Waibel (2013). In this paper, this
model will be referred to as source-context DWL.
The source sentence is represented as a bag-of-n-
grams, instead of a bag-of-words. By doing so it is
possible to include information about source word
order in the model. We used one feature per n-
gram up to the order of three and applied count
filtering for bigrams and trigrams.

In addition to this DWL, we integrated a DWL
in the reverse direction in rescoring. We will re-
fer to this model as source DWL. This model pre-
dicts the target word for a given source word as
described in detail in (Herrmann, 2015).

In a first step, we identify the 20 most frequent
translations of each word. Then we build a multi-
class classifier to predict the correct translation.
For the classifier, we used a binary maximum-
entropy classifier! trained using the one-against-
all approach.

As features for the classifier, we used the previ-
ous and following three words. Each word is rep-
resented by a continuous vector of 100 dimensions
as described in (Mikolov et al., 2013).

Using the predictions, we calculated four addi-
tional features. The first two features are the abso-
lute and relative number of words, where the trans-
lation predicted by the classifier and the translation
in the hypothesis is the same. The third feature is
the sum of the word to word translation probabil-
ities predicted by the classifier that occur in the
hypothesis. Given the translation used in the hy-
pothesis, we determine their rank in the ranking by
the classifier and use the sum of these ranks as the
last feature.

'http://hal3.name/megam/
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3.4 ListNet-based Rescoring

In order to facilitate more complex models like
neural network translation models, we rescored
the n-best lists. In our experiments we gener-
ated 300 best lists for the development and test
data respectively. We used the same data to train
the rescoring that we have used for optimizing the
translation system.

We trained the weights for the log-linear com-
bination used during rescoring using the ListNet
algorithm (Cao et al., 2007; Niehues et al., 2015).
This technique defines a probability distribution
on the permutations of the list based on the scores
of the log-linear model and one based on a ref-
erence metric. In our experiments we used the
BLEU+1 score introduced by Liang et al. (2006).
Then we use the cross entropy between both dis-
tributions as the loss function for our training.

Using this loss function, we can compute the
gradient and use stochastic gradient descent. We
used batch updates with ten samples and tuned the
learning rate on the development data.

The range of the scores of the different mod-
els may greatly differ and many of these values
are negative numbers with high absolute value
since they are computed as the logarithm of rel-
atively small probabilities. Therefore, we rescale
all scores observed on the development data to the
range of [—1, 1] prior to rescoring.

3.5 RBM Translation Model

In rescoring, we used an restricted Boltzmann ma-
chine (RBM)-based translation model inspired by
the work of Devlin et al. (2014).

The model is based on the RBM-based language
model introduced in Niehues and Waibel (2012).
The RBM models the joint probability of eight tar-
get words and a set of attached source words. The
set of attached source words is calculated as fol-
lows: We first use the source word aligned to the
last target word in the 8-gram. If this does not ex-
ist, we take the source word aligned to the nearest
target word. The set of source words consists then
of this source word, its previous five source words
and its following five source words.

We create this set of 8 target and 11 source
words for every target 8-gram in the parallel cor-
pus and train the model using unigram sampling
as described in Niehues et al. (2014). In rescor-
ing, we then calculate the free energy of the RBM
given the 8-gram and its source set as input. The



sum of all free energies in the sentence is used as
an additional feature for rescoring.

4 Results

In this section, we present a summary of our ex-
periments in the evaluation campaign. Individ-
ual components that lead to improvements in the
translation performance are described step by step.

The scores are reported in case-sensitive BLEU
(Papineni et al., 2002).

4.1 English-German

Table 1 shows the results of our system for
English—German translation task.

The baseline system consists of a phrase ta-
ble derived from DWA, the word-based language
models built from different parts of the corpus and
POS-based long-range reordering rules. Reorder-
ing rules, however, are extracted from the POS-
tagged EPPS and NC only, and encoded as word
lattices.

The parallel data used to build the word align-
ments and the PT are EPPS, NC and the filtered
Crawl data. Similarly, the data used to train the
language models includes the monolingual ver-
sions of EPPS, NC and the filtered Crawl data.
The BLEU scores of the baseline system over the
development and test sets are 19.70 and 19.38, re-
spectively.

The system gains 0.2 points on the develop-
ment set and 0.13 on the test set in BLEU when
adding non-word language models, such as a 4-
gram bilingual language model, which is based
on bilingual word tokens, two 5-gram POS-based
language models and a 4-gram cluster language
model. The bilingual language model is trained on
the Crawl corpus and the other models are trained
on the monolingual parts of all corpora. In case
of the cluster language model, MKCLS is used to
group of words into 1,000 clusters as mentioned in
Section 3.2.

A further improvement can be observed when
we apply tree-based and lexicalized reorderings.
The improvement is considerable on the develop-
ment set, gaining 0.6 BLEU points, but the system
performs similar on the test set.

Adding source-context DWL helps to improve
the score, especially on the test set, with the differ-
ence of 0.67 BLEU points compared to the above-
mentioned system.

Finally, we use the new ListNet-based rescoring
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described in Section 3.4 for the log-linear com-
bination of features. By doing so, we improve
the translation performance by another 0.8 BLEU
points on the test set. This system was submitted
to WMT 2015 and used for the translation of the
official test set.

System Dev  Test
Baseline 19.70  19.38
+ Non-word LMs 19.90 19.51
+ Tree + Lex. Reorderings 20.50 19.52
+ Source—context DWL 20.58 20.19
+ ListNet rescoring 19.95 20.98

Table 1: Experiments for English—German

4.2 German-English

Table 2 shows the development steps of the
German—English translation system.

The baseline system uses EPPS, NC, and fil-
tered web-crawled data for training the translation
model. The phrase table is built using GIZA++
word alignment and lattice phrase extraction.

Altogether four language models are used in the
baseline system. As described in Section 3.2, we
build a cluster language model using the MKCLS
algorithm. Words from EPPS, NC, and the fil-
tered crawl data are clustered into 1,000 different
classes. It also includes a language model trained
on 10M of selected data from the monolingual cor-
pora. All language models are 4-gram.

The word lattices are generated using short and
long-range reordering rules, as well as tree-based
reordering rules. A lexicalized reordering model
is also included in the baseline system.

The baseline system uses a DWL with source
context.

Using the ListNet-based rescoring increased the
score on the test set by 0.1 BLEU point. Transla-
tion predictions based on source DWL improve the
system performance by 0.3 BLEU points. Finally,
adding an RBM-based translation model gave an-
other small improvement. This system was used
to generate the translation submitted to the evalu-
ation.

5 Conclusion

In this paper, we have described the systems de-
veloped for our participation in the Shared Trans-
lation Task of the EMINLP 2015 evaluation for



System Dev  Test
Baseline 28.38 27.77
+ ListNet rescoring  28.00 27.87
+ Source DWL 27.89 28.18
+ RBMTM 27.94 28.28

Table 2: Experiments for German— English

English—German and German—English transla-
tion. Both translations were generated using a
phrase-based translation system which was ex-
tended by additional models such as bilingual and
cluster-based language models. Discriminative
word lexica with source context proved beneficial.

For English—German translation, adding
source-context information to guide word choice
and using a new method to rescore the translation
candidates brought the most improvements.

Rescoring based on ListNet and using source
DWL as well as applying an RBM-based trans-
lation model helped improve the system perfor-
mance for German—English translation.
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Abstract

The TectoMT tree-to-tree machine transla-
tion system has been updated this year to
support easier retraining for more transla-
tion directions. We use multilingual stan-
dards for morphology and syntax annota-
tion and language-independent base rules.
We include a simple, non-parametric way
of combining TectoMT’s transfer model
outputs.

We submitted translations by the English-
to-Czech and Czech-to-English TectoMT
pipelines to the WMT shared task. While
the former offers a stable performance, the
latter is completely new and will require
more tuning and debugging.

1 Introduction

The TectoMT tree-to-tree machine translation
(MT) system (Zabokrtsky et al., 2008) has been
competing in WMT translation tasks since 2008
and has seen a number of improvements. Un-
til now, the only supported translation direction
was English to Czech. This year, as a part of
the QTLeap project,' we have enhanced TectoMT
and its underlying natural language processing
(NLP) framework, Treex (Popel and Zabokrtsk}’/,
2010), to support more language pairs. We simpli-
fied the training pipeline to be able to retrain the
translation models faster, and we use abstracted
language-independent rules with the help of Inter-
set (Zeman, 2008) where possible.

Together with our partners on the QTLeap
project, we have implemented translation systems
for other language pairs (English to and from
Dutch, Spanish, Basque, and Portuguese) which
are not part of WMT shared Translation Task this
year. However, we were also able to submit the
results of a newly built Czech-English translation

"nttp://qtleap.eu

98

system in the shared task. The performance of the
current version leaves a lot of room for improve-
ment, but proves the potential of TectoMT for dif-
ferent language pairs.

The original TectoMT system for English-
Czech translation has seen just small changes,
e.g., adding specialized translation models for se-
lected pronouns (Novdk et al., 2013a; Novék et
al., 2013b) and fine-tuning of a handful of rules.
Therefore, its performance is virtually identical to
that of the last year’s version.

This paper is structured as follows: in Section 2,
we introduce the TectoMT basic architecture. In
Section 3, we describe the improvements to Tec-
toMT that were added for an easier support of
new language pairs. Section 4 then details the
Czech-to-English TectoMT system submitted to
WMT15. We discuss TectoMT’s performance in
the task and examine the most severe error sources
in Section 5. Section 6 then concludes the paper.

2 The TectoMT Translation System

TectoMT (Zabokrtsky et al., 2008) is a tree-to-
tree MT system system consisting of an analysis-
transfer-synthesis pipeline, with transfer on the
level of deep syntax. It is based on the Prague Tec-
togrammatics theory (Sgall et al., 1986) and dis-
tinguishes two levels of syntactic description (see
Figure 1):

e Surface dependency syntax (a-layer) — sur-
face dependency trees containing all the to-
kens in the sentence.

e Deep syntax (t-layer) — dependency trees
that contain only content words (nouns, main
verbs, adjectives, adverbs) as nodes. Each
node has a deep lemma (¢-lemma), a semantic
function label (functor), a morpho-syntactic
form label (formeme), and various grammat-
ical attributes (grammatemes), such as num-
ber, gender, tense, or modality.

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 98—104,
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Figure 1: Example TectoMT translation.
From the left to the right: (1) source Czech sentence analyzed to surface dependencies (a-layer), (2) Czech sentence analyzed
to deep syntax (t-layer), with t-lemmas (black), functors (capitals), formemes (purple), and grammatemes (teal), (3) translated
English t-layer tree (with MaxEnt model logarithmic probabilities for t-lemmas and formemes shown in red for a selected

node), (4) generated English surface dependency tree.

Formemes are not part of the t-layer accord-
ing to the original theory; they have been added
in TectoMT to work around the difficult task
of functor assignment (semantic role labeling).
Formemes are much simpler to obtain — they are
assigned by rules based on the surface dependency
trees (Dusek et al., 2012). Apart from a few spe-
cific cases, functors are not used in TectoMT, and
formemes are used instead.

T-layer representations of the same sentence in
different languages are closer to each other than
the surface texts; in many cases, there is a 1:1
node correspondence among the t-layer trees. Tec-
toMT’s transfer exploits this by translating the tree
isomorphically, i.e., node-by-node and assuming
that the shape will not change in most cases (apart
from a few exceptions handled by specific rules).

The translation is further factorized — t-lemmas,
formemes, and grammatemes are translated us-
ing separate models. The t-lemma and formeme
translation models are an interpolation of maxi-
mum entropy discriminative models (MaxEnt) of
Marecek et al. (2010) and simple conditional prob-
ability models. The MaxEnt models are in fact
an ensemble of models, one for each individual
source t-lemma/formeme. The combined transla-
tion models provide several translation options for
each node along with their estimated probability
(see Section 1). The best options are then selected
using a Hidden Markov Tree Model (HMTM)
with a target-language tree model (Zabokrtsky
and Popel, 2009), which roughly corresponds to
the target-language n-gram model in phrase-based
MT. Grammateme transfer is rule-based; in most
cases, grammatemes remain the same as in the
source language.
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3 Adding New Language Pairs

Using different languages in an MT system with
deep transfer is mainly hindered by differences in
the analysis and synthesis of the individual lan-
guages. To overcome these problems, we decided
to use existing multilingual annotation standards
(see Section 3.1) and to simplify and automate
translation model training (see Section 3.2). In
addition, we introduce an easier way of combin-
ing the results of the individual translation models
than HMTM (in Section 3.3).

3.1 Annotation Standards for Language
Independence

We decided to use Interset (Zeman, 2008) as
the standard morphological representation since
its features capture all important morphological
phenomena in many different languages, includ-
ing all languages required in the QTLeap project.
The Interset Perl library includes conversions from
many commonly used language-specific tagsets.
To represent surface dependency syntax, we use
the HamleDT 1.5 annotation style (Zeman et al.,
2012; Zeman et al., 2014), which also supports
many different languages and comes with tools for
the conversion of various pre-existing treebanks.
This allows us to use existing taggers and parsers
without retraining them — analyzed sentences are
simply converted to Interset+HamleDT annotation
style.

Most TectoMT/Treex rules for the conversion
from surface dependencies to deep syntax (t-layer)
have been adapted to expect Interset morpholog-
ical features and HamleDT-style dependencies,
which improves their usability for different lan-



guages. Their implementation involves a common
language-independent base class and language-
specific derived classes.’

For t-layer representation, we stick to the Tec-
toMT annotation style as used for Czech and
English, which is originally based on PDT and
Prague Czech-English Dependency Treebank an-
notation (Hajic¢ et al., 2006; Hajic¢ et al., 2012).
However, we are aware that this annotation style
has problems in other languages (e.g., gram-
matemes cannot express all required grammatical
meaning), and that changing or extending it will
probably be required.

3.2 Support for Training New Language
Pairs

Other improvements to support adding new lan-
guage pairs quickly are rather technical. We au-
tomated the translation model training in a set of
makefiles. To train a new translation pair, one
only needs to implement analysis and synthesis
pipelines for both languages and edit a configu-
ration file. Debugging and testing of the new anal-
ysis and synthesis pipelines is supported by mono-
lingual “roundtrip” experiments: a development
data set is first analyzed up to t-layer, then synthe-
sized back to word forms. BLEU score measure-
ments (Papineni et al., 2002) and a direct compar-
ison of the results are then used to improve per-
formance before the translation models are trained
and other transfer blocks are implemented.>

3.3 Combining Transfer Models More
Simply

The t-lemma and formeme translation models are
independent of each other to simplify their deci-
sions and reduce data sparsity. This often results in
the best translation alternatives suggested by both
models being incompatible with each other, which
leads to disfluent outputs.

In English-to-Czech translation, an HMTM is
used to select compatible t-lemma—formeme pairs
(see Section 2). However, the HMTM needs to be
trained on a large monolingual data set annotated
on the t-layer. To simplify and speed up devel-

2Some Czech and English TectoMT blocks have not been
converted to Interset yet; they use the Czech positional tagset
from the Prague Dependency Treebank (PDT) of Hajic et al.
(2006) and the Penn Treebank tagset (Santorini, 1990).

3The “roundtrip” experiments are not necessarily needed
for the translation. We just consider them a best practice
which helps to quickly reveal bugs that could deteriorate the
translation, but remain unnoticed for a long time.
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opment of TectoMT translation for new language
pairs, we have introduced a simpler method of se-
lecting a compatible t-lemma—formeme pair which
does not require any training. In this approach,
t-lemma and formeme probabilities of congruous
pairs* are combined by a non-parametric function
into a single score that is then used to select the
best translation option. Incongruous combinations
are discarded.’

We evaluated five non-parametric functions
combining the two translation models’ outputs:

e AM-P — arithmetic mean of probabilities,
GM-P — geometric mean of probabilities,®

HM-P — harmonic mean of probabilities,

GM-Log-P — geometric mean of logarithmic
probabilities,’

HM-Log-P — harmonic mean of logarithmic
probabilities.?

We compared the functions against a baseline
of just using the first option given by each of
the models (regardless of compatibility). We
used corpora of 1,000 sentences from the IT do-
main collected in the QTLeap project to evalu-
ate all variants in English-to-Czech, English-to-
Spanish, and English-to-Portuguese translation.
For the English-to-Czech direction, we could also
compare our combination functions to using an
HMTM. The results are given in Tables 1, 2, and 3
for English to Czech, Spanish, and Portuguese, re-
spectively.

We can see that the performance of the individ-
ual variants is very similar and that they bring an
improvement over the baseline in almost all cases.

“The “congruency” of t-lemma and formeme is based on
the syntactic part-of-speech encoded in the formeme and the
Interset part-of-speech of the t-lemma. There are five sim-
ple rules, e.g., verbal t-lemmas are compatible only with
formemes beginning with “v:”.

5The non-parametric functions are weaker than the
HMTM with the target-language tree model, which considers
the context of the parent t-lemma and models the compatibil-
ity with real-valued probabilities.

®Maximizing GM-P gives the same result as maximizing
the product of probabilities P(t-lemma) - P(formeme), which
is the theoretically sound approach.

"Logarithmic probabilities are negative and geometric
mean of two negative numbers is positive, so we actually use
negative GM-Log-P, so the best option has the highest score.

8AM-Log-P, the arithmetic mean of logarithmic probabil-
ities, seems to be missing from the list above, but since maxi-
mizing over AM-Log-P gives the same results as maximizing
over GM-P, we omit AM-Log-P from our experiments.



Function NIST BLEU
Baseline 6.7500 0.2785
HMTM 6.8212 0.2876
AM-P 6.7602 0.2811
GM-P 6.7690 0.2818
HM-P 6.7713 0.2820
GM-Log-P 6.7707 0.2817
HM-Log-P 6.7580 0.2810

Table 1: NIST and BLEU scores for non-
parametric combining functions in English-to-
Czech translation.

Function NIST BLEU
Baseline 5.2757 0.1670
AM-P 5.4342 0.1808
GM-P 54315 0.1806
HM-P 5.4306 0.1806
GM-Log-P 5.4314 0.1809
HM-Log-P 5.4336 0.1808

Table 2: NIST and BLEU scores for non-
parametric combining functions in English-to-
Spanish translation.

HMTM in the English-to-Czech translation per-
forms better as expected.

4 Czech to English Translation

This section is a detailed description of the Tec-
toMT Czech-to-English translation pipeline as
used in the WMT translation task. The analysis
part (Section 4.1) is not new and thus is described
only briefly, we focus more on the simple trans-
fer (Section 4.2) and the English synthesis (Sec-
tion 4.3).

Function NIST BLEU
Baseline 5.1584 0.1677
AM-P 5.2612 0.1719
GM-P 52219 0.1711
HM-P 5.0613 0.1620
GM-Log-P 5.2452 0.1719
HM-Log-P 5.2583 0.1719

Table 3: NIST and BLEU scores for non-
parametric combining functions in English-to-
Portuguese translation.
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4.1 Czech Analysis

The Czech analysis is a slightly improved version
of the pipeline used to train previous versions of
the English-to-Czech translation in TectoMT as
well as to analyze the Czech part of the CzEng 1.0
parallel corpus (Bojar et al., 2012).

The first part, the surface syntactic analysis,
consists of a rule-based sentence segmenter and
tokenizer, followed by a part-of-speech tagger —
we use MorphoDiTa (Strakova et al., 2014) in
the current version — and a dependency parser
(McDonald et al., 2005; Novak and Zabokrtsky,
2007).

The surface dependency trees are then con-
verted into deep syntactic (t-layer) trees using a
series of mostly rule-based modules that collapse
auxiliary words and decide upon the t-lemma,
formeme, and grammatemes. They also recon-
struct pro-drop pronoun subjects based on verbal
morphology.

4.2 Transfer

The Czech-to-English transfer is relatively basic
and does not contain many components besides
the translation models for t-lemmas and formemes
(see Section 2). Due to limited time to train the
system for the new translation direction, we used
the non-parametric t-lemma—formeme combina-
tion functions as described in Section 3.3 instead
of a Hidden Markov Tree Model (cf. Section 2).
We chose the HM-P setting based on performance
on the development set.’

The additional components are rule-based and
are listed below:

Overrides and additions to the translation
models, tuned on the development set,

Removing Czech gender from common
nouns not referring to persons,

Fixing translation of names based on a lexi-
con compiled from Wikipedia (in particular,
reverting the Czech female surname ending
-ovd in non-Czech names),

Removing subjects of verbs where the trans-
lation model chose an infinitival form,

Removing double negatives (which are the
rule in Czech but not in English),

"We used the WMT news-test2012 data to tune our sys-
tem.



e Fixing grammatemes, in particular number
and negation, for some translations, such as
téstoviny (pl.) — pasta (sg.), or nedbaly (neg-
ative) — sloppy (positive).

4.3 English Synthesis

The English synthesis (surface realization)
pipeline has been newly developed for TectoMT
translation into English; it is mostly rule-based
and is inspired by the Czech synthesis pipeline.
Besides the Czech-to-English translation, it is
used in other TectoMT systems translating into
English within the QTLeap project and in the
TGen natural language generator (DuSek and
Jurcicek, 2015).

In the synthesis pipeline, a new surface depen-
dency (a-layer) tree is created as a copy of the
source t-layer tree, with lemmas copied from t-
lemmas and dependency labels, word forms, and
morphology left undecided. All further changes
are performed on the surface dependency tree,
consulting information from the t-layer tree. The
pipeline consists of the following steps:

1. Morphological attributes are filled in based

on grammatemes.

. Subjects are marked (to support subject-
predicate agreement).

. Basic English word order for declarative sen-
tences is enforced. This only contains very
general rules, e.g., SVO-order or adjective-
noun order, but preliminary tests with source-
language ordering from several different lan-
guages indicated that it is sufficient in most
cases.

. Subject-predicate agreement in number and
person is enforced — predicates have their
number and person filled based on their sub-
ject(s).

. Auxiliary words are added. These are
based on the contents of formemes (prepo-
sitions, subordinating conjunction, infinitive
particles, possessive markers) and t-lemmas
(phrasal verb particles).

. English articles are added based on a hand-
ful of rules from an older surface realizer by
Ptacek (2008).
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. Auxiliary verbs are added, expressing the
voice, tense, and modality. Auxiliaries are
also added for questions and sentences with
existential there.

. Imperative subjects are removed, question
subjects are moved after the auxiliary verb.

. Negation particles are added for verbs as well
as selected adjectives and adverbs.

10. Punctuation is added to the end of the sen-
tence, into coordinations and appositions, af-
ter clause-initial phrases preceding the sub-
ject, and in selected phrases (based on

formemes).

11. Words are inflected based on their lemma and
morphological attributes. We use rules for
personal pronouns, MorphoDiTa (Strakova et
al., 2014) English dictionary for unambigu-
ous words, and Flect (Dusek and JurcicCek,
2013) for all remaining words requiring in-

flection.!?

12. The indefinite article a is changed into an

based on the following word.

13. Repeated coordinated prepositions and con-

junctions are deleted.

14. The first word in the sentence is capitalized.

The output sentence is then obtained by just com-
bining all the nodes in the resulting surface depen-
dency tree.

5 WMT 2015 Translation Task Results

TectoMT reached a BLEU score of 13.9 for the
English-to-Czech direction in the WMT 2015
Translation Task. This ranks it among the last sys-
tems, which is consistent with results from previ-
ous years. However, English-to-Czech TectoMT
has also been used in the Chimera system com-
bination, which ranks first in both automatic and
human evaluation results. TectoMT plays a very
important role in Chimera (Tamchyna and Bojar,
2015).

TectoMT’s  Czech-to-English  translation
reached a BLEU score of 12.8, and finished last

10 Alternatively, an n-gram language model could be used
to select the word forms. Flect uses just a short context of
neighboring lemmas, but it generalizes also to unseen words
(thanks to morphological features). Currently, no n-gram lan-
guage model is used in the whole TectoMT system.



in the automatic evaluation; human evaluation
scores indicate a second-to-last position.

We believe that the major cause for the lower
scores does not lie in TectoMT’s basic architec-
ture, but that improvements to translation mod-
els are required, as well as better tuning and de-
bugging of the whole pipeline for the Czech-to-
English direction. We examined closely a sample
of the translation output (in both directions) and
identified the following error sources:

o Translation models will require more tuning
and possibly more powerful features. The
English-to-Czech model leaves many rela-
tively common words untranslated, which

suggests that pruning has been too strict.'!

The non-parametric t-lemma—formeme com-
bination functions are not ideal; training
an HMTM will be necessary to improve
English-to-Czech performance.

Word ordering rules need to be improved, and
more different cases need to be covered. We
consider using a statistical ranker for local
node ordering.

The rule-based article assignment in English
synthesis is lacking; indefinite articles are as-
signed much more often than they should be.
This will probably not be possible without us-
ing a statistical module.

There are also other, rather technical issues re-
lated to punctuation or tokenization that will re-
quire more debugging.

6 Conclusions and Future Work

We presented TectoMT, a tree-to-tree machine
translation system with deep transfer, and its new
features in this year’s edition of the WMT shared
task, the main one being opening the system to
new language pairs. TectoMT in the English-to-
Czech direction is stable and provides useful trans-
lations though its results are worse than that of
other systems; it is also used in the Chimera sys-
tem combination. The new Czech-to-English sys-
tem requires more development but shows that it

"Same as for the English-to-Czech direction, the MaxEnt
model was trained only for (source) lemmas occurring at least
100 times in the training data and only with translations (tar-
get lemmas) occurring at least 5 times. For the simple condi-
tional (“static”’) model, we used the same constants (by mis-
take).
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is possible to adapt TectoMT to a new translation
direction in a very short amount of time.

In future, we plan to tune the current Czech-
to-English setup, and to include further improve-
ments. We intend to use Interset instead of gram-
matemes on the t-layer to support categories of
grammatical meaning not present in grammatemes
(see Section 3.1). We also consider switching the
TectoMT annotation style to Universal Dependen-
cies. To improve translation models, we are plan-
ning to use Vowpal Wabbit (Langford et al., 2007)
and to include word embeddings from word2vec
(Mikolov et al., 2013) as features. We are also
investigating the possibilities of non-isomorphic
transfer in TectoMT.
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Abstract

This article describes the Aalto Uni-
versity entry to the English-to-Finnish
shared translation task in WMT 2015.
The system participates in the con-
strained condition, but in addition we
impose some further constraints, using
no language-specific resources beyond
those provided in the task. We use
a morphological segmenter, Morfessor
FlatCat, but train and tune it in an un-
supervised manner. The system could
thus be used for another language pair
with a morphologically complex tar-
get language, without needing modifi-
cation or additional resources.

1 Introduction

In isolating languages, such as English, suit-
able smallest units of translation are easy to
find using whitespace and punctuation char-
acters as delimiters. This approach of us-
ing words as the smallest unit of transla-
tion is problematic for synthetic languages
with rich inflection, derivation or compound-
ing. Such languages have very large vocabu-
laries, leading to sparse statistics and many
out-of-vocabulary words.

A synthetic language uses fewer words than
an isolating language to express the same
sentence, by combining several grammatical
markers into each word and using compound
words. This difference in granularity is prob-
lematic in alignment, when a word in the iso-
lating language properly aligns with only a
part of a word in the synthetic language.

In order to balance the number of tokens
between target and source, it is often possi-
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ble to segment the morphologically richer side.
Oversegmentation is detrimental, however, as
longer windows of history need to be used,
and useful phrases become more difficult to
extract. It is therefore important to find a
balance in the amount of segmentation. A
linguistically accurate segmentation may be
oversegmented for the task of translation, if
some of the distinctions are either unmarked
or marked in a similar way in the other lan-
guage.

An increase in the number of tokens means
that the distance spanned by dependencies
becomes longer. Recurrent Neural Network
(RNN) based language models have been
shown to perform well for English (Mikolov
et al., 2011). Their strength lies in being the-
oretically capable of modeling arbitrarily long
dependencies.

Moreover, a huge vocabulary is particularly
detrimental for neural language models due to
their computationally heavy training and need
to marginalize over the whole vocabulary dur-
ing prediction. As morphological segmenta-
tion can reduce the vocabulary size consider-
ably, using RNN language models seems even
more suitable for this approach.

Our system is designed for translation in the
direction from a morphologically less complex
to a more complex language. The opposite
direction — simplifying morphology — has re-
ceived more attention, especially with English
as the target language.

Of the target languages in this year’s task,
Finnish is the most difficult to translate into,
shown by Koehn (2005) and reconfirmed by
the evaluations of this shared task. Even
though the use of supervised linguistic tools

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 105-111,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



(such as taggers, parsers, or morphological an-
alyzers) was allowed in the constrained con-
dition, our method does not use them. It is
therefore applicable to other morphologically
complex target languages.

1.1 Related work

The idea of transforming morphology to im-
prove statistical machine translation (SMT) is
well established in the literature. An early ex-
ample is Nieflen and Ney (2004), who apply
rule-based morphological analysis to enhance
German—English translation.

In particular, many efforts have focused on
increasing the symmetry between languages
in order to improve alignment. Lee (2004)
uses this idea for Arabic—FEnglish translation.
In this translation direction, symmetry is in-
creased through morphological simplification.

It has been shown that a linguistically cor-
rect segmentation does not coincide with the
optimal segmentation for purposes of align-
ment, both using rule-based simplification of
linguistic analysis (Habash and Sadat, 2006),
and through the use of statistical methods
(Chung and Gildea, 2009).

Using segmented translation with unsuper-
vised statistical segmentation methods has
yielded mixed results. Virpioja et al. (2007)
used Morfessor Categories-MAP in transla-
tion between three Nordic languages, in-
cluding Finnish, while Fishel and Kirik
(2010) used Morfessor Categories-MAP in
English«—Estonian translation. In these stud-
ies, segmentation has in many cases worsened
BLEU compared to word-based translation.
The main benefit of segmentation has been a
decrease in the ratio of untranslated words.

Salameh et al.  (2015)  translate
English—Arabic, and find that segmen-
tation is most useful when the extracted
phrases are morphologically productive, and
that using a word-level language model
reduces this productivity (albeit increasing
the BLEU score).

The desegmentation process, and the ef-
fect of different strategies for marking the
word-internal token boundaries, have mostly
been examined in recombining split compound
words. Stymne and Cancedda (2011) explore
different marking strategies, including use of
part-of-speech tags, in order to allow the trans-
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lation system to produce compounds unseen in
the training data.

2 System overview

An overview of the system is shown in Fig-
ure 1. The four main contributions of this
work are indicated by numbered circles:

1. Use of unsupervised Morfessor FlatCat
(Gronroos et al., 2014) for morphological
segmentation,

. Tuning the morphological segmentation
directly to balance the number of trans-
lation tokens between source and target,

. A new marking strategy for morph
boundaries,

. Rescoring n-best lists with RNNLM
(Mikolov et al., 2010).

Our system extends an existing phrase-
based SMT system to perform segmented
translation, by adding pre-processing and
post-processing steps, with no changes to the
decoder. As translation system to be ex-
tended, we used the Moses release 3.0 (Koehn
et al., 2007). We used GIZA++ alignment,
and a 5-gram LM with modified-KN smooth-
ing. Many Moses settings were left at their
default values: phrase length 10, grow-diag-
final-and alignment symmetrization, msd-
bidirectional-fe reordering, and distortion
limit 6.

The standard pre-processing steps not spec-
ified in Figure 1 consist of normalization
of punctuation, tokenization, and statistical
truecasing. All three of these were performed
with the tools included in Moses.

In addition, the parallel data was cleaned
and duplicate sentences were removed. Clean-
ing was performed after morphological seg-
mentation, as the segmentation can increase
the length in tokens of a sentence.

The post-processing steps are the reverse
of the pre-processing steps: desegmentation,
detruecasing, and detokenization. Rescor-
ing of the n-best list was done before post-
processing.

The feature weights were tuned using
MERT (Och, 2003), with BLEU (Papineni
et al., 2002) of the post-processed hypothesis



Train Test
parallel monolingual input
en
en fi fi fi
preprocess preprocess postprocess
train FlatCat
their reduction targets . ‘ supistamistavoitteistaan . end of the year Vuodenvaihteeseen
1
q
tune FlatCat @
1
@ segment | segmentation desegment
supistagrymisgyrtavoitteistagyransyr model vuodenvaihteeseen
mark boundaries
) ) o @ 1-best list
supistamis+ tavoitteista +an
9 . rescore
train Moses train train RNNLM @ |
g LM RNNLM model vuoden+ vaihte+ eseen
arallel Moses translate | .
P tune Moses n-best list
dev set models vuoden+ vaihte4 eseen I

Figure 1: A pipeline overview of training and testing of the system. Main contributions are

hilighted with numbers 1-4.

against a tuning set as the metric. 20 random
restarts per MERT iteration were used, with
iterations repeated until convergence.

A similar MERT procedure was also used for
choosing the interpolation weights for rescor-
ing, with 100 random restarts in a single iter-
ation. A single-iteration approach was chosen,
as there was no need to translate a new n-best
list during the MERT for rescoring.

2.1 Morphological segmentation

For morphological segmentation, we use the
latest Morfessor variant, FlatCat (Groénroos
et al., 2014). Morfessor FlatCat is a proba-
bilistic method for learning morphological seg-
mentations, using a prior over morph lexicons
inspired by the Minimum Description Length
principle (Rissanen, 1989).

Morfessor FlatCat applies a Hidden Markov
model for morphotactics. Compared to
Morfessor Baseline, it provides morph cat-
egory tags (stem, prefix, suffix) and has
superior consistency especially in compound
word splitting. In contrast to Categories-
MAP (Creutz and Lagus, 2005), used for sta-
tistical machine translation e.g. by Clifton
and Sarkar (2011), it supports semi-supervised
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learning and hyper-parameter tuning.

No annotated data was used in the training
of Morfessor FlatCat, neither in training nor
parameter tuning. Instead of aiming for a lin-
guistic morphological segmentation, our goal
was to balance the number of translation to-
kens between source and target languages.

In order to bring the number of tokens
on the Finnish target side closer to the En-
glish source side, we segmented the Finnish
text with an unsupervised Morfessor FlatCat
model, tuned specifically to achieve this bal-
ance. The corpus weight hyper-parameter «
was chosen by minimizing the sentence-level
difference in token counts between the English
and the segmented Finnish sides of the parallel
corpus

I

a=argmin > [#(e) - #(M(f;0))
“ (eE(BEF)
(1)

where # gives the number of tokens in the sen-
tence, and M (f;«a) is the segmentation with a
particular a.

Numbers and URLs occurring in the parallel
corpus were passed through Morfessor unseg-



mented, but translated by Moses without any
special handling.

2.2 Morph boundary marking strategy

In the desegmentation step, consecutive to-
kens are concatenated either with or with-
out an intermediary space. Morph boundaries
must be distinguished from word boundaries,
so that the desegmentation step can recon-
struct the words correctly. There are various
ways to mark the boundaries, some of them
shown in Table 1.

A common way is to attach a symbol to all
morphs on the right (or left) side of the morph
boundary. We call this strategy right-only.

Alternatively both-sides of the boundary can
be marked. In this strategy, a decision must
be made whether to be aggressive or conserva-
tive in joining morphs, if the translation sys-
tem outputs an incorrect sequence where the
markers do not match up on both sides. For
these experiments we chose the conservative
approach, removing the unmatched marker
from a half-marked boundary, and treating it
as a word boundary.

A downside of the right-only and both-sides
strategies is that a stem is marked differently
depending on whether it has a prefix attached
or not, even if the surface form of the stem
does not change.

The morph categories produced by FlatCat
can be used for marking boundaries according
to the structure of the word. We can mark
affixes from the side that points towards the
stem, leaving stems unmarked regardless of
the presence of affixes. However, this would
leave the boundaries between compound parts
indistinguishable from word boundaries, mak-
ing some additional marking necessary.

Marking affixes by category and compound
boundaries with a special linking token is
called the compound-symbol strategy. Instead
marking the last morpheme in the compound
modifiers (non-final compound parts), results
in the compound-left strategy.

After initial unimpressive results with the
compound marking strategies, we concluded
that segmenting the compound modifiers does
not lead to productive translation phrases,
in contrast to boundaries between compound
parts and boundaries separating inflective af-
fixes. In response, we formulated the advanced
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Strategy Example

Surface form
Segmentation

supistamistavoitteistaan
supistaSTM miSSUptavoitteistaST3,1 ansyr

Translation of their reduction targets
right-only supista +mis +tavoitteista +an
both-sides supista+ +mis+ +tavoitteista+ +an

supista +mis +@+ tavoitteista +an
supista +mis@ tavoitteista +an
supistamis+ tavoitteista +an

compound-sym
compound-left
advanced

Table 1: Morph boundary marking strategies.

marking strategy, which goes beyond bound-
ary marking to modify the segmentation, by
rejoining the morphs in the modifier parts of
compounds.

The sequence of morph categories is used for
grouping the morphs into compound parts. A
word consists of one or more compound parts.
Each compound part consists of exactly one
stem, and any number of preceding prefixes
and following suffixes.

CoMPOUNDPART = PRE* STM SUF*
WORD = COMPOUNDPART  (2)

For all compound parts except the last one,
the affixes are rejoined to their stem. Morphs
of length 5 or above were treated as stems,
regardless of the category assigned to them by
FlatCat.

Prefixes and compound modifiers
marked with a trailing ’+’, suffixes are marked
with a leading '+, and the stems of the word-
final compound parts are left unmarked.

are

2.3 Rescoring n-best lists

Segmentation of the word forms increases
the distances spanned by dependencies that
should be modeled by the language model. To
compensate this, we apply a strong recurrent
neural network language model (RNNLM)
(Mikolov et al., 2010). The additional lan-
guage model is used in a separate rescoring
step, to speed up translation, and for ease of
implementation.

The RNNLM model was trained on morpho-
logically segmented data. Morphs occurring
only once were removed from the vocabulary,
and replaced with <UNK>. The parameters
were set to 300 nodes in the hidden layer, 500
vocabulary classes, 2M direct connections of



Monolingual data

Parallel data

Purpose news2014 v2 europarl v8 wikititles newsdev2015 test2006
Training Morfessor fi fi fi

Training LMs fi fi fi

Training Moses en — fi en — fi

Tuning Morfessor en — fi

Tuning RNNLM fi

Tuning Moses en — fi
Development testing en — fi
Sentences 1378582 1926114 153728 1500 2000

Table 2: The data sets used for different purposes. “en—fi” signifies that parallel data was used,
“fi” signifies monolingual data, or using only the Finnish side of parallel data.

order 4, backpropagation through 5 time steps,
with blocksize 25.

At translation time, 1000-best lists of morph
segmented hypotheses produced by Moses
were scored using the RNNLM.

The Moses features were extended by in-
cluding the RNNLM score as an additional fea-
ture. A new linear combination of the features
was optimized with MERT, and used for the
final hypothesis ranking. For the BLEU mea-
surement in MERT the segmented hypothe-
sis was post-processed (including desegmenta-
tion) and compared to an un-preprocessed ref-
erence.

3 Data

The data sets used in training and tuning are
shown in Table 2. Both europarl v8 and wik-
ititles were used as parallel training data, but
only europarl was used for tuning the hyper-
parameter «, as the titles do not follow a typ-
ical sentence structure.

The Finnish side of the parallel sets was
used to extend the monolingual training data.
The monolingual data were concatenated for
LM training, instead of interpolating different
n-gram models.

After cleaning, the combined parallel train-
ing data contained 2,004,450 sentences. The
parallel set used for testing during develop-
ment is test2006, a europarl subset of 2000
sentences sampled from three last months of
2000.1

"http://matrix.statmt.org/test_sets/list
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dev-test test

test2006 newstest2015
Configuration BLEU BLEU
advanced, a = 0.7 .147 112

+rescoring .147 116

advanced, « = 0.4 .145 112
both-sides 141 114
compound-left .140 113
compound-sym 139 11
right-only 139 111
(word) 146 .100

Table 3: Results of evaluation.

4 Results

Table 3 shows cased BLEU scores on the in-
domain development set and out-of-domain
test set, for various configurations. The en-
try marked word is a baseline system without
segmentation.

When evaluating on the in-domain develop-
ment set, most configurations that use seg-
mentation achieve worse BLEU compared to
the word baseline. Only the best configura-
tions, using the advanced strategy, are able to
achieve slightly higher BLEU.

Switching domains to the test corpus leads
to a larger difference, in favor of the segment-
ing methods. The choice of morph boundary
marking strategy and the sentence-based tun-
ing of the segmentation had a moderate effect
on BLEU. The addition of rescoring did not
improve BLEU on the in-domain dev-test cor-
pus, but resulted in a slight improvement on



the out-of-domain test corpus.

The proportion of word tokens that were
segmented into at least two parts was 19.8%.
The joining of compound modifiers did not
have a large effect on the total number of to-
kens, causing a reduction from 49,524,520 to
49,475,291 (0.1%).

Using the sentence-level balancing, the op-
timal value for the corpus weight hyper-
parameter o was 0.7. The change in the num-
ber of tokens caused by the joining of com-
pound modifiers did not affect the optimum.
Balancing the token count of the whole cor-
pus yielded a much lower « of 0.4, leading to
oversegmentation and lower BLEU.

The weight of the RNNLM in the final linear
combination was 0.092, compared to 0.119 of
the n-gram LM. This indicates that it is able
to complement the n-gram model, but does
not dominate it.

In the human evaluation of WMT15, the
system with advanced morph boundary mark-
ing strategy and RNNLM rescoring was
ranked in tied second place of five methods
participating in the constrained condition.

5 Conclusions

To improve English-to-Finnish translation in a
phrase-based machine translation system, we
tuned an unsupervised morphological segmen-
tation preprocessor to balance the token count
between source and target languages. Ap-
propriate choice of morph boundary marking
strategy and amount of segmentation brought
the BLEU score slightly above a word-based
baseline, in contrast to some previous work
with unsupervised segmentation (Virpioja et
al., 2007; Fishel and Kirik, 2010).

To compensate for the need of longer con-
texts, we added a recurrent neural network
language model as a rescoring step. It did not
help for the in-domain development corpus,
but improved results on the out-of-domain test
corpus.

Possible directions for future work include
Minimum Bayes Risk combination of trans-
lation hypotheses from systems trained with
different segmentations and marking strate-
gies (De Gispert et al., 2009), using morphol-
ogy generation instead of segmented transla-
tion (Clifton and Sarkar, 2011), and improving

the alignment directly in addition to balancing
of token counts (Snyder and Barzilay, 2008).
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Abstract

This paper describes the AFRL-MITLL
statistical MT systems and the improve-
ments that were developed during the
WMT15 evaluation campaign. As part of
these efforts we experimented with a num-
ber of extensions to the standard phrase-
based model that improve performance on
the Russian to English translation task cre-
ating three submission systems with differ-
ent decoding strategies. Out of vocabulary
words were addressed with named entity
postprocessing.

1 Introduction

As part of the 2015 Workshop on Machine
Translation (WMT15) shared translation task, the
MITLL and AFRL human language technol-
ogy teams participated in the Russian—English
translation task. Our machine translation sys-
tems represent enhancements to both our sys-
tems from IWSLT2014 (Kazi et al., 2014) and
WMT14 (Schwartz et al., 2014), the addition of
hierarchical decoding systems (Hoang and Koehn,
2008), neural network joint models (Devlin et al.,
2014) and the utilization of Drem (Erdmann and
Gwinnup, 2015), a method of scaled derivative-
free trust-region optimization, during the system
tuning process.

2 System Description

We submitted systems for the Russian-to-English
machine translation shared task. In all submitted
systems, we used either phrase-based or hierarchi-
cal variants of the moses decoder (Koehn et al.,

TThis work is sponsored by the Air Force Research Labo-
ratory under Air Force contract FA-8650-09-D-6939-029.

*This work is sponsored by the Air Force Research Labo-
ratory under Air Force contract FA-8721-05-C-0002.

Brian Thompson!
MIT Lincoln Laboratory
michaeel.kazi,elizabeth.salesky,

brian.thompson@ll.mit.edu

2007). As in previous years, our submitted sys-
tems used only the constrained data supplied when
training.

2.1 Data Usage

In training our Russian—English systems we uti-
lized the following corpora to train translation and
language models: Yandex', Commoncrawl (Smith
etal., 2013), LDC Gigaword English v5 (Parker et
al., 2011) and News Commentary. The Wikipedia
Headlines corpus?® was reserved to train named en-
tity recognizers.

2.2 Data Preprocessing

As with our WMT 14 submission systems, prepro-
cessing to address issues with the training data was
required to ensure optimal system performance.
Unicode characters in the private use, control char-
acter(CO, C1, zero-width, non-breaking, joiner,
directionality and paragraph markers), and unal-
located ranges were removed. Punctuation nor-
malization and tokenization using Moses prepro-
cessing scripts were then applied before lower-
casing the data. The Commoncrawl corpus was
further processed as in Schwartz et al. (2014)
to exclude wrong-language text and to normalize
mixed-alphabet spellings.

2.3 Factored Data Generation

We generated a class-factored version of the paral-
lel Russian—English training data by using mkcls
to produce 600 word classes for each side of the
data. The factored data was then used to create a
factored translation model and an in-domain class
language model (Brown et al., 1993) for the En-
glish portion.

'https://translate.yandex.ru/corpus?lang=en
*http://statmt.org/wmt15/wiki-titles.tgz
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2.4 Phrase and Rule Table Training

Phrase tables and rule tables were trained on the
preprocessed data using scripts provided with the
moses distribution. Both rule tables and phrase
tables utilized Good-Turing discounting (Gale,
1995). Hierarchical lexicalized reordering mod-
els (Galley and Manning, 2008) were also trained
for use in the phrase-based systems.

An additional phrase table was trained on the
lemmatized forms of the Russian training data.
These lemmatized forms were generated by the
mystem’ tool.

2.5 Language Model Training

The English data sources listed in §2.1 were
used to train a very large 6-gram language model
(BigLM15). The English portion of the parallel
data was processed into class form as outlined in
§2.3 to generate an in-domain 600 class language
model. kenlm (Heafield, 2011) was used to train
these 6-gram models. These models were then bi-
narized and stored on local solid-state disks for
each machine in our cluster to improve load time
and reduce fileserver traffic.

2.6 Operation Sequence Models

Using both the Russian and English data generated
in §2.3, we trained order-5 Operation Sequence
models (Durrani et al., 2011) for both the surface
and class-factored forms of the data. These models
improve translation quality by introducing infor-
mation on the sequence of operations occuring at
both the surface and class factor level. These mod-
els were then used in our factored phrase-based
system.

2.7 Neural Network Joint Models

Neural network joint models (Devlin et al., 2014)
are neural network based language models with a
source window context. We trained these mod-
els on the alignments produced by mgiza (Gao
and Vogel, 2008) over the parallel training data
and then used them to rescore n-best lists. As
in (Devlin et al., 2014), we trained four different
models. The standard model is “source-to-target,
left-to-right,” (s2t, Itr) which evaluates p(¢;|T, S)
with target window T = (¢;—1,t;—2, ..., t;—n) and
S = (Sk—my---Sky -, Sktm), Where sy is word-
aligned to ¢;. The four permutations of this are de-
fined by (a) whether to count upwards from i, in-

*https://tech.yandex.ru/mystem

stead of downwards (this is left-to-right vs right-to-
left), and (b) whether to swap the sources and tar-
gets entirely (source-to-target vs target-to-source).

We experimented with NNJM decoding (via a
simple feature function in Moses). We achieved
some benefit (+0.48 BLEU) with this approach but
rescoring a single NNJM source-to-target on 200-
best lists produced better results in this case (+0.90
BLEU). This was on a single system tuned on
newstest2013, tested on newstest2014 (base-
line 29.07 BLEU). In testing, 2-hidden layer
rescoring models outperformed the 1-hidden layer
decoding model.

The vocabulary for the NNJMs were created by
using all words that appeared at least a certain
number of times in the training data. We experi-
mented with minimum counts of 20 and 25. Us-
ing 20, our vocabulary was approximately 80,000
Russian words and 40,000 English; with 25, it was
70,000 and 34,000, respectively. We compared
rescoring with a single, standard model (s2t, 12r)
to rescoring with all directions with results listed
in Table 1.

Baseline 1 NNJM 4 NNJMs

20 25 20 25
max 27.71 2790 28.05 27.90 28.07
mean 27.48 27.61 27.81 27.67 27.60

Table 1: NNJM Rescoring on newstest2015,
optimizing on newstest2014, case-insensitive
BLEU.

2.8 Processing of Unknown Words

In our submission systems, we allowed words
unknown to the decoder to be passed through
to the translated output. We developed three
post-processing techniques to address unknown
words: named entity (NE) tagging and transla-
tion (§2.8.2), permissive NE translation (§2.8.3),
and selective transliteration of the remaining OOV
words (§2.8.4). The first two techniques rely on
our in-house transliteration mining of NE pairs,
which is described in §2.8.1.

We applied all three post-processing steps to
the output of our factored phrase-based submis-
sion system; due to time constraints, only the last
two steps were applied to the output of our phrase-
based and hierarchical submission systems.

Score improvements in uncased BLEU are re-
ported in Table 2. We see that application of
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permissive lookup and selective transliteration
yielded an improvement of +0.48 BLEU versus a
baseline system, while the application of named
entity tagging and translation, permissive lookup
and selective transliteration yielded a +0.57 BLEU
gain.

2.8.1 Transliteration Mining

Both NE processing steps (§2.8.2 and §2.8.3)
make use of a NE pairs list that we developed
through transliteration mining of the Russian-
English CommonCrawl. In transliteration mining
(Kumaran et al., 2010; Zhang et al., 2012), we use
transliteration as a tool to detect similar-sounding
words in the parallel text that may correspond to
names. Our process for detecting transliterated NE
is generative and rule-based. We used mystem to
tag NE in the Russian text, and then used capital-
ization and transliteration as clues to find match-
ing NE in the parallel English sentences. English
words were considered candidate matches if they
were capitalized, but not sentence-initial; we ex-
cluded all-caps words, since acronyms often do not
transliterate well. We also required the English
candidate words to match the initial sound of the
Russian NE.

We checked the initial sound match by translit-
erating the Russian words according to the text-
book values of the Russian letters, and then check-
ing for matches with the English spellings, allow-
ing certain spelling variations. These variations
include instances where Russian lacks an English
sound, and substitutes a similar sound (e.g., En-
glish h written in Russian with the letters for x or
g, and English w written with the Russian letters
for v or u), as well as common English spelling al-
ternations like n/kn, s/c, c/k, etc.

An iterative process of refining spelling alter-
nations was applied by manual observation of
known NE pairs that were not matched via exist-
ing rules; notably, this introduced spelling varia-
tions for words originating from a third language.
For example, English j typically represents [d3]
but may also indicate [h] in words of Spanish ori-
gin, so we need to allow the spelling alternation
x/j . Similarly, the letters gi may represent [d%] in
Italian names like Giovanni, so we need to allow
transliterated Russian dzh to match English gi.

At this point in the transliteration mining pro-
cess, we have derived a list of capitalized English
words that have initial spellings potentially match-
ing the initial sound of the Russian NE word. If the

English sentence contains more than one such can-
didate, we select the word with the smallest edit
distance from the Russian transliteration, using a
length-normalized Levenshtein distance. For this
calculation, any spelling variation counts as an edit
distance change, so we penalize variations such as
k for c.

For NE tagging and translation (§2.8.2), we re-
turn only the NE pairs with zero edit distance. For
permissive NE translation, we allow some varia-
tion, as described in §2.8.3.

2.8.2 Named Entity Tagging and Translation

The named entity post-process uses Russian—
English pairs in the combined names and titles
lists from the Wikipedia Headlines corpus (the
“Wiki pairs list”) and the transliteration-mined
list (§2.8.1) to replace unknown words with En-
glish equivalents. We began by stemming each
list to remove Russian noun and adjective end-
ings. To the Wiki pairs list, we added additional
pairs yielded by replacing word-internal punctu-
ation marks in existing Wiki pairs with spaces.
We used giza++ (Och and Ney, 2003) to align
Russian—English phrases from the Wiki list. We
then used these alignments to start a generated list
of pairs with only one Russian word and one En-
glish word in a pair. Of the aligned pairs, we only
included pairs that were aligned with one another
three or more times. Only one-to-one alignments
would count toward the three alignment rule. We
also removed entries where the English word in
the pair occurred in a list of stop-words as well as
where the English word consisted of only digits.
To the generated list, we also added pairs directly
from the Wiki list with both single Russian words
and single English words. Finally, we also added
the highest quality pairs from the transliteration-
mined list.

Upon encountering a single word without word-
internal punctuation, the system first searches
through the generated list, and returns a list of
found guesses. If no items are found in the gen-
erated list, the Wiki list is then searched. If still no
guesses are found, then the transliteration-mined
list is searched. The same process occurs for a
word containing word-internal punctuation, but af-
ter a failed iteration of the search process, the punc-
tuation is replaced with a space and the Wiki lists
are searched. Finally if that iteration fails, then
the search process occurs on each individual word
and a concatenation of English definitions is added
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to the guess list for every possible combination of
guesses for each component word. An English lan-
guage model is used to choose among the guesses.

2.8.3 Permissive Named Entity Translation

Permissive NE look-up is applied to translate OOV
words that remain untranslated after NE tagging
and translation (§2.8.2), or when the NE tagging
and translation step is unavailable. In this second
step, we expand the NE pairs list to include pairs
with greater edit distance when they are validated
by repeat occurrence.

While the NE tagging and translation step only
uses transliteration-mined NE pairs which match
exactly, the permissive step allows NE pairs that
have some spelling variation. We apply two addi-
tional restrictions to ensure good quality matches,
length disparity and instance ratio. We restrict the
output to words which come from sentences that
do not differ too much in length. A large length
disparity suggests a sentence alignment error in the
parallel text, which would make the NE match un-
reliable.

We also restrict the output to words which are
fairly frequent among other matches for the same
Russian words, calculating an instance ratio as the
number of times we see this English word with
this Russian word, divided by the total number of
English matches we record for this Russian word.
Rare instances may be mistakes or spelling vari-
ants that we would prefer to exclude. For example,
we found the Russian name Koncmanmun matched
with English Constantine 117 times, and matched
with the spelling Konstantine only 1 time, so we
do not want to collect Koncmanmun/Konstantine
as a NE pair.

We keep the NE pairs if:

1. The length-normalized edit distance < 0.2

2. The length-normalized edit distance falls be-
tween 0.2 and 0.5, inclusive, and sentence
length disparity < 2 and instance ratio > 0.01

With these restrictions, we derived 32,560 poten-
tial NE pairs.

Subsequently, an additional transliteration min-
ing step was conducted, to collect NE pairs from
any capitalized Russian words, not just the words
tagged as NE by mystem. We excluded Russian
acronyms, sentence-initial words, and personal
pronouns (which are capitalized in some styles

of Russian writing). Applying the previously de-
scribed restrictions for edit distance, instance ra-
tio, and sentence length disparity, we derived an
additional 22,370 capitalized-word NE pairs. The
combined mystem tagged and capitalized-word
NE pairs lists were used in the permissive transla-
tion of OOV words, considering both the original
form of the Russian OOV word and its stemmed
form.

For the phrase-based and hierarchical systems,
which were processed without the NE tagging and
translation step, the wiki pairs list was added to the
mined NE pairs list for permissive OOV transla-
tion.

2.8.4 Selective Transliteration of Remaining
Out-of-Vocabulary Words

As a final post-processing step, we transliterate
some of the remaining OOV words. We attempt to
distinguish OOV NE from common words, drop-
ping common words and transliterating names. We
hypothesize that retaining transliterated forms of
NE will improve readability, even if the output is
not a direct match to the English reference.

We attempt to distinguish NE from common
words on the basis of capitalization in the Russian
source file. Capitalized words that do not begin a
sentence are assumed to be NE, and are translit-
erated. For example, transliteration is the source
of the name Kostenok in first example sentence
shown in Figure 1. Lowercased words, and cap-
italized words that begin a sentence, are assumed
to be common words and are dropped from the out-
put.

3 Results

We submitted three systems for evaluation, each
employing a different decoding strategy: tradi-
tional phrased-based, hierarchical, and factored
phrased-based. Each system is described be-
low. Automatically scored results reported in
BLEU (Papineni et al., 2002) for our submission
systems can be found in Table 3.

Finally, as part of WMT15, the results of our
submission systems listed in Tables 3 were ranked
by monolingual human judges against the machine
translation output of other WMT15 participants.
These judgements are reported in WMT (2015).

3.1 Phrased-Based

We used a standard phrase-based approach, using
lowercased data. The lemma-based phrase table
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System Process Applied

baseline BLEU postproc BLEU A BLEU

PermLookup + SelTranslit
PermLookup + SelTranslit

phrase-based
hiero
pb-factored

NEProc + PermLookup+ SelTranslit

27.72 28.20 +0.48
27.43 2791 +0.48
27.18 27.75 +0.57

Table 2: NE post-processing improvement measured in uncased BLEU

described in §2.4 was used as a backoff phrase
table. We trained a hierarchical lexicalized re-
ordering model, and used two separate class based
(factored) language models; one using 600 classes
on the in-domain target-side parallel data, and the
other using the LDC Gigaword-English v5 NYT
corpus. N-best lists from moses were rescored
with 4-way NNJMs, and the system weights were
tuned with PRO (Hopkins and May, 2011). Selec-
tive transliteration as described in §2.8.4 was then
applied to the decoder output.

3.2 Hierarchical

New for this year, we trained a hierarchical system
using the same parallel data as our phrase-based
systems. The rule table was created as outlined in
§2.4 and then filtered to only contain rules relat-
ing to the Russian content of the newstest test
set for years 2012-2015. This filtering was per-
formed in order to reduce the size of the rule table
for both system memory requirements and expedi-
ency. The incremental-search algorithm (Heafield
etal., 2013) and BigLM15 were used to decode the
dev (newstest2014) and test (newstest2015)
data. Drem was employed to tune feature weights,
optimizing the sum of the expected sentence-
level BLEU and expected sentence-level Meteor
(Denkowski and Lavie, 2014) metrics. Finally, se-
lective transliteration was employed as described
in §2.8.4.

3.3 Factored Phrase-Based

For our last system, we used a factored phrase-
based approach (Koehn and Hoang, 2007) where
the surface form of the training data was aug-
mented with word classes. These classes were
generated on the parallel training data outlined in
§2.4 using mkcls to group the words into 600
classes for both English and Russian portions of
the parallel training corpus. A phrase table and hi-
erarchical reordering model was then trained us-
ing the moses training process on both the surface
form and the class factor. Order-5 operation se-
quence models were separately trained on the sur-

face forms and the class factors. An order-6 class-
factor LM (Shen et al., 2006) was also trained on
the English portion of the parallel training data to
supplement the use of BigLM15. NNJMs as out-
lined in §2.7 were used to rescore the n-best lists
from the decode. Following this rescoring, Drem
was employed to tune feature weights, optimizing
expected corpus-level BLEU (Smith and Eisner,
2006). After optimization and decoding of the test
set, remaining unknown words were processed as
described in §2.8.2 and §2.8.4.

System Cased BLEU Uncased BLEU
phrase-based 27.0 28.2
hiero 26.7 27.9
pb-factored 26.4 27.8

Table 3: MT Submission Systems decoding
newstest2015

4 Discussion

Our three submitted systems all scored similarly
against the official test set. Manual examination of
our systems’ output shows that there are significant
differences in sentence structure and content.

4.1 Comparing Submitted Systems for
Similarity

We scored one system output against another (as
reference) with mtevali3a.pl in both directions
as BLEU scores are not symmetric. Results are
listed in Table 4. Interestingly, the factored phrase-
based and hierarchical systems were more similar
to each other than to the traditional phrase-based
system. This suggests that the addition of class
factors serves a similar function to the use of hi-
erarchical decoding.

4.2 A Closer Analysis of Performance
between Submission Systems

We now examine two sentences translated with
each of our submission systems and compare them
with the supplied reference translation and a literal
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Test Ref BLEU
PB Hiero 57.18
PBFac Hiero 76.34
Hiero PB 57.09
PBFac PB 60.54
PB PBFac 60.47
Hiero PBFac 70.18

Table 4: Submission system similarity measured
in uncased BLEU

translation. These comparisons are shown in Fig-
ure 1.

In the first sentence, the reference transla-
tion shows a reordering of the first clause to
the end. The phrase-based system drops this
clause. The pb-factored system has informed in-
stead of reported which shifts the meaning; per-
haps the translation was influenced by the fluent
but different-meaning phrase informed the Minis-
ter. The hierarchical system follows the original
order of the source sentence clauses; while miss-
ing the, it reads the best overall.

In the second sentence, Yueonuwiti “school” (ad-
jective) is the probable source of school, academic,
and teach. The phrase-based system handles this
word best; the phrase-based factored system gen-
erates academic and teach but separates them; the
hierarchical system generates year to teach. The
hierarchical system does the best job with no ear-
lier than October. The phrase-based factored sys-
tem generates no earlier and October but reorders
them (perhaps influenced by the common phrase,
in October); and the phrase-based system creates
before October, which reverses the meaning. The
phrase-based system would have read best here,
had it not neglected the negative particle.

5 Conclusion

In this paper, we present data preparation and pro-
cessing techniques for our Russian—English sub-
missions to the 2015 Workshop on Machine Trans-
lation (WMT15) shared translation task. Our sub-
missions examine three different decoding strate-
gies and the effectiveness of sophisticated han-
dling of unknown words. While scoring similarly,
each system produced markedly different output.

Opinions, interpretations, conclusions and recommenda-
tions are those of the authors and are not necessarily endorsed
by the United States Government. Cleared for public release
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Example 1

source: OO0 »TOM COOOIIHIT
pecnyonuku
literal: Of this reported
reference:

reported this.
phrase-based:

pb-factored: This was informed

CaMOIIPOBO3MIIAIICHHON
self-proclaimed republic,
for the self-proclaimed republic,

of the self-declared republic,
of'the self-declared republic,

hierarchical: ~ This was announced by of the self-proclaimed
republic
Example 2
source:  YueOHBI rof HAYHETCS
literal:  School year begins
reference:  The academic school year will begin
phrase-based: The school year will begin

pb-factored:
hierarchical:

Academic year
School year to teach will begin

teach will begin.

Figure 1: Comparison of Submission System Translation Output
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Abstract

This paper presented the joined submis-
sion of KIT and LIMSI to the English to
German translation task of WMT 2015. In
this year submission, we integrated a neu-
ral network-based translation model into a
phrase-based translation model by rescor-
ing the n-best lists.

Since the computation complexity is one
of the main issues for continuous space
models, we compared two techniques to
reduce the computation cost. We inves-
tigated models using a structured output
layer as well as models trained with noise
contrastive estimation. Furthermore, we
evaluated a new method to obtain the best
log-linear combination in the rescoring
phase.

Using these techniques, we were able to
improve the BLEU score of the baseline
phrase-based system by 1.4 BLEU points.

1 Introduction

In this paper, we present the English—German
joint translation system from KIT and LIMSI par-
ticipating in the Shared Translation Task of the
EMNLP 2015 - Tenth Workshop on Statistical
Machine Translation (WMT2015). Our system
is the combination of two different approaches.
First, a strong phrase-based system from KIT is
used to generate a k-best list of translated candi-
dates. Second, an n-gram translation model from
LIMSI, named SOUL (Structured OUtput Layer),
helps to rescore the k-best list by utilizing features
extracted from translated tuples. In this year par-
ticipation, we also use a version of the neural net-
work translation models (Le et al., 2012) trained
using NCE algorithm (Gutmann and Hyvérinen,
2010) as counterpart to SOUL models. A ListNet-
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based rescoring method is then applied to integrate
two abovementioned approaches.

Section 2 describes the KIT phrase-based trans-
lation system which is conducted over the phrase
pairs. Section 3 describes the LIMSI SOUL and
NCE translation models estimated on source-and-
target n-gram tuples. We explain the rescoring ap-
proach in Section 4. Finally, Section 5 summa-
rizes the experimental results of our joint system
submitted to WMT2015.

2 KIT Phrase-based Translation System

The KIT translation system uses a phrase-based
in-house decoder (Vogel, 2003) which finds the
best combinations of features in a log-linear
framework. The features consist of translation
scores, distortion-based and lexicalized reorder-
ing scores as well as conventional and non-word
language models. In addition, several reorder-
ing rules, including short-range, long-range and
tree-based reorderings, are applied before decod-
ing step as they are encoded as word lattices. The
decoder then generates a list of the best candidates
from the lattices. To optimize the factors of indi-
vidual features on a development dataset, we use
minimum error rate training (MERT) (Venugopal
et al., 2005). We are going to describe those com-
ponents in detail as follows.

2.1 Data and Preprocessing

The parallel data mainly used are the corpora ex-
tracted from Europarl Parliament (EPPS), News
Commentary (NC) and the common part of web-
crawled data (Common Crawl). The monolingual
data are the monolingual part of those corpora.

A preprocessing step is applied to the raw data
before the actual training. It includes removing ex-
cessively long and length-mismatched sentences
pairs. Special symbols and nummeric data are
normalized, and smartcasing is applied. Sentence
pairs which contain textual elements in different

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 120-125,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



languages to some extent, are also taken away.
The data is further filtered by using an SVM clas-
sifier to remove noisy sentences which are not the
actual translation from their counterparts.

2.2 Phrase-table Scores

We obtain the word alignments using the GIZA++
toolkit (Och and Ney, 2003) and Discrimina-
tive Word Alignment method (Niehues and Vo-
gel, 2008) from the parallel EPPS, NC and Com-
mon Crawl. Then the Moses toolkit (Koehn et al.,
2007) is used to build the phrase tables. Transla-
tion scores, which are used as features in our log-
linear framework, are derived from those phrase
tables. Additional scores, e.g. distortion infor-
mation, word penalties and lexicalized reordering
probabilities (Koehn et al., 2005), are also ex-
tracted from the phrase tables.

2.3 Discriminative Word Lexicon

The presence of words in the source sentence
can be used to guide the choice of target words.
(Mauser et al., 2009) build a maximum entropy
classifier for every target words, taking the pres-
ence of source words as its features, in order to
predict whether the word should appear in the tar-
get sentence or not. In KIT system, we use an ex-
tended version described in Niehues and Waibel
(2013), which utilizes the presence of source n-
grams rather than source words. The parallel data
of EPPS and NC are used to train those classifiers.

2.4 Language Models

Besides word-based n-gram language models
trained on all preprocessed monolingual data,
the KIT system includes several non-word lan-
guage models. A 4-gram bilingual language
model (Niehues et al., 2011) trained on the parallel
corpora is used to exploit wider bilingual contexts
beyond phrase boundaries. 5-gram Part-of-Speech
(POS) language models trained on the POS-tagged
parts of all monolingual data incorporate some
morphological information into the decision pro-
cess. They also help to reduce the impact of the
data sparsity problem, as cluster language models
do. Our 4-gram cluster language model is trained
on monolingual EPPS and NC as we use MKCLS
algorithm (Och, 1999) to group the words into
1,000 classes and build the language model of the
corresponding class IDs instead of the words.

All of the language models are trained using the
SRILM toolkit (Stolcke, 2002); The word-based
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language model scores are estimated by KenLM
toolkit (Heafield, 2011) while the non-word lan-
guage models are estimated by SRILM.

2.5 Prereorderings

The short-range reordering (Rottmann and Vo-
gel, 2007) and long-range reordering (Niechues and
Kolss, 2009) rules are extracted from POS-tagged
versions of parallel EPPS and NC. The POS tags
of those corpora are produced using the TreeTag-
ger (Schmid, 1994). The learnt rules are used to
reorder source sentences based on the POS se-
quences of their target sentences and to build re-
ordering lattices for the translation model. Addi-
tionally, a tree-based reordering model (Herrmann
etal., 2013) trained on syntactic parse trees (Klein
and Manning, 2003) is applied to the source side
to better address the differences in word order be-
tween English and German.

3 Continuous Space Translation Models

Neural networks, working on top of conventional
n-gram back-off language models (BOLMs), have
been introduced in (Bengio et al., 2003; Schwenk,
2007) as a potential means to improve discrete lan-
guage models. More recently, these techniques
have been applied to statistical machine transla-
tion in order to estimate continuous-space transla-
tion models (CTMs) (Schwenk et al., 2007; Le et
al., 2012; Devlin et al., 2014)

3.1 n-gram Translation Models

The n-gram-based approach in machine trans-
lation is a variant of the phrase-based ap-
proach (Koehn et al., 2003). Introduced
in (Casacuberta and Vidal, 2004), and extended
in (Marifo et al., 2006; Crego and Marifio, 2006),
this approach is based on a specific factorization
of the joint probability of parallel sentence pairs,
where the source sentence has been reordered be-
forehand as illustrated in Figure 1.

Let (s,t) denote a sentence pair made of a
source s and target t sides. This sentence pair is
decomposed into a sequence of L bilingual units
called tuples defining a joint segmentation. In
this framework, tuples constitute the basic trans-
lation units: like phrase pairs, a matching between
a source and target chunks. The joint probabil-
ity of a synchronized and segmented sentence pair
can be estimated using the n-gram assumption.
During training, the segmentation is obtained as a



org: ... a recevoir le prix nobel de la paix
St .. Sg:a {59: recevoir} [ S0 le} [511: nobel de la paix} [512: prix}
t: .. {fs: to} {fgz receive} {fm: the} {f”: nobel peace} [flzz prize}

u u

11 12

Figure 1: Extract of a French-English sentence pair segmented into bilingual units. The original (org)
French sentence appears at the top of the figure, just above the reordered source s and the target t. The
pair (s, t) decomposes into a sequence of L bilingual units (fuples) uy, ..., ur. Each tuple u; contains a

source and a target phrase: 5; and ;.

by-product of source reordering, (see (Crego and
Marifio, 2006) for details). During the inference
step, the SMT decoder is assumed to output for
each source sentence a set of hypotheses along
with their derivations, which allow CTMs to score
the generated sentence pairs.

Note that the n-gram translation model manipu-
lates bilingual tuples. The underlying set of events
is thus much bigger than for word-based models,
whereas the training data (parallel corpora) are
typically order of magnitude smaller than mono-
lingual resources. As a consequence, data spar-
sity issues for this model are particularly severe.
Effective workarounds consist in factorizing the
conditional probabitily of tuples into terms involv-
ing smaller units: the resulting model thus splits
bilingual phrases in two sequences of respectively
source and target words, synchronised by the tuple
segmentation. Such bilingual word-based n-gram
models were initially described in (Le et al., 2012)
and extended in (Devlin et al., 2014). We assume
here the same decomposition.

3.2 Neural Architectures

In such models, the size of output vocabulary is
a bottleneck when normalized distributions are
needed (Bengio et al., 2003; Schwenk et al.,
2007). Various workarounds have been proposed,
relying for instance on a structured output layer
using word-classes (Mnih and Hinton, 2008; Le et
al., 2011). A different alternative, which however
only delivers quasi-normalized scores, is to train
the network using the Noise Contrastive Estima-
tion or NCE for short (Gutmann and Hyviérinen,
2010; Mnih and Teh, 2012). This technique is
readily applicable for CTMs. Therefore, NCE
models deliver a positive score, by applying the
exponential function to the output layer activities,
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instead of the more costly softmax function. We
propose here to compare these both approaches,
SOUL and NCE to estimate CTMs. The only dif-
ference relies on the output structure of the net-
works. In terms of computation cost, while the
training using the two approaches takes quite sim-
ilar amounts of time, the inference with NCE is
slightly faster than the one with SOUL as it ig-
nores the score normalization. While the CTMs
under study in this paper were initially intro-
duced within the framework of n-gram-based sys-
tems (Le et al., 2012), they could be used with any
phrase-based system.

Initialization is an important issue when opti-
mizing neural networks. For CTMs, a solution
consists in pre-training monolingual n-gram mod-
els. Their parameters are then used to initialize
bilingual models.

3.3 Integration CTMs

Given the computational cost of computing
n-gram probabilities with neural network models,
a solution is to resort to a two-pass approach as de-
scribed in Section 4: the first pass uses a conven-
tional system to produce a k-best list (the k£ most
likely hypotheses); in the second pass, probabili-
ties are computed by the CTMs for each hypoth-
esis and added as new features. Since the phrase-
based system described in Section 2 uses source
reordering, the decoder was modified to gener-
ate k-best lists containing necessary word align-
ment information between the reordered source
sentence and its associated translation. The goal
is to recover the information that allows us to ap-
ply the n-gram decomposition of a sentence pair.



4 Rescoring

After generating translation probabilities using the
neural network translation models, we need to
combine them with the baseline scores of the
phrase-based system in order to select better trans-
lations from the k-best lists. As it is done in the
baseline decoder, we used a log-linear combina-
tion of all features. We trained the model using
the ListNet algorithm (Niehues et al., 2015; Cao
et al., 2007).

This technique defines a probability distribution
on the permutations of the list based on the scores
of the log-linear model and one based on a ref-
erence metric. Therefore, a sentence-based trans-
lation quality metric is necessary. In our exper-
iments we used the BLEU+1 score introduced by
Liang et al. (2006). Then the model was trained by
minimizing the cross entropy between both distri-
butions on the development data.

Using this loss function, we can compute the
gradient with respect to the weight wy, as follows:

n(@

Awp =Y fiu(@l?) « (1)
j=1
exp(fus(2)))
>0 exp(fu (')

eXp(BLEU(mg-i))
S exp(BLEU (a))

When using the ¢th sentence, we calculate the
derivation by summing over all n(? items of the k-
best lists. The kth feature value fy (xg-l)) is multi-
plied with the difference. This difference depends
on fw(asg-z)), the score of the log-linear model for
the j hypothesis of the list and the BLEU score
BLEU (azg-z)) assigned to this item. Using this
derivation, we used stochastic gradient descent to
train the model. We used batch updates with ten
samples and tuned the learning rate on the devel-
opment data. The training process ends after 100k
batches and the final model is selected according
to its performance on the development data.

The range of the scores of the different mod-
els may greatly differ and many of these values
are negative numbers with high absolute value
since they are computed as the logarithm of rel-
atively small probabilities. Therefore, we rescale
all scores observed on the development data to the
range of [—1, 1] prior to reranking.
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5 Results
System Dev  Test
Baseline 20.58 20.19
+ ListNet rescoring 19.95 20.98
+ NCE 21.00 21.51
+ SOUL 21.02 21.54
+ NCE + SOUL 21.14 21.63

Table 1: Results of English—German joint system

In this section we present the experimental
results of the joint system we submitted for
the English—German Shared Translation Task
for WMT2015. The systems are tuned on
newtest2013 (Dev) and the BLEU scores we get
when applying them over newtest2014 (Test) are
reported in Table 1.

KIT phrase-based system, labeled as the Base-
line, reaches 20.58 and 20.19 BLEU points on Dev
and Test sets, respectively. Using our new rescor-
ing ListNet-based instead of traditional MERT
yields upto 0.8 BLEU points. Adding features
estimated from different neural architectures of
CTMs gains a further 0.56 BLEU point improve-
ment. More precisely, when CTMs scores are
computed using neural networks trained with NCE
output layer and added to the new k-best list for
rescoring, we can observe that the BLEU score on
the test set achieves 21.51. With similar proce-
dures using SOUL output layer, the gain is slightly
better, reaching 21.54. Finally, adding all of the
scores derived from those two alternative output
structures results to our submitted system with the
BLEU of 21.63, which is 1.4 BLEU points differ-
ent from the baseline system.

Expensive computational cost is an important
issue while using CTMs estimated on large vocab-
ularies (Section 3.2). Table 2 compares the train-
ing and inference speed for SOUL and NCE mod-
els. While the two kinds of models have a same
speed in training, in inference the NCE models
benefit from their un-normalized scoring. Both ap-

training speed
1000/ s
1000/ s

inference speed
15500/ s
19400/ s

SOUL
NCE

Table 2: Speeds of the training and the inference
corresponding to SOUL and NCE models, ex-
pressed in number of processed words per second.



proaches are plausible workarounds to overcome
the computational difficulty by speeding up both
the training and the inference, contrary to some
propositions in the literature which only reduces
the inference time (Devlin et al., 2014).

6 Conclusion

In the experiments we showed that a strong base-
line phrase-based translation system, which al-
ready used several models during decoding, could
be improved significantly by adding computa-
tional complex models in a rescoring step.

Firstly, in our experiments, the translation qual-
ity was improved by rescoring the n-best list of
the baseline system. We could improve the BLEU
score by 0.8 points without adding additional fea-
tures. When adding CTMs features, additional
gains of 0.6 BLEU points were achieved.

Secondly, we compared two approaches to limit
the computation complexity of continuous space
models. The SOUL and NCE models perform
similarly; both improved the translation quality by
0.5 points. Small additional gains of 0.1 BLEU
points were achieved by using both models to-
gether.
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Abstract

This paper describes the submission of
the University of Edinburgh and the Johns
Hopkins University for the shared transla-
tion task of the EMNLP 2015 Tenth Work-
shop on Statistical Machine Translation
(WMT 2015). We set up phrase-based sta-
tistical machine translation systems for all
ten language pairs of this year’s evaluation
campaign, which are English paired with
Czech, Finnish, French, German, and Rus-
sian in both translation directions.

Novel research directions we investigated
include: neural network language mod-
els and bilingual neural network language
models, a comprehensive use of word
classes, and sparse lexicalized reordering
features.

1 Introduction

The Edinburgh/JHU phrase-based translation sys-
tems for our participation in the WMT 2015
shared translation task! are based on the open
source Moses toolkit (Koehn et al., 2007). We
built upon Edinburgh’s strong baselines from
WMT submissions in previous years (Durrani et
al., 2014a) as well as our recent research within
the framework of other evaluation campaigns
and projects such as IWSLT? and EU-BRIDGE?
(Birch et al., 2014; Freitag et al., 2014a; Freitag et
al., 2014b).

We first discuss novel features that we in-
tegrated into our systems for the 2015 Edin-
burgh/JHU submission. Next we give a gen-
eral system overview with details on our train-
ing pipeline and decoder configuration. We fi-
nally present empirical results for the individual
language pairs and translation directions.

'http://www.statmt.org/wmt15/

http://workshop2014.iwslt.org
*http://www.eu-bridge.eu
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2 Novel Methods

2.1 Neural Network LM with NPLM

For some language pairs (notably
French—English and Finnish—English) we ex-
perimented with feed-forward neural network lan-
guage models using the NPLM toolkit (Vaswani
et al., 2013). This toolkit enables such language
models to be trained efficiently on large datasets,
and provides a querying API which is fast enough
to be used during decoding. NPLM is fully inte-
grated into Moses, including appropriate wrapper
scripts for training the language models within the
Moses experiment management system.

2.2 Bilingual Neural Network LM

We also experimented with our re-implementation
of the “joint” model by Devlin et al. (2014). Re-
ferred to as bilingual LM in Moses, this was pre-
viously employed in the Edinburgh IWSLT system
submissions, although with limited success (Birch
et al., 2014).

The idea of the bilingual LM is quite straight-
forward. We define a language model where each
target token is conditioned on the previous (n— 1)
target tokens (as in a standard n-gram language
model) as well as its aligned source token, and a
window of m tokens on either side of the aligned
source token. At training time, the aligned source
token is found from the automatic alignment, and
at test time the alignment is supplied by the de-
coder. The bilingual LM is trained using a feed-
forward neural network and we use the NPLM
toolkit for this.

Prior to submission we tested bilingual
LMs on the French<English tasks and on
English—Russian task. For French«English,

we had resource issues* in training such large

*These can now be addressed using the ~mmap option
to create a binarized version of the corpus which is then
memory-mapped.

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 126—133,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



models so we randomly subsampled 10% of the
data for training. Since we did not observe gains
in translation quality, the bilingual LM was not
integrated into our primary system submissions.
In post-submission experiments, we tried training
bilingual LM on a 10% domain-specific portion of
the training data selected using modified Moore-
Lewis (Moore and Lewis, 2010; Axelrod et al.,
2011), but only observed a small improvement in
translation performance.

2.3 Comprehensive Use of Word Classes

In Edinburgh’s submission from the previous year,
we used automatically generated word classes in
additional language models and in additional op-
eration sequence models (Durrani et al., 2014b).
This year, we pushed the use of word classes into
the remaining feature functions: the reordering
model and the sparse word features.

We generated Och clusters (Och, 1999) — a
variant of Brown clusters — using mkcls. We
have to choose a hyper parameter: the number
of clusters. Our experiments and also prior work
(Stewart et al., 2014) suggest that instead of com-
mitting to a single value, it is beneficial to use
multiple numbers and use them in multiple feature
functions concurrently. We used 50, 200, 600, and
2000 clusters, hence having 4 additional interpo-
lated language models, 4 additional operation se-
quence models, 4 additional lexicalized reordering
models, and 4 additional sets of sparse features.

The feature functions for word classes were
trained exactly the same way as the correspond-
ing feature functions for words. For instance,
this means that the word class language model re-
quired training of individual models on the sub-
corpora, and then interpolation.

We carried out a study to assess the contribution
of the use of such word class feature functions. Ta-
ble 1 summarizes the results. Use of word classes
in each of the models yields small gains, except for
the reordering model, where there is no observable
difference. The biggest gains were observed in the
language model. Note that the English—-German
baseline already included additional feature func-
tions based on POS and morphological tags, and
basically no additional gains were observed due to
the class based feature functions.

2.4 Sparse Lexicalized Reordering

We implemented sparse lexicalized reordering
features (Cherry, 2013) in Moses and evaluated
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them in English«=German setups. The experi-
ments were conducted on top of the standard hier-
archical lexicalized reordering model (Galley and
Manning, 2008). We applied features based on
Och clusters with 200 classes on both source and
target side. Active feature groups are between,
phrase, and stack.

In addition to optimizing the feature weights
directly with k-best MIRA (Cherry and Foster,
2012), we also examined maximum expected
BLEU training of the sparse lexicalized reorder-
ing features via stochastic gradient descent (Auli
et al., 2014).

3 System Overview

3.1 Preprocessing

The training data was preprocessed us-
ing scripts from the Moses toolkit.
We first normalized the data using the
normalize-punctuation.perl script,
then performed tokenization (using the —a op-
tion), and then truecasing. We did not perform
any corpus filtering other than the standard Moses
method, which removes sentence pairs with

extreme length ratios.

3.2 Word Alignment

For word alignment we used either fast_align
(Dyer et al., 2013) or MGIZA++ (Gao and
Vogel, 2008), followed by the standard
grow—-diag-final-and symmetrization
heuristic. An empirical comparison of
fast_align and MGIZA++ on the Finnish-
English and English-Russian language pairs
using the constrained data sets did not reveal any
significant difference.

3.3 Language Model

We used all available monolingual data to train 5-
gram language models with modified Kneser-Ney
smoothing (Chen and Goodman, 1998). Typically,
language models for each monolingual corpus
were first trained using either KenLM (Heafield et
al., 2013) or the SRILM toolkit (Stolcke, 2002)
and then linearly interpolated using weights tuned
to minimize perplexity on the development set.

3.4 Baseline Features

We follow the standard approach to SMT of scor-
ing translation hypotheses using a weighted linear
combination of features. The core features of our



de-en en-de cs-en en-cs ru-en en-ru avg A
Baseline (no clusters) 28.0 20.5 29.1 21.2 31.8 20.1 -
Comprehensive setup 28.5 (+.5) | 20.5(+.0) | 29.7 (+.6) | 21.8 (+.6) | 32.3(+.5) | 29.7 (+.6) +.5
w/o sparse features 28.2(=3) | 204 (=1) | 29.6 (1) | 21.7(=.1) | 32.2(-.1) | 30.0 (+.3) -2
w/o language model 283 (=2) | 20.5(+.0) | 295(=2) | 21.4(-4) | 31.5(=8) | 29.2(-.6) -4
w/o reordering model 28.5 (+.0) | 20.5 (+.0) | - 21.8 (+£.0) | 32.3 (+.0) | 29.8 (+.1) +.0
w/o operation sequence model | 28.3 (-.2) | 20.3(-.1) | 29.7 (+.0) | 21.7(-1) | 32.0(-3) | 29.5(-2) -2

Table 1: Use of additional feature functions based on Och clusters (see Section 2.3). The last four
lines refer to ablation studies where one of the sets of clustered feature functions is removed from the
comprehensive setup. Note that the word-based feature functions are used in all cases. BLEU scores on

newstest2014 are reported.

model are a 5-gram LM score, phrase translation
and lexical translation scores, word and phrase
penalties, and a linear distortion score. The phrase
translation probabilities are smoothed with Good-
Turing smoothing (Foster et al., 2006). We used
the hierarchical lexicalized reordering model (Gal-
ley and Manning, 2008) with 4 possible orienta-
tions (monotone, swap, discontinuous left and dis-
continuous right) in both left-to-right and right-
to-left direction. We also used the operation se-
quence model (OSM) (Durrani et al., 2013) with
4 count based supportive features. We further em-
ployed domain indicator features (marking which
training corpus each phrase pair was found in), bi-
nary phrase count indicator features, sparse phrase
length features, and sparse source word deletion,
target word insertion, and word translation fea-
tures (limited to the top K words in each language,
typically with K = 50).

3.5 Tuning

Since our feature set (generally around 500 to
1000 features) was too large for MERT, we used
k-best batch MIRA for tuning (Cherry and Fos-
ter, 2012). To speed up tuning we applied thresh-
old pruning to the phrase table, based on the direct
translation model probability.

3.6 Decoding

In decoding we applied cube pruning (Huang and
Chiang, 2007) with a stack size of 5000 (reduced
to 1000 for tuning), Minimum Bayes Risk de-
coding (Kumar and Byrne, 2004), a maximum
phrase length of 5, a distortion limit of 6, 100-
best translation options and the no-reordering-
over-punctuation heuristic (Koehn and Haddow,
2009).

4 Experimental Results

In this section we describe peculiarities of individ-
ual systems and present experimental results.

4.1 French—English

Our submitted systems for the French-English lan-
guage pair are quite similar for the two transla-
tion directions. We used all the constrained paral-
lel data to build a phrase-based translation model
and the language model was build from the target
side of this data, the monolingual news data and
the LDC GigaWord corpora. During system de-
velopment we used the newsdiscussdev2015
for tuning and development testing, using 2-fold
cross validation. For tuning the submitted system,
and the post-submission experiments, we tuned on
the whole of newsdiscussdev2015, and re-
port cased BLEU on newsdiscusstest2015.

Prior to submission we experimented with bilin-
gual LM and an NPLM-based neural network lan-
guage model (Sections 2.2 and 2.1) but did not
obtain positive results. These were trained on
a randomly selected 10% portion of the parallel
training data. We also experimented with class-
based language models (using Och clusters from
mkcls), including the 50 class language model
in the English—French submission but not in the
French—English one, since it helped in our devel-
opment setup in the former but not the latter.

In the post-submission experiments (Table 2),
we show the comparison of the baseline system
(as described in Section 3) with systems enhanced
with bilingual LM, NPLM and class-based lan-
guage models. For the class-based language mod-
els, we tested with 50 Och clusters, 200 Och clus-
ters, and with both class-based LMs. For the bilin-
gual LM, we created both “combined” (a 5-gram
on the target and a 9-gram on the source) and
“source” (1-gram on the target and 15-gram on
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System fr-en | en-fr
Baseline 33.0 | 33.5
Submitted 32.7 | 33.6
50 classes 32.8 | 33.8
200 classes 32.9 | 33.9
50+200 classes 329 | 33.7
BiLLM combined 32.9 | 33.6
BilLLM source & combined | 33.2 | 33.5
NPLM 33.0 | 34.2
Table 2: Comparison of baseline with post-

submission experiments on class-based language
models, bilingual LM and NPLM. Note that
for French—English the submitted system was
the same as the baseline (retuned) whilst for
English—French it was the same as the third line
(retrained).

source) models. The bilingual LMs are trained on
10% of the available parallel data, selected using
modified Moore-Lewis data selection (Moore and
Lewis, 2010; Axelrod et al., 2011). The NPLM is
a b-gram model trained on all available language
model data.

We observe from Table 2 that the bilingual LM
has a minimal effect on BLEU, only showing an
increase for one language pair, one configuration,
and the margin of improvement is probably within
the margin of tuning variation. We do not have a
good explanation for the lack of success with bilin-
gual LM, in contrast to (Devlin et al., 2014), how-
ever we note that all reports of improvements with
this type of model are for distantly related lan-
guage pairs. We also did not observe any improve-
ment with the class-based language models for
French—English, although we did observe small
gains from English—French. Building an NPLM
model for all data gives a reasonable improvement
(+0.7) for the French target, but not the English. In
fact French—English was the only language pair
where NPLM did not improve BLEU after building
the LM on all data. It is possible that the limited
morphology of English means that the improved
generalisation of the NPLM is not as helpful, and
also that the conventional n-gram LM is already
strong for this language pair.

4.2 Finnish<—English

For the Finnish-English language pair we built
systems using only the constrained data, and sys-
tems using all the OPUS (Tiedemann, 2012) par-
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System fi-en | en-fi
Baseline 19.6 | 134
Submitted 19.7 | n/a
Without OPUS 17.0 | 11.5
50 classes 194 | 13.2
200 classes 19.8 | 13.3
504200 classes 19.7 | 13.3
BiLLM combined 19.1 | 13.5
BilLM source & combined | 19.1 | 13.4
NPLM 20.0 | 13.8
Table 3: Comparison of baseline with post-

submission experiments on class-based language
models, bilingual LM and NPLM. Note that the
submitted system for Finnish—English was the
same as the baseline (but retuned).

allel data. Our baselines include this extra data,
but we also show results just using the constrained
parallel data. We did not employ the morpholog-
ical splitting as in Edinburgh’s syntax-based sys-
tem (Williams et al., 2015) and consequently the
English—Finnish systems performed poorly in de-
velopment and we did not submit a phrase-based
system for this pair.

Our development setup was similar to
French—English; we used the newsdev2015
for tuning and test during system development (in
2-fold cross-validation) then for the submission
and subsequent experiments we used the whole of
newsdev2015 for tuning. Also in common with
our work on French«—English, we performed sev-
eral post-submission experiments to examine the
effect of class-based language models, bilingual
LM and NPLM. We show the results in Table 3.
For training bilingual LM and NPLM models we
encountered some numerical issues, probably due
to the large vocabulary size in Finnish. These
were partially addressed by employing dropout
to prevent overfitting (Srivastava et al., 2014),
enabling us to train the models for at least 2
epochs.

We note that, as with French«English, our ap-
plication of bilingual LM did not result in signif-
icant improvement. Finnish and English are quite
distantly related, but we can speculate that using
words as a representation for Finnish is not appro-
priate. The NPLM, however, offers modest (+0.4)
improvements over the baseline in both directions.



4.3 Czech—English

The development of the Czech«—=English systems
followed the ideas in Section 2.3, i.e., with a fo-
cus on word classes (50, 200, 600 classes) for all
component models. We combined the test sets
from 2008 to 2012 for tuning. No neural language
model or bilingual language model was used.

4.4 Russian—English

To Russian. For the English—Russian system,
we used all the parallel data specified in the task.
The Wiki Headlines data was appended onto the
combined parallel corpus. For the monolingual
corpora, we used all the constrained track cor-
pora except for Newscrawl 2008-2010 which were
overlooked as they were much smaller than other
resources. We trained word classes with three dif-
ferent settings (50, 200, and 600 clusters) on both
source and target languages. On applying clusters,
we trained 6-gram language models on the target
side. We used all four factors (words and clus-
ters) in both source and target languages for the the
translation model and the OSM, but we used only
the word factor for the alignment and the reorder-
ing models. We performed transliteration (Durrani
et al., 2014c) after decoding for all three experi-
mental conditions. We used newstest2012 for
LM interpolation and batch MIRA model tuning.
In Table 4, the only difference between the base-
line system and the official submission is that the
baseline has no cluster factors. The final model
(BiLLM source & combined & NPLM) is the same
as the submitted system, apart from the fact that
we applied two bilingual neural network models:
one over the source and one over the source and
target, and an NPLM language model over the tar-
get. This did not improve over the factored model
and so was not submitted for the evaluation.

From Russian. The Russian—English system
used the same settings as the Czech system, except
for the addition of a factor over 2000 word classes
and a smaller tuning set (just newstest2012).

4.5 German<«— English

Our German-English training corpus com-
prises all permissible parallel data of the
constrained track for this language pair. A
concatenation of newssyscomb2009 and

newstest2008-2012 served as tuning set.
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System en-ru
Baseline 25.0
Submitted 25.2
BiLLM source & combined & NPLM | 25.1
Table 4: Experimental  results (cased

BLEU) for English—Russian averaged over
newstest2013 and newstest2014.

From German. For translation from German,
we applied syntactic pre-reordering (Collins et
al., 2005) and compound splitting (Koehn and
Knight, 2003) in a preprocessing step on the
source side. A rich set of translation factors was
exploited in addition to word surface forms: Och
clusters (50 classes), morphological tags, part-
of-speech tags, and word stems on the German
side (Schmid, 2000), as well as Och clusters (50
classes), part-of-speech tags (Ratnaparkhi, 1996),
and word stems (Porter, 1980) on the English
side. The factors were utilized in the translation
model and in OSMs. The lexicalized reorder-
ing model was trained on stems. Individual 7-
gram Och cluster LMs were trained with KenLLM’s
——discount_fallback —--prune '0 0 1'
parameters,” then interpolated with the SRILM
toolkit and added to the log-linear model as a sec-
ond LM feature. Our 5-gram word LM was trained
on all English data at once, also with pruning of
singleton n-grams of order 3 and higher. We in-
cluded the English LDC Gigaword Fifth Edition.
Sparse lexical features (source word deletion, tar-
get word insertion, word translation) were limited
to the top K = 200 words for German—English.

To German. Translation factors for the
English—German translation direction are
word surface forms, Och clusters (50 classes),
morphological tags, and part-of-speech tags.
Morphological tags were employed on the target
side only, all other factors on both source and
target side. The lexicalized reordering model
was trained on word surface forms. We added
an interpolated 7-gram Och cluster LM and a
7-gram LM over morphological tags. LMs were
trained in a similar way as the ones for translation
from German. Sparse phrase length features
and sparse lexical features were not used for
English—German.

Shttp://www.statmt.org/mtml4/uploads/
Projects/KenLMFunWithLanguageModel__
MTM2014p9.pdf



System de-en en-de
2013 2014|2013 2014
Baseline 273 28.6|20.6 209
+ sparse LR (MIRA) | 27.2 28.8 | 20.7 20.8
+ sparse LR (SGD) |27.2 28.5|20.8 21.1
Table 5: Experimental  results  for

German—English and English—German. We re-
port cased BLEU scores on the newstest2013
and newstest2014 sets. Primary submission
results are highlighted in bold.

Sparse lexicalized reordering. We investi-
gated sparse lexicalized reordering features (Sec-
tion 2.4) on the German-English language pair
in both translation directions. Two methods for
learning the weights of the sparse lexicalized re-
ordering feature set have been compared: (1.) di-
rect tuning in MIRA along with all other features
in the model combination (sparse LR (MIRA)),
and (2.) separate optimization with stochastic gra-
dient descent (SGD) with a maximum expected
BLEU objective (sparse LR (SGD)). For the lat-
ter variant, we used the MT tuning set for train-
ing (13 573 sentence pairs) and otherwise followed
the approach outlined by Auli et al. (2014). We
tuned the baseline feature weights with MIRA be-
fore SGD training and ran two final MIRA itera-
tions after it. SGD training was stopped after 80
epochs.

Empirical results for the German-English lan-
guage pair are presented in Table 5. We observe
minor gains of up to +0.2 points BLEU. The re-
sults are not consistent in the two translation di-
rections: The MIRA-trained variant seems to per-
form better when translating from German, the
SGD-trained variant when translating to German.
However, in both cases the baseline score is almost
identical to the best results with sparse lexicalized
reordering features.

In future work we plan to adopt hypergraph
MIRA, as well as larger training sets for maximum
expected BLEU training. We also consider scaling
the method to word surface forms in addition to
Och clusters, and trying RPROP instead of SGD.

5 Conclusion

The Edinburgh/JHU team built phrase-based
translation systems using the open source Moses
toolkit for all language pairs of the WMT 2015
shared translation task. Our submitted system
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outputs ranked first according to cased BLEU
on the newstest2015 evaluation set on six
out of ten language pairs:® Czech—English,
German—English, Finnish—English, Russian—
English, English—French, and English—Russian.
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Abstract
Neural machine translation (NMT)
systems have recently achieved re-

sults comparable to the state of the art
on a few translation tasks, including
English—French and English—German.
The main purpose of the Montreal In-
stitute for Learning Algorithms (MILA)
submission to WMT’15 is to evaluate
this new approach on a greater variety of
language pairs. Furthermore, the human
evaluation campaign may help us and the
research community to better understand
the behaviour of our systems. We use
the RNNsearch architecture, which adds
an attention mechanism to the encoder-
decoder. We also leverage some of the
recent developments in NMT, including
the use of large vocabularies, unknown
word replacement and, to a limited degree,
the inclusion of monolingual language
models.

1 Introduction

Neural machine translation (NMT) is a recently
proposed approach for machine translation that re-
lies only on neural networks. The NMT system
is trained end-to-end to maximize the conditional
probability of a correct translation given a source
sentence (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2015). Although NMT has only recently been
introduced, its performance has been found to be
comparable to the state-of-the-art statistical ma-
chine translation (SMT) systems on a number of
translation tasks (Luong et al., 2015; Jean et al.,
2015). The main purpose of our submission to
WMT’15 is to test the NMT system on a greater

* equal contribution
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variety of language pairs. As such, we trained sys-
tems on Czech—English, German—English and
Finnish—English. Furthermore, the human evalu-
ation campaign of WMT’ 15 will help us better un-
derstand the quality of NMT systems which have
mainly been evaluated using the automatic evalu-
ation metric such as BLEU (Papineni et al., 2002).

Most NMT systems are based on the encoder-
decoder architecture (Cho et al., 2014; Sutskever
et al., 2014; Kalchbrenner and Blunsom, 2013).
The source sentence is first read by the encoder,
which compresses it into a real-valued vector.
From this vector representation the decoder may
then generate a translation word-by-word. One
limitation of this approach is that a source sen-
tence of any length must be encoded into a fixed-
length vector. To address this issue, our systems
for WMT’ 15 use the RNNsearch architecture from
(Bahdanau et al., 2015). In this case, the encoder
assigns a context-dependent vector, or annotation,
to every source word. The decoder then selectively
combines the most relevant annotations to gener-
ate each target word.

NMT systems often use a limited vocabu-
lary of approximately 30,000 to 80,000 target
words, which leads them to generate many out-
of-vocabulary tokens ((UNK)). This may easily
lead to the degraded quality of the translations.
To sidestep this problem, we employ a variant of
importance sampling to help increase the target
vocabulary size (Jean et al., 2015). Even with
a larger vocabulary, there will almost assuredly
be words in the test set that were unseen during
training. As such, we replace generated out-of-
vocaulbary tokens with the corresponding source
words with a technique similar to those proposed
by (Luong et al., 2015).

Most NMT systems rely only on parallel data,
ignoring the wealth of information found in large
monolingual corpora. On Finnish—English, we
combine our systems with a recurrent neural net-

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 134-140,
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work (RNN) language model by recently proposed
deep fusion (Giilgehre et al., 2015). For the other
language pairs, we tried reranking n-best lists with
5-gram language models (Chen and Goodman.,
1998).

2 System Description

In this section, we describe the RNNsearch ar-
chitecture as well as the additional techniques we
used.

Mathematical Notations Capital letters are
used for matrices, and lower-case letters for
vectors and scalars. « and y are used for a
word in source and target sentences, respectively.
We boldface them into x, y and ¥ to denote
their continuous-space representation (word em-
beddings).

2.1 Bidirectional Encoder

To encode a source sentence (x1,...,z7,) of
length T, into a sequence of annotations, we use
a bidirectional recurrent neural network (Schus-
ter and Paliwal, 1997). The bidirectional recur-
rent neural network (BiRNN) consists of two re-
current neural networks (RNN) that read the sen-
tence either forward (from left to right) or back-

ward. These RNNs respectively compute the
— —

sequences of hidden states (hy,..., hT,) and

— —

(h1,..., h1,). These two sequences are con-

catenated at each time step to form the annota-
tions (hy,...,hr, ). Each annotation h; summa-
rizes the entire sentence, albeit with more empha-
sis on word x; and the neighbouring words.

We built the BiRNN with gated recurrent
units (GRU, (Cho et al., 2014)), although long
short-term memory (LSTM) units could also be
used (Hochreiter and Schmidhuber, 1997), as in
(Sutskever et al., 2014). More precisely, for the
forward RNN, the hidden state at the i-th word is
computed as

— [1-Z)eRia+Zi0h,; ifi>0
0 Lifi =0

where

T, = tanh (W/xi LU [?’i ® ﬁ’i_l} + 7)
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To form the new hid_)den state, the network first
computes a proposal h ;. This is then additively
combined with the previous hidden state ﬁi,l,
and this combination is controlled by the update
gate z;. Such gated units facilitate capturing
long-term dependencies.

2.2 Attentive Decoder

After computing the initial
sop = tanh (W;ﬁl) + bs, the
decoder alternates between three steps:
Generate and Update.

During the Look phase, the network determines
which parts of the source sentence are most rele-
vant. Given the previous hidden state s;_; of the
decoder recurrent neural network (RNN), each an-
notation h; is assigned a score e;;:

hidden state
RNNsearch
Look,

eij = vaT tanh (Wys;—1 + Ughy) .

Although a more complex scoring function can
potentially learn more non-trivial alignments, we
observed that this single-hidden-layer function is
enough for most of the language pairs we consid-
ered.
These scores e;; are then normalized to sum to
1:
B exp (ei;)
=
Zki1 exp (€ix)
which we call alignment weights.
The context vector c; is computed as a weighted
sum of the annotations (hy, ..., h7,) according to
the alignment weights:

T
C; = E Oéz'jhj.
7=1

This formulation allows the annotations with
higher alignment weights to be more represented
in the context vector c¢;.

In the Generate phase, the decoder predicts the
next target word. We first combine the previous
hidden state s;_1, the previous word y;_; and the
current context vector ¢; into a vector #;:

(1

Oéij

ti = Upsi—1 + Vo¥i—1 + Coci + bo.

We then transform ¢; into a hidden state m; with an
arbitrary feedforward network. In our submission,
we apply the maxout non-linearity (Goodfellow et
al., 2013) to ¢;, followed by an affine transforma-
tion.



Phase Output < Input

Look ¢ — Si—1,(h1,...,h1,)
Generate | y; < S;—1,¥Yi—1,C;
Update Si <= 8i—1,Yi;Ci

Table 1: Summary of RNNsearch decoder phases

For a target vocabulary V', the probability of
word y; is then

exp (SI,LTmZ + byi)
yev €XP (¥ Tmi + by) ‘
(2)

Finally, in the Update phase, the decoder com-

putes the next recurrent hidden state s; from the

context ¢;, the generated word y; and the previ-

ous hidden state s;_1. As with the encoder we use

gated recurrent units (GRU).

p(yi|3i71, Yi—1, Ci) = Z

Table 1 summarizes this three-step procedure.
We observed that it is important to have Update to
follow Generate. Otherwise, the next step’s Look
would not be able to resolve the uncertainty em-
bedded in the previous hidden state about the pre-
viously generated word.

2.3 Very Large Target Vocabulary Extension

Training an RNNsearch model with hundreds of
thousands of target words easily becomes pro-
hibitively time-consuming due to the normaliza-
tion constant in the softmax output (see Eq. (2).)
To address this problem, we use the approach pre-
sented in (Jean et al., 2015), which is based on
importance sampling (Bengio and Sénécal, 2008).
During training, we choose a smaller vocabulary
size 7 and divide the training set into partitions,
each of which contains approximately 7 unique
target words. For each partition, we train the
model as if only the unique words within it existed,
leaving the embeddings of all the other words
fixed.

At test time, the corresponding subset of target
words for each source sentence is not known in
advance, yet we still want to keep computational
complexity manageable. To overcome this, we
run an existing word alignment tool on the train-
ing corpus in advance to obtain word-based con-
ditional probabilities (Brown et al., 1993). During
decoding, we start with an initial target vocabu-
lary containing the K most frequent words. Then,
reading a few sentences at once, we arbitrarily re-
place some of these initial words by the K’ most

likely ones for each source word.!

No matter how large the target vocabulary is,
there will almost always be those words, such as
proper names or numbers, that will appear only in
the development or test set, but not during train-
ing. To handle this difficulty, we replace un-
known words in a manner similar to (Luong et
al., 2015). More precisely, for every predicted
out-of-vocabulary token ((UNK)), we determine
its most likely origin by choosing the source word
with the largest alignment weight «;; (see Eq. (1).)
We may then replace (UNK) by either the most
likely word according to a dictionary, or simply
by the source word itself. Depending on the lan-
guage pairs, we used different heuristics according
to performance on the development set.

2.4 Integrating Language Models

Unlike some data-rich language pairs, most of
the translation tasks do not have enough paral-
lel text to train end-to-end machine translation
systems. To overcome with this issue of low-
resource language pairs, external monolingual cor-
pora is exploited by using the method of deep fu-
sion (Giilgehre et al., 2015).

In addition to the RNNsearch model, we train a
separate language model (LM) with a large mono-
lingual corpus. Then, the trained LM is plugged
into the decoder of the trained RNNsearch with
an additional controller network which modulates
the contributions from the RNNsearch and LM.
The controller network takes as input the hidden
state of the LM, and optionally RNNsearch’s hid-
den state, and outputs a scalar value in the range
[0,1]. This value is multiplied to the LM’s hid-
den state, controlling the amount of information
coming from the LM. The combined model, the
RNNsearch, the LM and the controller network, is
jointly tuned as the final translation model for a
low-resource pair.

In our submission, we used recurrent neural net-
work language model (RNNLM). More specif-
ically, let stM be the hidden state of a pre-
trained RNNLM and siTM be that of a pre-trained
RNNsearch at time ¢. The controller network is
defined as

g =0 (VM4 Wl s g )

'This step differs very slightly from (Jean et al., 2015),
where the sentence-specific words were added on top of the
K common ones instead of replacing them.
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where o is a logistic sigmoid function, v4, wy and
by are model parameters. The output of the con-
troller network is multiplied to the LM’s hidden
state s-M:

pi™M = s © g

The Generate phase in Sec. 2.2 is updated as,

ﬂ ZZIETMS

™ L UMPIM L Vg 1+ Coci + by,

This lets the decoder fully use the signal from the
translation model, while the the signal from the
LM is modulated by the controller output.

Among all the pairs of languages in WMT’15,
Finnish«<English translation has the least amount
of parallel text, having approximately 2M aligned
sentences only. Thus, we use the deep fusion for
the Fi-En in the official submission. However, we
further experimented German—English, having
the second least parallel text, and Czech—English,
which has comparably larger data. We include
the results from these two language pairs here for
completeness.

3 Experimental Details

We now describe the settings of our experiments.
Except for minor differences, all the settings were
similar across all the considered language pairs.

3.1 Data

All the systems, except for the English—German
(En—De) system, were built using all the data
made available for WMT’15. The En—De sys-
tem, which was showcased in (Jean et al., 2015),
was built earlier than the others, using only the
data from the last year’s workshop (WMT’ 14.)

Each corpus was tokenized, but neither lower-
cased nor truecased. We avoided badly aligned
sentence pairs by removing any source-target sen-
tence pair with a large mismatch between their
lengths. Furthermore, we removed sentences that
were likely written in an incorrect language, ei-
ther with a simple heuristic for En—De, or with
a publicly available toolkit for the other language
pairs (Shuyo, 2010). In order to limit the memory
use during training, we only trained the systems
with sentences of length up to 50 words only. Fi-
nally, for some but not all models, we reshuffled
the data a few times and concatenated the differ-
ent segments before training.

In the case of German (De) source, we
performed compound splitting (Koehn and
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Knight, 2003), as implemented in the Moses
toolkit (Koehn et al., 2007). For Finnish (Fi),
we used Morfessor 2.0 for morpheme segmenta-
tion (Virpioja et al., 2013) by using the default
parameters.

An Issue with Apostrophes In the training data,
apostrophes appear in many forms, such as a
straight vertical line (U+0027) or as a right sin-
gle quotation mark (U+0019). The use of, for
instance, the normalize-punctuation script? could
have helped, but we did not use it in our exper-
iments. Consequently, we encountered an issue
of the tokenizer from the Moses toolkit not apply-
ing the same rule for both kinds of apostrophes.
We fixed this issue in time for Czech—English
(Cs—En), but all the other systems were affected
to some degree, in particular, the system for
De—En.

3.2 Settings

We used the RNNsearch models of size identi-
cal to those presented in (Bahdanau et al., 2015;
Jean et al.,, 2015). More specifically, all the
words in both target and source vocabularies were
projected into a 620-dimensional vector space.
Each recurrent neural network (RNN) had a 1000-
dimensional hidden state. The models were
trained with Adadelta (Zeiler, 2012), and the norm
of the gradient at each update was rescaled (Pas-
canu et al., 2013). For the language pairs other
than Cs—En and Fi—En, we held the word em-
beddings fixed near the end of training, as de-
scribed in (Jean et al., 2015).

With the very large target vocabulary technique
in Sec. 2.3, we used 500K source and target
words for the En—De system, while 200K source
and target words were used for the De—En and
Cs—En systems.> During training we set 7 be-
tween 15K and 50K, depending on the hardware
availability. As for decoding, we mostly used
K = 30,000 and K’ = 10.

Given the small sizes of the Fi—En corpora, we
simply used a fixed vocabulary size of 40K to-
kens to avoid any adverse effect of including ev-
ery unique target word in the vocabulary. The in-
clusion of every unique word would prevent the
network from decoding out (UNK) at all, even if

http://www.statmt.org/wmt1l/
normalize-punctuation.perl

3This choice was made mainly to cope with the limited
storage availability.



Language pair || . BLEU-c B.L EU-c ranking . Human ranking
single | ensemble | constrained | unconstrained
En—Cs 15.7 18.3 1/6 2/7 4/8
En—De 22.4 24.8 1/11 1/13 1-2/16
Cs—En 20.2 23.3 3/6 3/6 3-4/7
De—En 25.6 27.6 6/9 6/10 6-7/13
Fi—En 10.1 13.6 7/9 9/12 10/14

Table 2: Results on the official WMT’ 15 test sets for single models and primary ensemble submissions.
All our own systems are constrained. When ranking by BLEU, we only count one system from each
submitter. Human rankings include all primary and online systems, but exclude those used in the Cs«—En

tuning task.

out-of-vocabulary words will assuredly appear in
the test set.

For each language pair, we trained a total of four
independent models that differed in parameter ini-
tialization and data shuffling, monitoring the train-
ing progress on either newstest2012+2013, new-
stest2013 or newsdevs2015.* Translations were
generated by beam search, with a beam width of
20, trying to find the sentence with the highest log-
probability (single model), or highest average log-
probability over all models (ensemble), divided by
the sentence length (Boulanger-Lewandowski et
al., 2013). This length normalization addresses the
tendency of the recurrent neural network to output
shorter sentences.

For Fi—En, we augmented models by deep fu-
sion with an RNN-LM. The RNN-LM, which was
built using the LSTM units, was trained on the En-
glish Gigaword corpus using the vocabulary com-
prising of the 42K most frequent words in the En-
glish side of the intersection of the parallel cor-
pora of Fi—En, De—En and Cs—En. Impor-
tantly, we use the same RNN-LM for both Fi—En,
Cs—En and De—En. In the experiments with
deep fusion, we used the randomly selected 2/3
of newsdev2015 as a validation set and the rest as
a held-out set. In the case of De—En, we used
newstest2013 for validation and newstest2014
for test.

For all language pairs except Fi—En, we also
simply built 5-gram language models, this time on
all appropriate provided data, with the exception
of the English Gigaword (Heafield, 2011). In our
contrastive submissions only, we re-ranked our 20-
best lists with the LM log-probabilities, once again
divided by sentence length. The relative weight of
the language model was manually chosen to max-

“For En—De, we created eight semi-independent models.
See (Jean et al., 2015) for more details.
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imize BLEU on the development set.

4 Results

Results for single systems and primary ensem-
ble submissions are presented in Table 2.5 When
translating from English to another language, neu-
ral machine translation works particularly well,
achieving the best BLEU-c scores among all the
constrained systems. On the other hand, NMT is
generally competitive even in the case of trans-
lating to English, but it not yet as good as well
as the best SMT systems according to BLEU. If
we rather rely on human judgement instead of au-
tomated metrics, the NMT systems still perform
quite well over many language pairs, although
they are in some instances surpassed by other sta-
tistical systems that have slightly lower BLEU
scores.

In our contrastive submissions for Cs«—En and
De«En where we re-ranked 20-best lists with a 5-
gram language model, BLEU scores went up mod-
estly by 0.1 to 0.5 BLEU, but interestingly transla-
tion error rate (TER) always worsened. One possi-
ble drawback about the manner we integrated lan-
guage models here is the lack of translation mod-
els in the reverse direction, meaning we do not
implicitely leverage the Bayes’ rule as most other
translation systems do.

In our further experiments, which are not part
of our WMT’15 submission, for single models
we observed the improvements of approximately
1.0/0.5 BLEU points for dev/test in {Cs,De}—En
tasks, when we employ deep fusion for incorporat-
ing language models.°

SAlso available at http://matrix.statmt.org/
matrix/

SImprovements are for single models only. See (Giilgehre
et al., 2015) for more details.



5 Conclusion

We presented the MILA neural machine trans-
lation (NMT) systems for WMT’15, using the
encoder—decoder model with the attention mech-
anism (Bahdanau et al., 2015) and the recent de-
velopments in NMT (Jean et al., 2015; Giilcehre
et al.,, 2015). We observed that the NMT sys-
tems are now competitive against the conventional
SMT systems, ranking first by BLEU among the
constrained submission on both the En—Cs and
En—De tasks. In the future, more analysis is
needed on the influence of the source and target
languages for neural machine translation. For in-
stance, it would be interesting to better understand
why performance relative to other approaches was
somewhat weaker when translating into English,
or how the amount of reordering influences the
translation quality of neural MT systems.
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Abstract

This paper describes the GF Wide-
coverage MT system submitted to WMT
2015 for translation from English to
Finnish. Our system uses a interlingua
based approach, in which the interlingua
is a shared formal representation, that ab-
stracts syntactic structures over multiple
languages. Our final submission is a re-
ranked system in which we combine this
baseline MT system with a factored LM
model.

1 Introduction

Interlingual translation is an old idea that has been
suggested numerous times and refuted almost as
many times. A typical criticism is that the very
idea is utopistic: that one can never build an inter-
lingua that faithfully represents meaning in all lan-
guages of the world. However, as the focus in ma-
chine translation has shifted from the perfect ren-
dering of meaning to less modest goals, the idea of
an interlingua can be reconsidered.

In the current paper, we describe our sys-
tem submission to the WMT shared task in
the English-Finnish track. Our system is an
interlingua-based system, the interlingua based on
an abstract syntax in the sense of Grammatical
Framework (GF) (Ranta, 2011). GF has been pre-
viously shown to work for domain-specific MT
outperforming state-of-art systems using semantic
interlinguas (Ranta et al., 2011). Departing from
this, the GF wide-coverage Translator is an at-
tempt following the current mainstream in the field
of MT: we are content with browsing quality in
the output of the MT systems, while achieving the
low cost of interlingual MT systems. As such, the
shared abstract syntax is mapped to different “sur-
face” languages representing an abstraction of the
deep syntactic structure for each of the languages.

e
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The abstraction from word order, morphology and
certain deep syntactic phenomena, allows the in-
terlingua to cope with unrelated languages. At the
same time, these systems are scalable beyond toy
examples, into wide-coverage systems.

We submit this system as our baseline over the
English Finnish language pair for the WMT shared
task. In addition, we also submitted a “re-ranked”
variant of the same system as our primary submis-
sion, using statistical language models to re-score
the translations from the baseline. Automatic eval-
uation metrics have shown small improvements
from re-ranking our baseline system !.

The paper is organized as follows: we describe
our baseline system in Section 2 and the re-ranked
variant in Section 3. We present our experiments
and relevant discussion in Section 4.

2 GF Wide-coverage Translator

The GF Translator pipeline has three main phases:

e Parsing converts the source sentence into a
forest of abstract syntax trees (AST), i.e. in-
terlingual representations.

o Disambiguation selects the most probable
AST.

e Linearization converts the AST into a sen-
tence in each of the target languages.

Disambiguation is for efficiency reasons inte-
grated in the parser, which enumerates the results
lazily in order of decreasing probability (Angelov
and Ljunglof, 2014). Our current system performs
disambiguation by using tree probabilities esti-
mated from the Penn Treebank, converted into GF
abstract syntax (Angelov, 2011). Unlike most K -
best parsers, there is no upper limit on how many

'Scores obtained from http://matrix.statmt.
org/

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 141-144,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



results can be obtained. Additionally, we use re-
versible mappings in our interlingua, thus reduc-
ing the work to define multilingual grammars for
MT.

Translation is performed using the following
components:

e A PGF grammar consisting of an abstract
syntax (defining the ASTs) and, for each lan-
guage, a concrete syntax that defines lin-
earization and (by reversibility) parsing for
the language.

e A probabilistic model for disambiguation

e The PGF interpreter, that consists of a generic
parser and linearizer.

Since the PGF grammar forms a vital compo-
nent of the MT system, we will now describe the
wide-coverage grammar used in our system sub-
mission. All our submissions use this grammar
as the “baseline”. There is a large-scale single
generic grammar based on the GF Resource Gram-
mar Library (Ranta, 2009) that forms the central
“backbone” of the wide-coverage grammar. As
a whole, the grammar has the following compo-
nents:

1. RGL, defining morphology and most of the
syntax.

Syntax extensions, about 10% addition to
RGL.

. Dictionary, mapping abstract word senses
to concrete words using open resources such
as linked wordnets and wiktionaries (Virk et
al., 2014); morphology mostly by the RGL’s
“smart paradigms” (Détrez and Ranta, 2012).
Abstract dictionary entries are presented as
English words split into distinct senses.

Chunk grammar, to make the translation ro-
bust for input that does not parse as complete
sentences. Itis inspired by Apertium(Forcada
et al., 2011), which is a rule-based system
operating only using chunks rather than deep
syntactic analyses. In GF, it is derived from
the RGL by enabling sub-sentential cate-
gories as start categories. The result can con-
tain local agreement and reordering.

Probabilities, estimated from the Penn Tree-
bank.
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6. CNL using Semantic grammars, an optional
part enabling domain adaptation via Embed-
ded CNLs (Ranta, 2014). If something is
parsable in the CNL, the CNL translation is
given priority.

The GF Translator is not meant to be yet an-
other browsing-quality system on the market. GF
was originally designed for high-quality systems
on specific domains. The novelty in our cur-
rent system is that we can combine both cover-
age and quality in one and the same system. From
the point of view of domain-specific applications,
this means that the system does not just fail with
out-of-grammar input as before, but offers robust-
ness. From the open-domain point of view, the
system offers a clear recipe for quality improve-
ments by domain adaptation. In other words, the
system we have built incorporates three levels of
the Vauquois triangle in one and the same system:
semantic, syntactic, and chunk-based translation,
each of which and not just the highest level is
based on its own part of the interlingua:

3 System Description

As mentioned in Section 1, our submission uses
the GF Wide-coverage translator described in Sec-
tion 2 as a baseline.

We are aware of one short-coming in the disam-
biguation model used in the baseline: the infer-
ence by the parser is carried out by context-free
approximations. The context-free approximation
is a reasonable approximation in the monolingual
parsing scenario as shown by previous works in
parsing literature. However, in the translation
problem, the context-free assumption provides a
poor approximation for inference. A simple ex-
ample to illustrate this is the problem of sense se-
lection by the parser. The choice of selecting a



particular word sense depends on both local con-
texts and entire sentential context. For e.g. the
word “time” can refer to the sense that refers to
temporality or the number of an attempt (as in first
time or hundredth time). The choice of sense in
this example can be made using surface context or
n-gram information. Motivated primarily by this,
we developed a re-ranked variant of the baseline
system as described below.

Our re-ranked system re-estimates the scores of
the K -best translations from the baseline using a
linear mixture model. The mixture model uses
the tree probability score obtained from the dis-
ambiguation model of the baseline system as the
primary component. Each hypothesis in the K-
best list is augmented using scores from n-gram
language model (LM) that estimates the likelihood
of the surface translations. Since our baseline sys-
tem is an interlingua-based system, it is possible
to integrate LM over multiple languages as differ-
ent components in our mixture model. The result-
ing model selects the best translation by choosing
the hypothesis with both the highest scoring ab-
stract syntax tree and the best linearization of the
abstract syntax tree.

4 Experiments

As part of the shared task contest, we carried out
experiments with the wide-coverage translator and
its re-ranked variant on the English-Finnish track.
Table 1 shows the scores obtained by automatic
evaluation for our system submissions.

On the devel set, the baseline system takes 27
minutes to carry out the translation pipeline i.e.
the 1-best parsing of the English sentences com-
bined with the 1-best linearization into Finnish.
In comparison, the zest set takes about 22 minutes
for the pipeline. Of the 1500 sentences in the de-
vel dataset, 600 sentences are parsed by the full
RGL grammar, while the rest of the 900 sentences
are parsed using the chunking grammar. We ob-
tained similar statistics on the test dataset, where
560 sentences were parsed by the RGL and 810
sentences using the chunking grammar. This ver-
sion of our translation pipeline is available online?.
Manual evaluation and error analysis on a small
sample from the devel dataset showed that the
loss in MT quality from the chunking grammar
was small, but significant. This is because the

2http ://cloud.grammatical framework.
org/wc.html
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chunking grammar still allows for local agreement
and reordering, while relaxing the RGL grammar.
Nonetheless, we decided to use this version of the
chunking grammar, without extending the RGL
with new syntactic constructions. One reason for
this decision was the speed up in the pipeline
obtained by relaxing the full RGL grammar and
adding the chunking grammar. It should be noted
here that the quality of the MT system can be fur-
ther improved by adding the full RGL at an addi-
tional computational cost. Evaluation experiments
also showed that automatic evaluation metrics like
BLEU substantially under-evaluate the perform of
our system when used with a static translation as
reference.

In the next round of experiments, we ran the
parser and the linearizer in K -best modes, collect-
ing the 50-best abstract syntax trees and the 30-
best linearizations for each abstract syntax tree.
Since the parsing and the linearization are car-
ried out independent of one another, the 1500 hy-
pothesis obtained from this run often contained
identical translations. The overall number of dis-
tinct hypothesis in the K -best lists was typically
found to be between 300 and 400. Collecting the
K-best lists took about 93 minutes on the devel
dataset and 80 minutes on the test dataset. We re-
order these K-best lists using our reranking mod-
els, which consists of a re-scoring the hypothe-
sis translations using a language model (LM) and
estimating the mixed score for each hypothesis.
The reordering combined with the re-scoring takes
about 3-4 minutes on our lists of 1500-best hy-
potheses.

The LM for Finnish was trained on the Europarl
corpus. Finnish sentences were morphologically
analyzed and converted into a lemmatized cor-
pus with morphological factors tagged along with
the lemmas. We train a factored language model
on this corpus, using the lemma and the part-of-
speech and suffix as factors. In our current ex-
periments, the hypothesis are re-scored using the
Finnish language model alone, though in principle
the re-scoring can be carried out using language
models for multiple languages.

We train a ordinal regression model using the
parse tree probability estimated using the GF dis-
ambiguation model and the factored LM score to
re-order the K -best lists. A small set of 2500 sen-
tences from the Europarl corpus were randomly
taken and used as training samples for the regres-



System BLEU | TER
Baseline 4.7 1.138
Reranked 4.8 1.135

Table 1: BLEU (11b) and TER scores obtained on
the newstest2015 dataset

sion model. The K-best lists in the training sam-
ples are ranked based on BLEU scores and TER
scores.

Experiments with the devel dataset showed
small improvements from using the LM to rescore
the hypothesis. Comparatively, reranking resulted
in even smaller improvements on the the test
dataset. At this point, we carried out a analysis
of the K -best lists on the devel set. We found that
there was a very small variation in the K -best lists
given the number of distinct hypothesis that were
considered. Most of the variation was attributed
to punctuation and orthography rather than word
senses or word order as we initially expected.

Following this, we experimented with random
sampling in the parse forests to evaluate the ora-
cle quality of our translation system. The results
of this study are pending error analysis and evalu-
ation.

5 Conclusions

We described our system submission to the WMT
shared task in the English-Finnish track in the cur-
rent paper. Our system uses as interlingual-based
approach, in which the interlingual is based on a
shared representation of surface structures across
languages. Our final submission is a hybrid system
in which the K-best translations from the baseline
system are re-ranked using a factored language
model. We explain why our system results in a
low-scoring baseline and discuss reasons why re-
ranking provides minor improvements compared
to previous approaches.

We plan to work on two extensions to the work
described in this paper: first, we plan on increas-
ing the variation in our K -best lists using sampling
and incorporating heuristics into the parser. We
hope that this will result in better improvements
from re-ranking the K -best lists using a language
model. Another extension we would like to ex-
periment is the use of multiple language LMs to
rescore the translations, this is uniquely possible
only in our system since it allows for translation
into multiple languages with little cost compared
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to other MT systems.
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Abstract

This paper describes LIMSI’s submis-
sions to the shared WMT’15 translation
task. We report results for French-English,
Russian-English in both directions, as well
as for Finnish-into-English. Our submis-
sions use NCODE and MOSES along with
continuous space translation models in a
post-processing step. The main novelties
of this year’s participation are the follow-
ing: for Russian-English, we investigate a
tailored normalization of Russian to trans-
late into English, and a two-step process to
translate first into simplified Russian, fol-
lowed by a conversion into inflected Rus-
sian. For French-English, the challenge is
domain adaptation, for which only mono-
lingual corpora are available. Finally, for
the Finnish-to-English task, we explore
unsupervised morphological segmentation
to reduce the sparsity of data induced by
the rich morphology on the Finnish side.

1 Introduction

This paper documents LIMSI’s participation to the
machine translation shared task for three language
pairs: French-English and Russian-English in both
directions, as well as Finnish-into-English. Each
of these tasks poses its own challenges.

For French-English, the task differs slightly
from previous years as it considers user-generated
news discusssions. While the domain remains the
same, the texts that need to be translated are of
a less formal type. To cope with the style shift,
new monolingual corpora have been made avail-
able; they represent the only available in-domain
resources to adapt statistical machine translation
(SMT) systems.

For Russian-English, the main source of diffi-
culty is the processing of Russian, a morphologi-
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cally rich language with a much more complex in-
flectional system than English. To mitigate the ef-
fects of having too many Russian word forms, we
explore ways to normalize Russian prior to trans-
lation into English, so as to reduce the number of
forms by removing some “redundant” morpholog-
ical information. When translating into Russian,
we consider a two-step scenario. A conventional
SMT system is first built to translate from En-
glish into a simplified version of Russian; a post-
processing step then restores the correct inflection
wherever needed.

Finally, for Finnish-into-English, we report pre-
liminary experiments that explore unsupervised
morphological segmentation techniques to reduce
the sparsity issue induced by the rich morphology
of Finnish.

2 Systems Overview

Our experiments use NCODE!, an open source im-
plementation of the n-gram approach, as well as
MOSES, which implements a vanilla phrase-based
approach.” For more details about these toolkits,
the reader can refer to (Koehn et al., 2007) for
MOSES and to (Crego et al., 2011) for NCODE.

2.1 Tokenization and word alignments

Tokenization for French and English text relies
on in-house text processing tools (Déchelotte et
al., 2008). All bilingual corpora provided by
the organizers were used, except for the French-
English tasks where the UN corpus was not con-
sidered.> We also used a heavily filtered version
of the Common Crawl corpus, where we discard
all sentences pairs that do not look like proper
French/English parallel sentences. For all cor-

"http://ncode.limsi.fr

http://www.statmt.org/moses/

*In fact, when used in combination with the Giga Fr-En
corpus, no improvement could be observed (Koehn and Had-
dow, 2012).
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pora, we finally removed all sentence pairs that did
not match the default criteria of the MOSES script
clean-corpus—n.pl or that contained more
than 70 tokens.

Statistics regarding the parallel corpora used
to train SMT systems are reported in Ta-
ble 1 for the three language pairs under
study. Word-level alignments are computed using
fast_align (Dyer et al.,, 2013) with options ”-d
-0 -v”.

2.2 Language Models

The English language model (LM) was trained on
all the available English monolingual data, plus
the English side of the bilingual data for the Fr-En,
Ru-En and Fi-En language pairs. For the French
language model, we also used all the provided
monolingual data and the French side of the bilin-
gual En-Fr data. We removed all duplicate lines*
and trained a 4-gram language model, pruning all
singletons, with 1mplz (Heafield et al., 2013).

2.3 SOUL

Neural networks, working on top of conventional
n-gram back-off language models, have been in-
troduced in (Bengio et al., 2003; Schwenk et al.,
2006) as a potential means to improve conven-
tional language models. As in our previous par-
ticipations (Le et al., 2012b; Allauzen et al., 2013;
Pécheux et al., 2014), we take advantage of the
proposal of (Le et al., 2011). Using a specific
neural network architecture, the Structured OUt-
put Layer (SOUL), it becomes possible to esti-
mate n-gram models that use large output vocab-
ulary, thereby making the training of large neural
network language models feasible both for target
language models and translation models (Le et al.,
2012a). Moreover, the peculiar parameterization
of continuous models allows us to consider longer
dependencies than the one used by conventional
n-gram models (e.g. n = 10 instead of n = 4).

3 Experiments for French-English

This year, the French-English translation task fo-
cuses on user-generated News discusssions, a less
formal type of texts than the usual News articles of
the previous WMT editions. Therefore, the main

“Experiments not reported in this paper showed no
changes in BLEU score between keeping or removing dupli-
cate lines, but removing duplicate lines conveniently reduced
the size of the models due to singleton pruning.
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challenge for this task is domain adaptation, for
which only monolingual data are distributed.

3.1 Development and test sets

Since this is the first time this translation task is
considered, only a small development set of news-
discusssions is available. In order to properly tune
and test our systems, we performed a 3-fold cross-
validation, splitting the 1,500 in-domain sentences
in two parts. Each random split respects doc-
ument boundary, and yields roughly 1,000 sen-
tences for tuning and 500 sentences for testing.
The source of the documents, the newspapers Le
Monde and The Guardian are also known. This
allows us to balance the proportion of documents
from each source in the development and test sets.
The BLEU scores for the French-English experi-
ments are computed on the concatenation of each
test set decoded using weights tuned on the corre-
sponding 1,000 sentence tuning set.

3.2 Domain adaptation

The vast majority of bilingual data distributed for
the translation task are News articles, meaning that
they correspond to a more formal register than the
News discussions. The only in-domain texts pro-
vided for this task are monolingual corpora. Nev-
ertheless, these monolingual data have been used
to adapt both the translation and language models.
To adapt the bilingual data, we subsampled the
concatenation of the noisy Common Crawl and
Giga Fr-En corpus, which represent around 90%
of all our bilingual data, using the so-called Mod-
ified Moore-Lewis (Axelrod et al., 2011) filter-
ing method (MML). We kept all the Europarl and
News-Commentary data. MML expects 4 LMs to
score sentence pairs in the corpus we wish to fil-
ter: for the source and target languages, it requires
a LM trained with in-domain data, along with an
out-of-domain LM estimated on the data to fil-
ter.> The MML score of a sentence pair is the sum
of the source and target’s perplexity differences
for both in-domain and out-of-domain LMs. Sen-
tences pairs are ranked according to the MML score
and the top [V parallel sentences are used to learn
the translation table used during decoding.

For LM adaptation, we used a log-linear combi-
nation of our large LM with a smaller one trained
only on the monolingual in-domain corpus.®

>All language models for the MMI scoring are 4-grams

trained with 1mplz.
8Corresponding respectively to 3.5 and 50 millions sen-



Corpus Fr-En Ru-En Fi—En
P Sentences  Tokens (Fr-En) Sentences Tokens (Ru-En) Sentences Tokens (Fi-En)
parallel data 24.3M 712.8M-597.TM 2.3M 45.7M-47.3M 2M  37.3M-51.7M
monolingual data 2.2B-2.7B 834.7M-2.7B -2.7B
Table 1: Statistical description of the training corpora
3.3 Reranking Configuration Fr-En
The N-best reranking steps uses the following fea- baseline 29.33
ture sets to find a better hypothesis among the 10%  28.63
1,000-best hypotheses of the decoder: before  25% - 29.09
50% 28.96
e IBM1: IBMI1 features (Hildebrand and Vo- 10% 29.14
gel, 2008); after  25% 29.31
50% 29.11

POSLM: 6-gram Witten-Bell smoothed POS
LM trained with SRILM on all the monolin-
gual news-discussions corpus;

SOUL: Five features, one monolingual tar-
get language model and 4 translation models,
see section 2.3 for details;

TagRatio: ratio of translation hypothesis by
number of source tokens tagged as verb, noun
or adjective;

WPP: count-based word posterior probabil-
ity (Ueffing and Ney, 2007);

POS tagging is performed using the Stanford
Tagger’. The reranking system is trained us-
ing the kb-mira algorithm (Cherry and Foster,
2012) implemented in MOSES.

3.4 Experimental results

For all French-English experiments, we used
MOSES and NCODE with the default options, in-
cluding lexicalized reordering models. Tuning is
performed using kb-mira with default options
on 200-best hypotheses.

Table 2 reports experimental results for filter-
ing the bilingual data using MML before or after
learning the word alignment step. Results for fil-
tering are always lower when the word alignments
are learnt only on the filtered data. The baseline
system, which uses all the bilingual data, yields
better performance than all our filtered systems,
even though keeping only 25% of the bi-sentences,
gives almost similar results. However, since there
is no clear gain in filtering, we kept all the data
without any MML filtering for the following exper-
iments. The additional LM learned only on the
in-domain data gives a slight improvement, +0.18

tences for French and English.
"http://nlp.stanford.edu/software/tagger.shtml
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Table 2: Results (BLEU) for keeping the top 10%,
25% or 50% of the bi-sentences scored with MML,
before and after word alignment. The baseline sys-
tem uses all the bilingual data.

Configuration Fr-En  En-Fr

w/o additional LM 29.15  29.56
w/ additional LM 29.33  30.22

Table 3: Results (BLEU) with and without the ad-
ditional in-domain language model.

BLEU, for Fr-En, and a larger improvement for
En-Fr (+0.66 BLEU, see Table 3).

Table 4 reports the comparison between NCODE
and MOSES. MOSES outperforms NCODE on our
in-house test set using the 3-fold cross-validation
procedure. However, when tuning on the complete
development set and testing on the official test set,
we observed a different result where NCODE out-
performs MOSES for Fr-En (+0.69 BLEU), while
MOSES remains the best choice for En-Fr (+0.74
BLEU). These differences between the results ob-
tained with our dev/test configuration and the of-
ficial ones may be due to the lack of tuning data
when performing the 3-fold cross-validation, leav-
ing only 1,000 sentences for tuning. Nonetheless,
further investigations will be helpful to better un-
derstand these discrepancies.

Regarding reranking, results in Table 5 show
that SOUL is the most useful feature and sig-
nificantly improves translation performance when
reranking a 1,000-best list generated by the de-
coder: we observe an improvement of nearly +0.9
BLEU for both translation directions. These re-



in-house test official test
Fr-En En-Fr Fr-En En-Fr

29.33 3022 32.16 3574
28.66 30.17 32.85 35.00

System

MOSES
NCODE

Table 4: Results (BLEU) for NCODE and MOSES
on respectively the in-house and official test set.

Feature sets Fr-En En-Fr
baseline 29.33  30.22
+ IBM1 29.24 30.25
+POSLM 2945 30.28
+SOUL 30.20 31.15
+ TagRatio 29.33  30.30
+ WPP 29.40 30.20
all 3045 31.25

Table 5: Reranking results (BLEU) using differ-
ent feature sets individually and their combination.
For the all configurations these features are in-
troduced during a reranking step.

sults can be further improved by adding more fea-
tures during the reranking phase, with a final gain
of +1.12 and +1.03 BLEU, for respectively Fr-En
and En-Fr.

Our primary submissions for Fr-En and En-Fr
use MOSES to generate n-best list, with phrase
and reordering tables learned from all our bilin-
gual data; the reranking step includes all the fea-
tures presented in section 3.3.

4 Russian-English

Russian is a morphologically rich language char-
acterized notably by a much more complex inflec-
tion system than English. This observation was
the starting point of our work and led us to explore
ways to process Russian in order to make it closer
to English.

4.1 Preprocessing Russian

Inflections in Russian encode much more infor-
mation than in English. For instance, while En-
glish adjectives are invariable, their Russian coun-
terparts surface as twelve distinct word forms, ex-
pressing variations in gender (3), number (2) and
case (6). Such a diversity of forms creates data
sparsity issues, since many word forms are not ob-
served in training corpora. When translating from
Russian, the number of unknown words is accord-
ingly high, making it impossible to translate many
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forms, even when they exist in the training corpus
with a different inflection mark. Conversely, when
translating into Russian, the system may not be
able to generate the correct word form in a given
context. Finally note that training translation mod-
els for such a language pair causes each English
word to be typically paired with a lot of transla-
tions of low probability, corresponding to morpho-
logical variants on the Russian side.

To address this issue, we decided to normalize
Russian by replacing all case marks by the cor-
responding nominative inflection: this applies to
nouns, adjectives and pronouns. For these word
types, the case information is thus lost, but the
gender and number marks are preserved.

4.2 Predicting Case Marks

When translating into Russian, the normalization
scheme described above is not well suited because
of its lossy reduction of Russian word forms. Its
use therefore requires a post processing step which
aims to recover the inflected forms from the output
of the SMT system. Since normalization essen-
tially removes the case information, this last step
consists in predicting the right case for a given nor-
malized word before generating the correctly in-
flected form.

For this purpose, we designed a cascade of Con-
ditional Random Fields (CRFs) models. A first
model predicts POS tags, which are then used by
a second model to predict the gender and number
information. A last model is then used to in-
fer the case from this information. POS, gender
and number prediction are used to disambiguate
the normalized words, which is necessary to gen-
erate the correct word forms. All predictions were
performed considering only the target side output,
meaning that no information from the source was
used. The first two models use standard features
for POS tagging as described in (Lavergne et al.,
2010). The last one (for case prediction) addition-
ally contains features testing the presence of a verb
or a preposition in the close vicinity of the word
under consideration.

4.3 Experimental results

Standard NCODE and MOSES configurations with
lexicalized reordering models were used for all
the English-Russian and Russian-English experi-
ments. Alignments in both directions were com-
puted with normalized Russian. The models were
tuned with kb-mira using 300-best lists.



The results reported in Table 6 show a similar
trend for NCODE and MOSES in both translation
directions. Note that MOSES outperforms NCODE
(+0.72 BLEU) for Ru-En task. Using normal-
ized Russian as the source language allows us to
achieve a slight gain of +0.4 over the baseline for
both systems. Moreover, the addition of SOUL
models yields a further improvement of 1.1 BLEU
score (see Table 7). The English-into-normalized-
Russian task has been performed for the sake of
comparison, to assess the gain we could expect if
we were able to always predict the right case for
the normalized Russian output. The comparison
of BLEU scores between translating directly into
Russian and producing an intermediate normal-
ized Russian shows differences of 3.15 BLEU for
NcODE and 3.44 BLEU for MOSES. These scores
represent an upper-bound that unfortunately we
were not able to reach with our post-processing
scheme.

System MOSES NCODE
Baseline 26.85 26.02
+ Normalized Ru  27.27 26.44
+ SOUL 27.28

Table 6: Results (BLEU) for Russian-English
with NCODE and MOSES on the official test.

System  MOSES NCODE
Baseline 2291 22.97
+SOUL 24.08

En-Rx 26.35 26.12

En-Rx-Ru  19.99 19.88

Table 7: Results (BLEU) for English-Russian (Rx
stands for normalized Russian) with NCODE and
MOSES on the official test. The score for En-Rx
was obtained over the normalized test.

4.4 Error Analysis

As Russian is a morphologically rich language,
which has many features not observed in the En-
glish language, we conducted a simple error anal-
ysis to better understand the possible morpholog-
ical mistakes made by our NCODE baseline. We
used METEOR to automatically align the outputs
with the original references at the word level, dis-
carding multiple alignment links. About 56.3%
of the words in the NCODE output have a coun-
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terpart in the human references, which is consis-
tent with the BLEU unigram precision (53.3%).
Among those, 85.4% are identical and 9.8% are
different but share a common lemma. This last sit-
uation happens when our system fails to predict
the correct form. The remaining 4.8% (different
word forms with no common lemma), correspond
either to synonyms or to METEOR alignment er-
rors. Figure 1 also suggests that, within the 9.8%
word form errors, most morphological errors are
related to case prediction. Figure 1 displays de-
tailed results split by POS. Results for MOSES or
when rescoring NCODE outputs with SOUL are
very similar.

number
gender

tense

voice

others

case

(a) Incorrectly predicted inflections

long-form adjective

verb

long-form participle

others

noun

(b) Word form errors wrt POS

Figure 1: Distribution of mispredictions for
NCODE outputs, according to the mispredicted in-
flection (a) and their POS (b).

5 Translating Finnish into English

This is our first attempt to translate from Finnish
to English. The provided development set con-
tains only 1,500 parallel sentences. Therefore all
the results are computed using a two-fold cross
validation. The baseline system is a conventional
phrase-based system built with the MOSES toolkit.
Experimental results are in Table 8. The first two



Configuration ‘ dev.‘ test
Baseline 13.2 | 12.8
+ large LM 16.1 | 15.7
+ Morph. segmentation | 16.2 | 15.9

Table 8: BLEU scores for the Finnish to English
translation task, obtained with different configura-
tions after a two-fold cross-validation.

lines give the BLEU scores obtained with a basic
tokenization of the Finnish side. When the English
LM is only estimated on the parallel data, the sys-
tem achieves a BLEU score of 12.8, while using
a LM estimated on all the available monolingual
data yields a 1.8 BLEU point improvement.

Finnish is a synthetic language that employs ex-
tensive regular agglutination. This peculiarity im-
plies a large variety of word forms and, again, se-
vere sparsity issues. For instance, we observed on
the available parallel training data 860K different
Finnish forms for 37.3M running words and only
2M sentences. Among these forms, more than half
are hapax. For comparison purposes, we observed
in English 208K word forms for 51.7M running
words. To address this issue, we have tried to re-
duce the number of forms in the Finnish part of the
data. For that purpose, we use Morfessor 8 to
perform an unsupervised morphological segmen-
tation. The new Finnish corpus therefore con-
tains 67K types for 77M running words. With
this new version, we obtain only a slight improve-
ment of 0.2 BLEU point. We assume that the
Finnish data was over-segmented and that a bet-
ter tradeoff can be found with an extensive tuning
of Morfessor.

6 Discussion and Conclusion

This paper described LIMSI’s submissions to the
shared WMT’15 translation task. We reported re-
sults for French-English, Russian-English in both
direction, as well as for Finnish-into-English. Our
submissions used NCODE and MOSES along with
continuous space translation models in a post-
processing step. Most of our efforts for this years
participation were dedicated to domain adaptation
and more importantly to explore different strate-
gies when translating from and into a morpholog-
ically rich language.

For French-English, we experimented adapta-

$https://github.com/aalto-speech/
morfessor
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tion using only monolingual data that represents
the targeted text, i.e news-discussions. Our at-
tempt to filter the available parallel corpora did
not bring any gain, while the use of an additional
language model estimated on news-discussions
yielded slight improvement.

When translating from Russian into English,
small improvements were observed with a tailored
normalization of Russian. This normalization was
designed to reduce the number of word forms and
to make it closer to English. However, experi-
ments in the other direction were disappointing.
While the first step that translates from English to
the normalized version of Russian showed positive
results, the second step designed to recover Rus-
sian inflected forms failed. This failure may be
related to the cascade of statistical models, work-
ing solely on the target side. However, the reasons
need to be better understood with a more detailed
study.

To translate from Finnish into English, we
explored the use of unsupervised morphological
segmentation. Our attempt to reduce the num-
ber of forms on the Finnish side did not sig-
nificantly change the the BLEU score. This
under-performance can be explained by an over-
segmentation of the Finnish data, and maybe a bet-
ter tradeoff can be found with a more adapted seg-
mentation strategy.

We finally reiterate our past observations that
continuous space translation models used in a
post-processing step always yielded significant
improvements across the board.
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Abstract

This paper describes the UdS-Sant
English—-German Hybrid Machine Trans-
lation (MT) system submitted to the
Translation Task organized in the Work-
shop on Statistical Machine Translation
(WMT) 2015. Our proposed hybrid
system brings improvements over the
baseline system by incorporating ad-
ditional knowledge such as extracted
bilingual named entities and bilingual
phrase pairs induced from example-based
methods. The reported final submission
is the result of a hybrid system obtained
from confusion network based system
combination that combines the best per-
formance of each individual system in a
multi-engine pipeline.

1 Introduction

In this paper, we present Universitit des Saarlan-
des (UdS) submission (named UdS-Sant) to WMT
2015 using a Hybrid MT framework. We partici-
pated in the generic translation shared task for the
English-German (EN-DE) language pair.
Corpus-based MT (CBMT) has delivered pro-
gressively improved quality translations since its
inception. There are two main approaches to
corpus-based MT — Example Based Machine
Translation (EBMT) (Carl and Way, 2003) and
Statistical Machine Translation (SMT) (Brown et
al., 1993; Koehn, 2010). Out of these two, in terms
of large-scale evaluations, SMT is the most suc-
cessful MT paradigm. However, each approach
has its own advantages and disadvantages along
with its own methods of applying and acquiring
translation knowledge from the bilingual parallel
training data. EBMT phrases tend to be more lin-
guistically motivated compared to SMT phrases
which essentially operate on n-grams. The knowl-
edge extraction as well as representation process,
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in both EBMT and SMT, uses very different tech-
niques in order to extract resources. Even though,
SMT is the most popular MT paradigm, it some-
times fails to deliver sufficient quality in transla-
tion output for some languages, since each lan-
guage has its own difficulties.

Multiword Expressions (MWEs) and Named
Entities (NEs) offer challenges within a language.
MWE:s are defined as idiosyncratic interpretations
that cross word boundaries (Sag et al., 2002).
Named entities on the other hand often consist of
more than one word, so that they can be consid-
ered as a specific type of MWEs such as noun
compounds (Jackendoff, 1997). Traditional ap-
proaches to word alignment such as IBM Mod-
els (Brown et al., 1993) are unable to tackle NEs
and MWE:s properly due to their inability to han-
dle many-to-many alignments. In another well-
known word alignment approach, Hidden Markov
Model (HMM: (Vogel et al., 1996)), the alignment
probabilities depend on the alignment position of
the previous word. It does not explicitly consider
many-to-many alignment either.

We address this alignment problem indirectly.
The objective of the present work is threefold.
Firstly, we would like to determine how treat-
ment of MWEs as a single unit affects the over-
all MT quality (Pal et al., 2010; Pal et al., 2011).
Secondly, whether a prior automatic NE aligned
parallel corpus as well as example based parallel
phrases can bring about any further improvement
on top of that. And finally, whether system com-
bination can provide any additional advantage in
terms of translation quality and performance.

The remainder of the paper is organised as fol-
lows. Section 2 details the components of our sys-
tem, in particular named entity extraction, transla-
tion memory, and EBMT, followed by description
of 3 types of Hybrid systems and the system com-
bination module. In Section 3, we outline the com-
plete experimental setup for the shared task and
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provide results and analysis on the performance on
the test set in Section 4. Section 5 concludes the
proposed research.

2 System Description

Our system is designed with three basic compo-
nents: (i) preprocessing, (ii) hybrid systems and
(iii) system combination.

2.1 Preprocessing

Data pre-processing plays a very crucial part in
any data-driven approach. We carried out prepro-
cessing in two steps:

e Cleaning and clustering sentences based on
sentence length.

e Effective preprocessing of data in the form of
explicit alignment of bilingual terminology
(viz. NEs and MWEs).

The preprocessing has been shown (cf. Section
2.1.2) to improve the output quality of the base-
line PB-SMT system (Pal et al., 2013; Tan and Pal,
2014).

2.1.1 Corpus cleaning

We utilized all the parallel training data provided
by the WMT 2015 shared task organizers for
English-German translation. The training data in-
clude Europarl, News Commentary and Common
Crawl. The provided corpus is noisy and con-
tains some non-German as well as non-English
words and sentences. Therefore, we applied a
Language Identifier (Shuyo, 2010) on both bilin-
gual English—-German parallel data and monolin-
gual German corpora. We discarded those par-
allel sentences from the bilingual training data
which were detected as belonging to some differ-
ent language by the language identifier. The same
method was also applied to the monolingual data.

Successively, the corpus cleaning process was
carried out first by calculating the global mean ra-
tio of the number of characters in a source sen-
tence to that in a target sentence and then filter-
ing out sentence pairs that exceed or fall below
20% of the global ratio (Tan and Pal, 2014). We
sorted the entire parallel training corpus based on
their sentence length.Tokenisation and punctua-
tion normalisation were performed using Moses
scripts. In the final step of cleaning, we filtered
the parallel training data on maximum allowable
sentence length of 100 and sentence length ratio
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of 1:2 (either direction). Approximately 36% sen-
tences were removed from the total training data
during the cleaning process.

2.1.2 Explicit Preprocessing of Terminologies

Two kinds of terminologies, viz. NEs and MWEs,
were considered in the present work. Intuitively,
MWEs should be both aligned in the parallel cor-
pus and translated as a whole. However, state-of-
the-art PB-SMT (or any other approaches to SMT)
does not generally treat MWEs as special tokens.
This is the motivation behind considering MWEs
for special treatment in this work. By converting
the MWE:s into single tokens, we make sure that
PB-SMT also treats them as a whole.

NE Alignment (NEA): For NE alignment, we
first identify NEs on both sides of the parallel cor-
pus using Stanford NER!. Next, we try to align
the extracted source and target NEs. If both sides
contain only one NE then the alignment is triv-
ial, and we add such NE pairs to seed another
parallel NE corpus that contains examples having
only one token in both sides. Otherwise, we es-
tablish alignments between the source and target
NEs using minimum edit distance method. For
language pairs having different orthographies (e.g.
English—-Hindi) NE alignments can be established
through transliteration (Pal et al., 2010). If both
the source and target sides contain n number of
NEs, and the alignments of n — 1 NEs can be es-
tablished through minimum edit distance method
or by means of already existing alignments, then
the n'" alignment is trivial. The bilingual NE pairs
extracted thus serve as additional training material
and they improve the word alignment at the start
of the MT pipeline.

MWE Identification: Translation correspon-
dences between English MWEs and German
MWE:s are mainly many-to-one correspondences.
Therefore, instead of extracting a bilingual MWE
list between source and target, we identify the
MWEs from the English training sentences and
prepare an English MWE list. Once the MWEs
are identified, they are converted into single tokens
by replacing the spaces with underscores (“_) so
that their alignments can be mapped to single to-
kens . Before decoding, MWEs in the source side
of the testset are also single tokenized by look-
ing up the extracted MWE list. In this experi-
ment, we have followed Point-wise Mutual Infor-
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mation (PMI), Log-likelihood Ratio (LLR), Phi-
coefficient and Co-occurrence measures for iden-
tification of MWESs on the English side. Finally,
a system combination model has been developed
which provides a normalized score for each of
the extracted MWESs. A predefined cut-off score
has been considered and the candidates having
scores above the threshold value are considered as
MWEs.

Example Based Phrase Extraction: We use
EBMT techniques to extract additional phrase
pairs from the training data to augment the SMT
(baseline) phrase pairs in our experiments. We ex-
tract EBMT phrase pairs based on the work de-
scribed in (Cicekli and Giivenir, 2001), a com-
piled approach of EBMT to automatically extract
translation templates from sentence-aligned bilin-
gual text. They observed the similarities and dif-
ferences between two example pairs. Two types of
translation templates, i.e. generalized and atomic
templates, are extracted by applying this approach.
A generalized translation template replaces sim-
ilar or differing sequences with variables while
an atomic translation template does not contain
any variable. The atomic translation templates are
used as additional phrase pairs for our Hybrid MT
system. This particular approach has a cubic run-
time complexity with respect to the number of sen-
tences in the parallel corpus. It takes a significant
amount of time to extract phrase pairs even from a
small corpus. Therefore we used heuristics to re-
duce the time complexity. We divided the entire
corpus into n clusters based on sentence length
such that similar length sentences belong to the
same cluster. We extract atomic translations from
each of these clusters. For this task, we applied
EBMT phrases as addition parallel training ex-
ample to explicitly enhanced the word alignment
model of the MT pipeline.

2.2 Hybrid System

The Hybrid approach is investigated by combining
multiple knowledge sources such as NEA, EBMT
Phrases and MWEs and followed different strate-
gies. As mentioned earlier, we implemented sev-
eral different systems, namely:

(1) Baseline PB-SMT,

(2) Baseline PB-SMT with NE
(NEA),

alignment
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(3) NEA with EBMT phrase extraction (NEA—
EBMT),

(4) NEA with EBMT phrase extraction and
single-tokenised MWE (NEA-EBMT-
MWE) and

(5) LM-NEA-EBMT-MWE hybrid
(see Section 2.2.1).

system

The baseline SMT system is trained on the cleaned
English-German parallel corpus. The NEA sys-
tem makes use of NE aligned parallel data as addi-
tional parallel examples. Similarly, EBMT phrase
pairs as well as NE aligned data are also used as
additional training example in the NEA-EBMT
system. The NEA—-EBMT-MWE system is very
similar to the above mentioned the NEA-EBMT
system, the only difference being that the identi-
fied source side English MWEs are converted into
single tokens for NEA—-EBMT-MWE. In order to
achieve optimal performance from the component
modules, we finally generated a composite transla-
tion output using confusion network-based system
combination (cf. Section 2.3).

2.2.1 LM-NEA-EBMT-SMT hybrid system

In this system, we experiment with the above de-
scribed models with varying size of monolingual
data. We experimented with 4 folds of monolin-
gual data to train the language Models (LM):

e LM;: Only using the target side (i.e. Ger-
man) of the parallel training data (L) for lan-
guage modeling

e LM,: L + double size of L in terms of num-
ber of sentences, collected from the cleaned
monolingual corpus

o L Mj3: L + triple size of L from the cleaned
monolingual corpus

o [ My: L + all the cleaned monolingual data

Therefore, finally there were 16 different sys-
tems (4 systems, i.e., Baseline, NEA, NEA-
EBMT and NEA-EBMT-MWE, each with 4 LM
settings) output available for system combination.

2.2.2 Post-processing

As a final step, we try to generate translations of
out-of-vocabulary (OOV) words that remain un-
translated in the output. These OOV words may



include some NEs that are already there in the par-
allel NE list, however they might remain untrans-
lated during decoding. Our system post processed
the output by replacing each such OOV NE with
the corresponding target language NE after look-
ing up the extracted NE list from the parallel cor-
pus (cf. Section 2.1.2).

2.3 System Combination

System Combination is a technique, which com-
bines translation hypotheses (outputs) produced
by multiple MT systems. We applied a system
combination method on the outputs of the dif-
ferent MT system described earlier. We imple-
ment the Minimum Bayes Risk coupled with Con-
fusion Network (MBR-CN) framework described
in (Du et al., 2009). The MBR decoder (Kumar
and Byrne, 2004) selects the single best hypoth-
esis from amongst the multiple candidate transla-
tions by minimising BLEU (Papineni et al., 2002)
loss. This single best hypothesis serves as the
backbone (also referred to as skeleton) of the con-
fusion network and determines the general word
order of the confusion network. A confusion net-
work (Matusov et al., 2006) is built from the back-
bone while the remaining hypotheses are aligned
against the backbone using METEOR (Lavie and
Agarwal, 2007) and the TER metric (Snover et
al., 2006). The features used to score each arc
in the confusion network are word posterior prob-
ability, target language model (3-gram, 4-gram),
and length penalties. Minimum Error Rate Train-
ing (MERT) (Och, 2003) is applied to tune the CN
weights (Pal et al., 2014).

3 Experiment Setup

3.1 Baseline Settings

The effectiveness of the present work is demon-
strated by using the standard log-linear PB-SMT
model as our baseline system. For building the
baseline system, we used a maximum phrase
length of 7 and a 5-gram language model. The
other experimental settings were: SymGIZA++
aligner (Junczys-Dowmunt and Szat, 2012), which
is a modified version of GIZA++ word align-
ment models by updating the symmetrizing mod-
els between chosen iterations of the original
word alignment training algorithms and phrase-
extraction (Koehn et al., 2003). The reordering
model was trained on hier-mslr-bidirectional (i.e.
using both forward and backward models) and

155

conditioned on both source and target language.
The reordering model was built by calculating
the probabilities of the phrase pairs being asso-
ciated with the given orientation such as mono-
tone (m), swap (s) and discontinuous (d). The
5-gram target language model was trained using
KENLM (Heafield, 2011). Parameter tuning was
carried out using both k-best MIRA (Cherry and
Foster, 2012) and Minimum Error Rate Training
(MERT) (Och, 2003) on a held-out development
set. After the parameters were tuned, decoding
was carried out on the held out testset.

Note that all the systems described in Section 2
employ the same PB-SMT settings (apart from the
feature weights which are obtained via MERT) as
the Baseline system.

4 Results and Analysis

As described in Section 2.2.1, we developed 16
different systems. Instead of using all these 16 dif-
ferent systems, we apply only the 6 best perform-
ing systems for system combination. Performance
is measured on the devset. Table 1 reports the final
evaluation results obtained on the test dataset. The
best 6 systems are as follows:

e System 1: NEA-EBMT (selective high fre-
quency phrases) with baseline PB-SMT set-
tings and LM;.

System 2: System 1 experimental settings +
single tokenised source MWEs (i.e. NEA-
EBMT-MWE, cf. Section 2.2).

System 3: System 2 with MIRA-MERT cou-
pled tuning.

System 4: System 3 with LM;.

System 5: System 3 with LM3.
e System 6: System 3 with LMy.

System 6 provides the individual best system. Sys-
tem combination (System-7 in Table 1) of the 6
best performing individual systems brings consid-
erable improvements over each of the individual
component systems.

5 Conclusions and Future Work

A hybrid system (System 6) with NE alignment,
EBMT phrases, single-tokenized source MWEs,
and MIRA-MERT coupled tuning results in the
best performing system. However, confusion



Systems BLEU BLEU(Cased) TER
Baseline 16.7 16.2 89.6
System 1 18.1 17.5 88.2
System2  18.1 17.6 87.8
System3  19.0 18.4 85.3
System4  20.0 19.5 84.1
System5  20.3 19.7 83.8
System 6 20.7 20.2 83.5
System 7  22.6 22.1 82.3

Table 1: Results.

network-based system combination outperforms
all the individual MT systems. The fact that the
systems were tuned with BLEU scores may be one
of the reasons behind the poor TER scores pro-
duced by the systems. In future, we will carry
out in depth investigation of the impacts of MWEs
within the current experimental settings. We will
also analyze the usability and contribution of the
novel EBMT phrases in the SMT decoder.
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Abstract

This paper describes the statistical
machine translation system developed
at RWTH Aachen University for the
German—English translation task of
the EMNLP 2015 Tenth Workshop on
Statistical Machine Translation (WMT
2015). A phrase-based machine transla-
tion system was applied and augmented
with hierarchical phrase reordering and
word class language models. Further, we
ran discriminative maximum expected
BLEU training for our system. In addition,
we utilized multiple feed-forward neural
network language and translation models
and a recurrent neural network language
model for reranking.

1 Introduction

For the WMT 2015 shared translation task!,
RWTH utilized a state-of-the-art phrase-based
translation system. We participated in the
German—English translation task. The system
included a hierarchical reordering model, a word
class (cluster) language model, and discrimina-
tive maximum expected BLEU training. Further,
we reranked the nbest lists produced by our sys-
tem with three feed-forward neural network mod-
els and a recurrent neural language model.

This paper is structured as follows: First, we
briefly describe our preprocessing pipeline for
the language pair German—English in Section 2,
which is based on our 2014 pipeline. Next,
morpho-syntactic analysis for preprocessing the
data is described in Section 2.3. Different align-
ment methods are discussed in Section 3. In Sec-
tion 4, we present a summary of all methods used
in our submission. More details are given about

"nttp://www.statmt.org/wmt15/
translation—-task.html
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the language models (Section 4.2), maximum ex-
pected BLEU training (Section 4.4), the hierarchi-
cal reordering model (Section 4.5), feed-forward
neural network training (Section 4.6), and recur-
rent neural network language model (Section 4.7).
Experimental results are discussed in Section 5.
We conclude the paper in Section 6.

2 Preprocessing

In this section we briefly describe our preprocess-
ing pipeline, which is a modification of our WMT
2014 German—English preprocessing pipeline
(Peitz et al., 2014).

2.1 Categorization

We worked on the categorization of the digits and
written numbers for the translation task. All writ-
ten numbers were categorized. As the training
data and also the test sets contain several errors for
numbers in the source as well as in the target part,
we put effort into producing correct English num-
bers. In addition, ’,” and °.” marks were inverted in
most cases, as in German the former mark is the
decimal mark and the latter is the thousand sepa-
rator.

2.2 Remove Foreign Languages

The WMT German—English Common Crawl cor-
pora contains bilingual sentence pairs with non-
German source or non-English target sentences.
By using an ASCII filtering, we removed all sen-
tences with more than 5% non-ASCII characters
from the Common Crawl corpus. Chinese, Arabic
and Russian are among the languages which can
be easily filtered by deleting the sentences con-
taining too many non-ASCII words. Our experi-
ments showed that the translation quality does not
change by removing sentences with wrong lan-
guages. Nevertheless, this method reduced the
training data size and also the vocabulary size
without introducing any degradation in translation

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 158—163,
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Table 1: Comparison of a simple GIZA++ alignment vs. merging multiple alignments. Even though the
multiple alignment approach did not improve the GIZA++ alignment for the baseline system, it improved
translation quality in combination with a neural network joint model (NNJM). BLEU and TER are given

in percentage.

newstest2011 newstest2012 newstest2013 newstest2014

BLEU TER BLEU TER BLEU TER BLEU TER

GIZA++ 23.1 58.8 2377 582 26.5 54.7 259 542
+ NNJM 233 584 24.0 57.7 26.6 543 26.2  53.7
Multiple alignment  23.0  58.9 23.8 582 26.6 54.6 259 542
+ NNIM 233 584 24.1 57.8 27.0 543 26.3 538

quality. Further, this method prevents us from gen-
erating words from these languages.

2.3 Compound Splitting and POS-based
Word Reordering

We reduced the source vocabulary size for the
German—English translation and split the Ger-
man compound words with the frequency-based
method described in Koehn and Knight (2003). To
reduce translation complexity, we employed the
long-range part-of-speech based reordering rules
proposed by Popovi¢ and Ney (2006). In this re-
gard, we did no further morphological analysis in
our preprocessing pipeline.

3 Alignment

We experimented with creating multiple align-
ments and merging them via a majority vote. For
the majority voting to work in a meaningful way
we need obviously more than two different align-
ments. A larger number of alignments gives us
more confidence that the alignment points are cor-
rect.

To create these different alignments, we used
fast_align (Dyer et al., 2013) and two imple-
mentations of GIZA++ (Och and Ney, 2003). The
alignment was trained in both source to target di-
rection and target to source direction. To double
the number of alignments, we trained each setup
also with a reverse ordered source side and re-
versed it back after the alignment process finished
(Freitag et al., 2013). Using a reversed source
side usually creates a different alignment since the
word order influences the results of fast_align
and GIZA++. This gave us a total of 12 differ-
ent alignments (three toolkits x two translation
directions x two source side direction). These

alignments were merged by keeping all alignment
points generated by at least 5 of the methods.

We compared this setup with an alignment gen-
erated by GIZA++. The voting setup did not im-
prove directly on the baseline system as shown
in Table 1. However, in combination with a
feed-forward neural network joint model (Section
4.6) the results on newstest2013 improved by
0.4% BLEU after reranking. We stuck in the fol-
lowing experiments to the multiple alignments ap-
proach.

4 Translation System

In this evaluation, we used the open source ma-
chine translation toolkit Jane® (Vilar et al., 2012;
Wuebker et al., 2012). This open-source toolkit
was developed at the RWTH Aachen University
and includes a phrase-based decoder used in all of
our experiments.

4.1 Phrase-based System

Our phrase based decoder includes an implemen-
tation of the source cardinality synchronous search
procedure described in Zens and Ney (2008). We
used the standard set of models with phrase trans-
lation probabilities, lexical smoothing in both di-
rections, word and phrase penalty, distance-based
distortion model, a 4-gram target language model
and enhanced low frequency feature (Chen et al.,
2011). Additional models used in this evaluation
were the hierarchical reordering model (HRM)
(Galley and Manning, 2008) and a word class lan-
guage model (wcLM) (Wuebker et al., 2013). The
parameter weights were optimized with minimum
error rate training (MERT) (Och, 2003). The op-

http://www.hltpr.rwth-aachen.de/jane/
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timization criterion was BLEU (Papineni et al.,
2002).

4.2 Language Models

We used a 4-gram language model trained on the
target side of the bilingual data, % of the Shuffled
News Crawl corpus, % of the 107 French-English
corpus and % of the LDC Gigaword Fifth Edition
corpus. The monolingual data selection was based
on cross-entropy difference as described in Moore
and Lewis (2010). For this language model, we
trained separate language models using SRILM
for each corpus, which were then interpolated.
The interpolation weights are tuned by minimiz-
ing the perplexity of the interpolated model on the
development data. In addition, a word class lan-
guage model was utilized. We trained 200 classes
on the target side of the bilingual training data
(Brown et al., 1992; Och, 1999). We used the
same data as the 4-gram language model for train-
ing a 7-gram wcLM. Furthermore, we also trained
a single unpruned language model on the con-
catenation of all monolingual data using KenLLM,
which was used as an extra model in our final ex-
periments. All language models used interpolated
Kneser-Ney smoothing.

4.3 Evaluation

All setups were evaluated with MultEval (Clark et
al., 2011). To evaluate our models, we used the
average of three MERT optimization runs for case
sensitive BLEU (Papineni et al., 2002) and case in-
sensitive TER? (Snover et al., 2006).

4.4 Maximum Expected BLEU Training

In our baseline translation system the phrase ta-
bles were extracted from word alignments and
the probabilities were estimated as relative fre-
quencies, which is still the state-of-the-art for
many standard SMT systems. For the WMT 2015
German—English task, we applied discriminative
maximum expected BLEU training as described by
Wuebker et al. (2015). The expected BLEU objec-
tive function is optimized with the resilient back-
propagation algorithm (RPROP) (Riedmiller and
Braun, 1993). Similar to He and Deng (2012),
the objective function is computed on n-best lists
(here: n 100) generated by the translation
decoder. To avoid over-fitting due to spurious

3TER is always evaluated in case insensitive form by Mul-
tEval.
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segmentations, we apply a leave-one-out heuris-
tic (Wuebker et al., 2010) during the n-best list
generation step. Using these n-best lists, we it-
eratively trained the phrasal and lexical feature
sets, denoted as (a) and (b) in Wuebker et al.
(2015). Each of the two feature types are con-
densed into a single model within the log-linear
model combination. After every five iterations we
ran MERT, and finally selected the iteration per-
forming best on newstest2013. In this work,
we used a subset of the training data to gener-
ate the n-best lists, namely the concatenation of
newstest2008 through newstest2010 and
the News-Commentary corpus.

4.5 Hierarchical Reordering Model

In Galley and Manning (2008), a hierarchical re-
ordering model for phrase-based machine trans-
lation was introduced. The model scores mono-
tone, swap, and discontinuous phrase orientations
in the manner of the one presented by Tillmann
(2004). The orientation classes are determined
based on phrase blocks, which can subsume mul-
tiple phrase pairs and are computed with an SR-
parser. The model has proven effective in previ-
ous evaluations. As the word order is more flexi-
ble in German compared to English, we expected
that an additional reordering model could improve
the translation quality.

4.6 Feed-Forward Neural Network Training

We used three feed-forward neural network
(FFNN) models with a similar structure as the net-
work models used by Devlin et al. (2014) and Le
et al. (2012). All networks were trained with dif-
ferent input features:

e Translation Model (TM), the 5 source words
around the alignment source word



Table 2: Results for the German—English translation task. The results are the average of three optimiza-
tion runs. newstest2011 and newstest2012 were used as development data. The submission
system used all models and the best optimization run on the development data. BLEU and TER are given

in percentage.

newstest2011 newstest2012 newstest2013 newstest2014

BLEU TER BLEU TER BLEU TER BLEU TER

Baseline 23.0 58.9 23.8 582 26.6 54.6 259 542
+ max. exp. BLEU 23.1 58.6 240 57.8 26.8 544 26.2 539

+ updated LM 232  58.7 240 579 26.8 543 26.3 537
+unpruned LM 232 59.0 24.1 58.1 269 54.6 26.6 54.0

+ 3 x FFNN 237 584 245  57.7 274  54.0 27.1 53.3
+LSTM 238 58.4 247 574 275 538 27.1 53.2
Submission System 241 57.6 250 565 28.1 529 27.6 523

e Language Model (LM), the 7 last words on
the target side

e Joint Model (JM), the 5 source words around
the alignment source word and the 4 last
words on the target side

The TM and LM were trained with two hidden
layers (1000 and 500 nodes) while the JM con-
tained three hidden layers with 2000 nodes each.
The output layer was in all cases a softmax layer
with a short list of 10000. All remaining words
were clustered into 1000 classes and their class
probabilities were predicted. The neural networks
were applied to rerank 1000-best lists.

4.7 Recurrent Neural Network Language
Model

In addition to the feed-forward neural network
model we employed a recurrent neural network
model. The recurrency was handled with the long
short-term memory (LSTM) architecture (Hochre-
iter and Schmidhuber, 1997) and we used a class-
factored output layer for increased efficiency as
described in Sundermeyer et al. (2012). The topol-
ogy of the network is illustrated in Figure 1. All
neural network models were trained on the bilin-
gual data with 2000 word classes. The language
models were set up with 500 nodes in both the
projection layer and the hidden LSTM layer. The
recurrent network models were applied together
with the feed-forward models to rerank 1000-best
lists.
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5 Setup

We trained the phrase-based system on all avail-
able bilingual training data. The preprocessed
bilingual corpus contained around 4 million sen-
tences. The preprocessed data contained a source
vocabulary size of 814K and a target vocabulary
size of 733K.

We used the target side of the bilingual data
along with the monolingual corpora for training
the language models. First, we started using our
old language models from our WMT 2014 setup as
baseline. Then we updated our system to the new
language models trained according to Section 4.2.
All results are reported as average of three opti-
mization runs.

5.1 Experimental Results

The results of the phrase-based system are summa-
rized in Table 2. It was tuned on the concatenation
of newstest2011 and newstest2012.

The phrase-based baseline system, which in-
cluded the hierarchical reordering model (Gal-
ley and Manning, 2008) and a word class lan-
guage model (wcLM) (Wuebker et al., 2013),
reached a performance of 25.9% BLEU on
newstest2014. Maximum expected BLEU
training selected on newstest2013 improved
the results on newstest2014 by 0.3% BLEU
absolute.

There was improvement of 0.1% in BLEU on
newstest2014 by replacing the old language
models from WMT 2014 with an updated gen-
eral 4-gram LM and word class LM. Further-



more, adding an extra unpruned language model
trained on the concatenation of the monolingual
data improved the results on newstest2014 by
0.3% BLEU.

Adding three feed-forward neural network
models yielded an improvement of 0.5% BLEU on
newstest2013 and newstest2014. Adding
the LSTM language model improved the TER by
an additional 0.1% on newstest2014 and by
0.2% on newstest2013.

The submission system used all models and we
chose the best optimization run on the develop-
ment data. This optimization run by itself was
0.5% BLEU stronger on newstest2014 com-
pared to the average across three optimization runs
which included this run.

6 Conclusion

For the participation in the WMT 2015 shared
translation task, RWTH experimented with a
phrase-based translation system. For this ap-
proach, we applied a hierarchical phrase reorder-
ing model and a word class language model.
fast_align and two versions of GIZA++ were
used for training word alignments, and a voting
setup was implemented, which improved the re-
sults in combination with neural network models.
We also employed discriminative maximum ex-
pected BLEU training. Additionally, we utilized
feed-forward and recurrent neural networks mod-
els for our phrase-based system, which improved
the performance. Furthermore, we adapted our
preprocessing pipeline based on our WMT 2014
setup. Filtering the corpus for non-ASCII letters
gave us lower vocabulary sizes for both source and
target side without loss in performance.
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Abstract

We present an experimental statistical
tree-to-tree  machine translation system
based on the multi-bottom up tree trans-
ducer including rule extraction, tuning and
decoding. Thanks to input parse forests
and a “no pruning” strategy during decod-
ing, the obtained translations are compet-
itive. The drawbacks are a restricted cov-
erage of 70% on test data, in part due to
exact input parse tree matching, and a rel-
atively high runtime. Advantages include
easy redecoding with a different weight
vector, since the full translation forests can
be stored after the first decoding pass.

1 Introduction

In this contribution, we present an implementation
of a translation model that is based on /-XMBOT
(the multi bottom-up tree transducer of Arnold and
Dauchet (1982) and Lilin (1978)).! Intuitively, an
MBOT is a synchronous tree sequence substitution
grammar (STSSG, Zhang et al. (2008a); Zhang et
al. (2008b); Sun et al. (2009)) that has discon-
tiguities only on the target side (Maletti, 2011).
From an algorithmic point of view, this makes the
MBOT more appealing than STSSG as demon-
strated by Maletti (2010). Formally, MBOT is
expressive enough to express all sensible trans-
lations (Maletti, 2012)>. Figure 2 displays sam-
ple rules of the MBOT variant, called /-XMBOT,

This work was supported by Deutsche Forschungsge-
meinschaft grant MA/4959/1-1.

!The system presented in this paper is variant of the sys-
tem presented at last year’s workshop (Quernheim and Cap,
2014), without morphological enhancements.

2A translation is sensible if it is of linear size increase

and can be computed by some (potentially copying) top-down
tree transducer.
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that we use (in a graphical representation of the
trees and the alignment). Recently, a shallow ver-
sion of MBOT has been integrated into the popular
Moses toolkit (Braune et al., 2013). Our imple-
mentation is exact in the sense that it does abso-
lutely no pruning during decoding and thus pre-
serves all translation candidates, while having no
mechanism to handle unknown structures. (We
added dummy rules that leave unseen lexical ma-
terial untranslated.) The coverage is thus limited,
but still considerably high. Source-side and target-
side syntax restrict the search space so that decod-
ing stays tractable. Only the language model scor-
ing is implemented as a separate reranker. This
has several advantages: (1) We can use input parse
forests (Liu et al., 2009). (2) Not only is the out-
put optimal with regard to the theoretical model,
also the space of translation candidates can be ef-
ficiently stored as a weighted regular tree gram-
mar. The best translations can then be extracted
using the k-best algorithm by Huang and Chiang
(2005). Rule weights can be changed without the
need for explicit redecoding, the parameters of the
log-linear model can be changed, and even new
features can be added. These properties are espe-
cially helpful in tuning, where only the k-best al-
gorithm has to be re-run in each iteration. A model
in similar spirit has been described by Huang et al.
(2006); however, it used target syntax only (using
a top-down tree-to-string transducer backwards),
and was restricted to sentences of length at most
25. We do not make such restrictions.

The theoretical aspects of /-XMBOT and their
use in our translation model are presented in Sec-
tion 2. Based on this, we implemented a machine
translation system that we are going to make avail-
able to the public. Section 4 presents the most im-
portant components of our /~-XMBOT implemen-

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 164-171,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



tation, and Section 5 presents our submission to
the WMT15 shared translation task.

2 Theoretical Model

In this section, we present the theoretical genera-
tive model that is used in our approach to syntax-
based machine translation: the multi bottom-up
tree transducer (Maletti, 2011). It is a variant of
the linear and nondeleting extended multi bottom-
up tree transducers without states. We omit the
technical details and give graphical examples only
to illustrate how the device works, but refer to the
literature for the theoretical background. Roughly
speaking, a local multi bottom-up tree transducer
(/MBOT) has rules that replace one nonterminal
symbol NV on the source side by a tree, and a se-
quence of nonterminal symbols on the target side
linked to NV by one tree each. These trees again
have linked nonterminals, thus allowing further
rule applications.

Our /MBOT rules are obtained automatically
from data like that in Figure 1. Thus, we (word)
align the bilingual text and parse it in both the
source and the target language. In this manner we
obtain sentence pairs like the one shown in Fig-
ure 1. To these sentence pairs we apply the rule
extraction method of Maletti (2011). The rules
extracted from the sentence pair of Figure 1 are
shown in Figure 2. Note the discontiguous align-
ment of went to ist and gegangen, resulting in dis-
contiguous rules.

The application of those rules is illustrated in
Figure 3 (a pre-translation is a pair consisting of a
source tree and a sequence of target trees). While
it shows a synchronous derivation, our main use
case of /MBOT rules is forward application or in-
put restriction, that is the calculation of all target
trees that can be derived given a source tree. For
a given synchronous derivation d, the source tree
generated by d is s(d), and the target tree is ¢(d).
The yield of a tree is the string obtained by con-
catenating its leaves.

The theoretical justification for decomposing
the translation model into a source model and a
target model is a theorem that states that every
(MBOT can be replaced by a composition of a
linear nondeleting extended top-down tree trans-
ducer (XTOP) and a linear homomorphic MBOT
(Engelfriet et al., 2009). We implemented the first
step of the composition as an XTOP that gener-
ates possible derivation trees. States in this de-
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vice are linked nonterminals in the /MBOT rules,
and it translates left-hand sides into rule identi-
fiers. The second step is implemented as a homo-
morphic multi bottom-up tree transducer. While
we construct the first step of the composition ex-
plicitly, we only use the second device to evaluate
single trees.

Apart from /MBOT application to input trees,
we can even apply /MBOT to parse forests and
even weighted regular tree grammars (RTGs)
(Filop and Vogler, 2009). RTGs offer an ef-
ficient representation of weighted forests, which
are sets of trees such that each individual tree is
equipped with a weight. This representation is
even more efficient than packed forests (Mi et al.,
2008) and moreover can represent an infinite num-
ber of weighted trees. The most important prop-
erty that we utilize is that the output tree language
is regular, so we can represent it by an RTG (cf.
preservation of regularity (Maletti, 2011)). In-
deed, every input tree can only be transformed into
finitely many output trees by our model, so for a
given finite input forest (which the output of the
parser is) the computed output forest will also be
finite and thus regular.

3 Translation Model

Given a source language sentence e and corre-
sponding weighted parse forest F'(e), our trans-
lation model aims to find the best corresponding
target language translation §;’ i.e.,

g = argmax, p(gle) .

We estimate the probability p(g|e) through a log-
linear combination of component models with pa-
rameters A\, scored on the derivations d such that
the source tree s(d) of d is in the parse forest of e
and the yield of the target tree ¢(d) reads g. With

g}

D(e,g) ={d| s(d) € F(e) and yield(¢(d))

we thus have:

11
plgle) o< Y [ hm(d)

deD(e,g) m=1

Our model uses the following features h,, () for a
derivation:

3Our main translation direction is English to German.

“While this is the clean theoretical formulation, we make
two approximations to D(e, g): (1) The parser we use returns
a pruned parse forest. (2) We only sum over derivations with
the same target sentence that actually appear in the k-best list.
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Figure 1: Aligned parsed sentences.

NP PN-SB-Nom.Sg.Masc NP PP-MO/V
\ \ VBD VAFIN-HD-Sg  VVPP-HD | PR
NNP — ( NE-HD-NomSgMase ) | — | ] ") NN = ((APPRAC ADIDHD-PosN )
\ | went ist gegangen | ‘ [
Max Max home nach hause
VP VP-OC/pp S-TOP
SN - ( VAFIN-HD-Sg » PN ) VAN ( )
VBD NP PP-MO/V  VVPP-HD NP VP PN-SB-Nom.Sg.Masc  VAFIN-HD-Sg VP-OC/pp

Figure 2: Extracted rules.

(1) Translation weight normalized by source root
symbol

(2) Translation weight normalized by all root
symbols

(3) Lexical translation weight source — target

(4) Lexical translation weight target — source

(5) Target side language model: p(g)

(6) Input parse tree probability assigned to s(t) by
the parser of e

The rule weights required for (1) are relative
frequencies normalized over all extracted rules
with the same root symbol on the left-hand side. In
the same fashion the rule weights required for (2)
are relative frequencies normalized over all rules
with the same root symbols on both sides. The
lexical weights for (3) and (4) are obtained by mul-
tiplying the word translations w(g;|e;) [respec-
tively, w(e;|g;)] of lexically aligned words (g;, €;)
across (possibly discontiguous) target side se-
quences.” Whenever a source word e; is aligned
to multiple target words, we average over the word

5The lexical alignments are different from the links used
to link nonterminals.

166

translations:®

hs(d)

II

lexical item
e occurs in s(d)

average {w(gle) | g aligned to e}

4 Implementation

Our implementation is very close to the theoretical
model and consists of several independent compo-
nents, most of which are implemented in Python.
The system does not have any dependencies other
than the need for parsers for the source and target
language, a word alignment tool and optionally an
implementation of some tuning algorithm.

Rule extraction From a parallel corpus of
which both halves have been parsed and word
aligned, multi bottom-up tree transducer rules are
extracted according to the procedure laid out in
(Maletti, 2011). In order to handle unknown
words, we add dummy identity translation rules
for lexical material that was not present in the
training data.

®1f the word e; has no alignment to a target word, then
it is assumed to be aligned to a special NULL word and this
alignment is scored.
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Figure 3: Synchronous rule application.

Translation model building Given a set of
rules, translation weights (see above) are com-
puted for each unique rule. The translation model
is then converted into a source, a weight and a tar-
get model. The source model (an RTG represented
in an efficient binary format) is used for decod-
ing and maps input trees to trees over rule iden-
tifiers representing derivations. The weight model
and the target model can be used to reconstruct the
weight and the target realization of a given deriva-
tion.

Decoder For every input sentence, the decoder
transforms a forest of parse trees to a forest of
translation derivations by means of forward appli-
cation. These derivations are trees over the set of
rules (represented by rule identifiers). One of the
most useful aspects of our model is the fact that de-
coding is completely independent of the weights,
as no pruning is performed and all translation
candidates are preserved in the translation forest.
Thus, even after decoding, the weight model can
be changed, augmented by new features, etc.; even
the target model can be changed, e.g. to support
parse tree output instead of string output. In all
of our experiments, we used string output, but it is
conceivable to use other realizations. For instance,
a syntactic language model could be used for out-
put tree scoring. Also, recasing is extremely easy
when we have part-of-speech tags to base our de-
cision on (proper names are typically uppercase,
as are all nouns in German).

Another benefit of having a packed representa-
tion of all candidates is that we can easily check
whether the reference translation is included in the
candidate set (“force decoding”). The freedom to
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allow arbitrary target models that rewrite deriva-
tions is related to current work on interpreted reg-
ular tree grammars (Koller and Kuhlmann, 2011),
where arbitrary algebras can be used to compute a
realization of the output tree.

k-best extractor From the translation derivation
RTGs, a k-best list of derivations can be extracted
(Huang and Chiang, 2005) very efficiently. This
is the only step that has to be repeated if the rule
weights or the parameters of the log-linear model
change. The derivations are then mapped to tar-
get language sentences (if several derivations re-
alize the same target sentence, their weights are
summed) and reranked according to a language
model (as was done in Huang et al. (2006)). This
is the only part of the pipeline where we deviate
from the theoretical log-linear model, and this is
where we might make search errors. In principle,
one could integrate the language model by inter-
section with the translation model (as the stateful
MBOT model is closed under intersection with fi-
nite automata), but this is (currently) not computa-
tionally feasible due to the size of models.

Tuning Minimum error rate training (Och,
2003) is implemented using Z-MERT’ (Zaidan,
2009). A set of source sentences is (forest-)parsed
and decoded; the translation forests are stored on
disk. Then, in each iteration of Z-MERT, it suf-
fices to extract k-best lists from the translation
forests according to the current weight vector.

"http://cs.jhu.edu/-ozaidan/zmert/



S WMT1S Experimental setup

We used the training data that was made avail-
able for the WMT15 shared translation task on
English-German®. It consists of three parallel cor-
pora (1.8M sentences of European parliament pro-
ceedings, 216K sentences of newswire text, and
2.3M sentences of web text after cleanup) and
additional monolingual news data for language
model training.

The English half of the parallel data was parsed
using Egret’ which is a re-implementation of the
Berkeley parser (Petrov et al., 2006). For the Ger-
man parse, we used the BitPar parser (Schmid,
2004; Schmid, 2006). The BitPar German gram-
mar is highly detailed, which makes the syntac-
tic information contained in the parses extremely
useful. Part-of-speech tags and category label are
augmented by case, number and gender informa-
tion, as can be seen in the German parse tree in
Figure 1. We only kept the best parse for each
sentence during training.

We then trained a 5-gram language model
on monolingual data using KenLM'® (Heafield,
2011; Heafield et al., 2013). Word alignment was
achieved using the fast_align'! word aligner
from cdec (Dyer et al., 2010). As usual, we dis-
carded sentence pairs where one sentence was sig-
nificantly longer than the other, as well as those
that were too long or too short.

For tuning, we chose the WMT12 test set (3,003
sentences of newswire text), available as part
of the development data for the WMT13 shared
translation task. Since our system had limited cov-
erage on this tuning set, we limited ourselves to
the first a subset of sentences we could translate.

When translating the test set, our models used
parse trees delivered by the Egret parser. After
translation, recasing was done by examining the
output syntax tree, using a simple heuristics look-
ing for nouns and sentence boundaries as well as
common abbreviations. Since coverage on the
test set was also limited, we used a simple word-
based fallback system whenever an untranslated
state was encountered in a derivation tree.

$http://www.statmt.org/wntl5/
translation—-task.html

https://sites.google.com/site/
zhanghl982/egret

Yhttp://kheafield.com/code/kenlm/

"http://www.cdec—decoder.org/qguide/
fast_align.html

168

| BLEU | BLEU-cased | TER |
1153 | 144 [ 777 |

Table 1: BLEU and TER scores of our system.

6 Results

We report the overall translation quality, as listed
on http://matrix.statmt.org/, mea-
sured using BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006), in Table 1.

Results are significantly worse compared to last
year’s system which used morphological enhance-
ments such as compound splitting (Quernheim and
Cap, 2014) and a phrase-based fallback system for
sentences that the exact decoder could not han-
dle. However, we should note that where the fall-
back system was not needed, we achieved a BLEU
score of 16.7.

From a linguistic point of view, constructions
that involve long-distance reordering and agree-
ment are typically handled well. Figure 4 shows
some example sentences from the WMT13 test set
in comparison to a phrase-based baseline system.

On the other hand, our system frequently makes
mistakes in lexical choice, and often uses rules that
have been extracted from erroneous alignments.
Sometimes, these mistakes cannot be alleviated by
the language model due to data sparsity (no com-
peting good candidate translation).

7 Conclusion and further work

We presented our submission to the WMTI15
shared translation task based on a novel, promising
“full syntax, no pruning” tree-to-tree approach to
statistical machine translation, inspired by Huang
et al. (2006). There are, however, still major draw-
backs and open problems associated with our ap-
proach. Firstly, the coverage can still be signifi-
cantly improved. In these experiments, our model
was able to translate only 70% of the test sen-
tences. To some extent, this number can be im-
proved by providing more training data. Also,
more rules can be extracted if we not only use the
best parse for rule extraction, but multiple parse
trees, or even switch to forest-based rule extrac-
tion (Mi and Huang, 2008). Finally, the size of the
input parse forest plays a role. For instance, if we
only supply the best parse to our model, transla-
tion will fail for approximately half of the input.
However, there are inherent coverage limits.
Since our model is extremely strict, it will never



Verb missing:

(M) wir haben zwei spezialisten fiir ihre stellungnahme gebeten .

(“we have two specialists for their statement asked .”)

(P) wir haben zwei spezialisten fiir ihre stellungnahme .
(“we have two specialists for their statement .”)

(R) wir haben die meinung von zwei fachérzten eingeholt .
(S) We asked two specialists for their opinion.

Plural noun with singular verb:

(M) auch das technische personal hat mir sehr viel gebracht .

(“also the technical staff has me much brought .”)

(P) auch die technischen mitarbeiter hat mir sehr viel gebracht .

(“also the technical co-workers has me much brought .”)
(R) das technische personal hat mir ebenfalls viel gegeben .
(S) The technical staff has also brought me a lot.

No agreement between noun and adjective:

(M) in diesem sinne werden die manahmen zum teil das amerikanische demokratische system untergraben .
(“in this sense will the measures to part (the american democratic system)ygyr undermine .”)

(P) in diesem sinne werden die malnahmen teilweise , die amerikanischen demokratische system untergraben .
(“in this sense will the measures partially , therpy american democratic systemygyr undermine .”)

(R) in diesem sinne untergraben diese mainahmen teilweise das demokratische system der usa .

(S) In this sense, the measures will partially undermine the American democratic system.

Long-distance reordering:

(M) er zdgert nicht , zu antworten , dass er einen antrag von einer unbekannten person nie akzeptieren wiirde .
(“he hesitates not , to reply , that he a request from an unknown person never accept would .”)

(P) er zogert nicht , sagen , dass er niemals akzeptieren wiirde einen antrag von einer unbekannten person .
(“he hesitates not , say , that he never accept would a request from an unknown person.”)

(R) gefragt antwortet er , dass er nie eine einladung von einem unbekannten annehmen wiirde .

(S) He does not hesitate to reply that he would never accept a request from an unknown person.

Garbled output:

(M) wie ich versprochen habe , ist meine tétigkeit teilweise reduziert worden .

(“as I promised have , has my activity partially reduced been

)

(P) wie ich ihnen zugesichert hatte , bestdtigte , die meine aktivititen wurden teilweise reduziert .
(“as I you assured had , confirmed , the my activities were partially reduced .”)
(R) wie versprochen , habe ich meine aktivititen teilweise zuriickgefahren .

(S) As I promised, my activities have been partially reduced.

Figure 4: Examples from the test set where our /MBOT system performed better, linguistically speaking;
(M = (MBOT system; P = phrase-based baseline system; R = reference translation; S = source sentence).

Rough interlinear glosses are provided.

be able to translate sentences whose parse trees
contain structures it has never seen before, since
it has to match at least one input parse tree ex-
actly. While we implemented a simple solution to
handle unknown words, the issue with unknown
structures is not so easy to solve without breaking
the otherwise theoretically sound approach. Pos-
sibly, glue rules can help.

The second drawback is runtime. We were
able to translate about 20 sentences per hour on
one processor. Distributing the translation task on
different machines, we were able to translate the
WMT15 test set (3k sentences) in roughly three
days. Given that the trend goes towards paral-
lel programming, and considering the fact that
our decoder is written in the rather slow language
Python, we are confident that this is not a major
problem. We were able to run the whole pipeline
of training, tuning and evaluation on the WMT15
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shared task data in less than one week. We are cur-
rently investigating whether A* k-best algorithms
(Pauls and Klein, 2009; Pauls et al., 2010) can help
to guide the translation process while maintaining
optimality.

Thirdly, currently the language model is not in-
tegrated, but implemented as a separate rerank-
ing component. We are aware that an integrated
language model might improve translation quality
(see e.g. Chiang (2007) where 3—4 BLEU points
are gained by LM integration). Some research on
this topic already exists, e.g. (Rush and Collins,
2011) who use dual decomposition, and (Aziz et
al., 2013) who replace intersection with an upper
bound which is easier to compute. It might also
be feasible to intersect the language model (repre-
sented by a regular string grammar) lazily.
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Abstract

This paper provides an overview of the
Sheffield University submission to the
WMT15 Translation Task for the Finnish-
English language pair. The submitted
translations were created from a system
built using the CDEC decoder. Finnish is
a morphologically rich language with ele-
ments such as nouns and verbs carrying a
large number of inflectional types. Con-
sequently, our improvements are based
on morphology and include preprocessing
steps to handle of morphological inflec-
tions inherent in the language, and which
otherwise result in lexical sparsity and loss
of information.

1 Introduction

This paper outlines The University of Sheffield’s
submission for the shared translation task, which
is part of the 2015 Workshop on Machine Trans-
lation. We participated in the Finnish-English lan-
guage pair task which used news-test-2015 data.
23 systems from 12 organisations took part in this
task.

Finnish is an inflectional language containing a
productive morphology. The morphological phe-
nomena can lead to a great many inflectional
forms. This complex productive morphology can
be a barrier to machine translation, with many
forms unseen at training. As such, our work was
focussed on handling the morphological variation
in Finnish with the aim of extracting and transfer-
ring as much information as possible - in terms of
nominal forms and declensions.

For this paper we describe our baseline system
in Section 3, followed by our improvements in
Section 4 and potential gains in Section 5. We re-
port our results in Section 6.
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2 Related work

In terms of previous work in the translation of
morphologically rich languages in MT, Finnish-
English has previously featured as a language pair,
in the 2005 shared task (Koehn and Monz, 2005).

Chahuneau et al. (2013) experimented specifi-
cally with models into morphologically rich lan-
guages, we opted to do from Finnish, as a mor-
phologically rich language, into English. Their ap-
proach is, however, more systematic, deploying a
morphological grammar.

Another approach, used by Ammar et al. (2013)
is that of synthetic translation options, supple-
menting the phrase tables to compensate for the
sparseness in translating from/to highly inflected
languages.

Luong et al. (2010) also investigate morpheme-
level extraction, but integrate this into the decod-
ing process itself, instead of the pre-processing
step we have. They also incorporate unsuper-
vised morphological analysis and do not rely
on language-specific tools, whereas we used a
Finnish parser for our morphological analysis

3 Baseline system

For our decoder we used CDEC (Dyer et al.,
2010), which essentially is used for rule extraction
and decoding. CDEC uses synchronous context-
free grammars (SCFGs) as the model for natural
language syntax.

The initial tokenization and lower casing were
performed using the ‘tokenize-anything’ and ‘low-
ercase.pl’ scripts respectively. They are both in-
cluded as part of the CDEC suite of tools (simi-
lar to those provided with Moses). Fast-align was
used to learn the word alignments.

To train the translation model we used the Eu-
roparl data set provided. We additionally investi-
gated some of the newly available DCEP corpus
(Hajlaoui et al., 2014). This is a resource contain-

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 172—176,
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ing multilingual output from the European Parlia-
ment beyond the plenary sessions of Europarl that
has recently been made available for use. It con-
tains the parliamentary reports (from the parlia-
mentary committees of the European Parliament),
oral and written questions, and press releases, and
alignments can be derived for any language pairs
in the language matrix. However, through exper-
imentation we discovered issues with misalign-
ments and determined better alignments when iso-
lating the parliamentary reports from the questions
and deriving them separately. We subsequently
also isolated the press releases and aligned those
as well. Although taken as a whole, the system
seemed to actually cope with poor alignments - we
subsequently experimented with the entire DCEP
corpus (Hajlaoui et al., 2014) and achieved com-
parable results.

The grammar extraction is made up of SCFGs,
which generate strings in two languages. The pro-
cess ultimately builds an SCFG translation gram-
mar (typically from a word-aligned parallel cor-
pus) and in this case is a HIERO grammar . For the
purposes of increased speed, per-sentence gram-
mars (PSGs) were used in the translation. PSGs
only contain rules that match a single sentence (fil-
tered from larger grammars) and, despite the fact
that rules are created for each individual sentence
to be translated, they are quickly loadable.

For our Language Model we examined two dif-
ferent approaches. The basic approach purely used
the given Europarl dataset, whilst the enhanced ap-
proach incorporated a partial selection of mono-
lingual Newscrawl data (provided) taken from the
Gigaword corpus in addition to the Europarl data.
During experimentation we found that adding the
extra Newscrawl data to the language model sig-
nificantly improved the BLEU score (+0.5). How-
ever, due to time constraints we were unable to test
this improvement alongside our stemming experi-
ments (Section 4) so did not obtain a compound
score (for stemming coupled with the additional
monolingual data), which we believe could have
been significantly better.

The final output translation initially only had
the first letter in every sentence changed to upper-
case. The translation was then converted into the
SGML format using the ‘wrap-xml.perl’ script.
Unfortunately, just simply converting the initial
letter in each of the sentences led to a compara-
tively poor BLEU-cased score, which we decided
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had to be improved (see True-casing in section 4)

4 Improvements

4.1 Morphological stemming

Our main improvement to the system was based on
the idea that there is a need to deal with the highly
inflectional nature of Finnish, as the source lan-
guage. The fact that Finnish is a morphologically
rich language is problematic for machine transla-
tion systems. For example, it has 15 grammati-
cal cases which results in a great many declen-
sions of the nouns. This in turn leads to a great
deal of lexical sparsity when estimating parame-
ters for the translation model. Ultimately, there is
a high incidence of out of vocabulary words, and
valuable linguistic information is lost. While in-
flected forms may have occurred at training time,
this means that the simple base form will not nec-
essarily be resolved at decoding time. Even if base
forms occurred in training, the inflectional form at
decoding time will generally fail to match. The
agglutinative nature of Finnish increases the prob-
lem further, as many nouns are compounded.

We therefore parsed our data using the Turku
Finnish Dependency Parser (Haverinen et al.,
2014) which is now available!. This parser works
efficiently and we were able to process raw input
text. The resulting parsed files allowed us to ex-
tract the base form of each inflected noun in ad-
dition to the parts of speech, dependencies, and
grammatical case information. Of this we used the
base form and grammatical case information to re-
place each inflected noun occurring in the test data
with its base form, in addition to a place marker
for cases deemed relevant. By this we mean that
the nominative form, for example, does not result
in inflectional variation, nor does it incorporate
additional grammatical information, which would
be of relevance in English. Often the inflections
in Finnish become prepositions in English, so our
hope was to retain this additional grammatical in-
formation and rely on the case placemarker being
aligned to the relevant preposition in English. We
decided not to include declensions where the de-
clined form could be ambiguous, and left those
unmodified.

We subsequently trained the alignments with
our marked up test data. We used the base form
and grammatical case information for each noun

"http://turkunlp.github.io/Finnish-dep-parser/



occurring in the training and test data and ex-
tracted lists of nouns where appropriate.

4.2 Issues encountered with stemming

Of course there is also inflectional variation within
some cases, So a strict one-to-one mapping will not
necessarily hold true. We did not substitute the
base form for plural inflections, which did how-
ever result in losses, and which we would attempt
to handle better in any future task. More prob-
lematic is the fact that a noun can decline in a
similar manner for different cases - for example,
the word ‘kirjan’ can be the base form of ‘kirja’,
which means ‘book’, inflected in the genitive and
accusative case - both have the same inflectional
form. We dealt with this by only substituting the
forms where there was no ambiguity. We de-
termined that this was why we were not seeing
improvements that were as significant as we had
hoped. In addition, our attempts to rectify the is-
sue were not sufficiently tuned.

Interestingly, we got good results when we only
stemmed the nouns in the training set that also ap-
peared in the dev and test sets (not submitted).
This suggests that when we stemmed as many
nouns as we could, it appeared to do as much harm
as good and effectively cancelled itself out.

4.3 Filtering

We attempted an experiment with filtering, based
on research proving that the translation direction
of the training data makes a significant differ-
ence for both the translation model and the lan-
guage model (Kurokawa et al., 2009; Lembersky
et al., 2013; Lembersky et al., 2012). This re-
search indicates a qualitative improvement with
much less data. It would seem logical that train-
ing on translated data already incorporates some of
the crosslingual transfer which is performed by a
human translator, and therefore is valuable to cap-
ture.

To this end we constructed a directional corpus,
filtering the whole of the Europarl for excerpts
which were originally in the Finnish language. We
did this by tracking the ‘language’ attribute in the
markup to filter out any contributions which had
originally been in Finnish. Once we had filtered
these out we matched them with corresponding ex-
cerpts in the target language, in our case English.
One major issue here was that due to the fact that
there are only 26 Finnish members of the Euro-
pean Parliament out of a total number of 750, the

amount of data that is in Finnish is relatively small.
Our resulting filtered data corpus contained just
81,444 lines or sentences. This seemed to prove
insufficient to influence the overall score. Unfor-
tunately the DCEP data (Hajlaoui et al., 2014) has
no way of determining what the original language
was, and thus we had no additional sources for our
filtered data.

4.4 True-casing (for BLEU-cased scores)

Due to an initial low BLEU-cased score it was
decided that the true-casing had to be enhanced
beyond simply capitalising the first letter of each
sentence. In addition, time constraints and limited
experience with available casing tools led to the
creation of a relatively short script in order to im-
prove the casing for the translated sentences. Two
simple methods were implemented:

o Firstly, capitalisation statistics (ignoring first
words) were taken from the unmodified Eu-
roparl corpus and applied to each individual
word in the automated translation. For ex-
ample, there would be instances in the corpus
where ‘The’ appears with a capital “T” as part
of a name, and if this was applied directly
then all occurrences of ‘the’ in the output
translation would then be capitalised. Clearly
this would not be acceptable and so a ratio of
capitalised ‘The’ versus lower-case ‘the’ was
recorded and if it was over a set limit then all
occurrences of ‘the’ would be capitalised or
else none would be. By itself this still has a
number of limitations, but it was surprisingly
accurate in this case, improving our original
BLEU-cased score by nearly +2.0.

e Secondly, each sentence from our automated
translation was then cross referenced with its
respective sentence in the unmodified source
text. Then, for each capitalised word in the
source that also appeared in the output trans-
lation the capitalisation was carried over and
applied. This was particularly effective for
items such as place names and other named
entities. This second option further enhanced
the BLEU-cased score and bought the dis-
parity levels (between cased and non-cased)
largely in line with the other submissions
(e.g. roughly -1.0).

It should be noted that this approach has its lim-
itations and in the future it is anticipated that ro-



bust, tried and tested tools such as the Moses True-
caser/Recaser will be used to undertake any re-
quired casing tasks.

5 Alternative enhancements

5.1 Compound splitting

We also attempted to address the issue of com-
pound splitting, given that Finnish is agglutinative
in nature and so has many compound nouns which
compact the grammatical inflections. The parsed
files usefully gave us the compound forms of our
nouns, however, due to lack of time we could not
refine our implementation sufficiently.

5.2 Improved Language Model

The primary experimentation of using an en-
hanced language model that incorporated some
of the Newscrawl data showed promising results.
Ideally it would have been useful to spend time ex-
perimenting with various language models in or-
der to gauge which aspects either positively or ad-
versely affected the output translation. Clearly, for
this task the Newscrawl data was largely in do-
main, and so the full set could have been an ap-
propriate addition to be used in order to further
enhance the language model and ultimately pro-
duce a more fluid output.

6 Results

Our primary results are displayed in Table 1.

System BLEU | Cased | TER
Europarl only 12.9 12.3 | 0.791
Europarl+Newscrawl 13.4 12.5 ] 0.792
Europarl+Stemming 134 124 | 0.792

Table 1: Showing the respective BLEU, BLEU-
Cased, and Translation Error Rate scores of the
three different systems.

Essentially the improvements over the baseline
(Europarl only: 12.9) are fairly significant in both
cases. This does appear to suggest that extending
the language model and applying stemming (sep-
arately in this case) are both pertinent enhance-
ments that can be used to improve the overall out-
put translation. However, the fact that the system
with fairly extensive stemming is comparable to a
standard Europarl system with a slightly enhanced
language model highlights a couple of points:
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e Further extending the language model
should carry significant gains and produce a
smoother final translation.

Stemming has potential, but our methods
were a little too simplistic and some of the is-
sues we encountered appeared to cause dam-
age. This suggests using more robust and
complex methods to handle the problems and
ambiguity could produce much stronger im-
provements.

There is potential to combine an extended
language model and stemming information in
the same system, which again should produce
significant improvements.

7 Conclusions

In this paper we presented our submission, which
was produced from a system built using the CDEC
decoder. Our improvements included prepro-
cessing to deal with morphological variation in
Finnish, as the source language, and an attempt
at directional filtering. It appeared that as this was
our first submission, we were starting from scratch
and had significant time consuming groundwork
preparation to perform before any enhancements
could me made. Ultimately, a number of im-
provements were made, but the results were not as
strong as initially hoped, and we found that am-
biguity and other issues encountered during the
stemming introduced a degree of damage, which
in turn seemed to put a glass ceiling on our BLEU
scores. As such, these problems need to be dealt
with in a more concrete and elegant manner.

Finally, using a lightly extended (in domain)
language model produced a positive result and so
there is scope to explore this avenue further. It is
anticipated that experimenting with, and manag-
ing the language model could well produce signif-
icant gains.
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Abstract

This paper describes baseline systems for
Finnish-English and English-Finnish ma-
chine translation using standard phrase-
based and factored models including mor-
phological features. We experiment with
compound splitting and morphological seg-
mentation and study the effect of adding
noisy out-of-domain data to the parallel
and the monolingual training data. Our re-
sults stress the importance of training data
and demonstrate the effectiveness of mor-
phological pre-processing of Finnish.

1 Introduction

The basic goal of our submissions is to establish
some straightforward baselines for the translation
between Finnish and English using standard tech-
nology such as phrase-based and factored statisti-
cal machine translation, in preparation for a more
focused future effort in combination with the state-
of-the-art techniques in SMT for morphologically
complex languages (see e.g. (Fraser et al., 2012)).
The translation between Finnish and English (in
both directions) is a new task in this year’s work-
shop adding a new exciting challenge to the es-
tablished setup. The main difficulty in this task is
to manage the rich morphology of Finnish which
has several implications on training and expected
results with standard SMT models (see the illus-
tration in Figure 1). Moreover, the monolingual
and parallel training data is substantially smaller
which makes the task even tougher compared with
other languages pairs in the competition. In our
contribution, we focus on Finnish-English empha-
sizing the need of additional training data and the
necessity of morphological pre-processing. In par-
ticular, we explore the use of factored models with
multiple translation paths and the use of morpho-
logical segmentation based on proper morpholog-
ical annotation and simple rule-based heuristics.
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Syksylld taidemuseossa avataan uudet nayttelyt

Autumn+ADE art_museum+INE open+PASS new+PL exhibi-
tion+PL

In_autumn in_art_museum will_be_opened new exhibitions
New exhibitions will be opened in the art museum in autumn

Figure 1: A sentence illustrating the inflective and
compounding nature of Finnish in contrast to En-
glish. (ADE, INE: adessive, inessive cases, PASS:
passive, PL: plural)

We also add noisy out-of-domain data for better
coverage and show the impact of that kind of data
on translation performance. We also add a system
for English-Finnish but without special treatment
of Finnish morphology. In this translation direc-
tion we only consider the increase of training data
which results in significant improvements without
any language-specific optimization.

In the following, we will first present our sys-
tems and the results achieved with our models be-
fore discussing the translation produced in more
detail. The latter analyses pinpoint issues and prob-
lems that provide valuable insights for future devel-
opment.

2 Basic Setup and Data Sets

All our translation systems are based on Moses
(Koehn et al., 2007) and standard components
for training and tuning the models. We apply
KenLLM for language modeling (Heafield et al.,
2013), fast_align for word alignment (Dyer et al.,
2013) and MERT for parameter tuning (Och, 2003).
All our models use lowercased training data and the
results that we report refer to lowercased output of
our models. All language models are of order five
and use the standard modified Kneser-Ney smooth-
ing implemented in KenLM. All phrase tables are
pruned based on significance testing (Johnson et al.,
2007) and reducing translation options to at most
30 per phrase type. The maximum phrase length is
seven.

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 177-183,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



For processing Finnish, we use the Finnish de-
pendency parser pipeline' developed at the Univer-
sity of Turku (Haverinen et al., 2014). This pipeline
integrates all pre-processing steps that are neces-
sary for data-driven dependency parsing including
tokenization, morphological analyses and part-of-
speech tagging, and produces dependency analyses
in a minor variant of the Stanford Dependencies
scheme (de Marneffe et al., 2014). Especially use-
ful for our purposes is the morphological compo-
nent which is based on OMorfi - an open-source
finite-state toolkit with a large-coverage morphol-
ogy for modern Finnish (Lindén et al., 2009). The
parser has recently been evaluated to have LAS
(labeled attachment score) of 80.1% and morpho-
logical tagging accuracy of 93.4% (Pyysalo et al.,
2015).

The data sets we apply are on the one hand the
official data sets provided by WMT and, on the
other hand, additional parallel corpora from OPUS
and large monolingual data sets for Finnish coming
from various sources. OPUS includes a variety of
parallel corpora coming from different domains and
we include all sources that involve Finnish and En-
glish (Tiedemann, 2012). The most important cor-
pora in terms of size are the collection of translated
movie subtitles (OpenSubtitles) and EU publica-
tions (DGT, EUbookshop, EMEA). Some smaller
corpora provide additional parallel data with vary-
ing quality. Table 1 lists some basic statistics of
Finnish-English corpora included in OPUS. The
final two rows in the table compare the overall size
after cleaning the corpora with the pre-processing
scripts provided by Moses with the training data
provided by WMT for Finnish-English. We can
see that OPUS adds a substantial amount of par-
allel training data, more than ten times as many
sentence pairs with over six times more tokens. A
clear drawback of the data sets in OPUS is that they
come from distant domains such as movie subti-
tles and that their quality is not always very high.
User contributed subtitle translations, for example,
include many spelling errors and the alignment is
also quite noisy. EUbookshop and EMEA docu-
ments are converted from PDF leading to various
problems as well (Tiedemann, 2014; Skadins et
al., 2014). Software localization data (GNOME,
KDE4) contains variables and code snippets which
are not appropriate for the WMT test domain. One

'nttp://turkunlp.github.io/
Finnish-dep-parser
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of the main questions we wanted to answer with our
experiments is whether this kind of data is useful
at all despite the noise it adds.

corpus sentences  en-words  fi-words
Books 3.6K 69.7K 54.5K
DGT 3.1M 61.8M 46.9M
ECB 157.6K 4.5M 3.4M
EMEA 1.1IM 14.2M 11.9M
EUbookshop 2.0M 51.4M 37.6M
JRC-Acquis 19.7k 388.7k 273.6k
GNOME 62.2K 313.3K  254.6K
KDE4 108.1K 596.0K  578.6K
OpenSubtitles 110.1K 856.3K  604.7K
OpenSubtitles2012 12.9M 111.5M 74.4M
OpenSubtitles2013 9.8M 87.8M 557
Tatoeba 12.2K 103.2K 77.0K
WMT-clean 2.1M 52.4M 37.6M
OPUS-clean 29.4M 328.1M  227.6M

Table 1: Finnish-English data in OPUS. WMT-
clean and OPUS-clean refer to the entire parallel
training data set from WMT and OPUS, respec-
tively, after pre-processing with the standard Moses
cleanup script.

Table 1 also illustrates the morphological dif-
ferences between English and Finnish. Based on
the token counts we can clearly see that word for-
mation is quite different in both languages which
has significant implications for word alignment and
translation. Due to the rich morphology in Finnish
we expect that adding more training data is even
more crucial than for morphologically less com-
plex languages. To verify this assumption we also
include additional monolingual data for language
modeling for the English-Finnish translation direc-
tion taken from the Finnish Internet Parsebank,? a
3.7B token corpus gathered from an Internet crawl
and parsed with the abovementioned dependency
parser pipeline (Kanerva et al., 2014). For English
we include the fifth edition of the LDC Giga-Word
corpus.

3 Factored Models for
Finnish-to-English

Our baseline models apply a standard pipeline to
extract phrase-based translation models from raw
lowercased text. We use constrained settings with
WMT data only and unconstrained settings with
additional OPUS data. Our primary systems ap-
ply factored models that include three competing
translation paths:

e Surface form translation

http://bionlp.utu.fi/
finnish-internet-parsebank.html



e Translation of lemmatized input
e Translation of lemmatized and morphosyntac-
tically tagged input

The unconstrained system replaces the first trans-
lation path with a phrase table extracted from the
entire corpus including all OPUS data. However,
we did not parse the OPUS data and take the other
two models from WMT data only. We tuned our
systems with half of the provided development data
(using every second sentence) and tested our mod-
els on the other half of the development data. Ta-
ble 2 lists various models that we tested during
development and the various components are ex-
plained in more detail in the sections below.

system | BLEU
constrained

baseline 16.2
factored 17.8
factored+pseudo 18.2
unconstrained

baseline+WordNetTrans 16.5
baseline+WordNetTrans&Syn 16.6
baseline+opus 19.0
baseline+opus+WordNetTrans 19.1
baseline+opus+WordNetTrans&Syn 19.1
factored+opus 19.2
factored+opus+pseudo 19.9
factored+opus+pseudo+word2vec 20.0
factored+opus+pseudo+WordNetSyn 20.1

Table 2: The performance of various Finnish-
English translation models on development data.
Pseudo indicates the use of inflection pseudo-
tokens, word2vec refers to the use of word2vec
synonyms and WordNetSyn refers to the inclusion
of WordNet synonyms for out-of-vocabulary words.
WordNetTrans refers to translations added from
the bilingual Finnish-English WordNet for OOV
words.

3.1 Inflection Pseudo-Tokens

Due to the highly inflective nature of the language,
a Finnish morphological marker often corresponds
to a separate English word. This is especially
prominent for many Finnish cases which typically
correspond to English prepositions. For example,
the Finnish word talossakin has the English trans-
lation also in a/the house where the inessive case
(ssa marker) corresponds to the English preposi-
tion in and the clitic kin corresponds to the English
adverb also. To account for this phenomenon, we
pre-process the Finnish data by inserting dummy
tokens for certain morphological markers, allow-
ing them to be aligned with the English words in
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system training phase. These dummy tokens are
always inserted in front of the text span dominated
by the word from which the token was generated in
the dependency parse. Thus, for instance, the case
marker of the head noun of a nominal phrase pro-
duces a dummy token in front of this phrase, where
the corresponding English preposition would be
expected. The pseudo-tokens are generated rather
conservatively in these three situations:

e a case marker other than nominative, partitive,
and genitive on a head of a nominal phrase
(nommod and nommod-own dependency rela-
tions in the SD scheme version produced by
the parser)

e a possessive marker (eng. my, our, etc.) in any
context

o the clitic kin/kaan (eng. also) in any context

To shed some further light on the effectiveness of
the pseudo-token generation, we carry out a fo-
cused manual evaluation on the test dataset. In
randomly selected 100 sentences, we marked every
nominal phrase head inflected in other than nomina-
tive, partitive, and genitive case and checked in the
system output whether this exact phrase head was
translated correctly (as judged by the annotator, not
the reference translation), regardless of the correct-
ness of the remainder of the sentence. We compare
the final system with and without the dummy token
generation component, in a randomized fashion
such that it was not possible to distinguish during
the annotation which of the two systems the trans-
lation originated from. In total, the 100 sentences
contained 148 inflected phrase heads of interest.
Of these, the system with pseudo-token generation
translated correctly 100/148 (68%) and without
pseudo-token generation 89/148 (60%). This dif-
ference is, however, not statistically significant at
p=0.12 (two-tail McNemar’s test). In addition to
this manual evaluation, we have also observed a
small advantage for the pseudo-token generation
in terms of development set BLEU score. Some-
what surprisingly, we find that only 85/148 (57%)
of these inflected heads were translated using a
prepositional phrase in the reference translation,
showing that the correspondence of Finnish cases
with English prepositions is not as strong as might
intuitively seem. Of those inflected heads which
were translated as a prepositional phrase in the ref-
erence, 57/85 (67%) were correct for the system
with pseudo-tokens and 49/85 (58%) for the sys-
tem without, whereas for those that have not been



translated as a prepositional phrase in the refer-
ence, the proportions are 43/63 (68%) and 40/63
(63%). Due to the small sample size, it is difficult to
draw solid conclusions but the numbers at least hint
at the intuitive expectation that the pseudo-token
generation would give better results especially in
cases where the translation corresponds to a prepo-
sitional phrase. The overall quality of translation
of inflected nominal phrase heads however leaves
much room for improvement.

3.2 Compounds

Finnish is a compounding language, once again
leading to a situation whereby a single Finnish
word corresponds to multiple English words. Fur-
ther, compounding in Finnish is highly produc-
tive and reliable translations cannot be learned
but for the most common compounds. In most
cases, the compounds are correctly analyzed by
the Finnish parsing pipeline, including the bound-
aries of the lemmas which form the compound. To
assist the alignment as well as the translation pro-
cess itself, we split the compound lemmas into the
constituent parts as a pre-processing step in the
Finnish-English direction. The following exam-
ple illustrates this process (“EU support for enter-
prises”) taken from the development data:

compound:  EU-yritystukien
segmented lemma:  EU|yritys|tuki
PoS: N
morphology:  NUM_PI|CASE_Gen

factored segments: EU|EU]|_|_

yritys|yritys|_| -
tukien |tuki|N|NUM_Pl+CASE_Gen

As shown above, PoS and morphology are only
attached to the final component of the compound
and string matching heuristics are used to split sur-
face forms as well based on the segmentation of
the lemma.

3.3 Synonyms and Lexical Resources

One of the major problems for statistical machine
translation with limited resources is the treatment
of out-of-vocabulary (OOV) words. This problem
is even more severe with morphologically rich lan-
guages such as Finnish. Table 3 shows the OOV ra-
tio in the development data that we used for testing
our models. We can see that the factored models
significantly reduce the amount of unknown word
type and tokens.

In our final setup we tried to address the problem
of remaining OOVs by expanding the input with

180

OOVs | types tokens
constrained

baseline | 2,451 (28.7%) 2,869 (14.5%)
factored 847 (14.5%) 958 (6.7%)
unconstrained

baseline | 1,212 (14.2%) 1,414 (7.1%)
factored 386 (6.6%) 442 (3.1%)

Table 3: OOV ratios in the development test data
(half of the WMT 2015 development data).

synonyms from external resources. We looked at
two possible sources: distributional models trained
on large monolingual data sets and manually cre-
ated lexico-semantic databases. For the former, we
trained distributed continuous-vector space mod-
els using the popular word2vec toolkit® (Mikolov
et al., 2013) on the 3.7B tokens of the Finnish In-
ternet Parsebank data, using the default settings
and the skip-gram model. We tested the use of
the ten most similar words for each unknown word
coming from our word2vec model (according to
cosine similarity in their vector representations) to
replace OOV words in the input. The second al-
ternative uses the Finnish WordNet* (Niemi et al.,
2012) to replace OOV words with synonyms that
are provided by the database. We apply the HFST-
based thesaurus for efficient WordNet lookup that
enables the lookup and generation of inflected syn-
onyms.> Table 4 shows the statistics of unknown
words that can be expanded in the development test
data. The table shows that word2vec expansion has
a better coverage than WordNet but both resources
propose a large number of synonyms that are not in-
cluded the phrase table and, hence, cannot be used
to improve the translations. However, both strate-
gies produce a large number of spurious (context-
independent) synonyms and discarding them due
to the lack of phrase table coverage is not neces-
sarily a bad thing. The results of applying our two
OOV-handling strategies on the same data set are
shown in Table 2.

FinnWordNet also includes a bilingual thesaurus
based on the linked Finnish WordNet (Niemi and
Lindén, 2012). The HFST tools provide a con-
venient interface for querying this resource with
inflected word forms. We applied this external re-
sources as yet another module for handling OOV
words in the input. For this we used the XML

*http://code.google.com/p/word2vec/

‘http://www.ling.helsinki.fi/en/1t/
research/finnwordnet/

Shttp://www.ling.helsinki.fi/en/1t/
research/finnwordnet/download.shtml#hfst



[ OOVs  synonyms
constrained (factored)
word2vec 626 6,260
- covered by phrase table 371 968
WordNetSyn 318 17,742
- covered by phrase table 262 1,380
unconstrained (factored)
word2vec 210 2,100
- covered by phrase table 140 480
WordNetSyn 67 2,883
- covered by phrase table 66 361

Table 4: Synonyms extracted from WordNet and
word2vec word embeddings for OOVs in the devel-
opment test data.

markup functionality of Moses to provide transla-
tions along with the source language input. The
lookup usually leads to several alternative trans-
lations including repeated entries (see Table 5 for
some statistics). We use relative frequencies and an
arbitrary chosen weight factor of 0.1 to determine
the probability of the WordNet translation option
given to the Moses decoder. The bilingual strategy
can also be combined with the synonym approach
described above. Here, we prefer translations from
the bilingual WordNet and add synonyms if no
translation can be found. The results on the devel-
opment test set are shown in Table 2 as well. Note
that we could not use XML markup in connection
with factored input. There is, to our knowledge,
no obvious way to combine non-factored XML
markup with factored input.

WordNetTrans OOVs translations
constrained (factored) 336 3,622
unconstrained (factored) 78 532

Table 5: Translations extracted for OOVs in the
development test data from the bilingual Finnish-
English WordNet.

3.4 Untranslated Words

To evaluate the overall impact of our OOV ap-
proach, we inspect untranslated Finnish words in
200 random sentences in the Finnish-English test
set output and assign these words into several cate-
gories. The corresponding counts are presented in
Table 6. Inflected forms account for the vast major-
ity of untranslated output, and of these, inflected
proper names constitute more than half. Given
that the inflection rules in Finnish are highly pro-
ductive, a focused effort especially on resolving
inflected proper names should be able to account
for the majority of the remaining untranslated out-
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put. However, since only 52 of the 200 inspected
sentences contained untranslated output, no major
gains in translation quality can be expected.

category count
Inflected proper name 35
Inflected non-compound form 13
Inflected compound 9
Other 5
Typo 3
Base form 3
Proper name base form 1

Table 6: Categorization of untranslated Finnish
words in the Finnish-English system output.

3.5 Final Results

Our results on the 2015 newstest set are shown in
Table 7. Our primary system is the unconstrained
factored model with pseudo-tokens and WordNet
synonyms. Contrastive runs include the phrase-
based baselines and constrained settings in factored
and non-factored variants. In the human evaluation,
the primary system ranked first shared with five
other systems, but this cluster of systems was out-
performed by one of the online baselines.

system | BLEU TER
unconstrained
baseline 18.9 0.737
primary 19.3 0.728
constrained
baseline 15.5 0.780
factored 17.9 0.749

Table 7: Our final systems tested with the newstest
2015 data set (lowercased BLEU).

4 English-to-Finnish with OPUS

The main purpose of running the other translation
direction was to test the impact of additional train-
ing data on translation performance. Once again,
we simply used the entire database of English-
Finnish parallel data sets provided by WMT and
OPUS and tested a straightforward phrase-based
model without any special treatment and language-
specific tools. Again, we relied on lowercased mod-
els and used standard procedures to train and tune
model parameters. The results are shown in Ta-
ble 8. In the human evaluation, the primary system
ranked first, but was outperformed by both online
baselines.

Similar to Finnish-English we can see a strong ef-
fect of additional training data. This is not surpris-
ing but re-assuring that even noisy data from distant



system BLEU4., BLEU TER
constrained 12.7 10.7 0.842
unconstrained 15.7 14.8 0.796

Table 8: English-Finnish translation with (uncon-
strained) or without (constrained) OPUS (low-
ercased BLEU and TER on newstest 2015;
BLFEUg, on development test data).

Feature Reference System  Difference
Case Nom | 3701/10289  4739/9996  +11.44pp
Person Sg3 1620/3947 1991/3867  +10.44pp
Mood Ind 2216/3947 2461/3867 +7.50pp
Tense Prs 1259/3947 1470/3867 +6.12pp
Voice Act 3388/3947 3414/3867 +2.45pp
Punct 2874/19772  2283/20004 +2.38pp
Infinitive 1 274/3947 352/3867 +2.16pp
Unknown 1239/19772  1611/20004 +1.79pp
Tense Prt 957/3947 991/3867 +1.38pp
Pers pron 344710289 453/9996 +1.19pp
Case Gen 2637/10289 2050/9996 -5.12pp
Pcp Prs 22713947 87/3867 -3.50pp
Cmp Pos 1917/10289 1546/9996 -3.17pp
Pcp Prf 647/3947 515/3867 -3.07pp
Person P13 403/3947 27713867 -3.05pp
Voice Pass 436/3947 317/3867 -2.85pp
Case Ela 517/10289 219/9996 -2.83pp
Uppercase | 3126/19772  2624/20004 -2.69pp
Prop noun | 1675/10289 1399/9996 -2.28pp
Case Ine 771/10289 530/9996 -2.19pp

Table 9: The ten most over- and under-represented
morphological features in the system output as com-
pared to the reference translation. The relative fre-
quency of each feature is calculated with respect
to the token count of the word category which ex-
hibits it: nouns, adjectives, pronouns and numerals
for case and number, verbs for features like person
and tense, and all tokens for generic features like
unknown and uppercase.

domains can contribute significantly when training
statistical MT models with scarce in-domain train-
ing data. The overall quality, however, is still poor
as our manual inspections reveal as well. The fol-
lowing section discusses some of the issues that
may guide developments in the future.

4.1 Morphological Richness

To study how well the morphological variation is
handled in the English-to-Finnish translation di-
rection, we compare the morphological richness
of the system output and reference translations.
Most over- and under-represented morphological
features are shown in Table 9.

For words inflecting in case and number, the
nominative case is highly over-represented in the
system output. As the nominative case corre-
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sponds to the basic form of a word (canonical
form), presumably the translation system fails to
produce correct inflections when translating from
English to Finnish and uses the basic form too often.
This naturally leads to the under-representation of
other cases. From Table 9 we can see that, e.g.,
the genitive, elative and inessive cases are under-
represented in the system output. Similar behavior
can be seen with verb features as well. Frequent
verb inflections are over-represented to the detri-
ment of rarer variants. For example, third person
singular and first infinitive (canonical form) are
over-represented compared to other persons. Addi-
tionally, active forms dominate over passive, and
present and past tenses over participial counter-
parts. Both of these word categories indicate that
the morphological variation is weaker in the system
output than in reference translations. This shows
that the system is not fully able to account for the
rich morphology of the Finnish language.

From Table 9 we can also notice several fea-
tures not directly related to morphology. As ex-
pected, the proportion of words not recognized by
the Finnish morphological analyzer (Unknown row)
is higher in system output than in reference trans-
lations. This likely reflects words passed through
the pipeline untranslated. Moreover, system output
has more punctuation tokens and less uppercased
words, which is due to the re-capitalization proce-
dure we apply on the originally lowercased output
of the decoder.

5 Conclusions

This paper presents baseline systems for the transla-
tion between Finnish and English in both directions.
Our main effort refers to the inclusion of additional
training data and morphological pre-processing for
the translation from Finnish to English. We can
show that additional noisy and unrelated training
data has a significant impact on translation perfor-
mance and that morphological analyses is essential
in this task. Our models perform well relative to
other systems submitted to WMT but still underper-
form in quality as manual inspections reveal. The
challenge of translating from and to morphologi-
cally rich languages with scarce domain-specific
resources is still far from being solved with cur-
rents standard technology in statistical machine
translation and provides an exciting research field
for future work.
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Abstract

This paper presents the machine transla-
tion systems submitted by the Abu-MaTran
project for the Finnish—English language
pair at the WMT 2015 translation task. We
tackle the lack of resources and complex
morphology of the Finnish language by
(i) crawling parallel and monolingual data
from the Web and (ii) applying rule-based
and unsupervised methods for morpholog-
ical segmentation. Several statistical ma-
chine translation approaches are evaluated
and then combined to obtain our final sub-
missions, which are the top performing
English-to-Finnish unconstrained (all au-
tomatic metrics) and constrained (BLEU),
and Finnish-to-English constrained (TER)
systems.

1 Introduction

This paper presents the statistical machine transla-
tion (SMT) systems submitted by the Abu-MaTran
project for the WMT 2015 translation task. The
language pair concerned is Finnish—-English with
a strong focus on the English-to-Finnish direction.
The Finnish language is newly introduced this year
as a particular translation challenge due to its rich
morphology and to the lack of resources available,
compared to e.g. English or French.
Morphologically rich languages, and especially
Finnish, are known to be difficult to translate us-
ing phrase-based SMT systems mainly because of
the large diversity of word forms leading to data
scarcity (Koehn, 2005). We assume that data acqui-

sition and morphological segmentation should con-
tribute to decrease the out-of-vocabulary rate and
thus improve the performance of SMT. To gather
additional data, we decide to build on previous
work conducted in the Abu-MaTran project and
crawl the Web looking for monolingual and paral-
lel corpora (Toral et al., 2014). In addition, mor-
phological segmentation of Finnish is used in our
systems as pre- and post-processing steps. Four
segmentation methods are proposed in this paper,
two unsupervised and two rule-based.

Both constrained and unconstrained translation
systems are submitted for the shared task. The
former ones are trained on the data provided by
the shared task, while the latter ones benefit from
crawled data. For both settings, we evaluate the im-
pact of the different SMT approaches and morpho-
logical segmentation methods. Finally, the outputs
of individually trained systems are combined to
obtain our primary submissions for the translation
tasks.

This paper is structured as follows: the methods
for data acquisition from the Web are described
in Section 2. Morphological segmentation is pre-
sented in Section 3. The data and tools used in our
experiments are detailed in Section 4. Finally, the
results of our experiments are shown in Section 5,
followed by a conclusion in Section 6.

2 Web Crawling

In this section we describe the process we followed
to collect monolingual and parallel data through
Web crawling. Both types of corpora are gathered
through one web crawl of the Finnish (.fi) top-level
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domain (TLD) with the SPIDERLING crawler' (Su-
chomel and Pomikdlek, 2012). This crawler per-
forms language identification during the crawling
process and thus allows simultaneous multilingual
crawling. The whole unconstrained dataset gath-
ered from the Web is built in 40 days using 16
threads. Documents written in Finnish and English
are collected during the crawl.

2.1 Monolingual Data

The Finnish and English data collected during
the crawl amounts to 5.6/ and 3.9/ documents,
containing 1.758 and 2.0B words for Finnish and
English respectively (after processing, which in-
cludes removing near-duplicates). Interestingly, the
amount of Finnish and English data on the Finnish
TLD is quite similar. For comparison, on the Croa-
tian domain only 10% of the data is written in
English (Ljubesi¢ and Klubicka, 2014). While the
Finnish data is used in further steps for building
the target-language model, both datasets are used
in the task of searching for parallel data described
in the next subsection.

2.2 Parallel Data

In our experiments, we adapt the BITEXTOR?
tool to detect parallel documents from a collec-
tion of downloaded and pre-processed websites.
The pre-processing performed by SPIDERLING in-
cludes language detection, boilerplate removal, and
HTML format cleaning. Therefore, the only mod-
ules of BITEXTOR used for this task are those per-
forming document and segment alignment, relying
on HUNALIGN? (Varga et al., 2005) and an English—
Finnish bilingual lexicon.* Confidence scores for
aligned segments are computed thanks to these two
resources.

From a total of 12.2 K web domains containing
both Finnish and English documents, BITEXTOR
is able to identify possible parallel data on 10.7k
domains (87.5%). From these domains, 2.1M seg-
ment pairs are extracted without any additional
restrictions, and 1.2M when additional restrictions
on the document pairing are set. Namely, these
restrictions discard (i) document pairs where less
than 5 segments are aligned; and (ii) those with
an alignment score lower than 0.2 according to

'"http://nlp.fi.muni.cz/trac/spiderling
http://sf.net/p/bitextor/
Shttp://mokk.bme.hu/resources/hunalign
*http://sf.net/p/bitextor/files/
bitextor/bitextor-4.1/dictionaries/

HUNALIGN. The first collection can be consid-
ered recall-oriented and the second one precision-
oriented.

In this first step, a large amount of potentially
parallel data is obtained by post-processing data
collected with a TLD crawl, which is not primar-
ily aimed at finding parallel data. To make use of
this resource in a more efficient way, we re-crawl
some of the most promising web sites (we call them
multilingual hotspots) with the ILSP-FC crawler
specialised in locating parallel documents during
crawling. According to Espla-Gomis et al. (2014),
BITEXTOR and ILSP-FC have shown to be com-
plementary, and combining both tools leads to a
larger amount of parallel data.

ILSP-FC (Papavassiliou et al., 2013) is a mod-
ular crawling system allowing to easily acquire
domain-specific and generic corpora from the
Web.> This crawler includes a de-duplicator which
checks all documents in a pairwise manner to iden-
tify near-duplicates. This is achieved by comparing
the quantised word frequencies and the paragraphs
of each pair of candidate duplicate documents. A
document-pair detector also examines each docu-
ment in the same manner and identifies pairs of
documents that could be considered parallel. The
main methods used by the pair detector are URL
similarity, co-occurrences of images with the same
filename in two documents, and the documents’
structural similarity.

In order to identify the multilingual hotspots, we
process the output of the Finnish TLD and generate
a list containing the websites which have already
been crawled and the number of stored English and
Finnish webpages for each website. Assuming that
a website with comparable numbers of webpages
for each language is likely to contain bitexts of
good quality, we keep the websites with Finnish
to English ratio over 0.9. Then, ILSP-FC pro-
cesses the 1, 000 largest such websites, considered
the most bitext-productive multilingual websites, in
order to detect parallel documents. We identify a to-
tal of 58, 839 document pairs (8,936, 17, 288 and
32,615 based on URL similarity, co-occurrences
of images and structural similarity, respectively).
Finally, HUNALIGN is applied on these document
pairs, resulting in 1.2M segment pairs after dupli-
cate removal. The parallel corpus used in our exper-
iments is the union without duplicates of the largest

Shttp://nlp.ilsp.gr/redmine/projects/
ilsp-fc
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corpora collected with BITEXTOR and ILSP-FC,
leading to 2.8 M segment pairs.

3 Morphological Segmentation

Morphological segmentation is a method of analy-
sis of word-forms in order to reduce morphological
complexity. There are few variations on how to de-
fine morphological segmentation, we use the most
simple definition: a morphological segmentation
of a word is defined by O or more segmentation
points from where the word can be split into seg-
ments. The letter sequences between segmentation
points are not modified, i.e. no lemmatisation or
segment analysis is performed (or retained) in the
actual SMT data. An example of a linguistically
derived morphological segmentation of an English
word-form cats would be cat— <«—s, where —
« denotes the segmentation point,® and cat and
s are the segments.

We use four segmentation approaches that can
be divided in two categories: (i) rule-based, based
on morphological dictionaries and weighted finite-
state technology HFST (Lindén et al., 2009)’, fur-
ther detailed in subsection 3.1, and (ii) statistical,
based on unsupervised learning of morphologies,
further detailed in subsection 3.2. All segments are
used as described in subsection 3.3.

3.1 Rule-based Segmentation

Rule-based morphological segmentation is
based on linguistically motivated computational
descriptions of the morphology by dividing the
word-forms into morphs (minimal segments
carrying semantic or syntactic meaning). The
rule-based approach to morphological segmen-
tation uses a morphological dictionary of words
and an implementation of the morphological
grammar to analyse word-forms. In our case, we
use OMORFI (Pirinen, 2015), an open-source imple-
mentation of the Finnish morphology.® OMORFI’s
segmentation produces named segment boundaries:
stem, inflection, derivation, compound-word and
other etymological. The two variants of rule-based
segmentation we use are based on selection of
the boundary points: compound segmentation
uses compound segments and discards the rest
(referred in tables and figures to as HFST Comp),
and morph segmentation uses compound and

Swe follow this arrow notation throughout the paper as
well as in the actual implementation

"http://hfst.sf.net
$http://github.com/flammie/omorfi/

inflectional morph segments (HFST Morph
in tables and figures). In cases of ambiguous
segments, the weighted finite-state automata 1-best
search is used with default weights.” For example,
the words kuntaliitoksen selvittimisessd (“exam-
ining annexation”) is segmented by hf st —comp
as ‘kunta—«liitoksen selvittimisessd’ and
hfst-morph as  ‘kunta—<«liitokse—+«—n
selvittdimise— «—ssd’.

3.2 Unsupervised Segmentation

Unsupervised morphological segmentation is
based on a statistical model trained by minimising
the number of different character sequences
observed in a training corpus. We use two different
algorithms: MORFESSOR Baseline 2.0 (Virpioja
et al., 2013) and FLATCAT (Gronroos et al.,
2014). The segmentation models are trained
using the Europarl v8 corpus. Both systems
are used with default settings. However, with
FLATCAT we discard the non-morph boundaries
and we have not used semi-supervised features.
For example, the phrase given in previous
sub-section: morfessor produces 1-best
segmentation: and ‘Kun—«+ta—«liito—+«ksen
selvittd— «—misessd’ and flatcat
‘Kun— «tali—+«—itoksen selvittimis— «—essd’

3.3 Segments in the SMT Pipeline

The segmented data is used exactly as the word-
form-based data during training, tuning and test-
ing of the SMT systems,'? except during the pre-
processing and post-processing steps. For pre-
processing, the Finnish side is segmented prior to
use. For the post-processing of segmented-Finnish-
to-English, boundary markers are removed. For the
other direction, two types of tokens with boundary
markers are observed: matching arrows a— «b
and stray arrows a— x or x <«—b. For matching
arrows, an empty string is used to join the morphs,
while the morphs with stray arrows are deleted.

4 Datasets and Tools

This section presents the tools, the monolingual and
parallel data used to train our SMT systems. All
the corpora are pre-processed prior to training the

°For details of implementation and reproducibility, the
code is available in form of automake scriptlets at http://
github.com/flammie/autostuff-moses—smt/.

19The parameters of the word alignment, phrase extraction
and decoding algorithms have not been modified to take into
account the nature of the segmented data.
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language and translation models. We rely on the
scripts included in the MOSES toolkit (Koehn et al.,
2007) and perform the following operations: punc-
tuation normalisation, tokenisation, true-casing and
escaping of problematic characters. The truecaser
is lexicon-based, trained on all the monolingual
and parallel data. In addition, we remove sentence
pairs from the parallel corpora where either side is
longer than 80 tokens.

4.1 Translation Models

We empirically evaluate several types of SMT sys-
tems: phrase-based SMT (Och and Ney, 2004)
trained on word forms or morphs as described in
Section 3, Factored Models (Koehn and Hoang,
2007) including morphological and suffix informa-
tion as provided by OMORFL'! in addition to sur-
face forms, and finally hierarchical phrase-based
SMT (Chiang, 2005) as an unsupervised tree-based
model. All the systems are trained with MOSES, re-
lying on MGIZA (Gao and Vogel, 2008) for word
alignment and MIRA (Watanabe et al., 2007) for
tuning. This tuning algorithm was shown to be
faster and as efficient as MERT for model core
features, as well as a better stability with larger
numbers of features (Hasler et al., 2011).

In order to compare the individually trained SMT
systems, we use the same parallel data for each
model, as well as the provided development set to
tune the systems. The phrase-based SMT system is
augmented with additional features: an Operation
Sequence Model (OSM) (Durrani et al., 2011) and
a Bilingual Neural Language Model (BiNLM) (De-
vlin et al., 2014), both trained on the parallel data
used to learn the phrase-table. All the translation
systems also benefit from two additional reorder-
ing models, namely a phrase-based model with
three different orientations (monotone, swap and
discontinuous) and a hierarchical model with four
orientations (non merged discontinuous left and
right orientations), both trained in a bidirectional
way (Koehn et al., 2005; Galley and Manning,
2008).

Our constrained systems are trained on the data
available for the shared task, while unconstrained
systems are trained with two additional sets of par-
allel data, the FIENWAC crawled dataset (cf. Sec-
tion 2.2) and Open Subtitles, henceforth 0sUBS.!?
The details about the corpora used to train the trans-

"ysing the script omorfi-factorise.py
Zhttp://opus.lingfil.uu.se/
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Zwords ' flatcat ™ hfst comp M hfst morph M morfessor

Unique Tokens (M)

.

europarl

news shuffled 2014
Corpora

Figure 1: Effects of segmentation on unique token
counts for Finnish.

Words (M)
Corpus Sentences (k)  Finnish  English
Constrained System
Europarl v8 1,901.1 36.5 50.9
Unconstrained System
fienwac.in 640.1 9.2 13.6
fienwac.outt 838.9 12.5 18.1
fienwac.outb 838.9 13.9 18.1
osubs.in 492.2 3.6 5.6
osubs.outt 1,169.6 8.8 14.4
osubs.outb 1,169.6 7.8 13.0

Table 1: Parallel data used to train the translation
models, after pre-processing.

lation models are presented in Table 1. Figure 1
shows how different segmentation methods affect
the vocabulary size; given that linguistic segmen-
tation have larger vocabularies as statistical their
contribution to translation models may be at least
partially complementary.

The two unconstrained parallel datasets are split
into three subsets: pseudo in-domain, pseudo out-
of-domain top and pseudo out-of-domain bottom,
henceforth in, outt and outb. We rank the sen-
tence pairs according to bilingual cross-entropy dif-
ference on the devset (Axelrod et al., 2011) and cal-
culate the perplexity on the devset of LMs trained
on different portions of the top ranked sentences
(the top 1/64, 1/32 and so on). The subset for which
we obtain the lowest perplexities is kept as in (this
was 1/4 for fienwac (403.89 and 3610.95 for
English and Finnish, respectively), and 1/16 for
osubs (702.45 and 7032.2). The remaining part
of each dataset is split in two sequential parts in
ranking order of same number of lines, which are
kept as outt and outb.

The out-of-domain part of osubs is further
processed with vocabulary saturation (Lewis and
Eetemadi, 2013) in order to have a more efficient
and compact system (Rubino et al., 2014). We tra-
verse the sentence pairs in the order they are ranked



Corpus Sentences (k) Words (M)
Europarl v8 2,218.2 59.9
News Commentary v10 344.9 8.6
News Shuffled
2007 3782.5 90.2
2008 12954.5 308.1
2009 14 680.0 347.0
2010 6797.2 157.8
2011 15437.7 358.1
2012 14869.7 345.5
2013 21688.4 495.2
2014 28221.3 636.6
Gigaword 5th 28,178.1 4,831.5

Table 2: English monolingual data, after pre-
processing, used to train the constrained language
model.

and filter out those for which we have seen already
each 1-gram at least 10 times. This results in a
reduction of 3.2x on the number of sentence pairs
(from 7.3M to 2.3M) and 2.6x on the number of
words (from 114M to 44M).

The resulting parallel datasets (7 in total: Eu-
roparl and 3 sets for each fienwac and osubs)
are used individually to train translation and re-
ordering models before being combined by linear
interpolation based on perplexity minimisation on
the development set. (Sennrich, 2012)

4.2 Language Models

All the Language Models (LM) used in our experi-
ments are 5-grams modified Kneser-Ney smoothed
LMs trained using KenLLM (Heafield et al., 2013).
For the constrained setup, the Finnish and the En-
glish LMs are trained following two different ap-
proaches. The English LM is trained on the con-
catenation of all available corpora while the Finnish
LM is obtained by linearly interpolating individ-
ually trained LMs based on each corpus. The
weights given to each individual LM is calculated
by minimising the perplexity obtained on the de-
velopment set. For the unconstrained setup, the
Finnish LM is trained on the concatenation of all
constrained data plus the additional monolingual
crawled corpora (noted FiWaC). The data used to
train the English and Finnish LMs are presented in
Table 2 and Table 3 respectively.

5 Results

We tackle the English-to-Finnish direction in the
unconstrained task, while both directions are pre-
sented for the constrained task. Systems’ outputs
are combined using MEMT (Heafield and Lavie,
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Corpus Sentences (k)  Words (M)
Constrained System
News Shuffle 2014 1,378.8 16.5
Unconstrained System
FiwaC 146,557.4 1,996.3

Table 3: Finnish monolingual data, after pre-
processing, used to train the language models.

Dev Test
System BLEU TER BLEU TER
Phrase-Based 13.51 0.827 12.33  0.843
Factored Model 13.08 0.827 11.89 0.847
Hierarchical 13.05 0.822 12.11  0.830
HFST Comp 13.57 0.814 12.66  0.828
HFST Morph 13.19 0.818 12.77 0.819
Morfessor 12.21  0.860 11.58 0.864
Flatcat 12.67 0.844 12.05 0.849
Combination 14.61 0.786 13.54 0.801

Table 4: Results obtained on the development and
test sets for the constrained English-to-Finnish
translation task. Best individual system in bold.

2010) using default settings, except for the beam
size (set to 1, 500) and radius (5 for Finnish and 7
for English), following empirical results obtained
on the development set.

5.1 Constrained Results

Individual systems trained on the provided data
are evaluated before being combined. The results
obtained for the English-to-Finnish direction are
presented in Table 4.!> The BLEU (Papineni et
al., 2002) and TER (Snover et al., 2006) scores
obtained by the system trained on compound-
segmented data (HFST Comp) show a positive im-
pact of this method on SMT according to the de-
velopment set, compared to the other individual
systems. The unsupervised segmentation methods
do not improve over phrase-based SMT, while the
hierarchical model shows an interesting reduction
of the TER score compared to a classic phrase-
based approach. On the test set, the use of in-
flectional morph segments as well as compounds
(HFST Morph) leads to the best results for the in-
dividual systems on both evaluation metrics. The
combination of these 7 systems improves substan-
tially over the best individual system for the devel-
opment and the test sets.

The results for the other translation direction
(Finnish to English) are shown in Table 5 and

3We use NIST mteval v13 and TERp v0.1, both with de-
fault parameters.



Dev Test

System BLEU TER BLEU TER
Phrase-Based 17.19 0.762 16.90 0.759
Hierarchical 1698 0.768 1593 0.773
HFST Comp 17.87 0.748 16.68 0.753
HFST Morph 18.64 0.735 17.22 0.752
Morfessor 16.83  0.769 1596 0.756
Flatcat 16.78  0.766 17.33  0.741
Combination 19.66 0.719 18.77 0.726

Table 5: Results obtained on the development and
test sets for the constrained Finnish-to-English
translation task. Best individual system in bold.

follow the same trend as observed with Finnish
as target: the morphologically segmented data
helps improving over classic SMT approaches.
The two metrics indicate better performances of
HFST Morph on the development set, while Flat-
cat reaches the best scores on the test set. The re-
sults obtained with the segmented data on the two
translation directions and the different segmenta-
tion approaches are fluctuating and do not indicate
which method is the best. Again, the combination
of all the systems results in a substantial improve-
ment over the best individual system across both
evaluation metrics. The top 3 systems presented in
Table 5, namely Combination, HFST Morph and
Phrase-Based correlates with the results reported
by the manual evaluation.'*

5.2 Unconstrained Results

We present the results obtained on the uncon-
strained English-to-Finnish translation task in Ta-
ble 6. Two individual systems are evaluated, using
word-forms and compound-based data, and show
that the segmented data leads to lower TER scores,
while higher BLEU are reached by the word-based
system. The combination of these two systems in
addition to the constrained outputs of the remain-
ing systems (hierarchical, factored model, HFST
Morph, Morfessor and Flatcat) is evaluated in the
last row of the table, and shows .3pt BLEU gain on
the test set over the phrase-based approach using
word forms.

The human evaluation conducted on the English—
Finnish translation direction shows interesting re-
sults. While our unconstrained Combination sys-
tem outperforms our other manually evaluated
systems, the quality of the unconstrained Phrase-
Based output is lower than the constrained Combi-

Yhttp://www.statmt.org/wmtl5/results.
html
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Dev Test
System BLEU TER BLEU TER
Phrase-Based 16.16 0.804 16.07 0.801
HFST Comp 15.80  0.796 15.06  0.800
Combination 17.25 0.776 16.38  0.779

Table 6: Results obtained on the development and
test sets for the unconstrained English-to-Finnish
translation task. Best individual system in bold.

nation one. The opposite is observed on the auto-
matic metrics, with a difference of 2.5pts BLEU
and .2pt TER.

6 Conclusion

Our participation in WMT15’s translation task fo-
cus on investigating the use of several morpholog-
ical segmentation methods and Web data acquisi-
tion in order to handle the data scarcity and the rich
morphology of Finnish. We evaluate several SMT
approaches, showing the usefulness of morpholog-
ical segmentation for Finnish SMT. In particular,
the rule-based methods lead to the best results on
the constrained English—Finnish task compared to
our other individual systems.

In addition, the manual evaluation results indi-
cate that combining diverse SMT systems’ outputs,
including morphologically segmented ones, can
outperform a classic phrase-based approach trained
on larger parallel and monolingual corpora. The
combination of the different SMT systems leads
to the best results for both translation directions,
as shown by automatic metrics and manual evalua-
tion. Finally, the acquisition of additional training
data improves over the constrained systems and is
a successful example of the Abu-MaTran crawling
pipeline. However, the discrepancy observed on
the results using the different segmentation meth-
ods requires a deeper analysis of the SMT output,
which is planned as future work.
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Abstract

In this year’s WMT translation task,
Finnish-English was introduced as a lan-
guage pair of competition for the first time.
We present experiments examining sev-
eral variations on a morphologically-aware
statistical phrase-based machine transla-
tion system for translating Finnish into
English. Our system variations attempt
to mitigate the issue of rich agglutina-
tive morphology when translating from
Finnish into English. Our WMT sub-
mission for Finnish-English preprocesses
Finnish data with omorfi (Pirinen, 2015), a
Finnish morphological analyzer. We also
present results for two other language pairs
with morphologically interesting source
languages, namely German-English and
Czech-English.

1 Introduction

Students enrolled in the Spring 2015 graduate-
level course in statistical machine translation (MT)
at the University of Illinois were invited to develop
MT systems within the context of the 2015 Work-
shop on Statistical Machine Translation (WMT)
shared translation task. Each group of 2-3 stu-
dents chose one language pair, developed a base-
line MT system for that language pair using Moses
(Koehn et al., 2007), and chose one specific lin-
guistic dimension along which to experiment. In
this work, we present the results of four groups
of experiments — two Finnish-English (§3.1 and
§3.2), and one each for Czech-English (§4) and
German-English (§5).

The first author was the instructor, and the subsequent
authors were students in the work described here.

192

2 Methodology

We use the current stable release (v3) of Moses,
a state-of-the-art statistical phrase-based machine
translation system.

We trained translation models using the Eu-
roparl corpus (Koehn, 2005), using the latest avail-
able versions (v7 for German-English and Czech-
English, and v8 for Finnish-English), as well
as the Common Crawl corpus and News Com-
mentary (v10) corpus for German-English and
Czech-English, and the Wiki Headlines corpus for
Finnish-English.

We trained a back-off language model (LM)
with modified Kneser-Ney smoothing (Katz, 1987;
Kneser and Ney, 1995; Chen and Goodman, 1998)
on the English Gigaword v5 corpus (Parker et al.,
2011) using 1mplz from KenLM (Heafield et al.,
2013).

3 Finnish-English

We tried various morphological tokenization
schemes on the source language (Finnish) in or-
der to mitigate its strong agglutination. The target
language (English) was tokenized with the default
Moses tokenizer script.

3.1 Finnish tokenization using Morfessor and
word-lattices

We begin by adapting the lattice technique of Dyer
etal. (2009) to Finnish. We train a standard phrase-
based machine translation model on a new corpus:
on the source side we concatenate the original data
with its one-best segmentation according to a Mor-
fessor (Creutz and Lagus, 2007) model trained on
the original data, and on the target side we simply
concatenate it with itself. The result is a corpus
that is twice as long as the original data, but that
aligns both segmented and unsegmented Finnish
sentences with their English counterparts. This
ensures that we will have phrases in our phrase

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 192—198,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



vilpiti ©

vilp

ittdoman

Figure 1: A word lattice that represents the top five
segmentations for the Finnish word vilpittomdn.

table that correspond with both the original un-
segmented words as well as for individual mor-
phemes.

At tuning and test time, we then decompose our
input into a word lattice input that reflects the un-
certainty of the decomposition of each word in the
sentence (Dyer et al., 2008). We construct the lat-
tice by considering the top five best segmentations
for each word according to our Morfessor model.
The start and end of each word in the original sen-
tence is a node, and we place edges and nodes be-
tween the two such that the edge is labeled with a
string output and its target is a node that represents
the partial output of the word thus far. Each of
the edges is also weighted with a certain probabil-
ity, reflecting the likelihood of using that specific
edge, given that we are at a specific node.

We calculate edge probabilities as follows. Let
p(v|u,©) be the probability of going to node v
given that we are at node v under the trained Mor-
fessor model © (we only concern ourselves with
the case where v is an adjacent to u). Let s be a
segmentation for the current word, represented as
a set of edges (n1,n2) through the graph. Then,
we set

_ Zs:(u,v)esp(s ‘ @)
Zs’:(u,v’)és’ p(sl | @)7

p(v | u,©)

where the numerator is a summation of the Morfes-
sor segmentation probabilities for segmentations
that use the edge (u,v), and the denominator is a
summation of the Morfessor segmentation prob-
abilities for all segmentations that pass through
node .

However, Morfessor gives us log likelihood
scores for its segmentations. Call these /5. We then
compute the following, in order to avoid roundoff
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System LM | TM | BLEU | -cased
Baseline 5 5 1695 | 15.09
Morfessor 5 8 15.67 | 14.88
Hiero 6 5 14.99 | 1445
Lattice(n=2) | 6 8 14.67 | 14.00
Lattice(n =5) | 6 8 14.68 | 13.95

Table 1: Results for Finnish-English (§3.1).

errors as much as possible:

ls—Clmas
Zs:(u,v)és 25T tmas
Zs’:(u,v/)Es’ 26y ~tmaz”?

p(v|u,0)=

where /4. is the highest log likelihood segmen-
tation for the current word. This can be seen as
simply multiplying the numerator and denomina-
tor by the fixed constant 2~“ma=  The code for per-
forming this lattice generation is freely available
online.! We use a Morfessor model trained on the
Finnish side of the Europarl parallel training data
with o = 0.5.

Table 1 shows the output of our systems on
the testing data from WMT 2015. We report
the scores that were obtained from Moses eval-
uation scripts using multi-BLEU; the numbers in
the shared task are slightly different as they use
the NIST BLEU scripts. Our baseline is a phrase-
based default Moses configuration with the 5-gram
language model, and we found this outperformed
a hierarchical phrase based configuration with the
same maximum phrase length and a 6-gram lan-
guage model. Among the segmentation methods,
using a single one-best segmentation with Morfes-
sor performed the best — the word lattice method
had disappointing performance using either the top
five or top two best segmentations for the lattice
generation. We were unable to combine the word
lattice and hierarchical phrase-based approaches
together as Moses does not yet support these two
features at the same time.

3.2 Finnish tokenization using omorfi

In addition to the experiments described above,
we build three variations utilizing omorfi (Piri-
nen,2015) to morphologically segment the Finnish
data. We use omorfi to decompose each aggluti-
nated Finnish word into its component morphemes
and each morpheme to a default case or form. In-

flectional morphemes which capture information

'https://github.com/smassung/uiuc-wmt15
/tree/master/chase



Istuntokauden

Istuntokauden Istunto#kausi N Gen Sg

Figure 2: The first word of Finnish Europarl cor-
pus, as processed by omorfi.

such as the person, number, tense, voice, and mood
of verbs as well as the number and case of nouns
is lost in the lemmatization, and therefore, when
lemmatization has taken place, all of this infor-
mation is lost to the system. Figure 2 illustrates
this process; the token “Istuntokauden” is bro-
ken into two morpheme lemmas, separated by a
“#” sign. We discard the inflectional information,
which here denotes that the original token was a
singular noun in genitive case.

As a baseline, we build a system using Moses
and provided the data described above with none of
the Finnish data having been processed by omorfi.
Tuning was done using MERT (Och, 2003).

In the first variation (V1), all Finnish data is first
segmented by omorfi. The intuition behind this
technique is simply that there are more words in
the target text than would align well with aggluti-
native words in the source text. By using the mor-
phemes of the source language rather than the un-
segmented words, the output source tokens might
more easily align with the target tokens.

In the second variation (V2), the omorfi-
segmented Finnish data from the first variation is
concatenated with the unprocessed Finnish. Target
language data is concatenated with itself in training
to align each target sentence with both the unpro-
cessed and morphologically-analyzed variations of
its source sentence. The intuition here is that any
Finnish tokens which are their own lemmas (i.e. do
not inflect) will potentially align with the same tar-
get token twice, and will bear a stronger alignment
probability than with other tokens in the transla-
tion model. Function words and adpositions would
be among those which undergo such double align-
ment, and which may serve as anchors for the
alignment of the entire sentence.

In the third variation (V3), the translation table
created during the second variation is consulted
during segmentation of the tuning and test data. If
an original token could be found in the table before
being broken into morphemes by omorfi, then that
token is left unprocessed. If a token could not be
found, then it was passed to omorfi and the mor-
phemes returned replaced the token in the data.
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System LM | TM | BLEU | -cased
Baseline 5 5 16.14 | 15.25
V1-omorfi | 5 5 14.79 | 14.00
V2-omorfi | 5 5 15.14 | 14.32
V3-omorfi | 5 5 16.90 | 1598

Table 2: Results for Finnish-English (§3.2).

The resulting tuning and testing datasets are thus
partially analyzed for morphemes. In this way,
more common Finnish agglutinations are retained
while less common ones are broken into poten-
tially more common individual morphemes.
Results are shown in Table 2. Only V3 per-
formed better than the baseline of using default
Moses tokenization for Finnish. This variation
comes closest to a balance between alignment with
shorter target phrases — achieved by breaking
down agglutinative words into morphemes — and
retaining what inflectional information can be re-
tained — since unprocessed and therefore unlem-
matized words retain all grammatical inflection.

3.2.1 Variation 1: All data fully processed by
omorfi

For the first variation on our system, we pass to
omorfi all of the Finnish data described above used
for training, tuning, and testing. Therefore, for
each token in the text, either the lemma of the orig-
inal token was returned by omorfi if the token was
not found to be an agglutination of stem and mor-
phemes, or, if the token was found to be an aggluti-
nation, a lemmatized token of each morpheme was
returned, and these new tokens stood in place of the
agglutinative token found in the original text.

The intuition behind this technique is simply
that there are more words in the target text than
would align well with agglutinative words in the
source text. By creating more tokens out of
the original source tokens, the smaller source to-
kens might more easily align with the target to-
kens. The new tokens returned by omorfi were al-
ways present in the source text in their non-lemma
forms, but because the same morpheme could be
added to different stems, the unique word forma-
tion may hide a relation between the appearance
of that morpheme in a source sentence and a sin-
gle word of English in the target sentence.

Using only source data which has been fully pro-
cessed by omorfi in the training, tuning, and testing
stages, BLEU scores were 14.00 (case-sensitive)
and 14.79 (case-insensitive), that is 1.25 and 1.35



points below the baseline respectively.

3.2.2 Variation 2: Concatenated original
source data and omorfi-processed data

For the second variation on our system, we used
the same omorfi-processed Finnish data which was
used for the first variation. This time, however, the
omorfi-processed training, tuning, and testing data
was concatenated with the original training, tun-
ing, and testing data respectively. So for example,
the data used for training was the original set of
sentences from Europarl, followed by the same set
of sentences but processed by omorfi as described
above. Each of the training, tuning, and testing
sets therefore contained exactly twice as many sen-
tences as the original testing data. Likewise, the
set of target sentences in each case was twice as
many, but the target data was not processed for
morphology, such that the second half of the tar-
get language training, tuning, and testing sets was
exactly the same as the first half.

Designing the datasets in this way effected that,
in the case of alignment for example, both the orig-
inal Finnish sentence was aligned with the English
as well as the omorfi-processed Finnish sentence.
The intuition here is that Finnish tokens which are
their own lemmas (i.e. do not inflect) will poten-
tially align with the same target token twice, and
will bear a stronger alignment proability than other
tokens in the translation model. Function words
and adpositions would be among those which un-
dergo such double alignment, and which may serve
as anchors for the alignment of the entire sentence.

For all other words — those for which omorfi
returns morphologically analyzed output - two po-
tentially useful alignments could be formed: First,
there would be an alignment of the unprocessed
source token with several target tokens, and so
a phrasal alignment in which the English word
aligns with the agglutinative word containing the
proper morpheme. Second, there would be an
alignment closer to one-to-one between the target
word and the proper morpheme lemma returned by
omorfi. Concatenating the unprocessed training,
tuning, and testing sets in the source language with
the omorfi-processed training, tuning, and testing
sets respectively resulted in BLEU scores of 14.32
(case-sensitive) and 15.14 (case-insensitive), that
is 0.93 and 1.00 points below the baseline respec-
tively.
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3.2.3 Variation 3: Consultation of the
baseline translation table

For the third and final variation of our system, we
preprocess the tuning and testing sets in the source
language by consulting the translation table cre-
ated for the second variation. For each token in the
Finnish tuning and testing data, the translation ta-
ble was consulted for the presence of that token as
aunigram. If the token was found in the translation
table, then it was rendered as is in the output of this
step. If the token was not found in the translation
table, then the token was passed to omorfi and the
resulting morpheme lemmas were rendered as out-
put. The resulting tuning and testing sets, therefore
contained either an agglutinative form as found in
the original Finnish or a processed string of mor-
pheme lemmas (or perhaps simply the lemma) re-
turned by omorfi from the original token, but not
both.

The intuition here was to overcome the lemma-
tization process which occurs from passing all of
the data through omorfi. It may be the case that
different inflections of the same lemma tune bet-
ter to different English words, but the lemmatiza-
tion process effects that different English words
tune to the same Finnish lemma, causing confu-
sion. Leaving known inflected forms in the tun-
ing and testing data gives this variation an advan-
tage over the first variation. By tuning and test-
ing on known tokens and morphologically ana-
lyzing unknown tokens in these datasets, the re-
sulting BLEU scores were 15.98 (case-sensitive)
and 16.90 (case-insensitive), 0.73 and 0.76 points
above the baseline respectively.

4 Czech-English

For Czech-English, we train baseline phrase-based
systems with no special handling of Czech mor-
phology. We also consider experimental variants
in which Czech words are morphologically seg-
mented. We use Morphessor (Creutz and Lagus,
2007) for morphological segmentation.

Finally, we consider a re-ranking technique
based on the degree of commonality between
parts-of-speech (POS) in each source sentence and
each respective translation of that source sentence.
To this end, we use MorphoDiTa (Strakova et al.,
2014) and the Stanford CoreNLP toolkit (Manning
etal.,2014) to POS tag the Czech and English sen-
tences, respectively. We next construct a dictio-
nary that maps POS tags from one language to tags



in the other. After translating with Moses, each
English translation in the n-best list is augmented
with a POS intersection score, and rerank taking
this new score into account. We define the POS
intersection score as simply the number of iden-
tical POS tags between a Czech sentence and the
hypothesized English translation.

BLEU
18.59
20.69

BLEU-c
17.72
19.83

System

Moses trained on Europarl
Moses trained on Eu-
roparl, Common Crawl
and News Commentary
Stemming as
processing,

trained on Europarl
Morfessor trained on Eu-
roparl, Moses trained on
Europarl

POS intersection, Moses
trained on Europarl

pre- | 17.88 | 17.08

Moses

1648 | 15.74

15.68 | 13.46

Morfessor trained on Eu- | 13.43 13.74
roparl, POS intersection,

Moses trained on Europarl

Table 3: Results for Czech into English.

S German-English and English-German

For German-English and English-German, we fo-
cus primarily on the effects of source clause re-
ordering transformations. In this approach, we
transform source language s into s’, such that the
clause structure of sentences in s’ more closely fol-
low the clause structure of target language t.

5.1 English to German

With the goal of restructuring English source sen-
tences to have more German-like structure, we de-
fine the following transformation rules:

1. Detect all clauses in a sentence which might
require transformation. We selected spans of
text, which were labeled as S or SBAR by the
parser. We do not include clauses which be-
gin with “to”.

. For each clause, we apply the following rules

in order :

(a) If there exists a verb phrase (detected by
a shallow parser) with “to”, we move
the remaining portion of the verb phrase
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(starting with token “to”) to the end of
the clause.
(b) If there exists a verb phrase (detected
by a shallow parser) with a token with
VBN part of speech tag, we move the re-
maining portion of the verb phrase (start-
ing with VBN token) to the end of the
clause.
(c) If there exists a verb phrase (detected by
a shallow parser) starting with a modal
verb, we leave the modal verb but move
the rest of the verb phrase to the end of

the clause.

We used a state-of-the-art shallow parser (Pun-
yakanok and Roth, 2001) in conjunction with a
constituent parser (Socher et al., 2013) to im-
plement the above transformation rules. For the
purposes of the English-German language pair,
we pre-process all English data into equivalent
English’ data using the above transformation rules.

We train a German language model on the
German side of the Europarl, Common Crawl,
and News Commentary corpora, and a translation
model on the English’-German Europarl corpus.
Our development set for tuning was the WMT
newstest data from 2008-2014. Results for the
WMT newtest-2015 data set under the baseline
(en-de) and restructured (en’-de) conditions are
shown in Table 4.

System | BLEU | BLEU-cased | TER
en-de 16.6 16.3 0.933
en’-de | 17.9 17.2 0.731

Table 4: Results for English and English” trans-
lated into German.

5.2 German to English

Holmgvist et al. (2011) report improvements on
German-English when modifying German text to
be more like English. To this end, we utilize a sub-
set of the clause restructuring rules (rules 4 & 6)
from Collins et al. (2005):

o If a finite verb (VVFIN) and a particle
(PTKVZ) are found in the same clause (sub-
tree labeled as S), then move the particle to
precede the verb.

 Before applying rule 6, we first remove all in-
ternal VP nodes, and replace them by their



children in the tree. Then, for every clause
which dominates a finite verb, infinitival verb
and a negative particle (PTKNEG), then the
negative particle is moved to directly follow
the finite verb.

We used the Stanford Parser (Manning et al.,
2014) for parsing German sentences and then ap-
plied the relevant rules. The reordered sentences
were the yield of the transformed tree. The re-
ordered sentences were then segmented using the
jWordSplitter ? for compound splitting.

We train an English 6-gram language model on
the Gigaword corpus, and a translation model on
the German’-English Europarl corpus. Our devel-
opment set for tuning was the WMT newstest data
from 2008-2014. Results for the WMT newtest-
2015 data set under the baseline (de-en) and re-
structured (de’-en) conditions are shown in Ta-
ble 5.

System | BLEU | BLEU-cased | TER
de-en 214 222 0.938
de’-en | 249 23.8 0.641

Table 5: Results for German and German’ trans-
lated into English.

6 Discussion and Conclusion

Overall, tackling the rich morphology of Finnish
proved to be effective in improving upon the base-
line, but not by much, and only in the case where
the translation model could be consulted as to
whether source words in the tuning and testing data
were known.

The variation of our Finnish-English system
in §3.2.1 breaks down the Finnish data into
those components which make up the agglutinated
words, treating the morphemes, rather than the
original tokens, as the words. In teasing out the
morphemes from the original data, more individ-
ual word alignments can be created between source
and target tokens, but inflectional data such as the
case of nouns and the person and tense of verbs, is
lost. In this case, different English tokens which
may truthfully align to differently inflected forms
of the same lemma may instead compete for align-
ment with the lemma in the translation table, thus
creating confusion and resulting in evaluation be-
low the baseline.

“http://sourceforge net/projects/jwordsplitter/
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The second variation (in §3.2.2) creates the
potential for alignments between agglutinated
Finnish words with groups of English words, but
also between Finnish lemmas and single English
words. While there is more potential for a correct
alignments — still despite inflectional information
being lost — the approach is still brute force, and
there is still confusion created in the translation
table since some of the probability given to the
correct alignment, whatever that may be, is taken
by the alignment of some English words with the
agglutinated or non-agglutinated Finnish counter-
part.

The third variation (in §3.2.3), while addressing
the issue of over-lemmatization created in the first
variation, does in fact improve on the baseline. In
this final case, inflected forms found in the training
data retain their inflection, and so the first person
singular form of the verb “to be” in Finnish has
greater chance of being translated into “am” rather
than the lemmatized form being translated into the
most prevalent form of “to be” in the target lan-
guage training data — “is” for example.

Still the problem of Finnish morphology is very
hard for a translation system into English. Our sys-
tem has only addressed the derivational morphol-
ogy of Finnish agglutination. We have not at all
addressed the inflectional morphology of Finnish,
and so much information about the role of certain
tokens in the source sentence is lost. Some nec-
essary English words, such as personal pronouns,
may be lost on the system because the presence of
an English pronoun such as “I”” in the best English
translation may only be encoded in the inflectional
morphology of the Finnish.

In further research, we may try a factored model
for our system which encodes not only the lemma
or lemmas produced by omorfi, but also the gram-
matical information from the original inflectional
morphology. Further still, our system has not ad-
dressed the potential problems of reordering be-
tween the source and target languages.

At the very least, a rule could be implemented
which places Finnish postpositions in front of their
objects as a preprocessing step. As Finnish is a
head-final language like English, it is possible that
no further rule-based reordering would have to be
done, but more research is warranted to make this
claim. With these complications yet to be ad-
dressed, there is certainly more that we may do in
the future to improve evaluation.
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Abstract

This paper describes the syntax-based sys-
tems built at the University of Edinburgh
for the WMT 2015 shared translation task.
We developed systems for all language
pairs except French-English. This year
we focused on: translation out of En-
glish using tree-to-string models; contin-
uing to improve our English-German sys-
tem; and source-side morphological seg-
mentation of Finnish using Morfessor.

1 Introduction

This year’s WMT shared translation task featured
five language pairs: English paired with Czech,
Finnish, French, German, and Russian. We built
syntax-based systems in both translation direc-
tions for all language pairs except English-French.

For English — German, we continued to de-
velop our string-to-tree system, which has proven
highly competitive in previous years. Additions
this year included the use of a dependency lan-
guage model, an alternative tuning metric, and soft
source-syntactic constraints.

For translation from English into Czech,
Finnish, and Russian, we built STSG-based tree-
to-string systems. Support for this type of model
is a recent addition to the Moses toolkit. In previ-
ous years, our systems have all used string-to-tree
models and have only translated into English and
German.

For Finnish — English, we experimented with
unsupervised morphological segmentation using
Morfessor 2.0 (Virpioja et al., 2013).

For the remaining systems (Czech — English,
German — English, and Russian — English), our
systems were essentially the same as last year’s
(Williams et al., 2014) except for the addition of
this year’s training data.
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2 System Overview

2.1 Pre-processing

The training data was pre-processed using scripts
from the Moses toolkit. We first normalized
the data using the normalize-punctuation.perl
script then performed tokenization, parsing, and
truecasing. To parse the English data, we used
the Berkeley parser (Petrov et al., 2006; Petrov
and Klein, 2007). To parse the German data, we
used the ParZu dependency parser (Sennrich et
al., 2013).

2.2 Word Alignment

For word alignment we used either MGIZA++
(Gao and Vogel, 2008), a multi-threaded imple-
mentation of GIZA++ (Och and Ney, 2003), or
fast_align (Dyer et al., 2013). In preliminary
experiments, we found that the tree-to-string sys-
tems were particularly sensitive to the choice of
word aligner, echoing a previous observation by
Neubig and Duh (2014). See the individual tree-
to-string system descriptions in Section 3.

2.3 Language Model

We used all available monolingual data to train one
interpolated 5-gram language model for each sys-
tem. Using either Implz (Heafield et al., 2013)
or the SRILM toolkit (Stolcke, 2002), we first
trained an individual language model for each of
the supplied monolingual training corpora. These
models all used modified Kneser-Ney smoothing
(Chen and Goodman, 1998). We then interpolated
the individual models using SRILM, providing the
target-side of the system’s tuning set (Section 2.7)
for perplexity-based weight optimization.

2.4 String-to-Tree Model

For English — German and the systems that trans-
late into English, we used a string-to-tree model.

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 199-209,
Lisboa, Portugal, 17-18 September 2015. (©2015 Association for Computational Linguistics.



24.1 Grammar

The string-to-tree translation model is based on a
synchronous context-free grammar (SCFG) with
linguistically-motivated labels on the target side.

SCFG rules were extracted from the word-
aligned parallel data using the Moses implemen-
tation (Williams and Koehn, 2012) of the GHKM
algorithm (Galley et al., 2004; Galley et al., 2000).

Minimal GHKM rules were composed into
larger rules subject to restrictions on the size of
the resulting tree fragment. We used the settings
shown in Table 1, which were chosen empirically
during the development of 2013’s systems (Nade-
jde et al., 2013).

Parameter Unbinarized Binarized
Rule depth 5 7
Node count 20 30
Rule size 5 7

Table 1: Parameter settings for rule composition.
The parameters were relaxed for systems that used
binarization to allow for the increase in tree node
density.

Further to the restrictions on rule composition,
fully non-lexical unary rules were eliminated us-
ing the method described in Chung et al. (2011)
and rules with scope greater than 3 (Hopkins and
Langmead, 2010) were pruned from the trans-
lation grammar. Scope pruning makes parsing
tractable without the need for grammar binariza-
tion.

2.4.2 Feature Functions

Our core set of string-to-tree feature functions is
unchanged from previous years. It includes the n-
gram language model’s log probability for the tar-
get string, the target word count, the rule count,
and various pre-computed rule-specific scores.
For a grammar rule r of the form

C— <a767N>

where C is a target-side non-terminal label, « is a
string of source terminals and non-terminals, [ is
a string of target terminals and non-terminals, and
~ is a one-to-one correspondence between source
and target non-terminals, we score the rule accord-
ing to (logarithms of) the following functions:

e p(C,B|a,~)andp(a | C,3,~), the direct
and indirect translation probabilities.
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e piee (B | @) and pie; (o | B), the direct and
indirect lexical weights (Koehn et al., 2003).

® Dpcfy (), the monolingual PCFG probability
of the tree fragment 7 from which the rule
was extracted.

e exp(—1/count(r)), a rule rareness penalty.

2.5 Tree-to-String Model

For English — Czech, English — Finnish, and En-
glish — Russian, we used a tree-to-string model.

2.5.1 Grammar

In the tree-to-string model, the translation gram-
mar is a synchronous tree-substitution gram-
mar (Eisner, 2003) with parse tree fragments on
the source-side and strings of terminals and non-
terminals on the target-side.

As with the string-to-tree models, the grammar
was extracted from the word-aligned parallel data
using the Moses implementation of the GHKM al-
gorithm. Minimal GHKM rules were composed
into larger rules subject to the same size restric-
tions (Table 1). Unlike string-to-tree rule extrac-
tion, fully non-lexical unary rules were included
in the grammar and scope pruning was not used.

2.5.2 Feature Functions

The tree-to-string feature functions are similar to
those of the string-to-tree model. For a grammar
rule 7 of the form

<7T7 B, N)
where 7 is a source-side tree fragment, (3 is a string
of target terminals and non-terminals, and ~ is
a one-to-one correspondence between source and
target non-terminals, we score the rule according
to (logarithms of) the following functions:

e p(f|m~) and p(7 | B,~), the direct and
indirect translation probabilities.

® Dier (B | m) and pie, (7 | B), the direct and
indirect lexical weights (Koehn et al., 2003).

e exp(—1/count(r)), a rule rareness penalty.

2.6 Decoding

Decoding for the string-to-tree models is based on
Sennrich’s (2014) recursive variant of the CYK+
parsing algorithm combined with LM integration
via cube pruning (Chiang, 2007). Decoding for the
tree-to-string models is based on the rule matching
algorithm by Zhang et al. (2009) combined with
LM integration via cube pruning.



2.7 Tuning

The feature weights were tuned using the Moses
implementation of MERT (Och, 2003) for all sys-
tems except English-to-German, for which we
used k-best MIRA (Cherry and Foster, 2012) due
to the use of sparse features.

For the tree-to-string systems, we used all of
the previous years’ test sets as tuning data (except
newstest2014, which was used as the development
test set). For the string-to-tree systems, we used
subsets of the test data to speed up decoding.

3 Individual Systems

In this section we describe individual systems and
present experimental results. In many cases, the
only difference from the generic setup of the pre-
vious section is that we perform right binarization
of the training and test parse trees.

We also built hierarchical phrase-based systems
(Chiang, 2007), which we refer to in tables as ‘Hi-
ero.” These systems were built using the Moses
toolkit, with standard settings. They were not used
in the submission and are included for comparison
only.

For each system, we present results for both the
development test set (newstest2014 in most cases)
and for the test set (newstest2015) for which ref-
erence translations were provided after the system
submission deadline. We refer to these as ‘devtest’
and ‘test’, respectively.

3.1 English to Czech

For English — Czech we built a tree-to-string
system. We used fast_align for word align-
ment due to the large training data size and on the
strength of its performance for English — Finnish
and English — Russian. We used all test sets from
2008 to 2013 as tuning data. Table 2 gives the
mean BLEU scores, averaged over three MERT
runs. Our submitted system was the right bina-
rized system that, out of the three runs, scored
highest on devtest.

system devtest  test
Hiero 20.2 16.8
Tree-to-string 19.0 15.7
+ right binarization 19.5 16.1

Table 2: English to Czech translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.
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3.2 English to Finnish

In preliminary English — Finnish experi-
ments, we compared the use of MGIZA++ and
fast_align. Since there was only one test
set provided, in these initial experiments we split
newsdev2015 into two halves, using the first half
for tuning and the second half for testing. Table 3
gives the mean BLEU scores, averaged over three
MERT runs.

MGIZA++ fast_align
Hiero 11.7 11.6
Tree-to-string 11.5 12.3
+ right binarization 11.9 12.8

Table 3: Comparison of word alignment tools for
English to Finnish. BLEU on subset of news-
dev2015.

For our final system, we used fast_align
for word alignment and we used the full news-
dev2015 test set as tuning data. Table 4 gives the
mean BLEU scores for this setup. Our submitted
system was the right binarized system that, out of
the three MERT runs, scored highest on devtest.

system dev  test
Hiero 114 115
Tree-to-string 11.9 11.8
+ right binarization 12.2 12.3

Table 4: Final English to Finnish translation
results (BLEU) on dev (newsdev2015) and test
(newstest2015) sets.

3.3 English to German

We experiment with the following additions to last
year’s submission system: arelational dependency
language model (RDLM) (Sennrich, 2015); tuning
on the syntactic metric HWCM (Liu and Gildea,
2005; Sennrich, 2015); soft source-syntactic con-
straints (Huck et al., 2014); a large-scale n-
gram Neural Network language model (NPLM)
(Vaswani et al., 2013); treebank binarization (Sen-
nrich and Haddow, 2015); particle verb restructur-
ing (Sennrich and Haddow, 2015). We do not in-
clude syntactic constraints in this year’s baseline.
Our string-to-tree baseline uses a dependency rep-
resentation of compounds, as described in (Sen-
nrich and Haddow, 2015).

RDLM is a relational dependency language
model which predicts the dependency relations



system BLEU 2+ SUBJ
original trees 20.1 0
+ RDLM 21.0 0
+ RDLM (bidir.) 21.2 0
right binarization 20.4 272
head binarization ~ 20.5 152
+ RDLM 213 43
+ RDLM (bidir.) 21.5 32

Table 5: English to German translation results
(on newstest2013) with different binarizations and
language models. 2+ SUBJ: number of finite
clauses with more than one subject.

and words in the translation hypotheses based on
the dependency relations and words of the ances-
tor and sibling nodes in the dependency tree. Our
model contains several extensions over the origi-
nal paper (Sennrich, 2015). Like the original pa-
per, we use an ancestor context size of 2, but we
increase the sibling context size from 1 to 3, and
allow bidirectional context, using the 3 closest sib-
lings to both the left and right of the current node.
The original model predicts a virtual stop node as
the last child of each tree, which models the prob-
ability that a node has no more children. This is
mirrored by a virtual start node in the bidirectional
model.

We binarize the treebanks before rule extrac-
tion. We note that treebank binarization allows the
extraction of rules that overgeneralize, e.g. allow-
ing structures with zero, or multiple, preterminals
per node, effectively allowing verb clauses with-
out verb and similar. We use head binarization
(Sennrich and Haddow, 2015), which ensures that
each constituent contains exactly one head. Dur-
ing decoding, the generated target trees are un-
binarized to allow scoring with RDLM. Table 5
shows that both right binarization and head bi-
narization overgeneralize, exemplified by the fact
that they allow finite clauses to have multiple sub-
jects!. The RDLM reduces this problem, and the
bidirectional RDLM slightly outperforms the uni-
directional variant, both in terms of BLEU and the
number of overgeneralizations.

For the soft source-syntactic constraints, we an-
notate the source text with the Stanford Neural
Network dependency parser (Chen and Manning,
2014), along with heuristic projectivization (Nivre
and Nilsson, 2005).

!Compound subjects are represented as a single node.
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system devtest  test
Hiero 19.2 21.0
String-to-tree baseline 198 214
+ HWEMABLEU qyning 20.1 21.6
+ head binarization 20.5 223
+ RDLM (bidirectional) 21.5 233
+ source-syntactic constraints 21.6 23.8
+ 5-gram NPLM 220 24.1
+ less pruning (submission) 22.0 240
+ particle verb restructuring 220 244

Table 6: English to German translation results
(BLEU) on devtest (newstest2013) and test (news-
test2015) sets.

The NPLM is a 5-gram feed-forward neural lan-
guage model, and for both RDLM and NPLM
we use a single hidden layer of size 750, a 150-
dimensional input embedding layer with a vocab-
ulary size of 500000, noise-contrastive estimation
with 100 noise samples, and 2 iterations over the
monolingual training set. Estimating LM proba-
bilities for OOV words is a well-known problem,
and we avoid this by filtering the translation model
according to the vocabulary of the neural models.

The impact of all experimental components is
shown in Table 6. Each system in Tables 5 and 6
was tuned separately with MIRA. For our submis-
sion system, we increased the Moses parameters
cube-pruning-pop-limit from 1000 to 4000, and
rule-limit from 100 to 400, but this had little effect
on devtest, and gave even slightly lower BLEU on
test. Particle verb restructuring, which was done
after the submission deadline, increases BLEU on
test. In total, we observe substantial improvements
over our baseline, which roughly corresponds to
last year’s submission systems: 2.2 BLEU on dev-
test, and 3.0 BLEU on test.

3.4 English to Russian

For English — Russian we built a tree-to-string
system. During preliminary experiments we found
that fast_align gave consistent gains over
MGIZA++ (albeit smaller than Finnish — English
at around 0.3 BLEU). In final experiments we used
fast_align for word alignment and we used
the 2012 and 2013 test sets as tuning data. Table 7
gives the mean BLEU scores, averaged over three
MERT runs. Our submitted system was the right
binarized system that, out of the three runs, scored
highest on devtest.



system devtest  test
Hiero 29.8 23.8
Tree-to-string 275 221
+ right binarization 28.3 23.0

Table 7: English to Russian translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

3.5 Czech to English

For Czech — English we built a string-to-tree sys-
tem. We used all test sets from 2008 to 2013 as
tuning data. Table 8 gives the mean BLEU scores,
which are averaged over three MERT runs. Our
submitted system was the right binarized system
that, out of the three runs, scored highest on dev-
test.

system devtest  test
Hiero 28.5 249
String-to-tree 27.8 244
+ right binarization 27.8 245

Table 8: Czech to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

3.6 Finnish to English

In preliminary Finnish — English experiments, we
tried using Morfessor to segment Finnish words
into morphemes. We used Morfessor 2.0 (with de-
fault settings) to learn an unsupervised segmenta-
tion model from all of the available Finnish data,
which was then used to segment all words in the
source-side training and test data. We compared
systems with and without segmentation and using
a system combination of the two — an approach
that has been shown to improve translation quality
for this language pair (de Gispert et al., 2009).

As with English — Finnish, we split news-
dev2015 into two halves, using the first half for
tuning and the second half for testing. Table 9
shows the results: the column headed ‘word’ gives
BLEU scores for the unsegmented systems; the
column headed ‘morph’ gives scores for systems
trained on segmented data; and the column headed
‘syscomb’ gives results for a system combination
using MEMT (Heafield and Lavie, 2010).

For our final system, we used morphological
segmentation but not system combination. We
used the full newsdev2015 test as tuning data. Ta-
ble 10 gives mean BLEU scores for this setup, av-
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word morph syscomb
Hiero 17.8 19.1 19.2
String-to-tree 17.6 18.5 18.7
+ right binarization  17.8 18.9 18.9

Table 9: Finnish to English experiments with mor-
phological segmentation.

system dev  test
Hiero 18.6 17.5
String-to-tree 183 17.2
+ right binarization 18.5 17.7

Table 10: Finnish to English translation results
(BLEU) on dev (newsdev2015) and test (news-
test2015) sets.

eraged over three MERT runs. Our submitted sys-
tem was the right binarized system that, out of the
three, scored highest on newsdev2015.

3.7 German to English

For German — English we built a tree-to-string
system with similar setup as last year’s (Williams
et al., 2014). Our submitted system was right bi-
narized with the following extraction parameters:
Rule Depth = 7, Node Count = 100, Rule Size =
7. At decoding time we used the following non-
default parameter value: max-chart-span = 25.
This limits sub derivations to a maximum span of
25 source words. For the Hiero baseline system we
used max-chart-span = 15. For tuning we used a
random subset of 2000 sentences drawn from the
full tuning set.

We performed some preliminary experiments
with neural bilingual language models, our re-
implementation of the “joint” model of (Devlin
et al., 2014). The bilingual language models are
trained with the NPLM toolkit (Vaswani et al.,
2013). We used 250-dimensional input embedding
and hidden layers, and input and output vocabu-
lary sizes of 500000 and 250000 respectively. One
bilingual language model was a 5-gram model
with an additional context of 9 source words, the
affiliated source word and a window of 4 words on
either side. A second model was a 1-gram model
with an additional context of 13 source words. The
language models were trained on the available par-
allel corpora.

We also added a 7-gram class-based language
model, with 50 word classes trained using mkc1ls



system devtest  test
Hiero 277 28.0
String-to-tree 28.7 28.7
+ bilingual LMs 28.6  28.7
+ bilingual & class LMs 28.3 28.7

Table 11: German to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

(Och, 1999). The language model was trained
on all available monolingual corpora, filtering out
singletons.

Table 11 shows the results. As the preliminary
results were not encouraging, we did not include
the bilingual LMs and class LMs in our submitted
system.

3.8 Russian to English

For Russian — English we built a string-to-tree
system, using the 2012 and 2013 test sets as tun-
ing data. Table 12 gives the mean BLEU scores,
averaged over three MERT runs. Our submitted
system was the right binarized system that, out of
the three runs, scored highest on devtest.

system devtest  test
Hiero 312 271
String-to-tree 30.5 259
+ right binarization 30.6 26.2

Table 12: Russian to English translation results
(BLEU) on devtest (newstest2014) and test (news-
test2015) sets.

4 Manual Error Analysis

Our syntax-based systems for the German—
English language pairs have greatly improved
over the last years and outperformed traditional
phrase-based statistical machine translation sys-
tems. Translating between German and English
is a challenge for those systems, since extensive
long distance reordering and long distance agree-
ment constraints do not fit that approach. Are our
syntax-based systems tackling these problems bet-
ter? And what are the main remaining problems?

For both German—English and English—
German, we analyzed 100 sentences, we carried
out an error analysis using linguistic error cate-
gories that roughly match other efforts in this area
(Vilar et al., 2006; Toral et al., 2013; Herrmann et

al., 2014; Lommel et al., 2014; Aranberri, 2015).
We used the following error annotation protocol:

1. A bilingual speaker corrects the machine
translation output with minimal necessary ed-
its to render an acceptable translation. This is
done in view of the human reference transla-
tion, but typically a much more literal trans-
lation was obtained.

2. Each edit is noted in a list in the form "old
string — new string", where either old or new
string may also be empty or discontinuous.

3. In a second pass, all edits are classified with
error categories.

Such an error analysis is subjective. There are
many ways to correct errors (step 1), many ways
to split corrections into units (step 2), and many
ways to classify the errors (step 3). Moreover, an-
alyzing only 100 sentences does not lead to strong
statistically significant findings. With this in mind,
the following analysis is broadly indicative of the
main error types in our syntax-based systems.

Occasionally, parts of a machine translation are
just too muddled that a sequence of edits could be
established. This happened in 8 German—English
sentences, and 7 English—-German sentences.

4.1 German—-English

16 sentences have no error, while 18 sentences
have only one error. These are of course typically
the shorter ones. The longest sentence without er-
ror is:

e Source: Der Oppositionspolitiker Imran
Khan wirft Premier Sharif vor, bei der Par-
lamentswahl im Mai vergangenen Jahres be-
trogen zu haben.

o MT: The opposition politician Imran Khan
accuses Premier Sharif of having cheated
in the parliamentary election in May of last
year.

This is not a trivial sentence, since it requires the
translation of the complex subclause construction
of having cheated, which is rendered
quite differently in German as wirft ... vor ... bet-
rogen zu haben.

An overview of the major error categories is
shown is Figure 13. On average, 2.85 errors per
sentence were identified. This gives us guidance
on the major problems we should be working on
in the future.

accuses ...
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Count | Category Count | Category
29 | Wrong content word - noun 6 | Wrong content word - phrasal verb
25 | Wrong content word - verb 6 | Added function word - determiner
22 | Wrong function word - preposition 5 | Unknown word - noun
21 | Inflection - verb 5 | Missing content word - adverb
14 | Reordering: verb 5 | Missing content word - noun
13 | Reordering: adjunct 5 | Inflection - noun
12 | Missing function word - preposition 4 | Reordering: NP
10 | Missing content word - verb 3 | Missing content word - adjective
9 | Wrong function word - other 3 | Inflection - wrong POS
9 | Wrong content word - wrong POS 3 | Casing
9 | Added punctuation 2 | Unknown word - verb
8 | Muddle 2 | Reordering: punctuation
8 | Missing function word - connective 2 | Reordering: noun
8 | Added function word - preposition 2 | Reordering: adverb
7 | Missing punctuation 2 | Missing function word - determiner
7 | Wrong content word - adverb 2 | Inflection - adverb

Table 13: Main error types in German—English system (count in 100 sentences).

Lexical choice The biggest group of error types
concern translation of basic concepts. On average,
such errors occur 0.76 times per sentence. Given
the vast number of content words that need to be
translated, the actual performance on the task of
lexical translation is pretty high, but it is by no
means solved.

Count | Category
29 | Wrong content word - noun
25 | Wrong content word - verb
9 | Wrong content word - wrong POS
7 | Wrong content word - adverb
6 | Wrong content word - phrasal verb

Prepositions We were surprised by the large
number of errors revolving prepositions. Prepo-
sitions are frequent, but not as frequent as con-
tent words, so the performance on the preposi-
tion translation task is not as good. Prepositions
mostly mark relationships of adjuncts, which in-
volve quite complex considerations — the adjunct,
the modified verb or noun phrase, identifying the
relationship between them in the source sentence,
and the fuzzy meaning of prepositions.

Count | Category
22 | Wrong function word - preposition
12 | Missing function word - preposition
8 | Added function word - preposition

Reordering We were also surprised by the low
number of reordering errors. The different word
order between German and English has hampered
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translation quality for this language pair histori-
cally. While we cannot declare complete success,
our syntax-based systems constitute great progress
in this area.

Count | Category

14 | Reordering: verb

13 | Reordering: adjunct
Reordering: NP
Reordering: noun
Reordering: adverb

[NOJN NS I O]

Other issues with verbs Reordering errors in-
volving verbs top the list in the previous group
of error types, but there are also other problems
with verbs: their inflection and the unacceptable
frequency of dropping verbs. The latter has its
roots in faulty word alignment which are based
on IBM Models which often fail to align the out-
of-English-order German verb, thus enabling the
translation model to drop them, which the lan-
guage model often prefers. Inflection is here to
be understood broadly, including the need for the
right function words to form a grammatical correct
verb complex (e.g., will have been resolved).

Count ‘ Category
21 | Inflection - verb
10 | Missing content word - verb

Overall, the main thrust of future research
should be focused on lexical choice, selecting cor-
rect prepositions, and producing the correct verb.



Count | Category Count | Category
41 | Wrong content word - verb 9 | Compound merging
37 | Wrong content word - noun 8 | Added function word - preposition
33 | Reordering - verb 7 | Punctuation - inserted
30 | Inflection - verb 7 | Muddle
22 | Missing function word - preposition 7 | Missing function word - clausal connective
17 | Inflection - np 7 | Added function word - determiner
14 | Wrong function word - preposition 5 | Punctuation - missing
12 | Wrong content word - phrasal verb 5 | Missing content word - verb
12 | Wrong content word - wrong POS 4 | Reordering - adverb
12 | Wrong function word - clausal connective 4 | Wrong content word - adverb
11 | Reordering - pp 3 | Missing content word - adjective
11 | Inflection - noun 2 | Reordering - pronoun
10 | Wrong function word - pronoun 2 | Wrong content word - name
10 | Missing function word - pronoun 2 | Missing content word - adverb
10 | Missing function word - determiner 2 | Wrong content word - adjective
9 | Reordering - noun 2 | Added function word - pronoun

Table 14: Main error types in English—-German system (count in 100 sentences).

4.2 English-German

12 Sentences had no error, 13 sentences only one
error. Less than German—English, which supports
the general contention that translating into Ger-
man is harder. On average, a total of 3.8 errors
per sentence were marked, one error per sentence
more than German—English. An overview of the
major error categories is shown is Figure 14.
The longest sentence with no error is:

e Source: Congressmen Keith Ellison and John
Lewis have proposed legislation to protect
union organizing as a civil right.

o Target: Die Kongressabgeordneten Keith El-
lison und John Lewis haben Gesetze zum
Schutz der gewerkschaftlichen Organisation
als Biirgerrecht vorgeschlagen.

In terms of word order, this is not a
complicated sentence (besides the verb move-
ment proposed—vorgeschlagen), but it does
involve switching of part-of-speech for two
content words: protect—Schutz (verb—noun),
union— gewerkschaftlichen (noun—adjective).

Lexical choice As with German—English, this is
biggest group of error types, with 1.08 errors per
sentence. Verb sense errors tend to be more subtle,
such that a media outlet does not sagt (says) but
berichtet (reports) a news item. For nouns, there
were several stark errors, such the mis-translation
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of patient as Geduld (patience) in a medical con-
text. In general, there is no reason to believe that
models that more strongly draw on a wider context
could not resolve many of these cases.

Count | Category

41 | Wrong content word - verb

37 | Wrong content word - noun

12 | Wrong content word - phrasal verb

12 | Wrong content word - wrong POS
4 | Wrong content word - adverb
2 | Wrong content word - adjective

Role and order of adjuncts and arguments

While the overall sentence structure is mostly cor-
rect, there are often problems with the handling of
adjunct and argument phrases. Their role is iden-
tified in German by a preposition or the case of a
noun phrase (the main cause of inflection errors).
Their position in the sentence is less strict, but mis-
takes can be and are made.

Count | Category
22 | Missing function word - preposition
17 | Inflection - np
14 | Wrong function word - preposition

11 | Reordering - pp
11 | Inflection - noun
8 | Added function word - preposition

Verbs Reordering errors of verbs mainly oc-
cur in complex subclause constructions. German
verbs are more strongly inflected for count and
person, and often a few function words are needed



in just the right order and placement for a correct
verb complex.
33 | Reordering - verb
30 | Inflection - verb
5 | Missing content word - verb

Pronouns Due to grammatical gender of nouns
in German, translating it and they is a complex un-
dertaking. German verbs also require more fre-
quently reflexive pronouns.
Count | Category
10 | Wrong function word - pronoun
10 | Missing function word - pronoun
2 | Added function word - pronoun

Clausal connectives A specific problem of
English—German translations are clausal connec-
tives. In English, the relationship of the sub clause
is often not explicitly marked (e.g., Police say the
rider), while German requires a function word.

Count ‘ Category
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