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Preface: General Chair

On behalf of the organizing committee I am delighted to welcome you to the 45th Annual Meeting of the

Association for Computational Linguistics, in Prague.

Setting up and running the ACL conference involves a lot of work by many people. Some of them are

officially identified as being responsible for various aspects of the conference, while the contributions of

others are less visible. I would like to say a warm thank you to the people named below, with apologies

to anyone I have overlooked.

The Program Chairs, Antal van den Bosch and Annie Zaenen have done a great job in managing the

almost 600 submissions for the main conference and putting together a high quality program. Through

this process Antal has become a ‘grandmaster’ of the START paper management system and has given a

lot of help to other chairs who have had to deal with their own sets of submissions. Many thanks also to

their Area Chairs and the program committee of reviewers, and to Florence Reeder for coordinating the

pre-submission mentoring service. (Antal and Annie reflect on their PC experience overleaf).

Sophia Ananiadou is Chair of the Demo/Poster part of the conference, and has overseen a separate

review process to select a high quality set of presentations.

The Student Research Workshop Chairs, Chris Biemann, Violeta Seretan and Ellen Riloff have assem-

bled an excellent program of papers and posters. I encourage everyone to attend the student workshop to

hear about the exciting work being carried out by researchers just starting out on their careers in compu-

tational linguistics.

Workshops Chair Simone Teufel is overseeing 15 workshops – the most ever at an ACL conference –

chosen (with the help of Beth Ann Hockey, Katja Markert and Dekai Wu) from a total of 27 proposals.

The scale of the workshop program can be gauged by the fact that they received an aggregate total of 470

submissions (without even counting IWPT and EMNLP-CoNLL). Joakim Nivre, as Tutorials Chair, has

assembled a program of 5 attractive and complementary tutorials, selected from 20 proposals with advice

from Walter Daelemans, Robert Dale, Nancy Ide, Diane Litman and Chris Manning.

One of the most demanding yet least noticed organizational roles is that of Publications Chair. Su Jian
has done a fantastic job in producing the hardcopy and electronic record of the conference, supported by

his team—with notable contributions from Upali Kohomban who has cheerfully helped at all stages and

whenever needed, day and night, weekdays and weekends.

Sponsorship is another success story, thanks to the Sponsorship Chairs Martha Palmer, Gabor Proszeky,

Jan Hajic and Jun’ichi Tsujii, who have recruited 12 corporate sponsors. We are very grateful for their

financial support.

Eva Hajicova, the Local Arrangements Chair, assisted by Jan Hajic and Anna Kotesovcova, have put

in an enormous amount of detailed work to make this conference a success, ably supported by the lo-

cal team of Milan Fucik, Jaroslava Hlavacova, Marketa Lopatkova, Jiri Mirovsky, Pavel Pecina,
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Pavel Schlesinger, Juraj Simlovic, Miroslav Spousta, Pavel Stranak, Zlatka Subrova, Jan Votrubec,

Zdenek Zabokrtsky and Daniel Zeman. From the ACL itself, Kathy McCoy, Dragomir Radev,

Priscilla Rasmussen, Mark Steedman and Jun’ichi Tsujii have played strong roles in making deci-

sions and giving advice, and kept everything on track while I was out of action due to ill health last

year.

And finally, many thanks to the authors and presenters in the main conference, workshops and co-located

events... and to all the participants. I hope you enjoy the formally organized aspects of the conference,

take advantage of the opportunity to network with colleagues old and new, and that you also have a chance

to appreciate the history and sights of Prague while you are here.

John Carroll

ACL 2007 General Chair
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Preface: Program Chairs

The number of submissions for this ACL broke a new record: the program committee’s selection of 131

papers was based on 588 submissions (after withdrawals). An updated program design with four parallel

sessions and 25-minute papers allowed an acceptance rate of 22.3%, and an acceptance of all submissions

that were recommended with priority by the area chairs.

First and foremost, we thank all the authors for submitting papers describing their recent work; the sheer

amount of submissions reflects how active our field is. We thank Florence Reeder for provided mentoring

to 17 author teams who felt they needed some writing support. For the selection, we are indebted to the

332 program committee members, who produced one to eleven reviews per reviewer, for a total of close

to 1,800 reviews, and to the ten area chairs on whose shoulders rested most of the work of organizing the

review process. We decided to work without an area chairs meeting: the two program co-chairs met for

two days at Tilburg University, and interacted during that time vigorously with the area chairs by email

and sometimes by phone.

As usual the main program will run for three days: there will be four parallel sessions of main session pre-

sentations, a demo/poster session organized by Sophia Ananiadou, nameMiroslav Spousta and Zdenek
Zabokrtsky, and a Student Research Workshop – thanks to Ellen Riloff, Violeta Seretan and Chris
Biemann for organizing it. Also as usual the conference is flanked by tutorial sessions and workshops;

our thanks go to Joakim Nivre and Simone Teufel for organizing and compiling an excellent package.

The announcements of the ACL Lifetime Award and of the Best Paper Award will provide the customary

suspense. They will take place in plenary sessions. Other plenary sessions will be devoted to the business

meeting and the two invited talks, which this year will be delivered by Tom Mitchell and Barney Pell.
We are grateful for their kind acceptation of our invitation.

We thank John Carroll, General Conference Chair, the Local Arrangements Committee headed by Eva
Hajicova, and the ACL executive, especially Dragomir Radev, for their help and advice, and last year’s

co-chairs, Claire Cardie and Pierre Isabelle, for sharing their experience. Our sincere thanks go to Su
Jian for putting together the proceedings.

Enjoy the conference,

Antal van den Bosch and Annie Zaenen

ACL-2007 Program Chairs
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Abstract

We present a general framework to incor-
porate prior knowledge such as heuristics
or linguistic features in statistical generative
word alignment models. Prior knowledge
plays a role of probabilistic soft constraints
between bilingual word pairs that shall be
used to guide word alignment model train-
ing. We investigate knowledge that can be
derived automatically from entropy princi-
ple and bilingual latent semantic analysis
and show how they can be applied to im-
prove translation performance.

1 Introduction

Statistical word alignment models learn word as-
sociations between parallel sentences from statis-
tics. Most models are trained from corpora in an
unsupervised manner whose success is heavily de-
pendent on the quality and quantity of the training
data. It has been shown that human knowledge,
in the form of a small amount of manually anno-
tated parallel data to be used to seed or guide model
training, can significantly improve word alignment
F-measure and translation performance (Ittycheriah
and Roukos, 2005; Fraser and Marcu, 2006).

As formulated in the competitive linking algo-
rithm (Melamed, 2000), the problem of word align-
ment can be regarded as a process of word link-
age disambiguation, that is, choosing correct asso-
ciations among all competing hypothesis. The more
reasonable constraints are imposed on this process,
the easier the task would become. For instance, the

most relaxed IBM Model-1, which assumes that any
source word can be generated by any target word
equally regardless of distance, can be improved by
demanding a Markov process of alignments as in
HMM-based models (Vogel et al., 1996), or imple-
menting a distribution of number of target words
linked to a source word as in IBM fertility-based
models (Brown et al., 1993).

Following the path, we shall put more constraints
on word alignment models and investigate ways of
implementing them in a statistical framework. We
have seen examples showing that names tend to
align to names and function words are likely to be
linked to function words. These observations are
independent of language and can be understood by
common sense. Moreover, there are other linguis-
tically motivated constraints. For instance, words
aligned to each other presumably are semantically
consistent; and likely to be, they are syntactically
agreeable. In these paper, we shall exploit some of
these constraints in building better word alignments
in the application of statistical machine translation.

We propose a simple framework that can inte-
grate prior knowledge into statistical word align-
ment model training. In the framework, prior knowl-
edge serves as probabilistic soft constraints that will
guide word alignment model training. We present
two types of constraints that are derived in an un-
supervised way: one is based on the entropy prin-
ciple, the other comes from bilingual latent seman-
tic analysis. We investigate their impact on word
alignments and show their effectiveness in improv-
ing translation performance.
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2 Constrained Word Alignment Models

The framework that we propose to incorporate sta-
tistical constraints into word alignment models is
generic. It can be applied to complicated models
such IBM Model-4 (Brown et al., 1993). We shall
take HMM-based word alignment model (Vogel et
al., 1996) as an example and follow the notation of
(Brown et al., 1993). Let e = el

1 represent a source
string and f = fm

1 a target string. The random vari-
able a = am

1 specifies the indices of source words
that target words are aligned to.

In an HMM-based word alignment model, source
words are treated as Markov states while target
words are observations that are generated when
jumping to states:

P (a, f |e) =
m∏

j=1

P (aj |aj−1, e)t(fj |eaj )

Notice that a target word f is generated from a
source state e by a simple lookup of the translation
table, a.k.a., t-table t(f |e), as depicted in (A) of Fig-
ure 1. To incorporate prior knowledge or impose
constraints, we introduce two nodes E and F repre-
senting the hidden tags of the source word e and the
target word f respectively, and organize the depen-
dency structure as in (B) of Figure 1. Given this gen-
erative procedure, f will also depend on its tag F ,
which is determined probabilistically by the source
tag E. The dependency from E to F functions as a
soft constraint showing how the two hidden tags are
agreeable to each other. Mathematically, the condi-
tional distribution follows:

P (f |e) =
∑
E,F

P (f,E, F |e)

=
∑
E,F

P (E|e)P (F |E)P (f |e, F )

= t(f |e) · Con(f, e), (1)

where

Con(f, e) =
∑
E,F

P (E|e)P (F |E)P (F |f)/P (F ) (2)

is the soft weight attached to the t-table entry. It con-
siders all possible hidden tags of e and f and serves
as constraint between the link.

 
 
 f 

e 

f 

e 
E

F

A B 

Figure 1: A simple table lookup (A) vs. a con-
strained procedure (B) of generating a target word
f from a source word e.

We do not change the value of Con(f, e) during
iterative model training but rather keep it constant as
an indicator of how strong the word pair should be
considered as a candidate. This information is de-
rived before word alignment model training and will
act as soft constraints that need to be respected dur-
ing training and alignments. For a given word pair,
the soft constraint can have different assignment in
different sentence pairs since the word tags can be
context dependent.

To understand why we take the “detour” of gen-
erating a target word rather than directly from a t-
table, consider the hidden tag as binary value in-
dicating being a name or not. Without these con-
straints, t-table entries for names with low frequency
tend to be flat and word alignments can be chosen
randomly without sufficient statistics or strong lexi-
cal preference under maximum likelihood criterion.
If we assume that a name is produced by a name
with a high probability but by a non-name with a
low probability, i.e. P (F = E) >> P (F 6= E),
proper names with low counts then are encouraged
to link to proper names during training; and conse-
quently, conditional probability mass would be more
focused on correct name translations. On the other
hand, names are discouraged to produce non-names.
This will potentially avoid incorrect word associa-
tions. We are able to apply this type of constraint
since usually there are many monolingual resources
available to build a high performance probabilistic
name tagger. The example suggests that putting rea-
sonable constraints learned from monolingual analy-
sis can alleviate data spareness problem in bilingual
applications.

The weights Con(f, e) are the prior knowledge
that shall be assigned with care but respected dur-
ing training. The baseline is to set all these weights
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to 1, which is equivalent to placing no prior knowl-
edge on model training. The introduction of these
weights does not complicate parameter estimation
procedure. Whenever a source word e is hypoth-
esized to generate a target word f , the translation
probability t(f |e) should be weighted by Con(f, e).

We point out that the constraints between f and e
through their hidden tags are in probabilities. There
are no hard decisions made before training. A strong
preference between two words can be expressed by
assigning corresponding weights close to 1. This
will affect the final alignment model.

Depending on the hidden tags, there are many re-
alizations of reasonable constraints that can be put
beforehand. They can be semantic classes, syntactic
annotations, or as simple as whether being a function
word or content word. Moreover, the source side and
the target side do not have to share the same set of
tags. The framework is also flexible to support mul-
tiple types of constraints that can be implemented in
parallel or cascaded sequence. Moreover, the con-
straints between words can be dependent on context
within parallel sentences. Next, we will describe
two types of constraints that we proposed. Both of
them are derived from data in an unsupervised way.

2.1 Entropy Principle

It is assumed that generally speaking, a source func-
tion word generates a target function word with a
higher probability than generating a target content
word; similar assumption applies to a source con-
tent word as well. We capture this type of constraint
by defining the hidden tag E and F as binary labels
indicating being a content word or not. Based on
the assumption, we design probabilistic relationship
between the two hidden tags as:

P (E = F ) = 1− P (E 6= F ) = α,

where α is a scalar whose value is close to 1, say
0.9. The bigger α is, the tighter constraint we put on
word pairs to be connected requiring the same type
of label.

To determine the probability of a word being
a function word, we apply the entropy principle.
A function word, say “of”,“in” or “have”, appears
more frequently than a content word, say “journal”
or “chemistry”, in a document or sentence. We will

approximate the probability of a word as a function
word with the relative uncertainty of its being ob-
served in a sentence.

More specifically, suppose we have N parallel
sentences in the training corpus. For each word wi

1,
let cij be the number of word wi observed in the j-th
sentence pair, and let ci be the total number of oc-
currences of wi in the corpus. We define the relative
entropy of word wi as

εwi = − 1
log N

N∑
j=1

cij

ci
log

cij

ci
.

With the entropy of a word, the likelihood of word
w being tagged as a function word is approximated
with w(1) = εw and being tagged as a content word
with w(0) = 1− εw.

We ignore the denominator in Equ. (2) and find
the constraint under the entropy principle:

Con(f, e) = α(e(0)f (0) + e(1)f (1)) +
(1− α)(e(1)f (0) + e(0)f (1)).

As can be seen, the connection between two
words is simulated with a binary symmetric chan-
nel. An example distribution of the constraint func-
tion is illustrated in Figure 2. A high value of α
encourages connecting word pairs with compara-
ble entropy; When α = 0.5, Con(f, e) is constant
which corresponds to applying no prior constraint;
When α is close to 0, the function plays opposite
role on word alignment training where a high fre-
quency word is pushed to associate with a low fre-
quency word.

2.2 Bilingual Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a theory and
method for extracting and representing the meaning
of words by statistically analyzing word contextual
usages in a collection of text. It provides a method
by which to calculate the similarity of meaning of
given words and documents. LSA has been success-
fully applied to information retrieval (Deerwester
et al., 1990), statistical langauge modeling (Belle-
garda, 2000) and etc.

1We prefix ‘E ’ to source words and ‘F ’ to target words
to distinguish words that have the same spelling but are from
different languages.
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Figure 2: Distribution of the constraint function
based on entropy principle when α = 0.9 on the
left and α = 0.1 on the right.

We explore LSA techniques in bilingual environ-
ment to derive semantic constraints as prior knowl-
edge for guiding a word alignment model train-
ing. The idea is to find semantic representation of
source words and target words in the so-called low-
dimensional LSA-space, and then to use their sim-
ilarities to quantitatively establish semantic consis-
tencies. We propose two different approaches.

2.2.1 A Simple Bag-of-word Model
One method we investigate is a simple bag-of-

word model as in monolingual LSA. We treat each
sentence pair as a document and do not distin-
guish source words and target words as if they
are terms generated from the same vocabulary. A
sparse matrix W characterizing word-document co-
occurrence is constructed. Following the notation in
section 2.1, the ij-th entry of the matrix W is de-
fined as in (Bellegarda, 2000)

Wij = (1− εwi)
cij

cj
,

where cj is the total number of words in the j-th
sentence pair. This construction considers the im-
portance of words globally (corpus wide) and locally
(within sentence pairs). Alternative constructions of
the matrix are possible using raw counts or TF-IDF
(Deerwester et al., 1990).

W is a M × N sparse matrix, where M is the
size of vocabulary including both source and target
words. To obtain a compact representation, singular
value decomposition (SVD) is employed (cf. Berry
et al (1993)) to yield W ≈ Ŵ = U × S × V T

as Figure 3 shows, where, for some order R �
min(M,N) of the decomposition, U is a M×R left
singular matrix with rows ui, i = 1, · · · ,M , S is a

R×R diagonal matrix of singular values s1 ≥ s2 ≥
. . . ≥ sR � 0, and V is N×R a right singular ma-
trix with rows vj , j = 1, · · · , N . For each i, the
scaled R-vector uiS may be viewed as representing
wi, the i-th word in the vocabulary, and similarly the
scaled R-vector vjS as representing dj , j-th docu-
ment in the corpus. Note that the uiS’s and vjS’s
both belong to IRR, the so-called LSA-space. All
target and source words are projected into the same
LSA-space too.

NM × RM ×

RR× NR×

R orthonormal vectorsDocuments

1w

Mw

W
or

ds
W U S TV

1d Nd

R orthonorm
alvectors

Figure 3: SVD of the Sparse Matrix W .

As Equ. (2) suggested, to induce semantic con-
straints in a straightforward way, one would proceed
as follows: firstly, perform word semantic cluster-
ing with, say, their compact representations in the
LSA-space; secondly, construct cluster generating
dependencies by specifying the conditional distribu-
tion of P (F |E); and finally, for each word pair, in-
duce the semantic constraint by considering all pos-
sible semantic labeling schemes. We approximate
this long process with simply finding word similar-
ities defined by their cosine distance in the low di-
mension space:

Con(f, e) =
1
2
(cos(ufS, ueS) + 1) (3)

The linear mapping above is introduced to avoid
negative constraints and to set the maximum con-
straint value as 1.

In building word alignment models, a special
“NULL” word is usually introduced to address tar-
get words that align to no source words. Since this
physically non-existing word is not in the vocabu-
lary of the bilingual LSA, we use the centroid of all
source words as its vector representation in the LSA-
space. The semantic constraints between “NULL”
and any target words can be derived in the same way.
However, this is chosen for mostly computational
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convenience, and is not the only way to address the
empty word issue.

2.2.2 Utilizing Word Alignment Statistics
While the simple bag-of-word model puts all

source words and target words as rows in the ma-
trix, another method of deriving semantic constraint
constructs the sparse matrix by taking source words
as rows and target words as columns and uses statis-
tics from word alignment training to form word pair
co-occurrence association.

More specifically, we regard each target word f as
a “document” and each source word e as a “term”.
The number of occurrences of the source word e in
the document f is defined as the expected number
of times that f generates e in the parallel corpus
under the word alignment model. This method re-
quires training the baseline word alignment model
in another direction by taking fs as source words
and es as target words, which is often done for
symmetric alignments, and then dumping out the
soft counts when model converges. We threshold
the minimum word-to-word translation probability
to remove word pairs that have low co-occurrence
counts.

Following the similarity induced semantic con-
straints in section 2.2.1, we need to find the distance
between a term and a document. Let vf be the pro-
jection of the document representing the target word
f and ue the projection of the term representing the
source word e after performing SVD on the sparse
matrix, we calculate the similarity between (f, e)
and then find their semantic constraint to be

Con(f, e) =
1
2
(cos(vfS1/2, ueS

1/2) + 1) (4)

Unlike the method in section 2.2.1, there is no
empty word issue here since we do have statistics
of the “NULL” word as a source word generating e
words and therefore there is a “document” assigned
to it.

3 Experimental Results

We test our framework on the task of large vocab-
ulary translation from dialectical (Iraqi) Arabic ut-
terances into English. The task covers multiple do-
mains including travel, emergency medical diagno-
sis, defense-oriented force protection, security and

etc. To avoid impacts of speech recognition errors,
we only report experiments from text to text transla-
tion.

The training corpus consists of 390K sentence
pairs, with total 2.43M Arabic words and 3.38M En-
glish words. These sentences are in typical spoken
transcription form, i.e., spelling errors, disfluencies,
such as word or phrase repetition, and ungrammat-
ical utterances are commonly observed. Arabic ut-
terance length ranges from 3 to 70 words with the
average of 6 words.

There are 25K entries in the English vocabulary
and 90K in Arabic side. Data sparseness severely
challenges word alignment model and consequently
automatic phrase translation induction. There are
42K singletons in Arabic vocabulary, and 14K Ara-
bic words with occurrence of twice each in the cor-
pus. Since Arabic is a morphologically rich lan-
guage where affixes are attached to stem words to
indicate gender, tense, case and etc, in order to re-
duce vocabulary size and address out-of-vocabulary
words, we split Arabic words into affix and root ac-
cording to a rule-based segmentation scheme (Xiang
et al., 2006) with the help from the Buckwalter ana-
lyzer (LDC, 2002) output. This reduces the size of
Arabic vocabulary to 52K.

Our test data consists of 1294 sentence pairs.
They are split into two parts: half of them is used as
the development set, on which training parameters
and decoding feature weights are tuned, the other
half is for test.

3.1 Training and Translation Setup
Starting from the collection of parallel training sen-
tences, we train word alignment models in two trans-
lation directions, from English to Iraqi Arabic and
from Iraqi Arabic to English, and derive two sets
of Viterbi alignments. By combining word align-
ments in two directions using heuristics (Och and
Ney, 2003), a single set of static word alignments
is then formed. All phrase pairs which respect to
the word alignment boundary constraint are iden-
tified and pooled to build phrase translation tables
with the Maximum Likelihood criterion. We prune
phrase translation entries by their probabilities. The
maximum number of tokens in Arabic phrases is set
to 5 for all conditions.

Our decoder is a phrase-based multi-stack imple-
5



mentation of the log-linear model similar to Pharaoh
(Koehn et al., 2003). Like other log-linear model
based decoders, active features in our translation en-
gine include translation models in two directions,
lexicon weights in two directions, language model,
distortion model, and sentence length penalty. These
feature weights are tuned on the dev set to achieve
optimal translation performance using downhill sim-
plex method (Och and Ney, 2002). The language
model is a statistical trigram model estimated with
Modified Kneser-Ney smoothing (Chen and Good-
man, 1996) using all English sentences in the paral-
lel training data.

We measure translation performance by the
BLEU score (Papineni et al., 2002) and Translation
Error Rate (TER) (Snover et al., 2006) with one ref-
erence for each hypothesis. Word alignment mod-
els trained with different constraints are compared
to show their effects on the resulting phrase transla-
tion tables and the final translation performance.

3.2 Translation Results
Our baseline word alignment model is the word-to-
word Hidden Markov Model (Vogel et al., 1996).
Basic models in two translation directions are
trained simultaneously where statistics of two direc-
tions are shared to learn symmetric translation lexi-
con and word alignments with high precision moti-
vated by (Zens et al., 2004) and (Liang et al., 2006).
The baseline translation results (BLEU and TER) on
the dev and test set are presented in the line “HMM”
of Table 1. We also compare with results of IBM
Model-4 word alignments implemented in GIZA++
toolkit (Och and Ney, 2003).

We study and compare two types of constraint and
see how they affect word alignments and translation
output. One is based on the entropy principle as de-
scribed in Section 2.1, where α is set to 0.9; The
other is based on bilingual latent semantic analysis.

For the simple bag-of-word bilingual LSA as de-
scribed in Section 2.2.1, after SVD on the sparse ma-
trix using the toolkit SVDPACK (Berry et al., 1993),
all source and target words are projected into a low-
dimensional (R = 88) LSA-space. Word pair se-
mantic constrains are calculated based on their sim-
ilarity as in Equ. 3 before word alignment training.
Like the baseline, we perform 6 iterations of IBM
Model-1 training and then 4 iteration of HMM train-

ing. The semantic constraints are used to guide word
alignment model training for each iteration. The
BLEU score and TER with this constraint are shown
in the line “BiLSA-1” of Table 1.

To exploit word alignment statistics in bilingual
LSA as described in Section 2.2.2, we dump out the
statistics of the baseline word alignment model and
use them to construct the sparse matrix. We find
low-dimensional representation (R = 67) of English
words and Arabic words and use their similarity to
establish semantic constraints as in Equ. 4. The
training procedure is the same as the baseline and
“BiLSA-1”. The translation results with these word
alignments are shown as “BiLSA-2” in Table 1.

As Table 1 shows, when the entropy based con-
straints are applied, BLEU score improves 0.5 point
on the test set. Clearly, when bilingual LSA con-
straints are applied, translation performance can be
improved up to 1.6 BLEU points. We also observe
that TER can drop 2.1 points with the “BiLSA-1”
constraint.

While “BiLSA-1” constraint performs better on
the test set, “BiLSA-2” constraint achieves slightly
higher BLEU score on the dev set. We then
try a simple combination of these two types
of constraints, that is the geometric mean of
ConBiLSA−1(f, e) and ConBiLSA−2(f, e), and find
out that BLEU score can be improved a little bit fur-
ther on both sets as the line “Mix” shows.

We notice that the relatively simpler HMM model
can perform comparable or better than the sophis-
ticated Model-4 when proper constraints are active
in guiding word alignment model training. We also
try to put constraints in Model-4. As the Equation
1 implies, when a word-to-word generative proba-
bility is needed, one should multiply corresponding
lexicon entry in the t-table with the word pair con-
straint. We simply modify the GIZA++ toolkit (Och
and Ney, 2003) by always weighting lexicon proba-
bilities with soft constraints during iterative model
training, and obtain 0.7% TER reduction on both
sets and 0.4% BLEU improvement on the test set.

3.3 Analysis
To understand how prior knowledge encoded as soft
constraints plays a role in guiding word alignment
training, we compare statistics of different word
alignment models. We find that our baseline HMM
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Table 1: Translation Results with different word
alignments.

BLEU TERAlignments
dev test dev test

Model-4 0.310 0.296 0.528 0.530
+Mix 0.306 0.300 0.521 0.523
HMM 0.289 0.288 0.543 0.542
+Entropy 0.289 0.293 0.534 0.536
+BiLSA-1 0.294 0.300 0.531 0.521
+BiLSA-2 0.298 0.292 0.530 0.528
+Mix 0.302 0.304 0.532 0.524

generates 2.6% less number of total word links than
that of Model-4. Part of the reason is that mod-
els of two directions in the baseline are trained si-
multaneously. The requirement of bi-directional ev-
idence places a certain constraint on word align-
ments. When “BiLSA-1” constraints are applied in
the baseline model, 2.7% less number of total word
links are hypothesized, and consequently, less num-
ber of Arabic n-gram translations in the final phrase
translation table are induced. The observation sug-
gests that the constraints improve word alignment
precision and accuracy of phrase translation tables
as well.

 

bAl_ mrM mAl _tk 

in your esophagus 

HMM 

bAl_ mrM mAl _tk 

in your esophagus 

+BiLSA-1 

bAl_ mrM mAl _tk 

in your esophagus 

Model-4 

(in) (esophagus) gloss (ownership) (yours) 

Figure 4: An example of word alignments under dif-
ferent models

Figure 4 shows example word alignments of a par-
tial sentence pair. The complete English sentence is
“have you ever had like any reflux diseases in your
esophagus”. We notice that the Arabic word “mrM”
(means esophagus) appears only once in the corpus.
Some of the word pair constraints are listed in Ta-
ble 2. The example demos that due to reasonable
constraints placed in word alignment training, the
link to “ tK” is corrected and consequently we have
accurate word translation for the Arabic singleton

Table 2: Word pair constraint values
English e Arabic f ConBiLSA−1(f, e)
esophagus mrM 0.6424

mAl 0.1819
tk 0.2897

your mrM 0.6319
mAl 0.4930

tk 0.9672

“mrM”.

4 Related Work

Heuristics based on co-occurrence analysis, such as
point-wise mutual information or Dice coefficients
, have been shown to be indicative for word align-
ments (Zhang and Vogel, 2005; Melamed, 2000).
The framework presented in this paper demonstrates
the possibility of taking heuristics as constraints
guiding statistical generative word alignment model
training. Their effectiveness can be expected espe-
cially when data sparseness is severe.

Discriminative word alignment models, such as
Ittycheriah and Roukos (2005); Moore (2005);
Blunsom and Cohn (2006), have received great
amount of study recently. They have proven that lin-
guistic knowledge is useful in modeling word align-
ments under log-linear distributions as morphologi-
cal, semantic or syntactic features. Our framework
proposes to exploit these features differently by tak-
ing them as soft constraints of translation lexicon un-
der a generative model.

While word alignments can help identifying se-
mantic relations (van der Plas and Tiedemann,
2006), we proceed in the reverse direction. We in-
vestigate the impact of semantic constraints on sta-
tistical word alignment models as prior knowledge.
In (Ma et al., 2004), bilingual semantic maps are
constructed to guide word alignment. The frame-
work we proposed seamlessly integrates derived se-
mantic similarities into a statistical word alignment
model. And we extended monolingual latent seman-
tic analysis in bilingual applications.

Toutanova et al. (2002) augmented bilingual sen-
tence pairs with part-of-speech tags as linguistic
constraints for HMM-based word alignments. The
constraints between tags are automatically learned
in a parallel generative procedure along with lex-
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icon. We have introduced hidden tags between a
word pair to specialize their soft constraints, which
serve as prior knowledge that will be used in guiding
word alignment model training. Constraint between
tags are embedded into the word to word generative
process.

5 Conclusions and Future Work

We have presented a simple and effective framework
to incorporate prior knowledge such as heuristics
or linguistic features into statistical generative word
alignment models. Prior knowledge serves as soft
constraints that shall be placed on translation lexi-
con to guide word alignment model training and dis-
ambiguation during Viterbi alignment process. We
studied two types of constraints that can be obtained
automatically from data and showed improved per-
formance (up to 1.6% absolute BLEU increase or
2.1% absolute TER reduction) in translating dialec-
tical Arabic into English. Future work includes im-
plementing the idea in alternative alignment mod-
els and also exploiting prior knowledge derived from
such as manually-aligned data and pre-existing lin-
guistic resources.

Acknowledgement We thank Mohamed Afify for
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Abstract

We present a global discriminative statistical
word order model for machine translation.
Our model combines syntactic movement
and surface movement information, and is
discriminatively trained to choose among
possible word orders. We show that com-
bining discriminative training with features
to detect these two different kinds of move-
ment phenomena leads to substantial im-
provements in word ordering performance
over strong baselines. Integrating this word
order model in a baseline MT system results
in a 2.4 points improvement in BLEU for
English to Japanese translation.

1 Introduction

The machine translation task can be viewed as con-
sisting of two subtasks: predicting the collection of
words in a translation, and deciding the order of the
predicted words. For some language pairs, such as
English and Japanese, the ordering problem is es-
pecially hard, because the target word order differs
significantly from the source word order.

Previous work has shown that it is useful to model
target language order in terms of movement of syn-
tactic constituents in constituency trees (Yamada
and Knight, 2001; Galley et al., 2006) or depen-
dency trees (Quirk et al., 2005), which are obtained
using a parser trained to determine linguistic con-
stituency. Alternatively, order is modelled in terms
of movement of automatically induced hierarchical
structure of sentences (Chiang, 2005; Wu, 1997).

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

The advantages of modeling how a target lan-
guage syntax tree moves with respect to a source lan-
guage syntax tree are that (i) we can capture the fact
that constituents move as a whole and generally re-
spect the phrasal cohesion constraints (Fox, 2002),
and (ii ) we can model broad syntactic reordering
phenomena, such as subject-verb-object construc-
tions translating into subject-object-verb ones, as is
generally the case for English and Japanese.

On the other hand, there is also significant amount
of information in the surface strings of the source
and target and their alignment. Many state-of-the-art
SMT systems do not use trees and base the ordering
decisions on surface phrases (Och and Ney, 2004;
Al-Onaizan and Papineni, 2006; Kuhn et al., 2006).
In this paper we develop an order model for machine
translation which makes use of both syntactic and
surface information.

The framework for our statistical model is as fol-
lows. We assume the existence of a dependency tree
for the source sentence, an unordered dependency
tree for the target sentence, and a word alignment
between the target and source sentences. Figure 1
(a) shows an example of aligned source and target
dependency trees. Our task is to order the target de-
pendency tree.

We train a statistical model to select the best or-
der of the unordered target dependency tree. An im-
portant advantage of our model is that it is global,
and does not decompose the task of ordering a tar-
get sentence into a series of local decisions, as in the
recently proposed order models for Machine Transi-
tion (Al-Onaizan and Papineni, 2006; Xiong et al.,
2006; Kuhn et al., 2006). Thus we are able to define
features over complete target sentence orders, and
avoid the independence assumptions made by these

9



all constraints are satisfied

[ ] [ ] [ ] [ ][ ] [ ]

“restriction”“condition” TOPIC “all” “satisfy” PASSIVE-PRES

(a) (b)

Figure 1: (a) A sentence pair with source depen-
dency tree, projected target dependency tree, and
word alignments. (b) Example orders violating the
target tree projectivity constraints.

models. Our model is discriminatively trained to se-
lect the best order (according to the BLEU measure)
(Papineni et al., 2001) of an unordered target depen-
dency tree from the space of possible orders.

Since the space of all possible orders of an un-
ordered dependency tree is factorially large, we train
our model on N-best lists of possible orders. These
N-best lists are generated using approximate search
and simpler models, as in the re-ranking approach of
(Collins, 2000).

We first evaluate our model on the task of ordering
target sentences, given correct (reference) unordered
target dependency trees. Our results show that com-
bining features derived from the source and tar-
get dependency trees, distortion surface order-based
features (like the distortion used in Pharaoh (Koehn,
2004)) and language model-like features results in a
model which significantly outperforms models using
only some of the information sources.

We also evaluate the contribution of our model
to the performance of an MT system. We inte-
grate our order model in the MT system, by simply
re-ordering the target translation sentences output
by the system. The model resulted in an improve-
ment from 33.6 to 35.4 BLEU points in English-to-
Japanese translation on a computer domain.

2 Task Setup

The ordering problem in MT can be formulated as
the task of ordering a target bag of words, given a
source sentence and word alignments between tar-
get and source words. In this work we also assume
a source dependency tree and an unordered target
dependency tree are given. Figure 1(a) shows an ex-
ample. We build a model that predicts an order of
the target dependency tree, which induces an order

on the target sentence words. The dependency tree
constrains the possible orders of the target sentence
only to the ones that are projective with respect to
the tree. An order of the sentence is projective with
respect to the tree if each word and its descendants
form a contiguous subsequence in the ordered sen-
tence. Figure 1(b) shows several orders of the sen-
tence which violate this constraint.1

Previous studies have shown that if both the
source and target dependency trees represent lin-
guistic constituency, the alignment between subtrees
in the two languages is very complex (Wellington et
al., 2006). Thus such parallel trees would be difficult
for MT systems to construct in translation. In this
work only the source dependency trees are linguisti-
cally motivated and constructed by a parser trained
to determine linguistic structure. The target depen-
dency trees are obtained through projection of the
source dependency trees, using the word alignment
(we use GIZA++ (Och and Ney, 2004)), ensuring
better parallelism of the source and target structures.

2.1 Obtaining Target Dependency Trees
Through Projection

Our algorithm for obtaining target dependency trees
by projection of the source trees via the word align-
ment is the one used in the MT system of (Quirk
et al., 2005). We describe the algorithm schemat-
ically using the example in Figure 1. Projection
of the dependency tree through alignments is not at
all straightforward. One of the reasons of difficulty
is that the alignment does not represent an isomor-
phism between the sentences, i.e. it is very often
not a one-to-one and onto mapping.2 If the align-
ment were one-to-one we could define the parent of
a wordwt in the target to be the target word aligned
to the parent of the source wordsi aligned towt. An
additional difficulty is that such a definition could re-
sult in a non-projective target dependency tree. The
projection algorithm of (Quirk et al., 2005) defines
heuristics for each of these problems. In case of
one-to-many alignments, for example, the case of
“constraints” aligning to the Japanese words for “re-
striction” and “condition”, the algorithm creates a

1For example, in the first order shown, the descendants of
word 6 are not contiguous and thus this order violates the con-
straint.

2In an onto mapping, every word on the target side is asso-
ciated with some word on the source side.
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subtree in the target rooted at the rightmost of these
words and attaches the other word(s) to it. In case of
non-projectivity, the dependency tree is modified by
re-attaching nodes higher up in the tree. Such a step
is necessary for our example sentence, because the
translations of the words “all” and “constraints” are
not contiguous in the target even though they form a
constituent in the source.

An important characteristic of the projection algo-
rithm is that all of its heuristics use thecorrecttarget
word order.3 Thus the target dependency trees en-
code more information than is present in the source
dependency trees and alignment.

2.2 Task Setup for Reference Sentences vs MT
Output

Our model uses input of the same form when
trained/tested on reference sentences and when used
in machine translation: a source sentence with a de-
pendency tree, an unordered target sentence with
and unordered target dependency tree, and word
alignments.

We train our model on reference sentences. In this
setting, the given target dependency tree contains the
correct bag of target words according to a reference
translation, and is projective with respect to the cor-
rect word order of the reference by construction. We
also evaluate our model in this setting; such an eval-
uation is useful because we can isolate the contribu-
tion of an order model, and develop it independently
of an MT system.

When translating new sentences it is not possible
to derive target dependency trees by the projection
algorithm described above. In this setting, we use
target dependency trees constructed by our baseline
MT system (described in detail in 6.1). The system
constructs dependency trees of the form shown in
Figure 1 for each translation hypothesis. In this case
the target dependency trees very often do not con-
tain the correct target words and/or are not projective
with respect to the best possible order.

3For example, checking which word is the rightmost for the
heuristic for one-to-many mappings and checking whether the
constructed tree is projective requires knowledge of the correct
word order of the target.

3 Language Model with Syntactic
Constraints: A Pilot Study

In this section we report the results of a pilot study to
evaluate the difficulty of ordering a target sentence if
we are given a target dependency tree as the one in
Figure 1, versus if we are just given an unordered
bag of target language words.

The difference between those two settings is that
when ordering a target dependency tree, many of the
orders of the sentence are not allowed, because they
would be non-projective with respect to the tree.
Figure 1 (b) shows some orders which violate the
projectivity constraint. If the given target depen-
dency tree is projective with respect to the correct
word order, constraining the possible orders to the
ones consistent with the tree can only help perfor-
mance. In our experiments on reference sentences,
the target dependency trees are projective by con-
struction. If, however, the target dependency tree
provided is not necessarily projective with respect
to the best word order, the constraint may or may
not be useful. This could happen in our experiments
on ordering MT output sentences.

Thus in this section we aim to evaluate the use-
fulness of the constraint in both settings: reference
sentences with projective dependency trees, and MT
output sentences with possibly non-projective de-
pendency trees. We also seek to establish a baseline
for our task. Our methodology is to test a simple
and effective order model, which is used by all state
of the art SMT systems – a trigram language model
– in the two settings: ordering an unordered bag of
words, and ordering a target dependency tree.

Our experimental design is as follows. Given an
unordered sentencet and an unordered target de-
pendency treetree(t), we define two spaces of tar-
get sentence orders. These are the unconstrained
space of all permutations, denoted byPermutations(t)
and the space of all orders oft which are projec-
tive with respect to the target dependency tree, de-
noted byTargetProjective(t,tree(t)). For both spaces
S, we apply a standard trigram target language
model to select a most likely order from the space;
i.e., we find a target orderorder∗S (t) such that:
order∗S (t) = argmaxorder(t)∈SPrLM (order(t)).
The operator which findsorder∗S (t) is difficult to
implement since the task is NP-hard in both set-
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Reference Sentences
Space BLEU Avg. Size
Permutations 58.8 2

61

TargetProjective 83.9 2
29

MT Output Sentences
Space BLEU Avg. Size
Permutations 26.3 2

56

TargetProjective 31.7 2
25

Table 1: Performance of a tri-gram language model
on ordering reference and MT output sentences: un-
constrained or subject to target tree projectivity con-
straints.

tings, even for a bi-gram language model (Eisner
and Tromble, 2006).4 We implemented left-to-right
beam A* search for thePermutations space, and a
tree-based bottom up beam A* search for theTar-

getProjective space. To give an estimate of the search
error in each case, we computed the number of times
the correct order had a better language model score
than the order returned by the search algorithm.5

The lower bounds on search error were 4% forPer-

mutations and 2% forTargetProjective, computed on
reference sentences.

We compare the performance in BLEU of orders
selected from both spaces. We evaluate the perfor-
mance on reference sentences and on MT output
sentences. Table 1 shows the results. In addition
to BLEU scores, the table shows the median number
of possible orders per sentence for the two spaces.

The highest achievable BLEU on reference sen-
tences is 100, because we are given the correct bag
of words. The highest achievable BLEU on MT out-
put sentences is well below 100 (the BLEU score of
the MT output sentences is 33). Table 3 describes
the characteristics of the main data-sets used in the
experiments in this paper; the test sets we use in the
present pilot study are the reference test set (Ref-
test) of 1K sentences and the MT test set (MT-test)
of 1,000 sentences.

The results from our experiment show that the tar-
get tree projectivity constraint is extremely powerful
on reference sentences, where the tree given is in-
deed projective. (Recall that in order to obtain the
target dependency tree in this setting we have used
information from the true order, which explains in
part the large performance gain.)

4Even though the dependency tree constrains the space, the
number of children of a node is not bounded by a constant.

5This is an underestimate of search error, because we don’t
know if there was another (non-reference) order which had a
better score, but was not found.

The gain in BLEU due to the constraint was not
as large on MT output sentences, but was still con-
siderable. The reduction in search space size due
to the constraint is enormous. There are about230

times fewer orders to consider in the space of tar-
get projective orders, compared to the space of all
permutations. From these experiments we conclude
that the constraints imposed by a projective target
dependency tree are extremely informative. We also
conclude that the constraints imposed by the target
dependency trees constructed by our baseline MT
system are very informative as well, even though
the trees are not necessarily projective with respect
to the best order. Thus the projectivity constraint
with respect to a reasonably good target dependency
tree is useful for addressing the search and modeling
problems for MT ordering.

4 A Global Order Model for Target
Dependency Trees

In the rest of the paper we present our new word or-
der model and evaluate it on reference sentences and
in machine translation. In line with previous work
on NLP tasks such as parsing and recent work on
machine translation, we develop a discriminative or-
der model. An advantage of such a model is that we
can easily combine different kinds of features (such
as syntax-based and surface-based), and that we can
optimize the parameters of our model directly for the
evaluation measures of interest.

Additionally, we develop a globally normalized
model, which avoids the independence assumptions
in locally normalized conditional models.6 We train
a global log-linear model with a rich set of syntactic
and surface features. Because the space of possible
orders of an unordered dependency tree is factori-
ally large, we use simpler models to generate N-best
orders, which we then re-rank with a global model.

4.1 Generating N-best Orders

The simpler models which we use to generate N-best
orders of the unordered target dependency trees are
the standard trigram language model used in Section
3, and another statistical model, which we call a Lo-
cal Tree Order Model (LTOM). The LTOM model

6Those models often assume that current decisions are inde-
pendent of future observations.
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[ ]

this
-1

eliminates the six minute delay
+1

[ -2] [ ] [6] [ ] [ ] [ ] [ -1] [ ] [ ]

Pron Verb Det Funcw Funcw Noun

[kore] [niyori] [roku] [fun] [kan] [no] [okure] [ga] [kaishou] [saremasu]

Pron Posp Noun Noun Noun Posp Noun Posp Vn Auxv
“this” “by” 6 “minute” “period” “of” “delay” “eliminate” PASSIVE

Figure 2: Dependency parse on the source (English)
sentence, alignment and projected tree on the target
(Japanese) sentence. Notice that the projected tree
is only partial and is used to show the head-relative
movement.

uses syntactic information from the source and tar-
get dependency trees, and orders each local tree of
the target dependency tree independently. It follows
the order model defined in (Quirk et al., 2005).

The model assigns a probability to the position
of each target node (modifier) relative to its par-
ent (head), based on information in both the source
and target trees. The probability of an order of the
complete target dependency tree decomposes into a
product over probabilities of positions for each node
in the tree as follows:

P (order(t)|s, t) =
∏

n∈t

P (pos(n, parent(n))|s, t)

Here, position is modelled in terms of closeness
to the head in the dependency tree. The closest
pre-modifier of a given head has position−1; the
closest post-modifier has a position1. Figure 2
shows an example dependency tree pair annotated
with head-relative positions. A small set of features
is used to reflect local information in the dependency
tree to modelP (pos(n, parent(n))|s, t): (i) lexical
items ofn andparent(n), (ii ) lexical items of the
source nodes aligned ton andparent(n), (iii ) part-
of-speech of the source nodes aligned to the node
and its parent, and (iv) head-relative position of the
source node aligned to the target node.

We train a log-linear model which uses these fea-
tures on a training set of aligned sentences with
source and target dependency trees in the form of
Figure 2. The model is a local (non-sequence) clas-
sifier, because the decision on where to place each
node does not depend on the placement of any other
nodes.

Since the local tree order model learns to order
whole subtrees of the target dependency tree, and

since it uses syntactic information from the source, it
provides an alternative view compared to the trigram
language model. The example in Figure 2 shows
that the head word “eliminates” takes a dependent
“this” to the left (position−1), and on the Japanese
side, the head word “kaishou” (corresponding to
“eliminates”) takes a dependent “kore” (correspond-
ing to “this”) to the left (position−2). The trigram
language model would not capture the position of
“kore” with respect to “kaishou”, because the words
are farther than three positions away.

We use the language model and the local tree or-
der model to create N-best target dependency tree
orders. In particular, we generate the N-best lists
from a simple log-linear combination of the two
models:

P (o(t)|s, t) ∝ PLM (o(t)|t)PLTOM (o(t)|s, t)λ

whereo(t) denotes an order of the target.7 We used
a bottom-up beam A* search to generate N-best or-
ders. The performance of each of these two models
and their combination, together with the 30-best or-
acle performance on reference sentences is shown in
Table 2. As we can see, the 30-best oracle perfor-
mance of the combined model (98.0) is much higher
than the 1-best performance (92.6) and thus there is
a lot of room for improvement.

4.2 Model

The log-linear reranking model is defined as fol-
lows. For each sentence pairspl (l = 1, 2, ..., L) in
the training data, we haveN candidate target word
ordersol,1, ol,2, ..., ol,N , which are the orders gener-
ated from the simpler models. Without loss of gen-
erality, we defineol,1 to be the order with the highest
BLEU score with respect to the correct order.8

We define a set of feature functionsfm(ol,n, spl)
to describe a target word orderol,n of a given sen-
tence pairspl. In the log-linear model, a correspond-
ing weights vectorλ is used to define the distribution
over all possible candidate orders:

p(ol,n|spl, λ) = e
λF (ol,n,spl)∑

n′
e
λF (o

l,n′ ,spl)

7We used the valueλ = .5, which we selected on a devel-
opment set to maximize BLEU.

8To avoid the problem that all orders could have a BLEU
score of 0 if none of them contains a correct word four-gram,
we define sentence-level k-gram BLEU, where k is the highest
order,k ≤ 4, for which there exists a correctk-gram in at least
one of the N-Best orders.
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We train the parametersλ by minimizing the neg-
ative log-likelihood of the training data plus a
quadratic regularization term:

L(λ) = −
∑

l log p(ol,1|spi, λ) + 1
2σ2

∑
m λm

2

We also explored maximizing expected BLEU as
our objective function, but since it is not convex, the
performance was less stable and ultimately slightly
worse, as compared to the log-likelihood objective.

4.3 Features

We design features to capture both the head-relative
movement and the surface sequence movement of
words in a sentence. We experiment with different
combinations of features and show their contribu-
tion in Table 2 for reference sentences and Table 4
in machine translation. The notations used in the ta-
bles are defined as follows:
Baseline: LTOM+LM as described in Section 4.1
Word Bigram: Word bigrams of the target sen-
tence. Examples from Figure 2:“kore”+“niyori” ,
“niyori”+“roku” .
DISP: Displacement feature. For each word posi-
tion in the target sentence, we examine the align-
ment of the current word and the previous word, and
categorize the possible patterns into 3 kinds: (a) par-
allel, (b) crossing, and (c) widening. Figure 3 shows
how these three categories are defined.
Pharaoh DISP: Displacement as used in Pharaoh
(Koehn, 2004). For each position in the sentence,
the value of the feature is one less than the difference
(absolute value) of the positions of the source words
aligned to the current and the previous target word.
POSs andPOSt: POS tags on the source and target
sides. For Japanese, we have a set of 19 POS tags.
’+’ means making conjunction of features and
prev() means using the information associated with
the word from position−1.

In all explored models, we include the log-
probability of an order according to the language
model and the log-probability according to the lo-
cal tree order model, the two features used by the
baseline model.

5 Evaluation on Reference Sentences

Our experiments on ordering reference sentences
use a set of 445K English sentences with their ref-
erence Japanese translations. This is a subset of the

(a) parallel (b) crossing (c) widening

Figure 3: Displacement feature: different alignment
patterns of two contiguous words in the target sen-
tence.

set MT-train in Table 3. The sentences were anno-
tated with alignment (using GIZA++ (Och and Ney,
2004)) and syntactic dependency structures of the
source and target, obtained as described in Section
2. Japanese POS tags were assigned by an automatic
POS tagger, which is a local classifier not using tag
sequence information.

We used 400K sentence pairs from the complete
set to train the first pass models: the language model
was trained on 400K sentences, and the local tree
order model was trained on 100K of them. We gen-
erated N-best target tree orders for the rest of the
data (45K sentence pairs), and used it for training
and evaluating the re-ranking model. The re-ranking
model was trained on 44K sentence pairs. All mod-
els were evaluated on the remaining 1,000 sentence
pairs set, which is the set Ref-test in Table 3.

The top part of Table 2 presents the 1-best
BLEU scores (actual performance) and 30-best or-
acle BLEU scores of the first-pass models and their
log-linear combination, described in Section 4. We
can see that the combination of the language model
and the local tree order model outperformed either
model by a large margin. This indicates that combin-
ing syntactic (from the LTOM model) and surface-
based (from the language model) information is very
effective even at this stage of selecting N-best orders
for re-ranking. According to the 30-best oracle per-
formance of the combined model LTOM+LM, 98.0
BLEU is the upper bound on performance of our re-
ranking approach.

The bottom part of the table shows the perfor-
mance of the global log-linear model, when features
in addition to the scores from the two first-pass mod-
els are added to the model. Adding word-bigram
features increased performance by about 0.6 BLEU
points, indicating that training language-model like
features discriminatively to optimize ordering per-
formance, is indeed worthwhile. Next we compare
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First-pass models
Model BLEU

1 best 30 best

Lang Model (Permutations) 58.8 71.2
Lang Model (TargetProjective) 83.9 95.0
Local Tree Order Model 75.8 87.3
Local Tree Order Model + Lang Model 92.6 98.0

Re-ranking Models
Features BLEU

Baseline 92.60
Word Bigram 93.19
Pharaoh DISP 92.94
DISP 93.57
DISP+POSs 94.04
DISP+POSs+POSt 94.14
DISP+POSs+POSt, prev(DISP)+POSs+POSt 94.34
DISP+POSs+POSt, prev(DISP)+POSs+POSt, WB 94.50

Table 2: Performance of the first-pass order models
and 30-best oracle performance, followed by perfor-
mance of re-ranking model for different feature sets.
Results are on reference sentences.

the Pharaoh displacement feature to the displace-
ment feature we illustrated in Figure 3. We can
see that the Pharaoh displacement feature improves
performance of the baseline by .34 points, whereas
our displacement feature improves performance by
nearly 1 BLEU point. Concatenating the DISP fea-
ture with the POS tag of the source word aligned to
the current word improved performance slightly.

The results show that surface movement features
(i.e. the DISP feature) improve the performance
of a model using syntactic-movement features (i.e.
the LTOM model). Additionally, adding part-of-
speech information from both languages in combi-
nation with displacement, and using a higher order
on the displacement features was useful. The per-
formance of our best model, which included all in-
formation sources, is 94.5 BLEU points, which is a
35% improvement over the fist-pass models, relative
to the upper bound.

6 Evaluation in Machine Translation

We apply our model to machine translation by re-
ordering the translation produced by a baseline MT
system. Our baseline MT system constructs, for
each target translation hypothesis, a target depen-
dency tree. Thus we can apply our model to MT
output in exactly the same way as for reference sen-
tences, but using much noisier input: a source sen-
tence with a dependency tree, word alignment and
an unordered target dependency tree as the example
shown in Figure 2. The difference is that the target
dependency tree will likely not contain the correct

data set num sent. English Japanese
avg. len vocab avg. len vocab

MT-train 500K 15.8 77K 18.7 79K
MT-test 1K 17.5 – 20.9 –
Ref-test 1K 17.5 – 21.2 –

Table 3: Main data sets used in experiments.

target words and/or will not be projective with re-
spect to the best possible order.

6.1 Baseline MT System

Our baseline SMT system is the system of Quirk et
al. (2005). It translates by first deriving a depen-
dency tree for the source sentence and then trans-
lating the source dependency tree to a target depen-
dency tree, using a set of probabilistic models. The
translation is based on treelet pairs. A treelet is a
connected subgraph of the source or target depen-
dency tree. A treelet translation pair is a pair of
word-aligned source and target treelets.

The baseline SMT model combines this treelet
translation model with other feature functions — a
target language model, a tree order model, lexical
weighting features to smooth the translation prob-
abilities, word count feature, and treelet-pairs count
feature. These models are combined as feature func-
tions in a (log)linear model for predicting a target
sentence given a source sentence, in the framework
proposed by (Och and Ney, 2002). The weights
of this model are trained to maximize BLEU (Och
and Ney, 2004). The SMT system is trained using
the same form of data as our order model: parallel
source and target dependency trees as in Figure 2.

Of particular interest are the components in the
baseline SMT system contributing most to word or-
der decisions. The SMT system uses the same target
language trigram model and local tree order model,
as we are using for generating N-best orders for re-
ranking. Thus the baseline system already uses our
first-pass order models and only lacks the additional
information provided by our re-ranking order model.

6.2 Data and Experimental Results

The baseline MT system was trained on the MT-train
dataset described in Table 3. The test set for the MT
experiment is a 1K sentences set from the same do-
main (shown as MT-test in the table). The weights
in the linear model used by the baseline SMT system
were tuned on a separate development set.

Table 4 shows the performance of the first-pass
models in the top part, and the performance of our
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First-pass models
Model BLEU

1 best 30 best

Baseline MT System 33.0 –
Lang Model (Permutations) 26.3 28.7
Lang Model (TargetCohesive) 31.7 35.0
Local Tree Order Model 27.2 31.5
Local Tree Order Model + Lang Model 33.6 36.0

Re-ranking Models
Features BLEU

Baseline 33.56
Word Bigram 34.11
Pharaoh DISP 34.67
DISP 34.90
DISP+POSs 35.28
DISP+POSs+POSt 35.22
DISP+POSs+POSt, prev(DISP)+POSs+POSt 35.33
DISP+POSs+POSt, prev(DISP)+POSs+POSt, WB 35.37

Table 4: Performance of the first pass order models
and 30-best oracle performance, followed by perfor-
mance of re-ranking model for different feature sets.
Results are in MT.

re-ranking model in the bottom part. The first row
of the table shows the performance of the baseline
MT system, which is a BLEU score of 33. Our first-
pass and re-ranking models re-order the words of
this 1-best output from the MT system. As for ref-
erence sentences, the combination of the two first-
pass models outperforms the individual models. The
1-best performance of the combination is 33.6 and
the 30-best oracle is 36.0. Thus the best we could
do with our re-ranking model in this setting is 36
BLEU points.9 Our best re-ranking model achieves
2.4 BLEU points improvement over the baseline MT
system and 1.8 points improvement over the first-
pass models, as shown in the table. The trends here
are similar to the ones observed in our reference ex-
periments, with the difference that target POS tags
were less useful (perhaps due to ungrammatical can-
didates) and the displacement features were more
useful. We can see that our re-ranking model al-
most reached the upper bound oracle performance,
reducing the gap between the first-pass models per-
formance (33.6) and the oracle (36.0) by 75%.

7 Conclusions and Future Work

We have presented a discriminative syntax-based or-
der model for machine translation, trained to to se-

9Notice that the combination of our two first-pass models
outperforms the baseline MT system by half a point (33.6 ver-
sus 33.0). This is perhaps due to the fact that the MT system
searches through a much larger space (possible word transla-
tions in addition to word orders), and thus could have a higher
search error.

lect from the space of orders projective with respect
to a target dependency tree. We investigated a com-
bination of features modeling surface movement and
syntactic movement phenomena and showed that
these two information sources are complementary
and their combination is powerful. Our results on or-
dering MT output and reference sentences were very
encouraging. We obtained substantial improvement
by the simple method of post-processing the 1-best
MT output to re-order the proposed translation. In
the future, we would like to explore tighter integra-
tion of our order model with the SMT system and to
develop more accurate algorithms for constructing
projective target dependency trees in translation.
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Abstract

Extracting tree transducer rules for syntac-
tic MT systems can be hindered by word
alignment errors that violate syntactic corre-
spondences. We propose a novel model for
unsupervised word alignment which explic-
itly takes into account target language con-
stituent structure, while retaining the robust-
ness and efficiency of the HMM alignment
model. Our model’s predictions improve the
yield of a tree transducer extraction system,
without sacrificing alignment quality. We
also discuss the impact of various posterior-
based methods of reconciling bidirectional
alignments.

1 Introduction

Syntactic methods are an increasingly promising ap-
proach to statistical machine translation, being both
algorithmically appealing (Melamed, 2004; Wu,
1997) and empirically successful (Chiang, 2005;
Galley et al., 2006). However, despite recent
progress, almost all syntactic MT systems, indeed
statistical MT systems in general, build upon crude
legacy models of word alignment. This dependence
runs deep; for example, Galley et al. (2006) requires
word alignments to project trees from the target lan-
guage to the source, while Chiang (2005) requires
alignments to induce grammar rules.

Word alignment models have not stood still in re-
cent years. Unsupervised methods have seen sub-
stantial reductions in alignment error (Liang et al.,
2006) as measured by the now much-maligned AER
metric. A host of discriminative methods have been
introduced (Taskar et al., 2005; Moore, 2005; Ayan

and Dorr, 2006). However, few of these methods
have explicitly addressed the tension between word
alignments and the syntactic processes that employ
them (Cherry and Lin, 2006; Daumé III and Marcu,
2005; Lopez and Resnik, 2005).

We are particularly motivated by systems like the
one described in Galley et al. (2006), which con-
structs translations using tree-to-string transducer
rules. These rules are extracted from a bitext anno-
tated with both English (target side) parses and word
alignments. Rules are extracted from target side
constituents that can be projected onto contiguous
spans of the source sentence via the word alignment.
Constituents that project onto non-contiguous spans
of the source sentence do not yield transducer rules
themselves, and can only be incorporated into larger
transducer rules. Thus, if the word alignment of a
sentence pair does not respect the constituent struc-
ture of the target sentence, then the minimal transla-
tion units must span large tree fragments, which do
not generalize well.

We present and evaluate an unsupervised word
alignment model similar in character and compu-
tation to the HMM model (Ney and Vogel, 1996),
but which incorporates a novel, syntax-aware distor-
tion component which conditions on target language
parse trees. These trees, while automatically gener-
ated and therefore imperfect, are nonetheless (1) a
useful source of structural bias and (2) the same trees
which constrain future stages of processing anyway.
In our model, the trees do not rule out any align-
ments, but rather softly influence the probability of
transitioning between alignment positions. In par-
ticular, transition probabilities condition upon paths
through the target parse tree, allowing the model to
prefer distortions which respect the tree structure.
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Our model generates word alignments that better
respect the parse trees upon which they are condi-
tioned, without sacrificing alignment quality. Using
the joint training technique of Liang et al. (2006)
to initialize the model parameters, we achieve an
AER superior to the GIZA++ implementation of
IBM model 4 (Och and Ney, 2003) and a reduc-
tion of 56.3% in aligned interior nodes, a measure
of agreement between alignments and parses. As a
result, our alignments yield more rules, which better
match those we would extract had we used manual
alignments.

2 Translation with Tree Transducers

In a tree transducer system, as in phrase-based sys-
tems, the coverage and generality of the transducer
inventory is strongly related to the effectiveness of
the translation model (Galley et al., 2006). We will
demonstrate that this coverage, in turn, is related to
the degree to which initial word alignments respect
syntactic correspondences.

2.1 Rule Extraction

Galley et al. (2004) proposes a method for extracting
tree transducer rules from a parallel corpus. Given a
source language sentence s, a target language parse
tree t of its translation, and a word-level alignment,
their algorithm identifies the constituents in t which
map onto contiguous substrings of s via the align-
ment. The root nodes of such constituents – denoted
frontier nodes – serve as the roots and leaves of tree
fragments that form minimal transducer rules.

Frontier nodes are distinguished by their compat-
ibility with the word alignment. For a constituent c
of t, we consider the set of source words sc that are
aligned to c. If none of the source words in the lin-
ear closure s∗c (the words between the leftmost and
rightmost members of sc) aligns to a target word out-
side of c, then the root of c is a frontier node. The
remaining interior nodes do not generate rules, but
can play a secondary role in a translation system.1

The roots of null-aligned constituents are not fron-
tier nodes, but can attach productively to multiple
minimal rules.

1Interior nodes can be used, for instance, in evaluating
syntax-based language models. They also serve to differentiate
transducer rules that have the same frontier nodes but different
internal structure.

Two transducer rules, t1 → s1 and t2 → s2,
can be combined to form larger translation units
by composing t1 and t2 at a shared frontier node
and appropriately concatenating s1 and s2. How-
ever, no technique has yet been shown to robustly
extract smaller component rules from a large trans-
ducer rule. Thus, for the purpose of maximizing the
coverage of the extracted translation model, we pre-
fer to extract many small, minimal rules and gen-
erate larger rules via composition. Maximizing the
number of frontier nodes supports this goal, while
inducing many aligned interior nodes hinders it.

2.2 Word Alignment Interactions

We now turn to the interaction between word align-
ments and the transducer extraction algorithm. Con-
sider the example sentence in figure 1A, which
demonstrates how a particular type of alignment er-
ror prevents the extraction of many useful transducer
rules. The mistaken link [la ⇒ the] intervenes be-
tween axés and carrièr, which both align within an
English adjective phrase, while la aligns to a distant
subspan of the English parse tree. In this way, the
alignment violates the constituent structure of the
English parse.

While alignment errors are undesirable in gen-
eral, this error is particularly problematic for a
syntax-based translation system. In a phrase-based
system, this link would block extraction of the
phrases [axés sur la carrièr ⇒ career oriented] and
[les emplois ⇒ the jobs] because the error overlaps
with both. However, the intervening phrase [em-
plois sont ⇒ jobs are] would still be extracted, at
least capturing the transfer of subject-verb agree-
ment. By contrast, the tree transducer extraction
method fails to extract any of these fragments: the
alignment error causes all non-terminal nodes in
the parse tree to be interior nodes, excluding pre-
terminals and the root. Figure 1B exposes the conse-
quences: a wide array of desired rules are lost during
extraction.

The degree to which a word alignment respects
the constituent structure of a parse tree can be quan-
tified by the frequency of interior nodes, which indi-
cate alignment patterns that cross constituent bound-
aries. To achieve maximum coverage of the trans-
lation model, we hope to infer tree-violating align-
ments only when syntactic structures truly diverge.
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(ii)

S

NP VP

ADJP

NN VBN

NNSDT AUX
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oriented .

les
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axés

sur

la

carrière

.

.
Legend

Correct proposed word alignment consistent with 
human annotation.

Proposed word alignment error inconsistent with 
human annotation.

Word alignment constellation that renders the 
root of the relevant constituent to be an interior 
node.

Word alignment constellation that would allow a 

phrase extraction in a phrase-based translation 

system, but which does not correspond to an 

English constituent.

Bold

Italic

Frontier node (agrees with alignment)

Interior node (inconsistent with alignment)

(S (NP (DT[0] NNS[1]) (VP AUX[2] (ADJV NN[3] VBN[4]) .[5]) → [0] [1] [2] [3] [4] [5]
(S (NP (DT[0] (NNS jobs)) (VP AUX[1] (ADJV NN[2] VBN[3]) .[4]) → [0] sont [1] [2] [3] [4]
(S (NP (DT[0] (NNS jobs)) (VP (AUX are) (ADJV NN[1] VBN[2]) .[3]) → [0] emplois sont [1] [2] [3]

(S NP[0] VP[1] .[2]) → [0] [1] [2]
(S (NP (DT[0] NNS[1]) VP[2] .[3]) → [0] [1] [2] [3]
(S (NP (DT[0] (NNS jobs)) VP[2] .[3]) → [0] emplois [2] [3]
(S (NP (DT[0] (NNS jobs)) (VP AUX[1] ADJV[2]) .[3]) → [0] emplois [1] [2] [3]
(S (NP (DT[0] (NNS jobs)) (VP (AUX are) ADJV[1]) .[2]) → [0] emplois sont [1] [2]

Figure 1: In this transducer extraction example, (A) shows a proposed alignment from our test set with
an alignment error that violates the constituent structure of the English sentence. The resulting frontier
nodes are printed in bold; all nodes would be frontier nodes under a correct alignment. (B) shows a small
sample of the rules extracted under the proposed alignment, (ii), and the correct alignment, (i) and (ii). The
single alignment error prevents the extraction of all rules in (i) and many more. This alignment pattern was
observed in our test set and corrected by our model.

3 Unsupervised Word Alignment

To allow for this preference, we present a novel con-
ditional alignment model of a foreign (source) sen-
tence f = {f1, ..., fJ} given an English (target) sen-
tence e = {e1, ..., eI} and a target tree structure t.
Like the classic IBM models (Brown et al., 1994),
our model will introduce a latent alignment vector
a = {a1, ..., aJ} that specifies the position of an
aligned target word for each source word. Formally,
our model describes p(a, f|e, t), but otherwise bor-
rows heavily from the HMM alignment model of
Ney and Vogel (1996).

The HMM model captures the intuition that the

alignment vector a will in general progress across
the sentence e in a pattern which is mostly local, per-
haps with a few large jumps. That is, alignments are
locally monotonic more often than not.

Formally, the HMM model factors as:

p(a, f|e) =
J∏

j=1

pd(aj |aj− , j)p`(fj |eaj )

where j− is the position of the last non-null-aligned
source word before position j, p` is a lexical transfer
model, and pd is a local distortion model. As in all
such models, the lexical component p` is a collec-
tion of unsmoothed multinomial distributions over
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foreign words.
The distortion model pd(aj |aj− , j) is a distribu-

tion over the signed distance aj − aj− , typically
parameterized as a multinomial, Gaussian or expo-
nential distribution. The implementation that serves
as our baseline uses a multinomial distribution with
separate parameters for j = 1, j = J and shared
parameters for all 1 < j < J . Null alignments have
fixed probability at any position. Inference over a
requires only the standard forward-backward algo-
rithm.

3.1 Syntax-Sensitive Distortion
The broad and robust success of the HMM align-
ment model underscores the utility of its assump-
tions: that word-level translations can be usefully
modeled via first-degree Markov transitions and in-
dependent lexical productions. However, its distor-
tion model considers only string distance, disregard-
ing the constituent structure of the English sentence.

To allow syntax-sensitive distortion, we consider
a new distortion model of the form pd(aj |aj− , j, t).
We condition on t via a generative process that tran-
sitions between two English positions by traversing
the unique shortest path ρ(aj− ,aj ,t) through t from
aj− to aj . We constrain ourselves to this shortest
path using a staged generative process.

Stage 1 (POP(n̂), STOP(n̂)): Starting in the leaf
node at aj− , we choose whether to STOP or
POP from child to parent, conditioning on the
type of the parent node n̂. Upon choosing
STOP, we transition to stage 2.

Stage 2 (MOVE(n̂, d)): Again, conditioning on the
type of the parent n̂ of the current node n, we
choose a sibling n̄ based on the signed distance
d = φn̂(n) − φn̂(n̄), where φn̂(n) is the index
of n in the child list of n̂. Zero distance moves
are disallowed. After exactly one MOVE, we
transition to stage 3.

Stage 3 (PUSH(n, φn(n̆))): Given the current node
n, we select one of its children n̆, conditioning
on the type of n and the position of the child
φn(n̆). We continue to PUSH until reaching a
leaf.

This process is a first-degree Markov walk
through the tree, conditioning on the current node

Stage 1: { Pop(VBN), Pop(ADJP), Pop(VP), Stop(S) }
Stage 2: { Move(S, -1) }
Stage 3: { Push(NP, 1), Push(DT, 1) }

S

NP VP

ADJP

NN VBN

NNSDT AUX

The jobs are career oriented .

.

Figure 2: An example sequence of staged tree tran-
sitions implied by the unique shortest path from the
word oriented (aj− = 5) to the word the (aj = 1).

and its immediate surroundings at each step. We en-
force the property that ρ(aj− ,aj ,t) be unique by stag-
ing the process and disallowing zero distance moves
in stage 2. Figure 2 gives an example sequence of
tree transitions for a small parse tree.

The parameterization of this distortion model fol-
lows directly from its generative process. Given a
path ρ(aj− ,aj ,t) with r = k + m + 3 nodes including
the two leaves, the nearest common ancestor, k in-
tervening nodes on the ascent and m on the descent,
we express it as a triple of staged tree transitions that
include k POPs, a STOP, a MOVE, and m PUSHes: {POP(n2), ..., POP(nk+1), STOP(nk+2)}

{MOVE (nk+2, φ(nk+3)− φ(nk+1))}
{PUSH (nk+3, φ(nk+4)) , ..., PUSH (nr−1, φ(nr))}


Next, we assign probabilities to each tree transi-

tion in each stage. In selecting these distributions,
we aim to maintain the original HMM’s sensitivity
to target word order:

• Selecting POP or STOP is a simple Bernoulli
distribution conditioned upon a node type.

• We model both MOVE and PUSH as multino-
mial distributions over the signed distance in
positions (assuming a starting position of 0 for
PUSH), echoing the parameterization popular
in implementations of the HMM model.

This model reduces to the classic HMM distor-
tion model given minimal English trees of only uni-
formly labeled pre-terminals and a root node. The
classic 0-distance distortion would correspond to the
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Figure 3: For this example sentence, the learned dis-
tortion distribution of pd(aj |aj− , j, t) resembles its
counterpart pd(aj |aj− , j) of the HMM model but re-
flects the constituent structure of the English tree t.
For instance, the short path from relieve to on gives
a high transition likelihood.

STOP probability of the pre-terminal label; all other
distances would correspond to MOVE probabilities
conditioned on the root label, and the probability of
transitioning to the terminal state would correspond
to the POP probability of the root label.

As in a multinomial-distortion implementation of
the classic HMM model, we must sometimes artifi-
cially normalize these distributions in the deficient
case that certain jumps extend beyond the ends of
the local rules. For this reason, MOVE and PUSH

are actually parameterized by three values: a node
type, a signed distance, and a range of options that
dictates a normalization adjustment.

Once each tree transition generates a score, their
product gives the probability of the entire path, and
thereby the cost of the transition between string po-
sitions. Figure 3 shows an example learned distribu-
tion that reflects the structure of the given parse.

With these derivation steps in place, we must ad-
dress a handful of special cases to complete the gen-
erative model. We require that the Markov walk
from leaf to leaf of the English tree must start and
end at the root, using the following assumptions.

1. Given no previous alignment, we forego stages

1 and 2 and begin with a series of PUSHes from
the root of the tree to the desired leaf.

2. Given no subsequent alignments, we skip
stages 2 and 3 after a series of POPs including
a pop conditioned on the root node.

3. If the first choice in stage 1 is to STOP at the
current leaf, then stage 2 and 3 are unneces-
sary. Hence, a choice to STOP immediately is
a choice to emit another foreign word from the
current English word.

4. We flatten unary transitions from the tree when
computing distortion probabilities.

5. Null alignments are treated just as in the HMM
model, incurring a fixed cost from any position.

This model can be simplified by removing all con-
ditioning on node types. However, we found this
variant to slightly underperform the full model de-
scribed above. Intuitively, types carry information
about cross-linguistic ordering preferences.

3.2 Training Approach

Because our model largely mirrors the genera-
tive process and structure of the original HMM
model, we apply a nearly identical training proce-
dure to fit the parameters to the training data via the
Expectation-Maximization algorithm. Och and Ney
(2003) gives a detailed exposition of the technique.

In the E-step, we employ the forward-backward
algorithm and current parameters to find expected
counts for each potential pair of links in each train-
ing pair. In this familiar dynamic programming ap-
proach, we must compute the distortion probabilities
for each pair of English positions.

The minimal path between two leaves in a tree can
be computed efficiently by first finding the path from
the root to each leaf, then comparing those paths to
find the nearest common ancestor and a path through
it – requiring time linear in the height of the tree.
Computing distortion costs independently for each
pair of words in the sentence imposed a computa-
tional overhead of roughly 50% over the original
HMM model. The bulk of this increase arises from
the fact that distortion probabilities in this model
must be computed for each unique tree, in contrast
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to the original HMM which has the same distortion
probabilities for all sentences of a given length.

In the M-step, we re-estimate the parameters of
the model using the expected counts collected dur-
ing the E-step. All of the component distributions
of our lexical and distortion models are multinomi-
als. Thus, upon assuming these expectations as val-
ues for the hidden alignment vectors, we maximize
likelihood of the training data simply by comput-
ing relative frequencies for each component multi-
nomial. For the distortion model, an expected count
c(aj , aj−) is allocated to all tree transitions along the
path ρ(aj− ,aj ,t). These allocations are summed and
normalized for each tree transition type to complete
re-estimation. The method of re-estimating the lexi-
cal model remains unchanged.

Initialization of the lexical model affects perfor-
mance dramatically. Using the simple but effective
joint training technique of Liang et al. (2006), we
initialized the model with lexical parameters from a
jointly trained implementation of IBM Model 1.

3.3 Improved Posterior Inference
Liang et al. (2006) shows that thresholding the pos-
terior probabilities of alignments improves AER rel-
ative to computing Viterbi alignments. That is, we
choose a threshold τ (typically τ = 0.5), and take

a = {(i, j) : p(aj = i|f, e) > τ}.

Posterior thresholding provides computationally
convenient ways to combine multiple alignments,
and bidirectional combination often corrects for
errors in individual directional alignment models.
Liang et al. (2006) suggests a soft intersection of a
model m with a reverse model r (foreign to English)
that thresholds the product of their posteriors at each
position:

a = {(i, j) : pm(aj = i|f, e) · pr(ai = j|f, e) > τ} .

These intersected alignments can be quite sparse,
boosting precision at the expense of recall. We
explore a generalized version to this approach by
varying the function c that combines pm and pr:
a = {(i, j) : c(pm, pr) > τ}. If c is the max func-
tion, we recover the (hard) union of the forward and
reverse posterior alignments. If c is the min func-
tion, we recover the (hard) intersection. A novel,

high performing alternative is the soft union, which
we evaluate in the next section:

c(pm, pr) =
pm(aj = i|f, e) + pr(ai = j|f, e)

2
.

Syntax-alignment compatibility can be further
promoted with a simple posterior decoding heuristic
we call competitive thresholding. Given a threshold
and a matrix c of combined weights for each pos-
sible link in an alignment, we include a link (i, j)
only if its weight cij is above-threshold and it is con-
nected to the maximum weighted link in both row i
and column j. That is, only the maximum in each
column and row and a contiguous enclosing span of
above-threshold links are included in the alignment.

3.4 Related Work
This proposed model is not the first variant of the
HMM model that incorporates syntax-based distor-
tion. Lopez and Resnik (2005) considers a sim-
pler tree distance distortion model. Daumé III and
Marcu (2005) employs a syntax-aware distortion
model for aligning summaries to documents, but
condition upon the roots of the constituents that are
jumped over during a transition, instead of those that
are visited during a walk through the tree. In the case
of syntactic machine translation, we want to condi-
tion on crossing constituent boundaries, even if no
constituents are skipped in the process.

4 Experimental Results

To understand the behavior of this model, we com-
puted the standard alignment error rate (AER) per-
formance metric.2 We also investigated extraction-
specific metrics: the frequency of interior nodes – a
measure of how often the alignments violate the con-
stituent structure of English parses – and a variant of
the CPER metric of Ayan and Dorr (2006).

We evaluated the performance of our model on
both French-English and Chinese-English manually
aligned data sets. For Chinese, we trained on the
FBIS corpus and the LDC bilingual dictionary, then
tested on 491 hand-aligned sentences from the 2002

2The hand-aligned test data has been annotated with both
sure alignments S and possible alignments P , with S ⊆ P , ac-
cording to the specifications described in Och and Ney (2003).
With these alignments, we compute AER for a proposed align-
ment A as:

“
1− |A∩S|+|A∩P |

|A|+|S|

”
× 100%.
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French Precision Recall AER
Classic HMM 93.9 93.0 6.5

Syntactic HMM 95.2 91.5 6.4
GIZA++ 96.0 86.1 8.6

Chinese Precision Recall AER
Classic HMM 81.6 78.8 19.8

Syntactic HMM 82.2 76.8 20.5
GIZA++∗ 61.9 82.6 29.7

Table 1: Alignment error rates (AER) for 100k train-
ing sentences. The evaluated alignments are a soft
union for French and a hard union for Chinese, both
using competitive thresholding decoding. ∗From
Ayan and Dorr (2006), grow-diag-final heuristic.

NIST MT evaluation set. For French, we used the
Hansards data from the NAACL 2003 Shared Task.3

We trained on 100k sentences for each language.

4.1 Alignment Error Rate
We compared our model to the original HMM
model, identical in implementation to our syntac-
tic HMM model save the distortion component.
Both models were initialized using the same jointly
trained Model 1 parameters (5 iterations), then
trained independently for 5 iterations. Both models
were then combined with an independently trained
HMM model in the opposite direction: f → e.4 Ta-
ble 1 summarizes the results; the two models per-
form similarly. The main benefit of our model is the
effect on rule extraction, discussed below.

We also compared our French results to the pub-
lic baseline GIZA++ using the script published for
the NAACL 2006 Machine Translation Workshop
Shared Task.5 Similarly, we compared our Chi-
nese results to the GIZA++ results in Ayan and
Dorr (2006). Our models substantially outperform
GIZA++, confirming results in Liang et al. (2006).

Table 2 shows the effect on AER of competitive
thresholding and different combination functions.

3Following previous work, we developed our system on the
37 provided validation sentences and the first 100 sentences of
the corpus test set. We used the remainder as a test set.

4Null emission probabilities were fixed to 1
|e| , inversely pro-

portional to the length of the English sentence. The decoding
threshold was held fixed at τ = 0.5.

5Training includes 16 iterations of various IBM models and
a fixed null emission probability of .01. The output of running
GIZA++ in both directions was combined via intersection.

French w/o CT with CT
Hard Intersection (Min) 8.4 8.4

Hard Union (Max) 12.3 7.7
Soft Intersection (Product) 6.9 7.1

Soft Union (Average) 6.7 6.4

Chinese w/o CT with CT
Hard Intersection (Min) 27.4 27.4

Hard Union (Max) 25.0 20.5
Soft Intersection (Product) 25.0 25.2

Soft Union (Average) 21.1 21.6

Table 2: Alignment error rates (AER) by decoding
method for the syntactic HMM model. The compet-
itive thresholding heuristic (CT) is particularly help-
ful for the hard union combination method.

The most dramatic effect of competitive threshold-
ing is to improve alignment quality for hard unions.
It also impacts rule extraction substantially.

4.2 Rule Extraction Results

While its competitive AER certainly speaks to the
potential utility of our syntactic distortion model, we
proposed the model for a different purpose: to mini-
mize the particularly troubling alignment errors that
cross constituent boundaries and violate the struc-
ture of English parse trees. We found that while the
HMM and Syntactic models have very similar AER,
they make substantially different errors.

To investigate the differences, we measured the
degree to which each set of alignments violated the
supplied parse trees, by counting the frequency of
interior nodes that are not null aligned. Figure 4
summarizes the results of the experiment for French:
the Syntactic distortion with competitive threshold-
ing reduces tree violations substantially. Interior
node frequency is reduced by 56% overall, with
the most dramatic improvement observed for clausal
constituents. We observed a similar 50% reduction
for the Chinese data.

Additionally, we evaluated our model with the
transducer analog to the consistent phrase error rate
(CPER) metric of Ayan and Dorr (2006). This evalu-
ation computes precision, recall, and F1 of the rules
extracted under a proposed alignment, relative to the
rules extracted under the gold-standard sure align-
ments. Table 3 shows improvements in F1 by using
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Figure 4: The syntactic distortion model with com-
petitive thresholding decreases the frequency of in-
terior nodes for each type and the whole corpus.

the syntactic HMM model and competitive thresh-
olding together. Individually, each of these changes
contributes substantially to this increase. Together,
their benefits are partially, but not fully, additive.

5 Conclusion

In light of the need to reconcile word alignments
with phrase structure trees for syntactic MT, we have
proposed an HMM-like model whose distortion is
sensitive to such trees. Our model substantially re-
duces the number of interior nodes in the aligned
corpus and improves rule extraction while nearly
retaining the speed and alignment accuracy of the
HMM model. While it remains to be seen whether
these improvements impact final translation accu-
racy, it is reasonable to hope that, all else equal,
alignments which better respect syntactic correspon-
dences will be superior for syntactic MT.
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Abstract

Statistical machine translation systems are
usually trained on large amounts of bilin-
gual text and monolingual text in the tar-
get language. In this paper we explore the
use of transductive semi-supervised meth-
ods for the effective use of monolingual data
from the source language in order to im-
prove translation quality. We propose sev-
eral algorithms with this aim, and present the
strengths and weaknesses of each one. We
present detailed experimental evaluations on
the French–English EuroParl data set and on
data from the NIST Chinese–English large-
data track. We show a significant improve-
ment in translation quality on both tasks.

1 Introduction

In statistical machine translation (SMT), translation
is modeled as a decision process. The goal is to find
the translationt of source sentences which maxi-
mizes the posterior probability:

arg max
t
p(t | s) = arg max

t
p(s| t) · p(t) (1)

This decomposition of the probability yields two dif-
ferent statistical models which can be trained in-
dependently of each other: the translation model
p(s| t) and the target language modelp(t).

State-of-the-art SMT systems are trained on large
collections of text which consist of bilingual corpora
(to learn the parameters ofp(s| t)), and of monolin-
gual target language corpora (forp(t)). It has been
shown that adding large amounts of target language
text improves translation quality considerably. How-
ever, the availability of monolingual corpora in the
source language does not help improve the system’s

performance. We will show how such corpora can
be used to achieve higher translation quality.

Even if large amounts of bilingual text are given,
the training of the statistical models usually suffers
from sparse data. The number of possible events,
i.e. phrase pairs or pairs of subtrees in the two lan-
guages, is too big to reliably estimate a probabil-
ity distribution over such pairs. Another problem is
that for many language pairs the amount of available
bilingual text is very limited. In this work, we will
address this problem and propose a general frame-
work to solve it. Our hypothesis is that adding infor-
mation from source language text can also provide
improvements. Unlike adding target language text,
this hypothesis is a natural semi-supervised learn-
ing problem. To tackle this problem, we propose
algorithms for transductive semi-supervised learn-
ing. By transductive, we mean that we repeatedly
translate sentences from the development set or test
set and use the generated translations to improve the
performance of the SMT system. Note that the eval-
uation step is still done just once at the end of our
learning process. In this paper, we show that such
an approach can lead to better translations despite
the fact that the development and test data are typi-
cally much smaller in size than typical training data
for SMT systems.

Transductive learning can be seen as a means to
adapt the SMT system to a new type of text. Say a
system trained on newswire is used to translate we-
blog texts. The proposed method adapts the trained
models to the style and domain of the new input.

2 Baseline MT System

The SMT system we applied in our experiments is
PORTAGE. This is a state-of-the-art phrase-based
translation system which has been made available
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to Canadian universities for research and education
purposes. We provide a basic description here; for a
detailed description see (Ueffing et al., 2007).

The models (or features) which are employed by
the decoder are: (a) one or several phrase table(s),
which model the translation directionp(s| t), (b) one
or severaln-gram language model(s) trained with
the SRILM toolkit (Stolcke, 2002); in the experi-
ments reported here, we used 4-gram models on the
NIST data, and a trigram model on EuroParl, (c)
a distortion model which assigns a penalty based
on the number of source words which are skipped
when generating a new target phrase, and (d) a word
penalty. These different models are combined log-
linearly. Their weights are optimized w.r.t. BLEU
score using the algorithm described in (Och, 2003).
This is done on a development corpus which we will
call dev1 in this paper. The search algorithm imple-
mented in the decoder is a dynamic-programming
beam-search algorithm.

After the main decoding step, rescoring with ad-
ditional models is performed. The system generates
a 5,000-best list of alternative translations for each
source sentence. These lists are rescored with the
following models: (a) the different models used in
the decoder which are described above, (b) two dif-
ferent features based on IBM Model 1 (Brown et al.,
1993), (c) posterior probabilities for words, phrases,
n-grams, and sentence length (Zens and Ney, 2006;
Ueffing and Ney, 2007), all calculated over theN -
best list and using the sentence probabilities which
the baseline system assigns to the translation hy-
potheses. The weights of these additional models
and of the decoder models are again optimized to
maximize BLEU score. This is performed on a sec-
ond development corpus, dev2.

3 The Framework

3.1 The Algorithm

Our transductive learning algorithm, Algorithm 1,
is inspired by the Yarowsky algorithm (Yarowsky,
1995; Abney, 2004). The algorithm works as fol-
lows: First, the translation model is estimated based
on the sentence pairs in the bilingual training dataL.
Then, a set of source language sentences,U , is trans-
lated based on the current model. A subset of good
translations and their sources,Ti, is selected in each

iteration and added to the training data. These se-
lected sentence pairs are replaced in each iteration,
and only the original bilingual training data,L, is
kept fixed throughout the algorithm. The process
of generating sentence pairs, selecting a subset of
good sentence pairs, and updating the model is con-
tinued until a stopping condition is met. Note that
we run this algorithm in a transductive setting which
means that the set of sentencesU is drawn either
from a development set or the test set that will be
used eventually to evaluate the SMT system or from
additional data which is relevant to the development
or test set. In Algorithm 1, changing the definition
of Estimate, ScoreandSelectwill give us the dif-
ferent semi-supervised learning algorithms we will
discuss in this paper.

Given the probability modelp(t | s), consider the
distribution over all possible valid translationst for
a particular input sentences. We can initialize
this probability distribution to the uniform distribu-
tion for each sentences in the unlabeled dataU .
Thus, this distribution over translations of sentences
from U will have the maximum entropy. Under
certain precise conditions, as described in (Abney,
2004), we can analyze Algorithm 1 as minimizing
the entropy of the distribution over translations ofU .
However, this is true only when the functionsEsti-
mate, ScoreandSelecthave very prescribed defini-
tions. In this paper, rather than analyze the conver-
gence of Algorithm 1 we run it for a fixed number
of iterations and instead focus on finding useful def-
initions for Estimate, ScoreandSelectthat can be
experimentally shown to improve MT performance.

3.2 The Estimate Function

We consider the following different definitions for
Estimate in Algorithm 1:
Full Re-training (of all translation models): If
Estimate(L, T ) estimates the model parameters
based onL ∪ T , then we have a semi-supervised al-
gorithm that re-trains a model on the original train-
ing dataL plus the sentences decoded in the last it-
eration. The size ofL can be controlled byfiltering
the training data (see Section 3.5).
Additional Phrase Table: If, on the other hand, a
new phrase translation table is learned onT only
and then added as a new component in the log-linear
model, we have an alternative to the full re-training
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Algorithm 1 Transductive learning algorithm for statistical machine translation

1: Input: training setL of parallel sentence pairs. // Bilingual training data.
2: Input: unlabeled setU of source text. // Monolingual source language data.
3: Input: number of iterationsR, and size of n-best listN .
4: T−1 := {}. // Additional bilingual training data.
5: i := 0. // Iteration counter.
6: repeat
7: Training step: π(i) := Estimate(L, Ti−1).
8: Xi := {}. // The set of generated translations for this iteration.
9: for sentences∈ U do

10: Labeling step: Decodesusingπ(i) to obtainN best sentence pairs with their scores
11: Xi := Xi ∪ {(tn, s, π(i)(tn | s))Nn=1}
12: end for
13: Scoring step: Si := Score(Xi) // Assign a score to sentence pairs(t, s) fromX.
14: Selection step: Ti := Select(Xi, Si) // Choose a subset ofgoodsentence pairs(t, s) fromX.
15: i := i+ 1.
16: until i > R

of the model on labeled and unlabeled data which
can be very expensive ifL is very large (as on the
Chinese–English data set). This additional phrase
table is small and specific to the development or
test set it is trained on. It overlaps with the origi-
nal phrase tables, but also contains many new phrase
pairs (Ueffing, 2006).
Mixture Model: Another alternative forEstimate
is to create a mixture model of the phrase table prob-
abilities with new phrase table probabilities

p(s| t) = λ · Lp(s| t) + (1− λ) · Tp(s| t) (2)

whereLp andTp are phrase table probabilities esti-
mated onL andT , respectively. In cases where new
phrase pairs are learned fromT , they get added into
the merged phrase table.

3.3 The Scoring Function

In Algorithm 1, theScorefunction assigns a score to
each translation hypothesist. We used the following
scoring functions in our experiments:
Length-normalized Score: Each translated sen-
tence pair(t, s) is scored according to the model
probabilityp(t | s) normalized by the length|t| of the
target sentence:

Score(t, s) = p(t | s) 1
|t| (3)

Confidence Estimation:The confidence estimation
which we implemented follows the approaches sug-
gested in (Blatz et al., 2003; Ueffing and Ney, 2007):

The confidence score of a target sentencet is cal-
culated as a log-linear combination of phrase pos-
terior probabilities, Levenshtein-based word poste-
rior probabilities, and a target language model score.
The weights of the different scores are optimized
w.r.t. classification error rate (CER).

The phrase posterior probabilities are determined
by summing the sentence probabilities of all trans-
lation hypotheses in theN -best list which contain
this phrase pair. The segmentation of the sentence
into phrases is provided by the decoder. This sum
is then normalized by the total probability mass of
theN -best list. To obtain a score for the whole tar-
get sentence, the posterior probabilities of all target
phrases are multiplied. The word posterior proba-
bilities are calculated on basis of the Levenshtein
alignment between the hypothesis under consider-
ation and all other translations contained in theN -
best list. For details, see (Ueffing and Ney, 2007).
Again, the single values are multiplied to obtain a
score for the whole sentence. For NIST, the lan-
guage model score is determined using a 5-gram
model trained on the English Gigaword corpus, and
on French–English, we use the trigram model which
was provided for the NAACL 2006 shared task.

3.4 The Selection Function

TheSelectfunction in Algorithm 1 is used to create
the additional training dataTi which will be used in

27



the next iterationi + 1 by Estimate to augment the
original bilingual training data. We use the follow-
ing selection functions:
Importance Sampling: For each sentences in the
set of unlabeled sentencesU , the Labeling step in
Algorithm 1 generates anN -best list of translations,
and the subsequent Scoring step assigns a score for
each translationt in this list. The set of generated
translations for all sentences inU is the event space
and the scores are used to put a probability distri-
bution over this space, simply by renormalizing the
scores described in Section 3.3. We use importance
sampling to selectK translations from this distri-
bution. Sampling is done with replacement which
means that the same translation may be chosen sev-
eral times. TheseK sampled translations and their
associated source sentences make up the additional
training dataTi.
Selection using a Threshold: This method com-
pares the score of each single-best translation to a
threshold. The translation is considered reliable and
added to the setTi if its score exceeds the thresh-
old. Else it is discarded and not used in the addi-
tional training data. The threshold is optimized on
the development beforehand. Since the scores of the
translations change in each iteration, the size ofTi
also changes.
Keep All: This method does not perform any fil-
tering at all. It is simply assumed that all transla-
tions in the setXi are reliable, and none of them are
discarded. Thus, in each iteration, the result of the
selection step will beTi = Xi. This method was
implemented mainly for comparison with other se-
lection methods.

3.5 Filtering the Training Data

In general, having more training data improves the
quality of the trained models. However, when it
comes to the translation of a particular test set, the
question is whetherall of the available training data
are relevant to the translation task or not. Moreover,
working with large amounts of training data requires
more computational power. So if we can identify a
subset of training data which are relevant to the cur-
rent task and use only this to re-train the models, we
can reduce computational complexity significantly.

We propose toFilter the training data, either
bilingual or monolingual text, to identify the parts

corpus use sentences
EuroParl phrase table+LM 688K
train100k phrase table 100K
train150k phrase table 150K
dev06 dev1 2,000
test06 test 3,064

Table 1: French–English corpora

corpus use sentences
non-UN phrase table+LM 3.2M
UN phrase table+LM 5.0M
English Gigaword LM 11.7M
multi-p3 dev1 935
multi-p4 dev2 919
eval-04 test 1,788
eval-06 test 3,940

Table 2: NIST Chinese–English corpora

which are relevant w.r.t. the test set. This filtering
is based onn-gram coverage. For a source sentence
s in the training data, itsn-gram coverage over the
sentences in the test set is computed. The average
over severaln-gram lengths is used as a measure
of relevance of this training sentence w.r.t. the test
corpus. Based on this, we select the topK source
sentences or sentence pairs.

4 Experimental Results

4.1 Setting

We ran experiments on two different corpora: one
is the French–English translation task from the Eu-
roParl corpus, and the other one is Chinese–English
translation as performed in the NIST MT evaluation
(www.nist.gov/speech/tests/mt).

For the French–English translation task, we used
the EuroParl corpus as distributed for the shared task
in the NAACL 2006 workshop on statistical ma-
chine translation. The corpus statistics are shown
in Table 1. Furthermore we filtered the EuroParl
corpus, as explained in Section 3.5, to create two
smaller bilingual corpora (train100k and train150k
in Table 1). The development set is used to optimize
the model weights in the decoder, and the evaluation
is done on the test set provided for the NAACL 2006
shared task.

For the Chinese–English translation task, we used
the corpora distributed for the large-data track in the
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setting EuroParl NIST
full re-training w/ filtering ∗ ∗∗
full re-training ∗∗ †
mixture model ∗ †
new phrase table ff:

keep all ∗∗ ∗
imp. sampling norm. ∗∗ ∗

conf. ∗∗ ∗
threshold norm. ∗∗ ∗

conf. ∗∗ ∗
Table 3: Feasibility of settings for Algorithm 1

2006 NIST evaluation (see Table 2). We used the
LDC segmenter for Chinese. The multiple transla-
tion corpora multi-p3 and multi-p4 were used as de-
velopment corpora. Evaluation was performed on
the 2004 and 2006 test sets. Note that the train-
ing data consists mainly of written text, whereas the
test sets comprise three and four different genres:
editorials, newswire and political speeches in the
2004 test set, and broadcast conversations, broad-
cast news, newsgroups and newswire in the 2006
test set. Most of these domains have characteristics
which are different from those of the training data,
e.g., broadcast conversations have characteristics of
spontaneous speech, and the newsgroup data is com-
paratively unstructured.

Given the particular data sets described above, Ta-
ble 3 shows the various options for theEstimate,
ScoreandSelectfunctions (see Section 3). The ta-
ble provides a quick guide to the experiments we
present in this paper vs. those we did not attempt due
to computational infeasibility. We ran experiments
corresponding to all entries marked with∗ (see Sec-
tion 4.2). For those marked∗∗ the experiments pro-
duced only minimal improvement over the baseline
and so we do not discuss them in this paper. The en-
tries marked as† were not attempted because they
are not feasible (e.g. full re-training on the NIST
data). However, these were run on the smaller Eu-
roParl corpus.

Evaluation Metrics

We evaluated the generated translations using
three different evaluation metrics: BLEU score (Pa-
pineni et al., 2002), mWER (multi-reference word
error rate), and mPER (multi-reference position-

independent word error rate) (Nießen et al., 2000).
Note that BLEU score measures quality, whereas
mWER and mPER measure translation errors. We
will present 95%-confidence intervals for the base-
line system which are calculated using bootstrap re-
sampling. The metrics are calculated w.r.t. one and
four English references: the EuroParl data comes
with one reference, the NIST 2004 evaluation set
and the NIST section of the 2006 evaluation set
are provided with four references each, whereas the
GALE section of the 2006 evaluation set comes
with one reference only. This results in much lower
BLEU scores and higher error rates for the transla-
tions of the GALE set (see Section 4.2). Note that
these values do not indicate lower translation qual-
ity, but are simply a result of using only one refer-
ence.

4.2 Results

EuroParl

We ran our initial experiments on EuroParl to ex-
plore the behavior of the transductive learning algo-
rithm. In all experiments reported in this subsec-
tion, the test set was used as unlabeled data. The
selection and scoring was carried out using impor-
tance sampling with normalized scores. In one set
of experiments, we used the 100K and 150K train-
ing sentences filtered according ton-gram coverage
over the test set. We fully re-trained the phrase ta-
bles on these data and 8,000 test sentence pairs sam-
pled from 20-best lists in each iteration. The results
on the test set can be seen in Figure 1. The BLEU
score increases, although with slight variation, over
the iterations. In total, it increases from 24.1 to 24.4
for the 100K filtered corpus, and from 24.5 to 24.8
for 150K, respectively. Moreover, we see that the
BLEU score of the system using 100K training sen-
tence pairs and transductive learning is the same as
that of the one trained on 150K sentence pairs. So
the information extracted from untranslated test sen-
tences is equivalent to having an additional 50K sen-
tence pairs.

In a second set of experiments, we used the whole
EuroParl corpus and the sampled sentences for fully
re-training the phrase tables in each iteration. We
ran the algorithm for three iterations and the BLEU
score increased from 25.3 to 25.6. Even though this
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Figure 1: Translation quality for importance sampling with full re-training on train100k (left) and train150k
(right). EuroParl French–English task.

is a small increase, it shows that the unlabeled data
contains some information which can be explored in
transductive learning.

In a third experiment, we applied the mixture
model idea as explained in Section 3.2. The initially
learned phrase table was merged with the learned
phrase table in each iteration with a weight ofλ =
0.1. This value forλ was found based on cross val-
idation on a development set. We ran the algorithm
for 20 iterations and BLEU score increased from
25.3 to 25.7. Since this is very similar to the re-
sult obtained with the previous method, but with an
additional parameterλ to optimize, we did not use
mixture models on NIST.

Note that the single improvements achieved here
are slightly below the 95%-significance level. How-
ever, we observe them consistently in all settings.

NIST

Table 4 presents translation results on NIST with
different versions of the scoring and selection meth-
ods introduced in Section 3. In these experiments,
the unlabeled dataU for Algorithm 1 is the develop-
ment or test corpus. For this corpusU , 5,000-best
lists were generated using the baseline SMT system.
Since re-training the full phrase tables is not feasi-
ble here, a (small) additional phrase table, specific to
U , was trained and plugged into the SMT system as
an additional model. The decoder weights thus had
to be optimized again to determine the appropriate
weight for this new phrase table. This was done on

the dev1 corpus, using the phrase table specific to
dev1. Every time a new corpus is to be translated,
an adapted phrase table is created using transductive
learning and used with the weight which has been
learned on dev1. In the first experiment presented
in Table 4, all of the generated 1-best translations
were kept and used for training the adapted phrase
tables. This method yields slightly higher transla-
tion quality than the baseline system. The second
approach we studied is the use of importance sam-
pling (IS) over 20-best lists, based either on length-
normalized sentence scores (norm.) or confidence
scores (conf.). As the results in Table 4 show, both
variants outperform the first method, with a consis-
tent improvement over the baseline across all test
corpora and evaluation metrics. The third method
uses a threshold-based selection method. Combined
with confidence estimation as scoring method, this
yields the best results. All improvements over the
baseline are significant at the 95%-level.

Table 5 shows the translation quality achieved on
the NIST test sets when additional source language
data from the Chinese Gigaword corpus compris-
ing newswire text is used for transductive learning.
These Chinese sentences were sorted according to
their n-gram overlap (see Section 3.5) with the de-
velopment corpus, and the top 5,000 Chinese sen-
tences were used. The selection and scoring in Al-
gorithm 1 were performed using confidence estima-
tion with a threshold. Again, a new phrase table was
trained on these data. As can be seen in Table 5, this
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select score BLEU[%] mWER[%] mPER[%]
eval-04(4 refs.)
baseline 31.8±0.7 66.8±0.7 41.5±0.5
keep all 33.1 66.0 41.3
IS norm. 33.5 65.8 40.9

conf. 33.2 65.6 40.4
thr norm. 33.5 65.9 40.8

conf. 33.5 65.3 40.8
eval-06 GALE (1 ref.)
baseline 12.7±0.5 75.8±0.6 54.6±0.6
keep all 12.9 75.7 55.0
IS norm. 13.2 74.7 54.1

conf. 12.9 74.4 53.5
thr norm. 12.7 75.2 54.2

conf. 13.6 73.4 53.2
eval-06 NIST(4 refs.)
baseline 27.9±0.7 67.2±0.6 44.0±0.5
keep all 28.1 66.5 44.2
IS norm. 28.7 66.1 43.6

conf. 28.4 65.8 43.2
thr norm. 28.3 66.1 43.5

conf. 29.3 65.6 43.2

Table 4: Translation quality using an additional
adapted phrase table trained on the dev/test sets.
Different selection and scoring methods. NIST
Chinese–English, best results printed in boldface.

system outperforms the baseline system on all test
corpora. The error rates are significantly reduced in
all three settings, and BLEU score increases in all
cases. A comparison with Table 4 shows that trans-
ductive learning on the development set and test cor-
pora, adapting the system to their domain and style,
is more effective in improving the SMT system than
the use of additional source language data.

In all experiments on NIST, Algorithm 1 was run
for one iteration. We also investigated the use of an
iterative procedure here, but this did not yield any
improvement in translation quality.

5 Previous Work

Semi-supervised learning has been previously ap-
plied to improve word alignments. In (Callison-
Burch et al., 2004), a generative model for word
alignment is trained using unsupervised learning on
parallel text. In addition, another model is trained on
a small amount of hand-annotated word alignment
data. A mixture model provides a probability for

system BLEU[%] mWER[%] mPER[%]
eval-04(4 refs.)
baseline 31.8±0.7 66.8±0.7 41.5±0.5
add Chin. data 32.8 65.7 40.9
eval-06 GALE (1 ref.)
baseline 12.7±0.5 75.8±0.6 54.6±0.6
add Chin. data 13.1 73.9 53.5
eval-06 NIST(4 refs.)
baseline 27.9±0.7 67.2±0.6 44.0±0.5
add Chin. data 28.1 65.8 43.2

Table 5: Translation quality using an additional
phrase table trained on monolingual Chinese news
data. Selection step using threshold on confidence
scores. NIST Chinese–English.

word alignment. Experiments showed that putting a
large weight on the model trained on labeled data
performs best. Along similar lines, (Fraser and
Marcu, 2006) combine a generative model of word
alignment with a log-linear discriminative model
trained on a small set of hand aligned sentences. The
word alignments are used to train a standard phrase-
based SMT system, resulting in increased translation
quality .

In (Callison-Burch, 2002) co-training is applied
to MT. This approach requires several source lan-
guages which are sentence-aligned with each other
and all translate into the same target language. One
language pair creates data for another language pair
and can be naturally used in a (Blum and Mitchell,
1998)-style co-training algorithm. Experiments on
the EuroParl corpus show a decrease in WER. How-
ever, the selection algorithm applied there is actually
supervised because it takes the reference translation
into account. Moreover, when the algorithm is run
long enough, large amounts of co-trained data in-
jected too much noise and performance degraded.

Self-training for SMT was proposed in (Ueffing,
2006). An existing SMT system is used to translate
the development or test corpus. Among the gener-
ated machine translations, the reliable ones are au-
tomatically identified using thresholding on confi-
dence scores. The work which we presented here
differs from (Ueffing, 2006) as follows:

• We investigated different ways of scoring and
selecting the reliable translations and compared
our method to this work. In addition to the con-
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fidence estimation used there, we applied im-
portance sampling and combined it with confi-
dence estimation for transductive learning.

• We studied additional ways of exploring the
newly created bilingual data, namely re-
training the full phrase translation model or cre-
ating a mixture model.

• We proposed an iterative procedure which
translates the monolingual source language
data anew in each iteration and then re-trains
the phrase translation model.

• We showed how additional monolingual
source-language data can be used in transduc-
tive learning to improve the SMT system.

6 Discussion

It is not intuitively clear why the SMT system can
learn something from its own output and is improved
through semi-supervised learning. There are two
main reasons for this improvement: Firstly, the se-
lection step provides important feedback for the sys-
tem. The confidence estimation, for example, dis-
cards translations with low language model scores or
posterior probabilities. The selection step discards
bad machine translations and reinforces phrases of
high quality. As a result, the probabilities of low-
quality phrase pairs, such as noise in the table or
overly confident singletons, degrade. Our experi-
ments comparing the various settings for transduc-
tive learning shows that selection clearly outper-
forms the method which keeps all generated transla-
tions as additional training data. The selection meth-
ods investigated here have been shown to be well-
suited to boost the performance of semi-supervised
learning for SMT.

Secondly, our algorithm constitutes a way of
adapting the SMT system to a new domain or style
without requiring bilingual training or development
data. Those phrases in the existing phrase tables
which are relevant for translating the new data are
reinforced. The probability distribution over the
phrase pairs thus gets more focused on the (reliable)
parts which are relevant for the test data. For an anal-
ysis of the self-trained phrase tables, examples of
translated sentences, and the phrases used in trans-
lation, see (Ueffing, 2006).
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Abstract

Recent research presents conflicting evi-
dence on whether word sense disambigua-
tion (WSD) systems can help to improve the
performance of statistical machine transla-
tion (MT) systems. In this paper, we suc-
cessfully integrate a state-of-the-art WSD
system into a state-of-the-art hierarchical
phrase-based MT system, Hiero. We show
for the first time that integrating a WSD sys-
tem improves the performance of a state-of-
the-art statistical MT system on an actual
translation task. Furthermore, the improve-
ment is statistically significant.

1 Introduction

Many words have multiple meanings, depending on
the context in which they are used. Word sense dis-
ambiguation (WSD) is the task of determining the
correct meaning or sense of a word in context. WSD
is regarded as an important research problem and is
assumed to be helpful for applications such as ma-
chine translation (MT) and information retrieval.

In translation, different senses of a wordw in a
source language may have different translations in a
target language, depending on the particular mean-
ing of w in context. Hence, the assumption is that
in resolving sense ambiguity, a WSD system will be
able to help an MT system to determine the correct
translation for an ambiguous word. To determine the
correct sense of a word, WSD systems typically use
a wide array of features that are not limited to the lo-
cal context ofw, and some of these features may not
be used by state-of-the-art statistical MT systems.

To perform translation, state-of-the-art MT sys-
tems use a statistical phrase-based approach (Marcu
and Wong, 2002; Koehn et al., 2003; Och and
Ney, 2004) by treating phrases as the basic units
of translation. In this approach, a phrase can be
any sequence of consecutive words and is not nec-
essarily linguistically meaningful. Capitalizing on
the strength of the phrase-based approach, Chiang
(2005) introduced ahierarchical phrase-based sta-
tistical MT system, Hiero, which achieves signifi-
cantly better translation performance than Pharaoh
(Koehn, 2004a), which is a state-of-the-art phrase-
based statistical MT system.

Recently, some researchers investigated whether
performing WSD will help to improve the perfor-
mance of an MT system. Carpuat and Wu (2005)
integrated the translation predictions from a Chinese
WSD system (Carpuat et al., 2004) into a Chinese-
English word-based statistical MT system using the
ISI ReWrite decoder (Germann, 2003). Though they
acknowledged that directly using English transla-
tions as word senses would be ideal, they instead
predicted the HowNet sense of a word and then used
the English gloss of the HowNet sense as the WSD
model’s predicted translation. They did not incor-
porate their WSD model or its predictions into their
translation model; rather, they used the WSD pre-
dictions either to constrain the options available to
their decoder, or to postedit the output of their de-
coder. They reported the negative result that WSD
decreased the performance of MT based on their ex-
periments.

In another work (Vickrey et al., 2005), the WSD
problem was recast as aword translationtask. The
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translation choices for a wordw were defined as the
set of words or phrases aligned tow, as gathered
from a word-aligned parallel corpus. The authors
showed that they were able to improve their model’s
accuracy on two simplified translation tasks: word
translation and blank-filling.

Recently, Cabezas and Resnik (2005) experi-
mented with incorporating WSD translations into
Pharaoh, a state-of-the-art phrase-based MT sys-
tem (Koehn et al., 2003). Their WSD system pro-
vided additional translations to the phrase table of
Pharaoh, which fired a new model feature, so that
the decoder could weigh the additional alternative
translations against its own. However, they could
not automatically tune the weight of this feature in
the same way as the others. They obtained a rela-
tively small improvement, and no statistical signifi-
cance test was reported to determine if the improve-
ment was statistically significant.

Note that the experiments in (Carpuat and Wu,
2005) did not use a state-of-the-art MT system,
while the experiments in (Vickrey et al., 2005) were
not done using a full-fledged MT system and the
evaluation was not on how well each source sentence
was translated as a whole. The relatively small im-
provement reported by Cabezas and Resnik (2005)
without a statistical significance test appears to be
inconclusive. Considering the conflicting results re-
ported by prior work, it is not clear whether a WSD
system can help to improve the performance of a
state-of-the-art statistical MT system.

In this paper, we successfully integrate a state-
of-the-art WSD system into the state-of-the-art hi-
erarchical phrase-based MT system, Hiero (Chiang,
2005). The integration is accomplished by introduc-
ing two additional features into the MT model which
operate on the existing rules of the grammar, with-
out introducing competing rules. These features are
treated, both in feature-weight tuning and in decod-
ing, on the same footing as the rest of the model,
allowing it to weigh the WSD model predictions
against other pieces of evidence so as to optimize
translation accuracy (as measured by BLEU). The
contribution of our work lies in showing for the first
time that integrating a WSD system significantly im-
proves the performance of a state-of-the-art statisti-
cal MT system on an actual translation task.

In the next section, we describe our WSD system.

Then, in Section 3, we describe the Hiero MT sys-
tem and introduce the two new features used to inte-
grate the WSD system into Hiero. In Section 4, we
describe the training data used by the WSD system.
In Section 5, we describe how the WSD translations
provided are used by the decoder of the MT system.
In Section 6 and 7, we present and analyze our ex-
perimental results, before concluding in Section 8.

2 Word Sense Disambiguation

Prior research has shown that using Support Vector
Machines (SVM) as the learning algorithm for WSD
achieves good results (Lee and Ng, 2002). For our
experiments, we use the SVM implementation of
(Chang and Lin, 2001) as it is able to work on multi-
class problems to output the classification probabil-
ity for each class.

Our implemented WSD classifier uses the knowl-
edge sources of local collocations, parts-of-speech
(POS), and surrounding words, following the suc-
cessful approach of (Lee and Ng, 2002). For local
collocations, we use 3 features,w−1w+1, w−1, and
w+1, wherew−1 (w+1) is the token immediately to
the left (right) of the current ambiguous word oc-
currencew. For parts-of-speech, we use 3 features,
P−1, P0, andP+1, whereP0 is the POS ofw, and
P−1 (P+1) is the POS ofw−1 (w+1). For surround-
ing words, we consider all unigrams (single words)
in the surrounding context ofw. These unigrams can
be in a different sentence fromw. We perform fea-
ture selection on surrounding words by including a
unigram only if it occurs 3 or more times in some
sense ofw in the training data.

To measure the accuracy of our WSD classifier,
we evaluate it on the test data of SENSEVAL-3 Chi-
nese lexical-sample task. We obtain accuracy that
compares favorably to the best participating system
in the task (Carpuat et al., 2004).

3 Hiero

Hiero (Chiang, 2005) is a hierarchical phrase-based
model for statistical machine translation, based on
weighted synchronous context-free grammar (CFG)
(Lewis and Stearns, 1968). A synchronous CFG
consists of rewrite rules such as the following:

X → 〈γ, α〉 (1)
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where X is a non-terminal symbol,γ (α) is a string
of terminal and non-terminal symbols in the source
(target) language, and there is a one-to-one corre-
spondence between the non-terminals inγ andα in-
dicated by co-indexation. Hence,γ andα always
have the same number of non-terminal symbols. For
instance, we could have the following grammar rule:

X → 〈�Ût X 1 ,go to X1 every month to〉 (2)

where boxed indices represent the correspondences
between non-terminal symbols.

Hiero extracts the synchronous CFG rules auto-
matically from a word-aligned parallel corpus. To
translate a source sentence, the goal is to find its
most probable derivation using the extracted gram-
mar rules. Hiero uses a general log-linear model
(Och and Ney, 2002) where the weight of a deriva-
tionD for a particular source sentence and its trans-
lation is

w(D) =
∏

i

φi(D)λi (3)

whereφi is a feature function andλi is the weight for
featureφi. To ensure efficient decoding, theφi are
subject to certain locality restrictions. Essentially,
they should be defined as products of functions de-
fined on isolated synchronous CGF rules; however,
it is possible to extend the domain of locality of
the features somewhat. An-gram language model
adds a dependence on (n−1) neighboring target-side
words (Wu, 1996; Chiang, 2007), making decoding
much more difficult but still polynomial; in this pa-
per, we add features that depend on the neighboring
source-sidewords, which does not affect decoding
complexity at all because the source string is fixed.
In principle we could add features that depend on
arbitrary source-side context.

3.1 New Features in Hiero for WSD

To incorporate WSD into Hiero, we use the trans-
lations proposed by the WSD system to help Hiero
obtain a better or more probable derivation during
the translation of each source sentence. To achieve
this, when a grammar ruleR is considered during
decoding, and we recognize that some of the ter-
minal symbols (words) inα are also chosen by the
WSD system as translations for some terminal sym-
bols (words) inγ, we compute the following fea-
tures:

• Pwsd(t | s) gives the contextual probability of
the WSD classifier choosingt as a translation
for s, wheret (s) is some substring of terminal
symbols inα (γ). Because this probability only
applies to some rules, and we don’t want to pe-
nalize those rules, we must add another feature,

• Ptywsd = exp(−|t|), wheret is the translation
chosen by the WSD system. This feature, with
a negative weight, rewards rules that use trans-
lations suggested by the WSD module.

Note that we can take the negative logarithm of
the rule/derivation weights and think of them as
costs rather than probabilities.

4 Gathering Training Examples for WSD

Our experiments were for Chinese to English trans-
lation. Hence, in the context of our work, a syn-
chronous CFG grammar rule X→ 〈γ, α〉 gathered
by Hiero consists of a Chinese portionγ and a cor-
responding English portionα, where each portion is
a sequence of words and non-terminal symbols.

Our WSD classifier suggests a list of English
phrases (where each phrase consists of one or more
English words) with associated contextual probabil-
ities as possible translations for each particular Chi-
nese phrase. In general, the Chinese phrase may
consist ofk Chinese words, wherek = 1, 2, 3, . . ..
However, we limitk to 1 or 2 for experiments re-
ported in this paper. Future work can explore en-
largingk.

Whenever Hiero is about to extract a grammar
rule where its Chinese portion is a phrase of one or
two Chinese words with no non-terminal symbols,
we note the location (sentence and token offset) in
the Chinese half of the parallel corpus from which
the Chinese portion of the rule is extracted. The ac-
tual sentence in the corpus containing the Chinese
phrase, and the one sentence before and the one sen-
tence after that actual sentence, will serve as the con-
text for one training example for the Chinese phrase,
with the corresponding English phrase of the gram-
mar rule as its translation. Hence, unlike traditional
WSD where the sense classes are tied to a specific
sense inventory, our “senses” here consist of the En-
glish phrases extracted as translations for each Chi-
nese phrase. Since the extracted training data may
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be noisy, for each Chinese phrase, we remove En-
glish translations that occur only once. Furthermore,
we only attempt WSD classification for those Chi-
nese phrases with at least 10 training examples.

Using the WSD classifier described in Section 2,
we classified the words in each Chinese source sen-
tence to be translated. We first performed WSD on
all single Chinese words which are either noun, verb,
or adjective. Next, we classified the Chinese phrases
consisting of 2 consecutive Chinese words by simply
treating the phrase asa single unit. When perform-
ing classification, we give as output the set of En-
glish translations with associated context-dependent
probabilities, which are the probabilities of a Chi-
nese word (phrase) translating into each English
phrase, depending on the context of the Chinese
word (phrase). After WSD, theith wordci in every
Chinese sentence may have up to 3 sets of associ-
ated translations provided by the WSD system: a set
of translations forci as a single word, a second set
of translations forci−1ci considered as a single unit,
and a third set of translations forcici+1 considered
as a single unit.

5 Incorporating WSD during Decoding

The following tasks are done for each rule that is
considered during decoding:

• identify Chinese words to suggest translations
for

• match suggested translations against the En-
glish side of the rule

• compute features for the rule

The WSD system is able to predict translations
only for a subset of Chinese words or phrases.
Hence, we must first identify which parts of the
Chinese side of the rule have suggested translations
available. Here, we consider substrings of length up
to two, and we give priority to longer substrings.

Next, we want to know, for each Chinese sub-
string considered, whether the WSD system sup-
ports the Chinese-English translation represented by
the rule. If the rule is finally chosen as part of the
best derivation for translating the Chinese sentence,
then all the words in the English side of the rule will
appear in the translated English sentence. Hence,

we need to match the translations suggested by the
WSD system against the English side of the rule. It
is for these matching rules that the WSD features
will apply.

The translations proposed by the WSD system
may be more than one word long. In order for a
proposed translation to match the rule, we require
two conditions. First, the proposed translation must
be a substring of the English side of the rule. For
example, the proposed translation “every to” would
not match the chunk “every month to”. Second, the
match must contain at least one aligned Chinese-
English word pair, but we do not make any other
requirements about the alignment of the other Chi-
nese or English words.1 If there are multiple possi-
ble matches, we choose the longest proposed trans-
lation; in the case of a tie, we choose the proposed
translation with the highest score according to the
WSD model.

Define achunk of a rule to be a maximal sub-
string of terminal symbols on the English side of the
rule. For example, in Rule (2), the chunks would be
“go to” and “every month to”. Whenever we find
a matching WSD translation, we mark the whole
chunk on the English side as consumed.

Finally, we compute the feature values for the
rule. The featurePwsd(t | s) is the sum of the costs
(according to the WSD model) of all the matched
translations, and the featurePtywsd is the sum of
the lengths of all the matched translations.

Figure 1 shows the pseudocode for the rule scor-
ing algorithm in more detail, particularly with re-
gards to resolving conflicts between overlapping
matches. To illustrate the algorithm given in Figure
1, consider Rule (2). Hereafter, we will use symbols
to represent the Chinese and English words in the
rule: c1, c2, andc3 will represent the Chinese words
“�”, “Û”, and “t” respectively. Similarly,e1, e2,
e3, e4, ande5 will represent the English wordsgo,
to, every, month, and to respectively. Hence, Rule
(2) has two chunks:e1e2 ande3e4e5. When the rule
is extracted from the parallel corpus, it has these
alignments between the words of its Chinese and
English portion: {c1–e3,c2–e4,c3–e1,c3–e2,c3–e5},
which means thatc1 is aligned toe3, c2 is aligned to

1In order to check this requirement, we extended Hiero to
make word alignment information available to the decoder.
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Input: ruleR considered during decoding with its own associatedcostR
Lc = list of symbols in Chinese portion ofR
WSDcost = 0
i = 1
while i ≤ len(Lc):

ci = ith symbol inLc
if ci is a Chinese word (i.e., not a non-terminal symbol):

seenChunk =∅ // seenChunk is a global variable and is passed by reference to matchWSD
if (ci is not the last symbol inLc) and (ci+1 is a terminal symbol): thenci+1=(i+1)th symbol inLc, elseci+1 = NULL
if (ci+1!=NULL) and (ci, ci+1) as asingle unithas WSD translations:

WSDc = set of WSD translations for (ci, ci+1) as a single unit with context-dependent probabilities
WSDcost = WSDcost + matchWSD(ci,WSDc, seenChunk)
WSDcost = WSDcost + matchWSD(ci+1,WSDc, seenChunk)
i = i + 1

else:
WSDc = set of WSD translations forci with context-dependent probabilities
WSDcost = WSDcost + matchWSD(ci,WSDc, seenChunk)

i = i + 1
costR = costR + WSDcost

matchWSD(c,WSDc, seenChunk):
// seenChunk is the set of chunks ofRalready examined for possible matching WSD translations
cost = 0
ChunkSet = set of chunks inRaligned toc
for chunkj in ChunkSet:

if chunkj not in seenChunk:
seenChunk = seenChunk∪ { chunkj }
Echunkj = set of English words inchunkj aligned toc
Candidatewsd = ∅
for wsdk in WSDc:

if (wsdk is sub-sequence ofchunkj) and (wsdk contains at least one word inEchunkj )
Candidatewsd = Candidatewsd ∪ { wsdk }

wsdbest = best matchingtranslation inCandidatewsd againstchunkj
cost = cost + costByWSDfeatures(wsdbest) // costByWSDfeatures sums up the cost of the two WSD features

return cost

Figure 1: WSD translations affecting the cost of a ruleRconsidered during decoding.

e4, andc3 is aligned toe1, e2, ande5. Although all
words are aligned here, in general for a rule, some of
its Chinese or English words may not be associated
with any alignments.

In our experiment,c1c2 as a phrase has a list of
translations proposed by the WSD system, includ-
ing the English phrase “every month”.matchWSD
will first be invoked forc1, which is aligned to only
one chunke3e4e5 via its alignment withe3. Since
“every month” is a sub-sequence of the chunk and
also contains the worde3 (“every”), it is noted as
a candidate translation. Later, it is determined that
the most number of words any candidate translation
has is two words. Since among all the 2-word candi-
date translations, the translation “every month” has
the highest translation probability as assigned by the
WSD classifier, it is chosen as the best matching
translation for the chunk.matchWSDis then invoked

for c2, which is aligned to only one chunke3e4e5.
However, since this chunk has already been exam-
ined byc1 with which it is considered as a phrase, no
further matching is done forc2. Next,matchWSDis
invoked forc3, which is aligned to both chunks ofR.
The English phrases “go to” and “to” are among the
list of translations proposed by the WSD system for
c3, and they are eventually chosen as the best match-
ing translations for the chunkse1e2 ande3e4e5, re-
spectively.

6 Experiments

As mentioned, our experiments were on Chinese to
English translation. Similar to (Chiang, 2005), we
trained the Hiero system on the FBIS corpus, used
the NIST MT 2002 evaluation test set as our devel-
opment set to tune the feature weights, and the NIST
MT 2003 evaluation test set as our test data. Using
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System BLEU-4 Individualn-gram precisions
1 2 3 4

Hiero 29.73 74.73 40.14 21.83 11.93
Hiero+WSD 30.30 74.82 40.40 22.45 12.42

Table 1: BLEU scores

Features
System Plm(e) P (γ|α) P (α|γ) Pw(γ|α) Pw(α|γ) Ptyphr Glue Ptyword Pwsd(t|s) Ptywsd
Hiero 0.2337 0.0882 0.1666 0.0393 0.1357 0.0665 −0.0582 −0.4806 - -
Hiero+WSD 0.1937 0.0770 0.1124 0.0487 0.0380 0.0988 −0.0305 −0.1747 0.1051 −0.1611

Table 2: Weights for each feature obtained by MERT training. The first eight features are those used by
Hiero in (Chiang, 2005).

the English portion of the FBIS corpus and the Xin-
hua portion of the Gigaword corpus, we trained a tri-
gram language model using the SRI Language Mod-
elling Toolkit (Stolcke, 2002). Following (Chiang,
2005), we used the version 11a NIST BLEU script
with its default settings to calculate the BLEU scores
(Papineni et al., 2002) based on case-insensitiven-
gram matching, wheren is up to 4.

First, we performed word alignment on the FBIS
parallel corpus using GIZA++ (Och and Ney, 2000)
in both directions. The word alignments of both
directions are then combined into a single set of
alignments using the “diag-and” method of Koehn
et al. (2003). Based on these alignments, syn-
chronous CFG rules are then extracted from the cor-
pus. While Hiero is extracting grammar rules, we
gathered WSD training data by following the proce-
dure described in section 4.

6.1 Hiero Results

Using the MT 2002 test set, we ran the minimum-
error rate training (MERT) (Och, 2003) with the
decoder to tune the weights for each feature. The
weights obtained are shown in the rowHiero of
Table 2. Using these weights, we run Hiero’s de-
coder to perform the actual translation of the MT
2003 test sentences and obtained a BLEU score of
29.73, as shown in the rowHiero of Table 1. This is
higher than the score of 28.77 reported in (Chiang,
2005), perhaps due to differences in word segmenta-
tion, etc. Note that comparing with the MT systems
used in (Carpuat and Wu, 2005) and (Cabezas and
Resnik, 2005), the Hiero system we are using rep-
resents a much stronger baseline MT system upon
which the WSD system must improve.

6.2 Hiero+WSD Results

We then added the WSD features of Section 3.1 into
Hiero and reran the experiment. The weights ob-
tained by MERT are shown in the rowHiero+WSD
of Table 2. We note that a negative weight is learnt
for Ptywsd. This means that in general, the model
prefers grammar rules having chunks that matches
WSD translations. This matches our intuition. Us-
ing the weights obtained, we translated the test sen-
tences and obtained a BLEU score of30.30, as
shown in the rowHiero+WSDof Table 1. The im-
provement of 0.57 is statistically significant atp <
0.05 using the sign-test as described by Collins et al.
(2005), with 374 (+1), 318 (−1) and 227 (0). Us-
ing the bootstrap-sampling test described in (Koehn,
2004b), the improvement is statistically significant
atp< 0.05. Though the improvement is modest, it is
statistically significant and this positive result is im-
portant in view of the negative findings in (Carpuat
and Wu, 2005) that WSD does not help MT. Fur-
thermore, note that Hiero+WSD has highern-gram
precisions than Hiero.

7 Analysis

Ideally, the WSD system should be suggesting high-
quality translations which are frequently part of the
reference sentences. To determine this, we note the
set of grammar rules used in the best derivation for
translating each test sentence. From the rules of each
test sentence, we tabulated the set of translations
proposed by the WSD system and check whether
they are found in the associated reference sentences.

On the entire set of NIST MT 2003 evaluation test
sentences, an average of 10.36 translations proposed
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No. of All test sentences +1 from Collins sign-test
words in No. of % match No. of % match

WSD translations WSD translations used reference WSD translations used reference
1 7087 77.31 3078 77.68
2 1930 66.11 861 64.92
3 371 43.13 171 48.54
4 124 26.61 52 28.85

Table 3: Number of WSD translations used and proportion that matches against respective reference sen-
tences. WSD translations longer than 4 words are very sparse (less than 10 occurrences) and thus they are
not shown.

by the WSD system were used for each sentence.
When limited to the set of 374 sentences which
were judged by the Collins sign-test to have better
translations from Hiero+WSD than from Hiero, a
higher number (11.14) of proposed translations were
used on average. Further, for the entire set of test
sentences, 73.01% of the proposed translations are
found in the reference sentences. This increased to
a proportion of 73.22% when limited to the set of
374 sentences. These figures show that having more,
and higher-quality proposed translations contributed
to the set of 374 sentences being better translations
than their respective original translations from Hi-
ero. Table 3 gives a detailed breakdown of these
figures according to the number of words in each
proposed translation. For instance, over all the test
sentences, the WSD module gave 7087 translations
of single-word length, and 77.31% of these trans-
lations match their respective reference sentences.
We note that although the proportion of matching 2-
word translations is slightly lower for the set of 374
sentences, the proportion increases for translations
having more words.

After the experiments in Section 6 were com-
pleted, we visually inspected the translation output
of Hiero and Hiero+WSD to categorize the ways in
which integrating WSD contributes to better trans-
lations. The first way in which WSD helps is when
it enables the integrated Hiero+WSD system to out-
put extra appropriate English words. For example,
the translations for the Chinese sentence “. . .Ý Ù
Æ��òq��ÇRÃ�RzÍõÇÏÝ
ÙÆtZ�” are as follows.

• Hiero: . . . or other bad behavior ”, will be more
aid and other concessions.

• Hiero+WSD: . . . or other bad behavior ”, will

be unable to obtain more aid and other conces-
sions.

Here, the Chinese words “Ã�Rz” are not trans-
lated by Hiero at all. By providing the correct trans-
lation of “unable to obtain” for “Ã� Rz”, the
translation output of Hiero+WSD is more complete.

A second way in which WSD helps is by correct-
ing a previously incorrect translation. For example,
for the Chinese sentence “. . .Ç ó \ ) È� |
ÌÇ. . . ”, the WSD system helps to correct Hiero’s
original translation by providing the correct transla-
tion of “all ethnic groups” for the Chinese phrase
“È�”:

• Hiero: . . . , and people of all nationalities
across the country, . . .

• Hiero+WSD: . . . , and people of
all ethnic groupsacross the country, . . .

We also looked at the set of 318 sentences that
were judged by the Collins sign-test to be worse
translations. We found that in some situations,
Hiero+WSD has provided extra appropriate English
words, but those particular words are not used in the
reference sentences. An interesting example is the
translation of the Chinese sentence “¥³ i� �
ð8q��òRÃ�RzÍõÇÏ”.

• Hiero: Australian foreign minister said that
North Korea bad behavior will be more aid

• Hiero+WSD: Australian foreign minister said
that North Korea bad behavior will be
unable to obtainmore aid

This is similar to the example mentioned earlier. In
this case however, those extra English words pro-
vided by Hiero+WSD, though appropriate, do not
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result in moren-gram matches as the reference sen-
tences used phrases such as “will not gain”, “ will not
get”, etc. Since the BLEU metric is precision based,
the longer sentence translation by Hiero+WSD gets
a lower BLEU score instead.

8 Conclusion

We have shown that WSD improves the transla-
tion performance of a state-of-the-art hierarchical
phrase-based statistical MT system and this im-
provement is statistically significant. We have also
demonstrated one way to integrate a WSD system
into an MT system without introducing any rules
that compete against existing rules, and where the
feature-weight tuning and decoding place the WSD
system on an equal footing with the other model
components. For future work, an immediate step
would be for the WSD classifier to provide trans-
lations for longer Chinese phrases. Also, different
alternatives could be tried to match the translations
provided by the WSD classifier against the chunks
of rules. Finally, besides our proposed approach of
integrating WSD into statistical MT via the intro-
duction of two new features, we could explore other
alternative ways of integration.
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Abstract 

We present a novel approach to the word 
sense disambiguation problem which 
makes use of corpus-based evidence com-
bined with background knowledge. Em-
ploying an inductive logic programming 
algorithm, the approach generates expres-
sive disambiguation rules which exploit 
several knowledge sources and can also 
model relations between them. The ap-
proach is evaluated in two tasks: identifica-
tion of the correct translation for a set of 
highly ambiguous verbs in English-
Portuguese translation and disambiguation 
of verbs from the Senseval-3 lexical sam-
ple task. The average accuracy obtained for 
the multilingual task outperforms the other 
machine learning techniques investigated. 
In the monolingual task, the approach per-
forms as well as the state-of-the-art sys-
tems which reported results for the same 
set of verbs. 

1 Introduction 

Word Sense Disambiguation (WSD) is concerned 
with the identification of the meaning of ambi-
guous words in context. For example, among the 
possible senses of the verb “run” are “to move fast 
by using one's feet” and “to direct or control”. 
WSD can be useful for many applications, includ-
ing information retrieval, information extraction 
and machine translation. Sense ambiguity has been 
recognized as one of the most important obstacles 

to successful language understanding since the ear-
ly 1960’s and many techniques have been pro-
posed to solve the problem. Recent approaches 
focus on the use of various lexical resources and 
corpus-based techniques in order to avoid the sub-
stantial effort required to codify linguistic know-
ledge. These approaches have shown good results; 
particularly those using supervised learning (see 
Mihalcea et al., 2004 for an overview of state-of-
the-art systems). However, current approaches rely 
on limited knowledge representation and modeling 
techniques: traditional machine learning algorithms 
and attribute-value vectors to represent disambigu-
ation instances. This has made it difficult to exploit 
deep knowledge sources in the generation of the 
disambiguation models, that is, knowledge that 
goes beyond simple features extracted directly 
from the corpus, like bags-of-words and colloca-
tions, or provided by shallow natural language 
tools like part-of-speech taggers.  

In this paper we present a novel approach for 
WSD that follows a hybrid strategy, i.e. combines 
knowledge and corpus-based evidence, and em-
ploys a first-order formalism to allow the represen-
tation of deep knowledge about disambiguation 
examples together with a powerful modeling tech-
nique to induce theories based on the examples and 
background knowledge. This is achieved using 
Inductive Logic Programming (ILP) (Muggleton, 
1991), which has not yet been applied to WSD.  

Our hypothesis is that by using a very expres-
sive representation formalism, a range of (shallow 
and deep) knowledge sources and ILP as learning 
technique, it is possible to generate models that, 
when compared to models produced by machine 
learning algorithms conventionally applied to 
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WSD, are both more accurate for fine-grained dis-
tinctions, and “interesting”, from a knowledge ac-
quisition point of view (i.e., convey potentially 
new knowledge that can be easily interpreted by 
humans).  

WSD systems have generally been more suc-
cessful in the disambiguation of nouns than other 
grammatical categories (Mihalcea et al., 2004). A 
common approach to the disambiguation of nouns 
has been to consider a wide context around the 
ambiguous word and treat it as a bag of words or 
limited set of collocates. However, disambiguation 
of verbs generally benefits from more specific 
knowledge sources, such as the verb’s relation to 
other items in the sentence (for example, by ana-
lysing the semantic type of its subject and object). 
Consequently, we believe that the disambiguation 
of verbs is task to which ILP is particularly well-
suited. Therefore, this paper focuses on the disam-
biguation of verbs, which is an interesting task 
since much of the previous work on WSD has con-
centrated on the disambiguation of nouns.  

WSD is usually approached as an independent 
task, however, it has been argued that different 
applications may have specific requirements (Res-
nik and Yarowsky, 1997). For example, in machine 
translation, WSD, or translation disambiguation, is 
responsible for identifying the correct translation 
for an ambiguous source word. There is not always 
a direct relation between the possible senses for a 
word in a (monolingual) lexicon and its transla-
tions to a particular language, so this represents a 
different task to WSD against a (monolingual) 
lexicon (Hutchins and Somers, 1992). Although it 
has been argued that WSD does not yield better 
translation quality than a machine translation 
system alone, it has been recently shown that a 
WSD module that is developed following specific 
multilingual requirements can significantly im-
prove the performance of a machine translation 
system (Carpuat et al., 2006). 

This paper focuses on the application of our ap-
proach to the translation of verbs in English to Por-
tuguese translation, specifically for a set of 10 
mainly light and highly ambiguous verbs. We also 
experiment with a monolingual task by using the 
verbs from Senseval-3 lexical sample task. We 
explore knowledge from 12 syntactic, semantic 
and pragmatic sources. In principle, the proposed 
approach could also be applied to any lexical dis-
ambiguation task by customizing the sense reposi-

tory and knowledge sources. 
In the remainder of this paper we first present 

related approaches to WSD and discuss their limi-
tations (Section 2). We then describe some basic 
concepts on ILP and our application of this tech-
nique to WSD (Section 3). Finally, we described 
our experiments and their results (Section 4).  

2 Related Work 

WSD approaches can be classified as (a) know-
ledge-based approaches, which make use of lin-
guistic knowledge, manually coded or extracted 
from lexical resources (Agirre and Rigau, 1996; 
Lesk 1986); (b) corpus-based approaches, which 
make use of shallow knowledge automatically ac-
quired from corpus and statistical or machine 
learning algorithms to induce disambiguation 
models (Yarowsky, 1995; Schütze 1998); and (c) 
hybrid approaches, which mix characteristics from 
the two other approaches to automatically acquire 
disambiguation models from corpus supported by 
linguistic knowledge (Ng and Lee 1996; Stevenson 
and Wilks, 2001). 

Hybrid approaches can combine advantages 
from both strategies, potentially yielding accurate 
and comprehensive systems, particularly when 
deep knowledge is explored. Linguistic knowledge 
is available in electronic resources suitable for 
practical use, such as WordNet (Fellbaum, 1998), 
dictionaries and parsers. However, the use of this 
information has been hampered by the limitations 
of the modeling techniques that have been ex-
plored so far: using deep sources of domain know-
ledge is beyond the capabilities of such techniques, 
which are in general based on attribute-value vec-
tor representations. 

Attribute-value vectors consist of a set of 
attributes intended to represent properties of the 
examples. Each attribute has a type (its name) and 
a single value for a given example. Therefore, 
attribute-value vectors have the same expressive-
ness as propositional formalisms, that is, they only 
allow the representation of atomic propositions and 
constants. These are the representations used by 
most of the machine learning algorithms conven-
tionally employed to WSD, for example Naïve 
Bayes and decision-trees. First-order logic, a more 
expressive formalism which is employed by ILP, 
allows the representation of variables and n-ary 
predicates, i.e., relational knowledge.  
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In the hybrid approaches that have been ex-
plored so far, deep knowledge, like selectional pre-
ferences, is either pre-processed into a vector 
representation to accommodate machine learning 
algorithms, or used in previous steps to filter out 
possible senses e.g. (Stevenson and Wilks, 2001). 
This may cause information to be lost and, in addi-
tion, deep knowledge sources cannot interact in the 
learning process. As a consequence, the models 
produced reflect only the shallow knowledge that 
is provided to the learning algorithm.  

Another limitation of attribute-value vectors is 
the need for a unique representation for all the ex-
amples: one attribute is created for every knowl-
edge feature and the same structure is used to 
characterize all the examples. This usually results 
in a very sparse representation of the data, given 
that values for certain features will not be available 
for many examples. The problem of data sparse-
ness increases as more knowledge is exploited and 
this can cause problems for the machine learning 
algorithms. 

A final disadvantage of attribute-value vectors 
is that equivalent features may have to be bounded 
to distinct identifiers. An example of this occurs 
when the syntactic relations between words in a 
sentence are represented by attributes for each pos-
sible relation, sentences in which there is more 
than one instantiation for a particular grammatical 
role cannot be easily represented.  For example, the 
sentence “John and Anna gave Mary a present.” 
contains a coordinate subject and, since each fea-
ture requires a unique identifier, two are required 
(subj1-verb1, subj2-verb1). These will be treated as 
two independent pieces of knowledge by the learn-
ing algorithm.  

First-order formalisms allow a generic predicate 
to be created for every possible syntactic role, re-
lating two or more elements. For example 
has_subject(verb, subject), which could then have 
two instantiations: has_subject(give, john) and 
has_subject(give, anna). Since each example is 
represented independently from the others, the data 
sparseness problem is minimized. Therefore, ILP 
seems to provide the most general-purpose frame-
work for dealing with such data: it does not suffer 
from the limitations mentioned above since there 
are explicit provisions made for the inclusion of 
background knowledge of any form, and the repre-
sentation language is powerful enough to capture 
contextual relationships. 

3 A hybrid relational approach to WSD 

In what follows we provide an introduction to ILP 
and then outline how it is applied to WSD by pre-
senting the sample corpus and knowledge sources 
used in our experiments. 

3.1 Inductive Logic Programming 

Inductive Logic Programming (Muggleton, 1991) 
employs techniques from Machine Learning and 
Logic Programming to build first-order theories 
from examples and background knowledge, which 
are also represented by first-order clauses. It allows 
the efficient representation of substantial know-
ledge about the problem, which is used during the 
learning process, and produces disambiguation 
models that can make use of this knowledge. The 
general approach underlying ILP can be outlined 
as follows:  

Given: 
-  a set of positive and negative examples E = 

E+ ∪∪∪∪ E- 
- a predicate p specifying the target relation to 

be learned 
- knowledge ΚΚΚΚ of the domain, described ac-

cording to a language Lk, which specifies which 
predicates qi can be part of the definition of p. 

The goal is: to induce a hypothesis (or theory) 
h for p, with relation to E and ΚΚΚΚ, which covers 
most of the E+, without covering the E-, i.e., K ∧∧∧∧ h 
 E+ and K ∧∧∧∧ h  E-.  

 

We use the Aleph ILP system (Srinivasan, 2000), 
which provides a complete inference engine and 
can be customized in various ways. The default 
inference engine induces a theory iteratively using 
the following steps: 

1. One instance is randomly selected to be gen-
eralized.  

2. A more specific clause (the bottom clause) is 
built using inverse entailment (Muggleton, 1995), 
generally consisting of the representation of all the 
knowledge about that example. 

3. A clause that is more generic than the bottom 
clause is searched for using a given search (e.g., 
best-first) and evaluation strategy (e.g., number of 
positive examples covered). 

4. The best clause is added to the theory and the 
examples covered by that clause are removed from 
the sample set. Stop if there are more no examples 
in the training set, otherwise return to step 1. 
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3.2 Sample data 

This approach was evaluated using two scenarios: 
(1) an English-Portuguese multilingual setting ad-
dressing 10 very frequent and problematic verbs 
selected in a previous study (Specia et. al., 2005); 
and (2) an English setting consisting of 32 verbs 
from Senseval-3 lexical sample task (Mihalcea et. 
al. 2004). 

For the first scenario a corpus containing 500 
sentences for each of the 10 verbs was constructed. 
The text was randomly selected from corpora of 
different domains and genres, including literary 
fiction, Bible, computer science dissertation ab-
stracts, operational system user manuals, newspa-
pers and European Parliament proceedings. This 
corpus was automatically annotated with the trans-
lation of the verb using a tagging system based on 
parallel corpus, statistical information and transla-
tion dictionaries (Specia et al., 2005), followed by 
a manual revision. For each verb, the sense reposi-
tory was defined as the set of all the possible trans-
lations of that verb in the corpus. 80% of the 
corpus was randomly selected and used for train-
ing, with the remainder retained for testing. The 10 
verbs, number of possible translations and the per-
centage of sentences for each verb which use the 
most frequent translation are shown in Table 1. 

For the monolingual scenario, we use the sense 
tagged corpus and sense repositories provided for 
verbs in Senseval-3. There are 32 verbs with be-
tween 40 and 398 examples each. The number of 
senses varies between 3 and 10 and the average 
percentage of examples with the majority (most 
frequent) sense is 55%.  

 
 Verb # Translations Most frequent 

translation - % 
ask 7 53 
come 29 36 
get 41 13 
give 22 72 
go 30 53 
live 8 66 
look 12 41 
make 21 70 
take 32 25 
tell 8 66 

Table 1. Verbs and possible senses in our corpus 
 
Both corpora were lemmatized and part-of-speech 
(POS) tagged using Minipar (Lin, 1993) and 

Mxpost (Ratnaparkhi, 1996), respectivelly. Addi-
tionally, proper nouns identified by the tagger were 
replaced by a single identifier (proper_noun) and 
pronouns replaced by identifiers representing 
classes of pronouns (relative_pronoun, etc.).  

3.3 Knowledge sources 

We now describe the background knowledge 
sources used by the learning algorithm, having as 
an example sentence (1), in which the word “com-
ing” is the target verb being disambiguated. 
 

(1) "If there is such a thing as reincarnation, I 
would not mind coming back as a squirrel". 

 
KS1. Bag-of-words consisting of 5 words to the 
right and left of the verb (excluding stop words), 
represented using definitions of the form 
has_bag(snt, word): 

has_bag(snt1, mind). 
has_bag(snt1, not). … 

 
KS2. Frequent bigrams consisting of pairs of adja-
cent words in a sentence (other than the target 
verb) which occur more than 10 times in the cor-
pus, represented by has_bigram(snt, word1, 
word2): 

has_bigram(snt1, back, as). 
has_bigram(snt1, such, a). … 
 

KS3. Narrow context containing 5 content words to 
the right and left of the verb, identified using POS 
tags, represented by has_narrow(snt, 
word_position, word): 

has_narrow(snt1, 1st_word_left, mind). 
has_narrow(snt1, 1st_word_right, back). … 
 

KS4. POS tags of 5 words to the right and left of 
the verb, represented by has_pos(snt, 
word_position, pos): 

has pos(snt1, 1st_word_left, nn). 
has pos(snt1, 1

st_word_right, rb). … 
 

KS5. 11 collocations of the verb: 1st preposition to 
the right, 1st and 2nd words to the left and right, 
1st noun, 1st adjective, and 1st verb to the left and 
right. These are represented using definitions of the 
form has_collocation(snt, type, collocation): 

has_collocation(snt1, 1st_prep_right, back). 
has_collocation(snt1, 1st_noun_left, mind).… 
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KS6. Subject and object of the verb obtained using 
Minipar and represented by has_rel(snt, type, 
word): 

has_rel(snt1, subject, i). 
has_rel(snt1, object, nil). … 
 

KS7. Grammatical relations not including the tar-
get verb also identified using Minipar. The rela-
tions (verb-subject, verb-object, verb-modifier, 
subject-modifier, and object-modifier) occurring 
more than 10 times in the corpus are represented 
by has_related_pair(snt, word1, word2): 

has_related_pair(snt1, there, be). … 
 

KS8. The sense with the highest count of overlap-
ping words in its dictionary definition and in the 
sentence containing the target verb (excluding stop 
words) (Lesk, 1986), represented by 
has_overlapping(sentence, translation): 

has_overlapping(snt1, voltar). 
 

KS9. Selectional restrictions of the verbs defined 
using LDOCE (Procter, 1978). WordNet is used 
when the restrictions imposed by the verb are not 
part of the description of its arguments, but can be 
satisfied by synonyms or hyperonyms of those ar-
guments. A hierarchy of feature types is used to 
account for restrictions established by the verb that 
are more generic than the features describing its 
arguments in the sentence. This information is 
represented by definitions of the form satis-
fy_restriction(snt, rest_subject, rest_object): 

satisfy_restriction(snt1, [human], nil). 
satisfy_restriction(snt1, [animal, human], nil). 
 

KS1-KS9 can be applied to both multilingual and 
monolingual disambiguation tasks. The following 
knowledge sources were specifically designed for 
multilingual applications: 
 
KS10. Phrasal verbs in the sentence identified using 
a list extracted from various dictionaries. (This 
information was not used in the monolingual task 
because phrasal constructions are not considered 
verb senses in Senseval data.) These are 
represented by definitions of the form 
has_expression(snt, verbal_expression):  

has_expression(snt1, “come back”). 
 

KS11. Five words to the right and left of the target 
verb in the Portuguese translation. This could be 

obtained using a machine translation system that 
would first translate the non-ambiguous words in 
the sentence. In our experiments it was extracted 
using a parallel corpus and represented using defi-
nitions of the form has_bag_trns(snt, portu-
guese_word): 

has_bag_trns(snt1, coelho). 
has_bag_trns(snt1, reincarnação). … 
 

KS12. Narrow context consisting of 5 collocations 
of the verb in the Portuguese translation, which 
take into account the positions of the words, 
represented by has_narrow_trns(snt, 
word_position, portuguese_word): 

has_narrow_trns(snt1, 1st_word_right, como). 
has_narrow_trns(snt1, 2nd_word_right, um). … 

 
In addition to background knowledge, the system 
learns from a set of examples. Since all knowledge 
about them is expressed as background knowledge, 
their representation is very simple, containing only 
the sentence identifier and the sense of the verb in 
that sentence, i.e. sense(snt, sense): 

sense(snt1,voltar).  
sense(snt2,ir). … 
 

Based on the examples, background knowledge 
and a series of settings specifying the predicate to 
be learned (i.e., the heads of the rules), the predi-
cates that can be in the conditional part of the 
rules, how the arguments can be shared among dif-
ferent  predicates and several other parameters, the 
inference engine produces a set of symbolic rules. 
Figure 1 shows examples of the rules induced for 
the verb “to come” in the multilingual task.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Examples of rules produced for the verb 
“come” in the multilingual task 

 

Rule_1. sense(A, voltar) :- 
    has_collocation(A, 1st_prep_right, back). 
Rule_2. sense(A, chegar) :- 
   has_rel(A, subj, B), has_bigram(A, today, B), 
   has_bag_trans(A, hoje). 
Rule_3. sense(A, chegar) :- 
    satisfy_restriction(A, [animal, human], [concrete]); 
    has_expression(A, 'come at'). 
Rule_4. sense(A, vir) :- 
    satisfy_restriction(A, [animate], nil);  
    (has_rel(A, subj, B), 
    (has_pos(A, B, nnp); has_pos(A, B, prp))). 
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Models learned with ILP are symbolic and can be 
easily interpreted. Additionally, innovative knowl-
edge about the problem can emerge from the rules 
learned by the system. Although some rules simply 
test shallow features such as collocates, others pose 
conditions on sets of knowledge sources, including 
relational sources, and allow non-instantiated ar-
guments to be shared amongst them by means of 
variables. For example, in Figure 1, Rule_1 states 
that the translation of the verb in a sentence A will 
be “voltar” (return) if the first preposition to the 
right of the verb in that sentence is “back”. Rule_2 
states that the translation of the verb will be 
“chegar” (arrive) if it has a certain subject B, 
which occurs frequently with the word “today” as a 
bigram, and if the partially translated sentence con-
tains the word “hoje” (the translation of “today”). 
Rule_3 says that the translation of the verb will be 
“chegar” (reach) if the subject of the verb has the 
features “animal” or “human” and the object has 
the feature “concrete”, or if the verb occurs in the 
expression “come at”. Rule_4 states that the trans-
lation of the verb will be “vir” (move toward) if the 
subject of the verb has the feature “animate” and 
there is no object, or if the verb has a subject B that 
is a proper noun (nnp) or a personal pronoun (prp). 

4 Experiments and results 

To assess the performance of the approach the 
model produced for each verb was tested on the 
corresponding set of test cases by applying the 
rules in a decision-list like approach, i.e., retaining 
the order in which they were produced and backing 
off to the most frequent sense in the training set to 
classify cases that were not covered by any of the 
rules. All the knowledge sources were made avail-
able to be used by the inference engine, since pre-
vious experiments showed that they are all relevant 
(Specia, 2006). In what follows we present the re-
sults and discuss each task.  

4.1 Multilingual task 

Table 2 shows the accuracies (in terms of percen-
tage of corpus instances which were correctly dis-
ambiguated) obtained by the Aleph models. 
Results are compared against the accuracy that 
would be obtained by using the most frequent 
translation in the training set to classify all the ex-
amples of the test set (in the column labeled “Ma-
jority sense”). For comparison, we ran experiments 

with three learning algorithms frequently used for 
WSD, which rely on knowledge represented as 
attribute-value vectors: C4.5 (decision-trees), 
Naive Bayes and Support Vector Machine (SVM)1. 
In order to represent all knowledge sources in 
attribute-value vectors, KS2, KS7, KS9 and KS10 

had to be pre-processed to be transformed into bi-
nary attributes. For example, in the case of selec-
tional restrictions (KS9), one attribute was created 
for each possible sense of the verb and a true/false 
value was assigned to it depending on whether the 
arguments of the verb satisfied any restrictions re-
ferring to that sense. Results for each of these algo-
rithms are also shown in Table 2. 

As we can see in Table 2, the accuracy of the 
ILP approach is considerably better than the most 
frequent sense baseline and also outperforms the 
other learning algorithms. This improvement is 
statistically significant (paired t-test; p < 0.05). As 
expected, accuracy is generally higher for verbs 
with fewer possible translations.  

The models produced by Aleph for all the verbs 
are reasonably compact, containing 50 to 96 rules. 
In those models the various knowledge sources 
appear in different rules and all are used. This 
demonstrates that they are all useful for the disam-
biguation of verbs. 

 
Verb Majori-  

ty sense 
C4.5 Naïve  

Bayes 
SVM Aleph 

ask 0.68 0.68 0.82 0.88 0.92 
come 0.46 0.57 0.61 0.68 0.73 
get 0.03 0.25 0.46 0.47 0.49 
give 0.72 0.71 0.74 0.74 0.74 
go 0.49 0.61 0.66 0.66 0.66 
live 0.71 0.72 0.64 0.73 0.87 
look 0.48 0.69 0.81 0.83 0.93 
make 0.64 0.62 0.60 0.64 0.68 
take 0.14 0.41 0.50 0.51 0.59 
tell 0.65 0.67 0.66 0.68 0.82 
Average 0.50 0.59 0.65 0.68 0.74 

Table 2. Accuracies obtained by Aleph and other 
learning algorithms in the multilingual task 
 
These results are very positive, particularly if we 
consider the characteristics of the multilingual sce-
nario: (1) the verbs addressed are highly ambi-
guous; (2) the corpus was automatically tagged and 
thus distinct synonym translations were sometimes 

                                                           
1 The implementations provided by Weka were used. Weka is 
available from http://www.cs.waikato.ac.nz/ml/weka/ 
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used to annotate different examples (these count as 
different senses for the inference engine); and (3) 
certain translations occur very infrequently (just 1 
or 2 examples in the whole corpus). It is likely that 
a less strict evaluation regime, such as one which 
takes account of synonym translations, would re-
sult in higher accuracies. 

It is worth noticing that we experimented with a 
few relevant parameters for both Aleph and the 
other learning algorithms. Values that yielded the 
best average predictive accuracy in the training 
sets were assumed to be optimal and used to eva-
luate the test sets.  

4.2 Monolingual task 

Table 3 shows the average accuracy obtained by 
Aleph in the monolingual task (Senseval-3 verbs 
with fine-grained sense distinctions and using the 
evaluation system provided by Senseval). It also 
shows the average accuracy of the most frequent 
sense and accuracies reported on the same set of 
verbs by the best systems submitted by the sites 
which participated in this task. Syntalex-3 (Mo-
hammad and Pedersen, 2004) is based on an en-
semble of bagged decision trees with narrow 
context part-of-speech features and bigrams. 
CLaC1 (Lamjiri et al., 2004) uses a Naive Bayes 
algorithm with a dynamically adjusted context 
window around the target word. Finally, MC-WSD 
(Ciaramita and Johnson, 2004) is a multi-class av-
eraged perceptron classifier using syntactic and 
narrow context features, with one component 
trained on the data provided by Senseval and other 
trained on WordNet glosses.  
 

System % Average accuracy 
Majority sense 0.56 
Syntalex-3 0.67 
CLaC1 0.67 
MC-WSD 0.72 
Aleph 0.72 

Table 3. Accuracies obtained by Aleph and other 
approaches in the monolingual task 
 
As we can see in Table 3, results are very encour-
aging: even without being particularly customized 
for this monolingual task, the ILP approach signif-
icantly outperforms the majority sense baseline and 
performs as well as the state-of-the-art system re-
porting results for the same set of verbs. As with 
the multilingual task, the models produced contain 

a small number of rules (from 6, for verbs with a 
few examples, to 88) and all knowledge sources 
are used across different rules and verbs. 

In general, results from both multilingual and 
monolingual tasks demonstrate that the hypothesis 
put forward in Section 1, that ILP’s ability to gen-
erate expressive rules which combine and integrate 
a wide range of knowledge sources is beneficial for 
WSD systems, is correct.  

5 Conclusion 

We have introduced a new hybrid approach to 
WSD which uses ILP to combine deep and shallow 
knowledge sources. ILP induces expressive disam-
biguation models which include relations between 
knowledge sources. It is an interesting approach to 
learning which has been considered promising for 
several applications in natural language processing 
and has been explored for a few of them, namely 
POS-tagging, grammar acquisition and semantic 
parsing (Cussens et al., 1997; Mooney, 1997). This 
paper has demonstrated that ILP also yields good 
results for WSD, in particular for the disambigua-
tion of verbs.  

We plan to further evaluate our approach for 
other sets of words, including other parts-of-speech 
to allow further comparisons with other approach-
es. For example, Dang and Palmer (2005) also use 
a rich set of features with a traditional learning al-
gorithm (maximum entropy). Currently, we are 
evaluating the role of the WSD models for the 10 
verbs of the multilingual task in an English-
Portuguese statistical machine translation system. 
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Abstract

When a word sense disambiguation (WSD)
system is trained on one domain but ap-
plied to a different domain, a drop in ac-
curacy is frequently observed. This high-
lights the importance of domain adaptation
for word sense disambiguation. In this pa-
per, we first show that an active learning ap-
proach can be successfully used to perform
domain adaptation of WSD systems. Then,
by using the predominant sense predicted by
expectation-maximization (EM) and adopt-
ing a count-merging technique, we improve
the effectiveness of the original adaptation
process achieved by the basic active learn-
ing approach.

1 Introduction

In natural language, a word often assumes different
meanings, and the task of determining the correct
meaning, or sense, of a word in different contexts
is known as word sense disambiguation (WSD). To
date, the best performing systems in WSD use a
corpus-based, supervised learning approach. With
this approach, one would need to collect a text cor-
pus, in which each ambiguous word occurrence is
first tagged with its correct sense to serve as training
data.

The reliance of supervised WSD systems on an-
notated corpus raises the important issue of do-
main dependence. To investigate this, Escudero
et al. (2000) and Martinez and Agirre (2000) con-
ducted experiments using the DSO corpus, which

contains sentences from two different corpora,
namely Brown Corpus (BC) and Wall Street Jour-
nal (WSJ). They found that training a WSD system
on one part (BC or WSJ) of the DSO corpus, and
applying it to the other, can result in an accuracy
drop of more than 10%, highlighting the need to per-
form domain adaptation of WSD systems to new do-
mains. Escudero et al. (2000) pointed out that one
of the reasons for the drop in accuracy is the dif-
ference in sense priors (i.e., the proportions of the
different senses of a word) between BC and WSJ.
When the authors assumed they knew the sense pri-
ors of each word in BC and WSJ, and adjusted these
two datasets such that the proportions of the differ-
ent senses of each word were the same between BC
and WSJ, accuracy improved by 9%.

In this paper, we explore domain adaptation of
WSD systems, by adding training examples from the
new domain as additional training data to a WSD
system. To reduce the effort required to adapt a
WSD system to a new domain, we employ an ac-
tive learning strategy (Lewis and Gale, 1994) to se-
lect examples to annotate from the new domain of
interest. To our knowledge, our work is the first to
use active learning for domain adaptation for WSD.
A similar work is the recent research by Chen et al.
(2006), where active learning was used successfully
to reduce the annotation effort for WSD of 5 English
verbs usingcoarse-grainedevaluation. In that work,
the authors only used active learning to reduce the
annotation effort and did not deal with the porting of
a WSD system to a new domain.

Domain adaptation is necessary when the train-
ing and target domains are different. In this paper,
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we perform domain adaptation for WSD of a set of
nouns usingfine-grainedevaluation. The contribu-
tion of our work is not only in showing that active
learning can be successfully employed to reduce the
annotation effort required for domain adaptation in
a fine-grainedWSD setting. More importantly, our
main focus and contribution is in showing how we
can improve the effectiveness of a basic active learn-
ing approach when it is used for domain adaptation.
In particular, we explore the issue of different sense
priors across different domains. Using the sense
priors estimated by expectation-maximization (EM),
the predominant sense in the new domain is pre-
dicted. Using this predicted predominant sense and
adopting a count-merging technique, weimprovethe
effectiveness of the adaptation process.

In the next section, we discuss the choice of cor-
pus and nouns used in our experiments. We then
introduce active learning for domain adaptation, fol-
lowed by count-merging. Next, we describe an EM-
based algorithm to estimate the sense priors in the
new domain. Performance of domain adaptation us-
ing active learning and count-merging is then pre-
sented. Next, we show that by using the predom-
inant sense of the target domain as predicted by
the EM-based algorithm, we improve the effective-
ness of the adaptation process. Our empirical results
show that for the set of nouns which have different
predominant senses between the training and target
domains, we are able to reduce the annotation effort
by 71%.

2 Experimental Setting

In this section, we discuss the motivations for choos-
ing the particular corpus and the set of nouns to con-
duct our domain adaptation experiments.

2.1 Choice of Corpus

The DSO corpus (Ng and Lee, 1996) contains
192,800 annotated examples for 121 nouns and 70
verbs, drawn from BC and WSJ. While the BC is
built as a balanced corpus, containing texts in var-
ious categories such as religion, politics, humani-
ties, fiction, etc, the WSJ corpus consists primarily
of business and financial news. Exploiting the dif-
ference in coverage between these two corpora, Es-
cudero et al. (2000) separated the DSO corpus into

its BC and WSJ parts to investigate the domain de-
pendence of several WSD algorithms. Following the
setup of (Escudero et al., 2000), we similarly made
use of the DSO corpus to perform our experiments
on domain adaptation.

Among the few currently available manually
sense-annotated corpora for WSD, the SEMCOR
(SC) corpus (Miller et al., 1994) is the most widely
used. SEMCOR is a subset of BC which is sense-
annotated. Since BC is a balanced corpus, and since
performing adaptation from a general corpus to a
more specific corpus is a natural scenario, we focus
on adapting a WSD system trained on BC to WSJ in
this paper. Henceforth, out-of-domain data will re-
fer to BC examples, and in-domain data will refer to
WSJ examples.

2.2 Choice of Nouns

The WordNet Domains resource (Magnini and
Cavaglia, 2000) assigns domain labels to synsets in
WordNet. Since the focus of the WSJ corpus is on
business and financial news, we can make use of
WordNet Domains to select the set of nouns having
at least one synset labeled with a business or finance
related domain label. This is similar to the approach
taken in (Koeling et al., 2005) where they focus on
determining the predominant sense of words in cor-
pora drawn from finance versus sports domains.1

Hence, we select the subset of DSO nouns that have
at least one synset labeled with any of these domain
labels:commerce, enterprise, money, finance, bank-
ing, and economy. This gives a set of 21 nouns:
book, business, center, community, condition, field,
figure, house, interest, land, line, money, need, num-
ber, order, part, power, society, term, use, value.2

For each noun, all the BC examples are used as
out-of-domain training data. One-third of the WSJ
examples for each noun are set aside as evaluation

1Note however that the coverage of the WordNet Domains
resource is not comprehensive, as about 31% of the synsets are
simply labeled with “factotum”, indicating that the synset does
not belong to a specific domain.

225 nouns have at least one synset labeled with the listed
domain labels. In our experiments, 4 out of these 25 nouns have
an accuracy of more than 90% before adaptation (i.e., training
on just the BC examples) and accuracy improvement is less than
1% after all the available WSJ adaptation examples are added
as additional training data. To obtain a clearer picture of the
adaptation process, we discard these 4 nouns, leaving a set of
21 nouns.
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Dataset No. of MFS No. of No. of
senses acc. training adaptation

BC WSJ (%) examples examples
21 nouns 6.7 6.8 61.1 310 406
9 nouns 7.9 8.6 65.8 276 416

Table 1: The average number of senses in BC and
WSJ, average MFS accuracy, average number of BC
training, and WSJ adaptation examples per noun.

data, and the rest of the WSJ examples are desig-
nated as in-domain adaptation data. The row21
nouns in Table 1 shows some information about
these 21 nouns. For instance, these nouns have an
average of 6.7 senses in BC and 6.8 senses in WSJ.
This is slightly higher than the 5.8 senses per verb in
(Chen et al., 2006), where the experiments were con-
ducted using coarse-grained evaluation. Assuming
we have access to an “oracle” which determines the
predominant sense, or most frequent sense (MFS),
of each noun in our WSJ test data perfectly, and
we assign this most frequent sense to each noun in
the test data, we will have achieved an accuracy of
61.1% as shown in the columnMFS accuracyof Ta-
ble 1. Finally, we note that we have an average of
310 BC training examples and 406 WSJ adaptation
examples per noun.

3 Active Learning

For our experiments, we use naive Bayes as the
learning algorithm. The knowledge sources we use
include parts-of-speech, local collocations, and sur-
rounding words. These knowledge sources were ef-
fectively used to build a state-of-the-art WSD pro-
gram in one of our prior work (Lee and Ng, 2002).
In performing WSD with a naive Bayes classifier,
the senses assigned to an example with features
f1, . . . , fn is chosen so as to maximize:

p(s)
n∏

j=1

p(fj |s)

In our domain adaptation study, we start with a
WSD system built using training examples drawn
from BC. We then investigate the utility of adding
additional in-domain training data from WSJ. In the
baseline approach, the additional WSJ examples are
randomly selected. With active learning (Lewis and
Gale, 1994), we useuncertainty samplingas shown

DT ← the set of BC training examples
DA← the set of untagged WSJ adaptation examples
Γ←WSD system trained on DT
repeat

pmin←∞
for eachd∈ DA do
bs← word sense prediction ford usingΓ
p← confidence of predictionbs
if p< pmin then

pmin← p, dmin← d
end

end
DA← DA − dmin
provide correct senses for dmin and add dmin to DT
Γ←WSD system trained on new DT

end

Figure 1: Active learning

in Figure 1. In each iteration, we train a WSD sys-
tem on the available training data and apply it on the
WSJ adaptation examples. Among these WSJ ex-
amples, the example predicted with the lowest con-
fidence is selected and removed from the adaptation
data. The correct label is then supplied for this ex-
ample and it is added to the training data.

Note that in the experiments reported in this pa-
per, all the adaptation examples are already pre-
annotated before the experiments start, since all
the WSJ adaptation examples come from the DSO
corpus which have already been sense-annotated.
Hence, the annotation of an example needed during
each adaptation iteration is simulated by performing
a lookup without any manual annotation.

4 Count-merging

We also employ a technique known ascount-
merging in our domain adaptation study. Count-
merging assigns different weights to different ex-
amples to better reflect their relative importance.
Roark and Bacchiani (2003) showed that weighted
count-merging is a special case of maximum a pos-
teriori (MAP) estimation, and successfully used it
for probabilistic context-free grammar domain adap-
tation (Roark and Bacchiani, 2003) and language
model adaptation (Bacchiani and Roark, 2003).

Count-merging can be regarded as scaling of
counts obtained from different data sets. We let
c̃ denote the counts from out-of-domain training
data, c̄ denote the counts from in-domain adapta-
tion data, and̂p denote the probability estimate by
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count-merging. We can scale the out-of-domain and
in-domain counts with different factors, or just use a
single weight parameterβ:

p̂(fj |si) =
c̃(fj , si) + βc̄(fj , si)

c̃(si) + βc̄(si)
(1)

Similarly,

p̂(si) =
c̃(si) + βc̄(si)

c̃+ βc̄
(2)

Obtaining an optimum value forβ is not the focus
of this work. Instead, we are interested to see if as-
signing a higher weight to the in-domain WSJ adap-
tation examples, as compared to the out-of-domain
BC examples, will improve the adaptation process.
Hence, we just use aβ value of 3 in our experiments
involving count-merging.

5 Estimating Sense Priors

In this section, we describe an EM-based algorithm
that was introduced by Saerens et al. (2002), which
can be used to estimate the sense priors, or a priori
probabilities of the different senses in a new dataset.
We have recently shown that this algorithm is effec-
tive in estimating the sense priors of a set of nouns
(Chan and Ng, 2005).

Most of this section is based on (Saerens et al.,
2002). Assume we have a set of labeled data DL

with n classes and a set ofN independent instances
(x1, . . . ,xN ) from a new data set. The likelihood of
theseN instances can be defined as:

L(x1, . . . ,xN ) =
N∏

k=1

p(xk)

=
N∏

k=1

[
n∑

i=1

p(xk, ωi)

]

=
N∏

k=1

[
n∑

i=1

p(xk|ωi)p(ωi)
]

(3)

Assuming the within-class densitiesp(xk|ωi), i.e.,
the probabilities of observingxk given the classωi,
do not change from the training set DL to the new
data set, we can define:p(xk|ωi) = pL(xk|ωi). To
determine the a priori probability estimatesp̂(ωi) of
the new data set that will maximize the likelihood of
(3) with respect top(ωi), we can apply the iterative

procedure of the EM algorithm. In effect, through
maximizing the likelihood of (3), we obtain the a
priori probability estimates as a by-product.

Let us now define some notations. When we ap-
ply a classifier trained on DL on an instancexk
drawn from the new data set DU , we getp̂L(ωi|xk),
which we define as the probability of instancexk
being classified as classωi by the classifier trained
on DL. Further, let us definêpL(ωi) as the a pri-
ori probability of classωi in DL. This can be esti-
mated by the class frequency ofωi in DL. We also
definep̂(s)(ωi) and p̂(s)(ωi|xk) as estimates of the
new a priori and a posteriori probabilities at steps
of the iterative EM procedure. Assuming we initial-
ize p̂(0)(ωi) = p̂L(ωi), then for each instancexk in
DU and each classωi, the EM algorithm provides
the following iterative steps:

p̂(s)(ωi|xk) =
p̂L(ωi|xk) bp

(s)(ωi)
bpL(ωi)∑n

j=1 p̂L(ωj |xk) bp
(s)(ωj)
bpL(ωj)

(4)

p̂(s+1)(ωi) =
1
N

N∑

k=1

p̂(s)(ωi|xk) (5)

where Equation (4) represents the expectation E-
step, Equation (5) represents the maximization M-
step, andN represents the number of instances in
DU . Note that the probabilitieŝpL(ωi|xk) and
p̂L(ωi) in Equation (4) will stay the same through-
out the iterations for each particular instancexk
and classωi. The new a posteriori probabilities
p̂(s)(ωi|xk) at steps in Equation (4) are simply the
a posteriori probabilities in the conditions of the la-
beled data,̂pL(ωi|xk), weighted by the ratio of the
new priorsp̂(s)(ωi) to the old priorŝpL(ωi). The de-
nominator in Equation (4) is simply a normalizing
factor.

The a posteriorîp(s)(ωi|xk) and a priori proba-
bilities p̂(s)(ωi) are re-estimated sequentially dur-
ing each iterations for each new instancexk and
each classωi, until the convergence of the estimated
probabilitiesp̂(s)(ωi), which will be our estimated
sense priors. This iterative procedure will increase
the likelihood of (3) at each step.

6 Experimental Results

For each adaptation experiment, we start off with a
classifier built from an initial training set consisting
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Figure 2: Adaptation process for all 21 nouns.

of the BC training examples. At each adaptation iter-
ation, WSJ adaptation examples are selectedone at
a timeand added to the training set. The adaptation
process continues until all the adaptation examples
are added. Classification accuracies averaged over
3 random trials on the WSJ test examples at each
iteration are calculated. Since the number of WSJ
adaptation examples differs for each of the 21 nouns,
the learning curves we will show in the various fig-
ures are plotted in terms of different percentage of
adaptation examples added, varying from 0 to 100
percent in steps of 1 percent. To obtain these curves,
we first calculate for each noun, the WSD accuracy
when different percentages of adaptation examples
are added. Then, for each percentage, we calculate
the macro-average WSD accuracy over all the nouns
to obtain a single learning curve representing all the
nouns.

6.1 Utility of Active Learning and
Count-merging

In Figure 2, the curver represents the adaptation
process of the baseline approach, where additional
WSJ examples are randomly selected during each
adaptation iteration. The adaptation process using
active learning is represented by the curvea, while
applying count-merging with active learning is rep-
resented by the curvea-c. Note that random selec-
tion r achieves its highest WSD accuracy afterall
the adaptation examples are added. To reach the
same accuracy, thea approach requires the addition

of only 57% of adaptation examples. Thea-c ap-
proach is even more effective and requires only 42%
of adaptation examples. This demonstrates the ef-
fectiveness of count-merging in further reducing the
annotation effort, when compared to using only ac-
tive learning. To reach the MFS accuracy of 61.1%
as shown earlier in Table 1,a-c requires just 4% of
the adaptation examples.

To determine the utility of the out-of-domain BC
examples, we have also conducted three active learn-
ing runs using only WSJ adaptation examples. Us-
ing 10%, 20%, and 30% of WSJ adaptation exam-
ples to build a classifier, the accuracy of these runs
is lower than the active learninga curve and paired
t-tests show that the difference is statistically signif-
icant at the level of significance 0.01.

6.2 Using Sense Priors Information

As mentioned in section 1, research in (Escudero et
al., 2000) noted an improvement in accuracy when
they adjusted the BC and WSJ datasets such that
the proportions of the different senses of each word
were the same between BC and WSJ. We can simi-
larly choose BC examples such that the sense priors
in the BC training data adhere to the sense priors in
the WSJ evaluation data. To gauge the effectiveness
of this approach, we first assume that we know the
true sense priors of each noun in the WSJ evalua-
tion data. We then gather BC training examples for
a noun to adhere as much as possible to the sense
priors in WSJ. Assume sensesi is the predominant
sense in the WSJ evaluation data,si has a sense prior
of pi in the WSJ data and hasni BC training exam-
ples. Takingni examples to represent a sense prior
of pi, we proportionally determine the number of BC
examples to gather for other sensess according to
their respective sense priors in WSJ. If there are in-
sufficient training examples in BC for some senses,
whatever available examples ofs are used.

This approach gives an average of 195 BC train-
ing examples for the 21 nouns. With this new set
of training examples, we perform adaptation using
active learning and obtain thea-truePrior curve in
Figure 2. Thea-truePrior curve shows that by en-
suring that the sense priors in the BC training data
adhere as much as possible to the sense priors in the
WSJ data, we start off with a higher WSD accuracy.
However, the performance is no different from thea
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curve after 35% of adaptation examples are added.
A possible reason might be that by strictly adhering
to the sense priors in the WSJ data, we have removed
too many BC training examples, from an average of
310 examples per noun as shown in Table 1, to an
average of 195 examples.

6.3 Using Predominant Sense Information

Research by McCarthy et al. (2004) and Koeling et
al. (2005) pointed out that a change of predominant
sense is often indicative of a change in domain. For
example, the predominant sense of the nouninterest
in the BC part of the DSO corpus has the meaning
“a sense of concern with and curiosity about some-
one or something”. In the WSJ part of the DSO cor-
pus, the nouninteresthas a different predominant
sense with the meaning “a fixed charge for borrow-
ing money”, which is reflective of the business and
finance focus of the WSJ corpus.

Instead of restricting the BC training data to ad-
here strictly to the sense priors in WSJ, another alter-
native is just to ensure that the predominant sense in
BC is the same as that of WSJ. Out of the 21 nouns,
12 nouns have the same predominant sense in both
BC and WSJ. The remaining 9 nouns that have dif-
ferent predominant senses in the BC and WSJ data
are: center, field, figure, interest, line, need, order,
term, value. The row9 nounsin Table 1 gives some
information for this set of 9 nouns. To gauge the
utility of this approach, we conduct experiments on
these nouns by first assuming that we know thetrue
predominant sense in the WSJ data. Assume that the
WSJ predominant sense of a noun issi andsi hasni
examples in the BC data. We then gather BC exam-
ples for a noun to adhere to this WSJ predominant
sense, by gathering only up toni BC examples for
each sense of this noun. This approach gives an av-
erage of 190 BC examples for the 9 nouns. This is
higher than an average of 83 BC examples for these
9 nouns if BC examples are selected to follow the
sense priors of WSJ evaluation data as described in
the last subsection 6.2.

For these 9 nouns, the average KL-divergence be-
tween the sense priors of the original BC data and
WSJ evaluation data is 0.81. This drops to 0.51 af-
ter ensuring that the predominant sense in BC is the
same as that of WSJ, confirming that the sense priors
in the newly gathered BC data more closely follow
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Figure 3: Using true predominant sense for the 9
nouns.

the sense priors in WSJ. Using this new set of train-
ing examples, we perform domain adaptation using
active learning to obtain the curvea-truePredin Fig-
ure 3. For comparison, we also plot the curvesa
anda-truePrior for this set of 9 nouns in Figure 3.
Results in Figure 3 show thata-truePredstarts off
at a higher accuracy and performs consistently bet-
ter than thea curve. In contrast, thougha-truePrior
starts at a high accuracy, its performance is lower
thana-truePredanda after 50% of adaptation ex-
amples are added. The approach represented bya-
truePredis a compromise between ensuring that the
sense priors in the training data follow as closely
as possible the sense priors in the evaluation data,
while retaining enough training examples. These re-
sults highlight the importance of striking a balance
between these two goals.

In (McCarthy et al., 2004), a method was pre-
sented to determine the predominant sense of a word
in a corpus. However, in (Chan and Ng, 2005),
we showed that in a supervised setting where one
has access to some annotated training data, the EM-
based method in section 5 estimates the sense priors
more effectively than the method described in (Mc-
Carthy et al., 2004). Hence, we use the EM-based
algorithm to estimate the sense priors in the WSJ
evaluation data for each of the 21 nouns. The sense
with the highest estimated sense prior is taken as the
predominant sense of the noun.

For the set of 12 nouns where the predominant
54
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Figure 4: Using estimated predominant sense for the
9 nouns.

Accuracy % adaptation examples needed
r a a-estPred a-c-estPred

50%: 61.1 8 7 (0.88) 5 (0.63) 4 (0.50)
60%: 64.5 10 9 (0.90) 7 (0.70) 5 (0.50)
70%: 68.0 15 12 (0.80) 9 (0.60) 6 (0.40)
80%: 71.5 23 16 (0.70) 12 (0.52) 9 (0.39)
90%: 74.9 46 24 (0.52) 21 (0.46) 15 (0.33)
100%: 78.4 100 51 (0.51) 38 (0.38) 29 (0.29)

Table 2: Annotation savings and percentage of adap-
tation examples needed to reach various accuracies.

sense remains unchanged between BC and WSJ, the
EM-based algorithm is able to predict that the pre-
dominant sense remains unchanged forall 12 nouns.
Hence, we will focus on the 9 nouns which have
different predominant senses between BC and WSJ
for our remaining adaptation experiments. For these
9 nouns, the EM-based algorithm correctly predicts
the WSJ predominant sense for 6 nouns. Hence, the
algorithm is able to predict the correct predominant
sense for 18 out of 21 nouns overall, representing an
accuracy of 86%.

Figure 4 plots the curvea-estPred, which is simi-
lar to a-truePred, except that the predominant sense
is now estimated by the EM-based algorithm. Em-
ploying count-merging witha-estPredproduces the
curvea-c-estPred. For comparison, the curvesr, a,
and a-truePredare also plotted. The results show
that a-estPredperforms consistently better thana,
and a-c-estPredin turn performs better thana-

estPred. Hence, employing the predicted predom-
inant sense and count-merging, we further improve
the effectiveness of the active learning-based adap-
tation process.

With reference to Figure 4, the WSD accuracies
of the r and a curves before and after adaptation
are 43.7% and 78.4% respectively. Starting from
the mid-point 61.1% accuracy, which represents a
50% accuracy increase from 43.7%, we show in
Table 2 the percentage of adaptation examples re-
quired by the various approaches to reach certain
levels of WSD accuracies. For instance, to reach
the final accuracy of 78.4%,r, a, a-estPred, anda-
c-estPredrequire the addition of 100%, 51%, 38%,
and 29% adaptation examples respectively. The
numbers in brackets give the ratio of adaptation ex-
amples needed bya, a-estPred, anda-c-estPredver-
sus random selectionr. For instance, to reach a
WSD accuracy of 78.4%,a-c-estPredneeds only
29% adaptation examples, representing a ratio of
0.29 and an annotation saving of 71%. Note that this
represents a more effective adaptation process than
the basic active learninga approach, which requires
51% adaptation examples. Hence, besides showing
that active learning can be used to reduce the annota-
tion effort required for domain adaptation, we have
further improved the effectiveness of the adaptation
process by using the predicted predominant sense
of the new domain and adopting the count-merging
technique.

7 Related Work

In applying active learning for domain adapta-
tion, Zhang et al. (2003) presented work on sen-
tence boundary detection using generalized Win-
now, while Tur et al. (2004) performed language
model adaptation of automatic speech recognition
systems. In both papers, out-of-domain and in-
domain data were simply mixed together without
MAP estimation such as count-merging. For WSD,
Fujii et al. (1998) used selective sampling for a
Japanese language WSD system, Chen et al. (2006)
used active learning for 5 verbs using coarse-grained
evaluation, and H. T. Dang (2004) employed active
learning for another set of 5 verbs. However, their
work only investigated the use of active learning to
reduce the annotation effort necessary for WSD, but
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did not deal with the porting of a WSD system to
a different domain. Escudero et al. (2000) used the
DSO corpus to highlight the importance of the issue
of domain dependence of WSD systems, but did not
propose methods such as active learning or count-
merging to address the specific problem of how to
perform domain adaptation for WSD.

8 Conclusion

Domain adaptation is important to ensure the gen-
eral applicability of WSD systems across different
domains. In this paper, we have shown that active
learning is effective in reducing the annotation ef-
fort required in porting a WSD system to a new do-
main. Also, we have successfully used an EM-based
algorithm to detect a change in predominant sense
between the training and new domain. With this
information on the predominant sense of the new
domain and incorporating count-merging, we have
shown that we are able to improve the effectiveness
of the original adaptation process achieved by the
basic active learning approach.
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Abstract

Human categorization is neither a binary nor
a context-free process. Rather, some con-
cepts are better examples of a category than
others, while the criteria for category mem-
bership may be satisfied to different degrees
by different concepts in different contexts.
In light of these empirical facts, WordNet’s
static category structure appears both exces-
sively rigid and unduly fragile for process-
ing real texts. In this paper we describe a
syntagmatic, corpus-based approach to re-
defining WordNet’s categories in a func-
tional, gradable and context-sensitive fash-
ion. We describe how the diagnostic prop-
erties for these definitions are automati-
cally acquired from the web, and how the
increased flexibility in categorization that
arises from these redefinitions offers a ro-
bust account of metaphor comprehension
in the mold of Glucksberg’s (2001) the-
ory of category-inclusion. Furthermore, we
demonstrate how this competence with figu-
rative categorization can effectively be gov-
erned by automatically-generated ontologi-
cal constraints, also acquired from the web.

1 Introduction

Linguistic variation across contexts is often symp-
tomatic of ontological differences between contexts.
These observable variations can serve as valuable
clues not just to the specific senses of words in con-
text (e.g., see Pustejovsky, Hanks and Rumshisky,

2004) but to the underlying ontological structure it-
self (see Cimiano, Hotho and Staab, 2005). The
most revealing variations are syntagmatic in nature,
which is to say, they look beyond individual word
forms to larger patterns of contiguous usage (Hanks,
2004). In most contexts, the similarity between
chocolate, say, and a narcotic like heroin will mea-
gerly reflect the simple ontological fact that both are
kinds of substances; certainly, taxonomic measures
of similarity as discussed in Budanitsky and Hirst
(2006) will capture little more than this common-
ality. However, in a context in which the addictive
properties of chocolate are very salient (e.g., an on-
line dieting forum), chocolate is more likely to be
categorized as a drug and thus be considered more
similar to heroin. Look, for instance, at the simi-
lar ways in which these words can be used: one can
be ”chocolate-crazed” or ”chocolate-addicted” and
suffer ”chocolate-induced” symptoms (e.g., each of
these uses can be found in the pages of Wikipedia).
In a context that gives rise to these expressions, it is
unsurprising that chocolate should appear altogether
more similar to a harmful narcotic.

In this paper we computationally model this idea
that language use reflects category structure. As
noted by De Leenheer and de Moor (2005), ontolo-
gies are lexical representations of concepts, so we
can expect the effects of context on language use
to closely reflect the effects of context on ontolog-
ical structure. An understanding of the linguistic ef-
fects of context, as expressed through syntagmatic
patterns of word usage, should lead therefore to the
design of more flexible lexical ontologies that natu-
rally adapt to their contexts of use. WordNet (Fell-
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baum, 1998) is just one such lexical ontology that
can benefit greatly from the added flexibility that
context-sensitivity can bring. Though comprehen-
sive in scale and widely used, WordNet suffers from
an obvious structural rigidity in which concepts are
either entirely within a category or entirely outside
a category: no gradation of category membership
is allowed, and no contextual factors are brought to
bear on criteria for membership. Thus, a gun is al-
ways a weapon in WordNet while an axe is never so,
despite the uses (sporting or murderous) to which
each can be put.

In section two we describe a computational
framework for giving WordNet senses a functional,
context-sensitive form. These functional forms si-
multaneously represent i) an intensional definition
for each word sense; ii) a structured query capable
of retrieving instances of the corresponding category
from a context-specific corpus; and iii) a member-
ship function that assigns gradated scores to these
instances based on available syntagmatic evidence.
In section three we describe how the knowledge re-
quired to automate this functional re-definition is ac-
quired from the web and linked to WordNet. In sec-
tion four we describe how these re-definitions can
produce a robust model of metaphor, before we eval-
uate the descriptive sufficiency of this approach in
section five, comparing it to the knowledge already
available within WordNet. We conclude with some
final remarks in section six.

2 Functional Context-Sensitive Categories

We take a wholly textual view of context and as-
sume that a given context can be implicitly charac-
terized by a representative text corpus. This corpus
can be as large as a text archive or an encyclopedia
(e.g., the complete text of Wikipedia), or as small
as a single document, a sentence or even a single
noun-phrase. For instance, the micro-context ”alco-
holic apple-juice” is enough to implicate the cate-
gory Liquor, rather than Juice, as a semantic head,
while ”lovable snake” can be enough of a context to
locally categorize Snake as a kind of Pet. There is a
range of syntagmatic patterns that one can exploit to
glean category insights from a text. For instance, the
”X kills” pattern is enough to categorize X as a kind
of Killer, ”hunts X” is enough to categorize X as

a kind of Prey, while ”X-covered”, ”X-dipped” and
”X-frosted” all indicate that X is a kind of Covering.
Likewise, ”army of X” suggests that a context views
X as a kind of Soldier, while ”barrage of X” suggests
that X should be seen as a kind of Projectile.

We operationalize the collocation-type of adjec-
tive and noun via the function (attr ADJ NOUN),
which returns a number in the range 0...1; this
represents the extent to which ADJ is used to
modify NOUN in the context-defining corpus.
Dice’s coefficient (e.g., see Cimiano et al., 2005) is
used to implement this measure. A context-sensitive
category membership function can be defined, as in
that for Fundamentalist in Figure 1:

(define Fundamentalist.0 (arg0)
(* (max

(%isa arg0 Person.0)
(%isa arg0 Group.0))

(min
(max

(attr political arg0)
(attr religious arg0))

(max
(attr extreme arg0)
(attr violent arg0)
(attr radical arg0)))))

Figure 1. A functional re-definition of the cat-
egory Fundamentalist.

The function of Figure 1 takes, as a single ar-
gument arg0, a putative member of the category
Fundamentalist.0 (note how the sense tag, 0, is
used to identify a specific WordNet sense of ”fun-
damentalist”), and returns a membership score in
the range 0...1 for this term. This score reflects the
syntagmatic evidence for considering arg0 to be
political or religious, as well as extreme or violent
or radical. The function (%isa arg0 CAT) returns a
value of 1.0 if some sense of arg0 is a descendent
of CAT (here Person.0 or Group.0), otherwise 0.
This safeguards ontological coherence and ensures
that only kinds of people or groups can ever be
considered as fundamentalists.

The example of Figure 1 is hand-crafted, but a
functional form can be assigned automatically to
many of the synsets in WordNet by heuristic means.
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For instance, those of Figure 2 are automatically
derived from WordNet’s morpho-semantic links:

(define Fraternity.0 (arg0)
(* (%sim arg0 Fraternity.0)

(max
(attr fraternal arg0)
(attr brotherly arg0))))

(define Orgasm.0 (arg0)
(* (%sim arg0 Orgasm.0)

(max
(attr climactic arg0)
(attr orgasmic arg0))))

Figure 2. Exploiting the WordNet links be-
tween nouns and their adjectival forms.

The function (%sim arg0 CAT) reflects the
perceived similarity between the putative member
arg0 and a synset CAT in WordNet, using one of
the standard formulations described in Budanitsky
and Hirst (2006). Thus, any kind of group (e.g., a
glee club, a Masonic lodge, or a barbershop quartet)
described in a text as ”fraternal” or ”brotherly”
(both occupy the same WordNet synset) can be
considered a Fraternity to the corresponding degree,
tempered by its a priori similarity to a Fraternity;
likewise, any climactic event can be categorized as
an Orgasm to a more or less degree.

Alternately, the function of Figure 3 is automat-
ically obtained for the lexical concept Espresso by
shallow parsing its WordNet gloss: ”strong black
coffee brewed by forcing steam under pressure
through powdered coffee beans”.

(define Espresso.0 (arg0)
(* (%sim arg0 Espresso.0)

(min
(attr strong arg0)
(attr black arg0))))

Figure 3. A functional re-definition of the cat-
egory Espresso based on its WordNet gloss.

It follows that any substance (e.g., oil or tea)
described locally as ”black” and ”strong” with a

non-zero taxonomic similarity to coffee can be
considered a kind of Espresso.

Combining the contents of WordNet 1.6 and
WordNet 2.1, 27,732 different glosses (shared by
51,035 unique word senses) can be shallow parsed to
yield a definition of the kind shown in Figure 3. Of
these, 4525 glosses yield two or more properties that
can be given functional form via attr. However, one
can question whether these features are sufficient,
and more importantly, whether they are truly diag-
nostic of the categories they are used to define. In
the next section we consider another source of diag-
nostic properties, explicit similes on the web, before,
in section 5, comparing the quality of these proper-
ties to those available from WordNet.

3 Diagnostic Properties on the Web

We employ the Google search engine as a retrieval
mechanism for acquiring the diagnostic properties
of categories from the web, since the Google API
and its support for the wildcard term * allows this
process to be fully automated. The guiding intu-
ition here is that looking for explicit similes of the
form ”X is as P as Y” is the surest way of finding
the most salient properties of a term Y; with other
syntagmatic patterns, such as adjective:noun collo-
cations, one cannot be sure that the adjective is cen-
tral to the noun.

Since we expect that explicit similes will tend to
exploit properties that occupy an exemplary point on
a scale, we first extract a list of antonymous adjec-
tives, such as ”hot” or ”cold”, from WordNet. For
every adjective ADJ on this list, we send the query
”as ADJ as *” to Google and scan the first 200 snip-
pets returned to extract different noun values for the
wildcard *. From each set of snippets we can also
ascertain the relative frequencies of different noun
values for ADJ. The complete set of nouns extracted
in this way is then used to drive a second phase of
the search, in which the query template ”as * as a
NOUN” is used to acquire similes that may have
lain beyond the 200-snippet horizon of the original
search, or that may hinge on adjectives not included
on the original list. Together, both phases collect
a wide-ranging series of core samples (of 200 hits
each) from across the web, yielding a set of 74,704
simile instances (of 42,618 unique types) relating
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3769 different adjectives to 9286 different nouns

3.1 Property Filtering

Unfortunately, many of these similes are not suffi-
ciently well-formed to identify salient properties. In
many cases, the noun value forms part of a larger
noun phrase: it may be the modifier of a compound
noun (as in ”bread lover”), or the head of complex
noun phrase (such as ”gang of thieves” or ”wound
that refuses to heal”). In the former case, the com-
pound is used if it corresponds to a compound term
in WordNet and thus constitutes a single lexical unit;
if not, or if the latter case, the simile is rejected.
Other similes are simply too contextual or under-
specified to function well in a null context, so if one
must read the original document to make sense of
the simile, it is rejected. More surprisingly, per-
haps, a substantial number of the retrieved simi-
les are ironic, in which the literal meaning of the
simile is contrary to the meaning dictated by com-
mon sense. For instance, ”as hairy as a bowling
ball” (found once) is an ironic way of saying ”as
hairless as a bowling ball” (also found just once).
Many ironies can only be recognized using world
knowledge, such as ”as sober as a Kennedy” and ”as
tanned as an Irishman”.

Given the creativity involved in these construc-
tions, one cannot imagine a reliable automatic fil-
ter to safely identify bona-fide similes. For this
reason, the filtering task is performed by a human
judge, who annotated 30,991 of these simile in-
stances (for 12,259 unique adjective/noun pairings)
as non-ironic and meaningful in a null context; these
similes relate a set of 2635 adjectives to a set of
4061 different nouns. In addition, the judge also
annotated 4685 simile instances (of 2798 types) as
ironic; these similes relate a set of 936 adjectives
to a set of 1417 nouns. Perhaps surprisingly, ironic
pairings account for over 13% of all annotated sim-
ile instances and over 20% of all annotated types.

3.2 Linking to WordNet Senses

To create functional WordNet definitions from these
adjective:noun pairings, we first need to identify the
WordNet sense of each noun. For instance, ”as stiff
as a zombie” might refer either to a re-animated
corpse or to an alcoholic cocktail (both are senses
of ”zombie” in WordNet, and drinks can be ”stiff”

too). Disambiguation is trivial for nouns with just
a single sense in WordNet. For nouns with two or
more fine-grained senses that are all taxonomically
close, such as ”gladiator” (two senses: a boxer and a
combatant), we consider each sense to be a suitable
target. In some cases, the WordNet gloss for as par-
ticular sense will literally mention the adjective of
the simile, and so this sense is chosen. In all other
cases, we employ a strategy of mutual disambigua-
tion to relate the noun vehicle in each simile to a spe-
cific sense in WordNet. Two similes ”as A as N1”
and ”as A as N2” are mutually disambiguating if N1

and N2 are synonyms in WordNet, or if some sense
of N1 is a hypernym or hyponym of some sense of
N2 in WordNet. For instance, the adjective ”scary”
is used to describe both the noun ”rattler” and the
noun ”rattlesnake” in bona-fide (non-ironic) similes;
since these nouns share a sense, we can assume that
the intended sense of ”rattler” is that of a danger-
ous snake rather than a child’s toy. Similarly, the
adjective ”brittle” is used to describe both saltines
and crackers, suggesting that it is the bread sense of
”cracker” rather than the hacker, firework or hillbilly
senses (all in WordNet) that is intended.

These heuristics allow us to automatically disam-
biguate 10,378 bona-fide simile types (85%), yield-
ing a mapping of 2124 adjectives to 3778 different
WordNet senses. Likewise, 77% (or 2164) of the
simile types annotated as ironic are disambiguated
automatically. A remarkable stability is observed in
the alignment of noun vehicles to WordNet senses:
100% of the ironic vehicles always denote the same
sense, no matter the adjective involved, while 96%
of bona-fide vehicles always denote the same sense.
This stability suggests two conclusions: the dis-
ambiguation process is consistent and accurate; but
more intriguingly, only one coarse-grained sense of
any word is likely to be sufficiently exemplary of
some property to be useful in a simile.

4 From Similes to Category Functions

As noted in section 3, the filtered web data yields
12,259 bona-fide similes describing 4061 target
nouns in terms of 2635 different adjectival prop-
erties. Word-sense disambiguation allows 3778
synsets in WordNet to be given a functional re-
definition in terms of 2124 diagnostic properties, as
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in the definition of Gladiator in Figure 4:

(define Gladiator.0 (arg0)
(* (%isa arg0 Person.0)

(* (%sim arg0 Gladiator.0)
(combine

(attr strong arg0)
(attr violent arg0)
(attr manly arg0)))))

Figure 4. A web-based definition of Gladiator.

Since we cannot ascertain from the web data
which properties are necessary and which are
collectively sufficient, we use the function combine
to aggregate the available evidence. This function
implements a naı̈ve probabilistic or, in which each
piece of syntagmatic evidence is naively assumed to
be independent, as follows:

(combine e0 e1) = e0 + e1(1 − e0)
(combine e0 e1 ...en) = (combine e0 (combine e1 ...en))

Thus, any combatant or competitor (such as a
sportsman) that is described as strong, violent or
manly in a corpus can be categorized as a Gladiator
in that context; the more properties that hold, and
the greater the degree to which they hold, the greater
the membership score that is assigned.

The source of the hard taxonomic constraint
(%isa arg0 Person.0) is explained in the next sec-
tion. For now, note how the use of %sim in the
functions of Figures 2, 3 and 4 means that these
membership functions readily admit both literal and
metaphoric members. Since the line between lit-
eral and metaphoric uses of a category is often im-
possible to draw, the best one can do is to accept
metaphor as a gradable phenomenon (see Hanks,
2006). The incorporation of taxonomic similarity
via %sim ensures that literal members will tend to
receive higher membership scores, and that the most
tenuous metaphors will receive the lowest member-
ship scores (close to 0.0).

4.1 Constrained Category Inclusion

Simile and metaphor involve quite different con-
ceptual mechanisms. For instance, anything that
is particularly strong or black might meaningfully

be called ”as black as espresso” or ”as strong
as espresso”, yet few such things can meaning-
fully be called just ”espresso”. While simile is a
mechanism for highlighting inter-concept similarity,
metaphor is at heart a mechanism of category inclu-
sion (see Glucksberg, 2001). As the espresso exam-
ple demonstrates, category inclusion is more than a
matter of shared properties: humans have strong in-
tuitions about the structure of categories and the ex-
tent to which they can be stretched to include new
members. So while it is sensible to apply the cat-
egory Espresso to other substances, preferably liq-
uids, it seems nonsensical to apply the category to
animals, artifacts, places and so on.

Much as the salient properties of categories can
be acquired form the web (see section 3), so too
can the intuitions governing inclusion amongst cat-
egories. For instance, an attested web-usage of the
phrase ”Espresso-like CAT” tells us that sub-types
of CAT are allowable targets of categorization by the
category Espresso. Thus, since the query ”espresso-
like substance” returns 3 hits via Google, types of
substance (oil, etc.) can be described as Espresso if
they are contextually strong and black. In contrast,
the query ”espresso-like person” returns 0 hits, so
no instance of person can be described as Espresso,
no matter how black or how strong. While this is
clearly a heuristic approach to a complex cognitive
problem, it does allow us to tap into the tacit knowl-
edge that humans employ in categorization. More
generally, a concept X can be included in a category
C if X exhibits salient properties of C and, for some
hypernym H of X in WordNet, we can find an at-
tested use of ”C-like H” on the web.

If we can pre-fetch all possible ”C-like H”
from the web, this will allow comprehension to
proceed without having to resort to web analysis
in mid-categorization. While there are too many
possible values of H to make full pre-fetching a
practical reality, we can generalize the problem
somewhat, by selecting a range of values for H
from the middle-layer of WordNet, such as Person,
Substance, Animal, Tool, Plant, Structure, Event,
Vehicle, Idea and Place, and by pre-fetching the
query ”C-like H” for all 4061 nouns collected in
section 3, combined with this limited set of H
values. For every noun in our database then, we pre-
compile a vector of possible category inclusions.
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For instance, ”lattice” yields the following vector:

{structure(1620), substance(8), container(1),
vehicle(1)}

where numbers in parentheses indicate the web-
frequency of the corresponding ”Lattice-like H”
query. Thus, the category Lattice can be used to
describe (and metaphorically include) other kinds
of structure (like crystals), types of substance (e.g.,
crystalline substances), containers (like honey-
combs) and even vehicles (e.g., those with many
compartments). Likewise, the noun ”snake” yields
the following vector of possibilities:

{structure(125), animal(122), person(56), ve-
hicle(17), tool(9)}

(note, the frequency for ”person” includes the
frequency for ”man” and ”woman”). The category
Snake can also be used to describe and include
structures (like tunnels), other animals (like eels),
people (e.g., the dishonest variety), vehicles (e.g.,
articulated trucks, trains) and tools (e.g., hoses). The
noun ”gladiator” yields a vector of just one element,
{person(1)}, from which the simple constraint
(%isa arg0 Person.0) in Figure 4 is derived. In con-
trast, ”snake” is now given the definition of Figure 5:

(define Snake.0 (arg0)
(* (max

(%isa arg0 Structure.0)
(%isa arg0 Animal.0)
(%isa arg0 Person.0)
(%isa arg0 Vehicle.0))

(* (%sim arg0 Snake.0)
(combine

(attr cunning arg0)
(attr slippery arg0)
(attr flexible arg0)
(attr slim arg0)
(attr sinuous arg0)
(attr crooked arg0)
(attr deadly arg0)
(attr poised arg0)))))

Figure 5. A membership function for Snake
using web-derived category-inclusion constraints.

Glucksberg (2001) notes that the same category,
used figuratively, can exhibit different qualities in
different metaphors. For instance, Snake might
describe a kind of crooked person in one metaphor,
a poised killer in another metaphor, and a kind of
flexible tool in yet another. The use of combine
in Figure 5 means that a single category definition
can give rise to each of these perspectives in the
appropriate contexts. We therefore do not need a
different category definition for each metaphoric
use of Snake.

To illustrate the high-level workings of category-
inclusion, Table 1 generalizes over the set of 3778
disambiguated nouns from section 3 to estimate the
propensity for one semantic category, like Person, to
include members of another category, like Animal,
in X-like Y constructs.

X-like Y P A Sub T Str
(P)erson .66 .05 .03 .04 .09
(A)nimal .36 .27 .04 .05 .15

(Sub)stance .14 .03 .37 .05 .32
(T)ool .08 .03 .07 .22 .34

(Str)ucture .04 .03 .03 .03 .43

Table 1. The Likelihood of a category X accommo-
dating a category Y.

Table 1 reveals that 36% of ”ANIMAL-like”
patterns on the web describe a kind of Person,
while only 5% of ”PERSON-like” patterns on the
web describe a kind of Animal. Category inclusion
appears here to be a conservative mechanism, with
like describing like in most cases; thus, types of
Person are most often used to describe other kinds
of Person (comprising 66% of ”PERSON-like”
patterns), types of substance to describe other sub-
stances, and so on. The clear exception is Animal,
with ”ANIMAL-like” phrases more often used to
describe people (36%) than other kinds of animal
(27%). The anthropomorphic uses of this category
demonstrate the importance of folk-knowledge in
figurative categorization, of the kind one is more
likely to find in real text, and on the web (as in
section 3), rather than in resources like WordNet.
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5 Empirical Evaluation

The simile gathering process of section 3, abetted
by Google’s practice of ranking pages according to
popularity, should reveal the most frequently-used
comparative nouns, and thus, the most useful cat-
egories to capture in a general-purpose ontology
like WordNet. But the descriptive sufficiency of
these categories is not guaranteed unless the defin-
ing properties ascribed to each can be shown to
be collectively rich enough, and individually salient
enough, to predict how each category is perceived
and applied by a language user.

If similes are indeed a good basis for mining
the most salient and diagnostic properties of cate-
gories, we should expect the set of properties for
each category to accurately predict how the cate-
gory is perceived as a whole. For instance, humans
– unlike computers – do not generally adopt a dis-
passionate view of ideas, but rather tend to asso-
ciate certain positive or negative feelings, or affec-
tive values, with particular ideas. Unsavoury activi-
ties, people and substances generally possess a nega-
tive affect, while pleasant activities and people pos-
sess a positive affect. Whissell (1989) reduces the
notion of affect to a single numeric dimension, to
produce a dictionary of affect that associates a nu-
meric value in the range 1.0 (most unpleasant) to 3.0
(most pleasant) with over 8000 words in a range of
syntactic categories (including adjectives, verbs and
nouns). So to the extent that the adjectival proper-
ties yielded by processing similes paint an accurate
picture of each category / noun-sense, we should be
able to predict the affective rating of each vehicle
via a weighted average of the affective ratings of
the adjectival properties ascribed to these nouns (i.e.,
where the affect rating of each adjective contributes
to the estimated rating of a noun in proportion to
its frequency of co-occurrence with that noun in our
simile data). More specifically, we should expect
that ratings estimated via these simile-derived prop-
erties should correlate well with the independent rat-
ings contained in Whissell’s dictionary.

To determine whether similes do offer the clearest
perspective on a category’s most salient properties,
we calculate and compare this correlation using the
following data sets:

A. Adjectives derived from annotated bona-fide
(non-ironic) similes only.

B. Adjectives derived from all annotated similes
(both ironic and non-ironic).

C. Adjectives derived from ironic similes only.

D. All adjectives used to modify a given noun in
a large corpus. We use over 2-gigabytes of
text from the online encyclopaedia Wikipedia
as our corpus.

E. The set of 63,935 unique property-of-noun
pairings extracted via shallow-parsing from
WordNet glosses in section 2, e.g., strong and
black for Espresso.

Predictions of affective rating were made from each
of these data sources and then correlated with the
ratings reported in Whissell’s dictionary of affect
using a two-tailed Pearson test (p < 0.01). As ex-
pected, property sets derived from bona-fide simi-
les only (A) yielded the best correlation (+0.514)
while properties derived from ironic similes only
(C) yielded the worst (-0.243); a middling corre-
lation coefficient of 0.347 was found for all simi-
les together, demonstrating the fact that bona-fide
similes outnumber ironic similes by a ratio of 4
to 1. A weaker correlation of 0.15 was found us-
ing the corpus-derived adjectival modifiers for each
noun (D); while this data provides quite large prop-
erty sets for each noun, these properties merely re-
flect potential rather than intrinsic properties of each
noun and so do not reveal what is most diagnostic
about a category. More surprisingly, property sets
derived from WordNet glosses (E) are also poorly
predictive, yielding a correlation with Whissell’s af-
fect ratings of just 0.278. This suggests that the
properties used to define categories in hand-crafted
resources like WordNet are not always those that ac-
tually reflect how humans think of these categories.

6 Concluding Remarks

Much of what we understand about different cate-
gories is based on tacit and defeasible knowledge of
the outside world, knowledge that cannot easily be
shoe-horned into the rigid is-a structure of an on-
tology like WordNet. This already-complex picture
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is complicated even further by the often metaphoric
relationship between words and the categories they
denote, and by the fact that the metaphor/literal dis-
tinction is not binary but gradable. Furthermore, the
gradability of category membership is clearly influ-
enced by context: in a corpus describing the exploits
of Vikings, an axe will most likely be seen as a kind
of weapon, but in a corpus dedicated to forestry, it
will likely describe a tool. A resource like WordNet,
in which is-a links are reserved for category relation-
ships that are always true, in any context, is going to
be inherently limited when dealing with real text.

We have described an approach that can be seen as
a functional equivalent to the CPA (Corpus Pattern
Analysis) approach of Pustejovsky et al. (2004), in
which our goal is not that of automated induction of
word senses in context (as it is in CPA) but the au-
tomated induction of flexible, context-sensitive cat-
egory structures. As such, our goal is primarily on-
tological rather than lexicographic, though both ap-
proaches are complementary since each views syn-
tagmatic evidence as the key to understanding the
use of lexical concepts in context. By defining cat-
egory membership in terms of syntagmatic expec-
tations, we establish a functional and gradable ba-
sis for determining whether one lexical concept (or
synset) in WordNet deserves to be seen as a de-
scendant of another in a particular corpus and con-
text. Augmented with ontological constraints de-
rived from the usage of ”X-like Y” patterns on the
web, we also show how these membership functions
can implement Glucksberg’s (2001) theory of cate-
gory inclusion.

We have focused on just one syntagmatic pattern
here – adjectival modification of nouns – but cate-
gorization can be inferred from a wide range of pro-
ductive patterns in text, particularly those concern-
ing verbs and their case-fillers. For instance, verb-
centred similes of the form ”to V+inf like a|an N”
and ”to be V+past like a|an N” reveal insights into
the diagnostic behaviour of entities (e.g., that preda-
tors hunt, that prey is hunted, that eagles soar and
bombs explode). Taken together, adjective-based
properties and verb-based behaviours can paint an
even more comprehensive picture of each lexical
concept, so that e.g., political agents that kill can
be categorized as assassins, loyal entities that fight
can be categorized as soldiers, and so on. An im-

portant next step, then, is to mine these behaviours
from the web and incorporate the corresponding
syntagmatic expectations into our category defini-
tions. The symbolic nature of the resulting defini-
tions means these can serve not just as mathematical
membership functions, but as ”active glosses”, capa-
ble of recruiting their own members in a particular
context while demonstrating a flexibility with cate-
gorization and a genuine competence with metaphor.
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Abstract

A standard form of analysis for linguis-
tic typology is the universal implication.
These implications state facts about the
range of extant languages, such as “if ob-
jects come after verbs, then adjectives come
after nouns.” Such implications are typi-
cally discovered by painstaking hand anal-
ysis over a small sample of languages. We
propose a computational model for assist-
ing at this process. Our model is able to
discover both well-known implications as
well as some novel implications that deserve
further study. Moreover, through a careful
application of hierarchical analysis, we are
able to cope with the well-known sampling
problem: languages are not independent.

1 Introduction
Linguistic typology aims to distinguish between log-
ically possible languages and actually observed lan-
guages. A fundamental building block for such an
understanding is theuniversal implication(Green-
berg, 1963). These are short statements that restrict
the space of languages in a concrete way (for in-
stance “object-verb ordering implies adjective-noun
ordering”); Croft (2003), Hawkins (1983) and Song
(2001) provide excellent introductions to linguistic
typology. We present a statistical model for auto-
matically discovering such implications from a large
typological database (Haspelmath et al., 2005).

Analyses of universal implications are typically
performed by linguists, inspecting an array of30-
100 languages and a few pairs of features. Looking

at all pairs of features (typically several hundred) is
virtually impossible by hand. Moreover, it is insuf-
ficient to simply look at counts. For instance, results
presented in the form “verb precedes object implies
prepositions in 16/19 languages” are nonconclusive.
While compelling, this is not enough evidence to de-
cide if this is a statistically well-founded implica-
tion. For one, maybe99% of languages have prepo-
sitions: then the fact that we’ve achieved a rate of
84% actually seems really bad. Moreover, if the16
languages are highly related historically or areally
(geographically), and the other3 are not, then we
may have only learned something about geography.

In this work, we propose a statistical model that
deals cleanly with these difficulties. By building a
computational model, it is possible to apply it to
a very large typological database and search over
many thousands of pairs of features. Our model
hinges on two novel components: a statistical noise
model a hierarchical inference over language fam-
ilies. To our knowledge, there is no prior work
directly in this area. The closest work is repre-
sented by the booksPossible and Probable Lan-
guages(Newmeyer, 2005) andLanguage Classifica-
tion by Numbers(McMahon and McMahon, 2005),
but the focus of these books is on automatically dis-
covering phylogenetic trees for languages based on
Indo-European cognate sets (Dyen et al., 1992).

2 Data
The database on which we perform our analysis is
the World Atlas of Language Structures(Haspel-
math et al., 2005). This database contains infor-
mation about2150 languages (sampled from across
the world; Figure 1 depicts the locations of lan-
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Numeral Glottalized Number of
Language Classifiers Rel/N Order O/V Order Consonants Tone Genders
English Absent NRel VO None None Three
Hindi Absent RelN OV None None Two
Mandarin Obligatory RelN VO None Complex None
Russian Absent NRel VO None None Three
Tukang Besi Absent ? Either Implosives None Three
Zulu Absent NRel VO Ejectives Simple Five+

Table 1: Example database entries for a selection of diverse languages and features.
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Figure 1: Map of the2150 languages in the database.

guages). There are139 featuresin this database,
broken down into categories such as “Nominal Cate-
gories,” “Simple Clauses,” “Phonology,” “Word Or-
der,” etc. The database issparse: for many lan-
guage/feature pairs, the feature value is unknown. In
fact, only about16% of all possible language/feature
pairs are known. A sample of five languages and six
features from the database are shown in Table 1.

Importantly, the density of samples is not random.
For certain languages (eg., English, Chinese, Rus-
sian), nearly all features are known, whereas other
languages (eg., Asturian, Omagua, Frisian) that have
fewer than five feature values known. Furthermore,
some features are known for many languages. This
is due to the fact that certain features take less effort
to identify than others. Identifying, for instance, if
a language has a particular set of phonological fea-
tures (such as glottalized consonants) requires only
listening to speakers. Other features, such as deter-
mining the order of relative clauses and nouns re-
quire understanding much more of the language.

3 Models
In this section, we propose two models for automat-
ically uncovering universal implications from noisy,
sparse data. First, note that even well attested impli-
cations are not always exceptionless. A common ex-
ample is that verbs preceding objects (“VO”) implies
adjectives following nouns (“NA”). This implication
(VO ⊃ NA) has one glaring exception: English.
This is one particular form of noise. Another source

of noise stems from transcription. WALS contains
data about languages documented by field linguists
as early as the 1900s. Much of this older data was
collected before there was significant agreement in
documentation style. Different field linguists of-
ten had different dimensions along which they seg-
mented language features into classes. This leads to
noise in the properties of individual languages.

Another difficulty stems from thesampling prob-
lem. This is a well-documented issue (see, eg.,
(Croft, 2003)) stemming from the fact that any set of
languages is not sampled uniformly from the space
of all probable languages. Politically interesting
languages (eg., Indo-European) and typologically
unusual languages (eg., Dyirbal) are better docu-
mented than others. Moreover, languages are not in-
dependent: German and Dutch are more similar than
German and Hindi due to history and geography.

The first model, FLAT , treats each language as in-
dependent. It is thus susceptible to sampling prob-
lems. For instance, the WALS database contains a
half dozen versions of German. The FLAT model
considers these versions of German just as statisti-
cally independent as, say, German and Hindi. To
cope with this problem, we then augment the FLAT

model into a HIERarchical model that takes advan-
tage of known hierarchies in linguistic phylogenet-
ics. The HIER model explicitly models the fact that
individual languages arenot independent and exhibit
strong familial dependencies. In both models, we
initially restrict our attention to pairs of features. We
will describe our models as if all features are binary.
We expand any multi-valued feature withK values
intoK binary features in a “one versus rest” manner.

3.1 The FLAT Model
In the FLAT model, we consider a2 × N matrix of
feature values. TheN corresponds to the number of
languages, while the2 corresponds to the two fea-
tures currently under consideration (eg., object/verb
order and noun/adjective order). The order of the
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two features is important:f1 impliesf2 is logically
different fromf2 impliesf1. Some of the entries in
the matrix will be unknown. We may safely remove
all languages from consideration for whichbothare
unknown, but we donotremove languages for which
only one is unknown. We do so because our model
needs to capture the fact that iff2 is always true,
thenf1 ⊃ f2 is uninteresting.

The statistical model is set up as follows. There is
a single variable (we will denote this variable “m”)
corresponding to whether the implication holds.
Thus,m = 1 means thatf1 impliesf2 andm = 0
means that it does not. Independent ofm, we specify
two feature priors,π1 andπ2 for f1 andf2 respec-
tively. π1 specifies the prior probability thatf1 will
be true, andπ2 specifies the prior probability thatf2

will be true. One can then put the model together
näıvely as follows. Ifm = 0 (i.e., the implication
does not hold), then the entire data matrix is gener-
ated by choosing values forf1 (resp.,f2) indepen-
dently according to the prior probabilityπ1 (resp.,
π2). On the other hand, ifm = 1 (i.e., the impli-
cationdoeshold), then the first column of the data
matrix is generated by choosing values forf1 inde-
pendently byπ1, but the second column is generated
differently. In particular, if for a particular language,
we have thatf1 is true, then the fact that the implica-
tion holds means thatf2 mustbe true. On the other
hand, iff1 is false for a particular language, then we
may generatef2 according to the prior probability
π2. Thus, havingm = 1 means that the model is
significantly more constrained. In equations:

p(f1 | π1) = π
f1

1
(1− π1)

1−f1

p(f2 | f1, π2, m) =



f2 m = f1 = 1

π
f2

2
(1− π2)

1−f2 otherwise

The problem with this näıve model is that it does
not take into account the fact that there is “noise”
in the data. (By noise, we refer either to mis-
annotations, or to “strange” languages like English.)
To account for this, we introduce a simple noise
model. There are several options for parameteriz-
ing the noise, depending on what independence as-
sumptions we wish to make. One could simply spec-
ify a noise rate for the entire data set. One could
alternatively specify a language-specific noise rate.
Or one could specify a feature-specific noise rate.
We opt for a blend between the first and second op-

Figure 2: Graphical model for the FLAT model.

tion. We assume an underlying noise rate for the en-
tire data set, but that, conditioned on this underlying
rate, there is a language-specific noise level. We be-
lieve this to be an appropriate noise model because it
models the fact that the majority of information for
a single language is from a single source. Thus, if
there is an error in the database, it is more likely that
other errors will be for the same languages.

In order to model this statistically, we assume that
there are latent variablese1,n ande2,n for each lan-
guagen. If e1,n = 1, then the first feature for lan-
guagen is wrong. Similarly, ife2,n = 1, then the
second feature for languagen is wrong. Given this
model, the probabilities are exactly as in the naı̈ve
model, with the exception that instead of usingf1

(resp.,f2), we use the exclusive-or1 f1 ⊗ e1 (resp.,
f2 ⊗ e2) so that the feature values are flipped when-
ever the noise model suggests an error.

The graphical model for the FLAT model is shown
in Figure 2. Circular nodes denote random variables
and arrows denote conditional dependencies. The
rectangular plate denotes the fact that the elements
contained within it are replicatedN times (N is the
number of languages). In this model, there are four
“root” nodes: the implication valuem; the two fea-
ture prior probabilitiesπ1 andπ2; and the language-
specific error rateǫ. On all of these nodes we place
Bayesian priors. Sincem is a binary random vari-
able, we place a Bernoulli prior on it. Theπs are
Bernoulli random variables, so they are given inde-
pendent Beta priors. Finally, the noise rateǫ is also
given a Beta prior. For the two Beta parameters gov-
erning the error rate (i.e.,aǫ andbǫ) we set these by
hand so that the mean expected error rate is5% and
the probability of the error rate being between0%
and10% is 50% (this number is based on an expert
opinion of the noise-rate in the data). For the rest of

1The exclusive-or ofa andb, written a ⊗ b, is true exactly
when eithera or b is true but not both.
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the parameters we use uniform priors.

3.2 The HIER Model

A significant difficulty in working with any large ty-
pological database is that the languages will be sam-
plednonuniformly. In our case, this means that im-
plications that seem true in the FLAT model may
only be true for, say, Indo-European, and the remain-
ing languages are considered noise. While this may
be interesting in its own right, we are more interested
in discovering implications that are truly universal.

We model this using a hierarchical Bayesian
model. In essence, we take the FLAT model and
build a notion of language relatedness into it. In
particular, we enforce a hierarchy on them impli-
cation variables. For simplicity, suppose that our
“hierarchy” of languages is nearly flat. Of theN
languages, half of them are Indo-European and the
other half are Austronesian. We will use a nearly
identical model to the FLAT model, but instead of
having a singlem variable, we have three: one for
IE, one for Austronesian and one for “all languages.”

For a general tree, we assign one implication vari-
able for each node (including the root and leaves).
The goal of the inference is to infer the value of the
m variable corresponding to the root of the tree.

All that is left to specify the full HIER model
is to specify the probability distribution of them
random variables. We do this as follows. We
place a zero mean Gaussian prior with (unknown)
varianceσ2 on the rootm. Then, for a non-root
node, we use a Gaussian with mean equal to the
“m” value of the parent and tied varianceσ2. In
our three-node example, this means that the root is
distributedNor(0, σ2) and each child is distributed
Nor(mroot, σ

2), wheremroot is the random variable
corresponding to the root. Finally, the leaves (cor-
responding to the languages themselves) are dis-
tributedlogistic-binomial. Thus, them random vari-
able corresponding to a leaf (language) is distributed
Bin(s(mpar)), wherempar is them value for the par-
ent (internal) node ands is the sigmoid function
s(x) = [1 + exp(−x)]−1.

The intuition behind this model is that them value
at each node in the tree (where a node is either “all
languages” or a specific language family or an in-
dividual language) specifies the extent to which the
implication under consideration holds for that node.

A large positivem means that the implication is very
likely to hold. A large negative value means it is
very likely to not hold. The normal distributions
across edges in the tree indicate that we expect the
m values not to change too much across the tree. At
the leaves (i.e., individual languages), the logistic-
binomial simply transforms the real-valuedms into
the range[0, 1] so as to make an appropriate input to
the binomial distribution.

4 Statistical Inference
In this section, we describe how we use Markov
chain Monte Carlo methods to perform inference
in the statistical models described in the previous
section; Andrieu et al. (2003) provide an excel-
lent introduction to MCMC techniques. The key
idea behind MCMC techniques is to approximate in-
tractable expectations by drawing random samples
from the probability distribution of interest. The ex-
pectation can then be approximated by an empirical
expectation over these sample.

For the FLAT model, we use a combination of
Gibbs sampling with rejection sampling as a sub-
routine. Essentially, all sampling steps are standard
Gibbs steps, except for sampling the error ratese.
The Gibbs step is not available analytically for these.
Hence, we use rejection sampling (drawing from the
Beta prior and accepting according to the posterior).

The sampling procedure for the HIER model is
only slightly more complicated. Instead of perform-
ing a simple Gibbs sample form in Step (4), we
first sample them values for the internal nodes us-
ing simple Gibbs updates. For the leaf nodes, we
use rejection sampling. For this rejection, we draw
proposal values from the Gaussian specified by the
parentm, and compute acceptance probabilities.

In all cases, we run the outer Gibbs sampler for
1000 iterations and each rejection sampler for20 it-
erations. We compute the marginal values for them

implication variables by averaging the sampled val-
ues after dropping200 “burn-in” iterations.

5 Data Preprocessing and Search
After extracting the raw data from the WALS elec-
tronic database (Haspelmath et al., 2005)2, we per-
form a minor amount of preprocessing. Essen-
tially, we have manually removed certain feature

2This is nontrivial—we are currently exploring the possibil-
ity of freely sharing these data.
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values from the database because they are underrep-
resented. For instance, the “Glottalized Consonants”
feature has eight possible values (one for “none”
and seven for different varieties of glottalized conso-
nants). We reduce this to simply two values “has” or
“has not.”313 languages have no glottalized conso-
nants and139 have some variety of glottalized con-
sonant. We have done something similar with ap-
proximately twenty of the features.

For the HIER model, we obtain the hierarchy in
one of two ways. The first hierarchy we use is the
“linguistic hierarchy” specified as part of the WALS
data. This hierarchy divides languages into families
and subfamilies. This leads to a tree with the leaves
at depth four. The root has38 immediate children
(corresponding to the major families), and there are
a total of 314 internal nodes. The second hierar-
chy we use is an areal hierarchy obtained by clus-
tering languages according to their latitude and lon-
gitude. For the clustering we first cluster all the lan-
guages into6 “macro-clusters.” We then cluster each
macro-cluster individually into25 “micro-clusters.”
These micro-clusters then have the languages at their
leaves. This yields a tree with31 internal nodes.

Given the database (which contains approxi-
mately140 features), performing a raw search even
over all possiblepairsof features would lead to over
19, 000 computations. In order to reduce this space
to a more manageable number, we filter:

• There must be at least250 languages for whichboth fea-
tures are known.

• There must be at least15 languages for which both fea-
ture values hold simultaneously.

• Wheneverf1 is true, at least half of the languages also
havef2 true.

Performing all these filtration steps reduces the
number of pairs under consideration to3442. While
this remains a computationally expensive procedure,
we were able to perform all the implication compu-
tations for these3442 possible pairs in about a week
on a single modern machine (in Matlab).
6 Results
The task of discovering universal implications is, at
its heart, a data-mining task. As such, it is difficult
to evaluate, since we often do not know the correct
answers! If our model only found well-documented
implications, this would be interesting but useless
from the perspective of aiding linguists focus their

energies on new, plausible implications. In this sec-
tion, we present the results of our method, together
with both a quantitative and qualitative evaluation.

6.1 Quantitative Evaluation

In this section, we perform a quantitative evaluation
of the results based onpredictive power. That is,
one generally would prefer a system that finds im-
plications that hold with high probability across the
data. The word “generally” is important: this qual-
ity is neither necessary nor sufficient for the model
to be good. For instance, finding1000 implications
of the formA1 ⊃ X, A2 ⊃ X, . . . , A1000 ⊃ X is
completely uninteresting ifX is true in99% of the
cases. Similarly, suppose that a model can find1000
implications of the formX ⊃ A1, . . . , X ⊃ A1000,
butX is only true in five languages. In both of these
cases, according to a “predictive power” measure,
these would be ideal systems. But they are both
somewhat uninteresting.

Despite these difficulties with a predictive power-
based evaluation, we feel that it is a good way to un-
derstand the relative merits of our different models.
Thus, we compare the following systems: FLAT (our
proposed flat model), LINGHIER (our model using
the phylogenetic hierarchy), DISTHIER (our model
using the areal hierarchy) and RANDOM (a model
that ranks implications—that meet the three qualifi-
cations from the previous section—randomly).

The models are scored as follows. We take the
entire WALS data set and “hide” a random10%
of the entries. We then perform full inference and
ask the inferred model to predict the missing val-
ues. The accuracy of the model is the accuracy of
its predictions. To obtain a sense of the quality of
the ranking, we perform this computation on the
top k ranked implications provided by each model;
k ∈ {2, 4, 8, . . . , 512, 1024}.

The results of this quantitative evaluation are
shown in Figure 3 (on a log-scale for the x-axis).
The two best-performing models are the two hier-
archical models. The flat model does significantly
worse and the random model does terribly. The ver-
tical lines are a standard deviation over100 folds of
the experiment (hiding a different10% each time).
The difference between the two hierarchical mod-
els is typically not statistically significant. At the
top of the ranking, the model based on phylogenetic
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Figure 3: Results of quantitative (predictive) evalua-
tion. Top curves are the hierarchical models; middle
is the flat model; bottom is the random baseline.

information performs marginally better; at the bot-
tom of the ranking, the order flips. Comparing the
hierarchical models to the flat model, we see that
adequately modeling thea priori similarity between
languages is quite important.

6.2 Cross-model Comparison
The results in the previous section support the con-
clusion that the two hierarchical models are doing
something significantly different (and better) than
the flat model. This clearly must be the case. The
results, however, do not say whether the two hierar-
chies are substantially different. Moreover, are the
results that they produce substantially different. The
answer to these two questions is “yes.”

We first address the issue of tree similarity. We
consider all pairs of languages which are at distance
0 in the areal tree (i.e., have the same parent). We
then look at the mean tree-distance between those
languages in the phylogenetic tree. We do this for all
distances in the areal tree (because of its construc-
tion, there are only three:0, 2 and4). The mean
distances in the phylogenetic tree corresponding to
these three distances in the areal tree are:2.9, 3.5
and4.0, respectively. This means that languages that
are “nearby” in the areal tree are quite often very far
apart in the phylogenetic tree.

To answer the issue of whether the results ob-
tained by the two trees are similar, we employ
Kendall’s τ statistic. Given two ordered lists, the
τ statistic computes how correlated they are.τ is
always between0 and1, with 1 indicating identical
ordering and0 indicated completely reversed order-

ing. The results are as follows. Comparing FLAT

to LINGHIER yield τ = 0.4144, a very low correla-
tion. Between FLAT and DISTHIER, τ = 0.5213,
also very low. These two are as expected. Fi-
nally, between LINGHIER and DISTHIER, we ob-
tainτ = 0.5369, a very low correlation, considering
that both perform well predictively.

6.3 Qualitative Analysis
For the purpose of a qualitative analysis, we re-
produce the top30 implications discovered by the
L INGHIER model in Table 2 (see the final page).3

Each implication is numbered, then the actual im-
plication is presented. For instance, #7 says that
any language that has adjectives preceding their
governing nouns also has numerals preceding their
nouns. We additionally provide an “analysis” of
many of these discovered implications. Many of
them (eg., #7) are well known in the typological lit-
erature. These are simply numbered according to
well-known references. For instance our #7 is im-
plication #18 from Greenberg, reproduced by Song
(2001). Those that reference Hawkins (eg., #11) are
based on implications described by Hawkins (1983);
those that reference Lehmann are references to the
principles decided by Lehmann (1981) in Ch 4 & 8.

Some of the implications our model discovers
are obtained by composition of well-known implica-
tions. For instance, our #3 (namely, OV⊃ Genitive-
Noun) can be obtained by combining Greenberg #4
(OV ⊃ Postpositions) and Greenberg #2a (Postpo-
sitions⊃ Genitive-Noun). It is quite encouraging
that 14 of our top 21 discovered implications are
well-known in the literature (and this, not even con-
sidering the tautalogically true implications)! This
strongly suggests that our model is doing something
reasonable and that there is true structure in the data.

In addition to many of the known implications
found by our model, there are many that are “un-
known.” Space precludes attempting explanations
of them all, so we focus on a few. Some are easy.
Consider #8 (Strongly suffixing⊃ Tense-aspect suf-
fixes): this is quite plausible—if you have a lan-

3In truth, our model discovers several tautalogical implica-
tions that we have removed by hand before presentation. These
are examples like “SVO⊃ VO” or “No unusual consonants⊃
no glottalized consonants.” It is, of course, good that our model
discovers these, since they are obviously true. However, to save
space, we have withheld them from presentation here. The30th
implication presented here is actually the83rd in our full list.
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guage that tends to have suffixes, it will probably
have suffixes for tense/aspect. Similarly, #10 states
that languages with verb morphology for questions
lack question particles; again, this can be easily ex-
plained by an appeal to economy.

Some of the discovered implications require a
more involved explanation. One such example is
#20: labial-velars implies no uvulars.4 It turns out
that labial-velars are most common in Africa just
north of the equator, which is also a place that has
very few uvulars (there are a handful of other ex-
amples, mostly in Papua New Guinea). While this
implication has not been previously investigated, it
makes some sense: if a language has one form of
rare consonant, it is unlikely to have another.

As another example, consider #28: Obligatory
suffix pronouns implies no possessive affixes. This
means is that in languages (like English) for which
pro-drop is impossible, possession is not marked
morphologically on the head noun (like English,
“book” appears the same regarless of if it is “his
book” or “the book”). This also makes sense: if you
cannot drop pronouns, then one usually will mark
possession on the pronoun, not the head noun. Thus,
you do not need marking on the head noun.

Finally, consider #25: High and mid front vowels
(i.e., / u/, etc.) implies large vowel inventory (≥ 7
vowels). This is supported by typological evidence
that high and mid front vowels are the “last” vowels
to be added to a language’s repertoire. Thus, in order
to get them, you must also have many other types of
vowels already, leading to a large vowel inventory.

Not all examples admit a simple explanation and
are worthy of further thought. Some of which (like
the ones predicated on “SV”) may just be peculiar-
ities of the annotation style: the subject verb order
changes frequently between transitive and intransi-
tive usages in many languages, and the annotation
reflects just one. Some others are bizzarre: why not
having fricatives should mean that you don’t have
tones (#27) is not a priori clear.

6.4 Multi-conditional Implications
Many implications in the literature have multiple
implicants. For instance, much research has gone

4Labial-velars and uvulars are rare consonants (order 100
languages). Labial-velars are joined sounds like /kp/ and /gb/
(to English speakers, sounding like chicken noises); uvulars
sounds are made in the back of the throat, like snoring.

Implicants Implicand
Postpositions

⊃ Demonstrative-NounAdjective-Noun
Posessive prefixes

⊃ Genitive-NounTense-aspect suffixes
Case suffixes

⊃ Genitive-NounPlural suffix
Adjective-Noun

⊃ OVGenitive-Noun
High cons/vowel ratio

⊃ No tonesNo front-rounded vowels
Negative affix

⊃ OVGenitive-Noun
No front-rounded vowels

⊃ Large vowel quality inventoryLabial velars
Subordinating suffix

⊃ PostpositionsTense-aspect suffixes
No case affixes

⊃ Initial subordinator wordPrepositions
Strongly suffixing

⊃ Genitive-NounPlural suffix

Table 3: Top implications discovered by the
L INGHIER multi-conditional model.

into looking at which implications hold, considering
only “VO” languages, or considering only languages
with prepositions. It is straightforward to modify
our model so that it searches over triples of features,
conditioning on two and predicting the third. Space
precludes an in-depth discussion of these results, but
we present the top examples in Table 3 (after remov-
ing the tautalogically true examples, which are more
numerous in this case, as well as examples that are
directly obtainable from Table 2). It is encouraging
that in the top1000 multi-conditional implications
found, the most frequently used were “OV” (176
times) “Postpositions” (157 times) and “Adjective-
Noun” (89 times). This result agrees with intuition.

7 Discussion
We have presented a Bayesian model for discovering
universal linguistic implications from a typological
database. Our model is able to account for noise in
a linguistically plausible manner. Our hierarchical
models deal with the sampling issue in a unique way,
by using prior knowledge about language families to
“group” related languages. Quantitatively, the hier-
archical information turns out to be quite useful, re-
gardless of whether it is phylogenetically- or areally-
based. Qualitatively, our model can recover many
well-known implications as well as many more po-
tential implications that can be the object of future
linguistic study. We believe that our model is suf-
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# Implicant ⊃ Implicand Analysis
1 Postpositions⊃ Genitive-Noun Greenberg #2a
2 OV⊃ Postpositions Greenberg #4
3 OV⊃ Genitive-Noun Greenberg #4 + Greenberg #2a
4 Genitive-Noun⊃ Postpositions Greenberg #2a (converse)
5 Postpositions⊃ OV Greenberg #2b (converse)
6 SV⊃ Genitive-Noun ???
7 Adjective-Noun⊃ Numeral-Noun Greenberg #18
8 Strongly suffixing⊃ Tense-aspect suffixes Clear explanation
9 VO⊃ Noun-Relative Clause Lehmann

10 Interrogative verb morph⊃ No question particle Appeal to economy
11 Numeral-Noun⊃ Demonstrative-Noun Hawkins XVI (for postpositional languages)
12 Prepositions⊃ VO Greenberg #3 (converse)
13 Adjective-Noun⊃ Demonstrative-Noun Greenberg #18
14 Noun-Adjective⊃ Postpositions Lehmann
15 SV⊃ Postpositions ???
16 VO⊃ Prepositions Greenberg #3
17 Initial subordinator word⊃ Prepositions Operator-operand principle (Lehmann)
18 Strong prefixing⊃ Prepositions Greenberg #27b
19 Little affixation⊃ Noun-Adjective ???
20 Labial-velars⊃ No uvular consonants See text
21 Negative word⊃ No pronominal possessive affixesSee text
22 Strong prefixing⊃ VO Lehmann
23 Subordinating suffix⊃ Strongly suffixing ???
24 Final subordinator word⊃ Postpositions Operator-operand principle (Lehmann)
25 High and mid front vowels⊃ Large vowel inventories See text
26 Plural prefix⊃ Noun-Genitive ???
27 No fricatives⊃ No tones ???
28 Obligatory subject pronouns⊃ No pronominal possessive affixesSee text
29 Demonstrative-Noun⊃ Tense-aspect suffixes Operator-operand principle (Lehmann)
30 Prepositions⊃ Noun-Relative clause Lehmann, Hawkins

Table 2: Top30 implications discovered by the LINGHIER model.

ficiently general that it could be applied to many
different typological databases — we attempted not
to “overfit” it to WALS. Our hope is that the au-
tomatic discovery of such implications not only
aid typologically-inclined linguists, but also other
groups. For instance, well-attested universal impli-
cations have the potential to reduce the amount of
data field linguists need to collect. They have also
been used computationally to aid in the learning of
unsupervised part of speech taggers (Schone and Ju-
rafsky, 2001). Many extensions are possible to this
model; for instance attempting to uncover typolog-
ically hierarchies and other higher-order structures.
We have made the full output of all models available
athttp://hal3.name/WALS.
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Abstract

In this paper, we propose a novel discrim-
inative language model, which can be ap-
plied quite generally. Compared to the
well known N-gram language models, dis-
criminative language models can achieve
more accurate discrimination because they
can employ overlapping features and non-
local information. However, discriminative
language models have been used only for
re-ranking in specific applications because
negative examples are not available. We
propose sampling pseudo-negative examples
taken from probabilistic language models.
However, this approach requires prohibitive
computational cost if we are dealing with
quite a few features and training samples.
We tackle the problem by estimating the la-
tent information in sentences using a semi-
Markov class model, and then extracting
features from them. We also use an on-
line margin-based algorithm with efficient
kernel computation. Experimental results
show that pseudo-negative examples can be
treated as real negative examples and our
model can classify these sentences correctly.

1 Introduction

Language models (LMs) are fundamental tools for
many applications, such as speech recognition, ma-
chine translation and spelling correction. The goal
of LMs is to determine whether a sentence is correct
or incorrect in terms of grammars and pragmatics.

The most widely used LM is a probabilistic lan-
guage model (PLM), which assigns a probability to
a sentence or a word sequence. In particular, N-
grams with maximum likelihood estimation (NLMs)
are often used. Although NLMs are simple, they are
effective for many applications.

However, NLMs cannot determine correctness
of a sentence independently because the probabil-
ity depends on the length of the sentence and the
global frequencies of each word in it. For exam-
ple, ����� � �����, where ���� is the probability
of a sentence � given by an NLM, does not always
mean that �� is more correct, but instead could occur
when �� is shorter than ��, or if �� has more com-
mon words than ��. Another problem is that NLMs
cannot handle overlapping information or non-local
information easily, which is important for more ac-
curate sentence classification. For example, a NLM
could assign a high probability to a sentence even if
it does not have a verb.

Discriminative language models (DLMs) have
been proposed to classify sentences directly as cor-
rect or incorrect (Gao et al., 2005; Roark et al.,
2007), and these models can handle both non-local
and overlapping information. However DLMs in
previous studies have been restricted to specific ap-
plications. Therefore the model cannot be used for
other applications. If we had negative examples
available, the models could be trained directly by
discriminating between correct and incorrect sen-
tences.

In this paper, we propose a generic DLM, which
can be used not only for specific applications, but
also more generally, similar to PLMs. To achieve
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this goal, we need to solve two problems. The first
is that since we cannot obtain negative examples (in-
correct sentences), we need to generate them. The
second is the prohibitive computational cost because
the number of features and examples is very large. In
previous studies this problem did not arise because
the amount of training data was limited and they did
not use a combination of features, and thus the com-
putational cost was negligible.

To solve the first problem, we propose sampling
incorrect sentences taken from a PLM and then
training a model to discriminate between correct and
incorrect sentences. We call these examples Pseudo-
Negative because they are not actually negative sen-
tences. We call this method DLM-PN (DLM with
Pseudo-Negative samples).

To deal with the second problem, we employ an
online margin-based learning algorithm with fast
kernel computation. This enables us to employ com-
binations of features, which are important for dis-
crimination between correct and incorrect sentences.
We also estimate the latent information in sentences
by using a semi-Markov class model to extract fea-
tures. Although there are substantially fewer la-
tent features than explicit features such as words or
phrases, latent features contain essential information
for sentence classification.

Experimental results show that these pseudo-
negative samples can be treated as incorrect exam-
ples, and that DLM-PN can learn to correctly dis-
criminate between correct and incorrect sentences
and can therefore classify these sentences correctly.

2 Previous work

Probabilistic language models (PLMs) estimate the
probability of word strings or sentences. Among
these models, N-gram language models (NLMs) are
widely used. NLMs approximate the probability by
conditioning only on the preceding � � � words.
For example, let � denote a sentence of � words,
� �� ��� ��� � � � � ��. Then, by the chain rule of
probability and the approximation, we have

� ��� � � ���� ��� � � � � ���

�
�

�������

� ����������� � � � � ������ (1)

The parameters can be estimated using the maxi-
mum likelihood method.

Since the number of parameters in NLM is still
large, several smoothing methods are used (Chen
and Goodman, 1998) to produce more accurate
probabilities, and to assign nonzero probabilities to
any word string.

However, since the probabilities in NLMs depend
on the length of the sentence, two sentences of dif-
ferent length cannot be compared directly.

Recently, Whole Sentence Maximum Entropy
Models (Rosenfeld et al., 2001) (WSMEs) have
been introduced. They assign a probability to
each sentence using a maximum entropy model.
Although WSMEs can encode all features of a
sentence including non-local ones, they are only
slightly superior to NLMs, in that they have the dis-
advantage of being computationally expensive, and
not all relevant features can be included.

A discriminative language model (DLM) assigns
a score 	��� to a sentence �, measuring the correct-
ness of a sentence in terms of grammar and prag-
matics, so that 	��� 
 � implies � is correct and
	��� � � implies � is incorrect. A PLM can be
considered as a special case of a DLM by defining
	 using � ���. For example, we can take 	��� �
� ������� � �, where � is some threshold, and ���
is the length of �.

Given a sentence �, we extract a feature vector
(
���) from it using a pre-defined set of feature
functions �
������. The form of the function 	 we
use is

	��� � � � 
���� (2)

where � is a feature weighting vector.
Since there is no restriction in designing 
���,

DLMs can make use of both over-lapping and non-
local information in �. We estimate� using training
samples ����� ���� for � � �����, where �� � � if ��

is correct and �� � �� if �� is incorrect.
However, it is hard to obtain incorrect sentences

because only correct sentences are available from
the corpus. This problem was not an issue for previ-
ous studies because they were concerned with spe-
cific applications and therefore were able to obtain
real negative examples easily. For example, Roark
(2007) proposed a discriminative language model, in
which a model is trained so that a correct sentence
should have higher score than others. The differ-
ence between their approach and ours is that we do
not assume just one application. Moreover, they had
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For i=1,2,...
Choose a word �� at random
according to the distribution
� ����������� � � � � �����
If �� � "end of a sentence"

Break
End End

Figure 1: Sample procedure for pseudo-negative ex-
amples taken from N-gram language models.

training sets consisting of one correct sentence and
many incorrect sentences, which were very similar
because they were generated by the same input. Our
framework does not assume any such training sets,
and we treat correct or incorrect examples indepen-
dently in training.

3 Discriminative Language Model with
Pseudo-Negative samples

We propose a novel discriminative language model;
a Discriminative Language Model with Pseudo-
Negative samples (DLM-PN). In this model,
pseudo-negative examples, which are all assumed to
be incorrect, are sampled from PLMs.

First a PLM is built using training data and then
examples, which are almost all negative, are sam-
pled independently from PLMs. DLMs are trained
using correct sentences from a corpus and negative
examples from a Pseudo-Negative generator.

An advantage of sampling is that as many nega-
tive examples can be collected as correct ones, and
a distinction can be clearly made between truly cor-
rect sentences and incorrect sentences, even though
the latter might be correct in a local sense.

For sampling, any PLMs can be used as long
as the model supports a sentence sampling proce-
dure. In this research we used NLMs with interpo-
lated smoothing because such models support effi-
cient sentence sampling. Figure 1 describes the sam-
pling procedure and figure 2 shows an example of a
pseudo-negative sentence.

Since the focus is on discriminating between cor-
rect sentences from a corpus and incorrect sentences
sampled from the NLM, DLM-PN may not able to
classify incorrect sentences that are not generated
from the NLM. However, this does not result in a se-

We know of no program, and animated
discussions about prospects for trade
barriers or regulations on the rules
of the game as a whole, and elements
of decoration of this peanut-shaped
to priorities tasks across both target
countries

Figure 2: Example of a sentence sampled by PLMs
(Trigram).

Corpus

Build a probabilistic language model

Sample sentences

Positive (Pseudo-) Negative

Binary Classifier
test sentences

Return positive/negative label or score (margin)

Input training examples

Probabilistic LM
(e.g. N-gram LM)

Figure 3: Framework of our classification process.

rious problem, because these sentences, if they exist,
can be filtered out by NLMs.

4 Online margin-based learning with fast
kernel computation

The DLM-PN can be trained by using any binary
classification learning methods. However, since the
number of training examples is very large, batch
training has suffered from prohibitively large com-
putational cost in terms of time and memory. There-
fore we make use of an online learning algorithm
proposed by (Crammer et al., 2006), which has a
much smaller computational cost. We follow the
definition in (Crammer et al., 2006).

The initiation vector �� is initialized to � and for
each round the algorithm observes a training exam-
ple �� �� 
���� and predicts its label ��� to be either
�� or ��. After the prediction is made, the true la-
bel �� is revealed and the algorithm suffers an instan-
taneous hinge-loss ���� ���� ���� � � � ����� � ���
which reflects the degree to which its prediction was
wrong. If the prediction was wrong, the parameter
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� is updated as

���� � �������
�

�
��� �����

� � �� (3)

subject to ���� ���� ���� � � and � � �� (4)

where � is a slack term and � is a positive parameter
which controls the influence of the slack term on the
objective function. A large value of � will result in a
more aggressive update step. This has a closed form
solution as

���� � �� � ������ (5)

where �� � 	
���� ��
�����

�. As in SVMs, a fi-
nal weight vector can be represented as a kernel-
dependent combination of the stored training exam-
ples.

� � � �
�

�

������� � �� (6)

Using this formulation the inner product can be re-
placed with a general Mercer kernel ������� such
as a polynomial kernel or a Gaussian kernel.

The combination of features, which can capture
correlation information, is important in DLMs. If
the kernel-trick (Taylor and Cristianini, 2004) is ap-
plied to online margin-based learning, a subset of
the observed examples, called the active set, needs
to be stored. However in contrast to the support set
in SVMs, an example is added to the active set every
time the online algorithm makes a prediction mis-
take or when its confidence in a prediction is inad-
equately low. Therefore the active set can increase
in size significantly and thus the total computational
cost becomes proportional to the square of the num-
ber of training examples. Since the number of train-
ing examples is very large, the computational cost is
prohibitive even if we apply the kernel trick.

The calculation of the inner product between two
examples can be done by intersection of the acti-
vated features in each example. This is similar to
a merge sort and can be executed in ���� time
where � is the average number of activated fea-
tures in an example. When the number of examples
in the active set is �, the total computational cost is
��� � ��. For fast kernel computation, the Poly-
nomial Kernel Inverted method (PKI)) is proposed
(Kudo and Matsumoto, 2003), which is an exten-
sion of Inverted Index in Information Retrieval. This

algorithm uses a table ��	�� for each feature item,
which stores examples where a feature 	� is fired.
Let � be the average of ���	��� over all feature item.
Then the kernel computation can be performed in
��� � �� time which is much less than the normal
kernel computation time when � 	 �. We can eas-
ily extend this algorithm into the online setting by
updating ��	�� when an observed example is added
to an active set.

5 Latent features by semi-Markov class
model

Another problem for DLMs is that the number of
features becomes very large, because all possible N-
grams are used as features. In particular, the mem-
ory requirement becomes a serious problem because
quite a few active sets with many features have to be
stored, not only at training time, but also at classi-
fication time. One way to deal with this is to filter
out low-confidence features, but it is difficult to de-
cide which features are important in online learning.
For this reason we cluster similar N-grams using a
semi-Markov class model.

The class model was originally proposed by (Mar-
tin et al., 1998). In the class model, determinis-
tic word-to-class mappings are estimated, keeping
the number of classes much smaller than the num-
ber of distinct words. A semi-Markov class model
(SMCM) is an extended version of the class model,
a part of which was proposed by (Deligne and BIM-
BOT, 1995). In SMCM, a word sequence is par-
titioned into a variable-length sequence of chunks
and then chunks are clustered into classes (Figure 4).
How a chunk is clustered depends on which chunks
are adjacent to it.

The probability of a sentence � ���� � � � � ���, in a
bi-gram class model is calculated by

�

�

� ������������ ���������� (7)

On the other hand, the probabilities in a bi-gram
semi-Markov class model are calculated by
�

�

�

�

� ��������� � � ������������������	�������� (8)

where  varies over all possible partitions of �, ����
and !��� denote the start and end positions respec-
tively of the �-th chunk in partition  , and ������ �
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!��� � � for all �. Note that each word or variable-
length chunk belongs to only one class, in contrast
to a hidden Markov model where each word can be-
long to several classes.

Using a training corpus, the mapping is estimated
by maximum likelihood estimation. The log like-
lihood of the training corpus (��� � � � � �
) in a bi-
gram class model can be calculated as

�
�
�

�

� ��������� (9)

�
�

�

�
�� ������������ ��������� (10)

�
�

�����

" ���� ��� �
�
" ���� ���

" ����" ����
(11)

�
�

�

" ��� �
� " ����

where " ���, " ��� and " ���� ��� are frequencies of
a word �, a class � and a class bi-gram ��� �� in the
training corpus. In (11) only the first term is used,
since the second term does not depend on the class
allocation. The class allocation problem is solved by
an exchange algorithm as follows. First, all words
are assigned to a randomly determined class. Next,
for each word �, we move it to the class � for which
the log-likelihood is maximized. This procedure is
continued until the log-likelihood converges to a lo-
cal maximum. A naive implementation of the clus-
tering algorithm scales quadratically to the number
of classes, since each time a word is moved between
classes, all class bi-gram counts are potentially af-
fected. However, by considering only those counts
that actually change, the algorithm can be made to
scale somewhere between linearly and quadratically
to the number of classes (Martin et al., 1998).

In SMCM, partitions of each sentence are also de-
termined. We used a Viterbi decoding (Deligne and
BIMBOT, 1995) for the partition. We applied the
exchange algorithm and the Viterbi decoding alter-
nately until the log-likelihood converged to the local
maximum.

Since the number of chunks is very large, for ex-
ample, in our experiments we used about � million
chunks, the computational cost is still large. We
therefore employed the following two techniques.
The first was to approximate the computation in the
exchange algorithm; the second was to make use of

w1  w2  w3  w4  w5  w6  w7  w8

c1 c2 c3 c4

Figure 4: Example of assignment in semi-Markov
class model. A sentence is partitioned into variable-
length chunks and each chunk is assigned a unique
class number.

bottom-up clustering to strengthen the convergence.
In each step in the exchange algorithm, the ap-

proximate value of the change of the log-likelihood
was examined, and the exchange algorithm applied
only if the approximate value was larger than a pre-
defined threshold.

The second technique was to reduce memory re-
quirements. Since the matrices used in the exchange
algorithm could become very large, we clustered
chunks into � classes and then again we clustered
these two into � each, thus obtaining � classes. This
procedure was applied recursively until the number
of classes reached a pre-defined number.

6 Experiments

6.1 Experimental Setup

We partitioned a BNC-corpus into model-train,
DLM-train-positive, and DLM-test-positive sets.
The numbers of sentences in model-train, DLM-
train-positive and DLM-test-positive were ����k,
���k, and ��k respectively. An NLM was built
using model-train and Pseudo-Negative examples
(���k sentences) were sampled from it. We mixed
sentences from DLM-train-positive and the Pseudo-
Negative examples and then shuffled the order of
these sentences to make DLM-train. We also con-
structed DLM-test by mixing DLM-test-positive and
��k new (not already used) sentences from the
Pseudo-Negative examples. We call the sentences
from DLM-train-positive “positive” examples and
the sentences from the Pseudo-Negative examples
“negative” examples in the following. From these
sentences the ones with less than � words were ex-
cluded beforehand because it was difficult to decide
whether these sentences were correct or not (e.g.
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Accuracy (%) Training time (s)
Linear classifier

word tri-gram 51.28 137.1
POS tri-gram 52.64 85.0

SMCM bi-gram (# � ���) 51.79 304.9
SMCM bi-gram (# � ���) 54.45 422.1

�rd order Polynomial Kernel
word tri-gram 73.65 20143.7
POS tri-gram 66.58 29622.9

SMCM bi-gram (# � ���) 67.11 37181.6
SMCM bi-gram (# � ���) 74.11 34474.7

Table 1: Performance on the evaluation data.

compound words).
Let # be the number of classes in SMCMs. Two

SMCMs, one with # � ��� and the other with
# � ���, were constructed from model-train. Each
SMCM contained ��� million extracted chunks.

6.2 Experiments on Pseudo-Examples

We examined the property of a sentence being
Pseudo-Negative, in order to justify our framework.
A native English speaker and two non-native En-
glish speaker were asked to assign correct/incorrect
labels to ��� sentences in DLM-train1. The result
for an native English speaker was that all positive
sentences were labeled as correct and all negative
sentences except for one were labeled as incorrect.
On the other hand, the results for non-native English
speakers are 67� and 70�. From this result, we
can say that the sampling method was able to gen-
erate incorrect sentences and if a classifier can dis-
criminate them, the classifier can also discriminate
between correct and incorrect sentences. Note that
it takes an average of 25 seconds for the native En-
glish speaker to assign the label, which suggests that
it is difficult even for a human to determine the cor-
rectness of a sentence.

We then examined whether it was possible to dis-
criminate between correct and incorrect sentences
using parsing methods, since if so, we could have
used parsing as a classification tool. We exam-
ined ��� sentences using a phrase structure parser
(Charniak and Johnson, 2005) and an HPSG parser

1Since the PLM also made use of the BNC-corpus for posi-
tive examples, we were not able to classify sentences based on
word occurrences

(Miyao and Tsujii, 2005). All sentences were parsed
correctly except for one positive example. This
result indicates that correct sentences and pseudo-
negative examples cannot be differentiated syntacti-
cally.

6.3 Experiments on DLM-PN

We investigated the performance of classifiers and
the effect of different sets of features.

For N-grams and Part of Speech (POS), we used
tri-gram features. For SMCM, we used bi-gram fea-
tures. We used DLM-train as a training set. In all
experiments, we set � � ���� where � is a parame-
ter in the classification (Section 4). In all kernel ex-
periments, a �rd order polynomial kernel was used
and values were computed using PKI (the inverted
indexing method). Table 1 shows the accuracy re-
sults with different features, or in the case of the
SMCMs, different numbers of classes. This result
shows that the kernel method is important in achiev-
ing high performance. Note that the classifier with
SMCM features performs as well as the one with
word.

Table 2 shows the number of features in each
method. Note that a new feature is added only if the
classifier needs to update its parameters. These num-
bers are therefore smaller than the possible number
of all candidate features. This result and the previ-
ous result indicate that SMCM achieves high perfor-
mance with very few features.

We then examined the effect of PKI. Table 3
shows the results of the classifier with �rd order
polynomial kernel both with and without PKI. In
this experiment, only ���� sentences in DLM-train
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# of distinct features
word tri-gram 15773230
POS tri-gram 35376

SMCM (# � ���) 9335
SMCM (# � ���) 199745

Table 2: The number of features.

training time (s) prediction time (ms)
Baseline 37665.5 370.6
+ Index 4664.9 47.8

Table 3: Comparison between classification perfor-
mance with/without index
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Figure 5: Margin distribution using SMCM bi-gram
features.

were used for both experiments because training us-
ing all the training data would have required a much
longer time than was possible with our experimental
setup.

Figure 5 shows the margin distribution for pos-
itive and negative examples using SMCM bi-gram
features. Although many examples are close to the
border line (margin � �), positive and negative ex-
amples are distributed on either side of �. Therefore
higher recall or precision could be achieved by using
a pre-defined margin threshold other than �.

Finally, we generated learning curves to examine
the effect of the size of training data on performance.
Figure 6 shows the result of the classification task
using SMCM-bi-gram features. The result suggests
that the performance could be further improved by
enlarging the training data set.

50

55

60

65

70

75

80

5
0
0
0

3
5
0
0
0

6
5
0
0
0

9
5
0
0
0

1
E
+
0
5

2
E
+
0
5

2
E
+
0
5

2
E
+
0
5

2
E
+
0
5

3
E
+
0
5

3
E
+
0
5

3
E
+
0
5

4
E
+
0
5

4
E
+
0
5

4
E
+
0
5

5
E
+
0
5

5
E
+
0
5

Number of training examples

A
c
c
u
r
a
c
y
 (
%
)

Figure 6: A learning curve for SMCM (# � ���).
The accuracy is the percentage of sentences in the
evaluation set classified correctly.

7 Discussion

Experimental results on pseudo-negative examples
indicate that combination of features is effective in
a sentence discrimination method. This could be
because negative examples include many unsuitable
combinations of words such as a sentence contain-
ing many nouns. Although in previous PLMs, com-
bination of features has not been discussed except
for the topic-based language model (David M. Blei,
2003; Wang et al., 2005), our result may encourage
the study of the combination of features for language
modeling.

A contrastive estimation method (Smith and Eis-
ner, 2005) is similar to ours with regard to construct-
ing pseudo-negative examples. They build a neigh-
borhood of input examples to allow unsupervised es-
timation when, for example, a word is changed or
deleted. A lattice is constructed, and then parame-
ters are estimated efficiently. On the other hand, we
construct independent pseudo-negative examples to
enable training. Although the motivations of these
studies are different, we could combine these two
methods to discriminate sentences finely.

In our experiments, we did not examine the result
of using other sampling methods, For example, it
would be possible to sample sentences from a whole
sentence maximum entropy model (Rosenfeld et al.,
2001) and this is a topic for future research.
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8 Conclusion

In this paper we have presented a novel discrimi-
native language model using pseudo-negative exam-
ples. We also showed that an online margin-based
learning method enabled us to use half a million sen-
tences as training data and achieve ��� accuracy in
the task of discrimination between correct and in-
correct sentences. Experimental results indicate that
while pseudo-negative examples can be seen as in-
correct sentences, they are also close to correct sen-
tences in that parsers cannot discriminate between
them.

Our experimental results also showed that com-
bination of features is important for discrimination
between correct and incorrect sentences. This con-
cept has not been discussed in previous probabilistic
language models.

Our next step is to employ our model in machine
translation and speech recognition. One main diffi-
culty concerns how to encode global scores for the
classifier in the local search space, and another is
how to scale up the problem size in terms of the
number of examples and features. We would like to
see more refined online learning methods with ker-
nels (Cheng et al., 2006; Dekel et al., 2005) that we
could apply in these areas.

We are also interested in applications such as con-
structing an extended version of a spelling correc-
tion tool by identifying incorrect sentences.

Another interesting idea is to work with proba-
bilistic language models directly without sampling
and find ways to construct a more accurate discrim-
inative model.
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Abstract

This paper studies the problem of identify-
ing erroneous/correct sentences. The prob-
lem has important applications, e.g., pro-
viding feedback for writers of English as
a Second Language, controlling the quality
of parallel bilingual sentences mined from
the Web, and evaluating machine translation
results. In this paper, we propose a new
approach to detecting erroneous sentences
by integrating pattern discovery with super-
vised learning models. Experimental results
show that our techniques are promising.

1 Introduction

Detecting erroneous/correct sentences has the fol-
lowing applications. First, it can provide feedback
for writers of English as a Second Language (ESL)
as to whether a sentence contains errors. Second, it
can be applied to control the quality of parallel bilin-
gual sentences mined from the Web, which are criti-
cal sources for a wide range of applications, such as
statistical machine translation (Brown et al., 1993)
and cross-lingual information retrieval (Nie et al.,
1999). Third, it can be used to evaluate machine
translation results. As demonstrated in (Corston-
Oliver et al., 2001; Gamon et al., 2005), the better
human reference translations can be distinguished
from machine translations by a classification model,
the worse the machine translation system is.

∗Work done while the author was a visiting student at MSRA
†Work done while the author was a visiting student at MSRA

The previous work on identifying erroneous sen-
tences mainly aims to find errors from the writing of
ESL learners. The common mistakes (Yukio et al.,
2001; Gui and Yang, 2003) made by ESL learners
include spelling, lexical collocation, sentence struc-
ture, tense, agreement, verb formation, wrong Part-
Of-Speech (POS), article usage, etc. The previous
work focuses on grammar errors, including tense,
agreement, verb formation, article usage, etc. How-
ever, little work has been done to detect sentence
structure and lexical collocation errors.

Some methods of detecting erroneous sentences
are based on manual rules. These methods (Hei-
dorn, 2000; Michaud et al., 2000; Bender et al.,
2004) have been shown to be effective in detect-
ing certain kinds of grammatical errors in the writ-
ing of English learners. However, it could be ex-
pensive to write rules manually. Linguistic experts
are needed to write rules of high quality; Also, it
is difficult to produce and maintain a large num-
ber of non-conflicting rules to cover a wide range of
grammatical errors. Moreover, ESL writers of differ-
ent first-language backgrounds and skill levels may
make different errors, and thus different sets of rules
may be required. Worse still, it is hard to write rules
for some grammatical errors, for example, detecting
errors concerning the articles and singular plural us-
age (Nagata et al., 2006).

Instead of asking experts to write hand-crafted
rules, statistical approaches (Chodorow and Lea-
cock, 2000; Izumi et al., 2003; Brockett et al., 2006;
Nagata et al., 2006) build statistical models to iden-
tify sentences containing errors. However, existing
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statistical approaches focus on some pre-defined er-
rors and the reported results are not attractive. More-
over, these approaches, e.g., (Izumi et al., 2003;
Brockett et al., 2006) usually need errors to be spec-
ified and tagged in the training sentences, which re-
quires expert help to be recruited and is time con-
suming and labor intensive.

Considering the limitations of the previous work,
in this paper we propose a novel approach that is
based on pattern discovery and supervised learn-
ing to successfully identify erroneous/correct sen-
tences. The basic idea of our approach is to build
a machine learning model to automatically classify
each sentence into one of the two classes, “erro-
neous” and “correct.” To build the learning model,
we automatically extract labeled sequential patterns
(LSPs) from both erroneous sentences and correct
sentences, and use them as input features for classi-
fication models. Our main contributions are:

• We mine labeled sequential patterns(LSPs)
from the preprocessed training data to build
leaning models. Note that LSPs are also very
different from N-gram language models that
only consider continuous sequences.

• We also enrich the LSP features with other auto-
matically computed linguistic features, includ-
ing lexical collocation, language model, syn-
tactic score, and function word density. In con-
trast with previous work focusing on (a spe-
cific type of) grammatical errors, our model can
handle a wide range of errors, including gram-
mar, sentence structure, and lexical choice.

• We empirically evaluate our methods on two
datasets consisting of sentences written by
Japanese and Chinese, respectively. Experi-
mental results show that labeled sequential pat-
terns are highly useful for the classification
results, and greatly outperform other features.
Our method outperforms Microsoft Word03
and ALEK (Chodorow and Leacock, 2000)
from Educational Testing Service (ETS) in
some cases. We also apply our learning model
to machine translation (MT) data as a comple-
mentary measure to evaluate MT results.

The rest of this paper is organized as follows.
The next section discusses related work. Section 3
presents the proposed technique. We evaluate our

proposed technique in Section 4. Section 5 con-
cludes this paper and discusses future work.

2 Related Work

Research on detecting erroneous sentences can be
classified into two categories. The first category
makes use of hand-crafted rules, e.g., template
rules (Heidorn, 2000) and mal-rules in context-free
grammars (Michaud et al., 2000; Bender et al.,
2004). As discussed in Section 1, manual rule based
methods have some shortcomings.

The second category uses statistical techniques
to detect erroneous sentences. An unsupervised
method (Chodorow and Leacock, 2000) is em-
ployed to detect grammatical errors by inferring
negative evidence from TOEFL administrated by
ETS. The method (Izumi et al., 2003) aims to de-
tect omission-type and replacement-type errors and
transformation-based leaning is employed in (Shi
and Zhou, 2005) to learn rules to detect errors for
speech recognition outputs. They also require spec-
ifying error tags that can tell the specific errors
and their corrections in the training corpus. The
phrasal Statistical Machine Translation (SMT) tech-
nique is employed to identify and correct writing er-
rors (Brockett et al., 2006). This method must col-
lect a large number of parallel corpora (pairs of er-
roneous sentences and their corrections) and perfor-
mance depends on SMT techniques that are not yet
mature. The work in (Nagata et al., 2006) focuses
on a type of error, namely mass vs. count nouns.
In contrast to existing statistical methods, our tech-
nique needs neither errors tagged nor parallel cor-
pora, and is not limited to a specific type of gram-
matical error.

There are also studies on automatic essay scoring
at document-level. For example, E-rater (Burstein
et al., 1998), developed by the ETS, and Intelligent
Essay Assessor (Foltz et al., 1999). The evaluation
criteria for documents are different from those for
sentences. A document is evaluated mainly by its or-
ganization, topic, diversity of vocabulary, and gram-
mar while a sentence is done by grammar, sentence
structure, and lexical choice.

Another related work is Machine Translation (MT)
evaluation. Classification models are employed
in (Corston-Oliver et al., 2001; Gamon et al., 2005)
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to evaluate the well-formedness of machine transla-
tion outputs. The writers of ESL and MT normally
make different mistakes: in general, ESL writers can
write overall grammatically correct sentences with
some local mistakes while MT outputs normally pro-
duce locally well-formed phrases with overall gram-
matically wrong sentences. Hence, the manual fea-
tures designed for MT evaluation are not applicable
to detect erroneous sentences from ESL learners.

LSPs differ from the traditional sequential pat-
terns, e.g., (Agrawal and Srikant, 1995; Pei et al.,
2001) in that LSPs are attached with class labels and
we prefer those with discriminating ability to build
classification model. In our other work (Sun et al.,
2007), labeled sequential patterns, together with la-
beled tree patterns, are used to build pattern-based
classifier to detect erroneous sentences. The clas-
sification method in (Sun et al., 2007) is different
from those used in this paper. Moreover, instead of
labeled sequential patterns, in (Sun et al., 2007) the
most significant k labeled sequential patterns with
constraints for each training sentence are mined to
build classifiers. Another related work is (Jindal and
Liu, 2006), where sequential patterns with labels are
used to identify comparative sentences.

3 Proposed Technique

This section first gives our problem statement and
then presents our proposed technique to build learn-
ing models.

3.1 Problem Statement

In this paper we study the problem of identifying
erroneous/correct sentences. A set of training data
containing correct and erroneous sentences is given.
Unlike some previous work, our technique requires
neither that the erroneous sentences are tagged with
detailed errors, nor that the training data consist of
parallel pairs of sentences (an error sentence and its
correction). The erroneous sentence contains a wide
range of errors on grammar, sentence structure, and
lexical choice. We do not consider spelling errors in
this paper.

We address the problem by building classifica-
tion models. The main challenge is to automatically
extract representative features for both correct and
erroneous sentences to build effective classification

models. We illustrate the challenge with an exam-
ple. Consider an erroneous sentence, “If Maggie will
go to supermarket, she will buy a bag for you.” It is
difficult for previous methods using statistical tech-
niques to capture such an error. For example, N-
gram language model is considered to be effective
in writing evaluation (Burstein et al., 1998; Corston-
Oliver et al., 2001). However, it becomes very ex-
pensive if N > 3 and N-grams only consider contin-
uous sequence of words, which is unable to detect
the above error “if...will...will”.

We propose labeled sequential patterns to effec-
tively characterize the features of correct and er-
roneous sentences (Section 3.2), and design some
complementary features ( Section 3.3).

3.2 Mining Labeled Sequential Patterns ( LSP )

Labeled Sequential Patterns (LSP). A labeled se-
quential pattern, p, is in the form of LHS→ c, where
LHS is a sequence and c is a class label. Let I be a
set of items and L be a set of class labels. Let D be a
sequence database in which each tuple is composed
of a list of items in I and a class label in L. We say
that a sequence s1 =< a1, ..., am > is contained in
a sequence s2 =< b1, ..., bn > if there exist integers
i1, ...im such that 1 ≤ i1 < i2 < ... < im ≤ n and
aj = bij for all j ∈ 1, ...,m. Similarly, we say that
a LSP p1 is contained by p2 if the sequence p1.LHS

is contained by p2.LHS and p1.c = p2.c. Note that
it is not required that s1 appears continuously in s2.
We will further refine the definition of “contain” by
imposing some constraints (to be explained soon).
A LSP p is attached with two measures, support and
confidence. The support of p, denoted by sup(p),
is the percentage of tuples in database D that con-
tain the LSP p. The probability of the LSP p being
true is referred to as “the confidence of p ”, denoted
by conf(p), and is computed as sup(p)

sup(p.LHS) . The
support is to measure the generality of the pattern p
and minimum confidence is a statement of predictive
ability of p.

Example 1: Consider a sequence database contain-
ing three tuples t1 = (< a, d, e, f >, E), t2 = (<
a, f, e, f >, E) and t3 = (< d, a, f >, C). One
example LSP p1 = < a, e, f >→ E, which is con-
tained in tuples t1 and t2. Its support is 66.7% and
its confidence is 100%. As another example, LSP p2
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= < a, f >→ E with support 66.7% and confidence
66.7%. p1 is a better indication of class E than p2.

2

Generating Sequence Database. We generate the
database by applying Part-Of-Speech (POS) tagger
to tag each training sentence while keeping func-
tion words1 and time words2. After the process-
ing, each sentence together with its label becomes
a database tuple. The function words and POS tags
play important roles in both grammars and sentence
structures. In addition, the time words are key
clues in detecting errors of tense usage. The com-
bination of them allows us to capture representative
features for correct/erroneous sentences by mining
LSPs. Some example LSPs include “<a, NNS> →
Error”(singular determiner preceding plural noun),
and “<yesterday, is>→Error”. Note that the con-
fidences of these LSPs are not necessary 100%.

First, we use MXPOST-Maximum Entropy Part of
Speech Tagger Toolkit3 for POS tags. The MXPOST

tagger can provide fine-grained tag information. For
example, noun can be tagged with “NN”(singular
noun) and “NNS”(plural noun); verb can be tagged
with “VB”, ”VBG”, ”VBN”, ”VBP”, ”VBD” and
”VBZ”. Second, the function words and time words
that we use form a key word list. If a word in a
training sentence is not contained in the key word
list, then the word will be replaced by its POS. The
processed sentence consists of POS and the words of
key word list. For example, after the processing, the
sentence “In the past, John was kind to his sister” is
converted into “In the past, NNP was JJ to his NN”,
where the words “in”, “the”, “was”, “to” and “his”
are function words, the word “past” is time word,
and “NNP”, “JJ”, and “NN” are POS tags.

Mining LSPs. The length of the discovered LSPs
is flexible and they can be composed of contiguous
or distant words/tags. Existing frequent sequential
pattern mining algorithms (e.g. (Pei et al., 2001))
use minimum support threshold to mine frequent se-
quential patterns whose support is larger than the
threshold. These algorithms are not sufficient for our
problem of mining LSPs. In order to ensure that all
our discovered LSPs are discriminating and are capa-

1http://www.marlodge.supanet.com/museum/funcword.html
2http://www.wjh.harvard.edu/%7Einquirer/Time%40.html
3http://www.cogsci.ed.ac.uk/∼jamesc/taggers/MXPOST.html

ble of predicting correct or erroneous sentences, we
impose another constraint minimum confidence. Re-
call that the higher the confidence of a pattern is, the
better it can distinguish between correct sentences
and erroneous sentences. In our experiments, we
empirically set minimum support at 0.1% and mini-
mum confidence at 75%.

Mining LSPs is nontrivial since its search space
is exponential, althought there have been a host of
algorithms for mining frequent sequential patterns.
We adapt the frequent sequence mining algorithm
in (Pei et al., 2001) for mining LSPs with constraints.

Converting LSPs to Features. Each discovered LSP

forms a binary feature as the input for classification
model. If a sentence includes a LSP, the correspond-
ing feature is set at 1.

The LSPs can characterize the correct/erroneous
sentence structure and grammar. We give some ex-
amples of the discovered LSPs. (1) LSPs for erro-
neous sentences. For example, “<this, NNS>”(e.g.
contained in “this books is stolen.”), “<past,
is>”(e.g. contained in “in the past, John is kind to
his sister.”), “<one, of, NN>”(e.g. contained in “it is
one of important working language”, “<although,
but>”(e.g. contained in “although he likes it, but
he can’t buy it.”), and “<only, if, I, am>”(e.g. con-
tained in “only if my teacher has given permission,
I am allowed to enter this room”). (2) LSPs for cor-
rect sentences. For instance, “<would, VB>”(e.g.
contained in “he would buy it.”), and “<VBD,
yeserday>”(e.g. contained in “I bought this book
yesterday.”).

3.3 Other Linguistic Features

We use some linguistic features that can be com-
puted automatically as complementary features.

Lexical Collocation (LC) Lexical collocation er-
ror (Yukio et al., 2001; Gui and Yang, 2003) is com-
mon in the writing of ESL learners, such as “strong
tea” but not “powerful tea.” Our LSP features can-
not capture all LCs since we replace some words
with POS tags in mining LSPs. We collect five types
of collocations: verb-object, adjective-noun, verb-
adverb, subject-verb, and preposition-object from a
general English corpus4. Correct LCs are collected

4The general English corpus consists of about 4.4 million
native sentences.
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by extracting collocations of high frequency from
the general English corpus. Erroneous LC candi-
dates are generated by replacing the word in correct
collocations with its confusion words, obtained from
WordNet, including synonyms and words with sim-
ilar spelling or pronunciation. Experts are consulted
to see if a candidate is a true erroneous collocation.

We compute three statistical features for each sen-
tence below. (1) The first feature is computed by
m∑

i=1
p(coi)/n, where m is the number of CLs, n is

the number of collocations in each sentence, and
probability p(coi) of each CL coi is calculated us-
ing the method (Lü and Zhou, 2004). (2) The sec-
ond feature is computed by the ratio of the number
of unknown collocations (neither correct LCs nor er-
roneous LCs) to the number of collocations in each
sentence. (3) The last feature is computed by the ra-
tio of the number of erroneous LCs to the number of
collocations in each sentence.

Perplexity from Language Model (PLM) Perplex-
ity measures are extracted from a trigram language
model trained on a general English corpus using
the SRILM-SRI Language Modeling Toolkit (Stolcke,
2002). We calculate two values for each sentence:
lexicalized trigram perplexity and part of speech
(POS) trigram perplexity. The erroneous sentences
would have higher perplexity.

Syntactic Score (SC) Some erroneous sentences of-
ten contain words and concepts that are locally cor-
rect but cannot form coherent sentences (Liu and
Gildea, 2005). To measure the coherence of sen-
tences, we use a statistical parser Toolkit (Collins,
1997) to assign each sentence a parser’s score that
is the related log probability of parsing. We assume
that erroneous sentences with undesirable sentence
structures are more likely to receive lower scores.

Function Word Density (FWD) We consider the
density of function words (Corston-Oliver et al.,
2001), i.e. the ratio of function words to content
words. This is inspired by the work (Corston-Oliver
et al., 2001) showing that function word density can
be effective in distinguishing between human refer-
ences and machine outputs. In this paper, we calcu-
late the densities of seven kinds of function words 5

5including determiners/quantifiers, all pronouns, different
pronoun types: Wh, 1st, 2nd, and 3rd person pronouns, prepo-

Dataset Type Source Number

JC
(+) the Japan Times newspaper

and Model English Essay
16,857

(-)
HEL (Hiroshima English
Learners’ Corpus) and JLE
(Japanese Learners of En-
glish Corpus)

17,301

CC
(+) the 21st Century newspaper 3,200

(-)
CLEC (Chinese Learner Er-
ror Corpus) 3,199

Table 1: Corpora ((+): correct; (-): erroneous)

respectively as 7 features.

4 Experimental Evaluation

We evaluated the performance of our techniques
with support vector machine (SVM) and Naive
Bayesian (NB) classification models. We also com-
pared the effectiveness of various features. In ad-
dition, we compared our technique with two other
methods of checking errors, Microsoft Word03 and
ALEK method (Chodorow and Leacock, 2000). Fi-
nally, we also applied our technique to evaluate the
Machine Translation outputs.

4.1 Experimental Setup

Classification Models. We used two classification
models, SVM6 and NB classification model.
Data. We collected two datasets from different do-
mains, Japanese Corpus (JC) and Chinese Corpus
(CC). Table 1 gives the details of our corpora. In
the learner’s corpora, all of the sentences are erro-
neous. Note that our data does not consist of parallel
pairs of sentences (one error sentence and its correc-
tion). The erroneous sentences includes grammar,
sentence structure and lexical choice errors, but not
spelling errors.

For each sentence, we generated five kinds of fea-
tures as presented in Section 3. For a non-binary
feature X , its value x is normalized by z-score,
norm(x) = x−mean(X)√

var(X)
, where mean(x) is the em-

pirical mean of X and var(X) is the variance of X .
Thus each sentence is represented by a vector.
Metrics We calculated the precision, recall,
and F-score for correct and erroneous sentences,
respectively, and also report the overall accuracy.

sitions and adverbs, auxiliary verbs, and conjunctions.
6http://svmlight.joachims.org/
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All the experimental results are obtained thorough
10-fold cross-validation.

4.2 Experimental Results

The Effectiveness of Various Features. The exper-
iment is to evaluate the contribution of each feature
to the classification. The results of SVM are given in
Table 2. We can see that the performance of labeled
sequential patterns (LSP) feature consistently out-
performs those of all the other individual features. It
also performs better even if we use all the other fea-
tures together. This is because other features only
provide some relatively abstract and simple linguis-
tic information, whereas the discovered LSP s char-
acterize significant linguistic features as discussed
before. We also found that the results of NB are a
little worse than those of SVM. However, all the fea-
tures perform consistently on the two classification
models and we can observe the same trend. Due to
space limitation, we do not give results of NB.

In addition, the discovered LSPs themselves are
intuitive and meaningful since they are intuitive fea-
tures that can distinguish correct sentences from er-
roneous sentences. We discovered 6309 LSPs in
JC data and 3742 LSPs in CC data. Some exam-
ple LSPs discovered from erroneous sentences are
<a, NNS> (support:0.39%, confidence:85.71%),
<to, VBD> (support:0.11%, confidence:84.21%),
and <the, more, the, JJ> (support:0.19%, confi-
dence:0.93%) 7; Similarly, we also give some exam-
ple LSPs mined from correct sentences: <NN, VBZ>
(support:2.29%, confidence:75.23%), and <have,
VBN, since> (support:0.11%, confidence:85.71%)
8. However, other features are abstract and it is hard
to derive some intuitive knowledge from the opaque
statistical values of these features.

As shown in Table 2, our technique achieves
the highest accuracy, e.g. 81.75% on the Japanese
dataset, when we use all the features. However, we
also notice that the improvement is not very signif-
icant compared with using LSP feature individually
(e.g. 79.63% on the Japanese dataset). The similar
results are observed when we combined the features
PLM, SC, FWD, and LC. This could be explained

7a + plural noun; to + past tense format; the more + the +
base form of adjective

8singular or mass noun + the 3rd person singular present
format; have + past participle format + since

by two reasons: (1) A sentence may contain sev-
eral kinds of errors. A sentence detected to be er-
roneous by one feature may also be detected by an-
other feature; and (2) Various features give conflict-
ing results. The two aspects suggest the directions
of our future efforts to improve the performance of
our models.

Comparing with Other Methods. It is difficult
to find benchmark methods to compare with our
technique because, as discussed in Section 2, exist-
ing methods often require error tagged corpora or
parallel corpora, or focus on a specific type of er-
rors. In this paper, we compare our technique with
the grammar checker of Microsoft Word03 and the
ALEK (Chodorow and Leacock, 2000) method used
by ETS. ALEK is used to detect inappropriate usage
of specific vocabulary words. Note that we do not
consider spelling errors. Due to space limitation, we
only report the precision, recall, F-score
for erroneous sentences, and the overall accuracy.

As can be seen from Table 3, our method out-
performs the other two methods in terms of over-
all accuracy, F-score, and recall, while the three
methods achieve comparable precision. We realize
that the grammar checker of Word is a general tool
and the performance of ALEK (Chodorow and Lea-
cock, 2000) can be improved if larger training data is
used. We found that Word and ALEK usually cannot
find sentence structure and lexical collocation errors,
e.g., “The more you listen to English, the easy it be-
comes.” contains the discovered LSP <the, more, the,
JJ>→ Error.

Cross-domain Results. To study the performance
of our method on cross-domain data from writers
of the same first-language background, we collected
two datasets from Japanese writers, one is composed
of 694 parallel sentences (+:347, -:347), and the
other 1,671 non-parallel sentences (+:795, -:876).
The two datasets are used as test data while we use
JC dataset for training. Note that the test sentences
come from different domains from the JC data. The
results are given in the first two rows of Table 4. This
experiment shows that our leaning model trained for
one domain can be effectively applied to indepen-
dent data in the other domains from the writes of the
same first-language background, no matter whether
the test data is parallel or not. We also noticed that
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Dataset Feature A (-)F (-)R (-)P (+)F (+)R (+)P

JC

LSP 79.63 80.65 85.56 76.29 78.49 73.79 83.85
LC 69.55 71.72 77.87 66.47 67.02 61.36 73.82
PLM 61.60 55.46 50.81 64.91 62 70.28 58.43
SC 53.66 57.29 68.40 56.12 34.18 39.04 32.22
FWD 68.01 72.82 86.37 62.95 61.14 49.94 78.82
LC + PLM + SC + FWD 71.64 73.52 79.38 68.46 69.48 64.03 75.94
LSP + LC + PLM + SC + FWD 81.75 81.60 81.46 81.74 81.90 82.04 81.76

CC

LSP 78.19 76.40 70.64 83.20 79.71 85.72 74.50
LC 63.82 62.36 60.12 64.77 65.17 67.49 63.01
PLM 55.46 64.41 80.72 53.61 40.41 30.22 61.30
SC 50.52 62.58 87.31 50.64 13.75 14.33 13.22
FWD 61.36 60.80 60.70 60.90 61.90 61.99 61.80
LC + PLM + SC + FWD 67.69 67.62 67.51 67.77 67.74 67.87 67.64
LSP + LC + PLM + SC + FWD 79.81 78.33 72.76 84.84 81.10 86.92 76.02

Table 2: The Experimental Results (A: overall accuracy; (-): erroneous sentences; (+): correct sentences; F:
F-score; R: recall; P: precision)

Dataset Model A (-)F (-)R (-)P

JC
Ours 81.39 81.25 81.24 81.28
Word 58.87 33.67 21.03 84.73
ALEK 54.69 20.33 11.67 78.95

CC
Ours 79.14 77.81 73.17 83.09
Word 58.47 32.02 19.81 84.22
ALEK 55.21 22.83 13.42 76.36

Table 3: The Comparison Results

LSPs play dominating role in achieving the results.
Due to space limitation, no details are reported.

To further see the performance of our method
on data written by writers with different first-
language backgrounds, we conducted two experi-
ments. (1) We merge the JC dataset and CC dataset.
The 10-fold cross-validation results on the merged
dataset are given in the third row of Table 4. The
results demonstrate that our models work well when
the training data and test data contain sentences from
different first-language backgrounds. (2) We use the
JC dataset (resp. CC dataset) for training while the
CC dataset (resp. JC dataset) is used as test data. As
shown in the fourth (resp. fifth) row of Table 4, the
results are worse than their corresponding results of
Word given in Table 3. The reason is that the mis-
takes made by Japanese and Chinese are different,
thus the learning model trained on one data does not
work well on the other data. Note that our method is
not designed to work in this scenario.

Application to Machine Translation Evaluation.
Our learning models could be used to evaluate the
MT results as an complementary measure. This is
based on the assumption that if the MT results can
be accurately distinguished from human references

Dataset A (-)F (-)R (-)P
JC(Train)+nonparallel(Test) 72.49 68.55 57.51 84.84
JC(Train)+parallel(Test) 71.33 69.53 65.42 74.18
JC + CC 79.98 79.72 79.24 80.23
JC(Train)+ CC(Test) 55.62 41.71 31.32 62.40
CC(Train)+ JC(Test) 57.57 23.64 16.94 39.11

Table 4: The Cross-domain Results of our Method

by our technique, the MT results are not natural and
may contain errors as well.

The experiment was conducted using 10-fold
cross validation on two LDC data, low-ranked and
high-ranked data9. The results using SVM as classi-
fication model are given in Table 5. As expected, the
classification accuracy on low-ranked data is higher
than that on high-ranked data since low-ranked MT
results are more different from human references
than high-ranked MT results. We also found that
LSPs are the most effective features. In addition, our
discovered LSPs could indicate the common errors
made by the MT systems and provide some sugges-
tions for improving machine translation results.

As a summary, the mined LSPs are indeed effec-
tive for the classification models and our proposed
technique is effective.

5 Conclusions and Future Work

This paper proposed a new approach to identifying
erroneous/correct sentences. Empirical evaluating
using diverse data demonstrated the effectiveness of

9One LDC data contains 14,604 low ranked (score 1-3) ma-
chine translations and the corresponding human references; the
other LDC data contains 808 high ranked (score 3-5) machine
translations and the corresponding human references
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Data Feature A (-)F (-)R (-)P (+)F (+)R (+)P
Low-ranked data (1-3 score) LSP 84.20 83.95 82.19 85.82 84.44 86.25 82.73

LSP+LC+PLM+SC+FWD 86.60 86.84 88.96 84.83 86.35 84.27 88.56
High-ranked data (3-5 score) LSP 71.74 73.01 79.56 67.59 70.23 64.47 77.40

LSP+LC+PLM+SC+FWD 72.87 73.68 68.95 69.20 71.92 67.22 77.60

Table 5: The Results on Machine Translation Data

our techniques. Moreover, we proposed to mine
LSPs as the input of classification models from a set
of data containing correct and erroneous sentences.
The LSPs were shown to be much more effective than
the other linguistic features although the other fea-
tures were also beneficial.

We will investigate the following problems in the
future: (1) to make use of the discovered LSPs to pro-
vide detailed feedback for ESL learners, e.g. the er-
rors in a sentence and suggested corrections; (2) to
integrate the features effectively to achieve better re-
sults; (3) to further investigate the application of our
techniques for MT evaluation.
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Abstract

Speech recognition in many morphologi-
cally rich languages suffers from a very high
out-of-vocabulary (OOV) ratio. Earlier work
has shown that vocabulary decomposition
methods can practically solve this problem
for a subset of these languages. This pa-
per compares various vocabulary decompo-
sition approaches to open vocabulary speech
recognition, using Estonian speech recogni-
tion as a benchmark. Comparisons are per-
formed utilizing large models of 60000 lex-
ical items and smaller vocabularies of 5000
items. A large vocabulary model based on
a manually constructed morphological tag-
ger is shown to give the lowest word er-
ror rate, while the unsupervised morphol-
ogy discovery method Morfessor Baseline
gives marginally weaker results. Only the
Morfessor-based approach is shown to ade-
quately scale to smaller vocabulary sizes.

1 Introduction

1.1 OOV problem

Open vocabulary speech recognition refers to au-
tomatic speech recognition (ASR) of continuous
speech, or “speech-to-text” of spoken language,
where the recognizer is expected to recognize any
word spoken in that language. This capability is a re-
cent development in ASR, and is required or benefi-
cial in many of the current applications of ASR tech-
nology. Moreover, large vocabulary speech recogni-

tion is not possible in most languages of the world
without first developing the tools needed for open
vocabulary speech recognition. This is due to a fun-
damental obstacle in current ASR called the out-of-
vocabulary (OOV) problem.

The OOV problem refers to the existence of words
encountered that a speech recognizer is unable to
recognize, as they are not covered in the vocabu-
lary. The OOV problem is caused by three inter-
twined issues. Firstly, the language model training
data and the test data always come from different
samplings of the language, and the mismatch be-
tween test and training data introduces some OOV
words, the amount depending on the difference be-
tween the data sets. Secondly, ASR systems always
use finite and preferably small sized vocabularies,
since the speed of decoding rapidly slows down as
the vocabulary size is increased. Vocabulary sizes
depend on the application domain, sizes larger than
60000 being very rare. As some of the words en-
countered in the training data are left out of the vo-
cabulary, there will be OOV words during recogni-
tion. The third and final issue is the fundamental
one; languages form novel sentences not only by
combining words, but also by combining sub-word
items called morphs to make up the words them-
selves. These morphs in turn correspond to abstract
grammatical items called morphemes, and morphs
of the same morpheme are called allomorphs of that
morpheme. The study of these facets of language
is aptly called morphology, and has been largely ne-
glected in modern ASR technology. This is due to
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ASR having been developed primarily for English,
where the OOV problem is not as severe as in other
languages of the world.

1.2 Relevance of morphology for ASR

Morphologies in natural languages are character-
ized typologically using two parameters, called in-
dexes of synthesis and fusion. Index of synthesis
has been loosely defined as the ratio of morphs per
word forms in the language(Comrie, 1989), while
index of fusion refers to the ratio of morphs per mor-
pheme. High frequency of verb paradigms such as
“hear, hear + d, hear + d” would result in a high syn-
thesis, low fusion language, whereas high frequency
of paradigms such as “sing, sang, sung” would re-
sult in almost the opposite. Counting distinct item
types and not instances of the types, the first ex-
ample would have 2 word forms, 2 morphs and 2
morphemes, the second 3 word forms, 3 morphs and
1 morpheme. Although in the first example, there
are 3 word instances of the 2 word forms, the lat-
ter word form being an ambiguous one referring to
two distinct grammatical constructions. It should
also be noted that the first morph of the first ex-
ample has 2 pronunciations. Pronunciational bound-
aries do not always follow morphological ones, and
a morph may and will have several pronunciations
that depend on context, if the language in question
has significant orthographic irregularity.

As can be seen, both types of morphological com-
plexity increase the amount of distinct word forms,
resulting in an increase in the OOV rate of any fi-
nite sized vocabulary for that language. In prac-
tice, the OOV increase caused by synthesis is much
larger, as languages can have thousands of differ-
ent word forms per word that are caused by addi-
tion of processes of word formation followed by in-
flections. Thus the OOV problem in ASR has been
most pronounced in languages with much synthesis,
regardless of the amount of fusion. The morpheme-
based modeling approaches evaluated in this work
are primarily intended for fixing the problem caused
by synthesis, and should work less well or even ad-
versely when attempted with low synthesis, high fu-
sion languages. It should be noted that models based
on finite state transducers have been shown to be ad-
equate for describing fusion as well(Koskenniemi,
1983), and further work should evaluate these types

of models in ASR of languages with higher indexes
of fusion.

1.3 Approaches for solving the OOV problem

The traditional method for reducing OOV would be
to simply increase the vocabulary size so that the rate
of OOV words becomes sufficiently low. Naturally
this method fails when the words are derived, com-
pounded or inflected forms of rarer words. While
this approach might still be practical in languages
with a low index of synthesis such as English, it
fails with most languages in the world. For exam-
ple, in English with language models (LM) of 60k
words trained from the Gigaword Corpus V.2(Graff
et al., 2005), and testing on a very similar Voice
of America -portion of TDT4 speech corpora(Kong
and Graff, 2005), this gives a OOV rate of 1.5%.
It should be noted that every OOV causes roughly
two errors in recognition, and vocabulary decompo-
sition approaches such as the ones evaluated here
give some benefits to word error rate (WER) even
in recognizing languages such as English(Bisani and
Ney, 2005).

Four different approaches to lexical unit selec-
tion are evaluated in this work, all of which have
been presented previously. These are hence called
“word”, “hybrid”, “morph” and “grammar”. The
word approach is the default approach to lexical
item selection, and is provided here as a baseline for
the alternative approaches. The alternatives tested
here are all based on decomposing the in-vocabulary
words, OOV words, or both, in LM training data into
sequences of sub-word fragments. During recogni-
tion the decoder can then construct the OOV words
encountered as combinations of these fragments.
Word boundaries are marked in LMs with tokens so
that the words can be reconstructed from the sub-
word fragments after decoding simply by removing
spaces between fragments, and changing the word
boundaries tokens to spaces. As splitting to sub-
word items makes the span of LM histories shorter,
higher order n-grams must be used to correct this.
Varigrams(Siivola and Pellom, 2005) are used in
this work, and to make LMs trained with each ap-
proach comparable, the varigrams have been grown
to roughly sizes of 5 million counts. It should be
noted that the names for the approaches here are
somewhat arbitrary, as from a theoretical perspec-
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tive both morph- and grammar-based approaches try
to model the grammatical morph set of a language,
difference being that “morph” does this with an un-
supervised data-driven machine learning algorithm,
whereas “grammar” does this using segmentations
from a manually constructed rule-based morpholog-
ical tagger.

2 Modeling approaches

2.1 Word approach

The first approach evaluated in this work is the tra-
ditional word based LM, where items are simply the
most frequent words in the language model training
data. OOV words are simply treated as unknown
words in language model training. This has been
the default approach to selection of lexical items in
speech recognition for several decades, and as it has
been sufficient in English ASR, there has been lim-
ited interest in any alternatives.

2.2 Hybrid approach

The second approach is a recent refinement of the
traditional word-based approach. This is similar to
what was introduced as “flat hybrid model”(Bisani
and Ney, 2005), and it tries to model OOV-words
as sequences of words and fragments. “Hybrid”
refers to the LM histories being composed of hy-
brids of words and fragments, while “flat” refers to
the model being composed of one n-gram model in-
stead of several models for the different item types.
The models tested in this work differ in that since
Estonian has a very regular phonemic orthography,
grapheme sequences can be directly used instead
of more complex pronunciation modeling. Subse-
quently the fragments used are just one grapheme in
length.

2.3 Morph approach

The morph-based approach has shown superior re-
sults to word-based models in languages of high
synthesis and low fusion, including Estonian. This
approach, called “Morfessor Baseline” is described
in detail in (Creutz et al., 2007). An unsupervised
machine learning algorithm is used to discover the
morph set of the language in question, using mini-
mum description length (MDL) as an optimization
criterion. The algorithm is given a word list of the

language, usually pruned to about 100 000 words,
that it proceeds to recursively split to smaller items,
using gains in MDL to optimize the item set. The
resulting set of morphs models the morph set well in
languages of high synthesis, but as it does not take
fusion into account any manner, it should not work
in languages of high fusion. It neither preserves in-
formation about pronunciations, and as these do not
follow morph boundaries, the approach is unsuitable
in its basic form to languages of high orthographic
irregularity.

2.4 Grammar approach

The final approach applies a manually constructed
rule-based morphological tagger(Alumäe, 2006).
This approach is expected to give the best results,
as the tagger should give the ideal segmentation
along the grammatical morphs that the unsupervised
and language-independent morph approach tries to
find. To make this approach more comparable to
the morph models, OOV morphs are modeled as
sequences of graphemes similar to the hybrid ap-
proach. Small changes to the original approach
were also made to make the model comparable to
the other models presented here, such as using the
tagger segmentations as such and not using pseudo-
morphemes, as well as not tagging the items in any
manner. This approach suffers from the same handi-
caps as the morph approach, as well as from some
additional ones: morphological analyzers are not
readily available for most languages, they must be
tailored by linguists for new datasets, and it is an
open problem as to how pronunciation dictionaries
should be written for grammatical morphs in lan-
guages with significant orthographic irregularity.

2.5 Text segmentation and language modeling

For training the LMs, a subset of 43 mil-
lion words from the Estonian Segakorpus was
used(Segakorpus, 2005), preprocessed with a mor-
phological analyzer(Alumäe, 2006). After selecting
the item types, segmenting the training corpora and
generation of a pronunciation dictionary, LMs were
trained for each lexical item type. Table 1 shows
the text format for LM training data after segmen-
tation with each model. As can be seen, the word-
based approach doesn’t use word boundary tokens.
To keep the LMs comparable between each model-
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model text segmentation

word 5k voodis reeglina loeme

word 60k voodis reeglina loeme

hybrid 5k v o o d i s<w> reeglina<w> l o e m e

hybrid 60k voodis<w> reeglina<w> loeme

morph 5k voodi s<w> re e g lina<w> loe me

morph 60k voodi s<w> reegli na<w> loe me

grammar 5k voodi s<w> reegli na<w> loe me

grammar 60k voodi s<w> reegli na<w> loe me

Table 1. Sample segmented texts for each model.

ing approach, growing varigram models(Siivola and
Pellom, 2005) were used with no limits as to the or-
der of n-grams, but limiting the number of counts to
4.8 and 5 million counts. In some models this grow-
ing method resulted in the inclusion of very frequent
long item sequences to the varigram, up to a 28-
gram. Models of both 5000 and 60000 lexical items
were trained in order to test if and how the model-
ing approaches would scale to smaller and therefore
much faster vocabularies. Distribution of counts in
n-gram orders can be seen in figure 1.

Figure 1. Number of counts included for each n-
gram order in the 60k varigram models.

The performance of the statistical language mod-
els is often evaluated by perplexity or cross-entropy.
However, we decided to only report the real ASR
performance, because perplexity does not suit well
to the comparison of models that use different lex-
ica, have different OOV rates and have lexical units

of different lengths.

3 Experimental setup

3.1 Evaluation set

Acoustic models for Estonian ASR were trained on
the Estonian Speechdat-like corpus(Meister et al.,
2002). This consists of spoken newspaper sentences
and shorter utterances, read over a telephone by
1332 different speakers. The data therefore was
quite clearly articulated, but suffered from 8kHz
sample rate, different microphones, channel noises
and occasional background noises. On top of this
the speakers were selected to give a very broad cov-
erage of different dialectal varieties of Estonian and
were of different age groups. For these reasons, in
spite of consisting of relatively common word forms
from newspaper sentences, the database can be con-
sidered challenging for ASR.

Held-out sentences were from the same corpus
used as development and evaluation set. 8 different
sentences from 50 speakers each were used for eval-
uation, while sentences from 15 speakers were used
for development. LM scaling factor was optimized
for each model separately on the development set.
On total over 200 hours of data from the database
was used for acoustic model training, of which less
than half was speech.

3.2 Decoding

The acoustic models were Hidden Markov Models
(HMM) with Gaussian Mixture Models (GMM)
for state modeling based on 39-dimensional
MFCC+P+D+DD features, with windowed cepstral
mean subtraction (CMS) of 1.25 second window.
Maximum likelihood linear transformation (MLLT)
was used during training. State-tied cross-word
triphones and 3 left-to-right states were used, state
durations were modeled using gamma distributions.
On total 3103 tied states and 16 Gaussians per state
were used.

Decoding was done with the decoder developed
at TKK(Pylkkönen, 2005), which is based on a one-
pass Viterbi beam search with token passing on a
lexical prefix tree. The lexical prefix tree included a
cross-word network for modeling triphone contexts,
and the nodes in the prefix tree were tied at the tri-
phone state level. Bigram look-ahead models were
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used in speeding up decoding, in addition to prun-
ing with global beam, history, histogram and word
end pruning. Due to the properties of the decoder
and varigram models, very high order n-grams could
be used without significant degradation in decoding
speed.

As the decoder was run with only one pass, adap-
tation was not used in this work. In preliminary
experiments simple adaptation with just constrained
maximum likelihood linear regression (CMLLR)
was shown to give as much as 20 % relative word
error rate reductions (RWERR) with this dataset.
Adaptation was not used, since it interacts with the
model types, as well as with the WER from the first
round of decoding, providing larger RWERR for the
better models. With high WER models, adaptation
matrices are less accurate, and it is also probable that
the decomposition methods yield more accurate ma-
trices, as they produce results where fewer HMM-
states are misrecognized. These issues should be in-
vestigated in future research.

After decoding, the results were post-processed
by removing words that seemed to be sequences of
junk fragments: consonant-only sequences and 1-
phoneme words. This treatment should give very
significant improvements with noisy data, but in pre-
liminary experiments it was noted that the use of
sentence boundaries resulted in almost 10% RW-
ERR weaker results for the approaches using frag-
ments, as that almost negates the gains achieved
from this post-processing. Since sentence bound-
ary forcing is done prior to junk removal, it seems
to work erroneously when it is forced to operate on
noisy data. Sentence boundaries were nevertheless
used, as in the same experiments the word-based
models gained significantly from their use, most
likely because they cannot use the fragment items
for detection of acoustic junk, as the models with
fragments can.

4 Results

Results of the experiments were consistent with ear-
lier findings(Hirsimäki et al., 2006; Kurimo et al.,
2006). Traditional word based LMs showed the
worst performance, with all of the recently proposed
alternatives giving better results. Hybrid LMs con-
sistently outperformed traditional word-based LMs

in both large and small vocabulary conditions. The
two morphology-driven approaches gave similar and
clearly superior results. Only the morph approach
seems to scale down well to smaller vocabulary
sizes, as the WER for the grammar approach in-
creased rapidly as size of the vocabulary was de-
creased.

size word hybrid morph grammar
60000 53.1 47.1 39.4 38.7
5000 82.0 63.0 43.5 47.6

Table 2. Word error rates for the models (WER %).

Table 2 shows the WER for the large (60000) and
small (5000) vocabulary sizes and different mod-
eling approaches. Table 3 shows the correspond-
ing letter error rates (LER). LERs are more compa-
rable across some languages than WERs, as WER
depends more on factors such as length, morpho-
logical complexity, and OOV of the words. How-
ever, for within-language and between-model com-
parisons, the RWERR should still be a valid met-
ric, and is also usable in languages that do not use a
phonemic writing system. The RWERRs of differ-
ent novel methods seems to be comparable between
different languages as well. Both WER and LER are
high considering the task. However, standard meth-
ods such as adaptation were not used, as the inten-
tion was only to study the RWERR of the different
approaches.

size word hybrid morph grammar
60000 17.8 15.8 12.4 12.3
5000 35.5 20.8 14.4 15.4

Table 3. Letter error rates for the models (LER %).

5 Discussion

Four different approaches to lexical item selection
for large and open vocabulary ASR in Estonian
were evaluated. It was shown that the three ap-
proaches utilizing vocabulary decomposition give
substantial improvements over the traditional word
based approach, and make large vocabulary ASR
technology possible for languages similar to Esto-
nian, where the traditional approach fails due to very
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high OOV rates. These include memetic relatives
Finnish and Turkish, among other languages that
have morphologies of high fusion, low synthesis and
low orthographic irregularity.

5.1 Performance of the approaches

The morpheme-based approaches outperformed the
word- and hybrid-based approaches clearly. The re-
sults for “hybrid” are in in the range suggested by
earlier work(Bisani and Ney, 2005). One possi-
ble explanation for the discrepancy between the hy-
brid and morpheme-based approaches would be that
the morpheme-based approaches capture items that
make sense in n-gram modeling, as morphs are items
that the system of language naturally operates on.
These items would then be of more use when try-
ing to predict unseen data(Creutz et al., 2007). As
modeling pronunciations is much more straightfor-
ward in Estonian, the morpheme-based approaches
do not suffer from erroneous pronunciations, result-
ing in clearly superior performance.

As for the superiority of the “grammar” over the
unsupervised “morph”, the difference is marginal in
terms of RWERR. The grammatical tagger was tai-
lored by hand for that particular language, whereas
Morfessor method is meant to be unsupervised and
language independent. There are further arguments
that would suggest that the unsupervised approach
is one that should be followed; only “morph” scaled
well to smaller vocabulary sizes, the usual practice
of pruning the word list to produce smaller morph
sets gives better results than here and most impor-
tantly, it is questionable if “grammar” can be taken
to languages with high indexes of fusion and ortho-
graphic irregularity, as the models have to take these
into account as well.

5.2 Comparison to previous results

There are few previous results published on Estonian
open vocabulary ASR. In (Alumäe, 2006) a WER of
44.5% was obtained with word-based trigrams and
a WER of 37.2% with items similar to ones from
“grammar” using the same speech corpus as in this
work. Compared to the present work, the WER
for the morpheme-based models was measured with
compound words split in both hypothesis and ref-
erence texts, making the task slightly easier than
here. In (Kurimo et al., 2006) a WER of 57.6% was

achieved with word-based varigrams and a WER of
49.0% with morphs-based ones. This used the same
evaluation set as this work, but had slightly different
LMs and different acoustic modelling which is the
main reason for the higher WER levels. In summary,
morpheme-based approaches seem to consistently
outperform the traditional word based one in Esto-
nian ASR, regardless of the specifics of the recogni-
tion system, test set and models.

In (Hirsimäki et al., 2006) a corresponding com-
parison of unsupervised and grammar-based morphs
was presented in Finnish, and the grammar-based
model gave a significantly higher WER in one of the
tasks. This result is interesting, and may stem from a
number of factors, among them the different decoder
and acoustic models, 4-grams versus varigrams, as
well as differences in post-processing. Most likely
the difference is due to lack of coverage for domain-
specific words in the Finnish tagger, as it has a 4.2%
OOV rate on the training data. On top of this the
OOV words are modeled simply as grapheme se-
quences, instead of modeling only OOV morphs in
that manner, as is done in this work.

5.3 Open problems in vocabulary
decomposition

As stated in the introduction, modeling languages
with high indexes of fusion such as Arabic will re-
quire more complex vocabulary decomposition ap-
proaches. This is verified by recent empirical re-
sults, where gains obtained from simple morpholog-
ical decomposition seem to be marginal(Kirchhoff
et al., 2006; Creutz et al., 2007). These languages
would possibly need novel LM inference algorithms
and decoder architectures. Current research seems
to be heading in this direction, with weighted finite
state transducers becoming standard representations
for the vocabulary instead of the lexical prefix tree.

Another issue in vocabulary decomposition is or-
thographic irregularity, as the items resulting from
decomposition do not necessarily have unambigu-
ous pronunciations. As most modern recognizers
use the Viterbi approximation with vocabularies of
one pronunciation per item, this is problematic. One
solution to this is expanding the different items with
tags according to pronunciation, shifting the prob-
lem to language modeling(Creutz et al., 2007). For
example, English plural “s” would expand to “s#1”
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with pronunciation “/s/”, and “s#2” with pronunci-
ation “/z/”, and so on. In this case the vocabulary
size increases by the amount of different pronunci-
ations added. The new items will have pronuncia-
tions that depend on their language model context,
enabling the prediction of pronunciations with lan-
guage model probabilities. The only downside to
this is complicating the search for optimal vocabu-
lary decomposition, as the items should make sense
in both pronunciational and morphological terms.

One can consider the originally presented hybrid
approach as an approach to vocabulary decompo-
sition that tries to keep the pronunciations of the
items as good as possible, whereas the morph ap-
proach tries to find items that make sense in terms
of morphology. This is obviously due to the meth-
ods having been developed on very different types
of languages. The morph approach was developed
for the needs of Finnish speech recognition, which
is a high synthesis, moderate fusion and very low or-
thographic irregularity language, whereas the hybrid
approach in (Bisani and Ney, 2005) was developed
for English, which has low synthesis, moderate fu-
sion, and very high orthographic irregularity. A uni-
versal approach to vocabulary decomposition would
have to take all of these factors into account.
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Abstract

Grapheme-to-phoneme conversion (g2p) is a
core component of any text-to-speech sys-
tem. We show that adding simple syllab-
ification and stress assignment constraints,
namely ‘one nucleus per syllable’ and ‘one
main stress per word’, to a joint n-gram
model for g2p conversion leads to a dramatic
improvement in conversion accuracy.

Secondly, we assessed morphological pre-
processing for g2p conversion. While mor-
phological information has been incorpo-
rated in some past systems, its contribution
has never been quantitatively assessed for
German. We compare the relevance of mor-
phological preprocessing with respect to the
morphological segmentation method, train-
ing set size, the g2p conversion algorithm,
and two languages, English and German.

1 Introduction

Grapheme-to-Phoneme conversion (g2p) is the task
of converting a word from its spelling (e.g. “Stern-
anisöl”, Engl: star-anise oil) to its pronunciation
(/"StERnPani:sPø:l/). Speech synthesis modules with
a g2p component are used in text-to-speech (TTS)
systems and can be be applied in spoken dialogue
systems or speech-to-speech translation systems.

1.1 Syllabification and Stress in g2p conversion
In order to correctly synthesize a word, it is not only
necessary to convert the letters into phonemes, but
also to syllabify the word and to assign word stress.

The problems of word phonemization, syllabifica-
tion and word stress assignment are inter-dependent.
Information about the position of a syllable bound-
ary helps grapheme-to-phoneme conversion. (Marc-
hand and Damper, 2005) report a word error rate
(WER) reduction of approx. 5 percentage points for
English when the letter string is augmented with syl-
labification information. The same holds vice-versa:
we found that WER was reduced by 50% when run-
ning our syllabifier on phonemes instead of letters
(see Table 4). Finally, word stress is usually defined
on syllables; in languages where word stress is as-
sumed1 to partly depend on syllable weight (such as
German or Dutch), it is important to know where ex-
actly the syllable boundaries are in order to correctly
calculate syllable weight. For German, (Müller,
2001) show that information about stress assignment
and the position of a syllable within a word improve
g2p conversion.

1.2 Morphological Preprocessing

It has been argued that using morphological in-
formation is important for languages where mor-
phology has an important influence on pronuncia-
tion, syllabification and word stress such as Ger-
man, Dutch, Swedish or, to a smaller extent, also
English (Sproat, 1996; Möbius, 2001; Pounder and
Kommenda, 1986; Black et al., 1998; Taylor, 2005).
Unfortunately, these papers do not quantify the con-
tribution of morphological preprocessing in the task.

Important questions when considering the inte-
gration of a morphological component into a speech

1This issue is controversial among linguists; for an overview
see (Jessen, 1998).
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synthesis system are 1) How large are the im-
provements to be gained from morphological pre-
processing? 2) Must the morphological system be
perfect or can performance improvements also be
reached with relatively simple morphological com-
ponents? and 3) How much does the benefit to
be expected from explicit morphological informa-
tion depend on the g2p algorithm? To determine
these factors, we compared morphological segmen-
tations based on manual morphological annotation
from CELEX to two rule-based systems and several
unsupervised data-based approaches. We also anal-
ysed the role of explicit morphological preprocess-
ing on data sets of different sizes and compared its
relevance with respect to a decision tree and a joint
n-gram model for g2p conversion.

The paper is structured as follows: We introduce
the g2p conversion model we used in section 2 and
explain how we implemented the phonological con-
straints in section 3. Section 4 is concerned with
the relation between morphology, word pronuncia-
tion, syllabification and word stress in German, and
presents different sources for morphological seg-
mentation. In section 5, we evaluate the contribution
of each of the components and compare our meth-
ods to state-of-the-art systems. Section 6 summa-
rizes our results.

2 Methods

We used a joint n-gram model for the grapheme-
to-phoneme conversion task. Models of this type
have previously been shown to yield very good g2p
conversion results (Bisani and Ney, 2002; Galescu
and Allen, 2001; Chen, 2003). Models that do not
use joint letter-phoneme states, and therefore are not
conditional on the preceding letters, but only on the
actual letter and the preceding phonemes, achieved
inferior results. Examples of such approaches using
Hidden Markov Models are (Rentzepopoulos and
Kokkinakis, 1991) (who applied the HMM to the
related task of phoneme-to-grapheme conversion),
(Taylor, 2005) and (Minker, 1996).

The g2p task is formulated as searching for the
most probable sequence of phonemes given the or-
thographic form of a word. One can think of it as a
tagging problem where each letter is tagged with a
(possibly empty) phoneme-sequence p. In our par-

ticular implementation, the model is defined as a
higher-order Hidden Markov Model, where the hid-
den states are a letter–phoneme-sequence pair 〈l; p〉,
and the observed symbols are the letters l. The out-
put probability of a hidden state is then equal to one,
since all hidden states that do not contain the ob-
served letter are pruned directly.

The model for grapheme-to-phoneme conver-
sion uses the Viterbi algorithm to efficiently com-
pute the most probable sequence p̂n

1 of phonemes
p̂1, p̂2, ..., p̂n for a given letter sequence ln1 . The
probability of a letter–phon-seq pair depends on the
k preceding letter–phon-seq pairs. Dummy states ‘#’
are appended at both ends of each word to indicate
the word boundary and to ensure that all conditional
probabilities are well-defined.

p̂n
1 = arg max

pn
1

n+1∏
i=1

P (〈l; p〉i | 〈l; p〉
i−1
i−k)

In an integrated model where g2p conversion, syl-
labification and word stress assignment are all per-
formed at the same time, a state additionally con-
tains a syllable boundary flag b and a stress flag a,
yielding 〈l; p; b; a〉i.

As an alternative architecture, we also designed a
modular system that comprises one component for
syllabification and one for word stress assignment.
The model for syllabification computes the most
probable sequence b̂n

1 of syllable boundary-tags b̂1,
b̂2, ..., b̂n for a given letter sequence ln1 .

b̂n
1 = arg max

bn
1

n+1∏
i=1

P (〈l; b〉i | 〈l; b〉
i−1
i−k)

The stress assignment model works on syllables.
It computes the most probable sequence ân

1 of word
accent-tags â1, â2, ..., ân for a given syllable se-
quence syln1 .

ân
1 = arg max

an
1

n+1∏
i=1

P (〈syl; a〉i | 〈syl; a〉i−1
i−k)

2.1 Smoothing
Because of major data sparseness problems, smooth-
ing is an important issue, in particular for the stress
model which is based on syllable–stress-tag pairs.
Performance varied by up to 20% in function of the
smoothing algorithm chosen. Best results were ob-
tained when using a variant of Modified Kneser-Ney
Smoothing2 (Chen and Goodman, 1996).

2For a formal definition, see(Demberg, 2006).
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2.2 Pruning
In the g2p-model, each letter can on average map
onto one of 12 alternative phoneme-sequences.
When working with 5-grams3, there are about 125 =
250,000 state sequences. To improve time and space
efficiency, we implemented a simple pruning strat-
egy that only considers the t best states at any mo-
ment in time. With a threshold of t = 15, about 120
words are processed per minute on a 1.5GHz ma-
chine. Conversion quality is only marginally worse
than when the whole search space is calculated.

Running time for English is faster, because the av-
erage number of candidate phonemes for each let-
ter is lower. We measured running time (including
training and the actual g2p conversion in 10-fold
cross validation) for a Perl implementation of our
algorithm on the English NetTalk corpus (20,008
words) on an Intel Pentium 4, 3.0 GHz machine.
Running time was less than 1h for each of the fol-
lowing three test conditions: c1) g2p conversion
only, c2) syllabification first, then g2p conversion,
c3) simultaneous g2p conversion and syllabification,
given perfect syllable boundary input, c4) simulta-
neous g2p conversion and syllabification when cor-
rect syllabification is not available beforehand. This
is much faster than the times for Pronunciation by
Analogy (PbA) (Marchand and Damper, 2005) on
the same corpus. Marchand and Damper reported a
processing time of several hours for c4), two days
for c2) and several days for c3).

2.3 Alignment
Our current implementation of the joint n-gram
model is not integrated with an automatic alignment
procedure. We therefore first aligned letters and
phonemes in a separate, semi-automatic step. Each
letter was aligned with zero to two phonemes and,
in the integrated model, zero or one syllable bound-
aries and stress markers.

3 Integration of Phonological Constraints

When analysing the results from the model that does
g2p conversion, syllabification and stress assign-

3There is a trade-off between long context windows which
capture the context accurately and data sparseness issues. The
optimal value k for the context window size depends on the
source language (existence of multiletter graphemes, complex-
ity of syllables etc.).

ment in a single step, we found that a large propor-
tion of the errors was due to the violation of basic
phonological constraints.

Some syllables had no syllable nucleus, while
others contained several vowels. The reason for the
errors is that German syllables can be very long and
therefore sparse, often causing the model to back-
off to smaller contexts. If the context is too small to
cover the syllable, the model cannot decide whether
the current syllable contains a nucleus.

In stress assignment, this problem is even worse:
the context window rarely covers the whole word.
The algorithm does not know whether it already as-
signed a word stress outside the context window.
This leads to a high error rate with 15-20% of in-
correctly stressed words. Thereof, 37% have more
than one main stress, about 27% are not assigned any
stress and 36% are stressed in the wrong position.
This means that we can hope to reduce the errors by
almost 2/3 by using phonological constraints.

Word stress assignment is a difficult problem in
German because the underlying processes involve
some deeper morphological knowledge which is not
available to the simple model. In complex words,
stress mainly depends on morphological structure
(i.e. on the compositionality of compounds and
on the stressing status of affixes). Word stress in
simplex words is assumed to depend on the sylla-
ble position within the word stem and on syllable
weight. The current language-independent approach
does not model these processes, but only captures
some of its statistics.

Simple constraints can help to overcome the prob-
lem of lacking context by explicitly requiring that
every syllable must have exactly one syllable nu-
cleus and that every word must have exactly one syl-
lable receiving primary stress.

3.1 Implementation
Our goal is to find the most probable syllabified
and stressed phonemization of a word that does not
violate the constraints. We tried two different ap-
proaches to enforce the constraints.

In the first variant (v1), we modified the proba-
bility model to enforce the constraints. Each state
now corresponds to a sequence of 4-tuples consist-
ing of a letter l, a phoneme sequence p, a syllable
boundary tag b, an accent tag a (as before) plus two
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new flags A and N which indicate whether an ac-
cent/nucleus precedes or not. The A and N flags of
the new state are a function of its accent and syllable
boundary tag and the A and N flag of the preceding
state. They split each state into four new states. The
new transition probabilities are defined as:

P (〈l; p; b; a〉i | 〈l; p; b; a〉i−1
i−k , A, N)

The probability is 0 if the transition violates a con-
straint, e.g., when the A flag is set and ai indicates
another accent.

A positive side effect of the syllable flag is that it
stores separate phonemization probabilities for con-
sonants in the syllable onset vs. consonants in the
coda. The flag in the onset is 0 since the nucleus has
not yet been encountered, whereas it is set to 1 in the
coda. In German, this can e.g. help in for syllable-
final devoicing of voiced stops and fricatives.

The increase in the number of states aggravates
sparse-data problems. Therefore, we implemented
another variant (v2) which uses the same set of states
(with A and N flags), but with the transition proba-
bilities of the original model, which did not enforce
the constraints. Instead, we modified the Viterbi al-
gorithm to eliminate the invalid transitions: For ex-
ample, a transition from a state with the A flag set
to a state where ai introduces a second stress, is al-
ways ignored. On small data sets, better results were
achieved with v2 (see Table 5).

4 Morphological Preprocessing

In German, information about morphological
boundaries is needed to correctly insert glottal stops
[P] in complex words, to determine irregular pro-
nunciation of affixes (v is pronounced [v] in ver-
tikal but [f] in ver+ticker+n, and the suffix syllable
heit is not stressed although superheavy and word
final) and to disambiguate letters (e.g. e is always
pronounced /@/ when occurring in inflectional suf-
fixes). Vowel length and quality has been argued
to also depend on morphological structure (Pounder
and Kommenda, 1986). Furthermore, morphologi-
cal boundaries overrun default syllabification rules,
such as the maximum onset principle.

Applying default syllabification to the word
“Sternanisöl” would result in a syllabification into
Ster-na-ni-söl (and subsequent phonemiza-
tion to something like /StEö"na:nizø:l/) instead of

Stern-a-nis-öl (/"StEönPani:sPø:l/). Syllabifi-
cation in turn affects phonemization since voiced
fricatives and stops are devoiced in syllable-final po-
sition. Morphological information also helps for
graphemic parsing of words such as “Röschen”
(Engl: little rose) where the morphological bound-
ary between Rös and chen causes the string sch to
be transcribed to /sç/ instead of /S/. Similar ambigui-
ties can arise for all other sounds that are represented
by several letters in orthography (e.g. doubled con-
sonants, diphtongs, ie, ph, th), and is also valid for
English. Finally, morphological information is also
crucial to determine word stress in morphologically
complex words.

4.1 Methods for Morphological Segmentation

Good segmentation performance on arbitrary words
is hard to achieve. We compared several approaches
with different amounts of built-in knowledge. The
morphological information is encoded in the let-
ter string, where different digits represent different
kinds of morphological boundaries (prefixes, stems,
derivational and inflectional suffixes).

Manual Annotation from CELEX

To determine the upper bound of what can be
achieved when exploiting perfect morphological in-
formation, we extracted morphological boundaries
and boundary types from the CELEX database.

The manual annotation is not perfect as it con-
tains some errors and many cases where words are
not decomposed entirely. The words tagged [F] for
“lexicalized inflection”, e.g. gedrängt (past partici-
ple of drängen, Engl: push) were decomposed semi-
automatically for the purpose of this evaluation. As
expected, annotating words with CELEX morpho-
logical segmentation yielded the best g2p conver-
sion results. Manual annotation is only available for
a small number of words. Therefore, only automati-
cally annotated morphological information can scale
up to real applications.

Rule-based Systems

The traditional approach is to use large morpheme
lexica and a set of rules that segment words into af-
fixes and stems. Drawbacks of using such a system
are the high development costs, limited coverage
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and problems with ambiguity resolution between al-
ternative analyses of a word.

The two rule-based systems we evaluated, the
ETI4 morphological system and SMOR5 (Schmid et
al., 2004), are both high-quality systems with large
lexica that have been developed over several years.
Their performance results can help to estimate what
can realistically be expected from an automatic seg-
mentation system. Both of the rule-based systems
achieved an F-score of approx. 80% morphological
boundaries correct with respect to CELEX manual
annotation.

Unsupervised Morphological Systems
Most attractive among automatic systems are

methods that use unsupervised learning, because
these require neither an expert linguist to build large
rule-sets and lexica nor large manually annotated
word lists, but only large amounts of tokenized
text, which can be acquired e.g. from the internet.
Unsupervised methods are in principle6 language-
independent, and can therefore easily be applied to
other languages.

We compared four different state-of-the-art unsu-
pervised systems for morphological decomposition
(cf. (Demberg, 2006; Demberg, 2007)). The algo-
rithms were trained on a German newspaper cor-
pus (taz), containing about 240 million words. The
same algorithms have previously been shown to help
a speech recognition task (Kurimo et al., 2006).

5 Experimental Evaluations

5.1 Training Set and Test Set Design
The German corpus used in these experiments is
CELEX (German Linguistic User Guide, 1995).
CELEX contains a phonemic representation of each

4Eloquent Technology, Inc. (ETI) TTS system.
http://www.mindspring.com/˜ssshp/ssshp_cd/
ss_eloq.htm

5The lexicon used by SMOR, IMSLEX, contains morpho-
logically complex entries, which leads to high precision and low
recall. The results reported here refer to a version of SMOR,
where the lexicon entries were decomposed using a rather naı̈ve
high-recall segmentation method. SMOR itself does not disam-
biguate morphological analyses of a word. Our version used
transition weights learnt from CELEX morphological annota-
tion. For more details refer to (Demberg, 2006).

6Most systems make some assumptions about the underly-
ing morphological system, for instance that morphology is a
concatenative process, that stems have a certain minimal length
or that prefixing and suffixing are the most relevant phenomena.

word, syllable boundaries and word stress infor-
mation. Furthermore, it contains manually verified
morphological boundaries.

Our training set contains approx. 240,000 words
and the test set consists of 12,326 words. The test
set is designed such that word stems in training and
test sets are disjoint, i.e. the inflections of a certain
stem are either all in the training set or all in the test
set. Stem overlap between training and test set only
occurs in compounds and derivations. If a simple
random splitting (90% for training set, 10% for test
set) is used on inflected corpora, results are much
better: Word error rates (WER) are about 60% lower
when the set of stems in training and test set are not
disjoint. The same effect can also be observed for
the syllabification task (see Table 4).

5.2 Results for the Joint n-gram Model
The joint n-gram model is language-independent.
An aligned corpus with words and their pronuncia-
tions is needed, but no further adaptation is required.

Table 1 shows the performance of our model in
comparison to alternative approaches on the German
and English versions of the CELEX corpus, the En-
glish NetTalk corpus, the English Teacher’s Word
Book (TWB) corpus, the English beep corpus and
the French Brulex corpus. The joint n-gram model
performs significantly better than the decision tree
(essentially based on (Lucassen and Mercer, 1984)),
and achieves scores comparable to the Pronuncia-
tion by Analogy (PbA) algorithm (Marchand and
Damper, 2005). For the Nettalk data, we also com-
pared the influence of syllable boundary annotation
from a) automatically learnt and b) manually anno-
tated syllabification information on phoneme accu-
racy. Automatic syllabification for our model in-
tegrated phonological constraints (as described in
section 3.1), and therefore led to an improvement
in phoneme accuracy, while the word error rate in-
creased for the PbA approach, which does not incor-
porate such constraints.

(Chen, 2003) also used a joint n-gram model.
The two approaches differ in that Chen uses small
chunks (〈(l : |0..1|) : (p : |0..1|)〉 pairs only) and it-
eratively optimizes letter-phoneme alignment during
training. Chen smoothes higher-order Markov Mod-
els with Gaussian Priors and implements additional
language modelling such as consonant doubling.
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corpus size jnt n-gr PbA Chen dec.tree
G - CELEX 230k 7.5% 15.0%
E - Nettalk 20k 35.4% 34.65% 34.6%

a) auto.syll 35.3% 35.2%
b) man.syll 29.4% 28.3%

E - TWB 18k 28.5% 28.2%
E - beep 200k 14.3% 13.3%
E - CELEX 100k 23.7% 31.7%
F - Brulex 27k 10.9%

Table 1: Word error rates for different g2p conver-
sion algorithms. Constraints were only used in the
E-Nettalk auto. syll condition.

5.3 Benefit of Integrating Constraints

The accuracy improvements achieved by integrat-
ing the constraints (see Table 2) are highly statis-
tically significant. The numbers for conditions “G-
syllab.+stress+g2p” and “E-syllab.+g2p” in Table 2
differ from the numbers for “G-CELEX” and “E-
Nettalk” in Table 1 because phoneme conversion
errors, syllabification errors and stress assignment
errors are all counted towards word error rates re-
ported in Table 2.

Word error rate in the combined g2p-syllable-
stress model was reduced from 21.5% to 13.7%. For
the separate tasks, we observed similar effects: The
word error rate for inserting syllable boundaries was
reduced from 3.48% to 3.1% on letters and from
1.84% to 1.53% on phonemes. Most significantly,
word error rate was decreased from 30.9% to 9.9%
for word stress assignment on graphemes.

We also found similarly important improvements
when applying the syllabification constraint to En-
glish grapheme-to-phoneme conversion and syllabi-
fication. This suggests that our findings are not spe-
cific to German but that this kind of general con-
straints can be beneficial for a range of languages.

no constr. constraint(s)
G - syllab.+stress+g2p 21.5% 13.7%
G - syllab. on letters 3.5% 3.1%
G - syllab. on phonemes 1.84% 1.53%
G - stress assignm. on letters 30.9% 9.9%
E - syllab.+g2p 40.5% 37.5%
E - syllab. on phonemes 12.7% 8.8%

Table 2: Improving performance on g2p conver-
sion, syllabification and stress assignment through
the introduction of constraints. The table shows
word error rates for German CELEX (G) and En-
glish NetTalk (E).

5.4 Modularity

Modularity is an advantage if the individual compo-
nents are more specialized to their task (e.g. by ap-
plying a particular level of description of the prob-
lem, or by incorporating some additional source of
knowledge).In a modular system, one component
can easily be substituted by another – for example,
if a better way of doing stress assignment in German
was found. On the other hand, keeping everything in
one module for strongly inter-dependent tasks (such
as determining word stress and phonemization) al-
lows us to simultaneously optimize for the best com-
bination of phonemes and stress.

Best results were obtained from the joint n-gram
model that does syllabification, stress assignment
and g2p conversion all in a single step and inte-
grates phonological constraints for syllabification
and word stress (WER = 14.4% using method v1,
WER = 13.7% using method v2). If the modular ar-
chitecture is chosen, best results are obtained when
g2p conversion is done before syllabification and
stress assignment (15.2% WER), whereas doing syl-
labification and stress assignment first and then g2p
conversion leads to a WER of 16.6%. We can con-
clude from this finding that an integrated approach is
superior to a pipeline architecture for strongly inter-
dependent tasks such as these.

5.5 The Contribution of Morphological
Preprocessing

A statistically significant (according to a two-tailed
t-test) improvement in g2p conversion accuracy
(from 13.7% WER to 13.2% WER) was obtained
with the manually annotated morphological bound-
aries from CELEX. The segmentation from both of
the rule-based systems (ETI and SMOR) also re-
sulted in an accuracy increase with respect to the
baseline (13.6% WER), which is not annotated with
morphological boundaries.

Among the unsupervised systems, best results7 on
the g2p task with morphological annotation were ob-
tained with the RePortS system (Keshava and Pitler,
2006). But none of the segmentations led to an er-
ror reduction when compared to a baseline that used
no morphological information (see Table 3). Word
error rate even increased when the quality of the

7For all results refer to (Demberg, 2006).
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Precis. Recall F-Meas. WER
RePortS (unsuperv.) 71.1% 50.7% 59.2% 15.1%
no morphology 13.7%
SMOR (rule-based) 87.1% 80.4% 83.6%
ETI (rule-based) 75.4% 84.1% 79.5% 13.6%
CELEX (manual) 100% 100% 100% 13.2%

Table 3: Systems evaluation on German CELEX
manual annotation and on the g2p task using a joint
n-gram model. WERs refer to implementation v2.

morphological segmentation was too low (the unsu-
pervised algorithms achieved 52%-62% F-measure
with respect to CELEX manual annotation).

Table 4 shows that high-quality morphological
information can also significantly improve perfor-
mance on a syllabification task for German. We used
the syllabifier described in (Schmid et al., 2005),
which works similar to the joint n-gram model used
for g2p conversion. Just as for g2p conversion, we
found a significant accuracy improvement when us-
ing the manually annotated data, a smaller improve-
ment for using data from the rule-based morpholog-
ical system, and no improvement when using seg-
mentations from an unsupervised algorithm. Syllab-
ification works best when performed on phonemes,
because syllables are phonological units and there-
fore can be determined most easily in terms of
phonological entities such as phonemes.

Whether morphological segmentation is worth the
effort depends on many factors such as training set
size, the g2p algorithm and the language considered.

disj. stems random
RePortS (unsupervised morph.) 4.95%
no morphology 3.10% 0.72%
ETI (rule-based morph.) 2.63%
CELEX (manual annot.) 1.91% 0.53%
on phonemes 1.53% 0.18%

Table 4: Word error rates (WER) for syllabification
with a joint n-gram model for two different training
and test set designs (see Section 5.1).

Morphology for Data Sparseness Reduction
Probably the most important aspect of morpho-

logical segmentation information is that it can help
to resolve data sparseness issues. Because of the ad-
ditional knowledge given to the system through the
morphological information, similarly-behaving let-
ter sequences can be grouped more effectively.

Therefore, we hypothesized that morphological
information is most beneficial in situations where

the training corpus is rather small. Our findings con-
firm this expectation, as the relative error reduction
through morphological annotation for a training cor-
pus of 9,600 words is 6.67%, while it is only 3.65%
for a 240,000-word training corpus.

In our implementation, the stress flags and sylla-
ble flags we use to enforce the phonological con-
straints increase data sparseness. We found v2 (the
implementation that uses the states without stress
and syllable flags and enforces the constraints by
eliminating invalid transitions, cf. section 3.1) to
outperform the integrated version, v1, and more sig-
nificantly in the case of more severe data sparseness.
The only condition when we found v1 to perform
better than v2 was with a large data set and addi-
tional data sparseness reduction through morpholog-
ical annotation, as in section 4 (see Table 5).

WER: designs v1 v2
data set size 240k 9.6k 240k 9.6k
no morph. 14.4% 32.3% 13.7% 25.5%
CELEX 12.5% 29% 13.2% 23.8%

Table 5: The interactions of constraints in training
and different levels of data sparseness.

g2p Conversion Algorithms
The benefit of using morphological preprocessing

is also affected by the algorithm that is used for g2p
conversion. Therefore, we also evaluated the relative
improvement of morphological annotation when us-
ing a decision tree for g2p conversion.

Decision trees were one of the first data-based ap-
proaches to g2p and are still widely used (Kienappel
and Kneser, 2001; Black et al., 1998). The tree’s
efficiency and ability for generalization largely de-
pends on pruning and the choice of possible ques-
tions. In our implementation, the decision tree can
ask about letters within a context window of five
back and five ahead, about five phonemes back and
groups of letters (e.g. consonants vs. vowels).

Both the decision tree and the joint n-gram model
convert graphemes to phonemes, insert syllable
boundaries and assign word stress in a single step
(marked as “WER-ss” in Table 6. The imple-
mentation of the joint n-gram model incorporates
the phonological constraints described in section 3
(“WER-ss+”). Our main finding is that the joint
n-gram model profits less from morphological an-
notation. Without the constraints, the performance
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difference is smaller: the joint n-gram model then
achieves a word error rate of 21.5% on the no-
morphology-condition.

In very recent work, (Demberg, 2007) developed
an unsupervised algorithm (f-meas: 68%; an exten-
sion of RePortS) whose segmentations improve g2p
when using a the decision tree (PER: 3.45%).

decision tree joint n-gram
PER WER-ss PER WER-ss+

RePortS 3.83% 28.3% 15.1%
no morph. 3.63% 26.59% 2.52% 13.7%
ETI 2.8% 21.13% 2.53% 13.6%
CELEX 2.64% 21.64% 2.36% 13.2%

Table 6: The effect of morphological preprocessing
on phoneme error rates (PER) and word error rates
(WER) in grapheme-to-phoneme conversion.

Morphology for other Languages
We also investigated the effect of morphological

information on g2p conversion and syllabification
in English, using manually annotated morphological
boundaries from CELEX and the automatic unsuper-
vised RePortS system which achieves an F-score of
about 77% for English. The cases where morpho-
logical information affects word pronunciation are
relatively few in comparison to German, therefore
the overall effect is rather weak and we did not even
find improvements with perfect boundaries.

6 Conclusions
Our results confirm that the integration of phonolog-
ical constraints ‘one nucleus per syllable’ and ‘one
main stress per word’ can significantly boost ac-
curacy for g2p conversion in German and English.
We implemented the constraints using a joint n-
gram model for g2p conversion, which is language-
independent and well-suited to the g2p task.

We systematically evaluated the benefit to be
gained from morphological preprocessing on g2p
conversion and syllabification. We found that mor-
phological segmentations from rule-based systems
led to some improvement. But the magnitude of
the accuracy improvement strongly depends on the
g2p algorithm and on training set size. State-of-
the-art unsupervised morphological systems do not
yet yield sufficiently good segmentations to help the
task, if a good conversion algorithm is used: Low
quality segmentation even led to higher error rates.
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Abstract

In this paper, we put forward an information
theoretic definition of theredundancythat is
observed across the sound inventories of the
world’s languages. Through rigorous statis-
tical analysis, we find that this redundancy
is an invariant property of the consonant in-
ventories. The statistical analysis further un-
folds that the vowel inventories do not ex-
hibit any such property, which in turn points
to the fact that the organizing principles of
the vowel and the consonant inventories are
quite different in nature.

1 Introduction

Redundancyis a strikingly common phenomenon
that is observed across many natural systems. This
redundancy is present mainly to reduce the risk
of the complete loss of information that might oc-
cur due to accidental errors (Krakauer and Plotkin,
2002). Moreover, redundancy is found in every level
of granularity of a system. For instance, in biologi-
cal systems we find redundancy in the codons (Lesk,
2002), in the genes (Woollard, 2005) and as well in
the proteins (Gatlin, 1974). A linguistic system is
also not an exception. There is for example, a num-
ber of words with the same meaning (synonyms) in
almost every language of the world. Similarly, the
basic unit of language, the human speech sounds or
the phonemes, is also expected to exhibit some sort
of a redundancy in the information that it encodes.

In this work, we attempt to mathematically cap-
ture the redundancy observed across the sound

(more specifically the consonant) inventories of
the world’s languages. For this purpose, we
present an information theoretic definition of redun-
dancy, which is calculated based on the set offea-
tures1 (Trubetzkoy, 1931) that are used to express
the consonants. An interesting observation is that
this quantitative feature-based measure of redun-
dancy isalmost an invariance over the consonant
inventories of the world’s languages. The observa-
tion is important since it can shed enough light on
the organization of the consonant inventories, which
unlike the vowel inventories, lack a complete and
holistic explanation. The invariance of our measure
implies that every inventory tries to be similar in
terms of the measure, which leads us to argue that
redundancy plays a very important role in shaping
the structure of the consonant inventories. In order
to validate this argument we determine the possibil-
ity of observing such an invariance if the consonant
inventories had evolved by random chance. We find
that the redundancy observed across the randomly
generated inventories is substantially different from
their real counterparts, which leads us to conclude
that the invariance is not just “by-chance” and the
measure that we define, indeed, largely governs the
organizing principles of the consonant inventories.

1In phonology, features are the elements, which distin-
guish one phoneme from another. The features that distinguish
the consonants can be broadly categorized into three different
classes namely themanner of articulation, theplace of articu-
lation andphonation. Manner of articulation specifies how the
flow of air takes place in the vocal tract during articulation of
a consonant, whereas place of articulation specifies the active
speech organ and also the place where it acts. Phonation de-
scribes the activity regarding the vibration of the vocal cords
during the articulation of a consonant.
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Interestingly, this redundancy, when measured for
the vowel inventories, does not exhibit any similar
invariance. This immediately reveals that the prin-
ciples that govern the formation of these two types
of inventories are quite different in nature. Such
an observation is significant since whether or not
these principles are similar/different for the two in-
ventories had been a question giving rise to peren-
nial debate among the past researchers (Trubet-
zkoy, 1969/1939; Lindblom and Maddieson, 1988;
Boersma, 1998; Clements, 2004). A possible rea-
son for the observed dichotomy in the behavior of
the vowel and consonant inventories with respect to
redundancy can be as follows: while the organiza-
tion of the vowel inventories is known to be gov-
erned by a single force - themaximal perceptual
contrast (Jakobson, 1941; Liljencrants and Lind-
blom, 1972; de Boer, 2000)), consonant invento-
ries are shaped by a complex interplay of several
forces (Mukherjee et al., 2006). The invariance of
redundancy, perhaps, reflects some sort of an equi-
librium that arises from the interaction of these di-
vergent forces.

The rest of the paper is structured as follows. In
section 2 we briefly discuss the earlier works in con-
nection to the sound inventories and then systemat-
ically build up the quantitative definition of redun-
dancy from the linguistic theories that are already
available in the literature. Section 3 details out the
data source necessary for the experiments, describes
the baseline for the experiments, reports the exper-
iments performed, and presents the results obtained
each time comparing the same with the baseline re-
sults. Finally we conclude in section 4 by summa-
rizing our contributions, pointing out some of the
implications of the current work and indicating the
possible future directions.

2 Formulation of Redundancy

Linguistic research has documented a wide range of
regularities across the sound systems of the world’s
languages. It has been postulated earlier by func-
tional phonologists that such regularities are the con-
sequences of certain general principles likemaxi-
mal perceptual contrast(Liljencrants and Lindblom,
1972), which is desirable between the phonemes of
a language for proper perception of each individ-

ual phoneme in a noisy environment,ease of artic-
ulation (Lindblom and Maddieson, 1988; de Boer,
2000), which requires that the sound systems of
all languages are formed of certain universal (and
highly frequent) sounds, andease of learnability(de
Boer, 2000), which is necessary for a speaker to
learn the sounds of a language with minimum ef-
fort. In fact, the organization of the vowel inven-
tories (especially those with a smaller size) across
languages has been satisfactorily explained in terms
of the single principle of maximal perceptual con-
trast (Jakobson, 1941; Liljencrants and Lindblom,
1972; de Boer, 2000).

On the other hand, in spite of several at-
tempts (Lindblom and Maddieson, 1988; Boersma,
1998; Clements, 2004) the organization of the con-
sonant inventories lacks a satisfactory explanation.
However, one of the earliest observations about the
consonant inventories has been that consonants tend
to occur in pairs that exhibit strong correlation in
terms of their features (Trubetzkoy, 1931). In or-
der to explain these trends,feature economywas
proposed as the organizing principle of the con-
sonant inventories (Martinet, 1955). According to
this principle, languages tend to maximize the com-
binatorial possibilities of a few distinctive features
to generate a large number of consonants. Stated
differently, a given consonant will have a higher
than expected chance of occurrence in inventories in
which all of its features have distinctively occurred
in other consonants. The idea is illustrated, with an
example, through Table 1. Various attempts have
been made in the past to explain the aforementioned
trends through linguistic insights (Boersma, 1998;
Clements, 2004) mainly establishing their statistical
significance. On the contrary, there has been very
little work pertaining to the quantification of feature
economy except in (Clements, 2004), where the au-
thor defineseconomy index, which is the ratio of the
size of an inventory to the number of features that
characterizes the inventory. However, this definition
does not take into account the complexity that is in-
volved in communicating the information about the
inventory in terms of its constituent features.

Inspired by the aforementioned studies and
the concepts of information theory (Shannon and
Weaver, 1949) we try to quantitatively capture the
amount of redundancy found across the consonant
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plosive voiced voiceless
dental /d/ /t/

bilabial /b/ /p/

Table 1: The table shows four plosives. If a language
has in its consonant inventory any three of the four
phonemes listed in this table, then there is a higher
than average chance that it will also have the fourth
phoneme of the table in its inventory.

inventories in terms of their constituent features. Let
us assume that we want to communicate the infor-
mation about an inventory of sizeN over a transmis-
sion channel. Ideally, one should requirelog N bits
to do the same (where the logarithm is with respect
to base 2). However, since every natural system is
to some extent redundant and languages are no ex-
ceptions, the number of bits actually used to encode
the information is more thanlog N . If we assume
that the features are boolean in nature, then we can
compute the number of bits used by a language to
encode the information about its inventory by mea-
suring theentropyas follows. For an inventory of
sizeN let there bepf consonants for which a partic-
ular featuref (wheref is assumed to be boolean in
nature) is present andqf other consonants for which
the same is absent. Thus the probability that a par-
ticular consonant chosen uniformly at random from
this inventory has the featuref is pf

N and the prob-
ability that the consonant lacks the featuref is qf

N
(=1–pf

N ). If F is the set of all features present in
the consonants forming the inventory, thenfeature
entropyFE can be expressed as

FE =
∑
f∈F

(−pf

N
log

pf

N
− qf

N
log

qf

N
) (1)

FE is therefore the measure of the minimum number
of bits that is required to communicate the informa-
tion about the entire inventory through the transmis-
sion channel. The lower the value ofFE the better
it is in terms of the information transmission over-
head. In order to capture the redundancy involved in
the encoding we define the termredundancy ratioas
follows,

RR =
FE

log N
(2)

which expresses the excess number of bits that is
used by the constituent consonants of the inventory

Figure 1: The process of computingRR for a hypo-
thetical inventory.

in terms of a ratio. The process of computing the
value ofRR for a hypothetical consonant inventory
is illustrated in Figure 1.

In the following section, we present the experi-
mental setup and also report the experiments which
we perform based on the above definition of redun-
dancy. We subsequently show that redundancy ratio
is invariant across the consonant inventories whereas
the same is not true in the case of the vowel invento-
ries.

3 Experiments and Results

In this section we discuss the data source necessary
for the experiments, describe the baseline for the
experiments, report the experiments performed, and
present the results obtained each time comparing the
same with the baseline results.

3.1 Data Source

Many typological studies (Ladefoged and Mad-
dieson, 1996; Lindblom and Maddieson, 1988)
of segmental inventories have been carried out in
past on the UCLA Phonological Segment Inven-
tory Database (UPSID) (Maddieson, 1984). UPSID
gathers phonological systems of languages from all
over the world, sampling more or less uniformly all
the linguistic families. In this work we have used
UPSID comprising of 317 languages and 541 con-
sonants found across them, for our experiments.
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3.2 Redundancy Ratio across the Consonant
Inventories

In this section we measure the redundancy ratio (de-
scribed earlier) of the consonant inventories of the
languages recorded in UPSID. Figure 2 shows the
scatter-plot of the redundancy ratioRR of each of
the consonant inventories (y-axis) versus the inven-
tory size (x-axis). The plot immediately reveals that
the measure (i.e.,RR) is almost invariant across the
consonant inventories with respect to the inventory
size. In fact, we can fit the scatter-plot with a straight
line (by means of least square regression), which as
depicted in Figure 2, has a negligible slope (m = –
0.018) and this in turn further confirms the above
fact thatRR is an invariant property of the conso-
nant inventories with regard to their size. It is im-
portant to mention here that in this experiment we
report the redundancy ratio of all the inventories of
size less than or equal to 40. We neglect the inven-
tories of the size greater than 40 since they are ex-
tremely rare (less than 0.5% of the languages of UP-
SID), and therefore, cannot provide us with statis-
tically meaningful estimates. The same convention
has been followed in all the subsequent experiments.
Nevertheless, we have also computed the values of
RR for larger inventories, whereby we have found
that for an inventory size≤ 60 the results are sim-
ilar to those reported here. It is interesting to note
that the largest of the consonant inventories Ga (size
= 173) has anRR = 1.9, which is lower than all the
other inventories.

The aforementioned claim that RR is an invari-
ant across consonant inventories can be validated by
performing a standard test of hypothesis. For this
purpose, we randomly construct language invento-
ries, as discussed later, and formulate a null hypoth-
esis based on them.
Null Hypothesis: The invariance in the distribution
of RRs observed across the real consonant invento-
ries is also prevalent across the randomly generated
inventories.

Having formulated the null hypothesis we now
systematically attempt to reject the same with a very
high probability. For this purpose we first construct
random inventories and then perform a two sample
t-test (Cohen, 1995) comparing theRRs of the real
and the random inventories. The results show that

Figure 2: The scatter-plot of the redundancy ratio
RR of each of the consonant inventories (y-axis)
versus the inventory size (x-axis). The straight line-
fit is also depicted by the bold line in the figure.

indeed the null hypothesis can be rejected with a
very high probability. We proceed as follows.

3.2.1 Construction of Random Inventories

We employ two different models to generate the
random inventories. In the first model the invento-
ries are filled uniformly at random from the pool of
541 consonants. In the second model we assume
that the distribution of the occurrence of the conso-
nants over languages is knowna priori. Note that
in both of these cases, the size of the random in-
ventories is same as its real counterpart. The results
show that the distribution ofRRs obtained from the
second model has a closer match with the real in-
ventories than that of the first model. This indicates
that the occurrence frequency to some extent gov-
erns the law of organization of the consonant inven-
tories. The detail of each of the models follow.

Model I – Purely Random Model: In this model
we assume that the distribution of the consonant in-
ventory size is knowna priori. For each language
inventoryL let the size recorded in UPSID be de-
noted bysL. Let there be 317 bins corresponding to
each consonant inventoryL. A bin corresponding to
an inventoryL is packed withsL consonants chosen
uniformly at random (without repetition) from the
pool of 541 available consonants. Thus the conso-
nant inventories of the 317 languages corresponding
to the bins are generated. The method is summarized
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in Algorithm 1.

for I = 1 to 317 do

for size = 1 tosL do

Choose a consonantc uniformly at
random (without repetition) from the
pool of 541 available consonants;

Pack the consonantc in the bin
corresponding to the inventoryL;

end
end

Algorithm 1 : Algorithm to construct random in-
ventories using Model I

Model II – Occurrence Frequency based Random
Model: For each consonantc let the frequency of
occurrence in UPSID be denoted byfc. Let there be
317 bins each corresponding to a language in UP-
SID. fc bins are then chosen uniformly at random
and the consonantc is packed into these bins. Thus
the consonant inventories of the 317 languages cor-
responding to the bins are generated. The entire idea
is summarized in Algorithm 2.

for each consonant cdo

for i = 1 to fc do

Choose one of the 317 bins,
corresponding to the languages in
UPSID, uniformly at random;

Pack the consonantc into the bin so
chosen if it has not been already packed
into this bin earlier;

end
end

Algorithm 2 : Algorithm to construct random in-
ventories using Model II

3.2.2 Results Obtained from the Random
Models

In this section we enumerate the results obtained
by computing theRRs of the randomly generated
inventories using Model I and Model II respectively.
We compare the results with those of the real inven-

Parameters Real Inv. Random Inv.
Mean 2.51177 3.59331
SDV 0.209531 0.475072

Parameters Values
t 12.15

DF 66
p ≤ 9.289e-17

Table 2: The results of thet-test comparing the dis-
tribution ofRRs for the real and the random invento-
ries (obtained through Model I). SDV: standard devi-
ation,t: t-value of the test, DF: degrees of freedom,
p: residual uncertainty.

tories and in each case show that the null hypothesis
can be rejected with a significantly high probability.

Results from Model I: Figure 3 illustrates, for all
the inventories obtained from 100 different simula-
tion runs of Algorithm 1, the average redundancy
ratio exhibited by the inventories of a particular size
(y-axis), versus the inventory size (x-axis). The
term “redundancy ratio exhibited by the inventories
of a particular size” actually means the following.
Let there ben consonant inventories of a particu-
lar inventory-sizek. The average redundancy ra-
tio of the inventories of sizek is therefore given by
1
n

∑n
i=1 RRi whereRRi signifies the redundancy ra-

tio of theith inventory of sizek. In Figure 3 we also
present the same curve for the real consonant inven-
tories appearing in UPSID. In these curves we fur-
ther depict the error bars spanning the entire range of
values starting from the minimumRR to the max-
imum RR for a given inventory size. The curves
show that in case of real inventories the error bars
span a very small range as compared to that of the
randomly constructed ones. Moreover, the slopes of
the curves are also significantly different. In order
to test whether this difference is significant, we per-
form a t-test comparing the distribution of the val-
ues ofRR that gives rise to such curves for the real
and the random inventories. The results of the test
are noted in Table 2. These statistics clearly shows
that the distribution ofRRs for the real and the ran-
dom inventories are significantly different in nature.
Stated differently, we can reject the null hypothesis
with (100 - 9.29e-15)% confidence.

Results from Model II: Figure 4 illustrates, for
all the inventories obtained from 100 different simu-
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Figure 3: Curves showing the average redundancy
ratio exhibited by the real as well as the random in-
ventories (obtained through Model I) of a particular
size (y-axis), versus the inventory size (x-axis).

lation runs of Algorithm 2, the average redundancy
ratio exhibited by the inventories of a particular size
(y-axis), versus the inventory size (x-axis). The fig-
ure shows the same curve for the real consonant in-
ventories also. For each of the curve, the error bars
span the entire range of values starting from the min-
imumRR to the maximumRR for a given inventory
size. It is quite evident from the figure that the error
bars for the curve representing the real inventories
are smaller than those of the random ones. The na-
ture of the two curves are also different though the
difference is not as pronounced as in case of Model I.
This is indicative of the fact that it is not only the oc-
currence frequency that governs the organization of
the consonant inventories and there is a more com-
plex phenomenon that results in such an invariant
property. In fact, in this case also, thet-test statistics
comparing the distribution ofRRs for the real and
the random inventories, reported in Table 3, allows
us to reject the null hypothesis with (100–2.55e–3)%
confidence.

3.3 Comparison with Vowel Inventories

Until now we have been looking into the organiza-
tional aspects of the consonant inventories. In this
section we show that this organization is largely dif-
ferent from that of the vowel inventories in the sense
that there is no such invariance observed across the
vowel inventories unlike that of consonants. For
this reason we start by computing theRRs of all

Figure 4: Curves showing the average redundancy
ratio exhibited by the real as well as the random in-
ventories (obtained through Model II) of a particular
size (y-axis), versus the inventory size (x-axis).

Parameters Real Inv. Random Inv.
Mean 2.51177 2.76679
SDV 0.209531 0.228017

Parameters Values
t 4.583

DF 60
p ≤ 2.552e-05

Table 3: The results of thet-test comparing the dis-
tribution of RRs for the real and the random inven-
tories (obtained through Model II).

the vowel inventories appearing in UPSID. Figure 5
shows the scatter plot of the redundancy ratio of each
of the vowel inventories (y-axis) versus the inven-
tory size (x-axis). The plot clearly indicates that the
measure (i.e.,RR) is not invariant across the vowel
inventories and in fact, the straight line that fits the
distribution has a slope of –0.14, which is around 10
times higher than that of the consonant inventories.

Figure 6 illustrates the average redundancy ratio
exhibited by the vowel and the consonant inventories
of a particular size (y-axis), versus the inventory size
(x-axis). The error bars indicating the variability of
RR among the inventories of a fixed size also span a
much larger range for the vowel inventories than for
the consonant inventories.

The significance of the difference in the nature of
the distribution ofRRs for the vowel and the conso-
nant inventories can be again estimated by perform-
ing a t-test. The null hypothesis in this case is as
follows.
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Figure 5: The scatter-plot of the redundancy ratio
RR of each of the vowel inventories (y-axis) versus
the inventory size (x-axis). The straight line-fit is
depicted by the bold line in the figure.

Figure 6: Curves showing the average redundancy
ratio exhibited by the vowel as well as the consonant
inventories of a particular size (y-axis), versus the
inventory size (x-axis).

Null Hypothesis: The nature of the distribution of
RRs for the vowel and the consonant inventories is
same.

We can now perform thet-test to verify whether
we can reject the above hypothesis. Table 4 presents
the results of the test. The statistics immediately
confirms that the null hypothesis can be rejected
with 99.932% confidence.

Parameters Consonant Inv. Vowel Inv.
Mean 2.51177 2.98797
SDV 0.209531 0.726547

Parameters Values
t 3.612

DF 54
p ≤ 0.000683

Table 4: The results of thet-test comparing the dis-
tribution of RRs for the consonant and the vowel
inventories.

4 Conclusions, Discussion and Future
Work

In this paper we have mathematically captured the
redundancy observed across the sound inventories of
the world’s languages. We started by systematically
defining the term redundancy ratio and measuring
the value of the same for the inventories. Some of
our important findings are,
1. Redundancy ratio is an invariant property of the
consonant inventories with respect to the inventory
size.
2. A more complex phenomenon than merely the
occurrence frequency results in such an invariance.
3. Unlike the consonant inventories, the vowel in-
ventories are not indicative of such an invariance.

Until now we have concentrated on establishing
the invariance of the redundancy ratio across the
consonant inventories rather than reasoning why it
could have emerged. One possible way to answer
this question is to look for the error correcting ca-
pability of the encoding scheme that nature had em-
ployed for characterization of the consonants. Ide-
ally, if redundancy has to be invariant, then this ca-
pability should be almost constant. As a proof of
concept we randomly select a consonant from in-
ventories of different size and compute its hamming
distance from the rest of the consonants in the inven-
tory. Figure 7 shows for a randomly chosen conso-
nantc from an inventory of size 10, 15, 20 and 30
respectively, the number of the consonants at a par-
ticular hamming distance fromc (y-axis) versus the
hamming distance (x-axis). The curve clearly indi-
cates that majority of the consonants are at a ham-
ming distance of 4 fromc, which in turn implies that
the encoding scheme has almost a fixed error cor-
recting capability of 1 bit. This can be the precise
reason behind the invariance of the redundancy ra-
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Figure 7: Histograms showing the the number of consonants at a particular hamming distance (y-axis), from
a randomly chosen consonantc, versus the hamming distance (x-axis).

tio. Initial studies into the vowel inventories show
that for a randomly chosen vowel, its hamming dis-
tance from the other vowels in the same inventory
varies with the inventory size. In other words, the er-
ror correcting capability of a vowel inventory seems
to be dependent on the size of the inventory.

We believe that these results are significant as well
as insightful. Nevertheless, one should be aware of
the fact that the formulation ofRR heavily banks
on the set of features that are used to represent the
phonemes. Unfortunately, there is no consensus on
the set of representative features, even though there
are numerous suggestions available in the literature.
However, the basic concept ofRR and the process of
analysis presented here is independent of the choice
of the feature set. In the current study we have used
the binary features provided in UPSID, which could
be very well replaced by other representations, in-
cluding multi-valued feature systems; we look for-
ward to do the same as a part of our future work.
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Abstract 

In this paper we investigate named entity 
transliteration based on a phonetic scoring 
method. The phonetic method is computed 
using phonetic features and carefully 
designed pseudo features. The proposed 
method is tested with four languages – 
Arabic, Chinese, Hindi and Korean – and 
one source language – English, using 
comparable corpora. The proposed method 
is developed from the phonetic method 
originally proposed in Tao et al. (2006). In 
contrast to the phonetic method in Tao et al. 
(2006) constructed on the basis of pure 
linguistic knowledge, the method in this 
study is trained using the Winnow machine 
learning algorithm. There is salient 
improvement in Hindi and Arabic 
compared to the previous study. Moreover, 
we demonstrate that the method can also 
achieve comparable results, when it is 
trained on language data different from the 
target language. The method can be applied 
both with minimal data, and without target 
language data for various languages.  

1 Introduction. 

In this paper, we develop a multi-lingual 
transliteration system for named entities. Named 
entity transliteration is the process of producing, 
for a name in a source language, a set of one or 
more transliteration candidates in a target language. 
The correct transliteration of named entities is 
crucial, since they are frequent and important key 
words in information retrieval. In addition, 

requests in retrieving relevant documents in 
multiple languages require the development of the 
multi-lingual system.  

The system is constructed using paired 
comparable texts. The comparable texts are about 
the same or related topics, but are not, in general, 
translations of each other. Using this data, the 
transliteration method aims to find transliteration 
correspondences in the paired languages. For 
example, if there were an English and Arabic 
newspaper on the same day, each of the 
newspapers would contain articles about the same 
important international events. From these 
comparable articles across the paired languages, 
the same named entities are expected to be found. 
Thus, from the named entities in an English 
newspaper, the method would find transliteration 
correspondences in comparable texts in other 
languages. 

The multi-lingual transliteration system entails 
solving several problems which are very 
challenging. First, it should show stable 
performance for many unrelated languages. The 
transliteration will be influenced by the difference 
in the phonological systems of the language pairs, 
and the process of transliteration differs according 
to the languages involved. For example, in Arabic 
texts, short vowels are rarely written while long 
vowels are written. When transliterating English 
names, the vowels are disappeared or written as 
long vowels. For example London is transliterated 
as lndn دنѧѧѧѧѧلن, and both vowels are not represented 
in the transliteration. However, Washington is 
often transliterated as  wSnjTwn ــنطون  and , واشــــــــــ
the final vowel is realized with long vowel. 
Transliterations in Chinese are very different from 
the original English pronunciation due to the 
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limited syllable structure and phoneme inventory 
of Chinese. For example, Chinese does not allow 
consonant clusters or coda consonants except [n,N], 
and this results in deletion, substitution of 
consonants or insertion of vowels. Thus while a 
syllable initial /d/ may surface as in Baghdad 
巴格达 ba-ge-da, note that the syllable final /d/ is 
not represented. Multi-lingual transliteration 
system should solve these language dependent 
characteristics.  

One of the most important concerns in a 
multilingual transliteration system is its 
applicability given a small amount of training data, 
or even no training data: for arbitrary language 
pairs, one cannot in general assume resources such 
as name dictionaries. Indeed, for some rarely 
spoken languages, it is practically impossible to 
find enough training data. Therefore, the proposed 
method aims to obtain comparable performance 
with little training data.  

2 Previous Work 

Previous work — e.g. (Knight and Graehl, 1998; 
Meng et al., 2001; Al-Onaizan and Knight, 2002; 
Gao et al., 2004) — has mostly assumed that one 
has a training lexicon of transliteration pairs, from 
which one can learn a model, often a source-
channel or MaxEnt-based model. 

Comparable corpora have been studied 
extensively in the literature, but transliteration in 
the context of comparable corpora has not been 
well addressed. In our work, we adopt the method 
proposed in (Tao et al., 2006) and apply it to the 
problem of transliteration. 

Measuring phonetic similarity between words 
has been studied for a long time. In many studies, 
two strings are aligned using a string alignment 
algorithm, and an edit distance (the sum of the cost 
for each edit operation), is used as the phonetic 
distance between them. The resulting distance 
depends on the costs of the edit operation. There 
are several approaches that use distinctive features 
to determine the costs of the edit operation. Gildea 
and Jurafsky (1996) counted the number of 
features whose values are different, and used them 
as a substitution cost. However, this approach has a 
crucial limitation: the cost does not consider the 
importance of the features. Nerbonne and Heeringa 
(1997) assigned a weight for each feature based on 

entropy and information gain, but the results were 
even less accurate than the method without weight. 

3 Phonetic transliteration method 

In this paper, the phonetic transliteration is 
performed using the following steps:  

1) Generation of the pronunciation for 
English words and target words: 

a. Pronunciations for English words are obtained 
using the Festival text-to-speech system (Taylor et 
al., 1998).  

b. Target words are automatically converted into 
their phonemic level transcriptions by various 
language-dependent means. In the case of 
Mandarin Chinese, this is based on the standard 
Pinyin transliteration system. Arabic words are 
converted based on orthography, and the resulting 
transcriptions are reasonably correct except for the 
fact that short vowels were not represented. 
Similarly, the pronunciation of Hindi and Korean 
can be well-approximated based on the standard 
orthographic representation. All pronunciations are 
based on the WorldBet transliteration system 
(Hieronymus, 1995), an ascii-only version of the 
IPA. 

2) Training a linear classifier using the 
Winnow algorithm: 

A linear classifier is trained using the training 
data which is composed of transliteration pairs and 
non-transliteration pairs. Transliteration pairs are 
extracted from the transliteration dictionary, while 
non-transliteration pairs are composed of an 
English named entity and a random word from the 
target language newspaper.  

a. For all the training data, the pairs of 
pronunciations are aligned using standard string 
alignment algorithm based on Kruskal (1999). The 
substitution/insertion/deletion cost for the string 
alignment algorithm is based on the baseline cost 
from (Tao et al, 2006). 

b. All phonemes in the pronunciations are 
decomposed into their features. The features used 
in this study will be explained in detail in part 3.1.  

c. For every phoneme pair (p1, p2) in the aligned 
pronunciations, a feature xi has a ‘+1’ value or a ‘–
1‘ value: 

 
xi =   +1   when p1 and p2  have the same 

values for feature xi 
−1   otherwise 
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d. A linear classifier is trained using the 
Winnow algorithm from the SNoW toolkit 
(Carlson et al., 1999).  

 
3) Scoring English-target word pair: 
a. For a given English word, the score between it 

and a target word is computed using the linear 
classifier. 

b. The score ranges from 0 to any positive 
number, and the candidate with the highest score is 
selected as the transliteration of the given English 
name.  
 

3.1  Feature set 

Halle and Clements (1983)’s distinctive features 
are used in order to model the substitution/ 
insertion/deletion costs for the string-alignment 
algorithm and linear classifier. A distinctive 
feature is a feature that describes the phonetic 
characteristics of phonetic segments. 

However, distinctive features alone are not 
enough to model the frequent sound change 
patterns that occur when words are adapted across 
languages. For example, stop and fricative 
consonants such as /p, t, k, b, d, g, s, z/ are 
frequently deleted when they appear in the coda 
position. This tendency is extremely salient when 
the target languages do not allow coda consonants 
or consonant clusters. For example, since Chinese 
only allows /n, N/ in coda position, stop consonants 
in the coda position are frequently lost; Stanford is 
transliterated as sitanfu, with the final /d/ lost. 
Since traditional distinctive features do not 
consider the position in the syllable, this pattern 
cannot be captured by distinctive features alone. 
To capture these sound change patterns, additional 
features such as “deletion of stop/fricative 
consonant in the coda position” must be considered.  

Based on the pronunciation error data of learners 
of English as a second language as reported in 
(Swan and Smith, 2002), we propose the use of 
what we will term pseudofeatures. The pseudo 
features in this study are same as in Tao et al. 
(2006). Swan & Smith (2002)’s study covers 25 
languages including Asian languages such as Thai, 
Korean, Chinese and Japanese, European 
languages such as German, Italian, French and 
Polish, and Middle East languages such as Arabic 
and Farsi. The substitution/insertion/deletion errors 

of phonemes were collected from this data. The 
following types of errors frequently occur in 
second language learners’ speech production.  

(1) Substitution: If the learner’s first language 
does not have a particular phoneme found in 
English, it is substituted by the most similar 
phoneme in their first language. 

(2) Insertion: If the learner’s first language does 
not have a particular consonant cluster in English, 
a vowel is inserted. 

(3) Deletion: If the learner’s first language does 
not have a particular consonant cluster in English, 
one consonant in the consonant cluster is deleted. 

The same substitution/deletion/insertion patterns 
in a second language learner’s errors also appear in 
the transliteration of foreign names. The deletion 
of the stop consonant which appears in English-
Chinese transliterations occurs frequently in the 
English pronunciation spoken by Chinese speakers. 
Therefore, the error patterns in second language 
learners’ can be used in transliteration. 

Based on (1) ~ (3), 21 pseudo features were 
designed. All features have binary values. Using 
these 21 pseudo features and 20 distinctive features, 
a linear classifier is trained. Some examples of 
pseudo features are presented in Table 1.  

 
Pseudo-  
Feature Description Example 

Consonant-
coda 

Substitution 
of consonant 

feature in 
coda position 

 

Sonorant-
coda 

Substitution 
of sonorant 
feature in 

coda position 

Substitution 
between [N] and 

[g] in coda 
position in Arabic

Labial-coda

Substitution 
of labial 
feature in 

coda position 

Substitution 
between [m] and 

[n] in coda 
position in Chinese

j-exception
Substitution 

of [j] and [dZ] 
Spanish/Catalan 

and Festival error

w-exception Substitution 
of [v] and [w] 

Chinese/Farsi and 
Festival error 

Table 1. Examples of pseudo features  
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3.2 Scoring the English-target word pair  

A linear classifier is trained using the Winnow 
algorithm from the SNoW toolkit.  

The Winnow algorithm is one of the update 
rules for linear classifier. A linear classifier is an 
algorithm to find a linear function that best 
separates the data. For the set of features X and set 
of weights W, the linear classifier is defined as [1] 
(Mitchell, T., 1997) 

1 2

1 2

0 1 1 2 2

  { , ,  ... }
  { , , ... } 
( )   1        ...    0   

             -1  

n

n

n n

X x x x
W w w w
f x if w wx w x w x

otherwise

=

=
= + + + + >

[1] 

 
The linear function assigns label +1 when the 

paired target language word is the transliteration of 
given English word, while it assigns label –1 when 
it is not a transliteration of given English word.  

The score of an English word and target word 
pair is computed using equation [2] which is part 
of the definition of f(x) in equation [1]. 

0
1

n

i i
i

w w x
=

+∑    [2] 

The output of equation [2] is termed the target 
node activation. If this value is high, class 1 is 
more activated, and the pair is more likely to be a 
transliteration pair. To illustrate, let us assume 
there are two candidates in target language (t1 and 
t2) for an English word e. If the score of (e, t1) is 
higher than the score of (e, t2), the pair (e, t1) has 
stronger activation than (e, t2). It means that t1  
scores higher as the transliteration of e than t2. 
Therefore, the candidate with the highest score (in 
this case t1) is selected as the transliteration of the 
given English name. 

4 Experiment and Results 

The linear function was trained for each 
language, separately. 500 transliteration pairs were 
randomly selected from each transliteration 
dictionary, and used as positive examples in the 
training procedure. This is quite small compared to 
previous approaches such as Knight and Graehl 
(1998) or Gao et al. (2004). In addition, 1500 
words were randomly selected from the newspaper 
in the target languages, and paired with English 
words in the positive examples. A total of 750,000 
pairs (500 English words× 1500 target words) were 

generated, and used as negative examples in the 
training procedure. 
Table 2 presents the source of training data for 
each language.  
 

 Transliteration 
pair Target word 

Arabic New Mexico State 
University 

Xinhua Arabic 
newswire 

Chinese Behavior Design 
Corporation 

Xinhua  
Chinese  

newswire 

Hindi Naidunia Hindi 
newswire  

Naidunia Hindi 
newswire 

Korean
the National  

Institute of the 
Korean language 

Chosun  
Korean  

newspaper 

Table 2. Sources of the training data 

The phonetic transliteration method was 
evaluated using comparable corpora, consisting of 
newspaper articles in English and the target 
languages—Arabic, Chinese, Hindi, and Korean–
from the same day, or almost the same day. Using 
comparable corpora, the named-entities for persons 
and locations were extracted from the English text; 
in this paper, the English named-entities were 
extracted using the named-entity recognizer 
described in Li et al. (2004), based on the SNoW 
machine learning toolkit (Carlson et al., 1999).  

The transliteration task was performed using the 
following steps:  

1) English text was tagged using the named-
entity recognizer. The 200 most frequent named 
entities were extracted from seven days’ worth of 
the English newswire text. Among pronunciations 
of words generated by the Festival text-to speech 
system, 3% contained errors representing 
monophthongs instead of diphthongs or vice versa. 
1.5% of all cases misrepresented single consonant, 
and 6% showed errors in the vowels. Overall, 
10.5% of the tokens contained pronunciation errors 
which could trigger errors in transliteration. 

2) To generate the Arabic and Hindi candidates, 
all words from the same seven days were extracted. 
In the case of Korean corpus, the collection of 
newspapers was from every five days, unlike the 
other three language corpora which were collected 
every day; therefore, candidates of Korean were 
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generated from one month of newspapers, since 
seven days of newspaper articles did not show a 
sufficient number of transliteration candidates. 
This caused the total number of candidates to be 
much bigger than for the other languages.  

The words were stemmed all possible ways 
using simple hand-developed affix lists: for 
example, given a Hindi word c1c2c3, if both c3 
and c2c3 are in the suffix and ending list, then this 
single word generated three possible candidates: c1, 
c1c2, and c1c2c3.  

3) Segmenting Chinese sentences requires a 
dictionary or supervised segmenter. Since the goal 
is to use minimal knowledge or data from the 
target language, using supervised methods is 
inappropriate for our approach. Therefore, Chinese 
sentences were not segmented. Using the 495 
characters that are frequently used for 
transliterating foreign names (Sproat et al., 1996), 
a sequence of three of more characters from the list 
was taken as a possible candidate for Chinese. 

4) For the given 200 English named entities and 
target language candidate lists, all the possible 
pairings of English and target-language name were 
considered as possible transliteration pairs.  

The number of candidates for each target 
language is presented in Table 3. 

 

Language The number of candidates 

Arabic 12,466 

Chinese 6,291 

Hindi 10,169 

Korean 42,757 

Table 3. Number of candidates for each target 
language. 

5) Node activation scores were calculated for 
each pair in the test data, and the candidates were 
ranked by their score. The candidate with the 
highest node activation score was selected as the 
transliteration of the given English name.  

Some examples of English words and the top 
three ranking candidates among all of the potential 
target-language candidates were given in Tables 4, 
5. Starred entries are correct. 

 

Candidate English 
Word Rank

Script Romanizati
on 

Arafat 
*1 
2 
3 

阿拉法特

拉法地奥

拉维奇 

a-la-fa-te 
la-fa-di-ao
la-wei-qi 

Table 4. Examples of the top-3 candidates in the 
transliteration of English – Chinese 

Candidate English 
Word Rank

Script Romanizati
on 

*1 베트남 be-thu-nam

2 베트남측 be-thu-nam-
chug Vietnam 

3 표준어와 pyo-jun-e-
wa 

*1 오스트레일

리아 
o-su-thu-
ley-il-li-a 

2 웃돌아 us-tol-la Australia

3 오스트레일

리아에서 

o-su-thu-
ley-il-li-a-

ey-se 

Table 5. Examples of the top-3 candidates in the 
transliteration of English-Korean 

To evaluate the proposed transliteration methods 
quantitatively, the Mean Reciprocal Rank (MRR), 
a measure commonly used in information retrieval 
when there is precisely one correct answer (Kandor 
and Vorhees, 2000) was measured, following Tao 
and Zhai (2005).  

 
Since the evaluation data obtained from the 

comparable corpus was small, the systems were 
evaluated using both held-out data from the 
transliteration dictionary and comparable corpus.  

 
First, the results of the held-out data will be 

presented. For a given English name and target 
language candidates, all possible combinations 
were generated. Table 6 presents the size of held-
out data, and Table 7 presents MRR of the held-out 
data.  
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Number 
of English 

named 
entities 

Number of 
Candidates 

in target 
language 

Number of 
total pairs 
used in the 
evaluation

Arabic 500 1,500 750,000 

Chinese 500 1,500 750,000 

Hindi 100 1,500 150,000 

Korean 100 1,500 150,000 

Table 6. Size of the test data 

Winnow 

 Baseline  Total 
feature 

distinctive 
feature 
only 

Arabic 0.66 0.74 0.70 

Chinese 0.74 0.74 0.72 

Hindi 0.87 0.91 0.91 

Korean 0.82 0.85 0.82 

Table 7. MRRs of the phonetic transliteration 

The baseline was computed using the phonetic 
transliteration method proposed in Tao et al. 
(2006). In contrast to the method in this study, the 
baseline system is purely based on linguistic 
knowledge. In the baseline system, the edit 
distance, which was the result of the string 
alignment algorithm, was used as the score of an 
English-target word pair. The performance of the 
edit distance was dependent on insertion/deletion/ 
substitution costs. These costs were determined 
based on the distinctive features and pseudo 
features, based on the pure linguistic knowledge 
without training data. As illustrated in Table 7, the 
phonetic transliteration method using features 
worked adequately for multilingual data, as 
phonetic features are universal, unlike the 
phonemes which are composed of them. Adopting 
phonetic features as the units for transliteration 
yielded the baseline performance.  

In order to evaluate the effectiveness of pseudo 
features, the method was trained using two 
different feature sets: a total feature set and a 
distinctive feature-only set. For Arabic, Chinese 
and Korean, the MRR of the total feature set was 

higher than the MRR of the distinctive feature-only 
set. The improvement of the total set was 4% for 
Arabic, 2.6% for Chinese, 2.4% for Korean. There 
was no improvement of the total set in Hindi. In 
general, the pseudo features improved the accuracy 
of the transliteration. 

For all languages, the MRR of the Winnow 
algorithm with the total feature set was higher than 
the baseline. There was 7% improvement for 
Arabic, 0.7% improvement for Chinese, 4% 
improvement for Hindi and 3% improvement for 
Korean.  

 
We turn now to the results on comparable 

corpora. We attempted to create a complete set of 
answers for the 200 English names in our test set, 
but part of the English names did not seem to have 
any standard transliteration in the target language 
according to the native speaker’s judgment. 
Accordingly, we removed these names from the 
evaluation set. Thus, the resulting list was less than 
200 English names, as shown in the second column 
of Table 8; (Table 8 All). Furthermore, some 
correct transliterations were not found in our 
candidate list for the target languages, since the 
answer never occurred in the target news articles; 
(Table 8 Missing). Thus this results in a smaller 
number of candidates to evaluate. This smaller 
number is given in the fourth column of Table 8; 
(Table 8 Core).  

 

Language # All # Missing #Core 

Arabic 192 121 71 

Chinese 186 92 94 

Hindi 144 83 61 

Korean 195 114 81 

Table 8. Number of evaluated English Name 

 
MRRs were computed on the two sets 

represented by the count in column 2, and the 
smaller set represented by the count in column 4. 
We termed the former MRR “AllMRR” and the 
latter “CoreMRR”. In Table 9, “CoreMRR” and 
“AllMRR” of the method were presented.  
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Baseline  Winnow  
 All-

MRR 
Core
MRR 

All-
MRR 

Core
MRR

Arabic 0.20 0.53 0.22 0.61
Chinese 0.25 0.49 0.25 0.50
Hindi 0.30 0.69 0.36 0.86

Korean 0.30 0.71 0.29 0.69

Table 9. MRRs of the phonetic transliteration 

In both methods, CoreMRRs were higher than 
0.49 for all languages. That is, if the answer is in 
the target language texts, then the method finds the 
correct answer within the top 2 words.  

As with the previously discussed results, there 
were salient improvements in Arabic and Hindi 
when using the Winnow algorithm. The MRRs of 
the Winnow algorithm except Korean were higher 
than the baseline. There was 7% improvement for 
Arabic and 17% improvement for Hindi in 
CoreMRR. In contrast to the 3% improvement in 
held-out data, there was a 2% decrease in Korean: 
the MRRs of Korean from the Winnow algorithm 
were lower than baseline, possibly because of the 
limited size of the evaluation data. Similar to the 
results of held-out data, the improvement in 
Chinese was small (1%).  

The MRRs of Hindi and the MRRs of Korean 
were higher than the MRRs of Arabic and Chinese. 
The lower MRRs of Arabic and Chinese may result 
from the phonological structures of the languages. 
In general, transliteration of English word into 
Arabic and Chinese is much more irregular than 
the transliteration into Hindi and Korean in terms 
of phonetics.  

 
To test the applicability to languages for which 

training data is not available, we also investigated 
the use of models trained on language pairs 
different from the target language pair. Thus, for 
each test language pair, we evaluated the 
performance of models trained on each of the other 
language pairs. For example, three models were 
trained using Chinese, Hindi, and Korean, and they 
were tested with Arabic data. The CoreMRRs of 
this experiment were presented in Table 10. Note 
that the diagonal in this Table represents the 
within-language-pair training and testing scenario 
that we reported on above. 

test data 
 

Arabic Chin
ese Hindi Kore

an 
Arabic 0.61 0.50 0.86 0.63

Chinese 0.59 0.50 0.80 0.66
Hindi 0.59 0.54 0.86 0.67

train
-ing 
data

Korean 0.56 0.51 0.76 0.69

Table 10. MRRs for the phonetic transliteration 2  

For Arabic, Hindi, and Korean, MRRs were 
indeed the highest when the methods were trained 
using data from the same language, as indicated by 
the boldface MRR scores on the diagonal. In 
general, however, the MRRs were not saliently 
lower across the board when using different 
language data than using same-language data in 
training and testing. For all languages, MRRs for 
the cross-language case were best when the 
methods were trained using Hindi. The differences 
between MRRs of the method trained from Hindi 
and MRRs of the method by homogeneous 
language data were 2% for Arabic and Korean. In 
the case of Chinese, MRRs of the method trained 
by Hindi was actually better than MRRs obtained 
by Chinese training data. Hindi has a large 
phoneme inventory compared to Korean, Arabic, 
and Chinese, so the relationship between English 
phonemes and Hindi phonemes is relatively regular, 
and only small number of language specific 
transliteration rules exist. That is, the language 
specific influences from Hindi are smaller than 
those from other languages. This characteristic of 
Hindi may result in the high MRRs for other 
languages. What these results imply is that named 
entity transliteration could be performed without 
training data for the target language with phonetic 
feature as a unit. This approach is especially 
valuable for languages for which training data is 
minimal or lacking. 
 

5 Conclusion 

In this paper, a phonetic method for multilingual 
transliteration was proposed. The method was 
based on string alignment, and linear classifiers 
trained using the Winnow algorithm. In order to 
learn both language-universal and language-
specific transliteration characteristics, distinctive 
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features and pseudo features were used in training. 
The method can be trained using a small amount of 
training data, and the performance decreases only 
by a small degree when it is trained with a 
language different from the test data. Therefore, 
this method is extremely useful for 
underrepresented languages for which training data 
is difficult to find. 

Acknowledgments 

This work was funded the National Security 
Agency contract NBCHC040176 (REFLEX) and a 
Google Research grant.  
 

References 
Y. Al-Onaizan and K. Knight. 2002. Machine 

transliteration of names in Arabic text. In 
Proceedings of the ACL Workshop on Computational 
Approaches to Semitic Languages, Philadelphia, PA. 

Andrew J. Carlson, Chad M. Cumby, Jeff L. Rosen, and 
Dan Roth. 1999. The SNoW learning architecture. 
Technical Report UIUCDCS-R-99-2101, UIUC CS 
Dept. 

Wei Gao, Kam-Fai Wong, and Wai Lam. 2004. 
Phoneme based transliteration of foreign names for 
OOV problem. Proceeding of IJCNLP, 374–381. 

Daniel Gildea and Daniel Jurafsky. 1996. Learning Bias 
and Phonological-Rule Induction. Computational 
Linguistics 22(4):497–530. 

Morris Halle and G.N. Clements. 1983. Problem book 
in phonology. MIT press, Cambridge. 

James Hieronymus. 1995. Ascii phonetic symbols for 
the world’s languages: Worldbet. 
http://www.ling.ohio-tate.edu/ edwards/worldbet.pdf. 

Paul B. Kantor and Ellen B. Voorhees. 2000. The 
TREC-5 confusion track: Comparing retrieval 
methods for scanned text. Information Retrieval, 2: 
165–176. 

Kevin Knight and Jonathan Graehl. 1998. Machine 
transliteration. Computational Linguistics, 24(4). 

Joseph B. Kruskal. 1999. An overview of sequence 
comparison. Time Warps, String Edits, and 
Macromolecules, CSLI, 2nd edition, 1–44. 

Xin Li, Paul Morie, and Dan Roth. 2004. Robust 
reading: Identification and tracing of ambiguous 
names. Proceeding of NAACL-2004. 

H.M. Meng, W.K Lo, B. Chen, and K. Tang. 2001. 
Generating phonetic cognates to handle named 
entities in English-Chinese cross-language spoken 
document retrieval. In Proceedings of the Automatic 
Speech Recognition and Understanding Workshop. 

Tom M. Mitchell. 1997. Machine Learning, McCraw-
Hill, Boston. 

John Nerbonne and Wilbert Heeringa. 1997. Measuring 
Dialect Distance Phonetically. Proceedings of the 3rd 
Meeting of the ACL Special Interest Group in 
Computational Phonology. 

Richard Sproat, Chilin. Shih, William A. Gale, and 
Nancy Chang. 1996. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational 
Linguistics, 22(3).  

Michael Swan and Bernard Smith. 2002. Learner 
English, Cambridge University Press, Cambridge . 

Tao Tao and ChengXiang Zhai. 2005. Mining 
comparable bilingual text corpora for cross-language 
information integration. Proceeding of the eleventh 
ACM SIGKDD international conference on 
Knowledge discovery in data mining, 691–696. 

Tao Tao, Su-Youn Yoon, Andrew Fister, Richard 
Sproat and ChengXiang Zhai. "Unsupervised Named 
Entity Transliteration Using Temporal and Phonetic 
Correlation." EMNLP, July 22-23, 2006, Sydney, 
Australia. 

Paul A. Taylor, Alan Black, and Richard Caley. 1998. 
The architecture of the Festival speech synthesis 
system. Proceedings of the Third ESCAWorkshop on 
SpeechSynthesis, 147–151. 

119



Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 120–127,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

 
 
 

 
 
 

Abstract 

Words of foreign origin are referred to as 
borrowed words or loanwords. A loanword 
is usually imported to Chinese by phonetic 
transliteration if a translation is not easily 
available. Semantic transliteration is seen 
as a good tradition in introducing foreign 
words to Chinese. Not only does it preserve 
how a word sounds in the source language, 
it also carries forward the word’s original 
semantic attributes. This paper attempts to 
automate the semantic transliteration 
process for the first time. We conduct an 
inquiry into the feasibility of semantic 
transliteration and propose a probabilistic 
model for transliterating personal names in 
Latin script into Chinese. The results show 
that semantic transliteration substantially 
and consistently improves accuracy over 
phonetic transliteration in all the 
experiments. 

1 Introduction 

The study of Chinese transliteration dates back to 
the seventh century when Buddhist scriptures were 
translated into Chinese. The earliest bit of Chinese 
translation theory related to transliteration may be 
the principle of “Names should follow their 
bearers, while things should follow Chinese.” In 
other words, names should be transliterated, while 
things should be translated according to their 
meanings. The same theory still holds today.  

Transliteration has been practiced in several 
ways, including phonetic transliteration and 
phonetic-semantic transliteration. By phonetic 

transliteration, we mean rewriting a foreign word 
in native grapheme such that its original 
pronunciation is preserved. For example, London 
becomes 伦敦  /Lun-Dun/1 which does not carry 
any clear connotations. Phonetic transliteration 
represents the common practice in transliteration. 
Phonetic-semantic transliteration, hereafter 
referred to as semantic transliteration for short, is 
an advanced translation technique that is 
considered as a recommended translation practice 
for centuries. It translates a foreign word by 
preserving both its original pronunciation and 
meaning. For example, Xu Guangqi 2  translated 
geo- in geometry into Chinese as 几何  /Ji-He/, 
which carries the pronunciation of geo- and 
expresses the meaning of “a science concerned 
with measuring the earth”.  

Many of the loanwords exist in today’s Chinese 
through semantic transliteration, which has been 
well received (Hu and Xu, 2003; Hu, 2004) by the 
people because of many advantages. Here we just 
name a few. (1) It brings in not only the sound, but 
also the meaning that fills in the semantic blank 
left by phonetic transliteration. This also reminds 
people that it is a loanword and avoids misleading; 
(2) It provides etymological clues that make it easy 
to trace back to the root of the words. For example, 
a transliterated Japanese name will maintain its 
Japanese identity in its Chinese appearance; (3) It 
evokes desirable associations, for example, an 
English girl’s name is transliterated with Chinese 
characters that have clear feminine association, 
thus maintaining the gender identity. 

                                                 
1 Hereafter, Chinese characters are also denoted in Pinyin ro-
manization system, for ease of reference.  
2 Xu Quangqi (1562–1633) translated The Original Manu-
script of Geometry to Chinese jointly with Matteo Ricci. 
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Unfortunately, most of the reported work in the 
area of machine transliteration has not ventured 
into semantic transliteration yet. The Latin-scripted 
personal names are always assumed to 
homogeneously follow the English phonic rules in 
automatic transliteration (Li et al., 2004). 
Therefore, the same transliteration model is 
applied to all the names indiscriminatively. This 
assumption degrades the performance of 
transliteration because each language has its own 
phonic rule and the Chinese characters to be 
adopted depend on the following semantic 
attributes of a foreign name. 
(1) Language of origin: An English word is not 
necessarily of pure English origin. In English news 
reports about Asian happenings, an English 
personal name may have been originated from 
Chinese, Japanese or Korean. The language origin 
affects the phonic rules and the characters to be 
used in transliteration3. For example, a Japanese 
name Matsumoto should be transliterated as 松本 
/Song-Ben/, instead of 马茨莫托 /Ma-Ci-Mo-Tuo/ 
as if it were an English name. 
(2) Gender association: A given name typically 
implies a clear gender association in both the 
source and target languages. For example, the 
Chinese transliterations of Alice and Alexandra 
are 爱丽丝 /Ai-Li-Si/ and 亚历山大 /Ya-Li-Shan-
Da/ respectively, showing clear feminine and 
masculine characteristics. Transliterating Alice as 
埃里斯  /Ai-Li-Si/ is phonetically correct, but 
semantically inadequate due to an improper gender 
association. 
(3) Surname and given name: The Chinese name 
system is the original pattern of names in Eastern 
Asia such as China, Korea and Vietnam, in which 
a limited number of characters 4  are used for 
surnames while those for given names are less 
restrictive. Even for English names, the character 
set for given name transliterations are different 
from that for surnames. 

Here are two examples of semantic 
transliteration for personal names.  George Bush 

                                                 
3 In the literature (Knight  and  Graehl,1998; Qu et al., 2003), 
translating romanized Japanese or Chinese names to Chinese 
characters is also known as back-transliteration. For simplic-
ity, we consider all conversions from Latin-scripted words to 
Chinese as transliteration in this paper. 
4 The 19 most common surnames cover 55.6% percent of the 
Chinese population (Ning and Ning 1995). 

and Yamamoto Akiko are transliterated into 乔治 �

布什 and 山本  亚喜子  that arouse to the 
following associations: 乔治  /Qiao-Zhi/ - male 
given name, English origin; 布 什  /Bu-Shi/ - 
surname, English origin; 山 本  /Shan-Ben/ - 
surname, Japanese origin; 亚喜子 /Ya-Xi-Zi/ - 
female given name, Japanese origin. 

 In Section 2, we summarize the related work. In 
Section 3, we discuss the linguistic feasibility of 
semantic transliteration for personal names. 
Section 4 formulates a probabilistic model for 
semantic transliteration.  Section 5 reports the 
experiments. Finally, we conclude in Section 6. 

2 Related Work 

In general, computational studies of transliteration 
fall into two categories: transliteration modeling 
and extraction of transliteration pairs. In 
transliteration modeling, transliteration rules are 
trained from a large, bilingual transliteration 
lexicon (Lin and Chen, 2002; Oh and Choi, 2005), 
with the objective of translating unknown words 
on the fly in an open, general domain. In the 
extraction of transliterations, data-driven methods 
are adopted to extract actual transliteration pairs 
from a corpus, in an effort to construct a large, up-
to-date transliteration lexicon (Kuo et al., 2006; 
Sproat et al., 2006).  

Phonetic transliteration can be considered as an 
extension to the traditional grapheme-to-phoneme 
(G2P) conversion (Galescu and Allen, 2001), 
which has been a much-researched topic in the 
field of speech processing. If we view the 
grapheme and phoneme as two symbolic 
representations of the same word in two different 
languages, then G2P is a transliteration task by 
itself. Although G2P and phonetic transliteration 
are common in many ways, transliteration has its 
unique challenges, especially as far as E-C 
transliteration is concerned. E-C transliteration is 
the conversion between English graphemes, 
phonetically associated English letters, and 
Chinese graphemes, characters which represent 
ideas or meanings. As a Chinese transliteration can 
arouse to certain connotations, the choice of 
Chinese characters becomes a topic of interest (Xu 
et al., 2006). 

Semantic transliteration can be seen as a subtask 
of statistical machine translation (SMT) with 
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monotonic word ordering. By treating a 
letter/character as a word and a group of 
letters/characters as a phrase or token unit in SMT, 
one can easily apply the traditional SMT models, 
such as the IBM generative model (Brown et al., 
1993) or the phrase-based translation model (Crego 
et al., 2005) to transliteration. In transliteration, we 
face similar issues as in SMT, such as lexical 
mapping and alignment. However, transliteration is 
also different from general SMT in many ways. 
Unlike SMT where we aim at optimizing the 
semantic transfer, semantic transliteration needs to 
maintain the phonetic equivalence as well. 

In computational linguistic literature, much 
effort has been devoted to phonetic transliteration, 
such as English-Arabic, English-Chinese (Li et al., 
2004), English-Japanese (Knight and Graehl, 
1998) and English-Korean. In G2P studies, Font 
Llitjos and Black (2001) showed how knowledge 
of language of origin may improve conversion 
accuracy. Unfortunately semantic transliteration, 
which is considered as a good tradition in 
translation practice (Hu and Xu, 2003; Hu, 2004), 
has not been adequately addressed computationally 
in the literature. Some recent work (Li et al., 2006; 
Xu et al., 2006) has attempted to introduce 
preference into a probabilistic framework for 
selection of Chinese characters in phonetic 
transliteration. However, there is neither analytical 
result nor semantic-motivated transliteration 
solution being reported. 

3 Feasibility of Semantic Transliteration 

A Latin-scripted personal name is written in letters, 
which represent the pronunciations closely, 
whereas each Chinese character represents not only 
the syllables, but also the semantic associations. 
Thus, character rendering is a vital issue in trans-
literation. Good transliteration adequately projects 
semantic association while an inappropriate one 
may lead to undesirable interpretation. 

Is semantic transliteration possible? Let’s first 
conduct an inquiry into the feasibility of semantic 
transliteration on 3 bilingual name corpora, which 
are summarizied in Table 1 and will be used in 
experiments. E-C corpus is an augmented version 
of Xinhua English to Chinese dictionary  for 
English names (Xinhua, 1992). J-C corpus is a 
romanized Japanese to Chinese dictionary for 
Japanese names. The C-C corpus is a Chinese 

Pinyin to character dictionary for Chinese names. 
The entries are classified into surname, male and 
female given name categories. The E-C corpus also 
contains some entries without gender/surname 
labels, referred to as unclassified. 

 

 E-C J-C5 C-C6 
Surname (S) 12,490 36,352 569,403 
Given name (M) 3,201 35,767 345,044 
Given name (F) 4,275 11,817 122,772 
Unclassified 22,562 - - 
All 42,528 83,936 1,972,851 

Table 1: Number of entries in 3 corpora 
 

Phonetic transliteration has not been a problem 
as Chinese has over 400 unique syllables that are 
enough to approximately transcribe all syllables in 
other languages. Different Chinese characters may 
render into the same syllable and form a range of 
homonyms. Among the homonyms, those arousing 
positive meanings can be used for personal names. 
As discussed elsewhere (Sproat et al., 1996), out of 
several thousand common Chinese characters, a 
subset of a few hundred characters tends to be used 
overwhelmingly for transliterating English names 
to Chinese, e.g. only 731 Chinese characters are 
adopted in the E-C corpus. Although the character 
sets are shared across languages and genders, the 
statistics in Table 2 show that each semantic 
attribute is associated with some unique characters. 
In the C-C corpus, out of the total of 4,507 
characters, only 776 of them are for surnames. It is 
interesting to find that female given names are 
represented by a smaller set of characters than that 
for male across 3 corpora.     

 
 E-C J-C C-C All 

S 327 2,129 776 2,612 (19.2%)
M 504 1,399 4,340 4,995 (20.0%)
F 479 1,178 1,318 2,192 (26.3%)

All 731 
(44.2%)

2,533 
(46.2%)

4,507 
(30.0%) 5,779 (53.6%)

Table 2: Chinese character usage in 3 corpora. The 
numbers in brackets indicate the percentage of 
characters that are shared by at least 2 corpora. 

 
Note that the overlap of Chinese characters 

usage across genders is higher than that across 
languages. For instance, there is a 44.2% overlap 

                                                 
5 http://www.cjk.org 
6 http://technology.chtsai.org/namelist 
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across gender for the transcribed English names; 
but only 19.2% overlap across languages for the 
surnames. 

In summary, the semantic attributes of personal 
names are characterized by the choice of characters, 
and therefore their n-gram statistics as well. If the 
attributes are known in advance, then the semantic 
transliteration is absolutely feasible. We may 
obtain the semantic attributes from the context 
through trigger words. For instance, from “Mr 
Tony Blair”, we realize “Tony” is a male given 
name while “Blair” is a surname; from  “Japanese 
Prime Minister Koizumi”, we resolve that 
“Koizumi” is a Japanese surname. In the case 
where contextual trigger words are not available, 
we study detecting the semantic attributes from the 
personal names themselves in the next section. 

4 Formulation of Transliteration Model  

Let S and T denote the name written in the source 
and target writing systems respectively. Within a 
probabilistic framework, a transliteration system 
produces the optimum target name, T*, which 
yields the highest posterior probability given the 
source name, S, i.e. 

)|(maxarg* STPT
T ST∈

=  (1) 

where ST  is the set of all possible transliterations 
for the source name, S. The alignment between S 
and T is assumed implicit in the above formulation.  
In a standard phonetic transliteration system, 

)|( STP , the posterior probability of the hypothe-
sized transliteration, T, given the source name, S, is 
directly modeled without considering any form of 
semantic information. On the other hand, semantic 
transliteration described in this paper incorporates 
language of origin and gender information to cap-
ture the semantic structure. To do so, )|( STP  is 
rewritten as 

( | )P T S  = ∑
∈∈ GL GL

SGLTP
,

)|,,(  (2) 

 = ∑
∈∈ GL GL

SGLPGLSTP
,

)|,(),,|(  (3) 

where ( | , , )P T S L G  is the transliteration probabil-
ity from source S to target T, given the language of 
origin (L) and gender (G) labels. L  and G denote 
the sets of languages and genders respectively. 

)|,( SGLP  is the probability of the language and 
the gender given the source, S. 

Given the alignment between S and T, the 
transliteration probability given L and G may be 
written as  

),,|( GLSTP = 1
1 1

1

( | , )
I

i i
i

i

P t T S−

=
∏  (4)

 ≈ 1 1
1

( | , , )
I

i i i i
i

P t t s s− −
=
∏  (5)

where is  and it are the ith token of S and T respec-
tively and I is the total number of tokens in both S 
and T. k

jS  and k
jT  represent the sequence of tokens 

( )1, , ,j j ks s s+ K  and ( )1, , ,j j kt t t+ K  respectively. Eq. 
(4) is in fact the n-gram likelihood of the token pair 

,i it s〈 〉  sequence and Eq. (5) approximates this 
probability using a bigram language model. This 
model is conceptually similar to the joint source-
channel model (Li et al., 2004) where the target to-
ken it  depends on not only its source token is but 
also the history 1it − and 1is − . Each character in the 
target name forms a token. To obtain the source 
tokens, the source and target names in the training 
data are aligned using the EM algorithm. This 
yields a set of possible source tokens and a map-
ping between the source and target tokens. During 
testing, each source name is first segmented into 
all possible token sequences given the token set. 
These source token sequences are mapped to the 
target sequences to yield an N-best list of translit-
eration candidates. Each candidate is scored using 
an n-gram language model given by Eqs. (4) or (5). 

As in Eq. (3), the transliteration also greatly 
depends on the prior knowledge, )|,( SGLP . 
When no prior knowledge is available, a uniform 
probability distribution is assumed. By expressing 

)|,( SGLP  in the following form, 
)|(),|()|,( SLPSLGPSGLP =  (6) 

prior knowledge about language and gender may 
be incorporated. For example, if the language of S 
is known as sL , we have 

1
( | )

0
s

s

L L
P L S

L L
=⎧

= ⎨ ≠⎩
 (7) 

Similarly, if the gender information for S is known 
as sG , then, 
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1
( | , )

0
s

s

G G
P G L S

G G
=⎧

= ⎨ ≠⎩
 (8) 

Note that personal names have clear semantic 
associations. In the case where the semantic 
attribute information is not available, we propose 
learning semantic information from the names 
themselves. Using Bayes’ theorem, we have 

)(
),(),|()|,(

SP
GLPGLSPSGLP =  (9) 

( | , )P S L G  can be modeled using an n-gram lan-
guage model for the letter sequence of all the 
Latin-scripted names in the training set. The prior 
probability, ),( GLP , is typically uniform. )(SP  
does not depend on L and G, thus can be omitted. 

Incorporating )|,( SGLP into Eq. (3) can be 
viewed as performing a soft decision of the 
language and gender semantic attributes. By 
contrast, hard decision may also be performed 
based on maximum likelihood approach: 

arg max ( | )s
L

L P S L
∈

=
L

 (10) 

arg max ( | , )s
G

G P S L G
∈

=
G

 (11) 

where sL  and sG are the detected language and 
gender of S respectively. Therefore, for hard deci-
sion, )|,( SGLP  is obtained by replacing sL  and 

sG  in Eq. (7) and (8) with sL  and sG respec-
tively. Although hard decision eliminates the need 
to compute the likelihood scores for all possible 
pairs of L and G, the decision errors made in the 
early stage will propagate to the transliteration 
stage. This is potentially bad if a poor detector is 
used (see Table 9 in Section 5.3). 

If we are unable to model the prior knowledge 
of semantic attributes )|,( SGLP , then a more 
general model will be used for ( | , , )P T S L G  by 
dropping the dependency on the information that is 
not available. For example, Eq. (3) is reduced 
to ( | , ) ( | )

L
P T S L P L S

∈∑ L
 if the gender information 

is missing. Note that when both language and 
gender are unknown, the system simplifies to the 
baseline phonetic transliteration system. 

5 Experiments 

This section presents experiments on database of 3 

language origins (Japanese, Chinese and English) 
and gender information (surname7, male and fe-
male). In the experiments of determining the lan-
guage origin, we used the full data set for the 3 lan-
guages as in shown in Table 1. The training and test 
data for semantic transliteration are the subset of 
Table 1 comprising those with surnames, male and 
female given names labels. In this paper, J, C and 
E stand for Japanese, Chinese and English; S, M 
and F represent Surname, Male and Female given 
names, respectively.  

 
# unique entries L Data 

set S M F All 
Train 21.7k 5.6k 1.7k 27.1k J 
Test 2.6k 518 276 2.9k 
Train 283 29.6k 9.2k 31.5k C 
Test 283 2.9k 1.2k 3.1k 
Train 12.5k 2.8k 3.8k 18.5k E 
Test 1.4k 367 429 2.1k 

Table 3: Number of unique entries in training and 
test sets, categorized by semantic attributes 

 
Table 3 summarizes the number of unique8 name 
entries used in training and testing. The test sets 
were randomly chosen such that the amount of test 
data is approximately 10-20% of the whole corpus. 
There were no overlapping entries between the 
training and test data. Note that the Chinese sur-
names are typically single characters in a small set; 
we assume there is no unseen surname in the test 
set. All the Chinese surname entries are used for 
both training and testing. 

5.1 Language of Origin 

For each language of origin, a 4-gram language 
model was trained for the letter sequence of the 
source names, with a 1-letter shift. 

 
Japanese Chinese English All 

96.46 96.44 89.90 94.81 
Table 4: Language detection accuracies (%) using 
a 4-gram language model for the letter sequence of 

the source name in Latin script. 

                                                 
7 In this paper, surnames are treated as a special class of gen-
der. Unlike given names, they do not have any gender associa-
tion. Therefore, they fall into a third category which is neither 
male nor female.  
8 By contrast, Table 1 shows the total number of name exam-
ples available. For each unique entry, there may be multiple 
examples. 
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Table 4 shows the language detection accuracies 

for all the 3 languages using Eq. (10). The overall 
detection accuracy is 94.81%. The corresponding 
Equal Error Rate (EER)9 is 4.52%. The detection 
results may be used directly to infer the semantic 
information for transliteration. Alternatively, the 
language model likelihood scores may be 
incorporated into the Bayesian framework to 
improve the transliteration performance, as 
described in Section 4. 

5.2 Gender Association 

Similarly, gender detection 10  was performed by 
training a 4-gram language model for the letter se-
quence of the source names for each language and 
gender pair.  

 

Language Male Female All 
Japanese 90.54 80.43 87.03 
Chinese 64.34 71.66 66.52 
English 75.20 72.26 73.62 

Table 5: Gender detection accuracies (%) using a 
4-gram language model for the letter sequence of 

the source name in Latin script. 
 

Table 5 summarizes the gender detection accura-
cies using Eq. (11) assuming language of origin is 
known, arg max ( | , )s s

G
G P S L L G

∈
= =

G
. The overall 

detection accuracies are 87.03%, 66.52% and 
73.62% for Japanese, Chinese and English respec-
tively. The corresponding EER are 13.1%, 21.8% 
and 19.3% respectively. Note that gender detection 
is generally harder than language detection. This is 
because the tokens (syllables) are shared very 
much across gender categories, while they are 
quite different from one language to another.  

5.3 Semantic Transliteration 

The performance was measured using the Mean 
Reciprocal Rank (MRR) metric (Kantor and Voor-
hees, 2000), a measure that is commonly used in 
information retrieval, assuming there is precisely 
one correct answer. Each transliteration system 
generated at most 50-best hypotheses for each 

                                                 
9 EER is defined as the error of false acceptance and false re-
jection when they are equal. 
10 In most writing systems, the ordering of surname and 
given name is known. Therefore, gender detection is 
only performed for male and female classes. 

word when computing MRR. The word and char-
acter accuracies of the top best hypotheses are also 
reported.  

We used the phonetic transliteration system as 
the baseline to study the effects of semantic 
transliteration. The phonetic transliteration system 
was trained by pooling all the available training 
data from all the languages and genders to estimate 
a language model for the source-target token pairs. 
Table 6 compares the MRR performance of the 
baseline system using unigram and bigram 
language models for the source-target token pairs. 

 

 J C E All 
Unigram 0.5109 0.4869 0.2598 0.4443 
Bigram 0.5412 0.5261 0.3395 0.4895 

Table 6:  MRR performance of phonetic translit-
eration for 3 corpora using unigram and bigram 

language models. 
 

The MRR performance for Japanese and Chinese 
is in the range of 0.48-0.55. However, due to the 
small amount of training and test data, the MRR 
performance of the English name transliteration is 
slightly poor (approximately 0.26-0.34). In general, 
a bigram language model gave an overall relative 
improvement of 10.2% over a unigram model.  
 

L G Set J C E 
S 0.5366 0.7426 0.4009 
M 0.5992 0.5184 0.2875 
F 0.4750 0.4945 0.1779   

All 0.5412 0.5261 0.3395 
S 0.6500 0.7971 0.7178 
M 0.6733 0.5245 0.4978 
F 0.5956 0.5191 0.4115  

All 0.6491 0.5404 0.6228 
S 0.6822 0.9969 0.7382 
M 0.7267 0.6466 0.4319 
F 0.5856 0.7844 0.4340 

 

 

All 0.6811 0.7075 0.6294 
S 0.6541 0.6733 0.7129 
M 0.6974 0.5362 0.4821 
F 0.5743 0.6574 0.4138 

  

All 0.6477 0.5764 0.6168 
Table 7: The effect of language and gender in-

formation on the overall MRR performance of 
transliteration (L=Language, G=Gender, 
=unknown, =known, =soft decision). 

 

Next, the scenarios with perfect language and/or 
gender information were considered. This com-
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parison is summarized in Table 7. All the MRR re-
sults are based on transliteration systems using bi-
gram language models. The table clearly shows 
that having perfect knowledge, denoted by “ ”, of 
language and gender helps improve the MRR per-
formance; detecting semantic attributes using soft 
decision, denoted by “ ”, has a clear win over the 
baseline, denoted by “ ”, where semantic informa-
tion is not used. The results strongly recommend 
the use of semantic transliteration for personal 
names in practice. 

Next let’s look into the effects of automatic 
language and gender detection on the performance. 

 

 J C E All 
 0.5412 0.5261 0.3395 0.4895 
 0.6292 0.5290 0.5780 0.5734 
 0.6162 0.5301 0.6088 0.5765 
 0.6491 0.5404 0.6228 0.5952 

Table 8: The effect of language detection 
schemes on MRR using bigram language models 

and unknown gender information (hereafter, 
=unknown, =known, =hard decision, =soft 

decision). 
 

Table 8 compares the MRR performance of the 
semantic transliteration systems with different 
prior information, using bigram language models. 
Soft decision refers to the incorporation of the lan-
guage model scores into the transliteration process 
to improve the prior knowledge in Bayesian infer-
ence. Overall, both hard and soft decision methods 
gave similar MRR performance of approximately 
0.5750, which was about 17.5% relatively im-
provement compared to the phonetic transliteration 
system with 0.4895 MRR. The hard decision 
scheme owes its surprisingly good performance to 
the high detection accuracies (see Table 4). 

 

 S M F All 
 0.6825 0.5422 0.5062 0.5952 
 0.7216 0.4674 0.5162 0.5855 
 0.7216 0.5473 0.5878 0.6267 
 0.7216 0.6368 0.6786 0.6812 

Table 9: The effect of gender detection schemes 
on MRR using bigram language  

models with perfect language information. 
 

Similarly, the effect of various gender detection 
methods used to obtain the prior information is 
shown in Table 9. The language information was 
assumed known a-priori. Due to the poorer 
detection accuracy for the Chinese male given 

names (see Table 5), hard decision of gender had 
led to deterioration in MRR performance of the 
male names compared to the case where no prior 
information was assumed. Soft decision of gender 
yielded further gains of 17.1% and 13.9% relative 
improvements for male and female given names 
respectively, over the hard decision method. 

 

Overall Accuracy (%) L G MRR Word Character 
  0.4895 36.87 58.39 

 0.5952 46.92 65.18   0.6812 58.16 70.76 
0.5824 47.09 66.84 

  0.6122 49.38 69.21 
Table 10: Overall transliteration performance 

using bigram language model with various lan-
guage and gender information. 

 

Finally, Table 10 compares the performance of 
various semantic transliteration systems using bi-
gram language models. The baseline phonetic 
transliteration system yielded 36.87% and 58.39% 
accuracies at word and character levels respec-
tively; and 0.4895 MRR. It can be conjectured 
from the results that semantic transliteration is sub-
stantially superior to phonetic transliteration. In 
particular, knowing the language information im-
proved the overall MRR performance to 0.5952; 
and with additional gender information, the best 
performance of 0.6812 was obtained. Furthermore, 
both hard and soft decision of semantic informa-
tion improved the performance, with the latter be-
ing substantially better. Both the word and charac-
ter accuracies improvements were consistent and 
have similar trend to that observed for MRR.  

The performance of the semantic transliteration 
using soft decisions (last row of Table 10) 
achieved 25.1%, 33.9%, 18.5% relative improve-
ment in MRR, word and character accuracies 
respectively over that of the phonetic 
transliteration (first row of Table 10). In addition, 
soft decision also presented 5.1%, 4.9% and 3.5% 
relative improvement over hard decision in MRR, 
word and character accuracies respectively. 

5.4 Discussions 

It was found that the performance of the baseline 
phonetic transliteration may be greatly improved 
by incorporating semantic information such as the 
language of origin and gender. Furthermore, it was 
found that the soft decision of language and gender 
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outperforms the hard decision approach. The soft 
decision method incorporates the semantic scores 

( , | )P L G S with transliteration scores ( | , , )P T S L G , 
involving all possible semantic specific models in 
the decoding process.  

In this paper, there are 9 such models (3 
languages× 3 genders). The hard decision relies on 
Eqs. (10) and (11) to decide language and gender, 
which only involves one semantic specific model 
in the decoding. Neither soft nor hard decision 
requires any prior information about the names. It 
provides substantial performance improvement 
over phonetic transliteration at a reasonable 
computational cost. If the prior semantic 
information is known, e.g. via trigger words, then 
semantic transliteration attains its best performance. 

6 Conclusion 

Transliteration is a difficult, artistic human en-
deavor, as rich as any other creative pursuit. Re-
search on automatic transliteration has reported 
promising results for regular transliteration, where 
transliterations follow certain rules. The generative 
model works well as it is designed to capture regu-
larities in terms of rules or patterns. This paper ex-
tends the research by showing that semantic trans-
literation of personal names is feasible and pro-
vides substantial performance gains over phonetic 
transliteration.  This paper has presented a success-
ful attempt towards semantic transliteration using 
personal name transliteration as a case study. It 
formulates a mathematical framework that incor-
porates explicit semantic information (prior 
knowledge), or implicit one (through soft or hard 
decision) into the transliteration model. Extending 
the framework to machine transliteration of named 
entities in general is a topic for further research. 
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Abstract

We present a novel method for predicting in-
flected word forms for generating morpho-
logically rich languages in machine trans-
lation. We utilize a rich set of syntactic
and morphological knowledge sources from
both source and target sentences in a prob-
abilistic model, and evaluate their contribu-
tion in generating Russian and Arabic sen-
tences. Our results show that the proposed
model substantially outperforms the com-
monly used baseline of a trigram target lan-
guage model; in particular, the use of mor-
phological and syntactic features leads to
large gains in prediction accuracy. We also
show that the proposed method is effective
with a relatively small amount of data.

1 Introduction

Machine Translation (MT) quality has improved
substantially in recent years due to applying data
intensive statistical techniques. However, state-of-
the-art approaches are essentially lexical, consider-
ing every surface word or phrase in both the source
sentence and the corresponding translation as an in-
dependent entity. A shortcoming of this word-based
approach is that it is sensitive to data sparsity. This is
an issue of importance as aligned corpora are an ex-
pensive resource, which is not abundantly available
for many language pairs. This is particularly prob-
lematic for morphologically rich languages, where
word stems are realized in many different surface
forms, which exacerbates the sparsity problem.

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

In this paper, we explore an approach in which
words are represented as a collection of morpholog-
ical entities, and use this information to aid in MT
for morphologically rich languages. Our goal is two-
fold: first, to allow generalization over morphology
to alleviate the data sparsity problem in morphology
generation. Second, to model syntactic coherence in
the form of morphological agreement in the target
language to improve the generation of morphologi-
cally rich languages. So far, this problem has been
addressed in a very limited manner in MT, most typ-
ically by using a target language model.

In the framework suggested in this paper, we train
a model that predicts the inflected forms of a se-
quence of word stems in a target sentence, given
the corresponding source sentence. We use word
and word alignment information, as well as lexi-
cal resources that provide morphological informa-
tion about the words on both the source and target
sides. Given a sentence pair, we also obtain syntactic
analysis information for both the source and trans-
lated sentences. We generate the inflected forms of
words in the target sentence using all of the available
information, using a log-linear model that learns the
relevant mapping functions.

As a case study, we focus on the English-Russian
and English-Arabic language pairs. Unlike English,
Russian and Arabic have very rich systems of mor-
phology, each with distinct characteristics. Trans-
lating from a morphology-poor to a morphology-
rich language is especially challenging since de-
tailed morphological information needs to be de-
coded from a language that does not encode this in-
formation or does so only implicitly (Koehn, 2005).
We believe that these language pairs are represen-
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tative in this respect and therefore demonstrate the
generality of our approach.

There are several contributions of this work. First,
we propose a general approach that shows promise
in addressing the challenges of MT into morpholog-
ically rich languages. We show that the use of both
syntactic and morphological information improves
translation quality. We also show the utility of
source language information in predicting the word
forms of the target language. Finally, we achieve
these results with limited morphological resources
and training data, suggesting that the approach is
generally useful for resource-scarce language pairs.

2 Russian and Arabic Morphology

Table 1 describes the morphological features rele-
vant to Russian and Arabic, along with their possible
values. The rightmost column in the table refers to
the morphological features that are shared by Rus-
sian and Arabic, including person, number, gender
and tense. While these features are fairly generic
(they are also present in English), note that Rus-
sian includes an additional gender (neuter) and Ara-
bic has a distinct number notion for two (dual). A
central dimension of Russian morphology is case
marking, realized as suffixation on nouns and nom-
inal modifiers1. The Russian case feature includes
six possible values, representing the notions of sub-
ject, direct object, location, etc. In Arabic, like other
Semitic languages, word surface forms may include
proclitics and enclitics (or prefixes and suffixes as
we refer to them in this paper), concatenated to in-
flected stems. For nouns, prefixes include conjunc-
tions (wa: “and”, fa: “and, so”), prepositions (bi:
“by, with”, ka: “like, such as”,li : “for, to”) and a de-
terminer, and suffixes include possessive pronouns.
Verbal prefixes include conjunction and negation,
and suffixes include object pronouns. Both object
and possessive pronouns are captured by an indica-
tor function for its presence or absence, as well as
by the features that indicate their person, number
and gender. As can be observed from the table, a
large number of surface inflected forms can be gen-
erated by the combination of these features, making

1Case marking also exists in Arabic. However, in many in-
stances, it is realized by diacritics which are ignored in standard
orthography. In our experiments, we include case marking in
Arabic only when it is reflected in the orthography.

the morphological generation of these languages a
non-trivial task.

Morphologically complex languages also tend to
display a rich system of agreements. In Russian, for
example, adjectives agree with head nouns in num-
ber, gender and case, and verbs agree with the sub-
ject noun in person and number (past tense verbs
agree in gender and number). Arabic has a similarly
rich system of agreement, with unique characteris-
tics. For example, in addition to agreement involv-
ing person, number and gender, it also requires a de-
terminer for each word in a definite noun phrase with
adjectival modifiers; in a noun compound, a deter-
miner is attached to the last noun in the chain. Also,
non-human subject plural nouns require the verb to
be inflected in a singular feminine form. Generating
these morphologically complex languages is there-
fore more difficult than generating English in terms
of capturing the agreement phenomena.

3 Related Work

The use of morphological features in language mod-
elling has been explored in the past for morphology-
rich languages. For example, (Duh and Kirchhoff,
2004) showed that factored language models, which
consider morphological features and use an opti-
mized backoff policy, yield lower perplexity.

In the area of MT, there has been a large body
of work attempting to modify theinput to a transla-
tion system in order to improve the generated align-
ments for particular language pairs. For example,
it has been shown (Lee, 2004) that determiner seg-
mentation and deletion in Arabic sentences in an
Arabic-to-English translation system improves sen-
tence alignment, thus leading to improved over-
all translation quality. Another work (Koehn and
Knight, 2003) showed improvements by splitting
compounds in German. (Nießen and Ney, 2004)
demonstrated that a similar level of alignment qual-
ity can be achieved with smaller corpora applying
morpho-syntactic source restructuring, using hierar-
chical lexicon models, in translating from German
into English. (Popovíc and Ney, 2004) experimented
successfully with translating from inflectional lan-
guages into English making use of POS tags, word
stems and suffixes in the source language. More re-
cently, (Goldwater and McClosky, 2005) achieved
improvements in Czech-English MT, optimizing a
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Features Russian Arabic Both
POS (11 categories) (18 categories)
Person 1,2,3
Number dual sing(ular), pl(ural)
Gender neut(er) masc(uline), fem(inine)
Tense gerund present, past, future, imperative
Mood subjunctive, jussive
Case dat(ive), prep(ositional), nom(inative), acc(usative), gen(itive)

instr(umental)
Negation yes, no
Determiner yes, no
Conjunction wa, fa, none
Preposition bi, ka, li, none
ObjectPronoun yes, no

Pers/Numb/Gend of pronoun, none
PossessivePronoun Same as ObjectPronoun

Table 1: Morphological features used for Russian and Arabic

set of possible source transformations, incorporat-
ing morphology. In general, this line of work fo-
cused on translating from morphologically rich lan-
guages into English; there has been limited research
in MT in the opposite direction. Koehn (2005) in-
cludes a survey of statistical MT systems in both di-
rections for the Europarl corpus, and points out the
challenges of this task. A recent work (El-Kahlout
and Oflazer, 2006) experimented with English-to-
Turkish translation with limited success, suggesting
that inflection generation given morphological fea-
tures may give positive results.

In the current work, we suggest a probabilistic
framework for morphology generation performed as
post-processing. It can therefore be considered as
complementary to the techniques described above.
Our approach is general in that it is not specific to
a particular language pair, and is novel in that it al-
lows modelling of agreement on the target side. The
framework suggested here is most closely related to
(Suzuki and Toutanova, 2006), which uses a proba-
bilistic model to generate Japanese case markers for
English-to-Japanese MT. This work can be viewed
as a generalization of (Suzuki and Toutanova, 2006)
in that our model generates inflected forms of words,
and is not limited to generating a small, closed set of
case markers. In addition, the morphology genera-
tion problem is more challenging in that it requires
handling of complex agreement phenomena along
multiple morphological dimensions.

4 Inflection Prediction Framework

In this section, we define the task of of morphologi-
cal generation as inflection prediction, as well as the

lexical operations relevant for the task.

4.1 Morphology Analysis and Generation

Morphological analysis can be performed by ap-
plying language specific rules. These may include
a full-scale morphological analysis with contextual
disambiguation, or, when such resources are not
available, simple heuristic rules, such as regarding
the last few characters of a word as its morphogical
suffix. In this work, we assume that lexiconsLS and
LT are available for the source and translation lan-
guages, respectively. Such lexicons can be created
manually, or automatically from data. Given a lexi-
conL and a surface wordw, we define the following
operations:

• Stemming- let Sw = {s1, ..., sl} be the set of
possible morphological stems (lemmas) ofw

according toL.2

• Inflection - let Iw = {i1, ..., im} be the set of
surface form words that have the same stem as
w. That is,i ∈ Iw iff Si

⋂

Sw 6= ∅.

• Morphological analysis- letAw = {a1, ..., av}
be the set of possible morphological analyses
for w. A morphological analysisa is a vector of
categorical values, where the dimensions and
possible values for each dimension in the vector
representation space are defined byL.

4.2 The Task

We assume that we are given aligned sentence pairs,
where a sentence pair includes a source and a tar-

2Multiple stems are possible due to ambiguity in morpho-
logical analysis.
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NN+sg+nom+neut

the

DET

allocation of resources has completed

NN+sg PREP NN+pl AUXV+sg VERB+pastpart

распределение

NN+sg+gen+pl+masc

ресурсов

VERB+perf+pass+part+neut+sg

завершено

raspredelenie resursov zaversheno

Figure 1: Aligned English-Russian sentence pair
with syntactic and morphological annotation

get sentence, and lexiconsLS andLT that support
the operations described in the section above. Let
a sentencew1, ...wt, ...wn be the output of a MT
system in the target language. This sentence can
be converted into the corresponding stem set se-
quenceS1, ...St, ...Sn, applying the stemming op-
eration. Then the task is, for every stem setSt in
the output sentence, to predict an inflectionyt from
its inflection setIt. The predicted inflections should
both reflect the meaning conveyed by the source sen-
tence, and comply with the agreement rules of the
target language.3

Figure 1 shows an example of an aligned English-
Russian sentence pair: on the source (English) side,
POS tags and word dependency structure are indi-
cated by solid arcs. The alignments between En-
glish and Russian words are indicated by the dot-
ted lines. The dependency structure on the Russian
side, indicated by solid arcs, is given by a treelet MT
system in our case (see Section 6.1), projected from
the word dependency structure of English and word
alignment information. Note that the Russian sen-
tence displays agreement in number and gender be-
tween the subject noun (raspredelenie) and the pred-
icate (zaversheno); note also thatresursovis in gen-
itive case, as it modifies the noun on its left.

5 Models for Inflection Prediction

5.1 A Probabilistic Model

Our learning framework uses a Maximum Entropy
Markov model (McCallum et al., 2000). The model
decomposes the overall probability of a predicted
inflection sequence into a product of local proba-
bilities for individual word predictions. The local

3That is, assuming that the stem sequence that is output by
the MT system is correct.

probabilities are conditioned on the previousk pre-
dictions. The model implemented here is of second
order: at any decision pointt we condition the prob-
ability distribution over labels on the previous two
predictionsyt−1 and yt−2 in addition to the given
(static) word context from both the source and tar-
get sentences. That is, the probability of a predicted
inflection sequence is defined as follows:

p(y | x) =
n

∏

t=1

p(yt | yt−1, yt−2, xt), yt ∈ It

wherext denotes the given context at positiont

andIt is the set of inflections corresponding toSt,
from which the model should chooseyt.

The features we constructed pair up predicates on
thecontext( x̄, yt−1, yt−2) and thetarget label(yt).
In the suggested framework, it is straightforward to
encode the morphological properties of a word, in
addition to its surface inflected form. For example,
for a particular inflected word formyt and its con-
text, the derived paired features may include:

φk =

{

1 if surface wordyt is y′ ands′ ∈ St+1

0 otherwise

φk+1 =
{

1 if Gender(yt) =“Fem” andGender(yt−1) =“Fem”
0 otherwise

In the first example, a given neighboring stem set
St+1 is used as a context feature for predicting the
target wordyt. The second feature captures the gen-
der agreement with the previous word. This is possi-
ble because our model is of second order. Thus, we
can derive context features describing the morpho-
logical properties of the two previous predictions.4

Note that our model is not a simple multi-class clas-
sifier, because our features are shared across mul-
tiple target labels. For example, the gender fea-
ture above applies to many different inflected forms.
Therefore, it is a structured prediction model, where
the structure is defined by the morphological proper-
ties of the target predictions, in addition to the word
sequence decomposition.

5.2 Feature Categories

The information available for estimating the distri-
bution overyt can be split into several categories,

4Note that while we decompose the prediction task left-to-
right, an appealing alternative is to define a top-down decompo-
sition, traversing the dependency tree of the sentence. However,
this requires syntactic analysis of sufficient quality.
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corresponding to feature source. The first ma-
jor distinction is monolingual versus bilingual fea-
tures:monolingualfeatures refer only to the context
(and predicted label) in the target language, while
bilingual features have access to information in the
source sentences, obtained by traversing the word
alignment links from target words to a (set of) source
words, as shown in Figure 1.

Both monolingual and bilingual features can be
further split into three classes:lexical, morpholog-
ical andsyntactic. Lexical features refer to surface
word forms, as well as their stems. Since our model
is of second order, our monolingual lexical fea-
tures include the features of a standard word trigram
language model. Furthermore, since our model is
discriminative (predicting word forms given their
stems), the monolingual lexical model can use stems
in addition to predicted words for the left and cur-
rent position, as well as stems from theright con-
text. Morphological features are those that refer to
the features given in Table 1. Morphological infor-
mation is used in describing the target label as well
as its context, and is intended to capture morpho-
logical generalizations. Finally,syntacticfeatures
can make use of syntactic analyses of the source
and target sentences. Such analyses may be derived
for the target language, using the pre-stemmed sen-
tence. Without loss of generality, we will use here
a dependency parsing paradigm. Given a syntactic
analysis, one can construct syntactic features; for ex-
ample, the stem of theparentword of yt. Syntactic
features are expected to be useful in capturing agree-
ment phenomena.

5.3 Features

Table 2 gives the full set of suggested features for
Russian and Arabic, detailed by type. Formonolin-
gual lexical features, we consider the stems of the
predicted word and its immediately adjacent words,
in addition to traditional word bigram and trigram
features. Formonolingual morphologicalfeatures,
we consider the morphological attributes of the two
previously predicted words and the current predic-
tion; for monolingual syntacticfeatures, we use the
stem of the parent node.

The bilingual features include the set of words
aligned to the focus word at positiont, where they
are treated as bag-of-words, i.e., each aligned word

Feature categories Instantiations
Monolingual lexical
Word stem st−1,st−2,st,st+1

Predicted word yt, yt−1, yt−2

Monolingual morphological
f : POS, Person, Number, Gender, Tensef(yt−2),f(yt−1),f(yt)
Neg, Det, Prep, Conj, ObjPron, PossPron
Monolingual syntactic
Parent stem sHEAD(t)

Bilingual lexical
Aligned word setAl Alt, Alt−1, Alt+1

Bilingual morph & syntactic
f : POS, Person, Number, Gender, Tensef(Alt), f(Alt−1),
Neg, Det, Prep, Conj, ObjPron, PossPron,f(Alt+1), f(AlHEAD(t))
Comp

Table 2: The feature set suggested for English-
Russian and English-Arabic pairs

is assigned a separate feature.Bilingual lexical fea-
tures can refer to words aligned toyt as all as words
aligned to its immediate neighborsyt−1 and yt+1.
Bilingual morphological and syntacticfeatures re-
fer to the features of the source language, which
are expected to be useful for predicting morphol-
ogy in the target language. For example, the bilin-
gual Det (determiner) feature is computed accord-
ing to the source dependency tree: if a child of a
word aligned towt is a determiner, then the fea-
ture value is assigned its surface word form (such
as a or the). The bilingualPrep feature is com-
puted similarly, by checking the parent chain of the
word aligned towt for the existence of a preposi-
tion. This feature is hoped to be useful for predict-
ing Arabic inflected forms with a prepositional pre-
fix, as well as for predicting case marking in Rus-
sian. The bilingualObjPronandPossPronfeatures
represent any object pronoun of the word aligned to
wt and a preceding possessive pronoun, respectively.
These features are expected to map to the object and
possessive pronoun features in Arabic. Finally, the
bilingual Compoundfeature checks whether a word
appears as part of a noun compound in the English
source. f this is the case, the feature is assigned the
value of “head” or “dependent”. This feature is rel-
evant for predicting a genitive case in Russian and
definiteness in Arabic.

6 Experimental Settings

In order to evaluate the effectiveness of the sug-
gested approach, we performedreference experi-
ments, that is, using the aligned sentence pairs of
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Data Eng-Rus Eng-Ara
Avg. sentlen Eng Rus Eng Ara
Training 1M 470K

14.06 12.90 12.85 11.90
Development 1,000 1,000

13.73 12.91 13.48 12.90
Test 1,000 1,000

13.61 12.84 8.49 7.50

Table 3: Data set statistics: corpus size and average
sentence length (in words)

referencetranslations rather than the output of an
MT system as input.5 This allows us to evaluate
our method with a reduced noise level, as the words
and word order are perfect in reference translations.
These experiments thus constitute a preliminary step
for tackling the real task of inflecting words in MT.

6.1 Data

We used a corpus of approximately 1 million aligned
sentence pairs for English-Russian, and 0.5 million
pairs for English-Arabic. Both corpora are from a
technical (software manual) domain, which we be-
lieve is somewhat restricted along some morpho-
logical dimensions, such as tense and person. We
used 1,000 sentence pairs each for development and
testing for both language pairs. The details of the
datasets used are given in Table 3.

The sentence pairs were word-aligned using
GIZA++ (Och and Ney, 2000) and submitted to a
treelet-based MT system (Quirk et al., 2005), which
uses the word dependency structure of the source
language and projects word dependency structure to
the target language, creating the structure shown in
Figure 1 above.

6.2 Lexicon

Table 4 gives some relevant statistics of the lexicons
we used. For Russian, a general-domain lexicon was
available to us, consisting of about 80,000 lemmas
(stems) and 9.4 inflected forms per stem.6 Limiting
the lexicon to word types that are seen in the train-
ing set reduces its size substantially to about 14,000
stems, and an average of 3.8 inflections per stem.
We will use this latter “domain-adapted” lexicon in
our experiments.

5In this case,yt should equalwt, according to the task defi-
nition.

6The averages reported in Table 4 are by type and do not
consider word frequencies in the data.

Source Stems Avg(| I |) Avg(| S |)
Rus. Lexicon 79,309 9.4

Lexicon∩ Train 13,929 3.8 1.6
Ara. Lexicon∩ Train 12,670 7.0 1.7

Table 4: Lexicon statistics

For Arabic, as a full-size Arabic lexicon was not
available to us, we used the Buckwalter morpholog-
ical analyzer (Buckwalter, 2004) to derive a lexicon.
To acquire thestemmingandinflectionoperators, we
submit all words in our training data to the Buckwal-
ter analyzer. Note that Arabic displays a high level
of ambiguity, each word corresponding to many pos-
sible segmentations and morphological analyses; we
considered all of the different stems returned by the
Buckwalter analyzer in creating a word’s stem set.
The lexicon created in this manner contains 12,670
distinct stems and 89,360 inflected forms.

For the generation ofword features, we only con-
sider one dominant analysis for any surface word
for simplicity. In case of ambiguity, we considered
only the first (arbitrary) analysis for Russian. For
Arabic, we apply the following heuristic: use the
most frequent analysis estimated from the gold stan-
dard labels in the Arabic Treebank (Maamouri et al.,
2005); if a word does not appear in the treebank, we
choose the first analysis returned by the Buckwal-
ter analyzer. Ideally, the best word analysis should
be provided as a result of contextual disambiguation
(e.g., (Habash and Rambow, 2005)); we leave this
for future work.

6.3 Baseline

As a baseline, we pick a morphological inflectionyt

at random fromIt. This random baseline serves as
an indicator for the difficulty of the problem. An-
other more competitive baseline we implemented
is a word trigram language model (LM). The LMs
were trained using the CMU language modelling
toolkit (Clarkson and Rosenfeld, 1997) with default
settings on the training data described in Table 3.

6.4 Experiments

In the experiments, our primary goal is to evaluate
the effectiveness of the proposed model using all
features available to us. Additionally, we are inter-
ested in knowing the contribution of each informa-
tion source, namely of morpho-syntactic and bilin-
gual features. Therefore, we study the performance
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of models including the full feature schemata as well
as models that are restricted to feature subsets ac-
cording to the feature types as described in Section
5.2. The models are as follows:Monolingual-Word,
including LM-like and stem n-gram features only;
Bilingual-Word, which also includes bilingual lex-
ical features;7 Monolingual-All, which has access
to all the information available in the target lan-
guage, including morphological and syntactic fea-
tures; and finally,Bilingual-All, which includes all
feature types from Table 2.

For each model and language, we perform feature
selection in the following manner. The features are
represented as featuretemplates, such as”POS=X”,
which generate a set of binary features correspond-
ing to different instantiations of the template, as in
”POS=NOUN”. In addition to individual features, con-
junctions of up to three features are also considered
for selection (e.g.,”POS=NOUN& Number=plural”).
Every conjunction of feature templates considered
contains at least one predicate on the predictionyt,
and up to two predicates on the context. The feature
selection algorithm performs a greedy forward step-
wise feature selection on the feature templates so as
to maximize development set accuracy. The algo-
rithm is similar to the one described in (Toutanova,
2006). After this process, we performed some man-
ual inspection of the selected templates, and finally
obtained 11 and 36 templates for theMonolingual-
All and Bilingual-All settings for Russian, respec-
tively. These templates generated 7.9 million and
9.3 million binary feature instantiations in the fi-
nal model, respectively. The corresponding num-
bers for Arabic were 27 feature templates (0.7 mil-
lion binary instantiations) and 39 feature templates
(2.3 million binary instantiations) forMonolingual-
All andBilingual-All, respectively.

7 Results and Discussion

Table 5 shows the accuracy of predicting word forms
for the baseline and proposed models. We report ac-
curacy only on words that appear in our lexicons.
Thus, punctuation, English words occurring in the
target sentence, and words with unknown lemmas
are excluded from the evaluation. The reported ac-
curacy measure therefore abstracts away from the is-

7Overall, this feature set approximates the information that
is available to a state-of-the-art statistical MT system.

Model Eng-Rus Eng-Ara
Random 31.7 16.3
LM 77.6 31.7
Monolingual Word 85.1 69.6
Bilingual Word 87.1 71.9
Monolingual All 87.1 71.6
Bilingual All 91.5 73.3

Table 5: Accuracy (%) results by model

sue of incomplete coverage of the lexicon. When
we encounter these words in the true MT scenario,
we will make no predictions about them, and simply
leave them unmodified. In our current experiments,
in Russian, 68.2% of all word tokens were in Cyril-
lic, of which 93.8% were included in our lexicon.
In Arabic, 85.5% of all word tokens were in Arabic
characters, of which 99.1% were in our lexicon.8

The results in Table 5 show that the suggested
models outperform the language model substantially
for both languages. In particular, the contribution of
both bilingual and non-lexical features is notewor-
thy: adding non-lexical features consistently leads
to 1.5% to 2% absolute gain in both monolingual
and bilingual settings in both language pairs. We
obtain a particularly large gain in the Russian bilin-
gual case, in which the absolute gain is more than
4%, translating to 34% error rate reduction. Adding
bilingual features has a similar effect of gaining
about 2% (and 4% for Russian non-lexical) in ac-
curacy over monolingual models. The overall accu-
racy is lower in Arabic than in Russian, reflecting
the inherent difficulty of the task, as indicated by the
random baseline (31.7 in Russian vs. 16.3 in Ara-
bic).

In order to evaluate the effectiveness of the model
in alleviating the data sparsity problem in morpho-
logical generation, we trained inflection prediction
models on various subsets of the training data de-
scribed in Table 3, and tested their accuracy. The
results are given in Figure 2. We can see that with as
few as 5,000 training sentences pairs, the model ob-
tains much better accuracy than the language model,
which is trained on data that is larger by a few orders
of magnitude. We also note that the learning curve

8For Arabic, the inflection ambiguity was extremely high:
there were on average 39 inflected forms per stem set in our
development corpus (per token), as opposed to 7 in Russian.
We therefore limited the evaluation of Arabic to those stems that
have up to 30 inflected forms, resulting in 17 inflected forms per
stem set on average in the development data.
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Figure 2: Accuracy, varying training data size

becomes less steep as we use more training data,
suggesting that the models are successfully learning
generalizations.

We have also manually examined some repre-
sentative cases where the proposed model failed to
make a correct prediction. In both Russian and Ara-
bic, a very common pattern was a mistake in pre-
dicting the gender (as well as number and person in
Arabic) of pronouns. This may be attributed to the
fact that the correct choice of the pronoun requires
coreference resolution, which is not available in our
model. A more thorough analysis of the results will
be helpful to bring further improvements.

8 Conclusions and Future Work

We presented a probabilistic framework for mor-
phological generation given aligned sentence pairs,
incorporating morpho-syntactic information from
both the source and target sentences. The re-
sults, using reference translations, show that the pro-
posed models achieve substantially better accuracy
than language models, even with a relatively small
amount of training data. Our models using morpho-
syntactic information also outperformed models us-
ing only lexical information by a wide margin. This
result is very promising for achieving our ultimate
goal of improving MT output by using a special-
ized model for target language morphological gener-
ation. Though this goal is clearly outside the scope
of this paper, we conducted a preliminary experi-
ment where an English-to-Russian MT system was
trained on a stemmed version of the aligned data and
used to generate stemmed word sequences, which
were then inflected using the suggested framework.
This simple integration of the proposed model with

the MT system improved the BLEU score by 1.7.
The most obvious next step of our research, there-
fore, is to further pursue the integration of the pro-
posed model to the end-to-end MT scenario.

There are multiple paths for obtaining further im-
provements over the results presented here. These
include refinement in feature design, word analysis
disambiguation, morphological and syntactic anal-
ysis on the source English side (e.g., assigning se-
mantic role tags), to name a few. Another area of
investigation is capturing longer-distance agreement
phenomena, which can be done by implementing a
global statistical model, or by using features from
dependency trees more effectively.
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Abstract 

We present the design and evaluation of a 
translator’s amenuensis that uses compa-
rable corpora to propose and rank non-
literal solutions to the translation of expres-
sions from the general lexicon. Using dis-
tributional similarity and bilingual diction-
aries, the method outperforms established 
techniques for extracting translation 
equivalents from parallel corpora. The in-
terface to the system is available at: 
http://corpus.leeds.ac.uk/assist/v05/  

1 Introduction 

This paper describes a system designed to assist 
humans in translating expressions that do not nec-
essarily have a literal or compositional equivalent 
in the target language (TL). In the spirit of (Kay, 
1997), it is intended as a translator's amenuensis 
"under the tight control of a human translator … to 
help increase his productivity and not to supplant him". 

One area where human translators particularly 
appreciate assistance is in the translation of expres-
sions from the general lexicon. Unlike equivalent 
technical terms, which generally share the same 
part-of-speech (POS) across languages and are in 
the ideal case univocal, the contextually appropri-
ate equivalents of general language expressions are 
often indirect and open to variation. While the 
transfer module in RBMT may acceptably under-
generate through a many-to-one mapping between 
source and target expressions, human translators, 
even in non-literary fields, value legitimate varia-
tion. Thus the French expression il faillit échouer 
(lit.: he faltered to fail) may be variously rendered 
as he almost/nearly/all but failed; he was on the 

verge/brink of failing/failure; failure loomed. All 
of these translations are indirect in that they in-
volve lexical shifts or POS transformations. 

Finding such translations is a hard task that can 
benefit from automated assistance. 'Mining' such 
indirect equivalents is difficult, precisely because 
of the structural mismatch, but also because of the 
paucity of suitable aligned corpora. The approach 
adopted here includes the use of comparable cor-
pora in source and target languages, which are 
relatively easy to create. The challenge is to gener-
ate a list of usable solutions and to rank them such 
that the best are at the top. 

Thus the present system is unlike SMT (Och and 
Ney, 2003), where lexical selection is effected by a 
translation model based on aligned, parallel cor-
pora, but the novel techniques it has developed are 
exploitable in the SMT paradigm. It also differs 
from now traditional uses of comparable corpora 
for detecting translation equivalents (Rapp, 1999) 
or extracting terminology (Grefenstette, 2002), 
which allows a one-to-one correspondence irre-
spective of the context. Our system addresses diffi-
culties in expressions in the general lexicon, whose 
translation is context-dependent. 

The structure of the paper is as follows. In Sec-
tion 2 we present the method we use for mining 
translation equivalents. In Section 3 we present the 
results of an objective evaluation of the quality of 
suggestions produced by the system by comparing 
our output against a parallel corpus. Finally, in 
Section 4 we present a subjective evaluation focus-
ing on the integration of the system into the work-
flow of human translators. 

2 Methodology 

The software acts as a decision support system for 
translators. It integrates different technologies for 
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extracting indirect translation equivalents from 
large comparable corpora. In the following subsec-
tions we give the user perspective on the system 
and describe the methodology underlying each of 
its sub-tasks. 

2.1 User perspective 

Unlike traditional dictionaries, the system is a 
dynamic translation resource in that it can success-
fully find translation equivalents for units which 
have not been stored in advance, even for idiosyn-
cratic multiword expressions which almost cer-
tainly will not figure in a dictionary. While our 
system can rectify gaps and omissions in static 
lexicographical resources, its major advantage is 
that it is able to cope with an open set of transla-
tion problems, searching for translation equivalents 
in comparable corpora in runtime. This makes it 
more than just an extended dictionary. 

Contextual descriptors 

From the user perspective the system extracts indi-
rect translation equivalents as sets of contextual 
descriptors – content words that are lexically cen-
tral in a given sentence, phrase or construction. 
The choice of these descriptors may determine the 
general syntactic perspective of the sentence and 
the use of supporting lexical items. Many transla-
tion problems arise from the fact that the mapping 
between such descriptors is not straightforward. 

The system is designed to find possible indirect 
mappings between sets of descriptors and to verify 
the acceptability of the mapping into the TL. For 
example, in the following Russian sentence, the 
bolded contextual descriptors require indirect 
translation into English. 
Дети посещают плохо отремонтиро-
ванные школы, в которых недостает 
самого необходимого 
(Children attend badly repaired schools, in 
which [it] is missing the most necessary) 

Combining direct translation equivalents of 
these words (e.g., translations found in the Oxford 
Russian Dictionary – ORD) may produce a non-
natural English sentence, like the literal translation 
given above. In such cases human translators usu-
ally apply structural and lexical transformations, 
for instance changing the descriptors’ POS and/or 
replacing them with near-synonyms which fit to-
gether in the context of a TL sentence (Munday, 
2001: 57-58). Thus, a structural transformation of 

плохо отремонтированные (badly repaired) may 
give in poor repair while a lexical transformation 
of недостает самого необходимого ([it] is missing 
the most necessary) gives lacking basic essentials. 

Our system models such transformations of the 
descriptors and checks the consistency of the re-
sulting sets in the TL. 

Using the system 

Human translators submit queries in the form of 
one or more SL descriptors which in their opinion 
may require indirect translation. When the transla-
tors use the system for translating into their native 
language, the returned descriptors are usually suf-
ficient for them to produce a correct TL construc-
tion or phrase around them (even though the de-
scriptors do not always form a naturally sounding 
expression). When the translators work into a non-
native language, they often find it useful to gener-
ate concordances for the returned descriptors to 
verify their usage within TL constructions. 

For example, for the sentence above translators 
may submit two queries: плохо отремонт-
ированные (badly repaired) and недостает 
необходимого (missing necessary). For the first 
query the system returns a list of descriptor pairs 
(with information on their frequency in the English 
corpus) ranked by distributional proximity to the 
original query, which we explain in Section 2.2. At 
the top of the list come: 

bad repair = 30  (11.005) 
bad maintenance = 16  (5.301) 
bad restoration = 2  (5.079) 
poor repair = 60  (5.026)… 

Underlined hyperlinks lead translators to actual 
contexts in the English corpus, e.g., poor repair 
generates a concordance containing a desirable TL 
construction which is a structural transformation of 
the SL query: 

in such a poor state of repair 
bridge in as poor a state of repair as the highways 
building in poor repair. 

dwellings are in poor repair; 
Similarly, the result of the second query may 

give the translators an idea about possible lexical 
transformation: 

missing need = 14  (5.035) 
important missing = 8 (2.930) 
missing vital = 8  (2.322) 
lack necessary = 204  (1.982)… 
essential lack = 86  (0.908)… 
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The concordance for the last pair of descriptors 
contains the phrase they lack the three essentials, 
which illustrates the transformation. The resulting 
translation may be the following: 

Children attend schools that are in poor re-
pair and lacking basic essentials 

Thus our system supports translators in making 
decisions about indirect translation equivalents in a 
number of ways: it suggests possible structural and 
lexical transformations for contextual descriptors; 
it verifies which translation variants co-occur in 
the TL corpus; and it illustrates the use of the 
transformed TL lexical descriptors in actual con-
texts. 

2.2 Generating translation equivalents 

We have generalised the method used in our previ-
ous study (Sharoff et al., 2006) for extracting 
equivalents for continuous multiword expressions 
(MWEs). Essentially, the method expands the 
search space for each word and its dictionary trans-
lations with entries from automatically computed 
thesauri, and then checks which combinations are 
possible in target corpora. These potential transla-
tion equivalents are then ranked by their similarity 
to the original query and presented to the user. The 
range of retrievable equivalents is now extended 
from a relatively limited range of two-word con-
structions which mirror POS categories in SL and 
TL to a much wider set of co-occurring lexical 
content items, which may appear in a different or-
der, at some distance from each other, and belong 
to different POS categories.  

The method works best for expressions from the 
general lexicon, which do not have established 
equivalents, but not yet for terminology. It relies 
on a high-quality bilingual dictionary (en-ru ~30k, 
ru-en ~50K words, combining ORD and the core 
part of Multitran) and large comparable corpora 
(~200M En, ~70M Ru) of news texts. 

For each of the SL query terms q the system 
generates its dictionary translation Tr(q) and its 
similarity class S(q) – a set of words with a similar 
distribution in a monolingual corpus. Similarity is 
measured as the cosine between collocation vec-
tors, whose dimensionality is reduced by SVD us-
ing the implementation by Rapp (2004). The de-
scriptor and each word in the similarity class are 
then translated into the TL using ORD or the Mul-
titran dictionary, resulting in {Tr(q)∪ Tr(S(q))}. 
On the TL side we also generate similarity classes, 

but only for dictionary translations of query terms 
Tr(q) (not for Tr(S(q)), which can make output too 
noisy). We refer to the resulting set of TL words as 
a translation class T.  

T = {Tr(q) ∪ Tr(S(q)) ∪ S(Tr(q))} 
Translation classes approximate lexical and 

structural transformations which can potentially be 
applied to each of the query terms. Automatically 
computed similarity classes do not require re-
sources like WordNet, and they are much more 
suitable for modelling translation transformations, 
since they often contain a wider range of words of 
different POS which share the same context, e.g., 
the similarity class of the word lack contains words 
such as absence, insufficient, inadequate, lost, 
shortage, failure, paucity, poor, weakness, inabil-
ity, need. This clearly goes beyond the range of 
traditional thesauri. 

For multiword queries, the system performs a 
consistency check on possible combinations of 
words from different translation classes. In particu-
lar, it computes the Cartesian product for pairs of 
translation classes T1 and T2 to generate the set P 
of word pairs, where each word (w1 and w2) comes 
from a different translation class: 

P = T1 × T2 = {(w1, w2) | w1 ∈ T1 and w2 ∈ T2}  
Then the system checks whether each word pair 

from the set P exists in the database D of discon-
tinuous content word bi-grams which actually co-
occur in the TL corpus: 

P’ = P ∩ D 
The database contains the set of all bi-grams that 

occur in the corpus with a frequency ≥ 4 within a 
window of 5 words (over 9M bigrams for each 
language). The bi-grams in D and in P are sorted 
alphabetically, so their order in the query is not 
important. 

Larger N-grams (N > 2) in queries are split into 
combinations of bi-grams, which we found to be 
an optimal solution to the problem of the scarcity 
of higher order N-grams in the corpus. Thus, for 
the query gain significant importance the system 
generates P’1(significant importance), P’2(gain impor-

tance), P’3(gain significant) and computes P’ as:  
P’ = {(w1,w2,w3)| (w1,w2) ∈ P’1 & (w1, w3) ∈ P’2 

& (w2,w3) ∈ P’3 }, 
which allows the system to find an indirect equiva-
lent получить весомое значение (lit.: receive 
weighty meaning). 
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Even though P’ on average contains about 2% - 
4% of the theoretically possible number of bi-
grams present in P, the returned number of poten-
tial translation equivalents may still be large and 
contain much noise. Typically there are several 
hundred elements in P’, of which only a few are 
really useful for translation. To make the system 
usable in practice, i.e., to get useful solutions to 
appear close to the top (preferably on the first 
screen of the output), we developed methods of 
ranking and filtering the returned TL contextual 
descriptor pairs, which we present in the following 
sections. 

2.3 Hypothesis ranking 

The system ranks the returned list of contextual 
descriptors by their distributional proximity to the 
original query, i.e. it uses scores cos(vq, vw) gener-
ated for words in similarity classes – the cosine of 
the angle between the collocation vector for a word 
and the collocation vector for the query or diction-
ary translation of the query. Thus, words whose 
equivalents show similar usage in a comparable 
corpus receive the highest scores. These scores are 
computed for each individual word in the output, 
so there are several ways to combine them to 
weight words in translation classes and word com-
binations in the returned list of descriptors.  

We established experimentally that the best way 
to combine similarity scores is to multiply weights 
W(T) computed for each word within its translation 
class T. The weight W(P’(w1,w2)) for each pair of 
contextual descriptors (w1, w2)∈P’ is computed as: 

W(P’(w1,w2)) = W(T(w1)) × W(T(w2)); 
Computing W(T(w)), however, is not straightfor-
ward either, since some words in similarity classes 
of different translation equivalents for the query 
term may be the same, or different words from the 
similarity class of the original query may have the 
same translation. Therefore, a word w within a 
translation class may have come by several routes 
simultaneously, and may have done that several 
times. For each word w in T there is a possibility 
that it arrived in T either because it is in Tr(q) or 
occurs   n times in Tr(S(q)) or k times in S(Tr(q)). 

We found that the number of occurrences n and 
k of each word w in each subset gives valuable in-
formation for ranking translation candidates. In our 
experiments we computed the weight W(T) as the 
sum of similarity scores which w receives in each 
of the subsets. We also discovered that ranking 

improves if for each query term we compute in 
addition a larger (and potentially noisy) space of 
candidates that includes TL similarity classes of 
translations of the SL similarity class S(Tr(S(q))). 
These candidates do not appear in the system out-
put, but they play an important role in ranking the 
displayed candidates. The improvement may be 
due to the fact that this space is much larger, and 
may better support relevant candidates since there 
is a greater chance that appropriate indirect equiva-
lents are found several times within SL and TL 
similarity classes. The best ranking results were 
achieved when the original W(T) scores were mul-
tiplied by 2 and added to the scores for the newly 
introduced similarity space S(Tr(S(q))): 

W(T(w))= 2×(1 if w∈Tr(q) )+  
2×∑( cos(vq, vTr(w)) | {w | w∈ Tr(S(q)) } ) +  
2×∑( cos(vTr(q), vw) | {w | w∈ S(Tr(q)) } ) + 
∑(cos(vq, vTr(w))×cos (vTr(q), vw) |  

{w | w∈ S(Tr(S(q))) } ) 
For example, the system gives the following 

ranking for the indirect translation equivalents of 
the Russian phrase весомое значение (lit.: weighty 
meaning) – figures in brackets represent W(P’) 
scores for each pair of TL descriptors: 
1. significant importance = 7 (3.610)  
2. significant value = 128    (3.211)  
3. measurable value = 6       (2.657)…  
8. dramatic importance = 2    (2.028)  
9. important significant = 70 (2.014)  
10. convincing importance = 6 (1.843) 

The Russian similarity class for весомый 
(weighty, ponderous) contains: убедительный 
(convincing) (0.469), значимый (significant) 
(0.461), ощутимый (notable) (0.452) драма-
тичный (dramatic) (0.371). The equivalent of 
significant is not at the top of the similarity class of 
the Russian query, but it appears at the top of the 
final ranking of pairs in P’, because this hypothesis 
is supported by elements of the set formed by 
S(Tr(S(q))); it appears in similarity classes for no-
table (0.353) and dramatic (0.315), which contrib-
uted these values to the W(T) score of significant: 
W(T(significant)) = 
    2 × (Tr(значимый)=significant (0.461))  

+ (Tr(ощутимый)=notable (0.452)  
  × S(notable)=significant (0.353)) 
+ (Tr(драматичный)=dramatic (0.371)  
  × S(dramatic)= significant (0.315)) 

The word dramatic itself is not usable as a 
translation equivalent in this case, but its similarity 
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class contains the support for relevant candidates, 
so it can be viewed as useful noise. On the other 
hand, the word convincing does not receive such 
support from the hypothesis space, even though its 
Russian equivalent is ranked higher in the SL simi-
larity class. 

2.4 Semantic filtering 

Ranking of translation candidates can be further 
improved when translators use an option to filter 
the returned list by certain lexical criteria, e.g., to 
display only those examples that contain a certain 
lexical item, or to require one of the items to be a 
dictionary translation of the query term. However, 
lexical filtering is often too restrictive: in many 
cases translators need to see a number of related 
words from the same semantic field or subject do-
main, without knowing the lexical items in ad-
vance. In this section we present the semantic fil-
ter, which is based on Russian and English seman-
tic taggers which use the same semantic field tax-
onomy for both languages. 

The semantic filter displays only those items 
which have specified semantic field tags or tag 
combinations; it can be applied to one or both 
words in each translation hypothesis in P’. The 
default setting for the semantic filter is the re-
quirement for both words in the resulting TL can-
didates to contain any of the semantic field tags 
from a SL query term. 

In the next section we present evaluation results 
for this default setting (which is applied when the 
user clicks the Semantic Filter button), but human 
translators have further options – to filter by tags 
of individual words, to use semantic classes from 
SL or TL terms, etc. 

For example, applying the default semantic filter 
for the output of the query плохо отремон-
тированные (badly repaired) removes the high-
lighted items from the list: 
 1. bad repair = 30       (11.005)  
[2. good repair = 154     (8.884) ] 
 3. bad rebuild = 6       (5.920)  
[4. bad maintenance = 16  (5.301) ] 
 5. bad restoration = 2   (5.079)  
 6. poor repair = 60      (5.026)  
[7. good rebuild = 38     (4.779) ] 
 8. bad construction = 14 (4.779)  

Items 2 and 7 are generated by the system be-
cause good, well and bad are in the same similar-
ity cluster for many words (they often share the 
same collocations). The semantic filter removes 

examples with good and well on the grounds that 
they do not have any of the tags which come from 
the word плохо (badly): in particular, instead of 
tag A5– (Evaluation: Negative) they have tag A5+ 
(Evaluation: Positive). Item 4 is removed on the 
grounds that the words отремонтированный 
(repaired) and maintenance do not have any tags 
in common – they appear ontologically too far 
apart from the point of view of the semantic tagger. 

The core of the system’s multilingual semantic 
tagging is a knowledge base in which single words 
and MWEs are mapped to their potential semantic 
field categories. Often a lexical item is mapped to 
multiple semantic categories, reflecting its poten-
tial multiple senses. In such cases, the tags are ar-
ranged by the order of likelihood of meanings, 
with the most prominent first. 

3 Objective evaluation 

In the objective evaluation we tested the perform-
ance of our system on a selection of indirect trans-
lation problems, extracted from a parallel corpus 
consisting mostly of articles from English and 
Russian newspapers (118,497 words in the R-E 
direction, 589,055 words in the E-R direction). It 
has been aligned on the sentence level by JAPA 
(Langlais et al., 1998), and further on the word 
level by GIZA++ (Och and Ney, 2003). 

3.1 Comparative performance 

The intuition behind the objective evaluation 
experiment is that the capacity of our tool to find 
indirect translation equivalents in comparable cor-
pora can be compared with the results of automatic 
alignment of parallel texts used in translation mod-
els in SMT: one of the major advantages of the 
SMT paradigm is its ability to reuse indirect 
equivalents found in parallel corpora (equivalents 
that may never come up in hand-crafted dictionar-
ies). Thus, automatically generated GIZA++ dic-
tionaries with word alignment contain many exam-
ples of indirect translation equivalents. 

We use these dictionaries to simulate the genera-
tor of translation classes T, which we recombine to 
construct their Cartesian product P, similarly to the 
procedure we use to generate the output of our sys-
tem. However, the two approaches generate indi-
rect translation equivalence hypotheses on the ba-
sis of radically different material: the GIZA dic-
tionary uses evidence from parallel corpora of ex-
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isting human translations, while our system re-
combines translation candidates on the basis of 
their distributional similarity in monolingual com-
parable corpora. Therefore we took GIZA as a 
baseline. 

Translation problems for the objective evalua-
tion experiment were manually extracted from two 
parallel corpora: a section of about 10,000 words 
of a corpus of English and Russian newspapers, 
which we also used to train GIZA, and a section of 
the same length from a corpus of interviews pub-
lished on the Euronews.net website. 

We selected expressions which represented 
cases of lexical transformations (as illustrated in 
Section 0), containing at least two content words 
both in the SL and TL. These expressions were 
converted into pairs of contextual descriptors – 
e.g., recent success, reflect success – and submit-
ted to the system and to the GIZA dictionary. We 
compared the ability of our system and of GIZA to 
find indirect translation equivalents which matched 
the equivalents used by human translators. The 
output from both systems was checked to see 
whether it contained the contextual descriptors 
used by human translators. We submitted 388 pairs 
of descriptors extracted from the newspaper trans-
lation corpus and 174 pairs extracted from the Eu-
ronews interview corpus. Half of these pairs were 
Russian, and the other half English. 

We computed recall figures for 2-word combi-
nations of contextual descriptors and single de-
scriptors within those combinations. We also show 
the recall of translation variants provided by the 
ORD on this data set. For example, for the query 
недостает необходимого ([it] is missing neces-
sary [things]) human translators give the solution 
lacking essentials; the lemmatised descriptors are 
lack and essential. ORD returns direct translation 
equivalents missing and necessary. The GIZA dic-
tionary in addition contains several translation 
equivalents for the second term (with alignment 
probabilities) including: necessary ~0.332, need 
~0.226, essential ~0.023. Our system returns both 
descriptors used in human translation as a pair – 
lack essential (ranked 41 without filtering and 22 
with the default semantic filter). Thus, for a 2-word 
combination of the descriptors only the output of 
our system matched the human solution, which we 
counted as one hit for the system and no hits for 
ORD or GIZA. For 1-word descriptors we counted 
2 hits for our system (both words in the human 

solution are matched), and 1 hit for GIZA – it 
matches the word essential ~0.023 (which also il-
lustrates its ability to find indirect translation 
equivalents). 
 2w descriptors 1w descriptors 
 news interv news interv 
ORD 6.7% 4.6% 32.9% 29.3% 
GIZA++ 13.9% 3.4% 35.6% 29.0%
Our system 21.9% 19.5% 55.8% 49.4%
Table 1 Conservative estimate of recall 

It can be seen from Table 1 that for the newspa-
per corpus on which it was trained, GIZA covers a 
wider set of indirect translation variants than ORD. 
But our recall is even better both for 2-word and 1-
word descriptors. 

However, note that GIZA’s ability to retrieve 
from the newspaper corpus certain indirect transla-
tion equivalents may be due to the fact that it has 
previously seen them frequently enough to gener-
ate a correct alignment and the corresponding dic-
tionary entry. 

The Euronews interview corpus was not used for 
training GIZA. It represents spoken language and 
is expected to contain more ‘radical’ transforma-
tions. The small decline in ORD figures here can 
be attributed to the fact that there is a difference in 
genre between written and spoken texts and conse-
quently between transformation types in them. 
However, the performance of GIZA drops radi-
cally on unseen text and becomes approximately 
the same as the ORD. 

This shows that indirect translation equivalents 
in the parallel corpus used for training GIZA are 
too sparse to be learnt one by one and successfully 
applied to unseen data, since solutions which fit 
one context do not necessarily suit others. 

The performance of our system stays at about 
the same level for this new type of text; the decline 
in its performance is comparable to the decline in 
ORD figures, and can again be explained by the 
differences in genre. 

3.2 Evaluation of hypothesis ranking 

As we mentioned, correct ranking of translation 
candidates improves the usability of the system. 
Again, the objective evaluation experiment gives 
only a conservative estimate of ranking, because 
there may be many more useful indirect solutions 
further up the list in the output of the system which 
are legitimate variants of the solutions found in the 
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parallel corpus. Therefore, evaluation figures 
should be interpreted in a comparative rather then 
an absolute sense. 

We use ranking by frequency as a baseline for 
comparing the ranking described in Section 2.3 – 
by distributional similarity between a candidate 
and the original query. 

Table 2 shows the average rank of human solu-
tions found in parallel corpora and the recall of 
these solutions for the top 300 examples. Since 
there are no substantial differences between the 
figures for the newspaper texts and for the inter-
views, we report the results jointly for 556 transla-
tion problems in both selections (lower rank fig-
ures are better). 
 Recall Average rank 

2-word descriptors 
frequency (baseline) 16.7% rank=93.7
distributional similarity 19.5% rank=44.4
sim. + semantic filter 14.4% rank=26.7

1-word descriptors 
frequency (baseline) 48.2% rank=42.7
distributional similarity 52.8% rank=21.6
sim. + semantic filter 44.1% rank=11.3
Table 2 Ranking: frequency, similarity and filter 

It can be seen from the table that ranking by 
similarity yields almost a twofold improvement for 
the average rank figures compared to the baseline. 
There is also a small improvement in recall, since 
there are more relevant examples that appear 
within the top 300 entries. 

The semantic filter once again gives an almost 
twofold improvement in ranking, since it removes 
many noisy items. The average is now within the 
top 30 items, which means that there is a high 
chance that a translation solution will be displayed 
on the first screen. The price for improved ranking 
is decline in recall, since it may remove some rele-
vant lexical transformations if they appear to be 
ontologically too far apart. But the decline is 
smaller: about 26.2% for 2-word descriptors and 
16.5% for 1-word descriptors. The semantic filter 
is an optional tool, which can be used to great ef-
fect on noisy output: its improvement of ranking 
outweighs the decline in recall. 

Note that the distribution of ranks is not normal, 
so in Figure 1 we present frequency polygons for 
rank groups of 30 (which is the number of items 
that fit on a single screen, i.e., the number of items 
in the first group (r030) shows solutions that will 

be displayed on the first screen). The majority of 
solutions ranked by similarity appear high in the 
list (in fact, on the first two or three screens). 
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Figure 1 Frequency polygons for ranks 

4 Subjective evaluation 

The objective evaluation reported above uses a 
single reference translation and is correspondingly 
conservative in estimating the coverage of the sys-
tem. However, many expressions studied have 
more than one fluent translation. For instance, in 
poor repair is not the only equivalent for the Rus-
sian expression плохо отремонтированные. It is 
also possible to translate it as unsatisfactory condi-
tion, bad state of repair, badly in need of repair, 
and so on. The objective evaluation shows that the 
system has been able to find the suggestion used 
by a particular translator for the problem studied. It 
does not tell us whether the system has found some 
other translations suitable for the context. Such 
legitimate translation variation implies that the per-
formance of a system should be studied on the ba-
sis of multiple reference translations, though typi-
cally just two reference translations are used (Pap-
ineni, et al, 2001). This might be enough for the 
purposes of a fully automatic MT tool, but in the 
context of a translator's amanuensis which deals 
with expressions difficult for human translators, it 
is reasonable to work with a larger range of ac-
ceptable target expressions. 

With this in mind we evaluated the performance 
of the tool with a panel of 12 professional transla-
tors. Problematic expressions were highlighted and 
the translators were asked to find suitable sugges-
tions produced by the tool for these expressions 
and rank their usability on a scale from 1 to 5 (not 
acceptable to fully idiomatic, so 1 means that no 
usable translation was found at all). 

Sentences themselves were selected from prob-
lems discussed on professional translation forums 
proz.com and forum.lingvo.ru. Given the range of 
corpora used in the system (reference and newspa-
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per corpora), the examples were filtered to address 
expressions used in newspapers. 

The goal of the subjective evaluation experiment 
was to establish the usefulness of the system for 
translators beyond the conservative estimate given 
by the objective evaluation. The intuition behind 
the experiment is that if there are several admissi-
ble translations for the SL contextual descriptors, 
and system output matches any of these solutions, 
then the system has generated something useful. 
Therefore, we computed recall on sets of human 
solutions rather than on individual solutions. We 
matched 210 different human solutions to 36 trans-
lation problems. To compute more realistic recall 
figures, we counted cases when the system output 
matches any of the human solutions in the set. 
Table 3 compares the conservative estimate of the 
objective evaluation and the more realistic estimate 
on a single data set. 

 2w default 2w with sem filt 
Conservative  32.4%; r=53.68 21.9%; r=34.67 
Realistic 75.0%;   r=7.48 61.1%;   r=3.95 
Table 3 Recall and rank for 2-word descriptors 

Since the data set is different, the figures for the 
conservative estimate are higher than those for the 
objective evaluation data set. However, the table 
shows the there is a gap between the conservative 
estimate and the realistic coverage of the transla-
tion problems by the system, and that real coverage 
of indirect translation equivalents is potentially 
much higher. 

Table 4 shows averages (and standard deviation 
σ) of the usability scores divided in four groups: (1) 
solutions that are found both by our system and the 
ORD; (2) solutions found only by our system; (3) 
solutions found only by ORD (4) solutions found 
by neither: 

 system (+) system (–) 
ORD (+) 4.03 (0.42) 3.62 (0.89)
ORD (–) 4.25 (0.79) 3.15 (1.15)

Table 4 Human scores and σ for system output 
It can be seen from the table that human users find 
the system most useful for those problems where 
the solution does not match any of the direct dic-
tionary equivalents, but is generated by the system. 

5 Conclusions 

We have presented a method of finding indirect 
translation equivalents in comparable corpora, and 
integrated it into a system which assists translators 

in indirect lexical transfer. The method outper-
forms established methods of extracting indirect 
translation equivalents from parallel corpora. 

We can interpret these results as an indication 
that our method, rather than learning individual 
indirect transformations, models the entire family 
of transformations entailed by indirect lexical 
transfer. In other words it learns a translation strat-
egy which is based on the distributional similarity 
of words in a monolingual corpus, and applies this 
strategy to novel, previously unseen examples. 

The coverage of the tool and additional filtering 
techniques make it useful for professional transla-
tors in automating the search for non-trivial, indi-
rect translation equivalents, especially equivalents 
for multiword expressions. 
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Abstract

Efficient decoding has been a fundamental
problem in machine translation, especially
with an integrated language model which
is essential for achieving good translation
quality. We develop faster approaches for
this problem based onk-best parsing algo-
rithms and demonstrate their effectiveness
on both phrase-based and syntax-based MT
systems. In both cases, our methods achieve
significant speed improvements, often by
more than a factor of ten, over the conven-
tional beam-search method at the same lev-
els of search error and translation accuracy.

1 Introduction

Recent efforts in statistical machine translation
(MT) have seen promising improvements in out-
put quality, especially the phrase-based models (Och
and Ney, 2004) and syntax-based models (Chiang,
2005; Galley et al., 2006). However, efficient de-
coding under these paradigms, especially with inte-
grated language models (LMs), remains a difficult
problem. Part of the complexity arises from the ex-
pressive power of the translation model: for exam-
ple, a phrase- or word-based model with full reorder-
ing has exponential complexity (Knight, 1999). The
language model also, if fully integrated into the de-
coder, introduces an expensive overhead for main-
taining target-language boundary words for dynamic

∗ The authors would like to thank Dan Gildea, Jonathan
Graehl, Mark Johnson, Kevin Knight, Daniel Marcu, Bob
Moore and Hao Zhang. L. H. was partially supported by
NSF ITR grants IIS-0428020 while visiting USC/ISI and EIA-
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programming (Wu, 1996; Och and Ney, 2004). In
practice, one must prune the search space aggres-
sively to reduce it to a reasonable size.

A much simpler alternative method to incorporate
the LM is rescoring: we first decode without the LM
(henceforth−LM decoding) to produce ak-best list
of candidate translations, and then rerank thek-best
list using the LM. This method runs much faster in
practice but often produces a considerable number
of search errors since the true best translation (taking
LM into account) is often outside of thek-best list.

Cube pruning(Chiang, 2007) is a compromise be-
tween rescoring and full-integration: it rescoresk

subtranslations at each node of the forest, rather than
only at the root node as in pure rescoring. By adapt-
ing the k-best parsing Algorithm 2 of Huang and
Chiang (2005), it achieves significant speed-up over
full-integration on Chiang’s Hiero system.

We push the idea behind this method further and
make the following contributions in this paper:

• We generalize cube pruning and adapt it to two
systems very different from Hiero: a phrase-
based system similar to Pharaoh (Koehn, 2004)
and a tree-to-string system (Huang et al., 2006).

• We also devise a faster variant of cube pruning,
calledcube growing, which uses a lazy version
of k-best parsing (Huang and Chiang, 2005)
that tries to reducek to the minimum needed
at each node to obtain the desired number of
hypotheses at the root.

Cube pruning and cube growing are collectively
called forest rescoringsince they both approxi-
mately rescore the packed forest of derivations from
−LM decoding. In practice they run an order of
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magnitude faster than full-integration with beam
search, at the same level of search errors and trans-
lation accuracy as measured by BLEU.

2 Preliminaries

We establish in this section a unified framework
for translation with an integratedn-gram language
model in both phrase-based systems and syntax-
based systems based on synchronous context-free
grammars (SCFGs). An SCFG (Lewis and Stearns,
1968) is a context-free rewriting system for generat-
ing string pairs. Each ruleA → α, β rewrites a pair
of nonterminals in both languages, whereα andβ

are the source and target side components, and there
is a one-to-one correspondence between the nonter-
minal occurrences inα and the nonterminal occur-
rences inβ. For example, the following rule

VP→ PP(1) VP (2), VP (2) PP(1)

captures the swapping of VP and PP between Chi-
nese (source) and English (target).

2.1 Translation as Deduction

We will use the following example from Chinese to
English for both systems described in this section:

yǔ
with

Sh̄alóng
Sharon

jǔx́ıng
hold

le
[past]

hùıtán
meeting

‘held a meeting with Sharon’

A typical phrase-based decoder generates partial
target-language outputs in left-to-right order in the
form of hypotheses(Koehn, 2004). Each hypothesis
has acoverage vectorcapturing the source-language
words translated so far, and can be extended into a
longer hypothesis by a phrase-pair translating an un-
covered segment.

This process can be formalized as a deduc-
tive system. For example, the following deduc-
tion step grows a hypothesis by the phrase-pair
〈yǔ Sh̄alóng, with Sharon〉:

( •••) : (w, “held a talk”)

(•••••) : (w + c, “held a talk with Sharon”) (1)

where a• in the coverage vector indicates the source
word at this position is “covered” (for simplicity
we omit here the ending position of the last phrase

which is needed for distortion costs), and wherew

andw + c are the weights of the two hypotheses,
respectively, withc being the cost of the phrase-pair.

Similarly, the decoding problem with SCFGs can
also be cast as a deductive (parsing) system (Shieber
et al., 1995). Basically, we parse the input string us-
ing the source projection of the SCFG while build-
ing the corresponding subtranslations in parallel. A
possible deduction of the above example is notated:

(PP1,3) : (w1, t1) (VP3,6) : (w2, t2)

(VP1,6) : (w1 + w2 + c′, t2t1) (2)

where the subscripts denote indices in the input sen-
tence just as in CKY parsing,w1, w2 are the scores
of the two antecedent items, andt1 and t2 are the
corresponding subtranslations. The resulting trans-
lation t2t1 is the inverted concatenation as specified
by the target-side of the SCFG rule with the addi-
tional costc′ being the cost of this rule.

These two deductive systems represent the search
space of decoding without a language model. When
one is instantiated for a particular input string, it de-
fines a set of derivations, called aforest, represented
in a compact structure that has a structure of a graph
in the phrase-based case, or more generally, ahyper-
graph in both cases. Accordingly we call items like
(•••••) and(VP1,6) nodesin the forest, and instan-
tiated deductions like

(•••••) → ( •••) with Sharon,

(VP1,6) → (VP3,6) (PP1,3)

we call hyperedgesthat connect one or more an-
tecedent nodes to a consequent node.

2.2 Adding a Language Model

To integrate with a bigram language model, we can
use the dynamic-programming algorithms of Och
and Ney (2004) and Wu (1996) for phrase-based
and SCFG-based systems, respectively, which we
may think of as doing a finer-grained version of the
deductions above. Each nodev in the forest will
be split into a set of augmented items, which we
call +LM items. For phrase-based decoding, a+LM
item has the form(v a) wherea is the last word
of the hypothesis. Thus a+LM version of Deduc-
tion (1) might be:

( ••• talk) : (w, “held a talk”)

(••••• Sharon) : (w′, “held a talk with Sharon”)
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Figure 1: Cube pruning along one hyperedge. (a): the numbers in the grid denote the score of the resulting
+LM item, including the combination cost; (b)-(d): the best-first enumeration ofthe top three items. Notice
that the items popped in (b) and (c) are out of order due to the non-monotonicity of the combination cost.

where the score of the resulting+LM item

w′ = w + c− log Plm(with | talk)

now includes acombination costdue to the bigrams
formed when applying the phrase-pair.

Similarly, a +LM item in SCFG-based models
has the form(va⋆b), wherea and b are boundary
wordsof the hypothesis string, and⋆ is a placeholder
symbol for an elided part of that string, indicating
that a possible translation of the part of the input
spanned byv starts witha and ends withb. An ex-
ample+LM version of Deduction (2) is:

(PPwith ⋆ Sharon
1,3 ): (w1, t1) (VPheld⋆ talk

3,6 ): (w2, t2)

(VPheld⋆ Sharon
1,6 ): (w, t2t1)

wherew = w1 +w2 +c′− log Plm(with | talk) with
a similar combination cost formed in combining ad-
jacent boundary words of antecedents. This scheme
can be easily extended to work with a generaln-
gram model (Chiang, 2007). The experiments in this
paper use trigram models.

The conventional full-integration approach tra-
verses the forest bottom-up and explores all pos-
sible +LM deductions along each hyperedge.
The theoretical running time of this algorithm
is O(|F ||T |(m−1)) for phrase-based models, and
O(|F ||T |4(m−1)) for binary-branching SCFG-based
models, where|F | is the size of the forest, and|T |
is the number of possible target-side words. Even
if we assume a constant number of translations for
each word in the input, with a trigram model, this
still amounts toO(n11) for SCFG-based models and
O(2nn2) for phrase-based models.

3 Cube Pruning

Cube pruning (Chiang, 2007) reduces the search
space significantly based on the observation that
when the above method is combined with beam
search, only a small fraction of the possible+LM
items at a node will escape being pruned, and more-
over we can select with reasonable accuracy those
top-k items without computing all possible items
first. In a nutshell, cube pruning works on the−LM
forest, keeping at mostk +LM items at each node,
and uses thek-best parsing Algorithm 2 of Huang
and Chiang (2005) to speed up the computation.
For simplicity of presentation, we will use concrete
SCFG-based examples, but the method applies to the
general hypergraph framework in Section 2.

Consider Figure 1(a). Herek = 3 and we use
D(v) to denote the top-k +LM items (in sorted or-
der) of nodev. Suppose we have computedD(u1)
and D(u2) for the two antecedent nodesu1 =
(VP3,6) and u2 = (PP1,3) respectively. Then for
the consequent nodev = (VP1,6) we just need
to derive the top-3 from the 9 combinations of
(Di(u1), Dj(u2)) with i, j ∈ [1, 3]. Since the an-
tecedent items are sorted, it is very likely that the
best consequent items in this grid lie towards the
upper-left corner. This situation is very similar tok-
best parsing and we can adapt the Algorithm 2 of
Huang and Chiang (2005) here to explore this grid
in a best-first order.

Suppose that the combination costs are negligible,
and therefore the weight of a consequent item is just
the product of the weights of the antecedent items.
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1: function CUBE(F ) ⊲ the input is a forestF
2: for v ∈ F in (bottom-up) topological orderdo
3: KBEST(v)

4: return D1(TOP)

5: procedure KBEST(v)
6: cand ← {〈e,1〉 | e ∈ IN (v)} ⊲ for each incominge
7: HEAPIFY(cand) ⊲ a priority queue of candidates
8: buf ← ∅
9: while |cand | > 0 and|buf | < k do

10: item← POP-M IN(cand)
11: appenditem to buf
12: PUSHSUCC(item, cand)

13: sortbuf to D(v)

14: procedure PUSHSUCC(〈e, j〉, cand )
15: e is v → u1 . . . u|e|

16: for i in 1 . . . |e| do
17: j′ ← j + bi

18: if |D(ui)| ≥ j′
i then

19: PUSH(〈e, j′〉, cand)

Figure 2: Pseudocode for cube pruning.

Then we know thatD1(v) = (D1(u1), D1(u2)),
the upper-left corner of the grid. Moreover, we
know thatD2(v) is the better of(D1(u1), D2(u2))
and (D2(u1), D1(u2)), the two neighbors of the
upper-left corner. We continue in this way (see Fig-
ure 1(b)–(d)), enumerating the consequent items
best-first while keeping track of a relatively small
number of candidates (shaded cells in Figure 1(b),
cand in Figure 2) for the next-best item.

However, when we take into account the combi-
nation costs, this grid is no longer monotonic in gen-
eral, and the above algorithm will not always enu-
merate items in best-first order. We can see this in
the first iteration in Figure 1(b), where an item with
score 2.5 has been enumerated even though there is
an item with score 2.4 still to come. Thus we risk
making more search errors than the full-integration
method, but in practice the loss is much less signif-
icant than the speedup. Because of this disordering,
we do not put the enumerated items directly into
D(v); instead, we collect items in a buffer (buf in
Figure 2) and re-sort the buffer intoD(v) after it has
accumulatedk items.1

In general the grammar may have multiple rules
that share the same source side but have different
target sides, which we have treated here as separate

1Notice that different combinations might have the same re-
sulting item, in which case we only keep the one with the better
score (sometimes calledhypothesis recombinationin MT liter-
ature), so the number of items inD(v) might be less thank.

method k-best +LM rescoring. . .
rescoring Alg. 3 only at the root node
cube pruning Alg. 2 on-the-fly at each node
cube growing Alg. 3 on-the-fly at each node

Table 1: Comparison of the three methods.

hyperedges in the−LM forest. In Hiero, these hy-
peredges are processed as a single unit which we
call a hyperedge bundle. The different target sides
then constitute a third dimension of the grid, form-
ing a cube of possible combinations (Chiang, 2007).

Now consider that there are many hyperedges that
derivev, and we are only interested the top+LM
items ofv over all incoming hyperedges. Following
Algorithm 2, we initialize the priority queuecand

with the upper-left corner item from each hyper-
edge, and proceed as above. See Figure 2 for the
pseudocode for cube pruning. We use the notation
〈e, j〉 to identify the derivation ofv via the hyper-
edgee and thejith best subderivation of antecedent
ui (1 ≤ i ≤ |j|). Also, we let1 stand for a vec-
tor whose elements are all1, andbi for the vector
whose members are all0 except for theith whose
value is1 (the dimensionality of either should be ev-
ident from the context). The heart of the algorithm
is lines 10–12. Lines 10–11 move the best deriva-
tion 〈e, j〉 from cand to buf , and then line 12 pushes
its successors{〈e, j + bi〉 | i ∈ 1 . . . |e|} into cand .

4 Cube Growing

Although much faster than full-integration, cube
pruning still computes a fixed amount of+LM items
at each node, many of which will not be useful for
arriving at the 1-best hypothesis at the root. It would
be more efficient to compute as few+LM items at
each node as are needed to obtain the 1-best hypoth-
esis at the root. This new method, calledcube grow-
ing, is a lazy version of cube pruning just as Algo-
rithm 3 of Huang and Chiang (2005), is a lazy ver-
sion of Algorithm 2 (see Table 1).

Instead of traversing the forest bottom-up, cube
growing visits nodes recursively in depth-first or-
der from the root node (Figure 4). First we call
LAZY JTHBEST(TOP, 1), which uses the same al-
gorithm as cube pruning to find the 1-best+LM
item of the root node using the best+LM items of
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Figure 3: Example of cube growing along one hyper-
edge. (a): theh(x) scores for the grid in Figure 1(a),
assuminghcombo(e) = 0.1 for this hyperedge; (b)
cube growing prevents early ranking of the top-left
cell (2.5) as the best item in this grid.

the antecedent nodes. However, in this case the best
+LM items of the antecedent nodes are not known,
because we have not visited them yet. So we re-
cursively invokeLAZY JTHBEST on the antecedent
nodes to obtain them as needed. Each invocation of
LAZY JTHBEST(v, j) will recursively call itself on
the antecedents ofv until it is confident that thejth
best+LM item for nodev has been found.

Consider again the case of one hyperedgee. Be-
cause of the nonmonotonicity caused by combina-
tion costs, the first+LM item (〈e,1〉) popped from
cand is not guaranteed to be the best of all combina-
tions along this hyperedge (for example, the top-left
cell of 2.5 in Figure 1 is not the best in the grid). So
we cannot simply enumerate items just as they come
off of cand .2 Instead, we need to store up popped
items in a bufferbuf , just as in cube pruning, and
enumerate an item only when we are confident that it
will never be surpassed in the future. In other words,
we would like to have an estimate of the best item
not explored yet (analogous to the heuristic func-
tion in A* search). If we can establish a lower bound
hcombo(e) on the combination cost of any+LM de-
duction via hyperedgee, then we can form a mono-
tonic grid (see Figure 3(a)) of lower bounds on the
grid of combinations, by usinghcombo(e) in place of
the true combination cost for each+LM item x in
the grid; call this lower boundh(x).

Now suppose that the gray-shaded cells in Fig-
ure 3(a) are the members ofcand . Then the min-
imum of h(x) over the items incand , in this ex-

2If we did, then the out-of-order enumeration of+LM items
at an antecedent node would cause an entire row or column in
the grid to be disordered at the consequent node, potentially
leading to a multiplication of search errors.

1: procedure LAZY JTHBEST(v, j)
2: if cand [v] is undefinedthen
3: cand [v]← ∅
4: FIRE(e,1, cand) foreach e ∈ IN (v)
5: buf [v]← ∅

6: while |D(v)| < j and |buf [v]| + |D(v)| < k and
|cand [v]| > 0 do

7: item← POP-M IN(cand [v])
8: PUSH(item, buf [v])
9: PUSHSUCC(item, cand [v])

10: bound ← min{h(x) | x ∈ cand [v]}
11: ENUM(buf [v],D(v), bound)

12: ENUM(buf [v],D(v), +∞)

13: procedure FIRE(e, j, cand )
14: e is v → u1 . . . u|e|

15: for i in 1 . . . |e| do
16: LAZY JTHBEST(ui, ji)
17: if |D(ui)| < ji then return
18: PUSH(〈e, j〉, cand)

19: procedure PUSHSUCC(〈e, j〉, cand )
20: FIRE(e, j + bi, cand) foreach i in 1 . . . |e|

21: procedure ENUM(buf ,D, bound )
22: while |buf | > 0 and MIN(buf ) < bound do
23: append POP-M IN(buf ) to D

Figure 4: Pseudocode of cube growing.

ample,min{2.2, 5.1} = 2.2 is a lower bound on
the cost of any item in the future for the hyperedge
e. Indeed, ifcand contains items from multiple hy-
peredges for a single consequent node, this is still a
valid lower bound. More formally:

Lemma 1. For each nodev in the forest, the term

bound = min
x∈cand [v]

h(x) (3)

is a lower bound on the true cost of any future item
that is yet to be explored forv.

Proof. For any itemx that is not explored yet, the
true costc(x) ≥ h(x), by the definition ofh. And
there exists an itemy ∈ cand[v] along the same hy-
peredge such thath(x) ≥ h(y), due to the mono-
tonicity of h within the grid along one hyperedge.
We also haveh(y) ≥ bound by the definition of
bound. Thereforec(x) ≥ bound .

Now we can safely pop the best item frombuf if
its true costM IN(buf ) is better thanbound and pass
it up to the consequent node (lines 21–23); but other-
wise, we have to wait for more items to accumulate
in buf to prevent a potential search error, for exam-
ple, in the case of Figure 3(b), where the top-left cell
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(a)

1 2 3 4 5

(b)

1 2 3 4 5

Figure 5: (a) Pharaoh expands the hypotheses in the
current bin (#2) into longer ones. (b) In Cubit, hy-
potheses in previous bins are fed via hyperedge bun-
dles (solid arrows) into a priority queue (shaded tri-
angle), which empties into the current bin (#5).

(2.5) is worse than the currentbound of 2.2. The up-
date ofbound in each iteration (line 10) can be effi-
ciently implemented by using another heap with the
same contents ascand but prioritized byh instead.
In practice this is a negligible overhead on top of
cube pruning.

We now turn to the problem of estimating the
heuristic functionhcombo . In practice, computing
true lower bounds of the combination costs is too
slow and would compromise the speed up gained
from cube growing. So we instead use a much sim-
pler method that just calculates the minimum com-
bination cost of each hyperedge in the top-i deriva-
tions of the root node in−LM decoding. This is
just an approximation of the true lower bound, and
bad estimates can lead to search errors. However, the
hope is that by choosing the right value ofi, these es-
timates will be accurate enough to affect the search
quality only slightly, which is analogous to “almost
admissible” heuristics in A* search (Soricut, 2006).

5 Experiments

We test our methods on two large-scale English-to-
Chinese translation systems: a phrase-based system
and our tree-to-string system (Huang et al., 2006).

1.0

1.1

3.5

1.0 4.0 7.0

2.5 8.3 8.5

2.4 9.5 8.4

9.2 17.0 15.2

( ••• meeting)

( ••• talk)

( ••• conference)

with
Sharon

and Sharon

with
Ariel S

haron

...

Figure 6: A hyperedge bundle represents all+LM
deductions that derives an item in the current bin
from the same coverage vector (see Figure 5). The
phrases on the top denote the target-sides of appli-
cable phrase-pairs sharing the same source-side.

5.1 Phrase-based Decoding

We implementedCubit, a Python clone of the
Pharaoh decoder (Koehn, 2004),3 and adapted cube
pruning to it as follows. As in Pharaoh, each bin
i contains hypotheses (i.e.,+LM items) coveringi

words on the source-side. But at each bin (see Fig-
ure 5), all+LM items from previous bins are first
partitioned into−LM items; then the hyperedges
leading from those−LM items are further grouped
into hyperedge bundles (Figure 6), which are placed
into the priority queue of the current bin.

Our data preparation follows Huang et al. (2006):
the training data is a parallel corpus of 28.3M words
on the English side, and a trigram language model is
trained on the Chinese side. We use the same test set
as (Huang et al., 2006), which is a 140-sentence sub-
set of the NIST 2003 test set with 9–36 words on the
English side. The weights for the log-linear model
are tuned on a separate development set. We set the
decoder phrase-table limit to 100 as suggested in
(Koehn, 2004) and the distortion limit to 4.

Figure 7(a) compares cube pruning against full-
integration in terms of search quality vs. search ef-
ficiency, under various pruning settings (threshold
beam set to 0.0001, stack size varying from 1 to
200). Search quality is measured by average model
cost per sentence (lower is better), and search effi-
ciency is measured by the average number of hy-
potheses generated (smaller is faster). At each level

3In our tests, Cubit always obtains a BLEU score within
0.004 of Pharaoh’s (Figure 7(b)). Source code available at
http://www.cis.upenn.edu/ ˜ lhuang3/cubit/
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Figure 7: Cube pruning vs. full-integration (with beam search) on phrase-based decoding.

of search quality, the speed-up is always better than
a factor of 10. The speed-up at the lowest search-
error level is a factor of 32. Figure 7(b) makes a
similar comparison but measures search quality by
BLEU, which shows an even larger relative speed-up
for a given BLEU score, because translations with
very different model costs might have similar BLEU
scores. It also shows that our full-integration imple-
mentation in Cubit faithfully reproduces Pharaoh’s
performance. Fixing the stack size to 100 and vary-
ing the threshold yielded a similar result.

5.2 Tree-to-string Decoding

In tree-to-string (also calledsyntax-directed) decod-
ing (Huang et al., 2006; Liu et al., 2006), the source
string is first parsed into a tree, which is then re-
cursively converted into a target string according to
transfer rules in a synchronous grammar (Galley et
al., 2006). For instance, the following rule translates
an English passive construction into Chinese:

VP

VBD

was

VP-C

x1:VBN PP

IN

by

x2:NP-C

→ bèi x2 x1

Our tree-to-string system performs slightly bet-
ter than the state-of-the-art phrase-based system
Pharaoh on the above data set. Although differ-
ent from the SCFG-based systems in Section 2, its

derivation trees remain context-free and the search
space is still a hypergraph, where we can adapt the
methods presented in Sections 3 and 4.

The data set is same as in Section 5.1, except that
we also parsed the English-side using a variant of
the Collins (1997) parser, and then extracted 24.7M
tree-to-string rules using the algorithm of (Galley et
al., 2006). Since our tree-to-string rules may have
many variables, we first binarize each hyperedge in
the forest on the target projection (Huang, 2007).
All the three+LM decoding methods to be com-
pared below take these binarized forests as input. For
cube growing, we use a non-duplicatek-best method
(Huang et al., 2006) to get 100-best unique transla-
tions according to−LM to estimate the lower-bound
heuristics.4 This preprocessing step takes on aver-
age 0.12 seconds per sentence, which is negligible
in comparison to the+LM decoding time.

Figure 8(a) compares cube growing and cube
pruning against full-integration under various beam
settings in the same fashion of Figure 7(a). At the
lowest level of search error, the relative speed-up
from cube growing and cube pruning compared with
full-integration is by a factor of 9.8 and 4.1, respec-
tively. Figure 8(b) is a similar comparison in terms
of BLEU scores and shows an even bigger advantage
of cube growing and cube pruning over the baseline.

4If a hyperedge is not represented at all in the 100-best−LM
derivations at the root node, we use the 1-best−LM derivation
of this hyperedge instead. Here, rules that share the same source
side but have different target sides are treated as separate hy-
peredges, not collected into hyperedge bundles, since grouping
becomes difficult after binarization.
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Figure 8: Cube growing vs. cube pruning vs. full-integration (with beam search) on tree-to-string decoding.

6 Conclusions and Future Work

We have presented a novel extension of cube prun-
ing calledcube growing, and shown how both can be
seen as generalforest rescoringtechniques applica-
ble to both phrase-based and syntax-based decoding.
We evaluated these methods on large-scale transla-
tion tasks and observed considerable speed improve-
ments, often by more than a factor of ten. We plan
to investigate how to adapt cube growing to phrase-
based and hierarchical phrase-based systems.

These forest rescoring algorithms have potential
applications to other computationally intensive tasks
involving combinations of different models, for
example, head-lexicalized parsing (Collins, 1997);
joint parsing and semantic role labeling (Sutton and
McCallum, 2005); or tagging and parsing with non-
local features. Thus we envision forest rescoring as
being of general applicability for reducing compli-
cated search spaces, as an alternative to simulated
annealing methods (Kirkpatrick et al., 1983).
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Abstract

Machine translation of a source language
sentence involves selecting appropriate tar-
get language words and ordering the se-
lected words to form a well-formed tar-
get language sentence. Most of the pre-
vious work on statistical machine transla-
tion relies on (local) associations of target
words/phrases with source words/phrases
for lexical selection. In contrast, in this pa-
per, we present a novel approach to lexical
selection where the target words are associ-
ated with the entire source sentence (global)
without the need to compute local associa-
tions. Further, we present a technique for
reconstructing the target language sentence
from the selected words. We compare the re-
sults of this approach against those obtained
from a finite-state based statistical machine
translation system which relies on local lex-
ical associations.

1 Introduction

Machine translation can be viewed as consisting of
two subproblems: (a) lexical selection, where appro-
priate target language lexical items are chosen for
each source language lexical item and (b) lexical re-
ordering, where the chosen target language lexical
items are rearranged to produce a meaningful target
language string. Most of the previous work on statis-
tical machine translation, as exemplified in (Brown
et al., 1993), employs word-alignment algorithm
(such as GIZA++ (Och and Ney, 2003)) that pro-
vides local associations between source and target
words. The source-to-target word alignments are
sometimes augmented with target-to-source word
alignments in order to improve precision. Further,
the word-level alignments are extended to phrase-
level alignments in order to increase the extent of

local associations. The phrasal associations compile
some amount of (local) lexical reordering of the tar-
get words – those permitted by the size of the phrase.
Most of the state-of-the-art machine translation sys-
tems use phrase-level associations in conjunction
with a target language model to produce sentences.
There is relatively little emphasis on (global) lexical
reordering other than the local reorderings permit-
ted within the phrasal alignments. A few exceptions
are the hierarchical (possibly syntax-based) trans-
duction models (Wu, 1997; Alshawi et al., 1998;
Yamada and Knight, 2001; Chiang, 2005) and the
string transduction models (Kanthak et al., 2005).

In this paper, we present an alternate approach to
lexical selection and lexical reordering. For lexical
selection, in contrast to the local approaches of as-
sociating target to source words, we associate tar-
get words to the entire source sentence. The intu-
ition is that there may be lexico-syntactic features of
the source sentence (not necessarily a single source
word) that might trigger the presence of a target
word in the target sentence. Furthermore, it might be
difficult to exactly associate a target word to a source
word in many situations – (a) when the translations
are not exact but paraphrases (b) when the target lan-
guage does not have one lexical item to express the
same concept that is expressed by a source word.
Extending word to phrase alignments attempts to ad-
dress some of these situations while alleviating the
noise in word-level alignments.

As a consequence of this global lexical selection
approach, we no longer have a tight association be-
tween source and target language words. The re-
sult of lexical selection is simply a bag of words in
the target language and the sentence has to be recon-
structed using this bag of words. The words in the
bag, however, might be enhanced with rich syntactic
information that could aid in reconstructing the tar-
get sentence. This approach to lexical selection and
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sentence reconstruction has the potential to circum-
vent limitations of word-alignment based methods
for translation between languages with significantly
different word order (e.g. English-Japanese).

In this paper, we present the details of training
a global lexical selection model using classifica-
tion techniques and sentence reconstruction mod-
els using permutation automata. We also present a
stochastic finite-state transducer (SFST) as an exam-
ple of an approach that relies on local associations
and use it to compare and contrast our approach.

2 SFST Training and Decoding

In this section, we describe each of the components
of our SFST system shown in Figure 1. The SFST
approach described here is similar to the one de-
scribed in (Bangalore and Riccardi, 2000) which has
subsequently been adopted by (Banchs et al., 2005).

2.1 Word Alignment

The first stage in the process of training a lexical se-
lection model is obtaining an alignment function (f )
that given a pair of source (s1s2 . . . sn) and target
(t1t2 . . . tm) language sentences, maps source lan-
guage word subsequences into target language word
subsequences, as shown below.

∀i∃j(f(si) = tj ∨ f(si) = ε) (1)

For the work reported in this paper, we have used
the GIZA++ tool (Och and Ney, 2003) which im-
plements a string-alignment algorithm. GIZA++
alignment however is asymmetric in that the word
mappings are different depending on the direction
of alignment – source-to-target or target-to-source.
Hence in addition to the functionsf as shown in
Equation 1 we train another alignment functiong :

∀j∃i(g(tj) = si ∨ g(tj) = ε) (2)

English: I need to make a collect call
Japanese:ÏH �Ã�� ��Âk $*d »^%�cW2
Alignment: 1 5 0 3 0 2 4

Figure 3: Example bilingual texts with alignment in-
formation

I:ÏH need:»^%�cW2 to:ε make:��Âk
a:ε collect�Ã�� call $*d

Figure 4: Bilanguage strings resulting from align-
ments shown in Figure 3.

2.2 Bilanguage Representation

From the alignment information (see Figure 3), we
construct a bilanguage representation of each sen-
tence in the bilingual corpus. The bilanguage string
consists of source-target symbol pair sequences as
shown in Equation 3. Note that the tokens of a bilan-
guage could be either ordered according to the word
order of the source language or ordered according to
the word order of the target language.

Bf = bf1 b
f
2 . . . bfm (3)

bfi = (si−1; si, f(si)) if f(si−1) = ε

= (si, f(si−1); f(si)) if si−1 = ε

= (si, f(si)) otherwise

Figure 4 shows an example alignment and the
source-word-ordered bilanguage strings correspond-
ing to the alignment shown in Figure 3.

We also construct a bilanguage using the align-
ment functiong similar to the bilanguage using the
alignment functionf as shown in Equation 3.

Thus, the bilanguage corpus obtained by combin-
ing the two alignment functions isB = Bf ∪Bg.
2.3 Bilingual Phrases and Local Reordering

While word-to-word translation only approximates
the lexical selection process, phrase-to-phrase map-
ping can greatly improve the translation of colloca-
tions, recurrent strings, etc. Using phrases also al-
lows words within the phrase to be reordered into the
correct target language order, thus partially solving
the reordering problem. Additionally, SFSTs can
take advantage of phrasal correlations to improve the
computation of the probabilityP (WS ,WT ).

The bilanguage representation could result in
some source language phrases to be mapped toε
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(empty target phrase). In addition to these phrases,
we compute subsequences of a given lengthk on the
bilanguage string and for each subsequence we re-
order the target words of the subsequence to be in
the same order as they are in the target language sen-
tence corresponding to that bilanguage string. This
results in a retokenization of the bilanguage into to-
kens of source-target phrase pairs.

2.4 SFST Model

From the bilanguage corpusB, we train ann-gram
language model using standard tools (Goffin et al.,
2005). The resulting language model is represented
as a weighted finite-state automaton (S × T →
[0, 1]). The symbols on the arcs of this automaton
(si ti) are interpreted as having the source and target
symbols (si:ti), making it into a weighted finite-state
transducer (S → T×[0, 1]) that provides a weighted
string-to-string transduction fromS into T :

T ∗ = argmax
T

P (si, ti|si−1, ti−1 . . . si−n−1, ti−n−1)

2.5 Decoding

Since we represent the translation model as a
weighted finite-state transducer (TransFST ), the
decoding process of translating a new source in-
put (sentence or weighted lattice (Is)) amounts to
a transducer composition (◦) and selection of the
best probability path (BestPath) resulting from the
composition and projecting the target sequence (π1).

T ∗ = π1(BestPath(Is ◦ TransFST )) (4)

However, we have noticed that on the develop-
ment corpus, the decoded target sentence is typically
shorter than the intended target sentence. This mis-
match may be due to the incorrect estimation of the
back-off events and their probabilities in the train-
ing phase of the transducer. In order to alleviate
this mismatch, we introduce a negative word inser-
tion penalty model as a mechanism to produce more
words in the target sentence.

2.6 Word Insertion Model

The word insertion model is also encoded as a
weighted finite-state automaton and is included in
the decoding sequence as shown in Equation 5. The
word insertion FST has one state and|∑T | number
of arcs each weighted with aλ weight representing
the word insertion cost. On composition as shown
in Equation 5, the word insertion model penalizes or
rewards paths which have more words depending on
whetherλ is positive or negative value.

T ∗ = π1(BestPath(Is◦TransFST◦WIP )) (5)
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Figure 5: Locally constraint permutation automaton
for a sentence with 4 words and window size of 2.

2.7 Global Reordering

Local reordering as described in Section 2.3 is re-
stricted by the window sizek and accounts only for
different word order within phrases. As permuting
non-linear automata is too complex, we apply global
reordering by permuting the words of the best trans-
lation and weighting the result by an n-gram lan-
guage model (see also Figure 2):

T ∗ = BestPath(perm(T ′) ◦ LMt) (6)

Even the size of the minimal permutation automa-
ton of a linear automaton grows exponentially with
the length of the input sequence. While decoding by
composition simply resembles the principle of mem-
oization (i.e. here: all state hypotheses of a whole
sentence are kept in memory), it is necessary to ei-
ther use heuristic forward pruning or constrain per-
mutations to be within a local window of adjustable
size (also see (Kanthak et al., 2005)). We have cho-
sen to constrain permutations here. Figure 5 shows
the resulting minimal permutation automaton for an
input sequence of 4 words and a window size of 2.

Decoding ASR output in combination with global
reordering usesn-best lists or extracts them from lat-
tices first. Each entry of then-best list is decoded
separately and the best target sentence is picked
from the union of then intermediate results.

3 Discriminant Models for Lexical
Selection

The approach from the previous section is a genera-
tive model for statistical machine translation relying
on local associations between source and target sen-
tences. Now, we present our approach for aglobal
lexical selection model based on discriminatively
trained classification techniques. Discriminant mod-
eling techniques have become the dominant method
for resolving ambiguity in speech and other NLP
tasks, outperforming generative models. Discrimi-
native training has been used mainly for translation
model combination (Och and Ney, 2002) and with
the exception of (Wellington et al., 2006; Tillmann
and Zhang, 2006), has not been used to directly train
parameters of a translation model. We expect dis-
criminatively trained global lexical selection models
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to outperform generatively trained local lexical se-
lection models as well as provide a framework for
incorporating rich morpho-syntactic information.

Statistical machine translation can be formulated
as a search for the best target sequence that maxi-
mizesP (T |S), whereS is the source sentence and
T is the target sentence. Ideally,P (T |S) should
be estimated directly to maximize the conditional
likelihood on the training data (discriminant model).
However,T corresponds to a sequence with a ex-
ponentially large combination of possible labels,
and traditional classification approaches cannot be
used directly. Although Conditional Random Fields
(CRF) (Lafferty et al., 2001) train an exponential
model at the sequence level, in translation tasks such
as ours the computational requirements of training
such models are prohibitively expensive.

We investigate two approaches to approximating
the string level global classification problem, using
different independence assumptions. A comparison
of the two approaches is summarized in Table 1.

3.1 Sequential Lexical Choice Model

In the first approach, we formulate a sequential lo-
cal classification problem as shown in Equations 7.
This approach is similar to the SFST approach in
that it relies on local associations between the source
and target words(phrases). We can use a conditional
model (instead of a joint model as before) and the
parameters are determined using discriminant train-
ing which allows for richer conditioning context.

P (T |S) =
∏N

i=1
P (ti|Φ(S, i)) (7)

whereΦ(S, i) is a set of features extracted from the
source stringS (shortened asΦ in the rest of the
section).

3.2 Bag-of-Words Lexical Choice Model

The sequential lexical choice model described in
the previous section treats the selection of a lexical
choice for a source word in the local lexical context
as a classification task. The data for training such
models is derived from word alignments obtained
by e.g. GIZA++. The decoded target lexical items
have to be further reordered, but for closely related
languages the reordering could be incorporated into
correctly ordered target phrases as discussed previ-
ously.

For pairs of languages with radically different
word order (e.g. English-Japanese), there needs to
be a global reordering of words similar to the case
in the SFST-based translation system. Also, for such

differing language pairs, the alignment algorithms
such as GIZA++ perform poorly.

These observations prompted us to formulate the
lexical choice problemwithout the need for word
alignment information. We require a sentence
aligned corpus as before, but we treat the target sen-
tence as a bag-of-words or BOW assigned to the
source sentence. The goal is, given a source sen-
tence, to estimate the probability that we find a given
word in the target sentence. This is why, instead of
producing a target sentence, what we initially obtain
is a target bag of words. Each word in the target vo-
cabulary is detected independently, so we have here
a very simple use of binary static classifiers. Train-
ing sentence pairs are considered as positive exam-
ples when the word appears in the target, and neg-
ative otherwise. Thus, the number of training ex-
amples equals the number of sentence pairs, in con-
trast to the sequential lexical choice model which
has one training example for each token in the bilin-
gual training corpus. The classifier is trained withn-
gram features (BOgrams(S)) from the source sen-
tence. During decoding the words with conditional
probability greater than a thresholdθ are considered
as the result of lexical choice decoding.

BOW ∗T = {t|P (t|BOgrams(S)) > θ} (8)

For reconstructing the proper order of words in
the target sentence we consider all permutations of
words inBOW ∗T and weight them by a target lan-
guage model. This step is similar to the one de-
scribed in Section 2.7. The BOW approach can also
be modified to allow for length adjustments of tar-
get sentences, if we add optional deletions in the fi-
nal step of permutation decoding. The parameterθ
and an additional word deletion penalty can then be
used to adjust the length of translated outputs. In
Section 6, we discuss several issues regarding this
model.

4 Choosing the classifier

This section addresses the choice of the classifi-
cation technique, and argues that one technique
that yields excellent performance while scaling well
is binary maximum entropy (Maxent)with L1-
regularization.

4.1 Multiclass vs. Binary Classification

The Sequential and BOW models represent two dif-
ferent classification problems. In the sequential
model, we have amulticlassproblem where each
classti is exclusive, therefore, all the classifier out-
puts P (ti|Φ) must be jointly optimized such that
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Table 1: A comparison of the sequential and bag-of-words lexical choice models
Sequential Lexical Model Bag-of-Words Lexical Model

Output target Target word for each source positioni Target word given a source sentence
Input features BOgram(S, i− d, i+ d) : bag ofn-grams BOgram(S, 0, |S|): bag ofn-grams

in source sentence in the interval[i− d, i+ d] in source sentence
Probabilities P (ti|BOgram(S, i− d, i+ d)) P (BOW (T )|BOgram(S, 0, |S|))

Independence assumption between the labels
Number of classes One per target word or phrase
Training samples One per source token One per sentence
Preprocessing Source/Targetwordalignment Source/Targetsentencealignment

∑
i P (ti|Φ) = 1. This can be problematic: with

one classifier per word in the vocabulary, even allo-
cating the memory during training may exceed the
memory capacity of current computers.

In the BOW model, each class can be detected
independently, and two different classes can be de-
tected at the same time. This is known as the 1-vs-
other scheme. The key advantage over the multiclass
scheme is that not all classifiers have to reside in
memory at the same time during training which al-
lows for parallelization. Fortunately for the sequen-
tial model, we can decompose a multiclass classifi-
cation problem into separate 1-vs-other problems. In
theory, one has to make an additional independence
assumption and the problem statement becomes dif-
ferent. Each output labelt is projected into a bit
string with componentsbj(t) where probability of
each component is estimated independently:

P (bj(t)|Φ) = 1− P (b̄j(t)|Φ) =
1

1 + e−(λj−λj̄)·Φ

In practice, despite the approximation, the 1-vs-
other scheme has been shown to perform as well as
the multiclass scheme (Rifkin and Klautau, 2004).
As a consequence, we use the same type of binary
classifier for the sequential and the BOW models.

The excellent results recently obtained with the
SEARN algorithm (Daume et al., 2007) also sug-
gest that binary classifiers, when properly trained
and combined, seem to be capable of matching more
complexstructuredoutput approaches.

4.2 Geometric vs. Probabilistic Interpretation

We separate the most popular classification tech-
niques into two broad categories:

• Geometric approaches maximize the width of
a separation margin between the classes. The
most popular method is the Support Vector Ma-
chine (SVM) (Vapnik, 1998).

• Probabilistic approaches maximize the con-
ditional likelihood of the output class given
the input features. This logistic regression is

also called Maxent as it finds the distribution
with maximum entropythat properly estimates
the average of each feature over the training
data (Berger et al., 1996).

In previous studies, we found that the best accuracy
is achieved with non-linear (or kernel) SVMs, at the
expense of a high test time complexity, which is un-
acceptable for machine translation. Linear SVMs
and regularized Maxent yield similar performance.
In theory, Maxent training, which scales linearly
with the number of examples, is faster than SVM
training, which scales quadratically with the num-
ber of examples. In our first experiments with lexi-
cal choice models, we observed that Maxent slightly
outperformed SVMs. Using a single threshold with
SVMs, some classes of words were over-detected.
This suggests that, as theory predicts, SVMs do not
properly approximate the posterior probability. We
therefore chose to use Maxent as the best probability
approximator.

4.3 L1 vs. L2 regularization

Traditionally, Maxent is regularized by imposing a
Gaussian prior on each weight: this L2 regulariza-
tion finds the solution with the smallest possible
weights. However, on tasks like machine translation
with a very large number of input features, a Lapla-
cian L1 regularization that also attempts to maxi-
mize the number of zero weights is highly desirable.

A new L1-regularized Maxent algorithms was
proposed for density estimation (Dudik et al., 2004)
and we adapted it to classification. We found this al-
gorithm to converge faster than the current state-of-
the-art in Maxent training, which is L2-regularized
L-BFGS (Malouf, 2002)1. Moreover, the number of
trained parameters is considerably smaller.

5 Data and Experiments

We have performed experiments on the IWSLT06
Chinese-English training and development sets from

1We used the implementation available at
http://homepages.inf.ed.ac.uk/s0450736/maxenttoolkit.html
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Table 2: Statistics of training and development data from 2005/2006 (∗ = first of multiple translations only).
Training (2005) Dev 2005 Dev 2006

Chinese English Chinese English Chinese English
Sentences 46,311 506 489
Running Words 351,060 376,615 3,826 3,897 5,214 6,362∗

Vocabulary 11,178 11,232 931 898 1,136 1,134∗

Singletons 4,348 4,866 600 538 619 574∗

OOVs [%] - - 0.6 0.3 0.9 1.0
ASR WER [%] - - - - 25.2 -
Perplexity - - 33 - 86 -
# References - - 16 7

2005 and 2006. The data are traveler task ex-
pressions such as seeking directions, expressions in
restaurants and travel reservations. Table 2 presents
some statistics on the data sets. It must be noted
that while the 2005 development set matches the
training data closely, the 2006 development set has
been collected separately and shows slightly differ-
ent statistics for average sentence length, vocabulary
size and out-of-vocabulary words. Also the 2006
development set contains no punctuation marks in
Chinese, but the corresponding English translations
have punctuation marks. We also evaluated our
models on the Chinese speech recognition output
and we report results using 1-best with a word er-
ror rate of 25.2%.

For the experiments, we tokenized the Chinese
sentences into character strings and trained the mod-
els discussed in the previous sections. Also, we
trained a punctuation prediction model using Max-
ent framework on the Chinese character strings in
order to insert punctuation marks into the 2006 de-
velopment data set. The resulting character string
with punctuation marks is used as input to the trans-
lation decoder. For the 2005 development set, punc-
tuation insertion was not needed since the Chinese
sentences already had the true punctuation marks.

In Table 3 we present the results of the three dif-
ferent translation models – FST, Sequential Maxent
and BOW Maxent. There are a few interesting ob-
servations that can be made based on these results.
First, on the 2005 development set, the sequential
Maxent model outperforms the FST model, even
though the two models were trained starting from
the same GIZA++ alignment. The difference, how-
ever, is due to the fact that Maxent models can cope
with increased lexical context2 and the parameters
of the model are discriminatively trained. The more
surprising result is that the BOW Maxent model sig-
nificantly outperforms the sequential Maxent model.

2We use 6 words to the left and right of a source word for
sequential Maxent, but only 2 preceding source and target words
for FST approach.

The reason is that the sequential Maxent model re-
lies on the word alignment, which, if erroneous, re-
sults in incorrect predictions by the sequential Max-
ent model. The BOW model does not rely on the
word-level alignment and can be interpreted as a dis-
criminatively trained model of dictionary lookup for
a target word in the context of a source sentence.

Table 3: Results (mBLEU) scores for the three dif-
ferent models on the transcriptions for development
set 2005 and 2006 and ASR 1-best for development
set 2006.

Dev 2005 Dev 2006
Text Text ASR 1-best

FST 51.8 19.5 16.5
Seq. Maxent 53.5 19.4 16.3
BOW Maxent 59.9 19.3 16.6

As indicated in the data release document, the
2006 development set was collected differently com-
pared to the one from 2005. Due to this mis-
match, the performance of the Maxent models are
not very different from the FST model, indicating
the lack of good generalization across different gen-
res. However, we believe that the Maxent frame-
work allows for incorporation of linguistic features
that could potentially help in generalization across
genres. For translation of ASR 1-best, we see a sys-
tematic degradation of about 3% in mBLEU score
compared to translating the transcription.

In order to compensate for the mismatch between
the 2005 and 2006 data sets, we computed a 10-fold
average mBLEU score by including 90% of the 2006
development set into the training set and using 10%
of the 2006 development set for testing, each time.
The average mBLEU score across these 10 runs in-
creased to 22.8.

In Figure 6 we show the improvement of mBLEU
scores with the increase in permutation window size.
We had to limit to a permutation window size of 10
due to memory limitations, even though the curve
has not plateaued. We anticipate using pruning tech-
niques we can increase the window size further.
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Figure 6: Improvement in mBLEU score with the
increase in size of the permutation window

5.1 United Nations and Hansard Corpora

In order to test the scalability of the global lexical
selection approach, we also performed lexical se-
lection experiments on the United Nations (Arabic-
English) corpus and the Hansard (French-English)
corpus using the SFST model and the BOW Maxent
model. We used 1,000,000 training sentence pairs
and tested on 994 test sentences for the UN corpus.
For the Hansard corpus we used the same training
and test split as in (Zens and Ney, 2004): 1.4 million
training sentence pairs and 5432 test sentences. The
vocabulary sizes for the two corpora are mentioned
in Table 4. Also in Table 4, are the results in terms of
F-measure between the words in the reference sen-
tence and the decoded sentences. We can see that the
BOW model outperforms the SFST model on both
corpora significantly. This is due to a systematic
10% relative improvement for open class words, as
they benefit from a much wider context. BOW per-
formance on close class words is higher for the UN
corpus but lower for the Hansard corpus.

Table 4: Lexical Selection results (F-measure) on
the Arabic-English UN Corpus and the French-
English Hansard Corpus. In parenthesis are F-
measures for open and closed class lexical items.

Corpus Vocabulary SFST BOW
Source Target

UN 252,571 53,005 64.6 69.5
(60.5/69.1) (66.2/72.6)

Hansard 100,270 78,333 57.4 60.8
(50.6/67.7) (56.5/63.4)

6 Discussion

The BOW approach is promising as it performs rea-
sonably well despite considerable losses in the trans-
fer of information between source and target lan-
guage. The first and most obvious loss is about word
position. The only information we currently use to
restore the target word position is the target language

model. Information about the grammatical role of a
word in the source sentence is completely lost. The
language model might fortuitously recover this in-
formation if the sentence with the correct grammat-
ical role for the word happens to be the maximum
likelihood sentence in the permutation automaton.

We are currently working toward incorporating
syntactic information on the target words so as to be
able to recover some of the grammatical role infor-
mation lost in the classification process. In prelimi-
nary experiments, we have associated the target lex-
ical items with supertag information (Bangalore and
Joshi, 1999). Supertags are labels that provide linear
ordering constraints as well as grammatical relation
information. Although associating supertags to tar-
get words increases the class set for the classifier, we
have noticed that the degradation in the F-score is
on the order of 3% across different corpora. The su-
pertag information can then be exploited in the sen-
tence construction process. The use of supertags in
phrase-based SMT system has been shown to im-
prove results (Hassan et al., 2006).

A less obvious loss is the number of times a word
or concept appears in the target sentence.Func-
tion words like ”the” and ”of” can appear many
times in an English sentence. In the model dis-
cussed in this paper, we index each occurrence of the
function word with a counter. In order to improve
this method, we are currently exploring a technique
where the function words serve as attributes (e.g.
definiteness, tense, case) on the contentful lexical
items, thus enriching the lexical item with morpho-
syntactic information.

A third issue concerning the BOW model is the
problem ofsynonyms– target words which translate
the same source word. Suppose that in the training
data, target wordst1 andt2 are, with equal probabil-
ity, translations of the same source word. Then, in
the presence of this source word, the probability to
detect the corresponding target word, which we as-
sume is 0.8, will be, because of discriminant learn-
ing, split equally betweent1 andt2, that is 0.4 and
0.4. Because of this synonym problem, the BOW
thresholdθ has to be set lower than 0.5, which is
observed experimentally. However, if we set the
threshold to 0.3, botht1 and t2 will be detected in
the target sentence, and we found this to be a major
source of undesirable insertions.

The BOW approach is different from the pars-
ing based approaches (Melamed, 2004; Zhang and
Gildea, 2005; Cowan et al., 2006) where the transla-
tion model tightly couples the syntactic and lexical
items of the two languages. The decoupling of the
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two steps in our model has the potential for gener-
ating paraphrased sentences not necessarily isomor-
phic to the structure of the source sentence.

7 Conclusions

We view machine translation as consisting of lexi-
cal selection and lexical reordering steps. These two
steps need not necessarily be sequential and could be
tightly integrated. We have presented the weighted
finite-state transducer model of machine translation
where lexical choice and a limited amount of lexical
reordering are tightly integrated into a single trans-
duction. We have also presented a novel approach
to translation where these two steps are loosely cou-
pled and the parameters of the lexical choice model
are discriminatively trained using a maximum en-
tropy model. The lexical reordering model in this
approach is achieved using a permutation automa-
ton. We have evaluated these two approaches on the
2005 and 2006 IWSLT development sets and shown
that the techniques scale well to Hansard and UN
corpora.
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Abstract

Dependency-based representations of natu-
ral language syntax require a fine balance
between structural flexibility and computa-
tional complexity. In previous work, several
constraints have been proposed to identify
classes of dependency structures that are well-
balanced in this sense; the best-known but
also most restrictive of these is projectivity.
Most constraints are formulated on fully spec-
ified structures, which makes them hard to in-
tegrate into models where structures are com-
posed from lexical information. In this paper,
we show how two empirically relevant relax-
ations of projectivity can be lexicalized, and
how combining the resulting lexicons with a
regular means of syntactic composition gives
rise to a hierarchy of mildly context-sensitive
dependency languages.

1 Introduction

Syntactic representations based on word-to-word de-
pendencies have a long tradition in descriptive lin-
guistics. Lately, they have also been used in many
computational tasks, such as relation extraction (Cu-
lotta and Sorensen, 2004), parsing (McDonald et al.,
2005), and machine translation (Quirk et al., 2005).

Especially in recent work on parsing, there is a par-
ticular interest in non-projective dependency struc-
tures, in which a word and its dependents may be
spread out over a discontinuous region of the sen-
tence. These structures naturally arise in the syntactic
analysis of languages with flexible word order, such

as Czech (Veselá et al., 2004). Unfortunately, most
formal results on non-projectivity are discouraging:
While grammar-driven dependency parsers that are
restricted to projective structures can be as efficient
as parsers for lexicalized context-free grammar (Eis-
ner and Satta, 1999), parsing is prohibitively expen-
sive when unrestricted forms of non-projectivity are
permitted (Neuhaus and Bröker, 1997). Data-driven
dependency parsing with non-projective structures is
quadratic when all attachment decisions are assumed
to be independent of one another (McDonald et al.,
2005), but becomes intractable when this assumption
is abandoned (McDonald and Pereira, 2006).

In search of a balance between structural flexibility
and computational complexity, several authors have
proposed constraints to identify classes of non-projec-
tive dependency structures that are computationally
well-behaved (Bodirsky et al., 2005; Nivre, 2006).
In this paper, we focus on two of these proposals:
the gap-degree restriction, which puts a bound on
the number of discontinuities in the region of a sen-
tence covered by a word and its dependents, and the
well-nestedness condition, which constrains the ar-
rangement of dependency subtrees. Both constraints
have been shown to be in very good fit with data from
dependency treebanks (Kuhlmann and Nivre, 2006).
However, like all other such proposals, they are for-
mulated on fully specified structures, which makes it
hard to integrate them into a generative model, where
dependency structures are composed from elemen-
tary units of lexicalized information. Consequently,
little is known about the generative capacity and com-
putational complexity of languages over restricted
non-projective dependency structures.
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Contents of the paper In this paper, we show how
the gap-degree restriction and the well-nestedness
condition can be captured in dependency lexicons,
and how combining such lexicons with a regular
means of syntactic composition gives rise to an infi-
nite hierarchy of mildly context-sensitive languages.

The technical key to these results is a procedure
to encode arbitrary, even non-projective dependency
structures into trees (terms) over a signature of local
order-annotations. The constructors of these trees
can be read as lexical entries, and both the gap-de-
gree restriction and the well-nestedness condition
can be couched as syntactic properties of these en-
tries. Sets of gap-restricted dependency structures
can be described using regular tree grammars. This
gives rise to a notion of regular dependency lan-
guages, and allows us to establish a formal relation
between the structural constraints and mildly con-
text-sensitive grammar formalisms (Joshi, 1985): We
show that regular dependency languages correspond
to the sets of derivations of lexicalized Linear Con-
text-Free Rewriting Systems (lcfrs) (Vijay-Shanker
et al., 1987), and that the gap-degree measure is the
structural correspondent of the concept of ‘fan-out’
in this formalism (Satta, 1992). We also show that
adding the well-nestedness condition corresponds
to the restriction of lcfrs to Coupled Context-Free
Grammars (Hotz and Pitsch, 1996), and that regu-
lar sets of well-nested structures with a gap-degree
of at most 1 are exactly the class of sets of deriva-
tions of Lexicalized Tree Adjoining Grammar (ltag).
This result generalizes previous work on the relation
between ltag and dependency representations (Ram-
bow and Joshi, 1997; Bodirsky et al., 2005).

Structure of the paper The remainder of this pa-
per is structured as follows. Section 2 contains some
basic notions related to trees and dependency struc-
tures. In Section 3 we present the encoding of depen-
dency structures as order-annotated trees, and show
how this encoding allows us to give a lexicalized re-
formulation of both the gap-degree restriction and the
well-nestedness condition. Section 4 introduces the
notion of regular dependency languages. In Section 5
we show how different combinations of restrictions
on non-projectivity in these languages correspond
to different mildly context-sensitive grammar for-
malisms. Section 6 concludes the paper.

2 Preliminaries

Throughout the paper, we write Œn� for the set of all
positive natural numbers up to and including n. The
set of all strings over a set A is denoted by A�, the
empty string is denoted by ", and the concatenation
of two strings x and y is denoted either by xy, or,
where this is ambiguous, by x � y.

2.1 Trees
In this paper, we regard trees as terms. We expect the
reader to be familiar with the basic concepts related
to this framework, and only introduce our particular
notation. Let ˙ be a set of labels. The set of (finite,
unranked) trees over ˙ is defined recursively by the
equation T˙ ´ f �.x/ j � 2 ˙; x 2 T �˙ g. The set
of nodes of a tree t 2 T˙ is defined as

N.�.t1 � � � tn//´ f"g [ f iu j i 2 Œn�; u 2 N.ti / g :

For two nodes u; v 2 N.t/, we say that u governs v,
and write u E v, if v can be written as v D ux, for
some sequence x 2 N�. Note that the governance
relation is both reflexive and transitive. The converse
of government is called dependency, so u E v can
also be read as ‘v depends on u’. The yield of a
node u 2 N.t/, buc, is the set of all dependents of u
in t : buc ´ f v 2 N.t/ j u E v g. We also use the
notations t .u/ for the label at the node u of t , and
t=u for the subtree of t rooted at u. A tree language
over ˙ is a subset of T˙ .

2.2 Dependency structures
For the purposes of this paper, a dependency structure
over ˙ is a pair d D .t; x/, where t 2 T˙ is a tree,
and x is a list of the nodes in t . We write D˙ to
refer to the set of all dependency structures over ˙ .
Independently of the governance relation in d , the
list x defines a total order on the nodes in t ; we
write u � v to denote that u precedes v in this order.
Note that, like governance, the precedence relation is
both reflexive and transitive. A dependency language
over ˙ is a subset of D˙ .

Example. The left half of Figure 1 shows how we
visualize dependency structures: circles represent
nodes, arrows represent the relation of (immediate)
governance, the left-to-right order of the nodes repre-
sents their order in the precedence relation, and the
dotted lines indicate the labelling. �
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hd; 10i

hb; 01i

Figure 1: A projective dependency structure

3 Lexicalizing the precedence relation

In this section, we show how the precedence relation
of dependency structures can be encoded as, and
decoded from, a collection of node-specific order
annotations. Under the assumption that the nodes of
a dependency structure correspond to lexemic units,
this result demonstrates how word-order information
can be captured in a dependency lexicon.

3.1 Projective structures
Lexicalizing the precedence relation of a dependency
structure is particularly easy if the structure under
consideration meets the condition of projectivity. A
dependency structure is projective, if each of its
yields forms an interval with respect to the prece-
dence order (Kuhlmann and Nivre, 2006).

In a projective structure, the interval that corre-
sponds to a yield buc decomposes into the singleton
interval Œu; u�, and the collection of the intervals that
correspond to the yields of the immediate dependents
of u. To reconstruct the global precedence relation,
it suffices to annotate each node u with the relative
precedences among the constituent parts of its yield.
We represent this ‘local’ order as a string over the
alphabet N0, where the symbol 0 represents the sin-
gleton interval Œu; u�, and a symbol i ¤ 0 represents
the interval that corresponds to the yield of the i th
direct dependent of u. An order-annotated tree is a
tree labelled with pairs h�; !i, where � is the label
proper, and ! is a local order annotation. In what
follows, we will use the functional notations �.u/
and !.u/ to refer to the label and order annotation
of u, respectively.

Example. Figure 1 shows a projective dependency
structure together with its representation as an order-
annotated tree. �

We now present procedures for encoding projec-
tive dependency structures into order-annotated trees,
and for reversing this encoding.

Encoding The representation of a projective depen-
dency structure .t; x/ as an order-annotated tree can
be computed in a single left-to-right sweep over x.
Starting with a copy of the tree t in which every
node is annotated with the empty string, for each new
node u in x, we update the order annotation of u
through the assignment !.u/´ !.u/ �0 . If u D vi
for some i 2 N (that is, if u is an inner node), we
also update the order annotation of the parent v of u
through the assignment !.v/´ !.v/ � i .

Decoding To decode an order-annotated tree t , we
first linearize the nodes of t into a sequence x, and
then remove all order annotations. Linearization pro-
ceeds in a way that is very close to a pre-order traver-
sal of the tree, except that the relative position of
the root node of a subtree is explicitly specified in
the order annotation. Specifically, to linearize an or-
der-annotated tree, we look into the local order !.u/
annotated at the root node of the tree, and concatenate
the linearizations of its constituent parts. A symbol i
in !.u/ represents either the singleton interval Œu; u�
(i D 0), or the interval corresponding to some direct
dependent ui of u (i ¤ 0), in which case we pro-
ceed recursively. Formally, the linearization of u is
captured by the following three equations:

lin.u/ D lin0.u; !.u//

lin0.u; i1 � � � in/ D lin00.u; i1/ � � � lin00.u; in/

lin00.u; i/ D if i D 0 then u else lin.ui/

Both encoding and decoding can be done in time
linear in the number of nodes of the dependency
structure or order-annotated tree.

3.2 Non-projective structures

It is straightforward to see that our representation of
dependency structures is insufficient if the structures
under consideration are non-projective. To witness,
consider the structure shown in Figure 2. Encoding
this structure using the procedure presented above
yields the same order-annotated tree as the one shown
in Figure 1, which demonstrates that the encoding is
not reversible.
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hb; h01; 1ii

hd; h1; 0ii

Figure 2: A non-projective dependency structure

Blocks In a non-projective dependency structure,
the yield of a node may be spread out over more than
one interval; we will refer to these intervals as blocks.
Two nodes v;w belong to the same block of a node u,
if all nodes between v and w are governed by u.

Example. Consider the nodes b; c; d in the struc-
tures depicted in Figures 1 and 2. In Figure 1, these
nodes belong to the same block of b. In Figure 2,
the three nodes are spread out over two blocks of b
(marked by the boxes): c and d are separated by a
node (e) not governed by b. �

Blocks have a recursive structure that is closely re-
lated to the recursive structure of yields: the blocks of
a node u can be decomposed into the singleton Œu; u�,
and the blocks of the direct dependents of u. Just as
a projective dependency structure can be represented
by annotating each yield with an order on its con-
stituents, an unrestricted structure can be represented
by annotating each block.

Extended order annotations To represent orders
on blocks, we extend our annotation scheme as fol-
lows. First, instead of a single string, an annotation
!.u/ now is a tuple of strings, where the kth com-
ponent specifies the order among the constituents of
the kth block of u. Second, instead of one, the an-
notation may now contain multiple occurrences of
the same dependent; the kth occurrence of i in !.u/
represents the kth block of the node ui .

We write !.u/k to refer to the kth component of
the order annotation of u. We also use the notation
.i#k/u to refer to the kth occurrence of i in !.u/,
and omit the subscript when the node u is implicit.

Example. In the annotated tree shown in Figure 2,
!.b/1 D .0#1/.1#1/, and !.b/2 D .1#2/. �

Encoding To encode a dependency structure .t; x/
as an extended order-annotated tree, we do a post-
order traversal of t as follows. For a given node u, let
us represent a constituent of a block of u as a triple
i W Œvl ; vr �, where i denotes the node that contributes
the constituent, and vl and vr denote the constituent’s
leftmost and rightmost elements. At each node u, we
have access to the singleton block 0 W Œu; u�, and the
constituent blocks of the immediate dependents of u.
We say that two blocks i W Œvl ; vr �; j W Œwl ; wr � can
be merged, if the node vr immediately precedes the
node wl . The result of the merger is a new block ij W
Œvl ; wr � that represents the information that the two
merged constituents belong to the same block of u.
By exhaustive merging, we obtain the constituent
structure of all blocks of u. From this structure, we
can read off the order annotation !.u/.

Example. The yield of the node b in Figure 2 de-
composes into 0 W Œb; b�, 1 W Œc; c�, and 1 W Œd; d �.
Since b and c are adjacent, the first two of these con-
stituents can be merged into a new block 01 W Œb; c�;
the third constituent remains unchanged. This gives
rise to the order annotation h01; 1i for b. �

When using a global data-structure to keep track
of the constituent blocks, the encoding procedure can
be implemented to run in time linear in the number
of blocks in the dependency structure. In particular,
for projective dependency structures, it still runs in
time linear in the number of nodes.

Decoding To linearize the kth block of a node u,
we look into the kth component of the order anno-
tated at u, and concatenate the linearizations of its
constituent parts. Each occurrence .i#k/ in a com-
ponent of !.u/ represents either the node u itself
(i D 0), or the kth block of some direct dependent ui
of u (i ¤ 0), in which case we proceed recursively:

lin.u; k/ D lin0.u; !.u/k/

lin0.u; i1 � � � in/ D lin00.u; i1/ � � � lin00.u; in/

lin00.u; .i#k/u/ D if i D 0 then u else lin.ui; k/

The root node of a dependency structure has only
one block. Therefore, to linearize a tree t , we only
need to linearize the first block of the tree’s root node:
lin.t/ D lin."; 1/.
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Consistent order annotations Every dependency
structure over˙ can be encoded as a tree over the set
˙ �˝, where ˝ is the set of all order annotations.
The converse of this statement does not hold: to be
interpretable as a dependency structure, tree structure
and order annotation in an order-annotated tree must
be consistent, in the following sense.

Property C1: Every annotation !.u/ in a tree t
contains all and only the symbols in the collection
f0g [ f i j ui 2 N.t/ g, i.e., one symbol for u, and
one symbol for every direct dependent of u.

Property C2: The number of occurrences of a
symbol i ¤ 0 in !.u/ is identical to the number of
components in the annotation of the node ui . Further-
more, the number of components in the annotation
of the root node is 1.
With this notion of consistency, we can prove the
following technical result about the relation between
dependency structures and annotated trees. We write
�˙ .s/ for the tree obtained from a tree s 2 T˙�˝
by re-labelling every node u with �.u/.

Proposition 1. For every dependency structure
.t; x/ over ˙ , there exists a tree s over ˙ �˝ such
that �˙ .s/ D t and lin.s/ D x. Conversely, for
every consistently order-annotated tree s 2 T˙�˝ ,
there exists a uniquely determined dependency struc-
ture .t; x/ with these properties. �

3.3 Local versions of structural constraints
The encoding of dependency structures as order-an-
notated trees allows us to reformulate two constraints
on non-projectivity originally defined on fully speci-
fied dependency structures (Bodirsky et al., 2005) in
terms of syntactic properties of the order annotations
that they induce:

Gap-degree The gap-degree of a dependency
structure is the maximum over the number of dis-
continuities in any yield of that structure.

Example. The structure depicted in Figure 2 has
gap-degree 1: the yield of b has one discontinuity,
marked by the node e, and this is the maximal number
of discontinuities in any yield of the structure. �

Since a discontinuity in a yield is delimited by two
blocks, and since the number of blocks of a node u
equals the number of components in the order anno-
tation of u, the following result is obvious:

Proposition 2. A dependency structure has gap-de-
gree k if and only if the maximal number of compo-
nents among the annotations !.u/ is k C 1. �

In particular, a dependency structure is projective iff
all of its annotations consist of just one component.

Well-nestedness The well-nestedness condition
constrains the arrangement of subtrees in a depen-
dency structure. Two subtrees t=u1; t=u2 interleave,
if there are nodes v1

l
; v1r 2 t=u1 and v2

l
; v2r 2 t=u2

such that v1
l
� v2

l
� v1r � v

2
r . A dependency struc-

ture is well-nested, if no two of its disjoint subtrees
interleave. We can prove the following result:

Proposition 3. A dependency structure is well-
nested if and only if no annotation !.u/ contains
a substring i � � � j � � � i � � � j , for i; j 2 N. �

Example. The dependency structure in Figure 1 is
well-nested, the structure depicted in Figure 2 is not:
the subtrees rooted at the nodes b and e interleave.
To see this, notice that b � e � d � f . Also notice
that !.a/ contains the substring 1212. �

4 Regular dependency languages

The encoding of dependency structures as order-an-
notated trees gives rise to an encoding of dependency
languages as tree languages. More specifically, de-
pendency languages over a set ˙ can be encoded
as tree languages over the set ˙ � ˝, where ˝ is
the set of all order annotations. Via this encoding,
we can study dependency languages using the tools
and results of the well-developed formal theory of
tree languages. In this section, we discuss depen-
dency languages that can be encoded as regular tree
languages.

4.1 Regular tree grammars
The class of regular tree languages, REGT for short,
is a very natural class with many characterizations
(Gécseg and Steinby, 1997): it is generated by regular
tree grammars, recognized by finite tree automata,
and expressible in monadic second-order logic. Here
we use the characterization in terms of grammars.
Regular tree grammars are natural candidates for the
formalization of dependency lexicons, as each rule
in such a grammar can be seen as the specification of
a word and the syntactic categories or grammatical
functions of its immediate dependents.
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Formally, a (normalized) regular tree grammar is
a construct G D .NG ; ˙G ; SG ; PG/, in which NG
and ˙G are finite sets of non-terminal and termi-
nal symbols, respectively, SG 2 NG is a dedicated
start symbol, and PG is a finite set of productions
of the form A ! �.A1 � � �An/, where � 2 ˙G ,
A 2 NG , and Ai 2 NG , for every i 2 Œn�. The (di-
rect) derivation relation associated to G is the binary
relation)G on the set T˙G[NG

defined as follows:

t 2 T˙G[NG
t=u D A .A! s/ 2 PG

t )G t Œu 7! s�

Informally, each step in a derivation replaces a non-
terminal-labelled leaf by the right-hand side of a
matching production. The tree language generated
by G is the set of all terminal trees that can eventu-
ally be derived from the trivial tree formed by its start
symbol: L.G/ D f t 2 T˙G

j SG )
�
G t g.

4.2 Regular dependency grammars
We call a dependency language regular, if its encod-
ing as a set of trees over ˙ �˝ forms a regular tree
language, and write REGD for the class of all regular
dependency languages. For every regular dependency
language L, there is a regular tree grammar with ter-
minal alphabet ˙ �˝ that generates the encoding
of L. Similar to the situation with individual struc-
tures, the converse of this statement does not hold:
the consistency properties mentioned above impose
corresponding syntactic restrictions on the rules of
grammars G that generate the encoding of L.

Property C10: The !-component of every pro-
ductionA! h�; !i.A1 � � �An/ inG contains all and
only symbols in the set f0g [ f i j i 2 Œn� g.

Property C20: For every non-terminal X 2 NG ,
there is a uniquely determined integer dX such that
for every production A ! h�; !i.A1 � � �An/ in G,
dAi

gives the number of occurrences of i in !, dA
gives the number of components in !, and dSG

D 1.
It turns out that these properties are in fact sufficient
to characterize the class of regular tree grammars that
generate encodings of dependency languages. In but
slight abuse of terminology, we will refer to such
grammars as regular dependency grammars.

Example. Figure 3 shows a regular tree grammar
that generates a set of non-projective dependency
structures with string language f anbn j n � 1 g. �

a b b baa

B

B

B

S

A

A

S ! ha; h01ii.B/ j ha; h0121ii.A;B/

A ! ha; h0; 1ii.B/ j ha; h01; 21ii.A;B/

B ! hb; h0ii

Figure 3: A grammar for a language in REGD.1/

5 Structural constraints and formal power

In this section, we present our results on the genera-
tive capacity of regular dependency languages, link-
ing them to a large class of mildly context-sensitive
grammar formalisms.

5.1 Gap-restricted dependency languages
A dependency language L is called gap-restricted, if
there is a constant cL � 0 such that no structure in L
has a gap-degree higher than cL. It is plain to see that
every regular dependency language is gap-restricted:
the gap-degree of a structure is directly reflected in
the number of components of its order annotations,
and every regular dependency grammar makes use of
only a finite number of these annotations. We write
REGD.k/ to refer to the class of regular dependency
languages with a gap-degree bounded by k.

Linear Context-Free Rewriting Systems Gap-re-
stricted dependency languages are closely related
to Linear Context-Free Rewriting Systems (lcfrs)
(Vijay-Shanker et al., 1987), a class of formal sys-
tems that generalizes several mildly context-sensitive
grammar formalisms. An lcfrs consists of a regular
tree grammar G and an interpretation of the terminal
symbols of this grammar as linear, non-erasing func-
tions into tuples of strings. By these functions, each
tree in L.G/ can be evaluated to a string.

Example. Here is an example for a function:

f .hx11 ; x
2
1i; hx

1
2i/ D hax

1
1 ; x

1
2x
2
1i

This function states that in order to compute the pair
of strings that corresponds to a tree whose root node
is labelled with the symbol f , one first has to com-
pute the pair of strings corresponding to the first child
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of the root node (hx11 ; x
2
1i) and the single string cor-

responding to the second child (hx12i), and then con-
catenate the individual components in the specified
order, preceded by the terminal symbol a. �

We call a function lexicalized, if it contributes ex-
actly one terminal symbol. In an lcfrs in which all
functions are lexicalized, there is a one-to-one cor-
respondence between the nodes in an evaluated tree
and the positions in the string that the tree evaluates
to. Therefore, tree and string implicitly form a depen-
dency structure, and we can speak of the dependency
language generated by a lexicalized lcfrs.

Equivalence We can prove that every regular de-
pendency grammar can be transformed into a lexi-
calized lcfrs that generates the same dependency
language, and vice versa. The basic insight in this
proof is that every order annotation in a regular de-
pendency grammar can be interpreted as a compact
description of a function in the corresponding lcfrs.
The number of components in the order-annotation,
and hence, the gap-degree of the resulting depen-
dency language, corresponds to the fan-out of the
function: the highest number of components among
the arguments of the function (Satta, 1992).1 A tech-
nical difficulty is caused by the fact that lcfrs can
swap components: f .hx11 ; x

2
1i/ D hax

2
1 ; x

1
1i. This

commutativity needs to be compiled out during the
translation into a regular dependency grammar.

We write LLCFRL.k/ for the class of all depen-
dency languages generated by lexicalized lcfrs with
a fan-out of at most k.

Proposition 4. REGD.k/ D LLCFRL.k C 1/ �

In particular, the class REGD.0/ of regular depen-
dency languages over projective structures is exactly
the class of dependency languages generated by lexi-
calized context-free grammars.

Example. The gap-degree of the language generated
by the grammar in Figure 3 is bounded by 1. The
rules for the non-terminal A can be translated into
the following functions of an equivalent lcfrs:

fha;h0;1ii.hx
1
1i/ D ha; x

1
1i

fha;h01;21ii.hx
1
1 ; x

2
1i; hx

1
2i/ D hax

1
1 ; x

1
2x
2
1i

The fan-out of these functions is 2. �

1More precisely, gap-degree D fan-out � 1.

5.2 Well-nested dependency languages

The absence of the substring i � � � j � � � i � � � j in the
order annotations of well-nested dependency struc-
tures corresponds to a restriction to ‘well-bracketed’
compositions of sub-structures. This restriction is
central to the formalism of Coupled-Context-Free
Grammar (ccfg) (Hotz and Pitsch, 1996).

It is straightforward to see that every ccfg can
be translated into an equivalent lcfrs. We can also
prove that every lcfrs obtained from a regular depen-
dency grammar with well-nested order annotations
can be translated back into an equivalent ccfg. We
write REGDwn.k/ for the well-nested subclass of
REGD.k/, and LCCFL.k/ for the class of all depen-
dency languages generated by lexicalized ccfgs with
a fan-out of at most k.

Proposition 5. REGDwn.k/ D LCCFL.k C 1/ �

As a special case, Coupled-Context-Free Grammars
with fan-out 2 are equivalent to Tree Adjoining Gram-
mars (tags) (Hotz and Pitsch, 1996). This enables
us to generalize a previous result on the class of de-
pendency structures generated by lexicalized tags
(Bodirsky et al., 2005) to the class of generated de-
pendency languages, LTAL.

Proposition 6. REGDwn.1/ D LTAL �

6 Conclusion

In this paper, we have presented a lexicalized refor-
mulation of two structural constraints on non-pro-
jective dependency representations, and shown that
combining dependency lexicons that satisfy these
constraints with a regular means of syntactic com-
position yields classes of mildly context-sensitive
dependency languages. Our results make a signif-
icant contribution to a better understanding of the
relation between the phenomenon of non-projectivity
and notions of formal power.

The close link between restricted forms of non-
projective dependency languages and mildly context-
sensitive grammar formalisms provides a promising
starting point for future work. On the practical side,
it should allow us to benefit from the experience
in building parsers for mildly context-sensitive for-
malisms when addressing the task of efficient non-
projective dependency parsing, at least in the frame-
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work of grammar-driven parsing. This may even-
tually lead to a better trade-off between structural
flexibility and computational efficiency than that ob-
tained with current systems. On a more theoretical
level, our results provide a basis for comparing a va-
riety of formally rather distinct grammar formalisms
with respect to the sets of dependency structures that
they can generate. Such a comparison may be empir-
ically more adequate than one based on traditional
notions of generative capacity (Kallmeyer, 2006).
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Abstract

This paper shows how to use the Unfold-
Fold transformation to transform Projective
Bilexical Dependency Grammars (PBDGs)
into ambiguity-preserving weakly equiva-
lent Context-Free Grammars (CFGs). These
CFGs can be parsed inO(n3) time using a
CKY algorithm with appropriate indexing,
rather than theO(n5) time required by a
naive encoding. Informally, using the CKY
algorithm with such a CFG mimics the steps
of the Eisner-SattaO(n3) PBDG parsing al-
gorithm. This transformation makes all of
the techniques developed for CFGs available
to PBDGs. We demonstrate this by describ-
ing a maximum posterior parse decoder for
PBDGs.

1 Introduction

Projective Bilexical Dependency Grammars (PB-
DGs) have attracted attention recently for two rea-
sons. First, because they capture bilexical head-to-
head dependencies they are capable of producing
extremely high-quality parses: state-of-the-art dis-
criminatively trained PBDG parsers rival the accu-
racy of the very best statistical parsers available to-
day (McDonald, 2006). Second, Eisner-SattaO(n3)
PBDG parsing algorithms are extremely fast (Eisner,
1996; Eisner and Satta, 1999; Eisner, 2000).

This paper investigates the relationship between
Context-Free Grammar (CFG) parsing and the Eis-
ner/Satta PBDG parsing algorithms, including their
extension to second-order PBDG parsing (McDon-
ald, 2006; McDonald and Pereira, 2006). Specifi-
cally, we show how to use an off-line preprocessing

step, the Unfold-Fold transformation, to transform a
PBDG into an equivalent CFG that can be parsed in
O(n3) time using a version of the CKY algorithm
with suitable indexing (Younger, 1967), and extend
this transformation so that it captures second-order
PBDG dependencies as well. The transformations
are ambiguity-preserving, i.e., there is a one-to-
one mapping between dependency parses and CFG
parses, so it is possible to map the CFG parses back
to the PBDG parses they correspond to.

The PBDG to CFG reductions make techniques
developed for CFGs available to PBDGs as well. For
example, incremental CFG parsing algorithms can
be used with the CFGs produced by this transform,
as can the Inside-Outside estimation algorithm (Lari
and Young, 1990) and more exotic methods such as
estimating adjoined hidden states (Matsuzaki et al.,
2005; Petrov et al., 2006). As an example appli-
cation, we describe a maximum posterior parse de-
coder for PBDGs in Section 8.

The Unfold-Fold transformation is a calculus for
transforming functional and logic programs into
equivalent but (hopefully) faster programs (Burstall
and Darlington, 1977). We use it here to trans-
form CFGs encoding dependency grammars into
other CFGs that are more efficiently parsable. Since
CFGs can be expressed as Horn-clause logic pro-
grams (Pereira and Shieber, 1987) and the Unfold-
Fold transformation is provably correct for such pro-
grams (Sato, 1992; Pettorossi and Proeitti, 1992), it
follows that its application to CFGs is provably cor-
rect as well. The Unfold-Fold transformation is used
here to derive the CFG schemata presented in sec-
tions 5–7. A system that uses these schemata (such
as the one described in section 8) can implement
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these schemata directly, so the Unfold-Fold trans-
formation plays a theoretical role in this work, justi-
fying the resulting CFG schemata.

The closest related work we are aware of
is McAllester (1999), which also describes a re-
duction of PBDGs to efficiently-parsable CFGs
and directly inspired this work. However, the
CFGs produced by McAllester’s transformation in-
clude epsilon-productions so they require a special-
ized CFG parsing algorithm, while the CFGs pro-
duced by the transformations described here have
binary productions so they can be parsed with
standard CFG parsing algorithms. Further, our
approach extends to second-order PBDG parsing,
while McAllester only discusses first-order PBDGs.

The rest of this paper is structured as follows.
Section 2 defines projective dependency graphs and
grammars and Section 3 reviews the “naive” encod-
ing of PBDGs as CFGs with anO(n5) parse time,
wheren is the length of the string to be parsed. Sec-
tion 4 introduces the “split-head” CFG encoding of
PBDGs, which has anO(n4) parse time and serves
as the input to the Unfold-Fold transform. Section 5
uses the Unfold-Fold transform to obtain a weakly-
equivalent CFG encoding of PBDGs which can be
parsed inO(n3) time, and presents timing results
showing that the transformation does speed parsing.
Sections 6 and 7 apply Unfold-Fold in slightly more
complex ways to obtain CFG encodings of PBDGs
that also make second-order dependencies available
in O(n3) time parsable CFGs. Section 8 applies a
PBDG to CFG transform to obtain a maximum pos-
terior decoding parser for PBDGs.

2 Projective bilexical dependency parses
and grammars

Let Σ be a finite set ofterminals (e.g., words),
and let 0 be theroot terminal not in Σ. If w =
(w1, . . . , wn) ∈ Σ⋆, let w⋆ = (0, w1, . . . , wn), i.e.,
w⋆ is obtained by prefixingw with 0. A dependency
parseG for w is a tree whose root is labeled 0 and
whose othern vertices are labeled with each of then

terminals inw. If G contains an arc fromu to v then
we say thatv is adependentof u, and ifG contains
a path fromu to v then we say thatv is adescendant
of u. If v is dependent ofu that also precedesu in
w⋆ then we say thatv is a left dependentof u (right
dependent and left and right descendants are defined
similarly).

0 Sandy gave the dog a bone

Figure 1: A projective dependency parse for the sen-
tence “Sam gave the dog a bone”.

A dependency parseG is projectiveiff whenever
there is a path fromu to v then there is also a path
from u to every word betweenu andv in w⋆ as well.
Figure 1 depicts a projective dependency parse for
the sentence “Sam gave the dog a bone”.

A projective dependency grammar defines a set of
projective dependency parses. AProjective Bilexi-
cal Dependency Grammar(PBDG) consists of two
relations and , both defined over(Σ∪{0})×
Σ. A PBDG generates a projective dependency
parseG iff u v for all right dependencies(u, v)
in G and v u for all left dependencies(u, v) in
G. The language generated by a PBDG is the set
of strings that have projective dependency parses
generated by the grammar. The following depen-
dency grammar generates the dependency parse in
Figure 1.

0 gave Sandy gave
gave dog the dog
gave bone a bone

This paper does not consider stochastic depen-
dency grammars directly, but see Section 8 for an
application involving them. However, it is straight-
forward to associate weights with dependencies, and
since the dependencies are preserved by the transfor-
mations, obtain a weighted CFG. Standard methods
for converting weighted CFGs to equivalent PCFGs
can be used if required (Chi, 1999). Alternatively,
one can transform a corpus of dependency parses
into a corpus of the corresponding CFG parses, and
estimate CFG production probabilities directly from
that corpus.

3 A naive encoding of PBDGs

There is a well-known method for encoding a PBDG
as a CFG in which each terminalu ∈ Σ is associated
with a corresponding nonterminal X

u
that expands

to u and all ofu’s descendants. The nonterminals of
the naive encoding CFG consist of the start symbol
S and symbols X

u
for each terminalu ∈ Σ, and
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the productions of the CFG are the instances of the
following schemata:

S → X
u

where 0 u

X
u

→ u

X
u

→ X
v

X
u

wherev u

X
u

→ X
u

X
v

whereu v

The dependency annotations associated with each
production specify how to interpret a local tree gen-
erated by that production, and permit us to map a
CFG parse to the corresponding dependency parse.
For example, the top-most local tree in Figure 2 was
generated by the production S→ X

gave
, and indi-

cate that in this parse 0 gave.
Given a terminal vocabulary of sizem the CFG

containsO(m2) productions, so it is impractical to
enumerate all possible productions for even modest
vocabularies. Instead productions relevant to a par-
ticular sentence are generated on the fly.

The naive encoding CFG in general requires
O(n5) parsing time with a conventional CKY pars-
ing algorithm, since tracking the head annotationsu

andv multiplies the standardO(n3) CFG parse time
requirements by an additional factor proportional to
theO(n2) productions expanding X

u
.

An additional problem with the naive encoding
is that the resulting CFG in general exhibits spuri-
ous ambiguities, i.e., a single dependency parse may
correspond to more than one CFG parse, as shown
in Figure 2. Informally, this is because the CFG per-
mits left and the right dependencies to be arbitrarily
intermingled.

4 Split-head encoding of PBDGs

There are several ways of removing the spurious am-
biguities in the naive CFG encoding just described.
This section presents a method we call the “split-
head encoding”, which removes the ambiguities and
serves as starting point for the grammar transforms
described below.

The split-head encoding represents each wordu

in the input stringw by two unique terminalsul

andur in the CFG parse. A split-head CFG’s ter-
minal vocabulary isΣ′ = {ul, ur : u ∈ Σ},
where Σ is the set of terminals of the PBDG. A
PBDG parse with yieldw = (u1, . . . , un) is trans-
formed to a split-head CFG parse with yieldw′ =
(u1,l, u1,r, . . . , un,l, un,r), so|w′| = 2|w|.

S

the dog

X
the

X
dog

X
dog

X
gave

gave

X
gave

X
bone

X
a

a

X
bone

bone

X
gave

X
Sandy

Sandy

X
gave

S

the dog

X
the

X
dog

X
dog

X
bone

X
a

a

X
bone

bone

X
gave

X
gave

gave

X
Sandy

Sandy

X
gave

X
gave

Figure 2: Two parses using the naive CFG encod-
ing that both correspond to the dependency parse of
Figure 1.

The split-head CFG for a PBDG is given by the
following schemata:

S → X
u

where 0 u

X
u

→ L
u u

R whereu ∈ Σ

L
u

→ ul

L
u

→ X
v

L
u

wherev u

u
R → ur

u
R →

u
R X

v
whereu v

The dependency parse shown in Figure 1 corre-
sponds to the split-head CFG parse shown in Fig-
ure 3. Each X

u
expands to two new categories, L

u

and
u
R. L

u
consists oful and all ofu’s left descen-

dants, while
u
R consists ofur and all ofu’s right

descendants. The spurious ambiguity present in the
naive encoding does not arise in the split-head en-
coding because the left and right dependents of a
head are assembled independently and cannot inter-
mingle.

As can be seen by examining the split-head
schemata, therightmostdescendant of L

u
is either

L
u

or ul, which guarantees that the rightmost termi-
nal dominated by L

u
is alwaysul; similarly theleft-

mostterminal dominated by
u
R is alwaysur. Thus
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dog
R

X
Sandy

L
Sandy

Sandy
l

X
dog
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r

gave
l

gave
R

gave
R

L
a
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l

a
R

a
r

X
a

L
bone

bone
l

L
bone

bone
r

bone
R

X
bone

Sandy
R

Sandy
r

L
gave

L
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X
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S

gave
R

L
the
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l

the
R

the
r

X
the

L
dog

dog
l

L
dog

dog
r

Figure 3: The split-head parse corresponding to the dependency graph depicted in Figure 1. Notice thatul

is always the rightmost descendant of L
u

andur is always the leftmost descendant of
u
R, which means that

these indices are redundant given the constituent spans.

these subscript indices are redundant given the string
positions of the constituents, which means we do not
need to track the indexu in L

u
and

u
R but can parse

with just the two categories L and R, and determine
the index from the constituent’s span when required.

It is straight-forward to extend the split-head CFG
to encode the additional state information required
by the head automata of Eisner and Satta (1999);
this corresponds to splitting the non-terminals L

u

and
u
R. For simplicity we work with PBDGs in this

paper, but all of the Unfold-Fold transformations de-
scribed below extend to split-head grammars with
the additional state structure required by head au-
tomata.

Implementation note: it is possible to directly
parse the “undoubled” input stringw by modifying
both the CKY algorithm and the CFGs described
in this paper. Modify L

u
and

u
R so they both ul-

timately expand to the same terminalu, and special-
case the implementation of production X

u
→ L

u u
R

and all productions derived from it to permit L
u

and

u
R to overlap by the terminalu.
The split-head formulation explains what initially

seem unusual properties of existing PBDG algo-
rithms. For example, one of the standard “sanity
checks” for the Inside-Outside algorithm—that the
outside probability of each terminal is equal to the
sentence’s inside probability—fails for these algo-
rithms. In fact, the outside probability of each ter-
minal isdoublethe sentence’s inside probability be-
cause these algorithms implicitly collapse the two
terminalsul andur into a single terminalu.

5 A O(n3) split-head grammar

The split-head encoding described in the previous
section requiresO(n4) parsing time because the in-
dex v on X

v
is not redundant. We can obtain an

equivalent grammar that only requiresO(n3) pars-
ing time by transforming the split-head grammar us-
ing Unfold-Fold. We describe the transformation on
L

u
; the transformation of

u
R is symmetric.

We begin with the definition of L
u

in the split-
head grammar above (“|” separates the right-hand
sides of productions).

L
u

→ ul | X
v

L
u

wherev u

Our first transformation step is to unfold X
v

in L
u
,

i.e., replace X
v

by its expansion, producing the fol-
lowing definition for L

u
(ignore the underlining for

now).

L
u

→ ul | L
v v

R L
u

wherev u

This removes the offending X
v

in L
u
, but the result-

ing definition of L
u

contains ternary productions and
so still incursO(n4) parse time. To address this we
define new nonterminals

x
M

y
for eachx, y ∈ Σ:

x
M

y
→

x
R L

y

and fold the underlined children in L
u

into
v
M

u
:

x
M

y
→

x
R L

y
wherex, y ∈ Σ

L
u

→ ul | L
v v

M
u

wherev u
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Figure 4: TheO(n3) split-head parse corresponding to the dependency graph of Figure 1.

The O(n3) split-head grammar is obtained by un-
folding the occurence of X

u
in the S production and

dropping the X
u

schema as X
u

no longer appears on
the right-hand side of any production. The resulting
O(n3) split-head grammar schemata are as follows:

S → L
u u

R where 0 u

L
u

→ ul

L
u

→ L
v v

M
u

wherev u

u
R → ur

u
R →

u
M

v v
R whereu v

x
M

y
→

x
R L

y
wherex, y ∈ Σ

As before, the dependency annotations on the pro-
duction schemata permit us to map CFG parses to
the corresponding dependency parse. This grammar
requiresO(n3) parsing time to parse because the in-
dices are redundant given the constituent’s string po-
sitions for the reasons described in section 4. Specif-
ically, the rightmost terminal of L

u
is alwaysul, the

leftmost terminal of
u
R is alwaysur and the left-

most and rightmost terminals of
v
M

u
arevl andur

respectively.
TheO(n3) split-head grammar is closely related

to theO(n3) PBDG parsing algorithm given by Eis-
ner and Satta (1999). Specifically, the steps involved
in parsing with this grammar using the CKY algo-
rithm are essentially the same as those performed
by the Eisner/Satta algorithm. The primary differ-
ence is that the Eisner/Satta algorithm involves two
separate categories that are collapsed into the single
category M here.

To confirm their relative performance we imple-
mented stochastic CKY parsers for the three CFG

schemata described so far. The production schemata
were hard-coded for speed, and the implementation
trick described in section 4 was used to avoid dou-
bling the terminal string. We obtained dependency
weights from our existing discriminatively-trained
PBDG parser (not cited to preserve anonymity). We
compared the parsers’ running times on section 24
of the Penn Treebank. Because all three CFGs im-
plement the same dependency grammar their Viterbi
parses have the same dependency accuracy, namely
0.8918. We precompute the dependency weights,
so the times include just the dynamic programming
computation on a 3.6GHz Pentium 4.

CFG schemata sentences parsed / second
NaiveO(n5) CFG 45.4

O(n4) CFG 406.2
O(n3) CFG 3580.0

6 An O(n3) adjacent-head grammar

This section shows how to further transform the
O(n3) grammar described above into a form that
encodes second-order dependencies between ad-
jacent dependent heads in much the way that a
Markov PCFG does (McDonald, 2006; McDonald
and Pereira, 2006). We provide a derivation for the
L

u
constituents; there is a parallel derivation for

u
R.

We begin by unfolding X
v

in the definition of L
u

in the split-head grammar, producing as before:

L
u

→ ul | L
v v

R L
u

Now introduce a new nonterminal
v
M

L

u
, which is a

specialized version of M requiring thatv is a left-
dependent ofu, and fold the underlined constituents
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Figure 5: TheO(n3) adjacent-head parse corresponding to the dependency graphof Figure 1. The boxed
local tree indicatesboneis the dependent ofgive following the dependentdog, i.e., give dog bone .

into
v
M

L

u
.

v
ML

u
→

v
R L

u
wherev u

L
u

→ ul | L
v v

M
L

u
wherev u

Now unfold L
u

in the definition of
v
ML

u
, producing:

v
M

L

u
→

v
R ul | v

R L
v′ v′

M
L

u
; v v′ u

Note that in the first production expanding
v
ML

u
, v

is theclosestleft dependent ofu, and in the second
productionv andv′ areadjacentleft-dependents of
u.

v
M

L

u
has a ternary production, so we introduce

x
M

y
as before to fold the underlined constituents

into.

x
M

y
→

x
R L

y
wherex, y ∈ Σ

v
M

L

u
→

v
R ul | v

M
v′ v′

M
L

u
; v v′ u

The resulting grammar schema is as below, and a
sample parse is given in Figure 5.

S → L
u u

R where 0 u

L
u

→ ul u has no left dependents
L

u
→ L

v v
M

L

u
v is u’s last left dep.

v
ML

u
→

v
R ul v is u’s closest left dep.

v
ML

u
→

v
M

v′ v′
ML

u
v v′ u

u
R → ur u has no right dependents

u
R →

u
M

R

v v
R v is u’s last right dep.

u
MR

v
→ ur L

v
v is u’s closest right dep.

u
MR

v
→

u
MR

v′ v′
M

v
u v′ v

x
M

y
→

x
R L

y
wherex, y ∈ Σ

As before, the indices on the nonterminals are re-
dundant, as the heads are always located at an edge

of each constituent, so they need not be computed
or stored and the CFG can be parsed inO(n3) time.
The steps involved in CKY parsing with this gram-
mar correspond closely to those of the McDonald
(2006) second-order PBDG parsing algorithm.

7 An O(n3) dependent-head grammar

This section shows a different application of Unfold-
Fold can capture head-to-head-to-head dependen-
cies, i.e., “vertical” second-order dependencies,
rather than the “horizontal” ones captured by the
transformation described in the previous section.
Because we expect these vertical dependencies to
be less important linguistically than the horizontal
ones, we only sketch the transformation here.

The derivation differs from the one in Section 6 in
that the dependent

v
R, rather than the head L

u
, is un-

folded in the initial definition of
v
ML

u
. This results in

a grammar that tracks vertical, rather than horizon-
tal, second-order dependencies. Since left-hand and
right-hand derivations are assembled separately in a
split-head grammar, the grammar in fact only tracks
zig-zag type dependencies (e.g., where a grandpar-
ent has a right dependent, which in turn has a left
dependent).

The resulting grammar is given below, and a sam-
ple parse using this grammar is shown in Figure 6.
Because the subscripts are redundant they can be
omitted and the resulting CFG can be parsed in
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Figure 6: Then3 dependent-head parse corresponding to the dependency graph of Figure 1. The boxed
local tree indicates thata is a left-dependent ofbone, which is in turn a right-dependent ofgave, i.e.,
gave a bone .

O(n3) time using the CKY algorithm.

S → L
u u

R where 0 u

L
u

→ ul

L
u

→ L
v v

ML

u
wherev u

v
M

L

u
→ vr L

u
wherev u

v
M

L

u
→

v
M

R

w w
M

u
where v w u

u
R → ur

u
R →

u
M

R

v v
R whereu v

u
MR

v
→

u
R vl whereu v

u
MR

v
→

u
M

w w
ML

v
where u w u

x
M

y
→

x
R L

y
wherex, y ∈ Σ

8 Maximum posterior decoding

As noted in the introduction, one consequence of the
PBDG to CFG reductions presented in this paper is
that CFG parsing and estimation techniques are now
available for PBDGs as well. As an example ap-
plication, this section describes Maximum Posterior
Decoding (MPD) for PBDGs.

Goodman (1996) observed that the Viterbi parse
is in general not the optimal parse for evaluation
metrics such as f-score that are based on the number
of correct constituents in a parse. He showed that
MPD improves f-score modestly relative to Viterbi
decoding for PCFGs.

Since dependency parse accuracy is just the pro-
portion of dependencies in the parse that are correct,
Goodman’s observation should hold for PBDG pars-
ing as well. MPD for PBDGs selects the parse that
maximizes the sum of the marginal probabilities of

each of the dependencies in the parse. Such a de-
coder might plausibly produce parses that score bet-
ter on the dependency accuracy metric than Viterbi
parses.

MPD is straightforward given the PBDG to CFG
reductions described in this paper. Specifically, we
use the Inside-Outside algorithm to compute the
posterior probability of the CFG constituents corre-
sponding to each PBDG dependency, and then use
the Viterbi algorithm to find the parse tree that max-
imizes the sum of these posterior probabilities.

We implemented MPD for first-order PBDGs
using dependency weights from our existing
discriminatively-trained PBDG parser (not cited to
preserve anonymity). These weights are estimated
by an online procedure as in McDonald (2006), and
are not intended to define a probability distribution.
In an attempt to heuristically correct for this, in this
experiment we usedexp(αwu,v) as the weight of the
dependency between headu and dependentv, where
wu,v is the weight provided by the discriminatively-
trained model andα is an adjustable scaling parame-
ter tuned to optimize MPD accuracy on development
data.

Unfortunately we found no significant differ-
ence between the accuracy of the MPD and Viterbi
parses. Optimizing MPD on the development data
(section 24 of the PTB) set the scale factorα =
0.21 and produced MPD parses with an accuracy
of 0.8921, which is approximately the same as the
Viterbi accuracy of 0.8918. On the blind test data
(section 23) the two accuracies are essentially iden-
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tical (0.8997).
There are several possible explanations for the

failure of MPD to produce more accurate parses than
Viterbi decoding. Perhaps MPD requires weights
that define a probability distribution (e.g., a Max-
Ent model). It is also possible that discriminative
training adjusts the weights in a way that ensures
that the Viterbi parse is close to the maximum pos-
terior parse. This was the case in our experiment,
and if this is true with discriminative training in gen-
eral, then maximum posterior decoding will not have
much to offer to discriminative parsing.

9 Conclusion

This paper shows how to use the Unfold-Fold trans-
form to translate PBDGs into CFGs that can be
parsed inO(n3) time. A key component of this is
the split-head construction, where each wordu in the
input is split into two terminalsul andur of the CFG
parse. We also showed how to systematically trans-
form the split-head CFG into grammars which track
second-order dependencies. We provided one gram-
mar which captures horizontal second-order depen-
dencies (McDonald, 2006), and another which cap-
tures vertical second-order head-to-head-to-head de-
pendencies.

The grammars described here just scratch the sur-
face of what is possible with Unfold-Fold. Notice
that both of the second-order grammars have more
nonterminals than the first-order grammar. If one is
prepared to increase the number of nonterminals still
further, it may be possible to track additional infor-
mation about constituents (although if we insist on
O(n3) parse time we will be unable to track the in-
teraction of more than three heads at once).
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Abstract

We show that the problems of parsing and sur-
face realization for grammar formalisms with
“context-free” derivations, coupled with Mon-
tague semantics (under a certain restriction) can
be reduced in a uniform way to Datalog query
evaluation. As well as giving a polynomial-
time algorithm for computing all derivation trees
(in the form of a shared forest) from an in-
put string or input logical form, this reduction
has the following complexity-theoretic conse-
quences for all such formalisms: (i) the de-
cision problem of recognizing grammaticality
(surface realizability) of an input string (logical
form) is in LOGCFL; and (ii) the search prob-
lem of finding one logical form (surface string)
from an input string (logical form) is in func-
tional LOGCFL. Moreover, the generalized sup-
plementary magic-sets rewriting of the Datalog
program resulting from the reduction yields ef-
ficient Earley-style algorithms for both parsing
and generation.

1 Introduction

The representation of context-free grammars (aug-
mented with features) in terms of definite clause pro-
grams is well-known. In the case of a bare-bone
CFG, the corresponding program is in the function-
free subset of logic programming, known as Dat-
alog. For example, determining whether a string
John found a unicorn belongs to the language of the
CFG in Figure 1 is equivalent to deciding whether
the Datalog program in Figure 2 together with the
database in (1) can derive the query “?−S(0, 4).”

(1) John(0, 1). found(1, 2). a(2, 3). unicorn(3, 4).

S → NP VP
VP → V NP
V → V Conj V
NP → Det N
NP → John

V → found
V → caught
Conj → and
Det → a
N → unicorn

Figure 1: A CFG.

S(i, j) :− NP(i, k),VP(k, j).
VP(i, j) :− V(i, k),NP(k, j).
V(i, j) :− V(i, k),Conj(k, l),V(l, j).
NP(i, j) :− Det(i, k),N(k, j).
NP(i, j) :− John(i, j).

V(i, j) :− found(i, j).
V(i, j) :− caught(i, j).
Conj(i, j) :− and(i, j).
Det(i, j) :− a(i, j).
N(i, j) :− unicorn(i, j).

Figure 2: The Datalog representation of a CFG.

By naive (or seminaive) bottom-up evaluation
(see, e.g., Ullman, 1988), the answer to such a query
can be computed in polynomial time in the size of
the database for any Datalog program. By recording
rule instances rather than derived facts, a packed rep-
resentation of the complete set of Datalog derivation
trees for a given query can also be obtained in poly-
nomial time by the same technique. Since a Data-
log derivation tree uniquely determines a grammar
derivation tree, this gives a reduction of context-free
recognition and parsing to query evaluation in Data-
log.

In this paper, we show that a similar reduction
to Datalog is possible for more powerful grammar
formalisms with “context-free” derivations, such as
(multi-component) tree-adjoining grammars (Joshi
and Schabes, 1997; Weir, 1988), IO macro gram-
mars (Fisher, 1968), and (parallel) multiple context-
free grammars (Seki et al., 1991). For instance, the
TAG in Figure 3 is represented by the Datalog pro-
gram in Figure 4. Moreover, the method of reduc-
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Figure 3: A TAG with one initial tree (left) and one
auxiliary tree (right)

S(p1, p3) :− A(p1, p3, p2, p2).
A(p1, p8, p4, p5) :− A(p2, p7, p3, p6), a(p1, p2), b(p3, p4),

c(p5, p6), d(p7, p8).
A(p1, p2, p1, p2).

Figure 4: The Datalog representation of a TAG.

tion extends to the problem of tactical generation
(surface realization) for these grammar formalisms
coupled with Montague semantics (under a certain
restriction). Our method essentially relies on the en-
coding of different formalisms in terms of abstract
categorial grammars (de Groote, 2001).
The reduction to Datalog makes it possible to ap-

ply to parsing and generation sophisticated evalu-
ation techniques for Datalog queries; in particular,
an application of generalized supplementary magic-
sets rewriting (Beeri and Ramakrishnan, 1991) au-
tomatically yields Earley-style algorithms for both
parsing and generation. The reduction can also
be used to obtain a tight upper bound, namely
LOGCFL, on the computational complexity of the
problem of recognition, both for grammaticality of
input strings and for surface realizability of input
logical forms.
With regard to parsing and recognition of in-

put strings, polynomial-time algorithms and the
LOGCFL upper bound on the computational com-
plexity are already known for the grammar for-
malisms covered by our results (Engelfriet, 1986);
nevertheless, we believe that our reduction to Data-
log offers valuable insights. Concerning generation,
our results seem to be entirely new.1

2 Context-free grammars on λ-terms

Consider an augmentation of the grammar in Fig-
ure 1 with Montague semantics, where the left-hand

1We only consider exact generation, not taking into account
the problem of logical form equivalence, which will most likely
render the problem of generation computationally intractable
(Moore, 2002).

S(X1X2) → NP(X1) VP(X2)
VP(λx.X2(λy.X1yx)) → V(X1) NP(X2)
V(λyx.X2(X1yx)(X3yx)) → V(X1) Conj(X2) V(X3)
NP(X1X2) → Det(X1) N(X2)
NP(λu.u Johne) → John
V(finde→e→t) → found
V(catche→e→t) → caught
Conj(∧t→t→t) → and
Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))) → a
N(unicorne→t) → unicorn

Figure 5: A context-free grammar with Montague
semantics.

S

NP

John

VP

V

found

NP

Det

a

N

unicorn

Figure 6: A derivation tree.

side of each rule is annotated with a λ-term that tells
how the meaning of the left-hand side is composed
from the meanings of the right-hand side nontermi-
nals, represented by upper-case variables X1, X2, . . .
(Figure 5).2

The meaning of a sentence is computed from its
derivation tree. For example, John found a unicorn
has the derivation tree in Figure 6, and the grammar
rules assign its root node the λ-term

(λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)),

which β-reduces to the λ-term

(2) ∃(λy.∧(unicorn y)(find y John))

encoding the first-order logic formula representing
the meaning of the sentence (i.e., its logical form).
Thus, computing the logical form(s) of a sentence

involves parsing and λ-term normalization. To find a
sentence expressing a given logical form, it suffices

2We follow standard notational conventions in typed λ-
calculus. Thus, an application M1M2M3 (written without paren-
theses) associates to the left, λx.λy.M is abbreviated to λxy.M,
and α→ β→ γ stands for α→ (β→ γ). We refer the reader
to Hindley, 1997 or Sørensen and Urzyczyn, 2006 for standard
notions used in simply typed λ-calculus.
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S(X1X2) :− NP(X1),VP(X2).
VP(λx.X2(λy.X1yx)) :− V(X1),NP(X2).
V(λyx.X2(X1yx)(X3yx)) :− V(X1),Conj(X2),V(X3).
NP(X1X2) :− Det(X1),N(X2).
NP(λu.u Johne).
V(finde→e→t).
V(catche→e→t).
Conj(∧t→t→t).
Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(unicorne→t).

Figure 7: A CFLG.

to find a derivation tree whose root node is associ-
ated with a λ-term that β-reduces to the given log-
ical form; the desired sentence can simply be read
off from the derivation tree. At the heart of both
tasks is the computation of the derivation tree(s) that
yield the input. In the case of generation, this may be
viewed as parsing the input λ-term with a “context-
free” grammar that generates a set of λ-terms (in
normal form) (Figure 7), which is obtained from the
original CFG with Montague semantics by stripping
off terminal symbols. Determining whether a given
logical form is surface realizable with the original
grammar is equivalent to recognition with the result-
ing context-free λ-term grammar (CFLG).
In a CFLG such as in Figure 7, constants appear-

ing in the λ-terms have preassigned types indicated
by superscripts. There is a mapping σ from nonter-
minals to their types (σ = {S �→ t,NP �→ (e→ t)→
t,VP �→ e→t,V �→ e→e→t,Conj �→ t→t→t,Det �→
(e→t)→(e→t)→t,N �→ e→t}). A rule that has A on
the left-hand side and B1, . . . , Bn as right-hand side
nonterminals has its left-hand side annotated with a
well-formed λ-term M that has type σ(A) under the
type environment X1 :σ(B1), . . . , Xn :σ(Bn) (in sym-
bols, X1 : σ(B1), . . . , Xn : σ(Bn) � M : σ(A)).
What we have called a context-free λ-term gram-

mar is nothing but an alternative notation for an ab-
stract categorial grammar (de Groote, 2001) whose
abstract vocabulary is second-order, with the restric-
tion to linear λ-terms removed.3 In the linear case,
Salvati (2005) has shown the recognition/parsing
complexity to be PTIME, and exhibited an algorithm
similar to Earley parsing for TAGs. Second-order

3A λ-term is a λI-term if each occurrence of λ binds at least
one occurrence of a variable. A λI-term is linear if no subterm
contains more than one free occurrence of the same variable.

S(λy.X1(λz.z)y) :− A(X1).
A(λxy.ao→o(X1(λz.bo→o(x(co→oz)))(do→oy))) :− A(X1).
A(λxy.xy).

Figure 8: The CFLG encoding a TAG.

linear ACGs are known to be expressive enough to
encode well-known mildly context-sensitive gram-
mar formalisms in a straightforward way, includ-
ing TAGs and multiple context-free grammars (de
Groote, 2002; de Groote and Pogodalla, 2004).
For example, the linear CFLG in Figure 8 is an

encoding of the TAG in Figure 3, whereσ(S) = o→o
and σ(A) = (o→ o)→ o→ o (see de Groote, 2002
for details of this encoding). In encoding a string-
generating grammar, a CFLG uses o as the type of
string position and o→ o as the type of string. Each
terminal symbol is represented by a constant of type
o→o, and a string a1 . . . an is encoded by the λ-term
λz.ao→o

1 (. . . (ao→o
n z) . . . ), which has type o→ o.

A string-generating grammar coupled with Mon-
tague semantics may be represented by a syn-
chronous CFLG, a pair of CFLGs with matching
rule sets (de Groote 2001). The transduction be-
tween strings and logical forms in either direction
consists of parsing the input λ-term with the source-
side grammar and normalizing the λ-term(s) con-
structed in accordance with the target-side grammar
from the derivation tree(s) output by parsing.

3 Reduction to Datalog

We show that under a weaker condition than linear-
ity, a CFLG can be represented by a Datalog pro-
gram, obtaining a tight upper bound (LOGCFL) on
the recognition complexity. Due to space limitation,
our presentation here is kept at an informal level;
formal definitions and rigorous proof of correctness
will appear elsewhere.
We use the grammar in Figure 7 as an example,

which is represented by the Datalog program in Fig-
ure 9. Note that all λ-terms in this grammar are al-
most linear in the sense that they are λI-terms where
any variable occurring free more than once in any
subterm must have an atomic type. Our construction
is guaranteed to be correct only when this condition
is met.
Each Datalog rule is obtained from the corre-

sponding grammar rule in the following way. Let
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S(p1) :− NP(p1, p2, p3),VP(p2, p3).
VP(p1, p4) :− V(p2, p4, p3),NP(p1, p2, p3).
V(p1, p4, p3) :−

V(p2, p4, p3),Conj(p1, p5, p2),V(p5, p4, p3).
NP(p1, p4, p5) :− Det(p1, p4, p5, p2, p3),N(p2, p3).
NP(p1, p1, p2) :− John(p2).
V(p1, p3, p2) :− find(p1, p3, p2).
V(p1, p3, p2) :− catch(p1, p3, p2).
Conj(p1, p3, p2) :− ∧(p1, p3, p2).
Det(p1, p5, p4, p3, p4) :− ∃(p1, p2, p4),∧(p2, p5, p3).
N(p1, p2) :− unicorn(p1, p2).

Figure 9: The Datalog representation of a CFLG.

M be the λ-term annotating the left-hand side of the
grammar rule. We first obtain a principal (i.e., most
general) typing of M.4 In the case of the second rule,
this is

X1 : p3→ p4→ p2, X2 : (p3→ p2)→ p1 �
λx.X2(λy.X1yx) : p4→ p1.

We then remove → and parentheses from the types
in the principal typing and write the resulting se-
quences of atomic types in reverse.5 We obtain the
Datalog rule by replacing Xi and M in the grammar
rule with the sequence coming from the type paired
with Xi and M, respectively. Note that atomic types
in the principal typing become variables in the Data-
log rule. When there are constants in the λ-term M,
they are treated like free variables. In the case of the
second-to-last rule, the principal typing is

∃ : (p4→ p2)→ p1, ∧ : p3→ p5→ p2 �
λuv.∃(λy.∧(uy)(vy)) : (p4→ p3)→ (p4→ p5)→ p1.

If the same constant occurs more than once, distinct
occurrences are treated as distinct free variables.
The construction of the database representing the

input λ-term is similar, but slightly more complex.
A simple case is the λ-term (2), where each constant
occurs just once. We compute its principal typing,
treating constants as free variables.6

∃ : (4→ 2)→ 1, ∧ : 3→ 5→ 2,
unicorn : 4→ 3, find : 4→ 6→ 5 , John : 6

� ∃(λy.∧(unicorn y)(find y John)) : 1.
4To be precise, we must first convert M to its η-long form

relative to the type assigned to it by the grammar. For example,
X1X2 in the first rule is converted to X1(λx.X2x).

5The reason for reversing the sequences of atomic types is
to reconcile the λ-term encoding of strings with the convention
of listing string positions from left to right in databases like (1).

6We assume that the input λ-term is in η-long normal form.

We then obtain the corresponding database (3) and
query (4) from the antecedent and succedent of this
judgment, respectively. Note that here we are using
1, 2, 3, . . . as atomic types, which become database
constants.

∃(1, 2, 4). ∧(2, 5, 3). unicorn(3, 4).
find(5, 6, 4). John(6).

(3)

?−S(1).(4)

When the input λ-term contains more than one oc-
currence of the same constant, it is not always cor-
rect to simply treat them as distinct free variables,
unlike in the case of λ-terms annotating grammar
rules. Consider the λ-term (5) (John found and
caught a unicorn):

(5) ∃(λy.∧(unicorn y)(∧(find y John)(catch y John))).

Here, the two occurrences of John must be treated
as the same variable. The principal typing is (6) and
the resulting database is (7).

∃ : (4→ 2)→ 1, ∧1 : 3→ 5→ 2,
unicorn : 4→ 3, ∧2 : 6→ 8→ 5,
find : 4→ 7→ 6, John : 7, catch : 4→ 7→ 8
� ∃(λy.∧1(unicorn y)

(∧2(find y John)(catch y John))) : 1.

(6)

∃(1, 2, 4). ∧(2, 5, 3). ∧(5, 8, 6). unicron(3, 4).
find(6, 7, 4). John(7). catch(8, 7, 4).

(7)

It is not correct to identify the two occurrences of
∧ in this example. The rule is to identify distinct
occurrences of the same constant just in case they
occur in the same position within α-equivalent sub-
terms of an atomic type. This is a necessary con-
dition for those occurrences to originate as one and
the same occurrence in the non-normal λ-term at the
root of the derivation tree. (As a preprocessing step,
it is also necessary to check that distinct occurrences
of a bound variable satisfy the same condition, so
that the given λ-term is β-equal to some almost lin-
ear λ-term.7)

7Note that the way we obtain a database from an input
λ-term generalizes the standard database representation of a
string: from the λ-term encoding λz.ao→o

1 (. . . (ao→o
n z) . . . ) of a

string a1 . . . an, we obtain the database {a1(0, 1), . . . , an(n−1, n)}.
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4 Correctness of the reduction

We sketch some key points in the proof of cor-
rectness of our reduction. The λ-term N obtained
from the input λ-term by replacing occurrences of
constants by free variables in the manner described
above is the normal form of some almost linear λ-
term N′. The leftmost reduction from an almost lin-
ear λ-term to its normal form must be non-deleting
and almost non-duplicating in the sense that when
a β-redex (λx.P)Q is contracted, Q is not deleted,
and moreover it is not duplicated unless the type
of x is atomic. We can show that the Subject Ex-
pansion Theorem holds for such β-reduction, so the
principal typing of N is also the principal typing of
N′. By a slight generalization of a result by Aoto
(1999), this typing Γ � N′ : α must be negatively
non-duplicated in the sense that each atomic type
has at most one negative occurrence in it. By Aoto
and Ono’s (1994) generalization of the Coherence
Theorem (see Mints, 2000), it follows that every λ-
term P such that Γ′ � P : α for some Γ′ ⊆ Γ must be
βη-equal to N′ (and consequently to N).
Given the one-one correspondence between the

grammar rules and the Datalog rules, a Data-
log derivation tree uniquely determines a grammar
derivation tree (see Figure 10 as an example). This
relation is not one-one, because a Datalog deriva-
tion tree contains database constants from the input
database. This extra information determines a typ-
ing of the λ-term P at the root of the grammar deriva-
tion tree (with occurrences of constants in the λ-term
corresponding to distinct facts in the database re-
garded as distinct free variables):

John : 6, find : 4→ 6→ 5, ∃ : (4→ 2)→ 1,
∧ : 3→ 5→ 2, unicorn : 4→ 3 �
(λu.u John)
(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)) : 1.

The antecedent of this typing must be a subset of the
antecedent of the principal typing of the λ-term N
from which the input database was obtained. By the
property mentioned at the end of the preceding para-
graph, it follows that the grammar derivation tree is
a derivation tree for the input λ-term.
Conversely, consider the λ-term P (with distinct

occurrences of constants regarded as distinct free
variables) at the root of a grammar derivation tree

for the input λ-term. We can show that there is a
substitution θ which maps the free variables of P
to the free variables of the λ-term N used to build
the input database such that θ sends the normal form
of P to N. Since P is an almost linear λ-term, the
leftmost reduction from Pθ to N is non-deleting and
almost non-duplicating. By the Subject Expansion
Theorem, the principal typing of N is also the prin-
cipal typing of Pθ, and this together with the gram-
mar derivation tree determines a Datalog derivation
tree.

5 Complexity-theoretic consequences

Let us call a rule A(M) :− B1(X1), . . . , Bn(Xn) in a
CFLG an ε-rule if n = 0 and M does not contain any
constants. We can eliminate ε-rules from an almost
linear CFLG by the same method that Kanazawa and
Yoshinaka (2005) used for linear grammars, noting
that for any Γ and α, there are only finitely many
almost linear λ-terms M such that Γ � M : α. If a
grammar has no ε-rule, any derivation tree for the
input λ-term N that has a λ-term P at its root node
corresponds to a Datalog derivation tree whose num-
ber of leaves is equal to the number of occurrences
of constants in P, which cannot exceed the number
of occurrences of constants in N.
A Datalog program P is said to have the poly-

nomial fringe property relative to a class D of
databases if there is a polynomial p(n) such that for
every database D in D of n facts and every query q
such that P∪D derives q, there is a derivation tree for
q whose fringe (i.e., sequence of leaves) is of length
at most p(n). For such P and D, it is known that
{ (D, q) | D ∈ D,P ∪ D derives q } is in the complex-
ity class LOGCFL (Ullman and Van Gelder, 1988;
Kanellakis, 1988).
We state without proof that the database-query

pair (D, q) representing an input λ-term N can be
computed in logspace. By padding Dwith extra use-
less facts so that the size of D becomes equal to the
number of occurrences of constants in N, we obtain
a logspace reduction from the set of λ-terms gener-
ated by an almost linear CFLG to a set of the form
{ (D, q) | D ∈ D,P ∪ D � q }, where P has the poly-
nomial fringe property relative to D. This shows
that the problem of recognition for an almost linear
CFLG is in LOGCFL.
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S(1)

NP(1, 1, 6)

John(6)

VP(1, 6)

V(5, 6, 4)

find(5, 6, 4)

NP(1, 5, 4)

Det(1, 5, 4, 3, 4)

∃(1, 2, 4) ∧(2, 5, 3)

N(3, 4)

unicorn(3, 4)

S((λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)))

NP(λu.u John) VP(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)))

V(find) NP((λuv.∃(λy.∧(uy)(vy))) unicorn)

Det(λuv.∃(λy.∧(uy)(vy))) N(unicorn)

Figure 10: A Datalog derivation tree (left) and the corresponding grammar derivation tree (right)

By the main result of Gottlob et al. (2002), the re-
lated search problem of finding one derivation tree
for the input λ-term is in functional LOGCFL, i.e.,
the class of functions that can be computed by a
logspace-bounded Turing machine with a LOGCFL
oracle. In the case of a synchronous almost linear
CFLG, the derivation tree found from the source λ-
term can be used to compute a target λ-term. Thus,
to the extent that transduction back and forth be-
tween strings and logical forms can be expressed by
a synchronous almost linear CFLG, the search prob-
lem of finding one logical form of an input sentence
and that of finding one surface realization of an input
logical form are both in functional LOGCFL.8 As a
consequence, there are efficient parallel algorithms
for these problems.

6 Regular sets of trees as input

Almost linear CFLGs can represent a substan-
tial fragment of a Montague semantics for En-
glish and such “linear” grammar formalisms as
(multi-component) tree-adjoining grammars (both
as string grammars and as tree grammars) and mul-
tiple context-free grammars. However, IO macro
grammars and parallel multiple context-free gram-
mars cannot be directly represented because repre-
senting string copying requires multiple occurrences
of a variable of type o → o. This problem can be
solved by switching from strings to trees. We con-
vert the input string into the regular set of binary
trees whose yield equals the input string (using c

8If the target-side grammar is not linear, the normal form of
the target λ-term cannot be explicitly computed because its size
may be exponential in the size of the source λ-term. Neverthe-
less, a typing that serves to uniquely identify the target λ-term
can be computed from the derivation tree in logspace. Also, if
the target-side grammar is linear and string-generating, the tar-
get string can be explicitly computed from the derivation tree in
logspace (Salvati, 2007).

as the sole symbol of rank 2), and turn the gram-
mar into a tree grammar, replacing all instances of
string concatenation in the grammar with the tree
operation t1, t2 �→ c(t1, t2). This way, a string gram-
mar is turned into a tree grammar that generates a
set of trees whose image under the yield function is
the language of the string grammar. (In the case of
an IO macro grammar, the result is an IO context-
free tree grammar (Engelfriet, 1977).) String copy-
ing becomes tree copying, and the resulting gram-
mar can be represented by an almost linear CFLG
and hence by a Datalog program. The regular set
of all binary trees that yield the input string is repre-
sented by a database that is constructed from a deter-
ministic bottom-up finite tree automaton recogniz-
ing it. Determinism is important for ensuring cor-
rectness of this reduction. Since the database can
be computed from the input string in logspace, the
complexity-theoretic consequences of the last sec-
tion carry over here.

7 Magic sets and Earley-style algorithms

Magic-sets rewriting of a Datalog program allows
bottom-up evaluation to avoid deriving useless facts
by mimicking top-down evaluation of the original
program. The result of the generalized supplemen-
tary magic-sets rewriting of Beeri and Ramakrish-
nan (1991) applied to the Datalog program repre-
senting a CFG essentially coincides with the deduc-
tion system (Shieber et al., 1995) or uninstantiated
parsing system (Sikkel, 1997) for Earley parsing.
By applying the same rewriting method to Datalog
programs representing almost linear CFLGs, we can
obtain efficient parsing and generation algorithms
for various grammar formalisms with context-free
derivations.
We illustrate this approach with the program

in Figure 4, following the presentation of Ullman
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(1989a; 1989b). We assume the query to take the
form “?− S(0, x).”, so that the input database can be
processed incrementally. The program is first made
safe by eliminating the possibility of deriving non-
ground atoms:

S(p1, p3) :− A(p1, p3, p2, p2).
A(p1, p8, p4, p5) :− A(p2, p7, p3, p6), a(p1, p2), b(p3, p4), c(p5, p6), d(p7, p8).
A(p1, p8, p4, p5) :− a(p1, p2), b(p2, p4), c(p5, p6), d(p6, p8).

The subgoal rectification removes duplicate argu-
ments from subgoals, creating new predicates as
needed:

S(p1, p3) :− B(p1, p3, p2).
A(p1, p8, p4, p5) :− A(p2, p7, p3, p6), a(p1, p2), b(p3, p4), c(p5, p6), d(p7, p8).
A(p1, p8, p4, p5) :− a(p1, p2), b(p2, p4), c(p5, p6), d(p6, p8).
B(p1, p8, p4) :− A(p2, p7, p3, p6), a(p1, p2), b(p3, p4), c(p4, p6), d(p7, p8).
B(p1, p8, p4) :− a(p1, p2), b(p2, p4), c(p4, p6), d(p6, p8).

We then attach to predicates adornments indicating
the free/bound status of arguments in top-down eval-
uation, reordering subgoals so that as many argu-
ments as possible are marked as bound:

Sbf(p1, p3) :− Bbff(p1, p3, p2).
Bbff(p1, p8, p4) :− abf(p1, p2), Abfff(p2, p7, p3, p6), bbf(p3, p4), cbb(p4, p6),

dbf(p7, p8).
Bbff(p1, p8, p4) :− abf(p1, p2), bbf(p2, p4), cbf(p4, p6), dbf(p6, p8).
Abfff(p1, p8, p4, p5) :− abf(p1, p2), Abfff(p2, p7, p3, p6), bbf(p3, p4), cbb(p5, p6),

dbf(p7, p8).
Abfff(p1, p8, p4, p5) :− abf(p1, p2), bbf(p2, p4), cff(p5, p6), dbf(p6, p8).

The generalized supplementary magic-sets rewriting
finally gives the following rule set:

r1 : m B(p1) :− m S(p1).
r2 : S(p1, p3) :− m B(p1), B(p1, p3, p2).
r3 : sup2.1(p1, p2) :− m B(p1), a(p1, p2).
r4 : sup2.2(p1, p7, p3, p6) :− sup2.1(p1, p2), A(p2, p7, p3, p6).
r5 : sup2.3(p1, p7, p6, p4) :− sup2.2(p1, p7, p3, p6), b(p3, p4).
r6 : sup2.4(p1, p7, p4) :− sup2.3(p1, p7, p6, p4), c(p4, p6).
r7 : B(p1, p8, p4) :− sup2.4(p1, p7, p4), d(p7, p8).
r8 : sup3.1(p1, p2) :− m B(p1), a(p1, p2).
r9 : sup3.2(p1, p4) :− sup3.1(p1, p2), b(p2, p4).

r10 : sup3.3(p1, p4, p6) :− sup3.2(p1, p4), c(p4, p6).
r11 : B(p1, p8, p4) :− sup3.3(p1, p4, p6), d(p6, p8).
r12 : m A(p2) :− sup2.1(p1, p2).
r13 : m A(p2) :− sup4.1(p1, p2).
r14 : sup4.1(p1, p2) :− m A(p1), a(p1, p2).
r15 : sup4.2(p1, p7, p3, p6) :− sup4.1(p1, p2), A(p2, p7, p3, p6).
r16 : sup4.3(p1, p7, p6, p4) :− sup4.2(p1, p7, p3, p6), b(p3, p4).
r17 : sup4.4(p1, p7, p4, p5) :− sup4.3(p1, p7, p6, p4), c(p5, p6).
r18 : A(p1, p8, p4, p5) :− sup4.4(p1, p7, p4, p5), d(p7, p8).
r19 : sup5.1(p1, p2) :− m A(p1), a(p1, p2).
r20 : sup5.2(p1, p4) :− sup5.1(p1, p2), b(p2, p4).
r21 : sup5.3(p1, p4, p5, p6) :− sup5.2(p1, p4), c(p5, p6).
r22 : A(p1, p8, p4, p5) :− sup5.3(p1, p4, p5, p6), d(p6, p8).

The following version of chart parsing adds con-
trol structure to this deduction system:

1. () Initialize the chart to the empty set, the
agenda to the singleton {m S(0)}, and n to 0.

2. Repeat the following steps:

(a) Repeat the following steps until the
agenda is exhausted:

i. Remove a fact from the agenda, called
the trigger.

ii. Add the trigger to the chart.
iii. Generate all facts that are immediate

consequences of the trigger together
with all facts in the chart, and add to
the agenda those generated facts that
are neither already in the chart nor in
the agenda.

(b) () Remove the next fact from the in-
put database and add it to the agenda, in-
crementing n. If there is no more fact in
the input database, go to step 3.

3. If S(0, n) is in the chart, accept; otherwise re-
ject.

The following is the trace of the algorithm on in-
put string aabbccdd:

1. m S(0) 

2. m B(0) r1, 1
3. a(0, 1) 

4. sup2.1(0, 1) r3, 2, 3
5. sup3.1(0, 1) r8, 2, 3
6. m A(1) r12, 4
7. a(1, 2) 

8. sup4.1(1, 2) r14, 6, 7
9. sup5.1(1, 2) r19, 6, 7
10. m A(2) r13, 8
11. b(2, 3) 

12. sup5.2(1, 3) r20, 9, 11
13. b(3, 4) 

14. c(4, 5) 

15. sup5.3(1, 3, 4, 5) r21, 12, 14
16. c(6, 5) 

17. sup5.3(1, 3, 5, 6) r21, 12, 16
18. d(6, 7) 

19. A(1, 7, 3, 5) r22, 17, 18
20. sup2.2(0, 7, 3, 5) r4, 4, 19
21. sup2.3(0, 7, 5, 4) r5, 13, 20
22. sup2.4(0, 7, 4) r6, 14, 21
23. d(7, 8) 

24. B(0, 8, 4) r7, 22, 23
25. S(0, 8) r2, 2, 24

Note that unlike existing Earley-style parsing al-
gorithms for TAGs, the present algorithm is an in-
stantiation of a general schema that applies to pars-
ing with more powerful grammar formalisms as well
as to generation with Montague semantics.

8 Conclusion

Our reduction to Datalog brings sophisticated tech-
niques for Datalog query evaluation to the problems
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of parsing and generation, and establishes a tight
bound on the computational complexity of recogni-
tion for a wide range of grammars. In particular, it
shows that the use of higher-order λ-terms for se-
mantic representation need not be avoided for the
purpose of achieving computational tractability.
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Abstract

We examine the problem of choosing word
order for a set of dependency trees so as
to minimize total dependency length. We
present an algorithm for computing the op-
timal layout of a single tree as well as a
numerical method for optimizing a gram-
mar of orderings over a set of dependency
types. A grammar generated by minimizing
dependency length in unordered trees from
the Penn Treebank is found to agree surpris-
ingly well with English word order, suggest-
ing that dependency length minimization has
influenced the evolution of English.

1 Introduction

Dependency approaches to language assume that ev-
ery word in a sentence is the dependent of one other
word (except for one word, which is the global head
of the sentence), so that the words of a sentence form
an acyclic directed graph. An important principle of
language, supported by a wide range of evidence, is
that there is preference for dependencies to be short.
This has been offered as an explanation for numer-
ous psycholinguistic phenomena, such as the greater
processing difficulty of object relative clauses ver-
sus subject relative clauses (Gibson, 1998). Depen-
dency length minimization is also a factor in ambi-
guity resolution: listeners prefer the interpretation
with shorter dependencies. Statistical parsers make
use of features that capture dependency length (e.g.
an adjacency feature in Collins (1999), more explicit
length features in McDonald et al. (2005) and Eisner

and Smith (2005)) and thus learn to favor parses with
shorter dependencies.

In this paper we attempt to measure the extent to
which basic English word order chooses to minimize
dependency length, as compared to average depen-
dency lengths under other possible grammars. We
first present a linear-time algorithm for finding the
ordering of a single dependency tree with shortest
total dependency length. Then, given that word or-
der must also be determined by grammatical rela-
tions, we turn to the problem of specifying a gram-
mar in terms of constraints over such relations. We
wish to find the set of ordering constraints on depen-
dency types that minimizes a corpus’s total depen-
dency length. Even assuming that dependency trees
must be projective, this problem is NP-complete,1

but we find that numerical optimization techniques
work well in practice. We reorder unordered depen-
dency trees extracted from corpora and compare the
results to English in terms of both the resulting de-
pendency length and the strings that are produced.
The optimized order constraints show a high degree
of similarity to English, suggesting that dependency
length minimization has influenced the word order
choices of basic English grammar.

2 The Dependency Length Principle

This idea that dependency length minimization may
be a general principle in language has been dis-
cussed by many authors. One example concerns the

1English has crossing (non-projective) dependencies, but
they are believed to be very infrequent. McDonald et al. (2005)
report that even in Czech, commonly viewed as a non-projective
language, fewer than 2% of dependencies violate the projectiv-
ity constraint.

184



well-known principle that languages tend to be pre-
dominantly “head-first” (in which the head of each
dependency is on the left) or “head-last” (where it
is on the right). Frazier (1985) suggests that this
might serve the function of keeping heads and de-
pendents close together. In a situation where each
word has exactly one dependent, it can be seen that
a “head-first” arrangement achieves minimal depen-
dency length, as each link has a length of one.

We will call a head-first dependency “right-
branching” and a head-last dependency “left-
branching”; a language in which most or all de-
pendencies have the same branching direction is a
“same-branching” language.

Another example of dependency length mini-
mization concerns situations where a head has mul-
tiple dependents. In such cases, dependency length
will be minimized if the shorter dependent is placed
closer to the head. Hawkins (1994) has shown that
this principle is reflected in grammatical rules across
many languages. It is also reflected in situations of
choice; for example, in cases where a verb is fol-
lowed by a prepositional phrase and a direct object
NP, the direct object NP will usually be placed first
(closer to the verb) but if it is longer than the PP, it
is often placed second.

While one might suppose that a “same-
branching” language is optimal for dependency-
length minimization, this is not in fact the case. If
a word has several dependents, placing them all
on the same side causes them to get in the way of
each other, so that a more ’balanced” configuration
– with some dependents on each side – has lower
total dependency length. It is particularly desirable
for one or more one-word dependent phrases to be
“opposite-branching” (in relation to the prevailing
branching direction of the language); opposite-
branching of a long phrase tends to cause a long
dependency from the head of the phrase to the
external head.

Exactly this pattern has been observed by Dryer
(1992) in natural languages. Dryer argues that,
while most languages have a predominant branch-
ing direction, phrasal (multi-word) dependents tend
to adhere to this prevailing direction much more
consistently than one-word dependents, which fre-
quently branch opposite to the prevailing direction
of the language. English reflects this pattern quite

‖

w0 w1 w2 w3 w4 w5 w6 w7 w8

Figure 1: Separating a dependency link into two
pieces at a subtree boundary.

strongly: While almost all phrasal dependents are
right-branching (prepositional phrases, objects of
prepositions and verbs, relative clauses, etc.), some
1-word categories are left-branching, notably deter-
miners, noun modifiers, adverbs (sometimes), and
attributive adjectives.

This linguistic evidence strongly suggests that
languages have been shaped by principles of de-
pendency length minimization. One might won-
der how close natural languages are to being op-
timal in this regard. To address this question, we
extract unordered dependency graphs from English
and consider different algorithms, which we call De-
pendency Linearization Algorithms (DLAs), for or-
dering the words; our goal is to find the algorithm
that is optimal with regard to dependency length
minimization. We begin with an “unlabeled” DLA,
which simply minimizes dependency length without
requiring consistent ordering of syntactic relations.
We then consider the more realistic case of a “la-
beled” DLA, which is required to have syntactically
consistent ordering.

Once we find the optimal DLA, two questions can
be asked. First, how close is dependency length in
English to that of this optimal DLA? Secondly, how
similar is the optimal DLA to English in terms of the
actual rules that arise?

3 The Optimal Unlabeled DLA

Finding linear arrangements of graphs that minimize
total edge length is a classic problem, NP-complete
for general graphs but with anO(n1.6) algorithm for
trees (Chung, 1984). However, the traditional prob-
lem description does not take into account the pro-
jectivity constraint of dependency grammar. This
constraint simplifies the problem; in this section we
show that a simple linear-time algorithm is guaran-
teed to find an optimal result.

A natural strategy would be to apply dynamic pro-
gramming over the tree structure, observing that to-
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tal dependency length of a linearization can be bro-
ken into the sum of links below any nodew in the
tree, and the sum of links outside the node, by which
we mean all links not connected to dependents of the
node. These two quantities interact only through the
position ofw relative to the rest of its descendants,
meaning that we can use this position as our dy-
namic programming state, compute the optimal lay-
out of each subtree given each position of the head
within the subtree, and combine subtrees bottom-up
to compute the optimal linearization for the entire
sentence.

This can be further improved by observing that
the total length of the outside links depends on the
position ofw only because it affects the length of
the link connectingw to its parent. All other outside
links either cross above all words underw, and de-
pend only on the total size ofw’s subtree, or are en-
tirely on one side ofw’s subtree. The link fromw to
its parent is divided into two pieces, whose lengths
add up to the total length of the link, by slicing the
link where it crosses the boundary fromw’s subtree
to the rest of the sentence. In the example in Fig-
ure 1, the dependency fromw1 to w6 has total length
five, and is divided in to two components of length
2.5 at the boundary ofw1’s subtree. The length of
the piece overw’s subtree depends onw’s position
within that subtree, while the other piece does not
depend on the internal layout ofw’s subtree. Thus
the total dependency length for the entire sentence
can be divided into:

1. the length of all links withinw’s subtree plus
the length of the first piece ofw’s link to its
parent, i.e. the piece that is above descendants
of w.

2. the length of the remaining piece ofw’s link to
its parent plus the length of all links outsidew.

where the second quantity can be optimized in-
dependently of the internal layout ofw’s subtree.
While the link fromw to its parent may point either
to the right or left, the optimal layout forw’s subtree
given thatw attaches to its left must be the mirror
image of the optimal layout given thatw attaches to
its right. Thus, only one case need be considered,
and the optimal layout for the entire sentence can

be computed from the bottom up using just one dy-
namic programming state for each node in the tree.

We now go on to show that, in computing the or-
dering of thedi children of a given node, not alldi!
possibilities need be considered. In fact, one can
simply order the children by adding them in increas-
ing order of size, going from the head outwards,
and alternating between adding to the left and right
edges of the constituent.

The first part of this proof is the observation that,
as we progress from the head outward, to either the
left or the right, the head’s child subtrees must be
placed in increasing order of size. If any two ad-
jacent children appear with the smaller one further
from the head, we can swap the positions of these
two children, reducing the total dependency length
of the tree. No links crossing over the two chil-
dren will change in length, and no links within ei-
ther child will change. Thus only the length of the
links from the two children will change, and as the
link connecting the outside child now crosses over a
shorter intermediate constituent, the total length will
decrease.

Next, we show that the two longest children must
appear on opposite sides of the head in the optimal
linearization. To see this, consider the case where
both childi (the longest child) and childi − 1 (the
second longest child) appear on the same side of the
head. From the previous result, we know thati − 1
andi must be the outermost children on their side.
If there are no children on the other side of the head,
the tree can be improved by moving eitheri or i −
1 to the other side. If there is a child on the other
side of the head, it must be smaller than bothi and
i− 1, and the tree can be improved by swapping the
position of the child from the other side and child
i− 1.

Given that the two largest children are outermost
and on opposite sides of the head, we observe that
the sum of the two links connecting these children
to the head does not depend on the arrangement of
the firsti − 2 children. Any rearrangement that de-
creases the length of the link to the left of the head
must increase the length of the link to the right of
the head by the same amount. Thus, the optimal lay-
out of all i children can be found by placing the two
largest children outermost and on opposite sides, the
next two largest children next outermost and on op-

186



Figure 2: Placing dependents on alternating sides
from inside out in order of increasing length.

posite sides, and so on until only one or zero chil-
dren are left. If there are an odd number of children,
the side of the final (smallest) child makes no differ-
ence, because the other children are evenly balanced
on the two sides so the last child will have the same
dependency-lengthening effect whichever side it is
on.

Our pairwise approach implies that there are
many optimal linearizations,2⌊i/2⌋ in fact, but one
simple and optimal approach is to alternate sides as
in Figure 2, putting the smallest child next to the
head, the next smallest next to the head on the op-
posite side, the next outside the first on the first side,
and so on.

So far we have not considered the piece of the link
from the head to its parent that is over the head’s
subtree. The argument above can be generalized by
considering this link as a special child, longer than
the longest real child. By making the special child
the longest child, we will be guaranteed that it will
be placed on the outside, as is necessary for a projec-
tive tree. As before, the special child and the longest
real child must be placed outermost and on oppo-
site sides, the next two longest children immediately
within the first two, and so on.

Using the algorithm from the previous section, it
is possible to efficiently compute the optimal de-
pendency length from English sentences. We take
sentences from the Wall Street Journal section of
the Penn Treebank, extract the dependency trees us-
ing the head-word rules of Collins (1999), consider
them to be unordered dependency trees, and lin-
earize them to minimize dependency length. Au-
tomatically extracting dependencies from the Tree-
bank can lead to some errors, in particular with
complex compound nouns. Fortunately, compound
nouns tend to occur at the leaves of the tree, and the
head rules are reliable for the vast majority of struc-
tures.

Results in Table 1 show that observed depen-
dency lengths in English are between the minimum

DLA Length
Optimal 33.7
Random 76.1
Observed 47.9

Table 1: Dependency lengths for unlabeled DLAs.

achievable given the unordered dependencies and
the length we would find given a random order-
ing, and are much closer to the minimum. This al-
ready suggests that minimizing dependency length
has been a factor in the development of English.
However, the optimal “language” to which English
is being compared has little connection to linguis-
tic reality. Essentially, this model represents a free
word-order language: Head-modifier relations are
oriented without regard to the grammatical relation
between the two words. In fact, however, word order
in English is relatively rigid, and a more realistic ex-
periment would be to find the optimal algorithm that
reflects consistent syntactic word order rules. We
call this a “labeled” DLA, as opposed to the “unla-
beled” DLA presented above.

4 Labeled DLAs

In this section, we consider linearization algorithms
that assume fixed word order for a given grammat-
ical relation, but choose the order such as to mini-
mize dependency length over a large number of sen-
tences. We represent grammatical relations simply
by using the syntactic categories of the highest con-
stituent headed by (maximal projection of) the two
words in the dependency relation. Due to sparse
data concerns, we removed all function tags such as
TMP (temporal), LOC (locative), and CLR (closely
related) from the treebank. We made an exception
for the SBJ (subject) tag, as we thought it important
to distinguish a verb’s subject and object for the pur-
poses of choosing word order. Looking at a head and
its set of dependents, the complete ordering of all de-
pendents can be modeled as a context-free grammar
rule over a nonterminal alphabet of maximal projec-
tion categories. A fixed word-order language will
have only one rule for each set of nonterminals ap-
pearing in the right-hand side.

Searching over all such DLAs would be exponen-
tially expensive, but a simple approximation of the
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Dep. len. /
DLA % correct order
random 76.1 / 40.5
extracted from optimal 61.6 / 55.4
weights from English 50.9 / 82.2
optimized weights 42.5 / 64.9

Table 2: Results for different methods of lineariz-
ing unordered trees from section 0 of the Wall Street
Journal corpus. Each result is given as average de-
pendency length in words, followed by the percent-
age of heads (with at least one dependent) having all
dependents correctly ordered.

optimal labeled DLA can found using the following
procedure:

1. Compute the optimal layout of all sentences in
the corpus using the unlabeled DLA.

2. For each combination of a head type and a set
of child types, count the occurrences of each
ordering.

3. Take the most frequent ordering for each set as
the order in the new DLA.

In the first step we used the alternating procedure
from the previous section, with a modification for
the fixed word-order scenario. In order to make
the order of a subtree independent of the direction
in which it attaches to its parent, dependents were
placed in order of length on alternating sides of the
head from the inside out, always starting with the
shortest dependent immediately to the left of the
head.

Results in Table 2 (first two lines) show that a
DLA using rules extracted from the optimal layout
matches English significantly better than a random
DLA, indicating that dependency length can be used
as a general principle to predict word order.

4.1 An Optimized Labeled DLA

While the DLA presented above is a good deal bet-
ter than random (in terms of minimizing dependency
length), there is no reason to suppose that it is opti-
mal. In this section we address the issue of finding
the optimal labeled DLA.

If we model a DLA as a set of context-free gram-
mar rules over dependency types, specifying a fixed
ordering for any set of dependency types attaching
to a given head, the space of DLAs is enormous, and
the problem of finding the optimal DLA is a diffi-
cult one. One way to break the problem down is
to model the DLA as a set of weights for each type
of dependency relation. Under this model the word
order is determined by placing all dependents of a
word in order of increasing weight from left to right.
This reduces the number of parameters of the model
to T , if there areT dependency types, fromT k if
a word may have up tok dependents. It also al-
lows us to naturally capture statements such as “a
noun phrase consists of a determiner, then (possi-
bly) some adjectives, the head noun, and then (pos-
sibly) some prepositional phrases”, by, for example,
setting the weight for NP→DT to -2, NP→JJ to -
1, and NP→PP to 1. We assume the head itself
has a weight of zero, meaning negatively weighted
dependents appear to the head’s left, and positively
weighted dependents to the head’s right.

4.1.1 A DLA Extracted from English

As a test of whether this model is adequate to
represent English word order, we extracted weights
for the Wall Street Journal corpus, used them to re-
order the same set of sentences, and tested how often
words with at least one dependent were assigned the
correct order. We extracted the weights by assign-
ing, for each dependency relation in the corpus, an
integer according to its position relative to the head,
-1 for the first dependent to the left, -2 for the sec-
ond to the left, and so on. We averaged these num-
bers across all occurrences of each dependency type.
The dependency types consisted of the syntactic cat-
egories of the maximal projections of the two words
in the dependency relation.

Reconstructing the word order of each sentence
from this weighted DLA, we find that 82% of all
words with at least one dependent have all depen-
dents ordered correctly (third line of Table 2). This
is significantly higher than the heuristic discussed in
the previous section, and probably as good as can be
expected from such a simple model, particularly in
light of the fact that there is some choice in the word
order for most sentences (among adjuncts for exam-
ple) and that this model does not take the lengths of
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the individual constituents into account at all.
We now wish to find the set of weights that min-

imize the dependency length of the corpus. While
the size of the search space is still too large to search
exhaustively, numerical optimization techniques can
be applied to find an approximate solution.

4.1.2 NP-Completeness

The problem of finding the optimum weighted
DLA for a set of input trees can be shown to be NP-
complete by reducing from the problem of finding a
graph’s minimum Feedback Arc Set, one of the 21
classic problems of Karp (1972). The input to the
Feedback Arc Set problem is a directed graph, for
which we wish to find an ordering of vertices such
that the smallest number of edges point from later to
earlier vertices in the ordering. Given an instance of
this problem, we can create a set of dependency trees
such that each feedback arc in the original graph
causes total dependency length to increase by one,
if we identify each dependency type with a vertex
in the original problem, and choose weights for the
dependency types according to the vertex order.2

4.1.3 Local Search

Our search procedure is to optimize one weight at
a time, holding all others fixed, and iterating through
the set of weights to be set. The objective function
describing the total dependency length of the corpus
is piecewise constant, as the dependency length will
not change until one weight crosses another, caus-
ing two dependents to reverse order, at which point
the total length will discontinuously jump. Non-
differentiability implies that methods based on gra-
dient ascent will not apply. This setting is reminis-
cent of the problem of optimizing feature weights
for reranking of candidate machine translation out-
puts, and we employ an optimization technique sim-
ilar to that used by Och (2003) for machine trans-
lation. Because the objective function only changes
at points where one weight crosses another’s value,
the set of segments of weight values with different
values of the objective function can be exhaustively
enumerated. In fact, the only significant points are
the values of other weights for dependency types
which occur in the corpus attached to the same head

2We omit details due to space.

Test Data
Training Data WSJ Swbd
WSJ 42.5 / 64.9 12.5 / 63.6
Swbd 43.9 / 59.8 12.2 / 58.7

Table 3: Domain effects on dependency length min-
imization: each result is formatted as in Table 2.

as the dependency being optimized. We build a ta-
ble of interacting dependencies as a preprocessing
step on the data, and then when optimizing a weight,
consider the sequence of values between consecu-
tive interacting weights. When computing the total
corpus dependency length at a new weight value, we
can further speed up computation by reordering only
those sentences in which a dependency type is used,
by building an index of where dependency types oc-
cur as another preprocessing step.

This optimization process is not guaranteed to
find the global maximum (for this reason we call
the resulting DLA “optimized” rather than “opti-
mal”). The procedure is guaranteed to converge sim-
ply from the fact that there are a finite number of
objective function values, and the objective function
must increase at each step at which weights are ad-
justed.

We ran this optimization procedure on section 2
through 21 of the Wall Street Journal portion of the
Penn Treebank, initializing all weights to random
numbers between zero and one. This initialization
makes all phrases head-initial to begin with, and has
the effect of imposing a directional bias on the re-
sulting grammar. When optimization converges, we
obtain a set of weights which achieves an average
dependency length of 40.4 on the training data, and
42.5 on held-out data from section 0 (fourth line
of Table 2). While the procedure is unsupervised
with respect to the English word order (other than
the head-initial bias), it is supervised with respect to
dependency length minimization; for this reason we
report all subsequent results on held-out data. While
random initializations lead to an initial average de-
pendency length varying from 60 to 73 with an aver-
age of 66 over ten runs, all runs were within±.5 of
one another upon convergence. When the order of
words’ dependents was compared to the real word
order on held-out data, we find that 64.9% of words
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Training Sents Dep. len. / % correct order
100 13.70 / 54.38
500 12.81 / 57.75

1000 12.59 / 58.01
5000 12.34 / 55.33

10000 12.27 / 55.92
50000 12.17 / 58.73

Table 4: Average dependency length and rule accu-
racy as a function of training data size, on Switch-
board data.

with at least one dependent have the correct order.

4.2 Domain Variation

Written and spoken language differ significantly in
their structure, and one of the most striking differ-
ences is the much greater average sentence length
of formal written language. The Wall Street Journal
is not representative of typical language use. Lan-
guage was not written until relatively recently in its
development, and the Wall Street Journal in particu-
lar represents a formal style with much longer sen-
tences than are used in conversational speech. The
change in the lengths of sentences and their con-
stituents could make the optimized DLA in terms of
dependency length very different for the two genres.

In order to test this effect, we performed exper-
iments using both the Wall Street Journal (written)
and Switchboard (conversational speech) portions of
the Penn Treebank, and compared results with dif-
ferent training and test data. For Switchboard, we
used the first 50,000 sentences of sections 2 and 3 as
the training data, and all of section 4 as the test data.

We find relatively little difference in dependency
length as we vary training data between written and
spoken English, as shown in Table 3. For the ac-
curacy of the resulting word order, however, train-
ing on Wall Street Journal outperforms Switchboard
even when testing on Switchboard, perhaps because
the longer sentences in WSJ provide more informa-
tion for the optimization procedure to work with.

4.3 Learning Curve

How many sentences are necessary to learn a good
set of dependency weights? Table 4 shows results
for Switchboard as we increase the number of sen-
tences provided as input to the weight optimization
procedure. While the average dependency length on

Label Interpretation Weight
S→NP verb - object NP 0.037
S→NP-SBJ verb - subject NP -0.022
S→PP verb - PP 0.193
NP→DT object noun - determiner -0.070
NP-SBJ→DT subject noun - determiner -0.052
NP→PP obj noun - PP 0.625
NP-SBJ→PP subj noun - PP 0.254
NP→SBAR obj noun - rel. clause 0.858
NP-SBJ→SBAR subject noun - rel. clause -0.110
NP→JJ obj noun - adjective 0.198
NP-SBJ→JJ subj noun - adjective -0.052

Table 5: Sample weights from optimized DLA. Neg-
atively weighted dependents appear to the left of
their head.

held-out test data slowly decreases with more data,
the percentage of correctly ordered dependents is
less well-behaved. It turns out that even 100 sen-
tences are enough to learn a DLA that is nearly as
good as one derived from a much larger dataset.

4.4 Comparing the Optimized DLA to English

We have seen that the optimized DLA matches En-
glish text much better than a random DLA and that
it achieves only a slightly lower dependency length
than English. It is also of interest to compare the
optimized DLA to English in more detail. First
we examine the DLA’s tendency towards “opposite-
branching 1-word phrases”. English reflects this
principle to a striking degree: on the WSJ test set,
79.4 percent of left-branching phrases are 1-word,
compared to only 19.4 percent of right-branching
phrases. The optimized DLA also reflects this pat-
tern, though somewhat less strongly: 75.5 percent of
left-branching phrases are 1-word, versus 36.7 per-
cent of right-branching phrases.

We can also compare the optimized DLA to En-
glish with regard to specific rules. As explained ear-
lier, the optimal DLA’s rules are expressed in the
form of weights assigned to each relation, with pos-
itive weights indicating right-branching placement.
Table 5 shows some important rules. The middle
column shows the syntactic situation in which the
relation normally occurs. We see, first of all, that
object NPs are to the right of the verb and subject
NPs are to the left, just like in English. PPs are also
the right of verbs; the fact that the weight is greater
than for NPs indicates that they are placed further to
the right, as they normally are in English. Turning
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to the internal structure of noun phrases, we see that
determiners are to the left of both object and sub-
ject nouns; PPs are to the right of both object and
subject nouns. We also find some differences with
English, however. Clause modifiers of nouns (these
are mostly relative clauses) are to the right of object
nouns, as in English, but to the left of subject nouns;
adjectives are to the left of subject nouns, as in En-
glish, but to the right of object nouns. Of course,
these differences partly arise from the fact that we
treat NP and NP-SBJ as distinct whereas English
does not (with regard to their internal structure).

5 Conclusion

In this paper we have presented a dependency lin-
earization algorithm which is optimized for mini-
mizing dependency length, while still maintaining
consistent positioning for each grammatical relation.
The fact that English is so much lower than the
random DLAs in dependency length gives suggests
that dependency length minimization is an important
general preference in language. The output of the
optimized DLA also proves to be much more similar
to English than a random DLA in word order. An in-
formal comparison of some important rules between
English and the optimal DLA reveals a number of
striking similarities, though also some differences.

The fact that the optimized DLA’s ordering
matches English on only 65% of words shows, not
surprisingly, that English word order is determined
by other factors in addition to dependency length
minimization. In some cases, ordering choices in
English are underdetermined by syntactic rules. For
example, a manner adverb may be placed either be-
fore the verb or after (“He ran quickly / he quickly
ran”). Here the optimized DLA requires a consistent
ordering while English does not. One might suppose
that such syntactic choices in English are guided at
least partly by dependency length minimization, and
indeed there is evidence for this; for example, people
tend to put the shorter of two PPs closer to the verb
(Hawkins, 1994). But there are also other factors in-
volved – for example, the tendency to put “given”
discourse elements before “new” ones, which has
been shown to play a role independent of length
(Arnold et al., 2000).

In other cases, the optimized DLA allows more

fine-grained choices than English. For example, the
optimized DLA treats NP and NP-SBJ as different;
this allows it to have different syntactic rules for the
two cases – a possibility that it sometimes exploits,
as seen above. No doubt this partly explains why the
optimized DLA achieves lower dependency length
than English.
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Abstract 

Large corpora of parsed sentences with 

semantic role labels (e.g. PropBank) pro-

vide training data for use in the creation 
of high-performance automatic semantic 

role labeling systems. Despite the size of 

these corpora, individual verbs (or role-

sets) often have only a handful of in-
stances in these corpora, and only a 

fraction of English verbs have even a sin-

gle annotation. In this paper, we describe 
an approach for dealing with this sparse 

data problem, enabling accurate semantic 

role labeling for novel verbs (rolesets) 
with only a single training example. Our 

approach involves the identification of 

syntactically similar verbs found in Prop-

Bank, the alignment of arguments in their 
corresponding rolesets, and the use of 

their corresponding annotations in Prop-

Bank as surrogate training data. 

1 Generalizing Semantic Role Annotations 

A recent release of the PropBank (Palmer et al., 

2005) corpus of semantic role annotations of Tree-

bank parses contained 112,917 labeled instances of 
4,250 rolesets corresponding to 3,257 verbs, as 

illustrated by this example for the verb buy. 

 
[arg0 Chuck] [buy.01 bought] [arg1 a car] [arg2 from 

Jerry] [arg3 for $1000]. 

 

Annotations similar to these have been used to cre-

ate automated semantic role labeling systems 
(Pradhan et al., 2005; Moschitti et al., 2006) for 

use in natural language processing applications that 

require only shallow semantic parsing. As with all 
machine-learning approaches, the performance of 

these systems is heavily dependent on the avail-

ability of adequate amounts of training data. How-
ever, the number of annotated instances in 

PropBank varies greatly from verb to verb; there 

are 617 annotations for the want roleset, only 7 for 

desire, and 0 for any sense of the verb yearn. Do 
we need to keep annotating larger and larger cor-

pora in order to generate accurate semantic label-

ing systems for verbs like yearn? 
A better approach may be to generalize the data 

that exists already to handle novel verbs. It is rea-

sonable to suppose that there must be a number of 
verbs within the PropBank corpus that behave 

nearly exactly like yearn in the way that they relate 

to their constituent arguments. Rather than annotat-

ing new sentences that contain the verb yearn, we 
could simply find these similar verbs and use their 

annotations as surrogate training data. 

This paper describes an approach to generalizing 
semantic role annotations across different verbs, 

involving two distinct steps. The first step is to 

order all of the verbs with semantic role annota-

tions according to their syntactic similarity to the 
target verb, followed by the second step of aligning 

argument labels between different rolesets. To 

evaluate this approach we developed a simple 
automated semantic role labeling algorithm based 

on the frequency of parse-tree paths, and then 

compared its performance when using real and sur-
rogate training data from PropBank. 
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2 Parse Tree Paths 

A key concept in understanding our approach to 

both automated semantic role annotation and gen-

eralization is the notion of a parse tree path. Parse 
tree paths were used for semantic role labeling by 

Gildea and Jurafsky (2002) as descriptive features 

of the syntactic relationship between predicates 
and their arguments in the parse tree of a sentence. 

Predicates are typically assumed to be specific tar-

get words (verbs), and arguments are assumed to 
be spans of words in the sentence that are domi-

nated by nodes in the parse tree. A parse tree path 

can be described as a sequence of transitions up 

from the target word then down to the node that 
dominates the argument span (e.g. Figure 1). 

 

 

Figure 1: An example parse tree path from the 
predicate ate to the argument NP He, represented 

as VB VP S NP 

 

Parse tree paths are particularly interesting for 

automated semantic role labeling because they 

generalize well across syntactically similar sen-
tences. For example, the parse tree path in Figure 1 

would still correctly identify the “eater” argument 

in the given sentence if the personal pronoun “he” 
were swapped with a markedly different noun 

phrase, e.g. “the attendees of the annual holiday 

breakfast.” 

3 A Simple Semantic Role Labeler 

To explore issues surrounding the generalization of 

semantic role annotations across verbs, we began 

by authoring a simple automated semantic role la-
beling algorithm that assigns labels according to 

the frequency of the parse tree paths seen in train-

ing data. To construct a labeler for a specific role-

set, training data consisting of parsed sentences 
with role-labeled parse tree constituents are ana-

lyzed to identify all of the parse tree paths between 

predicates and arguments, which are then tabulated 
and sorted by frequency. For example, Table 1 lists 

the 10 most frequent pairs of arguments and parse 

tree paths for the want.01 roleset in a recent release 
of PropBank. 
 

Count Argument Parse tree path 

189 ARG0 VBP VP S NP  

159 ARG1 VBP VP S  
125 ARG0 VBZ VP S NP  
110 ARG1 VBZ VP S  
102 ARG0 VB VP VP S NP  
98 ARG1 VB VP S  
96 ARG0 VBD VP S NP  
79 ARGM VB VP VP RB  
76 ARG1 VBD VP S  

43 ARG1 VBP VP NP  

Table 1. Top 10 most frequent parse tree paths for 

arguments of the PropBank want.01 roleset, based 
on 617 annotations 

  

To automatically assign role labels to an unla-

beled parse tree, each entry in the table is consid-
ered in order of highest frequency. Beginning from 

the target word in the sentence (e.g. wants) a check 

is made to determine if the entry includes a possi-
ble parse tree path in the parse tree of the sentence. 

If so, then the constituent is assigned the role label 

of the entry, and all subsequent entries in the table 
that have the same argument label or lead to sub-

constituents of the labeled node are invalidated. 

Only subsequent entries that assign core arguments 

of the roleset (e.g. ARG0, ARG1) are invalidated, 
allowing for multiple assignments of non-core la-

bels (e.g. ARGM) to a test sentence. In cases 

where the path leads to more than one node in a 
sentence, the leftmost path is selected. This process 

then continues down the list of valid table entries, 

assigning additional labels to unlabeled parse tree 
constituents, until the end of the table is reached. 

This approach also offers a simple means of 

dealing with multiple-constituent arguments, 

which occasionally appear in PropBank data. In 
these cases, the data is listed as unique entries in 

the frequency table, where each of the parse tree 

paths to the multiple constituents are listed as a set. 
The labeling algorithm will assign the argument of 

the entry only if all parse tree paths in the set are 

present in the sentence. 

The expected performance of this approach to 
semantic role labeling was evaluated using the 

PropBank data using a leave-one-out cross-

validation experimental design. Precision and re-
call scores were calculated for each of the 3,086 
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rolesets with at least two annotations. Figure 2 

graphs the average precision, recall, and F-score 
for rolesets according to the number of training 

examples of the roleset in the PropBank corpus. 

An additional curve in Figure 2 plots the percent-

age of these PropBank rolesets that have the given 
amount of training data or more. For example, F-

scores above 0.7 are first reached with 62 training 

examples, but only 8% of PropBank rolesets have 
this much training data available. 

 

 

Figure 2. Performance of our semantic role label-

ing approach on PropBank rolesets 

4 Identifying Syntactically Similar Verbs 

A key part of generalizing semantic role annota-

tions is to calculate the syntactic similarity be-

tween verbs. The expectation here is that verbs that 
appear in syntactically similar contexts are going 

to behave similarly in the way that they relate to 

their arguments. In this section we describe a fully 
automated approach to calculating the syntactic 

similarity between verbs. 

Our approach is strictly empirical; the similarity 
of verbs is determined by examining the syntactic 

contexts in which they appear in a large text cor-

pus. Our approach is analogous to previous work 

in extracting collocations from large text corpora 
using syntactic information (Lin, 1998). In our 

work, we utilized the GigaWord corpus of English 

newswire text (Linguistic Data Consortium, 2003), 
consisting of nearly 12 gigabytes of textual data. 

To prepare this corpus for analysis, we extracted 

the body text from each of the 4.1 million entries 

in the corpus and applied a maximum-entropy al-
gorithm to identify sentence boundaries (Reynar 

and Ratnaparkhi, 1997). 

Next we executed a four-step analysis process 

for each of the 3,257 verbs in the PropBank cor-
pus. In the first step, we identified each of the sen-

tences in the prepared GigaWord corpus that 

contained any inflection of the given verb. To 

automatically identify all verb inflections, we util-
ized the English DELA electronic dictionary 

(Courtois, 2004), which contained all but 21 of the 

PropBank verbs (for which we provided the inflec-
tions ourselves), with old-English verb inflections 

removed. We extracted GigaWord sentences con-

taining these inflections by using the GNU grep 
program and a template regular expression for each 

inflection list. The results of these searches were 

collected in 3,257 files (one for each verb). The 

largest of these files was for inflections of the verb 
say (15.9 million sentences), and the smallest was 

for the verb namedrop (4 sentences). 

The second step was to automatically generate 
syntactic parse trees for the GigaWord sentences 

found for each verb. It was our original intention to 

parse all of the found sentences, but we found that 
the slow speed of contemporary syntactic parsers 

made this impractical. Instead, we focused our ef-

forts on the first 100 sentences found for each of 

the 3,257 verbs with 100 or fewer tokens: a total of 
324,461 sentences (average of 99.6 per verb). For 

this task we utilized the August 2005 release of the 

Charniak parser with the default speed/accuracy 
settings (Charniak, 2000), which required roughly 

360 hours of processor time on a 2.5 GHz 

PowerPC G5. 

The third step was to characterize the syntactic 
context of the verbs based on where they appeared 

within the parse trees. For this purpose, we utilized 

parse tree paths as a means of converting tree 
structures into a flat, feature-vector representation. 

For each sentence, we identified all possible parse 

tree paths that begin from the verb inflection and 
terminate at a constituent that does not include the 

verb inflection. For example, the syntactic context 

of the verb in Figure 1 can be described by the fol-

lowing five parse tree paths: 

1. VB VP S NP 

2. VB VP S NP PRP 
3. VB VP NP 

4. VB VP NP DT 

5. VB VP NP NN 

Possible parse tree paths were identified for 
every parsed sentence for a given verb, and the 

frequencies of each unique path were tabulated 

194



into a feature vector representation. Parse tree 

paths where the first node was not a Treebank part-
of-speech tag for a verb were discarded, effectively 

filtering the non-verb homonyms of the set of in-

flections. The resulting feature vectors were nor-

malized by dividing the values of each feature by 
the number of verb instances used to generate the 

parse tree paths; the value of each feature indicates 

the proportion of observed inflections in which the 
parse tree path is possible. As a representative ex-

ample, 95 verb forms of abandon were found in 

the first 100 GigaWord sentences containing any 
inflection of this verb. For this verb, 4,472 possible 

parse tree paths were tabulated into 3,145 unique 

features, 2501 of which occurred only once. 

The fourth step was to compute the distance be-
tween a given verb and each of the 3,257 feature 

vector representations describing the syntactic con-

text of PropBank verbs. We computed and com-
pared the performance of a wide variety of possible 

vector-based distance metrics, including Euclidean, 

Manhattan, and Chi-square (with un-normalized 
frequency counts), but found that the ubiquitous 

cosine measure was least sensitive to variations in 

sample size between verbs. To facilitate a com-

parative performance evaluation (section 6), pair-
wise cosine distance measures were calculated 

between each pair of PropBank verbs and sorted 

into individual files, producing 3,257 lists of 3,257 
verbs ordered by similarity. 

Table 2 lists the 25 most syntactically similar 

pairs of verbs among all PropBank verbs. There 

are a number of notable observations in this list. 
First is the extremely high similarity between bind 

and bound. This is partly due to the fact that they 

share an inflection (bound is the irregular past 
tense form of bind), so the first 100 instances of 

GigaWord sentences for each verb overlap signifi-

cantly, resulting in overlapping feature vector rep-
resentations. Although this problem appears to be 

restricted to this one pair of verbs, it could be 

avoided in the future by using the part-of-speech 

tag in the parse tree to help distinguish between 
verb lemmas. 

A second observation of Table 2 is that several 

verbs appear multiple times in this list, yielding 
sets of verbs that all have high syntactic similarity. 

Three of these sets account for 19 of the verbs in 

this list: 
1. plunge, tumble, dive, jump, fall, fell, dip 

2. assail, chide, lambaste 

3. buffet, embroil, lock, superimpose, whip-

saw, pluck, whisk, mar, ensconce 
The appearance of these sets suggests that our 

method of computing syntactic similarity could be 

used to identify distinct clusters of verbs that be-

have in very similar ways. In future work, it would 
be particularly interesting to compare empirically-

derived verb clusters to verb classes derived from 

theoretical considerations (Levin, 1993), and to the 
automated verb classification techniques that use 

these classes (Joanis and Stevenson, 2003). 

A third observation of Table 2 is that the verb 
pairs with the highest syntactic similarity are often 

synonyms, e.g. the cluster of assail, chide, and 

lambaste. As a striking example, the 14 most syn-

tactically similar verbs to believe (in order) are 
think, guess, hope, feel, wonder, theorize, fear, 

reckon, contend, suppose, understand, know, 

doubt, and suggest – all mental action verbs. This 
observation further supports the distributional hy-

pothesis of word similarity and corresponding 

technologies for identifying synonyms by similar-
ity of lexical-syntactic context (Lin, 1998). 

   
Verb pairs (instances) Cosine 

bind (83) bound (95) 0.950 

plunge (94) tumble (87) 0.888 

dive (36) plunge (94) 0.867 

dive (36) tumble (87) 0.866 

jump (79) tumble (87) 0.865 

fall (84) fell (102) 0.859 

intersperse (99) perch (81) 0.859 

assail (100) chide (98) 0.859 

dip (81) fell (102) 0.858 

buffet (72) embroil (100) 0.856 

embroil (100) lock (73) 0.856 

embroil (100) superimpose (100) 0.856 

fell (102) jump (79) 0.855 

fell (102) tumble (87) 0.855 

embroil (100) whipsaw (63) 0.850 

pluck (100) whisk (99) 0.849 

acquit (100) hospitalize (99) 0.849 

disincline (70) obligate (94) 0.848 

jump (79) plunge (94) 0.848 

dive (36) jump (79) 0.847 

assail (100) lambaste (100) 0.847 

festoon (98) strew (100) 0.846 

mar (78) whipsaw (63) 0.846 

pluck (100) whipsaw (63) 0.846 

ensconce (101) whipsaw (63) 0.845 

Table 2. Top 25 most syntactically similar pairs of 
the 3257 verbs in PropBank. Each verb is listed 

with the number of inflection instances used to 

calculate the cosine measurement. 
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5 Aligning Arguments Across Rolesets 

The second key aspect of our approach to general-

izing annotations is to make mappings between the 

argument roles of the novel target verb and the 
roles used for a given roleset in the PropBank cor-

pus. For example, if we’d like to apply the training 

data for a roleset of the verb desire in PropBank to 
a novel roleset for the verb yearn, we need to know 

that the desirer corresponds to the yearner, the de-

sired to the yearned-for, etc. In this section, we 
describe an approach to argument alignment that 

involves the application of the semantic role label-

ing approach described in section 3 to a single 

training example for the target verb. 
To simplify the process of aligning argument la-

bels across rolesets, we make a number of assump-

tions. First, we only consider cases where two 
rolesets have exactly the same number of argu-

ments. The version of the PropBank corpus that we 

used in this research contained 4250 rolesets, each 

with 6 or fewer roles (typically two or three). Ac-
cordingly, when attempting to apply PropBank 

data to a novel roleset with a given argument count 

(e.g. two), we only consider the subset of Prop-
Bank data that labels rolesets with exactly the same 

count. 

Second, our approach requires at least one fully-
annotated training example for the target roleset. A 

fully-annotated sentence is one that contains a la-

beled constituent in its parse tree for each role in 

the roleset. As an illustration, the example sentence 
in section 1 (for the roleset buy.01) would not be 

considered a fully-annotated training example, as 

only four of the five arguments of the PropBank 
buy.01 roleset are present in the sentence (it is 

missing a benefactor, as in “Chuck bought his 

mother a car from Jerry for $1000”). 

In both of these simplifying requirements, we 
ignore role labels that may be assigned to a sen-

tence but that are not defined as part of the roleset, 

specifically the ARGM labels used in PropBank to 
label standard proposition modifiers (e.g. location, 

time, manner).  

Our approach begins with a list of verbs ordered 
by their calculated syntactic similarity to the target 

verb, as described in section 4 of this paper. We 

subsequently apply two steps that transform this 

list into an ordered set of rolesets that can be 
aligned with the roles used in one or more fully-

annotated training examples of the target verb. In 

describing these two steps, we use instigate as an 

example target verb. Instigate already appears in 
the PropBank corpus as a two-argument roleset, 

but it has only a single training example: 

 

[arg0 The Mahatma, or "great souled one,"] 
[instigate.01 instigated] [arg1 several campaigns of 

passive resistance against the British 

government in India]. 
 

The syntactic similarity of instigate to all Prop-

Bank verbs was calculated in the manner described 
in the previous section. This resulting list of 3,180 

entries begins with the following fourteen verbs: 

orchestrate, misrepresent, summarize, wreak, rub, 

chase, refuse, embezzle, harass, spew, thrash, un-

earth, snub, and erect. 

The first step is to replace each of the verbs in 

the ordered list with corresponding rolesets from 
PropBank that have the same number of roles as 

the target verb. As an example, our target roleset 

for the verb instigate has two arguments, so each 
verb in the ordered list is replaced with the set of 

corresponding rolesets that also have two argu-

ments, or removed if no two-argument rolesets 

exist for the verb in the PropBank corpus. The or-
dered list of verbs for instigate is transformed into 

an ordered list of 2,115 rolesets with two argu-

ments, beginning with the following five entries: 
orchestrate.01, chase.01, unearth.01, snub.01, and 

erect.01.  

The second step is to identify the alignments be-

tween the arguments of the target roleset and each 
of the rolesets in the ordered list. Beginning with 

the first roleset on the list (e.g. orchestrate.01), we 

build a semantic role labeler (as described in sec-
tion 3) using its available training annotations from 

the PropPank corpus. We then apply this labeler to 

the single, fully-annotated example sentence for 
the target verb, treating it as if it were a test exam-

ple of the same roleset. We then check to see if any 

of the core (numbered) role labels overlap with the 

annotations that are provided. In cases where an 
annotated constituent of the target test sentence is 

assigned a label from the source roleset, then the 

roleset mappings are noted along with the entry in 
the ordered list. If no mappings are found, the role-

set is removed from the ordered list. 

For example, the roleset for orchestrate.01 con-
tains two arguments (ARG0 and ARG1) that corre-

spond to the “conductor, manager” and the “things 
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being coordinated or managed”. This roleset is 

used for only three sentence annotations in the 
PropBank corpus. Using these annotations as train-

ing data, we build a semantic role labeler for this 

roleset and apply it to the annotated sentence for 

instigate.01, treating it as if it were a test sentence 
for the roleset orchestrate.01. The labeler assigns 

the orchestrate.01 label ARG1 to the same con-

stituent labeled ARG1 in the test sentence, but fails 
to assign a label to the other argument constituent 

in the test sentence. Therefore, a single mapping is 

recorded in the ordered list of rolesets, namely that 
ARG1 of orchestrate.01 can be mapped to ARG1 

of instigate.01. 

After all of the rolesets are considered, we are 

left with a filtered list of rolesets with their argu-
ment mappings, ordered by their syntactic similar-

ity to the target verb. For the roleset instigate.01, 

this list consists of 789 entries, beginning with the 
following 5 mappings. 

1. orchestrate.01, 1:1 

2. chase.01, 0:0, 1:1  
3. unearth.01, 0:0, 1:1  

4. snub.01, 1:1  

5. erect.01, 0:0, 1:1  

Given this list, arbitrary amounts of PropBank 
annotations can be used as surrogate training data 

for the instigate.01 roleset, beginning at the top of 

the list. To utilize surrogate training data in our 
semantic role labeling approach (Section 3), we 

combine parse tree path information for a selected 

portion of surrogate training data into a single list 

sorted by frequency, and apply these files to test 
sentences as normal.  

Although we use an existing PropBank roleset 

(instigate.01) as an example in this section, this 
approach will work for any novel roleset where 

one fully-annotated training example is available. 

For example, arbitrary amounts of surrogate Prop-
Bank data can be found for the novel verb yearn by 

1) searching for sentences with the verb yearn in 

the GigaWord corpus, 2) calculating the syntactic 

similarity between yearn and all PropBank verbs 
as described in Section 4, 3) aligning the argu-

ments in a single fully-annotated example of yearn 

with ProbBank rolesets with the same number of 
arguments using the method described in this sec-

tion, and 4) selecting arbitrary amounts of Prop-

Bank annotations to use as surrogate training data, 
starting from the top of the resulting list. 

6 Evaluation 

We conducted a large-scale evaluation to deter-

mine the performance of our semantic role labeling 

algorithm when using variable amounts of surro-
gate training data, and compared these results to 

the performance that could be obtained using vari-

ous amounts of real training data (as described in 
section 3). Our hypothesis was that learning-curves 

for surrogate-trained labelers would be somewhat 

less steep, but that the availability of large-amounts 
of surrogate training data would more than make 

up for the gap.  

To test this hypothesis, we conducted an evalua-

tion using the PropBank corpus as our testing data 
as well as our source for surrogate training data. As 

described in section 5, our approach requires the 

availability of at least one fully-annotated sentence 
for a given roleset. Only 28.5% of the PropBank 

annotations assign labels for each of the numbered 

arguments in their given roleset, and only 2,858 of 

the 4,250 rolesets used in PropBank annotations 
(66.5%) have at least one fully-annotated sentence. 

Of these, 2,807 rolesets were for verbs that ap-

peared at least once in our analysis of the Giga-
Word corpus (Section 4). Accordingly, we 

evaluated our approach using the annotations for 

this set of 2,807 rolesets as test data. For each of 
these rolesets, various amounts of surrogate train-

ing data were gathered from all 4,250 rolesets rep-

resented in PropBank, leaving out the data for 

whichever roleset was being tested. 
For each of the target 2,807 rolesets, we gener-

ated a list of semantic role mappings ordered by 

syntactic similarity, using the methods described in 
sections 4 and 5. In aligning arguments, only a sin-

gle training example from the target roleset was 

used, namely the first annotation within the Prop-

Bank corpus where all of the rolesets arguments 
were assigned. Our approach failed to identify any 

argument mappings for 41 of the target rolesets, 

leaving them without any surrogate training data to 
utilize. Of the remaining 2,766 rolesets, the num-

ber of mapped rolesets for a given target ranged 

from 1,041 to 1 (mean = 608, stdev = 297). 
For each of the 2,766 target rolesets with aligna-

ble roles, we gathered increasingly larger amounts 

of surrogate training data by descending the or-

dered list of mappings translating the PropBank 
data for each entry according to its argument map-

pings. Then each of these incrementally larger sets 
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of training data was then used to build a semantic 

role labeler as described in section 3. The perform-
ance of each of the resulting labelers was then 

evaluated by applying it to all of the test data 

available for target roleset in PropBank, using the 

same scoring methods described in section 3. The 
performance scores for each labeler were recorded 

along with the total number of surrogate training 

examples used to build the labeler. 
Figure 3 presents the performance result of our 

semantic role labeling approach using various 

amounts of surrogate training data. Along with 
precision, recall, and F-score data, Figure 3 also 

graphs the percentage of PropBank rolesets for 

which a given amount of training data had been 

identified using our approach, of the 2,858 rolesets 
with at least one fully-annotated training example. 

For instance, with 120 surrogate annotations our 

system achieves an F-score above 0.5, and we 
identified this much surrogate training data for 

96% of PropBank rolesets with at least one fully-

annotated sentence. This represents 64% of all 
PropBank rolesets that are used for annotation. 

Beyond 120 surrogate training examples, F-scores 

remain around 0.6 before slowly declining after 

around 700 examples. 
 

 

Figure 3. Performance of our semantic role label-

ing approach on PropBank rolesets using various 

amounts of surrogate training data 
  

Several interesting comparisons can be made be-

tween the results presented in Figure 3 and those in 
Figure 2, where actual PropBank training data is 

used instead of surrogate training data. First, the 

precision obtained with surrogate training data is 

roughly 10% lower than with real data. Second, the 
recall performance of surrogate data performs 

similar to real data at first, but is consistently 10% 

lower than with real data after the first 50 training 
examples. Accordingly, F-scores for surrogate 

training data are 10% lower overall.  

Even though the performance obtained using 

surrogate training data is less than with actual data, 
there is abundant amounts of it available for most 

PropBank rolesets. Comparing the “% of rolesets” 

plots in Figures 2 and 3, the real value of surrogate 
training data is apparent. Figure 2 suggests that 

over 20 real training examples are needed to 

achieve F-scores that are consistently above 0.5, 
but that less than 20% of PropBank rolesets have 

this much data available. In contrast, 64% of all 

PropBank rolesets can achieve this F-score per-

formance with the use of surrogate training data. 
This percentage increases to 96% if every Prop-

Bank roleset is given at least one fully annotated 

sentence, where all of its numbered arguments are 
assigned to constituents.  

In addition to supplementing the real training 

data available for existing PropBank rolesets, these 
results predict the labeling performance that can be 

obtained by applying this technique to a novel 

roleset with one fully-annotated training example, 

e.g. for the verb yearn. Using the first 120 surro-
gate training examples and our simple semantic 

role labeling approach, we would expect F-scores 

that are above 0.5, and that using the first 700 
would yield F-scores around 0.6. 

7 Discussion 

The overall performance of our semantic role la-

beling approach is not competitive with leading 
contemporary systems, which typically employ 

support vector machine learning algorithms with 

syntactic features (Pradhan et al., 2005) or syntac-
tic tree kernels (Moschitti et al., 2006). However, 

our work highlights a number of characteristics of 

the semantic role labeling task that will be helpful 

in improving performance in future systems. Parse 
tree paths features can be used to achieve high pre-

cision in semantic role labeling, but much of this 

precision may be specific to individual verbs. By 
generalizing parse tree path features only across 

syntactically similar verbs, we have shown that the 

drop in precision can be limited to roughly 10%. 

The approach that we describe in this paper is 
not dependent on the use of PropBank rolesets; any 

large corpus of semantic role annotations could be 

198



generalized in this manner. In particular, our ap-

proach would be applicable to corpora with frame-
specific role labels, e.g. FrameNet (Baker et al., 

1998). Likewise, our approach to generalizing 

parse tree path feature across syntactically similar 

verbs may improve the performance of automated 
semantic role labeling systems based on FrameNet 

data. Our work suggests that feature generalization 

based on verb-similarity may compliment ap-
proaches to generalization based on role-similarity 

(Gildea and Jurafsky, 2002; Baldewein et al., 

2004). 
There are a number of improvements that could 

be made to the approach described in this paper. 

Enhancements to the simple semantic role labeling 

algorithm would improve the alignment of argu-
ments across rolesets, which would help align role-

sets with greater syntactic similarity, as well as 

improve the performance obtained using the surro-
gate training data in assigning semantic roles.  

This research raises many questions about the 

relationship between syntactic context and verb 
semantics. An important area for future research 

will be to explore the correlation between our dis-

tance metric for syntactic similarity and various 

quantitative measures of semantic similarity 
(Pedersen, et al., 2004). Particularly interesting 

would be to explore whether different senses of a 

given verb exhibited markedly different profiles of 
syntactic context. A strong syntactic/semantic cor-

relation would suggest that further gains in the use 

of surrogate annotation data could be gained if syn-

tactic similarity was computed between rolesets 
rather than their verbs. However, this would first 

require accurate word-sense disambiguation both 

for the test sentences as well as for the parsed cor-
pora used to calculate parse tree path frequencies. 

Alternatively, parse tree path profiles associated 

with rolesets may be useful for word sense disam-
biguation, where the probability of a sense is com-

puted as the likelihood that an ambiguous verb's 

parse tree paths are sampled from the distributions 

associated with each verb sense. These topics will 
be the focus of our future work in this area. 
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Abstract 

Convolution tree kernel has shown promis-
ing results in semantic role classification. 
However, it only carries out hard matching, 
which may lead to over-fitting and less ac-
curate similarity measure. To remove the 
constraint, this paper proposes a grammar-
driven convolution tree kernel for semantic 
role classification by introducing more lin-
guistic knowledge into the standard tree 
kernel. The proposed grammar-driven tree 
kernel displays two advantages over the pre-
vious one: 1) grammar-driven approximate 
substructure matching and 2) grammar-
driven approximate tree node matching. The 
two improvements enable the grammar-
driven tree kernel explore more linguistically 
motivated structure features than the previ-
ous one. Experiments on the CoNLL-2005 
SRL shared task show that the grammar-
driven tree kernel significantly outperforms 
the previous non-grammar-driven one in 
SRL. Moreover, we present a composite 
kernel to integrate feature-based and tree 
kernel-based methods. Experimental results 
show that the composite kernel outperforms 
the previously best-reported methods. 

1 Introduction 

Given a sentence, the task of Semantic Role Label-
ing (SRL) consists of analyzing the logical forms 

expressed by some target verbs or nouns and some 
constituents of the sentence. In particular, for each 
predicate (target verb or noun) all the constituents in 
the sentence which fill semantic arguments (roles) 
of the predicate have to be recognized. Typical se-
mantic roles include Agent, Patient, Instrument, etc. 
and also adjuncts such as Locative, Temporal, 
Manner, and Cause, etc. Generally, semantic role 
identification and classification are regarded as two 
key steps in semantic role labeling. Semantic role 
identification involves classifying each syntactic 
element in a sentence into either a semantic argu-
ment or a non-argument while semantic role classi-
fication involves classifying each semantic argument 
identified into a specific semantic role. This paper 
focuses on semantic role classification task with the 
assumption that the semantic arguments have been 
identified correctly. 

Both feature-based and kernel-based learning 
methods have been studied for semantic role classi-
fication (Carreras and Màrquez, 2004; Carreras and 
Màrquez, 2005). In feature-based methods, a flat 
feature vector is used to represent a predicate-
argument structure while, in kernel-based methods, 
a kernel function is used to measure directly the 
similarity between two predicate-argument struc-
tures. As we know, kernel methods are more effec-
tive in capturing structured features. Moschitti 
(2004) and Che et al. (2006) used a convolution 
tree kernel (Collins and Duffy, 2001) for semantic 
role classification. The convolution tree kernel 
takes sub-tree as its feature and counts the number 
of common sub-trees as the similarity between two 
predicate-arguments. This kernel has shown very 
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promising results in SRL. However, as a general 
learning algorithm, the tree kernel only carries out 
hard matching between any two sub-trees without 
considering any linguistic knowledge in kernel de-
sign. This makes the kernel fail to handle similar 
phrase structures (e.g., “buy a car” vs. “buy a red 
car”) and near-synonymic grammar tags (e.g., the 
POS variations between “high/JJ degree/NN” 1 and 
“higher/JJR degree/NN”) 2. To some degree, it may 
lead to over-fitting and compromise performance. 

This paper reports our preliminary study in ad-
dressing the above issue by introducing more lin-
guistic knowledge into the convolution tree kernel. 
To our knowledge, this is the first attempt in this 
research direction. In detail, we propose a gram-
mar-driven convolution tree kernel for semantic 
role classification that can carry out more linguisti-
cally motivated substructure matching. Experimental 
results show that the proposed method significantly 
outperforms the standard convolution tree kernel on 
the data set of the CoNLL-2005 SRL shared task. 

The remainder of the paper is organized as fol-
lows: Section 2 reviews the previous work and Sec-
tion 3 discusses our grammar-driven convolution 
tree kernel. Section 4 shows the experimental re-
sults. We conclude our work in Section 5. 

2 Previous Work 

Feature-based Methods for SRL: most features 
used in prior SRL research are generally extended 
from Gildea and Jurafsky (2002), who used a linear 
interpolation method and extracted basic flat fea-
tures from a parse tree to identify and classify the 
constituents in the FrameNet (Baker et al., 1998). 
Here, the basic features include Phrase Type, Parse 
Tree Path, and Position. Most of the following work 
focused on feature engineering (Xue and Palmer, 
2004; Jiang et al., 2005) and machine learning 
models (Nielsen and Pradhan, 2004; Pradhan et al., 
2005a). Some other work paid much attention to the 
robust SRL (Pradhan et al., 2005b) and post infer-
ence (Punyakanok et al., 2004). These feature-
based methods are considered as the state of the art 
methods for SRL. However, as we know, the stan-
dard flat features are less effective in modeling the 
                                                           
1 Please refer to http://www.cis.upenn.edu/~treebank/ for the 
detailed definitions of the grammar tags used in the paper. 
2 Some rewrite rules in English grammar are generalizations of 
others: for example, “NP  DET JJ NN” is a specialized ver-
sion of “NP  DET NN”. The same applies to POS. The stan-
dard convolution tree kernel is unable to capture the two cases. 

syntactic structured information. For example, in 
SRL, the Parse Tree Path feature is sensitive to 
small changes of the syntactic structures. Thus, a 
predicate argument pair will have two different 
Path features even if their paths differ only for one 
node. This may result in data sparseness and model 
generalization problems. 
Kernel-based Methods for SRL: as an alternative, 
kernel methods are more effective in modeling 
structured objects. This is because a kernel can 
measure the similarity between two structured ob-
jects using the original representation of the objects 
instead of explicitly enumerating their features. 
Many kernels have been proposed and applied to 
the NLP study. In particular, Haussler (1999) pro-
posed the well-known convolution kernels for a 
discrete structure. In the context of it, more and 
more kernels for restricted syntaxes or specific do-
mains (Collins and Duffy, 2001; Lodhi et al., 2002; 
Zelenko et al., 2003; Zhang et al., 2006) are pro-
posed and explored in the NLP domain. 

Of special interest here, Moschitti (2004) proposed 
Predicate Argument Feature (PAF) kernel for SRL 
under the framework of convolution tree kernel. He 
selected portions of syntactic parse trees as predicate-
argument feature spaces, which include salient sub-
structures of predicate-arguments, to define convo-
lution kernels for the task of semantic role classifi-
cation. Under the same framework, Che et al. (2006) 
proposed a hybrid convolution tree kernel, which 
consists of two individual convolution kernels: a Path 
kernel and a Constituent Structure kernel. Che et al. 
(2006) showed that their method outperformed PAF 
on the CoNLL-2005 SRL dataset.  

The above two kernels are special instances of 
convolution tree kernel for SRL. As discussed in 
Section 1, convolution tree kernel only carries out 
hard matching, so it fails to handle similar phrase 
structures and near-synonymic grammar tags. This 
paper presents a grammar-driven convolution tree 
kernel to solve the two problems 

3 Grammar-driven Convolution Tree 
Kernel 

3.1 Convolution Tree Kernel 

In convolution tree kernel (Collins and Duffy, 
2001), a parse tree T  is represented by a vector of 
integer counts of each sub-tree type (regardless of 
its ancestors): ( )Tφ = ( …, # subtreei(T), …), where 
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# subtreei(T) is the occurrence number of the ith 
sub-tree type (subtreei) in T. Since the number of 
different sub-trees is exponential with the parse tree 
size, it is computationally infeasible to directly use 
the feature vector ( )Tφ . To solve this computa-
tional issue, Collins and Duffy (2001) proposed the 
following parse tree kernel to calculate the dot 
product between the above high dimensional vec-
tors implicitly. 

1 1 2 2
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1 2

1 2
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where N1 and N2 are the sets of nodes in trees T1 and 
T2, respectively, and ( )

isubtreeI n  is a function that is 
1 iff the subtreei occurs with root at node n and zero 
otherwise, and 1 2( , )n n∆  is the number of the com-
mon subtrees rooted at n1 and n2, i.e., 

 

1 2 1 2( , ) ( ) ( )
i isubtree subtreei

n n I n I n∆ = ⋅∑  

1 2( , )n n∆ can be further computed efficiently by the 
following recursive rules: 
Rule 1: if the productions (CFG rules) at 1n  and 

2n  are different, 1 2( , ) 0n n∆ = ; 
Rule 2: else if both 1n  and 2n  are pre-terminals 

(POS tags), 1 2( , ) 1n n λ∆ = × ; 
Rule 3: else,  

1( )
1 2 1 21

( , ) (1 ( ( , ), ( , )))nc n

j
n n ch n j ch n jλ

=
∆ = + ∆∏ ,  

where 1( )nc n is the child number of 1n , ch(n,j) is 
the jth child of node n  and λ (0< λ <1) is the decay 
factor in order to make the kernel value less vari-
able with respect to the subtree sizes. In addition, 
the recursive Rule 3 holds because given two 
nodes with the same children, one can construct 
common sub-trees using these children and com-
mon sub-trees of further offspring. The time com-
plexity for computing this kernel is 1 2(| | | |)O N N⋅ . 

3.2 Grammar-driven Convolution Tree 
Kernel 

This Subsection introduces the two improvements 
and defines our grammar-driven tree kernel. 
 

Improvement 1: Grammar-driven approximate 
matching between substructures. The conven-

tional tree kernel requires exact matching between 
two contiguous phrase structures. This constraint 
may be too strict. For example, the two phrase 
structures “NP DT JJ NN” (NP a red car) and 
“NP DT NN” (NP->a car) are not identical, thus 
they contribute nothing to the conventional kernel 
although they should share the same semantic role 
given a predicate. In this paper, we propose a 
grammar-driven approximate matching mechanism 
to capture the similarity between such kinds of 
quasi-structures for SRL. 

First, we construct reduced rule set by defining 
optional nodes, for example, “NP->DT [JJ] NP” or 
“VP-> VB [ADVP]  PP”, where [*] denotes op-
tional nodes. For convenience, we call “NP-> DT 
JJ NP” the original rule and “NP->DT [JJ] NP” the 
reduced rule. Here, we define two grammar-driven 
criteria to select optional nodes: 

1) The reduced rules must be grammatical. It 
means that the reduced rule should be a valid rule 
in the original rule set. For example, “NP->DT [JJ] 
NP” is valid only when “NP->DT NP” is a valid 
rule in the original rule set while “NP->DT [JJ 
NP]” may not be valid since “NP->DT” is not a 
valid rule in the original rule set. 

2) A valid reduced rule must keep the head 
child of its corresponding original rule and has at 
least two children. This can make the reduced rules 
retain the underlying semantic meaning of their 
corresponding original rules. 

Given the reduced rule set, we can then formu-
late the approximate substructure matching mecha-
nism as follows: 

11 2 1 2,
( , ) ( ( , ) )

a bi ji j
T r ri j

M r r I T T λ
+

= ×∑              (1)  

where 1r is a production rule, representing a sub-tree 

of depth one3, and 1
i

rT is the ith variation of the sub-
tree 1r by removing one ore more optional nodes4, 

and likewise for 2r and 2
j

rT . ( , )TI • • is a function 
that is 1 iff the two sub-trees are identical and zero 
otherwise. 1λ (0≤ 1λ ≤1) is a small penalty to penal-

                                                           
3 Eq.(1) is defined over sub-structure of depth one. The ap-
proximate matching between structures of depth more than one 
can be achieved easily through the matching of sub-structures 
of depth one in the recursively-defined convolution kernel. We 
will discuss this issue when defining our kernel. 
4 To make sure that the new kernel is a proper kernel, we have 
to consider all the possible variations of the original sub-trees. 
Training program converges only when using a proper kernel. 
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ize optional nodes and the two parameters ia  and 

jb stand for the numbers of occurrence of removed 

optional nodes in subtrees 1
i

rT and 2
j

rT , respectively. 

1 2( , )M r r returns the similarity (ie., the kernel 
value) between the two sub-trees 1r and 2r  by sum-
ming up the similarities between all possible varia-
tions of the sub-trees 1r and 2r . 

Under the new approximate matching mecha-
nism, two structures are matchable (but with a small 
penalty 1λ ) if the two structures are identical after 
removing one or more optional nodes. In this case, 
the above example phrase structures “NP->a red 
car” and “NP->a car” are matchable with a pen-
alty 1λ  in our new kernel. It means that one co-
occurrence of the two structures contributes 1λ  to 
our proposed kernel while it contributes zero to the 
traditional one. Therefore, by this improvement, our 
method would be able to explore more linguistically 
appropriate features than the previous one (which is 
formulated as 1 2( , )TI r r ). 
Improvement 2: Grammar-driven tree nodes ap-
proximate matching. The conventional tree kernel 
needs an exact matching between two (termi-
nal/non-terminal) nodes. But, some similar POSs 
may represent similar roles, such as NN (dog) and 
NNS (dogs). In order to capture this phenomenon, 
we allow approximate matching between node fea-
tures. The following illustrates some equivalent 
node feature sets:  

• JJ, JJR, JJS 
• VB, VBD, VBG, VBN, VBP, VBZ 
• …… 

where POSs in the same line can match each other 
with a small penalty 0≤ 2λ ≤1. We call this case 
node feature mutation. This improvement further 
generalizes the conventional tree kernel to get bet-
ter coverage. The approximate node matching can 
be formulated as: 

21 2 1 2,
( , ) ( ( , ) )

a bi ji j
fi j

M f f I f f λ
+

= ×∑           (2) 

where 1f is a node feature, 1
if is the ith mutation 

of 1f and ia is 0 iff 1
if and 1f are identical and 1 oth-

erwise, and likewise for 2f . ( , )fI • • is a function 
that is 1 iff the two features are identical and zero 
otherwise. Eq. (2) sums over all combinations of 

feature mutations as the node feature similarity. 
The same as Eq. (1), the reason for taking all the 
possibilities into account in Eq. (2) is to make sure 
that the new kernel is a proper kernel.  

The above two improvements are grammar-
driven, i.e., the two improvements retain the under-
lying linguistic grammar constraints and keep se-
mantic meanings of original rules. 
 

The Grammar-driven Kernel Definition: Given 
the two improvements discussed above, we can de-
fine the new kernel by beginning with the feature 
vector representation of a parse tree T as follows: 

( )Tφ =′ (# subtree1(T), …, # subtreen(T))       
where # subtreei(T) is the occurrence number of the 
ith sub-tree type (subtreei) in T. Please note that, 
different from the previous tree kernel, here we 
loosen the condition for the occurrence of a subtree 
by allowing both original and reduced rules (Im-
provement 1) and node feature mutations (Im-
provement 2). In other words, we modify the crite-
ria by which a subtree is said to occur. For example, 
one occurrence of the rule “NP->DT JJ NP” shall 
contribute 1 times to the feature “NP->DT JJ NP” 
and 1λ  times to the feature “NP->DT NP” in the 
new kernel while it only contributes 1 times to the 
feature “NP->DT JJ NP” in the previous one. Now 
we can define the new grammar-driven kernel 

1 2( , )GK T T as follows: 

1 1 2 2

1 1 2 2

1 2 1 2

1 2

1 2

( , ) ( ), ( )

( ) ( )

 ( , )

(( ) ( ))
i i

G

subtree subtreei n N n N

n N n N

K T T T T

I n I n

n n

φ φ

∈ ∈

∈ ∈

′ ′=< >

′ ′=

′= ∆

⋅∑ ∑ ∑
∑ ∑

 (3) 

where N1 and N2 are the sets of nodes in trees T1 and 
T2, respectively. ( )

isubtreeI n′  is a function that is 

1 2
a bλ λ• iff the subtreei occurs with root at node n 

and zero otherwise, where a and b are the numbers 
of removed optional nodes and mutated node fea-
tures, respectively. 1 2( , )n n′∆  is the number of the 
common subtrees rooted at n1 and n2, i.e. , 

 

1 2 1 2( , ) ( ) ( )
i isubtree subtreei

n n I n I n′ ′ ′∆ = ⋅∑         (4) 

Please note that the value of 1 2( , )n n′∆ is no longer 
an integer as that in the conventional one since op-
tional nodes and node feature mutations are consid-
ered in the new kernel. 1 2( , )n n′∆  can be further 
computed by the following recursive rules:  
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============================================================================ 

Rule A: if 1n and 2n are pre-terminals, then: 

1 2 1 2( , ) ( , )n n M f fλ′∆ = ×                          (5) 
where 1f and 2f are features of nodes 1n and 2n re-
spectively, and 1 2( , )M f f  is defined at Eq. (2).  
Rule B: else if both 1n and 2n are the same non-
terminals, then generate all variations of the subtrees 
of depth one rooted by 1n and 2n (denoted by 1nT  
and 2nT  respectively) by removing different optional 
nodes, then: 
 

1

1

1 2 1 2,

( , )
1 21

( , ) ( ( , )

   (1 ( ( , , ), ( , , )))

a bi ji j
T n ni j

nc n i

k

n n I T T

ch n i k ch n j k

λ λ
+

=

′∆ = × ×

′× + ∆

∑
∏

(6) 

 

where  
• 1

i
nT and 2

j
nT stand for the ith and jth variations in 

sub-tree set 1nT and 2nT , respectively. 
• ( , )TI • • is a function that is 1 iff the two sub-

trees are identical and zero otherwise.  
• ia and jb stand for the number of removed op-

tional nodes in subtrees 1
i

nT and 2
j

nT , respectively. 
• 1( , )nc n i returns the child number of 1n in its ith 

subtree variation 1
i

nT . 
• 1( , , )ch n i k  is the kth child of node 1n  in its ith 

variation subtree 1
i

nT , and likewise for 2( , , )ch n j k . 
• Finally, the same as the previous tree kernel, 

λ (0< λ <1) is the decay factor (see the discussion 
in Subsection 3.1). 

 

Rule C: else 1 2( , ) 0n n′∆ =  
  

============================================================================ 
 

Rule A accounts for Improvement 2 while Rule 
B accounts for Improvement 1. In Rule B, Eq. (6) 
is able to carry out multi-layer sub-tree approxi-
mate matching due to the introduction of the recur-
sive part while Eq. (1) is only effective for sub-
trees of depth one. Moreover, we note that Eq. (4) 
is a convolution kernel according to the definition 
and the proof given in Haussler (1999), and Eqs (5) 
and (6) reformulate Eq. (4) so that it can be com-
puted efficiently, in this way, our kernel defined by 
Eq (3) is also a valid convolution kernel. Finally, 
let us study the computational issue of the new 
convolution tree kernel. Clearly, computing Eq. (6) 

requires exponential time in its worst case. How-
ever, in practice, it may only need  1 2(| | | |)O N N⋅ . 
This is because there are only 9.9% rules (647 out 
of the total 6,534 rules in the parse trees) have op-
tional nodes and most of them have only one op-
tional node. In fact, the actual running time is even 
much less and is close to linear in the size of the 
trees since 1 2( , ) 0n n′∆ =  holds for many node 
pairs (Collins and Duffy, 2001). In theory, we can 
also design an efficient algorithm to compute Eq. 
(6) using a dynamic programming algorithm (Mo-
schitti, 2006). We just leave it for our future work. 

3.3 Comparison with previous work 

In above discussion, we show that the conventional 
convolution tree kernel is a special case of the 
grammar-driven tree kernel. From kernel function 
viewpoint, our kernel can carry out not only exact 
matching (as previous one described by Rules 2 
and 3 in Subsection 3.1) but also approximate 
matching (Eqs. (5) and (6) in Subsection 3.2). From 
feature exploration viewpoint, although they ex-
plore the same sub-structure feature space (defined 
recursively by the phrase parse rules), their feature 
values are different since our kernel captures the 
structure features in a more linguistically appropri-
ate way by considering more linguistic knowledge 
in our kernel design. 

Moschitti (2006) proposes a partial tree (PT) 
kernel which can carry out partial matching be-
tween sub-trees. The PT kernel generates a much 
larger feature space than both the conventional and 
the grammar-driven kernels. In this point, one can 
say that the grammar-driven tree kernel is a spe-
cialization of the PT kernel. However, the impor-
tant difference between them is that the PT kernel 
is not grammar-driven, thus many non-
linguistically motivated structures are matched in 
the PT kernel. This may potentially compromise 
the performance since some of the over-generated 
features may possibly be noisy due to the lack of 
linguistic interpretation and constraint. 

Kashima and Koyanagi (2003) proposed a con-
volution kernel over labeled order trees by general-
izing the standard convolution tree kernel. The la-
beled order tree kernel is much more flexible than 
the PT kernel and can explore much larger sub-tree 
features than the PT kernel. However, the same as 
the PT kernel, the labeled order tree kernel is not 
grammar-driven. Thus, it may face the same issues 
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(such as over-generated features) as the PT kernel 
when used in NLP applications. 

 Shen el al. (2003) proposed a lexicalized tree 
kernel to utilize LTAG-based features in parse 
reranking. Their methods need to obtain a LTAG 
derivation tree for each parse tree before kernel 
calculation. In contrast, we use the notion of op-
tional arguments to define our grammar-driven tree 
kernel and use the empirical set of CFG rules to de-
termine which arguments are optional. 

4 Experiments 

4.1 Experimental Setting 

Data: We use the CoNLL-2005 SRL shared task 
data (Carreras and Màrquez, 2005) as our experi-
mental corpus. The data consists of sections of the 
Wall Street Journal part of the Penn TreeBank 
(Marcus et al., 1993), with information on predi-
cate-argument structures extracted from the Prop-
Bank corpus (Palmer et al., 2005). As defined by 
the shared task, we use sections 02-21 for training, 
section 24 for development and section 23 for test. 
There are 35 roles in the data including 7 Core 
(A0–A5, AA), 14 Adjunct (AM-) and 14 Reference 
(R-) arguments. Table 1 lists counts of sentences 
and arguments in the three data sets. 
  
 Training Development Test
Sentences 39,832 1,346 2,416
Arguments 239,858 8,346 14,077

Table 1: Counts on the data set 
 

We assume that the semantic role identification 
has been done correctly. In this way, we can focus 
on the classification task and evaluate it more accu-
rately. We evaluate the performance with Accu-
racy. SVM (Vapnik, 1998) is selected as our classi-
fier and the one vs. others strategy is adopted and 
the one with the largest margin is selected as the 
final answer. In our implementation, we use the bi-
nary SVMLight (Joachims, 1998) and modify the 
Tree Kernel Tools (Moschitti, 2004) to a grammar-
driven one. 
 

Kernel Setup: We use the Constituent, Predicate, 
and Predicate-Constituent related features, which 
are reported to get the best-reported performance 
(Pradhan et al., 2005a), as the baseline features. We 
use Che et al. (2006)’s hybrid convolution tree ker-

nel (the best-reported method for kernel-based 
SRL) as our baseline kernel. It is defined as 

(1 )  (0 1)hybrid path csK K Kθ θ θ= + − ≤ ≤ (for the de-

tailed definitions of pathK and csK , please refer to 
Che et al. (2006)). Here, we use our grammar-
driven tree kernel to compute pathK and csK , and we 
call it grammar-driven hybrid tree kernel while Che 
et al. (2006)’s is non-grammar-driven hybrid convo-
lution tree kernel.  

We use a greedy strategy to fine-tune parameters. 
Evaluation on the development set shows that our 
kernel yields the best performance when λ (decay 
factor of tree kernel), 1λ and 2λ (two penalty factors 
for the grammar-driven kernel), θ (hybrid kernel 
parameter) and c (a SVM training parameter to 
balance training error and margin) are set to 0.4, 
0.6, 0.3, 0.6 and 2.4, respectively. For other parame-
ters, we use default setting. In the CoNLL 2005 
benchmark data, we get 647 rules with optional 
nodes out of the total 6,534 grammar rules and de-
fine three equivalent node feature sets as below: 

• JJ, JJR, JJS 
• RB, RBR, RBS 
• NN, NNS, NNP, NNPS, NAC, NX 

 

Here, the verb feature set “VB, VBD, VBG, VBN, 
VBP, VBZ” is removed since the voice information 
is very indicative to the arguments of ARG0 
(Agent, operator) and ARG1 (Thing operated). 

 
Methods Accuracy (%) 

 Baseline: Non-grammar-driven 85.21 
 +Approximate Node Matching 86.27 
 +Approximate Substructure 

Matching 
87.12 

 Ours: Grammar-driven Substruc-
ture and Node Matching 

87.96 

Feature-based method with poly-
nomial kernel (d = 2) 

89.92 

 
Table 2: Performance comparison 

4.2 Experimental Results 

Table 2 compares the performances of different 
methods on the test set. First, we can see that the 
new grammar-driven hybrid convolution tree kernel 
significantly outperforms ( 2χ test with p=0.05) the 
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non-grammar one with an absolute improvement of 
2.75 (87.96-85.21) percentage, representing a rela-
tive error rate reduction of 18.6% (2.75/(100-85.21)) 
. It suggests that 1) the linguistically motivated 
structure features are very useful for semantic role 
classification and 2) the grammar-driven kernel is 
much more effective in capturing such kinds of fea-
tures due to the consideration of linguistic knowl-
edge. Moreover, Table 2 shows that 1) both the 
grammar-driven approximate node matching and the 
grammar-driven approximate substructure matching 
are very useful in modeling syntactic tree structures 
for SRL since they contribute relative error rate re-
duction of 7.2% ((86.27-85.21)/(100-85.21)) and 
12.9% ((87.12-85.21)/(100-85.21)), respectively; 2) 
the grammar-driven approximate substructure 
matching is more effective than the grammar-driven 
approximate node matching. However, we find that 
the performance of the grammar-driven kernel is 
still a bit lower than the feature-based method. This 
is not surprising since tree kernel methods only fo-
cus on modeling tree structure information. In this 
paper, it captures the syntactic parse tree structure 
features only while the features used in the feature-
based methods cover more knowledge sources.  

In order to make full use of the syntactic structure 
information and the other useful diverse flat fea-
tures, we present a composite kernel to combine the 
grammar-driven hybrid kernel and feature-based 
method with polynomial kernel: 

(1 )      (0 1)comp hybrid polyK K Kγ γ γ= + − ≤ ≤  
Evaluation on the development set shows that the 
composite kernel yields the best performance when 
γ is set to 0.3. Using the same setting, the system 
achieves the performance of 91.02% in Accuracy 
in the same test set. It shows statistically significant 
improvement (χ2 test with p= 0.10) over using the 
standard features with the polynomial kernel (γ = 0, 
Accuracy = 89.92%) and using the grammar-driven 
hybrid convolution tree kernel (γ = 1, Accuracy = 
87.96%). The main reason is that the tree kernel 
can capture effectively more structure features 
while the standard flat features can cover some 
other useful features, such as Voice, SubCat, which 
are hard to be covered by the tree kernel. The ex-
perimental results suggest that these two kinds of 
methods are complementary to each other. 

In order to further compare with other methods, 
we also do experiments on the dataset of English 
PropBank I (LDC2004T14). The training, develop-

ment and test sets follow the conventional split of 
Sections 02-21, 00 and 23. Table 3 compares our 
method with other previously best-reported methods 
with the same setting as discussed previously. It 
shows that our method outperforms the previous 
best-reported one with a relative error rate reduction 
of 10.8% (0.97/(100-91)). This further verifies the 
effectiveness of the grammar-driven kernel method 
for semantic role classification. 

  

Method Accuracy (%)
Ours (Composite Kernel)      91.97 
Moschitti (2006): PAF kernel only    87.7 
Jiang et al. (2005): feature based    90.50 
Pradhan et al. (2005a): feature based    91.0 

 
Table 3: Performance comparison between our 
method and previous work 
 

Training Time Method 
  4 Sections  19 Sections

Ours: grammar-
driven tree kernel 

~8.1 hours ~7.9 days 

Moschitti (2006): 
non-grammar-driven 
tree kernel 

~7.9 hours ~7.1 days 

 
Table 4: Training time comparison 

 

Table 4 reports the training times of the two ker-
nels. We can see that 1) the two kinds of convolu-
tion tree kernels have similar computing time. Al-
though computing the grammar-driven one requires 
exponential time in its worst case, however, in 
practice, it may only need 1 2(| | | |)O N N⋅  or lin-
ear and 2) it is very time-consuming to train a SVM 
classifier in a large dataset.  

5 Conclusion and Future Work 

In this paper, we propose a novel grammar-driven 
convolution tree kernel for semantic role classifica-
tion. More linguistic knowledge is considered in 
the new kernel design. The experimental results 
verify that the grammar-driven kernel is more ef-
fective in capturing syntactic structure features than 
the previous convolution tree kernel because it al-
lows grammar-driven approximate matching of 
substructures and node features. We also discuss 
the criteria to determine the optional nodes in a 
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CFG rule in defining our grammar-driven convolu-
tion tree kernel. 

The extension of our work is to improve the per-
formance of the entire semantic role labeling system 
using the grammar-driven tree kernel, including all 
four stages: pruning, semantic role identification, 
classification and post inference. In addition, a 
more interesting research topic is to study how to 
integrate linguistic knowledge and tree kernel 
methods to do feature selection for tree kernel-
based NLP applications (Suzuki et al., 2004). In 
detail, a linguistics and statistics-based theory that 
can suggest the effectiveness of different substruc-
ture features and whether they should be generated 
or not by the tree kernels would be worked out. 
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Abstract

This paper presents a novel application of
Alternating Structure Optimization (ASO)
to the task of Semantic Role Labeling (SRL)
of noun predicates in NomBank. ASO is
a recently proposed linear multi-task learn-
ing algorithm, which extracts the common
structures of multiple tasks to improve accu-
racy, via the use of auxiliary problems. In
this paper, we explore a number of different
auxiliary problems, and we are able to sig-
nificantly improve the accuracy of the Nom-
Bank SRL task using this approach. To our
knowledge, our proposed approach achieves
the highest accuracy published to date on the
English NomBank SRL task.

1 Introduction

The task of Semantic Role Labeling (SRL) is to
identify predicate-argument relationships in natural
language texts in a domain-independent fashion. In
recent years, the availability of large human-labeled
corpora such as PropBank (Palmer et al., 2005) and
FrameNet (Baker et al., 1998) has made possible
a statistical approach of identifying and classifying
the arguments of verbs in natural language texts.
A large number of SRL systems have been evalu-
ated and compared on the standard data set in the
CoNLL shared tasks (Carreras and Marquez, 2004;
Carreras and Marquez, 2005), and many systems
have performed reasonably well. Compared to the
previous CoNLL shared tasks (noun phrase bracket-
ing, chunking, clause identification, and named en-
tity recognition), SRL represents a significant step

towards processing the semantic content of natural
language texts.

Although verbs are probably the most obvious
predicates in a sentence, many nouns are also ca-
pable of having complex argument structures, often
with much more flexibility than its verb counterpart.
For example, compare affect and effect:

[subj Auto prices] [arg−ext greatly] [pred

affect] [obj the PPI].

[subj Auto prices] have a [arg−ext big]
[pred effect] [obj on the PPI].

The [pred effect] [subj of auto prices] [obj

on the PPI] is [arg−ext big].

[subj The auto prices’] [pred effect] [obj on
the PPI] is [arg−ext big].

The arguments of noun predicates can often be
more easily omitted compared to the verb predi-
cates:

The [pred effect] [subj of auto prices] is
[arg−ext big].

The [pred effect] [obj on the PPI] is
[arg−ext big].

The [pred effect] is [arg−ext big].

With the recent release of NomBank (Meyers et
al., 2004), it becomes possible to apply machine
learning techniques to the task. So far we are aware
of only one English NomBank-based SRL system
(Jiang and Ng, 2006), which uses the maximum
entropy classifier, although similar efforts are re-
ported on the Chinese NomBank by (Xue, 2006)
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and on FrameNet by (Pradhan et al., 2004) us-
ing a small set of hand-selected nominalizations.
Noun predicates also appear in FrameNet semantic
role labeling (Gildea and Jurafsky, 2002), and many
FrameNet SRL systems are evaluated in Senseval-3
(Litkowski, 2004).

Semantic role labeling of NomBank is a multi-
class classification problem by nature. Using the
one-vs-all arrangement, that is, one binary classi-
fier for each possible outcome, the SRL task can
be treated as multiple binary classification problems.
In the latter view, we are presented with the oppor-
tunity to exploit the common structures of these re-
lated problems. This is known as multi-task learning
in the machine learning literature (Caruana, 1997;
Ben-David and Schuller, 2003; Evgeniou and Pon-
til, 2004; Micchelli and Pontil, 2005; Maurer, 2006).

In this paper, we apply Alternating Structure Op-
timization (ASO) (Ando and Zhang, 2005a) to the
semantic role labeling task on NomBank. ASO is
a recently proposed linear multi-task learning algo-
rithm based on empirical risk minimization. The
method requires the use of multiple auxiliary prob-
lems, and its effectiveness may vary depending on
the specific auxiliary problems used. ASO has
been shown to be effective on the following natu-
ral language processing tasks: text categorization,
named entity recognition, part-of-speech tagging,
and word sense disambiguation (Ando and Zhang,
2005a; Ando and Zhang, 2005b; Ando, 2006).

This paper makes two significant contributions.
First, we present a novel application of ASO to the
SRL task on NomBank. We explore the effect of
different auxiliary problems, and show that learn-
ing predictive structures with ASO results in signifi-
cantly improved SRL accuracy. Second, we achieve
accuracy higher than that reported in (Jiang and Ng,
2006) and advance the state of the art in SRL re-
search.

The rest of this paper is organized as follows. We
give an overview of NomBank and ASO in Sec-
tions 2 and 3 respectively. The baseline linear clas-
sifier is described in detail in Section 4, followed
by the description of the ASO classifier in Sec-
tion 5, where we focus on exploring different auxil-
iary problems. We provide discussions in Section 6,
present related work in Section 7, and conclude in
Section 8.

2 NomBank

NomBank annotates the set of arguments of noun
predicates, just as PropBank annotates the argu-
ments of verb predicates. As many noun predicates
are nominalizations (e.g., replacement vs. replace),
the same frames are shared with PropBank as much
as possible, thus achieving some consistency with
the latter regarding the accepted arguments and the
meanings of each label.

Unlike in PropBank, arguments in NomBank can
overlap with each other and with the predicate. For
example:

[location U.S.] [pred,subj,obj steelmakers]
have supplied the steel.

Here the predicate make has subject steelmakers and
object steel, analogous to Steelmakers make steel.
The difference is that here make and steel are both
part of the word steelmaker.

Each argument in NomBank is given one or more
labels, out of the following 20: ARG0, ARG1, ARG2,
ARG3, ARG4, ARG5, ARG8, ARG9, ARGM-ADV,
ARGM-CAU, ARGM-DIR, ARGM-DIS, ARGM-EXT,
ARGM-LOC, ARGM-MNR, ARGM-MOD, ARGM-
NEG, ARGM-PNC, ARGM-PRD, and ARGM-TMP.
Thus, the above sentence is annotated in NomBank
as:

[ARGM-LOC U.S.] [PRED,ARG0,ARG1 steelmak-
ers] have supplied the steel.

3 Alternating structure optimization

This section gives a brief overview of ASO as imple-
mented in this work. For a more complete descrip-
tion, see (Ando and Zhang, 2005a).

3.1 Multi-task linear classifier

Given a set of training samples consisting of n fea-
ture vectors and their corresponding binary labels,
{Xi, Yi} for i ∈ {1, . . . , n} where each Xi is a
p-dimensional vector, a binary linear classifier at-
tempts to approximate the unknown relation by Yi =
u

T
Xi. The outcome is considered +1 if uT

X is pos-
itive, or –1 otherwise. A well-established way to
find the weight vector u is empirical risk minimiza-
tion with least square regularization:

û = arg min
u

1

n

n
∑

i=1

L
(

u
T
Xi, Yi

)

+ λ‖u‖2 (1)
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Function L(p, y) is known as the loss function.
It encodes the penalty for a given discrepancy be-
tween the predicted label and the true label. In this
work, we use a modification of Huber’s robust loss
function, similar to that used in (Ando and Zhang,
2005a):

L(p, y) =







−4py if py < −1
(1 − py)2 if −1 ≤ py < 1
0 if py ≥ 1

(2)

We fix the regularization parameter λ to 10−4,
similar to that used in (Ando and Zhang, 2005a).
The expression ‖u‖2 is defined as

∑p
i=1

u
2
p.

When m binary classification problems are to be
solved together, a h×p matrix Θ may be used to cap-
ture the common structures of the m weight vectors
ul for l ∈ {1, . . . ,m} (h ≤ m). We mandate that
the rows of Θ be orthonormal, i.e., ΘΘT = Ih×h.
The h rows of Θ represent the h most significant
components shared by all the u’s. This relationship
is modeled by

ul = wl + ΘT
vl (3)

The parameters [{wl,vl},Θ] may then be found
by joint empirical risk minimization over all the
m problems, i.e., their values should minimize the
combined empirical risk:

m
∑

l=1

(

1

n

n
∑

i=1

L
(

(wl + ΘT
vl)

T
X

l
i, Y

l
i

)

+ λ‖wl‖
2

)

(4)

3.2 The ASO algorithm

An important observation in (Ando and Zhang,
2005a) is that the binary classification problems
used to derive Θ are not necessarily those problems
we are aiming to solve. In fact, new problems can be
invented for the sole purpose of obtaining a better Θ.
Thus, we distinguish between two types of problems
in ASO: auxiliary problems, which are used to ob-
tain Θ, and target problems, which are the problems
we are aiming to solve1.

For instance, in the argument identification task,
the only target problem is to identify arguments vs.

1Note that this definition deviates slightly from the one in
(Ando and Zhang, 2005a). We find the definition here more
convenient for our subsequent discussion.

non-arguments, whereas in the argument classifica-
tion task, there are 20 binary target problems, one to
identify each of the 20 labels (ARG0, ARG1, . . . ).

The target problems can also be used as an aux-
iliary problem. In addition, we can invent new aux-
iliary problems, e.g., in the argument identification
stage, we can predict whether there are three words
between the constituent and the predicate using the
features of argument identification.

Assuming there are k target problems and m aux-
iliary problems, it is shown in (Ando and Zhang,
2005a) that by performing one round of minimiza-
tion, an approximate solution of Θ can be obtained
from (4) by the following algorithm:

1. For each of the m auxiliary problems, learn ul

as described by (1).

2. Find U = [u1,u2, . . . ,um], a p × m matrix.
This is a simplified version of the definition in
(Ando and Zhang, 2005a), made possible be-
cause the same λ is used for all auxiliary prob-
lems.

3. Perform Singular Value Decomposition (SVD)
on U : U = V1DV T

2
, where V1 is a p × m ma-

trix. The first h columns of V1 are stored as
rows of Θ.

4. Given Θ, we learn w and v for each of the
k target problems by minimizing the empirical
risk of the associated training samples:

1

n

n
∑

i=1

L
(

(w + ΘT
v)TXi, Yi

)

+ λ‖w‖2 (5)

5. The weight vector of each target problem can
be found by:

u = w + ΘT
v (6)

By choosing a convex loss function, e.g., (2),
steps 1 and 4 above can be formulated as convex op-
timization problems and are efficiently solvable.

The procedure above can be considered as a Prin-
cipal Component Analysis in the predictor space.
Step (3) above extracts the most significant compo-
nents shared by the predictors of the auxiliary prob-
lems and hopefully, by the predictors of the target
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problems as well. The hint of potential significant
components helps (5) to outperform the simple lin-
ear predictor (1).

4 Baseline classifier

The SRL task is typically separated into two stages:
argument identification and argument classification.
During the identification stage, each constituent in a
sentence’s parse tree is labeled as either argument
or non-argument. During the classification stage,
each argument is given one of the 20 possible labels
(ARG0, ARG1, . . . ). The linear classifier described
by (1) is used as the baseline in both stages. For
comparison, the F1 scores of a maximum entropy
classifier are also reported here.

4.1 Argument identification

Eighteen baseline features and six additional fea-
tures are proposed in (Jiang and Ng, 2006) for Nom-
Bank argument identification. As the improvement
of the F1 score due to the additional features is not
statistically significant, we use the set of eighteen
baseline features for simplicity. These features are
reproduced in Table 1 for easy reference.

Unlike in (Jiang and Ng, 2006), we do not prune
arguments dominated by other arguments or those
that overlap with the predicate in the training data.
Accordingly, we do not maximize the probability of
the entire labeled parse tree as in (Toutanova et al.,
2005). After the features of every constituent are
extracted, each constituent is simply classified inde-
pendently as either argument or non-argument.

The linear classifier described above is trained on
sections 2 to 21 and tested on section 23. A max-
imum entropy classifier is trained and tested in the
same manner. The F1 scores are presented in the
first row of Table 3, in columns linear and maxent
respectively. The J&N column presents the result
reported in (Jiang and Ng, 2006) using both base-
line and additional features. The last column aso
presents the best result from this work, to be ex-
plained in Section 5.

4.2 Argument classification

In NomBank, some constituents have more than one
label. For simplicity, we always assign exactly one
label to each identified argument in this step. For the
0.16% arguments with multiple labels in the training

1 pred the stemmed predicate
2 subcat grammar rule that expands the

predicate P’s parent
3 ptype syntactic category (phrase

type) of the constituent C
4 hw syntactic head word of C
5 path syntactic path from C to P
6 position whether C is to the left/right of

or overlaps with P
7 firstword first word spanned by C
8 lastword last word spanned by C
9 lsis.ptype phrase type of left sister

10 rsis.hw right sister’s head word
11 rsis.hw.pos POS of right sister’s head word
12 parent.ptype phrase type of parent
13 parent.hw parent’s head word
14 partialpath path from C to the lowest com-

mon ancestor with P
15 ptype & length of path
16 pred & hw
17 pred & path
18 pred & position

Table 1: Features used in argument identification

data, we pick the first and discard the rest. (Note that
the same is not done on the test data.)

A diverse set of 28 features is used in (Jiang and
Ng, 2006) for argument classification. In this work,
the number of features is pruned to 11, so that we
can work with reasonably many auxiliary problems
in later experiments with ASO.

To find a smaller set of effective features, we start
with all the features considered in (Jiang and Ng,
2006), in (Xue and Palmer, 2004), and various com-
binations of them, for a total of 52 features. These
features are then pruned by the following algorithm:

1. For each feature in the current feature set, do
step (2).

2. Remove the selected feature from the feature
set. Obtain the F1 score of the remaining fea-
tures when applied to the argument classifica-
tion task, on development data section 24 with
gold identification.

3. Select the highest of all the scores obtained in
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1 position to the left/right of or overlaps
with the predicate

2 ptype syntactic category (phrase
type) of the constituent C

3 firstword first word spanned by C
4 lastword last word spanned by C
5 rsis.ptype phrase type of right sister
6 nomtype NOM-TYPE of predicate sup-

plied by NOMLEX dictionary
7 predicate & ptype
8 predicate & lastword
9 morphed predicate stem & head word
10 morphed predicate stem & position
11 nomtype & position

Table 2: Features used in argument classification

step (2). The corresponding feature is removed
from the current feature set if its F1 score is the
same as or higher than the F1 score of retaining
all features.

4. Repeat steps (1)-(3) until the F1 score starts to
drop.

The 11 features so obtained are presented in Ta-
ble 2. Using these features, a linear classifier and a
maximum entropy classifier are trained on sections 2
to 21, and tested on section 23. The F1 scores are
presented in the second row of Table 3, in columns
linear and maxent respectively. The J&N column
presents the result reported in (Jiang and Ng, 2006).

4.3 Further experiments and discussion

In the combined task, we run the identification task
with gold parse trees, and then the classification task
with the output of the identification task. This way
the combined effect of errors from both stages on
the final classification output can be assessed. The
scores of this complete SRL system are presented in
the third row of Table 3.

To test the performance of the combined task on
automatic parse trees, we employ two different con-
figurations. First, we train the various classifiers
on sections 2 to 21 using gold argument labels and
automatic parse trees produced by Charniak’s re-
ranking parser (Charniak and Johnson, 2005), and
test them on section 23 with automatic parse trees.

This is the same configuration as reported in (Prad-
han et al., 2005; Jiang and Ng, 2006). The scores
are presented in the fourth row auto parse (t&t) in
Table 3.

Next, we train the various classifiers on sections 2
to 21 using gold argument labels and gold parse
trees. To minimize the discrepancy between gold
and automatic parse trees, we remove all the nodes
in the gold trees whose POS are -NONE-, as they
do not span any word and are thus never generated
by the automatic parser. The resulting classifiers are
then tested on section 23 using automatic parse trees.
The scores are presented in the last row auto parse
(test) of Table 3. We note that auto parse (test) con-
sistently outperforms auto parse (t&t).

We believe that auto parse (test) is a more realis-
tic setting in which to test the performance of SRL
on automatic parse trees. When presented with some
previously unseen test data, we are forced to rely on
its automatic parse trees. However, for the best re-
sults we should take advantage of gold parse trees
whenever possible, including those of the labeled
training data.

J&N maxent linear aso
identification 82.50 83.58 81.34 85.32
classification 87.80 88.35 87.86 89.17

combined 72.73 75.35 72.63 77.04
auto parse (t&t) 69.14 69.61 67.38 72.11
auto parse (test) - 71.19 69.05 72.83

Table 3: F1 scores of various classifiers on Nom-
Bank SRL

Our maximum entropy classifier consistently out-
performs (Jiang and Ng, 2006), which also uses a
maximum entropy classifier. The primary difference
is that we use a later version of NomBank (Septem-
ber 2006 release vs. September 2005 release). In ad-
dition, we use somewhat different features and treat
overlapping arguments differently.

5 Applying ASO to SRL

Our ASO classifier uses the same features as the
baseline linear classifier. The defining characteris-
tic, and also the major challenge in successfully ap-
plying the ASO algorithm is to find related auxiliary
problems that can reveal common structures shared
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with the target problem. To organize our search for
good auxiliary problems for SRL, we separate them
into two categories, unobservable auxiliary prob-
lems and observable auxiliary problems.

5.1 Unobservable auxiliary problems

Unobservable auxiliary problems are problems
whose true outcome cannot be observed from a raw
text corpus but must come from another source,
e.g., human labeling. For instance, predicting the
argument class (i.e., ARG0, ARG1, . . . ) of a con-
stituent is an unobservable auxiliary problem (which
is also the only usable unobservable auxiliary prob-
lem here), because the true outcomes (i.e., the argu-
ment classes) are only available from human labels
annotated in NomBank.

For argument identification, we invent the follow-
ing 20 binary unobservable auxiliary problems to
take advantage of information previously unused at
this stage:

To predict the outcome of argument classi-
fication (i.e., ARG0, ARG1, . . . ) using the
features of argument identification (pred,
subcat, . . . ).

Thus for argument identification, we have 20 auxil-
iary problems (one auxiliary problem for predicting
each of the argument classes ARG0, ARG1, . . . ) and
one target problem (predicting whether a constituent
is an argument) for the ASO algorithm described in
Section 3.2.

In the argument classification task, the 20 binary
target problems are also the unobservable auxiliary
problems (one auxiliary problem for predicting each
of the argument classes ARG0, ARG1, . . . ). Thus,
we use the same 20 problems as both auxiliary prob-
lems and target problems.

We train an ASO classifier on sections 2 to 21 and
test it on section 23. With the 20 unobservable aux-
iliary problems, we obtain the F1 scores reported in
the last column of Table 3. In all the experiments,
we keep h = 20, i.e., all the 20 columns of V1 are
kept.

Comparing the F1 score of ASO against that of
the linear classifier in every task (i.e., identification,
classification, combined, both auto parse configura-
tions), the improvement achieved by ASO is statis-
tically significant (p < 0.05) based on the χ2 test.

Comparing the F1 score of ASO against that of the
maximum entropy classifier, the improvement in all
but one task (argument classification) is statistically
significant (p < 0.05). For argument classifica-
tion, the improvement is not statistically significant
(p = 0.08).

5.2 Observable auxiliary problems

Observable auxiliary problems are problems whose
true outcome can be observed from a raw text cor-
pus without additional externally provided labels.
An example is to predict whether hw=trader from
a constituent’s other features, since the head word
of a constituent can be obtained from the raw text
alone. By definition, an observable auxiliary prob-
lem can always be formulated as predicting a fea-
ture of the training data. Depending on whether the
baseline linear classifier already uses the feature to
be predicted, we face two possibilities:

Predicting a used feature In auxiliary problems
of this type, we must take care to remove the feature
itself from the training data. For example, we must
not use the feature path or pred&path to predict path
itself.

Predicting an unused feature These auxiliary
problems provide information that the classifier was
previously unable to incorporate. The desirable
characteristics of such a feature are:

1. The feature, although unused, should have been
considered for the target problem so it is prob-
ably related to the target problem.

2. The feature should not be highly correlated
with a used feature, e.g., since the lastword fea-
ture is used in argument identification, we will
not consider predicting lastword.pos as an aux-
iliary problem.

Each chosen feature can create thousands of bi-
nary auxiliary problems. E.g., by choosing to pre-
dict hw, we can create auxiliary problems predict-
ing whether hw=to, whether hw=trader, etc. To
have more positive training samples, we only predict
the most frequent features. Thus we will probably
predict whether hw=to, but not whether hw=trader,
since to occurs more frequently than trader as a head
word.
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5.2.1 Argument identification

In argument identification using gold parse trees,
we experiment with predicting three unused features
as auxiliary problems: distance (distance between
the predicate and the constituent), parent.lsis.hw
(head word of the parent constituent’s left sister) and
parent.rsis.hw (head word of the parent constituent’s
right sister). We then experiment with predicting
four used features: hw, lastword, ptype and path.

The ASO classifier is trained on sections 2 to 21,
and tested on section 23. Due to the large data size,
we are unable to use more than 20 binary auxil-
iary problems or to experiment with combinations
of them. The F1 scores are presented in Table 4.

5.2.2 Argument classification

In argument classification using gold parse trees
and gold identification, we experiment with pre-
dicting three unused features path, partialpath, and
chunkseq (concatenation of the phrase types of text
chunks between the predicate and the constituent).
We then experiment with predicting three used fea-
tures hw, lastword, and ptype.

Combinations of these auxiliary problems are also
tested. In all combined, we use the first 100 prob-
lems from each of the six groups of observable aux-
iliary problems. In selected combined, we use the
first 100 problems from each of path, chunkseq, last-
word and ptype problems.

The ASO classifier is trained on sections 2 to 21,
and tested on section 23. The F1 scores are shown
in Table 5.

feature to be predicted F1
20 most frequent distances 81.48

20 most frequent parent.lsis.hws 81.51
20 most frequent parent.rsis.hws 81.60

20 most frequent hws 81.40
20 most frequent lastwords 81.33

20 most frequent ptypes 81.35
20 most frequent paths 81.47

linear baseline 81.34

Table 4: F1 scores of ASO with observable auxiliary
problems on argument identification. All h = 20.

From Table 4 and 5, we observe that although
the use of observable auxiliary problems consis-

feature to be predicted F1
300 most frequent paths 87.97

300 most frequent partialpaths 87.95
300 most frequent chunkseqs 88.09

300 most frequent hws 87.93
300 most frequent lastwords 88.01

all 63 ptypes 88.05
all combined 87.95

selected combined 88.07
linear baseline 87.86

Table 5: F1 scores of ASO with observable auxiliary
problems on argument classification. All h = 100.

tently improves the performance of the classifier,
the differences are small and not statistically signif-
icant. Further experiments combining unobservable
and observable auxiliary problems fail to outperform
ASO with unobservable auxiliary problems alone.

In summary, our work shows that unobservable
auxiliary problems significantly improve the perfor-
mance of NomBank SRL. In contrast, observable
auxiliary problems are not effective.

6 Discussions

Some of our experiments are limited by the exten-
sive computing resources required for a fuller ex-
ploration. For instance, “predicting unused features”
type of auxiliary problems might hold some hope for
further improvement in argument identification, if a
larger number of auxiliary problems can be used.

ASO has been demonstrated to be an effec-
tive semi-supervised learning algorithm (Ando and
Zhang, 2005a; Ando and Zhang, 2005b; Ando,
2006). However, we have been unable to use un-
labeled data to improve the accuracy. One possible
reason is the cumulative noise from the many cas-
cading steps involved in automatic SRL of unlabeled
data: syntactic parse, predicate identification (where
we identify nouns with at least one argument), ar-
gument identification, and finally argument classi-
fication, which reduces the effectiveness of adding
unlabeled data using ASO.

7 Related work

Multi-output neural networks learn several tasks si-
multaneously. In addition to the target outputs,

214



(Caruana, 1997) discusses configurations where
both used inputs and unused inputs (due to excessive
noise) are utilized as additional outputs. In contrast,
our work concerns linear predictors using empirical
risk minimization.

A variety of auxiliary problems are tested in
(Ando and Zhang, 2005a; Ando and Zhang, 2005b)
in the semi-supervised settings, i.e., their auxiliary
problems are generated from unlabeled data. This
differs significantly from the supervised setting in
our work, where only labeled data is used. While
(Ando and Zhang, 2005b) uses “predicting used
features” (previous/current/next word) as auxiliary
problems with good results in named entity recog-
nition, the use of similar observable auxiliary prob-
lems in our work gives no statistically significant im-
provements.

More recently, for the word sense disambiguation
(WSD) task, (Ando, 2006) experimented with both
supervised and semi-supervised auxiliary problems,
although the auxiliary problems she used are differ-
ent from ours.

8 Conclusion

In this paper, we have presented a novel application
of Alternating Structure Optimization (ASO) to the
Semantic Role Labeling (SRL) task on NomBank.
The possible auxiliary problems are categorized and
tested extensively. Our results outperform those re-
ported in (Jiang and Ng, 2006). To the best of our
knowledge, we achieve the highest SRL accuracy
published to date on the English NomBank.
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Abstract

We propose a new, simple model for the auto-

matic induction of selectional preferences, using

corpus-based semantic similarity metrics. Fo-

cusing on the task of semantic role labeling,

we compute selectional preferences for seman-

tic roles. In evaluations the similarity-based

model shows lower error rates than both Resnik’s

WordNet-based model and the EM-based clus-

tering model, but has coverage problems.

1 Introduction

Selectional preferences, which characterize typ-
ical arguments of predicates, are a very use-
ful and versatile knowledge source. They have
been used for example for syntactic disambigua-
tion (Hindle and Rooth, 1993), word sense dis-
ambiguation (WSD) (McCarthy and Carroll,
2003) and semantic role labeling (SRL) (Gildea
and Jurafsky, 2002).

The corpus-based induction of selectional
preferences was first proposed by Resnik (1996).
All later approaches have followed the same two-
step procedure, first collecting argument head-
words from a corpus, then generalizing to other,
similar words. Some approaches have used
WordNet for the generalization step (Resnik,
1996; Clark and Weir, 2001; Abe and Li, 1993),
others EM-based clustering (Rooth et al., 1999).

In this paper we propose a new, simple model
for selectional preference induction that uses
corpus-based semantic similarity metrics, such
as Cosine or Lin’s (1998) mutual information-
based metric, for the generalization step. This
model does not require any manually created

lexical resources. In addition, the corpus for
computing the similarity metrics can be freely
chosen, allowing greater variation in the domain
of generalization than a fixed lexical resource.

We focus on one application of selectional
preferences: semantic role labeling. The ar-
gument positions for which we compute selec-
tional preferences will be semantic roles in the
FrameNet (Baker et al., 1998) paradigm, and
the predicates we consider will be semantic
classes of words rather than individual words
(which means that different preferences will be
learned for different senses of a predicate word).
In SRL, the two most pressing issues today are
(1) the development of strong semantic features
to complement the current mostly syntactically-
based systems, and (2) the problem of the do-
main dependence (Carreras and Marquez, 2005).
In the CoNLL-05 shared task, participating sys-
tems showed about 10 points F-score difference
between in-domain and out-of-domain test data.
Concerning (1), we focus on selectional prefer-
ences as the strongest candidate for informative
semantic features. Concerning (2), the corpus-
based similarity metrics that we use for selec-
tional preference induction open up interesting
possibilities of mixing domains.

We evaluate the similarity-based model
against Resnik’s WordNet-based model as well
as the EM-based clustering approach. In the
evaluation, the similarity-model shows lower er-
ror rates than both Resnik’s WordNet-based
model and the EM-based clustering model.
However, the EM-based clustering model has
higher coverage than both other paradigms.

Plan of the paper. After discussing previ-
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ous approaches to selectional preference induc-
tion in Section 2, we introduce the similarity-
based model in Section 3. Section 4 describes
the data used for the experiments reported in
Section 5, and Section 6 concludes.

2 Related Work

Selectional restrictions and selectional prefer-
ences that predicates impose on their arguments
have long been used in semantic theories, (see
e.g. (Katz and Fodor, 1963; Wilks, 1975)). The
induction of selectional preferences from corpus
data was pioneered by Resnik (1996). All sub-
sequent approaches have followed the same two-
step procedure, first collecting argument head-
words from a corpus, then generalizing over the
seen headwords to similar words. Resnik uses
the WordNet noun hierarchy for generalization.
His information-theoretic approach models the
selectional preference strength of an argument
position1 rp of a predicate p as

S(rp) =
∑

c

P (c|rp) log
P (c|rp)
P (c)

where the c are WordNet synsets. The prefer-
ence that rp has for a given synset c0, the selec-
tional association between the two, is then de-
fined as the contribution of c0 to rp’s selectional
preference strength:

A(rp, c0) =
P (c0|rp) log P (c0|rp)

P (c0)

S(rp)

Further WordNet-based approaches to selec-
tional preference induction include Clark and
Weir (2001), and Abe and Li (1993). Brock-
mann and Lapata (2003) perform a comparison
of WordNet-based models.

Rooth et al. (1999) generalize over seen head-
words using EM-based clustering rather than
WordNet. They model the probability of a word
w occurring as the argument rp of a predicate p
as being independently conditioned on a set of
classes C:

P (rp, w) =
∑
c∈C

P (c, rp, w) =
∑
c∈C

P (c)P (rp|c)P (w|c)

1We write rp to indicate predicate-specific roles, like
“the direct object of catch”, rather than just “obj”.

The parameters P (c), P (rp|c) and P (w|c) are
estimated using the EM algorithm.

While there have been no isolated compar-
isons of the two generalization paradigms that
we are aware of, Gildea and Jurafsky’s (2002)
task-based evaluation has found clustering-
based approaches to have better coverage than
WordNet generalization, that is, for a given role
there are more words for which they can state a
preference.

3 Model

The approach we are proposing makes use of
two corpora, a primary corpus and a gener-
alization corpus (which may, but need not, be
identical). The primary corpus is used to extract
tuples (p, rp, w) of a predicate, an argument
position and a seen headword. The general-
ization corpus is used to compute a corpus-based
semantic similarity metric.

Let Seen(rp) be the set of seen headwords for
an argument rp of a predicate p. Then we model
the selectional preference S of rp for a possible
headword w0 as a weighted sum of the similari-
ties between w0 and the seen headwords:

Srp(w0) =
∑

w∈Seen(rp)

sim(w0, w) · wtrp(w)

sim(w0, w) is the similarity between the seen
and the potential headword, and wtrp(w) is the
weight of seen headword w.

Similarity sim(w0, w) will be computed on
the generalization corpus, again on the ba-
sis of extracted tuples (p, rp, w). We will
be using the similarity metrics shown in Ta-
ble 1: Cosine, the Dice and Jaccard coefficients,
and Hindle’s (1990) and Lin’s (1998) mutual
information-based metrics. We write f for fre-
quency, I for mutual information, and R(w) for
the set of arguments rp for which w occurs as a
headword.

In this paper we only study corpus-based met-
rics. The sim function can equally well be in-
stantiated with a WordNet-based metric (for
an overview see Budanitsky and Hirst (2006)),
but we restrict our experiments to corpus-based
metrics (a) in the interest of greatest possible
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simcosine(w,w′) =
P

rp
f(w,rp)·f(w′,rp)qP

rp
f(w,rp)2·

qP
rp

f(w′,rp)2
simDice(w,w′) = 2·|R(w)∩R(w′)|

|R(w)|+|R(w′)|

simLin(w,w′) =
P

rp∈R(w)∩R(w′) I(w,r,p)I(w′,r,p)P
rp∈R(w) I(w,r,p)

P
rp∈R(w) I(w′,r,p) simJaccard(w,w′) = |R(w)∩R(w′)|

|R(w)∪R(w′)|

simHindle(w,w′) =
∑

rp
simHindle(w,w′, rp) where

simHindle(w,w′, rp) =


min(I(w,rp),I(w′,rp) if I(w, rp) > 0 and I(w′, rp) > 0

abs(max(I(w,rp),I(w′,rp))) if I(w, rp) < 0 and I(w′, rp) < 0

0 else

Table 1: Similarity measures used

resource-independence and (b) in order to be
able to shape the similarity metric by the choice
of generalization corpus.

For the headword weights wtrp(w), the sim-
plest possibility is to assume a uniform weight
distribution, i.e. wtrp(w) = 1. In addition, we
test a frequency-based weight, i.e. wtrp(w) =
f(w, rp), and inverse document frequency, which
weighs a word according to its discriminativity:
wtrp(w) = log num. words

num. words to whose context w belongs .
This similarity-based model of selectional

preferences is a straightforward implementa-
tion of the idea of generalization from seen
headwords to other, similar words. Like the
clustering-based model, it is not tied to the
availability of WordNet or any other manually
created resource. The model uses two corpora,
a primary corpus for the extraction of seen head-
words and a generalization corpus for the com-
putation of semantic similarity metrics. This
gives the model flexibility to influence the simi-
larity metric through the choice of text domain
of the generalization corpus.

Instantiation used in this paper. Our aim
is to compute selectional preferences for seman-
tic roles. So we choose a particular instantia-
tion of the similarity-based model that makes
use of the fact that the two-corpora approach
allows us to use different notions of “predicate”
and “argument” in the primary and general-
ization corpus. Our primary corpus will con-
sist of manually semantically annotated data,
and we will use semantic verb classes as pred-
icates and semantic roles as arguments. Ex-
amples of extracted (p, rp, w) tuples are (Moral-

ity evaluation, Evaluee, gamblers) and (Placing,
Goal, briefcase). Semantic similarity, on the
other hand, will be computed on automatically
syntactically parsed corpus, where the predi-
cates are words and the arguments are syntac-
tic dependents. Examples of extracted (p, rp, w)
tuples from the generalization corpus include
(catch, obj, frogs) and (intervene, in, deal).2

This instantiation of the similarity-based
model allows us to compute word sense specific
selectional preferences, generalizing over manu-
ally semantically annotated data using automat-
ically syntactically annotated data.

4 Data

We use FrameNet (Baker et al., 1998), a se-
mantic lexicon for English that groups words
in semantic classes called frames and lists se-
mantic roles for each frame. The FrameNet
1.3 annotated data comprises 139,439 sentences
from the British National Corpus (BNC). For
our experiments, we chose 100 frame-specific se-
mantic roles at random, 20 each from five fre-
quency bands: 50-100 annotated occurrences
of the role, 100-200 occurrences, 200-500, 500-
1000, and more than 1000 occurrences. The
annotated data for these 100 roles comprised
59,608 sentences, our primary corpus. To deter-
mine headwords of the semantic roles, the cor-
pus was parsed using the Collins (1997) parser.

Our generalization corpus is the BNC. It was
parsed using Minipar (Lin, 1993), which is con-
siderably faster than the Collins parser but
failed to parse about a third of all sentences.

2For details about the syntactic and semantic analyses
used, see Section 4.
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Accordingly, the arguments r extracted from
the generalization corpus are Minipar depen-
dencies, except that paths through preposition
nodes were collapsed, using the preposition as
the dependency relation. We obtained parses for
5,941,811 sentences of the generalization corpus.

The EM-based clustering model was com-
puted with all of the FrameNet 1.3 data (139,439
sentences) as input. Resnik’s model was trained
on the primary corpus (59,608 sentences).

5 Experiments

In this section we describe experiments com-
paring the similarity-based model for selectional
preferences to Resnik’s WordNet-based model
and to an EM-based clustering model3. For the
similarity-based model we test the five similar-
ity metrics and three weighting schemes listed
in section 3.

Experimental design

Like Rooth et al. (1999) we evaluate selectional
preference induction approaches in a pseudo-
disambiguation task. In a test set of pairs
(rp, w), each headword w is paired with a con-
founder w′ chosen randomly from the BNC ac-
cording to its frequency4. Noun headwords are
paired with noun confounders in order not to
disadvantage Resnik’s model, which only works
with nouns. The headword/confounder pairs
are only computed once and reused in all cross-
validation runs. The task is to choose the more
likely role headword from the pair (w,w′).

In the main part of the experiment, we count
a pair as covered if both w and w′ are assigned
some level of preference by a model (“full cover-
age”). We contrast this with another condition,
where we count a pair as covered if at least one
of the two words w,w′ is assigned a level of pref-
erence by a model (“half coverage”). If only one
is assigned a preference, that word is counted as
chosen.

To test the performance difference between
models for significance, we use Dietterich’s

3We are grateful to Carsten Brockmann and Detlef
Prescher for the use of their software.

4We exclude potential confounders that occur less
than 30 or more than 3,000 times.

Error Rate Coverage
Cosine 0.2667 0.3284
Dice 0.1951 0.3506
Hindle 0.2059 0.3530
Jaccard 0.1858 0.3506
Lin 0.1635 0.2214
EM 30/20 0.3115 0.5460
EM 40/20 0.3470 0.9846
Resnik 0.3953 0.3084

Table 2: Error rate and coverage (micro-
average), similarity-based models with uniform
weights.

5x2cv (Dietterich, 1998). The test involves
five 2-fold cross-validation runs. Let di,j (i ∈
{1, 2}, j ∈ {1, . . . , 5}) be the difference in error
rates between the two models when using split
i of cross-validation run j as training data. Let
s2
j = (d1,j− d̄j)2+(d2,j− d̄j)2 be the variance for

cross-validation run j, with d̄j = d1,j+d2,j

2 . Then
the 5x2cv t̃ statistic is defined as

t̃ =
d1,1√

1
5

∑5
j=1 s2

j

Under the null hypothesis, the t̃ statistic has
approximately a t distribution with 5 degrees of
freedom.5

Results and discussion

Error rates. Table 2 shows error rates and
coverage for the different selectional prefer-
ence induction methods. The first five mod-
els are similarity-based, computed with uniform
weights. The name in the first column is the
name of the similarity metric used. Next come
EM-based clustering models, using 30 (40) clus-
ters and 20 re-estimation steps6, and the last
row lists the results for Resnik’s WordNet-based
method. Results are micro-averaged.

The table shows very low error rates for the
similarity-based models, up to 15 points lower
than the EM-based models. The error rates

5Since the 5x2cv test fails when the error rates vary
wildly, we excluded cases where error rates differ by 0.8
or more across the 10 runs, using the threshold recom-
mended by Dietterich.

6The EM-based clustering software determines good
values for these two parameters through pseudo-
disambiguation tests on the training data.
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Cos Dic Hin Jac Lin EM 40/20 Resnik

Cos -16 (73) -12 (73) -18 (74) -22 (57) 11 (67) 11 (74)
Dic 16 (73) 2 (74) -8 (85) -10 (64) 39 (47) 27 (62)
Hin 12 (73) -2 (74) -8 (75) -11 (63) 33 (57) 16 (67)
Jac 18 (74) 8 (85) 8 (75) -7 (68) 42 (45) 30 (62)
Lin 22 (57) 10 (64) 11 (63) 7 ( 68) 29 (41) 28 (51)
EM 40/20 -11 ( 67 ) -39 ( 47 ) -33 ( 57 ) -42 ( 45 ) -29 ( 41 ) 3 ( 72 )
Resnik -11 (74) -27 (62) -16 (67) -30 (62) -28 (51) -3 (72)

Table 3: Comparing similarity measures: number of wins minus losses (in brackets non-significant
cases) using Dietterich’s 5x2cv; uniform weights; condition (1): both members of a pair must be
covered
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Figure 1: Learning curve: seen headwords ver-
sus error rate by frequency band, Jaccard, uni-
form weights

50-100 100-200 200-500 500-1000 1000-

Cos 0.3167 0.3203 0.2700 0.2534 0.2606
Jac 0.1802 0.2040 0.1761 0.1706 0.1927

Table 4: Error rates for similarity-based mod-
els, by semantic role frequency band. Micro-
averages, uniform weights

of Resnik’s model are considerably higher than
both the EM-based and the similarity-based
models, which is unexpected. While EM-based
models have been shown to work better in SRL
tasks (Gildea and Jurafsky, 2002), this has been
attributed to the difference in coverage.

In addition to the full coverage condition, we
also computed error rate and coverage for the
half coverage case. In this condition, the error
rates of the EM-based models are unchanged,
while the error rates for all similarity-based
models as well as Resnik’s model rise to values

between 0.4 and 0.6. So the EM-based model
tends to have preferences only for the “right”
words. Why this is so is not clear. It may be a
genuine property, or an artifact of the FrameNet
data, which only contains chosen, illustrative
sentences for each frame. It is possible that
these sentences have fewer occurrences of highly
frequent but semantically less informative role
headwords like “it” or “that” exactly because of
their illustrative purpose.

Table 3 inspects differences between error
rates using Dietterich’s 5x2cv, basically confirm-
ing Table 2. Each cell shows the wins minus
losses for the method listed in the row when
compared against the method in the column.
The number of cases that did not reach signifi-
cance is given in brackets.

Coverage. The coverage rates of the
similarity-based models, while comparable
to Resnik’s model, are considerably lower than
for EM-based clustering, which achieves good
coverage with 30 and almost perfect coverage
with 40 clusters (Table 2). While peculiarities
of the FrameNet data may have influenced the
results in the EM-based model’s favor (see the
discussion of the half coverage condition above),
the low coverage of the similarity-based models
is still surprising. After all, the generalization
corpus of the similarity-based models is far
larger than the corpus used for clustering.
Given the learning curve in Figure 1 it is
unlikely that the reason for the lower cover-
age is data sparseness. However, EM-based
clustering is a soft clustering method, which
relates every predicate and every headword to
every cluster, if only with a very low probabil-
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ity. In similarity-based models, on the other
hand, two words that have never been seen in
the same argument slot in the generalization
corpus will have zero similarity. That is, a
similarity-based model can assign a level of
preference for an argument rp and word w0 only
if R(w0) ∩ R(Seen(rp)) is nonempty. Since the
flexibility of similarity-based models extends to
the vector space for computing similarities, one
obvious remedy to the coverage problem would
be the use of a less sparse vector space. Given
the low error rates of similarity-based models,
it may even be advisable to use two vector
spaces, backing off to the denser one for words
not covered by the sparse but highly accurate
space used in this paper.

Parameters of similarity-based models.
Besides the similarity metric itself, which we dis-
cuss below, parameters of the similarity-based
models include the number of seen headwords,
the weighting scheme, and the number of similar
words for each headword.

Table 4 breaks down error rates by semantic
role frequency band for two of the similarity-
based models, micro-averaging over roles of the
same frequency band and over cross-validation
runs. As the table shows, there was some vari-
ation across frequency bands, but not as much
as between models.

The question of the number of seen headwords
necessary to compute selectional preferences is
further explored in Figure 1. The figure charts
the number of seen headwords against error rate
for a Jaccard similarity-based model (uniform
weights). As can be seen, error rates reach a
plateau at about 25 seen headwords for Jaccard.
For other similarity metrics the result is similar.

The weighting schemes wtrp had surprisingly
little influence on results. For Jaccard similar-
ity, the model had an error rate of 0.1858 for
uniform weights, 0.1874 for frequency weight-
ing, and 0.1806 for discriminativity. For other
similarity metrics the results were similar.

A cutoff was used in the similarity-based
model: For each seen headword, only the 500
most similar words (according to a given sim-
ilarity measure) were included in the computa-

Cos Dic Hin Jac Lin
(a) Freq. sim. 1889 3167 2959 3167 860
(b) Freq. wins 65% 73% 79% 72% 58%
(c) Num. sim. 81 60 67 60 66
(d) Intersec. 7.3 2.3 7.2 2.1 0.5

Table 5: Comparing sim. metrics: (a) avg. freq.
of similar words; (b) % of times the more fre-
quent word won; (c) number of distinct similar
words per seen headword; (d) avg. size of inter-
section between roles

tion; for all others, a similarity of 0 was assumed.
Experiments testing a range of values for this
parameter show that error rates stay stable for
parameter values ≥ 200.

So similarity-based models seem not overly
sensitive to the weighting scheme used, the num-
ber of seen headwords, or the number of similar
words per seen headword. The difference be-
tween similarity metrics, however, is striking.

Differences between similarity metrics.
As Table 2 shows, Lin and Jaccard worked best
(though Lin has very low coverage), Dice and
Hindle not as good, and Cosine showed the worst
performance. To determine possible reasons for
the difference, Table 5 explores properties of the
five similarity measures.

Given a set S = Seen(rp) of seen headwords
for some role rp, each similarity metric produces
a set like(S) of words that have nonzero simi-
larity to S, that is, to at least one word in S.
Line (a) shows the average frequency of words
in like(S). The results confirm that the Lin
and Cosine metrics tend to propose less frequent
words as similar.

Line (b) pursues the question of the frequency
bias further, showing the percentage of head-
word/confounder pairs for which the more fre-
quent of the two words “won” in the pseudo-
disambiguation task (using uniform weights).
This it is an indirect estimate of the frequency
bias of a similarity metric. Note that the head-
word actually was more frequent than the con-
founder in only 36% of all pairs.

These first two tests do not yield any expla-
nation for the low performance of Cosine, as the
results they show do not separate Cosine from
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Jaccard Cosine
Ride vehicle:Vehicle truck 0.05 boat 0.05
coach 0.04 van 0.04 ship 0.04 lorry 0.04 crea-
ture 0.04 flight 0.04 guy 0.04 carriage 0.04 he-
licopter 0.04 lad 0.04
Ingest substance:Substance loaf 0.04 ice
cream 0.03 you 0.03 some 0.03 that 0.03 er
0.03 photo 0.03 kind 0.03 he 0.03 type 0.03
thing 0.03 milk 0.03

Ride vehicle:Vehicle it 1.18 there 0.88 they
0.43 that 0.34 i 0.23 ship 0.19 second one 0.19
machine 0.19 e 0.19 other one 0.19 response
0.19 second 0.19
Ingest substance:Substance there 1.23
that 0.50 object 0.27 argument 0.27 theme
0.27 version 0.27 machine 0.26 result 0.26
response 0.25 item 0.25 concept 0.25 s 0.24

Table 6: Highest-ranked induced headwords (seen headwords omitted) for two semantic classes of
the verb “take”: similarity-based models, Jaccard and Cosine, uniform weights.

all other metrics. Lines (c) and (d), however, do
just that. Line (c) looks at the size of like(S).
Since we are using a cutoff of 500 similar words
computed per word in S, the size of like(S) can
only vary if the same word is suggested as similar
for several seen headwords in S. This way, the
size of like(S) functions as an indicator of the
degree of uniformity or similarity that a sim-
ilarity metric “perceives” among the members
of S. To facilitate comparison across frequency
bands, line (c) normalizes by the size of S, show-
ing |like(S)|

|S| micro-averaged over all roles. Here
we see that Cosine seems to “perceive” consid-
erably less similarity among the seen headwords
than any of the other metrics.

Line (d) looks at the sets s25(r) of the 25 most
preferred potential headwords of roles r, show-
ing the average size of the intersection s25(r) ∩
s25(r′) between two roles (preferences computed
with uniform weights). It indicates another pos-
sible reason for Cosine’s problem: Cosine seems
to keep proposing the same words as similar for
different roles. We will see this tendency also in
the sample results we discuss next.

Sample results. Table 6 shows samples of
headwords induced by the similarity-based
model for two FrameNet senses of the verb
“take”: Ride vehicle (“take the bus”) and In-
gest substance (“take drugs”), a semantic class
that is exclusively about ingesting controlled
substances. The semantic role Vehicle of the
Ride vehicle frame and the role Substance of In-
gest substance are both typically realized as the
direct object of “take”. The table only shows
new induced headwords; seen headwords were
omitted from the list.

The particular implementation of the
similarity-based model we have chosen, using
frames and roles as predicates and arguments
in the primary corpus, should enable the model
to compute preferences specific to word senses.
The sample in Table 6 shows that this is indeed
the case: The preferences differ considerably
for the two senses (frames) of “take”, at least
for the Jaccard metric, which shows a clear
preference for vehicles for the Vehicle role. The
Substance role of Ingest substance is harder to
characterize, with very diverse seen headwords
such as “crack”, “lines”, “fluid”, “speed”.
While the highest-ranked induced words for
Jaccard do include three food items, there is
no word, with the possible exception of “ice
cream”, that could be construed as a controlled
substance. The induced headwords for the
Cosine metric are considerably less pertinent
for both roles and show the above-mentioned
tendency to repeat some high-frequency words.

The inspection of “take” anecdotally con-
firms that different selectional preferences are
learned for different senses. This point (which
comes down to the usability of selectional pref-
erences for WSD) should be verified in an em-
pirical evaluation, possibly in another pseudo-
disambiguation task, choosing as confounders
seen headwords for other senses of a predicate
word.

6 Conclusion

We have introduced the similarity-based model
for inducing selectional preferences. Comput-
ing selectional preference as a weighted sum of
similarities to seen headwords, it is a straight-
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forward implementation of the idea of general-
ization from seen headwords to other, similar
words. The similarity-based model is particu-
larly simple and easy to compute, and seems not
very sensitive to parameters. Like the EM-based
clustering model, it is not dependent on lexical
resources. It is, however, more flexible in that it
induces similarities from a separate generaliza-
tion corpus, which allows us to control the simi-
larities we compute by the choice of text domain
for the generalization corpus. In this paper we
have used the model to compute sense-specific
selectional preferences for semantic roles.

In a pseudo-disambiguation task the simila-
rity-based model showed error rates down to
0.16, far lower than both EM-based clustering
and Resnik’s WordNet model. However its cov-
erage is considerably lower than that of EM-
based clustering, comparable to Resnik’s model.
The most probable reason for this is the spar-
sity of the underlying vector space. The choice
of similarity metric is critical in similarity-based
models, with Jaccard and Lin achieving the best
performance, and Cosine surprisingly bringing
up the rear.

Next steps will be to test the similarity-based
model “in vivo”, in an SRL task; to test the
model in a WSD task; to evaluate the model on
a primary corpus that is not semantically ana-
lyzed, for greater comparability to previous ap-
proaches; to explore other vector spaces to ad-
dress the coverage issue; and to experiment on
domain transfer, using an appropriate general-
ization corpus to induce selectional preferences
for a domain different from that of the primary
corpus. This is especially relevant in view of the
domain-dependence problem that SRL faces.
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Abstract

We study the issue of porting a known NLP
method to a language with little existing NLP
resources, specifically Hebrew SVM-based
chunking. We introduce two SVM-based
methods – Model Tampering and Anchored
Learning. These allow fine grained analysis
of the learned SVM models, which provides
guidance to identify errors in the training cor-
pus, distinguish the role and interaction of
lexical features and eventually construct a
model with∼10% error reduction. The re-
sulting chunker is shown to be robust in the
presence of noise in the training corpus, relies
on less lexical features than was previously
understood and achieves an F-measure perfor-
mance of 92.2 on automatically PoS-tagged
text. The SVM analysis methods also provide
general insight on SVM-based chunking.

1 Introduction

While high-quality NLP corpora and tools are avail-
able in English, such resources are difficult to obtain
in most other languages. Three challenges must be
met when adapting results established in English to
another language: (1) acquiring high quality anno-
tated data; (2) adapting the English task definition
to the nature of a different language, and (3) adapt-
ing the algorithm to the new language. This paper
presents a case study in the adaptation of a well
known task to a language with few NLP resources
available. Specifically, we deal with SVM based He-
brew NP chunking. In (Goldberg et al., 2006), we
established that the task is not trivially transferable

to Hebrew, but reported that SVM based chunking
(Kudo and Matsumoto, 2000) performs well. We
extend that work and study the problem from 3 an-
gles: (1) how to deal with a corpus that is smaller
and with a higher level of noise than is available in
English; we propose techniques that help identify
‘suspicious’ data points in the corpus, and identify
how robust the model is in the presence of noise;
(2) we compare the task definition in English and in
Hebrew through quantitative evaluation of the differ-
ences between the two languages by analyzing the
relative importance of features in the learned SVM
models; and (3) we analyze the structure of learned
SVM models to better understand the characteristics
of the chunking problem in Hebrew.

While most work on chunking with machine
learning techniques tend to treat the classification
engine as a black-box, we try to investigate the re-
sulting classification model in order to understand
its inner working, strengths and weaknesses. We in-
troduce two SVM-based methods – Model Tamper-
ing and Anchored Learning – and demonstrate how
a fine-grained analysis of SVM models provides in-
sights on all three accounts. The understanding of
the relative contribution of each feature in the model
helps us construct a better model, which achieves
∼10% error reduction in Hebrew chunking, as well
as identify corpus errors. The methods also provide
general insight on SVM-based chunking.

2 Previous Work

NP chunking is the task of marking the bound-
aries of simple noun-phrases in text. It is a well
studied problem in English, and was the focus of
CoNLL2000’s Shared Task (Sang and Buchholz,
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2000). Early attempts at NP Chunking were rule
learning systems, such as the Error Driven Prun-
ing method of Pierce and Cardie (1998). Follow-
ing Ramshaw and Marcus (1995), the current dom-
inant approach is formulating chunking as a clas-
sification task, in which each word is classified as
the (B)eginning, (I)nside or (O)outside of a chunk.
Features for this classification usually involve local
context features. Kudo and Matsumoto (2000) used
SVM as a classification engine and achieved an F-
Score of 93.79 on the shared task NPs. Since SVM
is a binary classifier, to use it for the 3-class classi-
fication of the chunking task, 3 different classifiers
{B/I, B/O, I/O} were trained and their majority vote
was taken.

NP chunks in the shared task data are BaseNPs,
which are non-recursive NPs, a definition first pro-
posed by Ramshaw and Marcus (1995). This defini-
tion yields good NP chunks for English. In (Gold-
berg et al., 2006) we argued that it is not applica-
ble to Hebrew, mainly because of the prevalence
of the Hebrew’s construct state (smixut). Smixut

is similar to a noun-compound construct, but one
that can join a noun (with a special morphologi-
cal marking) with a full NP. It appears in about
40% of Hebrew NPs. We proposed an alterna-
tive definition (termed SimpleNP) for Hebrew NP
chunks. A SimpleNP cannot contain embedded rel-
atives, prepositions, VPs and NP-conjunctions (ex-
cept when they are licensed bysmixut). It can
containsmixut, possessives (even when they are
attached by the ’of/של‘ preposition) and partitives
(and, therefore, allows for a limited amount of re-
cursion). We applied this definition to the Hebrew
Tree Bank (Sima’an et al., 2001), and constructed
a moderate size corpus (about 5,000 sentences) for
Hebrew SimpleNP chunking. SimpleNPs are differ-
ent than English BaseNPs, and indeed some meth-
ods that work well for English performed poorly
on Hebrew data. However, we found that chunk-
ing with SVM provides good result for Hebrew Sim-
pleNPs. We analyzed that this success comes from
SVM’s ability to use lexical features, as well as two
Hebrew morphological features, namely “number”
and “construct-state”.

One of the main issues when dealing with Hebrew
chunking is that the available tree bank is rather
small, and since it is quite new, and has not been
used intensively, it contains a certain amount of in-

consistencies and tagging errors. In addition, the
identification of SimpleNPs from the tree bank also
introduces some errors. Finally, we want to investi-
gate chunking in a scenario where PoS tags are as-
signed automatically and chunks are then computed.
The Hebrew PoS tagger we use introduces about 8%
errors (compared with about 4% in English). We
are, therefore, interested in identifying errors in the
chunking corpus, and investigating how the chunker
operates in the presence of noise in the PoS tag se-
quence.

3 Model Tampering

3.1 Notation and Technical Review

This section presents notation as well as a technical
review of SVM chunking details relevant to the cur-
rent study. Further details can be found in Kudo and
Matsumoto (2000; 2003).

SVM (Vapnik, 1995) is a supervised binary clas-
sifier. The input to the learner is a set ofl train-
ing samples(x1, y1), . . . , (xl, yl), x ∈ Rn, y ∈
{+1,−1}. xi is an n dimensional feature vec-
tor representing theith sample, andyi is the la-
bel for that sample. The result of the learning pro-
cess is the setSV of Support Vectors, the asso-
ciated weightsαi, and a constantb. The Support
Vectors are a subset of the training vectors, and to-
gether with the weights andb they define a hyper-
plane that optimally separates the training samples.
The basic SVM formulation is of a linear classifier,
but by introducing a kernel functionK that non-
linearly transforms the data fromRn into a higher
dimensional space, SVM can be used to perform
non-linear classification. SVM’s decision function
is: y(x) = sgn

(

∑

j∈SV yjαjK(xj , x) + b
)

where
x is an n dimensional feature vector to be classi-
fied. In the linear case,K is a dot product oper-
ation and the sumw =

∑

yjαjxj is ann dimen-
sional weight vector assigning weight for each of
the n features. The other kernel function we con-
sider in this paper is a polynomial kernel of degree
2: K(xi, xj) = (xi · xj + 1)2. When using binary
valued features, this kernel function essentially im-
plies that the classifier considers not only the explic-
itly specified features, but also all available pairs of
features. In order to cope with inseparable data, the
learning process of SVM allows for some misclas-
sification, the amount of which is determined by a
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parameterC, which can be thought of as a penalty
for each misclassified training sample.

In SVM based chunking, each word and its con-
text is considered a learning sample. We refer to
the word being classified asw0, and to its part-of-
speech (PoS) tag, morphology, and B/I/O tag asp0,
m0 and t0 respectively. The information consid-
ered for classification isw−cw . . . wcw, p−cp . . . pcp,
m−cm . . .mcm andt−ct . . . t−1. The feature vector
F is an indexed list of all the features present in
the corpus. A featurefi of the formw+1 = dog

means that the word following the one being clas-
sified is ‘dog’. Every learning sample is repre-
sented by ann = |F | dimensional binary vectorx.
xi = 1 iff the featurefi is active in the given sample,
and 0 otherwise. This encoding leads to extremely
high dimensional vectors, due to the lexical features
w−cw . . . wcw.

3.2 Introducing Model Tampering

An important observation about SVM classifiers is
that features which are not active in any of the Sup-
port Vectors have no effect on the classifier deci-
sion. We introduce Model Tampering, a procedure
in which we change the Support Vectors in a model
by forcing some values in the vectors to 0.

The result of this procedure is a new Model in
which the deleted features never take part in the clas-
sification.

Model tampering is different than feature selec-
tion: on the one hand, it is a method that helps us
identify irrelevant features in a model after training;
on the other hand, and this is the key insight, re-
moving featuresafter training is not the same as re-
moving them before training. The presence of the
low-relevance features during training has an impact
on the generalization performed by the learner as
shown below.

3.3 The Role of Lexical Features

In Goldberget al. (2006), we have established that
using lexical features increases the chunking F-
measure from 78 to over 92 on the Hebrew Tree-
bank. We refine this observation by using Model
Tampering, in order to assess the importance of lex-
ical features in NP Chunking. We are interested in
identifying which specific lexical items and contexts
impact the chunking decision, and quantifying their
effect. Our method is to train a chunking model

on a given training corpus, tamper with the result-
ing model in various ways and measure the perfor-
mance1 of the tampered models on a test corpus.

3.4 Experimental Setting

We conducted experiments both for English and He-
brew chunking. For the Hebrew experiments, we use
the corpora of (Goldberg et al., 2006). The first one
is derived from the original Treebank by projecting
the full syntactic tree, constructed manually, onto a
set of NP chunks according to the SimpleNP rules.
We refer to the resulting corpus asHEBGold since
PoS tags are fully reliable. TheHEBErr version
of the corpus is obtained by projecting the chunk
boundaries on the sequence of PoS and morphology
tags obtained by the automatic PoS tagger of Adler
& Elhadad (2006). This corpus includes an error
rate of about 8% on PoS tags. The first 500 sen-
tences are used for testing, and the rest for training.
The corpus contains 27K NP chunks. For the En-
glish experiments, we use the now-standard training
and test sets that were introduced in (Marcus and
Ramshaw, 1995)2. Training was done using Kudo’s
YAMCHA toolkit 3. Both Hebrew and English mod-
els were trained using a polynomial kernel of de-
gree 2, withC = 1. For English, the features used
were:w−2 . . . w2, p−2 . . . p2, t−2 . . . t−1. The same
features were used for Hebrew, with the addition of
m−2 . . .m2. These are the same settings as in (Kudo
and Matsumoto, 2000; Goldberg et al., 2006).

3.5 Tamperings

We experimented with the following tamperings:
TopN – We definemodel feature countto be the

number of Support Vectors in which a feature is ac-
tive in a given classifier. This tampering leaves in the
model only the top N lexical features in each classi-
fier, according to their count.

NoPOS– all the lexical features corresponding to
a given part-of-speech are removed from the model.
For example, in a NoJJ tampering, all the features of
the formwi = X are removed from all the support
vectors in whichpi = JJ is active.

Loc6=i – all the lexical features with indexi are
removed from the modele.g., in a Loc6=+2 tamper-

1The performance metric we use is the standard Preci-
sion/Recall/F measures, as computed by the conlleval program:
http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

2ftp://ftp.cis.upenn.edu/pub/chunker
3http://chasen.org/∼taku/software/yamcha/
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ing, features of the formw+2 = X are removed).
Loc=i – all the lexical features with an index other

thani are removed from the model.

3.6 Results and Discussion

Highlights of the results are presented in Tables (1-
3). The numbers reported are F measures.

TopN HEBGold HEBErr ENG
ALL 93.58 92.48 93.79
N=0 78.32 76.27 90.10
N=10 90.21 88.68 90.24
N=50 91.78 90.85 91.22
N=100 92.25 91.62 91.72
N=500 93.60 92.23 93.12
N=1000 93.56 92.41 93.30

Table 1: Results of TopN Tampering.

The results of the TopN tamperings show that for
both languages, most of the lexical features are irrel-
evant for the classification – the numbers achieved
by using all the lexical features (about 30,000 in He-
brew and 75,000 in English) are very close to those
obtained using only a few lexical features. This
finding is very encouraging, and suggests that SVM
based chunking is robust to corpus variations.

Another conclusion is that lexical features help
balance the fact that PoS tags can be noisy: we
know bothHEBErr and ENG include PoS tag-
ging errors (about 8% in Hebrew and 4% in En-
glish). While in the case of “perfect” PoS tagging
(HEBGold), a very small amount of lexical features
is sufficient to reach the best F-result (500 out of
30,264), in the presence of PoS errors, more than
the top 1000 lexical features are needed to reach the
result obtained with all lexical features.

More striking is the fact that in Hebrew, the
top 10 lexical features are responsible for an im-
provement of 12.4 in F-score. The words cov-
ered by these 10 features are the following:Start
of Sentence marker and comma, quote,
‘of/של’, ‘ and/ו’, ‘ the/ה’ and ‘in/ב’.

This finding suggests that the Hebrew PoS tagset
might not be informative enough for the chunking
task, especially where punctuation4 and preposi-
tions are concerned. The results in Table 2 give fur-
ther support for this claim.

4Unlike the WSJ PoS tagset in which most punctuations get
unique tags, our tagset treat punctuation marks as one group.

NoPOS HEBG HEBE NoPOS HEBG HEBE

Prep 85.25 84.40 Pronoun 92.97 92.14
Punct 88.90 87.66 Conjunction 92.31 91.67
Adverb 92.02 90.72 Determiner 92.55 91.39

Table 2: Results of Hebrew NoPOS Tampering.
Other scores are≥ 93.3(HEBG), ≥ 92.2(HEBE).

When removing lexical features of a specific
PoS, the most dramatic loss of F-score is reached
for Prepositions and Punctuation marks, followed
by Adverbs, and Conjunctions. Strikingly, lexi-
cal information for most open-class PoS (including
Proper Names and Nouns) has very little impact on
Hebrew chunking performance.

From this observation, one could conclude that
enriching a model based only on PoS with lexical
features for only a few closed-class PoS (prepo-
sitions and punctuation) could provide appropri-
ate results even with a simpler learning method,
one that cannot deal with a large number of fea-
tures. We tested this hypothesis by training the
Error-Driven Pruning (EDP) method of (Cardie and
Pierce, 1998) with an extended set of features. EDP
with PoS features only produced an F-result of 76.3
on HEBGold. By adding lexical features only for
prepositions{מ ב ה כ ,{של one conjunction{ו} and
punctuation, the F-score onHEBGold indeed jumps
to 85.4. However, when applied onHEBErr, EDP
falls down again to 59.4. This striking disparity, by
comparison, lets us appreciate the resilience of the
SVM model to PoS tagging errors, and its gener-
alization capability even with a reduced number of
lexical features.

Another implication of this data is that commas
and quotation marks play a major role in deter-
mining NP boundaries in Hebrew. In Goldberg
et al. (2006), we noted the Hebrew Treebank is not
consistent in its treatment of punctuation, and thus
we evaluated the chunker only after performing nor-
malization of chunk boundaries for punctuations.
We now hypothesize that, since commas and quo-
tation marks play such an important role in the clas-
sification, performing such normalizationbeforethe
training stage might be beneficial. Indeed results on
the normalized corpus show improvement of about
1.0 in F score on bothHEBErr andHEBGold. A
10-fold cross validation experiment on punctuation
normalizedHEBErr resulted in an F-Score of 92.2,
improving the results reported by (Goldberg et al.,
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2006) on the same setting (91.4).

Loc=I HEBE ENG Loc6=I HEBE ENG
-2 78.26 89.79 -2 91.62 93.87
-1 76.96 90.90 -1 91.86 93.03
0 90.33 92.37 0 79.44 91.16
1 76.90 90.47 1 92.33 93.30
2 76.55 90.06 2 92.18 93.65

Table 3: Results of Loc Tamperings.

We now turn to analyzing the importance of con-
text positions (Table 3). For both languages, the
most important lexical feature (by far) is at position
0, that is, the word currently being classified. For
English, it is followed by positions 1 and -1, and
then positions 2 and -2. For Hebrew, back context
seems to have more effect than front context. In
Hebrew, all the positions positively contribute to the
decision, while in English removingw2/−2 slightly
improves the results (note also that including only
featurew2/−2 performs worse than with no lexical
information in English).

3.7 The Real Role of Lexical Features

Model tampering (i.e., removing features after the
learning stage) is not the same as learning without
these features. This claim is verified empirically:
training on the English corpus without the lexical
features at position –2 yields worse results than with
them (93.73 vs. 93.79) – while removing thew−2

features via tampering on a model trained withw−2

yields better results (93.87). Similarly, for all cor-
pora, training using only the top 1,000 features (as
defined in the Top1000 tampering) results in loss of
about 2 in F-Score (ENG 92.02,HEBErr 90.30,
HEBGold 91.67), while tampering Top1000 yields
a result very close to the best obtained (93.56, 92.41
or 93.3F).

This observation leads us to an interesting conclu-
sion about the real role of lexical features in SVM
based chunking:rare events (features) are used to
memorize hard examples. Intuitively, by giving a
heavy weight to rare events, the classifier learns spe-
cific rules such as “if the word at position -2 is X and
the PoS at position 2 is Y, then the current word is
Inside a noun-phrase”. Most of these rules are acci-
dental – there is no real relation between the partic-
ular word-pos combination and the class of the cur-
rent word, it just happens to be this way in the train-
ing samples. Marking the rare occurrences helps the
learner achieve better generalization on the other,

more common cases, which are similar to the outlier
on most features, except the “irrelevant ones”. As
the events are rare, such rules usually have no effect
on chunking accuracy: they simply never occur in
the test data. This observation refines the common
conception that SVM chunking does not suffer from
irrelevant features: in chunking, SVM indeed gener-
alizes well for the common cases but also over-fits
the model on outliers.

Model tampering helps us design a model in two
ways: (1) it is a way to “open the black box” ob-
tained when training an SVM and to analyze the re-
spective importance of features. In our case, this
analysis allowed us to identify the importance of
punctuation and prepositions and improve the model
by defining more focused features (improving over-
all result by∼1.0 F-point). (2) The analysis also led
us to the conclusion that “feature selection” is com-
plex in the case of SVM – irrelevant features help
prevent over-generalization by forcing over-fitting
on outliers.

We have also confirmed that the model learned re-
mains robust in the presence of noise in the PoS tags
and relies on only few lexical features. This veri-
fication is critical in the context of languages with
few computational resources, as we expect the size
of corpora and the quality of taggers to keep lagging
behind that achieved in English.

4 Anchored Learning

We pursue the observation of how SVM deals
with outliers by developing theAnchored Learning
method. The idea behind Anchored Learning is to
add a unique featureai (ananchor) to each training
sample (we add as many new features to the model
as there are training samples). These new features
make our data linearly separable. The SVM learner
can then use these anchors (which will never occur
on the test data) to memorize the hard cases, de-
creasing this burden from “real” features.

We present two uses for Anchored Learning. The
first is the identification of hard cases and corpus er-
rors, and the second is a preliminary feature selec-
tion approach for SVM to improve chunking accu-
racy.

4.1 Mining for Errors and Hard Cases

Following the intuition that SVM gives more weight
to anchor features of hard-to-classify cases, we can
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actively look for such cases by training an SVM
chunker on anchored data (as the anchored data is
guaranteed to be linearly separable, we can set a very
high value to theC parameter, preventing any mis-
classification), and then investigating either the an-
chors whose weights5 are above some thresholdt or
the topN heaviest anchors, and their corresponding
corpus locations.These locations are those that
the learner considers hard to classify. They can
be either corpus errors, or genuinely hard cases.

This method is similar to the corpus error detec-
tion method presented by Nakagawa and Matsumoto
(2002). They constructed an SVM model for PoS
tagging, and considered Support Vectors with high
α values to be indicative of suspicious corpus loca-
tions. These locations can be either outliers, or cor-
rectly labeled locations similar to an outlier. They
then looked for similar corpus locations with a dif-
ferent label, to point out right-wrong pairs with high
precision.

Using anchors improves their method in three as-
pects: (1) without anchors, similar examples are of-
ten indistinguishable to the SVM learner, and in case
they have conflicting labels both examples will be
given high weights. That is, both the regular case
and the hard case will be considered as hard exam-
ples. Moreover, similar corpus errors might result
in only one support vector that cover all the group of
similar errors. Anchors mitigate these effects, result-
ing in better precision and recall. (2) The more er-
rors there are in the corpus, the less linearly separa-
ble it is. Un-anchored learning on erroneous corpus
can take unreasonable amount of time. (3) Anchors
allow learning while removing some of the impor-
tant features but still allow the process to converge
in reasonable time. This lets us analyze which cases
become hard to learn if we don’t use certain features,
or in other words: what problematic cases are solved
by specific features.

The hard cases analysis achieved by anchored
learning is different from the usual error analysis
carried out on observed classification errors. The
traditional methods give us intuitions about where
the classifierfails to generalize, while the method
we present here gives us intuition about what the
classifier considers hard to learn, based on the
training examples alone.

5As each anchor appear in only one support vector, we can
treat the vector’sα value as the anchor weight

The intuition that “hard to learn” examples are
suspect corpus errors is not new, and appears also
in Abneyet al. (1999) , who consider the “heaviest”
samples in the final distribution of the AdaBoost al-
gorithm to be the hardest to classify and thus likely
corpus errors. While AdaBoost models are easy to
interpret, this is not the case with SVM. Anchored
learning allows us to extract the hard to learn cases
from an SVM model. Interestingly, while both Ad-
aBoost and SVM are ‘large margin’ based classi-
fiers, there is less than 50% overlap in the hard cases
for the two methods (in terms of mistakes on the test
data, there were 234 mistakes shared by AdaBoost
and SVM, 69 errors unique to SVM and 126 errors
unique to AdaBoost)6. Analyzing the difference in
what the two classifiers consider hard is interesting,
and we will address it in future work. In the current
work, we note that for finding corpus errors the two
methods are complementary.

Experiment 1 – Locating Hard Cases

A linear SVM model (Mfull) was trained on
the training subset of the anchored, punctuation-
normalized,HEBGold corpus, with the same fea-
tures as in the previous experiments, and aC value
of 9,999. Corpus locations corresponding to anchors
with weights>1 were inspected. There were about
120 such locations out of 4,500 sentences used in the
training set. Decreasing the thresholdt would result
in more cases. We analyzed these locations into 3
categories: corpus errors, cases that challenge the
SimpleNP definition, and cases where the chunking
decision is genuinely difficult to make in the absence
of global syntactic context or world knowledge.

Corpus Errors : The analysis revealed the fol-
lowing corpus errors: we identified 29 hard cases
related to conjunction and apposition (is the comma,
colon or slash inside an NP or separating two distinct
NPs). 14 of these hard cases were indeed mistakes
in the corpus. This was anticipated, as we distin-
guished appositions and conjunctive commas using
heuristics, since the Treebank marking of conjunc-
tions is somewhat inconsistent.

In order to build the Chunk NP corpus, the syn-
tactic trees of the Treebank were processed to derive
chunks according to the SimpleNP definition. The
hard cases analysis identified 18 instances where this

6These numbers are for pairwise Linear SVM and AdaBoost
classifiers trained on the same features.
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transformation results in erroneous chunks. For ex-
ample, null elements result in improper chunks, such
as chunks containing only adverbs or only adjec-
tives.

We also found 3 invalid sentences, 6 inconsisten-
cies in the tagging of interrogatives with respect to
chunk boundaries, as well as 34 other specific mis-
takes. Overall, more than half of the locations iden-
tified by the anchors were corpus errors. Looking for
cases similar to the errors identified by anchors, we
found 99 more locations, 77 of which were errors.

Refining the SimpleNP Definition: The hard
cases analysis identified examples that challenge
the SimpleNP definition proposed in Goldberg
et al. (2006). The most notable cases are:
The ‘et’ marker: ‘et’ is a syntactic marker of defi-
nite direct objects in Hebrew. It was regarded as a
part of SimpleNPs in their definition. In some cases,
this forces the resulting SimpleNP to be too inclu-
sive:

והתקשורת] המשפט בית הכנסת הממשלה, [את
[‘et’ (the government, the parliament and the media)]

Because in the Treebank the conjunction depends on
‘et’ as a single constituent, it is fully embedded in
the chunk. Such a conjunction should not be consid-
ered simple.
Theשל preposition (‘of ’)marks generalized posses-
sion and was considered unambiguous and included
in SimpleNPs. We found cases where ’של‘ causes
PP attachment ambiguity:

[המשטרה] של [משמעת] ל הדין] בית [נשיא
[president-cons house-cons the-law] for [discipline] of [the

police] / The Police Disciplinary Court President

Because 2 prepositions are involved in this NP, ’של‘
(of) and ’ל‘ ( for), the ’של‘ part cannot be attached
unambiguously to its head (‘court’). It is unclear
whether the ’ל‘ preposition should be given special
treatment to allow it to enter simple NPs in certain
contexts, or whether the inconsistent handling of
the ’של‘ that results from the ’ל‘ inter-position is
preferable.
Complex determiners and quantifiers: In many
cases, complex determiners in Hebrew are multi-
word expressions that include nouns. The inclusion
of such determiners inside the SimpleNPs is not
consistent.

Genuinely hard cases were also identified.
These include prepositions, conjunctions and multi-
word idioms (most of them are adjectives and prepo-
sitions which are made up of nouns and determin-

ers, e.g., as the wordunanimouslyis expressed in
Hebrew as the multi-word expression ‘one mouth’).
Also, someadverbialsandadjectivesare impossible
to distinguish using only local context.

The anchors analysis helped us improve the
chunking method on two accounts: (1) it identified
corpus errors with high precision; (2) it made us fo-
cus on hard cases that challenge the linguistic defi-
nition of chunks we have adopted. Following these
findings, we intend to refine the Hebrew SimpleNP
definition, and create a new version of the Hebrew
chunking corpus.

Experiment 2 – determining the role of
contextual lexical features

The intent of this experiment is to understand the
role of the contextual lexical features (wi, i 6= 0).
This is done by training 2 additional anchored lin-
ear SVM models,Mno−cont andMnear. These are
the same asMfull except for the lexical features
used during training.Mno−cont uses onlyw0, while
Mnear usesw0,w−1,w+1.

Anchors are again used to locate the hard exam-
ples for each classifier, and the differences are ex-
amined. The examples that are hard forMnear but
not for Mfull are those solved byw−2,w+2. Sim-
ilarly, the examples that are hard forMno−cont but
not forMnear are those solved byw−1,w+1. Table 4
indicates the number of hard cases identified by the
anchor method for each model. One way to inter-
pret these figures, is that the introduction of features
w−1,+1 solves 5 times more hard cases thanw−2,+2.

Model Number of hard
cases (t = 1)

Hard cases for
classifier B-I

Mfull 120 2
Mnear 320 (+ 200) 12
Mno−cont 1360 (+ 1040) 164

Table 4: Number of hard cases per model type.

Qualitative analysis of the hard cases solved by
the contextual lexical features shows that they con-
tribute mostly to the identification of chunk bound-
aries in cases of conjunction, apposition, attachment
of adverbs and adjectives, and some multi-word ex-
pressions.

The number of hard cases specific to the B-I clas-
sifier indicates how the features contribute to the de-
cision of splitting or continuing back-to-back NPs.
Back-to-back NPs amount to 6% of the NPs in
HEBGold and 8% of the NPs inENG. However,
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while in English most of these cases are easily re-
solved, Hebrew phenomena such as null-equatives
and free word order make them harder. To quantify
the difference: 79% of the first words of the second
NP in English belong to one of the closed classes
POS, DT, WDT, PRP, WP – categories which mostly
cannot appear in the middle of base NPs. In con-
trast, in Hebrew, 59% are Nouns, Numbers or Proper
Names. Moreover, in English the ratio of unique first
words to number of adjacent NPs is 0.068, while in
Hebrew it is 0.47. That is, in Hebrew, almost every
second such NP starts with a different word.

These figures explain why surrounding lexical in-
formation is needed by the learner in order to clas-
sify such cases. They also suggest that this learning
is mostly superficial, that is, the learner just mem-
orizes some examples, but these will not generalize
well on test data. Indeed, the most common class of
errors reported in Goldberget al. , 2006 are of the
split/merge type. These are followed by conjunction
related errors, which suffer from the same problem.
Morphological features ofsmixutand agreement can
help to some extent, but this is still a limited solu-
tion. It seems that deciding the [NP][NP] case is
beyond the capabilities of chunking with local con-
text features alone, and more global features should
be sought.

4.2 Facilitating Better Learning

This section presents preliminary results using An-
chored Learning for better NP chunking. We present
a setting (English Base NP chunking) in which
selected features coupled together with anchored
learning show an improvement over previous results.

Section 3.6 hinted that SVM based chunking
might be hurt by using too many lexical features.
Specifically, the featuresw−2,w+2 were shown to
cause the chunker to overfit in English chunking.
Learning without these features, however, yields
lower results. This can be overcome by introduc-
ing anchors as a substitute. Anchors play the same
role as rare features when learning, while lowering
the chance of misleading the classifier on test data.

The results of the experiment using 5-fold cross
validation onENG indicate that the F-score im-
proves on average from 93.95 to 94.10 when using
anchors instead ofw±2 (+0.15), while just ignoring
thew±2 features drops the F-score by 0.10. The im-
provement is minor but consistent. Its implication

is that anchors can substitute for “irrelevant” lexical
features for better learning results. In future work,
we will experiment with better informed sets of lex-
ical features mixed with anchors.

5 Conclusion

We have introduced two novel methods to under-
stand the inner structure of SVM-learned models.
We have applied these techniques to Hebrew NP
chunking, and demonstrated that the learned model
is robust in the presence of noise in the PoS tags, and
relies on only a few lexical features. We have iden-
tified corpus errors, better understood the nature of
the task in Hebrew – and compared it quantitatively
to the task in English.

The methods provide general insight in the way
SVM classification works for chunking.
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Abstract

We present a web mining method for discov-
ering and enhancing relationships in which a
specified concept (word class) participates.
We discover a whole range of relationships
focused on the given concept, rather than
generic known relationships as in most pre-
vious work. Our method is based on cluster-
ing patterns that contain concept words and
other words related to them. We evaluate the
method on three different rich concepts and
find that in each case the method generates a
broad variety of relationships with good pre-
cision.

1 Introduction

The huge amount of information available on the
web has led to a flurry of research on methods for
automatic creation of structured information from
large unstructured text corpora. The challenge is to
create as much information as possible while pro-
viding as little input as possible.

A lot of this research is based on the initial insight
(Hearst, 1992) that certain lexical patterns (‘X is a
country’) can be exploited to automatically gener-
ate hyponyms of a specified word. Subsequent work
(to be discussed in detail below) extended this initial
idea along two dimensions.

One objective was to require as small a user-
provided initial seed as possible. Thus, it was ob-
served that given one or more such lexical patterns,
a corpus could be used to generate examples of hy-
ponyms that could then, in turn, be exploited to gen-

erate more lexical patterns. The larger and more reli-
able sets of patterns thus generated resulted in larger
and more precise sets of hyponyms and vice versa.
The initial step of the resulting alternating bootstrap
process – the user-provided input – could just as well
consist of examples of hyponyms as of lexical pat-
terns.

A second objective was to extend the information
that could be learned from the process beyond hy-
ponyms of a given word. Thus, the approach was
extended to finding lexical patterns that could pro-
duce synonyms and other standard lexical relations.
These relations comprise all those words that stand
in some known binary relation with a specified word.

In this paper, we introduce a novel extension of
this problem: given a particular concept (initially
represented by two seed words), discover relations
in which it participates, without specifying their
types in advance. We will generate a concept class
and a variety of natural binary relations involving
that class.

An advantage of our method is that it is particu-
larly suitable for web mining, even given the restric-
tions on query amounts that exist in some of today’s
leading search engines.

The outline of the paper is as follows. In the next
section we will define more precisely the problem
we intend to solve. In section 3, we will consider re-
lated work. In section 4 we will provide an overview
of our solution and in section 5 we will consider the
details of the method. In section 6 we will illustrate
and evaluate the results obtained by our method. Fi-
nally, in section 7 we will offer some conclusions
and considerations for further work.
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2 Problem Definition

In several studies (e.g., Widdows and Dorow, 2002;
Pantel et al, 2004; Davidov and Rappoport, 2006)
it has been shown that relatively unsupervised and
language-independent methods could be used to
generate many thousands of sets of words whose
semantics is similar in some sense. Although ex-
amination of any such set invariably makes it clear
why these words have been grouped together into
a single concept, it is important to emphasize that
the method itself provides no explicit concept defi-
nition; in some sense, the implied class is in the eye
of the beholder. Nevertheless, both human judgment
and comparison with standard lists indicate that the
generated sets correspond to concepts with high pre-
cision.

We wish now to build on that result in the fol-
lowing way. Given a large corpus (such as the web)
and two or more examples of some conceptX, au-
tomatically generate examples of one or more rela-
tionsR ⊂ X × Y , whereY is some concept andR
is some binary relationship between elements ofX

and elements ofY .
We can think of the relations we wish to gener-

ate as bipartite graphs. Unlike most earlier work,
the bipartite graphs we wish to generate might be
one-to-one (for example, countries and their capi-
tals), many-to-one (for example, countries and the
regions they are in) or many-to-many (for example,
countries and the products they manufacture). For a
given classX, we would like to generate not one but
possibly many different such relations.

The only input we require, aside from a corpus,
is a small set of examples of some class. However,
since such sets can be generated in entirely unsuper-
vised fashion, our challenge is effectively to gener-
ate relations directly from a corpus given no addi-
tional information of any kind. The key point is that
we do not in any manner specify in advance what
types of relations we wish to find.

3 Related Work

As far as we know, no previous work has directly
addressed the discovery of generic binary relations
in an unrestricted domain without (at least implic-
itly) pre-specifying relationship types. Most related
work deals with discovery of hypernymy (Hearst,

1992; Pantel et al, 2004), synonymy (Roark and
Charniak, 1998; Widdows and Dorow, 2002; Davi-
dov and Rappoport, 2006) and meronymy (Berland
and Charniak, 1999).

In addition to these basic types, several stud-
ies deal with the discovery and labeling of more
specific relation sub-types, including inter-verb re-
lations (Chklovski and Pantel, 2004) and noun-
compound relationships (Moldovan et al, 2004).

Studying relationships between tagged named en-
tities, (Hasegawa et al, 2004; Hassan et al, 2006)
proposed unsupervised clustering methods that as-
sign given (or semi-automatically extracted) sets of
pairs into several clusters, where each cluster corre-
sponds to one of a known relationship type. These
studies, however, focused on the classification of
pairs that were either given or extracted using some
supervision, rather than on discovery and definition
of which relationships are actually in the corpus.

Several papers report on methods for using the
web to discover instances of binary relations. How-
ever, each of these assumes that the relations them-
selves are known in advance (implicitly or explic-
itly) so that the method can be provided with seed
patterns (Agichtein and Gravano, 2000; Pantel et al,
2004), pattern-based rules (Etzioni et al, 2004), rela-
tion keywords (Sekine, 2006), or word pairs exem-
plifying relation instances (Pasca et al, 2006; Alfon-
seca et al, 2006; Rosenfeld and Feldman, 2006).

In some recent work (Strube and Ponzetto, 2006),
it has been shown that related pairs can be gener-
ated without pre-specifying the nature of the rela-
tion sought. However, this work does not focus on
differentiating among different relations, so that the
generated relations might conflate a number of dis-
tinct ones.

It should be noted that some of these papers utilize
language and domain-dependent preprocessing in-
cluding syntactic parsing (Suchanek et al, 2006) and
named entity tagging (Hasegawa et al, 2004), while
others take advantage of handcrafted databases such
as WordNet (Moldovan et al, 2004; Costello et al,
2006) and Wikipedia (Strube and Ponzetto, 2006).

Finally, (Turney, 2006) provided a pattern dis-
tance measure which allows a fully unsupervised
measurement of relational similarity between two
pairs of words; however, relationship types were not
discovered explicitly.
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4 Outline of the Method

We will use two concept words contained in a con-
cept classC to generate a collection of distinct re-
lations in whichC participates. In this section we
offer a brief overview of our method.

Step 1: Use a seed consisting of two (or more) ex-
ample words to automatically obtain other examples
that belong to the same class. Call theseconcept
words. (For instance, if our example words were
FranceandAngola, we would generate more coun-
try names.)

Step 2: For each concept word, collect instances
of contexts in which the word appears together with
one other content word. Call this other word atar-
get wordfor that concept word. (For example, for
Francewe might find ‘Paris is the capital of France’.
Pariswould be a target word forFrance.)

Step 3: For each concept word, group the contexts
in which it appears according to the target word that
appears in the context. (Thus ‘X is the capital ofY ’
would likely be grouped with ‘Y ’s capital isX ’.)

Step 4: Identify similar context groups that ap-
pear across many different concept words. Merge
these into a single concept-word-independent clus-
ter. (The group including the two contexts above
would appear, with some variation, for other coun-
tries as well, and all these would be merged into
a single cluster representing the relationcapital-
of(X,Y).)

Step 5: For each cluster, output the relation con-
sisting of all<concept word, target word> pairs that
appear together in a context included in the cluster.
(The cluster considered above would result in a set
of pairs consisting of a country and its capital. Other
clusters generated by the same seed might include
countries and their languages, countries and the re-
gions in which they are located, and so forth.)

5 Details of the Method

In this section we consider the details of each of
the above-enumerated steps. It should be noted
that each step can be performed using standard web
searches; no special pre-processed corpus is re-
quired.

5.1 Generalizing the seed

The first step is to take the seed, which might con-
sist of as few as two concept words, and generate
many (ideally, all, when the concept is a closed set
of words) members of the class to which they be-
long. We do this as follows, essentially implement-
ing a simplified version of the method of Davidov
and Rappoport (2006). For any pair of seed words
Si andSj , search the corpus for word patterns of the
form SiHSj , whereH is a high-frequency word in
the corpus (we used the 100 most frequent words
in the corpus). Of these, we keep all those pat-
terns, which we callsymmetric patterns, for which
SjHSi is also found in the corpus. Repeat this pro-
cess to find symmetric patterns with any of the struc-
turesHSHS, SHSH or SHHS. It was shown in
(Davidov and Rappoport, 2006) that pairs of words
that often appear together in such symmetric pat-
terns tend to belong to the same class (that is, they
share some notable aspect of their semantics). Other
words in the class can thus be generated by search-
ing a sub-corpus of documents including at least two
concept words for those wordsX that appear in a
sufficient number of instances of both the patterns
SiHX andXHSi, whereSi is a word in the class.
The same can be done for the other three pattern
structures. The process can be bootstrapped as more
words are added to the class.

Note that our method differs from that of Davidov
and Rappoport (2006) in that here we provide an ini-
tial seed pair, representing our target concept, while
there the goal is grouping of as many words as pos-
sible into concept classes. The focus of our paper is
on relations involving a specific concept.

5.2 Collecting contexts

For each concept wordS, we search the corpus for
distinct contexts in whichS appears. (For our pur-
poses, a context is a window with exactly five words
or punctuation marks before or after the concept
word; we choose 10,000 of these, if available.) We
call the aggregate text found in all these context win-
dows the S-corpus.

From among these contexts, we choose all pat-
terns of the formH1SH2XH3 or H1XH2SH3,
where:
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• X is a word that appears with frequency below
f1 in the S-corpus and that has sufficiently high
pointwise mutual information withS. We use
these two criteria to ensure thatX is a content
word and that it is related toS. The lower the
thresholdf1, the less noise we allow in, though
possibly at the expense of recall. We usedf1 =
1, 000 occurrences per million words.

• H2 is a string of words each of which occurs
with frequency abovef2 in the S-corpus. We
want H2 to consist mainly of words common
in the context ofS in order to restrict patterns
to those that are somewhat generic. Thus, in
the context of countries we would like to retain
words likecapital while eliminating more spe-
cific words that are unlikely to express generic
patterns. We usedf2 = 100 occurrences per
million words (there is room here for automatic
optimization, of course).

• H1 andH3 are either punctuation or words that
occur with frequency abovef3 in the S-corpus.
This is mainly to ensure thatX andS aren’t
fragments of multi-word expressions. We used
f3 = 100 occurrences per million words.

• We call these patterns,S-patternsand we call
X thetargetof the S-pattern. The idea is thatS

andX very likely stand in some fixed relation
to each other where that relation is captured by
the S-pattern.

5.3 Grouping S-patterns

If S is in fact related toX in some way, there might
be a number of S-patterns that capture this relation-
ship. For eachX, we group all the S-patterns that
haveX as a target. (Note that two S-patterns with
two different targets might be otherwise identical,
so that essentially the same pattern might appear in
two different groups.) We now merge groups with
large (more than 2/3) overlap. We call the resulting
groups,S-groups.

5.4 Identifying pattern clusters

If the S-patterns in a given S-group actually capture
some relationship betweenS and the target, then
one would expect that similar groups would appear
for a multiplicity of concept wordsS. Suppose that

we have S-groups for three different concept words
S such that the pairwise overlap among the three
groups is more than 2/3 (where for this purpose two
patterns are deemed identical if they differ only atS

andX). Then the set of patterns that appear in two or
three of these S-groups is called acluster core.We
now group all patterns in other S-groups that have an
overlap of more than 2/3 with the cluster core into a
candidate pattern poolP . The set of all patterns in
P that appear in at least two S-groups (among those
that formedP ) pattern cluster.A pattern cluster that
has patterns instantiated by at least half of the con-
cept words is said to represent a relation.

5.5 Refining relations

A relation consists of pairs(S, X) whereS is a con-
cept word andX is the target of some S-pattern in a
given pattern cluster. Note that for a givenS, there
might be one or many values ofX satisfying the re-
lation. As a final refinement, for each givenS, we
rank all suchX according to pointwise mutual in-
formation withS and retain only the highest 2/3. If
most values ofS have only a single correspondingX

satisfying the relation and the rest have none, we try
to automatically fill in the missing values by search-
ing the corpus for relevant S-patterns for the missing
values ofS. (In our case the corpus is the web, so
we perform additional clarifying queries.)

Finally, we delete all relations in which all con-
cept words are related to most target words and all
relations in which the concept words and the target
words are identical. Such relations can certainly be
of interest (see Section 7), but are not our focus in
this paper.

5.6 Notes on required Web resources

In our implementation we use the Google search
engine. Google restricts individual users to 1,000
queries per day and 1,000 pages per query. In each
stage we conducted queries iteratively, each time
downloading all 1,000 documents for the query.

In the first stage our goal was to discover sym-
metric relationships from the web and consequently
discover additional concept words. For queries in
this stage of our algorithm we invoked two require-
ments.

First, the query should contain at least two con-
cept words. This proved very effective in reduc-
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ing ambiguity. Thus of 1,000 documents for the
querybass, 760 deal with music, while if we add to
the query a second word from the intended concept
(e.g.,barracuda), then none of the 1,000 documents
deal with music and the vast majority deal with fish,
as intended.

Second, we avoid doing overlapping queries. To
do this we used Google’s ability to exclude from
search results those pages containing a given term
(in our case, one of the concept words).

We performed up to 300 different queries for in-
dividual concepts in the first stage of our algorithm.

In the second stage, we used web queries to as-
semble S-corpora. On average, about 1/3 of the con-
cept words initially lacked sufficient data and we
performed up to twenty additional queries for each
rare concept word to fill its corpus.

In the last stage, when clusters are constructed,
we used web queries for filling missing pairs of one-
to-one or several-to-several relationships. The to-
tal number of filling queries for a specific concept
was below 1,000, and we needed only the first re-
sults of these queries. Empirically, it took between
0.5 to 6 day limits (i.e., 500–6,000 queries) to ex-
tract relationships for a concept, depending on its
size (the number of documents used for each query
was at most 100). Obviously this strategy can be
improved by focused crawling from primary Google
hits, which can drastically reduce the required num-
ber of queries.

6 Evaluation

In this section we wish to consider the variety of re-
lations that can be generated by our method from a
given seed and to measure the quality of these rela-
tions in terms of their precision and recall.

With regard to precision, two claims are being
made. One is that the generated relations correspond
to identifiable relations. The other claim is that to
the extent that a generated relation can be reason-
ably identified, the generated pairs do indeed belong
to the identified relation. (There is a small degree of
circularity in this characterization but this is proba-
bly the best we can hope for.)

As a practical matter, it is extremely difficult to
measure precision and recall for relations that have
not been pre-determined in any way. For each gen-

erated relation, authoritative resources must be mar-
shaled as a gold standard. For purposes of evalu-
ation, we ran our algorithm on three representative
domains – countries, fish species and star constel-
lations – and tracked down gold standard resources
(encyclopedias, academic texts, informative web-
sites, etc) for the bulk of the relations generated in
each domain.

This choice of domains allowed us to explore
different aspects of algorithmic behavior. Country
and constellation domains are both well defined and
closed domains. However they are substantially dif-
ferent.

Country names is a relatively large domain which
has very low lexical ambiguity, and a large number
of potentially useful relations. The main challenge
in this domain was to capture it well.

Constellation names, in contrast, are a relatively
small but highly ambiguous domain. They are used
in proper names, mythology, names of entertainment
facilities etc. Our evaluation examined how well the
algorithm can deal with such ambiguity.

The fish domain contains a very high number of
members. Unlike countries, it is a semi-open non-
homogenous domain with a very large number of
subclasses and groups. Also, unlike countries, it
does not contain many proper nouns, which are em-
pirically generally easier to identify in patterns. So
the main challenge in this domain is to extract un-
blurred relationships and not to diverge from the do-
main during the concept acquisition phase.

We do not show here all-to-all relationships such
as fish parts (common to all or almost all fish), be-
cause we focus on relationships that separate be-
tween members of the concept class, which are
harder to acquire and evaluate.

6.1 Countries

Our seed consisted of two country names. The in-
tended result for the first stage of the algorithm
was a list of countries. There are 193 countries in
the world (www.countrywatch.com) some of which
have multiple names so that the total number of
commonly used country names is 243. Of these,
223 names (comprising 180 countries) are charac-
ter strings with no white space. Since we consider
only single word names, these 223 are the names we
hope to capture in this stage.
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Using the seed wordsFrance and Angola, we
obtained 202 country names (comprising 167 dis-
tinct countries) as well as 32 other names (consisting
mostly of names of other geopolitical entities). Us-
ing the list of 223 single word countries as our gold
standard, this gives precision of 0.90 and recall of
0.86. (Ten other seed pairs gave results ranging in
precision: 0.86-0.93 and recall: 0.79-0.90.)

The second part of the algorithm generated a set
of 31 binary relations. Of these, 25 were clearly
identifiable relations many of which are shown in
Table 1. Note that for three of these there are stan-
dard exhaustive lists against which we could mea-
sure both precision and recall; for the others shown,
sources were available for measuring precision but
no exhaustive list was available from which to mea-
sure recall, so we measured coverage (the number
of countries for which at least one target concept is
found as related).

Another eleven meaningful relations were gener-
ated for which we did not compute precision num-
bers. These includecelebrity-from, animal-of, lake-
in, borders-onandenemy-of.(The set of relations
generated by other seed pairs differed only slightly
from those shown here forFranceandAngola.)

6.2 Fish species

In our second experiment, our seed consisted of two
fish species,barracudaandbluefish.There are 770
species listed in WordNet of which 447 names are
character strings with no white space. The first stage
of the algorithm returned 305 of the species listed
in Wordnet, another 37 species not listed in Word-
net, as well as 48 other names (consisting mostly
of other sea creatures). The second part of the al-
gorithm generated a set of 15 binary relations all of
which are meaningful. Those for which we could
find some gold standard are listed in Table 2.

Other relations generated includeserved-with,
bait-for, food-type, spot-type,andgill-type.

6.3 Constellations

Our seed consisted of two constellation names,
Orion and Cassiopeia. There are 88 standard
constellations (www.astro.wisc.edu) some of which
have multiple names so that the total number of com-
monly used constellations is 98. Of these, 87 names
(77 constellations) are strings with no white space.

Relationship Prec. Rec/Cov
Sample pattern
(Sample pair)
capital-of 0.92 R=0.79
in (x), capital of (y),
(Luanda, Angola)
language-spoken-in 0.92 R=0.60
to (x) or other (y) speaking
(Spain, Spanish)
in-region 0.73 R=0.71
throughout (x), from (y) to
(America, Canada)
city-in 0.82 C=0.95
west (x) – forecast for (y).
(England, London)
river-in 0.92 C=0.68
central (x), on the (y) river
(China, Haine)
mountain-range-in 0.77 C=0.69
the (x) mountains in (y) ,
(Chella, Angola)
sub-region-of 0.81 C=0.81
the (y) region of (x),
(Veneto, Italy)
industry-of 0.70 C=0.90
the (x) industry in (y) ,
(Oil, Russia)
island-in 0.98 C=0.55
, (x) island , (y) ,
(Bathurst, Canada)
president-of 0.86 C=0.51
president (x) of (y) has
(Bush, USA)
political-position-in 0.81 C=0.75
former (x) of (y) face
(President, Ecuador)
political-party-of 0.91 C=0.53
the (x) party of (y) ,
(Labour, England)
festival-of 0.90 C=0.78
the (x) festival, (y) ,
(Tanabata, Japan)
religious-denomination-of 0.80 C=0.62
the (x) church in (y) ,
(Christian, Rome)

Table 1: Results on seed{ France, Angola}.
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Relationship Prec. Cov
Sample pattern
(Sample pair)
region-found-in 0.83 0.80
best (x) fishing in (y) .
(Walleye, Canada)
sea-found-in 0.82 0.64
of (x) catches in the (y) sea
(Shark, Adriatic)
lake-found-in 0.79 0.51
lake (y) is famous for (x) ,
(Marion, Catfish)
habitat-of 0.78 0.92
, (x) and other (y) fish
(Menhaden, Saltwater)
also-called 0.91 0.58
. (y) , also called (x) ,
(Lemonfish, Ling)
eats 0.90 0.85
the (x) eats the (y) and
(Perch, Minnow)
color-of 0.95 0.85
the (x) was (y) color
(Shark, Gray)
used-for-food 0.80 0.53
catch (x) – best for (y) or
(Bluefish, Sashimi)
in-family 0.95 0.60
the (x) family , includes (y) ,
(Salmonid, Trout)

Table 2: Results on seed{ barracud, bluefish}.

The first stage of the algorithm returned 81 constel-
lation names (77 distinct constellations) as well as
38 other names (consisting mostly of names of indi-
vidual stars). Using the list of 87 single word con-
stellation names as our gold standard, this gives pre-
cision of 0.68 and recall of 0.93.

The second part of the algorithm generated a set
of ten binary relations. Of these, one concerned
travel and entertainment (constellations are quite
popular as names of hotels and lounges) and another
three were not interesting. Apparently, the require-
ment that half the constellations appear in a relation
limited the number of viable relations since many
constellations are quite obscure. The six interesting

relations are shown in Table 3 along with precision
and coverage.

7 Discussion

In this paper we have addressed a novel type of prob-
lem: given a specific concept, discover in fully un-
supervised fashion, a range of relations in which it
participates. This can be extremely useful for study-
ing and researching a particular concept or field of
study.

As others have shown as well, two concept words
can be sufficient to generate almost the entire class
to which the words belong when the class is well-
defined. With the method presented in this paper,
using no further user-provided information, we can,
for a given concept, automatically generate a diverse
collection of binary relations on this concept. These
relations need not be pre-specified in any way. Re-
sults on the three domains we considered indicate
that, taken as an aggregate, the relations that are gen-
erated for a given domain paint a rather clear picture
of the range of information pertinent to that domain.

Moreover, all this was done using standard search
engine methods on the web. No language-dependent
tools were used (not even stemming); in fact, we re-
produced many of our results using Google in Rus-
sian.

The method depends on a number of numerical
parameters that control the subtle tradeoff between
quantity and quality of generated relations. There is
certainly much room for tuning of these parameters.

The concept and target words used in this paper
are single words. Extending this to multiple-word
expressions would substantially contribute to the ap-
plicability of our results.

In this research we effectively disregard many re-
lationships of an all-to-all nature. However, such
relationships can often be very useful for ontology
construction, since in many cases they introduce
strong connections between two different concepts.
Thus, for fish we discovered that one of the all-to-
all relationships captures a precise set of fish body
parts, and another captures swimming verbs. Such
relations introduce strong and distinct connections
between the concept of fish and the concepts of fish-
body-parts and swimming. Such connections may
be extremely useful for ontology construction.
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Relationship Prec. Cov
Sample pattern
(Sample pair)
nearby-constellation 0.87 0.70
constellation (x), near (y),
(Auriga, Taurus)
star-in 0.82 0.76
star (x) in (y) is
(Antares , Scorpius)
shape-of 0.90 0.55
, (x) is depicted as (y).
(Lacerta, Lizard)
abbreviated-as 0.93 0.90
. (x) abbr (y),
(Hidra, Hya)
cluster-types-in 0.92 1.00
famous (x) cluster in (y),
(Praesepe, Cancer)
location 0.82 0.70
, (x) is a (y) constellation
(Draco, Circumpolar)

Table 3: Results on seed{ Orion, Cassiopeia}.
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Abstract

The Penn Treebank does not annotate
within base noun phrases (NPs), commit-
ting only to flat structures that ignore the
complexity of English NPs. This means
that tools trained on Treebank data cannot
learn the correct internal structure of NPs.

This paper details the process of adding
gold-standard bracketing within each
noun phrase in the Penn Treebank. We
then examine the consistency and reliabil-
ity of our annotations. Finally, we use
this resource to determine NP structure
using several statistical approaches, thus
demonstrating the utility of the corpus.
This adds detail to the Penn Treebank that
is necessary for many NLP applications.

1 Introduction

The Penn Treebank (Marcus et al., 1993) is perhaps
the most influential resource in Natural Language
Processing (NLP). It is used as a standard train-
ing and evaluation corpus in many syntactic analysis
tasks, ranging from part of speech (POS) tagging and
chunking, to full parsing.

Unfortunately, the Penn Treebank does not anno-
tate the internal structure of base noun phrases, in-
stead leaving them flat. This significantly simplified
and sped up the manual annotation process.

Therefore, any system trained on Penn Treebank
data will be unable to model the syntactic and se-
mantic structure inside base-NPs.

The following NP is an example of the flat struc-
ture of base-NPs within the Penn Treebank:

(NP (NNP Air) (NNP Force) (NN contract))

Air Force is a specific entity and should form a sep-
arate constituent underneath the NP, as in our new
annotation scheme:

(NP
(NML (NNP Air) (NNP Force))
(NN contract))

We use NML to specify that Air Force together is a
nominal modifier of contract. Adding this annota-
tion better represents the true syntactic and seman-
tic structure, which will improve the performance of
downstream NLP systems.

Our main contribution is a gold-standard labelled
bracketing for every ambiguous noun phrase in the
Penn Treebank. We describe the annotation guide-
lines and process, including the use of named en-
tity data to improve annotation quality. We check
the correctness of the corpus by measuring inter-
annotator agreement, by reannotating the first sec-
tion, and by comparing against the sub-NP structure
in DepBank (King et al., 2003).

We also give an analysis of our extended Tree-
bank, quantifying how much structure we have
added, and how it is distributed across NPs. Fi-
nally, we test the utility of the extended Treebank for
training statistical models on two tasks: NP bracket-
ing (Lauer, 1995; Nakov and Hearst, 2005) and full
parsing (Collins, 1999).

This new resource will allow any system or anno-
tated corpus developed from the Penn Treebank, to
represent noun phrase structure more accurately.
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2 Motivation

Many approaches to identifying base noun phrases
have been explored as part of chunking (Ramshaw
and Marcus, 1995), but determining sub-NP struc-
ture is rarely addressed. We could use multi-word
expressions (MWEs) to identify some structure. For
example, knowing stock market is a MWE may help
bracket stock market prices correctly, and Named
Entities (NEs) can be used the same way. However,
this only resolves NPs dominating MWEs or NEs.

Understanding base-NP structure is important,
since otherwise parsers will propose nonsensical
noun phrases like Force contract by default and pass
them onto downstream components. For example,
Question Answering (QA) systems need to supply
an NP as the answer to a factoid question, often us-
ing a parser to identify candidate NPs to return to
the user. If the parser never generates the correct
sub-NP structure, then the system may return a non-
sensical answer even though the correct dominating
noun phrase has been found.

Base-NP structure is also important for anno-
tated data derived from the Penn Treebank. For
instance, CCGbank (Hockenmaier, 2003) was cre-
ated by semi-automatically converting the Treebank
phrase structure to Combinatory Categorial Gram-
mar (CCG) (Steedman, 2000) derivations. Since CCG

derivations are binary branching, they cannot di-
rectly represent the flat structure of the Penn Tree-
bank base-NPs.

Without the correct bracketing in the Treebank,
strictly right-branching trees were created for all
base-NPs. This has an unwelcome effect when con-
junctions occur within an NP (Figure 1). An addi-
tional grammar rule is needed just to get a parse, but
it is still not correct (Hockenmaier, 2003, p. 64). The
awkward conversion results in bracketing (a) which
should be (b):

(a) (consumer ((electronics) and
(appliances (retailing chain))))

(b) ((((consumer electronics) and
appliances) retailing) chain)

We have previously experimented with using NEs to
improve parsing performance on CCGbank. Due to
the mis-alignment of NEs and right-branching NPs,
the increase in performance was negligible.

N

N/N

consumer

N

N/N

electronics

N

conj

and

N

N/N

appliances

N

N/N

retailing

N

chain

Figure 1: CCG derivation from Hockenmaier (2003)

3 Background

The NP bracketing task has often been posed in
terms of choosing between the left or right branch-
ing structure of three word noun compounds:

(a) (world (oil prices)) – Right-branching

(b) ((crude oil) prices) – Left-branching

Most approaches to the problem use unsupervised
methods, based on competing association strength
between two of the words in the compound (Mar-
cus, 1980, p. 253). There are two possible models
to choose from: dependency or adjacency. The de-
pendency model compares the association between
words 1-2 to words 1-3, while the adjacency model
compares words 1-2 to words 2-3.

Lauer (1995) has demonstrated superior perfor-
mance of the dependency model using a test set
of 244 (216 unique) noun compounds drawn from
Grolier’s encyclopedia. This data has been used to
evaluate most research since. He uses Roget’s the-
saurus to smooth words into semantic classes, and
then calculates association between classes based
on their counts in a “training set” also drawn from
Grolier’s. He achieves 80.7% accuracy using POS

tags to indentify bigrams in the training set.
Lapata and Keller (2004) derive estimates from

web counts, and only compare at a lexical level,
achieving 78.7% accuracy. Nakov and Hearst (2005)
also use web counts, but incorporate additional
counts from several variations on simple bigram
queries, including queries for the pairs of words con-
catenated or joined by a hyphen. This results in an
impressive 89.3% accuracy.

There have also been attempts to solve this task
using supervised methods, even though the lack of
gold-standard data makes this difficult. Girju et al.
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(2005) draw a training set from raw WSJ text and use
it to train a decision tree classifier achieving 73.1%
accuracy. When they shuffled their data with Lauer’s
to create a new test and training split, their accu-
racy increased to 83.1% which may be a result of
the � 10% duplication in Lauer’s test set.

We have created a new NP bracketing data set
from our extended Treebank by extracting all right-
most three noun sequences from base-NPs. Our ini-
tial experiments are presented in Section 6.1.

4 Corpus Creation

According to Marcus et al. (1993), asking annota-
tors to markup base-NP structure significantly re-
duced annotation speed, and for this reason base-
NPs were left flat. The bracketing guidelines (Bies
et al., 1995) also mention the considerable difficulty
of identifying the correct scope for nominal modi-
fiers. We found however, that while there are cer-
tainly difficult cases, the vast majority are quite sim-
ple and can be annotated reliably. Our annotation
philosophy can be summarised as:

1. most cases are easy and fit a common pattern;

2. prefer the implicit right-branching structure for
difficult decisions. Finance jargon was a com-
mon source of these;

3. mark very difficult to bracket NPs and discuss
with other annotators later;

During this process we identified numerous cases
that require a more sophisticated annotation scheme.
There are genuine flat cases, primarily names like
John A. Smith, that we would like to distinguish from
implicitly right-branching NPs in the next version of
the corpus. Although our scheme is still developing,
we believe that the current annotation is already use-
ful for statistical modelling, and we demonstrate this
empirically in Section 6.

4.1 Annotation Process
Our annotation guidelines1 are based on those de-
veloped for annotating full sub-NP structure in the
biomedical domain (Kulick et al., 2004). The anno-
tation guidelines for this biomedical corpus (an ad-
dendum to the Penn Treebank guidelines) introduce
the use of NML nodes to mark internal NP structure.

1The guidelines and corpus are available on our webpages.

In summary, our guidelines leave right-branching
structures untouched, and insert labelled brackets
around left-branching structures. The label of the
newly created constituent is NML or JJP, depending
on whether its head is a noun or an adjective. We
also chose not to alter the existing Penn Treebank
annotation, even though the annotators found many
errors during the annotation process. We wanted to
keep our extended Treebank as similar to the origi-
nal as possible, so that they remain comparable.

We developed a bracketing tool, which identifies
ambiguous NPs and presents them to the user for
disambiguation. An ambiguous NP is any (possibly
non-base) NP with three or more contiguous chil-
dren that are either single words or another NP. Cer-
tain common patterns, such as three words begin-
ning with a determiner, are unambiguous, and were
filtered out. The annotator is also shown the entire
sentence surrounding the ambiguous NP.

The bracketing tool often suggests a bracket-
ing using rules based mostly on named entity tags,
which are drawn from the BBN corpus (Weischedel
and Brunstein, 2005). For example, since Air Force
is given ORG tags, the tool suggests that they be
bracketed together first. Other suggestions come
from previous bracketings of the same words, which
helps to keep the annotator consistent.

Two post processes were carried out to increase
annotation consistency and correctness. 915 diffi-
cult NPs were marked by the annotator and were then
discussed with two other experts. Secondly, cer-
tain phrases that occurred numerous times and were
non-trivial to bracket, e.g. London Interbank Of-
fered Rate, were identified. An extra pass was made
through the corpus, ensuring that every instance of
these phrases was bracketed consistently.

4.2 Annotation Time
Annotation initially took over 9 hours per section of
the Treebank. However, with practice this was re-
duced to about 3 hours per section. Each section
contains around 2500 ambiguous NPs, i.e. annotat-
ing took approximately 5 seconds per NP. Most NPs
require no bracketing, or fit into a standard pattern
which the annotator soon becomes accustomed to,
hence the task can be performed quite quickly.

For the original bracketing of the Treebank, anno-
tators performed at 375–475 words per hour after a
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PREC. RECALL F-SCORE

Brackets 89.17 87.50 88.33
Dependencies 96.40 96.40 96.40

Brackets, revised 97.56 98.03 97.79
Dependencies, revised 99.27 99.27 99.27

Table 1: Agreement between annotators

few weeks, and increased to about 1000 words per
hour after gaining more experience (Marcus et al.,
1993). For our annotation process, counting each
word in every NP shown, our speed was around 800
words per hour. This figure is not unexpected, as the
task was not large enough to get more than a month’s
experience, and there is less structure to annotate.

5 Corpus Analysis

5.1 Inter-annotator Agreement

The annotation was performed by the first author.
A second Computational Linguistics PhD student
also annotated Section 23, allowing inter-annotator
agreement, and the reliability of the annotations, to
be measured. This also maximised the quality of the
section used for parser testing.

We measured the proportion of matching brack-
ets and dependencies between annotators, shown in
Table 1, both before and after they discussed cases
of disagreement and revised their annotations. The
number of dependencies is fixed by the length of the
NP, so the dependency precision and recall are the
same. Counting matched brackets is a harsher eval-
uation, as there are many NPs that both annotators
agree should have no additional bracketing, which
are not taken into account by the metric.

The disagreements occurred for a small number
of repeated instances, such as this case:

(NP (NP (NNP Goldman)
(NML (NNP Goldman) (, ,)
(, ,) (NNP Sachs)
(NNP Sachs) ) (CC &) (NNP Co) )

(CC &) (NNP Co) )

The first annotator felt that Goldman , Sachs

should form their own NML constituent, while the
second annotator did not.

We can also look at exact matching on NPs, where
the annotators originally agreed in 2667 of 2908
cases (91.71%), and after revision, in 2864 of 2907
cases (98.52%). These results demonstrate that high
agreement rates are achievable for these annotations.

MATCHED TOTAL %
By dependency 1409 (1315) 1479 95.27 (88.91)
By noun phrase 562 (489) 626 89.78 (78.12)
By dependency,
only annotated NPs

578 (543) 627 92.19 (86.60)

By noun phrase,
only annotated NPs

186 (162) 229 81.22 (70.74)

Table 2: Agreement with DepBank

5.2 DepBank Agreement

Another approach to measuring annotator reliabil-
ity is to compare with an independently annotated
corpus on the same text. We used the PARC700 De-
pendency Bank (King et al., 2003) which consists of
700 Section 23 sentences annotated with labelled de-
pendencies. We use the Briscoe and Carroll (2006)
version of DepBank, a 560 sentence subset used to
evaluate the RASP parser.

Some translation is required to compare our
brackets to DepBank dependencies. We map the
brackets to dependencies by finding the head of the
NP, using the Collins (1999) head finding rules,
and then creating a dependency between each other
child’s head and this head. This does not work per-
fectly, and mismatches occur because of which de-
pendencies DepBank marks explicitly, and how it
chooses heads. The errors are investigated manually
to determine their cause.

The results are shown in Table 2, with the num-
ber of agreements before manual checking shown in
parentheses. Once again the dependency numbers
are higher than those at the NP level. Similarly, when
we only look at cases where we have inserted some
annotations, we are looking at more difficult cases
and the score is not as high.

The results of this analysis are quite positive.
Over half of the disagreements that occur (in ei-
ther measure) are caused by how company names
are bracketed. While we have always separated the
company name from post-modifiers such as Corp
and Inc, DepBank does not in most cases. These
results show that consistently and correctly bracket-
ing noun phrase structure is possible, and that inter-
annotator agreement is at an acceptable level.

5.3 Corpus Composition and Consistency

Looking at the entire Penn Treebank corpus, the
annotation tool finds 60959 ambiguous NPs out of
the 432639 NPs in the corpus (14.09%). 22851 of
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LEVEL COUNT POS TAGS EXAMPLE

1073 JJ JJ NNS big red cars
1581 DT JJ NN NN a high interest rateNP
1693 JJ NN NNS high interest rates
3557 NNP NNP NNP John A. Smith
1468 NN NN (interest rate) rises
1538 JJ NN (heavy truck) rentalsNML
1650 NNP NNP NNP (A. B. C.) Corp
8524 NNP NNP (John Smith) Jr.

82 JJ JJ (dark red) car
114 RB JJ (very high) ratesJJP
122 JJ CC JJ (big and red) apples
160 “ JJ ” (“ smart ”) cars

Table 3: Common POS tag sequences

these (37.49%) had brackets inserted by the annota-
tor. This is as we expect, as the majority of NPs are
right-branching. Of the brackets added, 22368 were
NML nodes, while 863 were JJP.

To compare, we can count the number of existing
NP and ADJP nodes found in the NPs that the brack-
eting tool presents. We find there are 32772 NP chil-
dren, and 579 ADJP, which are quite similar num-
bers to the amount of nodes we have added. From
this, we can say that our annotation process has in-
troduced almost as much structural information into
NPs as there was in the original Penn Treebank.

Table 3 shows the most common POS tag se-
quences for NP, NML and JJP nodes. An example
is given showing typical words that match the POS

tags. For NML and JJP, we also show the words
bracketed, as they would appear under an NP node.

We checked the consistency of the annotations by
identifying NPs with the same word sequence and
checking whether they were always bracketed iden-
tically. After the first pass through, there were 360
word sequences with multiple bracketings, which
occurred in 1923 NP instances. 489 of these in-
stances differed from the majority case for that se-
quence, and were probably errors.

The annotator had marked certain difficult and
commonly repeating NPs. From this we generated a
list of phrases, and then made another pass through
the corpus, synchronising all instances that con-
tained one of these phrases. After this, only 150 in-
stances differed from the majority case. Inspecting
these remaining inconsistencies showed cases like:
(NP-TMP (NML (NNP Nov.) (CD 15))
(, ,)
(CD 1999))

where we were inconsistent in inserting the NML node

because the Penn Treebank sometimes already has
the structure annotated under an NP node. Since we
do not make changes to existing brackets, we cannot
fix these cases. Other inconsistencies are rare, but
will be examined and corrected in a future release.

The annotator made a second pass over Section
00 to correct changes made after the beginning of
the annotation process. Comparing the two passes
can give us some idea of how the annotator changed
as he grew more practiced at the task.

We find that the old and new versions are identi-
cal in 88.65% of NPs, with labelled precision, recall
and F-score being 97.17%, 76.69% and 85.72% re-
spectively. This tells us that there were many brack-
ets originally missed that were added in the second
pass. This is not surprising since the main problem
with how Section 00 was annotated originally was
that company names were not separated from their
post-modifier (such as Corp). Besides this, it sug-
gests that there is not a great deal of difference be-
tween an annotator just learning the task, and one
who has had a great deal of experience with it.

5.4 Named Entity Suggestions

We have also evaluated how well the suggestion fea-
ture of the annotation tool performs. In particular,
we want to determine how useful named entities are
in determining the correct bracketing.

We ran the tool over the original corpus, follow-
ing NE-based suggestions where possible. We find
that when evaluated against our annotations, the F-
score is 50.71%. We need to look closer at the pre-
cision and recall though, as they are quite different.
The precision of 93.84% is quite high. However,
there are many brackets where the entities do not
help at all, and so the recall of this method was only
34.74%. This suggests that a NE feature may help to
identify the correct bracketing in one third of cases.

6 Experiments

Having bracketed NPs in the Penn Treebank, we now
describe our initial experiments on how this addi-
tional level of annotation can be exploited.

6.1 NP Bracketing Data

The obvious first task to consider is noun phrase
bracketing itself. We implement a similar system to
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CORPUS # ITEMS LEFT RIGHT

Penn Treebank 5582 58.99% 41.01%
Lauer’s 244 66.80% 33.20%

Table 4: Comparison of NP bracketing corpora

N-GRAM MATCH

Unigrams 51.20%
Adjacency bigrams 6.35%
Dependency bigrams 3.85%
All bigrams 5.83%
Trigrams 1.40%

Table 5: Lexical overlap

Lauer (1995), described in Section 3, and report on
results from our own data and Lauer’s original set.

First, we extracted three word noun sequences
from all the ambiguous NPs. If the last three chil-
dren are nouns, then they became an example in our
data set. If there is a NML node containing the first
two nouns then it is left-branching, otherwise it is
right-branching. Because we are only looking at the
right-most part of the NP, we know that we are not
extracting any nonsensical items. We also remove
all items where the nouns are all part of a named
entity to eliminate flat structure cases.

Statistics about the new data set and Lauer’s data
set are given in Table 4. As can be seen, the Penn
Treebank based corpus is significantly larger, and
has a more even mix of left and right-branching noun
phrases. We also measured the amount of lexical
overlap between the two corpora, shown in Table 5.
This displays the percentage of n-grams in Lauer’s
corpus that are also in our corpus. We can clearly
see that the two corpora are quite dissimilar, as even
on unigrams barely half are shared.

6.2 NP Bracketing Results

With our new data set, we began running experi-
ments similar to those carried out in the literature
(Nakov and Hearst, 2005). We implemented both an
adjacency and dependency model, and three differ-
ent association measures: raw counts, bigram proba-
bility, and ��� . We draw our counts from a corpus of
n-gram counts calculated over 1 trillion words from
the web (Brants and Franz, 2006).

The results from the experiments, on both our and
Lauer’s data set, are shown in Table 6. Our results

ASSOC. MEASURE LAUER PTB

Raw counts, adj. 75.41% 77.46%
Raw counts, dep. 77.05% 68.85%
Probability, adj. 71.31% 76.42%
Probability, dep. 80.33% 69.56%
��� , adj. 71.31% 77.93%
� � , dep. 74.59% 68.92%

Table 6: Bracketing task, unsupervised results

FEATURES LAUER 10-FOLD CROSS

All features 80.74% 89.91% (1.04%)
Lexical 71.31% 84.52% (1.77%)
n-gram counts 75.41% 82.50% (1.49%)
Probability 72.54% 78.34% (2.11%)�	� 75.41% 80.10% (1.71%)
Adjacency model 72.95% 79.52% (1.32%)
Dependency model 78.69% 72.86% (1.48%)
Both models 76.23% 79.67% (1.42%)
-Lexical 79.92% 85.72% (0.77%)
-n-gram counts 80.74% 89.11% (1.39%)
-Probability 79.10% 89.79% (1.22%)
- �	� 80.74% 89.79% (0.98%)
-Adjacency model 81.56% 89.63% (0.96%)
-Dependency model 81.15% 89.72% (0.86%)
-Both models 81.97% 89.63% (0.95%)

Table 7: Bracketing task, supervised results

on Lauer’s corpus are similar to those reported pre-
viously, with the dependency model outperforming
the adjacency model on all measures. The bigram
probability scores highest out of all the measures,
while the � � score performed the worst.

The results on the new corpus are even more sur-
prising, with the adjacency model outperforming the
dependency model by a wide margin. The �
� mea-
sure gives the highest accuracy, but still only just
outperforms the raw counts. Our analysis shows
that the good performance of the adjacency model
comes from the large number of named entities in
the corpus. When we remove all items that have any
word as an entity, the results change, and the de-
pendency model is superior. We also suspect that
another cause of the unusual results is the different
proportions of left and right-branching NPs.

With a large annotated corpus, we can now run
supervised NP bracketing experiments. We present
two configurations in Table 7: training on our corpus
and testing on Lauer’s set; and performing 10-fold
cross validation using our corpus alone.

The feature set we explore encodes the informa-
tion we used in the unsupervised experiments. Ta-
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OVERALL ONLY NML JJP NOT NML JJP
PREC. RECALL F-SCORE PREC. RECALL F-SCORE PREC. RECALL F-SCORE

Original 88.93 88.90 88.92 – – – 88.93 88.90 88.92
NML and JJP bracketed 88.63 88.29 88.46 77.93 62.93 69.63 88.85 88.93 88.89
Relabelled brackets 88.17 87.88 88.02 91.93 51.38 65.91 87.86 88.65 88.25

Table 8: Parsing performance

ble 7 shows the performance with: all features, fol-
lowed by the individual features, and finally, after
removing individual features.

The feature set includes: lexical features for each
n-gram in the noun compound; n-gram counts for
unigrams, bigrams and trigrams; raw probability and
��� association scores for all three bigrams in the
compound; and the adjacency and dependency re-
sults for all three association measures. We dis-
cretised the non-binary features using an implemen-
tation of Fayyad and Irani’s (1993) algorithm, and
classify using MegaM2.

The results on Lauer’s set demonstrate that the
dependency model performs well by itself but not
with the other features. In fact, a better result comes
from using every feature except those from the de-
pendency and adjacency models. It is also impres-
sive how good the performance is, considering the
large differences between our data set and Lauer’s.

These differences also account for the disparate
cross-validation figures. On this data, the lexical fea-
tures perform the best, which is to be expected given
the nature of the corpus. The best model in this case
comes from using all the features.

6.3 Collins Parsing

We can also look at the impact of our new annota-
tions upon full statistical parsing. We use Bikel’s
implementation (Bikel, 2004) of Collins’ parser
(Collins, 1999) in order to carry out these experi-
ments, using the non-deficient Collins settings. The
numbers we give are labelled bracket precision, re-
call and F-scores for all sentences. Bikel mentions
that base-NPs are treated very differently in Collins’
parser, and so it will be interesting to observe the
results using our new annotations.

Firstly, we compare the parser’s performance on
the original Penn Treebank and the new NML and JJP

bracketed version. Table 8 shows that the new brack-
ets make parsing marginally more difficult overall

2Available at http://www.cs.utah.edu/ hal/megam/

(by about 0.5% in F-score).
The performance on only the new NML and JJP

brackets is not very high. This shows the difficulty
of correctly bracketing NPs. Conversely, the figures
for all brackets except NML and JJP are only a tiny
amount less in our extended corpus. This means that
performance for other phrases is hardly changed by
the new NP brackets.

We also ran an experiment where the new NML and
JJP labels were relabelled as NP and ADJP. These
are the labels that would be given if NPs were orig-
inally bracketed with the rest of the Penn Treebank.
This meant the model would not have to discrim-
inate between two different types of noun and ad-
jective structure. The performance, as shown in Ta-
ble 8, was even lower with this approach, suggesting
that the distinction is larger than we anticipated. On
the other hand, the precision on NML and JJP con-
stituents was quite high, so the parser is able to iden-
tify at least some of the structure very well.

7 Conclusion

The work presented in this paper is a first step to-
wards accurate representation of noun phrase struc-
ture in NLP corpora. There are several distinctions
that our annotation currently ignores that we would
like to identify correctly in the future. Firstly, NPs
with genuine flat structure are currently treated as
implicitly right branching. Secondly, there is still
ambiguity in determining the head of a noun phrase.
Although Collins’ head finding rules work in most
NPs, there are cases such as IBM Australia where
the head is not the right-most noun. Similarly, ap-
position is very common in the Penn Treebank, in
NPs such as John Smith , IBM president. We would
like to be able to identify these multi-head constructs
properly, rather than simply treating them as a single
entity (or even worse, as two different entities).

Having the correct NP structure also means that
we can now represent the true structure in CCGbank,
one of the problems we described earlier. Transfer-
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ring our annotations should be fairly simple, requir-
ing just a few changes to how NPs are treated in the
current translation process.

The addition of consistent, gold-standard, noun
phrase structure to a large corpus is a significant
achievement. We have shown that the these anno-
tations can be created in a feasible time frame with
high inter-annotator agreement of 98.52% (measur-
ing exact NP matches). The new brackets cause only
a small drop in parsing performance, and no signifi-
cant decrease on the existing structure. As NEs were
useful for suggesting brackets automatically, we in-
tend to incorporate NE information into statistical
parsing models in the future.

Our annotated corpus can improve the perfor-
mance of any system that relies on NPs from parsers
trained on the Penn Treebank. A Collins’ parser
trained on our corpus is now able to identify sub-
NP brackets, making it of use in other NLP systems.
QA systems, for example, will be able to exploit in-
ternal NP structure. In the future, we will improve
the parser’s performance on NML and JJP brackets.

We have provided a significantly larger corpus
for analysing NP structure than has ever been made
available before. This is integrated within perhaps
the most influential corpus in NLP. The large num-
ber of systems trained on Penn Treebank data can all
benefit from the extended resource we have created.
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Abstract

A key question facing the parsing commu-
nity is how to compare parsers which use
different grammar formalisms and produce
different output. Evaluating a parser on the
same resource used to create it can lead
to non-comparable accuracy scores and an
over-optimistic view of parser performance.
In this paper we evaluate aCCG parser on
DepBank, and demonstrate the difficulties
in converting the parser output into Dep-
Bank grammatical relations. In addition we
present a method for measuring the effec-
tiveness of the conversion, which provides
an upper bound on parsing accuracy. The
CCG parser obtains an F-score of 81.9%
on labelled dependencies, against an upper
bound of 84.8%. We compare theCCG

parser against theRASP parser, outperform-
ing RASPby over 5% overall and on the ma-
jority of dependency types.

1 Introduction

Parsers have been developed for a variety of gram-
mar formalisms, for exampleHPSG (Toutanova et
al., 2002; Malouf and van Noord, 2004),LFG (Ka-
plan et al., 2004; Cahill et al., 2004),TAG (Sarkar
and Joshi, 2003),CCG (Hockenmaier and Steed-
man, 2002; Clark and Curran, 2004b), and variants
of phrase-structure grammar (Briscoe et al., 2006),
including the phrase-structure grammar implicit in
the Penn Treebank (Collins, 2003; Charniak, 2000).
Different parsers produce different output, for ex-

ample phrase structure trees (Collins, 2003), depen-
dency trees (Nivre and Scholz, 2004), grammati-
cal relations (Briscoe et al., 2006), and formalism-
specific dependencies (Clark and Curran, 2004b).
This variety of formalisms and output creates a chal-
lenge for parser evaluation.

The majority of parser evaluations have used test
sets drawn from the same resource used to develop
the parser. This allows the many parsers based on
the Penn Treebank, for example, to be meaningfully
compared. However, there are two drawbacks to this
approach. First, parser evaluations using different
resources cannot be compared; for example, the Par-
seval scores obtained by Penn Treebank parsers can-
not be compared with the dependency F-scores ob-
tained by evaluating on the Parc Dependency Bank.
Second, using the same resource for development
and testing can lead to an over-optimistic view of
parser performance.

In this paper we evaluate aCCG parser (Clark
and Curran, 2004b) on the Briscoe and Carroll ver-
sion of DepBank (Briscoe and Carroll, 2006). The
CCG parser produces head-dependency relations, so
evaluating the parser should simply be a matter of
converting theCCG dependencies into those in Dep-
Bank. Such conversions have been performed for
other parsers, including parsers producing phrase
structure output (Kaplan et al., 2004; Preiss, 2003).
However, we found that performing such a conver-
sion is a time-consuming and non-trivial task.

The contributions of this paper are as follows.
First, we demonstrate the considerable difficulties
associated with formalism-independent parser eval-
uation, highlighting the problems in converting the
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output of a parser from one representation to an-
other. Second, we develop a method for measur-
ing how effective the conversion process is, which
also provides an upper bound for the performance of
the parser, given the conversion process being used;
this method can be adapted by other researchers
to strengthen their own parser comparisons. And
third, we provide the first evaluation of a wide-
coverageCCGparser outside of CCGbank, obtaining
impressive results on DepBank and outperforming
the RASP parser (Briscoe et al., 2006) by over 5%
overall and on the majority of dependency types.

2 Previous Work

The most common form of parser evaluation is to ap-
ply the Parseval metrics to phrase-structure parsers
based on the Penn Treebank, and the highest re-
ported scores are now over 90% (Bod, 2003; Char-
niak and Johnson, 2005). However, it is unclear
whether these high scores accurately reflect the per-
formance of parsers in applications. It has been ar-
gued that the Parseval metrics are too forgiving and
that phrase structure is not the ideal representation
for a gold standard (Carroll et al., 1998). Also, us-
ing the same resource for training and testing may
result in the parser learning systematic errors which
are present in both the training and testing mate-
rial. An example of this is from CCGbank (Hock-
enmaier, 2003), where all modifiers in noun-noun
compound constructions modify the final noun (be-
cause the Penn Treebank, from which CCGbank is
derived, does not contain the necessary information
to obtain the correct bracketing). Thus there are non-
negligible, systematic errors in both the training and
testing material, and theCCG parsers are being re-
warded for following particular mistakes.

There are parser evaluation suites which have
been designed to be formalism-independent and
which have been carefully and manually corrected.
Carroll et al. (1998) describe such a suite, consisting
of sentences taken from the Susanne corpus, anno-
tated with Grammatical Relations (GRs) which spec-
ify the syntactic relation between a head and depen-
dent. Thus all that is required to use such a scheme,
in theory, is that the parser being evaluated is able
to identify heads. A similar resource — the Parc
Dependency Bank (DepBank) (King et al., 2003)

— has been created using sentences from the Penn
Treebank. Briscoe and Carroll (2006) reannotated
this resource using theirGRs scheme, and used it to
evaluate theRASPparser.

Kaplan et al. (2004) compare the Collins (2003)
parser with the ParcLFG parser by mappingLFG F-
structures and Penn Treebank parses into DepBank
dependencies, claiming that theLFG parser is con-
siderably more accurate with only a slight reduc-
tion in speed. Preiss (2003) compares the parsers of
Collins (2003) and Charniak (2000), theGR finder
of Buchholz et al. (1999), and theRASP parser, us-
ing the Carroll et al. (1998) gold-standard. The Penn
Treebank trees of the Collins and Charniak parsers,
and theGRs of the Buchholz parser, are mapped into
the requiredGRs, with the result that theGR finder
of Buchholz is the most accurate.

The major weakness of these evaluations is that
there is no measure of the difficultly of the conver-
sion process for each of the parsers. Kaplan et al.
(2004) clearly invested considerable time and ex-
pertise in mapping the output of the Collins parser
into the DepBank dependencies, but they also note
that “This conversion was relatively straightforward
for LFG structures. . . However, a certain amount of
skill and intuition was required to provide a fair con-
version of the Collins trees”. Without some measure
of the difficulty — and effectiveness — of the con-
version, there remains a suspicion that the Collins
parser is being unfairly penalised.

One way of providing such a measure is to con-
vert the original gold standard on which the parser
is based and evaluate that against the new gold stan-
dard (assuming the two resources are based on the
same corpus). In the case of Kaplan et al. (2004), the
testing procedure would include running their con-
version process on Section 23 of the Penn Treebank
and evaluating the output against DepBank. As well
as providing some measure of the effectiveness of
the conversion, this method would also provide an
upper bound for the Collins parser, giving the score
that a perfect Penn Treebank parser would obtain on
DepBank (given the conversion process).

We perform such an evaluation for theCCGparser,
with the surprising result that the upper bound on
DepBank is only 84.8%, despite the considerable ef-
fort invested in developing the conversion process.
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3 The CCG Parser

Clark and Curran (2004b) describes theCCG parser
used for the evaluation. The grammar used by the
parser is extracted from CCGbank, aCCGversion of
the Penn Treebank (Hockenmaier, 2003). The gram-
mar consists of 425 lexical categories — expressing
subcategorisation information — plus a small num-
ber of combinatory rules which combine the cate-
gories (Steedman, 2000). A supertagger first assigns
lexical categories to the words in a sentence, which
are then combined by the parser using the combi-
natory rules and theCKY algorithm. A log-linear
model scores the alternative parses. We use the
normal-form model, which assigns probabilities to
single derivations based on the normal-form deriva-
tions in CCGbank. The features in the model are
defined over local parts of the derivation and include
word-word dependencies. A packed chart represen-
tation allows efficient decoding, with the Viterbi al-
gorithm finding the most probable derivation.

The parser outputs predicate-argument dependen-
cies defined in terms ofCCG lexical categories.
More formally, a CCG predicate-argument depen-
dency is a 5-tuple:〈hf , f, s, ha, l〉, wherehf is the
lexical item of the lexical category expressing the
dependency relation;f is the lexical category;s is
the argument slot;ha is the head word of the ar-
gument; andl encodes whether the dependency is
long-range. For example, the dependency encoding
companyas the object ofbought(as inIBM bought
the company) is represented as follows:

〈bought, (S\NP1 )/NP2 , 2, company, −〉 (1)

The lexical category(S\NP1 )/NP2 is the cate-
gory of a transitive verb, with the first argument slot
corresponding to the subject, and the second argu-
ment slot corresponding to the direct object. The
final field indicates the nature of any long-range de-
pendency; in (1) the dependency is local.

The predicate-argument dependencies — includ-
ing long-range dependencies — are encoded in the
lexicon by adding head and dependency annota-
tion to the lexical categories. For example, the
expanded category for the control verbpersuade
is (((S [dcl]persuade\NP 1)/(S [to]2\NP X))/NP X,3). Nu-
merical subscripts on the argument categories rep-
resent dependency relations; the head of the final

declarative sentence ispersuade; and the head of the
infinitival complement’s subject is identified with
the head of the object, using the variableX, as in
standard unification-based accounts of control.

Previous evaluations ofCCGparsers have used the
predicate-argument dependencies from CCGbank as
a test set (Hockenmaier and Steedman, 2002; Clark
and Curran, 2004b), with impressive results of over
84% F-score on labelled dependencies. In this paper
we reinforce the earlier results with the first evalua-
tion of aCCG parser outside of CCGbank.

4 Dependency Conversion to DepBank

For the gold standard we chose the version of Dep-
Bank reannotated by Briscoe and Carroll (2006),
consisting of 700 sentences from Section 23 of the
Penn Treebank. TheB& C scheme is similar to the
original DepBank scheme (King et al., 2003), but
overall contains less grammatical detail; Briscoe and
Carroll (2006) describes the differences. We chose
this resource for the following reasons: it is pub-
licly available, allowing other researchers to com-
pare against our results; theGRs making up the an-
notation share some similarities with the predicate-
argument dependencies output by theCCG parser;
and we can directly compare our parser against a
non-CCG parser, namely theRASPparser. We chose
not to use the corpus based on the Susanne corpus
(Carroll et al., 1998) because theGRs are less like
the CCG dependencies; the corpus is not based on
the Penn Treebank, making comparison more diffi-
cult because of tokenisation differences, for exam-
ple; and the latest results forRASPare on DepBank.

The GRs are described in Briscoe and Carroll
(2006) and Briscoe et al. (2006). Table 1 lists the
GRs used in the evaluation. As an example, the sen-
tenceThe parent sold Imperialproduces threeGRs:
(det parent The) , (ncsubj sold parent ) and
(dobj sold Imperial) . Note that someGRs — in
this examplencsubj — have asubtype slot, giving
extra information. The subtype slot forncsubj is
used to indicate passive subjects, with the null value
“ ” for active subjects andobj for passive subjects.
Other subtype slots are discussed in Section 4.2.

The CCG dependencies were transformed into
GRs in two stages. The first stage was to create
a mapping between theCCG dependencies and the
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GR description
conj coordinator
aux auxiliary
det determiner
ncmod non-clausal modifier
xmod unsaturated predicative modifier
cmod saturated clausal modifier
pmod PP modifier with a PP complement
ncsubj non-clausal subject
xsubj unsaturated predicative subject
csubj saturated clausal subject
dobj direct object
obj2 second object
iobj indirect object
pcomp PP which is a PP complement
xcomp unsaturated VP complement
ccomp saturated clausal complement
ta textual adjunct delimited by punctuation

Table 1:GRs in B& C’s annotation of DepBank

GRs. This involved mapping each argument slot in
the 425 lexical categories in theCCG lexicon onto
a GR. In the second stage, theGRs created from the
parser output were post-processed to correct some of
the obvious remaining differences between theCCG

andGR representations.
In the process of performing the transformation

we encountered a methodological problem: with-
out looking at examples it was difficult to create
the mapping and impossible to know whether the
two representations were converging. Briscoe et al.
(2006) split the 700 sentences in DepBank into a test
and development set, but the latter only consists of
140 sentences which was not enough to reliably cre-
ate the transformation. There are some development
files in theRASP release which provide examples of
the GRs, which were used when possible, but these
only cover a subset of theCCG lexical categories.

Our solution to this problem was to convert the
gold standard dependencies from CCGbank into
GRs and use these to develop the transformation. So
we did inspect the annotation in DepBank, and com-
pared it to the transformedCCG dependencies, but
only thegold-standardCCG dependencies. Thus the
parser output was never used during this process.
We also ensured that the dependency mapping and
the post processing are general to theGRs scheme
and not specific to the test set or parser.

4.1 Mapping the CCG dependencies toGRs

Table 2 gives some examples of the mapping;%l in-
dicates the word associated with the lexical category

CCG lexical category slotGR

(S [dcl ]\NP1 )/NP2 1 (ncsubj %l %f )
(S [dcl ]\NP1 )/NP2 2 (dobj %l %f)
(S\NP)/(S\NP)1 1 (ncmod %f %l)
(NP\NP1 )/NP2 1 (ncmod %f %l)
(NP\NP1 )/NP2 2 (dobj %l %f)
NP [nb]/N1 1 (det %f %l)
(NP\NP1 )/(S [pss]\NP)2 1 (xmod %f %l)
(NP\NP1 )/(S [pss]\NP)2 2 (xcomp %l %f)
((S\NP)\(S\NP)1 )/S [dcl ]2 1 (cmod %f %l)
((S\NP)\(S\NP)1 )/S [dcl ]2 2 (ccomp %l %f)
((S [dcl ]\NP1 )/NP2 )/NP3 2 (obj2 %l %f)
(S [dcl ]\NP1 )/(S [b]\NP)2 2 (aux %f %l)

Table 2: Examples of the dependency mapping

and%f is the head of the constituent filling the argu-
ment slot. Note that the order of%l and%f varies ac-
cording to whether theGR represents a complement
or modifier, in line with the Briscoe and Carroll an-
notation. For many of theCCG dependencies, the
mapping intoGRs is straightforward. For example,
the first two rows of Table 2 show the mapping for
the transitive verb category(S [dcl ]\NP1 )/NP2 : ar-
gument slot 1 is a non-clausal subject and argument
slot 2 is a direct object.

Creating the dependency transformation is more
difficult than these examples suggest. The first prob-
lem is that the mapping fromCCG dependencies to
GRs is many-to-many. For example, the transitive
verb category(S [dcl ]\NP)/NP applies to the cop-
ula in sentences likeImperial Corp. is the parent
of Imperial Savings & Loan. With the default anno-
tation, the relation betweenis andparentwould be
dobj , whereas in DepBank the argument of the cop-
ula is analysed as anxcomp. Table 3 gives some ex-
amples of how we attempt to deal with this problem.
The constraint in the first example means that, when-
ever the word associated with the transitive verb cat-
egory is a form ofbe, the second argument isxcomp,
otherwise the default case applies (in this casedobj ).
There are a number of categories with similar con-
straints, checking whether the word associated with
the category is a form ofbe.

The second type of constraint, shown in the third
line of the table, checks the lexical category of the
word filling the argument slot. In this example, if the
lexical category of the preposition isPP/NP , then
the second argument of(S [dcl ]\NP)/PP maps to
iobj ; thus in The loss stems from several fac-
tors the relation between the verb and preposition
is (iobj stems from) . If the lexical category of
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CCG lexical category slotGR constraint example
(S [dcl ]\NP1 )/NP2 2 (xcomp %l %f) word=be The parentis Imperial

(dobj %l %f) The parentsold Imperial
(S [dcl ]\NP1 )/PP2 2 (iobj %l %f) cat=PP/NP The lossstems fromseveral factors

(xcomp %l %f) cat=PP/(S [ng ]\NP) The futuredepends onbuilding ties
(S [dcl ]\NP1 )/(S [to]\NP)2 2 (xcomp %f %l %k) cat=(S [to]\NP)/(S [b]\NP) wants to weanitself away from

Table 3: Examples of the many-to-many nature of theCCG dependency toGRs mapping, and a ternaryGR

the preposition isPP/(S [ng ]\NP), then theGR

is xcomp; thus in The future depends on building
ties the relation between the verb and preposition
is (xcomp depends on) . There are a number of
CCG dependencies with similar constraints, many of
them covering theiobj /xcomp distinction.

The second difficulty is that not all theGRs are bi-
nary relations, whereas theCCGdependencies are all
binary. The primary example of this is to-infinitival
constructions. For example, in the sentenceThe
company wants to wean itself away from expensive
gimmicks, the CCG parser produces two dependen-
cies relatingwants, to and wean, whereas there is
only one GR: (xcomp to wants wean) . The fi-
nal row of Table 3 gives an example. We im-
plement this constraint by introducing a%k vari-
able into theGR template which denotes the ar-
gument of the category in the constraint column
(which, as before, is the lexical category of the
word filling the argument slot). In the example, the
current category is(S [dcl ]\NP1 )/(S [to]\NP)2 ,
which is associated withwants; this combines with
(S [to]\NP)/(S [b]\NP), associated withto; and
the argument of(S [to]\NP)/(S [b]\NP) is wean.
The %k variable allows us to look beyond the argu-
ments of the current category when creating theGRs.

A further difficulty is that the head passing con-
ventions differ between DepBank and CCGbank. By
head passingwe mean the mechanism which de-
termines the heads of constituents and the mecha-
nism by which words become arguments of long-
range dependencies. For example, in the sentence
The group said it would consider withholding roy-
alty payments, the DepBank and CCGbank annota-
tions create a dependency betweensaidand the fol-
lowing clause. However, in DepBank the relation
is betweensaidandconsider, whereas in CCGbank
the relation is betweensaidandwould. We fixed this
problem by defining the head ofwould considerto
be considerrather thanwould, by changing the an-
notation of all the relevant lexical categories in the

CCG lexicon (mainly those creatingaux relations).
There are more subject relations in CCGbank than

DepBank. In the previous example, CCGbank has a
subject relation betweenit andconsider, and alsoit
andwould, whereas DepBank only has the relation
betweenit andconsider. In practice this means ig-
noring a number of the subject dependencies output
by theCCG parser.

Another example where the dependencies differ
is the treatment of relative pronouns. For example,
in Sen. Mitchell, who had proposed the streamlin-
ing, the subject ofproposedis Mitchell in CCGbank
but who in DepBank. Again, we implemented this
change by fixing the head annotation in the lexical
categories which apply to relative pronouns.

4.2 Post processing of theGR output

To obtain some idea of whether the schemes were
converging, we performed the following oracle ex-
periment. We took theCCG derivations from
CCGbank corresponding to the sentences in Dep-
Bank, and forced the parser to produce gold-
standard derivations, outputting the newly created
GRs. Treating the DepBankGRs as a gold-standard,
and comparing these with the CCGbankGRs, gave
precision and recall scores of only 76.23% and
79.56% respectively (using theRASP evaluation
tool). Thus given the current mapping, the perfect
CCGbank parser would achieve an F-score of only
77.86% when evaluated against DepBank.

On inspecting the output, it was clear that a
number of general rules could be applied to bring
the schemes closer together, which was imple-
mented as a post-processing script. The first set
of changes deals with coordination. One sig-
nificant difference between DepBank and CCG-
bank is the treatment of coordinations as argu-
ments. Consider the exampleThe president and
chief executive officer said the loss stems from sev-
eral factors. For both DepBank and the trans-
formed CCGbank there are twoconj GRs arising
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from the coordination:(conj and president) and
(conj and officer) . The difference arises in the
subject of said: in DepBank the subject isand:
(ncsubj said and ) , whereas in CCGbank there
are two subjects:(ncsubj said president ) and
(ncsubj said officer ) . We deal with this dif-
ference by replacing any pairs ofGRs which differ
only in their arguments, and where the arguments
are coordinated items, with a singleGR containing
the coordination term as the argument.

Ampersands are a frequently occurring problem
in WSJ text. For example, the CCGbank analysis
of Standard & Poor’s indexassigns the lexical cat-
egoryN /N to bothStandardand& , treating them
as modifiers ofPoor, whereas DepBank treats& as
a coordinating term. We fixed this by creatingconj

GRs between any& and the two words either side;
removing the modifierGR between the two words;
and replacing anyGRs in which the words either side
of the& are arguments with a singleGR in which&
is the argument.

The ta relation, which identifies text adjuncts de-
limited by punctuation, is difficult to assign cor-
rectly to the parser output. The simple punctuation
rules used by the parser do not contain enough in-
formation to distinguish between the various cases
of ta . Thus the only rule we have implemented,
which is somewhat specific to the newspaper genre,
is to replaceGRs of the form (cmod say arg)

with (ta quote arg say) , wheresay can be any
of say, saidor says. This rule applies to only a small
subset of theta cases but has high enough precision
to be worthy of inclusion.

A common source of error is the distinction be-
tweeniobj andncmod, which is not surprising given
the difficulty that human annotators have in distin-
guishing arguments and adjuncts. There are many
cases where an argument in DepBank is an adjunct
in CCGbank, and vice versa. The only change we
have made is to turn allncmod GRs with of as the
modifier into iobj GRs (unless thencmod is a par-
titive predeterminer). This was found to have high
precision and applies to a large number of cases.

There are some dependencies in CCGbank which
do not appear in DepBank. Examples include any
dependencies in which a punctuation mark is one of
the arguments; these were removed from the output.

We attempt to fill the subtype slot for someGRs.

The subtype slot specifies additional information
about theGR; examples include the valueobj in a
passivencsubj , indicating that the subject is an un-
derlying object; the valuenum in ncmod, indicating a
numerical quantity; andprt in ncmod to indicate a
verb particle. The passive case is identified as fol-
lows: any lexical category which startsS [pss]\NP
indicates a passive verb, and we also mark any verbs
POS taggedVBN and assigned the lexical category
N /N as passive. Both these rules have high preci-
sion, but still leave many of the cases in DepBank
unidentified. The numerical case is identified using
two rules: thenum subtype is added if any argument
in a GR is assigned the lexical categoryN /N [num],
and if any of the arguments in anncmod is POS

taggedCD. prt is added to anncmod if the modi-
fiee has any of the verbPOStags and if the modifier
hasPOStagRP.

The final columns of Table 4 show the accuracy
of the transformed gold-standard CCGbank depen-
dencies when compared with DepBank; the sim-
ple post-processing rules have increased the F-score
from 77.86% to 84.76%. This F-score is anupper
boundon the performance of theCCG parser.

5 Results

The results in Table 4 were obtained by parsing the
sentences from CCGbank corresponding to those
in the 560-sentence test set used by Briscoe et al.
(2006). We used the CCGbank sentences because
these differ in some ways to the original Penn Tree-
bank sentences (there are no quotation marks in
CCGbank, for example) and the parser has been
trained on CCGbank. Even here we experienced
some unexpected difficulties, since some of the to-
kenisation is different between DepBank and CCG-
bank and there are some sentences in DepBank
which have been significantly shortened compared
to the original Penn Treebank sentences. We mod-
ified the CCGbank sentences — and the CCGbank
analyses since these were used for the oracle ex-
periments — to be as close to the DepBank sen-
tences as possible. All the results were obtained us-
ing theRASP evaluation scripts, with the results for
the RASP parser taken from Briscoe et al. (2006).
The results for CCGbank were obtained using the
oracle method described above.
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RASP CCGparser CCGbank
Relation Prec Rec F Prec Rec F Prec Rec F #GRs
aux 93.33 91.00 92.15 94.20 89.25 91.66 96.47 90.33 93.30 400
conj 72.39 72.27 72.33 79.73 77.9878.84 83.07 80.27 81.65 595
ta 42.61 51.37 46.58 52.31 11.64 19.05 62.07 12.59 20.93 292
det 87.73 90.48 89.09 95.25 95.4295.34 97.27 94.09 95.66 1 114
ncmod 75.72 69.94 72.72 75.75 79.2777.47 78.88 80.64 79.75 3 550
xmod 53.21 46.63 49.70 43.46 52.25 47.45 56.54 60.67 58.54 178
cmod 45.95 30.36 36.56 51.50 61.3155.98 64.77 69.09 66.86 168
pmod 30.77 33.33 32.00 0.00 0.00 0.00 0.00 0.00 0.00 12
ncsubj 79.16 67.06 72.61 83.92 75.9279.72 88.86 78.51 83.37 1 354
xsubj 33.33 28.57 30.77 0.00 0.00 0.00 50.00 28.57 36.36 7
csubj 12.50 50.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00 2
dobj 83.63 79.08 81.29 87.03 89.4088.20 92.11 90.32 91.21 1 764
obj2 23.08 30.00 26.09 65.00 65.0065.00 66.67 60.00 63.16 20
iobj 70.77 76.10 73.34 77.60 70.0473.62 83.59 69.81 76.08 544
xcomp 76.88 77.69 77.28 76.68 77.69 77.18 80.00 78.49 79.24 381
ccomp 46.44 69.42 55.55 79.55 72.1675.68 80.81 76.31 78.49 291
pcomp 72.73 66.67 69.57 0.00 0.00 0.00 0.00 0.00 0.00 24

macroaverage 62.12 63.77 62.94 65.61 63.2864.43 71.73 65.85 68.67
microaverage 77.66 74.98 76.29 82.44 81.2881.86 86.86 82.75 84.76

Table 4: Accuracy on DepBank. F-score is the balanced harmonic mean of precision (P ) and recall (R):
2PR/(P +R). # GRs is the number ofGRs in DepBank.

The CCG parser results are based on automati-
cally assignedPOS tags, using the Curran and Clark
(2003) tagger. The coverage of the parser on Dep-
Bank is 100%. For aGR in the parser output to be
correct, it has to match the gold-standardGR exactly,
including any subtype slots; however, it is possible
for a GR to be incorrect at one level but correct at
a subsuming level.1 For example, if anncmod GR is
incorrectly labelled withxmod, but is otherwise cor-
rect, it will be correct for all levels which subsume
bothncmod andxmod, for examplemod. The micro-
averaged scores are calculated by aggregating the
counts for all the relations in the hierarchy, including
the subsuming relations; the macro-averaged scores
are the mean of the individual scores for each rela-
tion (Briscoe et al., 2006).

The results show that the performance of theCCG

parser is higher thanRASP overall, and also higher
on the majority ofGR types (especially the more
frequent types).RASP uses an unlexicalised pars-
ing model and has not been tuned to newspaper text.
On the other hand it has had many years of develop-
ment; thus it provides a strong baseline for this test
set. The overall F-score for theCCG parser, 81.86%,
is only 3 points below that for CCGbank, which pro-

1TheGRs are arranged in a hierarchy, with those in Table 1 at
the leaves; a small number of more generalGRs subsume these
(Briscoe and Carroll, 2006).

vides an upper bound for theCCG parser (given the
conversion process being used).

6 Conclusion

A contribution of this paper has been to high-
light the difficulties associated with cross-formalism
parser comparison. Note that the difficulties are not
unique toCCG, and many would apply to any cross-
formalism comparison, especially with parsers using
automatically extracted grammars. Parser evalua-
tion has improved on the original Parseval measures
(Carroll et al., 1998), but the challenge remains to
develop a representation and evaluation suite which
can be easily applied to a wide variety of parsers
and formalisms. Despite the difficulties, we have
given the first evaluation of aCCG parser outside of
CCGbank, outperforming theRASP parser by over
5% overall and on the majority of dependency types.

Can theCCG parser be compared with parsers
other thanRASP? Briscoe and Carroll (2006) give a
rough comparison ofRASPwith the ParcLFG parser
on the different versions of DepBank, obtaining sim-
ilar results overall, but they acknowledge that the re-
sults are not strictly comparable because of the dif-
ferent annotation schemes used. Comparison with
Penn Treebank parsers would be difficult because,
for many constructions, the Penn Treebank trees and
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CCG derivations are different shapes, and reversing
the mapping Hockenmaier used to create CCGbank
would be very difficult. Hence we challenge other
parser developers to map their own parse output into
the version of DepBank used here.

One aspect of parser evaluation not covered in this
paper is efficiency. TheCCG parser took only 22.6
seconds to parse the 560 sentences in DepBank, with
the accuracy given earlier. Using a cluster of 18 ma-
chines we have also parsed the entire Gigaword cor-
pus in less than five days. Hence, we conclude that
accurate, large-scale, linguistically-motivatedNLP is
now practical withCCG.
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Abstract

We describe an approach to domain adapta-
tion that is appropriate exactly in the case
when one has enough “target” data to do
slightly better than just using only “source”
data. Our approach is incredibly simple,
easy to implement as a preprocessing step
(10 lines of Perl!) and outperforms state-
of-the-art approaches on a range of datasets.
Moreover, it is trivially extended to a multi-
domain adaptation problem, where one has
data from a variety of different domains.

1 Introduction

The task of domain adaptation is to develop learn-
ing algorithms that can be easily ported from one
domain to another—say, from newswire to biomed-
ical documents. This problem is particularly inter-
esting in NLP because we are often in the situation
that we have a large collection of labeled data in one
“source” domain (say, newswire) but truly desire a
model that performs well in a second “target” do-
main. The approach we present in this paper is based
on the idea of transforming the domain adaptation
learning problem into a standard supervised learn-
ing problem to which any standard algorithm may
be applied (eg., maxent, SVMs, etc.). Our transfor-
mation is incredibly simple: we augment the feature
space of both the source and target data and use the
result as input to a standard learning algorithm.

There are roughly two varieties of the domain
adaptation problem that have been addressed in the
literature: the fully supervised case and the semi-

supervised case. The fully supervised case mod-
els the following scenario. We have access to a
large, annotated corpus of data from a source do-
main. In addition, we spend a little money to anno-
tate a small corpus in the target domain. We want to
leverage both annotated datasets to obtain a model
that performs well on the target domain. The semi-
supervised case is similar, but instead of having a
small annotated target corpus, we have a large but
unannotatedtarget corpus. In this paper, we focus
exclusively on the fully supervised case.

One particularly nice property of our approach
is that it is incredibly easy to implement: the Ap-
pendix provides a10 line, 194 character Perl script
for performing the complete transformation (avail-
able athttp://hal3.name/easyadapt.pl.gz). In
addition to this simplicity, our algorithm performs as
well as (or, in some cases, better than) current state
of the art techniques.

2 Problem Formalization and Prior Work

To facilitate discussion, we first introduce some no-
tation. Denote byX the input space (typically either
a real vector or a binary vector), and byY the output
space. We will writeDs to denote the distribution
over source examples andDt to denote the distri-
bution over target examples. We assume access to
a samplesDs ∼ Ds of source examples from the
source domain, and samplesDt ∼ Dt of target ex-
amples from the target domain. We will assume that
Ds is a collection ofN examples andDt is a col-
lection ofM examples (where, typically,N ≫ M ).
Our goal is to learn a functionh : X → Y with
low expected loss with respect to the target domain.
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For the purposes of discussion, we will suppose that
X = R

F and thatY = {−1, +1}. However, most
of the techniques described in this section (as well
as our own technique) are more general.

There are several “obvious” ways to attack the
domain adaptation problem without developing new
algorithms. Many of these are presented and evalu-
ated by Dauḿe III and Marcu (2006).

The SRCONLY baseline ignores the target data and
trains a single model, only on the source data.

The TGTONLY baseline trains a single model only
on the target data.

The ALL baseline simply trains a standard learning
algorithm on the union of the two datasets.

A potential problem with the ALL baseline is that
if N ≫ M , thenDs may “wash out” any affect
Dt might have. We will discuss this problem in
more detail later, but one potential solution is
to re-weight examples fromDs. For instance,
if N = 10×M , we may weight each example
from the source domain by0.1. The next base-
line, WEIGHTED, is exactly this approach, with
the weight chosen by cross-validation.

The PRED baseline is based on the idea of using
the output of the source classifier as a feature in
the target classifier. Specifically, we first train a
SRCONLY model. Then we run the SRCONLY

model on the target data (training, development
and test). We use the predictions made by
the SRCONLY model as additional features and
train a second model on the target data, aug-
mented with this new feature.

In the LIN INT baseline, we linearly interpolate
the predictions of the SRCONLY and the TG-
TONLY models. The interpolation parameter is
adjusted based on target development data.

These baselines are actually surprisingly difficult
to beat. To date, there are two models that have
successfully defeated them on a handful of datasets.
The first model, which we shall refer to as the PRIOR

model, was first introduced by Chelba and Acero
(2004). The idea of this model is to use the SR-
CONLY model as aprior on the weights for a sec-
ond model, trained on the target data. Chelba and
Acero (2004) describe this approach within the con-
text of a maximum entropy classifier, but the idea

is more general. In particular, for many learning
algorithms (maxent, SVMs, averaged perceptron,
naive Bayes, etc.), oneregularizesthe weight vec-
tor toward zero. In other words, all of these algo-
rithms contain a regularization term on the weights
w of the formλ ||w||22. In the generalized PRIOR

model, we simply replace this regularization term
with λ ||w −w

s||22, wherew
s is the weight vector

learned in the SRCONLY model.1 In this way, the
model trained on the target data “prefers” to have
weights that are similar to the weights from the SR-
CONLY model, unless the data demands otherwise.
Dauḿe III and Marcu (2006) provide empirical evi-
dence on four datasets that the PRIOR model outper-
forms the baseline approaches.

More recently, Dauḿe III and Marcu (2006) pre-
sented an algorithm for domain adaptation for max-
imum entropy classifiers. The key idea of their ap-
proach is to learnthreeseparate models. One model
captures “source specific” information, one captures
“target specific” information and one captures “gen-
eral” information. The distinction between these
three sorts of information is made on aper-example
basis. In this way, each source example is consid-
ered either source specific or general, while each
target example is considered either target specific or
general. Dauḿe III and Marcu (2006) present an EM
algorithm for training their model. This model con-
sistently outperformed all the baseline approaches
as well as the PRIOR model. Unfortunately, despite
the empirical success of this algorithm, it is quite
complex to implement and is roughly10 to 15 times
slower than training the PRIOR model.

3 Adaptation by Feature Augmentation

In this section, we describe our approach to the do-
main adaptation problem. Essentially, all we are go-
ing to do is take each feature in the original problem
and make three versions of it: a general version, a
source-specific version and a target-specific version.
The augmented source data will contain only general
and source-specific versions. The augmented target

1For the maximum entropy, SVM and naive Bayes learn-
ing algorithms, modifying the regularization term is simple be-
cause it appears explicitly. For the perceptron algorithm, one
can obtain an equivalent regularization by performing standard
perceptron updates, but using(w + w

s)⊤x for making predic-
tions rather than simplyw⊤x.
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data contains general and target-specific versions.
To state this more formally, first recall the nota-

tion from Section 2:X and Y are the input and
output spaces, respectively;Ds is the source do-
main data set andDt is the target domain data set.
Suppose for simplicity thatX = R

F for some
F > 0. We will define our augmented input space
by X̆ = R

3F . Then, define mappingsΦs, Φt :
X → X̆ for mapping the source and target data
respectively. These are defined by Eq (1), where
0 = 〈0, 0, . . . , 0〉 ∈ R

F is the zero vector.

Φs(x) = 〈x, x,0〉, Φt(x) = 〈x,0, x〉 (1)

Before we proceed with a formal analysis of this
transformation, let us consider why it might be ex-
pected to work. Suppose our task is part of speech
tagging, our source domain is the Wall Street Journal
and our target domain is a collection of reviews of
computer hardware. Here, a word like “the” should
be tagged as a determiner in both cases. However,
a word like “monitor” is more likely to be a verb
in the WSJ and more likely to be a noun in the hard-
ware corpus. Consider a simple case whereX = R

2,
wherex1 indicates if the word is “the” andx2 indi-
cates if the word is “monitor.” Then, in̆X , x̆1 andx̆2

will be “general” versions of the two indicator func-
tions,x̆3 andx̆4 will be source-specific versions, and
x̆5 andx̆6 will be target-specific versions.

Now, consider what a learning algorithm could do
to capture the fact that the appropriate tag for “the”
remains constant across the domains, and the tag
for “monitor” changes. In this case, the model can
set the “determiner” weight vector to something like
〈1, 0, 0, 0, 0, 0〉. This places high weight on the com-
mon version of “the” and indicates that “the” is most
likely a determiner, regardless of the domain. On
the other hand, the weight vector for “noun” might
look something like〈0, 0, 0, 0, 0, 1〉, indicating that
the word “monitor” is a nounonly in the target do-
main. Similar, the weight vector for “verb” might
look like 〈0, 0, 0, 1, 0, 0〉, indicating the “monitor” is
a verbonly in the source domain.

Note that this expansion is actually redundant.
We could equally well useΦs(x) = 〈x, x〉 and
Φt(x) = 〈x,0〉. However, it turns out that it is eas-
ier to analyze the first case, so we will stick with

that. Moreover, the first case has the nice property
that it is straightforward to generalize it to the multi-
domain adaptation problem: when there are more
than two domains. In general, forK domains, the
augmented feature space will consist ofK+1 copies
of the original feature space.

3.1 A Kernelized Version

It is straightforward to derive a kernelized version of
the above approach. We do not exploit this property
in our experiments—all are conducted with a simple
linear kernel. However, by deriving the kernelized
version, we gain some insight into the method. For
this reason, we sketch the derivation here.

Suppose that the data pointsx are drawn from a
reproducing kernel Hilbert spaceX with kernelK :
X × X → R, with K positive semi-definite. Then,
K can be written as the dot product (inX ) of two
(perhaps infinite-dimensional) vectors:K(x, x′) =
〈Φ(x), Φ(x′)〉X . DefineΦs andΦt in terms ofΦ, as:

Φs(x) = 〈Φ(x), Φ(x),0〉 (2)

Φt(x) = 〈Φ(x),0, Φ(x)〉

Now, we can compute the kernel product be-
tweenΦs andΦt in the expanded RKHS by mak-
ing use of the original kernelK. We denote the ex-
panded kernel by̆K(x, x′). It is simplest to first de-
scribeK̆(x, x′) when x and x′ are from the same
domain, then analyze the case when the domain
differs. When the domain is the same, we get:
K̆(x, x′) = 〈Φ(x), Φ(x′)〉X + 〈Φ(x), Φ(x′)〉X =
2K(x, x′). When they are from different domains,
we get: K̆(x, x′) = 〈Φ(x), Φ(x′)〉X = K(x, x′).
Putting this together, we have:

K̆(x, x′) =

{

2K(x, x′) same domain
K(x, x′) diff. domain

(3)

This is an intuitively pleasing result. What it
says is that—considering the kernel as a measure
of similarity—data points from the same domain are
“by default” twice as similar as those from differ-
ent domains. Loosely speaking, this means that data
points from the target domain have twice as much
influence as source points when making predictions
about test target data.
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3.2 Analysis

We first note an obvious property of the feature-
augmentation approach. Namely, it does not make
learning harder, in a minimum Bayes error sense. A
more interesting statement would be that it makes
learningeasier, along the lines of the result of (Ben-
David et al., 2006) — note, however, that their re-
sults are for the “semi-supervised” domain adapta-
tion problem and so do not apply directly. As yet,
we do not know a proper formalism in which to an-
alyze the fully supervised case.

It turns out that the feature-augmentation method
is remarkably similar to the PRIOR model2. Sup-
pose we learn feature-augmented weights in a clas-
sifier regularized by anℓ2 norm (eg., SVMs, maxi-
mum entropy). We can denote byws the sum of the
“source” and “general” components of the learned
weight vector, and bywt the sum of the “target” and
“general” components, so thatws andwt are the pre-
dictive weights for each task. Then, the regulariza-
tion condition on the entire weight vector is approx-
imately ||wg||

2 + ||ws − wg||
2 + ||wt − wg||

2, with
free parameterwg which can be chosen to minimize
this sum. This leads to a regularizer proportional to
||ws − wt||

2, akin to the PRIOR model.
Given this similarity between the feature-

augmentation method and the PRIOR model, one
might wonder why we expect our approach to do
better. Our belief is that this occurs because we op-
timizews andwt jointly, not sequentially. First, this
means that we do not need to cross-validate to es-
timate good hyperparameters for each task (though
in our experiments, we do not use any hyperparam-
eters). Second, and more importantly, this means
that the single supervised learning algorithm that
is run is allowed to regulate the trade-off between
source/target and general weights. In the PRIOR

model, we are forced to use the prior variance on
in the target learning scenario to do this ourselves.

3.3 Multi-domain adaptation

Our formulation is agnostic to the number of
“source” domains. In particular, it may be the case
that the source data actually falls into a variety of
more specific domains. This is simple to account
for in our model. In the two-domain case, we ex-

2Thanks an anonymous reviewer for pointing this out!

panded the feature space fromRF to R
3F . For a

K-domain problem, we simply expand the feature
space toR(K+1)F in the obvious way (the “+1” cor-
responds to the “general domain” while each of the
other1 . . .K correspond to a single task).

4 Results

In this section we describe experimental results on a
wide variety of domains. First we describe the tasks,
then we present experimental results, and finally we
look more closely at a few of the experiments.

4.1 Tasks

All tasks we consider are sequence labeling tasks
(either named-entity recognition, shallow parsing or
part-of-speech tagging) on the following datasets:
ACE-NER. We use data from the 2005 Automatic

Content Extraction task, restricting ourselves to
the named-entity recognition task. The 2005
ACE data comes from5 domains: Broad-
cast News (bn), Broadcast Conversations (bc),
Newswire (nw), Weblog (wl), Usenet (un) and
Converstaional Telephone Speech (cts).

CoNLL-NE. Similar to ACE-NER, a named-entity
recognition task. The difference is: we use the
2006 ACE data as the source domain and the
CoNLL 2003 NER data as the target domain.

PubMed-POS. A part-of-speech tagging problem
on PubMed abstracts introduced by Blitzer et
al. (2006). There are two domains: the source
domain is the WSJ portion of the Penn Tree-
bank and the target domain is PubMed.

CNN-Recap. This is a recapitalization task intro-
duced by Chelba and Acero (2004) and also
used by Dauḿe III and Marcu (2006). The
source domain is newswire and the target do-
main is the output of an ASR system.

Treebank-Chunk. This is a shallow parsing task
based on the data from the Penn Treebank. This
data comes from a variety of domains: the stan-
dard WSJ domain (we use the same data as for
CoNLL 2000), the ATIS switchboard domain,
and the Brown corpus (which is, itself, assem-
bled from six subdomains).

Treebank-Brown. This is identical to the Treebank-
Chunk task, except that we consider all of the
Brown corpus to be a single domain.
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Task Dom # Tr # De # Te # Ft
bn 52,998 6,625 6,626 80k
bc 38,073 4,759 4,761 109k

ACE- nw 44,364 5,546 5,547 113k
NER wl 35,883 4,485 4,487 109k

un 35,083 4,385 4,387 96k
cts 39,677 4,960 4,961 54k

CoNLL- src 256,145 - - 368k
NER tgt 29,791 5,258 8,806 88k
PubMed- src 950,028 - - 571k
POS tgt 11,264 1,987 14,554 39k
CNN- src 2,000,000 - - 368k
Recap tgt 39,684 7,003 8,075 88k

wsj 191,209 29,455 38,440 94k
swbd3 45,282 5,596 41,840 55k
br-cf 58,201 8,307 7,607 144k

Tree br-cg 67,429 9,444 6,897 149k
bank- br-ck 51,379 6,061 9,451 121k
Chunk br-cl 47,382 5,101 5,880 95k

br-cm 11,696 1,324 1,594 51k
br-cn 56,057 6,751 7,847 115k
br-cp 55,318 7,477 5,977 112k
br-cr 16,742 2,522 2,712 65k

Table 1: Task statistics; columns are task, domain,
size of the training, development and test sets, and
the number of unique features in the training set.

In all cases (except for CNN-Recap), we use
roughly the same feature set, which has become
somewhat standardized: lexical information (words,
stems, capitalization, prefixes and suffixes), mem-
bership on gazetteers, etc. For the CNN-Recap task,
we use identical feature to those used by both Chelba
and Acero (2004) and Dauḿe III and Marcu (2006):
the current, previous and next word, and 1-3 letter
prefixes and suffixes.

Statistics on the tasks and datasets are in Table 1.

In all cases, we use the SEARN algorithm for solv-
ing the sequence labeling problem (Daumé III et al.,
2007) with an underlying averaged perceptron clas-
sifier; implementation due to (Daumé III, 2004). For
structural features, we make a second-order Markov
assumption and only place a bias feature on the tran-
sitions. For simplicity, we optimize and report only
on label accuracy (but require that our outputs be
parsimonious: we do not allow “I-NP” to follow
“B-PP,” for instance). We do this for three rea-
sons. First, our focus in this work is on building
better learning algorithms and introducing a more
complicated measure only serves to mask these ef-
fects. Second, it is arguable that a measure likeF1 is
inappropriate for chunking tasks (Manning, 2006).

Third, we can easily compute statistical significance
over accuracies using McNemar’s test.

4.2 Experimental Results

The full—somewhat daunting—table of results is
presented in Table 2. The first two columns spec-
ify the task and domain. For the tasks with only a
single source and target, we simply report results on
the target. For the multi-domain adaptation tasks,
we report results for each setting of the target (where
all other data-sets are used as different “source” do-
mains). The next set of eight columns are theerror
rates for the task, using one of the different tech-
niques (“AUGMENT” is our proposed technique).
For each row, the error rate of the best performing
technique is bolded (as are all techniques whose per-
formance is not statistically significantly different at
the 95% level). The “T<S” column is contains a “+”
whenever TGTONLY outperforms SRCONLY (this
will become important shortly). The final column
indicates when AUGMENT comes in first.3

There are several trends to note in the results. Ex-
cluding for a moment the “br-*” domains on the
Treebank-Chunk task, our technique always per-
forms best. Still excluding “br-*”, the clear second-
place contestant is the PRIOR model, a finding con-
sistent with prior research. When we repeat the
Treebank-Chunk task, but lumping all of the “br-*”
data together into a single “brown” domain, the story
reverts to what we expected before: our algorithm
performs best, followed by the PRIOR method.

Importantly, this simple story breaks down on the
Treebank-Chunk task for the eight sections of the
Brown corpus. For these, our AUGMENT technique
performs rather poorly. Moreover, there is no clear
winning approach on this task. Our hypothesis is
that the common feature of these examples is that
these are exactly the tasks for which SRCONLY out-
performs TGTONLY (with one exception: CoNLL).
This seems like a plausible explanation, since it im-
plies that the source and target domains may not be
that different. If the domains are so similar that
a large amount of source data outperforms a small
amount of target data, then it is unlikely that blow-

3One advantage of using the averaged perceptron for all ex-
periments is that the only tunable hyperparameter is the number
of iterations. In all cases, we run20 iterations and choose the
one with the lowest error on development data.
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Task Dom SRCONLY TGTONLY ALL WEIGHT PRED L IN INT PRIOR AUGMENT T<S Win
bn 4.98 2.37 2.29 2.23 2.11 2.21 2.06 1.98 + +
bc 4.54 4.07 3.55 3.53 3.89 4.01 3.47 3.47 + +

ACE- nw 4.78 3.71 3.86 3.65 3.56 3.79 3.68 3.39 + +
NER wl 2.45 2.45 2.12 2.12 2.45 2.33 2.41 2.12 = +

un 3.67 2.46 2.48 2.40 2.18 2.10 2.03 1.91 + +
cts 2.08 0.46 0.40 0.40 0.46 0.44 0.34 0.32 + +

CoNLL tgt 2.49 2.95 1.80 1.75 2.13 1.77 1.89 1.76 +
PubMed tgt 12.02 4.15 5.43 4.15 4.14 3.95 3.99 3.61 + +
CNN tgt 10.29 3.82 3.67 3.45 3.46 3.44 3.35 3.37 + +

wsj 6.63 4.35 4.33 4.30 4.32 4.32 4.27 4.11 + +
swbd3 15.90 4.15 4.50 4.10 4.13 4.09 3.60 3.51 + +
br-cf 5.16 6.27 4.85 4.80 4.78 4.72 5.22 5.15

Tree br-cg 4.32 5.36 4.16 4.15 4.27 4.30 4.25 4.90
bank- br-ck 5.05 6.32 5.05 4.98 5.01 5.05 5.27 5.41
Chunk br-cl 5.66 6.60 5.42 5.39 5.39 5.53 5.99 5.73

br-cm 3.57 6.59 3.14 3.11 3.15 3.31 4.08 4.89
br-cn 4.60 5.56 4.27 4.22 4.20 4.19 4.48 4.42
br-cp 4.82 5.62 4.63 4.57 4.55 4.55 4.87 4.78
br-cr 5.78 9.13 5.71 5.19 5.20 5.15 6.71 6.30

Treebank-brown 6.35 5.75 4.80 4.75 4.81 4.72 4.72 4.65 + +

Table 2: Task results.

ing up the feature space will help.
We additionally ran the MEGAM model (Dauḿe

III and Marcu, 2006) on these data (though not
in the multi-conditional case; for this, we consid-
ered the single source as the union of all sources).
The results are not displayed in Table 2 to save
space. For the majority of results, MEGAM per-
formed roughly comparably to the best of the sys-
tems in the table. In particular, it was not sta-
tistically significantly different that AUGMENT on:
ACE-NER, CoNLL, PubMed, Treebank-chunk-wsj,
Treebank-chunk-swbd3, CNN and Treebank-brown.
It did outperform AUGMENT on the Treebank-chunk
on the Treebank-chunk-br-* data sets, but only out-
performed the best other model on these data sets
for br-cg, br-cm and br-cp. However, despite its
advantages on these data sets, it was quite signifi-
cantly slower to train: a single run required about ten
times longer than any of the other models (including
AUGMENT), and also required five-to-ten iterations
of cross-validation to tune its hyperparameters so as
to achieve these results.

4.3 Model Introspection

One explanation of our model’s improved perfor-
mance is simply that by augmenting the feature
space, we are creating a more powerful model.
While this may be a partial explanation, here we
show that what the model learns about the various

* bn bc nw wl un cts

PER

GPE
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LOC

Figure 1: Hinton diagram for feature /Aa+/ at cur-
rent position.

domains actually makes some plausible sense.

We perform this analysis only on the ACE-NER
data by looking specifically at the learned weights.
That is, for any given featuref , there will be seven
versions off : one corresponding to the “cross-
domain”f and seven corresponding to each domain.
We visualize these weights, using Hinton diagrams,
to see how the weights vary across domains.

For example, consider the feature “current word
has an initial capital letter and is then followed by
one or more lower-case letters.” This feature is pre-
sumably useless for data that lacks capitalization in-
formation, but potentially quite useful for other do-
mains. In Figure 1 we shown a Hinton diagram for
this figure. Each column in this figure correspond
to a domain (the top row is the “general domain”).

261



* bn bc nw wl un cts

PER

GPE

ORG

LOC

Figure 2: Hinton diagram for feature /bush/ at cur-
rent position.

Each row corresponds to a class.4 Black boxes cor-
respond to negative weights and white boxes corre-
spond to positive weights. The size of the box de-
picts the absolute value of the weight.

As we can see from Figure 1, the /Aa+/ feature
is a very good indicator of entity-hood (it’s value is
strongly positive for all four entity classes), regard-
less of domain (i.e., for the “*” domain). The lack
of boxes in the “bn” column means that, beyond the
settings in “*”, the broadcast news is agnostic with
respect to this feature. This makes sense: there is
no capitalization in broadcast news domain, so there
would be no sense is setting these weights to any-
thing by zero. The usenet column is filled with neg-
ative weights. While this may seem strange, it is
due to the fact that many email addresses and URLs
match this pattern, but are not entities.

Figure 2 depicts a similar figure for the feature
“word is ’bush’ at the current position” (this figure is
case sensitive).5 These weights are somewhat harder
to interpret. What is happening is that “by default”
the word “bush” is going to be a person—this is be-
cause it rarely appears referring to a plant and so
even in the capitalized domains like broadcast con-
versations, if it appears at all, it is a person. The
exception is that in the conversations data, people
do actually talk about bushes as plants, and so the
weights are set accordingly. The weights are high in
the usenet domain because people tend to talk about
the president without capitalizing his name.

4Technically there are many more classes than are shown
here. We do not depict the smallest classes, and have merged
the “Begin-*” and “In-*” weights for each entity type.

5The scale of weights across features isnot comparable, so
do not try to compare Figure 1 with Figure 2.
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Figure 3: Hinton diagram for feature /the/ at current
position.
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Figure 4: Hinton diagram for feature /the/ at previ-
ous position.

Figure 3 presents the Hinton diagram for the fea-
ture “word at the current position is ’the”’ (again,
case-sensitive). In general, it appears, “the” is a
common word in entities in all domain except for
broadcast news and conversations. The exceptions
are broadcast news and conversations. These excep-
tions crop up because of the capitalization issue.

In Figure 4, we show the diagram for the feature
“previous word is ’the’.” The only domain for which
this is a good feature of entity-hood is broadcast
conversations (to a much lesser extent, newswire).
This occurs because of four phrases very common in
the broadcast conversations and rare elsewhere: “the
Iraqi people” (“Iraqi” is a GPE), “the Pentagon” (an
ORG), “the Bush (cabinet|advisors|. . . )” (PER), and
“the South” (LOC).

Finally, Figure 5 shows the Hinton diagram for
the feature “the current word is on a list of com-
mon names” (this feature is case-insensitive). All
around, this is a good feature for picking out people
and nothing else. The two exceptions are: it is also
a good feature for other entity types for broadcast
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Figure 5: Hinton diagram for membership on a list
of names at current position.

news and it is not quite so good for people in usenet.
The first is easily explained: in broadcast news, it
is very common to refer to countries and organiza-
tions by the name of their respective leaders. This is
essentially a metonymy issue, but as the data is an-
notated, these are marked by their true referent. For
usenet, it is because the list of names comes from
news data, but usenet names are more diverse.

In general, the weights depicte for these features
make some intuitive sense (in as much as weights
for any learned algorithm make intuitive sense). It
is particularly interesting to note that while there are
some regularities to the patterns in the five diagrams,
it is definitely not the case that there are, eg., two
domains that behave identically across all features.
This supports the hypothesis that the reason our al-
gorithm works so well on this data is because the
domains are actually quite well separated.

5 Discussion

In this paper we have described anincredibly sim-
ple approach to domain adaptation that—under a
common and easy-to-verify condition—outperforms
previous approaches. While it is somewhat frus-
trating that something so simple does so well, it
is perhaps not surprising. By augmenting the fea-
ture space, we are essentially forcing the learning
algorithm to do the adaptation for us. Good super-
vised learning algorithms have been developed over
decades, and so we are essentially just leveraging all
that previous work. Our hope is that this approach
is so simple that it can be used for many more real-
world tasks than we have presented here with little
effort. Finally, it is very interesting to note that us-
ing our method, shallow parsing error rate on the

CoNLL section of the treebank improves from5.35
to 5.11. While this improvement is small, it is real,
and may carry over to full parsing. The most impor-
tant avenue of future work is to develop a formal
framework under which we can analyze this (and
other supervised domain adaptation models) theo-
retically. Currently our results only state that this
augmentation procedure doesn’t make the learning
harder — we would like to know that it actually
makes it easier. An additional future direction is
to explore the kernelization interpretation further:
why should we use2 as the “similarity” between
domains—we could introduce a hyperparamterα

that indicates the similarity between domains and
could be tuned via cross-validation.
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mous reviewers, as well as Ryan McDonald and
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Abstract

Domain adaptation is an important problem
in natural language processing (NLP) due to
the lack of labeled data in novel domains. In
this paper, we study the domain adaptation
problem from the instance weighting per-
spective. We formally analyze and charac-
terize the domain adaptation problem from
a distributional view, and show that there
are two distinct needs for adaptation, cor-
responding to the different distributions of
instances and classification functions in the
source and the target domains. We then
propose a general instance weighting frame-
work for domain adaptation. Our empir-
ical results on three NLP tasks show that
incorporating and exploiting more informa-
tion from the target domain through instance
weighting is effective.

1 Introduction

Many natural language processing (NLP) problems
such as part-of-speech (POS) tagging, named entity
(NE) recognition, relation extraction, and seman-
tic role labeling, are currently solved by supervised
learning from manually labeled data. A bottleneck
problem with this supervised learning approach is
the lack of annotated data. As a special case, we
often face the situation where we have a sufficient
amount of labeled data in one domain, but have little
or no labeled data in another related domain which
we are interested in. We thus face the domain adap-
tation problem. Following (Blitzer et al., 2006), we

call the first the source domain, and the second the
target domain.

The domain adaptation problem is commonly en-
countered in NLP. For example, in POS tagging, the
source domain may be tagged WSJ articles, and the
target domain may be scientific literature that con-
tains scientific terminology. In NE recognition, the
source domain may be annotated news articles, and
the target domain may be personal blogs. Another
example is personalized spam filtering, where we
may have many labeled spam and ham emails from
publicly available sources, but we need to adapt the
learned spam filter to an individual user’s inbox be-
cause the user has her own, and presumably very dif-
ferent, distribution of emails and notion of spams.

Despite the importance of domain adaptation in
NLP, currently there are no standard methods for
solving this problem. An immediate possible solu-
tion is semi-supervised learning, where we simply
treat the target instances as unlabeled data but do
not distinguish the two domains. However, given
that the source data and the target data are from dif-
ferent distributions, we should expect to do better
by exploiting the domain difference. Recently there
have been some studies addressing domain adapta-
tion from different perspectives (Roark and Bacchi-
ani, 2003; Chelba and Acero, 2004; Florian et al.,
2004; Daumé III and Marcu, 2006; Blitzer et al.,
2006). However, there have not been many studies
that focus on the difference between the instance dis-
tributions in the two domains. A detailed discussion
on related work is given in Section 5.

In this paper, we study the domain adaptation
problem from the instance weighting perspective.
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In general, the domain adaptation problem arises
when the source instances and the target instances
are from two different, but related distributions.
We formally analyze and characterize the domain
adaptation problem from this distributional view.
Such an analysis reveals that there are two distinct
needs for adaptation, corresponding to the differ-
ent distributions of instances and the different clas-
sification functions in the source and the target do-
mains. Based on this analysis, we propose a gen-
eral instance weighting method for domain adapta-
tion, which can be regarded as a generalization of
an existing approach to semi-supervised learning.
The proposed method implements several adapta-
tion heuristics with a unified objective function: (1)
removing misleading training instances in the source
domain; (2) assigning more weights to labeled tar-
get instances than labeled source instances; (3) aug-
menting training instances with target instances with
predicted labels. We evaluated the proposed method
with three adaptation problems in NLP, including
POS tagging, NE type classification, and spam filter-
ing. The results show that regular semi-supervised
and supervised learning methods do not perform as
well as our new method, which explicitly captures
domain difference. Our results also show that in-
corporating and exploiting more information from
the target domain is much more useful for improv-
ing performance than excluding misleading training
examples from the source domain.

The rest of the paper is organized as follows. In
Section 2, we formally analyze the domain adapta-
tion problem and distinguish two types of adapta-
tion. In Section 3, we then propose a general in-
stance weighting framework for domain adaptation.
In Section 4, we present the experiment results. Fi-
nally, we compare our framework with related work
in Section 5 before we conclude in Section 6.

2 Domain Adaptation

In this section, we define and analyze domain adap-
tation from a theoretical point of view. We show that
the need for domain adaptation arises from two fac-
tors, and the solutions are different for each factor.
We restrict our attention to those NLP tasks that can
be cast into multiclass classification problems, and
we only consider discriminative models for classifi-

cation. Since both are common practice in NLP, our
analysis is applicable to many NLP tasks.

Let X be a feature space we choose to represent
the observed instances, and let Y be the set of class
labels. In the standard supervised learning setting,
we are given a set of labeled instances {(xi, yi)}N

i=1,
where xi ∈ X , yi ∈ Y , and (xi, yi) are drawn from
an unknown joint distribution p(x, y). Our goal is to
recover this unknown distribution so that we can pre-
dict unlabeled instances drawn from the same distri-
bution. In discriminative models, we are only con-
cerned with p(y|x). Following the maximum likeli-
hood estimation framework, we start with a parame-
terized model family p(y|x; θ), and then find the best
model parameter θ∗ that maximizes the expected log
likelihood of the data:

θ∗ = arg max
θ

∫

X

∑
y∈Y

p(x, y) log p(y|x; θ)dx.

Since we do not know the distribution p(x, y), we
maximize the empirical log likelihood instead:

θ∗ ≈ arg max
θ

∫

X

∑
y∈Y

p̃(x, y) log p(y|x; θ)dx

= arg max
θ

1

N

N∑
i=1

log p(yi|xi; θ).

Note that since we use the empirical distribution
p̃(x, y) to approximate p(x, y), the estimated θ∗ is
dependent on p̃(x, y). In general, as long as we have
sufficient labeled data, this approximation is fine be-
cause the unlabeled instances we want to classify are
from the same p(x, y).

2.1 Two Factors for Domain Adaptation
Let us now turn to the case of domain adaptation
where the unlabeled instances we want to classify
are from a different distribution than the labeled in-
stances. Let ps(x, y) and pt(x, y) be the true un-
derlying distributions for the source and the target
domains, respectively. Our general idea is to use
ps(x, y) to approximate pt(x, y) so that we can ex-
ploit the labeled examples in the source domain.

If we factor p(x, y) into p(x, y) = p(y|x)p(x),
we can see that pt(x, y) can deviate from ps(x, y) in
two different ways, corresponding to two different
kinds of domain adaptation:
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Case 1 (Labeling Adaptation): pt(y|x) deviates
from ps(y|x) to a certain extent. In this case, it is
clear that our estimation of ps(y|x) from the labeled
source domain instances will not be a good estima-
tion of pt(y|x), and therefore domain adaptation is
needed. We refer to this kind of adaptation as func-
tion/labeling adaptation.
Case 2 (Instance Adaptation): pt(y|x) is mostly
similar to ps(y|x), but pt(x) deviates from ps(x). In
this case, it may appear that our estimated ps(y|x)
can still be used in the target domain. However, as
we have pointed out, the estimation of ps(y|x) de-
pends on the empirical distribution p̃s(x, y), which
deviates from pt(x, y) due to the deviation of ps(x)
from pt(x). In general, the estimation of ps(y|x)
would be more influenced by the instances with high
p̃s(x, y) (i.e., high p̃s(x)). If pt(x) is very differ-
ent from ps(x), then we should expect pt(x, y) to be
very different from ps(x, y), and therefore different
from p̃s(x, y). We thus cannot expect the estimated
ps(y|x) to work well on the regions where pt(x, y)
is high, but ps(x, y) is low. Therefore, in this case,
we still need domain adaptation, which we refer to
as instance adaptation.

Because the need for domain adaptation arises
from two different factors, we need different solu-
tions for each factor.

2.2 Solutions for Labeling Adaptation

If pt(y|x) deviates from ps(y|x) to some extent, we
have one of the following choices:

Change of representation:
It may be the case that if we change the rep-

resentation of the instances, i.e., if we choose a
feature space X ′ different from X , we can bridge
the gap between the two distributions ps(y|x) and
pt(y|x). For example, consider domain adaptive
NE recognition where the source domain contains
clean newswire data, while the target domain con-
tains broadcast news data that has been transcribed
by automatic speech recognition and lacks capital-
ization. Suppose we use a naive NE tagger that
only looks at the word itself. If we consider capi-
talization, then the instance Bush is represented dif-
ferently from the instance bush. In the source do-
main, ps(y = Person|x = Bush) is high while
ps(y = Person|x = bush) is low, but in the target

domain, pt(y = Person|x = bush) is high. If we
ignore the capitalization information, then in both
domains p(y = Person|x = bush) will be high pro-
vided that the source domain contains much fewer
instances of bush than Bush.

Adaptation through prior:
When we use a parameterized model p(y|x; θ)

to approximate p(y|x) and estimate θ based on the
source domain data, we can place some prior on the
model parameter θ so that the estimated distribution
p(y|x; θ̂) will be closer to pt(y|x). Consider again
the NE tagging example. If we use capitalization as
a feature, in the source domain where capitalization
information is available, this feature will be given a
large weight in the learned model because it is very
useful. If we place a prior on the weight for this fea-
ture so that a large weight will be penalized, then
we can prevent the learned model from relying too
much on this domain specific feature.

Instance pruning:
If we know the instances x for which pt(y|x) is

different from ps(y|x), we can actively remove these
instances from the training data because they are
“misleading”.

For all the three solutions given above, we need
either some prior knowledge about the target do-
main, or some labeled target domain instances;
from only the unlabeled target domain instances, we
would not know where and why pt(y|x) differs from
ps(y|x).

2.3 Solutions for Instance Adaptation

In the case where pt(y|x) is similar to ps(y|x), but
pt(x) deviates from ps(x), we may use the (unla-
beled) target domain instances to bias the estimate
of ps(x) toward a better approximation of pt(x), and
thus achieve domain adaptation. We explain the idea
below.

Our goal is to obtain a good estimate of θ∗t that is
optimized according to the target domain distribu-
tion pt(x, y). The exact objective function is thus

θ∗t = arg max
θ

∫

X

∑
y∈Y

pt(x, y) log p(y|x; θ)dx

= arg max
θ

∫

X
pt(x)

∑
y∈Y

pt(y|x) log p(y|x; θ)dx.
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Our idea of domain adaptation is to exploit the la-
beled instances in the source domain to help obtain
θ∗t .

Let Ds = {(xs
i , y

s
i )}Ns

i=1 denote the set of la-
beled instances we have from the source domain.
Assume that we have a (small) set of labeled and
a (large) set of unlabeled instances from the tar-
get domain, denoted by Dt,l = {(xt,l

j , yt,l
j )}Nt,l

j=1 and

Dt,u = {xt,u
k }Nt,u

k=1 , respectively. We now show three
ways to approximate the objective function above,
corresponding to using three different sets of in-
stances to approximate the instance space X .

Using Ds:
Using ps(y|x) to approximate pt(y|x), we obtain

θ∗t ≈ arg max
θ

∫

X

pt(x)

ps(x)
ps(x)

∑
y∈Y

ps(y|x) log p(y|x; θ)dx

≈ arg max
θ

∫

X

pt(x)

ps(x)
p̃s(x)

∑
y∈Y

p̃s(y|x) log p(y|x; θ)dx

= arg max
θ

1

Ns

Ns∑
i=1

pt(x
s
i )

ps(xs
i )

log p(ys
i |xs

i ; θ).

Here we use only the labeled instances in Ds but
we adjust the weight of each instance by pt(x)

ps(x) . The

major difficulty is how to accurately estimate pt(x)
ps(x) .

Using Dt,l:

θ∗t ≈ arg max
θ

∫

X
p̃t,l(x)

∑
y∈Y

p̃t,l(y|x) log p(y|x; θ)dx

= arg max
θ

1

Nt,l

Nt,l∑
j=1

log p(yt,l
j |xt,l

j ; θ)

Note that this is the standard supervised learning
method using only the small amount of labeled tar-
get instances. The major weakness of this approxi-
mation is that when Nt,l is very small, the estimation
is not accurate.

Using Dt,u:

θ∗t ≈ arg max
θ

∫

X
p̃t,u(x)

∑
y∈Y

pt(y|x) log p(y|x; θ)dx

= arg max
θ

1

Nt,u

Nt,u∑

k=1

∑
y∈Y

pt(y|xt,u
k ) log p(y|xt,u

k ; θ),

The challenge here is that pt(y|xt,u
k ; θ) is unknown

to us, thus we need to estimate it. One possibility
is to approximate it with a model θ̂ learned from
Ds and Dt,l. For example, we can set pt(y|x, θ) =
p(y|x; θ̂). Alternatively, we can also set pt(y|x, θ)
to 1 if y = arg maxy′ p(y′|x; θ̂) and 0 otherwise.

3 A Framework of Instance Weighting for
Domain Adaptation

The theoretical analysis we give in Section 2 sug-
gests that one way to solve the domain adaptation
problem is through instance weighting. We propose
a framework that incorporates instance pruning in
Section 2.2 and the three approximations in Sec-
tion 2.3. Before we show the formal framework, we
first introduce some weighting parameters and ex-
plain the intuitions behind these parameters.

First, for each (xs
i , y

s
i ) ∈ Ds, we introduce a pa-

rameter αi to indicate how likely pt(ys
i |xs

i ) is close
to ps(ys

i |xs
i ). Large αi means the two probabilities

are close, and therefore we can trust the labeled in-
stance (xs

i , y
s
i ) for the purpose of learning a clas-

sifier for the target domain. Small αi means these
two probabilities are very different, and therefore we
should probably discard the instance (xs

i , y
s
i ) in the

learning process.
Second, again for each (xs

i , y
s
i ) ∈ Ds, we intro-

duce another parameter βi that ideally is equal to
pt(xs

i )
ps(xs

i )
. From the approximation in Section 2.3 that

uses only Ds, it is clear that such a parameter is use-
ful.

Next, for each xt,u
i ∈ Dt,u, and for each possible

label y ∈ Y , we introduce a parameter γi(y) that
indicates how likely we would like to assign y as a
tentative label to xt,u

i and include (xt,u
i , y) as a train-

ing example.
Finally, we introduce three global parameters λs,

λt,l and λt,u that are not instance-specific but are as-
sociated with Ds, Dt,l and Dt,u, respectively. These
three parameters allow us to control the contribution
of each of the three approximation methods in Sec-
tion 2.3 when we linearly combine them together.

We now formally define our instance weighting
framework. Given Ds, Dt,l and Dt,u, to learn a clas-
sifier for the target domain, we find a parameter θ̂
that optimizes the following objective function:
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θ̂ = arg max
θ

[
λs · 1

Cs

Ns∑
i=1

αiβi log p(ys
i |xs

i ; θ)

+λt,l · 1

Ct,l

Nt,l∑
j=1

log p(yt,l
j |xt,l

j ; θ)

+λt,u · 1

Ct,u

Nt,u∑

k=1

∑
y∈Y

γk(y) log p(y|xt,u
k ; θ)

+ log p(θ)

]
,

where Cs =
∑Ns

i=1 αiβi, Ct,l = Nt,l, Ct,u =∑Nt,u

k=1

∑
y∈Y γk(y), and λs + λt,l + λt,u = 1. The

last term, log p(θ), is the log of a Gaussian prior dis-
tribution of θ, commonly used to regularize the com-
plexity of the model.

In general, we do not know the optimal values of
these parameters for the target domain. Neverthe-
less, the intuitions behind these parameters serve as
guidelines for us to design heuristics to set these pa-
rameters. In the rest of this section, we introduce
several heuristics that we used in our experiments to
set these parameters.

3.1 Setting α

Following the intuition that if pt(y|x) differs much
from ps(y|x), then (x, y) should be discarded from
the training set, we use the following heuristic to
set αs. First, with standard supervised learning, we
train a model θ̂t,l from Dt,l. We consider p(y|x; θ̂t,l)
to be a crude approximation of pt(y|x). Then, we
classify {xs

i}Ns
i=1 using θ̂t,l. The top k instances

that are incorrectly predicted by θ̂t,l (ranked by their
prediction confidence) are discarded. In another
word, αs

i of the top k instances for which ys
i 6=

arg maxy p(y|xs
i ; θ̂t,l) are set to 0, and αi of all the

other source instances are set to 1.

3.2 Setting β

Accurately setting β involves accurately estimating
ps(x) and pt(x) from the empirical distributions.
For many NLP classification tasks, we do not have a
good parametric model for p(x). We thus need to re-
sort to non-parametric density estimation methods.
However, for many NLP tasks, x resides in a high
dimensional space, which makes it hard to apply
standard non-parametric density estimation meth-

ods. We have not explored this direction, and in our
experiments, we set β to 1 for all source instances.

3.3 Setting γ

Setting γ is closely related to some semi-supervised
learning methods. One option is to set γk(y) =
p(y|xt,u

k ; θ). In this case, γ is no longer a constant
but is a function of θ. This way of setting γ corre-
sponds to the entropy minimization semi-supervised
learning method (Grandvalet and Bengio, 2005).
Another way to set γ corresponds to bootstrapping
semi-supervised learning. First, let θ̂(n) be a model
learned from the previous round of training. We then
select the top k instances from Dt,u that have the
highest prediction confidence. For these instances,
we set γk(y) = 1 for y = arg maxy′ p(y′|xt,u

k ; θ̂(n)),
and γk(y) = 0 for all other y. In another word, we
select the top k confidently predicted instances, and
include these instances together with their predicted
labels in the training set. All other instances in Dt,u

are not considered. In our experiments, we only con-
sidered this bootstrapping way of setting γ.

3.4 Setting λ

λs, λt,l and λt,u control the balance among the three
sets of instances. Using standard supervised learn-
ing, λs and λt,l are set proportionally to Cs and Ct,l,
that is, each instance is weighted the same whether
it is in Ds or in Dt,l, and λt,u is set to 0. Similarly,
using standard bootstrapping, λt,u is set proportion-
ally to Ct,u, that is, each target instance added to the
training set is also weighted the same as a source
instance. In neither case are the target instances em-
phasize more than source instances. However, for
domain adaptation, we want to focus more on the
target domain instances. So intuitively, we want to
make λt,l and λt,u somehow larger relative to λs. As
we will show in Section 4, this is indeed beneficial.

In general, the framework provides great flexibil-
ity for implementing different adaptation strategies
through these instance weighting parameters.

4 Experiments

4.1 Tasks and Data Sets

We chose three different NLP tasks to evaluate our
instance weighting method for domain adaptation.
The first task is POS tagging, for which we used
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6166 WSJ sentences from Sections 00 and 01 of
Penn Treebank as the source domain data, and 2730
PubMed sentences from the Oncology section of the
PennBioIE corpus as the target domain data. The
second task is entity type classification. The setup is
very similar to Daumé III and Marcu (2006). We
assume that the entity boundaries have been cor-
rectly identified, and we want to classify the types
of the entities. We used ACE 2005 training data
for this task. For the source domain, we used the
newswire collection, which contains 11256 exam-
ples, and for the target domains, we used the we-
blog (WL) collection (5164 examples) and the con-
versational telephone speech (CTS) collection (4868
examples). The third task is personalized spam fil-
tering. We used the ECML/PKDD 2006 discov-
ery challenge data set. The source domain contains
4000 spam and ham emails from publicly available
sources, and the target domains are three individual
users’ inboxes, each containing 2500 emails.

For each task, we consider two experiment set-
tings. In the first setting, we assume there are a small
number of labeled target instances available. For
POS tagging, we used an additional 300 Oncology
sentences as labeled target instances. For NE typ-
ing, we used 500 labeled target instances and 2000
unlabeled target instances for each target domain.
For spam filtering, we used 200 labeled target in-
stances and 1800 unlabeled target instances. In the
second setting, we assume there is no labeled target
instance. We thus used all available target instances
for testing in all three tasks.

We used logistic regression as our model of
p(y|x; θ) because it is a robust learning algorithm
and widely used.

We now describe three sets of experiments, cor-
responding to three heuristic ways of setting α, λt,l

and λt,u.

4.2 Removing “Misleading” Source Domain
Instances

In the first set of experiments, we gradually remove
“misleading” labeled instances from the source do-
main, using the small number of labeled target in-
stances we have. We follow the heuristic we de-
scribed in Section 3.1, which sets the α for the top
k misclassified source instances to 0, and the α for
all the other source instances to 1. We also set λt,l

and λt,l to 0 in order to focus only on the effect of
removing “misleading” instances. We compare with
a baseline method which uses all source instances
with equal weight but no target instances. The re-
sults are shown in Table 1.

From the table, we can see that in most exper-
iments, removing these predicted “misleading” ex-
amples improved the performance over the baseline.
In some experiments (Oncology, CTS, u00, u01), the
largest improvement was achieved when all misclas-
sified source instances were removed. In the case of
weblog NE type classification, however, removing
the source instances hurt the performance. A pos-
sible reason for this is that the set of labeled target
instances we use is a biased sample from the target
domain, and therefore the model trained on these in-
stances is not always a good predictor of “mislead-
ing” source instances.

4.3 Adding Labeled Target Domain Instances
with Higher Weights

The second set of experiments is to add the labeled
target domain instances into the training set. This
corresponds to setting λt,l to some non-zero value,
but still keeping λt,u as 0. If we ignore the do-
main difference, then each labeled target instance
is weighted the same as a labeled source instance
(λu,l

λs
= Cu,l

Cs
), which is what happens in regular su-

pervised learning. However, based on our theoret-
ical analysis, we can expect the labeled target in-
stances to be more representative of the target do-
main than the source instances. We can therefore
assign higher weights for the target instances, by ad-
justing the ratio between λt,l and λs. In our experi-
ments, we set λt,l

λs
= a

Ct,l

Cs
, where a ranges from 2 to

20. The results are shown in Table 2.
As shown from the table, adding some labeled tar-

get instances can greatly improve the performance
for all tasks. And in almost all cases, weighting the
target instances more than the source instances per-
formed better than weighting them equally.

We also tested another setting where we first
removed the “misleading” source examples as we
showed in Section 4.2, and then added the labeled
target instances. The results are shown in the last
row of Table 2. However, although both removing
“misleading” source instances and adding labeled
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POS NE Type Spam
k Oncology k CTS k WL k u00 u01 u02
0 0.8630 0 0.7815 0 0.7045 0 0.6306 0.6950 0.7644

4000 0.8675 800 0.8245 600 0.7070 150 0.6417 0.7078 0.7950
8000 0.8709 1600 0.8640 1200 0.6975 300 0.6611 0.7228 0.8222
12000 0.8713 2400 0.8825 1800 0.6830 450 0.7106 0.7806 0.8239
16000 0.8714 3000 0.8825 2400 0.6795 600 0.7911 0.8322 0.8328

all 0.8720 all 0.8830 all 0.6600 all 0.8106 0.8517 0.8067

Table 1: Accuracy on the target domain after removing “misleading” source domain instances.

POS NE Type Spam
method Oncology method CTS WL method u00 u01 u02
Ds only 0.8630 Ds only 0.7815 0.7045 Ds only 0.6306 0.6950 0.7644
Ds + Dt,l 0.9349 Ds + Dt,l 0.9340 0.7735 Ds + Dt,l 0.9572 0.9572 0.9461
Ds + 5Dt,l 0.9411 Ds + 2Dt,l 0.9355 0.7810 Ds + 2Dt,l 0.9606 0.9600 0.9533
Ds + 10Dt,l 0.9429 Ds + 5Dt,l 0.9360 0.7820 Ds + 5Dt,l 0.9628 09611 0.9601
Ds + 20Dt,l 0.9443 Ds + 10Dt,l 0.9355 0.7840 Ds + 10Dt,l 0.9639 0.9628 0.9633
D′s + 20Dt,l 0.9422 D′s + 10Dt,l 0.8950 0.6670 D′s + 10Dt,l 0.9717 0.9478 0.9494

Table 2: Accuracy on the unlabeled target instances after adding the labeled target instances.

target instances work well individually, when com-
bined, the performance in most cases is not as good
as when no source instances are removed. We hy-
pothesize that this is because after we added some
labeled target instances with large weights, we al-
ready gained a good balance between the source data
and the target data. Further removing source in-
stances would push the emphasis more on the set
of labeled target instances, which is only a biased
sample of the whole target domain.

The POS data set and the CTS data set have pre-
viously been used for testing other adaptation meth-
ods (Daumé III and Marcu, 2006; Blitzer et al.,
2006), though the setup there is different from ours.
Our performance using instance weighting is com-
parable to their best performance (slightly worse for
POS and better for CTS).

4.4 Bootstrapping with Higher Weights

In the third set of experiments, we assume that we
do not have any labeled target instances. We tried
two bootstrapping methods. The first is a standard
bootstrapping method, in which we gradually added
the most confidently predicted unlabeled target in-
stances with their predicted labels to the training
set. Since we believe that the target instances should
in general be given more weight because they bet-
ter represent the target domain than the source in-
stances, in the second method, we gave the added
target instances more weight in the objective func-

tion. In particular, we set λt,u = λs such that the
total contribution of the added target instances is
equal to that of all the labeled source instances. We
call this second method the balanced bootstrapping
method. Table 3 shows the results.

As we can see, while bootstrapping can generally
improve the performance over the baseline where
no unlabeled data is used, the balanced bootstrap-
ping method performed slightly better than the stan-
dard bootstrapping method. This again shows that
weighting the target instances more is a right direc-
tion to go for domain adaptation.

5 Related Work

There have been several studies in NLP that address
domain adaptation, and most of them need labeled
data from both the source domain and the target do-
main. Here we highlight a few representative ones.

For generative syntactic parsing, Roark and Bac-
chiani (2003) have used the source domain data
to construct a Dirichlet prior for MAP estimation
of the PCFG for the target domain. Chelba and
Acero (2004) use the parameters of the maximum
entropy model learned from the source domain as
the means of a Gaussian prior when training a new
model on the target data. Florian et al. (2004) first
train a NE tagger on the source domain, and then use
the tagger’s predictions as features for training and
testing on the target domain.

The only work we are aware of that directly mod-
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POS NE Type Spam
method Oncology CTS WL u00 u01 u02

supervised 0.8630 0.7781 0.7351 0.6476 0.6976 0.8068
standard bootstrap 0.8728 0.8917 0.7498 0.8720 0.9212 0.9760
balanced bootstrap 0.8750 0.8923 0.7523 0.8816 0.9256 0.9772

Table 3: Accuracy on the target domain without using labeled target instances. In balanced bootstrapping,
more weights are put on the target instances in the objective function than in standard bootstrapping.

els the different distributions in the source and the
target domains is by Daumé III and Marcu (2006).
They assume a “truly source domain” distribution,
a “truly target domain” distribution, and a “general
domain” distribution. The source (target) domain
data is generated from a mixture of the “truly source
(target) domain” distribution and the “general do-
main” distribution. In contrast, we do not assume
such a mixture model.

None of the above methods would work if there
were no labeled target instances. Indeed, all the
above methods do not make use of the unlabeled
instances in the target domain. In contrast, our in-
stance weighting framework allows unlabeled target
instances to contribute to the model estimation.

Blitzer et al. (2006) propose a domain adaptation
method that uses the unlabeled target instances to
infer a good feature representation, which can be re-
garded as weighting the features. In contrast, we
weight the instances. The idea of using pt(x)

ps(x) to
weight instances has been studied in statistics (Shi-
modaira, 2000), but has not been applied to NLP
tasks.

6 Conclusions and Future Work

Domain adaptation is a very important problem with
applications to many NLP tasks. In this paper,
we formally analyze the domain adaptation problem
and propose a general instance weighting framework
for domain adaptation. The framework is flexible to
support many different strategies for adaptation. In
particular, it can support adaptation with some target
domain labeled instances as well as that without any
labeled target instances. Experiment results on three
NLP tasks show that while regular semi-supervised
learning methods and supervised learning methods
can be applied to domain adaptation without con-
sidering domain difference, they do not perform as
well as our new method, which explicitly captures

domain difference. Our results also show that incor-
porating and exploiting more information from the
target domain is much more useful than excluding
misleading training examples from the source do-
main. The framework opens up many interesting
future research directions, especially those related to
how to more accurately set/estimate those weighting
parameters.
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Abstract

Historically, unsupervised learning tech-
niques have lacked a principled technique
for selecting the number of unseen compo-
nents. Research into non-parametric priors,
such as the Dirichlet process, has enabled in-
stead the use ofinfinite models, in which the
number of hidden categories is not fixed, but
can grow with the amount of training data.
Here we develop theinfinite tree, a new infi-
nite model capable of representing recursive
branching structure over an arbitrarily large
set of hidden categories. Specifically, we
develop three infinite tree models, each of
which enforces different independence as-
sumptions, and for each model we define a
simpledirect assignmentsampling inference
procedure. We demonstrate the utility of
our models by doing unsupervised learning
of part-of-speech tags from treebank depen-
dency skeleton structure, achieving an accu-
racy of 75.34%, and by doing unsupervised
splitting of part-of-speech tags, which in-
creases the accuracy of a generative depen-
dency parser from 85.11% to 87.35%.

1 Introduction

Model-based unsupervised learning techniques have
historically lacked good methods for choosing the
number of unseen components. For example,k-
means or EM clustering require advance specifica-
tion of the number of mixture components. But
the introduction of nonparametric priors such as the
Dirichlet process(Ferguson, 1973) enabled develop-
ment of infinite mixture models, in which the num-
ber of hidden components is not fixed, but emerges
naturally from the training data (Antoniak, 1974).

Teh et al. (2006) proposed the hierarchical Dirich-
let process (HDP) as a way of applying the Dirichlet
process (DP) to more complex model forms, so as to
allow multiple, group-specific, infinite mixture mod-
els tosharetheir mixture components. The closely
related infinite hidden Markov modelis an HMM
in which the transitions are modeled using an HDP,
enabling unsupervised learning of sequence models
when the number of hidden states is unknown (Beal
et al., 2002; Teh et al., 2006).

We extend this work by introducing theinfinite
tree model, which represents recursive branching
structure over a potentially infinite set of hidden
states. Such models are appropriate for the syntactic
dependency structure of natural language. The hid-
den states represent word categories (“tags”), the ob-
servations they generate represent the words them-
selves, and the tree structure represents syntactic de-
pendencies between pairs of tags.

To validate the model, we test unsupervised learn-
ing of tags conditioned on a given dependency tree
structure. This is useful, because coarse-grained
syntactic categories, such as those used in the Penn
Treebank (PTB), make insufficient distinctions to be
the basis of accurate syntactic parsing (Charniak,
1996). Hence, state-of-the-art parsers either supple-
ment the part-of-speech (POS) tags with the lexical
forms themselves (Collins, 2003; Charniak, 2000),
manually split the tagset into a finer-grained one
(Klein and Manning, 2003a), or learn finer grained
tag distinctions using a heuristic learning procedure
(Petrov et al., 2006). We demonstrate that the tags
learned with our model are correlated with the PTB
POS tags, and furthermore that they improve the ac-
curacy of an automatic parser when used in training.

2 Finite Trees
We begin by presenting threefinite tree models, each
with different independence assumptions.
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Figure 1: A graphical representation of thefinite
Bayesian tree model with independent children. The
plate (rectangle) indicates that there is one copy of
the model parameter variables for each statek ≤ C.

2.1 Independent Children

In the first model, children are generated indepen-
dently of each other, conditioned on the parent. Let
t denote both the tree and its root node,c(t) the list
of children oft, ci(t) theith child of t, andp(t) the
parent oft. Each treet has a hidden statezt (in a syn-
tax tree, the tag) and an observationxt (the word).1

The probability of a tree is given by the recursive
definition:2

Ptr(t) = P(xt|zt)
∏

t′∈c(t)
P(zt′ |zt)Ptr(t

′)

To make the model Bayesian, we must define ran-
dom variables to represent each of the model’s pa-
rameters, and specify prior distributions for them.
Let each of the hidden state variables haveC possi-
ble values which we will index withk. Each statek
has a distinct distribution over observations, param-
eterized byφk, which is distributed according to a
prior distribution over the parametersH:

φk|H ∼ H

We generate each observationxt from some distri-
bution F (φzt

) parameterized byφzt
specific to its

corresponding hidden statezt. If F (φk)s are multi-
nomials, then a natural choice forH would be a
Dirichlet distribution.3

The hidden statezt′ of each child is distributed
according to a multinomial distributionπzt

specific
to the hidden statezt of the parent:

xt|zt ∼ F (φzt
)

zt′ |zt ∼ Multinomial(πzt
)

1To model length, every child list ends with a distinguished
stop node, which has as its state a distinguishedstop state.

2We also define a distinguished nodet0, which generates the
root of the entire tree, andP (xt0

|zt0
) = 1.

3A Dirichlet distribution is a distribution over the possible
parameters of a multinomial distributions, and is distinctfrom
the Dirichletprocess.

Each multinomial over childrenπk is distributed ac-
cording to a Dirichlet distribution with parameterρ:

πk|ρ ∼ Dirichlet(ρ, . . . , ρ)

This model is presented graphically in Figure 1.

2.2 Simultaneous Children

The independent child model adopts strong indepen-
dence assumptions, and we may instead want mod-
els in which the children are conditioned on more
than just the parent’s state. Our second model thus
generates the states of all of the childrenc(t) simul-
taneously:

Ptr(t) = P(xt|zt)P((zt′)t′∈c(t)|zt)
∏

t′∈c(t)
Ptr(t

′)

where(zt′)t′∈c(t) indicates the list of tags of the chil-
dren oft. To parameterize this model, we replace the
multinomial distributionπk over states with a multi-
nomial distributionλk over lists of states.4

2.3 Markov Children

The very large domain size of the child lists in the
simultaneous child model may cause problems of
sparse estimation. Another alternative is to use a
first-order Markov process to generate children, in
which each child’s state is conditioned on the previ-
ous child’s state:

Ptr(t) = P(xt|zt)
∏|c(t)|

i=1
P(zci(t)|zci−1(t), zt)Ptr(t

′)

For this model, we augment all child lists with a dis-
tinguishedstart node, c0(t), which has as its state
a distinguishedstart state, allowing us to capture
the unique behavior of the first (observed) child. To
parameterize this model, note that we will need to
defineC(C + 1) multinomials, one for each parent
state and preceding child state (or a distinguished
start state).

3 To Infinity, and Beyond . . .

This section reviews needed background material
for our approach to making our tree models infinite.

3.1 The Dirichlet Process

Suppose we model a document as abag of words
produced by a mixture model, where the mixture
components might betopicssuch as business, pol-
itics, sports, etc. Using this model we can generate a

4This requires stipulating a maximum list length.
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Figure 2: Plot of the density function of a Dirich-
let distribution H (the surface) as well as a draw
G (the vertical lines, orsticks) from a Dirichlet
process DP(α0,H) which hasH as a base mea-
sure. Both distributions are defined over a sim-
plex in which each point corresponds to a particular
multinomial distribution over three possible words:
“profit”, “game”, and “election”. The placement of
the sticks is drawn from the distributionH, and is
independent of their lengths, which is drawn from a
stick-breakingprocess with parameterα0.

document by first generating a distribution over top-
ics π, and then for each positioni in the document,
generating a topiczi from π, and then a wordxi

from the topic specific distributionφzi
. The word

distributionsφk for each topick are drawn from a
base distributionH. In Section 2, we sampleC
multinomials φk from H. In the infinite mixture
model we sample an infinite number of multinomi-
als fromH, using the Dirichlet process.

Formally, given a base distributionH and a con-
centration parameterα0 (loosely speaking, this con-
trols the relative sizes of the topics), a Dirichlet pro-
cess DP(α0,H) is the distribution of a discrete ran-
dom probability measureG over the same (possibly
continuous) space thatH is defined over; thusit is a
measure over measures. In Figure 2, the sticks (ver-
tical lines) show a drawG from a Dirichlet process
where the base measureH is a Dirichlet distribution
over 3 words. A draw comprises of an infinite num-
ber of sticks, and each corresponding topic.

We factorG into two coindexed distributions:π,
a distribution over the integers, where the integer
represents the index of a particular topic (i.e., the
height of the sticks in the figure represent the proba-
bility of the topic indexed by that stick) andφ, rep-
resenting the word distribution of each of the top-

N

∞

α0 H

π φk

zi

xi

π|α0 ∼ GEM(α0)

φk|H ∼ H

zi|π ∼ π

xi|zi, φ ∼ F (φzi
) N

∞

γ α0

β H

πj φk

zji

xji

(a) (b)
Figure 3: A graphical representation of a simple
Dirichlet process mixture model (left) and a hierar-
chical Dirichlet process model (right). Note that we
show thestick-breakingrepresentations of the mod-
els, in which we have factoredG ∼ DP(α0,H) into
two sets of variables:π andφ.

ics (i.e., the location of the sticks in the figure). To
generateπ we first generate an infinite sequence of
variablesπ′ = (π′k)

∞
k=1, each of which is distributed

according to the Beta distribution:

π′k|α0 ∼ Beta(1, α0)

Thenπ = (πk)
∞
k=1 is defined as:

πk = π′k

∏k−1

i=1
(1− π′i)

Following Pitman (2002) we refer to this process as
π ∼ GEM(α0). It should be noted that

∑∞
k=1 πk =

1,5 and P (i) = πi. Then, according to the DP,
P (φi) = πi. The complete model, is shown graphi-
cally in Figure 3(a).

To build intuition, we walk through the process of
generating from the infinite mixture model for the
document example, wherexi is the word at posi-
tion i, andzi is its topic. F is a multinomial dis-
tribution parameterized byφ, andH is a Dirichlet
distribution. Instead of generating all of the infinite
mixture components(πk)

∞
k=1 at once, we can build

them up incrementally. If there areK known top-
ics, we represent only the known elements(πk)

K
k=1

and represent the remaining probability massπu =

5This is called thestick-breakingconstruction: we start with
a stick of unit length, representing the entire probabilitymass,
and successively break bits off the end of the stick, where the
proportional amount broken off is represented byπ′k and the
absolute amount is represented byπk.
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Figure 4: A graphical representation ofπj, a broken
stick, which is distributed according to a DP with a
broken stickβ as a base measure. Eachβk corre-
sponds to aφk.

1 − (
∑K

k=1 πk). Initially we have πu = 1 and
φ = ().

For theith position in the document, we first draw
a topiczi ∼ π. If zi 6= u, then we find the coin-
dexed topicφzi

. If zi = u, the unseen topic, we
make a drawb ∼ Beta(1, α0) and setπK+1 = bπu

andπnew
u = (1 − b)πu. Then we draw a parame-

ter φK+1 ∼ H for the new topic, resulting inπ =
(π1, . . . , πK+1, π

new
u ) andφ = (φ1, . . . , φK+1). A

word is then drawn from this topic and emitted by
the document.

3.2 The Hierarchical Dirichlet Process

Let’s generalize our previous example to a corpus
of documents. As before, we have a set of shared
topics, but now each document has itsown charac-
teristic distributionover these topics. We represent
topic distributions both locally (for each document)
and globally (across all documents) by use of a hier-
archical Dirichlet process (HDP), which has a local
DP for each document, in whichthe base measure is
itself a draw from another, global, DP.

The complete HDP model is represented graphi-
cally in Figure 3(b). Like the DP, it has global bro-
ken stickβ = (βk)

∞
k=1 and topic specific word dis-

tribution parametersφ = (φk)
∞
k=1, which are coin-

dexed. It differs from the DP in that it also has lo-
cal broken sticksπj for each groupj (in our case
documents). While the global stickβ ∼ GEM(γ)
is generated as before, the local sticksπj are dis-
tributed according to a DP with base measureβ:
πj ∼ DP(α0,β).

We illustrate this generation process in Figure 4.
The upper unit line representsβ, where the size of
segmentk represents the value of elementβk, and
the lower unit line representsπj ∼ DP(α0,β) for a
particular groupj. Each element of the lower stick
was sampled from a particular element of the upper

stick, and elements of the upper stick may be sam-
pled multiple times or not at all; on average, larger
elements will be sampled more often. Each element
βk, as well as all elements ofπj that were sampled
from it, corresponds to a particularφk. Critically,
several distinctπj can be sampled from the same
βk and hence shareφk; this is how components are
shared among groups.

For concreteness, we show how to generate a cor-
pus of documents from the HDP, generating one
document at a time, and incrementally construct-
ing our infinite objects. Initially we haveβu = 1,
φ = (), andπju = 1 for all j. We start with the
first position of the first document and draw a local
topic y11 ∼ π1, which will returnu with probabil-
ity 1. Becausey11 = u we must make a draw from
the base measure,β, which, because this is the first
document, will also returnu with probability 1. We
must now breakβu into β1 andβnew

u , and breakπ1u

into π11 andπnew
1u in the same manner presented for

the DP. Sinceπ11 now corresponds to global topic
1, we sample the wordx11 ∼ Multinomial(φ1). To
sample each subsequent wordi, we first sample the
local topicy1i ∼ π1. If y1i 6= u, andπ1y1i

corre-
sponds toβk in the global stick, then we sample the
word x1i ∼ Multinomial(φk). Once the first docu-
ment has been sampled, subsequent documents are
sampled in a similar manner; initiallyπju = 1 for
documentj, whileβ continues to grow as more doc-
uments are sampled.

4 Infinite Trees

We now use the techniques from Section 3 to create
infinite versions of each tree model from Section 2.

4.1 Independent Children

The changes required to make the Bayesian inde-
pendent children model infinite don’t affect its ba-
sic structure, as can be witnessed by comparing the
graphical depiction of the infinite model in Figure 5
with that of the finite model in Figure 1. The in-
stance variableszt andxt are parameterized as be-
fore. The primary change is that the number of
copies of the state plate is infinite, as are the number
of variablesπk andφk.

Note also that each distribution over possible
child statesπk must also be infinite, since the num-
ber of possible child states is potentially infinite. We
achieve this by representing each of theπk variables
as a broken stick, and adopt the same approach of
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β|γ ∼ GEM(γ)

πk|α0, β ∼ DP(α0, β)

φk|H ∼ H
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Figure 5: A graphical representation of theinfinite
independent child model.

sampling eachπk from a DP with base measureβ.
For the dependency tree application,φk is a vector
representing the parameters of a multinomial over
words, andH is a Dirichlet distribution.

The infinite hidden Markov model (iHMM) or
HDP-HMM (Beal et al., 2002; Teh et al., 2006) is
a model of sequence data with transitions modeled
by an HDP.6 The iHMM can be viewed as a special
case of this model, where each state (except the stop
state) produces exactly one child.

4.2 Simultaneous Children

The key problem in the definition of the simulta-
neous children model is that of defining a distribu-
tion over the lists of children produced by each state,
since each child in the list has as its domain the posi-
tive integers, representing the infinite set of possible
states. Our solution is to construct a distributionLk

over lists of states from the distribution over individ-
ual statesπk. The obvious approach is to sample the
states at each position i.i.d.:

P((zt′)t′∈c(t)|π) =
∏

t′∈c(t)

P(zt′ |π) =
∏

t′∈c(t)

πz
t′

However, we want our model to be able to rep-
resent the fact that some child lists,ct, are more
or less probable than the product of the individual
child probabilities would indicate. To address this,
we can sample a state-conditional distribution over
child listsλk from a DP withLk as a base measure.

6The original iHMM paper (Beal et al., 2002) predates, and
was the motivation for, the work presented in Teh et al. (2006),
and is the origin of the termhierarchical Dirichlet process.
However, they used the term to mean something slightly differ-
ent than the HDP presented in Teh et al. (2006), and presenteda
sampling scheme for inference that was a heuristic approxima-
tion of a Gibbs sampler.

Thus, we augment the basic model given in the pre-
vious section with the variablesζ, Lk, andλk:

Lk|πk ∼ Deterministic, as described above

λk|ζ, Lk ∼ DP(ζ, Lk)

ct|λk ∼ λk

An important consequence of definingLk locally
(instead of globally, usingβ instead of theπks) is
that the model captures not only what sequences of
children a state prefers, but also the individual chil-
dren that state prefers; if a state gives high proba-
bility to some particular sequence of children, then
it is likely to also give high probability to other se-
quences containing those same states, or a subset
thereof.

4.3 Markov Children

In the Markov children model, more copies of the
variableπ are needed, because each child state must
be conditioned both on the parent state and on the
state of the preceding child. We use a new set of
variablesπki, whereπ is determined by the par-
ent statek and the state of the preceding siblingi.
Each of theπki is distributed asπk was in the basic
model:πki ∼ DP(α0,β).

5 Inference
Our goal in inference is to draw a sample from the
posterior over assignments of states to observations.
We present an inference procedure for the infinite
tree that is based on Gibbs sampling in thedirect
assignmentrepresentation, so named because we di-
rectly assign global state indices to observations.7

Before we present the procedure, we define a few
count variables. Recall from Figure 4 that each state
k has a local stickπk, each element of which cor-
responds to an element ofβ. In our sampling pro-
cedure, we only keep elements ofπk andβ which
correspond to states observed in the data. We define
the variablemjk to be the number of elements of the
finite observed portion ofπk which correspond toβj

andnjk to be the number of observations with state
k whose parent’s state isj.

We also need a few model-specific counts. For the
simultaneous children model we neednjz, which is

7We adapt one of the sampling schemes mentioned by Teh
et al. (2006) for use in the iHMM. This paper suggests two
sampling schemes for inference, but does not explicitly present
them. Upon discussion with one of the authors (Y. W. Teh,
2006, p.c.), it became clear that inference using the augmented
representation is much more complicated than initially thought.
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the number of times the state sequencez occurred
as the children of statej. For the Markov chil-
dren model we need the count variablen̂jik which
is the number of observations for a node with state
k whose parent’s state isj and whose previous sib-
ling’s state isi. In all cases we represent marginal
counts using dot-notation, e.g.,n·k is the total num-
ber of nodes with statek, regardless of parent.

Our procedure alternates between three distinct
sampling stages: (1) sampling the state assignments
z, (2) sampling the countsmjk, and (3) sampling
the global stickβ. The only modification of the pro-
cedure that is required for the different tree mod-
els is the method for computing the probability
of the child state sequence given the parent state
P((zt′)t′∈c(t)|zt), defined separately for each model.

Sampling z. In this stage we sample a state for
each tree node. The probability of nodet being as-
signed statek is given by:

P(zt = k|z−t,β) ∝ P(zt = k, (zt′)t′∈s(t)|zp(t))

· P((zt′)t′∈c(t)|zt = k) · f−xt

k
(xt)

wheres(t) denotes the set of siblings oft, f−xt

k
(xt)

denotes the posterior probability of observationxt

given all other observations assigned to statek, and
z−t denotes all state assignments exceptzt. In other
words, the probability is proportional to the product
of three terms: the probability of the states oft and
its siblings given its parentzp(t), the probability of
the states of the childrenc(t) givenzt, and the pos-
terior probability of observationxt given zt. Note
that if we samplezt to be a previously unseen state,
we will need to extendβ as discussed in Section 3.2.

Now we give the equations forP((zt′)t′∈c(t)|zt)
for each of the models. In the independent child
model the probability of generating each child is:

Pind(zci(t) = k|zt = j) =
njk + α0βk

nj· + α0

Pind((zt′)t′∈c(t)|zt = j) =
∏

t′∈c(t)
Pind(zt′ |zt = j)

For the simultaneous child model, the probability of
generating a sequence of children,z, takes into ac-
count how many times that sequence has been gen-
erated, along with the likelihood of regenerating it:

Psim((zt′)t′∈c(t) = z|zt = j) =
njz + ζPind(z|zt = j)

nj· + ζ

Recall thatζ denotes the concentration parameter
for the sequence generating DP. Lastly, we have the

DT NN IN DT NN VBD PRP$ NN TO VB NN EOS
The man in the corner taught his dachshund to play golf EOS

Figure 6: An example of a syntactic dependency tree
where the dependencies are between tags (hidden
states), and each tag generates a word (observation).

Markov child model:

Pm(zci(t) = k|zci−1(t) = i, zt = j) =
n̂jik + α0βk

n̂ji· + α0

Pm((zt′)t′∈c(t)|zt) =
∏|c(t)|

i=1
Pm(zci(t)|zci−1(t), zt)

Finally, we give the posterior probability of an ob-
servation, given thatF (φk) is Multinomial(φk), and
that H is Dirichlet(ρ, . . . , ρ). Let N be the vocab-
ulary size andṅk be the number of observationsx
with statek. Then:

f−xt

k
(xt) =

ṅxtk + ρ

ṅ·k + Nρ

Sampling m. We use the following procedure,
which slightly modifies one from (Y. W. Teh, 2006,
p.c.), to sample eachmjk:

SAMPLEM (j, k)
1 if njk = 0
2 then mjk = 0
3 else mjk = 1
4 for i← 2 to njk

5 do if rand() < α0

α0+i−1
6 then mjk = mjk + 1
7 return mjk

Sampling β. Lastly, we sampleβ using the Di-
richlet distribution:

(β1, . . . , βK , βu) ∼ Dirichlet(m·1, . . . ,m·K , α0)

6 Experiments

We demonstrate infinite tree models on two dis-
tinct syntax learning tasks: unsupervised POS learn-
ing conditioned on untagged dependency trees and
learning a split of an existing tagset, which improves
the accuracy of an automatic syntactic parser.

For both tasks, we use a simple modification of
the basic model structure, to allow the trees to gen-
erate dependents on the left and the right with dif-
ferent distributions – as is useful in modeling natu-
ral language. The modification of the independent
child tree is trivial: we have two copies of each of

277



the variablesπk, one each for the left and the right.
Generation of dependents on the right is completely
independent of that for the left. The modifications of
the other models are similar, but now there are sepa-
ratesetsof πk variables for the Markov child model,
and separateLk andλk variables for the simultane-
ous child model, for each of the left and right.

For both experiments, we used dependency trees
extracted from the Penn Treebank (Marcus et al.,
1993) using the head rules and dependency extrac-
tor from Yamada and Matsumoto (2003). As is stan-
dard, we used WSJ sections 2–21 for training, sec-
tion 22 for development, and section 23 for testing.

6.1 Unsupervised POS Learning

In the first experiment, we do unsupervised part-of-
speech learning conditioned on dependency trees.
To be clear, the input to our algorithm is the de-
pendency structure skeleton of the corpus, but not
the POS tags, and the output is a labeling of each
of the words in the tree for word class. Since the
model knows nothing about the POS annotation, the
new classes have arbitrary integer names, and are
not guaranteed to correlate with the POS tag def-
initions. We found that the choice ofα0 and β

(the concentration parameters) did not affect the out-
put much, while the value ofρ (the parameter for
the base Dirichlet distribution) made a much larger
difference. For all reported experiments, we set
α0 = β = 10 and variedρ.

We use several metrics to evaluate the word
classes. First, we use the standard approach of
greedily assigning each of the learned classes to the
POS tag with which it has the greatest overlap, and
then computing tagging accuracy (Smith and Eisner,
2005; Haghighi and Klein, 2006).8 Additionally, we
compute the mutual information of the learned clus-
ters with the gold tags, and we compute the cluster
F-score (Ghosh, 2003). See Table 1 for results of
the different models, parameter settings, and met-
rics. Given the variance in the number of classes
learned it is a little difficult to interpret these results,
but it is clear that the Markov child model is the
best; it achieves superior performance to the inde-
pendent child model on all metrics, while learning
fewer word classes. The poor performance of the
simultaneous model warrants further investigation,
but we observed that the distributions learned by that

8The advantage of this metric is that it’s comprehensible.
The disadvantage is that it’s easy to inflate by adding classes.

Model ρ # Classes Acc. MI F1
Indep. 0.01 943 67.89 2.00 48.29

0.001 1744 73.61 2.23 40.80
0.0001 2437 74.64 2.27 39.47

Simul. 0.01 183 21.36 0.31 21.57
0.001 430 15.77 0.09 13.80
0.0001 549 16.68 0.12 14.29

Markov 0.01 613 68.53 2.12 49.82
0.001 894 75.34 2.31 48.73

Table 1: Results of part unsupervised POS tagging
on the different models, using a greedy accuracy
measure.

model are far more spiked, potentially due to double
counting of tags, since the sequence probabilities are
already based on the local probabilities.

For comparison, Haghighi and Klein (2006) re-
port an unsupervised baseline of 41.3%, and a best
result of 80.5% from using hand-labeled prototypes
and distributional similarity. However, they train on
less data, and learn fewer word classes.

6.2 Unsupervised POS Splitting

In the second experiment we use the infinite tree
models to learn a refinement of the PTB tags. We
initialize the set of hidden states to the set of PTB
tags, and then, during inference, constrain the sam-
pling distribution over hidden statezt at each nodet
to include only states that are a refinement of the an-
notated PTB tag at that position. The output of this
training procedure is a new annotation of the words
in the PTB with the learned tags. We then compare
the performance of a generative dependency parser
trained on the new refined tags with one trained on
the base PTB tag set. We use the generative de-
pendency parser distributed with the Stanford fac-
tored parser (Klein and Manning, 2003b) for the
comparison, since it performs simultaneous tagging
and parsing during testing. In this experiment, un-
labeled, directed, dependency parsing accuracy for
the best model increased from 85.11% to 87.35%, a
15% error reduction. See Table 2 for the full results
over all models and parameter settings.

7 Related Work

The HDP-PCFG (Liang et al., 2007), developed at
the same time as this work, aims to learn state splits
for a binary-branching PCFG. It is similar to our
simultaneous child model, but with several impor-
tant distinctions. As discussed in Section 4.2, in our
model each state has a DP over sequences, with a
base distribution that is defined over the local child
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Model ρ Accuracy
Baseline – 85.11
Independent 0.01 86.18

0.001 85.88
Markov 0.01 87.15

0.001 87.35

Table 2: Results of untyped, directed dependency
parsing, where the POS tags in the training data have
been split according to the various models. At test
time, the POS tagging and parsing are done simulta-
neously by the parser.

state probabilities. In contrast, Liang et al. (2007)
define a global DP over sequences, with the base
measure defined over the global state probabilities,
β; locally, each state has an HDP, with this global
DP as the base measure. We believe our choice to
be more linguistically sensible: in our model, for a
particular state, dependent sequences which are sim-
ilar to one another increase one another’s likelihood.
Additionally, their modeling decision made it diffi-
cult to define a Gibbs sampler, and instead they use
variational inference. Earlier, Johnson et al. (2007)
presentedadaptor grammars, which is a very simi-
lar model to the HDP-PCFG. However they did not
confine themselves to a binary branching structure
and presented a more general framework for defin-
ing the process for splitting the states.

8 Discussion and Future Work

We have presented a set of novel infinite tree models
and associated inference algorithms, which are suit-
able for representing syntactic dependency structure.
Because the models represent a potentially infinite
number of hidden states, they permit unsupervised
learning algorithms which naturally select a num-
ber of word classes, or tags, based on qualities of
the data. Although they require substantial techni-
cal background to develop, the learning algorithms
based on the models are actually simple in form, re-
quiring only the maintenance of counts, and the con-
struction of sampling distributions based on these
counts. Our experimental results are preliminary but
promising: they demonstrate that the model is capa-
ble of capturing important syntactic structure.

Much remains to be done in applying infinite
models to language structure, and an interesting ex-
tension would be to develop inference algorithms
that permit completely unsupervised learning of de-
pendency structure.
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Abstract

Over the last few years, two of the main
research directions in machine learning of
natural language processing have been the
study of semi-supervised learning algo-
rithms as a way to train classifiers when the
labeled data is scarce, and the study of ways
to exploit knowledge and global information
in structured learning tasks. In this paper,
we suggest a method for incorporating do-
main knowledge in semi-supervised learn-
ing algorithms. Our novel framework unifies
and can exploit several kinds of task specific
constraints. The experimental results pre-
sented in the information extraction domain
demonstrate that applying constraints helps
the model to generate better feedback during
learning, and hence the framework allows
for high performance learning with signif-
icantly less training data than was possible
before on these tasks.

1 Introduction
Natural Language Processing (NLP) systems typi-
cally require large amounts of knowledge to achieve
good performance. Acquiring labeled data is a dif-
ficult and expensive task. Therefore, an increasing
attention has been recently given to semi-supervised
learning, where large amounts of unlabeled data are
used to improve the models learned from a small
training set (Collins and Singer, 1999; Thelen and
Riloff, 2002). The hope is that semi-supervised or
even unsupervised approaches, when given enough

knowledge about the structure of the problem, will
be competitive with the supervised models trained
on large training sets. However, in the general
case, semi-supervised approaches give mixed re-
sults, and sometimes even degrade the model per-
formance (Nigam et al., 2000). In many cases, im-
proving semi-supervised models was done by seed-
ing these models with domain information taken
from dictionaries or ontology (Cohen and Sarawagi,
2004; Collins and Singer, 1999; Haghighi and Klein,
2006; Thelen and Riloff, 2002). On the other hand,
in the supervised setting, it has been shown that
incorporating domain and problem specific struc-
tured information can result in substantial improve-
ments (Toutanova et al., 2005; Roth and Yih, 2005).

This paper proposes a novel constraints-based
learning protocol for guiding semi-supervised learn-
ing. We develop a formalism for constraints-based
learning that unifies several kinds of constraints:
unary, dictionary based and n-ary constraints, which
encode structural information and interdependencies
among possible labels. One advantage of our for-
malism is that it allows capturing different levels of
constraint violation. Our protocol can be used in
the presence of any learning model, including those
that acquire additional statistical constraints from
observed data while learning (see Section 5. In the
experimental part of this paper we use HMMs as the
underlying model, and exhibit significant reduction
in the number of training examples required in two
information extraction problems.

As is often the case in semi-supervised learning,
the algorithm can be viewed as a process that im-
proves the model by generating feedback through
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labeling unlabeled examples. Our algorithm pushes
this intuition further, in that the use of constraints
allows us to better exploit domain information as a
way to label, along with the current learned model,
unlabeled examples. Given a small amount of la-
beled data and a large unlabeled pool, our frame-
work initializes the model with the labeled data and
then repeatedly:
(1) Uses constraints and the learned model to label
the instances in the pool.
(2) Updates the model by newly labeled data.

This way, we can generate better “training” ex-
amples during the semi-supervised learning process.
The core of our approach, (1), is described in Sec-
tion 5. The task is described in Section 3 and the
Experimental study in Section 6. It is shown there
that the improvement on the training examples via
the constraints indeed boosts the learned model and
the proposed method significantly outperforms the
traditional semi-supervised framework.
2 Related Work
In the semi-supervised domain there are two main
approaches for injecting domain specific knowledge.
One is using the prior knowledge to accurately tailor
the generative model so that it captures the domain
structure. For example, (Grenager et al., 2005) pro-
poses Diagonal Transition Models for sequential la-
beling tasks where neighboring words tend to have
the same labels. This is done by constraining the
HMM transition matrix, which can be done also for
other models, such as CRF. However (Roth and Yih,
2005) showed that reasoning with more expressive,
non-sequential constraints can improve the perfor-
mance for the supervised protocol.

A second approach has been to use a small high-
accuracy set of labeled tokens as a way to seed and
bootstrap the semi-supervised learning. This was
used, for example, by (Thelen and Riloff, 2002;
Collins and Singer, 1999) in information extraction,
and by (Smith and Eisner, 2005) in POS tagging.
(Haghighi and Klein, 2006) extends the dictionary-
based approach to sequential labeling tasks by prop-
agating the information given in the seeds with con-
textual word similarity. This follows a conceptually
similar approach by (Cohen and Sarawagi, 2004)
that uses a large named-entity dictionary, where the
similarity between the candidate named-entity and

its matching prototype in the dictionary is encoded
as a feature in a supervised classifier.

In our framework, dictionary lookup approaches
are viewed as unary constraints on the output states.
We extend these kinds of constraints and allow for
more general, n-ary constraints.

In the supervised learning setting it has been es-
tablished that incorporating global information can
significantly improve performance on several NLP
tasks, including information extraction and semantic
role labeling. (Punyakanok et al., 2005; Toutanova
et al., 2005; Roth and Yih, 2005). Our formalism
is most related to this last work. But, we develop a
semi-supervised learning protocol based on this for-
malism. We also make use of soft constraints and,
furthermore, extend the notion of soft constraints to
account for multiple levels of constraints’ violation.
Conceptually, although not technically, the most re-
lated work to ours is (Shen et al., 2005) that, in
a somewhat ad-hoc manner uses soft constraints to
guide an unsupervised model that was crafted for
mention tracking. To the best of our knowledge,
we are the first to suggest a general semi-supervised
protocol that is driven by soft constraints.

We propose learning with constraints - a frame-
work that combines the approaches described above
in a unified and intuitive way.
3 Tasks, Examples and Datasets
In Section 4 we will develop a general framework
for semi-supervised learning with constraints. How-
ever, it is useful to illustrate the ideas on concrete
problems. Therefore, in this section, we give a brief
introduction to the two domains on which we tested
our algorithms. We study two information extrac-
tion problems in each of which, given text, a set of
pre-defined fields is to be identified. Since the fields
are typically related and interdependent, these kinds
of applications provide a good test case for an ap-
proach like ours.1

The first task is to identify fields from citations
(McCallum et al., 2000) . The data originally in-
cluded 500 labeled references, and was later ex-
tended with 5,000 unannotated citations collected
from papers found on the Internet (Grenager et al.,
2005). Given a citation, the task is to extract the

1The data for both problems is available at:
http://www.stanford.edu/ grenager/data/unsupie.tgz
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(a) [ AUTHOR Lars Ole Andersen . ] [ TITLE Program analysis and specialization for the C programming language . ] [
TECH-REPORT PhD thesis , ] [ INSTITUTION DIKU , University of Copenhagen , ] [ DATE May 1994 . ]

(b) [ AUTHOR Lars Ole Andersen . Program analysis and ] [TITLE specialization for the ] [EDITOR C ] [ BOOKTITLE
Programming language ] [ TECH-REPORT . PhD thesis , ] [ INSTITUTION DIKU , University of Copenhagen , May ] [ DATE
1994 . ]

Figure 1: Error analysis of a HMM model. The labels are annotated by underline and are to the right of
each open bracket. The correct assignment was shown in (a). While the predicted label assignment (b) is
generally coherent, some constraints are violated. Most obviously, punctuation marks are ignored as cues
for state transitions. The constraint “Fields cannot end with stop words (such as “the”)” may be also good.

fields that appear in the given reference. See Fig. 1.
There are 13 possible fields including author, title,
location, etc.

To gain an insight to how the constraints can guide
semi-supervised learning, assume that the sentence
shown in Figure 1 appears in the unlabeled data
pool. Part (a) of the figure shows the correct la-
beled assignment and part (b) shows the assignment
labeled by a HMM trained on 30 labels. However,
if we apply the constraint that state transition can
occur only on punctuation marks, the same HMM
model parameters will result in the correct labeling
(a). Therefore, by adding the improved labeled as-
signment we can generate better training samples
during semi-supervised learning. In fact, the punc-
tuation marks are only some of the constraints that
can be applied to this problem. The set of constraints
we used in our experiments appears in Table 1. Note
that some of the constraints are non-local and are
very intuitive for people, yet it is very difficult to
inject this knowledge into most models.

The second problem we consider is extracting
fields from advertisements (Grenager et al., 2005).
The dataset consists of 8,767 advertisements for
apartment rentals in the San Francisco Bay Area
downloaded in June 2004 from the Craigslist web-
site. In the dataset, only 302 entries have been la-
beled with 12 fields, including size, rent, neighbor-
hood, features, and so on. The data was prepro-
cessed using regular expressions for phone numbers,
email addresses and URLs. The list of the con-
straints for this domain is given in Table 1. We im-
plement some global constraints and include unary
constraints which were largely imported from the
list of seed words used in (Haghighi and Klein,
2006). We slightly modified the seedwords due to
difference in preprocessing.

4 Notation and Definitions
Consider a structured classification problem, where
given an input sequence x = (x1, . . . , xN ), the task
is to find the best assignment to the output variables
y = (y1, . . . , yM ). We denote X to be the space of
the possible input sequences and Y to be the set of
possible output sequences.

We define a structured output classifier as a func-
tion h : X → Y that uses a global scoring function
f : X ×Y → R to assign scores to each possible in-
put/output pair. Given an input x, a desired function
f will assign the correct output y the highest score
among all the possible outputs. The global scoring
function is often decomposed as a weighted sum of
feature functions,

f(x, y) =
M∑

i=1

λifi(x, y) = λ · F (x, y).

This decomposition applies both to discriminative
linear models and to generative models such as
HMMs and CRFs, in which case the linear sum
corresponds to log likelihood assigned to the in-
put/output pair by the model (for details see (Roth,
1999) for the classification case and (Collins, 2002)
for the structured case). Even when not dictated by
the model, the feature functions fi(x, y) used are
local to allow inference tractability. Local feature
function can capture some context for each input or
output variable, yet it is very limited to allow dy-
namic programming decoding during inference.

Now, consider a scenario where we have a set
of constraints C1, . . . , CK . We define a constraint
C : X × Y → {0, 1} as a function that indicates
whether the input/output sequence violates some de-
sired properties. When the constraints are hard, the
solution is given by

argmax
y∈1C(x)

λ · F (x, y),
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(a)-Citations
1) Each field must be a consecutive list of words, and can
appear at most once in a citation.
2) State transitions must occur on punctuation marks.
3) The citation can only start with author or editor.
4) The words pp., pages correspond to PAGE.
5) Four digits starting with 20xx and 19xx are DATE.
6) Quotations can appear only in titles.
7) The words note, submitted, appear are NOTE.
8) The words CA, Australia, NY are LOCATION.
9) The words tech, technical are TECH REPORT.
10) The words proc, journal, proceedings, ACM are JOUR-
NAL or BOOKTITLE.
11) The words ed, editors correspond to EDITOR.

(b)-Advertisements
1) State transitions can occur only on punctuation marks or
the newline symbol.
2) Each field must be at least 3 words long.
3) The words laundry, kitchen, parking are FEATURES.
4) The words sq, ft, bdrm are SIZE.
5) The word $, *MONEY* are RENT.
6) The words close, near, shopping are NEIGHBORHOOD.
7) The words laundry kitchen, parking are FEATURES.
8) The (normalized) words phone, email are CONTACT.
9) The words immediately, begin, cheaper are AVAILABLE.
10) The words roommates, respectful, drama are ROOM-
MATES.
11) The words smoking, dogs, cats are RESTRICTIONS.
12) The word http, image, link are PHOTOS.
13) The words address, carlmont, st, cross are ADDRESS.
14) The words utilities, pays, electricity are UTILITIES.

Table 1: The list of constraints for extracting fields
from citations and advertisements. Some constraints
(represented in the first block of each domain) are
global and are relatively difficult to inject into tradi-
tional models. While all the constraints hold for the
vast majority of the data, some of them are violated
by some correct labeled assignments.

where 1C(x) is a subset of Y for which all Ci as-
sign the value 1 for the given (x, y).

When the constraints are soft, we want to in-
cur some penalty for their violation. Moreover, we
want to incorporate into our cost function a mea-
sure for the amount of violation incurred by vi-
olating the constraint. A generic way to capture
this intuition is to introduce a distance function
d(y, 1Ci(x)) between the space of outputs that re-
spect the constraint,1Ci(x), and the given output se-
quence y. One possible way to implement this dis-
tance function is as the minimal Hamming distance
to a sequence that respects the constraint Ci, that is:
d(y, 1Ci(x)) = min(y′∈1C(x)) H(y, y′). If the penalty
for violating the soft constraint Ci is ρi, we write the

score function as:

argmax
y

λ · F (x, y) −
K∑

i=1

ρid(y, 1Ci(x)) (1)

We refer to d(y, 1C(x)) as the valuation of the
constraint C on (x, y). The intuition behind (1) is as
follows. Instead of merely maximizing the model’s
likelihood, we also want to bias the model using
some knowledge. The first term of (1) is used to
learn from data. The second term biases the mode
by using the knowledge encoded in the constraints.
Note that we do not normalize our objective function
to be a true probability distribution.
5 Learning and Inference with Constraints
In this section we present a new constraint-driven
learning algorithm (CODL) for using constraints to
guide semi-supervised learning. The task is to learn
the parameter vector λ by using the new objective
function (1). While our formulation allows us to
train also the coefficients of the constraints valua-
tion, ρi, we choose not to do it, since we view this as
a way to bias (or enforce) the prior knowledge into
the learned model, rather than allowing the data to
brush it away. Our experiments demonstrate that the
proposed approach is robust to inaccurate approxi-
mation of the prior knowledge (assigning the same
penalty to all the ρi ).

We note that in the presence of constraints, the
inference procedure (for finding the output y that
maximizes the cost function) is usually done with
search techniques (rather than Viterbi decoding,
see (Toutanova et al., 2005; Roth and Yih, 2005) for
a discussion), we chose beamsearch decoding.

The semi-supervised learning with constraints is
done with an EM-like procedure. We initialize the
model with traditional supervised learning (ignoring
the constraints) on a small labeled set. Given an un-
labeled set U , in the estimation step, the traditional
EM algorithm assigns a distribution over labeled as-
signments Y of each x ∈ U , and in the maximization
step, the set of model parameters is learned from the
distributions assigned in the estimation step.

However, in the presence of constraints, assigning
the complete distributions in the estimation step is
infeasible since the constraints reshape the distribu-
tion in an arbitrary way. As in existing methods for
training a model by maximizing a linear cost func-
tion (maximize likelihood or discriminative maxi-
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mization), the distribution over Y is represented as
the set of scores assigned to it; rather than consid-
ering the score assigned to all y′s, we truncate the
distribution to the top K assignments as returned
by the search. Given a set of K top assignments
y1, . . . , yK , we approximate the estimation step by
assigning uniform probability to the top K candi-
dates, and zero to the other output sequences. We
denote this algorithm top-K hard EM. In this pa-
per, we use beamsearch to generate K candidates
according to (1).

Our training algorithm is summarized in Figure 2.
Several things about the algorithm should be clari-
fied: the Top-K-Inference procedure in line 7, the
learning procedure in line 9, and the new parameter
estimation in line 9.

The Top-K-Inference is a procedure that returns
the K labeled assignments that maximize the new
objective function (1). In our case we used the top-
K elements in the beam, but this could be applied
to any other inference procedure. The fact that the
constraints are used in the inference procedure (in
particular, for generating new training examples) al-
lows us to use a learning algorithm that ignores the
constraints, which is a lot more efficient (although
algorithms that do take the constraints into account
can be used too). We used maximum likelihood es-
timation of λ but, in general, perceptron or quasi-
Newton can also be used.

It is known that traditional semi-supervised train-
ing can degrade the learned model’s performance.
(Nigam et al., 2000) has suggested to balance the
contribution of labeled and unlabeled data to the pa-
rameters. The intuition is that when iteratively esti-
mating the parameters with EM, we disallow the pa-
rameters to drift too far from the supervised model.
The parameter re-estimation in line 9, uses a similar
intuition, but instead of weighting data instances, we
introduced a smoothing parameter γ which controls
the convex combination of models induced by the la-
beled and the unlabeled data. Unlike the technique
mentioned above which focuses on naive Bayes, our
method allows us to weight linear models generated
by different learning algorithms.

Another way to look the algorithm is from the
self-training perspective (McClosky et al., 2006).
Similarly to self-training, we use the current model
to generate new training examples from the unla-

Input:
Cycles: learning cycles
Tr = {x, y}: labeled training set.
U : unlabeled dataset
F : set of feature functions.
{ρi}: set of penalties.
{Ci}: set of constraints.
γ: balancing parameter with the supervised model.
learn(Tr, F ): supervised learning algorithm
Top-K-Inference:

returns top-K labeled scored by the cost function (1)
CODL:
1. Initialize λ0 = learn(Tr, F ).
2. λ = λ0.
3. For Cycles iterations do:
4. T = φ
5. For each x ∈ U
6. {(x, y1), . . . , (x, yK)} =
7. Top-K-Inference(x, λ, F, {Ci}, {ρi})
8. T = T ∪ {(x, y1), . . . , (x, yK)}
9. λ = γλ0 + (1− γ)learn(T, F )

Figure 2: COnstraint Driven Learning (CODL). In
Top-K-Inference, we use beamsearch to find the K-
best solution according to Eq. (1).

beled set. However, there are two important differ-
ences. One is that in self-training, once an unlabeled
sample was labeled, it is never labeled again. In
our case all the samples are relabeled in each iter-
ation. In self-training it is often the case that only
high-confidence samples are added to the labeled
data pool. While we include all the samples in the
training pool, we could also limit ourselves to the
high-confidence samples. The second difference is
that each unlabeled example generates K labeled in-
stances. The case of one iteration of top-1 hard EM
is equivalent to self training, where all the unlabeled
samples are added to the labeled pool.

There are several possible benefits to using K > 1
samples. (1) It effectively increases the training set
by a factor of K (albeit by somewhat noisy exam-
ples). In the structured scenario, each of the top-K
assignments is likely to have some good components
so generating top-K assignments helps leveraging
the noise. (2) Given an assignment that does not sat-
isfy some constraints, using top-K allows for mul-
tiple ways to correct it. For example, consider the
output 11101000 with the constraint that it should
belong to the language 1∗0∗. If the two top scoring
corrections are 11111000 and 11100000, consider-
ing only one of those can negatively bias the model.
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6 Experiments and Results
In this section, we present empirical results of our
algorithms on two domains: citations and adver-
tisements. Both problems are modeled with a sim-
ple token-based HMM. We stress that token-based
HMM cannot represent many of our constraints. The
function d(y, 1C(x)) used is an approximation of a
Hamming distance function, discussed in Section 7.
For both domains, and all the experiments, γ was
set to 0.1. The constraints violation penalty ρ is set
to − log 10−4 and − log 10−1 for citations and ad-
vertisements, resp.2 Note that all constraints share
the same penalty. The number of semi-supervised
training cycles (line 3 of Figure 2) was set to 5. The
constraints for the two domains are listed in Table 1.

We trained models on training sets of size vary-
ing from 5 to 300 for the citations and from 5 to
100 for the advertisements. Additionally, in all the
semi-supervised experiments, 1000 unlabeled exam-
ples are used. We report token-based3 accuracy on
100 held-out examples (which do not overlap neither
with the training nor with the unlabeled data). We
ran 5 experiments in each setting, randomly choos-
ing the training set. The results reported below are
the averages over these 5 runs.

To verify our claims we implemented several
baselines. The first baseline is the supervised learn-
ing protocol denoted by sup. The second baseline
was a traditional top-1 Hard EM also known as
truncated EM4 (denoted by H for Hard). In the third
baseline, denoted H&W, we balanced the weight
of the supervised and unsupervised models as de-
scribed in line 9 of Figure 2. We compare these base-
lines to our proposed protocol, H&W&C, where we
added the constraints to guide the H&W protocol.
We experimented with two flavors of the algorithm:
the top-1 and the top-K version. In the top-K ver-
sion, the algorithm uses K-best predictions (K=50)
for each instance in order to update the model as de-
scribed in Figure 2.

The experimental results for both domains are in
given Table 2. As hypothesized, hard EM sometimes

2The guiding intuition is that λF (x, y) corresponds to a log-
likelihood of a HMM model and ρ to a crude estimation of the
log probability that a constraint does not hold. ρ was tuned on
a development set and kept fixed in all experiments.

3Each token (word or punctuation mark) is assigned a state.
4We also experimented with (soft) EM without constraints,

but the results were generally worse.

(a)- Citations
N Inf. sup. H H&W H&W&C H&W&C

(Top-1) (Top-K)
5 no I 55.1 60.9 63.6 70.6 71.0

I 66.6 69.0 72.5 76.0 77.8
10 no I 64.6 66.8 69.8 76.5 76.7

I 78.1 78.1 81.0 83.4 83.8
15 no I 68.7 70.6 73.7 78.6 79.4

I 81.3 81.9 84.1 85.5 86.2
20 no I 70.1 72.4 75.0 79.6 79.4

I 81.1 82.4 84.0 86.1 86.1
25 no I 72.7 73.2 77.0 81.6 82.0

I 84.3 84.2 86.2 87.4 87.6
300 no I 86.1 80.7 87.1 88.2 88.2

I 92.5 89.6 93.4 93.6 93.5
(b)-Advertisements

N Inf. sup. H H&W H&W&C H&W&C
(Top-1) (Top-K)

5 no I 55.2 61.8 60.5 66.0 66.0
I 59.4 65.2 63.6 69.3 69.6

10 no I 61.6 69.2 67.0 70.8 70.9
I 66.6 73.2 71.6 74.7 74.7

15 no I 66.3 71.7 70.1 73.0 73.0
I 70.4 75.6 74.5 76.6 76.9

20 no I 68.1 72.8 72.0 74.5 74.6
I 71.9 76.7 75.7 77.9 78.1

25 no I 70.0 73.8 73.0 74.9 74.8
I 73.7 77.7 76.6 78.4 78.5

100 no I 76.3 76.2 77.6 78.5 78.6
I 80.4 80.5 81.2 81.8 81.7

Table 2: Experimental results for extracting fields
from citations and advertisements. N is the number
of labeled samples. H is the traditional hard-EM and
H&W weighs labeled and unlabeled data as men-
tioned in Sec. 5. Our proposed model is H&W&C,
which uses constraints in the learning procedure. I
refers to using constraints during inference at eval-
uation time. Note that adding constraints improves
the accuracy during both learning and inference.

degrade the performance. Indeed, with 300 labeled
examples in the citations domain, the performance
decreases from 86.1 to 80.7. The usefulness of in-
jecting constraints in semi-supervised learning is ex-
hibited in the two right most columns: using con-
straints H&W&C improves the performance over
H&W quite significantly.

We carefully examined the contribution of us-
ing constraints to the learning stage and the testing
stage, and two separate results are presented: test-
ing with constraints (denoted I for inference) and
without constraints (no I). The I results are consis-
tently better. And, it is also clear from Table 2,
that using constraints in training always improves
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the model and the amount of improvement depends
on the amount of labeled data.

Figure 3 compares two protocols on the adver-
tisements domain: H&W+I, where we first run the
H&W protocol and then apply the constraints dur-
ing testing stage, and H&W&C+I, which uses con-
straints to guide the model during learning and uses
it also in testing. Although injecting constraints in
the learning process helps, testing with constraints is
more important than using constraints during learn-
ing, especially when the labeled data size is large.
This confirms results reported for the supervised
learning case in (Punyakanok et al., 2005; Roth and
Yih, 2005). However, as shown, our proposed al-
gorithm H&W&C for training with constraints is
critical when the amount labeled data is small.

Figure 4 further strengthens this point. In the cita-
tions domain, H&W&C+I achieves with 20 labeled
samples similar performance to the supervised ver-
sion without constraints with 300 labeled samples.

(Grenager et al., 2005) and (Haghighi and Klein,
2006) also report results for semi-supervised learn-
ing for these domains. However, due to differ-
ent preprocessing, the comparison is not straight-
forward. For the citation domain, when 20 labeled
and 300 unlabeled samples are available, (Grenager
et al., 2005) observed an increase from 65.2% to
71.3%. Our improvement is from 70.1% to 79.4%.
For the advertisement domain, they observed no im-
provement, while our model improves from 68.1%
to 74.6% with 20 labeled samples. Moreover, we
successfully use out-of-domain data (web data) to
improve our model, while they report that this data
did not improve their unsupervised model.

(Haghighi and Klein, 2006) also worked on one of
our data sets. Their underlying model, Markov Ran-
dom Fields, allows more expressive features. Nev-
ertheless, when they use only unary constraints they
get 53.75%. When they use their final model, along
with a mechanism for extending the prototypes to
other tokens, they get results that are comparable to
our model with 10 labeled examples. Additionally,
in their framework, it is not clear how to use small
amounts of labeled data when available. Our model
outperforms theirs once we add 10 more examples.

 0.65

 0.7

 0.75

 0.8

 0.85

100252015105

H+N+I
H+N+C+I

Figure 3: Comparison between H&W+I and
H&W&C+I on the advertisements domain. When
there is a lot of labeled data, inference with con-
straints is more important than using constraints dur-
ing learning. However, it is important to train with
constraints when the amount of labeled data is small.
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 0.75

 0.8

 0.85
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 0.95

100252015105

sup. (300)
H+N+C+I

Figure 4: With 20 labeled citations, our algorithm
performs competitively to the supervised version
trained on 300 samples.

7 Soft Constraints
This section discusses the importance of using soft
constraints rather than hard constraints, the choice
of Hamming distance for d(y, 1C(x)) and how we
approximate it. We use two constraints to illustrate
the ideas. (C1): “state transitions can only occur on
punctuation marks or newlines”, and (C2): “the field
TITLE must appear”.

First, we claim that defining d(y, 1C(x)) to be
the Hamming distance is superior to using a binary
value, d(y, 1C(x)) = 0 if y ∈ 1C(x) and 1 other-
wise. Consider, for example, the constraint C1 in
the advertisements domain. While the vast majority
of the instances satisfy the constraint, some violate
it in more than one place. Therefore, once the binary
distance is set to 1, the algorithm looses the ability to
discriminate constraint violations in other locations
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of the same instance. This may hurt the performance
in both the inference and the learning stage.

Computing the Hamming distance exactly can
be a computationally hard problem. Further-
more, it is unreasonable to implement the ex-
act computation for each constraint. Therefore,
we implemented a generic approximation for the
hamming distance assuming only that we are
given a boolean function φC(yN ) that returns
whether labeling the token xN with state yN vio-
lates constraint with respect to an already labeled
sequence (x1, . . . , xN−1, y1, . . . , yN−1). Then
d(y, 1C(x)) =

∑N
i=1 φC(yi). For example,

consider the prefix x1, x2, x3, x4, which con-
tains no punctuation or newlines and was labeled
AUTH, AUTH, DATE, DATE. This labeling
violates C1, the minimal hamming distance is 2, and
our approximation gives 1, (since there is only one
transition that violates the constraint.)

For constraints which cannot be validated based
on prefix information, our approximation resorts to
binary violation count. For instance, the constraint
C2 cannot be implemented with prefix information
when the assignment is not complete. Otherwise, it
would mean that the field TITLE should appear as
early as possible in the assignment.

While (Roth and Yih, 2005) showed the signif-
icance of using hard constraints, our experiments
show that using soft constraints is a superior op-
tion. For example, in the advertisements domain,
C1 holds for the large majority of the gold-labeled
instances, but is sometimes violated. In supervised
training with 100 labeled examples on this domain,
sup gave 76.3% accuracy. When the constraint vio-
lation penalty ρ was infinity (equivalent to hard con-
straint), the accuracy improved to 78.7%, but when
the penalty was set to −log(0.1), the accuracy of the
model jumped to 80.6%.

8 Conclusions and Future Work
We proposed to use constraints as a way to guide
semi-supervised learning. The framework devel-
oped is general both in terms of the representation
and expressiveness of the constraints, and in terms
of the underlying model being learned – HMM in
the current implementation. Moreover, our frame-
work is a useful tool when the domain knowledge
cannot be expressed by the model.

The results show that constraints improve not
only the performance of the final inference stage but
also propagate useful information during the semi-
supervised learning process and that training with
the constraints is especially significant when the
number of labeled training data is small.
Acknowledgments: This work is supported by NSF SoD-
HCER-0613885 and by a grant from Boeing. Part of this work
was done while Dan Roth visited the Technion, Israel, sup-
ported by a Lady Davis Fellowship.
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Abstract

Until quite recently, extending Phrase-based
Statistical Machine Translation (PBSMT)
with syntactic structure caused system per-
formance to deteriorate. In this work we
show that incorporating lexical syntactic de-
scriptions in the form of supertags can yield
significantly better PBSMT systems. We de-
scribe a novel PBSMT model that integrates
supertags into the target language model
and the target side of the translation model.
Two kinds of supertags are employed: those
from Lexicalized Tree-Adjoining Grammar
and Combinatory Categorial Grammar. De-
spite the differences between these two ap-
proaches, the supertaggers give similar im-
provements. In addition to supertagging, we
also explore the utility of a surface global
grammaticality measure based on combina-
tory operators. We perform various experi-
ments on the Arabic to English NIST 2005
test set addressing issues such as sparseness,
scalability and the utility of system subcom-
ponents. Our best result (0.4688 BLEU)
improves by 6.1% relative to a state-of-the-
art PBSMT model, which compares very
favourably with the leading systems on the
NIST 2005 task.

1 Introduction

Within the field of Machine Translation, by far the
most dominant paradigm is Phrase-based Statistical
Machine Translation (PBSMT) (Koehn et al., 2003;

Tillmann & Xia, 2003). However, unlike in rule- and
example-based MT, it has proven difficult to date to
incorporate linguistic, syntactic knowledge in order
to improve translation quality. Only quite recently
have (Chiang, 2005) and (Marcu et al., 2006) shown
that incorporating some form of syntactic structure
could show improvements over a baseline PBSMT
system. While (Chiang, 2005) avails of structure
which is not linguistically motivated, (Marcu et al.,
2006) employ syntactic structure to enrich the en-
tries in the phrase table.

In this paper we explore a novel approach towards
extending a standard PBSMT system with syntactic
descriptions: we inject lexical descriptions into both
the target side of the phrase translation table and the
target language model. Crucially, the kind of lexical
descriptions that we employ are those that are com-
monly devised within lexicon-driven approaches to
linguistic syntax, e.g. Lexicalized Tree-Adjoining
Grammar (Joshi & Schabes, 1992; Bangalore &
Joshi, 1999) and Combinary Categorial Grammar
(Steedman, 2000). In these linguistic approaches, it
is assumed that the grammar consists of a very rich
lexicon and a tiny, impoverished1 set of combina-
tory operators that assemble lexical entries together
into parse-trees. The lexical entries consist of syn-
tactic constructs (‘supertags’) that describe informa-
tion such as the POS tag of the word, its subcatego-
rization information and the hierarchy of phrase cat-
egories that the word projects upwards. In this work
we employ the lexical entries but exchange the al-
gebraic combinatory operators with the more robust

1These operators neither carry nor presuppose further lin-
guistic knowledge beyond what the lexicon contains.
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and efficient supertagging approach: like standard
taggers, supertaggers employ probabilities based on
local context and can be implemented using finite
state technology, e.g. Hidden Markov Models (Ban-
galore & Joshi, 1999).

There are currently two supertagging approaches
available: LTAG-based (Bangalore & Joshi, 1999)
and CCG-based (Clark & Curran, 2004). Both the
LTAG (Chen et al., 2006) and the CCG supertag
sets (Hockenmaier, 2003) were acquired from the
WSJ section of the Penn-II Treebank using hand-
built extraction rules. Here we test both the LTAG
and CCG supertaggers. We interpolate (log-linearly)
the supertagged components (language model and
phrase table) with the components of a standard
PBSMT system. Our experiments on the Arabic–
English NIST 2005 test suite show that each of the
supertagged systems significantly improves over the
baseline PBSMT system. Interestingly, combining
the two taggers together diminishes the benefits of
supertagging seen with the individual LTAG and
CCG systems. In this paper we discuss these and
other empirical issues.

The remainder of the paper is organised as fol-
lows: in section 2 we discuss the related work on en-
riching PBSMT with syntactic structure. In section
3, we describe the baseline PBSMT system which
our work extends. In section 4, we detail our ap-
proach. Section 5 describes the experiments carried
out, together with the results obtained. Section 6
concludes, and provides avenues for further work.

2 Related Work

Until very recently, the experience with adding syn-
tax to PBSMT systems was negative. For example,
(Koehn et al., 2003) demonstrated that adding syn-
tax actually harmed the quality of their SMT system.
Among the first to demonstrate improvement when
adding recursive structure was (Chiang, 2005), who
allows for hierarchical phrase probabilities that han-
dle a range of reordering phenomena in the correct
fashion. Chiang’s derived grammar does not rely on
any linguistic annotations or assumptions, so that the
‘syntax’ induced is not linguistically motivated.

Coming right up to date, (Marcu et al., 2006)
demonstrate that ‘syntactified’ target language
phrases can improve translation quality for Chinese–

English. They employ a stochastic, top-down trans-
duction process that assigns a joint probability to
a source sentence and each of its alternative trans-
lations when rewriting the target parse-tree into a
source sentence. The rewriting/transduction process
is driven by “xRS rules”, each consisting of a pair
of a source phrase and a (possibly only partially)
lexicalized syntactified target phrase. In order to
extract xRS rules, the word-to-word alignment in-
duced from the parallel training corpus is used to
guide heuristic tree ‘cutting’ criteria.

While the research of (Marcu et al., 2006) has
much in common with the approach proposed here
(such as the syntactified target phrases), there re-
main a number of significant differences. Firstly,
rather than induce millions of xRS rules from par-
allel data, we extract phrase pairs in the standard
way (Och & Ney, 2003) and associate with each
phrase-pair a set of target language syntactic struc-
tures based on supertag sequences. Relative to using
arbitrary parse-chunks, the power of supertags lies
in the fact that they are, syntactically speaking, rich
lexical descriptions. A supertag can be assigned to
every word in a phrase. On the one hand, the cor-
rect sequence of supertags could be assembled to-
gether, using only impoverished combinatory opera-
tors, into a small set of constituents/parses (‘almost’
a parse). On the other hand, because supertags are
lexical entries, they facilitate robust syntactic pro-
cessing (using Markov models, for instance) which
does not necessarily aim at building a fully con-
nected graph.

A second major difference with xRS rules is that
our supertag-enriched target phrases need not be
generalized into (xRS or any other) rules that work
with abstract categories. Finally, like POS tagging,
supertagging is more efficient than actual parsing or
tree transduction.

3 Baseline Phrase-Based SMT System

We present the baseline PBSMT model which we
extend with supertags in the next section. Our
baseline PBSMT model uses GIZA++2 to obtain
word-level alignments in both language directions.
The bidirectional word alignment is used to obtain
phrase translation pairs using heuristics presented in

2http://www.fjoch.com/GIZA++.html
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(Och & Ney, 2003) and (Koehn et al., 2003), and the
Moses decoder was used for phrase extraction and
decoding.3

Let t and s be the target and source language
sentences respectively. Any (target or source) sen-
tence x will consist of two parts: a bag of elements
(words/phrases etc.) and an order over that bag. In
other words, x = 〈φx, Ox〉, where φx stands for the
bag of phrases that constitute x, and Ox for the order
of the phrases as given in x (Ox can be implemented
as a function from a bag of tokens φx to a set with a
finite number of positions). Hence, we may separate
order from content:

arg max
t

P (t|s) = arg max
t

P (s | t)P (t) (1)

= arg max
〈φt,Ot〉

TM︷ ︸︸ ︷
P (φs | φt)

distortion︷ ︸︸ ︷
P (Os | Ot)

LM︷ ︸︸ ︷
Pw(t) (2)

Here, Pw(t) is the target language model, P (Os|Ot)
represents the conditional (order) linear distortion
probability, and P (φs|φt) stands for a probabilis-
tic translation model from target language bags of
phrases to source language bags of phrases using a
phrase translation table. As commonly done in PB-
SMT, we interpolate these models log-linearly (us-
ing different λ weights) together with a word penalty
weight which allows for control over the length of
the target sentence t:

arg max
〈φt,Ot〉

P (φs | φt) P (Os | Ot)λo

Pw(t)λlm exp|t|λw

For convenience of notation, the interpolation factor
for the bag of phrases translation model is shown in
formula (3) at the phrase level (but that does not en-
tail any difference). For a bag of phrases φt consist-
ing of phrases ti, and bag φs consisting of phrases
si, the phrase translation model is given by:

P (φs | φt) =
Y
si
ti

P (si|ti)

P (si| ti) = Pph(si|ti)
λt1Pw(si|ti)

λt2Pr(ti|si)
λt3 (3)

where Pph and Pr are the phrase-translation proba-
bility and its reverse probability, and Pw is the lexi-
cal translation probability.

3http://www.statmt.org/moses/

4 Our Approach: Supertagged PBSMT

We extend the baseline model with lexical linguis-
tic representations (supertags) both in the language
model as well as in the phrase translation model. Be-
fore we describe how our model extends the base-
line, we shortly review the supertagging approaches
in Lexicalized Tree-Adjoining Grammar and Com-
binatory Categorial Grammar.

4.1 Supertags: Lexical Syntax

NP

D

The

NP

NP

N

purchase

NP
NP

N

price

S

NP VP

V

includes

NP

NP

N

taxes

Figure 1: An LTAG supertag sequence for the sen-
tence The purchase price includes taxes. The sub-
categorization information is most clearly available
in the verb includes which takes a subject NP to its
left and an object NP to its right.

Modern linguistic theory proposes that a syntactic
parser has access to an extensive lexicon of word-
structure pairs and a small, impoverished set of oper-
ations to manipulate and combine the lexical entries
into parses. Examples of formal instantiations of this
idea include CCG and LTAG. The lexical entries are
syntactic constructs (graphs) that specify informa-
tion such as POS tag, subcategorization/dependency
information and other syntactic constraints at the
level of agreement features. One important way of
portraying such lexical descriptions is via the su-
pertags devised in the LTAG and CCG frameworks
(Bangalore & Joshi, 1999; Clark & Curran, 2004).

A supertag (see Figure 1) represents a complex,
linguistic word category that encodes a syntactic
structure expressing a specific local behaviour of a
word, in terms of the arguments it takes (e.g. sub-
ject, object) and the syntactic environment in which
it appears. In fact, in LTAG a supertag is an elemen-
tary tree and in CCG it is a CCG lexical category.
Both descriptions can be viewed as closely related
functional descriptions.

The term “supertagging” (Bangalore & Joshi,
1999) refers to tagging the words of a sentence, each
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with a supertag. When well-formed, an ordered se-
quence of supertags can be viewed as a compact
representation of a small set of constituents/parses
that can be obtained by assembling the supertags
together using the appropriate combinatory opera-
tors (such as substitution and adjunction in LTAG
or function application and combination in CCG).
Akin to POS tagging, the process of supertagging
an input utterance proceeds with statistics that are
based on the probability of a word-supertag pair
given their Markovian or local context (Bangalore
& Joshi, 1999; Clark & Curran, 2004). This is the
main difference with full parsing: supertagging the
input utterance need not result in a fully connected
graph.

The LTAG-based supertagger of (Bangalore &
Joshi, 1999) is a standard HMM tagger and consists
of a (second-order) Markov language model over su-
pertags and a lexical model conditioning the proba-
bility of every word on its own supertag (just like
standard HMM-based POS taggers).

The CCG supertagger (Clark & Curran, 2004) is
based on log-linear probabilities that condition a su-
pertag on features representing its context. The CCG
supertagger does not constitute a language model
nor are the Maximum Entropy estimates directly in-
terpretable as such. In our model we employ the
CCG supertagger to obtain the best sequences of su-
pertags for a corpus of sentences from which we ob-
tain language model statistics. Besides the differ-
ence in probabilities and statistical estimates, these
two supertaggers differ in the way the supertags are
extracted from the Penn Treebank, cf. (Hocken-
maier, 2003; Chen et al., 2006). Both supertaggers
achieve a supertagging accuracy of 90–92%.

Three aspects make supertags attractive in the
context of SMT. Firstly, supertags are rich syntac-
tic constructs that exist for individual words and so
they are easy to integrate into SMT models that can
be based on any level of granularity, be it word-
or phrase-based. Secondly, supertags specify the
local syntactic constraints for a word, which res-
onates well with sequential (finite state) statistical
(e.g. Markov) models. Finally, because supertags
are rich lexical descriptions that represent under-
specification in parsing, it is possible to have some
of the benefits of full parsing without imposing the
strict connectedness requirements that it demands.

4.2 A Supertag-Based SMT model
We employ the aforementioned supertaggers to en-
rich the English side of the parallel training cor-
pus with a single supertag sequence per sentence.
Then we extract phrase-pairs together with the co-
occuring English supertag sequence from this cor-
pus via the same phrase extraction method used in
the baseline model. This way we directly extend
the baseline model described in section 3 with su-
pertags both in the phrase translation table and in
the language model. Next we define the probabilistic
model that accompanies this syntactic enrichment of
the baseline model.

Let ST represent a supertag sequence of the same
length as a target sentence t. Equation (2) changes
as follows:

arg max
t

∑
ST

P (s | t, ST )PST (t, ST ) ≈

arg max
〈t,ST 〉

TM w.sup.tags︷ ︸︸ ︷
P (φs | φt,ST )

distortion︷ ︸︸ ︷
P (Os | Ot)λo

LM w.sup.tags︷ ︸︸ ︷
PST (t, ST )

word−penalty︷ ︸︸ ︷
exp|t|λw

The approximations made in this formula are of two
kinds: the standard split into components and the
search for the most likely joint probability of a tar-
get hypothesis and a supertag sequence cooccuring
with the source sentence (a kind of Viterbi approach
to avoid the complex optimization involving the sum
over supertag sequences). The distortion and word
penalty models are the same as those used in the
baseline PBSMT model.

Supertagged Language Model The ‘language
model’ PST (t, ST ) is a supertagger assigning prob-
abilities to sequences of word–supertag pairs. The
language model is further smoothed by log-linear
interpolation with the baseline language model over
word sequences.

Supertags in Phrase Tables The supertagged
phrase translation probability consists of a combina-
tion of supertagged components analogous to their
counterparts in the baseline model (equation (3)),
i.e. it consists of P (s | t, ST ), its reverse and
a word-level probability. We smooth this proba-
bility by log-linear interpolation with the factored
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John bought quickly shares

NNP_NN VBD_(S[dcl]\NP)/NP RB|(S\NP)\(S\NP) NNS_N

2 Violations

Figure 2: Example CCG operator violations: V = 2
and L = 3, and so the penalty factor is 1/3.

backoff version P (s | t)P (s | ST ), where we im-
port the baseline phrase table probability and ex-
ploit the probability of a source phrase given the tar-
get supertag sequence. A model in which we omit
P (s | ST ) turns out to be slightly less optimal than
this one.

As in most state-of-the-art PBSMT systems, we
use GIZA++ to obtain word-level alignments in both
language directions. The bidirectional word align-
ment is used to obtain lexical phrase translation pairs
using heuristics presented in (Och & Ney, 2003) and
(Koehn et al., 2003). Given the collected phrase
pairs, we estimate the phrase translation probability
distribution by relative frequency as follows:

P̂ph(s|t) =
count(s, t)∑
s count(s, t)

For each extracted lexical phrase pair, we extract the
corresponding supertagged phrase pairs from the su-
pertagged target sequence in the training corpus (cf.
section 5). For each lexical phrase pair, there is
at least one corresponding supertagged phrase pair.
The probability of the supertagged phrase pair is es-
timated by relative frequency as follows:

Pst(s|t, st) =
count(s, t, st)∑
s count(s, t, st)

4.3 LMs with a Grammaticality Factor
The supertags usually encode dependency informa-
tion that could be used to construct an ‘almost parse’
with the help of the CCG/LTAG composition oper-
ators. The n-gram language model over supertags
applies a kind of statistical ‘compositionality check’
but due to smoothing effects this could mask cru-
cial violations of the compositionality operators of
the grammar formalism (CCG in this case). It is
interesting to observe the effect of integrating into

the language model a penalty imposed when formal
compostion operators are violated. We combine the
n-gram language model with a penalty factor that
measures the number of encountered combinatory
operator violations in a sequence of supertags (cf.
Figure 2). For a supertag sequence of length (L)
which has (V ) operator violations (as measured by
the CCG system), the language model P will be ad-
justed as P∗ = P × (1 − V

L ). This is of course no
longer a simple smoothed maximum-likelihood es-
timate nor is it a true probability. Nevertheless, this
mechanism provides a simple, efficient integration
of a global compositionality (grammaticality) mea-
sure into the n-gram language model over supertags.

Decoder The decoder used in this work is Moses,
a log-linear decoder similar to Pharaoh (Koehn,
2004), modified to accommodate supertag phrase
probabilities and supertag language models.

5 Experiments

In this section we present a number of experiments
that demonstrate the effect of lexical syntax on trans-
lation quality. We carried out experiments on the
NIST open domain news translation task from Ara-
bic into English. We performed a number of ex-
periments to examine the effect of supertagging ap-
proaches (CCG or LTAG) with varying data sizes.

Data and Settings The experiments were con-
ducted for Arabic to English translation and tested
on the NIST 2005 evaluation set. The systems were
trained on the LDC Arabic–English parallel corpus;
we use the news part (130K sentences, about 5 mil-
lion words) to train systems with what we call the
small data set, and the news and a large part of
the UN data (2 million sentences, about 50 million
words) for experiments with large data sets.

The n-gram target language model was built us-
ing 250M words from the English GigaWord Cor-
pus using the SRILM toolkit.4 Taking 10% of the
English GigaWord Corpus used for building our tar-
get language model, the supertag-based target lan-
guage models were built from 25M words that were
supertagged. For the LTAG supertags experiments,
we used the LTAG English supertagger5 (Bangalore

4http://www.speech.sri.com/projects/srilm/
5http://www.cis.upenn.edu/˜xtag/gramrelease.html
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& Joshi, 1999) to tag the English part of the parallel
data and the supertag language model data. For the
CCG supertag experiments, we used the CCG su-
pertagger of (Clark & Curran, 2004) and the Edin-
burgh CCG tools6 to tag the English part of the par-
allel corpus as well as the CCG supertag language
model data.

The NIST MT03 test set is used for development,
particularly for optimizing the interpolation weights
using Minimum Error Rate training (Och, 2003).

Baseline System The baseline system is a state-
of-the-art PBSMT system as described in sec-
tion 3. We built two baseline systems with two
different-sized training sets: ‘Base-SMALL’ (5 mil-
lion words) and ‘Base-LARGE’ (50 million words)
as described above. Both systems use a trigram lan-
guage model built using 250 million words from
the English GigaWord Corpus. Table 1 presents the
BLEU scores (Papineni et al., 2002) of both systems
on the NIST 2005 MT Evaluation test set.

System BLEU Score
Base-SMALL 0.4008
Base-LARGE 0.4418

Table 1: Baseline systems’ BLEU scores

5.1 Baseline vs. Supertags on Small Data Sets

We compared the translation quality of the baseline
systems with the LTAG and CCG supertags systems
(LTAG-SMALL and CCG-SMALL). The results are

System BLEU Score
Base-SMALL 0.4008
LTAG-SMALL 0.4205
CCG-SMALL 0.4174

Table 2: LTAG and CCG systems on small data

given in Table 2. All systems were trained on the
same parallel data. The LTAG supertag-based sys-
tem outperforms the baseline by 1.97 BLEU points
absolute (or 4.9% relative), while the CCG supertag-
based system scores 1.66 BLEU points over the

6http://groups.inf.ed.ac.uk/ccg/software.html

baseline (4.1% relative). These significant improve-
ments indicate that the rich information in supertags
helps select better translation candidates.

POS Tags vs. Supertags A supertag is a complex
tag that localizes the dependency and the syntax in-
formation from the context, whereas a normal POS
tag just describes the general syntactic category of
the word without further constraints. In this experi-
ment we compared the effect of using supertags and
POS tags on translation quality. As can be seen

System BLEU Score
Base-SMALL 0.4008
POS-SMALL 0.4073
LTAG-SMALL .0.4205

Table 3: Comparing the effect of supertags and POS
tags

in Table 3, while the POS tags help (0.65 BLEU
points, or 1.7% relative increase over the baseline),
they clearly underperform compared to the supertag
model (by 3.2%).

The Usefulness of a Supertagged LM In these
experiments we study the effect of the two added
feature (cost) functions: supertagged translation and
language models. We compare the baseline system
to the supertags system with the supertag phrase-
table probability but without the supertag LM. Ta-
ble 4 lists the baseline system (Base-SMALL), the
LTAG system without supertagged language model
(LTAG-TM-ONLY) and the LTAG-SMALL sys-
tem with both supertagged translation and language
models. The results presented in Table 4 indi-

System BLEU Score
Base-SMALL 0.4008
LTAG-TM-ONLY 0.4146
LTAG-SMALL .0.4205

Table 4: The effect of supertagged components

cate that the improvement is a shared contribution
between the supertagged translation and language
models: adding the LTAG TM improves BLEU
score by 1.38 points (3.4% relative) over the base-
line, with the LTAG LM improving BLEU score by
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a further 0.59 points (a further 1.4% increase).

5.2 Scalability: Larger Training Corpora
Outperforming a PBSMT system on small amounts
of training data is less impressive than doing so on
really large sets. The issue here is scalability as well
as whether the PBSMT system is able to bridge the
performance gap with the supertagged system when
reasonably large sizes of training data are used. To
this end, we trained the systems on 2 million sen-
tences of parallel data, deploying LTAG supertags
and CCG supertags. Table 5 presents the compari-
son between these systems and the baseline trained
on the same data. The LTAG system improves by
1.17 BLEU points (2.6% relative), but the CCG sys-
tem gives an even larger increase: 1.91 BLEU points
(4.3% relative). While this is slightly lower than
the 4.9% relative improvement with the smaller data
sets, the sustained increase is probably due to ob-
serving more data with different supertag contexts,
which enables the model to select better target lan-
guage phrases.

System BLEU Score
Base-LARGE 0.4418
LTAG-LARGE 0.4535
CCG-LARGE 0.4609

Table 5: The effect of more training data

Adding a grammaticality factor As described in
section 4.3, we integrate an impoverished grammat-
icality factor based on two standard CCG combi-
nation operations, namely Forward and Backward
Application. Table 6 compares the results of the
baseline, the CCG with an n-gram LM-only system
(CCG-LARGE) and CCG-LARGE with this ‘gram-
maticalized’ LM system (CCG-LARGE-GRAM).
We see that bringing the grammaticality tests to
bear onto the supertagged system gives a further im-
provement of 0.79 BLEU points, a 1.7% relative
increase, culminating in an overall increase of 2.7
BLEU points, or a 6.1% relative improvement over
the baseline system.

5.3 Discussion
A natural question to ask is whether LTAG and CCG
supertags are playing similar (overlapping, or con-

System BLEU Score
Base-LARGE 0.4418
CCG-LARGE 0.4609
CCG-LARGE-GRAM 0.4688

Table 6: Comparing the effect of CCG-GRAM

flicting) roles in practice. Using an oracle to choose
the best output of the two systems gives a BLEU
score of 0.441, indicating that the combination pro-
vides significant room for improvement (cf. Ta-
ble 2). However, our efforts to build a system that
benefits from the combination using a simple log-
linear combination of the two models did not give
any significant performance change relative to the
baseline CCG system. Obviously, more informed
ways of combining the two could result in better per-
formance than a simple log-linear interpolation of
the components.

Figure 3 shows some example system output.
While the baseline system omits the verb giving “the
authorities that it had...”, both the LTAG and CCG
found a formulation “authorities reported that” with
a closer meaning to the reference translation “The
authorities said that”. Omitting verbs turns out to
be a problem for the baseline system when trans-
lating the notorious verbless Arabic sentences (see
Figure 4). The supertagged systems have a more
grammatically strict language model than a standard
word-level Markov model, thereby exhibiting a pref-
erence (in the CCG system especially) for the inser-
tion of a verb with a similar meaning to that con-
tained in the reference sentence.

6 Conclusions

SMT practitioners have on the whole found it dif-
ficult to integrate syntax into their systems. In this
work, we have presented a novel model of PBSMT
which integrates supertags into the target language
model and the target side of the translation model.

Using LTAG supertags gives the best improve-
ment over a state-of-the-art PBSMT system for a
smaller data set, while CCG supertags work best on
a large 2 million-sentence pair training set. Adding
grammaticality factors based on algebraic composi-
tional operators gives the best result, namely 0.4688
BLEU, or a 6.1% relative increase over the baseline.
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Reference: The authorities said he was allowed to contact family members by phone from the armored vehicle he was in.

Baseline: the authorities that it had allowed him to communicate by phone with his family of the armored car where

LTAG: authorities reported that it had allowed him to contact by telephone with his family of armored car where

CCG: authorities reported that it had enabled him to communicate by phone his family members of the armored car where

Figure 3: Sample output from different systems

Source: wmn AlmErwf An Al$Eb AlSyny mHb llslAm . Ref: It is well known that the Chinese people are peace loving .

Baseline: It is known that the Chinese people a peace-loving .

LTAG: It is known that the Chinese people a peace loving . CCG: It is known that the Chinese people are peace loving .

Figure 4: Verbless Arabic sentence and sample output from different systems

This result compares favourably with the best sys-
tems on the NIST 2005 Arabic–English task. We
expect more work on system integration to improve
results still further, and anticipate that similar in-
creases are to be seen for other language pairs.
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Abstract

Many automatic evaluation metrics for ma-
chine translation (MT) rely on making com-
parisons to human translations, a resource
that may not always be available. We present
a method for developing sentence-level MT
evaluation metrics that do not directly rely
on human reference translations. Our met-
rics are developed using regression learn-
ing and are based on a set of weaker indi-
cators of fluency and adequacy (pseudo ref-
erences). Experimental results suggest that
they rival standard reference-based metrics
in terms of correlations with human judg-
ments on new test instances.

1 Introduction

Automatic assessment of translation quality is a
challenging problem because the evaluation task, at
its core, is based on subjective human judgments.
Reference-based metrics such as BLEU (Papineni
et al., 2002) have rephrased this subjective task as
a somewhat more objective question: how closely
does the translation resemble sentences that are
known to be good translations for the same source?
This approach requires the participation of human
translators, who provide the “gold standard” refer-
ence sentences. However, keeping humans in the
evaluation loop represents a significant expenditure
both in terms of time and resources; therefore it is
worthwhile to explore ways of reducing the degree
of human involvement.

To this end, Gamon et al. (2005) proposed a
learning-based evaluation metric that does not com-

pare against reference translations. Under a learn-
ing framework, the input (i.e., the sentence to be
evaluated) is represented as a set offeatures. These
are measurements that can be extracted from the in-
put sentence (and may be individual metrics them-
selves). The learning algorithm combines the fea-
tures to form a model (a composite evaluation met-
ric) that produces the final score for the input. With-
out human references, the features in the model pro-
posed by Gamon et al. were primarily language
model features and linguistic indicators that could be
directly derived from the input sentence alone. Al-
though their initial results were not competitive with
standard reference-based metrics, their studies sug-
gested that a referenceless metric may still provide
useful information about translation fluency. How-
ever, a potential pitfall is that systems might “game
the metric” by producing fluent outputs that are not
adequate translations of the source.

This paper proposes an alternative approach to
evaluate MT outputs without comparing against hu-
man references. While our metrics are also trained,
our model consists of different features and is
trained under a different learning regime. Crucially,
our model includes features that capture some no-
tions of adequacy by comparing the input against
pseudo references: sentences from other MT sys-
tems (such as commercial off-the-shelf systems or
open sourced research systems). To improve flu-
ency judgments, the model also includes features
that compare the input against target-language “ref-
erences” such as large text corpora and treebanks.

Unlike human translations used by standard
reference-based metrics, pseudo references are not
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“gold standards” and can be worse than the sen-
tences being evaluated; therefore, these “references”
in-and-of themselves are not necessarily informative
enough for MT evaluation. The main insight of our
approach is that through regression, the trained met-
rics can make more nuanced comparisons between
the input and pseudo references. More specifically,
our regression objective is to infer a function that
maps a feature vector (which measures an input’s
similarity to the pseudo references) to a score that
indicates the quality of the input. This is achieved by
optimizing the model’s output to correlate against a
set of training examples, which are translation sen-
tences labeled with quantitative assessments of their
quality by human judges. Although this approach
does incur some human effort, it is primarily for the
development of training data, which, ideally, can be
amortized over a long period of time.

To determine the feasibility of the proposed ap-
proach, we conducted empirical studies that com-
pare our trained metrics against standard reference-
based metrics. We report three main findings.
First, pseudo references are informative compar-
ison points. Experimental results suggest that
a regression-trained metric that compares against
pseudo references can have higher correlations with
human judgments than applying standard metrics
with multiple human references. Second, the learn-
ing model that uses both adequacy and fluency fea-
tures performed the best, with adequacy being the
more important factor. Third, when the pseudo ref-
erences are multiple MT systems, the regression-
trained metric is predictive even when the input is
from a better MT system than those providing the
references. We conjecture that comparing MT out-
puts against other imperfect translations allows for a
more nuanced discrimination of quality.

2 Background and Related Work

For a formally organized event, such as the annual
MT Evaluation sponsored by National Institute of
Standard and Technology (NIST MT Eval), it may
be worthwhile to recruit multiple human translators
to translate a few hundred sentences for evaluation
references. However, there are situations in which
multiple human references are not practically avail-
able (e.g., the source may be of a large quantity, and

no human translation exists). One such instance is
translation quality assurance, in which one wishes
to identify poor outputs in a large body of machine
translated text automatically for human to post-edit.
Another instance is in day-to-day MT research and
development, where new test set with multiple ref-
erences are also hard to come by. One could work
with previous datasets from events such as the NIST
MT Evals, but there is a danger of over-fitting. One
also could extract a single reference from parallel
corpora, although it is known that automatic metrics
are more reliable when comparing against multiple
references.

The aim of this work is to develop a trainable au-
tomatic metric for evaluation without human refer-
ences. This can be seen as a form of confidence esti-
mation on MT outputs (Blatz et al., 2003; Ueffing et
al., 2003; Quirk, 2004). The main distinction is that
confidence estimation is typically performed with a
particular system in mind, and may rely on system-
internal information in estimation. In this study, we
draw on only system-independent indicators so that
the resulting metric may be more generally applied.
This allows us to have a clearer picture of the con-
tributing factors as they interact with different types
of MT systems.

Also relevant is previous work that applied ma-
chine learning approaches to MT evaluation, both
with human references (Corston-Oliver et al., 2001;
Kulesza and Shieber, 2004; Albrecht and Hwa,
2007; Liu and Gildea, 2007) and without (Gamon et
al., 2005). One motivation for the learning approach
is the ease of combining multiple criteria. Literature
in translation evaluation reports a myriad of criteria
that people use in their judgments, but it is not clear
how these factors should be combined mathemati-
cally. Machine learning offers a principled and uni-
fied framework to induce a computational model of
human’s decision process. Disparate indicators can
be encoded as one or more input features, and the
learning algorithm tries to find a mapping from input
features to a score that quantifies the input’s quality
by optimizing the model to match human judgments
on training examples. The framework is attractive
because its objective directly captures the goal of
MT evaluation: how would a user rate the quality
of these translations?

This work differs from previous approaches in
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two aspects. One is the representation of the model;
our model treats the metric as a distance measure
even though there are no human references. An-
other is the training of the model. More so than
when human references are available, regression is
central to the success of the approach, as it deter-
mines how much we can trust the distance measures
against each pseudo reference system.

While our model does not use human references
directly, its features are adapted from the following
distance-based metrics. The well-known BLEU (Pa-
pineni et al., 2002) is based on the number of com-
monn-grams between the translation hypothesis and
human reference translations of the same sentence.
Metrics such as ROUGE, Head Word Chain (HWC),
METEOR, and other recently proposed methods all
offer different ways of comparing machine and hu-
man translations. ROUGE utilizes ’skipn-grams’,
which allow for matches of sequences of words that
are not necessarily adjacent (Lin and Och, 2004a).
METEOR uses the Porter stemmer and synonym-
matching via WordNet to calculate recall and pre-
cision more accurately (Banerjee and Lavie, 2005).
The HWC metrics compare dependency and con-
stituency trees for both reference and machine trans-
lations (Liu and Gildea, 2005).

3 MT Evaluation with Pseudo References
using Regression

Reference-based metrics are typically thought of as
measurements of “similarity to good translations”
because human translations are used as references,
but in more general terms, they are distance mea-
surements between two sentences. The distance be-
tween a translation hypothesis and an imperfect ref-
erence is still somewhat informative. As a toy ex-
ample, consider a one-dimensional line segment. A
distance from the end-point uniquely determines the
position of a point. When the reference location is
anywhere else on the line segment, a relative dis-
tance to the reference does not uniquely specify a
location on the line segment. However, the position
of a point can be uniquely determined if we are given
its relative distances to two reference locations.

The problem space for MT evaluation, though
more complex, is not dissimilar to the toy scenario.
There are two main differences. First, we do not

know the actual distance function – this is what we
are trying to learn. The distance functions we have
at our disposal are all heuristic approximations to the
true translational distance function. Second, unlike
human references, whose quality value is assumed to
be maximum, the quality of a pseudo reference sen-
tence is not known. In fact, prior to training, we do
not even know the quality of the reference systems.
Although the direct way to calibrate a reference sys-
tem is to evaluateits outputs, this is not practically
ideal, since human judgments would be needed each
time we wish to incorporate a new reference system.
Our proposed alternative is to calibrate the reference
systems against an existing set of human judgments
for a range of outputs from different MT systems.
That is, if many of the reference system’s outputs
are similar to those MT outputs that received low
assessments, we conclude this reference system may
not be of high quality. Thus, if a new translation is
found to be similar with this reference system’s out-
put, it is more likely for the new translation to also
be bad.

Both issues of combining evidences from heuris-
tic distances and calibrating the quality of pseudo
reference systems can be addressed by a probabilis-
tic learning model. In particular, we use regression
because its problem formulation fits naturally with
the objective of MT evaluations. In regression learn-
ing, we are interested in approximating a functionf
that maps a multi-dimensional input vector,x, to a
continuous real value,y, such that the error over a set
of m training examples,{(x1, y1), . . . , (xm, ym)},
is minimized according to a loss function.

In the context of MT evaluation,y is the “true”
quantitative measure of translation quality for an in-
put sentence1. The functionf represents a mathe-
matical model of human judgments of translations;
an input sentence is represented as a feature vector,
x, which contains the information that can be ex-
tracted from the input sentence (possibly including
comparisons against some reference sentences) that
are relevant to computingy. Determining the set of
relevant features for this modeling is on-going re-

1Perhaps even more so than grammaticality judgments, there
is variability in people’s judgments of translation quality. How-
ever, like grammaticality judgments, people do share some sim-
ilarities in their judgments at a coarse-grained level. Ideally,
what we refer to as the true value of translational quality should
reflect the consensus judgments of all people.
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search. In this work, we consider some of the more
widely used metrics as features. Our full feature
vector consists ofr × 18 adequacy features, where
r is the number of reference systems used, and 26
fluency features:

Adequacy features: These include features de-
rived from BLEU (e.g.,n-gram precision, where
1 ≤ n ≤ 5, length ratios), PER, WER, fea-
tures derived from METEOR (precision, recall,
fragmentation), and ROUGE-related features (non-
consecutive bigrams with a gap size ofg, where
1 ≤ g ≤ 5 and longest common subsequence).

Fluency features: We consider both string-level
features such as computingn-gram precision against
a target-language corpus as well as several syntax-
based features. We parse each input sentence into a
dependency tree and compared aspects of it against a
large target-language dependency treebank. In addi-
tion to adapting the idea of Head Word Chains (Liu
and Gildea, 2005), we also compared the input sen-
tence’s argument structures against the treebank for
certain syntactic categories.

Due to the large feature space to explore, we
chose to work with support vector regression as the
learning algorithm. As its loss function, support vec-
tor regression uses anε-insensitive error function,
which allows for errors within a margin of a small
positive value,ε, to be considered as having zero er-
ror (cf. Bishop (2006), pp.339-344). Like its classi-
fication counterpart, this is a kernel-based algorithm
that finds sparse solutions so that scores for new test
instances are efficiently computed based on a subset
of the most informative training examples. In this
work, Gaussian kernels are used.

The cost of regression learning is that it requires
training examples that are manually assessed by hu-
man judges. However, compared to the cost of cre-
ating new references whenever new (test) sentences
are evaluated, the effort of creating human assess-
ment training data is a limited (ideally, one-time)
cost. Moreover, there is already a sizable collection
of human assessed data for a range of MT systems
through multiple years of the NIST MT Eval efforts.
Our experiments suggest that there is enough as-
sessed data to train the proposed regression model.

Aside from reducing the cost of developing hu-

man reference translations, the proposed metric also
provides an alternative perspective on automatic MT
evaluation that may be informative in its own right.
We conjecture that a metric that compares inputs
against a diverse population of differently imperfect
sentences may be more discriminative in judging
translation systems than solely comparing against
gold standards. That is, two sentences may be
considered equally bad from the perspective of a
gold standard, but subtle differences between them
may become more prominent if they are compared
against sentences in their peer group.

4 Experiments

We conducted experiments to determine the feasibil-
ity of the proposed approach and to address the fol-
lowing questions: (1) How informative are pseudo
references in-and-of themselves? Does varying the
number and/or the quality of the references have an
impact on the metrics? (2) What are the contribu-
tions of the adequacy features versus the fluency fea-
tures to the learning-based metric? (3) How do the
quality and distribution of the training examples, to-
gether with the quality of the pseudo references, im-
pact the metric training? (4) Do these factors impact
the metric’s ability in assessing sentences produced
within a single MT system? How does that system’s
quality affect metric performance?

4.1 Data preparation and Experimental Setup

The implementation of support vector regression
used for these experiments is SVM-Light (Joachims,
1999). We performed all experiments using the 2004
NIST Chinese MT Eval dataset. It consists of 447
source sentences that were translated by four hu-
man translators as well as ten MT systems. Each
machine translated sentence was evaluated by two
human judges for their fluency and adequacy on a
5-point scale2. To remove the bias in the distribu-
tions of scores between different judges, we follow
the normalization procedure described by Blatz et
al. (2003). The two judge’s total scores (i.e., sum
of the normalized fluency and adequacy scores) are
then averaged.

2The NIST human judges use human reference translations
when making assessments; however, our approach is generally
applicable when the judges are bilingual speakers who compare
source sentences with translation outputs.
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We chose to work with this NIST dataset because
it contains numerous systems that span over a range
of performance levels (see Table 1 for a ranking of
the systems and their averaged human assessment
scores). This allows us to have control over the vari-
ability of the experiments while answering the ques-
tions we posed above (such as the quality of the sys-
tems providing the pseudo references, the quality of
MT systems being evaluated, and the diversity over
the distribution of training examples).

Specifically, we reserved four systems (MT2,
MT5, MT6, and MT9) for the role of pseudo ref-
erences. Sentences produced by the remaining six
systems are used as evaluative data. This set in-
cludes the best and worst systems so that we can see
how well the metrics performs on sentences that are
better (or worse) than the pseudo references. Met-
rics that require no learning are directly applied onto
all sentences of the evaluative set. For the learning-
based metrics, we perform six-fold cross validation
on the evaluative dataset. Each fold consists of sen-
tences from one MT system. In a round robin fash-
ion, each fold serves as the test set while the other
five are used for training and heldout. Thus, the
trained models have seen neither the test instances
nor other instances from the MT system that pro-
duced them.

A metric is evaluated based on its Spearman rank
correlation coefficient between the scores it gave to
the evaluative dataset and human assessments for
the same data. The correlation coefficient is a real
number between -1, indicating perfect negative cor-
relations, and +1, indicating perfect positive cor-
relations. To compare the relative quality of dif-
ferent metrics, we apply bootstrapping re-sampling
on the data, and then use paired t-test to deter-
mine the statistical significance of the correlation
differences (Koehn, 2004). For the results we re-
port, unless explicitly mentioned, all stated compar-
isons are statistically significant with 99.8% con-
fidence. We include two standard reference-based
metrics, BLEU and METEOR, as baseline compar-
isons. BLEU is smoothed (Lin and Och, 2004b), and
it considers only matching up to bigrams because
this has higher correlations with human judgments
than when higher-orderedn-grams are included.

SysID Human-assessment score
MT1 0.661
MT2 0.626
MT3 0.586
MT4 0.578
MT5 0.537
MT6 0.530
MT7 0.530
MT8 0.375
MT9 0.332
MT10 0.243

Table 1: The human-judged quality of ten partici-
pating systems in the NIST 2004 Chinese MT Eval-
uation. We used four systems as references (high-
lighted in boldface) and the data from the remaining
six for training and evaluation.

4.2 Pseudo Reference Variations vs. Metrics

We first compare different metrics’ performance
on the six-system evaluative dataset under different
configurations of human and/or pseudo references.
For the case when only one human reference is used,
the reference was chosen at random from the 2004
NIST Eval dataset3. The correlation results on the
evaluative dataset are summarized in Table 2.

Some trends are as expected: comparing within a
metric, having four references is better than having
just one; having human references is better than an
equal number of system references; having a high
quality system as reference is better than one with
low quality. Perhaps more surprising is the consis-
tent trend that metrics do significantly better with
four MT references than with one human reference,
and they do almost as well as using four human ref-
erences. The results show that pseudo references are
informative, as standard metrics were able to make
use of the pseudo references and achieve higher cor-
relations than judging from fluency alone. How-
ever, higher correlations are achieved when learning
with regression, suggesting that the trained metrics
are better at interpreting comparisons against pseudo
references.

Comparing within each reference configuration,
the regression-trained metric that includes both ad-

3One reviewer asked about the quality this human’s trans-
lations. Although we were not given official rankings of the
human references, we compared each person against the other
three using MT evaluation metrics and found this particular
translator to rank third, though the quality of all four are sig-
nificantly higher than even the best MT systems.
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equacy and fluency features always has the highest
correlations. If the metric consists of only adequacy
features, its performance degrades with the decreas-
ing quality of the references. At another extreme, a
metric based only on fluency features has an over-
all correlation rate of 0.459, which is lower than
most correlations reported in Table 2. This confirms
the importance of modeling adequacy; even a sin-
gle mid-quality MT system may be an informative
pseudo reference. Finally, we note that a regression-
trained metric with the full features set that com-
pares against 4 pseudo references has a higher cor-
relation than BLEU with four human references.
These results suggest that the feedback from the hu-
man assessed training examples was able to help the
learning algorithm to combine different features to
form a better composite metric.

4.3 Sentence-Level Evaluation on Single
Systems

To explore the interaction between the quality of
the reference MT systems and that of the test MT
systems, we further study the following pseudo ref-
erence configurations: all four systems, a high-
quality system with a medium quality system, two
systems of medium-quality, one medium with one
poor system, and only the high-quality system. For
each pseudo reference configuration, we consider
three metrics: BLEU, METEOR, and the regression-
trained metric (using the full feature set). Each
metric evaluates sentences from four test systems
of varying quality: the best system in the dataset
(MT1), the worst in the set (MT10), and two mid-
ranged systems (MT4 and MT7). The correlation
coefficients are summarized in Table 3. Each row
specifies a metric/reference-type combination; each
column specifies an MT system being evaluated (us-
ing sentences from all other systems as training ex-
amples). The fluency-only metric and standard met-
rics using four human references are baselines.

The overall trends at the dataset level generally
also hold for the per-system comparisons. With the
exception of the evaluation of MT10, regression-
based metrics always has higher correlations than
standard metrics that use the same reference con-
figuration (comparing correlation coefficients within
each cell). When the best MT reference system
(MT2) is included as pseudo references, regression-

based metrics are typically better than or not statisti-
cally different from standard applications of BLEU
and METEOR with 4 human references. Using the
two mid-quality MT systems as references (MT5
and MT6), regression metrics yield correlations that
are only slightly lower than standard metrics with
human references. These results support our con-
jecture that comparing against multiple systems is
informative.

The poorer performances of the regression-based
metrics on MT10 point out an asymmetry in the
learning approach. The regression model aims to
learn a function that approximates human judgments
of translated sentences through training examples.
In the space of all possible MT outputs, the neigh-
borhood of good translations is much smaller than
that of bad translations. Thus, as long as the regres-
sion models sees some examples of sentences with
high assessment scores during training, it should
have a much better estimation of the characteristics
of good translations. This idea is supported by the
experimental data. Consider the scenario of eval-
uating MT1 while using two mid-quality MT sys-
tems as references. Although the reference systems
are not as high quality as the system under evalu-
ation, and although the training examples shown to
the regression model were also generated by systems
whose overall quality was rated lower, the trained
metric was reasonably good at ranking sentences
produced by MT1. In contrast, the task of evaluating
sentences from MT10 is more difficult for the learn-
ing approach, perhaps because it is sufficiently dif-
ferent from all training and reference systems. Cor-
relations might be improved with additional refer-
ence systems.

4.4 Discussions

The design of these experiments aims to simulate
practical situations to use our proposed metrics. For
the more frequently encountered language pairs, it
should be possible to find at least two mid-quality
(or better) MT systems to serve as pseudo refer-
ences. For example, one might use commercial off-
the-shelf systems, some of which are free over the
web. For less commonly used languages, one might
use open source research systems (Al-Onaizan et al.,
1999; Burbank et al., 2005).

Datasets from formal evaluation events such as
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Ref type and # Ref Sys. BLEU-S(2) METEOR Regr (adq. only) Regr (full)
4 Humans all humans 0.628 0.591 0.588 0.644
1 Human HRef #3 0.536 0.512 0.487 0.597
4 Systems all MTRefs 0.614 0.583 0.584 0.632
2 Systems Best 2 MTRefs 0.603 0.577 0.573 0.620

Mid 2 MTRefs 0.579 0.555 0.528 0.608
Worst 2 MTRefs 0.541 0.508 0.467 0.581

1 System Best MTRef 0.576 0.559 0.534 0.596
Mid MTRef (MT5) 0.538 0.528 0.474 0.577
Worst MTRef 0.371 0.329 0.151 0.495

Table 2: Comparisons of metrics (columns) using different types of references (rows). The full regression-
trained metric has the highest correlation (shown in boldface) when four human references are used; it has
the second highest correlation rate (shown in italic) when four MT system references are used instead. A
regression-trained metric with only fluency features has a correlation coefficient of 0.459.

Ref Type Metric MT-1 MT-4 MT-7 MT-10
No ref Regr. 0.367 0.316 0.301 -0.045
4 human refs Regr. 0.538* 0.473* 0.459* 0.247

BLEU-S(2) 0.466 0.419 0.397 0.321*
METEOR 0.464 0.418 0.410 0.312

4 MTRefs Regr. 0.498 0.429 0.421 0.243
BLEU-S(2) 0.386 0.349 0.404 0.240
METEOR 0.445 0.354 0.333 0.243

Best 2 MTRefs Regr. 0.492 0.418 0.403 0.201
BLEU-S(2) 0.391 0.330 0.394 0.268
METEOR 0.430 0.333 0.327 0.267

Mid 2 MTRefs Regr. 0.450 0.413 0.388 0.219
BLEU-S(2) 0.362 0.314 0.310 0.282
METEOR 0.391 0.315 0.284 0.274

Worst 2 MTRefs Regr. 0.430 0.386 0.365 0.158
BLEU-S(2) 0.320 0.298 0.316 0.223
METEOR 0.351 0.306 0.302 0.228

Best MTRef Regr. 0.461 0.401 0.414 0.122
BLEU-S(2) 0.371 0.330 0.380 0.242
METEOR 0.375 0.318 0.392 0.283

Table 3: Correlation comparisons of metrics by test systems. For each test system (columns) the overall
highest correlations is distinguished by an asterisk (*); correlations higher thanstandard metrics using
human-referencesare highlighted in boldface; those that are statistically comparable to them are italicized.

NIST MT Evals, which contains human assessed
MT outputs for a variety of systems, can be used
for training examples. Alternatively, one might di-
rectly recruit human judges to assess sample sen-
tences from the system(s) to be evaluated. This
should result in better correlations than what we re-
ported here, since the human assessed training ex-
amples will be more similar to the test instances than
the setup in our experiments.

In developing new MT systems, pseudo refer-
ences may supplement the single human reference
translations that could be extracted from a parallel
text. Using the same setup as Exp. 1 (see Table 2),
adding pseudo references does improve correlations.

Adding four pseudo references to the single human
reference raises the correlation coefficient to 0.650
(from 0.597) for the regression metric. Adding them
to four human references results in a correlation co-
efficient of 0.660 (from 0.644)4.

5 Conclusion

In this paper, we have presented a method for de-
veloping sentence-level MT evaluation metrics with-
out using human references. We showed that by
learning from human assessed training examples,

4BLEU with four human references has a correlation of
0.628. Adding four pseudo references increases BLEU to 0.650.
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the regression-trained metric can evaluate an input
sentence by comparing it against multiple machine-
generated pseudo references and other target lan-
guage resources. Our experimental results suggest
that the resulting metrics are robust even when the
sentences under evaluation are from a system of
higher quality than the systems serving as refer-
ences. We observe that regression metrics that use
multiple pseudo references often have comparable
or higher correlation rates with human judgments
than standard reference-based metrics. Our study
suggests that in conjunction with regression training,
multiple imperfect references may be as informative
as gold-standard references.
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Abstract

We introduce a simple method to pack words
for statistical word alignment. Our goal is to
simplify the task of automatic word align-
ment by packing several consecutive words
together when we believe they correspond
to a single word in the opposite language.
This is done using the word aligner itself,
i.e. by bootstrapping on its output. We
evaluate the performance of our approach
on a Chinese-to-English machine translation
task, and report a12.2% relative increase in
BLEU score over a state-of-the art phrase-
based SMT system.

1 Introduction

Automatic word alignment can be defined as the
problem of determining a translational correspon-
dence at word level given a parallel corpus of aligned
sentences. Most current statistical models (Brown
et al., 1993; Vogel et al., 1996; Deng and Byrne,
2005) treat the aligned sentences in the corpus as se-
quences of tokens that are meant to be words; the
goal of the alignment process is to find links be-
tween source and target words. Before applying
such aligners, we thus need to segment the sentences
into words – a task which can be quite hard for lan-
guages such as Chinese for which word boundaries
are not orthographically marked. More importantly,
however, this segmentation is often performed in a
monolingualcontext, which makes the word align-
ment task more difficult since different languages
may realize the same concept using varying num-
bers of words (see e.g. (Wu, 1997)). Moreover, a

segmentation considered to be “good” from a mono-
lingual point of view may be unadapted for training
alignment models.

Although some statistical alignment models al-
low for 1-to-n word alignments for those reasons,
they rarely question the monolingual tokenization
and the basic unit of the alignment process remains
the word. In this paper, we focus on1-to-n align-
ments with the goal of simplifying the task of auto-
matic word aligners bypackingseveral consecutive
words together when we believe they correspond to a
single word in the opposite language; by identifying
enough such cases, we reduce the number of1-to-n
alignments, thus making the task of word alignment
both easier and more natural.

Our approach consists of using the output from
an existing statistical word aligner to obtain a set of
candidates for word packing. We evaluate the re-
liability of these candidates, using simple metrics
based on co-occurence frequencies, similar to those
used in associative approaches to word alignment
(Kitamura and Matsumoto, 1996; Melamed, 2000;
Tiedemann, 2003). We then modify the segmenta-
tion of the sentences in the parallel corpus accord-
ing to this packing of words; these modified sen-
tences are then given back to the word aligner, which
produces new alignments. We evaluate the validity
of our approach by measuring the influence of the
alignment process on a Chinese-to-English Machine
Translation (MT) task.

The remainder of this paper is organized as fol-
lows. In Section 2, we study the case of1-to-
n word alignment. Section 3 introduces an auto-
matic method to pack together groups of consecutive
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1: 0 1: 1 1: 2 1: 3 1:n (n > 3)
IWSLT Chinese–English 21.64 63.76 9.49 3.36 1.75
IWSLT English–Chinese 29.77 57.47 10.03 1.65 1.08
IWSLT Italian–English 13.71 72.87 9.77 3.23 0.42
IWSLT English–Italian 20.45 71.08 7.02 0.9 0.55
Europarl Dutch–English 24.71 67.04 5.35 1.4 1.5
Europarl English–Dutch 23.76 69.07 4.85 1.2 1.12

Table 1: Distribution of alignment types for different language pairs (%)

words based on the output from a word aligner. In
Section 4, the experimental setting is described. In
Section 5, we evaluate the influence of our method
on the alignment process on a Chinese to English
MT task, and experimental results are presented.
Section 6 concludes the paper and gives avenues for
future work.

2 The Case of1-to-n Alignment

The same concept can be expressed in different lan-
guages using varying numbers of words; for exam-
ple, a single Chinese word may surface as a com-
pound or a collocation in English. This is fre-
quent for languages as different as Chinese and En-
glish. To quickly (and approximately) evaluate this
phenomenon, we trained the statistical IBM word-
alignment model 4 (Brown et al., 1993),1 using the
GIZA++ software (Och and Ney, 2003) for the fol-
lowing language pairs: Chinese–English, Italian–
English, and Dutch–English, using the IWSLT-2006
corpus (Takezawa et al., 2002; Paul, 2006) for the
first two language pairs, and the Europarl corpus
(Koehn, 2005) for the last one. These asymmet-
ric models produce1-to-n alignments, withn ≥ 0,
in both directions. Here, it is important to mention
that the segmentation of sentences is performed to-
tally independently of the bilingual alignment pro-
cess, i.e. it is done in amonolingualcontext. For Eu-
ropean languages, we apply the maximum-entropy
based tokenizer of OpenNLP2; the Chinese sen-
tences were human segmented (Paul, 2006).

In Table 1, we report the frequencies of the dif-
ferent types of alignments for the various languages
and directions. As expected, the number of1:n

1More specifically, we performed5 iterations of Model 1,5
iterations of HMM,5 iterations of Model 3, and5 iterations of
Model 4.

2http://opennlp.sourceforge.net/ .

alignments withn 6= 1 is high for Chinese–English
(' 40%), and significantly higher than for the Eu-
ropean languages. The case of1-to-n alignments is,
therefore, obviously an important issue when deal-
ing with Chinese–English word alignment.3

2.1 The Treatment of1-to-n Alignments

Fertility-based models such as IBM models 3, 4, and
5 allow for alignments between one word and sev-
eral words (1-to-n or 1:n alignments in what fol-
lows), in particular for the reasons specified above.
They can be seen as extensions of the simpler IBM
models 1 and 2 (Brown et al., 1993). Similarly,
Deng and Byrne (2005) propose an HMM frame-
work capable of dealing with1-to-n alignment,
which is an extension of the original model of (Vogel
et al., 1996).

However, these models rarely question the mono-
lingual tokenization, i.e. the basic unit of the align-
ment process is the word.4 One alternative to ex-
tending the expressivity of one model (and usually
its complexity) is to focus on theinput representa-
tion; in particular, we argue that the alignment pro-
cess can benefit from a simplification of the input,
which consists of trying to reduce the number of
1-to-n alignments to consider. Note that the need
to consider segmentation and alignment at the same
time is also mentioned in (Tiedemann, 2003), and
related issues are reported in (Wu, 1997).

2.2 Notation

While in this paper, we focus on Chinese–English,
the method proposed is applicable to any language

3Note that a1: 0 alignment may denote a failure to capture
a1:n alignment withn > 1.

4Interestingly, this is actually even the case for approaches
that directly model alignments between phrases (Marcu and
Wong, 2002; Birch et al., 2006).
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pair – even for closely related languages, we ex-
pect improvements to be seen. The notation how-
ever assume Chinese–English MT. Given a Chi-
nese sentencecJ1 consisting ofJ words{c1, . . . , cJ}
and an English sentenceeI1 consisting ofI words
{e1, . . . , eI}, AC→E (resp.AE→C) will denote a
Chinese-to-English (resp. an English-to-Chinese)
word alignment betweencJ1 and eI1. Since we are
primarily interested in1-to-n alignments,AC→E
can be represented as a set of pairsaj = 〈cj , Ej〉
denoting a link between one single Chinese word
cj and a few English wordsEj (and similarly for
AE→C). The setEj is empty if the wordcj is not
aligned to any word ineI1.

3 Automatic Word Repacking

Our approach consists of packing consecutive words
together when we believe they correspond to a sin-
gle word in the other language. This bilingually
motivated packing of words changes the basic unit
of the alignment process, and simplifies the task of
automatic word alignment. We thus minimize the
number of1-to-n alignments in order to obtain more
comparable segmentations in the two languages. In
this section, we present an automatic method that
builds upon the output from an existing automatic
word aligner. More specifically, we (i) use a word
aligner to obtain1-to-n alignments, (ii) extract can-
didates for word packing, (iii) estimate the reliability
of these candidates, (iv) replace the groups of words
to pack by a single token in the parallel corpus, and
(v) re-iterate the alignment process using the up-
dated corpus. The first three steps are performed
in both directions, and produce twobilingual dic-
tionaries(source-target and target-source) of groups
of words to pack.

3.1 Candidate Extraction

In the following, we assume the availability of an
automatic word aligner that can output alignments
AC→E andAE→C for any sentence pair(cJ1 , e

I
1)

in a parallel corpus. We also assume thatAC→E
andAE→C contain1:n alignments. Our method for
repacking words is very simple: whenever a single
word is aligned with several consecutive words, they
are considered candidates for repacking. Formally,
given an alignmentAC→E betweencJ1 and eI1, if

aj = 〈cj , Ej〉 ∈ AC→E , with Ej = {ej1 , . . . , ejm}
and∀k ∈ J1,m− 1K, jk+1 − jk = 1, then the align-
mentaj betweencj and the sequence of wordsEj
is considered a candidate for word repacking. The
same goes forAE→C . Some examples of such1-
to-n alignments between Chinese and English (in
both directions) we can derive automatically are dis-
played in Figure 1.

白葡萄酒: white wine
百货公司: department store
抱歉: excuse me
报警: call the police
杯: cup of
必须: have to

closest: 最 近
fifteen: 十 五
fine: 很 好
flight: 次 航班 
get: 拿 到
here:  在 这里

Figure 1: Example of1-to-n word alignments be-
tween Chinese and English

3.2 Candidate Reliability Estimation

Of course, the process described above is error-
prone and if we want to change the input to give to
the word aligner, we need to make sure that we are
not making harmful modifications.5 We thus addi-
tionally evaluate the reliability of the candidates we
extract and filter them before inclusion in our bilin-
gual dictionary. To perform this filtering, we use
two simple statistical measures. In the following,
aj = 〈cj , Ej〉 denotes a candidate.

The first measure we consider is co-occurrence
frequency (COOC(cj , Ej)), i.e. the number of
times cj andEj co-occur in the bilingual corpus.
This very simple measure is frequently used in as-
sociative approaches (Melamed, 1997; Tiedemann,
2003). The second measure is the alignment confi-
dence, defined as

AC(aj) =
C(aj)

COOC(cj , Ej)
,

whereC(aj) denotes the number of alignments pro-
posed by the word aligner that are identical toaj .
In other words,AC(aj) measures how often the

5Consequently, if we compare our approach to the problem
of collocation identification, we may say that we are more in-
terested in precision than recall (Smadja et al., 1996). However,
note that our goal is not recognizing specific sequences of words
such as compounds or collocations; it is making (bilingually
motivated) changes that simplify the alignment process.
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aligner alignscj andEj when they co-occur. We
also impose that|Ej | ≤ k, wherek is a fixed inte-
ger that may depend on the language pair (between
3 and 5 in practice). The rationale behind this is that
it is very rare to get reliable alignment between one
word andk consecutive words whenk is high.

The candidates are included in our bilingual dic-
tionary if and only if their measures are above some
fixed thresholdstcooc and tac, which allow for the
control of the size of the dictionary and the quality
of its contents. Some other measures (including the
Dice coefficient) could be considered; however, it
has to be noted that we are more interested here in
the filtering than in the discovery of alignment, since
our method builds upon an existing aligner. More-
over, we will see that even these simple measures
can lead to an improvement of the alignment pro-
cess in a MT context (cf. Section 5).

3.3 Bootstrapped Word Repacking

Once the candidates are extracted, we repack the
words in the bilingual dictionaries constructed using
the method described above; this provides us with
an updated training corpus, in which some word se-
quences have been replaced by a single token. This
update is totally naive: if an entryaj = 〈cj , Ej〉 is
present in the dictionary and matches one sentence
pair (cJ1 , e

I
1) (i.e. cj andEj are respectively con-

tained incJ1 andeI1), then we replace the sequence
of wordsEj with a single token which becomes a
new lexical unit.6 Note that this replacement occurs
even if no alignment was found betweencj andEj
for the pair(cJ1 , e

I
1). This is motivated by the fact

that the filtering described above is quite conserva-
tive; we trust the entryai to be correct. This update
is performed in both directions. It is then possible to
run the word aligner using the updated (simplified)
parallel corpus, in order to get new alignments. By
performing a deterministic word packing, we avoid
the computation of the fertility parameters associ-
ated with fertility-based models.

Word packing can be applied several times: once
we have grouped some words together, they become
the new basic unit to consider, and we can re-run
the same method to get additional groupings. How-

6In case of overlap between several groups of words to re-
place, we select the one with highest confidence (according to
tac).

ever, we have not seen in practice much benefit from
running it more than twice (few new candidates are
extracted after two iterations).

It is also important to note that this process is
bilingually motivated and strongly depends on the
language pair. For example,white wine, excuse me,
call the police, andcup of (cf. Figure 1) translate re-
spectively asvin blanc, excusez-moi, appellez la po-
lice, andtasse dein French. Those groupings would
not be found for a language pair such as French–
English, which is consistent with the fact that they
are less useful for French–English than for Chinese–
English in a MT perspective.

3.4 Using Manually Developed Dictionaries

We wanted to compare this automatic approach to
manually developed resources. For this purpose,
we used a dictionary built by the MT group of
Harbin Institute of Technology, as a preprocessing
step to Chinese–English word alignment, and moti-
vated by several years of Chinese–English MT prac-
tice. Some examples extracted from this resource
are displayed in Figure 2.

有: there is 
想要: want to
不必: need not
前面: in front of
一: as soon as
看: look at

Figure 2: Examples of entries from the manually de-
veloped dictionary

4 Experimental Setting

4.1 Evaluation

The intrinsic quality of word alignment can be as-
sessed using the Alignment Error Rate (AER) met-
ric (Och and Ney, 2003), that compares a system’s
alignment output to a set of gold-standard align-
ment. While this method gives a direct evaluation of
the quality of word alignment, it is faced with sev-
eral limitations. First, it is really difficult to build
a reliable and objective gold-standard set, especially
for languages as different as Chinese and English.
Second, an increase in AER does not necessarily im-
ply an improvement in translation quality (Liang et
al., 2006) and vice-versa (Vilar et al., 2006). The
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relationship between word alignments and their im-
pact on MT is also investigated in (Ayan and Dorr,
2006; Lopez and Resnik, 2006; Fraser and Marcu,
2006). Consequently, we chose to extrinsically eval-
uate the performance of our approach via the transla-
tion task, i.e. we measure the influence of the align-
ment process on the final translation output. The
quality of the translation output is evaluated using
BLEU (Papineni et al., 2002).

4.2 Data

The experiments were carried out using the
Chinese–English datasets provided within the
IWSLT 2006 evaluation campaign (Paul, 2006), ex-
tracted from the Basic Travel Expression Corpus
(BTEC) (Takezawa et al., 2002). This multilingual
speech corpus contains sentences similar to those
that are usually found in phrase-books for tourists
going abroad. Training was performed using the de-
fault training set, to which we added the sets de-
vset1, devset2, and devset3.7 The English side of
the test set was not available at the time we con-
ducted our experiments, so we split the development
set (devset 4) into two parts: one was kept for testing
(200 aligned sentences) with the rest (289 aligned
sentences) used for development purposes.

As a pre-processing step, the English sentences
were tokenized using the maximum-entropy based
tokenizer of the OpenNLP toolkit, and case infor-
mation was removed. For Chinese, the data pro-
vided were tokenized according to the output format
of ASR systems, and human-corrected (Paul, 2006).
Since segmentations are human-corrected, we are
sure that they are good from a monolingual point of
view. Table 2 contains the various corpus statistics.

4.3 Baseline

We use a standard log-linear phrase-based statistical
machine translation system as a baseline: GIZA++
implementation of IBM word alignment model 4
(Brown et al., 1993; Och and Ney, 2003),8 the re-
finement and phrase-extraction heuristics described
in (Koehn et al., 2003), minimum-error-rate training

7More specifically, we choose the first English reference
from the 7 references and the Chinese sentence to construct new
sentence pairs.

8Training is performed using the same number of iterations
as in Section 2.

Chinese English
Train Sentences 41,465

Running words 361,780 375,938
Vocabulary size 11,427 9,851

Dev. Sentences 289 (7 refs.)
Running words 3,350 26,223
Vocabulary size 897 1,331

Eval. Sentences 200 (7 refs.)
Running words 1,864 14,437
Vocabulary size 569 1,081

Table 2: Chinese–English corpus statistics

(Och, 2003) using Phramer (Olteanu et al., 2006),
a 3-gram language model with Kneser-Ney smooth-
ing trained with SRILM (Stolcke, 2002) on the En-
glish side of the training data and Pharaoh (Koehn,
2004) with default settings to decode. The log-linear
model is also based on standard features: condi-
tional probabilities and lexical smoothing of phrases
in both directions, and phrase penalty (Zens and
Ney, 2004).

5 Experimental Results

5.1 Results

The initial word alignments are obtained using the
baseline configuration described above. From these,
we build two bilingual1-to-n dictionaries (one for
each direction), and the training corpus is updated
by repacking the words in the dictionaries, using the
method presented in Section 2. As previously men-
tioned, this process can be repeated several times; at
each step, we can also choose to exploit only one of
the two available dictionaries, if so desired. We then
extract aligned phrases using the same procedure as
for the baseline system; the only difference is the ba-
sic unit we are considering. Once the phrases are ex-
tracted, we perform the estimation of the features of
the log-linear model and unpack the grouped words
to recover the initial words. Finally, minimum-error-
rate training and decoding are performed.

The various parameters of the method (k, tcooc,
tac, cf. Section 2) have been optimized on the devel-
opment set. We found out that it was enough to per-
form two iterations of repacking: the optimal set of
values was found to bek = 3, tac = 0.5, tcooc = 20
for the first iteration, andtcooc = 10 for the second
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BLEU[%]
Baseline 15.14
n=1. with C-E dict. 15.92
n=1. with E-C dict. 15.77
n=1. with both 16.59
n=2. with C-E dict. 16.99
n=2. with E-C dict. 16.59
n=2. with both 16.88

Table 3: Influence of word repacking on Chinese-to-
English MT

iteration, for both directions.9 In Table 3, we report
the results obtained on the test set, wheren denotes
the iteration. We first considered the inclusion of
only the Chinese–English dictionary, then only the
English–Chinese dictionary, and then both.

After the first step, we can already see an im-
provement over the baseline when considering one
of the two dictionaries. When using both, we ob-
serve an increase of1.45 BLEU points, which cor-
responds to a9.6% relative increase. Moreover, we
can gain from performing another step. However,
the inclusion of the English–Chinese dictionary is
harmful in this case, probably because1-to-n align-
ments are less frequent for this direction, and have
been captured during the first step. By including the
Chinese–English dictionary only, we can achieve an
increase of1.85 absolute BLEU points (12.2% rela-
tive) over the initial baseline.10

Quality of the Dictionaries To assess the qual-
ity of the extraction procedure, we simply manu-
ally evaluated the ratio of incorrect entries in the
dictionaries. After one step of word packing, the
Chinese–English and the English–Chinese dictio-
naries respectively contain 7.4% and 13.5% incor-
rect entries. After two steps of packing, they only
contain 5.9% and 10.3% incorrect entries.

5.2 Alignment Types

Intuitively, the word alignments obtained after word
packing are more likely to be1-to-1 than before. In-

9The parametersk, tac, and tcooc are optimized for each
step, and the alignment obtained using the best set of parameters
for a given step are used as input for the following step.

10Note that this setting (using both dictionaries for the first
step and only the Chinese dictionary for the second step) is also
the best setting on the development set.

deed, the word sequences in one language that usu-
ally align to one single word in the other language
have been grouped together to form one single to-
ken. Table 4 shows the detail of the distribution of
alignment types after one and two steps of automatic
repacking. In particular, we can observe that the1: 1

1: 0 1: 1 1: 2 1: 3 1:n
(n > 3)

C-E Base. 21.64 63.76 9.49 3.36 1.75
n=1 19.69 69.43 6.32 2.79 1.78
n=2 19.67 71.57 4.87 2.12 1.76

E-C Base. 29.77 57.47 10.03 1.65 1.08
n=1 26.59 61.95 8.82 1.55 1.09
n=2 25.10 62.73 9.38 1.68 1.12

Table 4: Distribution of alignment types (%)

alignments are more frequent after the application
of repacking: the ratio of this type of alignment has
increased by7.81% for Chinese–English and5.26%
for English–Chinese.

5.3 Influence of Word Segmentation

To test the influence of the initial word segmenta-
tion on the process of word packing, we considered
an additional segmentation configuration, based on
an automatic segmenter combining rule-based and
statistical techniques (Zhao et al., 2001).

BLEU[%]
Original segmentation 15.14
Original segmentation + Word packing 16.99
Automatic segmentation 14.91
Automatic segmentation + Word packing 17.51

Table 5: Influence of Chinese segmentation

The results obtained are displayed in Table 5. As
expected, the automatic segmenter leads to slightly
lower results than the human-corrected segmenta-
tion. However, the proposed method seems to be
beneficial irrespective of the choice of segmentation.
Indeed, we can also observe an improvement in the
new setting:2.6 points absolute increase in BLEU
(17.4% relative).11

11We could actually consider an extreme case, which would
consist of splitting the sentences into characters, i.e. each char-
acter would be blindly treated as one word. The segmentation
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5.4 Exploiting Manually Developed Resources

We also compared our technique for automatic pack-
ing of words with the exploitation of manually
developed resources. More specifically, we used
a 1-to-n Chinese–English bilingual dictionary, de-
scribed in Section 3.4, and used it in place of the
automatically acquired dictionary. Words are thus
grouped according to this dictionary, and we then
apply the same word aligner as for previous experi-
ments. In this case, since we are not bootstrapping
from the output of a word aligner, this can actually
be seen as a pre-processing step prior to alignment.
These resources follow more or less the same for-
mat as the output of the word segmenter mentioned
in Section 5.1.2 (Zhao et al., 2001), so the experi-
ments are carried out using this segmentation.

BLEU[%]
Baseline 14.91
Automatic word packing 17.51
Packing with “manual” dictionary 16.15

Table 6: Exploiting manually developed resources

The results obtained are displayed in Table 6.We
can observe that the use of the manually developed
dictionary provides us with an improvement in trans-
lation quality:1.24 BLEU points absolute (8.3% rel-
ative). However, there does not seem to be a clear
gain when compared with the automatic method.
Even if those manual resources were extended, we
do not believe the improvement is sufficient enough
to justify this additional effort.

6 Conclusion and Future Work

In this paper, we have introduced a simple yet effec-
tive method to pack words together in order to give
a different and simplified input to automatic word
aligners. We use a bootstrap approach in which we
first extract1-to-n word alignments using an exist-
ing word aligner, and then estimate the confidence
of those alignments to decide whether or not then
words have to be grouped; if so, this group is con-

would thus be completely driven by thebilingualalignment pro-
cess (see also (Wu, 1997; Tiedemann, 2003) for related consid-
erations). In this case, our approach would be similar to the
approach of (Xu et al., 2004), except for the estimation of can-
didates.

sidered a new basic unit to consider. We can finally
re-apply the word aligner to the updated sentences.

We have evaluated the performance of our ap-
proach by measuring the influence of this process
on a Chinese-to-English MT task, based on the
IWSLT 2006 evaluation campaign. We report a
12.2% relative increase in BLEU score over a stan-
dard phrase-based SMT system. We have verified
that this process actually reduces the number of1:n
alignments withn 6= 1, and that it is rather indepen-
dent from the (Chinese) segmentation strategy.

As for future work, we first plan to consider dif-
ferent confidence measures for the filtering of the
alignment candidates. We also want to bootstrap on
different word aligners; in particular, one possibility
is to use the flexible HMM word-to-phrase model of
Deng and Byrne (2005) in place of IBM model 4.
Finally, we would like to apply this method to other
corpora and language pairs.
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Abstract

Recently, confusion network decoding has
been applied in machine translation system
combination. Due to errors in the hypoth-
esis alignment, decoding may result in un-
grammatical combination outputs. This pa-
per describes an improved confusion net-
work based method to combine outputs from
multiple MT systems. In this approach, ar-
bitrary features may be added log-linearly
into the objective function, thus allowing
language model expansion and re-scoring.
Also, a novel method to automatically se-
lect the hypothesis which other hypotheses
are aligned against is proposed. A generic
weight tuning algorithm may be used to op-
timize various automatic evaluation metrics
including TER, BLEU and METEOR. The
experiments using the 2005 Arabic to En-
glish and Chinese to English NIST MT eval-
uation tasks show significant improvements
in BLEU scores compared to earlier confu-
sion network decoding based methods.

1 Introduction

System combination has been shown to improve
classification performance in various tasks. There
are several approaches for combining classifiers. In
ensemble learning, a collection of simple classifiers
is used to yield better performance than any single
classifier; for example boosting (Schapire, 1990).
Another approach is to combine outputs from a few
highly specialized classifiers. The classifiers may

be based on the same basic modeling techniques
but differ by, for example, alternative feature repre-
sentations. Combination of speech recognition out-
puts is an example of this approach (Fiscus, 1997).
In speech recognition, confusion network decoding
(Mangu et al., 2000) has become widely used in sys-
tem combination.

Unlike speech recognition, current statistical ma-
chine translation (MT) systems are based on various
different paradigms; for example phrasal, hierarchi-
cal and syntax-based systems. The idea of combin-
ing outputs from different MT systems to produce
consensus translations in the hope of generating bet-
ter translations has been around for a while (Fred-
erking and Nirenburg, 1994). Recently, confusion
network decoding for MT system combination has
been proposed (Bangalore et al., 2001). To generate
confusion networks, hypotheses have to be aligned
against each other. In (Bangalore et al., 2001), Lev-
enshtein alignment was used to generate the net-
work. As opposed to speech recognition, the word
order between two correct MT outputs may be dif-
ferent and the Levenshtein alignment may not be
able to align shifted words in the hypotheses. In
(Matusov et al., 2006), different word orderings are
taken into account by training alignment models by
considering all hypothesis pairs as a parallel corpus
using GIZA++ (Och and Ney, 2003). The size of
the test set may influence the quality of these align-
ments. Thus, system outputs from development sets
may have to be added to improve the GIZA++ align-
ments. A modified Levenshtein alignment allowing
shifts as in computation of the translation edit rate
(TER) (Snover et al., 2006) was used to align hy-
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potheses in (Sim et al., 2007). The alignments from
TER are consistent as they do not depend on the test
set size. Also, a more heuristic alignment method
has been proposed in a different system combina-
tion approach (Jayaraman and Lavie, 2005). A full
comparison of different alignment methods would
be difficult as many approaches require a significant
amount of engineering.

Confusion networks are generated by choosing
one hypothesis as the “skeleton”, and other hypothe-
ses are aligned against it. The skeleton defines the
word order of the combination output. Minimum
Bayes risk (MBR) was used to choose the skeleton
in (Sim et al., 2007). The average TER score was
computed between each system’s � -best hypothesis
and all other hypotheses. The MBR hypothesis is
the one with the minimum average TER and thus,
may be viewed as the closest to all other hypothe-
ses in terms of TER. This work was extended in
(Rosti et al., 2007) by introducing system weights
for word confidences. However, the system weights
did not influence the skeleton selection, so a hypoth-
esis from a system with zero weight might have been
chosen as the skeleton. In this work, confusion net-
works are generated by using the � -best output from
each system as the skeleton, and prior probabili-
ties for each network are estimated from the average
TER scores between the skeleton and other hypothe-
ses. All resulting confusion networks are connected
in parallel into a joint lattice where the prior proba-
bilities are also multiplied by the system weights.

The combination outputs from confusion network
decoding may be ungrammatical due to alignment
errors. Also the word-level decoding may break
coherent phrases produced by the individual sys-
tems. In this work, log-posterior probabilities are
estimated for each confusion network arc instead of
using votes or simple word confidences. This allows
a log-linear addition of arbitrary features such as
language model (LM) scores. The LM scores should
increase the total log-posterior of more grammatical
hypotheses. Powell’s method (Brent, 1973) is used
to tune the system and feature weights simultane-
ously so as to optimize various automatic evaluation
metrics on a development set. Tuning is fully auto-
matic, as opposed to (Matusov et al., 2006) where
global system weights were set manually.

This paper is organized as follows. Three evalu-

ation metrics used in weights tuning and reporting
the test set results are reviewed in Section 2. Sec-
tion 3 describes confusion network decoding for MT
system combination. The extensions to add features
log-linearly and improve the skeleton selection are
presented in Sections 4 and 5, respectively. Section
6 details the weights optimization algorithm and the
experimental results are reported in Section 7. Con-
clusions and future work are discussed in Section 8.

2 Evaluation Metrics

Currently, the most widely used automatic MT eval-
uation metric is the NIST BLEU-4 (Papineni et al.,
2002). It is computed as the geometric mean of � -
gram precisions up to � -grams between the hypoth-
esis � and reference ��� as follows���
	���
 ����������� (1)

������� ��
��
 "!$#&%('*),+  
 �����-���/.10 
 �����-���

where 0 
 �������2�43 � is the brevity penalty and

+  
 �����-��� are the � -gram precisions. When mul-
tiple references are provided, the � -gram counts
against all references are accumulated to compute
the precisions. Similarly, full test set scores are ob-
tained by accumulating counts over all hypothesis
and reference pairs. The BLEU scores are between5

and � , higher being better. Often BLEU scores are
reported as percentages and “one BLEU point gain”
usually means a BLEU increase of

5�675 � .
Other evaluation metrics have been proposed to

replace BLEU. It has been argued that METEOR
correlates better with human judgment due to higher
weight on recall than precision (Banerjee and Lavie,
2005). METEOR is based on the weighted harmonic
mean of the precision and recall measured on uni-
gram matches as follows

8:9-;<
 �������=��� � 5">?A@�BDC"? � � �FE 5�6HG 
JI=K > �/L�. (2)

where
>

is the total number of unigram matches,
?M@

is the hypothesis length,
? � is the reference length

and
I

is the minimum number of � -gram matches
that covers the alignment. The second term is a
fragmentation penalty which penalizes the harmonic
mean by a factor of up to

5�6HG
when

I � >
; i.e.,
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there are no matching � -grams higher than � � � .
By default, METEOR script counts the words that
match exactly, and words that match after a simple
Porter stemmer. Additional matching modules in-
cluding WordNet stemming and synonymy may also
be used. When multiple references are provided, the
lowest score is reported. Full test set scores are ob-
tained by accumulating statistics over all test sen-
tences. The METEOR scores are also between

5
and� , higher being better. The scores in the results sec-

tion are reported as percentages.
Translation edit rate (TER) (Snover et al., 2006)

has been proposed as more intuitive evaluation met-
ric since it is based on the rate of edits required to
transform the hypothesis into the reference. The
TER score is computed as follows9-	�;<
 �����-����� �����$B�� � % B	��

�AB	�
�
���? � (3)

where
? � is the reference length. The only differ-

ence to word error rate is that the TER allows shifts.
A shift of a sequence of words is counted as a sin-
gle edit. The minimum translation edit alignment is
usually found through a beam search. When multi-
ple references are provided, the edits from the clos-
est reference are divided by the average reference
length. Full test set scores are obtained by accumu-
lating the edits and the average reference lengths.
The perfect TER score is 0, and otherwise higher
than zero. The TER score may also be higher than 1
due to insertions. Also TER is reported as a percent-
age in the results section.

3 Confusion Network Decoding

Confusion network decoding in MT has to pick
one hypothesis as the skeleton which determines the
word order of the combination. The other hypothe-
ses are aligned against the skeleton. Either votes or
some form of confidences are assigned to each word
in the network. For example using “cat sat the mat”
as the skeleton, aligning “cat sitting on the mat” and
“hat on a mat” against it might yield the following
alignments:

cat sat � the mat
cat sitting on the mat
hat � on a mat

where � represents a NULL word. In graphical form,
the resulting confusion network is shown in Figure

1. Each arc represents an alternative word at that
position in the sentence and the number of votes for
each word is marked in parentheses. Confusion net-
work decoding usually requires finding the path with
the highest confidence in the network. Based on vote
counts, there are three alternatives in the example:
“cat sat on the mat”, “cat on the mat” and “cat sit-
ting on the mat”, each having accumulated 10 votes.
The alignment procedure plays an important role, as
by switching the position of the word ‘sat’ and the
following NULL in the skeleton, there would be a
single highest scoring path through the network; that
is, “cat on the mat”.

1 2 3 4 5 6

cat (2)

hat (1)

ε (1)

sitting (1) ε (1)

on (2)

a (1)

the (2)sat (1)

mat (3)

Figure 1: Example consensus network with votes on
word arcs.

Different alignment methods yield different con-
fusion networks. The modified Levenshtein align-
ment as used in TER is more natural than simple edit
distance such as word error rate since machine trans-
lation hypotheses may have different word orders
while having the same meaning. As the skeleton
determines the word order, the quality of the com-
bination output also depends on which hypothesis is
chosen as the skeleton. Since the modified Leven-
shtein alignment produces TER scores between the
skeleton and the other hypotheses, a natural choice
for selecting the skeleton is the minimum average
TER score. The hypothesis resulting in the lowest
average TER score when aligned against all other
hypotheses is chosen as the skeleton ��� as follows

��� ����� ) ��� �
��� �"!

#%$�
& !$# 9-	�;A
 � & ���(' � (4)

where
?
� is the number of systems. This is equiv-

alent to minimum Bayes risk decoding with uni-
form posterior probabilities (Sim et al., 2007). Other
evaluation metrics may also be used as the MBR
loss function. For BLEU and METEOR, the loss
function would be � E ���
	 �<
 � & ���)' � and � E8 9-;A
 � & ���)' � .

It has been found that multiple hypotheses from
each system may be used to improve the quality of
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the combination output (Sim et al., 2007). When
using

?
-best lists from each system, the words may

be assigned a different score based on the rank of the
hypothesis. In (Rosti et al., 2007), simple � K�
 � B�� �
score was assigned to the word coming from the

�
th-

best hypothesis. Due to the computational burden
of the TER alignment, only � -best hypotheses were
considered as possible skeletons, and � � � 5 hy-
potheses per system were aligned. Similar approach
to estimate word posteriors is adopted in this work.

System weights may be used to assign a system
specific confidence on each word in the network.
The weights may be based on the systems’ relative
performance on a separate development set or they
may be automatically tuned to optimize some evalu-
ation metric on the development set. In (Rosti et al.,
2007), the total confidence of the � th best confusion
network hypothesis � &��  , including NULL words,
given the � th source sentence � & was given byI*
 � &��  �� � & ��� (5)

#	��
 #�
' !$#

#%$�
� !$# 
 � I�� � ' B��,?  �� ��� � 
 � &��  �

where
? & is the number of nodes in the confu-

sion network for the source sentence � & , ? � is the
number of translation systems,


 � is the � th system
weight,

I�� � ' is the accumulated confidence for word� produced by system � between nodes � and � B � ,
and

�
is a weight for the number of NULL links

along the hypothesis
?  �� ��� � 
 � &��  � . The word con-

fidences
I�� � ' were increased by � K�
 � B�� � if the

word � aligns between nodes � and � B � in the net-
work. If no word aligns between nodes � and � B � ,
the NULL word confidence at that position was in-
creased by � K�
 � B�� � . The last term controls the
number of NULL words generated in the output and
may be viewed as an insertion penalty. Each arc in
the confusion network carries the word label � and?
� scores

I�� � ' . The decoder outputs the hypothesis
with the highest

I*
 � &��  � � & � given the current set of
weights.

3.1 Discussion

There are several problems with the previous con-
fusion network decoding approaches. First, the
decoding can generate ungrammatical hypotheses
due to alignment errors and phrases broken by the

word-level decoding. For example, two synony-
mous words may be aligned to other words not al-
ready aligned, which may result in repetitive output.
Second, the additive confidence scores in Equation
5 have no probabilistic meaning and cannot there-
fore be combined with language model scores. Lan-
guage model expansion and re-scoring may help by
increasing the probability of more grammatical hy-
potheses in decoding. Third, the system weights are
independent of the skeleton selection. Therefore, a
hypothesis from a system with a low or zero weight
may be chosen as the skeleton.

4 Log-Linear Combination with Arbitrary
Features

To address the issue with ungrammatical hypotheses
and allow language model expansion and re-scoring,
the hypothesis confidence computation is modified.
Instead of summing arbitrary confidence scores as in
Equation 5, word posterior probabilities are used as
follows

% '*)
+ 
 � &��  �� � & ��� (6)
#	��
 #�
' !$# % '*) �

#%$�
� !$# 
 � + 
 � � �/���/�/. B! #"�
 � &��  �

B$�,?  �� ��� � 
 � &��  � B�%*?&��' �)( � 
 � &��  �
where

 
is the language model weight,

"�
 � &��  �
is the LM log-probability and

?*��' ��( � 
 � &��  � is the
number of words in the hypothesis � &��  . The word
posteriors + 
 � � �/���/� are estimated by scaling the con-
fidences

I�� � ' to sum to one for each system � over all
words � in between nodes � and � B � . The system
weights are also constrained to sum to one. Equation
6 may be viewed as a log-linear sum of sentence-
level features. The first feature is the sum of word
log-posteriors, the second is the LM log-probability,
the third is the log-NULL score and the last is the
log-length score. The last two terms are not com-
pletely independent but seem to help based on ex-
perimental results.

The number of paths through a confusion net-
work grows exponentially with the number of nodes.
Therefore expanding a network with an � -gram lan-
guage model may result in huge lattices if � is high.
Instead of high order � -grams with heavy pruning, a
bi-gram may first be used to expand the lattice. Af-
ter optimizing one set of weights for the expanded
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confusion network, a second set of weights for
?

-
best list re-scoring with a higher order � -gram model
may be optimized. On a test set, the first set of
weights is used to generate an

?
-best list from the

bi-gram expanded lattice. This
?

-best list is then
re-scored with the higher order � -gram. The second
set of weights is used to find the final � -best from
the re-scored

?
-best list.

5 Multiple Confusion Network Decoding

As discussed in Section 3, there is a disconnect be-
tween the skeleton selection and confidence estima-
tion. To prevent the � -best from a system with a low
or zero weight being selected as the skeleton, confu-
sion networks are generated for each system and the
average TER score in Equation 4 is used to estimate
a prior probability for the corresponding network.
All

?
� confusion networks are connected to a single

start node with NULL arcs which contain the prior
probability from the system used as the skeleton for
that network. All confusion network are connected
to a common end node with NULL arcs. The final
arcs have a probability of one. The prior probabil-
ities in the arcs leaving the first node will be mul-
tiplied by the corresponding system weights which
guarantees that a path through a network generated
around a � -best from a system with a zero weight
will not be chosen.

The prior probabilities are estimated by viewing
the negative average TER scores between the skele-
ton and other hypotheses as log-probabilities. These
log-probabilities are scaled so that the priors sum to
one. There is a concern that the prior probabilities
estimated this way may be inaccurate. Therefore,
the priors may have to be smoothed by a tunable
exponent. However, the optimization experiments
showed that the best performance was obtained by
having a smoothing factor of 1 which is equivalent
to the original priors. Thus, no smoothing was used
in the experiments presented later in this paper.

An example joint network with the priors is
shown in Figure 2. This example has three confu-
sion networks with priors

5�6HG
,
5�6��

and
5�6��

. The to-
tal number of nodes in the network is represented
by

?��
. Similar combination of multiple confusion

networks was presented in (Matusov et al., 2006).
However, this approach did not include sentence

ε (1)

ε (1)

ε (1)

ε (0.2)

ε (0.3)

ε (0.5)

1 Na

Figure 2: Three confusion networks with prior prob-
abilities.

specific prior estimates, word posterior estimates,
and did not allow joint optimization of the system
and feature weights.

6 Weights Optimization

The optimization of the system and feature weights
may be carried out using

?
-best lists as in (Osten-

dorf et al., 1991). A confusion network may be rep-
resented by a word lattice and standard tools may be
used to generate

?
-best hypothesis lists including

word confidence scores, language model scores and
other features. The

?
-best list may be re-ordered

using the sentence-level posteriors + 
 � &��  �� � & � from
Equation 6 for the � th source sentence � & and the
corresponding � th hypothesis � &��  . The current� -best hypothesis

�� & given a set of weights � �� 
 # � 6 6 6 � 
 #%$ �  � � � % � may be represented as fol-
lows �� & 
 � & � � � ����� ) � � ���� � ��� 	 + 
 � &��  �� � & � (7)

The objective is to optimize the � -best score on
a development set given a set of reference transla-
tions. For example, estimating weights which mini-
mize TER between a set of � -best hypothesis

�

and

reference translations

 � can be written as

�� � ��� ) ��� ��
9-	�; 
 �
 � 
 �=� (8)

This objective function is very complicated, so
gradient-based optimization methods may not be
used. In this work, modified Powell’s method as
proposed by (Brent, 1973) is used. The algorithm
explores better weights iteratively starting from a
set of initial weights. First, each dimension is op-
timized using a grid-based line minimization algo-
rithm. Then, a new direction based on the changes
in the objective function is estimated to speed up
the search. To improve the chances of finding a
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global optimum, 19 random perturbations of the ini-
tial weights are used in parallel optimization runs.
Since the

?
-best list represents only a small portion

of all hypotheses in the confusion network, the op-
timized weights from one iteration may be used to
generate a new

?
-best list from the lattice for the

next iteration. Similarly, weights which maximize
BLEU or METEOR may be optimized.

The same Powell’s method has been used to es-
timate feature weights of a standard feature-based
phrasal MT decoder in (Och, 2003). A more effi-
cient algorithm for log-linear models was also pro-
posed. In this work, both the system and feature
weights are jointly optimized, so the efficient algo-
rithm for the log-linear models cannot be used.

7 Results

The improved system combination method was
compared to a simple confusion network decoding
without system weights and the method proposed
in (Rosti et al., 2007) on the Arabic to English and
Chinese to English NIST MT05 tasks. Six MT sys-
tems were combined: three (A,C,E) were phrase-
based similar to (Koehn, 2004), two (B,D) were
hierarchical similar to (Chiang, 2005) and one (F)
was syntax-based similar to (Galley et al., 2006).
All systems were trained on the same data and the
outputs used the same tokenization. The decoder
weights for systems A and B were tuned to optimize
TER, and others were tuned to optimize BLEU. All
decoder weight tuning was done on the NIST MT02
task.

The joint confusion network was expanded with
a bi-gram language model and a

�"5*5
-best list was

generated from the lattice for each tuning iteration.
The system and feature weights were tuned on the
union of NIST MT03 and MT04 tasks. All four ref-
erence translations available for the tuning and test
sets were used. A first set of weights with the bi-
gram LM was optimized with three iterations. A
second set of weights was tuned for 5-gram

?
-best

list re-scoring. The bi-gram and 5-gram English lan-
guage models were trained on about 7 billion words.
The final combination outputs were detokenized and
cased before scoring.

The tuning set results on the Arabic to English
NIST MT03+MT04 task are shown in Table 1. The

Arabic tuning TER BLEU MTR

system A 44.93 45.71 66.09
system B 46.41 43.07 64.79
system C 46.10 46.41 65.33
system D 44.36 46.83 66.91
system E 45.35 45.44 65.69
system F 47.10 44.52 65.28
no weights 42.35 48.91 67.76
baseline 42.19 49.86 68.34

TER tuned 41.88 51.45 68.62
BLEU tuned 42.12 51.72 68.59
MTR tuned 54.08 38.93 71.42

Table 1: Mixed-case TER and BLEU, and
lower-case METEOR scores on Arabic NIST
MT03+MT04.

Arabic test TER BLEU MTR

system A 42.98 49.58 69.86
system B 43.79 47.06 68.62
system C 43.92 47.87 66.97
system D 40.75 52.09 71.23
system E 42.19 50.86 70.02
system F 44.30 50.15 69.75
no weights 39.33 53.66 71.61
baseline 39.29 54.51 72.20

TER tuned 39.10 55.30 72.53
BLEU tuned 39.13 55.48 72.81
MTR tuned 51.56 41.73 74.79

Table 2: Mixed-case TER and BLEU, and lower-
case METEOR scores on Arabic NIST MT05.

best score on each metric is shown in bold face fonts.
The row labeled as no weights corresponds to
Equation 5 with uniform system weights


 � and
zero NULL weight. The baseline corresponds
to Equation 5 with TER tuned weights. The follow-
ing three rows correspond to the improved confusion
network decoding with different optimization met-
rics. As expected, the scores on the metric used in
tuning are the best on that metric. Also, the combi-
nation results are better than any single system on all
metrics in the case of TER and BLEU tuning. How-
ever, the METEOR tuning yields extremely high
TER and low BLEU scores. This must be due to the
higher weight on the recall compared to precision in
the harmonic mean used to compute the METEOR
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Chinese tuning TER BLEU MTR

system A 56.56 29.39 54.54
system B 55.88 30.45 54.36
system C 58.35 32.88 56.72
system D 57.09 36.18 57.11
system E 57.69 33.85 58.28
system F 56.11 36.64 58.90
no weights 53.11 37.77 59.19
baseline 53.40 38.52 59.56

TER tuned 52.13 36.87 57.30
BLEU tuned 53.03 39.99 58.97
MTR tuned 70.27 28.60 63.10

Table 3: Mixed-case TER and BLEU, and
lower-case METEOR scores on Chinese NIST
MT03+MT04.

score. Even though METEOR has been shown to be
a good metric on a given MT output, tuning to op-
timize METEOR results in a high insertion rate and
low precision. The Arabic test set results are shown
in Table 2. The TER and BLEU optimized com-
bination results beat all single system scores on all
metrics. The best results on a given metric are again
obtained by the combination optimized for the corre-
sponding metric. It should be noted that the TER op-
timized combination has significantly higher BLEU
score than the TER optimized baseline. Compared
to the baseline system which is also optimized for
TER, the BLEU score is improved by 0.97 points.
Also, the METEOR score using the METEOR op-
timized weights is very high. However, the other
scores are worse in common with the tuning set re-
sults.

The tuning set results on the Chinese to English
NIST MT03+MT04 task are shown in Table 3. The
baseline combination weights were tuned to opti-
mize BLEU. Again, the best scores on each met-
ric are obtained by the combination tuned for that
metric. Only the METEOR score of the TER tuned
combination is worse than the METEOR scores of
systems E and F - other combinations are better than
any single system on all metrics apart from the ME-
TEOR tuned combinations. The test set results fol-
low clearly the tuning results again - the TER tuned
combination is the best in terms of TER, the BLEU
tuned in terms of BLEU, and the METEOR tuned in

Chinese test TER BLEU MTR

system A 56.57 29.63 56.63
system B 56.30 29.62 55.61
system C 59.48 31.32 57.71
system D 58.32 33.77 57.92
system E 58.46 32.40 59.75
system F 56.79 35.30 60.82
no weights 53.80 36.17 60.75
baseline 54.34 36.44 61.05

TER tuned 52.90 35.76 58.60
BLEU tuned 54.05 37.91 60.31
MTR tuned 72.59 26.96 64.35

Table 4: Mixed-case TER and BLEU, and lower-
case METEOR scores on Chinese NIST MT05.

terms of METEOR. Compared to the baseline, the
BLEU score of the BLEU tuned combination is im-
proved by 1.47 points. Again, the METEOR tuned
weights hurt the other metrics significantly.

8 Conclusions

An improved confusion network decoding method
combining the word posteriors with arbitrary fea-
tures was presented. This allows the addition of
language model scores by expanding the lattices or
re-scoring

?
-best lists. The LM integration should

result in more grammatical combination outputs.
Also, confusion networks generated by using the� -best hypothesis from all systems as the skeleton
were used with prior probabilities derived from the
average TER scores. This guarantees that the best
path will not be found from a network generated for
a system with zero weight. Compared to the earlier
system combination approaches, this method is fully
automatic and requires very little additional infor-
mation on top of the development set outputs from
the individual systems to tune the weights.

The new method was evaluated on the Arabic to
English and Chinese to English NIST MT05 tasks.
Compared to the baseline from (Rosti et al., 2007),
the new method improves the BLEU scores signif-
icantly. The combination weights were tuned to
optimize three automatic evaluation metrics: TER,
BLEU and METEOR. The TER tuning seems to
yield very good results on Arabic - the BLEU tun-
ing seems to be better on Chinese. It also seems like
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METEOR should not be used in tuning due to high
insertion rate and low precision. It would be interest-
ing to know which tuning metric results in the best
translations in terms of human judgment. However,
this would require time consuming evaluations such
as human mediated TER post-editing (Snover et al.,
2006).

The improved confusion network decoding ap-
proach allows arbitrary features to be used in the
combination. New features may be added in the fu-
ture. Hypothesis alignment is also very important
in confusion network generation. Better alignment
methods which take synonymy into account should
be investigated. This method could also benefit from
more sophisticated word posterior estimation.
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Abstract
We investigate the factors which determine
constituent order in German clauses and pro-
pose an algorithm which performs the task
in two steps: First, the best candidate for
the initial sentence position is chosen. Then,
the order for the remaining constituents is
determined. The first task is more difficult
than the second one because of properties
of the German sentence-initial position. Ex-
periments show a significant improvement
over competing approaches. Our algorithm
is also more efficient than these.

1 Introduction

Many natural languages allow variation in the word
order. This is a challenge for natural language gen-
eration and machine translation systems, or for text
summarizers. E.g., in text-to-text generation (Barzi-
lay & McKeown, 2005; Marsi & Krahmer, 2005;
Wan et al., 2005), new sentences are fused from de-
pendency structures of input sentences. The last step
of sentence fusion is linearization of the resulting
parse. Even for English, which is a language with
fixed word order, this is not a trivial task.

German has a relatively free word order. This
concerns the order of constituents1 within sentences
while the order of words within constituents is rela-
tively rigid. The grammar only partially prescribes
how constituents dependent on the verb should be
ordered, and for many clauses each of the n! possi-
ble permutations of n constituents is grammatical.

1Henceforth, we will use this term to refer to constituents
dependent on the clausal top node, i.e. a verb, only.

In spite of the permanent interest in German word
order in the linguistics community, most studies
have limited their scope to the order of verb argu-
ments and few researchers have implemented – and
even less evaluated – a generation algorithm. In this
paper, we present an algorithm, which orders not
only verb arguments but all kinds of constituents,
and evaluate it on a corpus of biographies. For
each parsed sentence in the test set, our maximum-
entropy-based algorithm aims at reproducing the or-
der found in the original text. We investigate the
importance of different linguistic factors and sug-
gest an algorithm to constituent ordering which first
determines the sentence initial constituent and then
orders the remaining ones. We provide evidence
that the task requires language-specific knowledge
to achieve better results and point to the most diffi-
cult part of it. Similar to Langkilde & Knight (1998)
we utilize statistical methods. Unlike overgenera-
tion approaches (Varges & Mellish, 2001, inter alia)
which select the best of all possible outputs ours is
more efficient, because we do not need to generate
every permutation.

2 Theoretical Premises

2.1 Background

It has been suggested that several factors have an in-
fluence on German constituent order. Apart from
the constraints posed by the grammar, information
structure, surface form, and discourse status have
also been shown to play a role. It has also been
observed that there are preferences for a particular
order. The preferences summarized below have mo-
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tivated our choice of features:

• constituents in the nominative case precede
those in other cases, and dative constituents
often precede those in the accusative case
(Uszkoreit, 1987; Keller, 2000);

• the verb arguments’ order depends on the
verb’s subcategorization properties (Kurz,
2000);

• constituents with a definite article precede
those with an indefinite one (Weber & Müller,
2004);

• pronominalized constituents precede non-
pronominalized ones (Kempen & Harbusch,
2004);

• animate referents precede inanimate ones (Pap-
pert et al., 2007);

• short constituents precede longer ones (Kim-
ball, 1973);

• the preferred topic position is right after the
verb (Frey, 2004);

• the initial position is usually occupied by
scene-setting elements and topics (Speyer,
2005).

• there is a default order based on semantic prop-
erties of constituents (Sgall et al., 1986):
Actor < Temporal < SpaceLocative < Means < Ad-

dressee < Patient < Source < Destination < Purpose

Note that most of these preferences were identified
in corpus studies and experiments with native speak-
ers and concern the order of verb arguments only.
Little has been said so far about how non-arguments
should be ordered.

German is a verb second language, i.e., the po-
sition of the verb in the main clause is determined
exclusively by the grammar and is insensitive to
other factors. Thus, the German main clause is di-
vided into two parts by the finite verb: Vorfeld (VF),
which contains exactly one constituent, and Mit-
telfeld (MF), where the remaining constituents are
located. The subordinate clause normally has only
MF. The VF and MF are marked with brackets in
Example 1:

(1) [Außerdem]
Apart from that

entwickelte
developed

[Lummer
Lummer

eine
a

Quecksilberdampflampe,
Mercury-vapor lamp

um
to

monochromatisches
monochrome

Licht
light

herzustellen].
produce.

’Apart from that, Lummer developed a
Mercury-vapor lamp to produce monochrome
light’.

2.2 Our Hypothesis

The essential contribution of our study is that we
treat preverbal and postverbal parts of the sentence
differently. The sentence-initial position, which in
German is the VF, has been shown to be cognitively
more prominent than other positions (Gernsbacher
& Hargreaves, 1988). Motivated by the theoretical
work by Chafe (1976) and Jacobs (2001), we view
the VF as the place for elements which modify the
situation described in the sentence, i.e. for so called
frame-setting topics (Jacobs, 2001). For example,
temporal or locational constituents, or anaphoric ad-
verbs are good candidates for the VF. We hypoth-
esize that the reasons which bring a constituent to
the VF are different from those which place it, say,
to the beginning of the MF, for the order in the MF
has been shown to be relatively rigid (Keller, 2000;
Kempen & Harbusch, 2004). Speakers have the
freedom of selecting the outgoing point for a sen-
tence. Once they have selected it, the remaining con-
stituents are arranged in the MF, mainly according to
their grammatical properties.

This last observation motivates another hypothe-
sis we make: The cumulation of the properties of
a constituent determines its salience. This salience
can be calculated and used for ordering with a sim-
ple rule stating that more salient constituents should
precede less salient ones. In this case there is no
need to generate all possible orders and rank them.
The best order can be obtained from a random one
by sorting. Our experiments support this view. A
two-step approach, which first selects the best can-
didate for the VF and then arranges the remaining
constituents in the MF with respect to their salience
performs better than algorithms which generate the
order for a sentence as a whole.
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3 Related Work

Uszkoreit (1987) addresses the problem from a
mostly grammar-based perspective and suggests
weighted constraints, such as [+NOM] ≺ [+DAT],
[+PRO] ≺ [–PRO], [–FOCUS] ≺ [+FOCUS], etc.

Kruijff et al. (2001) describe an architecture
which supports generating the appropriate word or-
der for different languages. Inspired by the findings
of the Prague School (Sgall et al., 1986) and Sys-
temic Functional Linguistics (Halliday, 1985), they
focus on the role that information structure plays
in constituent ordering. Kruijff-Korbayová et al.
(2002) address the task of word order generation in
the same vein. Similar to ours, their algorithm rec-
ognizes the special role of the sentence-initial po-
sition which they reserve for the theme – the point
of departure of the message. Unfortunately, they did
not implement their algorithm, and it is hard to judge
how well the system would perform on real data.

Harbusch et al. (2006) present a generation work-
bench, which has the goal of producing not the most
appropriate order, but all grammatical ones. They
also do not provide experimental results.

The work of Uchimoto et al. (2000) is done on
the free word order language Japanese. They de-
termine the order of phrasal units dependent on the
same modifiee. Their approach is similar to ours in
that they aim at regenerating the original order from
a dependency parse, but differs in the scope of the
problem as they regenerate the order of modifers for
all and not only for the top clausal node. Using a
maximum entropy framework, they choose the most
probable order from the set of all permutations of n
words by the following formula:

P (1|h) = P ({Wi,i+j = 1|1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− i}|h)

≈

n−1
Y

i=1

n−i
Y

j=1

P (Wi,i+j = 1|hi,i+j)

=

n−1
Y

i=1

n−i
Y

j=1

PME(1|hi,i+j)

(1)

For each permutation, for every pair of words , they
multiply the probability of their being in the correct2

order given the history h. Random variable Wi,i+j

2Only reference orders are assumed to be correct.

is 1 if word wi precedes wi+j in the reference sen-
tence, 0 otherwise. The features they use are akin
to those which play a role in determining German
word order. We use their approach as a non-trivial
baseline in our study.

Ringger et al. (2004) aim at regenerating the or-
der of constituents as well as the order within them
for German and French technical manuals. Utilizing
syntactic, semantic, sub-categorization and length
features, they test several statistical models to find
the order which maximizes the probability of an or-
dered tree. Using “Markov grammars” as the start-
ing point and conditioning on the syntactic category
only, they expand a non-terminal node C by predict-
ing its daughters from left to right:

P (C|h) =

n
Y

i=1

P (di|di−1, ..., di−j , c, h) (2)

Here, c is the syntactic category of C, d and h
are the syntactic categories of C’s daughters and the
daughter which is the head of C respectively.

In their simplest system, whose performance is
only 2.5% worse than the performance of the best
one, they condition on both syntactic categories and
semantic relations (ψ) according to the formula:

P (C|h) =

n
Y

i=1

»

P (ψi|di−1, ψi−1, ...di−j , ψi−j , c, h)
×P (di|ψi, di−1, ψi−1..., di−j , ψi−j , c, h)

–

(3)

Although they test their system on German data,
it is hard to compare their results to ours directly.
First, the metric they use does not describe the per-
formance appropriately (see Section 6.1). Second,
while the word order within NPs and PPs as well as
the verb position are prescribed by the grammar to a
large extent, the constituents can theoretically be or-
dered in any way. Thus, by generating the order for
every non-terminal node, they combine two tasks of
different complexity and mix the results of the more
difficult task with those of the easier one.

4 Data

The data we work with is a collection of biogra-
phies from the German version of Wikipedia3. Fully
automatic preprocessing in our system comprises
the following steps: First, a list of people of a
certain Wikipedia category is taken and an article
is extracted for every person. Second, sentence

3http://de.wikipedia.org
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entwickelte

um herzustellen SUB

monochromatisches Licht

eine Quecksilberdampflampe OBJAaußerdem ADV (conn)Lummer SUBJ (pers)

Figure 1: The representation of the sentence in Example 1

boundaries are identified with a Perl CPAN mod-
ule4 whose performance we improved by extend-
ing the list of abbreviations. Next, the sentences
are split into tokens. The TnT tagger (Brants, 2000)
and the TreeTagger (Schmid, 1997) are used for tag-
ging and lemmatization. Finally, the articles are
parsed with the CDG dependency parser (Foth &
Menzel, 2006). Named entities are classified accord-
ing to their semantic type using lists and category
information from Wikipedia: person (pers), location
(loc), organization (org), or undefined named entity
(undef ne). Temporal expressions (Oktober 1915,
danach (after that) etc.) are identified automatically
by a set of patterns. Inevitable during automatic an-
notation, errors at one of the preprocessing stages
cause errors at the ordering stage.

Distinguishing between main and subordinate
clauses, we split the total of about 19 000 sentences
into training, development and test sets (Table 1).
Clauses with one constituent are sorted out as trivial.
The distribution of both types of clauses according
to their length in constituents is given in Table 2.

train dev test
main 14324 3344 1683
sub 3304 777 408
total 17628 4121 2091

Table 1: Size of the data sets in clauses

2 3 4 5 6+
main 20% 35% 27% 12% 6%
sub 49% 35% 11% 2% 3%

Table 2: Proportion of clauses with certain lengths

4http://search.cpan.org/˜holsten/Lingua-DE-Sentence-
0.07/Sentence.pm

Given the sentence in Example 1, we first trans-
form its dependency parse into a more general
representation (Figure 15) and then, based on the
predictions of our learner, arrange the four con-
stituents. For evaluation, we compare the arranged
order against the original one.

Note that we predict neither the position of the
verb, nor the order within constituents as the former
is explicitly determined by the grammar, and the lat-
ter is much more rigid than the order of constituents.

5 Baselines and Algorithms

We compare the performance of two our algorithms
with four baselines.

5.1 Random
We improve a trivial random baseline (RAND) by
two syntax-oriented rules: the first position is re-
served for the subject and the second for the direct
object if there is any; the order of the remaining con-
stituents is generated randomly (RAND IMP).

5.2 Statistical Bigram Model
Similar to Ringger et al. (2004), we find the order
with the highest probability conditioned on syntac-
tic and semantic categories. Unlike them we use de-
pendency parses and compute the probability of the
top node only, which is modified by all constituents.
With these adjustments the probability of an order
O given the history h, if conditioned on syntactic
functions of constituents (s1...sn), is simply:

P (O|h) =
n∏

i=1

P (si|si−1, h) (4)

Ringger et al. (2004) do not make explicit, what
their set of semantic relations consists of. From the

5OBJA stands for the accusative object.
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example in the paper, it seems that these are a mix-
ture of lexical and syntactic information6. Our anno-
tation does not specify semantic relations. Instead,
some of the constituents are categorized as pers, loc,
temp, org or undef ne if their heads bear one of these
labels. By joining these with possible syntactic func-
tions, we obtain a larger set of syntactic-semantic
tags as, e.g., subj-pers, pp-loc, adv-temp. We trans-
form each clause in the training set into a sequence
of such tags, plus three tags for the verb position (v),
the beginning (b) and the end (e) of the clause. Then
we compute the bigram probabilities7.

For our third baseline (BIGRAM), we select from
all possible orders the one with the highest probabil-
ity as calculated by the following formula:

P (O|h) =
n∏

i=1

P (ti|ti−1, h) (5)

where ti is from the set of joined tags. For Example
1, possible tag sequences (i.e. orders) are ’b subj-
pers v adv obja sub e’, ’b adv v subj-pers obja sub
e’, ’b obja v adv sub subj-pers e’, etc.

5.3 Uchimoto

For the fourth baseline (UCHIMOTO), we utilized a
maximum entropy learner (OpenNLP8) and reim-
plemented the algorithm of Uchimoto et al. (2000).
For every possible permutation, its probability is es-
timated according to Formula (1). The binary clas-
sifier, whose task was to predict the probability that
the order of a pair of constituents is correct, was
trained on the following features describing the verb
or hc – the head of a constituent c9:

vlex, vpass, vmod the lemma of the root of the
clause (non-auxiliary verb), the voice of the
verb and the number of constituents to order;

lex the lemma of hc or, if hc is a functional word,
the lemma of the word which depends on it;

pos part-of-speech tag of hc;

6E.g. DefDet, Coords, Possr, werden
7We use the CMU Toolkit (Clarkson & Rosenfeld, 1997).
8http://opennlp.sourceforge.net
9We disregarded features which use information specific to

Japanese and non-applicable to German (e.g. on postpositional
particles).

sem if defined, the semantic class of c; e.g. im April
1900 and mit Albert Einstein (with Albert Ein-
stein) are classified temp and pers respectively;

syn, same the syntactic function of hc and whether
it is the same for the two constituents;

mod number of modifiers of hc;

rep whether hc appears in the preceding sentence;

pro whether c contains a (anaphoric) pronoun.

5.4 Maximum Entropy
The first configuration of our system is an extended
version of the UCHIMOTO baseline (MAXENT). To
the features describing c we added the following
ones:

det the kind of determiner modifying hc (def, indef,
non-appl);

rel whether hc is modified by a relative clause (yes,
no, non-appl);

dep the depth of c;

len the length of c in words.

The first two features describe the discourse status
of a constituent; the other two provide information
on its “weight”. Since our learner treats all values
as nominal, we discretized the values of dep and len
with a C4.5 classifier (Kohavi & Sahami, 1996).

Another modification concerns the efficiency of
the algorithm. Instead of calculating probabilities
for all pairs, we obtain the right order from a random
one by sorting. We compare adjacent elements by
consulting the learner as if we would sort an array of
numbers. Given two adjacent constituents, ci < cj ,
we check the probability of their being in the right
order, i.e. that ci precedes cj : Ppre(ci, cj). If it is
less than 0.5, we transpose the two and compare ci
with the next one.

Since the sorting method presupposes that the pre-
dicted relation is transitive, we checked whether this
is really so on the development and test data sets. We
looked for three constituents ci, cj , ck from a sen-
tence S, such that Ppre(ci, cj) > 0.5, Ppre(cj , ck) >
0.5, Ppre(ci, ck) < 0.5 and found none. Therefore,
unlike UCHIMOTO, where one needs to make exactly
N ! ∗ N(N − 1)/2 comparisons, we have to make
N(N − 1)/2 comparisons at most.
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5.5 The Two-Step Approach
The main difference between our first algorithm
(MAXENT) and the second one (TWO-STEP) is that
we generate the order in two steps10 (both classifiers
are trained on the same features):

1. For the VF, using the OpenNLP maximum en-
tropy learner for a binary classification (VF vs.
MF), we select the constituent c with the high-
est probability of being in the VF.

2. For the MF, the remaining constituents are put
into a random order and then sorted the way it
is done for MAXENT. The training data for the
second task was generated only from the MF of
clauses.

6 Results

6.1 Evaluation Metrics
We use several metrics to evaluate our systems and
the baselines. The first is per-sentence accuracy
(acc) which is the proportion of correctly regener-
ated sentences. Kendall’s τ , which has been used for
evaluating sentence ordering tasks (Lapata, 2006),
is the second metric we use. τ is calculated as
1− 4 t

N(N−1) , where t is the number of interchanges
of consecutive elements to arrange N elements in
the right order. τ is sensitive to near misses and
assigns abdc (almost correct order) a score of 0.66
while dcba (inverse order) gets −1. Note that it is
questionable whether this metric is as appropriate
for word ordering tasks as for sentence ordering ones
because a near miss might turn out to be ungrammat-
ical whereas a more different order stays acceptable.

Apart from acc and τ , we also adopt the metrics
used by Uchimoto et al. (2000) and Ringger et al.
(2004). The former use agreement rate (agr) cal-
culated as 2p

N(N−1) : the number of correctly ordered
pairs of constituents over the total number of all pos-
sible pairs, as well as complete agreement which is
basically per-sentence accuracy. Unlike τ , which
has −1 as the lowest score, agr ranges from 0 to 1.
Ringger et al. (2004) evaluate the performance only
in terms of per-constituent edit distance calculated
as m

N
, where m is the minimum number of moves11

10Since subordinate clauses do not have a VF, the first step is
not needed.

11A move is a deletion combined with an insertion.

needed to arrange N constituents in the right order.
This measure seems less appropriate than τ or agr
because it does not take the distance of the move into
account and scores abced and eabcd equally (0.2).

Since τ and agr, unlike edit distance, give higher
scores to better orders, we compute inverse distance:
inv = 1 – edit distance instead. Thus, all three met-
rics (τ , agr, inv) give the maximum of 1 if con-
stituents are ordered correctly. However, like τ , agr
and inv can give a positive score to an ungrammat-
ical order. Hence, none of the evaluation metrics
describes the performance perfectly. Human eval-
uation which reliably distinguishes between appro-
priate, acceptable, grammatical and ingrammatical
orders was out of choice because of its high cost.

6.2 Results

The results on the test data are presented in Table
3. The performance of TWO-STEP is significantly
better than any other method (χ2, p < 0.01). The
performance of MAXENT does not significantly dif-
fer from UCHIMOTO. BIGRAM performed about as
good as UCHIMOTO and MAXENT. We also checked
how well TWO-STEP performs on each of the two
sub-tasks (Table 4) and found that the VF selection
is considerably more difficult than the sorting part.

acc τ agr inv
RAND 15% 0.02 0.51 0.64
RAND IMP 23% 0.24 0.62 0.71
BIGRAM 51% 0.60 0.80 0.83
UCHIMOTO 50% 0.65 0.82 0.83
MAXENT 52% 0.67 0.84 0.84
TWO-STEP 61% 0.72 0.86 0.87

Table 3: Per-clause mean of the results

The most important conclusion we draw from the
results is that the gain of 9% accuracy is due to the
VF selection only, because the feature sets are iden-
tical for MAXENT and TWO-STEP. From this fol-
lows that doing feature selection without splitting
the task in two is ineffective, because the importance
of a feature depends on whether the VF or the MF is
considered. For the MF, feature selection has shown
syn and pos to be the most relevant features. They
alone bring the performance in the MF up to 75%. In
contrast, these two features explain only 56% of the
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cases in the VF. This implies that the order in the MF
mainly depends on grammatical features, while for
the VF all features are important because removal of
any feature caused a loss in accuracy.

acc τ agr inv
TWO-STEP VF 68% - - -
TWO-STEP MF 80% 0.92 0.96 0.95

Table 4: Mean of the results for the VF and the MF

Another important finding is that there is no need
to overgenerate to find the right order. Insignificant
for clauses with two or three constituents, for clauses
with 10 constituents, the number of comparisons is
reduced drastically from 163,296,000 to 45.

According to the inv metric, our results are con-
siderably worse than those reported by Ringger et al.
(2004). As mentioned in Section 3, the fact that they
generate the order for every non-terminal node se-
riously inflates their numbers. Apart from that, they
do not report accuracy, and it is unknown, how many
sentences they actually reproduced correctly.

6.3 Error Analysis

To reveal the main error sources, we analyzed incor-
rect predictions concerning the VF and the MF, one
hundred for each. Most errors in the VF did not lead
to unacceptability or ungrammaticality. From lexi-
cal and semantic features, the classifier learned that
some expressions are often used in the beginning of
a sentence. These are temporal or locational PPs,
anaphoric adverbials, some connectives or phrases
starting with unlike X, together with X, as X, etc.
Such elements were placed in the VF instead of the
subject and caused an error although both variants
were equally acceptable. In other cases the classi-
fier could not find a better candidate but the subject
because it could not conclude from the provided fea-
tures that another constituent would nicely introduce
the sentence into the discourse. Mainly this con-
cerns recognizing information familiar to the reader
not by an already mentioned entity, but one which is
inferrable from what has been read.

In the MF, many orders had a PP transposed with
the direct object. In some cases the predicted order
seemed as good as the correct one. Often the algo-
rithm failed at identifying verb-specific preferences:

E.g., some verbs take PPs with the locational mean-
ing as an argument and normally have them right
next to them, whereas others do not. Another fre-
quent error was the wrong placement of superficially
identical constituents, e.g. two PPs of the same size.
To handle this error, the system needs more spe-
cific semantic information. Some errors were caused
by the parser, which created extra constituents (e.g.
false PP or adverb attachment) or confused the sub-
ject with the direct verb.

We retrained our system on a corpus of newspaper
articles (Telljohann et al., 2003, TüBa-D/Z) which is
manually annotated but encodes no semantic knowl-
edge. The results for the MF were the same as on the
data from Wikipedia. The results for the VF were
much worse (45%) because of the lack of semantic
information.

7 Conclusion

We presented a novel approach to ordering con-
stituents in German. The results indicate that a
linguistically-motivated two-step system, which first
selects a constituent for the initial position and then
orders the remaining ones, works significantly better
than approaches which do not make this separation.
Our results also confirm the hypothesis – which has
been attested in several corpus studies – that the or-
der in the MF is rather rigid and dependent on gram-
matical properties.

We have also demonstrated that there is no need
to overgenerate to find the best order. On a prac-
tical side, this finding reduces the amount of work
considerably. Theoretically, it lets us conclude that
the relatively fixed order in the MF depends on the
salience which can be predicted mainly from gram-
matical features. It is much harder to predict which
element should be placed in the VF. We suppose that
this difficulty comes from the double function of the
initial position which can either introduce the ad-
dressation topic, or be the scene- or frame-setting
position (Jacobs, 2001).
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Abstract

Surface realisers divide into those used in
generation (NLG geared realisers) and those
mirroring the parsing process (Reversible re-
alisers). While the first rely on grammars not
easily usable for parsing, it is unclear how
the second type of realisers could be param-
eterised to yield from among the set of pos-
sible paraphrases, the paraphrase appropri-
ate to a given generation context. In this pa-
per, we present a surface realiser which com-
bines a reversible grammar (used for pars-
ing and doing semantic construction) with a
symbolic means of selecting paraphrases.

1 Introduction

In generation, thesurface realisationtask consists in
mapping a semantic representation into a grammati-
cal sentence.

Depending on their use, on their degree of non-
determinism and on the type of grammar they as-
sume, existing surface realisers can be divided into
two main categories namely,NLG (Natural Lan-
guage Generation) geared realisersand reversible
realisers.

NLG geared realisers are meant as modules in a
full-blown generation system and as such, they are
constrained to be deterministic: a generation system
must output exactly one text, no less, no more. In or-
der to ensure this determinism, NLG geared realisers
generally rely on theories of grammar which sys-
tematically link form to function such as systemic
functional grammar (SFG, (Matthiessen and Bate-
man, 1991)) and, to a lesser extent, Meaning Text

Theory (MTT, (Mel’cuk, 1988)). In these theories, a
sentence is associated not just with a semantic rep-
resentation but with a semantic representation en-
riched with additional syntactic, pragmatic and/or
discourse information. This additional information
is then used to constrain the realiser output.1 One
drawback of these NLG geared realisers however, is
that the grammar used is not usually reversible i.e.,
cannot be used both for parsing and for generation.
Given the time and expertise involved in developing
a grammar, this is a non-trivial drawback.

Reversible realisers on the other hand, are meant
to mirror the parsing process. They are used on a
grammar developed for parsing and equipped with a
compositional semantics. Given a string and such
a grammar, a parser will assign the input string
all the semantic representations associated with that
string by the grammar. Conversely, given a seman-
tic representation and the same grammar, a realiser
will assign the input semantics all the strings as-
sociated with that semantics by the grammar. In
such approaches, non-determinism is usually han-
dled by statistical filtering: treebank induced prob-
abilities are used to select from among the possible
paraphrases, the most probable one. Since the most
probable paraphrase is not necessarily the most ap-
propriate one in a given context, it is unclear how-
ever, how such realisers could be integrated into a
generation system.

In this paper, we present a surface realiser which

1On the other hand, one of our reviewers noted that “de-
terminism” often comes more from defaults when input con-
straints are not supplied. One might see these realisers as being
less deterministic than advertised; however, the point is that it
is possible to supply the constraints that ensure determinism.
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combines reversibility with a symbolic approach to
determinism. The grammar used is fully reversible
(it is used for parsing) and the realisation algorithm
can be constrained by the input so as to ensure a
unique output conforming to the requirement of a
given (generation) context. We show both that the
grammar used has a good paraphrastic power (it
is designed in such a way that grammatical para-
phrases are assigned the same semantic representa-
tions) and that the realisation algorithm can be used
either to generate all the grammatical paraphrases of
a given input or just one provided the input is ade-
quately constrained.

The paper is structured as follows. Section 2 in-
troduces the grammar used namely, a Feature Based
Lexicalised Tree Adjoining Grammar enriched with
a compositional semantics. Importantly, this gram-
mar is compiled from a more abstract specification
(a so-called “meta-grammar”) and as we shall see, it
is this feature which permits a natural and system-
atic coupling of semantic literals with syntactic an-
notations. Section 3 defines the surface realisation
algorithm used to generate sentences from semantic
formulae. This algorithm is non-deterministic and
produces all paraphrases associated by the gram-
mar with the input semantics. We then go on to
show (section 4) how this algorithm can be used
on a semantic input enriched with syntactic or more
abstract control annotations and further, how these
annotations can be used to select from among the
set of admissible paraphrases precisely these which
obey the constraints expressed in the added annota-
tions. Section 5 reports on a quantitative evaluation
based on the use of a core tree adjoining grammar
for French. The evaluation gives an indication of the
paraphrasing power of the grammar used as well as
some evidence of the deterministic nature of the re-
aliser. Section 6 relates the proposed approach to
existing work and section 7 concludes with pointers
for further research.

2 The grammar

We use a unification based version of LTAG namely,
Feature-based TAG. A Feature-based TAG (FTAG,
(Vijay-Shanker and Joshi, 1988)) consists of a set
of (auxiliary or initial) elementary trees and of two
tree composition operations: substitution and ad-

junction. Initial trees are trees whose leaves are la-
belled with substitution nodes (marked with a dow-
narrow) or terminal categories. Auxiliary trees are
distinguished by a foot node (marked with a star)
whose category must be the same as that of the root
node. Substitution inserts a tree onto a substitution
node of some other tree while adjunction inserts an
auxiliary tree into a tree. In an FTAG, the tree nodes
are furthermore decorated with two feature struc-
tures (calledtop andbottom) which are unified dur-
ing derivation as follows. On substitution, the top
of the substitution node is unified with the top of the
root node of the tree being substituted in. On adjunc-
tion, the top of the root of the auxiliary tree is uni-
fied with the top of the node where adjunction takes
place; and the bottom features of the foot node are
unified with the bottom features of this node. At the
end of a derivation, the top and bottom of all nodes
in the derived tree are unified.

To associate semantic representations with natu-
ral language expressions, the FTAG is modified as
proposed in (Gardent and Kallmeyer, 2003).

NPj

John

name(j,john)

S

NP↓s VPr

V

runs

run(r,s)

VPx

often VP*
often(x)

⇒ name(j,john), run(r,j), often(r)

Figure 1: Flat Semantics for “John often runs”

Each elementary tree is associated with a flat se-
mantic representation. For instance, in Figure 1,2

the trees forJohn, runsandoftenare associated with
the semanticsname(j,john), run(r,s) andoften(x)re-
spectively.

Importantly, the arguments of a semantic functor
are represented by unification variables which occur
both in the semantic representation of this functor
and on some nodes of the associated syntactic tree.
For instance in Figure 1, the semantic indexs oc-
curring in the semantic representation ofruns also
occurs on the subject substitution node of the asso-
ciated elementary tree.

2Cx/Cx abbreviate a node with category C and a top/bottom
feature structure including the feature-value pair{ index : x}.
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The value of semantic arguments is determined by
the unifications resulting from adjunction and sub-
stitution. For instance, the semantic indexs in the
tree for runs is unified during substitution with the
semantic indices labelling the root nodes of the tree
for John. As a result, the semantics ofJohn often
runs is

(1) {name(j,john),run(r,j),often(r) }

The grammar used describes a core fragment of
French and contains around 6 000 elementary trees.
It covers some 35 basic subcategorisation frames
and for each of these frames, the set of argument re-
distributions (active, passive, middle, neuter, reflex-
ivisation, impersonal, passive impersonal) and of ar-
gument realisations (cliticisation, extraction, omis-
sion, permutations, etc.) possible for this frame. As
a result, it captures most grammatical paraphrases
that is, paraphrases due to diverging argument real-
isations or to different meaning preserving alterna-
tion (e.g., active/passive or clefted/non-clefted sen-
tence).

3 The surface realiser, GenI

The basic surface realisation algorithm used is a bot-
tom up, tabular realisation algorithm (Kay, 1996)
optimised for TAGs. It follows a three step strat-
egy which can be summarised as follows. Given an
empty agenda, an empty chart and an input seman-
ticsφ:

Lexical selection. Select all elementary trees
whose semantics subsumes (part of)φ. Store
these trees in the agenda. Auxiliary trees
devoid of substitution nodes are stored in a
separate agenda called the auxiliary agenda.

Substitution phase. Retrieve a tree from the
agenda, add it to the chart and try to combine it
by substitution with trees present in the chart.
Add any resulting derived tree to the agenda.
Stop when the agenda is empty.

Adjunction phase. Move the chart trees to the
agenda and the auxiliary agenda trees to the
chart. Retrieve a tree from the agenda, add it
to the chart and try to combine it by adjunction
with trees present in the chart. Add any result-
ing derived tree to the agenda. Stop when the
agenda is empty.

When processing stops, the yield of any syntacti-
cally complete tree whose semantics isφ yields an
output i.e., a sentence.

The workings of this algorithm can be illustrated
by the following example. Suppose that the input se-
mantics is (1). In a first step (lexical selection), the
elementary trees selected are the ones forJohn, runs,
often. Their semantics subsumes part of the input se-
mantics. The trees forJohnandrunsare placed on
the agenda, the one foroften is placed on the auxil-
iary agenda.

The second step (thesubstitution phase) consists
in systematically exploring the possibility of com-
bining two trees by substitution. Here, the tree for
Johnis substituted into the one forruns, and the re-
sulting derived tree forJohn runsis placed on the
agenda. Trees on the agenda are processed one by
one in this fashion. When the agenda is empty, in-
dicating that all combinations have been tried, we
prepare for the next phase.

All items containing an empty substitution node
are erased from the chart (here, the tree anchored by
runs). The agenda is then reinitialised to the content
of the chart and the chart to the content of the aux-
iliary agenda (hereoften). The adjunction phase
proceeds much like the previous phase, except that
now all possible adjunctions are performed. When
the agenda is empty once more, the items in the chart
whose semantics matches the input semantics are se-
lected, and their strings printed out, yielding in this
case the sentenceJohn often runs.

4 Paraphrase selection

The surface realisation algorithm just sketched is
non-deterministic. Given a semantic formula, it
might produce several outputs. For instance, given
the appropriate grammar for French, the input in (2a)
will generate the set of paraphrases partly given in
(2b-2k).

(2) a. lj :jean(j) la:aime(e,j,m) lm:marie(m)
b. Jean aime Marie
c. Marie est aimée par Jean
d. C’est Jean qui aime Marie
e. C’est Jean par qui Marie est aimée
f. C’est par Jean qu’est aimée Marie
g. C’est Jean dont est aimée Marie
h. C’est Jean dont Marie est aimée
i. C’est Marie qui est aimée par Jean
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j. C’est Marie qu’aime Jean

k. C’est Marie que Jean aime

To select from among all possible paraphrases of
a given input, exactly one paraphrase, NLG geared
realisers use symbolic information to encode syn-
tactic, stylistic or pragmatic constraints on the out-
put. Thus for instance, bothREALPRO (Lavoie and
Rambow, 1997) and SURGE (Elhadad and Robin,
1999) assume that the input associates semantic lit-
erals with low level syntactic and lexical informa-
tion mostly leaving the realiser to just handle in-
flection, word order, insertion of grammatical words
and agreement. Similarly, KPML (Matthiessen and
Bateman, 1991) assumes access to ideational, inter-
personal and textual information which roughly cor-
responds to semantic, mood/voice, theme/rheme and
focus/ground information.

In what follows, we first show that the semantic
input assumed by the realiser sketched in the previ-
ous section can be systematically enriched with syn-
tactic information so as to ensure determinism. We
then indicate how the satisfiability of this enriched
input could be controlled.

4.1 At most one realisation

In the realisation algorithm sketched in Section 3,
non-determinism stems from lexical ambiguity:3 for
each (combination of) literal(s)l in the input there
usually is more than one TAG elementary tree whose
semantics subsumesl. Thus each (combination of)
literal(s) in the input selects a set of elementary
trees and the realiser output is the set of combi-
nations of selected lexical trees which are licensed
by the grammar operations (substitution and adjunc-
tion) and whose semantics is the input.

One way to enforce determinism consists in en-
suring that each literal in the input selects exactly
one elementary tree. For instance, suppose we want
to generate (2b), repeated here as (3a), rather than

3Given two TAG trees, there might also be several ways
of combining them thereby inducing more non-determinism.
However in practice we found that most of this non-
determinism is due either to over-generation (cases where the
grammar is not sufficiently constrained and allows for one tree
to adjoin to another tree in several places) or to spurious deriva-
tion (distinct derivations with identical semantics). Thefew re-
maining cases that are linguistically correct are due to varying
modifier positions and could be constrained by a sophisticated
feature decorations in the elementary tree.

any of the paraphrases listed in (2c-2k). Intuitively,
the syntactic constraints to be expressed are those
given in (3b).

(3) a. Jean aime Marie
b. Canonical Nominal Subject, Active verb form,

Canonical Nominal Object
c. lj :jean(j) la:aime(e,j,m) lm:marie(m)

The question is how precisely to formulate these
constraints, how to associate them with the seman-
tic input assumed in Section 3 and how to ensure
that the constraints used do enforce uniqueness of
selection (i.e., that for each input literal, exactly one
elementary tree is selected)? To answer this, we rely
on a feature of the grammar used, namely thateach
elementary tree is associated with a linguistically
meaningful unique identifier.

The reason for this is that the grammar is com-
piled from a higher level description where tree frag-
ments are first encapsulated into so-called classes
and then explicitly combined (by inheritance, con-
junction and disjunction) to produce the grammar
elementary trees (cf. (Crabbé and Duchier, 2004)).

More generally, each elementary tree in the gram-
mar is associated with the set of classes used to pro-
duce that tree and importantly, this set of classes
(we will call this thetree identifier) provides a dis-
tinguishing description (a unique identifier) for that
tree: a tree is defined by a specific combination of
classes and conversely, a specific combination of
classes yields a unique tree.4 Thus the set of classes
associated by the compilation process with a given
elementary tree can be used to uniquely identify that
tree.

Given this, surface realisation is constrained as
follows.

1. Each tree identifierId(tree) is mapped into a
simplified set of tree propertiesTPt. There
are two reasons for this simplification. First,
some classes are irrelevant. For instance, the
class used to enforce subject-verb agreement
is needed to ensure this agreement but does
not help in selecting among competing trees.
Second, a given classC can be defined to be

4This is not absolutely true as a tree identifier only reflects
part of the compilation process. In practice, they are few ex-
ceptions though so that distinct trees whose tree identifiers are
identical can be manually distinguished.
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equivalent to the combination of other classes
C1 . . . Cn and consequently a tree identifier
containingC,C1 . . . Cn can be reduced to in-
clude eitherC or C1 . . . Cn.

2. Each literalli in the input is associated with a
tree property setTPi (i.e., the input we gener-
ate from is enriched with syntactic information)

3. During realisation, for each literal/tree property
pair 〈li : TPi〉 in the enriched input semantics,
lexical selection is constrained to retrieve only
those trees (i) whose semantics subsumesli and
(ii) whose tree properties areTPi

Since each literal is associated with a (simpli-
fied) tree identifier and each tree identifier uniquely
identifies an elementary tree, realisation produces at
most one realisation.

Examples 4a-4c illustrates the kind of constraints
used by the realiser.

(4) a. lj :jean(j)/ProperName
la:aime(e,j,m)/[CanonicalNominalSubject,
ActiveVerbForm, CanonicalNominalObject]
lm:marie(m)/ProperName
Jean aime Marie
* Jean est aimé de Marie

b. lc:le(c)/Det
lc:chien(c)/Noun
ld:dort(e1,c)/RelativeSubject
lr:ronfle(e2,c)/CanonicalSubject
Le chien qui dort ronfle
* Le chien qui ronfle dort

c. lj :jean(j)/ProperName
lp:promise(e1,j,m,e2)/[CanonicalNominalSubject,
ActiveVerbForm, CompletiveObject]
lm:marie(m)/ProperName
le2:partir(e2,j)/InfinitivalVerb
Jean promet à marie de partir
* Jean promet à marie qu’il partira

4.2 At least one realisation

For a realiser to be usable by a generation system,
there must be some means to ensure that its input
is satisfiable i.e., that it can be realised. How can
this be done without actually carrying out realisation
i.e., without checking that the input is satisfiable?
Existing realisers indicate two types of answers to
that dilemma.

A first possibility would be to draw on (Yang et
al., 1991)’s proposal and compute the enriched in-
put based on the traversal of a systemic network.

More specifically, one possibility would be to con-
sider a systemic network such as NIGEL, precom-
pile all the functional features associated with each
possible traversal of the network, map them onto the
corresponding tree properties and use the resulting
set of tree properties to ensure the satisfiability of
the enriched input.

Another option would be to check the well
formedness of the input at some level of the linguis-
tic theory on which the realiser is based. Thus for
instance,REALPRO assumes as input a well formed
deep syntactic structure (DSyntS) as defined by
Meaning Text Theory (MTT) and similarly, SURGE

takes as input a functional description (FD) which in
essence is an underspecified grammatical structure
within the SURGE grammar. In both cases, there
is no guarantee that the input be satisfiable since
all the other levels of the linguistic theory must be
verified for this to be true. In MTT, the DSyntS
must first be mapped onto a surface syntactic struc-
ture and then successively onto the other levels of
the theory while in SURGE, the input FD can be re-
alised only if it provides consistent information for
a complete top-down traversal of the grammar right
down to the lexical level. In short, in both cases, the
well formedness of the input can be checked with
respect to some criteria (e.g., well formedness of a
deep syntactic structure in MTT, well formedness of
a FD in SURGE) but this well formedness does not
guarantee satisfiability. Nonetheless this basic well
formedness check is important as it provides some
guidance as to what an acceptable input to the re-
aliser should look like.

We adopt a similar strategy and resort to the no-
tion of polarity neutral input to control the well
formedness of the enriched input. The proposal
draws on ideas from (Koller and Striegnitz, 2002;
Gardent and Kow, 2005) and aims to determine
whether for a given input (a set of TAG elemen-
tary trees whose semantics equate the input seman-
tics), syntactic requirements and resources cancel
out. More specifically, the aim is to determine
whether given the input set of elementary trees, each
substitution and each adjunction requirement is sat-
isfied by exactly one elementary tree of the appro-
priate syntactic category and semantic index.
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Roughly,5 the technique consists in (automati-
cally) associating with each elementary tree a po-
larity signature reflecting its substitution/adjunction
requirements and resources and in computing the
grand polarity of each possible combination of trees
covering the input semantics. Each such combina-
tion whose total polarity is non-null is then filtered
out (not considered for realisation) as it cannot pos-
sibly lead to a valid derivation (either a requirement
cannot be satisfied or a resource cannot be used).

In the context of a generation system, polarity
checking can be used to check the satisfiability of the
input or more interestingly, to correct an ill formed
input i.e., an input which can be detected as being
unsatisfiable.

To check a given input, it suffices to compute its
polarity count. If it is non-null, the input is unsatis-
fiable and should be revised. This is not very useful
however, as the enriched input ensures determinism
and thereby make realisation very easy, indeed al-
most as easy as polarity checking.

More interestingly, polarity checking can be used
to suggest ways of fixing an ill formed input. In such
a case, the enriched input is stripped of its control
annotations, realisation proceeds on the basis of this
simplified input and polarity checking is used to pre-
select all polarity neutral combinations of elemen-
tary trees. A closest match (i.e. the polarity neutral
combination with the greatest number of control an-
notations in common with the ill formed input) to
the ill formed input is then proposed as a probably
satisfiable alternative.

5 Evaluation

To evaluate both the paraphrastic power of the re-
aliser and the impact of the control annotations on
non-determinism, we used a graduated test-suite
which was built by (i) parsing a set of sentences, (ii)
selecting the correct meaning representations from
the parser output and (iii) generating from these
meaning representations. The gradation in the test
suite complexity was obtained by partitioning the
input into sentences containing one, two or three fi-
nite verbs and by choosing cases allowing for differ-
ent paraphrasing patterns. More specifically, the test

5Lack of space prevents us from giving much details here.
We refer the reader to (Koller and Striegnitz, 2002; Gardentand
Kow, 2005) for more details.

suite includes cases involving the following types of
paraphrases:

• Grammatical variations in the realisations of
the arguments (cleft, cliticisation, question, rel-
ativisation, subject-inversion, etc.) or of the
verb (active/passive, impersonal)

• Variations in the realisation of modifiers (e.g.,
relative clause vs adjective, predicative vs non-
predicative adjective)

• Variations in the position of modifiers (e.g.,
pre- vs post-nominal adjective)

• Variations licensed by a morpho-derivational
link (e.g., to arrive/arrival)

On a test set of 80 cases, the paraphrastic level
varies between 1 and over 50 with an average of
18 paraphrases per input (taking 36 as upper cut
off point in the paraphrases count). Figure 5 gives
a more detailed description of the distribution of
the paraphrastic variation. In essence, 42% of the
sentences with one finite verb accept 1 to 3 para-
phrases (cases of intransitive verbs), 44% accept 4
to 28 paraphrases (verbs of arity 2) and 13% yield
more than 29 paraphrases (ditransitives). For sen-
tences containing two finite verbs, the ratio is 5%
for 1 to 3 paraphrases, 36% for 4 to 14 paraphrases
and 59% for more than 14 paraphrases. Finally, sen-
tences containing 3 finite verbs all accept more than
29 paraphrases.

Two things are worth noting here. First, the para-
phrase figures might seem low wrt to e.g., work by
(Velldal and Oepen, 2006) which mentions several
thousand outputs for one given input and an average
number of realisations per input varying between
85.7 and 102.2. Admittedly, the French grammar
we are using has a much more limited coverage than
the ERG (the grammar used by (Velldal and Oepen,
2006)) and it is possible that its paraphrastic power
is lower. However, the counts we give only take
into accountvalid paraphrases of the input. In other
words, overgeneration and spurious derivations are
excluded from the toll. This does not seem to be the
case in (Velldal and Oepen, 2006)’s approach where
the count seems to includeall sentences associated
by the grammar with the input semantics.

Second, although the test set may seem small it is
important to keep in mind that it represents 80 inputs
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with distinct grammatical and paraphrastic proper-
ties. In effect, these 80 test cases yields 1 528 dis-
tinct well-formed sentences. This figure compares
favourably with the size of the largest regression test
suite used by a symbolic NLG realiser namely, the
SURGE test suite which contains 500 input each
corresponding to a single sentence. It also compares
reasonably with other more recent evaluations (Call-
away, 2003; Langkilde-Geary, 2002) which derive
their input data from the Penn Treebank by trans-
forming each sentence tree into a format suitable for
the realiser (Callaway, 2003). For these approaches,
the test set size varies between roughly 1 000 and
almost 3 000 sentences. But again, it is worth stress-
ing that these evaluations aim at assessing coverage
and correctness (does the realiser find the sentence
used to derive the input by parsing it?) rather than
the paraphrastic power of the grammar. They fail to
provide a systematic assessment of how many dis-
tinct grammatical paraphrases are associated with
each given input.

To verify the claim that tree properties can be used
to ensure determinism (cf. footnote 4), we started
by eliminating from the output all ill-formed sen-
tences. We then automatically associated each well-
formed output with its set of tree properties. Finally,
for each input semantics, we did a systematic pair-
wise comparison of the tree property sets associated
with the input realisations and we checked whether
for any given input, there were two (or more) dis-
tinct paraphrases whose tree properties were the
same. We found that such cases represented slightly
over 2% of the total number of (input,realisations)
pairs. Closer investigation of the faulty data indi-
cates two main reasons for non-determinism namely,
trees with alternating order of arguments and deriva-

tions with distinct modifier adjunctions. Both cases
can be handled by modifying the grammar in such
a way that those differences are reflected in the tree
properties.

6 Related work

The approach presented here combines a reversible
grammar realiser with a symbolic approach to para-
phrase selection. We now compare it to existing sur-
faces realisers.

NLG geared realisers. Prominent general
purpose NLG geared realisers includeREALPRO,
SURGE, KPML, NITROGEN and HALOGEN. Fur-
thermore, HALOGEN has been shown to achieve
broad coverage and high quality output on a set of 2
400 input automatically derived from the Penn tree-
bank.

The main difference between these and the
present approach is that our approach is based on a
reversible grammar whilst NLG geared realisers are
not. This has several important consequences.

First, it means that one andthe same grammar and
lexicon can be used both for parsing and for gener-
ation. Given the complexity involved in developing
such resources, this is an important feature.

Second, as demonstrated in the Redwood Lingo
Treebank, reversibility makes it easy torapidly cre-
ate very large evaluation suites: it suffices to parse a
set of sentences and select from the parser output the
correct semantics. In contrast, NLG geared realis-
ers either work on evaluation sets of restricted size
(500 input for SURGE, 210 for KPML) or require
the time expensive implementation of a preprocessor
transforming e.g., Penn Treebank trees into a format
suitable for the realisers. For instance, (Callaway,
2003) reports that the implementation of such a pro-
cessor for SURGEwas the most time consuming part
of the evaluation with the resulting component con-
taining 4000 lines of code and 900 rules.

Third, a reversible grammar can be exploited to
support not only realisation but also its reverse,
namely semantic construction. Indeed, reversibility
is ensured through a compositional semantics that is,
through a tight coupling between syntax and seman-
tics. In contrast, NLG geared realisers often have
to reconstruct this association in rather ad hoc ways.
Thus for instance, (Yang et al., 1991) resorts to ad
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hoc “mapping tables” to associate substitution nodes
with semantic indices and “fr-nodes” to constrain
adjunction to the correct nodes. More generally, the
lack of a clearly defined compositional semantics in
NLG geared realisers makes it difficult to see how
the grammar they use could be exploited to also sup-
port semantic construction.

Fourth, thegrammar can be used both to gener-
ate and to detect paraphrases. It could be used for
instance, in combination with the parser and the se-
mantic construction module described in (Gardent
and Parmentier, 2005), to support textual entailment
recognition or answer detection in question answer-
ing.

Reversible realisers. The realiser presented here
differs in mainly two ways from existing reversible
realisers such as (White, 2004)’s CCG system or
the HPSG ERG based realiser (Carroll and Oepen,
2005).

First, it permits a symbolic selection of the out-
put paraphrase. In contrast, existing reversible re-
alisers use statistical information to select from the
produced output the most plausible paraphrase.

Second, particular attention has been paid to the
treatment of paraphrases in the grammar. Recall
that TAG elementary trees are grouped into families
and further, that the specific TAG we use is com-
piled from a highly factorised description. We rely
on these features to associate one and the same se-
mantic to large sets of trees denoting semantically
equivalent but syntactically distinct configurations
(cf. (Gardent, 2006)).

7 Conclusion

The realiser presented here, GENI, exploits a gram-
mar which is produced semi-automatically by com-
piling a high level grammar description into a Tree
Adjoining Grammar. We have argued that a side-
effect of this compilation process – namely, the as-
sociation with each elementary tree of a set of tree
properties – can be used to constrain the realiser
output. The resulting system combines the advan-
tages of two orthogonal approaches. From the re-
versible approach, it takes the reusability, the ability
to rapidly create very large test suites and the capac-
ity to both generate and detect paraphrases. From
the NLG geared paradigm, it takes the ability to

symbolically constrain the realiser output to a given
generation context.

GENI is free (GPL) software and is available at
http://trac.loria.fr/˜geni .
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Abstract

We translate sentence generation from TAG
grammars with semantic and pragmatic in-
formation into a planning problem by encod-
ing the contribution of each word declara-
tively and explicitly. This allows us to ex-
ploit the performance of off-the-shelf plan-
ners. It also opens up new perspectives on
referring expression generation and the rela-
tionship between language and action.

1 Introduction

Systems that produce natural language must synthe-
size the primitives of linguistic structure into well-
formed utterances that make desired contributions to
discourse. This is fundamentally a planning prob-
lem: Each linguistic primitive makes certain con-
tributions while potentially introducing new goals.
In this paper, we make this perspective explicit by
translating the sentence generation problem of TAG
grammars with semantic and pragmatic information
into a planning problem stated in the widely used
Planning Domain Definition Language (PDDL, Mc-
Dermott (2000)). The encoding provides a clean
separation between computation and linguistic mod-
elling and is open to future extensions. It also allows
us to benefit from the past and ongoing advances in
the performance of off-the-shelf planners (Blum and
Furst, 1997; Kautz and Selman, 1998; Hoffmann
and Nebel, 2001).

While there have been previous systems that en-
code generation as planning (Cohen and Perrault,
1979; Appelt, 1985; Heeman and Hirst, 1995), our
approach is distinguished from these systems by its
focus on the grammatically specified contributions

of each individual word (and the TAG tree it an-
chors) to syntax, semantics, and local pragmatics
(Hobbs et al., 1993). For example, words directly
achieve content goals by adding a corresponding se-
mantic primitive to the conversational record. We
deliberately avoid reasoning about utterances as co-
ordinated rational behavior, as earlier systems did;
this allows us to get by with a much simpler logic.

The problem we solve encompasses the genera-
tion of referring expressions (REs) as a special case.
Unlike some approaches (Dale and Reiter, 1995;
Heeman and Hirst, 1995), we do not have to dis-
tinguish between generating NPs and expressions of
other syntactic categories. We develop a new per-
spective on the lifecycle of a distractor, which allows
us to generate more succinct REs by taking the rest
of the utterance into account. More generally, we do
not split the process of sentence generation into two
separate steps of sentence planning and realization,
as most other systems do, but solve the joint prob-
lem in a single integrated step. This can potentially
allow us to generate higher-quality sentences. We
share these advantages with systems such as SPUD
(Stone et al., 2003).

Crucially, however, our approach describes the
dynamics of interpretation explicitly and declara-
tively. We do not need to assume extra machin-
ery beyond the encoding of words as PDDL plan-
ning operators; for example, our planning opera-
tors give a self-contained description of how each
individual word contributes to resolving references.
This makes our encoding more direct and transpar-
ent than those in work like Thomason and Hobbs
(1997) and Stone et al. (2003).

We present our encoding in a sequence of steps,
each of which adds more linguistic information to
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the planning operators. After a brief review of LTAG
and PDDL, we first focus on syntax alone and show
how to cast the problem of generating grammatically
well-formed LTAG trees as a planning problem in
Section 2. In Section 3, we add semantics to the ele-
mentary trees and add goals to communicate specific
content (this corresponds to surface realization). We
complete the account by modeling referring expres-
sions and go through an example. Finally, we assess
the practical efficiency of our approach and discuss
future work in Section 4.

2 Grammaticality as planning

We start by reviewing the LTAG grammar formal-
ism and giving an intuition of how LTAG gen-
eration is planning. We then add semantic roles
to the LTAG elementary trees in order to distin-
guish different substitution nodes. Finally, we re-
view the PDDL planning specification language and
show how LTAG grammaticality can be encoded as
a PDDL problem and how we can reconstruct an
LTAG derivation from the plan.

2.1 Tree-adjoining grammars

The grammar formalism we use here is that of lex-
icalized tree-adjoining grammars (LTAG; Joshi and
Schabes (1997)). An LTAG grammar consists of a
finite set of lexicalized elementary trees as shown in
Fig. 1a. Each elementary tree contains exactly one
anchor node, which is labelled by a word. Elemen-
tary trees can contain substitution nodes, which are
marked by down arrows (↓). Those elementary trees
that are auxiliary trees also contain exactly one foot
node, which is marked with an asterisk (∗). Trees
that are not auxiliary trees are called initial trees.

Elementary trees can be combined by substitution
and adjunction to form larger trees. Substitution
is the operation of replacing a substitution node of
some tree by another initial tree with the same root
label. Adjunction is the operation of splicing an aux-
iliary tree into some node v of a tree, in such a way
that the root of the auxiliary tree becomes the child
of v’s parent, and the foot node becomes the parent
of v’s children. If a node carries a null adjunction
constraint (indicated by no-adjoin), no adjunction is
allowed at this node; if it carries an obligatory ad-
junction constraint (indicated by adjoin!), an auxil-
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Figure 1: Building a derived (b) and a derivation tree
(c) by combining elementary trees (a).

iary tree must be adjoined there.
In Fig. 1a, we have combined some ele-

mentary trees by substitution (indicated by the
dashed/magenta arrows) and adjunction (dotted/blue
arrows). The result of these operations is the derived
tree in Fig. 1b. The derivation tree in Fig. 1c rep-
resents the tree combination operations we used by
having one node per elementary tree and drawing a
solid edge if we combined the two trees by substitu-
tion, and a dashed edge for adjunctions.

2.2 The basic idea

Consider the process of constructing a derivation
tree top-down. To build the tree in Fig. 1c, say, we
start with the empty derivation tree and an obligation
to generate an expression of category S. We satisfy
this obligation by adding the tree for “likes” as the
root of the derivation; but in doing so, we have in-
troduced new unfilled substitution nodes of category
NP, i.e. the derivation tree is not complete. We use
the NP tree for “Mary” to fill one substitution node
and the NP tree for “rabbit” to fill the other. This
fills both substitution nodes, but the “rabbit” tree in-
troduces an obligatory adjunction constraint, which
we must satisfy by adjoining the auxiliary tree for
“the”. We now have a grammatical derivation tree,
but we are free to continue by adding more auxiliary
trees, such as the one for “white”.

As we have just presented it, the generation of
derivation trees is essentially a planning problem.
A planning problem involves states and actions that
can move from one state to another. The task is to
find a sequence of actions that moves us from the
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initial state to a state that satisfies all the goals. In
our case, the states are defined by the unfilled sub-
stitution nodes, the unsatisfied obligatory adjunction
constraints, and the nodes that are available for ad-
junction in some (possibly incomplete) derivation
tree. Each action adds a single elementary tree to the
derivation, removing some of these “open nodes”
while introducing new ones. The initial state is asso-
ciated with the empty derivation tree and a require-
ment to generate an expression for the given root cat-
egory. The goal is for the current derivation tree to
be grammatically complete.

2.3 Semantic roles

Formalizing this intuition requires unique names for
each node in the derived tree. Such names are nec-
essary to distinguish the different open substitution
nodes that still need to be filled, or the different
available adjunction sites; in the example, the plan-
ner needed to be aware that “likes” introduces two
separate NP substitution nodes to fill.

There are many ways to assign these names. One
that works particularly well in the context of PDDL
(as we will see below) is to assume that each node
in an elementary tree, except for ones with null ad-
junction constraints, is marked with a semantic role,
and that all substitution nodes are marked with dif-
ferent roles. Nothing hinges on the particular role in-
ventory; here we assume an inventory including the
roles ag for “agent” and pat for “patient”. We also
assume one special role self, which must be used for
the root of each elementary tree and must never be
used for substitution nodes.

We can now assign a unique name to every sub-
stitution node in a derived tree by assigning arbitrary
but distinct indices to each use of an elementary tree,
and giving the substitution node with role r in the el-
ementary tree with index i the identity i.r. In the ex-
ample, let’s say the “likes” tree has index 1 and the
semantic roles for the substitution nodes were ag and
pat, respectively. The planner action that adds this
tree would then require substitution of one NP with
identity 1.ag and another NP with identity 1.pat; the
“Mary” tree would satisfy the first requirement and
the “rabbit” tree the second. If we assume that no
elementary tree contains two internal nodes with the
same category and role, we can refer to adjunction
opportunities in a similar way.

Action S-likes-1(u). Precond: subst(S,u),step(1)
Effect: ¬subst(S,u),subst(NP,1.ag),

subst(NP,1.pat),¬step(1),step(2)

Action NP-Mary-2(u). Precond: subst(NP,u),step(2)
Effect: ¬subst(NP,u),¬step(2),step(3)

Action NP-rabbit-3(u). Precond: subst(NP,u),step(3)
Effect: ¬subst(NP,u),canadjoin(NP,u),

mustadjoin(NP,u),¬step(3),step(4)

Action NP-the-4(u). Precond: canadjoin(NP,u),step(4)
Effect: ¬mustadjoin(NP,u),¬step(4),step(5)

Figure 2: Some actions for the grammar in Fig. 1.

2.4 Encoding in PDDL

Now we are ready to encode the problem of generat-
ing grammatical LTAG derivation trees into PDDL.
PDDL (McDermott, 2000) is the standard input lan-
guage for modern planning systems. It is based on
the well-known STRIPS language (Fikes and Nils-
son, 1971). In this paradigm, a planning state is
defined as a finite set of ground atoms of predicate
logic that are true in this state; all other atoms are as-
sumed to be false. Actions have a number of param-
eters, as well as a precondition and effect, both of
which are logical formulas. When a planner tries to
apply an action, it will first create an action instance
by binding all parameters to constants from the do-
main. It must then verify that the precondition of the
action instance is satisfied in the current state. If so,
the action can be applied, in which case the effect is
processed in order to change the state. In STRIPS,
the precondition and effect both had to be conjunc-
tions of atoms or negated atoms; positive effects are
interpreted as making the atom true in the new state,
and negative ones as making it false. PDDL per-
mits numerous extensions to the formulas that can
be used as preconditions and effects.

Each action in our planning problem encodes the
effect of adding some elementary tree to the deriva-
tion tree. An initial tree with root category A trans-
lates to an action with a parameter u for the iden-
tity of the node that the current tree is substituted
into. The action carries the precondition subst(A,u),
and so can only be applied if u is an open substi-
tution node in the current derivation with the cor-
rect category A. Auxiliary trees are analogous, but
carry the precondition canadjoin(A,u). The effect
of an initial tree is to remove the subst condition
from the planning state (to record that the substitu-
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S-likes-1
 (1.self)

subst(S,1.self)
subst(NP,1.ag)

NP-Mary-2
   (1.ag) subst(NP,1.pat)

NP-rabbit-3
  (1.pat)

mustadjoin(NP,1.pat)

NP-the-4
(1.pat)

canadjoin(NP,1.pat)

subst(NP,1.pat)

canadjoin(NP,1.pat)

step(1)
step(2)

step(3)

step(4)
step(5)

Figure 3: A plan for the actions in Fig. 2.

tion node u is now filled); an auxiliary tree has an
effect ¬mustadjoin(A,u) to indicate that any oblig-
atory adjunction constraint is satisfied but leaves the
canadjoin condition in place to allow multiple ad-
junctions into the same node. In both cases, effects
add subst, canadjoin and mustadjoin atoms repre-
senting the substitution nodes and adjunction sites
that are introduced by the new elementary tree.

One remaining complication is that an action must
assign new identities to the nodes it introduces; thus
it must have access to a tree index that was not used
in the derivation tree so far. We use the number of
the current plan step as the index. We add an atom
step(1) to the initial state of the planning problem,
and we introduce k different copies of the actions for
each elementary tree, where k is some upper limit
on the plan size. These actions are identical, except
that the i-th copy has an extra precondition step(i)
and effects ¬step(i) and step(i+1). It is no restric-
tion to assume an upper limit on the plan size, as
most modern planners search for plans smaller than
a given maximum length anyway.

Fig. 2 shows some of the actions into which the
grammar in Fig. 1 translates. We display only one
copy of each action and have left out most of the
canadjoin effects. In addition, we use an initial state
containing the atoms subst(S,1.self) and step(1)
and a final state consisting of the following goal:

∀A,u.¬subst(A,u)∧∀A,u.¬mustadjoin(A,u).

We can then send the actions and the initial state
and goal specifications to any off-the-shelf planner
and obtain the plan in Fig. 3. The straight arrows in
the picture link the actions to their preconditions and
(positive) effects; the curved arrows indicate atoms
that carry over from one state to the next without
being changed by the action. Atoms are printed in
boldface iff they contradict the goal.

This plan can be read as a derivation tree that has
one node for each action instance in the plan, and an
edge from node u to node v if u establishes a subst

or canadjoin fact that is a precondition of v. These
causal links are drawn as bold edges in Fig. 3. The
mapping is unique for substitution edges because
subst atoms are removed by every action that has
them as their precondition. There may be multiple
action instances in the plan that introduce the same
atom canadjoin(A,u). In this case, we can freely
choose one of these instances as the parent.

3 Sentence generation as planning

Now we extend this encoding to deal with semantics
and referring expressions.

3.1 Communicative goals
In order to use the planner as a surface realiza-
tion algorithm for TAG along the lines of Koller
and Striegnitz (2002), we attach semantic content to
each elementary tree and require that the sentence
achieves a certain communicative goal. We also use
a knowledge base that specifies the speaker’s knowl-
edge, and require that we can only use trees that ex-
press information in this knowledge base.

We follow Stone et al. (2003) in formalizing the
semantic content of a lexicalized elementary tree t as
a finite set of atoms; but unlike in earlier approaches,
we use the semantic roles in t as the arguments of
these atoms. For instance, the semantic content of
the “likes” tree in Fig. 1 is {like(self,ag,pat)} (see
also the semcon entries in Fig. 4). The knowledge
base is some finite set of ground atoms; in the exam-
ple, it could contain such entries as like(e,m,r) and
rabbit(r). Finally, the communicative goal is some
subset of the knowledge base, such as {like(e,m,r)}.

We implement unsatisfied communicative goals
as flaws that the plan must remedy. To this end,
we add an atom cg(P,a1, . . . ,an) for each element
P(a1, . . . ,an) of the communicative goal to the ini-
tial state, and we add a corresponding conjunct
∀P,x1, . . . ,xn.¬cg(P,x1, . . . ,xn) to the goal. In ad-
dition, we add an atom skb(P,a1, . . . ,an) to the
initial state for each element P(a1, . . . ,an) of the
(speaker’s) knowledge base.
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We then add parameters x1, . . . ,xn to each action
with n semantic roles (including self). These new
parameters are intended to be bound to individual
constants in the knowledge base by the planner. For
each elementary tree t and possible step index i, we
establish the relationship between these parameters
and the roles in two steps. First we fix a function id
that maps the semantic roles of t to node identities.
It maps self to u and each other role r to i.r. Second,
we fix a function ref that maps the outputs of id bi-
jectively to the parameters x1, . . . ,xn, in such a way
that ref(u) = x1.

We can then capture the contribution of the i-th
action for t to the communicative goal by giving it
an effect ¬cg(P, ref(id(r1)), . . . , ref(id(rn))) for each
element P(r1, . . . ,rn) of the elementary tree’s seman-
tic content. We restrict ourselves to only expressing
true statements by giving the action a precondition
skb(P, ref(id(r1)), . . . , ref(id(rn))) for each element
of the semantic content.

In order to keep track of the connection between
node identities and individuals for future reference,
each action gets an effect referent(id(r), ref(id(r)))
for each semantic role r except self. We enforce the
connection between u and x1 by adding a precondi-
tion referent(u,x1).

In the example, the most interesting action in this
respect is the one for the elementary tree for “likes”.
This action looks as follows:
Action S-likes-1(u,x1,x2,x3).

Precond: subst(S,u),step(1), referent(u,x1),
skb(like,x1,x2,x3)

Effect: ¬subst(S,u),subst(NP,1.ag),subst(NP,1.pat),
¬step(1),step(2),
referent(1.ag,x2), referent(1.pat,x3),
¬cg(like,x1,x2,x3)

We can run a planner and interpret the plan as
above; the main difference is that complete plans not
only correspond to grammatical derivation trees, but
also express all communicative goals. Notice that
this encoding models some aspects of lexical choice:
The semantic content sets of the elementary trees
need not be singletons, and so there may be multiple
ways of partitioning the communicative goal into the
content sets of various elementary trees.

3.2 Referring expressions

Finally, we extend the system to deal with the gen-
eration of referring expressions. While this prob-

lem is typically taken to require the generation of a
noun phrase that refers uniquely to some individual,
we don’t need to make any assumptions about the
syntactic category here. Moreover, we consider the
problem in the wider context of generating referring
expressions within a sentence, which can allow us to
generate more succinct expressions.

Because a referring expression must allow the
hearer to identify the intended referent uniquely,
we keep track of the hearer’s knowledge base sep-
arately. We use atoms hkb(P,a1, . . . ,an), as with
skb above. In addition, we assume pragmatic
information of the form pkb(P,a1, . . . ,an). The
three pragmatic predicates that we will use here are
hearer-new, indicating that the hearer does not know
about the existence of an individual and can’t infer it
(Stone et al., 2003), hearer-old for the opposite, and
contextset. The context set of an intended referent is
the set of all individuals that the hearer might possi-
bly confuse it with (DeVault et al., 2004). It is empty
for hearer-new individuals. To say that b is in a’s
context set, we put the atom pkb(contextset,a,b)
into the initial state.

In addition to the semantic content, we equip ev-
ery elementary tree in the grammar with a seman-
tic requirement and a pragmatic condition (Stone
et al., 2003). The semantic requirement is a set of
atoms spelling out presuppositions of an elementary
tree that can help the hearer identify what its argu-
ments refer to. For instance, “likes” has the selec-
tional restriction that its agent must be animate; thus
the hearer will not consider inanimate individuals as
distractors for the referring expression in agent posi-
tion. The pragmatic condition is a set of atoms over
the predicates in the pragmatic knowledge base.

In our setting, every substitution node that is in-
troduced during the derivation introduces a new re-
ferring expression. This means that we can dis-
tinguish the referring expressions by the identity
of the substitution node that introduced them. For
each referring expression u (where u is a node iden-
tity), we keep track of the distractors in atoms
of the form distractor(u,x). The presence of an
atom distractor(u,a) in some planning state repre-
sents the fact that the current derivation tree is not
yet informative enough to allow the hearer to iden-
tify the intended referent for u uniquely; a is an-
other individual that is not the intended referent,
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but consistent with the partial referring expression
we have constructed so far. We enforce uniqueness
of all referring expressions by adding the conjunct
∀u,x¬distractor(u,x) to the planning goal.

Now whenever an action introduces a new substi-
tution node u, it will also introduce some distractor
atoms to record the initial distractors for the refer-
ring expression at u. An individual a is in the initial
distractor set for the substitution node with role r
if (a) it is not the intended referent, (b) it is in the
context set of the intended referent, and (c) there
is a choice of individuals for the other parameters
of the action that satisfies the semantic requirement
together with a. This is expressed by adding the
following effect for each substitution node; the con-
junction is over the elements P(r1, . . . ,rn) of the se-
mantic requirement, and there is one universal quan-
tifier for y and for each parameter x j of the action
except for ref(id(r)).

∀y,x1, . . . ,xn
(y 6= ref(id(r))∧pkb(contextset, ref(id(r)),y)∧V

hkb(P, ref(id(r1)), . . . , ref(id(rn)))[y/ref(id(r))])
→ distractor(id(r),y)

On the other hand, a distractor a for a referring ex-
pression introduced at u is removed when we substi-
tute or adjoin an elementary tree into u which rules
a out. For instance, the elementary tree for “rabbit”
will remove all non-rabbits from the distractor set of
the substitution node into which it is substituted. We
achieve this by adding the following effect to each
action; here the conjunction is over all elements of
the semantic content.

∀y.(¬
V

hkb(P, ref(id(r1)), . . . , ref(id(rn))))[y/x1]
→¬distractor(u,y),

Finally, each action gets its pragmatic condition
as a precondition.

3.3 The example
By way of example, Fig. 5 shows the full versions
of the actions from Fig. 2, for the extended gram-
mar in Fig. 4. Let’s say that the hearer knows
about two rabbits r (which is white) and r′ (which
is not), about a person m with the name Mary, and
about an event e, and that the context set of r is
{r,r′,m,e}. Let’s also say that our communicative
goal is {like(e,m,r)}. In this case, the first action
instance in Fig. 3, S-likes-1(1.self,e,m,r), intro-
duces a substitution node with identity 1.pat. The

S:self

NP:ag ↓ 
VP:self

V:self

likes

NP:self 

the NP:self *

NP:self

a NP:self *

NP:self

PN:self

Mary

N:self

rabbit

N:self

white N:self * 

semcon: {like(self,ag,pat)}
semreq: {animate(ag)}

semcon: { }
semreq: { }
pragcon: {hearer-old(self)}

semcon: { }
semreq: { }
pragcon: {hearer-new(self)}

semcon: {white(self)}

semcon: {name(self, mary)}

semcon: {rabbit(self)}

NP:pat ↓ 

adjoin! NP:self

Figure 4: The extended example grammar.

initial distractor set of this node is {r′,m} – the set
of all individuals in r’s context set except for inan-
imate objects (which violate the semantic require-
ment) and r itself. The NP-rabbit-3 action removes
m from the distractor set, but at the end of the plan in
Fig. 3, r′ is still a distractor, i.e. we have not reached
a goal state. We can complete the plan by perform-
ing a final action NP-white-5(1.pat,r), which will
remove this distractor and achieve the planning goal.
We can still reconstruct a derivation tree from the
complete plan literally as described in Section 2.

Now let’s say that the hearer did not know about
the existence of the individual r before the utterance
we are generating. We model this by marking r as
hearer-new in the pragmatic knowledge base and as-
signing it an empty context set. In this case, the re-
ferring expression 1.pat would be initialized with an
empty distractor set. This entitles us to use the action
NP-a-4 and generate the four-step plan correspond-
ing to the sentence “Mary likes a rabbit.”

4 Discussion and future work

In conclusion, let’s look in more detail at computa-
tional issues and the role of mutually constraining
referring expressions.
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Action S-likes-1(u,x1,x2,x3).
Precond: referent(u,x1),skb(like,x1,x2,x3),subst(S,u),step(1)
Effect: ¬cg(like,x1,x2,x3),¬subst(S,u),¬step(1),step(2),subst(NP,1.ag),subst(NP,1.pat),

∀y.¬hkb(like,y,x2,x3)→¬distractor(u,y),
∀y,x1,x3.x2 6= y∧pkb(contextset,x2,y)∧animate(y)→ distractor(1.ag,y),
∀y,x1,x2.x3 6= y∧pkb(contextset,x3,y)→ distractor(1.pat,y)

Action NP-Mary-2(u,x1).
Precond: referent(u,x1),skb(name,x1,mary),

subst(NP,u),step(2)
Effect: ¬cg(name,x1,mary),¬subst(NP,u),

¬step(2),step(3),
∀y.¬hkb(name,y,mary)→¬distractor(u,y)

Action NP-rabbit-3(u,x1).
Precond: referent(u,x1),skb(rabbit,x1),

subst(N,u),step(3)
Effect: ¬cg(rabbit,x1),¬subst(N,u),¬step(3),step(4),

canadjoin(NP,u),mustadjoin(NP,u),
∀y.¬hkb(rabbit,y)→¬distractor(u,y)

Action NP-the-4(u,x1).
Precond: referent(u,x1),canadjoin(NP,u),step(4),

pkb(hearer-old,x1)
Effect: ¬mustadjoin(NP,u),¬step(4),step(5)

Action NP-a-4(u,x1).
Precond: referent(u,x1),canadjoin(NP,u),step(4),

pkb(hearer-new,x1)
Effect: ¬mustadjoin(NP,u),¬step(4),step(5)

Action NP-white-5(u,x1).
Precond: referent(u,x1),skb(white,x1),canadjoin(NP,u),step(5)
Effect: ¬cg(white,x1),¬mustadjoin(NP,u),¬step(5),step(6),

∀y.¬hkb(white,y)→¬distractor(u,y)

Figure 5: Some of the actions corresponding to the grammar in Fig. 4.

4.1 Computational issues

We lack the space to present the formal definition
of the sentence generation problem we encode into
PDDL. However, this problem is NP-complete, by
reduction of Hamiltonian Cycle – unsurprisingly,
given that it encompasses realization, and the very
similar realization problem in Koller and Striegnitz
(2002) is NP-hard. So any algorithm for our prob-
lem must be prepared for exponential runtimes.

We have implemented the translation described in
this paper and experimented with a number of differ-
ent grammars, knowledge bases, and planners. The
FF planner (Hoffmann and Nebel, 2001) can com-
pute the plans in Section 3.3 in under 100 ms us-
ing the grammar in Fig. 4. If we add 10 more lex-
icon entries to the grammar, the runtime grows to
190 ms; and for 20 more entries, to 360 ms. The
runtime also grows with the plan length: It takes
410 ms to generate a sentence “Mary likes the Adj
. . . Adj rabbit” with four adjectives and 890 ms for
six adjectives, corresponding to a plan length of 10.
We compared these results against a planning-based
reimplementation of SPUD’s greedy search heuris-
tic (Stone et al., 2003). This system is faster than FF
for small inputs (360 ms for four adjectives), but be-
comes slower as inputs grow larger (1000 ms for six
adjectives); but notice that while FF is also a heuris-
tic planner, it is guaranteed to find a solution if one

exists, unlike SPUD.
Planners have made tremendous progress in effi-

ciency in the past decade, and by encoding sentence
generation as a planning problem, we are set to profit
from any future improvements; it is an advantage
of the planning approach that we can compare very
different search strategies like FF’s and SPUD’s in
the same framework. However, our PDDL problems
are challenging for modern planners because most
planners start by computing all instances of atoms
and actions. In our experiments, FF generally spent
only about 10% of the runtime on search and the
rest on computing the instances; that is, there is a lot
of room for optimization. For larger grammars and
knowledge bases, the number of instances can easily
grow into the billions. In future work, we will there-
fore collaborate with experts on planning systems to
compute action instances only by need.

4.2 Referring expressions

In our analysis of referring expressions, the tree t
that introduces the new substitution nodes typically
initializes the distractor sets with proper subsets of
the entire domain. This allows us to generate suc-
cinct descriptions by encoding t’s presuppositions
as semantic requirements, and localizes the inter-
actions between the referring expressions generated
for different substitution nodes within t’s action.
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However, an important detail in the encoding of
referring expressions above is that an individual a
counts as a distractor for the role r if there is any
tuple of values that satisfies the semantic require-
ment and has a in the r-component. This is correct,
but can sometimes lead to overly complicated refer-
ring expressions. An example is the construction “X
takes Y from Z”, which presupposes that Y is in Z.
In a scenario that involves multiple rabbits, multiple
hats, and multiple individuals that are inside other
individuals, but only one pair of a rabbit r inside a
hat h, the expression “X takes the rabbit from the
hat” is sufficient to refer uniquely to r and h (Stone
and Webber, 1998). Our system would try to gen-
erate an expression for Y that suffices by itself to
distinguish r from all distractors, and similarly for
Z. We will explore this issue further in future work.

5 Conclusion

In this paper, we have shown how sentence gener-
ation with TAG grammars and semantic and prag-
matic information can be encoded into PDDL. Our
encoding is declarative in that it can be used with
any correct planning algorithm, and explicit in that
the actions capture the complete effect of a word on
the syntactic, semantic, and local pragmatic goals.
In terms of expressive power, it captures the core of
SPUD, except for its inference capabilities.

This work is practically relevant because it opens
up the possibility of using efficient planners to make
generators faster and more flexible. Conversely, our
PDDL problems are a challenge for current plan-
ners and open up NLG as an application domain that
planning research itself can target.

Theoretically, our encoding provides a new
framework for understanding and exploring the gen-
eral relationships between language and action. It
suggests new ways of going beyond SPUD’s expres-
sive power, to formulate utterances that describe and
disambiguate concurrent real-world actions or ex-
ploit the dynamics of linguistic context within and
across sentences.
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Abstract

In evaluating the output of language tech-
nology applications—MT, natural language
generation, summarisation—automatic eval-
uation techniques generally conflate mea-
surement of faithfulness to source content
with fluency of the resulting text. In this
paper we develop an automatic evaluation
metric to estimate fluency alone, by examin-
ing the use of parser outputs as metrics, and
show that they correlate with human judge-
ments of generated text fluency. We then de-
velop a machine learner based on these, and
show that this performs better than the indi-
vidual parser metrics, approaching a lower
bound on human performance. We finally
look at different language models for gener-
ating sentences, and show that while individ-
ual parser metrics can be ‘fooled’ depending
on generation method, the machine learner
provides a consistent estimator of fluency.

1 Introduction

Intrinsic evaluation of the output of many language
technologies can be characterised as having at least
two aspects: how well the generated text reflects
the source data, whether it be text in another lan-
guage for machine translation (MT), a natural lan-
guage generation (NLG) input representation, a doc-
ument to be summarised, and so on; and how well it
conforms to normal human language usage. These
two aspects are often made explicit in approaches
to creating the text. For example, in statistical MT

the translation model and the language model are
treated separately, characterised as faithfulness and
fluency respectively (as in the treatment in Jurafsky
and Martin (2000)). Similarly, the ultrasummarisa-
tion model of Witbrock and Mittal (1999) consists
of a content model, modelling the probability that a
word in the source text will be in the summary, and
a language model.

Evaluation methods can be said to fall into two cate-
gories: a comparison to gold reference, or an appeal
to human judgements. Automatic evaluation meth-
ods carrying out a comparison to gold reference tend
to conflate the two aspects of faithfulness and flu-
ency in giving a goodness score for generated out-
put. BLEU (Papineni et al., 2002) is a canonical ex-
ample: in matching n-grams in a candidate transla-
tion text with those in a reference text, the metric
measures faithfulness by counting the matches, and
fluency by implicitly using the reference n-grams as
a language model. Often we are interested in know-
ing the quality of the two aspects separately; many
human judgement frameworks ask specifically for
separate judgements on elements of the task that cor-
respond to faithfulness and to fluency. In addition,
the need for reference texts for an evaluation metric
can be problematic, and intuitively seems unneces-
sary for characterising an aspect of text quality that
is not related to its content source but to the use of
language itself. It is a goal of this paper to provide
an automatic evaluation method for fluency alone,
without the use of a reference text.

One might consider using a metric based on lan-
guage model probabilities for sentences: in eval-
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uating a language model on (already existing) test
data, a higher probability for a sentence (and lower
perplexity over a whole test corpus) indicates bet-
ter language modelling; perhaps a higher probability
might indicate a better sentence. However, here we
are looking at generated sentences, which have been
generated using their own language model, rather
than human-authored sentences already existing in
a test corpus; and so it is not obvious what language
model would be an objective assessment of sentence
naturalness. In the case of evaluating a single sys-
tem, using the language model that generated the
sentence will only confirm that the sentence does
fit the language model; in situations such as com-
paring two systems which each generate text using
a different language model, it is not obvious that
there is a principled way of deciding on a fair lan-
guage model. Quite a different idea was suggested
in Wan et al. (2005), of using the grammatical judge-
ment of a parser to assess fluency, giving a measure
independent of the language model used to gener-
ate the text. The idea is that, assuming the parser
has been trained on an appropriate corpus, the poor
performance of the parser on one sentence relative
to another might be an indicator of some degree of
ungrammaticality and possibly disfluency. In that
work, however, correlation with human judgements
was left uninvestigated.

The goal of this paper is to take this idea and de-
velop it. In Section 2 we look at some related work
on metrics, in particular for NLG. In Section 3, we
verify whether parser outputs can be used as esti-
mators of generated sentence fluency by correlating
them with human judgements. In Section 4, we pro-
pose an SVM-based metric using parser outputs as
features, and compare its correlation against human
judgements with that of the individual parsers. In
Section 5, we investigate the effects on the various
metrics from different types of language model for
the generated text. Then in Section 6 we conclude.

2 Related Work

In terms of human evaluation, there is no uniform
view on what constitutes the notion of fluency, or its
relationship to grammaticality or similar concepts.
We mention a few examples here to illustrate the
range of usage. In MT, the 2005 NIST MT Evalu-

ation Plan uses guidelines1 for judges to assess ‘ad-
equacy’ and ‘fluency’ on 5 point scales, where they
are asked to provide intuitive reactions rather than
pondering their decisions; for fluency, the scale de-
scriptions are fairly vague (5: flawless English; 4:
good English; 3: non-native English; 2: disfluent
English; 1: incomprehensible) and instructions are
short, with some examples provided in appendices.
Zajic et al. (2002) use similar scales for summari-
sation. By contrast, Pan and Shaw (2004), for their
NLG system SEGUE tied the notion of fluency more
tightly to grammaticality, giving two human evalu-
ators three grade options: good, minor grammatical
error, major grammatical/pragmatic error. As a fur-
ther contrast, the analysis of Coch (1996) was very
comprehensive and fine-grained, in a comparison of
three text-production techniques: he used 14 human
judges, each judging 60 letters (20 per generation
system), and required them to assess the letters for
correct spelling, good grammar, rhythm and flow,
appropriateness of tone, and several other specific
characteristics of good text.

In terms of automatic evaluation, we are not aware
of any technique that measures only fluency or sim-
ilar characteristics, ignoring content, apart from that
of Wan et al. (2005). Even in NLG, where, given the
variability of the input representations (and hence
difficulty in verifying faithfulness), it might be ex-
pected that such measures would be available, the
available metrics still conflate content and form.
For example, the metrics proposed in Bangalore et
al. (2000), such as Simple Accuracy and Generation
Accuracy, measure changes with respect to a refer-
ence string based on the idea of string-edit distance.
Similarly, BLEU has been used in NLG, for example
by Langkilde-Geary (2002).

3 Parsers as Evaluators

There are three parts to verifying the usefulness of
parsers as evaluators: choosing the parsers and the
metrics derived from them; generating some texts
for human and parser evaluation; and, the key part,
getting human judgements on these texts and corre-
lating them with parser metrics.

1http://projects.ldc.upenn.edu/TIDES/
Translation/TranAssessSpec.pdf
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3.1 The Parsers

In testing the idea of using parsers to judge fluency,
we use three parsers, from which we derive four
parser metrics, to investigate the general applicabil-
ity of the idea. Those chosen were the Connexor
parser,2 the Collins parser (Collins, 1999), and the
Link Grammar parser (Grinberg et al., 1995). Each
produces output that can be taken as representing
degree of ungrammaticality, although this output is
quite different for each.

Connexor is a commercially available dependency
parser that returns head–dependant relations as well
as stemming information, part of speech, and so on.
In the case of an ungrammatical sentence, Connexor
returns tree fragments, where these fragments are
defined by transitive head–dependant relations: for
example, for the sentence Everybody likes big cakes
do it returns fragments for Everybody likes big cakes
and for do. We expect that the number of fragments
should correlate inversely with the quality of a sen-
tence. For a metric, we normalise this number by
the largest number of fragments for a given data set.
(Normalisation matters most for the machine learner
in Section 4.)

The Collins parser is a statistical chart parser that
aims to maximise the probability of a parse using dy-
namic programming. The parse tree produced is an-
notated with log probabilities, including one for the
whole tree. In the case of ungrammatical sentences,
the parser will assign a low probability to any parse,
including the most likely one. We expect that the
log probability (becoming more negative as the sen-
tence is less likely) should correlate positively with
the quality of a sentence. For a metric, we normalise
this by the most negative value for a given data set.

Like Connexor, the Link Grammar parser returns in-
formation about word relationships, forming links,
with the proviso that links cannot cross and that in
a grammatical sentence all links are indirectly con-
nected. For an ungrammatical sentence, the parser
will delete words until it can produce a parse; the
number it deletes is called the ‘null count’. We ex-
pect that this should correlate inversely with sen-
tence quality. For a metric, we normalise this by
the sentence length. In addition, the parser produces

2http://www.connexor.com

another variable possibly of interest. In generating
a parse, the parser produces many candidates and
rules some out by a posteriori constraints on valid
parses. In its output the parser returns the number of
invalid parses. For an ungrammatical sentence, this
number may be higher; however, there may also be
more parses. For a metric, we normalise this by the
total number of parses found for the sentence. There
is no strong intuition about the direction of correla-
tion here, but we investigate it in any case.

3.2 Text Generation Method

To test whether these parsers are able to discriminate
sentence-length texts of varying degrees of fluency,
we need first to generate texts that we expect will be
discriminable in fluency quality ranging from good
to very poor. Below we describe our method for gen-
erating text, and then our preliminary check on the
discriminability of the data before giving them to hu-
man judges.

Our approach to generating ‘sentences’ of a fixed
length is to take word sequences of different lengths
from a corpus and glue them together probabilisti-
cally: the intuition is that a few longer sequences
glued together will be more fluent than many shorter
sequences. More precisely, to generate a sentence of
length n, we take sequences of length l (such that l
divides n), with sequence i of the form wi,1 . . . wi,l,
where wi, is a word or punctuation mark. We start
by selecting sequence 1, first by randomly choos-
ing its first word according to the unigram probabil-
ity P (w1,1), and then the sequence uniformly ran-
domly over all sequences of length l starting with
w1,1; we select subsequent sequences j (2 ≤ j ≤
n/l) randomly according to the bigram probability
P (wj,1 |wj−1,l). Taking as our corpus the Reuters
corpus,3 for length n = 24, we generate sentences
for sequence sizes l = 1, 2, 4, 8, 24 as in Figure 1.
So, for instance, the sequence-size 8 example was
constructed by stringing together the three consecu-
tive sequences of length 8 (There . . . to; be . . . have;
to . . . .) taken from the corpus.

These examples, and others generated, appear to
be of variable quality in accordance with our intu-
ition. However, to confirm this prior to testing them

3http://trec.nist.gov/data/reuters/
reuters.html
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Extracted (Sequence-size 24)
Ginebra face Formula Shell in a sudden-death playoff on Sun-
day to decide who will face Alaska in a best-of-seven series for
the title.
Sequence-size 8
There is some thinking in the government to be nearly as dra-
matic as some people have to be slaughtered to eradicate the
epidemic.
Sequence-size 4
Most of Banharn’s move comes after it can still be averted the
crash if it should again become a police statement said.
Sequence-size 2
Massey said in line with losses, Nordbanken is well-placed to
benefit abuse was loaded with Czech prime minister Andris
Shkele, said.
Sequence-size 1
The war we’re here in a spokesman Jeff Sluman 86 percent jump
that Spain to what was booked, express also said.

Figure 1: Sample sentences from the first trial

Description Correlation
Small 0.10 to 0.29

Medium 0.30 to 0.49
Large 0.50 to 1.00

Table 1: Correlation coefficient interpretation

out for discriminability in a human trial, we wanted
see whether they are discriminable by some method
other than our own judgement. We used the parsers
described in Section 3.1, in the hope of finding a
non-zero correlation between the parser outputs and
the sequence lengths.

Regarding the interpretation of the absolute value of
(Pearson’s) correlation coefficients, both here and in
the rest of the paper, we adopt Cohen’s scale (Co-
hen, 1988) for use in human judgements, given in
Table 1; we use this as most of this work is to do with
human judgements of fluency. For data, we gener-
ated 1000 sentences of length 24 for each sequence
length l = 1, 2, 3, 4, 6, 8, 24, giving 7000 sentences
in total. The correlations with the four parser out-
puts are as in Table 2, with the medium correlations
for Collins and Link Grammar (nulled tokens) indi-
cating that the sentences are indeed discriminable to
some extent, and hence the approach is likely to be
useful for generating sentences for human trials.

3.3 Human Judgements

The next step is then to obtain a set of human judge-
ments for this data. Human judges can only be ex-
pected to judge a reasonably sized amount of data,

Metric Corr.
Collins Parser 0.3101

Connexor -0.2332
Link Grammar Nulled Tokens -0.3204
Link Grammar Invalid Parses 0.1776

GLEU 0.4144

Table 2: Parser vs sequence size for original data set

so we first reduced the set of sequence sizes to be
judged. To do this we determined for the 7000
generated sentences the scores according to the (ar-
bitrarily chosen) Collins parser, and calculated the
means for each sequence size and the 95% confi-
dence intervals around these means. We then chose
a subset of sequence sizes such that the confidence
intervals did not overlap: 1, 2, 4, 8, 24; the idea was
that this would be likely to give maximally discrim-
inable sentences. For each of these sequences sizes,
we chose randomly 10 sentences from the initial set,
giving a set for human judgement of size 50.

The judges consisted of twenty volunteers, all native
English speakers without explicit linguistic training.
We gave them general guidelines about what consti-
tuted fluency, mentioning that they should consider
grammaticality but deliberately not giving detailed
instructions on the manner for doing this, as we were
interested in the level of agreement of intuitive un-
derstanding of fluency. We instructed them also that
they should evaluate the sentence without consider-
ing its content, using Colourless green ideas sleep
furiously as an example of a nonsensical but per-
fectly fluent sentence. The judges were then pre-
sented with the 50 sentences in random order, and
asked to score the sentences according to their own
scale, as in magnitude estimation (Bard et al., 1996);
these scores were then normalised in the range [0,1].

Some judges noted that the task was difficult be-
cause of its subjectivity. Notwithstanding this sub-
jectivity and variation in their approach to the task,
the pairwise correlations between judges were high,
as indicated by the maximum, minimum and mean
values in Table 3, indicating that our assumption
that humans had an intuitive notion of fluency
and needed only minimal instruction was justified.
Looking at mean scores for each sequence size,
judges generally also ranked sentences by sequence
size; see Figure 2. Comparing human judgement
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Statistic Corr.
Maximum correlation 0.8749
Minimum correlation 0.4710

Mean correlation 0.7040
Standard deviation 0.0813

Table 3: Data on correlation between humans

Figure 2: Mean scores for human judges

correlations against sequence size with the same cor-
relations for the parser metrics (as for Table 2, but on
the human trial data) gives Table 4, indicating that
humans can also discriminate the different generated
sentence types, in fact (not surprisingly) better than
the automatic metrics.

Now, having both human judgement scores of some
reliability for sentences, and scoring metrics from
three parsers, we give correlations in Table 5. Given
Cohen’s interpretation, the Collins and Link Gram-
mar (nulled tokens) metrics show moderate correla-
tion, the Connexor metric almost so; the Link Gram-
mar (invalid parses) metric correlation is by far the
weakest. The consistency and magnitude of the first
three parser metrics, however, lends support to the
idea of Wan et al. (2005) to use something like these
as indicators of generated sentence fluency. The aim
of the next section is to build a better predictor than
the individual parser metrics alone.

Metric Corr.
Humans 0.6529

Collins Parser 0.4057
Connexor -0.3804

Link Grammar Nulled Tokens -0.3310
Link Grammar Invalid Parses 0.1619

GLEU 0.4606

Table 4: Correlation with sequence size for human
trial data set

Metric Corr.
Collins Parser 0.3057

Connexor -0.3445
Link-Grammar Nulled Tokens -0.2939
Link Grammar Invalid Parses 0.1854

GLEU 0.4014

Table 5: Correlation between metrics and human
evaluators

4 An SVM-Based Metric

In MT, one problem with most metrics like BLEU

is that they are intended to apply only to document-
length texts, and any application to individual sen-
tences is inaccurate and correlates poorly with
human judgements. A neat solution to poor
sentence-level evaluation proposed by Kulesza and
Shieber (2004) is to use a Support Vector Machine,
using features such as word error rate, to estimate
sentence-level translation quality. The two main in-
sights in applying SVMs here are, first, noting that
human translations are generally good and machine
translations poor, that binary training data can be
created by taking the human translations as posi-
tive training instances and machine translations as
negative ones; and second, that a non-binary metric
of translation goodness can be derived by the dis-
tance from a test instance to the support vectors. In
an empirical evaluation, Kulesza and Shieber found
that their SVM gave a correlation of 0.37, which
was an improvement of around half the gap between
the BLEU correlations with the human judgements
(0.25) and the lowest pairwise human inter-judge
correlation (0.46) (Turian et al., 2003).

We take a similar approach here, using as features
the four parser metrics described in Section 3. We
trained an SVM,4 taking as positive training data
the 1000 instances of sentences of sequence length
24 (i.e. sentences extracted from the corpus) and
as negative training data the 1000 sentences of se-
quence length 1. We call this learner GLEU.5

As a check on the ability of the GLEU SVM to dis-
tinguish these ‘positive’ sentences from ‘negative’
ones, we evaluated its classification accuracy on a
(new) test set of size 300, split evenly between sen-
tences of sequence length 24 and sequence length 1.

4We used the package SVM-light (Joachims, 1999).
5For GrammaticaLity Evaluation Utility.
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This gave 81%, against a random baseline of 50%,
indicating that the SVM can classify satisfactorily.

We now move from looking at classification accu-
racy to the main purpose of the SVM, using distance
from support vector as a metric. Results are given
for correlation of GLEU against sequence sizes for
all data (Table 2) and for the human trial data set
(Table 4); and also for correlation of GLEU against
the human judges’ scores (Table 5). This last indi-
cates that GLEU correlates better with human judge-
ments than any of the parsers individually, and is
well within the ‘moderate’ range for correlation in-
terpretation. In particular, for the GLEU–human cor-
relation, the score of 0.4014 is approaching the min-
imum pairwise human correlation of 0.4710.

5 Different Text Generation Methods

The method used to generate text in Section 3.2 is
a variation of the standard n-gram language model.
A question that arises is: Are any of the metrics de-
fined above strongly influenced by the type of lan-
guage model used to generate the text? It may be the
case, for example, that a parser implementation uses
its own language model that predisposes it to favour
a similar model in the text generation process. This
is a phenomenon seen in MT, where BLEU seems to
favour text that has been produced using a similar
statistical n-gram language model over other sym-
bolic models (Callison-Burch et al., 2006).

Our previous approach used only sequences of
words concatenated together. To define some new
methods for generating text, we introduced varying
amounts of structure into the generation process.

5.1 Structural Generation Methods

PoStag In the first of these, we constructed a
rough approximation of typical sentence grammar
structure by taking bigrams over part-of-speech
tags.6 Then, given a string of PoS tags of length
n, t1 . . . tn, we start by assigning the probabilities
for the word in position 1, w1, according to the con-
ditional probability P (w1 | t1). Then, for position j
(2 ≤ j ≤ n), we assign to candidate words the value
P (wj | tj)×P (wj |wj−1) to score word sequences.

6We used the supertagger of Bangalore and Joshi (1999).

So, for example, we might generate the PoS tag tem-
plate Det NN Adj Adv, take all the words corre-
sponding to each of these parts of speech, and com-
bine bigram word sequence probability with the con-
ditional probability of words with respect to these
parts of speech. We then use a Viterbi-style algo-
rithm to find the most likely word sequence.

In this model we violate the Markov assumption of
independence in much the same way as Witbrock
and Mittal (1999) in their combination of content
and language model probabilities, by backtracking
at every state in order to discourage repeated words
and avoid loops.

Supertag This is a variant of the approach above,
but using supertags (Bangalore and Joshi, 1999) in-
stead of PoS tags. The idea is that the supertags
might give a more fine-grained definition of struc-
ture, using partial trees rather than parts of speech.

CFG We extracted a CFG from the ∼10% of the
Penn Treebank found in the NLTK-lite corpora.7

This CFG was then augmented with productions de-
rived from the PoS-tagged data used above. We then
generated a template of length n pre-terminal cate-
gories using this CFG. To avoid loops we biased the
selection towards terminals over non-terminals.

5.2 Human Judgements

We generated sentences according to a mix of the
initial method of Section 3.2, for calibration, and
the new methods above. We again used a sentence
length of 24, and sequence lengths for the initial
method of l = 1, 8, 24. A sample of sentences gen-
erated for each of these six types is in Figure 3.

For our data, we generated 1000 sentences per gen-
eration method, giving a corpus of 6000 sentences.
For the human judgements we also again took 10
sentences per generation method, giving 60 sen-
tences in total. The same judges were given the same
instructions as previously.

Before correlating the human judges’ scores and
the parser outputs, it is interesting to look at how
each parser treats the sentence generation methods,
and how this compares with human ratings (Ta-
ble 6). In particular, note that the Collins parser rates
the PoStag- and Supertag-generated sentences more

7http://nltk.sourceforge.net
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Extracted (Sequence-size 24)
After a near three-hour meeting and last-minute talks with Pres-
ident Lennart Meri, the Reform Party council voted overwhelm-
ingly to leave the government.
Sequence-size 8
If Denmark is closely linked to the Euro Disney reported a net
profit of 85 million note: the figures were rounded off.
Sequence-size 1
Israelis there would seek approval for all-party peace now com-
plain that this year, which shows demand following year and 56
billion pounds.
POS-tag, Viterbi-mapped
He said earlier the 9 years and holding company’s government,
including 69.62 points as a number of last year but market.
Supertag, Viterbi-mapped
That 97 saying he said in its shares of the market 74.53 percent,
adding to allow foreign exchange: I think people.
Context-Free Grammar
The production moderated Chernomyrdin which leveled gov-
ernment back near own 52 over every a current at from the said
by later the other.

Figure 3: Sample sentences from the second trial

sent. type s-24 s-8 s-1 PoS sup. CFG
Collins 0.52 0.48 0.41 0.60 0.57 0.36
Connexor 0.12 0.16 0.24 0.26 0.25 0.43
LG (null) 0.02 0.06 0.10 0.09 0.11 0.18
LG (invalid) 0.78 0.67 0.56 0.62 0.66 0.53
GLEU 1.07 0.32 -0.96 0.28 -0.06 -2.48
Human 0.93 0.67 0.44 0.39 0.44 0.31

Table 6: Mean normalised scores per sentence type

highly even than real sentences (in bold). These
are the two methods that use the Viterbi-style algo-
rithm, suggesting that this probability maximisation
has fooled the Collins parser. The pairwise correla-
tion between judges was around the same on average
as in Section 3.3, but with wider variation (Table 7).

The main results, determining the correlation of the
various parser metrics plus GLEU against the new
data, are in Table 8. This confirms the very vari-
able performance of the Collins parser, which has
dropped significantly. GLEU performs quite consis-
tently here, this time a little behind the Link Gram-
mar (nulled tokens) result, but still with a better
correlation with human judgement than at least two

Statistic Corr.
Maximum correlation 0.9048
Minimum correlation 0.3318

Mean correlation 0.7250
Standard deviation 0.0980

Table 7: Data on correlation between humans

Metric Corr.
Collins Parser 0.1898

Connexor -0.3632
Link-Grammar Nulled Tokens -0.4803
Link Grammar Invalid Parses 0.1774

GLEU 0.4738

Table 8: Correlation between parsers and human
evaluators on new human trial data

Metric Corr.
Collins Parser 0.2313

Connexor -0.2042
Link-Grammar Nulled Tokens -0.1289
Link Grammar Invalid Parses -0.0084

GLEU 0.4312

Table 9: Correlation between parsers and human
evaluators on all human trial data

judges with each other. (Note also that the GLEU

SVM was not retrained on the new sentence types.)

Looking at all the data together, however, is where
GLEU particularly displays its consistency. Aggre-
gating the old human trial data (Section 3.3) and the
new data, and determining correlations against the
metrics, we get the data in Table 9. Again the SVM’s
performance is consistent, but is now almost twice
as high as its nearest alternative, Collins.

5.3 Discussion

In general, there is at least one parser that correlates
quite well with the human judges for each sentence
type. With well-structured sentences, the probabilis-
tic Collins parser performs best; on sentences that
are generated by a poor probabilistic model lead-
ing to poor structure, Link Grammar (nulled tokens)
performs best. This supports the use of a machine
learner taking as features outputs from several parser
types; empirically this is confirmed by the large ad-
vantage GLEU has on overall data (Table 9).

The generated text itself from the Viterbi-based gen-
erators as implemented here is quite disappoint-
ing, given an expectation that introducing structure
would make sentences more natural and hence lead
to a range of sentence qualities. In hindsight, this
is not so surprising; in generating the structure tem-
plate, only sequences (over tags) of size 1 were used,
which is perhaps why the human judges deemed
them fairly close to sentences generated by the origi-
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nal method using sequence size 1, the poorest of that
initial data set.

6 Conclusion

In this paper we have investigated a new approach to
evaluating the fluency of individual generated sen-
tences. The notion of what constitutes fluency is
an imprecise one, but trials with human judges have
shown that even if it cannot be exactly defined, or
even articulated by the judges, there is a high level
of agreement about what is fluent and what is not.
Given this data, metrics derived from parser out-
puts have been found useful for measuring fluency,
correlating up to moderately well with these human
judgements. A better approach is to combine these
in a machine learner, as in our SVM GLEU, which
outperforms individual parser metrics. Interestingly,
we have found that the parser metrics can be fooled
by the method of sentence generation; GLEU, how-
ever, gives a consistent estimate of fluency regard-
less of generation type; and, across all types of gen-
erated sentences examined in this paper, is superior
to individual parser metrics by a large margin.

This all suggests that the approach has promise, but
it needs to be developed further for pratical use. The
SVM presented in this paper has only four features;
more features, and in particular a wider range of
parsers, should raise correlations. In terms of the
data, we looked only at sentences generated with
several parameters fixed, such as sentence length,
due to our limited pool of judges. In future we would
like to examine the space of sentence types more
fully. In particular, we will look at predicting the flu-
ency of near-human quality sentences. More gener-
ally, we would like to look also at how the approach
of this paper would relate to a perplexity-based met-
ric; how it compares against BLEU or similar mea-
sures as a predictor of fluency in a context where ref-
erence sentences are available; and whether GLEU

might be useful in applications such as reranking of
candidate sentences in MT.
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Abstract

Non-verbal modalities such as gesture can
improve processing of spontaneous spoken
language. For example, similar hand ges-
tures tend to predict semantic similarity, so
features that quantify gestural similarity can
improve semantic tasks such as coreference
resolution. However, not all hand move-
ments are informative gestures; psycholog-
ical research has shown that speakers are
more likely to gesture meaningfully when
their speech is ambiguous. Ideally, one
would attend to gesture only in such cir-
cumstances, and ignore other hand move-
ments. We presentconditional modality
fusion, which formalizes this intuition by
treating the informativeness of gesture as a
hidden variable to be learned jointly with
the class label. Applied to coreference
resolution, conditional modality fusion sig-
nificantly outperforms both early and late
modality fusion, which are current tech-
niques for modality combination.

1 Introduction

Non-verbal modalities such as gesture and prosody
can increase the robustness of NLP systems to the
inevitable disfluency of spontaneous speech. For ex-
ample, consider the following excerpt from a dia-
logue in which the speaker describes a mechanical
device:

“So this moves up, and it – everything moves up.
And this top one clears this area here, and goes all
the way up to the top.”

The references in this passage are difficult to
disambiguate, but the gestures shown in Figure 1
make the meaning more clear. However, non-verbal
modalities are often noisy, and their interactions
with speech are complex (McNeill, 1992). Ges-
ture, for example, is sometimes communicative, but
other times merely distracting. While people have
little difficulty distinguishing between meaningful
gestures and irrelevant hand motions (e.g., self-
touching, adjusting glasses) (Goodwin and Good-
win, 1986), NLP systems may be confused by such
seemingly random movements. Our goal is to in-
clude non-verbal features only in the specific cases
when they are helpful and necessary.

We present a model that learns in an unsupervised
fashion when non-verbal features are useful, allow-
ing it to gate the contribution of those features. The
relevance of the non-verbal features is treated as a
hidden variable, which is learned jointly with the
class label in a conditional model. We demonstrate
that this improves performance on binary corefer-
ence resolution, the task of determining whether a
noun phrases refers to a single semantic entity. Con-
ditional modality fusion yields a relative increase of
73% in the contribution of hand-gesture features.
The model is not specifically tailored to gesture-
speech integration, and may also be applicable to
other non-verbal modalities.

2 Related work

Most of the existing work on integrating non-verbal
features relates to prosody. For example, Shriberg
et al. (2000) explore the use of prosodic features for
sentence and topic segmentation. The first modal-
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And this top one clears this area here, and goes
all the way up to the top...

2

So this moves up. And it – everything moves up.
1

Figure 1: An example where gesture helps to disambiguate meaning.

ity combination technique that they consider trains a
single classifier with all modalities combined into a
single feature vector; this is sometimes called “early
fusion.” Shriberg et al. also consider training sepa-
rate classifiers and combining their posteriors, either
through weighted addition or multiplication; this is
sometimes called “late fusion.” Late fusion is also
employed for gesture-speech combination in (Chen
et al., 2004). Experiments in both (Shriberg et al.,
2000) and (Kim et al., 2004) find no conclusive win-
ner among early fusion, additive late fusion, and
multiplicative late fusion.

Toyama and Horvitz (2000) introduce a Bayesian
network approach to modality combination for
speaker identification. As in late fusion, modality-
specific classifiers are trained independently. How-
ever, the Bayesian approach also learns to predict
the reliability of each modality on a given instance,
and incorporates this information into the Bayes
net. While more flexible than the interpolation tech-
niques described in (Shriberg et al., 2000), training
modality-specific classifiers separately is still sub-
optimal compared to training them jointly, because
independent training of the modality-specific classi-
fiers forces them to account for data that they can-
not possibly explain. For example, if the speaker is
not gesturing meaningfully, it is counterproductive
to train a gesture-modality classifier on the features
at this instant; doing so can lead to overfitting and
poor generalization.

Our approach combines aspects of both early and
late fusion. As in early fusion, classifiers for all
modalities are trained jointly. But as in Toyama and

Horvitz’s Bayesian late fusion model, modalities can
be weighted based on their predictive power for spe-
cific instances. In addition, our model is trained to
maximize conditional likelihood, rather than joint
likelihood.

3 Conditional modality fusion

The goal of our approach is to learn to weight the
non-verbal featuresxnv only when they are rele-
vant. To do this, we introduce a hidden variable
m ∈ {−1, 1}, which governs whether the non-
verbal features are included.p(m) is conditioned on
a subset of featuresxm, which may belong to any
modality;p(m|xm) is learned jointly with the class
labelp(y|x), with y ∈ {−1, 1}. For our coreference
resolution model,y corresponds to whether a given
pair of noun phrases refers to the same entity.

In a log-linear model, parameterized by weights
w, we have:

p(y|x; w) =
∑
m

p(y,m|x; w)

=
∑

m exp(ψ(y,m,x; w))∑
y′,m exp(ψ(y′,m,x; w))

.

Here,ψ is a potential function representing the
compatibility between the labely, the hidden vari-
ablem, and the observationsx; this potential is pa-
rameterized by a vector of weights,w. The numera-
tor expresses the compatibility of the labely and ob-
servationsx, summed over all possible values of the
hidden variablem. The denominator sums over both
m and all possible labelsy′, yielding the conditional
probability p(y|x; w). The use of hidden variables
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in a conditionally-trained model follows (Quattoni
et al., 2004).

This model can be trained by a gradient-based
optimization to maximize the conditional log-
likelihood of the observations. The unregularized
log-likelihood and gradient are given by:

l(w) =
X
i

ln(p(yi|xi;w)) (1)

=
X
i

ln

P
m exp(ψ(yi,m,xi; w))P
y′,m exp(ψ(y′,m,xi; w))

(2)

∂li
∂wj

=
X
m

p(m|yi,xi; w)
∂

∂wj
ψ(yi,m,xi; w)

−
X
y′,m

p(m, y′|xi; w)
∂

∂wj
ψ(y′,m,xi; w)

The form of the potential functionψ is where our
intuitions about the role of the hidden variable are
formalized. Our goal is to include the non-verbal
featuresxnv only when they are relevant; conse-
quently, the weight for these features should go to
zero for some settings of the hidden variablem. In
addition,verbal language is different when used in
combination with meaningful non-verbal commu-
nication than when it is used unimodally (Kehler,
2000; Melinger and Levelt, 2004). Thus, we learn
a different set of feature weights for each case:wv,1

when the non-verbal features are included, andwv,2

otherwise. The formal definition of the potential
function for conditional modality fusion is:

ψ(y,m,x; w) ≡{
y(wT

v,1xv + wT
nvxnv) + wT

mxm m = 1
ywT

v,2xv −wT
mxm m = −1.

(3)

4 Application to coreference resolution

We apply conditional modality fusion to corefer-
ence resolution – the problem of partitioning the
noun phrases in a document into clusters, where all
members of a cluster refer to the same semantic en-
tity. Coreference resolution on text datasets is well-
studied (e.g., (Cardie and Wagstaff, 1999)). This
prior work provides the departure point for our in-
vestigation of coreference resolution on spontaneous
and unconstrained speech and gesture.

4.1 Form of the model

The form of the model used in this application is
slightly different from that shown in Equation 3.
When determining whether two noun phrases core-
fer, the features at each utterance must be consid-
ered. For example, if we are to compare the simi-
larity of the gestures that accompany the two noun
phrases, it should be the case that gesture is relevant
duringbothtime periods.

For this reason, we create two hidden variables,
m1 and m2; they indicate the relevance of ges-
ture over the first (antecedent) and second (anaphor)
noun phrases, respectively. Since gesture similarity
is only meaningful if the gesture is relevant during
both NPs, the gesture features are included only if
m1 = m2 = 1. Similarly, the linguistic feature
weightswv,1 are used whenm1 = m2 = 1; oth-
erwise the weightswv,2 are used. This yields the
model shown in Equation 4.

The vector of meta featuresxm1 includes all
single-phrase verbal and gesture features from Ta-
ble 1, computed at the antecedent noun phrase;
xm2 includes the single-phrase verbal and gesture
features, computed at the anaphoric noun phrase.
The label-dependent verbal featuresxv include both
pairwise and single phrase verbal features from the
table, while the label-dependent non-verbal features
xnv include only the pairwise gesture features. The
single-phrase non-verbal features were not included
because they were not thought to be informative as
to whether the associated noun-phrase would partic-
ipate in coreference relations.

4.2 Verbal features

We employ a set of verbal features that is similar
to the features used by state-of-the-art coreference
resolution systems that operate on text (e.g., (Cardie
and Wagstaff, 1999)). Pairwise verbal features in-
clude: several string-match variants; distance fea-
tures, measured in terms of the number of interven-
ing noun phrases and sentences between the candi-
date NPs; and some syntactic features that can be
computed from part of speech tags. Single-phrase
verbal features describe the type of the noun phrase
(definite, indefinite, demonstrative (e.g.,this ball),
or pronoun), the number of times it appeared in
the document, and whether there were any adjecti-
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ψ(y,m1,m2,x; w) ≡

{
y(wT

v,1xv + wT
nvxnv) +m1wT

mxm1 +m2wT
mxm2 , m1 = m2 = 1

ywT
v,2xv +m1wT

mxm1 +m2wT
mxm2 , otherwise.

(4)

val modifiers. The continuous-valued features were
binned using a supervised technique (Fayyad and
Irani, 1993).

Note that some features commonly used for coref-
erence on the MUC and ACE corpora are not appli-
cable here. For example, gazetteers listing names of
nations or corporations are not relevant to our cor-
pus, which focuses on discussions of mechanical de-
vices (see section 5). Because we are working from
transcripts rather than text, features dependent on
punctuation and capitalization, such as apposition,
are also not applicable.

4.3 Non-verbal features

Our non-verbal features attempt to capture similar-
ity between the speaker’s hand gestures; similar ges-
tures are thought to suggest semantic similarity (Mc-
Neill, 1992). For example, two noun phrases may
be more likely to corefer if they are accompanied by
identically-located pointing gestures. In this section,
we describe features that quantify various aspects of
gestural similarity.

The most straightforward measure of similarity is
the Euclidean distance between the average hand po-
sition during each noun phrase – we call this the
FOCUS-DISTANCE feature. Euclidean distance cap-
tures cases in which the speaker is performing a ges-
tural “hold” in roughly the same location (McNeill,
1992).

However, Euclidean distance may not correlate
directly with semantic similarity. For example,
when gesturing at a detailed part of a diagram,
very small changes in hand position may be se-
mantically meaningful, while in other regions posi-
tional similarity may be defined more loosely. Ide-
ally, we would compute a semantic feature cap-
turing the object of the speaker’s reference (e.g.,
“the red block”), but this is not possible in gen-
eral, since a complete taxonomy of all possible ob-
jects of reference is usually unknown. Instead, we
use a hidden Markov model (HMM) to perform a
spatio-temporal clustering on hand position and ve-
locity. TheSAME-CLUSTER feature reports whether

the hand positions during two noun phrases were
usually grouped in the same cluster by the HMM.
JS-DIV reports the Jensen-Shannon divergence, a
continuous-valued feature used to measure the simi-
larity in cluster assignment probabilities between the
two gestures (Lin, 1991).

The gesture features described thus far capture the
similarity between static gestures; that is, gestures
in which the hand position is nearly constant. How-
ever, these features do not capture the similarity be-
tween gesture trajectories, which may also be used
to communicate meaning. For example, a descrip-
tion of two identical motions might be expressed
by very similar gesture trajectories. To measure the
similarity between gesture trajectories, we use dy-
namic time warping (Huang et al., 2001), which
gives a similarity metric for temporal data that is
invariant to speed. This is reported in the DTW-
DISTANCE feature.

All features are computed from hand and body
pixel coordinates, which are obtained via computer
vision; our vision system is similar to (Deutscher et
al., 2000). The feature set currently supports only
single-hand gestures, using the hand that is farthest
from the body center. As with the verbal feature set,
supervised binning was applied to the continuous-
valued features.

4.4 Meta features

The role of the meta features is to determine whether
the gesture features are relevant at a given point in
time. To make this determination, both verbal and
non-verbal features are applied; the only require-
ment is that they be computable at a single instant
in time (unlike features that measure the similarity
between two NPs or gestures).

Verbal meta features Meaningful gesture has
been shown to be more frequent when the associated
speech is ambiguous (Melinger and Levelt, 2004).
Kehler finds that fully-specified noun phrases are
less likely to receive multimodal support (Kehler,
2000). These findings lead us to expect that pro-
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Pairwise verbal features
edit-distance a numerical measure of the string simi-

larity between the two NPs
exact-match true if the two NPs have identical sur-

face forms
str-match true if the NPs are identical after re-

moving articles
nonpro-str true if i andj are not pronouns, and str-

match is true
pro-str true if i and j are pronouns, and str-

match is true
j-substring-i true if the anaphorj is a substring of

the antecedenti
i-substring-j true if i is a substring ofj
overlap true if there are any shared words be-

tweeni andj
np-dist the number of noun phrases betweeni

andj in the document
sent-dist the number of sentences betweeni and

j in the document
both-subj true if bothi andj precede the first verb

of their sentences
same-verb true if the first verb in the sentences for

i andj is identical
number-match true if i andj have the same number

Single-phrase verbal features
pronoun true if the NP is a pronoun
count number of times the NP appears in the

document
has-modifiers true if the NP has adjective modifiers
indef-np true if the NP is an indefinite NP (e.g.,

a fish)
def-np true if the NP is a definite NP (e.g.,the

scooter)
dem-np true if the NP begins withthis, that,

these, or those
lexical features lexical features are defined for the most

common pronouns:it, that, this, and
they

Pairwise gesture features
focus-distance the Euclidean distance in pixels be-

tween the average hand position during
the two NPs

DTW-agreement a measure of the agreement of the hand-
trajectories during the two NPs, com-
puted using dynamic time warping

same-cluster true if the hand positions during the two
NPs fall in the same cluster

JS-div the Jensen-Shannon divergence be-
tween the cluster assignment likeli-
hoods

Single-phrase gesture features
dist-to-rest distance of the hand from rest position
jitter sum of instantaneous motion across NP
speed total displacement over NP, divided by

duration
rest-cluster true if the hand is usually in the cluster

associated with rest position
movement-cluster true if the hand is usually in the cluster

associated with movement

Table 1: The feature set

nouns should be likely to co-occur with meaningful
gestures, while definite NPs and noun phrases that
include adjectival modifiers should be unlikely to do
so. To capture these intuitions, all single-phrase ver-
bal features are included as meta features.

Non-verbal meta features Research on gesture
has shown that semantically meaningful hand mo-
tions usually take place away from “rest position,”
which is located at the speaker’s lap or sides (Mc-
Neill, 1992). Effortful movements away from these
default positions can thus be expected to predict that
gesture is being used to communicate. We iden-
tify rest position as the center of the body on the
x-axis, and at a fixed, predefined location on the y-
axis. TheDIST-TO-REST feature computes the av-
erage Euclidean distance of the hands from the rest
position, over the duration of the NP.

As noted in the previous section, a spatio-
temporal clustering was performed on the hand po-
sitions and velocities, using an HMM. TheREST-
CLUSTER feature takes the value “true” iff the most
frequently occupied cluster during the NP is the
cluster closest to rest position. In addition, pa-
rameter tying in the HMM forces all clusters but
one to represent static hold, with the remaining
cluster accounting for the transition movements be-
tween holds. Only this last cluster is permitted to
have an expected non-zero speed; if the hand is
most frequently in this cluster during the NP, then
the MOVEMENT-CLUSTER feature takes the value
“true.”

4.5 Implementation

The objective function (Equation 1) is optimized
using a Java implementation of L-BFGS, a quasi-
Newton numerical optimization technique (Liu and
Nocedal, 1989). Standard L2-norm regulariza-
tion is employed to prevent overfitting, with cross-
validation to select the regularization constant. Al-
though standard logistic regression optimizes a con-
vex objective, the inclusion of the hidden variable
renders our objective non-convex. Thus, conver-
gence to a global minimum is not guaranteed.

5 Evaluation setup

Dataset Our dataset consists of sixteen short dia-
logues, in which participants explained the behavior
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of mechanical devices to a friend. There are nine
different pairs of participants; each contributed two
dialogues, with two thrown out due to recording er-
rors. One participant, the “speaker,” saw a short
video describing the function of the device prior
to the dialogue; the other participant was tested on
comprehension of the device’s behavior after the di-
alogue. The speaker was given a pre-printed dia-
gram to aid in the discussion. For simplicity, only
the speaker’s utterances were included in these ex-
periments.

The dialogues were limited to three minutes in du-
ration, and most of the participants used the entire
allotted time. “Markable” noun phrases – those that
are permitted to participate in coreference relations
– were annotated by the first author, in accordance
with the MUC task definition (Hirschman and Chin-
chor, 1997). A total of 1141 “markable” NPs were
transcribed, roughly half the size of the MUC6 de-
velopment set, which includes 2072 markable NPs
over 30 documents.

Evaluation metric Coreference resolution is of-
ten performed in two phases: a binary classifi-
cation phase, in which the likelihood of corefer-
ence for each pair of noun phrases is assessed;
and a partitioning phase, in which the clusters of
mutually-coreferring NPs are formed, maximizing
some global criterion (Cardie and Wagstaff, 1999).
Our model does not address the formation of noun-
phrase clusters, but only the question of whether
each pair of noun phrases in the document corefer.
Consequently, we evaluate only the binary classifi-
cation phase, and report results in terms of the area
under the ROC curve (AUC). As the small size of
the corpus did not permit dedicated test and devel-
opment sets, results are computed using leave-one-
out cross-validation, with one fold for each of the
sixteen documents in the corpus.

Baselines Three types of baselines were compared
to our conditional modality fusion (CMF) technique:

• Early fusion. The early fusion baseline in-
cludes all features in a single vector, ignor-
ing modality. This is equivalent to standard
maximum-entropy classification. Early fusion
is implemented with a conditionally-trained

linear classifier; it uses the same code as the
CMF model, but always includes all features.

• Late fusion. The late fusion baselines train
separate classifiers for gesture and speech, and
then combine their posteriors. The modality-
specific classifiers are conditionally-trained lin-
ear models, and again use the same code as the
CMF model. For simplicity, a parameter sweep
identifies the interpolation weights that maxi-
mize performance on the test set. Thus, it is
likely that these results somewhat overestimate
the performance of these baseline models. We
report results for both additive and multiplica-
tive combination of posteriors.

• No fusion. These baselines include the fea-
tures from only a single modality, and again
build a conditionally-trained linear classifier.
Implementation uses the same code as the CMF
model, but weights on features outside the tar-
get modality are forced to zero.

Although a comparison with existing state-of-the-
art coreference systems would be ideal, all such
available systems use verbal features that are inap-
plicable to our dataset, such as punctuation, capital-
ization, and gazetteers. The verbal features that we
have included are a representative sample from the
literature (e.g., (Cardie and Wagstaff, 1999)). The
“no fusion, verbal features only” baseline thus pro-
vides a reasonable representation of prior work on
coreference, by applying a maximum-entropy clas-
sifier to this set of typical verbal features.

Parameter tuning Continuous features are
binned separately for each cross-validation fold,
using only the training data. The regularization
constant is selected by cross-validation within each
training subset.

6 Results

Conditional modality fusion outperforms all other
approaches by a statistically significant margin (Ta-
ble 2). Compared with early fusion, CMF offers an
absolute improvement of 1.20% in area under the
ROC curve (AUC).1 A paired t-test shows that this

1AUC quantifies the ranking accuracy of a classifier. If the
AUC is 1, all positively-labeled examples are ranked higher than
all negative-labeled ones.
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model AUC

Conditional modality fusion .8226
Early fusion .8109
Late fusion, multiplicative .8103
Late fusion, additive .8068
No fusion (verbal features only) .7945
No fusion (gesture features only).6732

Table 2: Results, in terms of areas under the ROC
curve
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Figure 2: Conditional modality fusion is robust to
variations in the regularization constant.

result is statistically significant (p < .002, t(15) =
3.73). CMF obtains higher performance on fourteen
of the sixteen test folds. Both additive and multi-
plicative late fusion perform on par with early fu-
sion.

Early fusion with gesture features is superior to
unimodal verbal classification by an absolute im-
provement of 1.64% AUC (p < 4 ∗ 10−4, t(15) =
4.45). Thus, while gesture features improve coref-
erence resolution on this dataset, their effectiveness
is increased by a relative 73% when conditional
modality fusion is applied. Figure 2 shows how per-
formance varies with the regularization constant.

7 Discussion

The feature weights learned by the system to deter-
mine coreference largely confirm our linguistic in-
tuitions. Among the textual features, a large pos-
itive weight was assigned to the string match fea-
tures, while a large negative weight was assigned to
features such as number incompatibility (i.e., sin-

pronoun def dem indef "this" "it" "that" "they"modifiers
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Weights learned with verbal meta features

Figure 3: Weights for verbal meta features

gular versus plural). The system also learned that
gestures with similar hand positions and trajectories
were likely to indicate coreferring noun phrases; all
of our similarity metrics were correlated positively
with coreference. A chi-squared analysis found that
the EDIT DISTANCE was the most informative ver-
bal feature. The most informative gesture feature
was DTW-AGREEMENT feature, which measures
the similarity between gesture trajectories.

As described in section 4, both textual and gestu-
ral features are used to determine whether the ges-
ture is relevant. Among textual features, definite
and indefinite noun phrases were assigned nega-
tive weights, suggesting gesture would not be use-
ful to disambiguate coreference for such NPs. Pro-
nouns were assigned positive weights, with “this”
and the much less frequently used “they” receiving
the strongest weights. “It” and “that” received lower
weights; we observed that these pronouns were fre-
quently used to refer to the immediately preceding
noun phrase, so multimodal support was often un-
necessary. Last, we note that NPs with adjectival
modifiers were assigned negative weights, support-
ing the finding of (Kehler, 2000) that fully-specified
NPs are less likely to receive multimodal support. A
summary of the weights assigned to the verbal meta
features is shown in Figure 3. Among gesture meta
features, the weights learned by the system indicate
that non-moving hand gestures away from the body
are most likely to be informative in this dataset.
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8 Future work

We have assumed that the relevance of gesture to
semantics is dependent only on the currently avail-
able features, and not conditioned on prior history.
In reality, meaningful gestures occur over contigu-
ous blocks of time, rather than at randomly dis-
tributed instances. Indeed, the psychology literature
describes a finite-state model of gesture, proceed-
ing from “preparation,” to “stroke,” “hold,” and then
“retraction” (McNeill, 1992). These units are called
movement phases. The relevance of various gesture
features may be expected to depend on the move-
ment phase. During strokes, the trajectory of the
gesture may be the most relevant feature, while dur-
ing holds, static features such as hand position and
hand shape may dominate; during preparation and
retraction, gesture features are likely to be irrelevant.

The identification of these movement phases
should be independent of the specific problem of
coreference resolution. Thus, additional labels for
other linguistic phenomena (e.g., topic segmenta-
tion, disfluency) could be combined into the model.
Ideally, each additional set of labels would transfer
performance gains to the other labeling problems.

9 Conclusions

We have presented a new method for combining
multiple modalities, which we feel is especially rel-
evant to non-verbal modalities that are used to com-
municate only intermittently. Our model treats the
relevance of the non-verbal modality as a hidden
variable, learned jointly with the class labels. Ap-
plied to coreference resolution, this model yields a
relative increase of 73% in the contribution of the
gesture features. This gain is attained by identify-
ing instances in which gesture features are especially
relevant, and weighing their contribution more heav-
ily. We next plan to investigate models with a tem-
poral component, so that the behavior of the hidden
variable is governed by a finite-state transducer.
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Abstract 

In this paper we explore the utility of the 
Navigation Map (NM), a graphical repre-
sentation of the discourse structure. We run 
a user study to investigate if users perceive 
the NM as helpful in a tutoring spoken dia-
logue system. From the users’ perspective, 
our results show that the NM presence al-
lows them to better identify and follow the 
tutoring plan and to better integrate the in-
struction. It was also easier for users to 
concentrate and to learn from the system if 
the NM was present. Our preliminary 
analysis on objective metrics further 
strengthens these findings. 

1 Introduction 

With recent advances in spoken dialogue system 
technologies, researchers have turned their atten-
tion to more complex domains (e.g. tutoring 
(Litman and Silliman, 2004; Pon-Barry et al., 
2006), technical support (Acomb et al., 2007), 
medication assistance (Allen et al., 2006)). These 
domains bring forward new challenges and issues 
that can affect the usability of such systems: in-
creased task complexity, user’s lack of or limited 
task knowledge, and longer system turns. 

In typical information access dialogue systems, 
the task is relatively simple: get the information 
from the user and return the query results with 
minimal complexity added by confirmation dia-
logues. Moreover, in most cases, users have 
knowledge about the task. However, in complex 
domains things are different. Take for example 
tutoring. A tutoring dialogue system has to discuss 

concepts, laws and relationships and to engage in 
complex subdialogues to correct user misconcep-
tions. In addition, it is very likely that users of such 
systems are not familiar or are only partially famil-
iar with the tutoring topic. The length of system 
turns can also be affected as these systems need to 
make explicit the connections between parts of the 
underlying task. 

Thus, interacting with such systems can be char-
acterized by an increased user cognitive load asso-
ciated with listening to often lengthy system turns 
and the need to integrate the current information to 
the discussion overall (Oviatt et al., 2004). 

We hypothesize that one way to reduce the 
user’s cognitive load is to make explicit two pieces 
of information: the purpose of the current system 
turn, and how the system turn relates to the overall 
discussion. This information is implicitly encoded 
in the intentional structure of a discourse as pro-
posed in the Grosz & Sidner theory of discourse 
(Grosz and Sidner, 1986). 

Consequently, in this paper we propose using a 
graphical representation of the discourse structure 
as a way of improving the performance of com-
plex-domain dialogue systems (note that graphical 
output is required). We call it the Navigation Map 
(NM). The NM is a dynamic representation of the 
discourse segment hierarchy and the discourse seg-
ment purpose information enriched with several 
features (Section 3). To make a parallel with geog-
raphy, as the system “navigates” with the user 
through the domain, the NM offers a cartographic 
view of the discussion. While a somewhat similar 
graphical representation of the discourse structure 
has been explored in one previous study (Rich and 
Sidner, 1998), to our knowledge we are the first to 
test its benefits (see Section 6). 
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As a first step towards understanding the NM ef-
fects, here we focus on investigating whether users 
prefer a system with the NM over a system without 
the NM and, if yes, what are the NM usage pat-
terns. We test this in a speech based computer tutor 
(Section 2). We run a within-subjects user study in 
which users interacted with the system both with 
and without the NM (Section 4). 

Our analysis of the users’ subjective evaluation 
of the system indicates that users prefer the version 
of the system with the NM over the version with-
out the NM on several dimensions. The NM pres-
ence allows the users to better identify and follow 
the tutoring plan and to better integrate the instruc-
tion. It was also easier for users to concentrate and 
to learn from the system if the NM was present. 
Our preliminary analysis on objective metrics fur-
ther strengthens these findings. 

2 ITSPOKE 
ITSPOKE (Litman and Silliman, 2004) is a state-

of-the-art tutoring spoken dialogue system for con-
ceptual physics. When interacting with ITSPOKE, 
users first type an essay answering a qualitative 
physics problem using a graphical user interface. 
ITSPOKE then engages the user in spoken dialogue 
(using head-mounted microphone input and speech 
output) to correct misconceptions and elicit more 
complete explanations, after which the user revises 
the essay, thereby ending the tutoring or causing 
another round of tutoring/essay revision. 

All dialogues with ITSPOKE follow a question-
answer format (i.e. system initiative): ITSPOKE 
asks a question, users answer and then the process 
is repeated. Deciding what question to ask, in what 
order and when to stop is hand-authored before-
hand in a hierarchical structure. Internally, system 
questions are grouped in question segments. 

In Figure 1, we show the transcript of a sample 
interaction with ITSPOKE. The system is discussing 
the problem listed in the upper right corner of the 
figure and it is currently asking the question Tu-
tor5. The left side of the figure shows the interac-
tion transcript (not available to the user at run-
time). The right side of the figure shows the NM 
which will be discussed in the next section. 

Our system behaves as follows. First, based on 
the analysis of the user essay, it selects a question 
segment to correct misconceptions or to elicit more 
complete explanations. Next the system asks every 
question from this question segment. If the user 

answer is correct, the system simply moves on to 
the next question (e.g. Tutor2→Tutor3). For incor-
rect answers there are two alternatives. For simple 
questions, the system will give out the correct an-
swer accompanied by a short explanation and 
move on to the next question (e.g. Tutor1→Tutor2). 
For complex questions (e.g. applying physics 
laws), ITSPOKE will engage into a remediation 
subdialogue that attempts to remediate user’s lack 
of knowledge or skills (e.g. Tutor4→Tutor5). The 
remediation subdialogue for each complex ques-
tion is specified in another question segment. 

Our system exhibits some of the issues we 
linked in Section 1 with complex-domain systems. 
Dialogues with our system can be long and com-
plex (e.g. the question segment hierarchical struc-
ture can reach level 6) and sometimes the system’s 
turn can be quite long (e.g. Tutor2). User’s reduced 
knowledge of the task is also inherent in tutoring.  

3 The Navigation Map (NM) 

We use the Grosz & Sidner theory of discourse 
(Grosz and Sidner, 1986) to inform our NM de-
sign. According to this theory, each discourse has a 
discourse purpose/intention. Satisfying the main 
discourse purpose is achieved by satisfying several 
smaller purposes/intentions organized in a hierar-
chical structure. As a result, the discourse is seg-
mented into discourse segments each with an asso-
ciated discourse segment purpose/intention. This 
theory has inspired several generic dialogue man-
agers for spoken dialogue systems (e.g. (Rich and 
Sidner, 1998)). 

The NM requires that we have the discourse 
structure information at runtime. To do that, we 
manually annotate the system’s internal representa-
tion of the tutoring task with discourse segment 
purpose and hierarchy information. Based on this 
annotation, we can easily construct the discourse 
structure at runtime. In this section we describe our 
annotation and the NM design choices we made. 
Figure 1 shows the state of the NM after turn Tu-
tor5 as the user sees it on the interface (NM line 
numbering is for exposition only). Note that Figure 
1 is not a screenshot of the actual system interface. 
The NM is the only part from the actual system 
interface. Figure 2 shows the NM after turn Tutor1. 

We manually annotated each system ques-
tion/explanation for its intention(s)/purpose(s). 
Note that some system turns have multiple inten-
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tions/purposes thus multiple discourse segments 
were created for them. For example, in Tutor1 the 
system first identifies the time frames on which the 
analysis will be performed (Figure 1&2, NM2). 
Next, the system indicates that it will discuss about 
the first time frame (Figure 1&2, NM3) and then it 
asks the actual question (Figure 2, NM4).  

Thus, in addition to our manual annotation of 
the discourse segment purpose information, we 
manually organized all discourse segments from a 
question segment in a hierarchical structure that 
reflects the discourse structure. 

At runtime, while discussing a question seg-
ment, the system has only to follow the annotated 
hierarchy, displaying and highlighting the dis-
course segment purposes associated with the ut-
tered content. For example, while uttering Tutor1, 
the NM will synchronously highlight NM2, NM3 
and NM4. Remediation question segments (e.g. 
NM12) or explanations (e.g. NM5) activated by in-
correct answers are attached to the structure under 
the corresponding discourse segment. 

3.1 NM Design Choices 

In our graphical representation of the discourse 
structure, we used a left to right indented layout. In 

addition, we made several design choices to enrich 
the NM information content and usability. 

Figure 2. NM state after turn Tutor1 
Correct answers. In Figure 2 we show the state 

of the NM after uttering Tutor1. The current dis-
course segment purpose (NM4) indicates that the 
system is asking about the relationship between the 
two velocities. While we could have kept the same 
information after the system was done with this 
discourse segment, we thought that users will 
benefit from having the correct answer on the 
screen (recall NM4 in Figure 1). Thus, the NM was 
enhanced to display the correct answer after the 
system is done with each question. We extracted 
the correct answer from the system specifications 
for each question and manually created a new ver-
sion of the discourse segment purpose that includes 
this information. 

1
2
3
4
5
6

TUTOR1: To analyze this problem we will first de-
scribe the motion of the person and his keys while he
is holding them. Then we will look at the motion of 
the person and his keys after he lets go of them. 

  Let's begin by looking at the motion of the man and
his keys while he is holding them. 

  How does his velocity compare to that of his keys?
User answer1: man’s velocity is bigger [incorrect] 
TUTOR2: Well… The problem statement says that the

man is holding his keys motionless in front of his
face. That means they are both falling together and
are not moving with respect to each other. Hence their
velocities are the same. 

  Now let's see what happens when he releases them.
  To do so we will first find the individual forces

exerted on the man and his keys, then both net forces,
both accelerations, and finally we will describe and
compare the velocities. 

  So what are the forces exerted on the man after he
releases his keys? Please, specify their directions. 

User answer2: gravity vertically down [correct] 
TUTOR3: Good. Because there is just one force, grav-

ity's, it is trivial to determine the NET force. So what
is the direction of the NET force on the person? 

User answer3: down [correct] 
TUTOR4: Ok. Considering the net force, does the per-

son have an acceleration? If yes, specify its direction.
User answer4: the man has no acceleration [incorrect] 

TUTOR5: Well… To analyze the man's accelera-
tion we will use Newton's second law. What is
the definition of this law? 

Problem: Suppose a man is in a free-falling elevator and is 
holding his keys motionless right in front of his face.  He then 
lets go. What will be the position of the keys relative to the 
man's face as time passes?  Explain. 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Figure 1. Transcript of a sample ITSPOKE speech interaction (left). The NM as the user sees it after turn Tutor5
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Limited horizon. Since in our case the system 
drives the conversation (i.e. system initiative), we 
always know what questions would be discussed 
next. We hypothesized that by having access to 
this information, users will have a better idea of 
where instruction is heading, thus facilitating their 
understanding of the relevance of the current topic 
to the overall discussion. To prevent information 
overload, we only display the next discourse seg-
ment purpose at each level in the hierarchy (see 
Figure 1, NM14, NM16, NM17 and NM19; Figure 2, 
NM5); additional discourse segments at the same 
level are signaled through a dotted line. To avoid 
helping the students answer the current question in 
cases when the next discourse segment hints/de-
scribes the answer, each discourse segment has an 
additional purpose annotation that is displayed 
when the segment is part of the visible horizon.  

Auto-collapse. To reduce the amount of infor-
mation on the screen, discourse segments dis-
cussed in the past are automatically collapsed by 
the system. For example, in Figure 1, NM Line 3 is 
collapsed in the actual system and Lines 4 and 5 
are hidden (shown in Figure1 to illustrate our dis-
course structure annotation.). The user can expand 
nodes as desired using the mouse. 

Information highlight. Bold and italics font 
were used to highlight important information (what 
and when to highlight was manually annotated). 
For example, in Figure 1, NM2 highlights the two 
time frames as they are key steps in approaching 
this problem. Correct answers are also highlighted. 

We would like to reiterate that the goal of this 
study is to investigate if making certain types of 
discourse information explicitly available to the 
user provides any benefits. Thus, whether we have 
made the optimal design choices is of secondary 
importance. While, we believe that our annotation 
is relatively robust as the system questions follow a 
carefully designed tutoring plan, in the future we 
would like to investigate these issues. 

4 User Study 
We designed a user study focused primarily on 
user’s perception of the NM presence/absence. We 
used a within-subject design where each user re-
ceived instruction both with and without the NM. 

Each user went through the same experimental 
procedure: 1) read a short document of background 
material, 2) took a pretest to measure initial phys-
ics knowledge, 3) worked through 2 problems with 

ITSPOKE 4) took a posttest similar to the pretest, 5) 
took a NM survey, and 6) went through a brief 
open-question interview with the experimenter. 

In the 3rd step, the NM was enabled in only one 
problem. Note that in both problems, users did not 
have access to the system turn transcript. After 
each problem users filled in a system question-
naire in which they rated the system on various 
dimensions; these ratings were designed to cover 
dimensions the NM might affect (see Section 5.1). 
While the system questionnaire implicitly probed 
the NM utility, the NM survey from the 5th step 
explicitly asked the users whether the NM was use-
ful and on what dimensions (see Section 5.1) 

To account for the effect of the tutored problem 
on the user’s questionnaire ratings, users were ran-
domly assigned to one of two conditions. The users 
in the first condition (F) had the NM enabled in the 
first problem and disabled in the second problem, 
while users in the second condition (S) had the op-
posite. Thus, if the NM has any effect on the user’s 
perception of the system, we should see a decrease 
in the questionnaire ratings from problem 1 to 
problem 2 for F users and an increase for S users. 

Other factors can also influence our measure-
ments. To reduce the effect of the text-to-speech 
component, we used a version of the system with 
human prerecorded prompts. We also had to ac-
count for the amount of instruction as in our sys-
tem the top level question segment is tailored to 
what users write in the essay. Thus the essay 
analysis component was disabled; for all users, the 
system started with the same top level question 
segment which assumed no information in the es-
say. Note that the actual dialogue depends on the 
correctness of the user answers. After the dialogue, 
users were asked to revise their essay and then the 
system moved on to the next problem. 

The collected corpus comes from 28 users (13 in 
F and 15 in S). The conditions were balanced for 
gender (F: 6 male, 7 female; S: 8 male, 7 female). 
There was no significant differences between the 
two conditions in terms of pretest (p<0.63); in both 
conditions users learned (significant difference 
between pretest and posttest, p<0.01). 

5 Results 

5.1 Subjective metrics 

Our main resource for investigating the effect of 
the NM was the system questionnaires given after 
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each problem. These questionnaires are identical 
and include 16 questions that probed user’s percep-
tion of ITSPOKE on various dimensions. Users 
were asked to answer the questions on a scale from 
1-5 (1 – Strongly Disagree, 2 – Disagree, 3 – 
Somewhat Agree, 4 – Agree, 5 – Strongly Agree). 
If indeed the NM has any effect we should observe 
differences between the ratings of the NM problem 
and the noNM problem (i.e. the NM is disabled). 

Table 1 lists the 16 questions in the question-
naire order. The table shows for every question the 
average rating for all condition-problem combina-
tions (e.g. column 5: condition F problem 1 with 
the NM enabled). For all questions except Q7 and 
Q11 a higher rating is better. For Q7 and Q11 
(italicized in Table 1) a lower rating is better as 
they gauge negative factors (high level of concen-
tration and task disorientation). They also served as 
a deterrent for negligence while rating. 

To test if the NM presence has a significant ef-
fect, a repeated-measure ANOVA with between-
subjects factors was applied. The within-subjects 
factor was the NM presence (NMPres) and the 
between-subjects factor was the condition (Cond)1. 
The significance of the effect of each factor and 
their combination (NMPres*Cond) is listed in the 
table with significant and trend effects highlighted 
in bold (see columns 2-4). Post-hoc t-tests between 
the NM and noNM ratings were run for each con-
dition (“s”/“t”marks significant/trend differences). 
Results for Q1-6 

Questions Q1-6 were inspired by previous work 
on spoken dialogue system evaluation (e.g. 
(Walker et al., 2000)) and measure user’s overall 
perception of the system. We find that the NM 
presence significantly improves user’s perception 
of the system in terms of their ability to concen-
trate on the instruction (Q3), in terms of their incli-
nation to reuse the system (Q6) and in terms of the 
system’s matching of their expectations (Q4). 
There is a trend that it was easier for them to learn 
from the NM enabled version of the system (Q2). 
Results for Q7-13 

Q7-13 relate directly to our hypothesis that users 
                                                 
1 Since in this version of ANOVA the NM/noNM rat-
ings come from two different problems based on the 
condition, we also run an ANOVA in which the within-
subjects factor was the problem (Prob). In this case, the 
NM effect corresponds to an effect from Prob*Cond 
which is identical in significance with that of NMPres. 

benefit from access to the discourse structure in-
formation. These questions probe the user’s per-
ception of ITSPOKE during the dialogue. We find 
that for 6 out 7 questions the NM presence has a 
significant/trend effect (Table 1, column 2).  

Structure. Users perceive the system as having 
a structured tutoring plan significantly2 more in the 
NM problems (Q8). Moreover, it is significantly 
easier for them to follow this tutoring plan if the 
NM is present (Q11). These effects are very clear 
for F users where their ratings differ significantly 
between the first (NM) and the second problem 
(noNM). A difference in ratings is present for S 
users but it is not significant. As with most of the S 
users’ ratings, we believe that the NM presentation 
order is responsible for the mostly non-significant 
differences. More specifically, assuming that the 
NM has a positive effect, the S users are asked to 
rate first the poorer version of the system (noNM) 
and then the better version (NM). In contrast, F 
users’ task is easier as they already have a high 
reference point (NM) and it is easier for them to 
criticize the second problem (noNM). Other factors 
that can blur the effect of the NM are domain 
learning and user’s adaptation to the system. 

Integration. Q9 and Q10 look at how well users 
think they integrate the system questions in both a 
forward-looking fashion (Q9) and a backward 
looking fashion (Q10). Users think that it is sig-
nificantly easier for them to integrate the current 
system question to what will be discussed in the 
future if the NM is present (Q9). Also, if the NM is 
present, it is easier for users to integrate the current 
question to the discussion so far (Q10, trend). For 
Q10, there is no difference for F users but a sig-
nificant one for S users. We hypothesize that do-
main learning is involved here: F users learn better 
from the first problem (NM) and thus have less 
issues solving the second problem (noNM). In con-
trast, S users have more difficulties in the first 
problem (noNM), but the presence of the NM 
eases their task in the second problem. 

Correctness. The correct answer NM feature is 
useful for users too. There is a trend that it is easier 
for users to know the correct answer if the NM is 
present (Q13). We hypothesize that speech recog-
nition and language understanding errors are re-

                                                 
2 We refer to the significance of the NMPres factor (Ta-
ble 1, column 2). When discussing individual experi-
mental conditions, we refer to the post-hoc t-tests. 
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sponsible for the non-significant NM effect on the 
dimension captured by Q12. 

Concentration. Users also think that the NM 
enabled version of the system requires less effort in 
terms of concentration (Q7). We believe that hav-
ing the discourse segment purpose as visual input 
allows the users to concentrate more easily on what 
the system is uttering. In many of the open ques-
tion interviews users stated that it was easier for 
them to listen to the system when they had the dis-
course segment purpose displayed on the screen. 

Results for Q14-16 
Questions Q14-16 were included to probe user’s 

post tutoring perceptions. We find a trend that in 
the NM problems it was easier for users to under-
stand the system’s main point (Q14). However, in 
terms of identifying (Q15) and correcting (Q16) 
problems in their essay the results are inconclusive. 
We believe that this is due to the fact that the essay 
interpretation component was disabled in this ex-
periment. As a result, the instruction did not match 
the initial essay quality. Nonetheless, in the open-
question interviews, many users indicated using 

the NM as a reference while updating their essay. 

In addition to the 16 questions, in the system 
questionnaire after the second problem users were 
asked to choose which version of the system they 
preferred the most (i.e. the first or the second prob-
lem version). 24 out 28 users (86%) preferred the 
NM enabled version. In the open-question inter-
view, the 4 users that preferred the noNM version 
(2 in each condition) indicated that it was harder 
for them to concurrently concentrate on the audio 
and the visual input (divided attention problem) 
and/or that the NM was changing too fast. 

To further strengthen our conclusions from the 
system questionnaire analysis, we would like to 
note that users were not asked to directly compare 
the two versions but they were asked to individu-
ally rate two versions which is a noisier process 
(e.g. users need to recall their previous ratings). 

The NM survey 
While the system questionnaires probed users’ 

NM usage indirectly, in the second to last step in 
the experiments, users had to fill a NM survey 

Table 1. System questionnaire results 

Question

Overall NMPres Cond NMPres*
Cond

1. The tutor increased my understanding of the subject 0.518 0.898 0.862 4.0 > 3.9 4.0 > 3.9
2. It was easy to learn from the tutor 0.100 0.813 0.947 3.9 > 3.6 3.9 > 3.5
3. The tutor helped me to concentrate 0.016 0.156 0.854 3.5 > 3.0 3.9 >t 3.4
4. The tutor worked the way I expected it to 0.034 0.886 0.157 3.5 > 3.4 3.9 >s 3.1
5. I enjoyed working with the tutor 0.154 0.513 0.917 3.5 > 3.2 3.7 > 3.4
6. Based on my experience using the tutor to learn physics, I 
would like to use such a tutor regularly 0.004 0.693 0.988 3.7 >s 3.2 3.5 >s 3.0

During the conversation with the tutor:

7. ... a high level of concentration is required to follow the tutor 0.004 0.534 0.545 3.5 <s 4.2 3.9 <t 4.3

8. ... the tutor had a clear and structured agenda behind its 
explanations 0.008 0.340 0.104 4.4 >s 3.6 4.3 > 4.1

9. ... it was easy to figure out where the tutor's instruction was 
leading me 0.017 0.472 0.593 4.0 >s 3.4 4.1 > 3.7

10. ... when the tutor asked me a question I knew why it was 
asking me that question 0.054 0.191 0.054 3.5 ~ 3.5 4.3 >s 3.5

11. ... it was easy to loose track of where I was in the interaction 
with the tutor 0.012 0.766 0.048 2.5 <s 3.5 2.9 < 3.0

12. ... I knew whether my answer to the tutor's question was 
correct or incorrect 0.358 0.635 0.804 3.5 > 3.3 3.7 > 3.4

13. ... whenever I answered incorrectly, it was easy to know the 
correct answer after the tutor corrected me 0.085 0.044 0.817 3.8 > 3.5 4.3 > 3.9

At the end of the conversation with the tutor:
14. ... it was easy to understand the tutor's main point 0.071 0.056 0.894 4.0 > 3.6 4.4 > 4.1
15. ... I knew what was wrong or missing from my essay 0.340 0.965 0.340 3.9 ~ 3.9 3.7 < 4.0
16. ... I knew how to modify my essay 0.791 0.478 0.327 4.1 > 3.9 3.7 < 3.8

P1       P2
NM     noNM

P2       P1
NM     noNM

Average rating
ANOVA F condition S condition
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which explicitly asked how the NM helped them, if 
at all. The answers were on the same 1 to 5 scale. 
We find that the majority of users (75%-86%) 
agreed or strongly agreed that the NM helped them 
follow the dialogue, learn more easily, concentrate 
and update the essay. These findings are on par 
with those from the system questionnaire analysis. 

5.2 Objective metrics 

Our analysis of the subjective user evaluations 
shows that users think that the NM is helpful. We 
would like to see if this perceived usefulness is 
reflected in any objective metrics of performance. 
Due to how our experiment was designed, the ef-
fect of the NM can be reliably measured only in 
the first problem as in the second problem the NM 
is toggled3; for the same reason, we can not use the 
pretest/posttest information. 

Our preliminary investigation 4  found several 
dimensions on which the two conditions differed in 
the first problem (F users had NM, S users did 
not). We find that if the NM was present the inter-
action was shorter on average and users gave more 
correct answers; however these differences are not 
statistically significant (Table 2). In terms of 
speech recognition performance, we looked at two 
metrics: AsrMis and SemMis (ASR/Semantic Mis-
recognition). A user turn is labeled as AsrMis if the 
output of the speech recognition is different from 
the human transcript (i.e. a binary version of Word 
Error Rate). SemMis are AsrMis that change the 
correctness interpretation. We find that if the NM 
was present users had fewer AsrMis and fewer 
SemMis (trend for SemMis, p<0.09). 

In addition, a χ2 dependency analysis showed 
that the NM presence interacts significantly with 
both AsrMis (p<0.02) and SemMis (p<0.001), with 
fewer than expected AsrMis and SemMis in the 
                                                 
3 Due to random assignment to conditions, before the 
first problem the F and S populations are similar (e.g. no 
difference in pretest); thus any differences in metrics 
can be attributed to the NM presence/absence. However, 
in the second problem, the two populations are not simi-
lar anymore as they have received different forms of 
instruction; thus any difference has to be attributed to 
the NM presence/absence in this problem as well as to 
the NM absence/presence in the previous problem.  
4 Due to logging issues, 2 S users are excluded from this 
analysis (13 F and 13 S users remaining). We run the 
subjective metric analysis from Section 5.1 on this sub-
set and the results are similar. 

NM condition. The fact that in the second problem 
the differences are much smaller (e.g. 2% for 
AsrMis) and that the NM-AsrMis and NM-
SemMis interactions are not significant anymore, 
suggests that our observations can not be attributed 
to a difference in population with respect to sys-
tem’s ability to recognize their speech. We hy-
pothesize that these differences are due to the NM 
text influencing users’ lexical choice. 

Metric F (NM) S (noNM) p 
# user turns 21.8 (5.3) 22.8 (6.5) 0.65 
% correct turns 72% (18%) 67% (22%) 0.59 
AsrMis 37% (27%) 46% (28%) 0.46 
SemMis 5% (6%) 12% (14%) 0.09 

Table 2. Average (standard deviation) for  
objective metrics in the first problem 

6 Related work 

Discourse structure has been successfully used in 
non-interactive settings (e.g. understanding spe-
cific lexical and prosodic phenomena (Hirschberg 
and Nakatani, 1996) , natural language generation 
(Hovy, 1993), essay scoring (Higgins et al., 2004) 
as well as in interactive settings (e.g. predic-
tive/generative models of postural shifts (Cassell et 
al., 2001), generation/interpretation of anaphoric 
expressions (Allen et al., 2001), performance mod-
eling (Rotaru and Litman, 2006)). 

In this paper, we study the utility of the dis-
course structure on the user side of a dialogue sys-
tem. One related study is that of (Rich and Sidner, 
1998). Similar to the NM, they use the discourse 
structure information to display a segmented inter-
action history (SIH): an indented view of the inter-
action augmented with purpose information. This 
paper extends over their work in several areas. The 
most salient difference is that here we investigate 
the benefits of displaying the discourse structure 
information for the users. In contrast, (Rich and 
Sidner, 1998) never test the utility of the SIH. 
Their system uses a GUI-based interaction (no 
speech/text input, no speech output) while we look 
at a speech-based system. Also, their underlying 
task (air travel domain) is much simpler than our 
tutoring task. In addition, the SIH is not always 
available and users have to activate it manually. 

Other visual improvements for dialogue-based 
computer tutors have been explored in the past 
(e.g. talking heads (Graesser et al., 2003)). How-
ever, implementing the NM in a new domain re-
quires little expertise as previous work has shown 
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that naïve users can reliably annotate the informa-
tion needed for the NM (Passonneau and Litman, 
1993). Our NM design choices should also have an 
equivalent in a new domain (e.g. displaying the 
recognized user answer can be the equivalent of 
the correct answers). Other NM usages can also be 
imagined: e.g. reducing the length of the system 
turns by removing text information that is implic-
itly represented in the NM. 

7 Conclusions & Future work 

In this paper we explore the utility of the Naviga-
tion Map, a graphical representation of the dis-
course structure. As our first step towards under-
standing the benefits of the NM, we ran a user 
study to investigate if users perceive the NM as 
useful. From the users’ perspective, the NM pres-
ence allows them to better identify and follow the 
tutoring plan and to better integrate the instruction. 
It was also easier for users to concentrate and to 
learn from the system if the NM was present. Our 
preliminary analysis on objective metrics shows 
that users’ preference for the NM version is re-
flected in more correct user answers and less 
speech recognition problems in the NM version. 

These findings motivate future work in under-
standing the effects of the NM. We would like to 
continue our objective metrics analysis (e.g. see if 
users are better in the NM condition at updating 
their essay and at answering questions that require 
combining facts previously discussed). We also 
plan to run an additional user study with a be-
tween-subjects experimental design geared towards 
objective metrics. The experiment will have two 
conditions: NM present/absent for all problems. 
The conditions will then be compared in terms of 
various objective metrics. We would also like to 
know which information sources represented in the 
NM (e.g. discourse segment purpose, limited hori-
zon, correct answers) has the biggest impact. 
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Abstract

Motivated by psycholinguistic findings that
eye gaze is tightly linked to human lan-
guage production, we developed an unsuper-
vised approach based on translation models
to automatically learn the mappings between
words and objects on a graphic display dur-
ing human machine conversation. The ex-
perimental results indicate that user eye gaze
can provide useful information to establish
such mappings, which have important impli-
cations in automatically acquiring and inter-
preting user vocabularies for conversational
systems.

1 Introduction

To facilitate effective human machine conversation,
it is important for a conversational system to have
knowledge about user vocabularies and understand
how these vocabularies are mapped to the internal
entities for which the system has representations.
For example, in a multimodal conversational system
that allows users to converse with a graphic inter-
face, the system needs to know what vocabularies
users tend to use to describe objects on the graphic
display and what (type of) object(s) a user is attend-
ing to when a particular word is expressed. Here,
we useacquisitionto refer to the process of acquir-
ing relevant vocabularies describing internal entities,
andinterpretationto refer to the process of automat-
ically identifying internal entities given a particular
word. Both acquisition and interpretation have been
traditionally approached by either knowledge engi-

neering (e.g., manually created lexicons) or super-
vised learning from annotated data. In this paper,
we describe an unsupervised approach that relies
on naturally co-occurred eye gaze and spoken utter-
ances during human machine conversation to auto-
matically acquire and interpret vocabularies.

Motivated by psycholinguistic studies (Just and
Carpenter, 1976; Griffin and Bock, 2000; Tenenhaus
et al., 1995) and recent investigations on computa-
tional models for language acquisition and ground-
ing (Siskind, 1995; Roy and Pentland, 2002; Yu
and Ballard, 2004), we are particularly interested in
two unique questions related to multimodal conver-
sational systems: (1) In a multimodal conversation
that involves more complex tasks (e.g., both user
initiated tasks and system initiated tasks), is there
a reliable temporal alignment between eye gaze and
spoken references so that the coupled inputs can be
used for automated vocabulary acquisition and inter-
pretation? (2) If such an alignment exists, how can
we model this alignment and automatically acquire
and interpret the vocabularies?

To address the first question, we conducted an
empirical study to examine the temporal relation-
ships between eye fixations and their correspond-
ing spoken references. As shown later in section 4,
although a larger variance (compared to the find-
ings from psycholinguistic studies) exists in terms of
how eye gaze is linked to speech production during
human machine conversation, eye fixations and the
corresponding spoken references still occur in a very
close vicinity to each other. This natural coupling
between eye gaze and speech provides an opportu-
nity to automatically learn the mappings between

368



words and objects without any human supervision.
Because of the larger variance, it is difficult to

apply rule-based approaches to quantify this align-
ment. Therefore, to address the second question,
we developed an approach based on statistical trans-
lation models to explore the co-occurrence patterns
between eye fixated objects and spoken references.
Our preliminary experiment results indicate that the
translation model can reliably capture the mappings
between the eye fixated objects and the correspond-
ing spoken references. Given an object, this model
can provide possible words describing this object,
which represents the acquisition process; given a
word, this model can also provide possible objects
that are likely to be described, which represents the
interpretation process.

In the following sections, we first review some re-
lated work and introduce the procedures used to col-
lect eye gaze and speech data during human machine
conversation. We then describe our empirical study
and the unsupervised approach based on translation
models. Finally, we present experiment results and
discuss their implications in natural language pro-
cessing applications.

2 Related Work

Our work is motivated by previous work in the fol-
lowing three areas: psycholinguistics studies, multi-
modal interactive systems, and computational mod-
eling of language acquisition and grounding.

Previous psycholinguistics studies have shown
that the direction of gaze carries information about
the focus of the user’s attention (Just and Carpenter,
1976). Specifically, in human language processing
tasks, eye gaze is tightly linked to language produc-
tion. The perceived visual context influences spo-
ken word recognition and mediates syntactic pro-
cessing (Tenenhaus et al., 1995). Additionally, be-
fore speaking a word, the eyes usually move to the
objects to be mentioned (Griffin and Bock, 2000).
These psycholinguistics findings have provided a
foundation for our investigation.

In research on multimodal interactive systems, re-
cent work indicates that the speech and gaze inte-
gration patterns can be modeled reliably for indi-
vidual users and therefore be used to improve mul-
timodal system performances (Kaur et al., 2003).

Studies have also shown that eye gaze has a poten-
tial to improve resolution of underspecified referring
expressions in spoken dialog systems (Campana et
al., 2001) and to disambiguate speech input (Tanaka,
1999). In contrast to these earlier studies, our work
focuses on a different goal of using eye gaze for au-
tomated vocabulary acquisition and interpretation.

The third area of research that influenced our
work is computational modeling of language acqui-
sition and grounding. Recent studies have shown
that multisensory information (e.g., through vision
and language processing) can be combined to effec-
tively acquire words to their perceptually grounded
objects in the environment (Siskind, 1995; Roy and
Pentland, 2002; Yu and Ballard, 2004). Especially in
(Yu and Ballard, 2004), an unsupervised approach
based on a generative correspondence model was
developed to capture the mapping between spoken
words and the occurring perceptual features of ob-
jects. This approach is most similar to the transla-
tion model used in our work. However, compared
to this work where multisensory information comes
from vision and language processing, our work fo-
cuses on a different aspect. Here, instead of applying
vision processing on objects, we are interested in eye
gaze behavior when users interact with a graphic dis-
play. Eye gaze is an implicit and subconscious input
modality during human machine interaction. Eye
gaze data inevitably contain a significant amount of
noise. Therefore, it is the goal of this paper to exam-
ine whether this modality can be utilized for vocab-
ulary acquisition for conversational systems.

3 Data Collection

We used asimplifiedmultimodal conversational sys-
tem to collect synchronized speech and eye gaze
data. A room interior scene was displayed on a com-
puter screen, as shown in Figure 1. While watching
the graphical display, users were asked to communi-
cate with the system on topics about the room dec-
orations. A total of 28 objects (e.g., multiple lamps
and picture frames, a bed, two chairs, a candle, a
dresser, etc., as marked in Figure 1) are explicitly
modeled in this scene. The system issimplifiedin
the sense that it only supports 14 tasks during human
machine interaction. These tasks are designed to
cover both open-ended utterances (e.g., the system
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Figure 1: The room interior scene for user studies.
For easy reference, we give each object an ID. These
IDs are hidden from the system users.

asks users to describe the room) and more restricted
utterances (e.g., the system asks the user whether
he/she likes the bed) that are commonly supported in
conversational systems. Seven human subjects par-
ticipated in our study.

User speech inputs were recorded using the Au-
dacity software1, with each utterance time-stamped.
Eye movements were recorded using an EyeLink II
eye tracker sampled at 250Hz. The eye tracker au-
tomatically saved two-dimensional coordinates of a
user’s eye fixations as well as the time-stamps when
the fixations occurred.

The collected raw gaze data is extremely noisy.
To refine the gaze data, we further eliminated in-
valid and saccadic gaze points (known as “saccadic
suppression” in vision studies). Since eyes do not
stay still but rather make small, frequent jerky move-
ments, we also smoothed the data by averaging
nearby gaze locations to identify fixations.

4 Empirical Study on Speech-Gaze
Alignment

Based on the data collected, we investigated the tem-
poral alignment between co-occurred eye gaze and
spoken utterances. In particular, we examined the
temporal alignment between eye gaze fixations and
the corresponding spoken references (i.e., the spo-
ken words that are used to refer to the objects on the
graphic display).

According to the time-stamp information, we can

1http://audacity.sourceforge.net/

measure the length of time gap between a user’s eye
fixation falling on an object and the corresponding
spoken reference being uttered (which we refer to
as “length of time gap” for brevity). Also, we can
count the number of times that user fixations hap-
pen to change their target objects during this time
gap (which we refer to as “number of fixated object
changes” for brevity). The nine most frequently oc-
curred spoken references in utterances from all users
(as shown in Table 1) are chosen for this empirical
study. For each of those spoken references, we use
human judgment to decide which object is referred
to. Then, from both before and after the onset of
the spoken reference, we find the closest occurrence
of the fixation falling on that particular object. Al-
together we have 96 such speech-gaze pairs. In 54
pairs, the eye gaze fixation occurred before the cor-
responding speech reference was uttered; and in the
other 42 pairs, the eye fixation occurred after the
corresponding speech reference was uttered. This
observation suggests that in human machine conver-
sation, eye fixation on an object does not necessarily
always proceed the utterance of the corresponding
speech reference.

Further, we computed the averageabsolutelength
of the time gap and the average number of fixated
object changes, as well as their variances for each of
5 selected users2 as shown in Table 1. From Table 1,
it is easy to observe that:(I) A spoken reference al-
ways appears within a short period of time (usually
1-2 seconds)before or afterthe corresponding eye
gaze fixation. But, the exact length of the period is
far from constant.(II) It is not necessary for a user
to utter the corresponding spoken referenceimme-
diatelybefore or after the eye gaze fixation falls on
that particular object. Eye gaze fixations may move
back and forth. Between the time an object is fixated
and the corresponding spoken reference is uttered, a
user’s eye gaze may fixate on a few other objects
(reflected by the average number of eye fixated ob-
ject changes shown in the table).(III) There is a
large variance in both the length of time gap and the
number of fixated object changes in terms of 1) the
same user and the same spoken reference at differ-
ent time-stamps, 2) the same user but different spo-

2The other two users are not selected because the nine se-
lected words do not appear frequently in their utterances.
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Spoken Average Absolute Length of Time Gap (in seconds) Average Number of Eye Fixated Object Changes
Reference User 1 User 2 User 3 User 4 User 5 User 1 User 2 User 3 User 4 User 5

bed 1.27± 1.40 1.02± 0.65 0.32± 0.21 0.59± 0.77 2.57± 3.25 2.1± 3.2 2.1± 2.2 0.4± 0.5 1.4± 2.2 5.3± 7.9

tree - 0.24± 0.24 - - - - 0.0± 0.0 - - -
window - 0.67± 0.74 - - 1.95± 3.20 - 0.0± 0.0 - - 3.3± 5.9

mirror - 1.04± 1.36 - - - - 1.0± 1.4 - - -
candle - - 3.64± 0.59 - - - - 8.5± 2.1 - -

waterfall 1.80± 1.12 - - - - 5.5± 4.9 - - - -
painting 0.10± 0.10 - - - - 0.2± 0.4 - - - -

lamp 0.74± 0.54 1.70± 0.99 0.26± 0.35 1.98± 1.72 2.84± 2.42 1.3± 1.3 1.8± 1.5 0.3± 0.6 4.8± 4.3 2.7± 2.2

door 2.47± 0.84 - - 2.49± 1.90 6.36± 2.29 5.0± 2.6 - - 6.7± 5.5 13.3± 6.7

Table 1: The average absolute length of time and the number of eye fixated object changes within the time
gap of eye gaze and corresponding spoken references. Variances are also listed. Some of the entries are not
available because the spoken references were never or rarely usedby the corresponding users.

ken references, and 3) the same spoken reference but
different users. We believe this is due to the different
dialog scenarios and user language habits.

To summarize our empirical study, we find that
in human machine conversation, there still exists a
natural temporal coupling between user speech and
eye gaze, i.e. the spoken reference and the corre-
sponding eye fixation happen within a close vicinity
of each other. However, a large variance is also ob-
served in terms of these temporal vicinities, which
indicates an intrinsically more complex gaze-speech
pattern. Therefore, it is hard to directly quantify
the temporal or ordering relationship between spo-
ken references and corresponding eye fixated objects
(for example, through rules).

To better handle the complexity in the gaze-
speech pattern, we propose to use statistical transla-
tion models. Given a time window of enough length,
a speech input that contains a list of spoken refer-
ences (e.g., definite noun phrases) is always accom-
panied by a list of naturally occurred eye fixations
and therefore a list of objects receiving those fixa-
tions. All those pairs of speech references and cor-
responding fixated objects could be viewed asparal-
lel, i.e. theyco-occur within the time window. This
situation is very similar to the training process of
translation models in statistical machine translation
(Brown et al., 1993), where parallel corpus is used to
find the mappings between words from different lan-
guages by exploiting their co-occurrence patterns.
The same idea can be borrowed here: by exploring
the co-occurrence statistics, we hope to uncover the
exact mapping between those eye fixated objects and
spoken references. The intuition is that, the more of-
ten a fixation is found to exclusively co-occur with a
spoken reference, the more likely a mapping should

be established between them.

5 Translation Models for Vocabulary
Acquisition and Interpretation

Formally, we denote the set of observations by
D = {wi,oi}

N
i=1

where wi and oi refers to
the i-th speech utterance (i.e., a list of words
of spoken references) and thei-th corresponding
eye gaze pattern (i.e., a list of eye fixated ob-
jects) respectively. When we study the prob-
lem of mapping given objects to words (for vo-
cabulary acquisition), the parameter spaceΘ =
{Pr(wj |ok), 1 ≤ j ≤ mw, 1 ≤ k ≤ mo} consists of
the mapping probabilities of an arbitrary wordwj

to an arbitrary objectok, wheremw andmo repre-
sent the total number of unique words and objects
respectively. Those mapping probabilities are sub-
ject to constraints

∑mw

j=1
Pr(wj |ok) = 1. Note that

Pr(wj |ok) = 0 if the corresponding wordwj andok

never co-occur in any observed list pair(wi,oi).

Let lwi and loi denote the length of listswi and
oi respectively. To distinguish with the notations
wj andok whose subscripts are indices forunique
words and objects respectively, we usew̃i,j to de-
note the word in thej-th position of the listwi and
õi,k to denote the object in thek-th position of the
list oi. In translation models, we assume that any
word in the listwi is mapped to an object in the cor-
responding listoi or a null object (we reserve the
position0 for it in every object list). To denote all
the word-object mappings in thei-th list pair, we in-
troduce an alignment vectorai, whose elementai,j

takes the valuek if the wordw̃i,j is mapped tõoi,k.

Then, the likelihood of the observations given the
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parameters can be computed as follows

Pr(D;Θ) =
N
∏

i=1

Pr(wi|oi) =
N
∏

i=1

∑

ai

Pr(wi,ai|oi)

=
N
∏

i=1

∑

ai

Pr(lwi |oi)

(loi + 1)lw
i

lw
i

∏

j=1

Pr(w̃i,j |õai,j
)

=
N
∏

i=1

Pr(lwi |oi)

(loi + 1)lw
i

∑

ai

lw
i

∏

j=1

Pr(w̃i,j |õai,j
)

Note that the following equation holds:

lw
i

∏

j=1

lo
i

∑

k=0

Pr(w̃i,j |õi,k) =

lo
i

∑

ai,1=1

· · ·

lo
i

∑

ai,lw
i

=1

lw
i

∏

j=1

Pr(w̃i,j |õai,j
)

where the right-hand side is actually the expansion

of
∑

ai

∏lw
i

j Pr(w̃i,j |õai,j
). Therefore, the likelihood

can be simplified as

Pr(D;Θ) =
N
∏

i=1

Pr(lwi |oi)

(loi + 1)lw
i

lw
i

∏

j=1

lo
i

∑

k=0

Pr(w̃i,j |õi,k)

Switching to the notationswj andok, we have

Pr(D;Θ)=
N
∏

i=1

Pr(lwi |oi)

(loi + 1)lw
i

mw
∏

j=1

[

mo
∑

k=0

Pr(wj |ok)δ
o
i,k

]δw
i,j

whereδw
i,j = 1 if w̃i,j ∈ wi andδw

i,j = 0 otherwise,
andδo

i,k = 1 if õi,k ∈ oi andδo
i,k = 0 otherwise.

Finally, the translation model can be formalized
as the following optimization problem

arg maxΘ log Pr(D;Θ)

s.t.

mw
∑

j=1

Pr(wj |ok) = 1,∀k

This optimization problem can be solved by the EM
algorithm (Brown et al., 1993).

The above model is developed in the con-
text of mapping given objects to words, i.e., its
solution yields a set of conditional probabilities
{Pr(wj |ok),∀j} for each objectok, indicating how
likely every word is mapped to it. Similarly, we
can develop the model in the context of mapping
given words to objects (for vocabulary interpreta-
tion), whose solution leads to another set of prob-
abilities{Pr(ok|wj),∀k} for each wordwj indicat-
ing how likely every object is mapped to it. In our
experiments, both models are implemented and we
will present the results later.

6 Experiments

We experimented our proposed statistical translation
model on the collected data mentioned in Section 3.

6.1 Preprocessing

The main purpose of preprocessing is to create a
“parallel corpus” for training a translation model.
Here, the “parallel corpus” refers to a series of
speech-gaze pairs, each of them consisting of a list
of words from the spoken references in the user ut-
terances and a list of objects that are fixated upon
within the same time window.

Specifically, we first transcribed the user speech
into scripts by automatic speech recognition soft-
ware and then refined them manually. A time-stamp
was associated with each word in the speech script.
Further, we detected long pauses in the speech script
as splitting points to create time windows, since a
long pause usually marks the start of a sentence
that indicates a user’s attention shift. In our exper-
iment, we set the threshold of judging a long pause
to be1 second. From all the data gathered from 7
users, we get357 such time windows (which typi-
cally contain 10-20 spoken words and 5-10 fixated
object changes).

Given a time window, we then found the objects
being fixated upon by eye gaze (represented by their
IDs as shown in Figure 1). Considering that eye gaze
fixation could occur during the pauses in speech, we
expanded each time window by a fixed length at both
its start and end to find the fixations. In our experi-
ments, the expansion length is set to0.5 seconds.

Finally, we applied a part-of-speech tagger to
each sentence in the user script and only singled out
nouns as potential spoken references in the word list.
The Porter stemming algorithm was also used to get
the normalized forms of those nouns.

The translation model was trained based on this
preprocessed parallel data.

6.2 Evaluation Metrics

As described in Section 5, by using a statistical
translation model we can get a set of translation
probabilities, either from any given spoken word to
all the objects, or from any given object to all the
spoken words. To evaluate the two sets of trans-
lation probabilities, we useprecisionand recall as
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#Rank Precision Recall #Rank Precision Recall
1 0.6667 0.2593 6 0.2302 0.5370
2 0.4524 0.3519 7 0.2041 0.5556
3 0.3810 0.4444 8 0.1905 0.5926
4 0.3095 0.4815 9 0.1799 0.6296
5 0.2667 0.5185 10 0.1619 0.6296

Table 2: Average precision/recall of mapping given
objects to words (i.e., acquisition)

#Rank Precision Recall #Rank Precision Recall
1 0.7826 0.3214 6 0.3043 0.7500
2 0.5870 0.4821 7 0.2671 0.7679
3 0.4638 0.5714 8 0.2446 0.8036
4 0.3804 0.6250 9 0.2293 0.8393
5 0.3478 0.7143 10 0.2124 0.8571

Table 3: Average precision/recall of mapping given
words to objects.(i.e., interpretation)

evaluation metrics.
Specifically, for a given objectok the trans-

lation model will yield a set of probabilities
{Pr(wj |ok),∀j}. We can sort the probabilities and
get a ranked list. Let us assume that we have the
ground truth about all the spoken words to which
the given object should be mapped. Then, at a given
numbern of top ranked words, theprecisionof map-
ping the given objectok to words is defined as

# words thatok is correctly mapped to
# words thatok is mapped to

and therecall is defined as
# words thatok is correctly mapped to
# words thatok should be mapped to

All the counting above is done within the topn rank.
Therefore, we can get different precision/recall at
different ranks. At each rank, the overall perfor-
mance can be evaluated by averaging the preci-
sion/recall for all the given objects. Human judg-
ment is used to decide whether an object-word map-
ping is correct or not, as ground truth for evaluation.

Similarly, based on the set of probabilities of map-
ping a given object with spoken words, we can
find a ranked list of objects for a given word, i.e.
{Pr(ok|wj),∀k}. Thus, at a given rank thepreci-
sion andrecall of mapping a given wordwj to ob-
jects can be measured.

6.3 Experiment Results

Vocabulary acquisition is the process of finding
the appropriate word(s) for any given object. For

the sake of statistical significance, our evaluation is
done on21 objects that were mentioned at least3
times by the users.

Table 2 gives the average precision/recall evalu-
ated at the top 10 ranks. As we can see, if we use
the most probable word acquired for each object,
about66.67% of them are appropriate. With the
rank increasing, more and more appropriate words
can be acquired. About62.96% of all the appropri-
ate words are included within the top 10 probable
words found. The results indicate that by using a
translation model, we can obtain the words that are
used by the users to describe the objects with rea-
sonable accuracy.

Table 4 presents the top3 most probable words
found for each object. It shows that although there
may be more than one word appropriate to describe
a given object, those words with highest probabil-
ities always suggest the most popular way of de-
scribing the corresponding object among the users.
For example, for the object with ID26, the word
candle gets a higher probability than the word
candlestick, which is in accordance with our
observation that in our user study, on most occasions
users tend to use the wordcandle rather than the
wordcandlestick.

Vocabulary interpretation is the process of find-
ing the appropriate object(s) for any given spoken
word. Out of 176 nouns in the user vocabulary,
we only evaluate those used at least three times for
statistical significance concerns. Further, abstract
words (such asreason, position) and general
words (such asroom, furniture) are not eval-
uated since they do not refer to any particular objects
in the scene. Finally,23 nouns remain for evalua-
tion.

We manually enumerated all the object(s) that
those23 nouns refer to as the ground truth in our
evaluation. Note that a given noun can possibly
be used to refer to multiple objects, such aslamp,
since we have several lamps (with object ID3, 8, 17,
and 23) in the experiment setting, andbed, since
bed frame, bed spread, and pillows (with object ID
19, 21, and20 respectively) are all part of a bed.
Also, an object can be referred to by multiple nouns.
For example, the wordspainting, picture,
or waterfall can all be used to refer to the ob-
ject with ID 15.
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Object Rank 1 Rank 2 Rank 3
1 paint (0.254) * wall (0.191) left (0.150)
2 pictur (0.305) * girl (0.122) niagara (0.095) *
3 wall (0.109) lamp (0.093) * floor (0.084)
4 upsid (0.174) * left (0.151) * paint (0.149) *
5 pictur (0.172) window (0.157) * wall (0.116)
6 window (0.287) * curtain (0.115) pictur (0.076)
7 chair (0.287) * tabl (0.088) bird (0.083)
9 mirror (0.161) * dresser (0.137) bird (0.098) *

12 room (0.131) lamp (0.127) left (0.069)
14 hang (0.104) favourit (0.085) natur (0.064)
15 thing (0.066) size (0.059) queen (0.057)
16 paint (0.211) * pictur (0.116) * forest (0.076) *
17 lamp (0.354) * end (0.154) tabl (0.097)
18 bedroom (0.158) side (0.128) bed (0.104)
19 bed (0.576) * room (0.059) candl (0.049)
20 bed (0.396) * queen (0.211) * size (0.176)
21 bed (0.180) * chair (0.097) orang (0.078)
22 bed (0.282) door (0.235) * chair (0.128)
25 chair (0.215) * bed (0.162) candlestick (0.124)
26 candl (0.145) * chair (0.114) candlestick (0.092) *
27 tree (0.246) * chair (0.107) floor (0.096)

Table 4: Words found for given objects. Each row
lists the top 3 most probable spoken words (being
stemmed) for the corresponding given object, with
the mapping probabilities in parentheses. Asterisks
indicate correctly identified spoken words. Note
that some objects are heavily overlapped, so the cor-
responding words are considered correct for all the
overlapping objects, such asbed being considered
correct for objects with ID 19, 20, and 21.

Word Rank 1 Rank 2 Rank 3 Rank 4
curtain 6 (0.305) * 5 (0.305) * 7 (0.133) 1 (0.121)

candlestick 25 (0.147) * 28 (0.135) 24 (0.131) 22 (0.117)
lamp 22 (0.126) 12 (0.094) 17 (0.093) * 25 (0.093)

dresser 12 (0.298) * 9 (0.294) * 13 (0.173) * 7 (0.104)
queen 20 (0.187) * 21 (0.182) * 22 (0.136) 19 (0.136) *
door 22 (0.200) * 27 (0.124) 25 (0.108) 24 (0.106)
tabl 9 (0.152) * 12 (0.125) * 13 (0.112) * 22 (0.107)

mirror 9 (0.251) * 12 (0.238) 8 (0.109) 13 (0.081)
girl 2 (0.173) 22 (0.128) 16 (0.099) 10 (0.074)

chair 22 (0.132) 25 (0.099) * 28 (0.085) 24 (0.082)
waterfal 6 (0.226) 5 (0.215) 1 (0.118) 9 (0.083)

candl 19 (0.156) 22 (0.139) 28 (0.134) 24 (0.131)
niagara 4 (0.359) * 2 (0.262) * 1 (0.226) 7 (0.045)

plant 27 (0.230) * 22 (0.181) 23 (0.131) 28 (0.117)
tree 27 (0.352) * 22 (0.218) 26 (0.100) 13 (0.062)

upsid 4 (0.204) * 12 (0.188) 9 (0.153) 1 (0.104) *
bird 9 (0.142) * 10 (0.138) 12 (0.131) 7 (0.121)
desk 12 (0.170) * 9 (0.141) * 19 (0.118) 8 (0.118)
bed 19 (0.207) * 22 (0.141) 20 (0.111) * 28 (0.090)

upsidedown 4 (0.243) * 3 (0.219) 6 (0.203) 5 (0.188)
paint 4 (0.188) * 16 (0.148) * 1 (0.137) * 15 (0.118) *

window 6 (0.305) * 5 (0.290) * 3 (0.085) 22 (0.065)
lampshad 3 (0.223) * 7 (0.137) 11 (0.137) 10 (0.137)

Table 5: Objects found for given words. Each row
lists the 4 most probable object IDs for the corre-
sponding given words (being stemmed), with the
mapping probabilities in parentheses. Asterisks in-
dicate correctly identified objects. Note that some
objects are heavily overlapped, such as the candle
(with object ID 26) and the chair (with object ID
25), and both were considered correct for the re-
spective spoken words.

Table 3 gives the average precision/recall evalu-
ated at the top 10 ranks. As we can see, if we use the
most probable object found for each speech word,
about78.26% of them are appropriate. With the rank
increasing, more and more appropriate objects can
be found. About85.71% of all the appropriate ob-
jects are included within the top 10 probable objects
found. The results indicate that by using a trans-
lation model, we can predict the objects from user
spoken words with reasonable accuracy.

Table 5 lists the top4 probable objects found for
each spoken word being evaluated. A close look re-
veals that in general, the top ranked objects tend to
gather around the correct object for a given spoken
word. This is consistent with the fact that eye gaze
tends to move back and forth. It also indicates that
the mappings established by the translation model
can effectively find the approximate area of the cor-
responding fixated object, even if it cannot find the
object due to the noisy and jerky nature of eye gaze.

The precision/recall in vocabulary acquisition is
not as high as that in vocabulary interpretation, par-

tially due to the relatively small scale of our exper-
iment data. For example, with only 7 users’ speech
data on 14 conversational tasks, some words were
only spoken a few times to refer to an object, which
prevented them from getting a significant portion of
probability mass among all the words in the vocab-
ulary. This degrades both precision and recall. We
believe that in large scale experiments or real-world
applications, the performance will be improved.

7 Discussion and Conclusion

Previous psycholinguistic findings have shown that
eye gaze is tightly linked with human language pro-
duction. During human machine conversation, our
study shows that although a larger variance is ob-
served on how eye fixations are exactly linked with
corresponding spoken references (compared to the
psycholinguistic findings), eye gaze in general is
closely coupled with corresponding referring ex-
pressions in the utterances. This close coupling na-
ture between eye gaze and speech utterances pro-
vides an opportunity for the system to automatically
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acquire different words related to different objects
without any human supervision. To further explore
this idea, we developed a novel unsupervised ap-
proach using statistical translation models.

Our experimental results have shown that this ap-
proach can reasonably uncover the mappings be-
tween words and objects on the graphical display.
The main advantages of this approach include: 1) It
is an unsupervised approach with minimum human
inference; 2) It does not need any prior knowledge to
train a statistical translation model; 3) It yields prob-
abilities that indicate the reliability of the mappings.

Certainly, our current approach is built upon sim-
plified assumptions. It is quite challenging to in-
corporate eye gaze information since it is extremely
noisy with large variances. Recent work has shown
that the effect of eye gaze in facilitating spoken lan-
guage processing varies among different users (Qu
and Chai, 2007). In addition, visual properties of
the interface also affect user gaze behavior and thus
influence the predication of attention (Prasov et al.,
2007) based on eye gaze. Our future work will de-
velop models to address these variations.

Nevertheless, the results from our current work
have several important implications in building ro-
bust conversational interfaces. First of all, most
conversational systems are built with static knowl-
edge space (e.g., vocabularies) and can only be up-
dated by the system developers. Our approach can
potentially allow the system to automatically ac-
quire knowledge and vocabularies based on the nat-
ural interactions with the users without human in-
tervention. Furthermore, the automatically acquired
mappings between words and objects can also help
language interpretation tasks such as reference res-
olution. Given the recent advances in eye track-
ing technology (Duchowski, 2002), integrating non-
intrusive and high performance eye trackers with
conversational interfaces becomes feasible. The
work reported here can potentially be integrated in
practical systems to improve the overall robustness
of human machine conversation.
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Abstract 

In order to effectively access the rapidly 
increasing range of media content available 
in the home, new kinds of more natural in-
terfaces are needed.  In this paper, we ex-
plore the application of multimodal inter-
face technologies to searching and brows-
ing a database of movies.  The resulting 
system allows users to access movies using 
speech, pen, remote control, and dynamic 
combinations of these modalities. An ex-
perimental evaluation, with more than 40 
users, is presented contrasting two variants 
of the system: one combining speech with 
traditional remote control input and a sec-
ond where the user has a tablet display 
supporting speech and pen input. 

1 Introduction 

As traditional entertainment channels and the 
internet converge through the advent of technolo-
gies such as broadband access, movies-on-demand, 
and streaming video, an increasingly large range of 
content is available to consumers in the home.  
However, to benefit from this new wealth of con-
tent, users need to be able to rapidly and easily find 
what they are actually interested in, and do so ef-
fortlessly while relaxing on the couch in their liv-
ing room — a location where they typically do not 
have easy access to the keyboard, mouse, and 
close-up screen display typical of desktop web 
browsing.  

Current interfaces to cable and satellite televi-
sion services typically use direct manipulation of a 

graphical user interface using a remote control. In 
order to find content, users generally have to either 
navigate a complex, pre-defined, and often deeply 
embedded menu structure or type in titles or other 
key phrases using an onscreen keyboard or triple 
tap input on a remote control keypad. These inter-
faces are cumbersome and do not scale well as the 
range of content available increases (Berglund, 
2004; Mitchell, 1999).  

 
Figure 1 Multimodal interface on tablet 

In this paper we explore the application of multi-
modal interface technologies (See André (2002) 
for an overview) to the creation of more effective 
systems used to search and browse for entertain-
ment content in the home.  A number of previous 
systems have investigated the addition of unimodal 
spoken search queries to a graphical electronic 
program guide (Ibrahim and Johansson, 2002 
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(NokiaTV); Goto et al., 2003; Wittenburg et al., 
2006). Wittenburg et al experiment with unre-
stricted speech input for electronic program guide 
search, and use a highlighting mechanism to pro-
vide feedback to the user regarding the “relevant” 
terms the system understood and used to make the 
query. However, their usability study results show 
this complex output can be confusing to users and 
does not correspond to user expectations. Others 
have gone beyond unimodal speech input and 
added multimodal commands combining speech 
with pointing (Johansson, 2003; Portele et al, 
2006). Johansson (2003) describes a movie re-
commender system MadFilm where users can use 
speech and pointing to accept/reject recommended 
movies.  Portele et al (2006) describe the Smart-
Kom-Home system which includes multimodal 
electronic program guide on a tablet device. 

In our work we explore a broader range of inter-
action modalities and devices. The system provides 
users with the flexibility to interact using spoken 
commands, handwritten commands, unimodal 
pointing (GUI) commands, and multimodal com-
mands combining speech with one or more point-
ing gestures made on a display. We compare two 
different interaction scenarios. The first utilizes a 
traditional remote control for direct manipulation 
and pointing, integrated with a wireless micro-
phone for speech input. In this case, the only 
screen is the main TV display (far screen). In the 
second scenario, the user also has a second graphi-
cal display (close screen) presented on a mobile 
tablet which supports speech and pen input, includ-
ing both pointing and handwriting (Figure 1).  Our 
application task also differs, focusing on search 
and browsing of a large database of movies-on-
demand and supporting queries over multiple si-
multaneous dimensions.  This work also differs in 
the scope of the evaluation. Prior studies have pri-
marily conducted qualitative evaluation with small 
groups of users (5 or 6). A quantitative and qualita-
tive evaluation was conducted examining the inter-
action of 44 naïve users with two variants of the 
system.  We believe this to be the first broad scale 
experimental evaluation of a flexible multimodal 
interface for searching and browsing large data-
bases of movie content.  

In Section 2, we describe the interface and illus-
trate the capabilities of the system. In Section 3, 
we describe the underlying multimodal processing 
architecture and how it processes and integrates 

user inputs.  Section 4 describes our experimental 
evaluation and comparison of the two systems. 
Section 5 concludes the paper. 

2 Interacting with the system 

The system described here is an advanced user in-
terface prototype which provides multimodal ac-
cess to databases of media content such as movies 
or television programming.  The current database 
is harvested from publicly accessible web sources 
and contains over 2000 popular movie titles along 
with associated metadata such as cast, genre, direc-
tor, plot, ratings, length, etc. 

The user interacts through a graphical interface 
augmented with speech, pen, and remote control 
input modalities. The remote control can be used to 
move the current focus and select items.  The pen 
can be used both for selecting items (pointing at 
them) and for handwritten input. The graphical 
user interface has three main screens. The main 
screen is the search screen (Figure 2). There is also 
a control screen used for setting system parameters 
and a third comparison display used for showing 
movie details side by side (Figure 4).  The user can 
select among the screens using three icons in the 
navigation bar at the top left of the screen. The ar-
rows provide ‘Back’ and ‘Next’ for navigation 
through previous searches.  Directly below, there is 
a feedback window which indicates whether the 
system is listening and provides feedback on 
speech recognition and search.  In the tablet vari-
ant, the microphone and speech recognizer are ac-
tivated by tapping on ‘CLICK TO SPEAK’ with 
the pen. In the remote control version, the recog-
nizer can also be activated using a button on the 
remote control.  The main section of the search 
display (Figure 2) contains two panels.  The right 
panel (results panel) presents a scrollable list of 
thumbnails for the movies retrieved by the current 
search.  The left panel (details panel) provides de-
tails on the currently selected title in the results 
panel.  These include the genre, plot summary, 
cast, and director.  

The system supports a speech modality, a hand-
writing modality, pointing (unimodal GUI) modal-
ity, and composite multimodal input where the user 
utters a spoken command which is combined with 
pointing ‘gestures’ the user has made towards 
screen icons using the pen or the remote control.  
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Figure 2 Graphical user interface 

Speech: The system supports speech search over 
multiple different dimensions such as title, genre, 
cast, director, and year. Input can be more tele-
graphic with searches such as “Legally Blonde”, 
“Romantic comedy”, and “Reese Witherspoon”, or 
more verbose natural language queries such as 
“I’m looking for a movie called Legally Blonde” 
and “Do you have romantic comedies”.  An impor-
tant advantage of speech is that it makes it easy to 
combine multiple constraints over multiple dimen-
sions within a single query (Cohen, 1992). For ex-
ample, queries can indicate co-stars: “movies star-
ring Ginger Rogers and Fred Astaire”, or constrain 
genre and cast or director at the same time: “Meg 
Ryan Comedies”, “show drama directed by Woody 
Allen” and “show comedy movies directed by 
Woody Allen and starring Mira Sorvino”.  
Handwriting: Handwritten pen input can also be 
used to make queries.  When the user’s pen ap-
proaches the feedback window, it expands allow-
ing for freeform pen input. In the example in Fig-
ure 3, the user requests comedy movies with Bruce 
Willis using unimodal handwritten input. This is an 
important input modality as it is not impacted by 
ambient noise such as crosstalk from other viewers 
or currently playing content. 

 
Figure 3 Handwritten query 

 Navigation Bar Feedback Window 
Pointing/GUI:  In addition to the recognition-
based modalities, speech and handwriting, the in-
terface also supports more traditional graphical 
user interface (GUI) commands. In the details 
panel, the actors and directors are presented as but-
tons. Pointing at (i.e., clicking on) these buttons 
results in a search for all of the movies with that 
particular actor or director, allowing users to 
quickly navigate from an actor or director in a spe-
cific title to other material they may be interested 
in. The buttons in the results panel can be pointed 
at (clicked on) in order to view the details in the 
left panel for that particular title.   

 

Actor/Director Buttons Details Results 

Figure 4 Comparison screen 

Composite multimodal input: The system also 
supports true composite multimodality when spo-
ken or handwritten commands are integrated with 
pointing gestures made using the pen (in the tablet 
version) or by selecting items (in the remote con-
trol version).  This allows users to quickly execute 
more complex commands by combining the ease 
of reference of pointing with the expressiveness of 
spoken constraints.  While by unimodally pointing 
at an actor button you can search for all of the ac-
tor’s movies, by adding speech you can narrow the 
search to, for example, all of their comedies by 
saying: “show comedy movies with THIS actor”.  
Multimodal commands with multiple pointing ges-
tures are also supported, allowing the user to ‘glue’ 
together references to multiple actors or directors 
in order to constrain the search.  For example, they 
can say “movies with THIS actor and THIS direc-
tor” and point at the ‘Alan Rickman’ button and 
then the ‘John McTiernan’ button in turn (Figure 
2). Comparison commands can also be multimo-
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dal; for example, if the user says “compare THIS 
movie and THIS movie” and clicks on the two but-
tons on the right display for ‘Die Hard’ and the 
‘The Fifth Element’ (Figure 2), the resulting dis-
play shows the two movies side-by-side in the 
comparison screen (Figure 4).  

3 Underlying multimodal architecture 

The system consists of a series of components 
which communicate through a facilitator compo-
nent (Figure 5). This develops and extends upon 
the multimodal architecture underlying the 
MATCH system (Johnston et al., 2002). 
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Figure 5 System architecture 

The underlying database of movie information is 
stored in XML format.  When a new database is 
available, a Grammar Compiler component ex-
tracts and normalizes the relevant fields from the 
database. These are used in conjunction with a pre-
defined multimodal grammar template and any 
available corpus training data to build a multimo-
dal understanding model and speech recognition 
language model.   

The user interacts with the multimodal user in-
terface client (Multimodal UI), which provides the 
graphical display.  When the user presses ‘CLICK 
TO SPEAK’ a message is sent to the Speech Cli-
ent, which activates the microphone and ships au-
dio to a speech recognition server.  Handwritten 
inputs are processed by a handwriting recognizer 
embedded within the multimodal user interface 
client. Speech recognition results, pointing ges-
tures made on the display, and handwritten inputs, 
are all passed to a multimodal understanding server 
which uses finite-state multimodal language proc-

essing techniques (Johnston and Bangalore, 2005) 
to interpret and integrate the speech and gesture. 
This model combines alignment of multimodal 
inputs, multimodal integration, and language un-
derstanding within a single mechanism. The result-
ing combined meaning representation (represented 
in XML) is passed back to the multimodal user 
interface client, which translates the understanding 
results into an XPATH query and runs it against 
the movie database to determine the new series of 
results.  The graphical display is then updated to 
represent the latest query. 

The system first attempts to find an exact match 
in the database for all of the search terms in the 
user’s query.  If this returns no results, a back off 
and query relaxation strategy is employed. First the 
system tries a search for movies that have all of the 
search terms, except stop words, independent of 
the order (an AND query). If this fails, then it 
backs off further to an OR query of the search 
terms and uses an edit machine, using Levenshtein 
distance, to retrieve the most similar item to the 
one requested by the user.  

4 Evaluation 

After designing and implementing our initial proto-
type system, we conducted an extensive multimo-
dal data collection and usability study with the two 
different interaction scenarios: tablet versus remote 
control.  Our main goals for the data collection and 
statistical analysis were three-fold: collect a large 
corpus of natural multimodal dialogue for this me-
dia selection task, investigate whether future sys-
tems should be paired with a remote control or tab-
let-like device, and determine which types of 
search and input modalities are more or less desir-
able. 

4.1 Experimental set up 

The system evaluation took place in a conference 
room set up to resemble a living room (Figure 6). 
The system was projected on a large screen across 
the room from a couch. 

An adjacent conference room was used for data 
collection (Figure 7). Data was collected in sound 
files, videotapes, and text logs. Each subject’s spo-
ken utterances were recorded by three micro-
phones: wireless, array and stand alone. The wire-
less microphone was connected to the system 
while the array and stand alone microphones were 
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around 10 feet away.1 Test sessions were recorded 
with two video cameras – one captured the sys-
tem’s screen using a scan converter while the other 
recorded the user and couch area. Lastly, the user’s 
interactions and the state of the system were cap-
tured by the system’s logger. The logger is an addi-
tional agent added to the system architecture for 
the purposes of the evaluation.  It receives log mes-
sages from different system components as interac-
tion unfolds and stores them in a detailed XML log 
file. For the specific purposes of this evaluation, 
each log file contains: general information about 
the system’s components, a description and time-
stamp for each system event and user event, names 
and timestamps for the system-recorded sound 
files, and timestamps for the start and end of each 
scenario. 

 
Figure 6 Data collection environment 

Forty-four subjects volunteered to participate in 
this evaluation.  There were 33 males and 11 fe-
males, ranging from 20 to 66 years of age.  Each 
user interacted with both the remote control and 
tablet variants of the system, completing the same 
two sets of scenarios and then freely interacting 
with each system.  For counterbalancing purposes, 
half of the subjects used the tablet and then the re-
mote control and the other half used the remote 

                                                 
1 Here we report results for the wireless microphone only. 
Analysis of the other microphone conditions is ongoing. 

control and then the tablet.  The scenario set as-
signed to each version was also counterbalanced.   

 
Figure 7 Data collection room 

Each set of scenarios consisted of seven defined 
tasks, four user-specialized tasks and five open-
ended tasks. Defined tasks were presented in chart 
form and had an exact answer, such as the movie 
title that two specified actors/actresses starred in. 
For example, users had to find the movie in the 
database with Matthew Broderick and Denzel 
Washington. User-specialized tasks relied on the 
specific user’s preferences, such as “What type of 
movie do you like to watch on a Sunday evening?  
Find an example from that genre and write down 
the title”. Open-ended tasks prompted users to 
search for any type of information with any input 
modality. The tasks in the two sets paralleled each 
other. For example, if one set of tasks asked the 
user to find the highest ranked comedy movie with 
Reese Witherspoon, the other set of tasks asked the 
user to find the highest ranked comedy movie with 
Will Smith. Within each task set, the defined tasks 
appeared first, then the user-specialized tasks and 
lastly the open-ended tasks. However, for each par-
ticipant, the order of defined tasks was random-
ized, as well as the order of user-specialized tasks. 

At the beginning of the session, users read a 
short tutorial about the system’s GUI, the experi-
ment, and available input modalities. Before inter-
acting with each version, users were given a man-
ual on operating the tablet/remote control. To 
minimize bias, the manuals gave only a general 
overview with few examples and during the ex-
periment users were alone in the room.  

At the end of each session, users completed a 
user-satisfaction/preference questionnaire and then 
a qualitative interview. The questionnaire consisted 
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of 25 statements about the system in general, the 
two variants of the system, input modality options 
and search options. For example, statements 
ranged from “If I had [the system], I would use the 
tablet with it” to “If my spoken request was mis-
understood, I would want to try again with speak-
ing”.  Users responded to each statement with a 5-
point Likert scale, where 1 = ‘I strongly agree’, 2 = 
‘I mostly agree’, 3 = ‘I can’t say one way or the 
other’, 4 = ‘I mostly do not agree’ and 5 = ‘I do not 
agree at all’. The qualitative interview allowed for 
more open-ended responses, where users could 
discuss reasons for their preferences and their likes 
and dislikes regarding the system. 

4.2 Results 

Data was collected from all 44 participants. Due to 
technical problems, five participants’ logs or sound 
files were not recorded in parts of the experiment.  
All collected data was used for the overall statistics 
but these five participants had to be excluded from 
analyses comparing remote control to tablet. 

Spoken utterances: After removing empty 
sound files, the full speech corpus consists of 3280 
spoken utterances.  Excluding the five participants 
subject to technical problems, the total is 3116 ut-
terances (1770 with the remote control and 1346 
with the tablet).   

The set of 3280 utterances averages 3.09 words 
per utterance.  There was not a significant differ-
ence in utterance length between the remote con-
trol and tablet conditions.  Users’ averaged 2.97 
words per utterance with the remote control and 
3.16 words per utterance with the tablet, paired t 
(38) = 1.182, p = n.s.  However, users spoke sig-
nificantly more often with the remote control.  On 
average, users spoke 34.51 times with the tablet 
and 45.38 times with the remote control, paired t 
(38) = -3.921, p < .01. 

ASR performance: Over the full corpus of 
3280 speech inputs, word accuracy was 44% and 
sentence accuracy 38%.  In the tablet condition, 
word accuracy averaged 46% and sentence accu-
racy 41%.  In the remote control condition, word 
accuracy averaged 41% and sentence accuracy 
38%.  The difference across conditions was only 
significant for word accuracy, paired t (38) = 
2.469, p < .02.  In considering the ASR perform-
ance, it is important to note that 55% of the 3280 
speech inputs were out of grammar, and perhaps 
more importantly 34% were out of the functional-

ity of the system entirely.  On within functionality 
inputs, word accuracy is 62% and sentence accu-
racy 57%.  On the in grammar inputs, word accu-
racy is 86% and sentence accuracy 83%. The vo-
cabulary size was 3851 for this task. In the corpus, 
there are a total of 356 out-of-vocabulary words.  

Handwriting recognition: Performance was de-
termined by manual inspection of screen capture 
video recordings. 2   There were a total of 384 
handwritten requests with overall 66% sentence 
accuracy and 76% word accuracy. 

Task completion:  Since participants had to re-
cord the task answers on a paper form, task com-
pletion was calculated by whether participants 
wrote down the correct answer.  Overall, users had 
little difficulty completing the tasks.  On average, 
participants completed 11.08 out of the 14 defined 
tasks and 7.37 out of the 8 user-specialized tasks.  
The number of tasks completed did not differ 
across system variants. 3  For the seven defined 
tasks within each condition, users averaged 5.69 
with the remote control and 5.40 with the tablet, 
paired t (34) = -1.203, p = n.s.  For the four user-
specialized task within each condition, users aver-
aged 3.74 on the remote control and 3.54 on the 
tablet, paired t (34) = -1.268, p = n.s. 

Input modality preference: During the inter-
view, 55% of users reported preferring the pointing 
(GUI) input modality over speech and multimodal 
input. When asked about handwriting, most users 
were hesitant to place it on the list.  They also dis-
cussed how speech was extremely important, and 
given a system with a low error speech recognizer, 
using speech for input probably would be their first 
choice. In the questionnaire, the majority of users 
(93%) ‘strongly agree’ or ‘mostly agree’ with the 
importance of making a pointing request. The im-
portance of making a request by speaking had the 
next highest average, where 57% ‘strongly agree’ 
or ‘mostly agree’ with the statement. The impor-
tance of multimodal and handwriting requests had 
the lowest averages, where 39% agreed with the 
former and 25% for the latter.  However, in the 
open-ended interview, users mentioned handwrit-
ing as an important back-up input choice for cases 
when the speech recognizer fails. 
                                                 
2 One of the 44 participants videotape did not record and so is 
not included in the statistics.     
3 Four participants did not properly record their task answers 
and had to be eliminated from the 39 participants being used 
in the remote control versus tablet statistics.   

381



Further support for input modality preference was 
gathered from the log files, which showed that par-
ticipants mostly searched using unimodal speech 
commands and GUI buttons.  Out of a total of 
6082 user inputs to the systems, 48% were unimo-
dal speech and 39% were unimodal GUI (pointing 
and clicking). Participants requested information 
with composite multimodal commands 7% of the 
time and with handwriting 6% of the time. 

Search preference: Users most strongly agreed 
with movie title being the most important way to 
search. For searching by title, more than half the 
users chose ‘strongly agree’ and 91% of users 
chose ‘strongly agree’ or ‘mostly agree’.  Slightly 
more than half chose ‘strongly agree’ with search-
ing by actor/actress and slightly less than half 
chose ‘strongly agree’ with the importance of 
searching by genre. During the open ended inter-
view, most users reported title as the most impor-
tant means for searching. 

Variant preference:  Results from the qualita-
tive interview indicate that 67% of users preferred 
the remote control over the tablet variant of the 
system. The most common reported reasons were 
familiarity, physical comfort and ease of use. Re-
mote control preference is further supported from 
the user-preference questionnaire, where 68% of 
participants ‘mostly agree’ or ‘strongly agree’ with 
wanting to use the remote control variant of the 
system, compared to 30% of participants choosing 
‘mostly agree’ or ‘strongly agree’ with wanting to 
use the tablet version of the system. 

5 Conclusion  
With the range of entertainment content available 
to consumers in their homes rapidly expanding, the 
current access paradigm of direct manipulation of 
complex graphical menus and onscreen keyboards, 
and remote controls with way too many buttons is 
increasingly ineffective and cumbersome. In order 
to address this problem, we have developed a 
highly flexible multimodal interface that allows 
users to search for content using speech, handwrit-
ing, pointing (using pen or remote control), and 
dynamic multimodal combinations of input modes. 
Results are presented in a straightforward graphical 
interface similar to those found in current systems 
but with the addition of icons for actors and direc-
tors that can be used both for unimodal GUI and 
multimodal commands. The system allows users to 
search for movies over multiple different dimen-

sions of classification (title, genre, cast, director, 
year) using the mode or modes of their choice. We 
have presented the initial results of an extensive 
multimodal data collection and usability study with 
the system. 

Users in the study were able to successfully use 
speech in order to conduct searches. Almost half of 
their inputs were unimodal speech (48%) and the 
majority of users strongly agreed with the impor-
tance of using speech as an input modality for this 
task. However, as also reported in previous work 
(Wittenburg et al 2006), recognition accuracy re-
mains a serious problem. To understand the per-
formance of speech recognition here, detailed error 
analysis is important. The overall word accuracy 
was 44% but the majority of errors resulted from 
requests from users that lay outside the functional-
ity of the underlying system, involving capabilities 
the system did not have or titles/cast absent from 
the database (34% of the 3280 spoken and multi-
modal inputs). No amount of speech and language 
processing can resolve these problems. This high-
lights the importance of providing more detailed 
help and tutorial mechanisms in order to appropri-
ately ground users’ understanding of system capa-
bilities. Of the remaining 66% of inputs (2166) 
which were within the functionality of the system, 
68% were in grammar. On the within functionality 
portion of the data, the word accuracy was 62%, 
and on in grammar inputs it is 86%.  Since this was 
our initial data collection, an un-weighted finite-
state recognition model was used. The perform-
ance will be improved by training stochastic lan-
guage models as data become available and em-
ploying robust understanding techniques. One in-
teresting issue in this domain concerns recognition 
of items that lie outside of the current database. 
Ideally the system would have a far larger vocabu-
lary than the current database so that it would be 
able to recognize items that are outside the data-
base. This would allow feedback to the user to dif-
ferentiate between lack of results due to recogni-
tion or understanding problems versus lack of 
items in the database. This has to be balanced 
against degradation in accuracy resulting from in-
creasing the vocabulary.  

In practice we found that users, while acknowl-
edging the value of handwriting as a back-up 
mode, generally preferred the more relaxed and 
familiar style of interaction with the remote con-
trol. However, several factors may be at play here. 
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The tablet used in the study was the size of a small 
laptop and because of cabling had a fixed location 
on one end of the couch. In future, we would like 
to explore the use of a smaller, more mobile, tablet 
that would be less obtrusive and more conducive to 
leaning back on the couch. Another factor is that 
the in-lab data collection environment is somewhat 
unrealistic since it lacks the noise and disruptions 
of many living rooms. It remains to be seen 
whether in a more realistic environment we might 
see more use of handwritten input. Another factor 
here is familiarity. It may be that users have more 
familiarity with the concept of speech input than 
handwriting. Familiarity also appears to play a role 
in user preferences for remote control versus tablet. 
While the tablet has additional capabilities such 
handwriting and easier use of multimodal com-
mands, the remote control is more familiar to users 
and allows for a more relaxed interaction since 
they can lean back on the couch. Also many users 
are concerned about the quality of their handwrit-
ing and may avoid this input mode for that reason.   

Another finding is that it is important not to un-
derestimate the importance of GUI input. 39% of 
user commands were unimodal GUI (pointing) 
commands and 55% of users reported a preference 
for GUI over speech and handwriting for input. 
Clearly, the way forward for work in this area is to 
determine the optimal way to combine more tradi-
tional graphical interaction techniques with the 
more conversational style of spoken interaction. 

Most users employed the composite multimodal 
commands, but they make up a relatively small 
proportion of the overall number of user inputs in 
the study data (7%). Several users commented that 
they did not know enough about the multimodal 
commands and that they might have made more 
use of them if they had understood them better. 
This, along with the large number of inputs that 
were out of functionality, emphasizes the need for 
more detailed tutorial and online help facilities. 
The fact that all users were novices with the sys-
tem may also be a factor. In future, we hope to 
conduct a longer term study with repeat users to 
see how previous experience influences use of 
newer kinds of inputs such as multimodal and 
handwriting.   
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Abstract

This paper describes an incremental parser
and an unsupervised learning algorithm for
inducing this parser from plain text. The
parser uses a representation for syntactic
structure similar to dependency links which
is well-suited for incremental parsing. In
contrast to previous unsupervised parsers,
the parser does not use part-of-speech tags
and both learning and parsing are local
and fast, requiring no explicit clustering or
global optimization. The parser is evalu-
ated by converting its output into equivalent
bracketing and improves on previously pub-
lished results for unsupervised parsing from
plain text.

1 Introduction

Grammar induction, the learning of the grammar
of a language from unannotated example sentences,
has long been of interest to linguists because of its
relevance to language acquisition by children. In
recent years, interest in unsupervised learning of
grammar has also increased among computational
linguists, as the difficulty and cost of constructing
annotated corpora led researchers to look for ways
to train parsers on unannotated text. This can ei-
ther be semi-supervised parsing, using both anno-
tated and unannotated data (McClosky et al., 2006)
or unsupervised parsing, training entirely on unan-
notated text.

The past few years have seen considerable im-
provement in the performance of unsupervised

parsers (Klein and Manning, 2002; Klein and Man-
ning, 2004; Bod, 2006a; Bod, 2006b) and, for the
first time, unsupervised parsers have been able to
improve on the right-branching heuristic for pars-
ing English. All these parsers learn and parse
from sequences of part-of-speech tags and select,
for each sentence, the binary parse tree which maxi-
mizes some objective function. Learning is based on
global maximization of this objective function over
the whole corpus.

In this paper I present an unsupervised parser
from plain text which does not use parts-of-speech.
Learning is local and parsing is (locally) greedy. As
a result, both learning and parsing are fast. The
parser is incremental, using a new link representa-
tion for syntactic structure. Incremental parsing was
chosen because it considerably restricts the search
space for both learning and parsing. The represen-
tation the parser uses is designed for incremental
parsing and allows a prefix of an utterance to be
parsed before the full utterance has been read (see
section 3). The representation the parser outputs can
be converted into bracketing, thus allowing evalua-
tion of the parser on standard treebanks.

To achieve completely unsupervised parsing,
standard unsupervised parsers, working from part-
of-speech sequences, need first to induce the parts-
of-speech for the plain text they need to parse. There
are several algorithms for doing so (Schütze, 1995;
Clark, 2000), which cluster words into classes based
on the most frequent neighbors of each word. This
step becomes superfluous in the algorithm I present
here: the algorithm collects lists of labels for each
word, based on neighboring words, and then directly

384



uses these labels to parse. No clustering is per-
formed, but due to the Zipfian distribution of words,
high frequency words dominate these lists and pars-
ing decisions for words of similar distribution are
guided by the same labels.

Section 2 describes the syntactic representation
used, section 3 describes the general parser algo-
rithm and sections 4 and 5 complete the details by
describing the learning algorithm, the lexicon it con-
structs and the way the parser uses this lexicon. Sec-
tion 6 gives experimental results.

2 Common Cover Links

The representation of syntactic structure which I in-
troduce in this paper is based on links between pairs
of words. Given an utterance and a bracketing of
that utterance, shortest common cover link sets for
the bracketing are defined. The original bracketing
can be reconstructed from any of these link sets.

2.1 Basic Definitions

An utterance is a sequence of words 〈x1, . . . , xn〉
and a bracket is any sub-sequence 〈xi, . . . , xj〉 of
consecutive words in the utterance. A set B of brack-
ets over an utterance U is a bracketing of U if every
word in U is in some bracket and for any X,Y ∈ B
either X ∩ Y = ∅, X ⊆ Y or Y ⊆ X (non-
crossing brackets). The depth of a word x ∈ U
under a bracket B ∈ B (x ∈ B) is the maxi-
mal number of brackets X1, . . . , Xn ∈ B such that
x ∈ X1 ⊂ . . . ⊂ Xn ⊂ B. A word x is a generator
of depth d of B in B if x is of minimal depth under
B (among all words in B) and that depth is d. A
bracket may have more than one generator.

2.2 Common Cover Link Sets

A common cover link over an utterance U is a triple

x
d
→ y where x, y ∈ U , x 6= y and d is a non-

negative integer. The word x is the base of the link,
the word y is its head and d is the depth of the link.
The common cover link set RB associated with a
bracketing B is the set of common cover links over

U such that x
d
→ y ∈ RB iff the word x is a gener-

ator of depth d of the smallest bracket B ∈ B such
that x, y ∈ B (see figure 1(a)).

Given RB, a simple algorithm reconstructs the
bracketing B: for each word x and depth 0 ≤ d,

(a) [ [ w ]

1

;;

1

<<

1

==[ x

1
zz

0
!!

0

  
[ y //

0 z ] ] ]oo

(b) [ [ w ] [ x

1
zz

0
!!

0

  
[ y //

0 z ] ] ]oo

(c) [ [ w ] [ x

1
zz

0
!!

[ y //
0 z ] ] ]oo

Figure 1: (a) The common cover link set RB of a
bracketing B, (b) a representative subset R of RB,
(c) the shortest common cover link set based on R.

create a bracket covering x and all y such that for

some d′ ≤ d, x
d′

→ y ∈ RB.
Some of the links in the common cover link set

RB are redundant. The first redundancy is the result
of brackets having more than one generator. The
bracketing reconstruction algorithm outlined above
can construct a bracket from the links based at any
of its generators. The bracketing B can therefore be
reconstructed from a subset R ⊆ RB if, for every
bracket B ∈ B, R contains the links based at least at
one generator1 of B. Such a set R is a representative
subset of RB (see figure 1(b)).

A second redundancy in the set RB follows from
the linear transitivity of RB:

Lemma 1 If y is between x and z, x
d1→ y ∈ RB and

y
d2→ z ∈ RB then x

d
→ z ∈ RB where if there is a

link y
d′

→ x ∈ RB then d = max(d1, d2) and d = d1

otherwise.

This property implies that longer links can be de-
duced from shorter links. It is, therefore, sufficient
to leave only the shortest necessary links in the set.
Given a representative subset R of RB, a shortest
common cover link set of RB is constructed by re-
moving any link which can be deduced from shorter
links by linear transitivity. For each representative
subset R ⊆ RB, this defines a unique shortest com-
mon cover link set (see figure 1(c)).

Given a shortest common cover link set S, the
bracketing which it represents can be calculated by

1From the bracket reconstruction algorithm it can be seen
that links of depth 0 may never be dropped.
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[ [ I ] [ know
{{ %%

[ [ the boy ]oo [ sleeps ] ] ] ]
}}

(a) dependency structure

[ [ I ] [ know
1

{{

0

%%0
""

[ [ the
0 // boy ]oo [ sleeps ] ] ] ]

1
}}

(b) shortest common cover link set

Figure 2: A dependency structure and shortest com-
mon cover link set of the same sentence.

first using linear transitivity to deduce missing links
and then applying the bracket reconstruction algo-
rithm outlined above for RB.

2.3 Comparison with Dependency Structures

Having defined a link-based representation of syn-
tactic structure, it is natural to wonder what the rela-
tion is between this representation and standard de-
pendency structures. The main differences between
the two representations can all be seen in figure 2.
The first difference is in the linking of the NP the
boy. While the shortest common cover link set has
an exocentric construction for this NP (that is, links
going back and forth between the two words), the
dependency structure forces us to decide which of
the two words in the NP is its head. Considering
that linguists have not been able to agree whether it
is the determiner or the noun that is the head of an
NP, it may be easier for a learning algorithm if it did
not have to make such a choice.

The second difference between the structures can
be seen in the link from know to sleeps. In the short-
est common cover link set, there is a path of links
connecting know to each of the words separating it
from sleeps, while in the dependency structure no
such links exist. This property, which I will refer to
as adjacency plays an important role in incremental
parsing, as explained in the next section.

The last main difference between the represen-
tations is the assignment of depth to the common
cover links. In the present example, this allows us to
distinguish between the attachment of the external
(subject) and the internal (object) arguments of the
verb. Dependencies cannot capture this difference
without additional labeling of the links. In what fol-
lows, I will restrict common cover links to having

depth 0 or 1. This restriction means that any tree
represented by a shortest common cover link set will
be skewed - every subtree must have a short branch.
It seems that this is indeed a property of the syntax
of natural languages. Building this restriction into
the syntactic representation considerably reduces the
search space for both parsing and learning.

3 Incremental Parsing

To calculate a shortest common cover link for an
utterance, I will use an incremental parser. Incre-
mentality means that the parser reads the words of
the utterance one by one and, as each word is read,
the parser is only allowed to add links which have
one of their ends at that word. Words which have
not yet been read are not available to the parser at
this stage. This restriction is inspired by psycholin-
guistic research which suggests that humans process
language incrementally (Crocker et al., 2000). If the
incrementality of the parser roughly resembles that
of human processing, the result is a significant re-
striction of parser search space which does not lead
to too many parsing errors.

The adjacency property described in the previous
section makes shortest common cover link sets es-
pecially suitable for incremental parsing. Consider
the example given in figure 2. When the word the
is read, the parser can already construct a link from
know to the without worrying about the continuation
of the sentence. This link is part of the correct parse
whether the sentence turns out to be I know the boy
or I know the boy sleeps. A dependency parser, on
the other hand, cannot make such a decision before
the end of the sentence is reached. If the sentence is
I know the boy then a dependency link has to be cre-
ated from know to boy while if the sentence is I know
the boy sleeps then such a link is wrong. This prob-
lem is known in psycholinguistics as the problem of
reanalysis (Sturt and Crocker, 1996).

Assume the incremental parser is processing a
prefix 〈x1, . . . , xk〉 of an utterance and has already
deduced a set of links L for this prefix. It can now
only add links which have one of their ends at xk and
it may never remove any links. From the definitions
in section 2.2 it is possible to derive an exact char-
acterization of the links which may be added at each
step such that the resulting link set represents some
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bracketing. It can be shown that any shortest com-
mon cover link set can be constructed incrementally
under these conditions. As the full specification of
these conditions is beyond the scope of this paper, I
will only give the main condition, which is based on
adjacency. It states that a link may be added from x
to y only if for every z between x and y there is a
path of links (in L) from x to z but no link from z to
y. In the example in figure 2 this means that when
the word sleeps is first read, a link to sleeps can be
created from know, the and boy but not from I.

Given these conditions, the parsing process is
simple. At each step, the parser calculates a non-
negative weight (section 5) for every link which
may be added between the prefix 〈x1, . . . , xk−1〉 and
xk. It then adds the link with the strongest positive
weight and repeats the process (adding a link can
change the set of links which may be added). When
all possible links are assigned a zero weight by the
parser, the parser reads the next word of the utter-
ance and repeats the process. This is a greedy algo-
rithm which optimizes every step separately.

4 Learning

The weight function which assigns a weight to a can-
didate link is lexicalized: the weight is calculated
based on the lexical entries of the words which are
to be connected by the link. It is the task of the learn-
ing algorithm to learn the lexicon.

4.1 The Lexicon

The lexicon stores for each word x a lexical en-
try. Each such lexical entry is a sequence of adja-
cency points, holding statistics relevant to the deci-
sion whether to link x to some other word. These
statistics are given as weights assigned to labels and
linking properties. Each adjacency point describes a
different link based at x, similar to the specification
of the arguments of a word in dependency parsing.

Let W be the set of words in the corpus. The
set of labels L(W ) = W × {0, 1} consists of
two labels based on every word w: a class la-
bel (w, 0) (denoted by [w]) and an adjacency la-
bel (w, 1) (denoted by [w ] or [ w]). The two la-
bels (w, 0) and (w, 1) are said to be opposite la-
bels and, for l ∈ L(W ), I write l−1 for the op-
posite of l. In addition to the labels, there is also

a finite set P = {Stop, In∗, In,Out} of link-
ing properties. The Stop specifies the strength of
non-attachment, In and Out specify the strength
of inbound and outbound links and In∗ is an in-
termediate value in the induction of inbound and
outbound strengths. A lexicon L is a function
which assigns each word w ∈ W a lexical entry
(. . . , Aw

−2, A
w
−1, A

w
1 , Aw

2 , . . .). Each of the Aw
i is an

adjacency point.
Each Aw

i is a function Aw
i : L(W ) ∪ P → R

which assigns each label in L(W ) and each linking
property in P a real valued strength. For each Aw

i ,
#(Aw

i ) is the count of the adjacency point: the num-
ber of times the adjacency point was updated. Based
on this count, I also define a normalized version of
Aw

i : Āw
i (l) = Aw

i (l)/#(Aw
i ).

4.2 The Learning Process

Given a sequence of training utterances (Ut)0≤t, the
learner constructs a sequence of lexicons (Ls)0≤s

beginning with the zero lexicon L0 (which assigns
a zero strength to all labels and linking properties).
At each step, the learner uses the parsing function
PLs

based on the previously learned lexicon Ls to
extend the parse L of an utterance Ut. It then uses
the result of this parse step (together with the lexi-
con Ls) to create a new lexicon Ls+1 (it may be that
Ls = Ls+1). This operation is a lexicon update. The
process then continues with the new lexicon Ls+1.
Any of the lexicons Ls constructed by the learner
may be used for parsing any utterance U , but as s
increases, parsing accuracy should improve. This
learning process is open-ended: additional training
text can always be added without having to re-run
the learner on previous training data.

4.3 Lexicon Update

To define a lexicon update, I extend the definition of
an utterance to be U = 〈∅l, x1, . . . , xn, ∅r〉 where ∅l

and ∅r are boundary markers. The property of adja-
cency can now be extended to include the boundary
markers. A symbol α ∈ U is adjacent to a word x
relative to a set of links L over U if for every word z
between x and α there is a path of links in L from x
to z but there is no link from z to α. In the following
example, the adjacencies of x1 are ∅l, x2 and x3:

x1 0 // x2 x3 x4
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If a link is added from x2 to x3, x4 becomes adjacent
to x1 instead of x3 (the adjacencies of x1 are then ∅l,
x2 and x4):

x1 0 // x2 0 // x3 x4

The positions in the utterance adjacent to a word x
are indexed by an index i such that i < 0 to the left
of x, i > 0 to the right of x and |i| increases with the
distance from x.

The parser may only add a link from a word x to
a word y adjacent to x (relative to the set of links al-
ready constructed). Therefore, the lexical entry of x
should collect statistics about each of the adjacency
positions of x. As seen above, adjacency positions
may move, so the learner waits until the parser com-
pletes parsing the utterance and then updates each
adjacency point Ax

i with the symbol α at the ith ad-
jacency position of x (relative to the parse generated
by the parser). It should be stressed that this update
does not depend on whether a link was created from
x to α. In particular, whatever links the parser as-
signs, Ax

(−1) and Ax
1 are always updated by the sym-

bols which appear immediately before and after x.
The following example should clarify the picture.

Consider the fragment:

put 0 // the //
0 boxoo on

All the links in this example, including the absence
of a link from box to on, depend on adjacency points
of the form Ax

(−1) and Ax
1 which are updated inde-

pendently of any links. Based on this alone and re-
gardless of whether a link is created from put to on,
Aput

2 will be updated by the word on, which is in-
deed the second argument of the verb put.

4.4 Adjacency Point Update

The update of Ax
i by α is given by operations

Ax
i (p) += f(Aα

(−1), A
α
1 ) which make the value of

Ax
i (p) in the new lexicon Ls+1 equal to the sum

Ax
i (p) + f(Aα

(−1), A
α
1 ) in the old lexicon Ls.

Let Sign(i) be 1 if 0 < i and −1 otherwise. Let

•A
α
i =















true if @l ∈ L(W ) :
Aα

i (l) > Aα
i (Stop)

false otherwise

The update of Ax
i by α begins by incrementing

the count:
#(Ax

i ) += 1

If α is a boundary symbol (∅l or ∅r) or if x and α
are words separated by stopping punctuation (full
stop, question mark, exclamation mark, semicolon,
comma or dash):

Ax
i (Stop) += 1

Otherwise, for every l ∈ L(W ):

Ax
i (l−1) +=

{

1 if l = [α]
Āα

Sign(−i)(l) otherwise

(In practice, only l = [α] and the 10 strongest labels
in Aα

Sign(−i) are updated. Because of the exponen-
tial decay in the strength of labels in Aα

Sign(−i), this
is a good approximation.)

If i = −1, 1 and α is not a boundary or blocked
by punctuation, simple bootstrapping takes place by
updating the following properties:

Ax
i (In∗) +=











−1 if •A
α
Sign(−i)

+1 if ¬•A
α
Sign(−i) ∧ •A

α
Sign(i)

0 otherwise

Ax
i (Out) += Āα

Sign(−i)(In∗)

Ax
i (In) += Āα

Sign(−i)(Out)

4.5 Discussion

To understand the way the labels and properties
are calculated, it is best to look at an example.
The following table gives the linking properties and
strongest labels for the determiner the as learned
from the complete Wall Street Journal corpus (only
Athe

(−1) and Athe
1 are shown):

the
A−1 A1

Stop 12897 Stop 8
In∗ 14898 In∗ 18914
In 8625 In 4764
Out -13184 Out 21922
[the] 10673 [the] 16461
[of ] 6871 [a] 3107
[in ] 5520 [ the] 2787
[a] 3407 [of] 2347
[for ] 2572 [ company] 2094
[to ] 2094 [’s] 1686

A strong class label [w] indicates that the word w
frequently appears in contexts which are similar to
the. A strong adjacency label [w ] (or [ w]) indicates
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that w either frequently appears next to the or that
w frequently appears in the same contexts as words
which appear next to the.

The property Stop counts the number of times a
boundary appeared next to the. Because the can of-
ten appear at the beginning of an utterance but must
be followed by a noun or an adjective, it is not sur-
prising that Stop is stronger than any label on the
left but weaker than all labels on the right. In gen-
eral, it is unlikely that a word has an outbound link
on the side on which its Stop strength is stronger
than that of any label. The opposite is not true: a
label stronger than Stop indicates an attachment but
this may also be the result of an inbound link, as in
the following entry for to, where the strong labels on
the left are a result of an inbound link:

to
A−1 A1

Stop 822 Stop 48
In∗ -4250 In∗ -981
In -57 In -1791
Out -3053 Out 4010
[to] 5912 [to] 7009
[% ] 848 [ the] 3851
[in] 844 [ be] 2208
[the] 813 [will] 1414
[of] 624 [ a] 1158
[a] 599 [the] 954

For this reason, the learning process is based on
the property •A

x
i which indicates where a link is not

possible. Since an outbound link on one word is in-
bound on the other, the inbound/outbound properties
of each word are then calculated by a simple boot-
strapping process as an average of the opposite prop-
erties of the neighboring words.

5 The Weight Function

At each step, the parser must assign a non-negative

weight to every candidate link x
d
→ y which may

be added to an utterance prefix 〈x1, . . . , xk〉, and the
link with the largest (non-zero) weight (with a pref-
erence for links between xk−1 and xk) is added to
the parse. The weight could be assigned directly
based on the In and Out properties of either x or
y but this method is not satisfactory for three rea-
sons: first, the values of these properties on low fre-
quency words are not reliable; second, the values of
the properties on x and y may conflict; third, some
words are ambiguous and require different linking
in different contexts. To solve these problems, the
weight of the link is taken from the values of In and
Out on the best matching label between x and y.

This label depends on both words and is usually a
frequent word with reliable statistics. It serves as a
prototype for the relation between x and y.

5.1 Best Matching Label

A label l is a matching label between Ax
i and

Ay

Sign(−i) if Ax
i (l) > Ax

i (Stop) and either l = (y, 1)

or Ay

Sign(−i)(l
−1) > 0. The best matching label

at Ax
i is the matching label l such that the match

strength min(Āx
i (l), Āy

Sign(−i)(l
−1)) is maximal (if

l = (y, 1) then Āy

Sign(−i)(l
−1) is defined to be 1). In

practice, as before, only the top 10 labels in Ax
i and

Ay

Sign(−i)
are considered.

The best matching label from x to y is calculated
between Ax

i and Ay

Sign(−i) such that Ax
i is on the

same side of x as y and was either already used to
create a link or is the first adjacency point on that
side of x which was not yet used. This means that
the adjacency points on each side have to be used
one by one, but may be used more than once. The
reason is that optional arguments of x usually do
not have an adjacency point of their own but have
the same labels as obligatory arguments of x and
can share their adjacency point. The Ax

i with the
strongest matching label is selected, with a prefer-
ence for the unused adjacency point.

As in the learning process, label matching is
blocked between words which are separated by stop-
ping punctuation.

5.2 Calculating the Link Weight

The best matching label l = (w, δ) from x to y can
be either a class (δ = 0) or an adjacency (δ = 1) la-
bel at Ax

i . If it is a class label, w can be seen as tak-
ing the place of x and all words separating it from y
(which are already linked to x). If l is an adjacency
label, w can be seen to take the place of y. The cal-

culation of the weight Wt(x
d
→ y) of the link from

x to y is therefore based on the strengths of the In
and Out properties of Aw

σ where σ = Sign(i) if
l = (w, 0) and σ = Sign(−i) if l = (w, 1). In ad-
dition, the weight is bounded from above by the best
label match strength, s(l):

• If l = (w, 0) and Aw
σ (Out) > 0:

Wt(x
0
→ y) = min(s(l), Āw

σ (Out))
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WSJ10 WSJ40 Negra10 Negra40
Model UP UR UF1 UP UR UF1 UP UR UF1 UP UR UF1

Right-branching 55.1 70.0 61.7 35.4 47.4 40.5 33.9 60.1 43.3 17.6 35.0 23.4
Right-branching+punct. 59.1 74.4 65.8 44.5 57.7 50.2 35.4 62.5 45.2 20.9 40.4 27.6

Parsing from POS
CCM 64.2 81.6 71.9 48.1 85.5 61.6
DMV+CCM(POS) 69.3 88.0 77.6 49.6 89.7 63.9
U-DOP 70.8 88.2 78.5 63.9 51.2 90.5 65.4
UML-DOP 82.9 66.4 67.0

Parsing from plain text
DMV+CCM(DISTR.) 65.2 82.8 72.9
Incremental 75.6 76.2 75.9 58.9 55.9 57.4 51.0 69.8 59.0 34.8 48.9 40.6
Incremental (right to left) 75.9 72.5 74.2 59.3 52.2 55.6 50.4 68.3 58.0 32.9 45.5 38.2

Table 1: Parsing results on WSJ10, WSJ40, Negra10 and Negra40.

• If l = (w, 1):

◦ If Aw
σ (In) > 0:

Wt(x
d
→ y) = min(s(l), Āw

σ (In))

◦ Otherwise, if Aw
σ (In∗) ≥ |Aw

σ (In)|:

Wt(x
d
→ y) = min(s(l), Āw

σ (In∗))

where if Aw
σ (In∗) < 0 and Aw

σ (Out) ≤ 0 then
d = 1 and otherwise d = 0.

• If Aw
σ (Out) ≤ 0 and Aw

σ (In) ≤ 0 and either
l = (w, 1) or Aw

σ (Out) = 0:

Wt(x
0
→ y) = s(l)

• In all other cases, Wt(x
d
→ y) = 0.

A link x
1
→ y attaches x to y but does not place

y inside the smallest bracket covering x. Such links
are therefore created in the second case above, when
the attachment indication is mixed.

To explain the third case, recall that s(l) > 0
means that the label l is stronger than Stop on Ax

i .
This implies a link unless the properties of w block
it. One way in which w can block the link is to have
a positive strength for the link in the opposite direc-
tion. Another way in which the properties of w can
block the link is if l = (w, 0) and Aw

σ (Out) < 0,
that is, if the learning process has explicitly deter-
mined that no outbound link from w (which repre-
sents x in this case) is possible. The same conclu-
sion cannot be drawn from a negative value for the
In property when l = (w, 1) because, as with stan-
dard dependencies, a word determines its outbound
links much more strongly than its inbound links.

6 Experiments

The incremental parser was tested on the Wall Street
Journal and Negra Corpora.2 Parsing accuracy was
evaluated on the subsets WSJX and NegraX of
these corpora containing sentences of length at most
X (excluding punctuation). Some of these subsets
were used for scoring in (Klein and Manning, 2004;
Bod, 2006a; Bod, 2006b). I also use the same preci-
sion and recall measures used in those papers: mul-
tiple brackets and brackets covering a single word
were not counted, but the top bracket was.

The incremental parser learns while parsing, and
it could, in principle, simply be evaluated for a sin-
gle pass of the data. But, because the quality of the
parses of the first sentences would be low, I first
trained on the full corpus and then measured pars-
ing accuracy on the corpus subset. By training on
the full corpus, the procedure differs from that of
Klein, Manning and Bod who only train on the sub-
set of bounded length sentences. However, this ex-
cludes the induction of parts-of-speech for parsing
from plain text. When Klein and Manning induce
the parts-of-speech, they do so from a much larger
corpus containing the full WSJ treebank together
with additional WSJ newswire (Klein and Manning,
2002). The comparison between the algorithms re-
mains, therefore, valid.

Table 1 gives two baselines and the parsing re-
sults for WSJ10, WSJ40, Negra10 and Negra40
for recent unsupervised parsing algorithms: CCM

2I also tested the incremental parser on the Chinese Tree-
bank version 5.0, achieving an F1 score of 54.6 on CTB10 and
38.0 on CTB40. Because this version of the treebank is newer
and clearly different from that used by previous papers, the re-
sults are not comparable and only given here for completeness.
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and DMV+CCM (Klein and Manning, 2004), U-
DOP (Bod, 2006b) and UML-DOP (Bod, 2006a).
The middle part of the table gives results for pars-
ing from part-of-speech sequences extracted from
the treebank while the bottom part of the table given
results for parsing from plain text. Results for the in-
cremental parser are given for learning and parsing
from left to right and from right to left.

The first baseline is the standard right-branching
baseline. The second baseline modifies right-
branching by using punctuation in the same way as
the incremental parser: brackets (except the top one)
are not allowed to contain stopping punctuation. It
can be seen that punctuation accounts for merely a
small part of the incremental parser’s improvement
over the right-branching heuristic.

Comparing the two algorithms parsing from plain
text (of WSJ10), it can be seen that the incremental
parser has a somewhat higher combined F1 score,
with better precision but worse recall. This is be-
cause Klein and Manning’s algorithms (as well as
Bod’s) always generate binary parse trees, while
here no such condition is imposed. The small differ-
ence between the recall (76.2) and precision (75.6)
of the incremental parser shows that the number of
brackets induced by the parser is very close to that
of the corpus3 and that the parser captures the same
depth of syntactic structure as that which was used
by the corpus annotators.

Incremental parsing from right to left achieves re-
sults close to those of parsing from left to right. This
shows that the incremental parser has no built-in bias
for right branching structures.4 The slight degra-
dation in performance may suggest that language
should not, after all, be processed backwards.

While achieving state of the art accuracy, the algo-
rithm also proved to be fast, parsing (on a 1.86GHz
Centrino laptop) at a rate of around 4000 words/sec.
and learning (including parsing) at a rate of 3200 –
3600 words/sec. The effect of sentence length on
parsing speed is small: the full WSJ corpus was
parsed at 3900 words/sec. while WSJ10 was parsed
at 4300 words/sec.

3The algorithm produced 35588 brackets compared with
35302 brackets in the corpus.

4I would like to thank Alexander Clark for suggesting this
test.

7 Conclusions

The unsupervised parser I presented here attempts
to make use of several universal properties of nat-
ural languages: it captures the skewness of syntac-
tic trees in its syntactic representation, restricts the
search space by processing utterances incrementally
(as humans do) and relies on the Zipfian distribution
of words to guide its parsing decisions. It uses an
elementary bootstrapping process to deduce the ba-
sic properties of the language being parsed. The al-
gorithm seems to successfully capture some of these
basic properties, but can be further refined to achieve
high quality parsing. The current algorithm is a good
starting point for such refinement because it is so
very simple.

Acknowledgments I would like to thank Dick de
Jongh for many hours of discussion, and Remko
Scha, Reut Tsarfaty and Jelle Zuidema for reading
and commenting on various versions of this paper.
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Abstract

This paper introduces a Maximum Entropy
dependency parser based on an efficient k-
best Maximum Spanning Tree (MST) algo-
rithm. Although recent work suggests that
the edge-factored constraints of the MST al-
gorithm significantly inhibit parsing accu-
racy, we show that generating the 50-best
parses according to an edge-factored model
has an oracle performance well above the
1-best performance of the best dependency
parsers. This motivates our parsing ap-
proach, which is based on reranking the k-
best parses generated by an edge-factored
model. Oracle parse accuracy results are
presented for the edge-factored model and
1-best results for the reranker on eight lan-
guages (seven from CoNLL-X and English).

1 Introduction

The Maximum Spanning Tree algorithm1 was re-
cently introduced as a viable solution for non-
projective dependency parsing (McDonald et al.,
2005b). The dependency parsing problem is nat-
urally a spanning tree problem; however, effi-
cient spanning-tree optimization algorithms assume
a cost function which assigns scores independently
to edges of the graph. In dependency parsing, this
effectively constrains the set of models to those
which independently generate parent-child pairs;

1In this paper we deal only with MSTs on directed graphs.
These are often referred to in the graph-theory literature as Max-
imum Spanning Arborescences.

these are known as edge-factored models. These
models are limited to relatively simple features
which exclude linguistic constructs such as verb
sub-categorization/valency, lexical selectional pref-
erences, etc.2

In order to explore a rich set of syntactic fea-
tures in the MST framework, we can either approx-
imate the optimal non-projective solution as in Mc-
Donald and Pereira (2006), or we can use the con-
strained MST model to select a subset of the set
of dependency parses to which we then apply less-
constrained models. An efficient algorithm for gen-
erating the k-best parse trees for a constituency-
based parser was presented in Huang and Chiang
(2005); a variation of that algorithm was used for
generating projective dependency trees for parsing
in Dreyer et al. (2006) and for training in McDonald
et al. (2005a). However, prior to this paper, an effi-
cient non-projective k-best MST dependency parser
has not been proposed.3

In this paper we show that the naı̈ve edge-factored
models are effective at selecting sets of parses on
which the oracle parse accuracy is high. The or-
acle parse accuracy for a set of parse trees is the
highest accuracy for any individual tree in the set.
We show that the 1-best accuracy and oracle accu-
racy can differ by as much as an absolute 9% when
the oracle is computed over a small set generated by
edge-factored models (k = 50).

2Labeled edge-factored models can capture selectional pref-
erence; however, the unlabeled models presented here are lim-
ited to modeling head-child relationships without predicting the
type of relationship.

3The work of McDonald et al. (2005b) would also benefit
from a k-best non-projective parser for training.
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two

share
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house
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of

furniture

.

Figure 1: A dependency graph for an English sen-
tence in our development set (Penn WSJ section 24):
Two share a house almost devoid of furniture.

The combination of two discriminatively trained
models, a k-best MST parser and a parse tree
reranker, results in an efficient parser that includes
complex tree-based features. In the remainder of the
paper, we first describe the core of our parser, the
k-best MST algorithm. We then introduce the fea-
tures that we use to compute edge-factored scores
as well as tree-based scores. Following, we outline
the technical details of our training procedure and fi-
nally we present empirical results for the parser on
seven languages from the CoNLL-X shared-task and
a dependency version of the WSJ Penn Treebank.

2 MST in Dependency Parsing

Work on statistical dependency parsing has utilized
either dynamic-programming (DP) algorithms or
variants of the Edmonds/Chu-Liu MST algorithm
(see Tarjan (1977)). The DP algorithms are gener-
ally variants of the CKY bottom-up chart parsing al-
gorithm such as that proposed by Eisner (1996). The
Eisner algorithm efficiently (O(n3)) generates pro-
jective dependency trees by assembling structures
over contiguous words in a clever way to minimize
book-keeping. Other DP solutions use constituency-
based parsers to produce phrase-structure trees, from
which dependency structures are extracted (Collins
et al., 1999). A shortcoming of the DP-based ap-
proaches is that they are unable to generate non-
projective structures. However, non-projectivity is
necessary to capture syntactic phenomena in many
languages.

McDonald et al. (2005b) introduced a model for
dependency parsing based on the Edmonds/Chu-Liu
algorithm. The work we present here extends their
work by exploring a k-best version of the MST algo-

rithm. In particular, we consider an algorithm pro-
posed by Camerini et al. (1980) which has a worst-
case complexity of O(km log(n)), where k is the
number of parses we want, n is the number of words
in the input sentence, and m is the number of edges
in the hypothesis graph. This can be reduced to
O(kn2) in dense graphs4 by choosing appropriate
data structures (Tarjan, 1977). Under the models
considered here, all pairs of words are considered
as candidate parents (children) of another, resulting
in a fully connected graph, thus m = n2.

In order to incorporate second-order features
(specifically, sibling features), McDonald et al. pro-
posed a dependency parser based on the Eisner algo-
rithm (McDonald and Pereira, 2006). The second-
order features allow for more complex phrasal rela-
tionships than the edge-factored features which only
include parent/child features. Their algorithm finds
the best solution according to the Eisner algorithm
and then searches for the single valid edge change
that increases the tree score. The algorithm iter-
ates until no better single edge substitution can im-
prove the score of the tree. This greedy approxi-
mation allows for second-order constraints and non-
projectivity. They found that applying this method
to trees generated by the Eisner algorithm using
second-order features performs better than applying
it to the best tree produced by the MST algorithm
with first-order (edge-factored) features.

In this paper we provide a new evaluation of the
efficacy of edge-factored models, k-best oracle re-
sults. We show that even when k is small, the
edge-factored models select k-best sets which con-
tain good parses. Furthermore, these good parses
are even better than the parses selected by the best
dependency parsers.

2.1 k-best MST Algorithm
The k-best MST algorithm we introduce in this pa-
per is the algorithm described in Camerini et al.
(1980). For proofs of complexity and correctness,
we defer to the original paper. This section is in-
tended to provide the intuitions behind the algo-
rithm and allow for an understanding of the key data-
structures necessary to ensure the theoretical guar-
antees.

4A dense graph is one in which the number of edges is close
to the number of edges in a fully connected graph (i.e., n2).
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Figure 2: Simulated 1-best MST algorithm.

Let G = {V,E} be a directed graph
where V = {R, v1, . . . , vn} and E =
{e11, e12, . . . , e1n, e21, . . . , enn}. We refer to
edge eij as the edge that is directed from vi into
vj in the graph. The initial dependency graph in
Figure 2 (column G) contains three regular nodes
and a root node.

Algorithm 1 is a version of the MST algorithm
as presented by Camerini et al. (1980); subtleties of
the algorithm have been omitted. Arguments Y (a
branching5) and Z (a set of edges) are constraints on
the edges that can be part of the solution, A. Edges
in Y are required to be in the solution and edges in

5A branching is a subgraph that contains no cycles and no
more than one edge directed into each node.

Algorithm 1 Sketch of 1-best MST algorithm
procedure BEST(G, Y, Z)

G = (G ∪ Y )− Z
B = ∅
C = V

5: for unvisited vertex vi ∈ V do
mark vi as visited
get best in-edge b ∈ {ejk : k = i} for vi

B = B ∪ b
β(vi) = b

10: if B contains a cycle C then
create a new node vn+1

C = C ∪ vn+1

make all nodes of C children of vn+1 in C
COLLAPSE all nodes of C into vn+1

15: ADD vn+1 to list of unvisited vertices
n = n + 1
B = B − C

end if
end for

20: EXPAND C choosing best way to break cycles
Return best A = {b ∈ E|∃v ∈ V : β(v) = b}

and C

end procedure

Z cannot be part of the solution. The branching C
stores a hierarchical history of cycle collapses, en-
capsulating embedded cycles and allowing for an ex-
panding procedure, which breaks cycles while main-
taining an optimal solution.

Figure 2 presents a view of the algorithm when
run on a three node graphs (plus a specified root
node). Steps S1, S2, S4, and S5 depict the process-
ing of lines 5 to 8, recording in β the best input edges
for each vertex. Steps S3 and S6 show the process of
collapsing a cycle into a new node (lines 10 to 16).

The main loop of the algorithm processes each
vertex that has not yet been visited. We look up the
best incoming edge (which is stored in a priority-
queue). This value is recorded in β and the edge is
added to the current best graph B. We then check
to see if adding this new edge would create a cycle
in B. If so, we create a new node and collapse the
cycle into it. This can be seen in Step S3 in Figure 2.

The process of collapsing a cycle into a node in-
volves removing the edges in the cycle from B, and
adjusting the weights of all edges directed into any
node in the cycle. The weights are adjusted so that
they reflect the relative difference of choosing the
new in-edge rather than the edge in the cycle. In
step S3, observe that edge eR1 had a weight of 5, but
now that it points into the new node v4, we subtract
the weight of the edge e21 that also pointed into v1,
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which was 10. Additionally, we record in C the re-
lationship between the new node v4 and the original
nodes v1 and v2.

This process continues until we have visited all
original and newly created nodes. At that point, we
expand the cycles encoded in C. For each node not
originally in G (e.g., v5, v4), we retrieve the edge er

pointing into this node, recorded in β. We identify
the node vs to which er pointed in the original graph
G and set β(vs) = er.

Algorithm 2 Sketch of next-best MST algorithm
procedure NEXT(G, Y, Z, A, C)

δ ← +∞
for unvisited vertex v do

get best in-edge b for v
5: if b ∈ A− Y then

f ← alternate edge into v
if swapping f with b results in smaller δ then

update δ, let e← f
end if

10: end if
if b forms a cycle then

Resolve as in 1-best
end if

end for
15: Return edge e and δ

end procedure

Algorithm 2 returns the single edge, e, of the 1-
best solution A that, when removed from the graph,
results in a graph for which the best solution is the
next best solution after A. Additionally, it returns
δ, the difference in score between A and the next
best tree. The branching C is passed in from Algo-
rithm 1 and is used here to efficiently identify alter-
nate edges, f , for edge e.

Y and Z in Algorithms 1 and 2 are used to con-
struct the next best solutions efficiently. We call
GY,Z a constrained graph; the constraints being that
Y restricts the in-edges for a subset of nodes: for
each vertex with an in-edge in Y , only the edge of
Y can be an in-edge of the vertex. Also, edges in
Z are removed from the graph. A constrained span-
ning tree for GY,Z (a tree covering all nodes in the
graph) must satisfy: Y ⊆ A ⊆ E − Z.

Let A be the (constrained) solution to a (con-
strained) graph and let e be the edge that leads to the
next best solution. The third-best solution is either
the second-best solution to GY,{Z∪e} or the second-
best solution to G{Y ∪e},Z . The k-best ranking al-
gorithm uses this fact to incrementally partition the

solution space: for each solution, the next best either
will include e or will not include e.

Algorithm 3 k-best MST ranking algorithm
procedure RANK(G, k)

A, C ← best(E, V, ∅, ∅)
(e, δ)← next(E, V, ∅, ∅, A, C)
bestList← A

5: Q← enqueue(s(A)− δ, e, A, C, ∅, ∅)
for j ← 2 to k do

(s, e, A, C, Y, Z) = dequeue(Q)
Y ′ = Y ∪ e
Z′ = Z ∪ e

10: A′, C′ ← best(E, V, Y, Z′)
bestList← A′

e′, δ′ ← next(E, V, Y ′, Z, A′, C′)
Q← enqueue(s(A)− δ′, e′, A′, C′, Y ′, Z)
e′, δ′ ← next(E, V, Y, Z′, A′, C′)

15: Q← enqueue(s(A)− δ′, e′, A′, C′, Y, Z′)
end for
Return bestList

end procedure

The k-best ranking procedure described in Algo-
rithm 3 uses a priority queue, Q, keyed on the first
parameter to enqueue to keep track of the horizon
of next best solutions. The function s(A) returns the
score associated with the tree A. Note that in each
iteration there are two new elements enqueued rep-
resenting the sets GY,{Z∪e} and G{Y ∪e},Z .

Both Algorithms 1 and 2 run in O(m log(n)) time
and can run in quadratic time for dense graphs with
the use of an efficient priority-queue6 (i.e., based
on a Fibonacci heap). Algorithm 3 runs in con-
stant time, resulting in an O(km log n) algorithm (or
O(kn2) for dense graphs).

3 Dependency Models

Each of the two stages of our parser is based on a dis-
criminative training procedure. The edge-factored
model is based on a conditional log-linear model
trained using the Maximum Entropy constraints.

3.1 Edge-factored MST Model

One way in which dependency parsing differs from
constituency parsing is that there is a fixed amount of
structure in every tree. A dependency tree for a sen-
tence of n words has exactly n edges,7 each repre-

6Each vertex keeps a priority queue of candidate parents.
When a cycles is collapsed, the new vertex inherits the union of
queues associated with the vertices of the cycle.

7We assume each tree has a root node.
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senting a syntactic or semantic relationship, depend-
ing on the linguistic model assumed for annotation.
A spanning tree (equivalently, a dependency parse)
is a subgraph for which each node has one in-edge,
the root node has zero in-edges, and there are no cy-
cles.

Edge-factored features are defined over the edge
and the input sentence. For each of the n2 par-
ent/child pairs, we extract the following features:

Node-type There are three basic node-type fea-
tures: word form, morphologically reduced
lemma, and part-of-speech (POS) tag. The
CoNLL-X data format8 describes two part-of-
speech tag types, we found that features derived
from the coarse tags are more reliable. We con-
sider both unigram (parent or child) and bigram
(composite parent/child) features. We refer to
parent features with the prefix p- and child fea-
ture with the prefix c-; for example: p–pos,
p–form, c–pos, and c–form. In our model we
use both word form and POS tag and include
the composite form/POS features: p–form/c–
pos and p–pos/c–form.

Branch A binary feature which indicates whether
the child is to the left or right of the parent
in the input string. Additionally, we provide
composite features p–pos/branch and p–pos/c–
pos/branch.

Distance The number of words occurring between
the parent and child word. These distances are
bucketed into 7 buckets (1 through 6 plus an ad-
ditional single bucket for distances greater than
6). Additionally, this feature is combined with
node-type features: p–pos/dist, c–pos/dist, p–
pos/c–pos/dist.

Inside POS tags of the words between the parent
and child. A count of each tag that occurs is
recorded, the feature is identified by the tag and
the feature value is defined by the count. Addi-
tional composite features are included combin-
ing the inside and node-type: for each type ti
the composite features are: p–pos/ti, c–pos/ti,
p–pos/c–pos/ti.

8The 2006 CoNLL-X data format can be found on-line at:
http://nextens.uvt.nl/˜conll/.

Outside Exactly the same as the Inside feature ex-
cept that it is defined over the features to the
left and right of the span covered by this parent-
child pair.

Extra-Feats Attribute-value pairs from the CoNLL
FEATS field including combinations with par-
ent/child node-types. These features represent
word-level annotations provided in the tree-
bank and include morphological and lexical-
semantic features. These do not exist in the En-
glish data.

Inside Edge Similar to Inside features, but only
includes nodes immediately to left and right
within the span covered by the parent/child
pair. We include the following features where
il and ir are the inside left and right POS tags
and ip is the inside POS tag closest to the par-
ent: il/ir, p–pos/ip, p–pos/il/ir/c–pos,

Outside Edge An Outside version of the Inside
Edge feature type.

Many of the features above were introduced in
McDonald et al. (2005a); specifically, the node-
type, inside, and edge features. The number of fea-
tures can grow quite large when form or lemma fea-
tures are included. In order to handle large training
sets with a large number of features we introduce a
bagging-based approach, described in Section 4.2.

3.2 Tree-based Reranking Model
The second stage of our dependency parser is a
reranker that operates on the output of the k-best
MST parser. Features in this model are not con-
strained as in the edge-factored model. Many
of the model features have been inspired by the
constituency-based features presented in Charniak
and Johnson (2005). We have also included features
that exploit non-projectivity where possible. The
node-type is the same as defined for the MST model.

MST score The score of this parse given by the
first-stage MST model.

Sibling The POS-tag of immediate siblings. In-
tended to capture the preference for particular
immediate siblings such as modifiers.

Valency Count of the number of children for each
word (indexed by POS-tag of the word). These
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counts are bucketed into 4 buckets. For ex-
ample, a feature may look like p–pos=VB/v=4,
meaning the POS tag of the parent is ‘VB’ and
it had 4 dependents.

Sub-categorization A string representing the se-
quence of child POS tags for each parent POS-
tag.

Ancestor Grandparent and great grandparent POS-
tag for each word. Composite features are gen-
erated with the label c–pos/p–pos/gp–pos and
c–pos/p–pos/ggp–pos (where gp is the grand-
parent and ggp is the great grand-parent).

Edge POS-tag to the left and right of the subtree,
both inside and outside the subtree. For exam-
ple, say a subtree with parent POS-tag p–pos
spans from i to j, we include composite out-
side features: p–pos/ni−1–pos/nj+1–pos, p–
pos/ni−1–pos, p–pos/nj+1–pos; and composite
inside features: p–pos/ni+1–pos/nj−1–pos, p–
pos/ni+1–pos, p–pos/nj−1–pos.

Branching Factor Average number of left/right
branching nodes per POS-tag. Additionally, we
include a boolean feature indicating the overall
left/right preference.

Depth Depth of the tree and depth normalized by
sentence length.

Heavy Number of dominated nodes per POS-tag.
We also include the average number of nodes
dominated by each POS-tag.

4 MaxEnt Training

We have adopted the conditional Maximum Entropy
(MaxEnt) modeling paradigm as outlined in Char-
niak and Johnson (2005) and Riezler et al. (2002).
We can partition the training examples into indepen-
dent subsets, Ys: for the edge-factored MST models,
each set represents a word and its candidate parents;
for the reranker, each set represents the k-best trees
for a particular sentence. We wish to estimate the
conditional distribution over hypotheses in the set yi,
given the set: p(yi|Ys) = exp(

P
k λkfik)P

j:yj∈Ys
exp(

P
k′ λk′fjk′ )

,

where fik is the kth feature function in the model
for example yi.

4.1 MST Training
Our MST parser training procedure involves enu-
merating the n2 potential tree edges (parent/child
pairs). Unlike the training procedure employed by
McDonald et al. (2005b) and McDonald and Pereira
(2006), we provide positive and negative examples
in the training data. A node can have at most one
parent, providing a natural split of the n2 training
examples. For each node ni, we wish to estimate
a distribution over n nodes9 as potential parents,
p(vi, eji|e i), the probability of the correct parent of
vi being vj given the set of edges associated with
its candidate parents e i. We call this the parent-
prediction model.

4.2 MST Bagging
The complexity of the training procedure is a func-
tion of the number of features and the number of ex-
amples. For large datasets, we use an ensemble tech-
nique inspired by Bagging (Breiman, 1996). Bag-
ging is generally used to mitigate high variance in
datasets by sampling, with replacement, from the
training set. Given that we wish to include some
of the less frequent examples and therefore are not
necessarily avoiding high variance, we partition the
data into disjoint sets.

For each of the sets, we train a model indepen-
dently. Furthermore, we only allow the parame-
ters to be changed for those features observed in the
training set. At inference time, we apply each model
to the training data and then combine the prediction
probabilities.

p̃θ(yi|Ys) = max
m

pθm(yi|Ys) (1)

p̃θ(yi|Ys) =
1
M

∑
m

pθm(yi|Ys) (2)

p̃θ(yi|Ys) =

(∏
m

pθm(yi|Ys)

)1/M

(3)

p̃θ(yi|Ys) =
M∑

m
1

pθm (yi|Ys)

(4)

Equations 1, 2, 3, and 4 are the maximum, aver-
age, geometric mean, and harmonic mean, respec-
tively. We performed an exploration of these on the

9Recall that in addition to the n−1 other nodes in the graph,
there is a root node for which we know has no parents.
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development data and found that the geometric mean
produces the best results (Equation 3); however, we
observed only very small differences in the accuracy
among models where only the combination function
differed.

4.3 Reranker Training

The second stage of parsing is performed by our
tree-based reranker. The input to the reranker is a
list of k parses generated by the k-best MST parser.
For each input sentence, the hypothesis set is the k
parses. At inference time, predictions are made in-
dependently for each hypothesis set Ys and therefore
the normalization factor can be ignored.

5 Empirical Evaluation

The CoNLL-X shared task on dependency parsing
provided data for a number of languages in a com-
mon data format. We have selected seven of these
languages for which the data is available to us. Ad-
ditionally, we have automatically generated a depen-
dency version of the Penn WSJ treebank.10 As we
are only interested in the structural component of a
parse in this paper, we present results for unlabeled
dependency parsing. A second labeling stage can be
applied to get labeled dependency structures as de-
scribed in (McDonald et al., 2006).

In Table 1 we report the accuracy for seven of
the CoNLL languages and English.11 Already, at
k = 50, we see the oracle rate climb as much as
9.25% over the 1-best result (Dutch). Continuing to
increase the size of the k-best lists adds to the oracle
accuracy, but the relative improvement appears to be
increasing at a logarithmic rate. The k-best parser is
used both to train the k-best reranker and, at infer-
ence time, to select a set of hypotheses to rerank. It
is not necessary that training is done with the same
size hypothesis set as test, we explore the matched
and mismatched conditions in our reranking experi-
ments.

10The Penn WSJ treebank was converted using the con-
version program described in (Johansson and Nugues, 2007)
and available on the web at: http://nlp.cs.lth.se/
pennconverter/

11The Best Reported results is from the CoNLL-X competi-
tion. The best result reported for English is the Charniak parser
(without reranking) on Section 23 of the WSJ Treebank using
the same head-finding rules as for the evaluation data.

Table 2 shows the reranking results for the set of
languages. For each language, we select model pa-
rameters on a development set prior to running on
the test data. These parameters include a feature
count threshold (the minimum number of observa-
tions of a feature before it is included in a model)
and a mixture weight controlling the contribution of
a quadratic regularizer (used in MaxEnt training).
For Czech, German, and English, we use the MST
bagging technique with 10 bags. These test results
are for the models which performed best on the de-
velopment set (using 50-best parses).

We see minor improvements over the 1-best base-
line MST output (repeated in this table for compar-
ison). We believe this is due to the overwhelming
number of parameters in the reranking models and
the relatively small amount of training data. Inter-
estingly, increasing the number of hypotheses helps
for some languages and hurts the others.

6 Conclusion

Although the edge-factored constraints of MST
parsers inhibit accuracy in 1-best parsing, edge-
factored models are effective at selecting high accu-
racy k-best sets. We have introduced the Camerini
et al. (1980) k-best MST algorithm and have shown
how to efficiently train MaxEnt models for depen-
dency parsing. Additionally, we presented a uni-
fied modeling and training setting for our two-stage
parser; MaxEnt training is used to estimate the pa-
rameters in both models. We have introduced a
particular ensemble technique to accommodate the
large training sets generated by the first-stage edge-
factored modeling paradigm. Finally, we have pre-
sented a reranker which attempts to select the best
tree from the k-best set. In future work we wish
to explore more robust feature sets and experiment
with feature selection techniques to accommodate
them.
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Language Best Oracle Accuracy
Reported k = 1 k = 10 k = 50 k = 100 k = 500

Arabic 79.34 77.92 80.72 82.18 83.03 84.47
Czech 87.30 83.56 88.50 90.88 91.80 93.50
Danish 90.58 89.12 92.89 94.79 95.29 96.59
Dutch 83.57 81.05 87.43 90.30 91.28 93.12
English 92.36 85.04 89.04 91.12 91.87 93.42
German 90.38 87.02 91.51 93.39 94.07 95.47
Portuguese 91.36 89.86 93.11 94.85 95.39 96.47
Swedish 89.54 86.50 91.20 93.37 93.83 95.42

Table 1: k-best MST oracle results. The 1-best results represent the performance of the parser in isolation.
Results are reported for the CoNLL test set and for English, on Section 23 of the Penn WSJ Treebank.

Language Best Reranked Accuracy
Reported 1-best 10-best 50-best 100-best 500-best

Arabic 79.34 77.61 78.06 78.02 77.94 77.76
Czech 87.30 83.56 83.94 84.14 84.48 84.46
Danish 90.58 89.12 89.48 89.76 89.68 89.74
Dutch 83.57 81.05 82.01 82.91 82.83 83.21
English 92.36 85.04 86.54 87.22 87.38 87.81
German 90.38 87.02 88.24 88.72 88.76 88.90
Portuguese 91.36 89.38 90.00 89.98 90.02 90.02
Swedish 89.54 86.50 87.87 88.21 88.26 88.53

Table 2: Second-stage results from the k-best parser and reranker. The Best Reported and 1-best fields are
copied from table 1. Only non-lexical features were used for the reranking models.
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Abstract 

How far can we get with unsupervised 

parsing if we make our training corpus 

several orders of magnitude larger than has 

hitherto be attempted? We present a new 

algorithm for unsupervised parsing using 

an all-subtrees model, termed U-DOP*, 

which parses directly with packed forests 

of all binary trees. We train both on Penn’s 

WSJ data and on the (much larger) NANC 

corpus, showing that U-DOP* outperforms 

a treebank-PCFG on the standard WSJ test 

set. While U-DOP* performs worse than 

state-of-the-art supervised parsers on hand-

annotated sentences, we show that the 

model outperforms supervised parsers 

when evaluated as a language model in 

syntax-based machine translation on 

Europarl. We argue that supervised parsers 

miss the fluidity between constituents and 

non-constituents and that in the field of 

syntax-based language modeling the end of 

supervised parsing has come in sight. 

1    Introduction 
 

A major challenge in natural language parsing is 

the unsupervised induction of syntactic structure. 

While most parsing methods are currently 

supervised or semi-supervised (McClosky et al. 

2006; Henderson 2004; Steedman et al. 2003), they 

depend on hand-annotated data which are difficult 

to come by and which exist only for a few 

languages. Unsupervised parsing methods are 

becoming increasingly important since they 

operate with raw, unlabeled data of which 

unlimited quantities are available. 

There has been a resurgence of interest in 

unsupervised parsing during the last few years. 

Where van Zaanen (2000) and Clark (2001) 

induced unlabeled phrase structure for small 

domains like the ATIS, obtaining around 40% 

unlabeled f-score, Klein and Manning (2002) 

report 71.1% f-score on Penn WSJ part-of-speech 

strings ≤ 10 words (WSJ10) using a constituent-

context model called CCM. Klein and Manning 

(2004) further show that a hybrid approach which 

combines constituency and dependency models, 

yields 77.6% f-score on WSJ10. 

While Klein and Manning’s approach may 

be described as an “all-substrings” approach to 

unsupervised parsing, an even richer model 

consists of an “all-subtrees” approach to 

unsupervised parsing, called U-DOP (Bod 2006). 

U-DOP initially assigns all unlabeled binary trees 

to a training set, efficiently stored in a packed 

forest, and next trains subtrees thereof on a held-

out corpus, either by taking their relative 

frequencies, or by iteratively training the subtree 

parameters using the EM algorithm (referred to as 

“UML-DOP”). The main advantage of an all-

subtrees approach seems to be the direct inclusion 

of discontiguous context that is not captured by 

(linear) substrings. Discontiguous context is 

important not only for learning structural 

dependencies but also for learning a variety of non-

contiguous constructions such as nearest … to… or 

take … by surprise. Bod (2006) reports 82.9% 

unlabeled f-score on the same WSJ10 as used by 

Klein and Manning (2002, 2004). Unfortunately, 

his experiments heavily depend on a priori 

sampling of subtrees, and the model becomes 

highly inefficient if larger corpora are used or 

longer sentences are included. 

In this paper we will also test an 

alternative model for unsupervised all-subtrees 
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parsing, termed U-DOP*, which is based on the 

DOP* estimator by Zollmann and Sima’an (2005), 

and which computes the shortest derivations for 

sentences from a held-out corpus using all subtrees 

from all trees from an extraction corpus. While we 

do not achieve as high an f-score as the UML-DOP 

model in Bod (2006), we will show that U-DOP* 

can operate without subtree sampling, and that the 

model can be trained on corpora that are two 

orders of magnitude larger than in Bod (2006). We 

will extend our experiments to 4 million sentences 

from the NANC corpus (Graff 1995), showing that 

an f-score of 70.7% can be obtained on the 

standard Penn WSJ test set by means of 

unsupervised parsing. Moreover, U-DOP* can be 

directly put to use in bootstrapping structures for 

concrete applications such as syntax-based 

machine translation and speech recognition. We 

show that U-DOP* outperforms the supervised 

DOP model if tested on the German-English 

Europarl corpus in a syntax-based MT system. 

In the following, we first explain the 

DOP* estimator and discuss how it can be 

extended to unsupervised parsing. In section 3, we 

discuss how a PCFG reduction for supervised DOP  

can be applied to packed parse forests. In section 4, 

we will go into an experimental evaluation of U-

DOP* on annotated corpora, while in section 5 we 

will evaluate U-DOP* on unlabeled corpora in an 

MT application.  

 

2     From DOP* to U-DOP* 
 

DOP* is a modification of the DOP model in Bod 

(1998) that results in a statistically consistent 

estimator and in an efficient training procedure 

(Zollmann and Sima’an 2005). DOP* uses the all-

subtrees idea from DOP: given a treebank, take all 

subtrees, regardless of size, to form a stochastic 

tree-substitution grammar (STSG). Since a parse 

tree of a sentence may be generated by several 

(leftmost) derivations, the probability of a tree is 

the sum of the probabilities of the derivations 

producing that tree. The probability of a derivation 

is the product of the subtree probabilities. The 

original DOP model in Bod (1998) takes the 

occurrence frequencies of the subtrees in the trees 

normalized by their root frequencies as subtree 

parameters. While efficient algorithms have been 

developed for this DOP model by converting it into 

a PCFG reduction (Goodman 2003), DOP’s 

estimator was shown to be inconsistent by Johnson 

(2002). That is, even with unlimited training data, 

DOP's estimator is not guaranteed to converge to 

the correct distribution.  

Zollmann and Sima’an (2005) developed a 

statistically consistent estimator for DOP which is 

based on the assumption that maximizing the joint 

probability of the parses in a treebank can be 

approximated by maximizing the joint probability 

of their shortest derivations (i.e. the derivations 

consisting of the fewest subtrees). This assumption 

is in consonance with the principle of simplicity, 

but there are also empirical reasons for the shortest 

derivation assumption: in Bod (2003) and Hearne 

and Way (2006), it is shown that DOP models that 

select the preferred parse of a test sentence using 

the shortest derivation criterion perform very well. 

On the basis of this shortest-derivation 

assumption, Zollmann and Sima’an come up with a 

model that uses held-out estimation: the training 

corpus is randomly split into two parts proportional 

to a fixed ratio: an extraction corpus EC and a 

held-out corpus HC. Applied to DOP, held-out 

estimation would mean to extract fragments from 

the trees in EC and to assign their weights such 

that the likelihood of HC is maximized. If we 

combine their estimation method with Goodman’s 

reduction of DOP, Zollman and Sima’an’s 

procedure operates as follows: 

 

(1) Divide a treebank into an EC and HC 

(2) Convert the subtrees from EC into a PCFG 

reduction 

(3) Compute the shortest derivations for the 

sentences in HC (by simply assigning each 

subtree equal weight and applying Viterbi 

1-best) 

(4) From those shortest derivations, extract the 

subtrees and their relative frequencies in 

HC to form an STSG 

 

Zollmann and Sima’an show that the resulting 

estimator is consistent. But equally important is the 

fact that this new DOP* model does not suffer 

from a decrease in parse accuracy if larger subtrees 

are included, whereas the original DOP model 

needs to be redressed by a correction factor to 

maintain this property (Bod 2003). Moreover, 

DOP*’s estimation procedure is very efficient, 

while the EM training procedure for UML-DOP 
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proposed in Bod (2006) is particularly time 

consuming and can only operate by randomly 

sampling trees. 

 Given the advantages of DOP*, we  will 

generalize this model in the current paper to 

unsupervised parsing. We will use the same all-

subtrees methodology as in Bod (2006), but now 

by applying the efficient and consistent DOP*-

based estimator. The resulting model, which we 

will call U-DOP*, roughly operates as follows: 

 

(1) Divide a corpus into an EC and HC 

(2) Assign all unlabeled binary trees to the 

sentences in EC, and store them in a 

shared parse forest 

(3) Convert the subtrees from the parse forests 

into a compact PCFG reduction (see next 

section) 

(4) Compute the shortest derivations for the 

sentences in HC (as in DOP*) 

(5) From those shortest derivations, extract the 

subtrees and their relative frequencies in 

HC to form an STSG 

(6) Use the STSG to compute the most 

probable parse trees for new test data by 

means of Viterbi n-best (see next section) 

 

We will use this U-DOP* model to investigate our 

main research question: how far can we get with 

unsupervised parsing if we make our training 

corpus several orders of magnitude larger than 

has hitherto be attempted?  

 

3  Converting shared parse forests into 

PCFG reductions 
 

The main computational problem is how to deal 

with the immense number of subtrees in U-DOP*. 

There exists already an efficient supervised 

algorithm that parses a sentence by means of all 

subtrees from a treebank. This algorithm was 

extensively described in Goodman (2003) and 

converts a DOP-based STSG into a compact PCFG 

reduction that generates eight rules for each node 

in the treebank. The reduction is based on the 

following idea: every node in every treebank tree is 

assigned a unique number which is called its 

address. The notation A@k denotes the node at 

address k where A is the nonterminal labeling that 

node. A new nonterminal is created for each node 

in the training data. This nonterminal is called Ak. 

Let aj represent the number of subtrees headed by 

the node A@j, and let a represent the number of 

subtrees headed by nodes with nonterminal A, that 

is a = Σj aj. Then there is a PCFG with the 

following property: for every subtree in the 

training corpus headed by A, the grammar will 

generate an isomorphic subderivation. For 

example, for a node (A@j (B@k, C@l)), the 

following eight PCFG rules in figure 1 are 

generated, where the number following a rule is its 

weight.  

 
Aj → BC       (1/aj) A → BC        (1/a) 

Aj → BkC      (bk/aj) A → BkC      (bk/a) 

Aj → BCl      (cl/aj) A → BCl         (cl/a) 

Aj → BkCl     (bkcl/aj) A → BkCl       (bkcl/a) 

 

Figure 1. PCFG reduction of supervised DOP 

 

By simple induction it can be shown that this 

construction produces PCFG derivations 

isomorphic to DOP derivations (Goodman 2003: 

130-133). The PCFG reduction is linear in the 

number of nodes in the corpus. 

While Goodman’s reduction method was 

developed for supervised DOP where each training 

sentence is annotated with exactly one tree, the 

method can be generalized to a corpus where each 

sentence is annotated with all possible binary trees 

(labeled with the generalized category X), as long 

as we represent these trees by a shared parse forest. 

A shared parse forest can be obtained by adding 

pointers from each node in the chart (or tabular 

diagram) to the nodes that caused it to be placed in 

the chart. Such a forest can be represented in cubic 

space and time (see Billot and Lang 1989). Then, 

instead of assigning a unique address to each node 

in each tree, as done by the PCFG reduction for 

supervised DOP, we now assign a unique address 

to each node in each parse forest for each sentence. 

However, the same node may be part of more than 

one tree. A shared parse forest is an AND-OR 

graph where AND-nodes correspond to the usual 

parse tree nodes, while OR-nodes correspond to 

distinct subtrees occurring in the same context. The 

total number of nodes is cubic in sentence length n. 

This means that there are O(n
3
) many nodes that 

receive a unique address as described above, to 

which next our PCFG reduction is applied. This is 

a huge reduction compared to Bod (2006) where 
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the number of subtrees of all trees increases with 

the Catalan number, and only ad hoc sampling 

could make the method work. 

Since U-DOP* computes the shortest 

derivations (in the training phase) by combining 

subtrees from unlabeled binary trees, the PCFG 

reduction in figure 1 can be represented as in 

figure 2, where X refers to the generalized category 

while B and C either refer to part-of-speech 

categories or are equivalent to X. The equal 

weights follow from the fact that the shortest 

derivation is equivalent to the most probable 

derivation if all subtrees are assigned equal 

probability (see Bod 2000; Goodman 2003). 

 
Xj → BC        1  X → BC        0.5 

Xj → BkC      1  X → BkC       0.5 

Xj → BCl       1  X → BCl         0.5 

Xj → BkCl      1  X → BkCl       0.5 

 

Figure 2. PCFG reduction for U-DOP* 

 

Once we have parsed HC with the shortest 

derivations by the PCFG reduction in figure 2, we 

extract the subtrees from HC to form an STSG. 

The number of subtrees in the shortest derivations 

is linear in the number of nodes (see Zollmann and 

Sima’an 2005, theorem 5.2). This means that U-

DOP* results in an STSG which is much more 

succinct than previous DOP-based STSGs. 

Moreover, as in Bod (1998, 2000), we use an 

extension of Good-Turing to smooth the subtrees 

and to deal with ‘unknown’ subtrees. 

Note that the direct conversion of parse 

forests into a PCFG reduction also allows us to 

efficiently implement the maximum likelihood 

extension of U-DOP known as UML-DOP (Bod 

2006). This can be accomplished by training the 

PCFG reduction on the held-out corpus HC by 

means of the expectation-maximization algorithm, 

where the weights in figure 1 are taken as initial 

parameters. Both U-DOP*’s and UML-DOP’s 

estimators are known to be statistically consistent. 

But while U-DOP*’s training phase merely 

consists of the computation of the shortest 

derivations and the extraction of subtrees, UML-

DOP involves iterative training of the parameters. 

Once we have extracted the STSG, we 

compute the most probable parse for new 

sentences by Viterbi n-best, summing up the 

probabilities of derivations resulting in the same 

tree (the exact computation of the most probable 

parse is NP hard – see Sima’an 1996). We have 

incorporated the technique by Huang and Chiang 

(2005) into our implementation which allows for 

efficient Viterbi n-best parsing.  

 

4    Evaluation on hand-annotated corpora 
 

To evaluate U-DOP* against UML-DOP and other 

unsupervised parsing models, we started out with 

three corpora that are also used in Klein and 

Manning (2002, 2004) and Bod (2006): Penn’s 

WSJ10 which contains 7422 sentences ≤ 10 words 

after removing empty elements and punctuation, 

the German NEGRA10 corpus and the Chinese 

Treebank CTB10 both containing 2200+ sentences 

≤ 10 words after removing punctuation. As with 

most other unsupervised parsing models, we train 

and test on p-o-s strings rather than on word 

strings. The extension to word strings is 

straightforward as there exist highly accurate 

unsupervised part-of-speech taggers (e.g. Schütze 

1995) which can be directly combined with 

unsupervised parsers, but for the moment we will 

stick to p-o-s strings (we will come back to word 

strings in section 5). Each corpus was divided into 

10 training/test set splits of 90%/10% (n-fold 

testing), and each training set was randomly 

divided into two equal parts, that serve as EC and 

HC and vice versa. We used the same evaluation 

metrics for unlabeled precision (UP) and unlabeled 

recall (UR) as in Klein and Manning (2002, 2004). 

The two metrics of UP and UR are combined by 

the unlabeled f-score F1 = 2*UP*UR/(UP+UR). 

All trees in the test set were binarized beforehand, 

in the same way as in Bod (2006). 

 For UML-DOP the decrease in cross-

entropy became negligible after maximally 18 

iterations. The training for U-DOP* consisted in 

the computation of the shortest derivations for the 

HC from which the subtrees and their relative 

frequencies were extracted. We used the technique 

in Bod (1998, 2000) to include ‘unknown’ 

subtrees. Table 1 shows the f-scores for U-DOP* 

and UML-DOP against the f-scores for U-DOP 

reported in Bod (2006), the CCM model in Klein 

and Manning (2002), the DMV dependency model 

in Klein and Manning (2004) and their combined 

model DMV+CCM.  
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Model English 

(WSJ10) 

German 

(NEGRA10) 

Chinese 

(CTB10) 

CCM 71.9 61.6 45.0 

DMV 52.1 49.5 46.7 

DMV+CCM 77.6 63.9 43.3 

U-DOP 78.5 65.4 46.6 

U-DOP* 77.9 63.8 42.8 

UML-DOP 79.4 65.2 45.0 

 

Table 1. F-scores of U-DOP* and UML-DOP 

compared to other models on the same data. 
 

It should be kept in mind that an exact comparison 

can only be made between U-DOP* and UML-

DOP in table 1, since these two models were tested 

on 90%/10% splits, while the other models were 

applied to the full WSJ10, NEGRA10 and CTB10 

corpora. Table 1 shows that U-DOP* performs 

worse than UML-DOP in all cases, although the 

differences are small and was statistically 

significant only for WSJ10 using paired t-testing. 

As explained above, the main advantage of 

U-DOP* over UML-DOP is that it works with a 

more succinct grammar extracted from the shortest 

derivations of HC. Table 2 shows the size of the 

grammar (number of rules or subtrees) of the two 

models for resp. Penn WSJ10, the entire Penn WSJ 

and the first 2 million sentences from the NANC 

(North American News Text) corpus which 

contains a total of approximately 24 million 

sentences from different news sources. 

 

Model Size of 

STSG 

for WSJ10 

Size of 

STSG 

for Penn 

WSJ 
 

Size of STSG 

for 2,000K 

NANC  

U-DOP* 2.2 x 104 9.8 x 105 7.2 x 106 

UML-DOP 1.5 x 106 8.1 x 107 5.8 x 109 

 

Table 2. Grammar size of U-DOP* and UML-DOP 

for WSJ10 (7,7K sentences), WSJ (50K sentences) 

and the first 2,000K sentences from NANC. 

 

Note that while U-DOP* is about 2 orders of 

magnitudes smaller than UML-DOP for the 

WSJ10, it is almost 3 orders of magnitudes smaller 

for the first 2 million sentences of the NANC 

corpus. Thus even if U-DOP* does not give the 

highest f-score in table 1, it is more apt to be 

trained on larger data sets. In fact, a well-known 

advantage of unsupervised methods over 

supervised methods is the availability of almost 

unlimited amounts of text. Table 2 indicates that 

U-DOP*’s grammar is still of manageable size 

even for text corpora that are (almost) two orders 

of magnitude larger than Penn’s WSJ. The NANC 

corpus contains approximately 2 million WSJ 

sentences that do not overlap with Penn’s WSJ and 

has been previously used by McClosky et al. 

(2006) in improving a supervised parser by self-

training. In our experiments below we will start by 

mixing subsets from the NANC’s WSJ data with 

Penn’s WSJ data. Next, we will do the same with 2 

million sentences from the LA Times in the NANC 

corpus, and finally we will mix all data together for 

inducing a U-DOP* model. From Penn’s WSJ, we 

only use sections 2 to 21 for training (just as in 

supervised parsing) and section 23 (≤100 words) 

for testing, so as to compare our unsupervised 

results with some binarized supervised parsers. 

The NANC data was first split into 

sentences by means of a simple discriminitive 

model. It was next p-o-s tagged with the the TnT 

tagger (Brants 2000) which was trained on the 

Penn Treebank such that the same tag set was used. 

Next, we added subsets of increasing size from the 

NANC p-o-s strings to the 40,000 Penn WSJ p-o-s 

strings. Each time the resulting corpus was split 

into two halfs and the shortest derivations were 

computed for one half by using the PCFG-

reduction from the other half and vice versa. The 

resulting trees were used for extracting an STSG 

which in turn was used to parse section 23 of 

Penn’s WSJ. Table 3 shows the results. 

 

# sentences added  f-score by 

adding WSJ 

data 

f-score by 

adding LA 

Times data 

0 (baseline) 62.2 62.2 

100k 64.7 63.0 

250k 66.2 63.8 

500k 67.9 64.1 

1,000k 68.5 64.6 

2,000k 69.0 64.9 

 

Table 3. Results of U-DOP* on section 23 from 

Penn’s WSJ by adding sentences from NANC’s 

WSJ and NANC’s LA Times 
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Table 3 indicates that there is a monotonous 

increase in f-score on the WSJ test set if NANC 

text is added to our training data in both cases, 

independent of whether the sentences come from 

the WSJ domain or the LA Times domain. 

Although the effect of adding LA Times data is 

weaker than adding WSJ data, it is noteworthy that 

the unsupervised induction of trees from the LA 

Times domain still improves the f-score even if the 

test data are from a different domain.  

We also investigated the effect of adding 

the LA Times data to the total mix of Penn’s WSJ 

and NANC’s WSJ. Table 4 shows the results of 

this experiment, where the baseline of 0 sentences 

thus starts with the 2,040k sentences from the 

combined Penn-NANC WSJ data. 

 

Sentences added 

from LA Times to 

Penn-NANC WSJ 

f-score by 

adding LA 

Times data 

0 69.0 

100k 69.4 

250k 69.9 

500k 70.2 

1,000k 70.4 

2,000k 70.7 

 

Table 4. Results of U-DOP* on section 23 from 

Penn’s WSJ by mixing sentences from the 

combined Penn-NANC WSJ with additions from 

NANC’s LA Times. 

 

As seen in table 4, the f-score continues to increase 

even when adding LA Times data to the large 

combined set of Penn-NANC WSJ sentences. The 

highest f-score is obtained by adding 2,000k 

sentences, resulting in a total training set of 4,040k 

sentences. We believe that our result is quite 

promising for the future of unsupervised parsing.  

In putting our best f-score in table 4 into 

perspective, it should be kept in mind that the gold 

standard trees from Penn-WSJ section 23 were 

binarized. It is well known that such a binarization 

has a negative effect on the f-score. Bod (2006) 

reports that an unbinarized treebank grammar 

achieves an average 72.3% f-score on WSJ 

sentences ≤ 40 words, while the binarized version 

achieves only 64.6% f-score. To compare U-

DOP*’s results against some supervised parsers, 

we additionally evaluated a PCFG treebank 

grammar and the supervised DOP* parser using 

the same test set. For these supervised parsers, we 

employed the standard training set, i.e. Penn’s WSJ 

sections 2-21, but only by taking the p-o-s strings 

as we did for our unsupervised U-DOP* model. 

Table 5 shows the results of this comparison. 

 

Parser f-score 

U-DOP* 70.7 

Binarized treebank PCFG 63.5 

Binarized DOP* 80.3 

 

Table 5. Comparison between the (best version of) 

U-DOP*, the supervised treebank PCFG and the 

supervised DOP* for section 23 of Penn’s WSJ 

 

As seen in table 5, U-DOP* outperforms the 

binarized treebank PCFG on the WSJ test set. 

While a similar result was obtained in Bod (2006), 

the absolute difference between unsupervised 

parsing and the treebank grammar was extremely 

small in Bod (2006): 1.8%, while the difference in 

table 5 is 7.2%, corresponding to 19.7% error 

reduction. Our f-score remains behind the 

supervised version of DOP* but the gap gets 

narrower as more training data is being added to 

U-DOP*.  

 

5   Evaluation on unlabeled corpora in a 

practical application 
 

Our experiments so far have shown that despite the 

addition of large amounts of unlabeled training 

data, U-DOP* is still outperformed by the 

supervised DOP* model when tested on hand-

annotated corpora like the Penn Treebank. Yet it is 

well known that any evaluation on hand-annotated 

corpora unreasonably favors supervised parsers. 

There is thus a quest for designing an evaluation 

scheme that is independent of annotations. One 

way to go would be to compare supervised and 

unsupervised parsers as a syntax-based language 

model in a practical application such as machine 

translation (MT) or speech recognition.  

 In Bod (2007), we compared U-DOP* and 

DOP* in a syntax-based MT system known as 

Data-Oriented Translation or DOT (Poutsma 2000; 

Groves et al. 2004). The DOT model starts with a 

bilingual treebank where each tree pair constitutes 

an example translation and where translationally 

equivalent constituents are linked. Similar to DOP, 
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the DOT model uses all linked subtree pairs from 

the bilingual treebank to form an STSG of linked 

subtrees, which are used to compute the most 

probable translation of a target sentence given a 

source sentence (see Hearne and Way 2006).   

What we did in Bod (2007) is to let both 

DOP* and U-DOP* compute the best trees directly 

for the word strings in the German-English 

Europarl corpus (Koehn 2005), which contains 

about 750,000 sentence pairs. Differently from U-

DOP*, DOP* needed to be trained on annotated 

data, for which we used respectively the Negra and 

the Penn treebank. Of course, it is well-known that 

a supervised parser’s f-score decreases if it is 

transferred to another domain: for example, the 

(non-binarized) WSJ-trained DOP model in Bod 

(2003) decreases from around 91% to 85.5% f-

score if tested on the Brown corpus. Yet, this score 

is still considerably higher than the accuracy 

obtained by the unsupervised U-DOP model, 

which achieves 67.6% unlabeled f-score on Brown 

sentences. Our main question of interest is in how 

far this difference in accuracy on hand-annotated 

corpora carries over when tested in the context of a 

concrete application like MT. This is not a trivial 

question, since U-DOP* learns ‘constituents’ for 

word sequences such as Ich möchte (“I would like 

to”) and There are (Bod 2007), which are usually 

hand-annotated as non-constituents. While U-

DOP* is punished for this ‘incorrect’ prediction if 

evaluated on the Penn Treebank, it may be 

rewarded for this prediction if evaluated in the 

context of machine translation using the Bleu score 

(Papineni et al. 2002). Thus similar to Chiang 

(2005), U-DOP can discover non-syntactic 

phrases, or simply “phrases”, which are typically 

neglected by linguistically syntax-based MT 

systems. At the same time, U-DOP* can also learn 

discontiguous constituents that are neglected by 

phrase-based MT systems (Koehn et al. 2003). 

In our experiments, we used both U-DOP* 

and DOP* to predict the best trees for the German-

English Europarl corpus. Next, we assigned links 

between each two nodes in the respective trees for 

each sentence pair. For a 2,000 sentence test set 

from a different part of the Europarl corpus we 

computed the most probable target sentence (using 

Viterbi n best). The Bleu score was used to 

measure translation accuracy, calculated by the 

NIST script with its default settings. As a baseline 

we compared our results with the publicly 

available phrase-based system Pharaoh (Koehn et 

al. 2003), using the default feature set. Table 6 

shows for each system the Bleu score together with 

a description of the productive units. ‘U-DOT’ 

refers to ‘Unsupervised DOT’ based on U-DOP*, 

while DOT is based on DOP*. 

 

System Productive Units Bleu-score 

U-DOT / U-DOP* Constituents and Phrases 0.280 

DOT / DOP* Constituents only 0.221 

Pharaoh Phrases only 0.251 

 

Table 6. Comparing U-DOP* and DOP* in syntax-

based MT on the German-English Europarl corpus 

against the Pharaoh system. 

 

The table shows that the unsupervised U-DOT 

model outperforms the supervised DOT model 

with 0.059. Using Zhang’s significance tester 

(Zhang et al. 2004), it turns out that this difference 

is statistically significant (p < 0.001). Also the 

difference between U-DOT and the baseline 

Pharaoh is statistically significant (p < 0.008). 

Thus even if supervised parsers like DOP* 

outperform unsupervised parsers like U-DOP* on 

hand-parsed data with >10%, the same supervised 

parser is outperformed by the unsupervised parser 

if tested in an MT application. Evidently, U-DOP’s 

capacity to capture both constituents and phrases 

pays off in a concrete application and shows the 

shortcomings of models that only allow for either 

constituents (such as linguistically syntax-based 

MT) or phrases (such as phrase-based MT). In Bod 

(2007) we also show that U-DOT obtains virtually 

the same Bleu score as Pharaoh after eliminating 

subtrees with discontiguous yields. 

 

6    Conclusion: future of supervised parsing 
 

In this paper we have shown that the accuracy of 

unsupervised parsing under U-DOP* continues to 

grow when enlarging the training set with 

additional data. However, except for the simple 

treebank PCFG, U-DOP* scores worse than 

supervised parsers if evaluated on hand-annotated 

data. At the same time U-DOP* significantly 

outperforms the supervised DOP* if evaluated in a 

practical application like MT. We argued that this 

can be explained by the fact that U-DOP learns 
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both constituents and (non-syntactic) phrases while 

supervised parsers learn constituents only. 

What should we learn from these results? 

We believe that parsing, when separated from a 

task-based application, is mainly an academic 

exercise. If we only want to mimick a treebank or 

implement a linguistically motivated grammar, 

then supervised, grammar-based parsers are 

preferred to unsupervised parsers. But if we want 

to improve a practical application with a syntax-

based language model, then an unsupervised parser 

like U-DOP* might be superior. 

 The problem with most supervised (and 

semi-supervised) parsers is their rigid notion of 

constituent which excludes ‘constituents’ like the 

German Ich möchte or the French Il y a. Instead, it 

has become increasingly clear that the notion of 

constituent is a fluid which may sometimes be in 

agreement with traditional syntax, but which may 

just as well be in opposition to it. Any sequence of 

words can be a unit of combination, including non-

contiguous word sequences like closest X to Y. A 

parser which does not allow for this fluidity may 

be of limited use as a language model. Since 

supervised parsers seem to stick to categorical 

notions of constituent, we believe that in the field 

of syntax-based language models the end of 

supervised parsing has come in sight. 
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Abstract

While the average performance of statisti-
cal parsers gradually improves, they still at-
tach to many sentences annotations of rather
low quality. The number of such sentences
grows when the training and test data are
taken from different domains, which is the
case for major web applications such as in-
formation retrieval and question answering.

In this paper we present aSample Ensem-
ble Parse Assessment (SEPA)algorithm for
detecting parse quality. We use a function
of the agreement among several copies of
a parser, each of which trained on a differ-
ent sample from the training data, to assess
parse quality. We experimented with both
generative and reranking parsers (Collins,
Charniak and Johnson respectively). We
show superior results over several baselines,
both when the training and test data are from
the same domain and when they are from
different domains. For a test setting used by
previous work, we show an error reduction
of 31% as opposed to their 20%.

1 Introduction

Many algorithms for major NLP applications such
as information extraction (IE) and question answer-
ing (QA) utilize the output of statistical parsers
(see (Yates et al., 2006)). While the average per-
formance of statistical parsers gradually improves,
the quality of many of the parses they produce is
too low for applications. When the training and test

data are taken from different domains (theparser
adaptationscenario) the ratio of such low quality
parses becomes even higher. Figure 1 demonstrates
these phenomena for two leading models, Collins
(1999) model 2, a generative model, and Charniak
and Johnson (2005), a reranking model. The parser
adaptation scenario is the rule rather than the excep-
tion for QA and IE systems, because these usually
operate over the highly variable Web, making it very
difficult to create a representative corpus for manual
annotation. Medium quality parses may seriously
harm the performance of such systems.

In this paper we address the problem of assess-
ing parse quality, using aSample Ensemble Parse
Assessment (SEPA)algorithm. We use the level of
agreement among several copies of a parser, each of
which trained on a different sample from the training
data, to predict the quality of a parse. The algorithm
does not assume uniformity of training and test data,
and is thus suitable to web-based applications such
as QA and IE.

Generative statistical parsers compute a probabil-
ity p(a, s) for each sentence annotation, so the im-
mediate technique that comes to mind for assess-
ing parse quality is to simply usep(a, s). Another
seemingly trivial method is to assume that shorter
sentences would be parsed better than longer ones.
However, these techniques produce results that are
far from optimal. In Section 5 we show the superi-
ority of our method over these and other baselines.

Surprisingly, as far as we know there is only one
previous work explicitly addressing this problem
(Yates et al., 2006). TheirWOODWARD algorithm
filters out high quality parses by performing seman-
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Figure 1: F-score vs. the fraction of parses whose
f-score is at least that f-score. For the in-domain
scenario, the parsers are tested on sec 23 of the WSJ
Penn Treebank. For the parser adaptation scenario,
they are tested on the Brown test section. In both
cases they are trained on sections 2-21 of WSJ.

tic analysis. The present paper provides a detailed
comparison between the two algorithms, showing
both that SEPA produces superior results and that
it operates under less restrictive conditions.

We experiment with both the generative parsing
model number 2 of Collins (1999) and the reranking
parser of Charniak and Johnson (2005), both when
the training and test data belong to the same domain
(the in-domainscenario) and in the parser adapta-
tion scenario. In all four cases, we show substantial
improvement over the baselines. The present paper
is the first to use a reranking parser and the first to
address the adaptation scenario for this problem.

Section 2 discusses relevant previous work, Sec-
tion 3 describes the SEPA algorithm, Sections 4 and
5 present the experimental setup and results, and
Section 6 discusses certain aspects of these results
and compares SEPA toWOODWARD.

2 Related Work

The only previous work we are aware of that explic-
itly addressed the problem of detecting high quality
parses in the output of statistical parsers is (Yates et
al., 2006). Based on the observation that incorrect
parses often result in implausible semantic interpre-
tations of sentences, they designed theWOODWARD

filtering system. It first maps the parse produced by
the parser to a logic-based representation (relational
conjunction (RC)) and then employs four methods
for semantically analyzing whether a conjunct in the
RC is likely to be reasonable. The filters use seman-

tic information obtained from the Web. Measuring
errors using filter f-score (see Section 3) and using
the Collins generative model,WOODWARD reduces
errors by 67% on a set of TREC questions and by
20% on a set of a 100 WSJ sentences. Section 5
provides a detailed comparison with our algorithm.

Reranking algorithms (Koo and Collins, 2005;
Charniak and Johnson, 2005) search the list of best
parses output by a generative parser to find a parse of
higher quality than the parse selected by the genera-
tive parser. Thus, these algorithms in effect assess
parse quality using syntactic and lexical features.
The SEPA algorithm does not use such features, and
is successful in detecting high quality parses even
when working on the output of a reranker. Rerank-
ing and SEPA are thus relatively independent.

Bagging (Breiman, 1996) uses an ensemble of in-
stances of a model, each trained on a sample of the
training data1. Bagging was suggested in order to
enhance classifiers; the classification outcome was
determined using a majority vote among the mod-
els. In NLP, bagging was used for active learning
for text classification (Argamon-Engelson and Da-
gan, 1999; McCallum and Nigam, 1998). Specif-
ically in parsing, (Henderson and Brill, 2000) ap-
plied a constituent level voting scheme to an en-
semble of bagged models to increase parser perfor-
mance, and (Becker and Osborne, 2005) suggested
an active learning technique in which the agreement
among an ensemble of bagged parsers is used to pre-
dict examples valuable for human annotation. They
reported experiments with small training sets only
(up to 5,000 sentences), and their agreement func-
tion is very different from ours. Both works experi-
mented with generative parsing models only.

Ngai and Yarowsky (2000) used an ensemble
based on bagging and partitioning for active learning
for base NP chunking. They select top items with-
out any graded assessment, and their f-complement
function, which slightly resembles ourMF (see the
next section), is applied to the output of a classifier,
while our function is applied to structured output.
A survey of several papers dealing with mapping

1Each sample is created by sampling, with replacement,L
examples from the training pool, whereL is the size of the train-
ing pool. Conversely, each of our samples is smaller than the
training set, and is created by sampling without replacement.
See Section 3 (‘regardingS’) for a discussion of this issue.
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predictors in classifiers’ output to posterior proba-
bilities is given in (Caruana and Niculescu-Mizil,
2006). As far as we know, the application of a sam-
ple based parser ensemble for assessing parse qual-
ity is novel.

Many IE and QA systems rely on the output of
parsers (Kwok et al., 2001; Attardi et al., 2001;
Moldovan et al., 2003). The latter tries to address
incorrect parses using complex relaxation methods.
Knowing the quality of a parse could greatly im-
prove the performance of such systems.

3 The Sample Ensemble Parse Assessment
(SEPA) Algorithm

In this section we detail our parse assessment algo-
rithm. Its input consists of a parsing algorithmA, an
annotated training setTR, and an unannotated test
setTE. The output provides, for each test sentence,
the parse generated for it byA when trained on the
full training set, and a grade assessing the parse’s
quality, on a continuous scale between0 to 100. Ap-
plications are then free to select a sentence subset
that suits their needs using our grades, e.g. by keep-
ing only high-quality parses, or by removing low-
quality parses and keeping the rest. The algorithm
has the following stages:

1. ChooseN random samples of sizeS from the
training setTR. Each sample is selected with-
out replacement.

2. Train N copies of the parsing algorithmA,
each with one of the samples.

3. Parse the test set with each of theN models.

4. For each test sentence, compute the value of an
agreement functionF between the models.

5. Sort the test set according toF ’s value.

The algorithm uses the level of agreement among
several copies of a parser, each trained on a different
sample from the training data, to predict the qual-
ity of a parse. The higher the agreement, the higher
the quality of the parse. Our approach assumes that
if the parameters of the model are well designed to
annotate a sentence with a high quality parse, then
it is likely that the model will output the same (or

a highly similar) parse even if the training data is
somewhat changed. In other words, we rely on the
stability of the parameters of statistical parsers. Al-
though this is not always the case, our results con-
firm that strong correlation between agreement and
parse quality does exist.

We explored several agreement functions. The
one that showed the best results isMean F-score
(MF)2, defined as follows. Denote the models by
m1 . . .mN , and the parse provided bymi for sen-
tences asmi(s). We randomly choose a modelml,
and compute

MF (s) =
1

N − 1

∑

i∈[1...N ],i6=l

fscore(mi, ml) (1)

We use two measures to evaluate the quality of
SEPA grades. Both measures are defined using a
threshold parameterT , addressing only sentences
whose SEPA grades are not smaller thanT . We refer
to these sentences asT-sentences.

The first measure is the average f-score of the
parses of T-sentences. Note that we compute the
f-score of each of the selected sentences and then
average the results. This stands in contrast to the
way f-score is ordinarily calculated, by computing
the labeled precision and recall of the constituents
in the whole set and using these as the arguments of
the f-score equation. The ordinary f-score is com-
puted that way mostly in order to overcome the fact
that sentences differ in length. However, for appli-
cations such as IE and QA, which work at the single
sentence level and which might reach erroneous de-
cision due to an inaccurate parse, normalizing over
sentence lengths is less of a factor. For this reason,
in this paper we present detailed graphs for the aver-
age f-score. For completeness, Table 4 also provides
some of the results using the ordinary f-score.

The second measure is a generalization of the fil-
ter f-score measure suggested by Yates et al. (2006).
They definefilter precisionas the ratio of correctly
parsed sentences in thefiltered set(the set the algo-
rithm choose) to total sentences in the filtered set and
filter recall as the ratio of correctly parsed sentences
in the filtered set to correctly parsed sentences in the

2Recall that sentence f-score is defined as:f =
2×P×R

P+R
,

whereP andR are the labeled precision and recall of the con-
stituents in the sentence relative to another parse.
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whole set of sentences parsed by the parser (unfil-
tered setor test set). Correctly parsed sentences are
sentences whose parse got f-score of 100%.

Since requiring a 100% may be too restrictive, we
generalize this measure tofilter f-score with param-
eterk. In our measure, the filter recall and precision
are calculated with regard to sentences that get an
f-score ofk or more, rather than to correctly parsed
sentences. Filtered f-score is thus a special case of
our filtered f-score, with parameter 100.

We now discuss the effect of the number of mod-
elsN and the sample sizeS. The discussion is based
on experiments (using development data, see Sec-
tion 4) in which all the parameters are fixed except
for the parameter in question, using our development
sections.

RegardingN (see Figure 2): As the number of
models increases, the number of T-sentences se-
lected by SEPA decreases and their quality im-
proves, in terms of both average f-score and filter
f-score (withk = 100). The fact that more mod-
els trained on different samples of the training data
agree on the syntactic annotation of a sentence im-
plies that this syntactic pattern is less sensitive to
perturbations in the training data. The number of
such sentences is small and it is likely the parser will
correctly annotate them. The smaller T-set size leads
to a decrease in filter recall, while the better quality
leads to an increase in filter precision. Since the in-
crease in filter precision is sharper than the decrease
in filter recall, filter f-score increases with the num-
ber of modelsN .

RegardingS3: As the sample size increases, the
number of T-sentences increases, and their qual-
ity degrades in terms of average f-score but im-
proves in terms of filter f-score (again, with param-
eter k = 100). The overlap among smaller sam-
ples is small and the data they supply is sparse. If
several models trained on such samples attach to a
sentence the same parse, this syntactic pattern must
be very prominent in the training data. The num-
ber of such sentences is small and it is likely that
the parser will correctly annotate them. Therefore
smaller sample size leads to smaller T-sets with high
average f-score. As the sample size increases, the T-
set becomes larger but the average f-score of a parse

3Graphs are not shown due to lack of space.
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Figure 2: The effect of the number of modelsN on
SEPA (Collins’ model). The scenario is in-domain,
sample sizeS = 33, 000 andT = 100. We see:
average f-score of T-sentences (left, solid curve and
left y-axis), filter f-score withk = 100 (left, dashed
curve and right y-axis), filter recall withk = 100
(right, solid curve and left y-axis), and filter preci-
sion with k = 100 (right, dashed curve and right
y-axis).

decreases. The larger T-set size leads to increase in
filter recall, while the lower average quality leads
to decrease in filter precision. Since the increase in
filter recall is sharper than the decrease in filter pre-
cision, the result is that filter f-score increases with
the sample sizeS.

This discussion demonstrates the importance of
using both average f-score and filter f-score, since
the two measures reflect characteristics of the se-
lected sample that are not necessarily highly (or pos-
itively) correlated.

4 Experimental Setup

We performed experiments with two parsing mod-
els, the Collins (1999) generative model number
2 and the Charniak and Johnson (2005) reranking
model. For the first we used a reimplementation
(?). We performed experiments with each model
in two scenarios, in-domain and parser adaptation.
In both experiments the training data are sections
02-21 of the WSJ PennTreebank (about 40K sen-
tences). In the in-domain experiment the test data
is section 23 (2416 sentences) of WSJ and in the
parser adaptation scenario the test data is Brown test
section (2424 sentences). Development sections are
WSJ section 00 for the in-domain scenario (1981
sentences) and Brown development section for the
adaptation scenario (2424 sentences). Following
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(Gildea, 2001), the Brown test and development sec-
tions consist of 10% of Brown sentences (the 9th and
10th of each 10 consecutive sentences in the devel-
opment and test sections respectively).

We performed experiments with many configu-
rations of the parametersN (number of models),
S (sample size) andF (agreement function). Due
to space limitations we describe only experiments
where the values of the parametersN, S andF are
fixed (F is MF , N andS are given in Section 5)
and the threshold parameterT is changed.

5 Results

We first explore the quality of the selected set in
terms of average f-score. In Section 3 we reported
that the quality of a selected T-set of parses increases
as the number of modelsN increases and sample
sizeS decreases. We therefore show the results for
relatively highN (20) and relatively lowS (13,000,
which is about a third of the training set). Denote
the cardinality of the set selected by SEPA byn (it
is actually a function ofT but we omit theT in order
to simplify notations).

We use several baseline models. The first,confi-
dence baseline (CB), contains then sentences hav-
ing the highest parser assigned probability (when
trained on the whole training set). The second,min-
imum length (ML), contains then shortest sentences
in the test set. Since many times it is easier to parse
short sentences, a trivial way to increase the aver-
age f-score measure of a set is simply to select short
sentences. The third, following (Yates et al., 2006),
is maximum recall (MR). MR simply predicts that all
test set sentences should be contained in the selected
T-set. The output set of this model gets filter recall of
1 for anyk value, but its precision is lower. The MR
baseline is not relevant to the average f-score mea-
sure, because it selects all of the sentences in a set,
which leads to the same average as a random selec-
tion (see below). In order to minimize visual clutter,
for the filter f-score measure we use the maximum
recall (MR) baseline rather than the minimum length
(ML) baseline, since the former outperforms the lat-
ter. Thus, ML is only shown for the average f-score
measure. We have also experimented with a random
baseline model (containingn randomly selected test
sentences), whose results are the worst and which is

shown for reference.
Readers of this section may get confused between

the agreement threshold parameterT and the param-
eterk of the filter f-score measure. Please note: as to
T , SEPA sorts the test set by the values of the agree-
ment function. One can then select only sentences
whose agreement score is at leastT . T ’s values are
on a continuous scale from 0 to 100. As tok, the fil-
ter f-score measure gives a grade. This grade com-
bines three values: (1) the number of sentences in
the set (selected by an algorithm) whose f-score rel-
ative to the gold standard parse is at leastk, (2) the
size of the selected set, and (3) the total number of
sentences with such a parse in the whole test set. We
did not introduce separate notations for these values.

Figure 3 (top) shows average f-score results where
SEPA is applied to Collins’ generative model in the
in-domain (left) and adaptation (middle) scenarios.
SEPA outperforms the baselines for all values of the
agreement threshold parameterT . Furthermore, as
T increases, not only does the SEPA set quality in-
crease, but the quality differences between this set
and the baseline sets increases as well. The graphs
on the right show the number of sentences in the sets
selected by SEPA for eachT value. As expected,
this number decreases asT increases.

Figure 3 (bottom) shows the same pattern of re-
sults for the Charniak reranking parser in the in-
domain (left) and adaptation (middle) scenarios. We
see that the effects of the reranker and SEPA are rel-
atively independent. Even after some of the errors of
the generative model were corrected by the reranker
by selecting parses of higher quality among the 50-
best, SEPA can detect parses of high quality from
the set of parsed sentences.

To explore the quality of the selected set in terms
of filter f-score, we recall that the quality of a se-
lected set of parses increases as both the number of
modelsN and the sample sizeS increase, and with
T . Therefore, fork = 85 . . . 100 we show the value
of filter f-score with parameterk when the parame-
ters configuration is a relatively highN (20), rela-
tively high S (33,000, which are about 80% of the
training set), and the highestT (100).

Figure 4 (top) shows filter f-score results for
Collins’ generative model in the in-domain (left)
and adaptation (middle) scenarios. As these graphs
show, SEPA outperforms CB and random for all val-
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ues of the filter f-score parameterk, and outper-
forms the MR baseline where the value ofk is 95 or
more. Although for smallk values MR gets a higher
f-score than SEPA, the filter precision of SEPA is
much higher (right, shown for adaptation. The in-
domain pattern is similar and not shown). This stems
from the definition of the MR baseline, which sim-
ply predicts any sentence to be in the selected set.
Furthermore, since the selected set is meant to be
the input for systems that require high quality parses,
what matters most is that SEPA outperforms the MR
baseline at the highk ranges.

Figure 4 (bottom) shows the same pattern of re-
sults for the Charniak reranking parser in the in-
domain (left) and adaptation (middle) scenarios. As
for the average f-score measure, it demonstrates that
the effects of the reranker and SEPA algorithm are
relatively independent.

Tables 1 and 2 show the error reduction achieved
by SEPA for the filter f-score measure with param-
etersk = 95, 97, 100 (Table 1) and for the aver-
age f-score measure with several SEPA agreement
threshold (T ) values (Table 2) . The error reductions
achieved by SEPA for both measures are substantial.

Table 3 compares SEPA andWOODWARD on the
exact same test set used by (Yates et al., 2006)
(taken from WSJ sec 23). SEPA achieves error re-
duction of 31% over the MR baseline on this set,
compared to only 20% achieved byWOODWARD.
Not shown in the table, in terms of ordinary f-score
WOODWARD achieves error reduction of 37% while
SEPA achieves 43%. These numbers were the only
ones reported in (Yates et al., 2006).

For completeness of reference, Table 4 shows the
superiority of SEPA over CB in terms of the usual f-
score measure used by the parsing community (num-
bers are counted for constituents first). Results for
other baselines are even more impressive. The con-
figuration is similar to that of Figure 3.

6 Discussion

In this paper we introduced SEPA, a novel algorithm
for assessing parse quality in the output of a statis-
tical parser. SEPA is the first algorithm shown to
be successful when a reranking parser is considered,
even though such models use a reranker to detect
and fix some of the errors made by the base gener-

Filter f-score
In-domain Adaptation

k value 95 97 100 95 97 100
Coll. MR 3.5 20.1 29.2 22.8 29.8 33.6
Coll. CB 11.6 11.7 3.4 14.2 9.9 7.4
Char. MR 1.35 13.6 23.44 21.9 30 32.5
Char. CB 21.9 16.8 11.9 25 20.2 16.2

Table 1: Error reduction in the filter f-score mea-
sure obtained by SEPA with Collins’ (top two lines)
and Charniak’s (bottom two lines) model, in the
two scenarios (in-domain and adaptation), vs. the
maximum recall (MR lines 1 and 3) and confi-
dence (CB, lines 2 and 4) baselines, usingN =
20, T = 100 and S = 33, 000. Shown are pa-
rameter valuesk = 95, 97, 100. Error reduction
numbers were computed by100×(fscoreSEPA−
fscorebaseline)/(1− fscorebaseline).

Average f-score
In-domain Adaptation

T 95 97 100 95 97 100
Coll. ML 32.6 37.2 60.8 46.8 52.7 70.7
Coll. CB 26.5 31.4 53.9 46.9 53.6 70
Char. ML 25.1 33.2 58.5 46.9 58.4 77.1
Char. CB 20.4 30 52 44.4 55.5 73.5

Table 2: Error reduction in the average f-score mea-
sure obtained by SEPA with Collins (top two lines)
and Charniak (bottom two lines) model, in the two
scenarios (in-domain and adaptation), vs. the min-
imum length (ML lines 1 and 3) and confidence
(CB, lines 2 and 4) baselines, usingN = 20 and
S = 13, 000. Shown are agreement threhsold pa-
rameter valuesT = 95, 97, 100. Error reduction
numbers were computed by100×(fscoreSEPA−
fscorebaseline)/(1− fscorebaseline).

SEPA WOODWARD CB
ER 31% 20% -31%

Table 3: Error reduction compared to the MR base-
line, measured by filter f-score with parameter 100.
The data is the WSJ sec 23 test set usd by (Yates
et al., 2006). All three methods use Collins’ model.
SEPA usesN = 20, S = 33, 000, T = 100.

ative model.WOODWARD, the only previously sug-
gested algorithm for this problem, was tested with
Collins’ generative model only. Furthermore, this is
the first time that an algorithm for this problem suc-
ceeds in a domain adaptation scenario, regardless of

413



85 90 95 100
88

90

92

94

96

98

Agreement threshold

A
ve

ra
ge

 fs
co

re

 

 

SEPA

CB

ML

Rand.

85 90 95 100
80

85

90

95

100

Agreement threshold

A
ve

ra
ge

 fs
co

re

 

 SEPA

CB

ML

Rand.

85 90 95 100
0

500

1000

1500

2000

2500

Agreement threshold

N
um

be
r 

of
 s

en
te

nc
es

 

 

In domain
Adaptation

85 90 95 100
92

93

94

95

96

97

98

Agreement threshold

A
ve

ra
ge

 fs
co

re

 

 

SEPA

CB

ML

Rand.

85 90 95 100
85

90

95

100

Agreement threshold

A
ve

ra
ge

 fs
co

re

 

 

SEPA

CB

ML

Rand.

85 90 95 100
500

1000

1500

2000

2500

Agreement threshold

N
um

be
r 

of
 s

en
te

nc
es

 

 

In domain
Adaptation

Figure 3: Agreement thresholdT vs. average f-score (left and middle) and number of sentences in the se-
lected set (right), for SEPA with Collins’ generative model (top) and the Charniak reranking model (bottom).
SEPA parameters areS = 13, 000, N = 20. In both rows, SEPA results for the in-domain (left) and adap-
tation (middle) scenarios are compared to the confidence (CB) and minimum length (ML) baselines. The
graphs on the right show the number of sentences in the selected set for both scenarios.
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Figure 4: Parameterk vs. filter f-score (left and middle) and filter precision (right) with that parameter, for
SEPA with Collins’ generative model (top) and the Charniak reranking model (bottom). SEPA parameters
areS = 33, 000, N = 20, T = 100. In both rows, results for the in-domain (left) and adaptation (middle)
scenarios. In two leftmost graphs, the performance of the algorithm is compared to the confidence baseline
(CB) and maximum recall (MR). The graphs on the right compare the filter precision of SEPA with that of
the MR and CB baselines.
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the parsing model. In the Web environment this is
the common situation.

The WSJ and Brown experiments performed with
SEPA are much broader than those performed with
WOODWARD, considering all sentences of WSJ sec
23 and Brown test section rather than a subset
of carefully selected sentences from WSJ sec 23.
However, we did not perform a TREC experiment,
as (Yates et al., 2006) did. Our WSJ and Brown
results outperformed several baselines. Moreover,
WSJ (or Brown) sentences that contain conjunctions
were avoided in the experiments of (Yates et al.,
2006). We have verified that our algorithm shows
substantial error reduction over the baselines for this
type of sentences (in the ranges13 − 46% for the
filter f-score withk = 100, and30 − 60% for the
average f-score).

As Table 3 shows, on a WSJ sec 23 test set similar
to that used by (Yates et al., 2006), SEPA achieves
31% error reduction compared to 20% ofWOOD-
WARD.

WOODWARD works under several assumptions.
Specifically, it requires a corpus whose content over-
laps at least in part with the content of the parsed
sentences. This corpus is used to extract semanti-
cally related statistics for its filters. Furthermore, the
filters of this algorithm (except of the QA filter) are
focused on verb and preposition relations. Thus, it
is more natural for it to deal with mistakes contained
in such relations. This is reflected in the WSJ based
test set on which it is tested. SEPA does not make
any of these assumptions. It does not use any exter-
nal information source and is shown to select high
quality parses from diverse sets.

In-domain Adaptation
F ER F ER

SEPA Collins 97.09 44.36% 95.38 66.38%
CB Collins 94.77 – 86.3 –
SEPA Char-
niak

97.21 35.69% 96.3 54.66%

CB Charniak 95.6 – 91.84 –

Table 4: SEPA error reduction vs. the CB base-
line in the in-domain and adaptation scenarios, us-
ing the traditional f-score of the parsing literature.
N = 20, S = 13, 000, T = 100.

For future work, integrating SEPA into the rerank-
ing process seems a promising direction for enhanc-
ing overall parser performance.

Acknowledgement. We would like to thank Dan
Roth for his constructive comments on this paper.
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Abstract

Deriving the polarity and strength of opinions
is an important research topic, attracting sig-
nificant attention over the last few years. In
this work, to measure the strength and po-
larity of an opinion, we consider the eco-
nomic context in which the opinion is eval-
uated, instead of using human annotators or
linguistic resources. We rely on the fact that
text in on-line systems influences the behav-
ior of humans and this effect can be observed
using some easy-to-measure economic vari-
ables, such as revenues or product prices. By
reversing the logic, we infer the semantic ori-
entation and strength of an opinion by tracing
the changes in the associated economic vari-
able. In effect, we use econometrics to iden-
tify the “economic value of text” and assign a
“dollar value” to each opinion phrase, measur-
ing sentiment effectively and without the need
for manual labeling. We argue that by inter-
preting opinions using econometrics, we have
the first objective, quantifiable, and context-
sensitive evaluation of opinions. We make the
discussion concrete by presenting results on
the reputation system of Amazon.com. We
show that user feedback affects the pricing
power of merchants and by measuring their
pricing power we can infer the polarity and
strength of the underlying feedback postings.

1 Introduction

A significant number of websites today allow users to
post articles where they express opinions about prod-
ucts, firms, people, and so on. For example, users

on Amazom.com post reviews about products they
bought and users on eBay.com post feedback describ-
ing their experiences with sellers. The goal of opinion
mining systems is to identify such pieces of the text
that express opinions (Breck et al., 2007; König and
Brill, 2006) and then measure the polarity and strength
of the expressed opinions. While intuitively the task
seems straightforward, there are multiple challenges
involved.

• What makes an opinion positive or negative? Is
there an objective measure for this task?

• How can we rank opinions according to their
strength? Can we define an objective measure
for ranking opinions?

• How does the context change the polarity and
strength of an opinion and how can we take the
context into consideration?

To evaluate the polarity and strength of opinions,
most of the existing approaches rely either on train-
ing from human-annotated data (Hatzivassiloglou and
McKeown, 1997), or use linguistic resources (Hu and
Liu, 2004; Kim and Hovy, 2004) like WordNet, or
rely on co-occurrence statistics (Turney, 2002) be-
tween words that are unambiguously positive (e.g.,
“excellent”) and unambiguously negative (e.g., “hor-
rible”). Finally, other approaches rely on reviews with
numeric ratings from websites (Pang and Lee, 2002;
Dave et al., 2003; Pang and Lee, 2004; Cui et al.,
2006) and train (semi-)supervised learning algorithms
to classify reviews as positive or negative, or in more
fine-grained scales (Pang and Lee, 2005; Wilson et al.,
2006). Implicitly, the supervised learning techniques
assume that numeric ratings fully encapsulate the sen-
timent of the review.
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In this paper, we take a different approach and in-
stead consider the economic context in which an opin-
ion is evaluated. We observe that the text in on-line
systems influence the behavior of the readers. This
effect can be measured by observing some easy-to-
measure economic variable, such as product prices.
For instance, online merchants on eBay with “posi-
tive” feedback can sell products for higher prices than
competitors with “negative” evaluations. Therefore,
each of these (positive or negative) evaluations has
a (positive or negative) effect on the prices that the
merchant can charge. For example, everything else
being equal, a seller with “speedy” delivery may be
able to charge $10 more than a seller with “slow” de-
livery. Using this information, we can conclude that
“speedy” is better than “slow” when applied to “deliv-
ery” and their difference is $10. Thus, we can infer the
semantic orientation and the strength of an evaluation
from the changes in the observed economic variable.
Following this idea, we use techniques from econo-
metrics to identify the “economic value of text” and
assign a “dollar value” to each text snippet, measuring
sentiment strength and polarity effectively and with-
out the need for labeling or any other resource.

We argue that by interpreting opinions within an
econometric framework, we have the first objective
and context-sensitive evaluation of opinions. For
example, consider the comment “good packaging,”
posted by a buyer to evaluate a merchant. This
comment would have been considered unambiguously
positive by the existing opinion mining systems. We
observed, though, that within electronic markets, such
as eBay, a posting that contains the words “good pack-
aging” has actually negative effect on the power of a
merchant to charge higher prices. This surprising ef-
fect reflects the nature of the comments in online mar-
ketplaces: buyers tend to use superlatives and highly
enthusiastic language to praise a good merchant, and
a lukewarm “good packaging” is interpreted as neg-
ative. By introducing the econometric interpretation
of opinions we can effortlessly capture such challeng-
ing scenarios, something that is impossible to achieve
with the existing approaches.

We focus our paper on reputation systems in elec-
tronic markets and we examine the effect of opinions
on the pricing power of merchants in the marketplace
of Amazon.com. (We discuss more applications in
Section 7.) We demonstrate the value of our technique
using a dataset with 9,500 transactions that took place

over 180 days. We show that textual feedback affects
the power of merchants to charge higher prices than
the competition, for the same product, and still make a
sale. We then reverse the logic and determine the con-
tribution of each comment in the pricing power of a
merchant. Thus, we discover the polarity and strength
of each evaluation without the need for human anno-
tation or any other form of linguistic resource.

The structure of the rest of the paper is as fol-
lows. Section 2 gives the basic background on rep-
utation systems. Section 3 describes our methodol-
ogy for constructing the data set that we use in our
experiments. Section 4 shows how we combine estab-
lished techniques from econometrics with text mining
techniques to identify the strength and polarity of the
posted feedback evaluations. Section 5 presents the
experimental evaluations of our techniques. Finally,
Section 6 discusses related work and Section 7 dis-
cusses further applications and concludes the paper.

2 Reputation Systems and Price Premiums
When buyers purchase products in an electronic mar-
ket, they assess and pay not only for the product they
wish to purchase but for a set of fulfillment character-
istics as well, e.g., packaging, delivery, and the extent
to which the product description matches the actual
product. Electronic markets rely on reputation sys-
tems to ensure the quality of these characteristics for
each merchant, and the importance of such systems
is widely recognized in the literature (Resnick et al.,
2000; Dellarocas, 2003). Typically, merchants’ rep-
utation in electronic markets is encoded by a “repu-
tation profile” that includes: (a) the number of past
transactions for the merchant, (b) a summary of nu-
meric ratings from buyers who have completed trans-
actions with the seller, and (c) a chronological list of
textual feedback provided by these buyers.

Studies of online reputation, thus far, base a mer-
chant’s reputation on the numeric rating that charac-
terizes the seller (e.g., average number of stars and
number of completed transactions) (Melnik and Alm,
2002). The general conclusion of these studies show
that merchants with higher (numeric) reputation can
charge higher prices than the competition, for the
same products, and still manage to make a sale. This
price premium that the merchants can command over
the competition is a measure of their reputation.

Definition 2.1 Consider a set of merchants s1, . . . , sn

selling a product for prices p1, . . . , pn. If si makes
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Figure 1: A set of merchants on Amazon.com selling
an identical product for different prices

the sale for price pi, then si commands a price pre-
mium equal to pi − pj over sj and a relative price
premium equal to pi−pj

pi
. Hence, a transaction that in-

volves n competing merchants generates n − 1 price
premiums.1 The average price premium for the trans-
action is

∑
j 6=i(pi−pj)

n−1 and the average relative price

premium is
∑

j 6=i(pi−pj)

pi(n−1) . 2

Example 2.1 Consider the case in Figure 1 where
three merchants sell the same product for $631.95,
$632.26, and $637.05, respectively. If GameHog sells
the product, then the price premium against XP Pass-
port is $4.79 (= $637.05 − $632.26) and against the
merchant BuyPCsoft is $5.10. The relative price pre-
mium is 0.75% and 0.8%, respectively. Similarly, the
average price premium for this transaction is $4.95
and the average relative price premium 0.78%. 2

Different sellers in these markets derive their repu-
tation from different characteristics: some sellers have
a reputation for fast delivery, while some others have
a reputation of having the lowest price among their
peers. Similarly, while some sellers are praised for
their packaging in the feedback, others get good com-
ments for selling high-quality goods but are criticized
for being rather slow with shipping. Even though pre-
vious studies have established the positive correlation
between higher (numeric) reputation and higher price
premiums, they ignored completely the role of the tex-
tual feedback and, in turn, the multi-dimensional na-
ture of reputation in electronic markets. We show that
the textual feedback adds significant additional value
to the numerical scores, and affects the pricing power
of the merchants.

1As an alternative definition we can ignore the negative price
premiums. The experimental results are similar for both versions.

3 Data
We compiled a data set using software resellers from
publicly available information on software product
listings at Amazon.com. Our data set includes 280
individual software titles. The sellers’ reputation mat-
ters when selling identical goods, and the price varia-
tion observed can be attributed primarily to variation
in the merchant’s reputation. We collected the data us-
ing Amazon Web Services over a period of 180 days,
between October 2004 and March 2005. We describe
below the two categories of data that we collected.

Transaction Data: The first part of our data set
contains details of the transactions that took place on
the marketplace of Amazon.com for each of the soft-
ware titles. The Amazon Web Services associates a
unique transaction ID for each unique product listed
by a seller. This transaction ID enables us to distin-
guish between multiple or successive listings of iden-
tical products sold by the same merchant. Keeping
with the methodology in prior research (Ghose et al.,
2006), we crawl the Amazon’s XML listings every 8
hours and when a transaction ID associated with a
particular listing is removed, we infer that the listed
product was successfully sold in the prior 8 hour win-
dow.2 For each transaction that takes place, we keep
the price at which the product was sold and the mer-
chant’s reputation at the time of the transaction (more
on this later). Additionally, for each of the competing
listings for identical products, we keep the listed price
along with the competitors reputation. Using the col-
lected data, we compute the price premium variables
for each transaction3 using Definition 2.1. Overall,
our data set contains 1,078 merchants, 9,484 unique
transactions and 107,922 price premiums (recall that
each transaction generates multiple price premiums).

Reputation Data: The second part of our data set
contains the reputation history of each merchant that
had a (monitored) product for sale during our 180-day
window. Each of these merchants has a feedback pro-
file, which consists of numerical scores and text-based
feedback, posted by buyers. We had an average of
4,932 postings per merchant. The numerical ratings

2Amazon indicates that their seller listings remain on the site
indefinitely until they are sold and sellers can change the price of
the product without altering the transaction ID.

3Ideally, we would also include the tax and shipping cost
charged by each merchant in the computation of the price pre-
miums. Unfortunately, we could not capture these costs using
our methodology. Assuming that the fees for shipping and tax
are independent of the merchants’ reputation, our analysis is not
affected.
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are provided on a scale of one to five stars. These rat-
ings are averaged to provide an overall score to the
seller. Note that we collect all feedback (both numeri-
cal and textual) associated with a seller over the entire
lifetime of the seller and we reconstruct each seller’s
exact feedback profile at the time of each transaction.

4 Econometrics-based Opinion Mining
In this section, we describe how we combine econo-
metric techniques with NLP techniques to derive the
semantic orientation and strength of the feedback
evaluations. Section 4.1 describes how we structure
the textual feedback and Section 4.2 shows how we
use econometrics to estimate the polarity and strength
of the evaluations.

4.1 Retrieving the Dimensions of Reputation

We characterize a merchant using a vector of reputa-
tion dimensions X = (X1, X2, ..., Xn), representing
its ability on each of n dimensions. We assume that
each of these n dimensions is expressed by a noun,
noun phrase, verb, or a verb phrase chosen from the
set of all feedback postings, and that a merchant is
evaluated on these n dimensions. For example, di-
mension 1 might be “shipping”, dimension 2 might
be “packaging” and so on. In our model, each of these
dimensions is assigned a numerical score. Of course,
when posting textual feedback, buyers do not assign
explicit numeric scores to any dimension. Rather, they
use modifiers (typically adjectives or adverbs) to eval-
uate the seller along each of these dimensions (we de-
scribe how we assign numeric scores to each modifier
in Section 4.2). Once we have identified the set of all
dimensions, we can then parse each of the feedback
postings, associate a modifier with each dimension,
and represent a feedback posting as an n-dimensional
vector φ of modifiers.

Example 4.1 Suppose dimension 1 is “delivery,” di-
mension 2 is “packaging,” and dimension 3 is “ser-
vice.” The feedback posting “I was impressed by the
speedy delivery! Great service!” is then encoded as
φ1 = [speedy ,NULL, great ], while the posting “The
item arrived in awful packaging, and the delivery was
slow” is encoded as φ2 = [slow , awful ,NULL]. 2

LetM = {NULL, µ1, ..., µM} be the set of modi-
fiers and consider a seller si with p postings in its rep-
utation profile. We denote with µi

jk ∈M the modifier
that appears in the j-th posting and is used to assess
the k-th reputation dimension. We then structure the

merchant’s feedback as an n× p matrix M(si) whose
rows are the p encoded vectors of modifiers associated
with the seller. We construct M(si) as follows:

1. Retrieve the postings associated with a merchant.

2. Parse the postings to identify the dimensions
across which the buyer evaluates a seller, keep-
ing4 the nouns, noun phrases, verbs, and verbal
phrases as reputation characteristics.5.

3. Retrieve adjectives and adverbs that refer to6 di-
mensions (Step 2) and construct the φ vectors.

We have implemented this algorithm on the feed-
back postings of each of our sellers. Our analysis
yields 151 unique dimensions, and a total of 142 mod-
ifiers (note that the same modifier can be used to eval-
uate multiple dimensions).

4.2 Scoring the Dimensions of Reputation
As discussed above, the textual feedback profile of
merchant si is encoded as a n × p matrix M(si); the
elements of this matrix belong to the set of modifiers
M. In our case, we are interested in computing the
“score” a(µ, d, j) that a modifier µ ∈ M assigns to
the dimension d, when it appears in the j-th posting.

Since buyers tend to read only the first few pages
of text-based feedback, we weight higher the influ-
ence of recent text postings. We model this by as-
suming that K is the number of postings that appear
on each page (K = 25 on Amazon.com), and that c
is the probability of clicking on the “Next” link and
moving the next page of evaluations.7 This assigns a
posting-specific weight rj = cb j

K c/∑p
q=1 cb q

K c for
the jth posting, where j is the rank of the posting, K
is the number of postings per page, and p is the total
number of postings for the given seller. Then, we set
a(µ, d, j) = rj · a(µ, d) where a(µ, d) is the “global”
score that modifier µ assigns to dimension d.

Finally, since each reputation dimension has poten-
tially a different weight, we use a weight vector w to

4We eliminate all dimensions appearing in the profiles of less
than 50 (out of 1078) merchants, since we cannot extract statisti-
cally meaningful results for such sparse dimensions

5The technique as described in this paper, considers words like
“shipping” and “ delivery” as separate dimensions, although they
refer to the same “real-life” dimension. We can use Latent Dirich-
let Allocation (Blei et al., 2003) to reduce the number of dimen-
sions, but this is outside the scope of this paper.

6To associate the adjectives and adverbs with the correct di-
mensions, we use the Collins HeadFinder capability of the Stan-
ford NLP Parser.

7We report only results for c = 0.5. We conducted experi-
ments other values of c as well and the results are similar.
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weight the contribution of each reputation dimension
to the overall “reputation score” Π(si) of seller si:

Π(si) = rT ·A(M(si)) ·w (1)

where rT = [r1, r2, ...rp] is the vector of the posting-
specific weights and A(M(i)) is a matrix that con-
tains as element the score a(µj , dk) where M(si) con-
tains the modifier µj in the column of the dimen-
sion dk. If we model the buyers’ preferences as inde-
pendently distributed along each dimension and each
modifier score a(µ, dk) also as an independent ran-
dom variable, then the random variable Π(si) is a sum
of random variables. Specifically, we have:

Π(si) =
M∑

j=1

n∑

k=1

(wk · a(µj , dk))R(µj , dk) (2)

where R(µj , dk) is equal to the sum of the ri weights
across all postings in which the modifier µj modifies
dimension dk. We can easily compute the R(µj , dk)
values by simply counting appearances and weighting
each appearance using the definition of ri.

The question is, of course, how to estimate the val-
ues of wk · a(µj , dk), which determine the polarity
and intensity of the modifier µj modifying the dimen-
sion dk. For this, we observe that the appearance of
such modifier-dimension opinion phrases has an ef-
fect on the price premiums that a merchant can charge.
Hence, there is a correlation between the reputation
scores Π(·) of the merchants and the price premi-
ums observed for each transaction. To discover the
level of association, we use regression. Since we are
dealing with panel data, we estimate ordinary-least-
squares (OLS) regression with fixed effects (Greene,
2002), where the dependent variable is the price pre-
mium variable, and the independent variables are the
reputation scores Π(·) of the merchants, together with
a few other control variables. Generally, we estimate
models of the form:

PricePremiumij =
∑

βc ·Xcij + fij + εij+

βt1 ·Π(merchant)ij + βt2 ·Π(competitor)ij (3)

where PricePremiumij is one of the variations of price
premium as given in Definition 2.1 for a seller si

and product j, βc, βt1, and βt2 are the regressor co-
efficients, Xc are the control variables, Π(·) are the
text reputation scores (see Equation 1), fij denotes the
fixed effects and ε is the error term. In Section 5, we
give the details about the control variables and the re-
gression settings.

Interestingly, if we expand the Π(·) variables ac-
cording to Equation 2, we can run the regression us-
ing the modifier-dimension pairs as independent vari-
ables, whose values are equal to the R(µj , dk) val-
ues. After running the regression, the coefficients as-
signed to each modifier-dimension pair correspond to
the value wk · a(µj , dk) for each modifier-dimension
pair. Therefore, we can easily estimate in economic
terms the “value” of a particular modifier when used
to evaluate a particular dimension.

5 Experimental Evaluation
In this section, we first present the experimental set-
tings (Section 5.1), and then we describe the results of
our experimental evaluation (Section 5.2).
5.1 Regression Settings
In Equation 3 we presented the general form of the
regression for estimating the scores a(µj , dk). Since
we want to eliminate the effect of any other factors
that may influence the price premiums, we also use a
set of control variables. After all the control factors
are taken into consideration, the modifier scores re-
flect the additional value of the text opinions. Specifi-
cally, we used as control variables the product’s price
on Amazon, the average star rating of the merchant,
the number of merchant’s past transactions, and the
number of sellers for the product.

First, we ran OLS regressions with product-seller
fixed effects controlling for unobserved heterogene-
ity across sellers and products. These fixed effects
control for average product quality and differences
in seller characteristics. We run multiple variations
of our model, using different versions of the “price
premium” variable as listed in Definition 2.1. We
also tested variations where we include as indepen-
dent variable not the individual reputation scores but
the difference Π(merchant)−Π(competitor). All re-
gressions yielded qualitatively similar results, so due
to space restrictions we only report results for the re-
gressions that include all the control variables and all
the text variables; we report results using the price
premium as the dependent variable. Our regressions
in this setting contain 107,922 observations, and a to-
tal of 547 independent variables.

5.2 Experimental Results
Recall of Extraction: The first step of our experi-
mental evaluation is to examine whether the opinion
extraction technique of Section 4.1 indeed captures
all the reputation characteristics expressed in the feed-
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Dimension Human Recall Computer Recall
Product Condition 0.76 0.76
Price 0.91 0.61
Package 0.96 0.66
Overall Experience 0.65 0.55
Delivery Speed 0.96 0.92
Item Description 0.22 0.43
Product Satisfaction 0.68 0.58
Problem Response 0.30 0.37
Customer Service 0.57 0.50
Average 0.66 0.60

Table 1: The recall of our technique compared to the
recall of the human annotators

back (recall) and whether the dimensions that we cap-
ture are accurate (precision). To examine the recall
question, we used two human annotators. The annota-
tors read a random sample of 1,000 feedback postings,
and identified the reputation dimensions mentioned in
the text. Then, they examined the extracted modifier-
dimension pairs for each posting and marked whether
the modifier-dimension pairs captured the identified
real reputation dimensions mentioned in the posting
and which pairs were spurious, non-opinion phrases.

Both annotators identified nine reputation dimen-
sions (see Table 1). Since the annotators did not agree
in all annotations, we computed the average human
recall hRecd = agreedd

alld
for each dimension d, where

agreedd is the number of postings for which both an-
notators identified the reputation dimension d, and
alld is the number of postings in which at least one
annotator identified the dimension d. Based on the
annotations, we computed the recall of our algorithm
against each annotator. We report the average recall
for each dimension, together with the human recall in
Table 1. The recall of our technique is only slightly
inferior to the performance of humans, indicating that
the technique of Section 4.1 extracts the majority of
the posted evaluations.8

Interestingly, precision is not an issue in our setting.
In our framework, if an particular modifier-dimension
pair is just noise, then it is almost impossible to have a
statistically significant correlation with the price pre-
miums. The noisy opinion phrases are statistically
guaranteed to be filtered out by the regression.

Estimating Polarity and Strength: In Table 2,

8In the case of “Item Description,” where the computer recall
was higher than the human recall, our technique identified almost
all the phrases of one annotator, but the other annotator had a
more liberal interpretation of “Item Description” dimension and
annotated significantly more postings with the dimension “Item
Description” than the other annotator, thus decreasing the human
recall.

we present the modifier-dimension pairs (positive and
negative) that had the strongest “dollar value” and
were statistically significant across all regressions.
(Due to space issues, we cannot list the values for all
pairs.) These values reflect changes in the merchants’s
pricing power after taking their average numerical
score and level of experience into account, and also
highlight the additional the value contained in text-
based reputation. The examples that we list here il-
lustrate that our technique generates a natural ranking
of the opinion phrases, inferring the strength of each
modifier within the context in which this opinion is
evaluated. This holds true even for misspelled evalua-
tions that would break existing techniques based on
annotation or on resources like WordNet. Further-
more, these values reflect the context in which the
opinion is evaluated. For example, the pair good pack-
aging has a dollar value of -$0.58. Even though this
seems counterintuitive, it actually reflects the nature
of an online marketplace where most of the positive
evaluations contain superlatives, and a mere “good”
is actually interpreted by the buyers as a lukewarm,
slightly negative evaluation. Existing techniques can-
not capture such phenomena.

Price Premiums vs. Ratings: One of the natural
comparisons is to examine whether we could reach
similar results by just using the average star rating as-
sociated with each feedback posting to infer the score
of each opinion phrase. The underlying assumption
behind using the ratings is that the review is per-
fectly summarized by the star rating, and hence the
text plays mainly an explanatory role and carries no
extra information, given the star rating. For this, we
examined the R2 fit of the regression, with and with-
out the use of the text variables. Without the use of
text variables, the R2 was 0.35, while when using only
the text-based regressors, the R2 fit increased to 0.63.
This result clearly indicates that the actual text con-
tains significantly more information than the ratings.

We also experimented with predicting which mer-
chant will make a sale, if they simultaneously sell
the same product, based on their listed prices and on
their numeric and text reputation. Our C4.5 classi-
fier (Quinlan, 1992) takes a pair of merchants and de-
cides which of the two will make a sale. We used as
training set the transactions that took place in the first
four months and as test set the transactions in the last
two months of our data set. Table 3 summarizes the
results for different sets of features used. The 55%
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Modifier Dimension Dollar Value
[wonderful experience] $5.86
[outstanding seller] $5.76
[excellant service] $5.27
[lightning delivery] $4.84
[highly recommended] $4.15
[best seller] $3.80
[perfectly packaged] $3.74
[excellent condition] $3.53
[excellent purchase] $3.22
[excellent seller] $2.70
[excellent communication] $2.38
[perfect item] $1.92
[terrific condition] $1.87
[top quality] $1.67
[awesome service] $1.05
[A+++ seller] $1.03
[great merchant] $0.93
[friendly service] $0.81
[easy service] $0.78
[never received] -$7.56
[defective product] -$6.82
[horible experience] -$6.79
[never sent] -$6.69
[never recieved] -$5.29
[bad experience] -$5.26
[cancelled order] -$5.01
[never responded] -$4.87
[wrong product] -$4.39
[not as advertised] -$3.93
[poor packaging] -$2.92
[late shipping] -$2.89
[wrong item] -$2.50
[not yet received] -$2.35
[still waiting] -$2.25
[wrong address] -$1.54
[never buy] -$1.48

Table 2: The highest scoring opinion phrases, as de-
termined by the product wk · a(µj , dk).

accuracy when using only prices as features indicates
that customers rarely choose a product based solely on
price. Rather, as indicated by the 74% accuracy, they
also consider the reputation of the merchants. How-
ever, the real value of the postings relies on the text
and not on the numeric ratings: the accuracy is 87%-
89% when using the textual reputation variables. In
fact, text subsumes the numeric variables but not vice
versa, as indicated by the results in Table 3.

6 Related Work

To the best of our knowledge, our work is the first to
use economics for measuring the effect of opinions
and deriving their polarity and strength in an econo-
metric manner. A few papers in the past tried to
combine text analysis with economics (Das and Chen,
2006; Lewitt and Syverson, 2005), but the text anal-
ysis was limited to token counting and did not use

Features Accuracy on Test Set
Price 55%
Price + Numeric Reputation 74%
Price + Numeric Reputation 89%
+ Text Reputation
Price + Text Reputation 87%

Table 3: Predicting the merchant who makes the sale.

any NLP techniques. The technique of Section 4.1
is based on existing research in sentiment analysis.
For instance, (Hatzivassiloglou and McKeown, 1997;
Nigam and Hurst, 2004) use annotated data to create a
supervised learning technique to identify the semantic
orientation of adjectives. We follow the approach by
Turney (2002), who note that the semantic orientation
of an adjective depends on the noun that it modifies
and suggest using adjective-noun or adverb-verb pairs
to extract semantic orientation. However, we do not
rely on linguistic resources (Kamps and Marx, 2002)
or on search engines (Turney and Littman, 2003) to
determine the semantic orientation, but rather rely on
econometrics for this task. Hu and Liu (2004), whose
study is the closest to our work, use WordNet to com-
pute the semantic orientation of product evaluations
and try to summarize user reviews by extracting the
positive and negative evaluations of the different prod-
uct features. Similarly, Snyder and Barzilay (2007)
decompose an opinion across several dimensions and
capture the sentiment across each dimension. Other
work in this area includes (Lee, 2004; Popescu and
Etzioni, 2005) which uses text mining in the context
product reviews, but none uses the economic context
to evaluate the opinions.

7 Conclusion and Further Applications

We demonstrated the value of using econometrics
for extracting a quantitative interpretation of opin-
ions. Our technique, additionally, takes into con-
sideration the context within which these opinions
are evaluated. Our experimental results show that
our techniques can capture the pragmatic mean-
ing of the expressed opinions using simple eco-
nomic variables as a form of training data. The
source code with our implementation together with
the data set used in this paper are available from
http://economining.stern.nyu.edu.

There are many other applications beyond reputa-
tion systems. For example, using sales rank data from
Amazon.com, we can examine the effect of product
reviews on product sales and detect the weight that
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customers put on different product features; further-
more, we can discover how customer evaluations on
individual product features affect product sales and
extract the pragmatic meaning of these evaluations.
Another application is the analysis of the effect of
news stories on stock prices: we can examine what
news topics are important for the stock market and
see how the views of different opinion holders and the
wording that they use can cause the market to move
up or down. In a slightly different twist, we can ana-
lyze news stories and blogs in conjunction with results
from prediction markets and extract the pragmatic ef-
fect of news and blogs on elections or other political
events. Another research direction is to examine the
effect of summarizing product descriptions on prod-
uct sales: short descriptions reduce the cognitive load
of consumers but increase their uncertainty about the
underlying product characteristics; a longer descrip-
tion has the opposite effect. The optimum description
length is the one that balances both effects and maxi-
mizes product sales.

Similar approaches can improve the state of art in
both economics and computational linguistics. In eco-
nomics and in social sciences in general, most re-
searchers handle textual data manually or with sim-
plistic token counting techniques; in the worst case
they ignore text data altogether. In computational
linguistics, researchers often rely on human annota-
tors to generate training data, a laborious and error-
prone task. We believe that cross-fertilization of ideas
between the fields of computational linguistics and
econometrics can be beneficial for both fields.
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Abstract

This paper presents an application of PageR-
ank, a random-walk model originally de-
vised for ranking Web search results, to
ranking WordNet synsets in terms of how
strongly they possess a given semantic prop-
erty. The semantic properties we use for ex-
emplifying the approach are positivity and
negativity, two properties of central impor-
tance in sentiment analysis. The idea derives
from the observation that WordNet may be
seen as a graph in which synsets are con-
nected through the binary relation “a term
belonging to synset sk occurs in the gloss
of synset si”, and on the hypothesis that
this relation may be viewed as a transmit-
ter of such semantic properties. The data
for this relation can be obtained from eX-
tended WordNet, a publicly available sense-
disambiguated version of WordNet. We ar-
gue that this relation is structurally akin to
the relation between hyperlinked Web pages,
and thus lends itself to PageRank analysis.
We report experimental results supporting
our intuitions.

1 Introduction

Recent years have witnessed an explosion of work
on opinion mining (aka sentiment analysis), the dis-

∗This work was partially supported by Project ONTOTEXT
“From Text to Knowledge for the Semantic Web”, funded by
the Provincia Autonoma di Trento under the 2004–2006 “Fondo
Unico per la Ricerca” funding scheme.

cipline that deals with the quantitative and qualita-
tive analysis of text for the purpose of determining
its opinion-related properties (ORPs). An important
part of this research has been the work on the auto-
matic determination of the ORPs of terms, as e.g.,
in determining whether an adjective tends to give a
positive, a negative, or a neutral nature to the noun
phrase it appears in. While many works (Esuli and
Sebastiani, 2005; Hatzivassiloglou and McKeown,
1997; Kamps et al., 2004; Takamura et al., 2005;
Turney and Littman, 2003) view the properties of
positivity and negativity as categorical (i.e., a term is
either positive or it is not), others (Andreevskaia and
Bergler, 2006b; Grefenstette et al., 2006; Kim and
Hovy, 2004; Subasic and Huettner, 2001) view them
as graded (i.e., a term may be positive to a certain
degree), with the underlying interpretation varying
from fuzzy to probabilistic.

Some authors go a step further and attach these
properties not to terms but to term senses (typ-
ically: WordNet synsets), on the assumption that
different senses of the same term may have dif-
ferent opinion-related properties (Andreevskaia and
Bergler, 2006a; Esuli and Sebastiani, 2006b; Ide,
2006; Wiebe and Mihalcea, 2006).

In this paper we contribute to this latter literature
with a novel method for ranking the entire set of
WordNet synsets, irrespectively of POS, according
to their ORPs. Two rankings are produced, one ac-
cording to positivity and one according to negativity.
The two rankings are independent, i.e., it is not the
case that one is the inverse of the other, since e.g.,
the least positive synsets may be negative or neutral
synsets alike.
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The main hypothesis underlying our method is
that the positivity and negativity of WordNet synsets
can be determined by mining their glosses. It
crucially relies on the observation that the gloss
of a WordNet synset contains terms that them-
selves belong to synsets, and on the hypothesis that
the glosses of positive (resp. negative) synsets will
mostly contain terms belonging to positive (nega-
tive) synsets. This means that the binary relation
si I sk (“the gloss of synset si contains a term
belonging to synset sk”), which induces a directed
graph on the set of WordNet synsets, may be thought
of as a channel through which positivity and nega-
tivity flow, from the definiendum (the synset si be-
ing defined) to the definiens (a synset sk that con-
tributes to the definition of si by virtue of its member
terms occurring in the gloss of si). In other words,
if a synset si is known to be positive (negative), this
can be viewed as an indication that the synsets sk to
which the terms occurring in the gloss of si belong,
are themselves positive (negative).

We obtain the data of the I relation from eX-
tended WordNet (Harabagiu et al., 1999), an auto-
matically sense-disambiguated version of WordNet
in which every term occurrence in every gloss is
linked to the synset it is deemed to belong to.

In order to compute how polarity flows in the
graph of WordNet synsets we use the well known
PageRank algorithm (Brin and Page, 1998). PageR-
ank, a random-walk model for ranking Web search
results which lies at the basis of the Google search
engine, is probably the most important single contri-
bution to the fields of information retrieval and Web
search of the last ten years, and was originally de-
vised in order to detect how authoritativeness flows
in the Web graph and how it is conferred onto Web
sites. The advantages of PageRank are its strong
theoretical foundations, its fast convergence proper-
ties, and the effectiveness of its results. The reason
why PageRank, among all random-walk algorithms,
is particularly suited to our application will be dis-
cussed in the rest of the paper.

Note however that our method is not limited to
ranking synsets by positivity and negativity, and
could in principle be applied to the determination of
other semantic properties of synsets, such as mem-
bership in a domain, since for many other properties
we may hypothesize the existence of a similar “hy-

draulics” between synsets. We thus see positivity
and negativity only as proofs-of-concept for the po-
tential of the method.

The rest of the paper is organized as follows. Sec-
tion 2 reports on related work on the ORPs of lex-
ical items, highlighting the similarities and differ-
ences between the discussed methods and our own.
In Section 3 we turn to discussing our method; in or-
der to make the paper self-contained, we start with
a brief introduction of PageRank (Section 3.1) and
of the structure of eXtended WordNet (Section 3.2).
Section 4 describes the structure of our experiments,
while Section 5 discusses the results we have ob-
tained, comparing them with other results from the
literature. Section 6 concludes.

2 Related work

Several works have recently tackled the automated
determination of term polarity. Hatzivassiloglou and
McKeown (1997) determine the polarity of adjec-
tives by mining pairs of conjoined adjectives from
text, and observing that conjunctions such as and
tend to conjoin adjectives of the same polarity while
conjunctions such as but tend to conjoin adjectives
of opposite polarity. Turney and Littman (2003) de-
termine the polarity of generic terms by computing
the pointwise mutual information (PMI) between the
target term and each of a set of “seed” terms of
known positivity or negativity, where the marginal
and joint probabilities needed for PMI computation
are equated to the fractions of documents from a
given corpus that contain the terms, individually or
jointly. Kamps et al. (2004) determine the polarity
of adjectives by checking whether the target adjec-
tive is closer to the term good or to the term bad
in the graph induced on WordNet by the synonymy
relation. Kim and Hovy (2004) determine the po-
larity of generic terms by means of two alternative
learning-free methods that use two sets of seed terms
of known positivity and negativity, and are based
on the frequency with which synonyms of the target
term also appear in the respective seed sets. Among
these works, (Turney and Littman, 2003) has proven
by far the most effective, but it is also by far the most
computationally intensive.

Some recent works have employed, as in the
present paper, the glosses from online dictionar-
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ies for term polarity detection. Andreevskaia and
Berger (2006a) extend a set of terms of known pos-
itivity/negativity by adding to them all the terms
whose glosses contain them; this algorithm does not
view glosses as a source for a graph of terms, and
is based on a different intuition than ours. Esuli
and Sebastiani (2005; 2006a) determine the ORPs of
generic terms by learning, in a semi-supervised way,
a binary term classifier from a set of training terms
that have been given vectorial representations by in-
dexing their WordNet glosses. The same authors
later extend their work to determining the ORPs
of WordNet synsets (Esuli and Sebastiani, 2006b).
However, there is a substantial difference between
these works and the present one, in that the former
simply view the glosses as sources of textual repre-
sentations for the terms/synsets, and not as inducing
a graph of synsets as we instead view them here.

The work closest in spirit to the present one is
probably that by Takamura et al. (2005), who de-
termine the polarity of terms by applying intuitions
from the theory of electron spins: two terms that ap-
pear one in the gloss of the other are viewed as akin
to two neighbouring electrons, which tend to acquire
the same “spin” (a notion viewed as akin to polarity)
due to their being neighbours. This work is simi-
lar to ours since a graph between terms is generated
from dictionary glosses, and since an iterative algo-
rithm that converges to a stable state is used, but the
algorithm is very different, and based on intuitions
from very different walks of life.

Some recent works have tackled the attribution
of opinion-related properties to word senses or
synsets (Ide, 2006; Wiebe and Mihalcea, 2006)1;
however, they do not use glosses in any significant
way, and are thus very different from our method.

The interested reader may also consult (Mihalcea,
2006) for other applications of random-walk models
to computational linguistics.

3 Ranking WordNet synsets by PageRank

3.1 The PageRank algorithm
Let G = 〈N,L〉 be a directed graph, with N its set
of nodes and L its set of directed links; let W0 be

1Andreevskaia and Berger (2006a) also work on term
senses, rather than terms, but they evaluate their work on terms
only. This is the reason why they are listed in the preceding
paragraph and not here.

the |N | × |N | adjacency matrix of G, i.e., the ma-
trix such that W0[i, j] = 1 iff there is a link from
node ni to node nj . We will denote by B(i) =
{nj |W0[j, i] = 1} the set of the backward neigh-
bours of ni, and by F (i) = {nj | W0[i, j] = 1}
the set of the forward neighbours of ni. Let W be
the row-normalized adjacency matrix of G, i.e., the
matrix such that W[i, j] = 1

|F (i)| iff W0[i, j] = 1
and W[i, j] = 0 otherwise.

The input to PageRank is the row-normalized ad-
jacency matrix W, and its output is a vector a =
〈a1, . . . , a|N |〉, where ai represents the “score” of
node ni. When using PageRank for search results
ranking, ni is a Web site and ai measures its com-
puted authoritativeness; in our application ni is in-
stead a synset and ai measures the degree to which
ni has the semantic property of interest. PageRank
iteratively computes vector a based on the formula

a
(k)
i ← α

∑
j∈B(i)

a
(k−1)
j

|F (j)|
+ (1− α)ei (1)

where a(k)
i denotes the value of the i-th entry of vec-

tor a at the k-th iteration, ei is a constant such that∑
i e
|N |
i=1 = 1, and 0 ≤ α ≤ 1 is a control parameter.

In vectorial form, Equation 1 can be written as

a(k) = αa(k−1)W + (1− α)e (2)

The underlying intuition is that a node ni has a high
score when (recursively) it has many high-scoring
backward neighbours with few forward neighbours
each; a node nj thus passes its score aj along to
its forward neighbours F (j), but this score is sub-
divided equally among the members of F (j). This
mechanism (that is represented by the summation in
Equation 1) is then “smoothed” by the ei constants,
whose role is (see (Bianchini et al., 2005) for de-
tails) to avoid that scores flow and get trapped into
so-called “rank sinks” (i.e., cliques with backward
neighbours but no forward neighbours).

The computational properties of the PageRank al-
gorithm, and how to compute it efficiently, have
been widely studied; the interested reader may con-
sult (Bianchini et al., 2005).

In the original application of PageRank for rank-
ing Web search results the elements of e are usually
taken to be all equal to 1

|N | . However, it is possible
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to give different values to different elements in e. In
fact, the value of ei amounts to an internal source
of score for ni that is constant across the iterations
and independent from its backward neighbours. For
instance, attributing a null ei value to all but a few
Web pages that are about a given topic can be used
in order to bias the ranking of Web pages in favour
of this topic (Haveliwala, 2003).

In this work we use the ei values as internal
sources of a given ORP (positivity or negativity),
by attributing a null ei value to all but a few “seed”
synsets known to possess that ORP. PageRank will
thus make the ORP flow from the seed synsets, at
a rate constant throughout the iterations, into other
synsets along the I relation, until a stable state is
reached; the final ai values can be used to rank the
synsets in terms of that ORP. Our method thus re-
quires two runs of PageRank; in the first e has non-
null scores for the positive seed synsets, while in the
second the same happens for the negative ones.

3.2 eXtended WordNet
The transformation of WordNet into a graph based
on the I relation would of course be non-
trivial, but is luckily provided by eXtended Word-
Net (Harabagiu et al., 1999), a publicly available
version of WordNet in which (among other things)
each term sk occurring in a WordNet gloss (ex-
cept those in example phrases) is lemmatized and
mapped to the synset in which it belongs2. We
use eXtended WordNet version 2.0-1.1, which refers
to WordNet version 2.0. The eXtended WordNet
resource has been automatically generated, which
means that the associations between terms and
synsets are likely to be sometimes incorrect, and this
of course introduces noise in our method.

3.3 PageRank, (eXtended) WordNet, and ORP
flow

We now discuss the application of PageRank to
ranking WordNet synsets by positivity and negativ-
ity. Our algorithm consists in the following steps:

1. The graph G = 〈N,L〉 on which PageRank
will be applied is generated. We define N to
be the set of all WordNet synsets; in WordNet
2.0 there are 115,424 of them. We define L to

2http://xwn.hlt.utdallas.edu/

contain a link from synset si to synset sk iff the
gloss of si contains at least a term belonging
to sk (terms occurring in the examples phrases
and terms occurring after a term that expresses
negation are not considered). Numbers, articles
and prepositions occurring in the glosses are
discarded, since they can be assumed to carry
no positivity and negativity, and since they do
not belong to a synset of their own. This leaves
only nouns, adjectives, verbs, and adverbs.

2. The graph G = 〈N,L〉 is “pruned” by remov-
ing “self-loops”, i.e., links going from a synset
si into itself (since we assume that there is no
flow of semantics from a concept unto itself).
The row-normalized adjacency matrix W of G
is derived.

3. The ei values are loaded into the e vector; all
synsets other than the seed synsets of renowned
positivity (negativity) are given a value of 0.
The α control parameter is set to a fixed value.
We experiment with several different versions
of the e vector and several different values of
α; see Section 4.3 for details.

4. PageRank is executed using W and e, iter-
ating until a predefined termination condition
is reached. The termination condition we use
in this work consists in the fact that the co-
sine of the angle between a(k) and a(k+1) is
above a predefined threshold χ (here we have
set χ = 1− 10−9).

5. We rank all the synsets of WordNet in descend-
ing order of their ai score.

The process is run twice, once for positivity and
once for negativity.

The last question to be answered is: “why PageR-
ank?” Are the characteristics of PageRank more
suitable to the problem of ranking synsets than other
random-walk algorithms? The answer is yes, since
it seems reasonable that:

1. If terms contained in synset sk occur in the
glosses of many positive synsets, and if the pos-
itivity scores of these synsets are high, then it
is likely that sk is itself positive (the same hap-
pens for negativity). This justifies the summa-
tion of Equation 1.
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2. If the gloss of a positive synset that contains
a term in synset sk also contains many other
terms, then this is a weaker indication that sk is
itself positive (this justifies dividing by |F (j)|
in Equation 1).

3. The ranking resulting from the algorithm needs
to be biased in favour of a specific ORP; this
justifies the presence of the (1 − α)ei factor in
Equation 1).

The fact that PageRank is the “right” random-walk
algorithm for our application is also confirmed by
some experiments (not reported here for reasons of
space) we have run with slightly different variants of
the model (e.g., one in which we challenge intuition
2 above and thus avoid dividing by |F (j)| in Equa-
tion 1). These experiments have always returned
inferior results with respect to standard PageRank,
thereby confirming the correctness of our intuitions.

4 Experiments

4.1 The benchmark

To evaluate the quality of the rankings produced
by our experiments we have used the Micro-WNOp
corpus (Cerini et al., 2007) as a benchmark3. Micro-
WNOp consists in a set of 1,105 WordNet synsets,
each of which was manually assigned a triplet of
scores, one of positivity, one of negativity, one
of neutrality. The evaluation was performed by
five MSc students of linguistics, proficient second-
language speakers of English. Micro-WNOp is rep-
resentative of WordNet with respect to the different
parts of speech, in the sense that it contains synsets
of the different parts of speech in the same propor-
tions as in the entire WordNet. However, it is not
representative of WordNet with respect to ORPs,
since this would have brought about a corpus largely
composed of neutral synsets, which would be pretty
useless as a benchmark for testing automatically de-
rived lexical resources for opinion mining. It was
thus generated by randomly selecting 100 positive +
100 negative + 100 neutral terms from the General
Inquirer lexicon (see (Turney and Littman, 2003) for
details) and including all the synsets that contained

3http://www.unipv.it/wnop/

at least one such term, without paying attention to
POS. See (Cerini et al., 2007) for more details.

The corpus is divided into three parts:

• Common: 110 synsets which all the evaluators
evaluated by working together, so as to align
their evaluation criteria.

• Group1: 496 synsets which were each inde-
pendently evaluated by three evaluators.

• Group2: 499 synsets which were each inde-
pendently evaluated by the other two evalua-
tors.

Each of these three parts has the same balance, in
terms of both parts of speech and ORPs, of Micro-
WNOp as a whole. We obtain the positivity (nega-
tivity) ranking from Micro-WNOp by averaging the
positivity (negativity) scores assigned by the evalua-
tors of each group into a single score, and by sorting
the synsets according to the resulting score. We use
Group1 as a validation set, i.e., in order to fine-tune
our method, and Group2 as a test set, i.e., in order
to evaluate our method once all the parameters have
been optimized on the validation set.

The result of applying PageRank to the graph G
induced by the I relation, given a vector e of in-
ternal sources of positivity (negativity) score and a
value for the α parameter, is a ranking of all the
WordNet synsets in terms of positivity (negativity).
By using different e vectors and different values of
α we obtain different rankings, whose quality we
evaluate by comparing them against the ranking ob-
tained from Micro-WNOp.

4.2 The effectiveness measure
A ranking � is a partial order on a set of objects
N = {o1 . . . o|N |}. Given a pair (oi, oj) of objects,
oi may precede oj (oi � oj), it may follow oi (oi �
oj), or it may be tied with oj (oi ≈ oj).

To evaluate the rankings produced by PageRank
we have used the p-normalized Kendall τ distance
(noted τp – see e.g., (Fagin et al., 2004)) between
the Micro-WNOp rankings and those predicted by
PageRank. A standard function for the evaluation of
rankings with ties, τp is defined as

τp =
nd + p · nu

Z
(3)
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where nd is the number of discordant pairs, i.e.,
pairs of objects ordered one way in the gold stan-
dard and the other way in the prediction; nu is the
number of pairs ordered (i.e., not tied) in the gold
standard and tied in the prediction, and p is a penal-
ization to be attributed to each such pair; and Z is
a normalization factor (equal to the number of pairs
that are ordered in the gold standard) whose aim is
to make the range of τp coincide with the [0, 1] in-
terval. Note that pairs tied in the gold standard are
not considered in the evaluation.

The penalization factor is set to p = 1
2 , which

is equal to the probability that a ranking algorithm
correctly orders the pair by random guessing; there
is thus no advantage to be gained from either ran-
dom guessing or assigning ties between objects. For
a prediction which perfectly coincides with the gold
standard τp equals 0; for a prediction which is ex-
actly the inverse of the gold standard τp equals 1.

4.3 Setup

In order to produce a ranking by positivity (nega-
tivity) we need to provide an e vector as input to
PageRank. We have experimented with several dif-
ferent definitions of e, each for both positivity and
negativity. For reasons of space, we only report re-
sults from the five most significant ones.

We have first tested a vector (hereafter dubbed
e1) with all values uniformly set to 1

|N | . This is the
e vector originally used in (Brin and Page, 1998)
for Web page ranking, and brings about an unbiased
(that is, with respect to particular properties) rank-
ing of WordNet. Of course, it is not meant to be
used for ranking by positivity or negativity; we have
used it as a baseline in order to evaluate the impact
of property-biased vectors.

The first sensible, albeit minimalistic, definition
of e we have used (dubbed e2) is that of a vec-
tor with uniform non-null ei scores assigned to the
synsets that contain the adjective good (bad), and
null scores for all other synsets. A further, still fairly
minimalistic definition we have used (dubbed e3) is
that of a vector with uniform non-null ei scores as-
signed to the synsets that contain at least one of the
seven “paradigmatic” positive (negative) adjectives
used as seeds in (Turney and Littman, 2003)4, and

4The seven positive adjectives are good, nice, excellent,

null scores for all other synsets.
We have also tested a more complex version of

e, with ei scores obtained from release 1.0 of Senti-
WordNet (Esuli and Sebastiani, 2006b)5. This latter
is a lexical resource in which each WordNet synset
is given a positivity score, a negativity score, and a
neutrality score. We produced an e vector (dubbed
e4) in which the score assigned to a synset is propor-
tional to the positivity (negativity) score assigned to
it by SentiWordNet, and in which all entries sum up
to 1. In a similar way we also produced a further e
vector (dubbed e5) through the scores of a newer re-
lease of SentiWordNet (release 1.1), resulting from a
slight modification of the approach that had brought
about release 1.0 (Esuli and Sebastiani, 2007b).

PageRank is parametric on α, which determines
the balance between the contributions of the a(k−1)

vector and the e vector. A value of α = 0 makes
the a(k) vector coincide with e, and corresponds to
discarding the contribution of the random-walk al-
gorithm. Conversely, setting α = 1 corresponds
to discarding the contribution of e, and makes a(k)

uniquely depend on the topology of the graph; the
result is an “unbiased” ranking. The desirable cases
are, of course, in between. As first hinted in Sec-
tion 4.1, we thus optimize the α parameter on the
synsets in Group1, and then test the algorithm with
the optimal value of α on the synsets in Group2.
All the 101 values of α from 0.0 to 1.0 with a step of
.01 have been tested in the optimization phase. Op-
timization is performed anew for each experiment,
which means that different values of α may be even-
tually selected for different e vectors.

5 Results

The results show that the use of PageRank in com-
bination with suitable vectors e almost always im-
proves the ranking, sometimes significantly so, with
respect to the original ranking embodied by the e
vector.

For positivity, the rankings produced using
PageRank and any of the vectors from e2 to e5 all
improve on the original rankings, with a relative im-
provement, measured as the relative decrease in τp,

positive, fortunate, correct, superior, and the seven negative
ones are bad, nasty, poor, negative, unfortunate, wrong, in-
ferior.

5http://sentiwordnet.isti.cnr.it/
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ranging from −4.88% (e5) to −6.75% (e4). These
rankings are also all better than the rankings pro-
duced by using PageRank and the uniform-valued
vector e1, with a minimum relative improvement
of −5.04% (e3) and a maximum of −34.47% (e4).
This suggests that the key to good performance is
indeed a combination of positivity flow and internal
source of score.

For the negativity rankings, the performance of
both SentiWordNet-based vectors is still good, pro-
ducing a −4.31% (e4) and a −3.45% (e5) improve-
ment with respect to the original rankings. The
“minimalistic” vectors (i.e., e2 and e3) are not as
good as their positive counterparts. The reason
seems to be that the generation of a ranking by neg-
ativity seems a somehow harder task than the gen-
eration of a ranking by positivity; this is also shown
by the results obtained with the uniform-valued vec-
tor e1, in which the application of PageRank im-
proves with respect to e1 for positivity but deteri-
orates for negativity. However, against the baseline
constituted by the results obtained with the uniform-
valued vector e1 for negativity, our rankings show
a relevant improvement, ranging from −8.56% (e2)
to −48.27% (e4).

Our results are particularly significant for the e4
vectors, derived by SentiWordNet 1.0, for a num-
ber of reasons. First, e4 brings about the best value
of τp obtained in all our experiments (.325 for pos-
itivity, .284 for negativity). Second, the relative im-
provement with respect to e4 is the most marked
among the various choices for e (6.75% for positiv-
ity, 4.31% for negativity). Third, the improvement
is obtained with respect to an already high-quality
resource, obtained by the same techniques that, at
the term level, are still the best performers for po-
larity detection on the widely used General Inquirer
benchmark (Esuli and Sebastiani, 2005).

Finally, observe that the fact that e4 outperforms
all other choices for e (and e2 in particular) was not
necessarily to be expected. In fact, SentiWordNet
1.0 was built by a semi-supervised learning method
that uses vectors e2 as its only initial training data.
This paper thus shows that, starting from e2 as the
only manually annotated data, the best results are
obtained neither by the semi-supervised method that
generated SentiWordNet 1.0, nor by PageRank, but
by the concatenation of the former with the latter.

Positivity Negativity
e PageRank? τp ∆ τp ∆

e1
before .500 .500
after .496 (-0.81%) .549 (9.83%)

e2
before .500 .500
after .467 (-6.65%) .502 (0.31%)

e3
before .500 .500
after .471 (-5.79%) .495 (-0.92%)

e4
before .349 .296
after .325 (-6.75%) .284 (-4.31%)

e5
before .400 .407
after .380 (-4.88%) .393 (-3.45%)

Table 1: Values of τp between predicted rankings
and gold standard rankings (smaller is better). For
each experiment the first line indicates the ranking
obtained from the original e vector (before the ap-
plication of PageRank), while the second line indi-
cates the ranking obtained after the application of
PageRank, with the relative improvement (a nega-
tive percentage indicates improvement).

6 Conclusions

We have investigated the applicability of a random-
walk model to the problem of ranking synsets ac-
cording to positivity and negativity. However, we
conjecture that this model can be of more general
use, i.e., for the determination of other properties of
term senses, such as membership in a domain. This
paper thus presents a proof-of-concept of the model,
and the results of experiments support our intuitions.

Also, we see this work as a proof of concept
for the applicability of general random-walk algo-
rithms (and not just PageRank) to the determination
of the semantic properties of synsets. In a more re-
cent paper (Esuli and Sebastiani, 2007a) we have
investigated a related random-walk model, one in
which, symmetrically to the intuitions of the model
presented in this paper, semantics flows from the
definiens to the definiendum; a metaphor that proves
no less powerful than the one we have championed
in this paper.
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drea Sansò, editor, Language resources and linguistic the-
ory: Typology, second language acquisition, English linguis-
tics. Franco Angeli Editore, Milano, IT. Forthcoming.

Andrea Esuli and Fabrizio Sebastiani. 2005. Determining the
semantic orientation of terms through gloss analysis. In Pro-
ceedings of the 14th ACM International Conference on In-
formation and Knowledge Management (CIKM’05), pages
617–624, Bremen, DE.

Andrea Esuli and Fabrizio Sebastiani. 2006a. Determining
term subjectivity and term orientation for opinion mining. In
Proceedings of the 11th Conference of the European Chapter
of the Association for Computational Linguistics (EACL’06),
pages 193–200, Trento, IT.

Andrea Esuli and Fabrizio Sebastiani. 2006b. SENTIWORD-
NET: A publicly available lexical resource for opinion min-
ing. In Proceedings of the 5th Conference on Language Re-
sources and Evaluation (LREC’06), pages 417–422, Gen-
ova, IT.

Andrea Esuli and Fabrizio Sebastiani. 2007a. Random-
walk models of term semantics: An application to opinion-
related properties. Technical Report ISTI-009/2007, Isti-
tuto di Scienza e Tecnologie dell’Informazione, Consiglio
Nazionale dellle Ricerche, Pisa, IT.

Andrea Esuli and Fabrizio Sebastiani. 2007b. SENTIWORD-
NET: A high-coverage lexical resource for opinion mining.
Technical Report 2007-TR-02, Istituto di Scienza e Tecnolo-
gie dell’Informazione, Consiglio Nazionale delle Ricerche,
Pisa, IT.

Ronald Fagin, Ravi Kumar, Mohammad Mahdiany, D. Sivaku-
mar, and Erik Veez. 2004. Comparing and aggregating rank-
ings with ties. In Proceedings of ACM International Confer-
ence on Principles of Database Systems (PODS’04), pages
47–58, Paris, FR.

Gregory Grefenstette, Yan Qu, David A. Evans, and James G.
Shanahan. 2006. Validating the coverage of lexical re-
sources for affect analysis and automatically classifying new
words along semantic axes. In James G. Shanahan, Yan Qu,
and Janyce Wiebe, editors, Computing Attitude and Affect
in Text: Theories and Applications, pages 93–107. Springer,
Heidelberg, DE.

Sanda H. Harabagiu, George A. Miller, and Dan I. Moldovan.
1999. WordNet 2: A morphologically and semantically en-
hanced resource. In Proceedings of the ACL SIGLEX Work-
shop on Standardizing Lexical Resources, pages 1–8, Col-
lege Park, US.

Vasileios Hatzivassiloglou and Kathleen R. McKeown. 1997.
Predicting the semantic orientation of adjectives. In Pro-
ceedings of the 35th Annual Meeting of the Association
for Computational Linguistics (ACL’97), pages 174–181,
Madrid, ES.

Taher H. Haveliwala. 2003. Topic-sensitive PageRank:
A context-sensitive ranking algorithm for Web search.
IEEE Transactions on Knowledge and Data Engineering,
15(4):784–796.

Nancy Ide. 2006. Making senses: Bootstrapping sense-tagged
lists of semantically-related words. In Proceedings of the
7th International Conference on Computational Linguistics
and Intelligent Text Processing (CICLING’06), pages 13–27,
Mexico City, MX.

Jaap Kamps, Maarten Marx, Robert J. Mokken, and Maarten
De Rijke. 2004. Using WordNet to measure semantic ori-
entation of adjectives. In Proceedings of the 4th Interna-
tional Conference on Language Resources and Evaluation
(LREC’04), volume IV, pages 1115–1118, Lisbon, PT.

Soo-Min Kim and Eduard Hovy. 2004. Determining the
sentiment of opinions. In Proceedings of the 20th Inter-
national Conference on Computational Linguistics (COL-
ING’04), pages 1367–1373, Geneva, CH.

Rada Mihalcea. 2006. Random walks on text structures. In
Proceedings of the 7th International Conference on Com-
putational Linguistics and Intelligent Text Processing (CI-
CLING’06), pages 249–262, Mexico City, MX.

Pero Subasic and Alison Huettner. 2001. Affect analysis of text
using fuzzy semantic typing. IEEE Transactions on Fuzzy
Systems, 9(4):483–496.

Hiroya Takamura, Takashi Inui, and Manabu Okumura. 2005.
Extracting emotional polarity of words using spin model.
In Proceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL’05), pages 133–
140, Ann Arbor, US.

Peter D. Turney and Michael L. Littman. 2003. Measur-
ing praise and criticism: Inference of semantic orientation
from association. ACM Transactions on Information Sys-
tems, 21(4):315–346.

Janyce Wiebe and Rada Mihalcea. 2006. Word sense and sub-
jectivity. In Proceedings of the 44th Annual Meeting of the
Association for Computational Linguistics (ACL’06), pages
1065–1072, Sydney, AU.

431



Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 432–439,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Structured Models for Fine-to-Coarse Sentiment Analysis

Ryan McDonald∗ Kerry Hannan Tyler Neylon Mike Wells Jeff Reynar
Google, Inc.

76 Ninth Avenue
New York, NY 10011

∗Contact email: ryanmcd@google.com

Abstract

In this paper we investigate a structured
model for jointly classifying the sentiment
of text at varying levels of granularity. Infer-
ence in the model is based on standard se-
quence classification techniques using con-
strained Viterbi to ensure consistent solu-
tions. The primary advantage of such a
model is that it allows classification deci-
sions from one level in the text to influence
decisions at another. Experiments show that
this method can significantly reduce classifi-
cation error relative to models trained in iso-
lation.

1 Introduction

Extracting sentiment from text is a challenging prob-
lem with applications throughout Natural Language
Processing and Information Retrieval. Previous
work on sentiment analysis has covered a wide range
of tasks, including polarity classification (Pang et
al., 2002; Turney, 2002), opinion extraction (Pang
and Lee, 2004), and opinion source assignment
(Choi et al., 2005; Choi et al., 2006). Furthermore,
these systems have tackled the problem at differ-
ent levels of granularity, from the document level
(Pang et al., 2002), sentence level (Pang and Lee,
2004; Mao and Lebanon, 2006), phrase level (Tur-
ney, 2002; Choi et al., 2005), as well as the speaker
level in debates (Thomas et al., 2006). The abil-
ity to classify sentiment on multiple levels is impor-
tant since different applications have different needs.
For example, a summarization system for product

reviews might require polarity classification at the
sentence or phrase level; a question answering sys-
tem would most likely require the sentiment of para-
graphs; and a system that determines which articles
from an online news source are editorial in nature
would require a document level analysis.

This work focuses on models that jointly classify
sentiment on multiple levels of granularity. Consider
the following example,

This is the first Mp3 player that I have used ... I
thought it sounded great ... After only a few weeks,
it started having trouble with the earphone connec-
tion ... I won’t be buying another.

Mp3 player review from Amazon.com

This excerpt expresses an overall negative opinion of
the product being reviewed. However, not all parts
of the review are negative. The first sentence merely
provides some context on the reviewer’s experience
with such devices and the second sentence indicates
that, at least in one regard, the product performed
well. We call the problem of identifying the senti-
ment of the document and of all its subcomponents,
whether at the paragraph, sentence, phrase or word
level, fine-to-coarse sentiment analysis.

The simplest approach to fine-to-coarse sentiment
analysis would be to create a separate system for
each level of granularity. There are, however, obvi-
ous advantages to building a single model that clas-
sifies each level in tandem. Consider the sentence,

My 11 year old daughter has also been using it and
it is a lot harder than it looks.

In isolation, this sentence appears to convey negative
sentiment. However, it is part of a favorable review
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for a piece of fitness equipment, where hard essen-
tially means good workout. In this domain, hard’s
sentiment can only be determined in context (i.e.,
hard to assemble versus a hard workout). If the clas-
sifier knew the overall sentiment of a document, then
disambiguating such cases would be easier.

Conversely, document level analysis can benefit
from finer level classification by taking advantage
of common discourse cues, such as the last sentence
being a reliable indicator for overall sentiment in re-
views. Furthermore, during training, the model will
not need to modify its parameters to explain phe-
nomena like the typically positive word great ap-
pearing in a negative text (as is the case above). The
model can also avoid overfitting to features derived
from neutral or objective sentences. In fact, it has al-
ready been established that sentence level classifica-
tion can improve document level analysis (Pang and
Lee, 2004). This line of reasoning suggests that a
cascaded approach would also be insufficient. Valu-
able information is passed in both directions, which
means any model of fine-to-coarse analysis should
account for this.

In Section 2 we describe a simple structured
model that jointly learns and infers sentiment on dif-
ferent levels of granularity. In particular, we reduce
the problem of joint sentence and document level
analysis to a sequential classification problem us-
ing constrained Viterbi inference. Extensions to the
model that move beyond just two-levels of analysis
are also presented. In Section 3 an empirical eval-
uation of the model is given that shows significant
gains in accuracy over both single level classifiers
and cascaded systems.

1.1 Related Work

The models in this work fall into the broad class of
global structured models, which are typically trained
with structured learning algorithms. Hidden Markov
models (Rabiner, 1989) are one of the earliest struc-
tured learning algorithms, which have recently been
followed by discriminative learning approaches such
as conditional random fields (CRFs) (Lafferty et al.,
2001; Sutton and McCallum, 2006), the structured
perceptron (Collins, 2002) and its large-margin vari-
ants (Taskar et al., 2003; Tsochantaridis et al., 2004;
McDonald et al., 2005; Daumé III et al., 2006).
These algorithms are usually applied to sequential

labeling or chunking, but have also been applied to
parsing (Taskar et al., 2004; McDonald et al., 2005),
machine translation (Liang et al., 2006) and summa-
rization (Daumé III et al., 2006).

Structured models have previously been used for
sentiment analysis. Choi et al. (2005, 2006) use
CRFs to learn a global sequence model to classify
and assign sources to opinions. Mao and Lebanon
(2006) used a sequential CRF regression model to
measure polarity on the sentence level in order to
determine the sentiment flow of authors in reviews.
Here we show that fine-to-coarse models of senti-
ment can often be reduced to the sequential case.

Cascaded models for fine-to-coarse sentiment
analysis were studied by Pang and Lee (2004). In
that work an initial model classified each sentence
as being subjective or objective using a global min-
cut inference algorithm that considered local label-
ing consistencies. The top subjective sentences are
then input into a standard document level polarity
classifier with improved results. The current work
differs from that in Pang and Lee through the use of
a single joint structured model for both sentence and
document level analysis.

Many problems in natural language processing
can be improved by learning and/or predicting mul-
tiple outputs jointly. This includes parsing and rela-
tion extraction (Miller et al., 2000), entity labeling
and relation extraction (Roth and Yih, 2004), and
part-of-speech tagging and chunking (Sutton et al.,
2004). One interesting work on sentiment analysis
is that of Popescu and Etzioni (2005) which attempts
to classify the sentiment of phrases with respect to
possible product features. To do this an iterative al-
gorithm is used that attempts to globally maximize
the classification of all phrases while satisfying local
consistency constraints.

2 Structured Model

In this section we present a structured model for
fine-to-coarse sentiment analysis. We start by exam-
ining the simple case with two-levels of granularity
– the sentence and document – and show that the
problem can be reduced to sequential classification
with constrained inference. We then discuss the fea-
ture space and give an algorithm for learning the pa-
rameters based on large-margin structured learning.
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Extensions to the model are also examined.

2.1 A Sentence-Document Model

Let Y(d) be a discrete set of sentiment labels at
the document level and Y(s) be a discrete set of
sentiment labels at the sentence level. As input a
system is given a document containing sentences
s = s1, . . . , sn and must produce sentiment labels
for the document, yd ∈ Y(d), and each individ-
ual sentence, ys = ys

1, . . . , y
s
n, where ys

i ∈ Y(s) ∀
1 ≤ i ≤ n. Define y = (yd,ys) = (yd, ys

1, . . . , y
s
n)

as the joint labeling of the document and sentences.
For instance, in Pang and Lee (2004), yd would be
the polarity of the document and ys

i would indicate
whether sentence si is subjective or objective. The
models presented here are compatible with arbitrary
sets of discrete output labels.

Figure 1 presents a model for jointly classifying
the sentiment of both the sentences and the docu-
ment. In this undirected graphical model, the label
of each sentence is dependent on the labels of its
neighbouring sentences plus the label of the docu-
ment. The label of the document is dependent on
the label of every sentence. Note that the edges
between the input (each sentence) and the output
labels are not solid, indicating that they are given
as input and are not being modeled. The fact that
the sentiment of sentences is dependent not only on
the local sentiment of other sentences, but also the
global document sentiment – and vice versa – al-
lows the model to directly capture the importance
of classification decisions across levels in fine-to-
coarse sentiment analysis. The local dependencies
between sentiment labels on sentences is similar to
the work of Pang and Lee (2004) where soft local
consistency constraints were created between every
sentence in a document and inference was solved us-
ing a min-cut algorithm. However, jointly modeling
the document label and allowing for non-binary la-
bels complicates min-cut style solutions as inference
becomes intractable.

Learning and inference in undirected graphical
models is a well studied problem in machine learn-
ing and NLP. For example, CRFs define the prob-
ability over the labels conditioned on the input us-
ing the property that the joint probability distribu-
tion over the labels factors over clique potentials in
undirected graphical models (Lafferty et al., 2001).

Figure 1: Sentence and document level model.

In this work we will use structured linear classi-
fiers (Collins, 2002). We denote the score of a la-
beling y for an input s as score(y, s) and define this
score as the sum of scores over each clique,

score(y, s) = score((yd,ys), s)
= score((yd, ys

1, . . . , y
s
n), s)

=
n∑

i=2

score(yd, ys
i−1, y

s
i , s)

where each clique score is a linear combination of
features and their weights,

score(yd, ys
i−1, y

s
i , s) = w · f(yd, ys

i−1, y
s
i , s) (1)

and f is a high dimensional feature representation
of the clique and w a corresponding weight vector.
Note that s is included in each score since it is given
as input and can always be conditioned on.

In general, inference in undirected graphical mod-
els is intractable. However, for the common case of
sequences (a.k.a. linear-chain models) the Viterbi al-
gorithm can be used (Rabiner, 1989; Lafferty et al.,
2001). Fortunately there is a simple technique that
reduces inference in the above model to sequence
classification with a constrained version of Viterbi.

2.1.1 Inference as Sequential Labeling
The inference problem is to find the highest scor-

ing labeling y for an input s, i.e.,

arg max
y

score(y, s)

If the document label yd is fixed, then inference
in the model from Figure 1 reduces to the sequen-
tial case. This is because the search space is only
over the sentence labels ys

i , whose graphical struc-
ture forms a chain. Thus the problem of finding the
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Input: s = s1, . . . , sn

1. y = null
2. for each yd ∈ Y(d)
3. ys = arg maxys score((yd, ys), s)

4. y′ = (yd, ys)
5. if score(y′, s) > score(y, s) or y = null
6. y = y′

7. return y

Figure 2: Inference algorithm for model in Figure 1.
The argmax in line 3 can be solved using Viterbi’s
algorithm since yd is fixed.

highest scoring sentiment labels for all sentences,
given a particular document label yd, can be solved
efficiently using Viterbi’s algorithm.

The general inference problem can then be solved
by iterating over each possible yd, finding ys max-
imizing score((yd,ys), s) and keeping the single
best y = (yd,ys). This algorithm is outlined in Fig-
ure 2 and has a runtime of O(|Y(d)||Y(s)|2n), due
to running Viterbi |Y(d)| times over a label space of
size |Y(s)|. The algorithm can be extended to pro-
duce exact k-best lists. This is achieved by using
k-best Viterbi techniques to return the k-best global
labelings for each document label in line 3. Merging
these sets will produce the final k-best list.

It is possible to view the inference algorithm in
Figure 2 as a constrained Viterbi search since it is
equivalent to flattening the model in Figure 1 to a
sequential model with sentence labels from the set
Y(s) × Y(d). The resulting Viterbi search would
then need to be constrained to ensure consistent
solutions, i.e., the label assignments agree on the
document label over all sentences. If viewed this
way, it is also possible to run a constrained forward-
backward algorithm and learn the parameters for
CRFs as well.

2.1.2 Feature Space
In this section we define the feature representa-

tion for each clique, f(yd, ys
i−1, y

s
i , s). Assume that

each sentence si is represented by a set of binary
predicates P(si). This set can contain any predicate
over the input s, but for the present purposes it will
include all the unigram, bigram and trigrams in
the sentence si conjoined with their part-of-speech
(obtained from an automatic classifier). Back-offs
of each predicate are also included where one or
more word is discarded. For instance, if P(si) con-

tains the predicate a:DT great:JJ product:NN,
then it would also have the predicates
a:DT great:JJ *:NN, a:DT *:JJ product:NN,
*:DT great:JJ product:NN, a:DT *:JJ *:NN, etc.
Each predicate, p, is then conjoined with the label
information to construct a binary feature. For exam-
ple, if the sentence label set is Y(s) = {subj, obj}
and the document set is Y(d) = {pos, neg}, then
the system might contain the following feature,

f(j)(yd, ys
i−1, y

s
i , s) =


1 if p ∈ P(si)

and ys
i−1 = obj

and ys
i = subj

and yd = neg
0 otherwise

Where f(j) is the jth dimension of the feature space.
For each feature, a set of back-off features are in-
cluded that only consider the document label yd, the
current sentence label ys

i , the current sentence and
document label ys

i and yd, and the current and pre-
vious sentence labels ys

i and ys
i−1. Note that through

these back-off features the joint models feature set
will subsume the feature set of any individual level
model. Only features observed in the training data
were considered. Depending on the data set, the di-
mension of the feature vector f ranged from 350K to
500K. Though the feature vectors can be sparse, the
feature weights will be learned using large-margin
techniques that are well known to be robust to large
and sparse feature representations.

2.1.3 Training the Model
Let Y = Y(d) × Y(s)n be the set of all valid

sentence-document labelings for an input s. The
weights, w, are set using the MIRA learning al-
gorithm, which is an inference based online large-
margin learning technique (Crammer and Singer,
2003; McDonald et al., 2005). An advantage of this
algorithm is that it relies only on inference to learn
the weight vector (see Section 2.1.1). MIRA has
been shown to provide state-of-the-art accuracy for
many language processing tasks including parsing,
chunking and entity extraction (McDonald, 2006).

The basic algorithm is outlined in Figure 3. The
algorithm works by considering a single training in-
stance during each iteration. The weight vector w is
updated in line 4 through a quadratic programming
problem. This update modifies the weight vector so
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Training data: T = {(yt, st)}T
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. w(i+1) = arg minw*
‚‚‚w* − w(i)

‚‚‚
s.t. score(yt, st)− score(y′, s) ≥ L(yt, y

′)
relative to w*

∀y′ ∈ C ⊂ Y , where |C| = k
5. i = i + 1

6. return w(N×T )

Figure 3: MIRA learning algorithm.

that the score of the correct labeling is larger than
the score of every labeling in a constraint set C with
a margin proportional to the loss. The constraint set
C can be chosen arbitrarily, but it is usually taken to
be the k labelings that have the highest score under
the old weight vector w(i) (McDonald et al., 2005).
In this manner, the learning algorithm can update its
parameters relative to those labelings closest to the
decision boundary. Of all the weight vectors that sat-
isfy these constraints, MIRA chooses the one that is
as close as possible to the previous weight vector in
order to retain information about previous updates.

The loss function L(y,y′) is a positive real val-
ued function and is equal to zero when y = y′. This
function is task specific and is usually the hamming
loss for sequence classification problems (Taskar et
al., 2003). Experiments with different loss functions
for the joint sentence-document model on a develop-
ment data set indicated that the hamming loss over
sentence labels multiplied by the 0-1 loss over doc-
ument labels worked best.

An important modification that was made to the
learning algorithm deals with how the k constraints
are chosen for the optimization. Typically these con-
straints are the k highest scoring labelings under the
current weight vector. However, early experiments
showed that the model quickly learned to discard
any labeling with an incorrect document label for
the instances in the training set. As a result, the con-
straints were dominated by labelings that only dif-
fered over sentence labels. This did not allow the al-
gorithm adequate opportunity to set parameters rel-
ative to incorrect document labeling decisions. To
combat this, k was divided by the number of doc-
ument labels, to get a new value k′. For each doc-
ument label, the k′ highest scoring labelings were

Figure 4: An extension to the model from Figure 1
incorporating paragraph level analysis.

extracted. Each of these sets were then combined to
produce the final constraint set. This allowed con-
straints to be equally distributed amongst different
document labels.

Based on performance on the development data
set the number of training iterations was set to N =
5 and the number of constraints to k = 10. Weight
averaging was also employed (Collins, 2002), which
helped improve performance.

2.2 Beyond Two-Level Models

To this point, we have focused solely on a model for
two-level fine-to-coarse sentiment analysis not only
for simplicity, but because the experiments in Sec-
tion 3 deal exclusively with this scenario. In this
section, we briefly discuss possible extensions for
more complex situations. For example, longer doc-
uments might benefit from an analysis on the para-
graph level as well as the sentence and document
levels. One possible model for this case is given
in Figure 4, which essentially inserts an additional
layer between the sentence and document level from
the original model. Sentence level analysis is de-
pendent on neighbouring sentences as well as the
paragraph level analysis, and the paragraph anal-
ysis is dependent on each of the sentences within
it, the neighbouring paragraphs, and the document
level analysis. This can be extended to an arbitrary
level of fine-to-coarse sentiment analysis by simply
inserting new layers in this fashion to create more
complex hierarchical models.

The advantage of using hierarchical models of
this form is that they are nested, which keeps in-
ference tractable. Observe that each pair of adja-
cent levels in the model is equivalent to the origi-
nal model from Figure 1. As a result, the scores
of the every label at each node in the graph can
be calculated with a straight-forward bottom-up dy-
namic programming algorithm. Details are omitted
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Sentence Stats Document Stats
Pos Neg Neu Tot Pos Neg Tot

Car 472 443 264 1179 98 80 178
Fit 568 635 371 1574 92 97 189

Mp3 485 464 214 1163 98 89 187
Tot 1525 1542 849 3916 288 266 554

Table 1: Data statistics for corpus. Pos = positive
polarity, Neg = negative polarity, Neu = no polarity.

for space reasons.
Other models are possible where dependencies

occur across non-neighbouring levels, e.g., by in-
serting edges between the sentence level nodes and
the document level node. In the general case, infer-
ence is exponential in the size of each clique. Both
the models in Figure 1 and Figure 4 have maximum
clique sizes of three.

3 Experiments

3.1 Data
To test the model we compiled a corpus of 600 on-
line product reviews from three domains: car seats
for children, fitness equipment, and Mp3 players. Of
the original 600 reviews that were gathered, we dis-
carded duplicate reviews, reviews with insufficient
text, and spam. All reviews were labeled by on-
line customers as having a positive or negative polar-
ity on the document level, i.e., Y(d) = {pos, neg}.
Each review was then split into sentences and ev-
ery sentence annotated by a single annotator as ei-
ther being positive, negative or neutral, i.e., Y(s) =
{pos, neg, neu}. Data statistics for the corpus are
given in Table 1.

All sentences were annotated based on their con-
text within the document. Sentences were anno-
tated as neutral if they conveyed no sentiment or had
indeterminate sentiment from their context. Many
neutral sentences pertain to the circumstances un-
der which the product was purchased. A common
class of sentences were those containing product
features. These sentences were annotated as having
positive or negative polarity if the context supported
it. This could include punctuation such as excla-
mation points, smiley/frowny faces, question marks,
etc. The supporting evidence could also come from
another sentence, e.g., “I love it. It has 64Mb of
memory and comes with a set of earphones”.

3.2 Results
Three baseline systems were created,

• Document-Classifier is a classifier that learns
to predict the document label only.

• Sentence-Classifier is a classifier that learns
to predict sentence labels in isolation of one
another, i.e., without consideration for either
the document or neighbouring sentences sen-
timent.

• Sentence-Structured is another sentence clas-
sifier, but this classifier uses a sequential chain
model to learn and classify sentences. The
third baseline is essentially the model from Fig-
ure 1 without the top level document node. This
baseline will help to gage the empirical gains of
the different components of the joint structured
model on sentence level classification.

The model described in Section 2 will be called
Joint-Structured. All models use the same ba-
sic predicate space: unigram, bigram, trigram con-
joined with part-of-speech, plus back-offs of these
(see Section 2.1.2 for more). However, due to the
structure of the model and its label space, the feature
space of each might be different, e.g., the document
classifier will only conjoin predicates with the doc-
ument label to create the feature set. All models are
trained using the MIRA learning algorithm.

Results for each model are given in the first four
rows of Table 2. These results were gathered using
10-fold cross validation with one fold for develop-
ment and the other nine folds for evaluation. This
table shows that classifying sentences in isolation
from one another is inferior to accounting for a more
global context. A significant increase in perfor-
mance can be obtained when labeling decisions be-
tween sentences are modeled (Sentence-Structured).
More interestingly, even further gains can be had
when document level decisions are modeled (Joint-
Structured). In many cases, these improvements are
highly statistically significant.

On the document level, performance can also be
improved by incorporating sentence level decisions
– though these improvements are not consistent.
This inconsistency may be a result of the model
overfitting on the small set of training data. We
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suspect this because the document level error rate
on the Mp3 training set converges to zero much
more rapidly for the Joint-Structured model than the
Document-Classifier. This suggests that the Joint-
Structured model might be relying too much on
the sentence level sentiment features – in order to
minimize its error rate – instead of distributing the
weights across all features more evenly.

One interesting application of sentence level sen-
timent analysis is summarizing product reviews on
retail websites like Amazon.com or review aggrega-
tors like Yelp.com. In this setting the correct polar-
ity of a document is often known, but we wish to
label sentiment on the sentence or phrase level to
aid in generating a cohesive and informative sum-
mary. The joint model can be used to classify sen-
tences in this setting by constraining inference to the
known fixed document label for a review. If this is
done, then sentiment accuracy on the sentence level
increases substantially from 62.6% to 70.3%.

Finally we should note that experiments using
CRFs to train the structured models and logistic re-
gression to train the local models yielded similar re-
sults to those in Table 2.

3.2.1 Cascaded Models
Another approach to fine-to-coarse sentiment

analysis is to use a cascaded system. In such a sys-
tem, a sentence level classifier might first be run
on the data, and then the results input into a docu-
ment level classifier – or vice-versa.1 Two cascaded
systems were built. The first uses the Sentence-
Structured classifier to classify all the sentences
from a review, then passes this information to the
document classifier as input. In particular, for ev-
ery predicate in the original document classifier, an
additional predicate that specifies the polarity of the
sentence in which this predicate occurred was cre-
ated. The second cascaded system uses the docu-
ment classifier to determine the global polarity, then
passes this information as input into the Sentence-
Structured model, constructing predicates in a simi-
lar manner.

The results for these two systems can be seen in
the last two rows of Table 2. In both cases there

1Alternatively, decisions from the sentence classifier can
guide which input is seen by the document level classifier (Pang
and Lee, 2004).

is a slight improvement in performance suggesting
that an iterative approach might be beneficial. That
is, a system could start by classifying documents,
use the document information to classify sentences,
use the sentence information to classify documents,
and repeat until convergence. However, experiments
showed that this did not improve accuracy over a sin-
gle iteration and often hurt performance.

Improvements from the cascaded models are far
less consistent than those given from the joint struc-
ture model. This is because decisions in the cas-
caded system are passed to the next layer as the
“gold” standard at test time, which results in errors
from the first classifier propagating to errors in the
second. This could be improved by passing a lattice
of possibilities from the first classifier to the second
with corresponding confidences. However, solutions
such as these are really just approximations of the
joint structured model that was presented here.

4 Future Work

One important extension to this work is to augment
the models for partially labeled data. It is realistic
to imagine a training set where many examples do
not have every level of sentiment annotated. For
example, there are thousands of online product re-
views with labeled document sentiment, but a much
smaller amount where sentences are also labeled.
Work on learning with hidden variables can be used
for both CRFs (Quattoni et al., 2004) and for in-
ference based learning algorithms like those used in
this work (Liang et al., 2006).

Another area of future work is to empirically in-
vestigate the use of these models on longer docu-
ments that require more levels of sentiment anal-
ysis than product reviews. In particular, the rela-
tive position of a phrase to a contrastive discourse
connective or a cue phrase like “in conclusion” or
“to summarize” may lead to improved performance
since higher level classifications can learn to weigh
information passed from these lower level compo-
nents more heavily.

5 Discussion

In this paper we have investigated the use of a global
structured model that learns to predict sentiment on
different levels of granularity for a text. We de-
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Sentence Accuracy Document Accuracy
Car Fit Mp3 Total Car Fit Mp3 Total

Document-Classifier - - - - 72.8 80.1 87.2 80.3
Sentence-Classifier 54.8 56.8 49.4 53.1 - - - -

Sentence-Structured 60.5 61.4 55.7 58.8 - - - -
Joint-Structured 63.5∗ 65.2∗∗ 60.1∗∗ 62.6∗∗ 81.5∗ 81.9 85.0 82.8

Cascaded Sentence → Document 60.5 61.4 55.7 58.8 75.9 80.7 86.1 81.1
Cascaded Document → Sentence 59.7 61.0 58.3 59.5 72.8 80.1 87.2 80.3

Table 2: Fine-to-coarse sentiment accuracy. Significance calculated using McNemar’s test between top two
performing systems. ∗Statistically significant p < 0.05. ∗∗Statistically significant p < 0.005.

scribed a simple model for sentence-document anal-
ysis and showed that inference in it is tractable. Ex-
periments show that this model obtains higher ac-
curacy than classifiers trained in isolation as well
as cascaded systems that pass information from one
level to another at test time. Furthermore, extensions
to the sentence-document model were discussed and
it was argued that a nested hierarchical structure
would be beneficial since it would allow for efficient
inference algorithms.
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Abstract

Automatic sentiment classification has been
extensively studied and applied in recent
years. However, sentiment is expressed dif-
ferently in different domains, and annotating
corpora for every possible domain of interest
is impractical. We investigate domain adap-
tation for sentiment classifiers, focusing on
online reviews for different types of prod-
ucts. First, we extend to sentiment classifi-
cation the recently-proposed structural cor-
respondence learning (SCL) algorithm, re-
ducing the relative error due to adaptation
between domains by an average of 30% over
the original SCL algorithm and 46% over
a supervised baseline. Second, we identify
a measure of domain similarity that corre-
lates well with the potential for adaptation
of a classifier from one domain to another.
This measure could for instance be used to
select a small set of domains to annotate
whose trained classifiers would transfer well
to many other domains.

1 Introduction

Sentiment detection and classification has received
considerable attention recently (Pang et al., 2002;
Turney, 2002; Goldberg and Zhu, 2004). While
movie reviews have been the most studied domain,
sentiment analysis has extended to a number of
new domains, ranging from stock message boards
to congressional floor debates (Das and Chen, 2001;
Thomas et al., 2006). Research results have been

deployed industrially in systems that gauge market
reaction and summarize opinion from Web pages,
discussion boards, and blogs.

With such widely-varying domains, researchers
and engineers who build sentiment classification
systems need to collect and curate data for each new
domain they encounter. Even in the case of market
analysis, if automatic sentiment classification were
to be used across a wide range of domains, the ef-
fort to annotate corpora for each domain may be-
come prohibitive, especially since product features
change over time. We envision a scenario in which
developers annotate corpora for a small number of
domains, train classifiers on those corpora, and then
apply them to other similar corpora. However, this
approach raises two important questions. First, it
is well known that trained classifiers lose accuracy
when the test data distribution is significantly differ-
ent from the training data distribution 1. Second, it is
not clear which notion of domain similarity should
be used to select domains to annotate that would be
good proxies for many other domains.

We propose solutions to these two questions and
evaluate them on a corpus of reviews for four differ-
ent types of products from Amazon: books, DVDs,
electronics, and kitchen appliances2. First, we show
how to extend the recently proposed structural cor-

1For surveys of recent research on domain adaptation, see
the ICML 2006 Workshop on Structural Knowledge Transfer
for Machine Learning (http://gameairesearch.uta.
edu/) and the NIPS 2006 Workshop on Learning when test
and training inputs have different distribution (http://ida.
first.fraunhofer.de/projects/different06/)

2The dataset will be made available by the authors at publi-
cation time.
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respondence learning (SCL) domain adaptation al-
gorithm (Blitzer et al., 2006) for use in sentiment
classification. A key step in SCL is the selection of
pivot features that are used to link the source and tar-
get domains. We suggest selecting pivots based not
only on their common frequency but also according
to their mutual information with the source labels.
For data as diverse as product reviews, SCL can
sometimes misalign features, resulting in degrada-
tion when we adapt between domains. In our second
extension we show how to correct misalignments us-
ing a very small number of labeled instances.

Second, we evaluate the A-distance (Ben-David
et al., 2006) between domains as measure of the loss
due to adaptation from one to the other. The A-
distance can be measured from unlabeled data, and it
was designed to take into account only divergences
which affect classification accuracy. We show that it
correlates well with adaptation loss, indicating that
we can use the A-distance to select a subset of do-
mains to label as sources.

In the next section we briefly review SCL and in-
troduce our new pivot selection method. Section 3
describes datasets and experimental method. Sec-
tion 4 gives results for SCL and the mutual informa-
tion method for selecting pivot features. Section 5
shows how to correct feature misalignments using a
small amount of labeled target domain data. Sec-
tion 6 motivates the A-distance and shows that it
correlates well with adaptability. We discuss related
work in Section 7 and conclude in Section 8.

2 Structural Correspondence Learning

Before reviewing SCL, we give a brief illustrative
example. Suppose that we are adapting from re-
views of computers to reviews of cell phones. While
many of the features of a good cell phone review are
the same as a computer review – the words “excel-
lent” and “awful” for example – many words are to-
tally new, like “reception”. At the same time, many
features which were useful for computers, such as
“dual-core” are no longer useful for cell phones.

Our key intuition is that even when “good-quality
reception” and “fast dual-core” are completely dis-
tinct for each domain, if they both have high correla-
tion with “excellent” and low correlation with “aw-
ful” on unlabeled data, then we can tentatively align

them. After learning a classifier for computer re-
views, when we see a cell-phone feature like “good-
quality reception”, we know it should behave in a
roughly similar manner to “fast dual-core”.

2.1 Algorithm Overview

Given labeled data from a source domain and un-
labeled data from both source and target domains,
SCL first chooses a set of m pivot features which oc-
cur frequently in both domains. Then, it models the
correlations between the pivot features and all other
features by training linear pivot predictors to predict
occurrences of each pivot in the unlabeled data from
both domains (Ando and Zhang, 2005; Blitzer et al.,
2006). The `th pivot predictor is characterized by
its weight vector w`; positive entries in that weight
vector mean that a non-pivot feature (like “fast dual-
core”) is highly correlated with the corresponding
pivot (like “excellent”).

The pivot predictor column weight vectors can be
arranged into a matrix W = [w`]n`=1. Let θ ∈ Rk×d

be the top k left singular vectors of W (here d indi-
cates the total number of features). These vectors are
the principal predictors for our weight space. If we
chose our pivot features well, then we expect these
principal predictors to discriminate among positive
and negative words in both domains.

At training and test time, suppose we observe a
feature vector x. We apply the projection θx to ob-
tain k new real-valued features. Now we learn a
predictor for the augmented instance 〈x, θx〉. If θ
contains meaningful correspondences, then the pre-
dictor which uses θ will perform well in both source
and target domains.

2.2 Selecting Pivots with Mutual Information

The efficacy of SCL depends on the choice of pivot
features. For the part of speech tagging problem
studied by Blitzer et al. (2006), frequently-occurring
words in both domains were good choices, since
they often correspond to function words such as
prepositions and determiners, which are good indi-
cators of parts of speech. This is not the case for
sentiment classification, however. Therefore, we re-
quire that pivot features also be good predictors of
the source label. Among those features, we then
choose the ones with highest mutual information to
the source label. Table 1 shows the set-symmetric
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SCL, not SCL-MI SCL-MI, not SCL

book one <num> so all a must a wonderful loved it

very about they like weak don’t waste awful

good when highly recommended and easy

Table 1: Top pivots selected by SCL, but not SCL-
MI (left) and vice-versa (right)

differences between the two methods for pivot selec-
tion when adapting a classifier from books to kitchen
appliances. We refer throughout the rest of this work
to our method for selecting pivots as SCL-MI.

3 Dataset and Baseline

We constructed a new dataset for sentiment domain
adaptation by selecting Amazon product reviews for
four different product types: books, DVDs, electron-
ics and kitchen appliances. Each review consists of
a rating (0-5 stars), a reviewer name and location,
a product name, a review title and date, and the re-
view text. Reviews with rating > 3 were labeled
positive, those with rating < 3 were labeled neg-
ative, and the rest discarded because their polarity
was ambiguous. After this conversion, we had 1000
positive and 1000 negative examples for each do-
main, the same balanced composition as the polarity
dataset (Pang et al., 2002). In addition to the labeled
data, we included between 3685 (DVDs) and 5945
(kitchen) instances of unlabeled data. The size of the
unlabeled data was limited primarily by the number
of reviews we could crawl and download from the
Amazon website. Since we were able to obtain la-
bels for all of the reviews, we also ensured that they
were balanced between positive and negative exam-
ples, as well.

While the polarity dataset is a popular choice in
the literature, we were unable to use it for our task.
Our method requires many unlabeled reviews and
despite a large number of IMDB reviews available
online, the extensive curation requirements made
preparing a large amount of data difficult 3.

For classification, we use linear predictors on un-
igram and bigram features, trained to minimize the
Huber loss with stochastic gradient descent (Zhang,

3For a description of the construction of the polarity
dataset, see http://www.cs.cornell.edu/people/
pabo/movie-review-data/.

2004). On the polarity dataset, this model matches
the results reported by Pang et al. (2002). When we
report results with SCL and SCL-MI, we require that
pivots occur in more than five documents in each do-
main. We set k, the number of singular vectors of the
weight matrix, to 50.

4 Experiments with SCL and SCL-MI

Each labeled dataset was split into a training set of
1600 instances and a test set of 400 instances. All
the experiments use a classifier trained on the train-
ing set of one domain and tested on the test set of
a possibly different domain. The baseline is a lin-
ear classifier trained without adaptation, while the
gold standard is an in-domain classifier trained on
the same domain as it is tested.

Figure 1 gives accuracies for all pairs of domain
adaptation. The domains are ordered clockwise
from the top left: books, DVDs, electronics, and
kitchen. For each set of bars, the first letter is the
source domain and the second letter is the target
domain. The thick horizontal bars are the accura-
cies of the in-domain classifiers for these domains.
Thus the first set of bars shows that the baseline
achieves 72.8% accuracy adapting from DVDs to
books. SCL-MI achieves 79.7% and the in-domain
gold standard is 80.4%. We say that the adaptation
loss for the baseline model is 7.6% and the adapta-
tion loss for the SCL-MI model is 0.7%. The relative
reduction in error due to adaptation of SCL-MI for
this test is 90.8%.

We can observe from these results that there is a
rough grouping of our domains. Books and DVDs
are similar, as are kitchen appliances and electron-
ics, but the two groups are different from one an-
other. Adapting classifiers from books to DVDs, for
instance, is easier than adapting them from books
to kitchen appliances. We note that when transfer-
ring from kitchen to electronics, SCL-MI actually
outperforms the in-domain classifier. This is possi-
ble since the unlabeled data may contain information
that the in-domain classifier does not have access to.

At the beginning of Section 2 we gave exam-
ples of how features can change behavior across do-
mains. The first type of behavior is when predictive
features from the source domain are not predictive
or do not appear in the target domain. The second is
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Figure 1: Accuracy results for domain adaptation between all pairs using SCL and SCL-MI. Thick black
lines are the accuracies of in-domain classifiers.

domain\polarity negative positive
books plot <num> pages predictable reader grisham engaging

reading this page <num> must read fascinating

kitchen the plastic poorly designed excellent product espresso

leaking awkward to defective are perfect years now a breeze

Table 2: Correspondences discovered by SCL for books and kitchen appliances. The top row shows features
that only appear in books and the bottom features that only appear in kitchen appliances. The left and right
columns show negative and positive features in correspondence, respectively.

when predictive features from the target domain do
not appear in the source domain. To show how SCL
deals with those domain mismatches, we look at the
adaptation from book reviews to reviews of kitchen
appliances. We selected the top 1000 most infor-
mative features in both domains. In both cases, be-
tween 85 and 90% of the informative features from
one domain were not among the most informative
of the other domain4. SCL addresses both of these
issues simultaneously by aligning features from the
two domains.

4There is a third type, features which are positive in one do-
main but negative in another, but they appear very infrequently
in our datasets.

Table 2 illustrates one row of the projection ma-
trix θ for adapting from books to kitchen appliances;
the features on each row appear only in the corre-
sponding domain. A supervised classifier trained on
book reviews cannot assign weight to the kitchen
features in the second row of table 2. In con-
trast, SCL assigns weight to these features indirectly
through the projection matrix. When we observe
the feature “predictable” with a negative book re-
view, we update parameters corresponding to the
entire projection, including the kitchen-specific fea-
tures “poorly designed” and “awkward to”.

While some rows of the projection matrix θ are
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useful for classification, SCL can also misalign fea-
tures. This causes problems when a projection is
discriminative in the source domain but not in the
target. This is the case for adapting from kitchen
appliances to books. Since the book domain is
quite broad, many projections in books model topic
distinctions such as between religious and political
books. These projections, which are uninforma-
tive as to the target label, are put into correspon-
dence with the fewer discriminating projections in
the much narrower kitchen domain. When we adapt
from kitchen to books, we assign weight to these un-
informative projections, degrading target classifica-
tion accuracy.

5 Correcting Misalignments

We now show how to use a small amount of target
domain labeled data to learn to ignore misaligned
projections from SCL-MI. Using the notation of
Ando and Zhang (2005), we can write the supervised
training objective of SCL on the source domain as

min
w,v

∑
i

L
(
w′xi + v′θxi, yi

)
+ λ||w||2 + µ||v||2 ,

where y is the label. The weight vector w ∈ Rd

weighs the original features, while v ∈ Rk weighs
the projected features. Ando and Zhang (2005) and
Blitzer et al. (2006) suggest λ = 10−4, µ = 0, which
we have used in our results so far.

Suppose now that we have trained source model
weight vectors ws and vs. A small amount of tar-
get domain data is probably insufficient to signif-
icantly change w, but we can correct v, which is
much smaller. We augment each labeled target in-
stance xj with the label assigned by the source do-
main classifier (Florian et al., 2004; Blitzer et al.,
2006). Then we solve

minw,v
∑

j L (w′xj + v′θxj , yj) + λ||w||2
+µ||v − vs||2 .

Since we don’t want to deviate significantly from the
source parameters, we set λ = µ = 10−1.

Figure 2 shows the corrected SCL-MI model us-
ing 50 target domain labeled instances. We chose
this number since we believe it to be a reasonable
amount for a single engineer to label with minimal
effort. For reasons of space, for each target domain

dom \ model base base scl scl-mi scl-mi
+targ +targ

books 8.9 9.0 7.4 5.8 4.4
dvd 8.9 8.9 7.8 6.1 5.3

electron 8.3 8.5 6.0 5.5 4.8
kitchen 10.2 9.9 7.0 5.6 5.1
average 9.1 9.1 7.1 5.8 4.9

Table 3: For each domain, we show the loss due to transfer
for each method, averaged over all domains. The bottom row
shows the average loss over all runs.

we show adaptation from only the two domains on
which SCL-MI performed the worst relative to the
supervised baseline. For example, the book domain
shows only results from electronics and kitchen, but
not DVDs. As a baseline, we used the label of the
source domain classifier as a feature in the target, but
did not use any SCL features. We note that the base-
line is very close to just using the source domain
classifier, because with only 50 target domain in-
stances we do not have enough data to relearn all of
the parameters in w. As we can see, though, relearn-
ing the 50 parameters in v is quite helpful. The cor-
rected model always improves over the baseline for
every possible transfer, including those not shown in
the figure.

The idea of using the regularizer of a linear model
to encourage the target parameters to be close to the
source parameters has been used previously in do-
main adaptation. In particular, Chelba and Acero
(2004) showed how this technique can be effective
for capitalization adaptation. The major difference
between our approach and theirs is that we only pe-
nalize deviation from the source parameters for the
weights v of projected features, while they work
with the weights of the original features only. For
our small amount of labeled target data, attempting
to penalize w using ws performed no better than
our baseline. Because we only need to learn to ig-
nore projections that misalign features, we can make
much better use of our labeled data by adapting only
50 parameters, rather than 200,000.

Table 3 summarizes the results of sections 4 and
5. Structural correspondence learning reduces the
error due to transfer by 21%. Choosing pivots by
mutual information allows us to further reduce the
error to 36%. Finally, by adding 50 instances of tar-
get domain data and using this to correct the mis-
aligned projections, we achieve an average relative
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Figure 2: Accuracy results for domain adaptation with 50 labeled target domain instances.

reduction in error of 46%.

6 Measuring Adaptability

Sections 2-5 focused on how to adapt to a target do-
main when you had a labeled source dataset. We
now take a step back to look at the problem of se-
lecting source domain data to label. We study a set-
ting where an engineer knows roughly her domains
of interest but does not have any labeled data yet. In
that case, she can ask the question “Which sources
should I label to obtain the best performance over
all my domains?” On our product domains, for ex-
ample, if we are interested in classifying reviews
of kitchen appliances, we know from sections 4-5
that it would be foolish to label reviews of books or
DVDs rather than electronics. Here we show how to
select source domains using only unlabeled data and
the SCL representation.

6.1 The A-distance

We propose to measure domain adaptability by us-
ing the divergence of two domains after the SCL
projection. We can characterize domains by their
induced distributions on instance space: the more
different the domains, the more divergent the distri-
butions. Here we make use of the A-distance (Ben-
David et al., 2006). The key intuition behind the
A-distance is that while two domains can differ in
arbitrary ways, we are only interested in the differ-
ences that affect classification accuracy.

Let A be the family of subsets of Rk correspond-
ing to characteristic functions of linear classifiers

(sets on which a linear classifier returns positive
value). Then theA distance between two probability
distributions is

dA(D,D′) = 2 sup
A∈A

|PrD [A]− PrD′ [A]| .

That is, we find the subset in A on which the distri-
butions differ the most in the L1 sense. Ben-David
et al. (2006) show that computing the A-distance for
a finite sample is exactly the problem of minimiz-
ing the empirical risk of a classifier that discrimi-
nates between instances drawn fromD and instances
drawn from D′. This is convenient for us, since it al-
lows us to use classification machinery to compute
the A-distance.

6.2 Unlabeled Adaptability Measurements
We follow Ben-David et al. (2006) and use the Hu-
ber loss as a proxy for the A-distance. Our proce-
dure is as follows: Given two domains, we compute
the SCL representation. Then we create a data set
where each instance θx is labeled with the identity
of the domain from which it came and train a linear
classifier. For each pair of domains we compute the
empirical average per-instance Huber loss, subtract
it from 1, and multiply the result by 100. We refer
to this quantity as the proxy A-distance. When it is
100, the two domains are completely distinct. When
it is 0, the two domains are indistinguishable using a
linear classifier.

Figure 3 is a correlation plot between the proxy
A-distance and the adaptation error. Suppose we
wanted to label two domains out of the four in such a
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Figure 3: The proxy A-distance between each do-
main pair plotted against the average adaptation loss
of as measured by our baseline system. Each pair of
domains is labeled by their first letters: EK indicates
the pair electronics and kitchen.

way as to minimize our error on all the domains. Us-
ing the proxy A-distance as a criterion, we observe
that we would choose one domain from either books
or DVDs, but not both, since then we would not be
able to adequately cover electronics or kitchen appli-
ances. Similarly we would also choose one domain
from either electronics or kitchen appliances, but not
both.

7 Related Work

Sentiment classification has advanced considerably
since the work of Pang et al. (2002), which we use
as our baseline. Thomas et al. (2006) use discourse
structure present in congressional records to perform
more accurate sentiment classification. Pang and
Lee (2005) treat sentiment analysis as an ordinal
ranking problem. In our work we only show im-
provement for the basic model, but all of these new
techniques also make use of lexical features. Thus
we believe that our adaptation methods could be also
applied to those more refined models.

While work on domain adaptation for senti-
ment classifiers is sparse, it is worth noting that
other researchers have investigated unsupervised
and semisupervised methods for domain adaptation.
The work most similar in spirit to ours that of Tur-
ney (2002). He used the difference in mutual in-
formation with two human-selected features (the
words “excellent” and “poor”) to score features in

a completely unsupervised manner. Then he clas-
sified documents according to various functions of
these mutual information scores. We stress that our
method improves a supervised baseline. While we
do not have a direct comparison, we note that Tur-
ney (2002) performs worse on movie reviews than
on his other datasets, the same type of data as the
polarity dataset.

We also note the work of Aue and Gamon (2005),
who performed a number of empirical tests on do-
main adaptation of sentiment classifiers. Most of
these tests were unsuccessful. We briefly note their
results on combining a number of source domains.
They observed that source domains closer to the tar-
get helped more. In preliminary experiments we
confirmed these results. Adding more labeled data
always helps, but diversifying training data does not.
When classifying kitchen appliances, for any fixed
amount of labeled data, it is always better to draw
from electronics as a source than use some combi-
nation of all three other domains.

Domain adaptation alone is a generally well-
studied area, and we cannot possibly hope to cover
all of it here. As we noted in Section 5, we are
able to significantly outperform basic structural cor-
respondence learning (Blitzer et al., 2006). We also
note that while Florian et al. (2004) and Blitzer et al.
(2006) observe that including the label of a source
classifier as a feature on small amounts of target data
tends to improve over using either the source alone
or the target alone, we did not observe that for our
data. We believe the most important reason for this
is that they explore structured prediction problems,
where labels of surrounding words from the source
classifier may be very informative, even if the cur-
rent label is not. In contrast our simple binary pre-
diction problem does not exhibit such behavior. This
may also be the reason that the model of Chelba and
Acero (2004) did not aid in adaptation.

Finally we note that while Blitzer et al. (2006) did
combine SCL with labeled target domain data, they
only compared using the label of SCL or non-SCL
source classifiers as features, following the work of
Florian et al. (2004). By only adapting the SCL-
related part of the weight vector v, we are able to
make better use of our small amount of unlabeled
data than these previous techniques.
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8 Conclusion

Sentiment classification has seen a great deal of at-
tention. Its application to many different domains
of discourse makes it an ideal candidate for domain
adaptation. This work addressed two important
questions of domain adaptation. First, we showed
that for a given source and target domain, we can
significantly improve for sentiment classification the
structural correspondence learning model of Blitzer
et al. (2006). We chose pivot features using not only
common frequency among domains but also mutual
information with the source labels. We also showed
how to correct structural correspondence misalign-
ments by using a small amount of labeled target do-
main data.

Second, we provided a method for selecting those
source domains most likely to adapt well to given
target domains. The unsupervised A-distance mea-
sure of divergence between domains correlates well
with loss due to adaptation. Thus we can use the A-
distance to select source domains to label which will
give low target domain error.

In the future, we wish to include some of the more
recent advances in sentiment classification, as well
as addressing the more realistic problem of rank-
ing. We are also actively searching for a larger and
more varied set of domains on which to test our tech-
niques.
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Abstract

Recently, there has been a rise of in-
terest in unsupervised detection of high-
level semantic relations involving com-
plex units, such as phrases and whole
sentences. Typically such approaches are
faced with two main obstacles: data
sparseness and correctly generalizing
from the examples. In this work, we
describe the Clustered Clause represen-
tation, which utilizes information-based
clustering and inter-sentence dependen-
cies to create a simplified and generalized
representation of the grammatical clause.
We implement an algorithm which uses
this representation to detect a predefined
set of high-level relations, and demon-
strate our model’s effectiveness in over-
coming both the problems mentioned.

1 Introduction

The semantic relationship between words, and
the extraction of meaning from syntactic data
has been one of the main points of research in
the field of computational linguistics (see Sec-
tion 5 and references therein). Until recently,
the focus has remained largely either at the sin-
gle word or sentence level (for instance: depen-
dency extraction, word-to-word semantic simi-
larity from syntax, etc.) or on relations between
units at a very high context level such as the
entire paragraph or document (e.g. categorizing
documents by topic).

Recently there have been several attempts to
define frameworks for detecting and studying in-
teractions at an intermediate context level, and

involving whole clauses or sentences. Dagan
et al. (2005) have emphasized the importance
of detecting textual-entailment/implication be-
tween two sentences, and its place as a key com-
ponent in many real-world applications, such as
Information Retrieval and Question Answering.

When designing such a framework, one is
faced with several obstacles. As we approach
higher levels of complexity, the problem of defin-
ing the basic units we study (e.g. words, sen-
tences etc.) and the increasing amount of in-
teractions make the task very difficult. In addi-
tion, the data sparseness problem becomes more
acute as the data units become more complex
and have an increasing number of possible val-
ues, despite the fact that many of these values
have similar or identical meaning.

In this paper we demonstrate an approach
to solving the complexity and data sparse-
ness problems in the task of detecting rela-
tions between sentences or clauses. We present
the Clustered Clause structure, which utilizes
information-based clustering and dependencies
within the sentence to create a simplified and
generalized representation of the grammatical
clause and is designed to overcome both these
problems.

The clustering method we employ is an inte-
gral part of the model. We evaluate our clusters
against semantic similarity measures defined on
the human-annotated WordNet structure (Fell-
baum, 1998). The results of these comparisons
show that our cluster members are very similar
semantically. We also define a high-level rela-
tion detection task involving relations between
clauses, evaluate our results, and demonstrate
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the effectiveness of using our model in this task.
This work extends selected parts of Brody

(2005), where further details can be found.

2 Model Construction

When designing our framework, we must ad-
dress the complexity and sparseness problems
encountered when dealing with whole sentences.
Our solution to these issues combines two ele-
ments. First, to reduce complexity, we simplify
a grammatical clause to its primary components
- the subject, verb and object. Secondly, to pro-
vide a generalization framework which will en-
able us to overcome data-sparseness, we cluster
each part of the clause using data from within
the clause itself. By combining the simplified
clause structure and the clustering we produce
our Clustered Clause model - a triplet of clusters
representing a generalized clause.
The Simplified Clause: In order to extract
clauses from the text, we use Lin’s parser MINI-
PAR (Lin, 1994). The output of the parser is
a dependency tree of each sentence, also con-
taining lemmatized versions of the component
words. We extract the verb, subject and object
of every clause (including subordinate clauses),
and use this triplet of values, the simplified
clause, in place of the original complete clause.
As seen in Figure 1, these components make up
the top (root) triangle of the clause parse tree.
We also use the lemmatized form of the words
provided by the parser, to further reduce com-
plexity.

Figure 1: The parse tree for the sentence “John
found a solution to the problem”. The subject-
verb-object triplet is marked with a border.

Clustering Clause Components: For our
model, we cluster the data to provide both gen-
eralization, by using a cluster to represent a

more generalized concept shared by its compo-
nent words, and a form of dimensionality reduc-
tion, by using fewer units (clusters) to represent
a much larger amount of words.

We chose to use the Sequential Information
Bottleneck algorithm (Slonim et al., 2002) for
our clustering tasks. The information Bottle-
neck principle views the clustering task as an
optimization problem, where the clustering algo-
rithm attempts to group together values of one
variable while retaining as much information as
possible regarding the values of another (target)
variable. There is a trade-off between the com-
pactness of the clustering and the amount of re-
tained information. This algorithm (and others
based on the IB principle) is especially suited for
use with graphical models or dependency struc-
tures, since the distance measure it employs in
the clustering is defined solely by the depen-
dency relation between two variables, and there-
fore required no external parameters. The val-
ues of one variable are clustered using their co-
occurrence distribution with regard to the values
of the second (target) variable in the dependency
relation. As an example, consider the following
subject-verb co-occurrence matrix:

S \ V tell scratch drink
dog 0 4 5
John 4 0 9
cat 0 6 3
man 6 1 2

The value in cell (i, j) indicates the number
of times the noun i occurred as the subject of
the verb j. Calculating the Mutual Information
between the subjects variable (S) and verbs vari-
able (V) in this table, we get MI(S, V ) = 0.52
bits. Suppose we wish to cluster the subject
nouns into two clusters while preserving the
highest Mutual Information with regard to the
verbs. The following co-occurrence matrix is the
optimal clustering, and retains a M.I. value of
0.4 bits (77% of original):

Clustered S \ V tell scratch drink
{dog,cat} 0 10 8
{John,man} 10 1 11

Notice that although the values in the drink
column are higher than in others, and we may be
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tempted to cluster together dog and John based
on this column, the informativeness of this verb
is smaller - if we know the verb is tell we can be
sure the noun is not dog or cat, whereas if we
know it is drink, we can only say it is slightly
more probable that the noun is John or dog.

Our dependency structure consists of three
variables: subject, verb, and object, and we take
advantage of the subject-verb and verb-object
dependencies in our clustering. The clustering
was performed on each variable separately, in
a two phase procedure (see Figure 2). In the
first stage, we clustered the subject variable into
200 clusters1, using the subject-verb dependency
(i.e. the verb variable was the target). The same
was done with the object variable, using the
verb-object dependency. In the second phase, we
wish to cluster the verb values with regard to
both the subject and object variables. We could
not use all pairs of subjects and objects values as
the target variable in this task, since too many
such combinations exist. Instead, we used a vari-
able composed of all the pairs of subject and ob-
ject clusters as the target for the verb clustering.
In this fashion we produced 100 verb clusters.

Figure 2: The two clustering phases. Arrows rep-
resent dependencies between the variables which
are used in the clustering.

Combining the Model Elements: Having
obtained our three clustered variables, our orig-
inal simplified clause triplet can now be used
to produce the Clustered Clause model. This
model represents a clause in the data by a triplet
of cluster indexes, one cluster index for each
clustered variable. In order to map a clause in

1The chosen numbers of clusters are such that each
the resulting clustered variables preserved approximately
half of the co-occurrence mutual information that existed
between the original (unclustered) variable and its target.

the text to its corresponding clustered clause,
it is first parsed and lemmatized to obtain the
subject, verb and object values, as described
above, and then assigned to the clustered clause
in which the subject cluster index is that of
the cluster containing the subject word of the
clause, and the same for the verb and object
words. For example, the sentence “The terrorist
threw the grenade” would be converted to the
triplet (terrorist, throw, grenade) and assigned
to the clustered clause composed of the three
clusters to which these words belong. Other
triplets assigned to this clustered clause might
include (fundamentalist, throw, bomb) or (mil-
itant, toss, explosive). Applying this procedure
to the entire text corpus results in a distilla-
tion of the text into a series of clustered clauses
containing the essential information about the
actions described in the text.

Technical Specifications: For this work we
chose to use the entire Reuters Corpus (En-
glish, release 2000), containing 800,000 news
articles collected uniformly from 20/8/1996 to
19/8/1997. Before clustering, several prepro-
cessing steps were taken. We had a very large
amount of word values for each of the Sub-
ject (85,563), Verb (4,593) and Object (74,842)
grammatical categories. Many of the words were
infrequent proper nouns or rare verbs and were
of little interest in the pattern recognition task.
We therefore removed the less frequent words
- those appearing in their category less than
one hundred times. We also cleaned our data
by removing all words that were one letter in
length, other than the word ‘I’. These were
mostly initials in names of people or compa-
nies, which were uninformative without the sur-
rounding context. This processing step brought
us to the final count of 2,874,763 clause triplets
(75.8% of the original number), containing 3,153
distinct subjects, 1,716 distinct verbs, and 3,312
distinct objects. These values were clustered as
described above. The clusters were used to con-
vert the simplified clauses into clustered clauses.

3 Evaluating Cluster Quality

Examples of some of the resulting clusters are
provided in Table 1. When manually examin-
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“Technical Developements” (Subject
Cluster 160): treatment, drug, method, tactic,
version, technology, software, design, device, vaccine,
ending, tool, mechanism, technique, instrument,
therapy, concept, model
“Ideals/Virtues” (Object Cluster 14):
sovereignty, dominance, logic, validity, legitimacy,
freedom, discipline, viability, referendum, wisdom,
innocence, credential, integrity, independence
“Emphasis Verbs” (Verb Cluster 92): im-
ply, signify, highlight, mirror, exacerbate, mark, sig-
nal, underscore, compound, precipitate, mask, illus-
trate, herald, reinforce, suggest, underline, aggra-
vate, reflect, demonstrate, spell, indicate, deepen
“Plans” (Object Cluster 33): journey, ar-
rangement, trip, effort, attempt, revolution, pull-
out, handover, sweep, preparation, filing, start, play,
repatriation, redeployment, landing, visit, push,
transition, process

Table 1: Example clusters (labeled manually).

ing the clusters, we noticed the “fine-tuning”
of some of the clusters. For instance, we had
a cluster of countries involved in military con-
flicts, and another for other countries; a cluster
for winning game scores, and another for ties;
etc. The fact that the algorithm separated these
clusters indicates that the distinction between
them is important with regard to the interac-
tions within the clause. For instance, in the first
example, the context in which countries from the
first cluster appear is very different from that in-
volving countries in the second cluster.

The effect of the dependencies we use is also
strongly felt. Many clusters can be described by
labels such as “things that are thrown” (rock,
flower, bottle, grenade and others), or “verbs
describing attacks” (spearhead, foil, intensify,
mount, repulse and others). While such crite-
ria may not be the first choice of someone who
is asked to cluster verbs or nouns, they repre-
sent unifying themes which are very appropri-
ate to pattern detection tasks, in which we wish
to detect connections between actions described
in the clauses. For instance, we would like to
detect the relation between throwing and mil-
itary/police action (much of the throwing de-
scribed in the news reports fits this relation). In
order to do this, we must have clusters which
unite the words relevant to those actions. Other
criteria for clustering would most likely not be
suitable, since they would probably not put egg,
bottle and rock in the same category. In this re-

spect, our clustering method provides a more
effective modeling of the domain knowledge.

3.1 Evaluation via Semantic Resource

Since the success of our pattern detection task
depends to a large extent on the quality of our
clusters, we performed an experiment designed
to evaluate semantic similarity between mem-
bers of our clusters. For this purpose we made
use of the WordNet Similarity package (Peder-
sen et al., 2004). This package contains many
similarity measures, and we selected three of
them (Resnik (1995), Leacock and Chodorow
(1997), Hirst and St-Onge (1997)), which make
use of different aspects of WordNet (hierarchy
and graph structure). We measured the average
pairwise similarity between any two words ap-
pearing in the same cluster. We then performed
the same calculation on a random grouping of
the words, and compared the two scores. The re-
sults (Fig. 3) show that our clustering, based on
co-occurrence statistics and dependencies within
the sentence, correlates with a purely semantic
similarity as represented by the WordNet struc-
ture, and cannot be attributed to chance.

Figure 3: Inter-cluster similarity (average pair-
wise similarity between cluster members) in our
clustering (light) and a random one (dark). Ran-
dom clustering was performed 10 times. Aver-
age values are shown with error bars to indicate
standard deviation. Only Hirst & St-Onge mea-
sure verb similarity.

4 Relation Detection Task

Motivation: In order to demonstrate the use
of our model, we chose a relation detection task.
The workshop on entailment mentioned in the
introduction was mainly focused on detecting
whether or not an entailment relation exists be-
tween two texts. In this work we present a com-
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plementary approach - a method designed to au-
tomatically detect relations between portions of
text and generate a knowledge base of the de-
tected relations in a generalized form. As stated
by (Dagan et al., 2005), such relations are im-
portant for IR applications. In addition, the pat-
terns we employ are likely to be useful in other
linguistic tasks involving whole clauses, such as
paraphrase acquisition.

Pattern Definition: For our relation detec-
tion task, we searched for instances of prede-
fined patterns indicating a relation between two
clustered clauses. We restricted the search to
clause pairs which co-occur within a distance of
ten clauses2 from each other. In addition to the
distance restriction, we required an anchor : a
noun that appears in both clauses, to further
strengthen the relation between them. Noun an-
chors establish the fact that the two compo-
nent actions described by the pattern involve the
same entities, implying a direct connection be-
tween them. The use of verb anchors was also
tested, but found to be less helpful in detect-
ing significant patterns, since in most cases it
simply found verbs which tend to repeat them-
selves frequently in a context. The method we
describe assumes that statistically significant co-
occurrences indicate a relationship between the
clauses, but does not attempt to determine the
type of relation.

Significance Calculation: The patterns de-
tected by the system were scored using the sta-
tistical p-value measure. This value represents
the probability of detecting a certain number
of occurrences of a given pattern in the data
under the independence assumption, i.e. assum-
ing there is no connection between the two
halves of the pattern. If the system has detected
k instances of a certain pattern, we calculate
the probability of encountering this number of
instances under the independence assumption.
The smaller the probability, the higher the sig-
nificance. We consider patterns with a chance
probability lower than 5% to be significant.

We assume a Gaussian-like distribution of oc-

2Our experiments showed that increasing the distance
beyond this point did not result in significant increase in
the number of detected patterns.

currence probability for each pattern3. In or-
der to estimate the mean and standard devia-
tion values, we created 100 simulated sequences
of triplets (representing clustered clauses) which
were independently distributed and varied only
in their overall probability of occurrence. We
then estimated the mean and standard devia-
tion for any pair of clauses in the actual data
using the simulated sequences.

(X, V C36, OC7) →10 (X, V C57, OC85)
storm, lash, province ... storm, cross, Cuba
quake, shake, city ... quake, hit, Iran
earthquake, jolt, city ... earthquake, hit, Iran
(X, V C40, OC165) →10 (X, V C52, OC152)
police, arrest, leader ... police, search, mosque
police, detain, leader ... police, search, mosque
police, arrest, member ... police, raid, enclave
(SC39, V C21, X) →10 (X, beat 4, OC155)
sun, report, earnings ... earnings,beat,expectation
xerox, report, earnings ... earnings, beat, forecast
microsoft,release,result ... result, beat, forecast
(X, V C57, OC7) →10 (X, cause 4, OC153)
storm, hit, coast ... storm, cause, damage
cyclone, near, coast ... cyclone, cause, damage
earthquake,hit,northwest ... earthquake,cause,damage
quake , hit, northwest ... quake, cause, casualty
earthquake,hit,city ... earthquake,cause,damage

Table 2: Example Patterns

4.1 Pattern Detection Results

In Table 2 we present several examples of
high ranking (i.e. significance) patterns with
different anchorings detected by our method.
The detected patterns are represented using
the notation of the form (SCi, V Cj , X) →n

(X, V Ci′ , OCj′). X indicates the anchoring
word. In the example notation, the anchoring
word is the object of the first clause and the
subject of the second (O-S for short). n indicates
the maximal distance between the two clauses.
The terms SC, V C or OC with a subscripted
index represent the cluster containing the sub-
ject, verb or object (respectively) of the appro-
priate clause. For instance, in the first example
in Table 2, V C36 indicates verb cluster no. 36,
containing the verbs lash, shake and jolt, among
others.

3Based on Gwadera et al. (2003), dealing with a sim-
ilar, though simpler, case.

4In two of the patterns, instead of a cluster for the
verb, we have a single word - beat or cause. This is the
result of an automatic post-processing stage intended to
prevent over-generalization. If all the instances of the pat-
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Anchoring Number of
System Patterns Found

Subject-Subject 428
Object-Object 291
Subject-Object 180
Object-Subject 178

Table 3: Numbers of patterns found (p < 5%)

Table 3 lists the number of patterns found,
for each anchoring system. The different anchor-
ing systems produce quantitatively different re-
sults. Anchoring between the same categories
produces more patterns than between the same
noun in different grammatical roles. This is ex-
pected, since many nouns can only play a certain
part in the clause (for instance, many verbs can-
not have an inanimate entity as their subject).

The number of instances of patterns we found
for the anchored template might be considered
low, and it is likely that some patterns were
missed simply because their occurrence proba-
bility was very low and not enough instances of
the pattern occurred in the text. In Section 4 we
stated that in this task, we were more interested
in precision than in recall. In order to detect a
wider range of patterns, a less restricted defini-
tion of the patterns, or a different significance
indicator, should be used (see Sec. 6).

Human Evaluation: In order to better de-
termine the quality of patterns detected by our
system, and confirm that the statistical signif-
icance testing is consistent with human judg-
ment, we performed an evaluation experiment
with the help of 22 human judges. We presented
each of the judges with 60 example groups, 15
for each type of anchoring. Each example group
contained three clause pairs conforming to the
anchoring relation. The clauses were presented
in a normalized form consisting only of a sub-
ject, object and verb converted to past tense,
with the addition of necessary determiners and
prepositions. For example, the triplet (police,
detain, leader) was converted to “The police de-
tained the leader”. In half the cases (randomly

tern in the text contained the same word in a certain po-
sition (in these examples - the verb position in the second
clause), this word was placed in that position in the gen-
eralized pattern, rather than the cluster it belonged to.
Since we have no evidence for the fact that other words
in the cluster can fit that position, using the cluster in-
dicator would be over-generalizing.

selected), these clause pairs were actual exam-
ples (instances) of a pattern detected by our sys-
tem (instances group), such as those appearing
in Table 2. In the other half, we listed three
clause pairs, each of which conformed to the
anchoring specification listed in Section 4, but
which were randomly sampled from the data,
and so had no connection to one another (base-
line group). We asked the judges to rate on a
scale of 1-5 whether they thought the clause
pairs were a good set of examples of a common
relation linking the first clause in each pair to
the second one.

Instances Instances Baseline Baseline
Score StdDev Score StdDev

All 3.5461 0.4780 2.6341 0.4244
O-S 3.9266 0.6058 2.8761 0.5096
O-O 3.4938 0.5144 2.7464 0.6205
S-O 3.4746 0.7340 2.5758 0.6314
S-S 3.2398 0.4892 2.3584 0.5645

Table 4: Results for human evaluation

Table 4 reports the overall average scores for
baseline and instances groups, and for each of
the four anchoring types individually. The scores
were averaged over all examples and all judges.
An ANOVA showed the difference in scores be-
tween the baseline and instance groups to be
significant (p < 0.001) in all four cases.

Achievement of Model Goals: We em-
ployed clustering in our model to overcome data-
sparseness. The importance of this decision was
evident in our results. For example, the second
pattern shown in Table 2 appeared only four
times in the text. In these instances, verb cluster
40 was represented twice by the verb arrest and
twice by detain. Two appearances are within the
statistical deviation of all but the rarest words,
and would not have been detected as significant
without the clustering effect. This means the
pattern would have been overlooked, despite the
strongly intuitive connection it represents. The
system detected several such patterns.

The other reason for clustering was general-
ization. Even in cases where patterns involving
single words could have been detected, it would
have been impossible to unify similar patterns
into generalized ones. In addition, when encoun-
tering a new clause which differs slightly from
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the ones we recognized in the original data, there
would be no way to recognize it and draw the ap-
propriate conclusions. For example, there would
be no way to relate the sentence “The typhoon
approached the coast” to the fourth example pat-
tern, and the connection with the resulting dam-
age would not be recognized.

5 Comparison with Previous Work

The relationship between textual features and
semantics and the use of syntax as an indica-
tor of semantics has been widespread. Following
the idea proposed in Harris’ Distributional Hy-
pothesis (Harris, 1985), that words occurring in
similar contexts are semantically similar, many
works have used different definitions of context
to identify various types of semantic similarity.
Hindle (1990) uses a mutual-information based
metric derived from the distribution of subject,
verb and object in a large corpus to classify
nouns. Pereira et al. (1993) cluster nouns ac-
cording to their distribution as direct objects
of verbs, using information-theoretic tools (the
predecessors of the tools we use in this work).
They suggest that information theoretic mea-
sures can also measure semantic relatedness.

These works focus only on relatedness of indi-
vidual words and do not describe how the au-
tomatic estimation of semantic similarity can
be useful in real-world tasks. In our work we
demonstrate that using clusters as generalized
word units helps overcome the sparseness and
generalization problems typically encountered
when attempting to extract high-level patterns
from text, as required for many applications.

The DIRT system (Lin and Pantel, 2001)
deals with inference rules, and employs the no-
tion of paths between two nouns in a sentence’s
parse tree. The system extracts such path struc-
tures from text, and provides a similarity mea-
sure between two such paths by comparing the
words which fill the same slots in the two paths.
After extracting the paths, the system finds
groups of similar paths. This approach bears
several similarities to the ideas described in this
paper, since our structure can be seen as a
specific path in the parse tree (probably the
most basic one, see Fig. 1). In our setup, sim-

ilar clauses are clustered together in the same
Clustered-Clause, which could be compared to
clustering DIRT’s paths using its similarity mea-
sure. Despite these similarities, there are several
important differences between the two systems.
Our method uses only the relationships inside
the path or clause in the clustering procedure,
so the similarity is based on the structure it-
self. Furthermore, Lin and Pantel did not create
path clusters or generalized paths, so that while
their method allowed them to compare phrases
for similarity, there is no convenient way to iden-
tify high level contextual relationships between
two nearby sentences. This is one of the signifi-
cant advantages that clustering has over similar-
ity measures - it allows a group of similar objects
to be represented by a single unit.

There have been several attempts to formu-
late and detect relationships at a higher context
level. The VerbOcean project (Chklovski and
Pantel, 2004) deals with relations between verbs.
It presents an automatically acquired network
of such relations, similar to the WordNet frame-
work. Though the patterns used to acquire the
relations are usually parts of a single sentence,
the relationships themselves can also be used
to describe connections between different sen-
tences, especially the enablement and happens-
before relations. Since verbs are the central part
of the clause, VerbOcean can be viewed as de-
tecting relations between clauses as whole units,
as well as those between individual words. As
a solution to the data sparseness problem, web
queries are used. Torisawa (2006) addresses a
similar problem, but focuses on temporal re-
lations, and makes use of the phenomena of
Japanese coordinate sentences. Neither of these
approaches attempt to create generalized rela-
tions or group verbs into clusters, though in
the case of VerbOcean this could presumably
be done using the similarity and strength values
which are defined and detected by the system.

6 Future Work

The clustered clause model presents many di-
rections for further research. It may be produc-
tive to extend the model further, and include
other parts of the sentence, such as adjectives
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and adverbs. Clustering nouns by the adjectives
that describe them may provide a more intu-
itive grouping. The addition of further elements
to the structure may also allow the detection of
new kinds of relations.

The news-oriented domain of the corpus we
used strongly influenced our results. If we were
interested in more mundane relations, involving
day-to-day actions of individuals, a literary cor-
pus would probably be more suitable.

In defining our pattern template, several ele-
ments were tailored specifically to our task. We
limited ourselves to a very restricted set of pat-
terns in order to better demonstrate the effec-
tiveness of our model. For a more general knowl-
edge acquisition task, several of these restric-
tions may be relaxed, allowing a much larger
set of relations to be detected. For example, a
less strict significance filter, such as the support
and confidence measures commonly used in data
mining, may be preferable. These can be set to
different thresholds, according to the user’s pref-
erence.

In our current work, in order to prevent over-
generalization, we employed a single step post-
processing algorithm which detected the incor-
rect use of an entire cluster in place of a single
word (see footnote for Table 2). This method
allows only two levels of generalization - sin-
gle words and whole clusters. A more appro-
priate way to handle generalization would be
to use a hierarchical clustering algorithm. The
Agglomerative Information Bottleneck (Slonim
and Tishby, 1999) is an example of such an al-
gorithm, and could be employed for this task.
Use of a hierarchical method would result in
several levels of clusters, representing different
levels of generalization. It would be relatively
easy to modify our procedure to reduce general-
ization to the level indicated by the pattern ex-
amples in the text, producing a more accurate
description of the patterns detected.
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Abstract

Obtaining large volumes of inference knowl-
edge, such as entailment rules, has become
a major factor in achieving robust seman-
tic processing. While there has been sub-
stantial research on learning algorithms for
such knowledge, their evaluation method-
ology has been problematic, hindering fur-
ther research. We propose a novel evalua-
tion methodology for entailment rules which
explicitly addresses their semantic proper-
ties and yields satisfactory human agreement
levels. The methodology is used to compare
two state of the art learning algorithms, ex-
posing critical issues for future progress.

1 Introduction

In many NLP applications, such as Question An-
swering (QA) and Information Extraction (IE), it is
crucial to recognize that a particular target mean-
ing can be inferred from different text variants. For
example, a QA system needs to identify that “As-
pirin lowers the risk of heart attacks” can be inferred
from “Aspirin prevents heart attacks” in order to an-
swer the question “What lowers the risk of heart at-
tacks?”. This type of reasoning has been recognized
as a core semantic inference task by the generictex-
tual entailmentframework (Dagan et al., 2006).

A major obstacle for further progress in seman-
tic inference is the lack of broad-scale knowledge-
bases for semantic variability patterns (Bar-Haim et
al., 2006). One prominent type of inference knowl-
edge representation is inference rules such as para-

phrases andentailment rules. We define an entail-
ment rule to be a directional relation between two
templates, text patterns with variables, e.g. ‘X pre-
vent Y → X lower the risk ofY ’. The left-hand-
side template is assumed to entail the right-hand-
side template in certain contexts, under the same
variable instantiation. Paraphrases can be viewed
as bidirectional entailment rules. Such rules capture
basic inferences and are used as building blocks for
more complex entailment inference. For example,
given the above rule, the answer “Aspirin” can be
identified in the example above.

The need for large-scale inference knowledge-
bases triggered extensive research on automatic ac-
quisition of paraphrase and entailment rules. Yet the
current precision of acquisition algorithms is typ-
ically still mediocre, as illustrated in Table 1 for
DIRT (Lin and Pantel, 2001) and TEASE (Szpek-
tor et al., 2004), two prominent acquisition algo-
rithms whose outputs are publicly available. The
current performance level only stresses the obvious
need for satisfactory evaluation methodologies that
would drive future research.

The prominent approach in the literature for eval-
uating rules, termed here therule-basedapproach, is
to present the rules to human judges asking whether
each rule is correct or not. However, it is difficult to
explicitly define when a learned rule should be con-
sidered correct under this methodology, and this was
mainly left undefined in previous works. As the cri-
terion for evaluating a rule is not well defined, using
this approach often caused low agreement between
human judges. Indeed, the standards for evaluation
in this field are lower than other fields: many papers
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don’t report on human agreement at all and those
that do report rather low agreement levels. Yet it
is crucial to reliably assess rule correctness in or-
der to measure and compare the performance of dif-
ferent algorithms in a replicable manner. Lacking a
good evaluation methodology has become a barrier
for further advances in the field.

In order to provide a well-defined evaluation
methodology we first explicitly specify when entail-
ment rules should be considered correct, following
the spirit of their usage in applications. We then
propose a newinstance-basedevaluation approach.
Under this scheme, judges are not presented only
with the rule but rather with a sample of sentences
that match its left hand side. The judges then assess
whether the rule holds under each specific example.
A rule is considered correct only if the percentage of
examples assessed as correct is sufficiently high.

We have experimented with a sample of input
verbs for both DIRT and TEASE. Our results show
significant improvement in human agreement over
the rule-based approach. It is also the first compar-
ison between such two state-of-the-art algorithms,
which showed that they are comparable in precision
but largely complementary in their coverage.

Additionally, the evaluation showed that both al-
gorithms learn mostly one-directional rules rather
than (symmetric) paraphrases. While most NLP ap-
plications need directional inference, previous ac-
quisition works typically expected that the learned
rules would be paraphrases. Under such an expec-
tation, unidirectional rules were assessed as incor-
rect, underestimating the true potential of these algo-
rithms. In addition, we observed that many learned
rules are context sensitive, stressing the need to learn
contextual constraints for rule applications.

2 Background: Entailment Rules and their
Evaluation

2.1 Entailment Rules

An entailment rule ‘L → R’ is a directional rela-
tion between two templates,L andR. For exam-
ple, ‘X acquireY → X own Y ’ or ‘ X beatY →
X play againstY ’. Templates correspond to text
fragments with variables, and are typically either lin-
ear phrases or parse sub-trees.

The goal of entailment rules is to help applica-

Input Correct Incorrect

(↔) X modify Y X adoptY
X changeY (←) X amendY X createY

(DIRT) (←) X reviseY X stick toY

(↔) X alterY X maintainY

X changeY (→) X affectY X follow Y

(TEASE) (←) X extendY X useY

Table 1: Examples of templates suggested by DIRT
and TEASE as having an entailment relation, in
some direction, with the input template ‘X change
Y ’. The entailment direction arrows were judged
manually and added for readability.

tions infer one text variant from another. A rule can
be applied to a given text only whenL can be in-
ferred from it, with appropriate variable instantia-
tion. Then, using the rule, the application deduces
that R can also be inferred from the text under the
same variable instantiation. For example, the rule
‘X lose toY →Y beatX ’ can be used to infer “Liv-
erpool beat Chelsea” from “ Chelsea lost to Liver-
pool in the semifinals”.

Entailment rules should typically be applied only
in specific contexts, which we termrelevant con-
texts. For example, the rule ‘X acquire Y →
X buy Y ’ can be used in the context of ‘buying’
events. However, it shouldn’t be applied for “Stu-
dents acquired a new language”. In the same man-
ner, the rule ‘X acquireY →X learnY ’ should be
applied only whenY corresponds to some sort of
knowledge, as in the latter example.

Some existing entailment acquisition algorithms
can add contextual constraints to the learned rules
(Sekine, 2005), but most don’t. However, NLP ap-
plications usually implicitly incorporate some con-
textual constraints when applying a rule. For ex-
ample, when answering the question “Which com-
panies did IBM buy?” a QA system would apply
the rule ‘X acquireY →X buy Y ’ correctly, since
the phrase “IBM acquireX” is likely to be found
mostly in relevant economic contexts. We thus ex-
pect that an evaluation methodology should consider
context relevance for entailment rules. For example,
we would like both ‘X acquireY →X buy Y ’ and
‘X acquireY →X learnY ’ to be assessed as cor-
rect (the second rule should not be deemed incorrect
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just because it is not applicable in frequent economic
contexts).

Finally, we highlight that the common notion of
“paraphrase rules” can be viewed as a special case
of entailment rules: a paraphrase ‘L↔ R’ holds if
both templates entail each other. Following the tex-
tual entailment formulation, we observe that many
applied inference settings require only directional
entailment, and a requirement for symmetric para-
phrase is usually unnecessary. For example, in or-
der to answer the question “Who owns Overture?”
it suffices to use a directional entailment rule whose
right hand side is ‘X own Y ’, such as ‘X acquire
Y →X ownY ’, which is clearly not a paraphrase.

2.2 Evaluation of Acquisition Algorithms

Many methods for automatic acquisition of rules
have been suggested in recent years, ranging from
distributional similarity to finding shared contexts
(Lin and Pantel, 2001; Ravichandran and Hovy,
2002; Shinyama et al., 2002; Barzilay and Lee,
2003; Szpektor et al., 2004; Sekine, 2005). How-
ever, there is still no common accepted framework
for their evaluation. Furthermore, all these methods
learn rules as pairs of templates{L, R} in a sym-
metric manner, without addressing rule directional-
ity. Accordingly, previous works (except (Szpektor
et al., 2004)) evaluated the learned rules under the
paraphrase criterion, which underestimates the prac-
tical utility of the learned rules (see Section 2.1).

One approach which was used for evaluating au-
tomatically acquired rules is to measure their contri-
bution to the performance of specific systems, such
as QA (Ravichandran and Hovy, 2002) or IE (Sudo
et al., 2003; Romano et al., 2006). While measuring
the impact of learned rules on applications is highly
important, it cannot serve as the primary approach
for evaluating acquisition algorithms for several rea-
sons. First, developers of acquisition algorithms of-
ten do not have access to the different applications
that will later use the learned rules as generic mod-
ules. Second, the learned rules may affect individual
systems differently, thus making observations that
are based on different systems incomparable. Third,
within a complex system it is difficult to assess the
exact quality of entailment rules independently of
effects of other system components.

Thus, as in many other NLP learning settings,

a direct evaluation is needed. Indeed, the promi-
nent approach for evaluating the quality of rule ac-
quisition algorithms is by human judgment of the
learned rules (Lin and Pantel, 2001; Shinyama et
al., 2002; Barzilay and Lee, 2003; Pang et al., 2003;
Szpektor et al., 2004; Sekine, 2005). In this evalua-
tion scheme, termed here therule-basedapproach, a
sample of the learned rules is presented to the judges
who evaluate whether each rule is correct or not. The
criterion for correctness is not explicitly described in
most previous works. By the common view of con-
text relevance for rules (see Section 2.1), a rule was
considered correct if the judge could think of rea-
sonable contexts under which it holds.

We have replicated the rule-based methodology
but did not manage to reach a 0.6 Kappa agree-
ment level between pairs of judges. This approach
turns out to be problematic because the rule correct-
ness criterion is not sufficiently well defined and is
hard to apply. While some rules might obviously
be judged as correct or incorrect (see Table 1), judg-
ment is often more difficult due to context relevance.
One judge might come up with a certain context
that, to her opinion, justifies the rule, while another
judge might not imagine that context or think that
it doesn’t sufficiently support rule correctness. For
example, in our experiments one of the judges did
not identify the valid “religious holidays” context
for the correct rule ‘X observeY →X celebrateY ’.
Indeed, only few earlier works reported inter-judge
agreement level, and those that did reported rather
low Kappa values, such as 0.54 (Barzilay and Lee,
2003) and 0.55 - 0.63 (Szpektor et al., 2004).

To conclude, the prominent rule-based methodol-
ogy for entailment rule evaluation is not sufficiently
well defined. It results in low inter-judge agreement
which prevents reliable and consistent assessments
of different algorithms.

3 Instance-based Evaluation Methodology

As discussed in Section 2.1, an evaluation methodol-
ogy for entailment rules should reflect the expected
validity of their application within NLP systems.
Following that line, an entailment rule ‘L → R’
should be regarded ascorrect if in all (or at least
most) relevant contexts in which the instantiated
templateL is inferred from the given text, the instan-
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Rule Sentence Judgment

1 X seekY →X discloseY If he is arrested,he can immediately seekbail. Left not entailed
2 X clarify Y →X prepareY He didn’t clarify his position on the subject. Left not entailed
3 X hit Y →X approachY Other earthquakes have hitLebanon since ’82. Irrelevant context
4 X loseY →X surrenderY Bread has recently lostits subsidy. Irrelevant context
5 X regulateY →X reformY The SRA regulatesthe sale of sugar. No entailment
6 X resignY →X shareY Lopez resignedhis post at VW last week. No entailment
7 X setY →X allow Y The committee setthe following refunds. Entailment holds
8 X stressY →X stateY Ben Yahia also stressedthe need for action. Entailment holds

Table 2: Rule evaluation examples and their judgment.

tiated templateR is also inferred from the text. This
reasoning corresponds to the common definition of
entailment in semantics, which specifies that a text
L entails another textR if R is true in every circum-
stance (possible world) in whichL is true (Chierchia
and McConnell-Ginet, 2000).

It follows that in order to assess if a rule is cor-
rect we should judge whetherR is typically en-
tailed from those sentences that entailL (within rel-
evant contexts for the rule). We thus present a new
evaluation scheme for entailment rules, termed the
instance-basedapproach. At the heart of this ap-
proach, human judges are presented not only with
a rule but rather with a sample of examples of the
rule’s usage. Instead of thinking up valid contexts
for the rule the judges need to assess the rule’s va-
lidity under the given context in each example. The
essence of our proposal is a (apparently non-trivial)
protocol of a sequence of questions, which deter-
mines rule validity in a given sentence.

We shall next describe how we collect a sample of
examples for evaluation and the evaluation process.

3.1 Sampling Examples

Given a rule ‘L→R’, our goal is to generate evalua-
tion examples by finding a sample of sentences from
whichL is entailed. We do that by automatically re-
trieving, from a given corpus, sentences that match
L and are thus likely to entail it, as explained below.

For each example sentence, we automatically ex-
tract the arguments that instantiateL and generate
two phrases, termedleft phraseand right phrase,
which are constructed by instantiating the left tem-
plateL and the right templateR with the extracted
arguments. For example, the left and right phrases

generated for example 1 in Table 2 are “he seek bail”
and “he disclose bail”, respectively.

Finding sentences that matchL can be performed
at different levels. In this paper we match lexical-
syntactic templates by finding a sub-tree of the sen-
tence parse that is identical to the template structure.
Of course, this matching method is not perfect and
will sometimes retrieve sentences that do not entail
the left phrase for various reasons, such as incorrect
sentence analysis or semantic aspects like negation,
modality and conditionals. See examples 1-2 in Ta-
ble 2 for sentences that syntactically matchL but
do not entail the instantiated left phrase. Since we
should assessR’s entailment only from sentences
that entailL, such sentences should be ignored by
the evaluation process.

3.2 Judgment Questions

For each example generated for a rule, the judges are
presented with the given sentence and the left and
right phrases. They primarily answer two questions
that assess whether entailment holds in this example,
following the semantics of entailment rule applica-
tion as discussed above:

Qle: Is the left phrase entailed from the sentence?
A positive/negative answer corresponds to a
‘Left entailed/not entailed’ judgment.

Qre: Is the right phrase entailed from the sentence?
A positive/negative answer corresponds to an
‘Entailment holds/No entailment’ judgment.

The first question identifies sentences that do not en-
tail the left phrase, and thus should be ignored when
evaluating the rule’s correctness. While inappropri-
ate matches of the rule left-hand-side may happen
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and harm an overall system precision, such errors
should be accounted for a system’s rule matching
module rather than for the rules’ precision. The sec-
ond question assesses whether the rule application is
valid or not for the current example. See examples
5-8 in Table 2 for cases where entailment does or
doesn’t hold.

Thus, the judges focus only on the given sentence
in each example, so the task is actually to evaluate
whethertextual entailmentholds between the sen-
tence (text) and each of the left and right phrases
(hypotheses). Following past experience in textual
entailment evaluation (Dagan et al., 2006) we expect
a reasonable agreement level between judges.

As discussed in Section 2.1, we may want to ig-
nore examples whose context is irrelevant for the
rule. To optionally capture this distinction, the
judges are asked another question:

Qrc: Is the right phrase a likely phrase in English?
A positive/negative answer corresponds to a
‘Relevant/Irrelevant context’ evaluation.

If the right phrase is not likely in English then the
given context is probably irrelevant for the rule, be-
cause it seems inherently incorrect to infer an im-
plausible phrase. Examples 3-4 in Table 2 demon-
strate cases of irrelevant contexts, which we may
choose to ignore when assessing rule correctness.

3.3 Evaluation Process

For each example, the judges are presented with the
three questions above in the following order: (1)Qle

(2) Qrc (3) Qre. If the answer to a certain question
is negative then we do not need to present the next
questions to the judge: if the left phrase is not en-
tailed then we ignore the sentence altogether; and if
the context is irrelevant then the right phrase cannot
be entailed from the sentence and so the answer to
Qre is already known as negative.

The above entailment judgments assume that we
can actually ask whether the left or right phrases
are correct given the sentence, that is, we assume
that a truth value can be assigned to both phrases.
This is the case when the left and right templates
correspond, as expected, to semantic relations. Yet
sometimes learned templates are (erroneously) not
relational, e.g. ‘X, Y , IBM’ (representing a list).
We therefore let the judges initially mark rules that

include such templates as non-relational, in which
case their examples are not evaluated at all.

3.4 Rule Precision

We compute the precision of a rule by the percent-
age of examples for which entailment holds out
of all “relevant” examples. We can calculate the
precision in two ways, as defined below, depending
on whether we ignore irrelevant contexts or not
(obtaining lower precision if we don’t). When
systems answer an information need, such as a
query or question, irrelevant contexts are sometimes
not encountered thanks to additional context which
is present in the given input (see Section 2.1). Thus,
the following two measures can be viewed as upper
and lower bounds for the expected precision of the
rule applications in actual systems:

upper bound precision:
#Entailment holds

#Relevant context

lower bound precision:
#Entailment holds

#Left entailed

where # denotes the number of examples with
the corresponding judgment.

Finally, we consider a rule to be correct only if
its precision is at least 80%, which seems sensible
for typical applied settings. This yields two alterna-
tive sets of correct rules, corresponding to the upper
bound and lower bound precision measures. Even
though judges may disagree on specific examples for
a rule, their judgments may still agree overall on the
rule’s correctness. We therefore expect the agree-
ment level on rule correctness to be higher than the
agreement on individual examples.

4 Experimental Settings

We applied the instance-based methodology to eval-
uate two state-of-the-art unsupervised acquisition al-
gorithms, DIRT (Lin and Pantel, 2001) and TEASE
(Szpektor et al., 2004), whose output is publicly
available. DIRT identifies semantically related tem-
plates in a local corpus using distributional sim-
ilarity over the templates’ variable instantiations.
TEASE acquires entailment relations from the Web
for a given input templateI by identifying charac-
teristic variable instantiations shared byI and other
templates.
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For the experiment we used the published DIRT
and TEASE knowledge-bases1. For every given in-
put templateI, each knowledge-base provides a list
of learned output templates{Oj}

nI

1
, wherenI is the

number of output templates learned forI. Each out-
put template is suggested as holding an entailment
relation with the input templateI, but the algorithms
do not specify the entailment direction(s). Thus,
each pair{I, Oj} induces two candidate directional
entailment rules: ‘I→Oj ’ and ‘Oj→I ’.

4.1 Test Set Construction

The test set construction consists of three sampling
steps: selecting a set of input templates for the two
algorithms, selecting a sample of output rules to be
evaluated, and selecting a sample of sentences to be
judged for each rule.

First, we randomly selected 30 transitive verbs
out of the 1000 most frequent verbs in the Reuters
RCV1 corpus2. For each verb we manually
constructed a lexical-syntactic input template by
adding subject and object variables. For exam-
ple, for the verb ‘seek’ we constructed the template

‘X
subj
←−− seek

obj
−−→ Y ’.

Next, for each input templateI we considered
the learned templates{Oj}

nI

1
from each knowledge-

base. Since DIRT has a long tail of templates with
a low score and very low precision, DIRT templates
whose score is below a threshold of 0.1 were filtered
out3. We then sampled 10% of the templates in each
output list, limiting the sample size to be between
5-20 templates for each list (thus balancing between
sufficient evaluation data and judgment load). For
each sampled templateO we evaluated both direc-
tional rules, ‘I→O’ and ‘O→I ’. In total, we sam-
pled 380 templates, inducing 760 directional rules
out of which 754 rules were unique.

Last, we randomly extracted a sample of example
sentences for each rule ‘L→R’ by utilizing a search
engine over the first CD of Reuters RCV1. First, we
retrieved all sentences containing all lexical terms
within L. The retrieved sentences were parsed using
the Minipar dependency parser (Lin, 1998), keep-
ing only sentences that syntactically matchL (as

1Available at http://aclweb.org/aclwiki/index.php?title=Te-
xtual EntailmentResourcePool

2http://about.reuters.com/researchandstandards/corpus/
3Following advice by Patrick Pantel, DIRT’s co-author.

explained in Section 3.1). A sample of 15 match-
ing sentences was randomly selected, or all match-
ing sentences if less than 15 were found. Finally,
an example for judgment was generated from each
sampled sentence and its left and right phrases (see
Section 3.1). We did not find sentences for 108
rules, and thus we ended up with 646 unique rules
that could be evaluated (with 8945 examples to be
judged).

4.2 Evaluating the Test-Set

Two human judges evaluated the examples. We
randomly split the examples between the judges.
100 rules (1287 examples) were cross annotated for
agreement measurement. The judges followed the
procedure in Section 3.3 and the correctness of each
rule was assessed based on both its upper and lower
bound precision values (Section 3.4).

5 Methodology Evaluation Results

We assessed the instance-based methodology by
measuring the agreement level between judges. The
judges agreed on 75% of the 1287 shared exam-
ples, corresponding to a reasonable Kappa value of
0.64. A similar kappa value of 0.65 was obtained
for the examples that were judged as either entail-
ment holds/no entailment by both judges. Yet, our
evaluation target is to assess rules, and the Kappa
values for the final correctness judgments of the
shared rules were 0.74 and 0.68 for the lower and
upper bound evaluations. These Kappa scores are
regarded as ‘substantial agreement’ and are substan-
tially higher than published agreement scores and
those we managed to obtain using the standard rule-
based approach. As expected, the agreement on
rules is higher than on examples, since judges may
disagree on a certain example but their judgements
would still yield the same rule assessment.

Table 3 illustrates some disagreements that were
still exhibited within the instance-based evaluation.
The primary reason for disagreements was the dif-
ficulty to decide whether a context is relevant for
a rule or not, resulting in some confusion between
‘Irrelevant context’ and ‘No entailment’. This may
explain the lower agreement for the upper bound
precision, for which examples judged as ’Irrelevant
context’ are ignored, while for the lower bound both
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Rule Sentence Judge 1 Judge 2

X signY →X setY Iraq and Turkey signagreement
to increase trade cooperation

Entailment holds Irrelevant context

X worsenY →X slowY News of the strike worsenedthe
situation

Irrelevant context No entailment

X getY →X wantY He will get his parade on Tuesday Entailment holds No entailment

Table 3: Examples for disagreement between the two judges.

judgments are conflated and represent no entailment.
Our findings suggest that better ways for distin-
guishing relevant contexts may be sought in future
research for further refinement of the instance-based
evaluation methodology.

About 43% of all examples were judged as ’Left
not entailed’. The relatively low matching precision
(57%) made us collect more examples than needed,
since ’Left not entailed’ examples are ignored. Bet-
ter matching capabilities will allow collecting and
judging fewer examples, thus improving the effi-
ciency of the evaluation process.

6 DIRT and TEASE Evaluation Results

DIRT TEASE
P Y P Y

Rules:
Upper Bound 30.5% 33.5 28.4% 40.3
Lower Bound 18.6% 20.4 17% 24.1
Templates:
Upper Bound 44% 22.6 38% 26.9
Lower Bound 27.3% 14.1 23.6% 16.8

Table 4: Average Precision (P) and Yield (Y) at the
rule and template levels.

We evaluated the quality of the entailment rules
produced by each algorithm using two scores: (1)
micro averagePrecision, the percentage of correct
rules out of all learned rules, and (2) averageYield,
the average number of correct rules learned for each
input templateI, as extrapolated based on the sam-
ple4. Since DIRT and TEASE do not identify rule
directionality, we also measured these scores at the

4Since the rules are matched against the full corpus (as in IR
evaluations), it is difficult to evaluate their true recall.

template level, where an output templateO is con-
sidered correct if at least one of the rules ‘I→O’ or
‘O→ I ’ is correct. The results are presented in Ta-
ble 4. The major finding is that the overall quality of
DIRT and TEASE is very similar. Under the specific
DIRT cutoff threshold chosen, DIRT exhibits some-
what higher Precision while TEASE has somewhat
higher Yield (recall that there is no particular natural
cutoff point for DIRT’s output).

Since applications typically apply rules in a spe-
cific direction, the Precision for rules reflects their
expected performance better than the Precision for
templates. Obviously, future improvement in pre-
cision is needed for rule learning algorithms. Mean-
while, manual filtering of the learned rules can prove
effective within limited domains, where our evalua-
tion approach can be utilized for reliable filtering as
well. The substantial yield obtained by these algo-
rithms suggest that they are indeed likely to be valu-
able for recall increase in semantic applications.

In addition, we found that only about 15% of the
correct templates were learned by both algorithms,
which implies that the two algorithms largely com-
plement each other in terms of coverage. One ex-
planation may be that DIRT is focused on the do-
main of the local corpus used (news articles for the
published DIRT knowledge-base), whereas TEASE
learns from the Web, extracting rules from multiple
domains. Since Precision is comparable it may be
best to use both algorithms in tandem.

We also measured whetherO is a paraphrase of
I, i.e. whether both ‘I →O’ and ‘O→ I ’ are cor-
rect. Only 20-25% of all correct templates were as-
sessed as paraphrases. This stresses the significance
of evaluating directional rules rather than only para-
phrases. Furthermore, it shows that in order to im-
prove precision, acquisition algorithms must iden-
tify rule directionality.
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About 28% of all ‘Left entailed’ examples were
evaluated as ‘Irrelevant context’, yielding the large
difference in precision between the upper and lower
precision bounds. This result shows that in order
to get closer to the upper bound precision, learning
algorithms and applications need to identify the rel-
evant contexts in which a rule should be applied.

Last, we note that the instance-based quality as-
sessment corresponds to the corpus from which the
example sentences were taken. It is therefore best to
evaluate the rules using a corpus of the same domain
from which they were learned, or the target applica-
tion domain for which the rules will be applied.

7 Conclusions

Accurate learning of inference knowledge, such as
entailment rules, has become critical for further
progress of applied semantic systems. However,
evaluation of such knowledge has been problematic,
hindering further developments. The instance-based
evaluation approach proposed in this paper obtained
acceptable agreement levels, which are substantially
higher than those obtained for the common rule-
based approach.

We also conducted the first comparison between
two state-of-the-art acquisition algorithms, DIRT
and TEASE, using the new methodology. We found
that their quality is comparable but they effectively
complement each other in terms of rule coverage.
Also, we found that most learned rules are not para-
phrases but rather one-directional entailment rules,
and that many of the rules are context sensitive.
These findings suggest interesting directions for fu-
ture research, in particular learning rule direction-
ality and relevant contexts, issues that were hardly
explored till now. Such developments can be then
evaluated by the instance-based methodology, which
was designed to capture these two important aspects
of entailment rules.
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Abstract

We present an approach to query expan-
sion in answer retrieval that uses Statisti-
cal Machine Translation (SMT) techniques
to bridge the lexical gap between ques-
tions and answers. SMT-based query ex-
pansion is done by i) using a full-sentence
paraphraser to introduce synonyms in con-
text of the entire query, and ii) by trans-
lating query terms into answer terms us-
ing a full-sentence SMT model trained on
question-answer pairs. We evaluate these
global, context-aware query expansion tech-
niques on tfidf retrieval from 10 million
question-answer pairs extracted from FAQ
pages. Experimental results show that SMT-
based expansion improves retrieval perfor-
mance over local expansion and over re-
trieval without expansion.

1 Introduction

One of the fundamental problems in Question An-
swering (QA) has been recognized to be the “lexi-
cal chasm” (Berger et al., 2000) between question
strings and answer strings. This problem is mani-
fested in a mismatch between question and answer
vocabularies, and is aggravated by the inherent am-
biguity of natural language. Several approaches have
been presented that apply natural language process-
ing technology to close this gap. For example, syn-
tactic information has been deployed to reformu-
late questions (Hermjakob et al., 2002) or to re-
place questions by syntactically similar ones (Lin

and Pantel, 2001); lexical ontologies such as Word-
net1 have been used to find synonyms for question
words (Burke et al., 1997; Hovy et al., 2000; Prager
et al., 2001; Harabagiu et al., 2001), and statisti-
cal machine translation (SMT) models trained on
question-answer pairs have been used to rank can-
didate answers according to their translation prob-
abilities (Berger et al., 2000; Echihabi and Marcu,
2003; Soricut and Brill, 2006). Information retrieval
(IR) is faced by a similar fundamental problem of
“term mismatch” between queries and documents.
A standard IR solution, query expansion, attempts to
increase the chances of matching words in relevant
documents by adding terms with similar statistical
properties to those in the original query (Voorhees,
1994; Qiu and Frei, 1993; Xu and Croft, 1996).

In this paper we will concentrate on the task of
answer retrieval from FAQ pages, i.e., an IR prob-
lem where user queries are matched against docu-
ments consisting of question-answer pairs found in
FAQ pages. Equivalently, this is a QA problem that
concentrates on finding answers given FAQ docu-
ments that are known to contain the answers. Our
approach to close the lexical gap in this setting at-
tempts to marry QA and IR technology by deploy-
ing SMT methods for query expansion in answer
retrieval. We present two approaches to SMT-based
query expansion, both of which are implemented in
the framework of phrase-based SMT (Och and Ney,
2004; Koehn et al., 2003).

Our first query expansion model trains an end-
to-end phrase-based SMT model on 10 million
question-answer pairs extracted from FAQ pages.

1http://wordnet.princeton.edu
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The goal of this system is to learn lexical correla-
tions between words and phrases in questions and
answers, for example by allowing for multiple un-
aligned words in automatic word alignment, and dis-
regarding issues such as word order. The ability to
translate phrases instead of words and the use of a
large language model serve as rich context to make
precise decisions in the case of ambiguous transla-
tions. Query expansion is performed by adding con-
tent words that have not been seen in the original
query from then-best translations of the query.

Our second query expansion model is based on
the use of SMT technology for full-sentence para-
phrasing. A phrase table of paraphrases is extracted
from bilingual phrase tables (Bannard and Callison-
Burch, 2005), and paraphrasing quality is improved
by additional discriminative training on manually
created paraphrases. This approach utilizes large
bilingual phrase tables as information source to ex-
tract a table of para-phrases. Synonyms for query
expansion are read off from then-best paraphrases
of full queries instead of from paraphrases of sep-
arate words or phrases. This allows the model to
take advantage of the rich context of a largen-gram
language model when adding terms from then-best
paraphrases to the original query.

In our experimental evaluation we deploy a
database of question-answer pairs extracted from
FAQ pages for both training a question-answer
translation model, and for a comparative evalua-
tion of different systems on the task of answer re-
trieval. Retrieval is based on thetfidf framework
of Jijkoun and de Rijke (2005), and query expan-
sion is done straightforwardly by adding expansion
terms to the query for a second retrieval cycle. We
compare our global, context-aware query expansion
techniques with Jijkoun and de Rijke’s (2005)tfidf
model for answer retrieval and a local query expan-
sion technique (Xu and Croft, 1996). Experimen-
tal results show a significant improvement of SMT-
based query expansion over both baselines.

2 Related Work

QA has approached the problem of the lexical gap
by various techniques forquestion reformulation,
including rule-based syntactic and semantic refor-
mulation patterns (Hermjakob et al., 2002), refor-

mulations based on shared dependency parses (Lin
and Pantel, 2001), or various uses of the Word-
Net ontology to close the lexical gap word-by-word
(Hovy et al., 2000; Prager et al., 2001; Harabagiu
et al., 2001). Another use of natural language pro-
cessing has been the deployment of SMT models on
question-answer pairs for(re)rankingcandidate an-
swers which were either assumed to be contained
in FAQ pages (Berger et al., 2000) or retrieved by
baseline systems (Echihabi and Marcu, 2003; Sori-
cut and Brill, 2006).

IR has approached the term mismatch problem by
various approaches toquery expansion(Voorhees,
1994; Qiu and Frei, 1993; Xu and Croft, 1996).
Inconclusive results have been reported for tech-
niques that expand query terms separately by adding
strongly related terms from an external thesaurus
such as WordNet (Voorhees, 1994). Significant
improvements in retrieval performance could be
achieved byglobal expansion techniques that com-
pute corpus-wide statistics and take the entire query,
or queryconcept(Qiu and Frei, 1993), into account,
or by local expansion techniques that select expan-
sion terms from the top ranked documents retrieved
by the original query (Xu and Croft, 1996).

A similar picture emerges for query expansion
in QA: Mixed results have been reported for word-
by-word expansion based on WordNet (Burke et
al., 1997; Hovy et al., 2000; Prager et al., 2001;
Harabagiu et al., 2001). Considerable improvements
have been reported for the use of the local context
analysis model of Xu and Croft (1996) in the QA
system of Ittycheriah et al. (2001), or for the sys-
tems of Agichtein et al. (2004) or Harabagiu and
Lacatusu (2004) that use FAQ data to learn how to
expand query terms by answer terms.

The SMT-based approaches presented in this pa-
per can be seen as global query expansion tech-
niques in that our question-answer translation model
uses the whole question-answer corpus as informa-
tion source, and our approach to paraphrasing de-
ploys large amounts of bilingual phrases as high-
coverage information source for synonym finding.
Furthermore, both approaches take the entire query
context into account when proposing to add new
terms to the original query. The approaches that
are closest to our models are the SMT approach of
Radev et al. (2001) and the paraphrasing approach
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web pages FAQ pages QA pairs
count 4 billion 795,483 10,568,160

Table 1: Corpus statistics of QA pair data

of Duboue and Chu-Carroll (2006). None of these
approaches defines the problem of the lexical gap
as a query expansion problem, and both approaches
use much simpler SMT models than our systems,
e.g., Radev et al. (2001) neglect to use a language
model to aid disambiguation of translation choices,
and Duboue and Chu-Carroll (2006) use SMT as
black box altogether.

In sum, our approach differs from previous work
in QA and IR in the use SMT technology for query
expansion, and should be applicable in both areas
even though experimental results are only given for
the restricted domain of retrieval from FAQ pages.

3 Question-Answer Pairs from FAQ Pages

Large-scale collection of question-answer pairs has
been hampered in previous work by the small sizes
of publicly available FAQ collections or by restricted
access to retrieval results via public APIs of search
engines. Jijkoun and de Rijke (2005) nevertheless
managed to extract around 300,000 FAQ pages
and 2.8 million question-answer pairs by repeatedly
querying search engines with “intitle:faq ”
and “inurl:faq ”. Soricut and Brill (2006) could
deploy a proprietary URL collection of 1 billion
URLs to extract 2.3 million FAQ pages contain-
ing the uncased string “faq” in the url string. The
extraction of question-answer pairs amounted to a
database of 1 million pairs in their experiment.
However, inspection of the publicly available Web-
FAQ collection provided by Jijkoun and de Rijke2

showed a great amount of noise in the retrieved
FAQ pages and question-answer pairs, and yet the
indexed question-answer pairs showed a serious re-
call problem in that no answer could be retrieved for
many well-formed queries. For our experiment, we
decided to prefer precision over recall and to attempt
a precision-oriented FAQ and question-answer pair
extraction that benefits the training of question-
answer translation models.

2http://ilps.science.uva.nl/Resources/WazDah/

As shown in Table 1, the FAQ pages used in our
experiment were extracted from a 4 billion page
subset of the web using the queries “inurl:faq ”
and “inurl:faqs ” to match the tokens “faq” or
“faqs” in the urls. This extraction resulted in 2.6
million web pages (0.07% of the crawl). Since not
all those pages are actually FAQs, we manually la-
beled 1,000 of those pages to train an online passive-
aggressive classificier (Crammer et al., 2006) in a
10-fold cross validation setup. Training was done
using 20 feature functions on occurrences question
marks and key words in different fields of web
pages, and resulted in an F1 score of around 90%
for FAQ classification. Application of the classifier
to the extracted web pages resulted in a classification
of 795,483 pages as FAQ pages.

The extraction of question-answer pairs from this
database of FAQ pages was performed again in a
precision-oriented manner. The goal of this step
was to extract url, title, question, and answers fields
from the question-answer pairs in FAQ pages. This
was achieved by using feature functions on punc-
tuations, HTML tags (e.g.,<p>, <BR> ), listing
markers (e.g.,Q:, (1) ), and lexical cues (e.g.,
What, How ), and an algorithm similar to Joachims
(2003) to propagate initial labels across similar text
pieces. The result of this extraction step is a database
of about 10 million question answer pairs (13.3
pairs per FAQ page). A manual evaluation of 100
documents, containing 1,303 question-answer pairs,
achieved a precision of 98% and a recall of 82% for
extracting question-answer pairs.

4 SMT-Based Query Expansion

Our SMT-based query expansion techniques are
based on a recent implementation of the phrase-
based SMT framework (Koehn et al., 2003; Och and
Ney, 2004). The probability of translating a foreign
sentencef into Englishe is defined in the noisy chan-
nel model as

arg max
e

p(e|f) = arg max
e

p(f|e)p(e) (1)

This allows for a separation of a language model
p(e), and a translation modelp(f|e). Translation
probabilities are calculated from relative frequencies
of phrases, which are extracted via various heuris-
tics as larger blocks of aligned words from best word
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alignments. Word alignments are estimated by mod-
els similar to Brown et al. (1993). For a sequence of
I phrases, the translation probability in equation (1)
can be decomposed into

p(f I
i |eI

i ) =
I∏

i=1

p(fi|ei) (2)

Recent SMT models have shown significant im-
provements in translation quality by improved mod-
eling of local word order and idiomatic expressions
through the use of phrases, and by the deployment
of largen-gram language models to model fluency
and lexical choice.

4.1 Question-Answer Translation

Our first approach to query expansion treats the
questions and answers in the question-answer cor-
pus as two distinct languages. That is, the 10 million
question-answer pairs extracted from FAQ pages are
fed as parallel training data into an SMT training
pipeline. This training procedure includes various
standard procedures such as preprocessing, sentence
and chunk alignment, word alignment, and phrase
extraction. The goal of question-answer translation
is to learn associations between question words and
synonymous answer words, rather than the trans-
lation of questions into fluent answers. Thus we
did not conduct discriminative training of feature
weights for translation probabilities or language
model probabilities, but we held out 4,000 question-
answer pairs for manual development and testing of
the system. For example, the system was adjusted
to account for the difference in sentence length be-
tween questions and answers by setting the null-
word probability parameter in word alignment to
0.9. This allowed us to concentrate the word align-
ments to a small number of key words. Furthermore,
extraction of phrases was based on the intersection
of alignments from both translation directions, thus
favoring precision over recall also in phrase align-
ment.

Table 2 shows unique translations of the query
“how to live with cat allergies” on the phrase-level,
with corresponding source and target phrases shown
in brackets. Expansion terms are taken from phrase
terms that have not been seen in the original query,
and are highlighted in bold face.

4.2 SMT-Based Paraphrasing

Our SMT-based paraphrasing system is based on the
approach presented in Bannard and Callison-Burch
(2005). The central idea in this approach is to iden-
tify paraphrases or synonyms at the phrase level by
pivoting on another language. For example, given
a table of Chinese-to-English phrase translations,
phrasal synonyms in the target language are defined
as those English phrases that are aligned to the same
Chinese source phrases. Translation probabilities for
extracted para-phrases can be inferred from bilin-
gual translation probabilities as follows: Given an
English para-phrase pair(trg, syn), the probability
p(syn|trg) that trg translates intosyn is defined
as the joint probability that the English phrasetrg
translates into the foreign phrasesrc, and that the
foreign phrasesrc translates into the English phrase
syn. Under an independence assumption of those
two events, this probability and the reverse transla-
tion directionp(trg|syn) can be defined as follows:

p(syn|trg) = max
src

p(src|trg)p(syn|src) (3)

p(trg|syn) = max
src

p(src|syn)p(trg|src)

Since the same para-phrase pair can be obtained
by pivoting on multiple foreign language phrases, a
summation or maximization over foreign language
phrases is necessary. In order not to put too much
probability mass onto para-phrase translations that
can be obtained from multiple foreign language
phrases, we maximize instead of summing oversrc.

In our experiments, we employed equation (3)
to infer for each para-phrase pair translation model
probabilities pφ(syn|trg) and pφ′(trg|syn) from
relative frequencies of phrases in bilingual tables.
In contrast to Bannard and Callison-Burch (2005),
we applied the same inference step to infer also
lexical translation probabilitiespw(syn|trg) and
pw′(trg|syn) as defined in Koehn et al. (2003) for
para-phrases. Furthermore, we deployed features for
the number of wordslw, number of phrasescφ , a
reordering scorepd , and a score for a 6-gram lan-
guage modelpLM trained on English web data. The
final model combines these features in a log-linear
model that defines the probability of paraphrasing a
full sentence, consisting of a sequence ofI phrases
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qa-translation (how, how) (to, to) (live, live) (with, with) (cat,pet) (allergies, allergies)
(how, how) (to, to) (live, live) (with, with) (cat, cat) (allergies,allergy)
(how, how) (to, to) (live, live) (with, with) (cat, cat) (allergies,food)
(how, how) (to, to) (live, live) (with, with) (cat,cats) (allergies, allergies)

paraphrasing (how, how) (to live, to live) (with cat, with cat) (allergies,allergy)
(how,ways) (to live, to live) (with cat, with cat) (allergies, allergies)
(how, how) (to live with, to live with) (cat,feline) (allergies, allergies)
(how to, how to) (live,living ) (with cat, with cat) (allergies, allergies)
(how to, how to) (live,life) (with cat, with cat) (allergies, allergies)
(how,way) (to live, to live) (with cat, with cat) (allergies, allergies)
(how, how) (to live, to live) (with cat, with cat) (allergies,allergens)
(how, how) (to live, to live) (with cat, with cat) (allergies,allergen)

Table 2: Uniquen-best phrase-level translations of query “how to live with cat allergies”.

as follows:

p(synI
1|trgI

1) = (
I∏

i=1

pφ(syni|trgi)λφ (4)

× pφ′(trgi|syni)λφ′

× pw(syni|trgi)λw

× pw′(trgi|syni)λw′

× pd(syni, trgi)λd)
× lw(synI

1)
λl

× cφ(synI
1)

λc

× pLM (synI
1)

λLM

For estimation of the feature weights~λ defined
in equation (4) we employed minimum error rate
(MER) training under the BLEU measure (Och,
2003). Training data for MER training were taken
from multiple manual English translations of Chi-
nese sources from the NIST 2006 evaluation data.
The first of four reference translations for each Chi-
nese sentence was taken as source paraphrase, the
rest as reference paraphrases. Discriminative train-
ing was conducted on 1,820 sentences; final evalua-
tion on 2,390 sentences. A baseline paraphrase table
consisting of 33 million English para-phrase pairs
was extracted from 1 billion phrase pairs from three
different languages, at a cutoff of para-phrase prob-
abilities of0.0025.

Query expansion is done by adding terms intro-
duced inn-best paraphrases of the query. Table 2
shows example paraphrases for the query “how to
live with cat allergies” with newly introduced terms
highlighted in bold face.

5 Experimental Evaluation

Our baseline answer retrieval system is modeled af-
ter the tfidf retrieval model of Jijkoun and de Ri-
jke (2005). Their model calculates a linear com-
bination of vector similarity scores between the
user query and several fields in the question-answer
pair. We used the cosine similarity metric with
logarithmically weighted term and document fre-
quency weights in order to reproduce the Lucene3

model used in Jijkoun and de Rijke (2005). For
indexing of fields, we adopted the settings that
were reported to be optimal in Jijkoun and de
Rijke (2005). These settings comprise the use of
8 question-answer pair fields, and a weight vec-
tor 〈0.0, 1.0, 0.0, 0.0, 0.5, 0.5, 0.2, 0.3〉 for fields or-
dered as follows: (1) full FAQ document text, (2)
question text, (3) answer text, (4) title text, (5)-(8)
each of the above without stopwords. The second
field thus takes takeswh-words, which would typ-
ically be filtered out, into account. All other fields
are matched without stopwords, with higher weight
assigned to document and question than to answer
and title fields. We did not use phrase-matching or
stemming in our experiments, similar to Jijkoun and
de Rijke (2005), who could not find positive effects
for these features in their experiments.

Expansion terms are taken from those terms
in the n-best translations of the query that have
not been seen in the original query string. For
paraphrasing-based query expansion, a 50-best list
of paraphrases of the original query was used.
For the noisier question-answer translation, expan-
sion terms and phrases were extracted from a 10-

3http://lucene.apache.org
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S2@10 S2@20 S1,2@10 S1,2@20
baselinetfidf 27 35 58 65

local expansion 30 (+ 11.1) 40 (+ 14.2) 57 (- 1) 63 (- 3)
SMT-based expansion38 (+ 40.7) 43 (+ 22.8) 58 65

Table 3: Success rate at 10 or 20 results for retrieval of adequate (2) or material (1) answers; relative change
in brackets.

best list of query translations. Terms taken from
query paraphrases were matched with the same field
weight vector〈0.0, 1.0, 0.0, 0.0, 0.5, 0.5, 0.2, 0.3〉 as
above. Terms taken from question-answer trans-
lation were matched with the weight vector
〈0.0, 1.0, 0.0, 0.0, 0.5, 0.2, 0.5, 0.3〉, preferring an-
swer fields over question fields. After stopword
removal, the average number of expansion terms
produced was 7.8 for paraphrasing, and 3.1 for
question-answer translation.

The local expansion technique used in our exper-
iments follows Xu and Croft (1996) in taking ex-
pansion terms from the topn answers that were re-
trieved by the baselinetfidf system, and by incorpo-
rating cooccurrence information with query terms.
This is done by calculating term frequencies for ex-
pansion terms by summing up thetfidf weights of
the answers in which they occur, thus giving higher
weight to terms that occur in answers that receive
a higher similarity score to the original query. In
our experiments, expansion terms are ranked accord-
ing to this modifiedtfidf calculation over the top 20
answers retrieved by the baseline retrieval run, and
matched a second time with the field weight vector
〈0.0, 1.0, 0.0, 0.0, 0.5, 0.2, 0.5, 0.3〉 that prefers an-
swer fields over question fields. After stopword re-
moval, the average number of expansion terms pro-
duced by the local expansion technique was 9.25.

The test queries we used for retrieval are taken
from query logs of the MetaCrawler search en-
gine4 and were provided to us by Valentin Jijk-
oun. In order to maximize recall for the comparative
evaluation of systems, we selected 60 queries that
were well-formed natural language questions with-
out metacharacters and spelling errors. However, for
one third of these well-formed queries none of the
five compared systems could retrieve an answer. Ex-
amples are“how do you make a cornhusk doll”,

4http://www.metacrawler.com

“what is the idea of materialization”, or “what does
8x certified mean”, pointing to a severe recall prob-
lem of the question-answer database.

Evaluation was performed by manual labeling of
top 20 answers retrieved for each of 60 queries for
each system by two independent judges. For the sake
of consistency, we chose not to use the assessments
provided by Jijkoun and de Rijke. Instead, the judges
were asked to find agreement on the examples on
which they disagreed after each evaluation round.
The ratings together with the question-answer pair
id were stored and merged into the retrieval results
for the next system evaluation. In this way consis-
tency across system evaluations could be ensured,
and the effort of manual labeling could be substan-
tially reduced. The quality of retrieval results was
assessed according to Jijkoun and de Rijke’s (2005)
three point scale:

• adequate (2): answer is contained

• material (1): no exact answer, but important in-
formation given

• unsatisfactory (0): user’s information need is
not addressed

The evaluation measure used in Jijkoun and de
Rijke (2005) is the success rate at 10 or 20 an-
swers, i.e.,S2@n is the percentage of queries with
at least one adequate answer in the topn retrieved
question-answer pairs, andS1,2@n is the percentage
of queries with at least one adequate or material an-
swer in the topn results. This evaluation measure ac-
counts for improvements in coverage, i.e., it rewards
cases where answers are found for queries that did
not have an adequate or material answer before. In
contrast, the mean reciprocal rank (MRR) measure
standardly used in QA can have the effect of prefer-
ring systems that find answers only for a small set
of queries, but rank them higher than systems with
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(1) query: how to live with cat allergies
local expansion (-): allergens allergic infections filter plasmacluster rhinitis introduction effective replacement
qa-translation (+): allergy cats pet food
paraphrasing (+): way allergens life allergy feline ways living allergen

(2) query: how to design model rockets
local expansion (-): models represented orientation drawings analysis element environment different structure
qa-translation (+): models rocket
paraphrasing (+): missiles missile rocket grenades arrow designing prototype models ways paradigm

(3) query: what is dna hybridization
local expansion (-): instructions individual blueprint characteristics chromosomes deoxyribonucleic information biological

genetic molecule
qa-translation (+): slides clone cdna sitting sequences
paraphrasing (+): hibridization hybrids hybridation anything hibridacion hybridising adn hybridisation nothing

(4) query: how to enhance competitiveness of indian industries
local expansion (+): resources production quality processing established investment development facilities institutional
qa-translation (+): increase industry
paraphrasing (+): promote raise improve increase industry strengthen

(5) query: how to induce labour
local expansion (-): experience induction practice imagination concentration information consciousness different meditation

relaxation
qa-translation (-): birth industrial induced induces
paraphrasing (-): way workers inducing employment ways labor working child work job action unions

Table 4: Examples for queries and expansion terms yielding improved (+), decreased (-), or unchanged (0)
retrieval performance compared to retrieval without expansion.

higher coverage. This makes MRR less adequate for
the low-recall setup of FAQ retrieval.

Table 3 shows success rates at 10 and 20 retrieved
question-answer pairs for five different systems. The
results for thebaseline tfidfsystem, following Jijk-
oun and de Rijke (2005), are shown in row 2. Row
3 presents results for our variant oflocal expansion
by pseudo-relevance feedback (Xu and Croft, 1996).
Results forSMT-based expansionare given in row 4.
A comparison of success rates for retrieving at least
one adequate answer in the top 10 results shows rel-
ative improvements over the baseline of 11.1% for
local query expansion, and of 40.7% for combined
SMT-based expansion. Success rates at top 20 re-
sults show similar relative improvements of 14.2%
for local query expansion, and of 22.8% for com-
bined SMT-based expansion. On the easier task of
retrieving a material or adequate answer, success
rates drop by a small amount for local expansion,
and stay unchanged for SMT-based expansion.

These results can be explained by inspecting a few
sample query expansions. Examples (1)-(3) in Ta-
ble 4 illustrate cases where SMT-based query expan-
sion improves results over baseline performance, but
local expansion decreases performance by introduc-
ing irrelevant terms. In (4) retrieval performance is
improved over the baseline for both expansion tech-

niques. In (5) both local and SMT-based expansion
introduce terms that decrease retrieval performance
compared to retrieval without expansion.

6 Conclusion

We presented two techniques for query expansion in
answer retrieval that are based on SMT technology.
Our method for question-answer translation uses a
large corpus of question-answer pairs extracted from
FAQ pages to learn a translation model from ques-
tions to answers. SMT-based paraphrasing utilizes
large amounts of bilingual data as a new informa-
tion source to extract phrase-level synonyms. Both
SMT-based techniques take the entire query context
into account when adding new terms to the orig-
inal query. In an experimental comparison with a
baselinetfidf approach and a local query expansion
technique on the task of answer retrieval from FAQ
pages, we showed a significant improvement of both
SMT-based query expansion over both baselines.

Despite the small-scale nature of our current ex-
perimental results, we hope to apply the presented
techniques to general web retrieval in future work.
Another task for future work is to scale up the ex-
traction of question-answer pair data in order to
provide an improved resource for question-answer
translation.
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Abstract

We propose a computational model of text
reuse tailored for ancient literary texts, avail-
able to us often only in small and noisy sam-
ples. The model takes into account source
alternation patterns, so as to be able to align
even sentences with low surface similarity.
We demonstrate its ability to characterize
text reuse in the Greek New Testament.

1 Introduction

Text reuse is the transformation of a source text into a
target text in order to serve a different purpose. Past
research has addressed a variety of text-reuse appli-
cations, including: journalists turning a news agency
text into a newspaper story (Clough et al., 2002); ed-
itors adapting an encyclopedia entry to an abridged
version (Barzilay and Elhadad, 2003); and plagia-
rizers disguising their sources by removing surface
similarities (Uzuner et al., 2005).

A common assumption in the recovery of text
reuse is the conservation of some degree of lexi-
cal similarity from the source sentence to the de-
rived sentence. A simple approach, then, is to de-
fine a lexical similarity measure and estimate a score
threshold; given a sentence in the target text, if the
highest-scoring sentence in the source text is above
the threshold, then the former is considered to be de-
rived from the latter. Obviously, the effectiveness of
this basic approach depends on the degree of lexical
similarity: source sentences that are quoted verba-
tim are easier to identify than those that have been
transformed by a skillful plagiarizer.

The crux of the question, therefore, is how to
identify source sentences despite their lack of sur-
face similarity to the derived sentences. Ancient lit-
erary texts, which are the focus of this paper, present
some distinctive challenges in this respect.

1.1 Ancient Literary Texts

“Borrowed material embedded in the flow of a
writer’s text is a common phenomenon in Antiq-
uity.” (van den Hoek, 1996). Ancient writers rarely
acknowledged their sources. Due to the scarcity
of books, they often needed to quote from mem-
ory, resulting in inexact quotations. Furthermore,
they combined multiple sources, sometimes insert-
ing new material or substantially paraphrasing their
sources to suit their purpose. To compound the
noise, the version of the source text available to us
today might not be the same as the one originally
consulted by the author. Before the age of the print-
ing press, documents were susceptible to corruptions
introduced by copyists.

Identifying the sources of ancient texts is use-
ful in many ways. It helps establish their relative
dates. It traces the evolution of ideas. The material
quoted, left out or altered in a composition provides
much insight into the agenda of its author. Among
the more frequently quoted ancient books are the
gospels in the New Testament. Three of them — the
gospels of Matthew, Mark, and Luke — are called
the Synoptic Gospels because of the substantial text
reuse among them.
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Target verses (English translation) Target verses (original Greek) Source verses (original Greek)

Luke 9:30-33 Luke 9:30-33 Mark 9:4-5

(9:30) And, behold, (9:30) kai idou (9:4) kai ōphthē autois

there talked with him two men, andres duo sunelaloun autō Ēlias sun Mōusei kai

which were Moses and Elias. hoitines ēsan Mōusēs kai Ēlias ēsan sullalountes tō Iēsou

(9:31) Who appeared in glory, ... (9:31) hoi ophthentes en doxē ... (no obvious source verse)

(9:32) But Peter and they that were with him ... (9:32) ho de Petros kai hoi sun autō ... (no obvious source verse)

(9:33) And it came to pass, (9:33) kai egeneto en tō diachōrizesthai

as they departed from him, autous ap’ autou eipen ho Petros (9:5) kai apokritheis ho Petros
Peter said unto Jesus, Master, pros ton Iēsoun epistata legei tō Iēsou rabbi

it is good for us to be here: kalon estin hēmas hōde einai kalon estin hēmas hōde einai
and let us make kai poiēsōmen skēnas treis kai poiēsōmen treis skēnas
three tabernacles; one for thee, mian soi kai mian Mōusei soi mian kai Mōusei mian
and one for Moses, and one for Elias: kai mian Ēlia kai Ēlia mian
not knowing what he said. mē eidōs ho legei

Table 1: Luke 9:30-33 and their source verses in the Gospel of Mark. The Greek words with common
stems in the target and source verses are bolded. The King James Version English translation is included for
reference. §1.2 comments on the text reuse in these verses.

1.2 Synoptic Gospels

The nature of text reuse among the Synoptics spans
a wide spectrum. On the one hand, some revered
verses, such as the sayings of Jesus or the apostles,
were preserved verbatim. Such is the case with Pe-
ter’s short speech in the second half of Luke 9:33
(see Table 1). On the other hand, unimportant de-
tails may be deleted, and new information weaved
in from other sources or oral traditions. For ex-
ample, “Luke often edits the introductions to new
sections with the greatest independence” (Taylor,
1972). To complicate matters, it is believed by some
researchers that the version of the Gospel of Mark
used by Luke was a more primitive version, cus-
tomarily called Proto-Mark, which is no longer ex-
tant (Boismard, 1972). Continuing our example in
Table 1, verses 9:31-32 have no obvious counter-
parts in the Gospel of Mark. Some researchers have
attributed them to an earlier version of Mark (Bo-
ismard, 1972) or to Luke’s “redactional tenden-
cies” (Bovon, 2002).

The result is that some verses bear little resem-
blance to their sources, due to extensive redaction,
or to discrepancies between different versions of the
source text. In the first case, any surface similarity
score alone is unlikely to be effective. In the second,
even deep semantic analysis might not suffice.

1.3 Goals

One property of text reuse that has not been explored
in past research is source alternation patterns. For
example, “it is well known that sections of Luke de-
rived from Mark and those of other origins are ar-
ranged in continuous blocks” (Cadbury, 1920). This
notion can be formalized with features on the blocks
and order of the source sentences. The first goal of
this paper is to leverage source alternation patterns
to optimize the global text reuse hypothesis.

Scholars of ancient texts tend to express their
analyses qualitatively. We attempt to translate their
insights into a quantitative model. To our best
knowledge, this is the first sentence-level, quantita-
tive text-reuse model proposed for ancient texts. Our
second goal is thus to bring a quantitative approach
to source analysis of ancient texts.

2 Previous Work

Text reuse is analyzed at the document level in
(Clough et al., 2002), which classifies newspaper
articles as wholly, partially, or non-derived from
a news agency text. The hapax legomena, and
sentence alignment based on N -gram overlap, are
found to be the most useful features. Considering a
document as a whole mitigates the problem of low
similarity scores for some of the derived sentences.
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Figure 1: A dot-plot of the cosine similarity mea-
sure between the Gospel of Luke and the Gospel of
Mark. The number on the axes represent chapters.
The thick diagonal lines reflect regions of high lexi-
cal similarity between the two gospels.

At the level of short passages or sentences, (Hatzi-
vassiloglou et al., 1999) goes beyond N -gram, tak-
ing advantage of WordNet synonyms, as well as or-
dering and distance between shared words. (Barzi-
lay and Elhadad, 2003) shows that the simple cosine
similarity score can be effective when used in con-
junction with paragraph clustering. A more detailed
comparison with this work follows in §4.2.

In the humanities, reused material in the writ-
ings of Plutarch (Helmbold and O’Neil, 1959) and
Clement (van den Hoek, 1996) have been manually
classified as quotations, reminiscences, references
or paraphrases. Studies on the Synoptics have been
limited to N -gram overlap, notably (Honoré, 1968)
and (Miyake et al., 2004).

Text Hypothesis Researcher Model
Ltrain Ltrain.B (Bovon, 2002) B

Ltrain.J (Jeremias, 1966) J
Ltest Ltest.B (Bovon, 2003)

Ltest.J (Jeremias, 1966)

Table 2: Two models of text reuse of Mark in Ltrain

are trained on two different text-reuse hypotheses:
The B model is on the hypothesis in (Bovon, 2002),
and the J model, on (Jeremias, 1966). These two
models then predict the text-reuse in Ltest.

3 Data

We assume the Two-Document Theory1, which hy-
pothesizes that the Gospel of Luke and the Gospel
of Matthew have as their common sources two doc-
uments: the Gospel of Mark, and a lost text custom-
arily denoted Q. In particular, we will consider the
Gospel of Luke2 as the target text, and the Gospel of
Mark as the source text.

We use a Greek New Testament corpus prepared
by the Center for Computer Analysis of Texts at the
University of Pennsylvania3, based on the text vari-
ant from the United Bible Society. The text-reuse
hypotheses (i.e., lists of verses deemed to be de-
rived from Mark) of François Bovon (Bovon, 2002;
Bovon, 2003) and Joachim Jeremias (Jeremias,
1966) are used. Table 2 presents our notations.

Luke 1:1 to 9:50 (Ltrain, 458 verses) Chapters 1
and 2, narratives of the births of Jesus and John
the Baptist, are based on non-Markan sources.
Verses 3:1 to 9:50 describe Jesus’ activities in
Galilee, a substantial part of which is derived
from Mark.

Luke Chapters 22 to 24 (Ltest, 179 verses) These
chapters, known as the Passion Narrative, serve
as our test text. Markan sources were behind
38% of the verses, according to Bovon, and 7%
according to Jeremias.

1This theory (Streeter, 1930) is currently accepted by a ma-
jority of researchers. It guides our choice of experimental data,
but our model does not depend on its validity.

2We do not consider the Gospel of Matthew or Q in this
study. Verses from Luke 9:51 to the end of chapter 21 are
also not considered, since their sources are difficult to ascertain
(Bovon, 2002).

3Obtained through Peter Ballard (personal communication)
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4 Approach

For each verse in the target text (a “target verse”), we
would like to determine whether it is derived from a
verse in the source text (a “source verse”) and, if so,
which one.

Following the framework of global linear models
in (Collins, 2002), we cast this task as learning a
mapping F from input verses x ∈ X to a text-reuse
hypothesis y ∈ Y ∪ {ε}. X is the set of verses in
the target text. In our case, xtrain = (x1, . . . , x458)
is the sequence of verses in Ltrain, and xtest is that
of Ltest. Y is the set of verses in the source text.
Say the sequence y = (y1, . . . , yn) is the text-reuse
hypothesis for x = (x1, . . . , xn). If yi is ε, then xi is
not derived from the source text; otherwise, yi is the
source verse for xi. The set of candidates GEN(x)
contains all possible sequences for y, and Θ is the
parameter vector. The mapping F is thus:

F (x) = arg max
y∈GEN(x)

Φ(x,y) ·Θ

4.1 Features
Given the small amount of training data available4,
the feature space must be kept small to avoid overfit-
ting. Starting with the cosine similarity score as the
baseline feature, we progressively enrich the model
with the following features:

Cosine Similarity [Sim] Treating a target verse as
a query to the set of source verses, we com-
pute the cosine similarity, weighted with tf.idf,
for each pair of source verse and target verse5.
This standard bag-of-words approach is appro-
priate for Greek, a relatively free word-order
language. Figure 1 plots this feature on Luke
and Mark.

Non-derived verses are assigned a constant
score in lieu of the cosine similarity. We will
refer to this constant as the cosine threshold
(C): when the Sim feature alone is used, the
constant effectively acts as the threshold above
which target verses are considered to be de-
rived. If wi, wj are the vectors of words of a

4Note that the training set consists of only one xtrain —
the Gospel of Luke. Luke’s only other book, the Acts of the
Apostles, contains few identifiable reused material.

5A targert verse is also allowed to match two consecutive
source verses.

target verse and a candidate source verse, then:

sim(i, j) =

{

wi·wj

‖wi‖·‖wj‖
if derived

C otherwise

Number of Blocks [Block] Luke can be viewed
as alternating between Mark and non-Markan
material, and he “prefers to pick up al-
ternatively entire blocks rather than isolated
units.” (Bovon, 2002) We will use the term
Markan block to refer to a sequence of verses
that are derived from Mark. A verse with a
low cosine score, but positioned in the mid-
dle of a Markan block, is likely to be derived.
Conversely, an isolated verse in the middle of
a non-Markan block, even with a high cosine
score, is unlikely to be so. The heavier the
weight of this feature, the fewer blocks are pre-
ferred.

Source Proximity [Prox] When two derived
verses are close to one another, their respective
source verses are also likely to be close to one
another; in other words, derived verses tend to
form “continuous blocks” (Cadbury, 1920).

We define distance as the number of verses sep-
arating two verses. For each pair of consec-
utive target verses, we take the inverse of the
distance between their source verses. This fea-
ture is thus intended to discourage a derived
verse from being aligned with a source verse
that shares some lexical similarities by chance,
but is far away from other source verses in the
Markan block.

Source Order [Order] “Whenever Luke follows
the Markan narrative in his own gospel he
follows painstakingly the Markan order”, and
hence “deviations in the order of the material
must therefore be regarded as indications that
Luke is not following Mark.” (Jeremias, 1966).
This feature is a binary function on two consec-
utive derived verses, indicating whether their
source verses are in order. A positive weight
for this feature would favor an alignment that
respects the order of the source text.

In cases where there are no obvious source verses,
such as Luke 9:30-31 in Table 1, the source order
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and proximity would be disrupted. To mitigate this
issue, we allow the Prox and Order features the
option of skipping up to two verses within a Markan
block in the target text. In our example, Luke 9:30
can skip to 9:32, preserving the source proximity
and order between their source verses, Mark 9:4 and
9:5.

Another potential feature is the occurrence of
function words characteristic of Luke (Rehkopf,
1959), along the same lines as in the study of the
Federalist Papers (Mosteller and Wallace, 1964).
These stylistic indicators, however, are unlikely
to be as helpful on the sentence level as on the
document level. Furthermore, Luke “reworks [his
sources] to an extent that, within his entire composi-
tion, the sources rarely come to light in their original
independent form” (Bovon, 2002). The significance
of the presence of these indicators, therefore, is di-
minished.

4.2 Discussion
This model is both a simplification of and an ex-
tension to the one advocated in (Barzilay and El-
hadad, 2003). On the one hand, we perform no para-
graph clustering or mapping before sentence align-
ment. Ancient texts are rarely divided into para-
graphs, nor are they likely to be large enough for
statistical methods on clustering. Instead, we rely
on the Prox feature to encourage source verses to
stay close to each other in the alignment.

On the other hand, our model makes two exten-
sions to the “Micro Alignment” step in (Barzilay
and Elhadad, 2003). First, we add the Block and
Prox features to capture source alternation patterns.
Second, we place no hard restrictions on the re-
ordering of the source text, opting instead for a soft
preference for maintaining the source order through
the Order feature. In contrast, deviation from the
source order is limited to “flips” between two sen-
tences in (Barzilay and Elhadad, 2003), an assump-
tion that is not valid in the Synoptics6.

4.3 Evaluation Metric
Our model can make two types of errors: source er-
ror, when it predicts a non-derived target verse to
be derived, or vice versa; and alignment error, when

6For example, Luke 6:12-19 transposes Mark 3:7-12 and
Mark 3:13-19 (Bovon, 2002).

it correctly predicts a target verse to be derived, but
aligns it to the wrong source verse.

Correspondingly, we interpret the output of our
model at two levels: as a binary output, i.e., the
target verse is either “derived” or “non-derived”;
or, as an alignment of the target verse to a source
verse. We measure the precision and recall of the
target verses at both levels, yielding two F-measures,
Fsource and Falign

7.
Literary dependencies in the Synoptics are typi-

cally expressed as pairs of pericopes (short, coher-
ent passages), for example, “Luke 22:47-53 // Mark
14:43-52”. Likewise, for Falign, we consider the
output correct if the hypothesized source verse lies
within the pericope8.

5 Experiments

This section presents experiments for evaluating our
text-reuse model. §5.1 gives some implementa-
tion details. §5.2 describes the training process,
which uses text-reuse hypotheses of two different re-
searchers (Ltrain.B and Ltrain.J ) on the same train-
ing text. The two resulting models thus represent
two different opinions on how Luke re-used Mark;
they then produce two hypotheses on the test text
(L̂test.B and L̂test.J ).

Evaluations of these hypotheses follow. In §5.3,
we compare them with the hypotheses of the same
two researchers on the test text (Ltest.B and Ltest.J ).
In §5.3, we compare them with the hypotheses of
seven other representative researchers (Neirynck,
1973). Ideally, when the model is trained on a par-
ticular researcher’s hypothesis on the train text, its
hypothesis on the test text should be closest to the
one proposed by the same researcher.

5.1 Implementation

Suppose we align the ith target verse to the kth

source verse or to ε. Using dynamic programming,
their score is the cosine similarity score sim(i, k),
added to the best alignment state up to the (i − 1 −
skip)th target verse, where skip can vary from 0 to
2 (see §4.1). If the jth source verse is the aligned

7Note that Falign is never higher than Fsource since it pe-
nalizes both source and alignment errors.

8A more fine-grained metric is individual verse alignment.
This is unfortunately difficult to measure. As discussed in §1.2,
many derived verses have no clear source verses.
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Model B J
Train Hyp Ltrain.B Ltrain.J

Metric Fsource Falign Fsource Falign

Sim 0.760 0.646 0.748 0.635
+Block 0.961 0.728 0.977 0.743
All 0.985 0.949 0.983 0.936

Table 3: Performance on the training text, Ltrain.
The features are accumulative; All refers to the full
feature set.

verse in this state, then score(i, k) is:

sim(i, k) + max
j,skip

{score(i− 1− skip, j)

+wprox · prox(j, k) + worder · order(j, k)

−wblock · block(j, k)}

If both j and k are aligned (i.e., not ε), then:

prox(j, k) =
1

dist(j, k)

order(j, k) = 1 if j ≥ k

block(j, k) = 1 if starting new block

Otherwise these are set to zero.

5.2 Training Results
The model takes only four parameters: the weights
for the Block, Prox and Order features, as well
as the cosine threshold (C). They are empirically
optimized, accurate to 0.01, on the two training hy-
potheses listed in Table 2, yielding two models, B
and J.

Table 3 shows the increasing accuracy of both
models in describing the text reuse in Ltrain as
more features are incorporated. The Block fea-
ture contributes most in predicting the block bound-
aries, as seen in the jump of Fsource from Sim to
+Block. The Prox and Order features substan-
tially improve the alignment, boosting the Falign

from +Block to All.
Both models B and J fit their respective hypothe-

ses to very high degrees. For B, the only significant
source error occurs in Luke 8:1-4, which are derived
verses with low similarity scores. They are transi-
tional verses at the beginning of a Markan block. For

Model B J
Test Hyp Ltest.B Ltest.J

Metric Fsource Falign Fsource Falign

Sim 0.579 0.382 0.186 0.144
+Block 0.671 0.329 0.743 0.400
All 0.779 0.565 0.839 0.839

Table 5: Performance on the test text, Ltest.

J, the pericope Luke 6:12-16 is wrongly predicted as
derived.

Most alignment errors are misalignments to a
neighboring pericope, typically for verses located
near the boundary between two pericopes. Due to
their low similarity scores, the model was unable
to decide if they belong to the end of the preceding
pericope or to the beginning of the following one.

5.3 Test Results

The two models trained in §5.2, B and J, are intended
to capture the characteristics of text reuse in Ltrain

according to two different researchers. When ap-
plied on the test text, Ltest, they produce two hy-
potheses, L̂test.B and L̂test.J . Ideally, they should
be similar to the hypotheses offered by the same re-
searchers (namely, Ltest.B and Ltest.J ), and dissim-
ilar to those by other researchers. We analyze the
first aspect in §5.3, and the second aspect in §5.3.

Comparison with Bovon and Jeremias
Table 4 shows the output of B and J on Ltest. As

more features are added, their output increasingly
resemble Ltest.B and Ltest.J , as shown in Table 5.

Both L̂test.B and L̂test.J contain the same number
of Markan blocks as the “reference” hypotheses pro-
posed by the respective scholars. In both cases, the
pericope Luke 22:24-30 is correctly assigned as non-
derived, despite their relatively high cosine scores.
This illustrates the effect of the Block feature.

As for source errors, both B and J mistakenly as-
sign Luke 22:15-18 as Markan, attracted by the high
similarity score of Luke 22:18 with Mark 14:25.
B, in addition, attributes another pericope to Mark
where Bovon does not. Despite the penalty of lower
source proximity, it wrongly aligned Luke 23:37-38
to Mark 15:2, misled by a specific title of Jesus that
happens to be present in both.
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Chp 22.....................................................................23.....................................................

Sim xx--x-x-xxxxxx-xxxxx-xx----------x---xxx-x---xx--x-xxx-xxxxxx-xx-x-xxxxx-x--x--xx-----x--xxx--xx------x-x-xxx---xxxx---xxxxx--
All xxxxxxxxxxxxxxxxxx-------------------------------xxxxxxxxxxxxxxxxxxxxxxxxxxxx-----------------------------xxxxxxxxxxxxxxxxx---
Bov xxxxxxxxxxxxxx--------------------------------xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-------------------------------------xxxxxxxxxxxxx

Sim xx--x-x-xxxxxx-xxxxx-xx----------x---xxx-x---xx--x-xxx-xxxxxx-xx-x-xxxxx-x--x--xx-----x--xxx--xx------x-x-xxx---xxxx---xxxxx--
All xxxxxxxxxxxxxxxxxx------------------------------------------------------------------------------------------------------------
Jer xxxxxxxxxxxxx-----------------------------------------------------------------------------------------------------------------

Gru xxxxxxxxxxxxx-------xxx---------xx-----------------xx--------------------x-----------------------------xx--x-----xx-x---xxx---
Haw xxxxxxxxxxxxx----x---x-------------------x---xx----xxx------x---------x--------------------x---x-------x---------xxx-----xx---
Reh xxxxxxxxxxxxx------x-------------------------------xx------------------------------------------x------------------------------
Snd --------------------xxx---------xx-----------------xxxxxxxxxx-------xxx-------------------------------------------------------
Srm xxxxxxxxxxxxxx------xxx---------xx--------------------------------------------------------------------------------------------
Str xxxxxxxxxxxxx----x---x-------------------x---xx----xxxxxxxxxx---------x--x-----------------x--xx------xx---x-----xxx-----xx---
Tay xxxxxxxxxxxxx--------x-----------x-----------x---x-xxxxxxxxxx------------x---------------------x-------x---x-----xx---xxxxxx--

Chp 24...................................................

Sim xxx---x-xx---------x---x-------xxx-x---x--x-xxx-x---- (Model B Sim)
All ----------------------------------------------------- (Model B All)
Bov xxxxxxxxxxx------------------------------------------ (Bovon)

Sim xxx---x-xx---------x---x-------xxx-x---x--x-xxx-x---- (Model J Sim)
All ----------------------------------------------------- (Model J All)
Jer ----------------------------------------------------- (Jeremias)

Gru -x---x----------------------------------------------- (Grundmann)
Haw -----x----------------------------------------------- (Hawkins)
Reh ----------------------------------------------------- (Rehkopf)
Snd -x---x---x------------------------------------------- (Schneider)
Srm ----------------------------------------------------- (Schürmann)
Str -----x----------------------------------------------- (Streeter)
Tay ---------x------------------------------------------- (Taylor)

Table 4: Output of models B and J, and scholarly hypotheses on the test text, Ltest. The symbol ‘x’ indicates
that the verse is derived from Mark, and ‘-’ indicates that it is not. The hypothesis from (Bovon, 2003),
labelled ‘Bov’, is compared with the Sim (baseline) output and the All output of model B, as detailed
in Table 5. The hypothesis from (Jeremias, 1966), ‘Jer’, is similarly compared with outputs of model J.
Seven other scholarly hypotheses are also listed.

Elsewhere, B is more conservative than Bovon in
proposing Markan derivation. For instance, the peri-
cope Luke 24:1-11 is deemed non-derived, an opin-
ion (partially) shared by some of the other seven re-
searchers.

Comparison with Other Hypotheses

Another way of evaluating the output of B and
J is to compare them with the hypotheses of other
researchers. As shown in Table 6, L̂test.B is more
similar to Ltest.B than to the hypothesis of other
researchers9. In other words, when the model is
trained on Bovon’s text-reuse hypothesis on the train
text, its prediction on the test text matches most
closely with that of the same researcher, Bovon.

9This is the list of researchers whose opinions on Ltest

are considered representative by (Neirynck, 1973). We have
simplified their hypotheses, considering those “partially assim-
ilated” and “reflect the influence of Mark” to be non-derived
from Mark.

Hypothesis B (L̂test.B) J (L̂test.J )
Bovon (Ltest.B) 0.838 0.676
Jeremias (Ltest.J ) 0.721 0.972
Grundmann 0.726 0.866
Hawkins 0.737 0.877
Rehkopf 0.721 0.950
Schneider 0.676 0.782
Schürmann 0.698 0.950
Streeter 0.771 0.821
Taylor 0.793 0.821

Table 6: Comparison of the output of the models
B and J with hypotheses by prominent researchers
listed in (Neirynck, 1973). The metric is the per-
centage of verses deemed by both hypotheses to be
“derived”, or “non-derived”.
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The differences between Bovon and the next two
most similar hypotheses, Taylor and Streeter, are
not statistically significant according to McNemar’s
test (p = 0.27 and p = 0.10 respectively), possi-
bly a reflection of the small size of Ltest; the dif-
ferences are significant, however, with all other hy-
potheses (p < 0.05). Similar results are observed
for Jeremias and L̂test.J .

6 Conclusion & Future Work

We have proposed a text-reuse model for ancient
literary texts, with novel features that account for
source alternation patterns. These features were val-
idated on the Lukan Passion Narrative, an instance
of text reuse in the Greek New Testament.

The model’s predictions on this passage are com-
pared to nine scholarly hypotheses. When tuned
on the text-reuse hypothesis of a certain researcher
on the train text, it favors the hypothesis of the
same person on the test text. This demonstrates the
model’s ability to capture the researcher’s particular
understanding of text reuse.

While a computational model alone is unlikely
to provide definitive answers, it can serve as a sup-
plement to linguistic and literary-critical approaches
to text-reuse analysis, and can be especially help-
ful when dealing with a large amount of candidate
source texts.
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Abstract

Topic segmentation and identification are of-
ten tackled as separate problems whereas
they are both part of topic analysis. In this
article, we study how topic identification can
help to improve a topic segmenter based on
word reiteration. We first present an unsu-
pervised method for discovering the topics
of a text. Then, we detail how these topics
are used by segmentation for finding topical
similarities between text segments. Finally,
we show through the results of an evaluation
done both for French and English the inter-
est of the method we propose.

1 Introduction

In this article, we address the problem of linear topic
segmentation, which consists in segmenting doc-
uments into topically homogeneous segments that
does not overlap each other. This part of the Dis-
course Analysis field has received a constant interest
since the initial work in this domain such as (Hearst,
1994). One criterion for classifying topic segmen-
tation systems is the kind of knowledge they de-
pend on. Most of them only rely on surface features
of documents: word reiteration in (Hearst, 1994;
Choi, 2000; Utiyama and Isahara, 2001; Galley et
al., 2003) or discourse cues in (Passonneau and Lit-
man, 1997; Galley et al., 2003). As such systems do
not require external knowledge, they are not sensi-
tive to domains but they are limited by the type of
documents they can be applied to: lexical reiteration
is reliable only if concepts are not too frequently ex-

pressed by several means (synonyms, etc.) and dis-
course cues are often rare and corpus-specific.

To overcome these difficulties, some systems
make use of domain-independent knowledge about
lexical cohesion: a lexical network built from a dic-
tionary in (Kozima, 1993); a thesaurus in (Mor-
ris and Hirst, 1991); a large set of lexical co-
occurrences collected from a corpus in (Choi et al.,
2001). To a certain extent, these lexical networks
enable topic segmenters to exploit a sort of concept
reiteration. However, their lack of any explicit topi-
cal structure makes this kind of knowledge difficult
to use when lexical ambiguity is high.

The most simple solution to this problem is to ex-
ploit knowledge about the topics that may occur in
documents. Such topic models are generally built
from a large set of example documents as in (Yam-
ron et al., 1998), (Blei and Moreno, 2001) or in one
component of (Beeferman et al., 1999). These sta-
tistical topic models enable segmenters to improve
their precision but they also restrict their scope.

Hybrid systems that combine the approaches
we have presented were also developed and illus-
trated the interest of such a combination: (Job-
bins and Evett, 1998) combined word recurrence,
co-occurrences and a thesaurus; (Beeferman et al.,
1999) relied on both lexical modeling and discourse
cues; (Galley et al., 2003) made use of word reitera-
tion through lexical chains and discourse cues.

The work we report in this article takes place in
the first category we have presented. It does not
rely on anya priori knowledge and exploits word
usage rather than discourse cues. More precisely,
we present a new method for enhancing the results
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of segmentation systems based on word reiteration
without relying on any external knowledge.

2 Principles

In most of the algorithms in the text segmentation
field, documents are represented as sequences of ba-
sic discourse units. When they are written texts,
these units are generally sentences, which is also the
case in our work. Each unit is turned into a vector of
words, following the principles of theVector Space
model. Then, the similarity between the basic units
of a text is evaluated by computing a similarity mea-
sure between the vectors that represent them. Such a
similarity is considered as representative of the top-
ical closeness of the corresponding units. This prin-
ciple is also applied to groups of basic units, such as
text segments, because of the properties of theVec-
tor Spacemodel. Segments are finally delimited by
locating the areas where the similarity between units
or groups of units is weak.

This quick overview highlights the important role
of the evaluation of the similarity between discourse
units in the segmentation process. When no exter-
nal knowledge is used, this similarity is only based
on the strict reiteration of words. But it can be en-
hanced by taking into account semantic relations be-
tween words. This was done for instance in (Jobbins
and Evett, 1998) by taking semantic relations from
Roget’s Thesaurus. This resource was also used in
(Morris and Hirst, 1991) where the similarity be-
tween discourse units was more indirectly evaluated
through the lexical chains they share. The same ap-
proach was adopted in (Stokes et al., 2002) but with
WordNet as the reference semantic resource.

In this article, we propose to improve the detec-
tion of topical similarity between text segments but
without relying on any external knowledge. For each
text to segment, we first identify its topics by per-
forming an unsupervised clustering of its words ac-
cording to their co-occurrents in the text. Thus, each
of its topics is represented by a subset of its vocab-
ulary. When the similarity between two segments is
evaluated during segmentation, the words they share
are first considered but the presence of words of the
same topic is also taken into account. This makes
it possible to find similar two segments that refer to
the same topic although they do not share a lot of

words. It is also a way to exploit long-range rela-
tions between words at a local level. More globally,
it helps to reduce the false detection of topic shifts.

3 Unsupervised Topic Identification

The approach we propose first requires to discover
the topics of texts. For performing such a task with-
out usinga priori knowledge, we assume that the
most representative words of each of the topics of
a text occur in similar contexts. Hence, for each
word of the text with a minimal frequency, we col-
lect its co-occurrents, we evaluate the pairwise simi-
larity of these selected text words by relying on their
co-occurrents and finally, we build topics by apply-
ing an unsupervised clustering method to them.

3.1 Building the similarity matrix of text words

The first step for discovering the topics of a text is
a linguistic pre-processing of it. This pre-processing
splits the text into sentences and represents each of
them as the sequence of its lemmatized plain words,
that is, nouns (proper and common nouns), verbs
and adjectives. After filtering the low frequency
words of the text (frequency < 3), the co-occurrents
of the remaining words are classically collected by
recording the co-occurrences in a fixed-size win-
dow (15 plain words) moved over the pre-processed
text. As a result, each text word is represented by
a vector that contains its co-occurrents and their co-
occurrence frequency. The pairwise similarity be-
tween all the selected text words is then evaluated
for building their similarity matrix. We classically
apply theCosinemeasure between the vectors that
represent them for this evaluation.

3.2 From a similarity matrix to text topics

The final step for discovering the topics of a text is
the unsupervised clustering of its words from their
similarity matrix. We rely for this task on an adap-
tation of the Shared Nearest Neighbor (SNN) algo-
rithm described in (Ertöz et al., 2001). This algo-
rithm particularly fits our needs as it automatically
determines the number of clusters – in our case the
number of topics of a text – and does not take into
account the elements that are not representative of
the clusters it builds. This last point is important for
our application as all the plain words of a text are
not representative of its topics. The SNN algorithm
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Figure 1: Similarity graph after its sparsification

(see Algorithm 1) performs clustering by detecting
high-density areas in a similarity graph. In our case,
the similarity graph is directly built from the simi-
larity matrix: each vertex represents a text word and
an edge links two words whose similarity is not null.
The SNN algorithm splits up into two main stages:
the first one finds the elements that are the most rep-
resentative of their neighborhood. These elements
are the seeds of the final clusters that are built in the
second stage by aggregating the remaining elements
to those selected by the first stage. This first stage

Algorithm 1 SNN algorithm
1. sparsification of the similarity graph
2. building of the SNN graph
3. computation of the distribution of strong links
4. search for topic seeds and filtering of noise
5. building of text topics
6. removal of insignificant topics
7. extension of text topics

starts by sparsifying the similarity graph, which is
done by keeping only the links towards thek (k=10)
most similar neighbors of each text word (step 1).
Figure 1 shows the resulting graph for a two-topic
document of our evaluation framework (see Sec-
tion 5.1). Then, the similarity graph is transposed
into a shared nearest neighbor (SNN) graph (step 2).
In this graph, the similarity between two words is
given by the number of direct neighbors they share

in the similarity graph. This transposition makes the
similarity values more reliable, especially for high-
dimensional data like textual data. Strong links in
the SNN graph are finally detected by applying a
fixed threshold to the distribution of shared neigh-
bor numbers (step 3). A word with a high number
of strong links is taken as the seed of a topic as it is
representative of the set of words that are linked to
it. On the contrary, a word with few strong links is
supposed to be outlier (step 4).

The second stage of the SNN algorithm first
builds text topics by associating to topic seeds the
remaining words that are the most similar to them
provided that their number of shared neighbors is
high enough (step 5). Moreover, the seeds that are
judged as too close to each other are also grouped
during this step in accordance with the same crite-
ria. The last two steps bring small improvements to
the results of this clustering. First, when the num-
ber of words of a topic is too small (size < 3), this
topic is judged as insignificant and it is discarded
(step 6). Its words are added to the set of words with-
out topic after step 5. We added this step to the SNN
algorithm to balance the fact that without any ex-
ternal knowledge, all the semantic relations between
text words cannot be found by relying only on co-
occurrence. Finally, the remaining text topics are
extended by associating to them the words that are
neither noise nor already part of a topic (step 7). As
topics are defined at this point more precisely than at
step 4, the integration of words that are not strongly
linked to a topic seed can be safely performed by
relying on the average strength of their links in the
SNN graph with the words of the topic. After the
SNN algorithm is applied, a set of topics is associ-
ated to the text to segment, each of them being de-
fined as a subset of its vocabulary.

4 Using Text Topics for Segmentation

4.1 Topic segmentation using word reiteration

As TextTiling, the topic segmentation method of
Hearst (Hearst, 1994), the topic segmenter we pro-
pose, called F06, first evaluates the lexical cohesion
of texts and then finds their topic shifts by iden-
tifying breaks in this cohesion. The first step of
this process is the linguistic pre-processing of texts,
which is identical for topic segmentation to the pre-
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processing described in Section 3.1 for the discover-
ing of text topics. The evaluation of the lexical cohe-
sion of a text relies as forTextTilingon a fixed-size
focus window that is moved over the text to segment
and stops at each sentence break. The cohesion in
the part of text delimited by this window is evalu-
ated by measuring the word reiteration between its
two sides. This is done in our case by applying the
Dice coefficientbetween the two sides of the focus
window, following (Jobbins and Evett, 1998). This
cohesion value is associated to the sentence break at
the transition between the two sides of the window.
More precisely, ifWl refers to the vocabulary of the
left side of the focus window andWr refers to the
vocabulary of its right side, the cohesion in the win-
dow at positionx is given by:

LCrec(x) =
2 · card(Wl ∩Wr)

card(Wl) + card(Wr)
(1)

This measure was adopted instead of theCosine
measure used inTextTilingbecause its definition in
terms of sets makes it easier to extend for taking into
account other types of relations, as in (Jobbins and
Evett, 1998). A cohesion value is computed for each
sentence break of the text to segment and the final
result is a cohesion graph of the text.

The last part of our algorithm is mainly taken
from theLCsegsystem (Galley et al., 2003) and is
divided into three steps:

• computation of a score evaluating the probabil-
ity of each minimum of the cohesion graph to
be a topic shift;

• removal of segments with a too small size;

• selection of topic shifts.

The computation of the score of a minimumm be-
gins by finding the pair of maximal andr around it.
This score is then given by:

score(m) =
LC(l) + LC(r)− 2 · LC(m)

2
(2)

This score, whose values are between 0 and 1, is a
measure of how high is the difference between the
minimum and the maxima around it. Hence, it fa-
vors as possible topic shifts minima that correspond
to sharp falls of lexical cohesion.

The next step is done by removing as a possible
topic shift each minimum that is not farther than 2
sentences from its preceding neighbor. Finally, the
selection of topic shifts is performed by applying a
threshold computed from the distribution of mini-
mum scores. Thus, a minimumm is kept as a topic
shift if score(m) > µ−α ·σ, whereµ is the average
of minimum scores,σ their standard deviation andα
is a modulator (α = 0.6 in our experiments).

4.2 Using text topics to enhance segmentation

The heart of the algorithm we have presented above
is the evaluation of lexical cohesion in the focus win-
dow, as given by Equation 1. This evaluation is
also a weak point ascard(Wl ∩ Wr) only relies on
word reiteration. As a consequence, two different
words that respectively belongs toWl andWr but
also belong to the same text topic cannot contribute
to the identification of a possible topical similarity
between the two sides of the focus window.

The algorithm F06T is based on the same princi-
ples as F06 but it extends the evaluation of lexical
cohesion by taking into account the topical proxim-
ity of words. The reference topics for judging this
proximity are of course the text topics discovered by
the method of Section 3. In this extended version,
the evaluation of the cohesion in the focus window
is made of three steps:

• computation of the word reiteration cohesion;

• determination of the topic(s) of the window;

• computation of the cohesion based on text top-
ics and fusion of the two kinds of cohesion.

The first step is identical to the computation of the
cohesion in F06. The second one aims at restrict-
ing the set of topics that are used in the last step
to the topics that are actually representative of the
content of the focus window,i.e. representative of
the current context of discourse. This point is espe-
cially important in the areas where the current topic
is changing because amplifying the influence of the
surrounding topics can lead to the topic shift being
missed. Hence, a topic is considered as represen-
tative of the content of the focus window only if it
matches each side of this window. In practice, this
matching is evaluated by applying theCosinemea-
sure between the vector that represents one side of
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the window and the vector that represents the topic1

and by testing if the resulting value is higher than a
fixed threshold (equal to 0.1 in the experiments of
Section 5). It must be noted that several topics may
be associated to the focus window. As the discov-
ering of text topics is done in an unsupervised way
and without any external knowledge, a theme of a
text may be scattered over several identified topics
and then, its presence can be characterized by sev-
eral of them.

The last step of the cohesion evaluation first con-
sists in determining for each side of the focus win-
dow the number of its words that belong to one of
the topics associated to the window. The cohesion
of the window is then given by Equation 3, that es-
timates the significance of the presence of the text
topics in the window:

LCtop(x) =
card(TWl) + card(TWr)

card(Wl) + card(Wr)
(3)

whereTWi∈{l,r} = (Wi∩Tw)− (Wl∩Wr) andTw

is the union of all the representations of the topics
associated to the window.TWi corresponds to the
words of thei side of the window that belong to the
topics of the window (Wi∩Tw) but are not part of the
vocabulary from which the lexical cohesion based
on word reiteration is computed (Wl ∩ Wr).

Finally, the global cohesion in the focus window
is computed as the sum of the two kinds of cohesion,
the one computed from word reiteration (see Equa-
tion 1) and the one computed from text topics (see
Equation 3).

5 Evaluation

5.1 Evaluation framework

The main objective of our evaluation was to verify
that taking into account text topics discovered with-
out relying on external knowledge can actually im-
prove a topic segmentation algorithm that is initially
based on word reiteration. Since the work of Choi
(Choi, 2000), the evaluation framework he proposed
has become a kind of standard for the evaluation of
topic segmentation algorithms. This framework is

1Each word of the topic vector has a weight equal to 1. In
the window vector, this weight is equal to the frequency of the
word in the corresponding side of the window.

based on the building of artificial texts made of seg-
ments extracted from different documents. It has at
least two advantages: the reference corpus is easy
to build as it does not require human annotations;
parameters such as the size of the documents or the
segments can be precisely controlled. But it has also
an obvious drawback: its texts are artificial. This is a
problem in our case as our algorithm for discovering
text topics exploits the fact that the words of a topic
tend to co-occur at the document scale. This hypoth-
esis is no longer valid for documents built accord-
ing to the procedure of Choi. It is why we adapted
his framework for having more realistic documents
without losing its advantages. This adaptation con-

French English
# source doc. 128 87

# source topics 11 3

segments/doc.
10 (84%) 10 (97%)
8 (16%) 8 (3%)

sentences/doc. 65 68
plain words/doc. 797 604

Table 1: Data about our evaluation corpora

cerns the way the document segments are selected.
Instead of taking each segment from a different doc-
ument, we only use two source documents. Each of
them is split into a set of segments whose size is be-
tween 3 and 11 sentences, as for Choi, and an eval-
uation document is built by concatenating these seg-
ments in an alternate way from the beginning of the
source documents,i.e. one segment from a source
document and the following from the other one, un-
til 10 segments are extracted. Moreover, in order
to be sure that the boundary between two adjacent
segments of an evaluation document actually corre-
sponds to a topic shift, the source documents are se-
lected in such a way that they refer to different top-
ics. This point was controlled in our case by taking
documents from the corpus of the CLEF 2003 eval-
uation for crosslingual information retrieval: each
evaluation document was built from two source doc-
uments that had been judged as relevant for two dif-
ferent CLEF 2003 topics. Two evaluation corpora
made of 100 documents each, one in French and one
in English, were built following this procedure. Ta-
ble 1 shows their main characteristics.
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5.2 Topic identification

As F06T exploits document topics, we also evalu-
ated our method for topic identification. This evalu-
ation is based on the corpus of the previous section.
For each of its documents, a reference topic is built
from each group of segments that come from the
same source document by gathering the words that
only appear in these segments. A reference topic is
associated to the discovered topic that shares with it
the largest number of words. Three complementary
measures were computed to evaluate the quality of
discovered topics. The main one is purity, which is
classically used for unsupervised clustering:

Purity =
k∑

i=1

vi

V
P (Tdi) (4)

whereP (Tdi), the purity of the discovered topic
Tdi, is equal to the fraction of the vocabulary ofTdi

that is part of the vocabulary of the reference topic
Tdi is assigned to,V is the vocabulary of all the dis-
covered topics andvi is the vocabulary ofTdi. The
second measure evaluates to what extent the refer-
ence topics are represented among the discovered
topics and is equal to the ratio between the num-
ber of discovered topics that are assigned to a refer-
ence topic (assigned discovered topics) and the num-
ber of reference topics. The last measure estimates
how strongly the vocabulary of reference topics is
present among the discovered topics and is equal to
the ratio between the size of the vocabulary of the
assigned discovered topics and the size of the vo-
cabulary of reference topics. Table 2 gives the mean

purity reference

topics (%)

ref. topic

vocab. (%)

French 0.771 (0.117) 89.5 (23.9) 29.9 (7.8)

English 0.766 (0.082) 99.0 (10.0) 31.6 (5.3)

Table 2: Evaluation of topic identification

of each measure, followed by its standard deviation.
Results are globally similar for French and English.
They show that our method for topic identification
builds topics that are rather pure,i.e. each of them is
strongly tied to a reference topic, but their content is
rather sparse in comparison with the content of their
associated reference topics.

5.3 Topic segmentation

For validating the hypothesis that underlies our
work, we applied F06 and F06T to find the topic
bounds in the documents of our two evaluation cor-
pora. Moreover, we also tested four well known seg-
menters on our corpora to compare the results of F06
and F06T with state-of-the-art algorithms. We clas-
sically used the error metricPk proposed in (Beefer-
man et al., 1999) to measure segmentation accuracy.
Pk evaluates the probability that a randomly cho-
sen pair of sentences, separated byk sentences, is
wrongly classified,i.e. they are found in the same
segment while they are actually in different ones
(miss) or they are found in different segments while
they are actually in the same one (false alarm). We
also give the value ofWindowDiff (WD), a variant of
Pk proposed in (Pevzner and Hearst, 2002) that cor-
rects some of its insufficiencies. Tables 3 and 4 show

systems Pk pval(F06) pval(F06T) WD

U00 25.91 0.003 1.3e-07 27.42

C99 27.57 4.2e-05 3.6e-10 35.42

TextTiling* 21.08 0.699 0.037 27.43

LCseg 20.55 0.439 0.111 28.31

F06 21.58 � 0.013 27.83

F06T 18.46 0.013 � 24.05

Table 3: Evaluation of topic segmentation for the
French corpus (Pk and WD as percentages)

the results of our evaluations for topic segmentation
(smallest values are best results). U00 is the sys-
tem described in (Utiyama and Isahara, 2001), C99
the one proposed in (Choi, 2000) andLCsegis pre-
sented in (Galley et al., 2003).TextTiling* is a vari-
ant ofTextTiling in which the final identification of
topic shifts is taken from (Galley et al., 2003). All
these systems were used as F06 and F06T without
fixing the number of topic shifts to find. Moreover,
their parameters were tuned for our evaluation cor-
pus to obtain their best results. For each result, we
also give the significance levelpval of its difference
for Pk with F06 and F06T, evaluated by a one-side
t-test with a null hypothesis of equal means. Lev-
els lower than 0.05 are considered as statistically
significant (bold-faced values). The first important
point to notice about these tables is the fact that
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systems Pk pval(F06) pval(F06T) WD

U00 19.42 0.048 4.3e-05 21.22

C99 21.63 1.2e-04 1.8e-09 30.64

TextTiling* 15.81 0.308 0.111 19.80

LCseg 14.78 0.043 0.496 19.73

F06 16.90 � 0.010 20.93

F06T 14.06 0.010 � 18.31

Table 4: Evaluation of topic segmentation for the
English corpus (Pk and WD as percentages)

F06T has significantly better results than F06, both
for French and English. Hence, it confirms our hy-
pothesis about the interest of taking into account the
topics of a text for its segmentation, even if these
topics were discovered in an unsupervised way and
without using external knowledge. Moreover, F06T
have the best results among all the tested algorithms,
with a significant difference in most of the cases.

Another notable point about these results is their
stability across our two corpora, even if these cor-
pora are quite similar. Whereas F06 and F06T were
initially developed on a corpus in French, their re-
sults on the English corpus are comparable to their
results on the French test corpus, both for the dif-
ference between them and the difference with the
four other algorithms. The comparison with these
algorithms also illustrates the relationships between
them: TextTiling*, LCseg, F06 and F06T share a
large number of principles and their overall results
are significantly higher than the results of U00 and
C99. This trend is different from the one observed
from the Choi corpus for which algorithms such C99
or U00 have good results (Pk for C99, U00, F06 and
F06T is respectively equal to 12%, 10%, 14% and
14%). This means probably that algorithms with
good results on a corpus built as the Choi corpus will
not necessarily have good results on “true” texts,
which agrees with (Georgescul et al., 2006). Finally,
we can observe that all these algorithms have better
results on the English corpus than on the French one.
As the two corpora are quite similar, this difference
seems to come from their difference of language,
perhaps because repetitions are more discouraged in
French than in English from a stylistic viewpoint.
This tends to be confirmed by the ratio between the
size of the lemmatized vocabulary of each corpus

and their number of tokens, equal to 8% for the
French corpus and to 5.6% for the English corpus.

6 Related Work

One of the main problems addressed by our work
is the detection of the topical similarity of two text
units. We have tackled this problem following an
endogenous approach, which is new in the topic seg-
mentation field to our knowledge. The main advan-
tage of this option is that it does not require external
knowledge. Moreover, it can integrate relations be-
tween words, such as proper nouns for instance, that
are unlikely to be found in an external resource.

Other solutions have been already proposed to
solve the problem we consider. Most of them consist
of two steps: first, they automatically build a seman-
tic representation of words from the co-occurrences
collected from a large corpus; then, they use this
representation for enhancing the representation of
each text unit to compare. This overall principle is
implemented with different forms by several topic
segmenters. In CWM (Choi et al., 2001), a variant
of C99, each word of a sentence is replaced by its
representation in aLatent Semantic Analysis(LSA)
space. In the work of Ponte and Croft (Ponte and
Croft, 1997), the representations of sentences are ex-
panded by adding to them words selected from an
external corpus by the means of theLocal Context
Analysis(LCA) method. Finally in (Caillet et al.,
2004), a set of concepts are learnt from a corpus
in an unsupervised way by using the X-means clus-
tering algorithm and the paragraphs of documents
are represented in the space defined by these con-
cepts. In fact, the way we use relations between
words is closer to (Jobbins and Evett, 1998), even
if the relations in this work come from a network of
co-occurrences or a thesaurus rather than from text
topics. In both cases the similarity of two text units
is determined by the proportion of their words that
are part of a relation across the two units.

More globally, our work exploits the topics of a
text for its segmentation. This kind of approach
was also explored in (Blei and Moreno, 2001) where
probabilistic topic models were built in an unsuper-
vised way. More recently, (Purver et al., 2006) has
also proposed a method for unsupervised topic mod-
eling to address both topic segmentation and identi-
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fication. (Purver et al., 2006) is closer to our work
than (Blei and Moreno, 2001) because it does not re-
quire to build topic models from a corpus but as in
our case, its results do not outperformLCseg(Galley
et al., 2003) while its model is far more complex.

7 Conclusion and Future Work

In this article, we have first proposed an unsuper-
vised method for discovering the topics of a text
without relying on external knowledge. Then, we
have shown how these topics can be used for im-
proving a topic segmentation method based on word
reiteration. Moreover, we have proposed an adapta-
tion of the evaluation framework of Choi that aims
at building more realistic evaluation documents. Fi-
nally, we have demonstrated the interest of the
method we present through its evaluation both on a
French and an English corpus.

However, the solution we have proposed for im-
proving the identification of topical similarities be-
tween text excerpts cannot completely make up for
not using any external knowledge. Hence, we plan
to use a network of lexical co-occurrences, which is
a source of knowledge that is easy to build automati-
cally from a large corpus. More precisely, we intend
to extend our method for discovering text topics by
combining the co-occurrence graph of a document
with such a network. This network could also be
used more directly for topic segmentation as in (Job-
bins and Evett, 1998).
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Abstract
We investigate different feature sets for
performing automatic sentence-level dis-
course segmentation within a general ma-
chine learning approach, including features
derived from either finite-state or context-
free annotations. We achieve the best re-
ported performance on this task, and demon-
strate that our SPADE-inspired context-free
features are critical to achieving this level of
accuracy. This counters recent results sug-
gesting that purely finite-state approaches
can perform competitively.

1 Introduction
Discourse structure annotations have been demon-
strated to be of high utility for a number of NLP
applications, including automatic text summariza-
tion (Marcu, 1998; Marcu, 1999; Cristea et al.,
2005), sentence compression (Sporleder and Lap-
ata, 2005), natural language generation (Prasad et
al., 2005) and question answering (Verberne et al.,
2006). These annotations include sentence segmen-
tation into discourse units along with the linking
of discourse units, both within and across sentence
boundaries, into a labeled hierarchical structure. For
example, the tree in Figure 1 shows a sentence-level
discourse tree for the string “Prices have dropped but
remain quite high, according to CEO Smith,” which
has three discourse segments, each labeled with ei-
ther “Nucleus” or “Satellite” depending on how cen-
tral the segment is to the coherence of the text.

There are a number of corpora annotated with
discourse structure, including the well-known RST
Treebank (Carlson et al., 2002); the Discourse
GraphBank (Wolf and Gibson, 2005); and the Penn
Discourse Treebank (Miltsakaki et al., 2004). While
the annotation approaches differ across these cor-
pora, the requirement of sentence segmentation into
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Figure 1: Example Nucleus/Satellite labeled sentence-level
discourse tree.

sub-sentential discourse units is shared across all ap-
proaches. These resources have facilitated research
into stochastic models and algorithms for automatic
discourse structure annotation in recent years.

Using the RST Treebank as training and evalua-
tion data, Soricut and Marcu (2003) demonstrated
that their automatic sentence-level discourse pars-
ing system could achieve near-human levels of ac-
curacy, if it was provided with manual segmenta-
tions and manual parse trees. Manual segmenta-
tion was primarily responsible for this performance
boost over their fully automatic system, thus mak-
ing the case that automatic discourse segmentation is
the primary impediment to high accuracy automatic
sentence-level discourse structure annotation. Their
models and algorithm – subsequently packaged to-
gether into the publicly available SPADE discourse
parser1 – make use of the output of the Charniak
(2000) parser to derive syntactic indicator features
for segmentation and discourse parsing.

Sporleder and Lapata (2005) also used the RST
Treebank as training data for data-driven discourse
parsing algorithms, though their focus, in contrast
to Soricut and Marcu (2003), was to avoid context-
free parsing and rely exclusively on features in their
model that could be derived via finite-state chunkers
and taggers. The annotations that they derive are dis-

1
http://www.isi.edu/publications/licensed-sw/spade/
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course “chunks”, i.e., sentence-level segmentation
and non-hierarchical nucleus/span labeling of seg-
ments. They demonstrate that their models achieve
comparable results to SPADE without the use of any
context-free features. Once again, segmentation is
the part of the process where the automatic algo-
rithms most seriously underperform.

In this paper we take up the question posed by
the results of Sporleder and Lapata (2005): how
much, if any, accuracy reduction should we expect
if we choose to use only finite-state derived fea-
tures, rather than those derived from full context-
free parses? If little accuracy is lost, as their re-
sults suggest, then it would make sense to avoid rel-
atively expensive context-free parsing, particularly
if the amount of text to be processed is large or if
there are real-time processing constraints on the sys-
tem. If, however, the accuracy loss is substantial,
one might choose to avoid context-free parsing only
in the most time-constrained scenarios.

While Sporleder and Lapata (2005) demonstrated
that their finite-state system could perform as well as
the SPADE system, which uses context-free parse
trees, this does not directly answer the question of
the utility of context-free derived features for this
task. SPADE makes use of a particular kind of fea-
ture from the parse trees, and does not train a gen-
eral classifier making use of other features beyond
the parse-derived indicator features. As we shall
show, its performance is not the highest that can be
achieved via context-free parser derived features.

In this paper, we train a classifier using a gen-
eral machine learning approach and a range of finite-
state and context-free derived features. We investi-
gate the impact on discourse segmentation perfor-
mance when one feature set is used versus another,
in such a way establishing the utility of features de-
rived from context-free parses. In the course of so
doing, we achieve the best reported performance on
this task, an absolute F-score improvement of 5.0%
over SPADE, which represents a more than 34% rel-
ative error rate reduction.

By focusing on segmentation, we provide an ap-
proach that is generally applicable to all of the
various annotation approaches, given the similari-
ties between the various sentence-level segmenta-
tion guidelines. Given that segmentation has been
shown to be a primary impediment to high accu-
racy sentence-level discourse structure annotation,
this represents a large step forward in our ability to

automatically parse the discourse structure of text,
whatever annotation approach we choose.

2 Methods
2.1 Data
For our experiments we use the Rhetorical Structure
Theory Discourse Treebank (Carlson et al., 2002),
which we will denote RST-DT, a corpus annotated
with discourse segmentation and relations according
to Rhetorical Structure Theory (Mann and Thomp-
son, 1988). The RST-DT consists of 385 docu-
ments from the Wall Street Journal, about 176,000
words, which overlaps with the Penn Wall St. Jour-
nal (WSJ) Treebank (Marcus et al., 1993).

The segmentation of sentences in the RST-DT
is into clause-like units, known as elementary dis-
course units, or edus. We will use the two terms
‘edu’ and ‘segment’ interchangeably throughout the
rest of the paper. Human agreement for this segmen-
tation task is quite high, with agreement between
two annotators at an F-score of 98.3 for unlabeled
segmentation (Soricut and Marcu, 2003).

The RST-DT corpus annotates edu breaks, which
typically include sentence boundaries, but sentence
boundaries are not explicitly annotated in the corpus.
To perform sentence-level processing and evalua-
tion, we aligned the RST-DT documents to the same
documents in the Penn WSJ Treebank, and used the
sentence boundaries from that corpus.2 An addi-
tional benefit of this alignment is that the Penn WSJ
Treebank tokenization is then available for parsing
purposes. Simple minimum edit distance alignment
effectively allowed for differences in punctuation
representation (e.g., double quotes) and tokenization
when deriving the optimal alignment.

The RST-DT corpus is partitioned into a train-
ing set of 347 documents and a test set of 38 doc-
uments. This test set consists of 991 sentences with
2,346 segments. For training purposes, we created
a held-out development set by selecting every tenth
sentence of the training set. This development set
was used for feature development and for selecting
the number of iterations used when training models.

2.2 Evaluation
Previous research into RST-DT segmentation and
parsing has focused on subsets of the 991 sentence
test set during evaluation. Soricut and Marcu (2003)

2A small number of document final parentheticals are in the
RST-DT and not in the Penn WSJ Treebank, which our align-
ment approach takes into account.
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omitted sentences that were not exactly spanned by
a subtree of the treebank, so that they could fo-
cus on sentence-level discourse parsing. By our
count, this eliminates 40 of the 991 sentences in the
test set from consideration. Sporleder and Lapata
(2005) went further and established a smaller sub-
set of 608 sentences, which omitted sentences with
only one segment, i.e., sentences which themselves
are atomic edus.

Since the primary focus of this paper is on seg-
mentation, there is no strong reason to omit any sen-
tences from the test set, hence our results will eval-
uate on all 991 test sentences, with two exceptions.
First, in Section 2.3, we compare SPADE results un-
der our configuration with results from Sporleder
and Lapata (2005) in order to establish compara-
bility, and this is done on their 608 sentence sub-
set. Second, in Section 3.2, we investigate feed-
ing our segmentation into the SPADE system, in or-
der to evaluate the impact of segmentation improve-
ments on their sentence-level discourse parsing per-
formance. For those trials, the 951 sentence subset
from Soricut and Marcu (2003) is used. All other
trials use the full 991 sentence test set.

Segmentation evaluation is done with precision,
recall and F1-score of segmentation boundaries.
Given a word string w1 . . . wk, we can index word
boundaries from 0 to k, so that each word wi falls
between boundaries i−1 and i. For sentence-based
segmentation, indices 0 and k, representing the be-
ginning and end of the string, are known to be seg-
ment boundaries. Hence Soricut and Marcu (2003)
evaluate with respect to sentence internal segmenta-
tion boundaries, i.e., with indices j such that 0<j<k
for a sentence of length k. Let g be the number
of sentence-internal segmentation boundaries in the
gold standard, t the number of sentence-internal seg-
mentation boundaries in the system output, and m
the number of correct sentence-internal segmenta-
tion boundaries in the system output. Then

P = m
t R = m

g and F1 = 2PR
P+R = 2m

g+t

In Sporleder and Lapata (2005), they were pri-
marily interested in labeled segmentation, where the
segment initial boundary was labeled with the seg-
ment type. In such a scenario, the boundary at in-
dex 0 is no longer known, hence their evaluation in-
cluded those boundaries, even when reporting un-
labeled results. Thus, in section 2.3, for compar-
ison with reported results in Sporleder and Lapata
(2005), our F1-score is defined accordingly, i.e., seg-

Segmentation system F1
Sporleder and Lapata best (reported) 88.40
SPADE

Sporleder and Lapata configuration (reported): 87.06
current configuration: 91.04

Table 1: Segmentation results on the Sporleder and Lapata
(2005) data set, with accuracy defined to include sentence initial
segmentation boundaries.

mentation boundaries j such that 0 ≤ j < k.
In addition, we will report unlabeled bracketing

precision, recall and F1-score, as defined in the
PARSEVAL metrics (Black et al., 1991) and eval-
uated via the widely used evalb package. We also
use evalb when reporting labeled and unlabeled dis-
course parsing results in Section 3.2.

2.3 Baseline SPADE setup

The publicly available SPADE package, which en-
codes the approach in Soricut and Marcu (2003),
is taken as the baseline for this paper. We made
several modifications to the script from the default,
which account for better baseline performance than
is achieved with the default configuration. First, we
modified the script to take given parse trees as input,
rather than running the Charniak parser itself. This
allowed us to make two modifications that improved
performance: turning off tokenization in the Char-
niak parser, and reranking. The default script that
comes with SPADE does not turn off tokenization
inside of the parser, which leads to degraded perfor-
mance when the input has already been tokenized in
the Penn Treebank style. Secondly, Charniak and
Johnson (2005) showed how reranking of the 50-
best output of the Charniak (2000) parser gives sub-
stantial improvements in parsing accuracy. These
two modifications to the Charniak parsing output
used by the SPADE system lead to improvements
in its performance compared to previously reported
results.

Table 1 compares segmentation results of three
systems on the Sporleder and Lapata (2005) 608
sentence subset of the evaluation data: (1) their best
reported system; (2) the SPADE system results re-
ported in that paper; and (3) the SPADE system re-
sults with our current configuration. The evaluation
uses the unlabeled F1 measure as defined in that pa-
per, which counts sentence initial boundaries in the
scoring, as discussed in the previous section. As can
be seen from these results, our improved configu-
ration of SPADE gives us large improvements over
the previously reported SPADE performance on this
subset. As a result, we feel that we can use SPADE
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as a very strong baseline for evaluation on the entire
test set.

Additionally, we modified the SPADE script to al-
low us to provide our segmentations to the full dis-
course parsing that it performs, in order to evalu-
ate the improvements to discourse parsing yielded
by any improvements to segmentation.

2.4 Segmentation classifier
For this paper, we trained a binary classifier, which
was applied independently at each word wi in the
string w1 . . . wk, to decide whether that word is the
last in a segment. Note that wk is the last word in
the string, and is hence ignored. We used a log-
linear model with no Markov dependency between
adjacent tags,3 and trained the parameters of the
model with the perceptron algorithm, with averag-
ing to control for over-training (Collins, 2002).

Let C={E, I} be the set of classes: seg-
mentation boundary (E) or non-boundary (I). Let
f(c, i, w1 . . . wk) be a function that takes as in-
put a class value c, a word index i and the word
string w1 . . . wk and returns a d-dimensional vector
of feature values for that word index in that string
with that class. For example, one feature might be
(c = E,wi = the), which returns the value 1 when
c = E and the current word is ‘the’, and returns
0 otherwise. Given a d-dimensional parameter vec-
tor φ, the output of the classifier is that class which
maximizes the dot product between the feature and
parameter vectors:

ĉ(i, w1 . . . wk) = argmax
c∈C

φ · f(c, i, w1 . . . wk) (1)

In training, the weights in φ are initialized to 0.
For m epochs (passes over the training data), for
each word in the training data (except sentence final
words), the model is updated. Let i be the current
word position in string w1 . . . wk and suppose that
there have been j−1 previous updates to the model
parameters. Let c̄i be the true class label, and let ĉi

be shorthand for ĉ(i, w1 . . . wk) in equation 1. Then
the parameter vector φj at step j is updated as fol-
lows:

φj = φj−1 − f(ĉ, i, w1 . . . wk) + f(c̄, i, w1 . . . wk) (2)

As stated in Section 2.1, we reserved every tenth
sentence as held-out data. After each pass over the
training data, we evaluated the system performance

3Because of the sparsity of boundary tags, Markov depen-
dencies between tags buy no additional system accuracy.

on this held-out data, and chose the model that op-
timized accuracy on that set. The averaged percep-
tron was used on held-out and evaluation sets. See
Collins (2002) for more details on this approach.

2.5 Features
To tease apart the utility of finite-state derived fea-
tures and context-free derived features, we consider
three feature sets: (1) basic finite-state features; (2)
context-free features; and (3) finite-state approxima-
tion to context-free features. Note that every feature
must include exactly one class label c in order to
discriminate between classes in equation 1. Hence
when presenting features, it can be assumed that the
class label is part of the feature, even if it is not ex-
plicitly mentioned.

The three feature sets are not completely disjoint.
We include simple position-based features in every
system, defined as follows. Because edus are typi-
cally multi-word strings, it is less likely for a word
near the beginning or end of a sentence to be at an
edu boundary. Thus it is reasonable to expect the
position within a sentence of a token to be a helpful
feature. We created 101 indicator features, repre-
senting percentages from 0 to 100. For a string of
length k, at position i, we round i/k to two decimal
places and provide a value of 1 for the corresponding
quantized position feature and 0 for the other posi-
tion features.

2.5.1 Basic finite-state features
Our baseline finite-state feature set includes simple
tagger derived features, as well as features based on
position in the string and n-grams4. We annotate
tag sequences onto the word sequence via a compet-
itive discriminatively trained tagger (Hollingshead
et al., 2005), trained for each of two kinds of tag
sequences: part-of-speech (POS) tags and shallow
parse tags. The shallow parse tags define non-
hierarchical base constituents (“chunks”), as defined
for the CoNLL-2000 shared task (Tjong Kim Sang
and Buchholz, 2000). These can either be used
as tag or chunk sequences. For example, the tree
in Figure 2 represents a shallow (non-hierarchical)
parse tree, with four base constituents. Each base
constituent X begins with a word labeled with BX ,
which signifies that this word begins the constituent.
All other words within a constituent X are labeled

4We tried using a list of 311 cue phrases from Knott (1996)
to define features, but did not derive any system improvement
through this list, presumably because our simple n-gram fea-
tures already capture many such lexical cues.
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Figure 2: Tree representation of shallow parses, with B(egin)
and I(nside) tags

IX , and words outside of any base constituent are la-
beled O. In such a way, each word is labeled with
both a POS-tag and a B/I/O tag.

For our three sequences (lexical, POS-tag and
shallow tag), we define n-gram features surround-
ing the potential discourse boundary. If the current
word is wi, the hypothesized boundary will occur
between wi and wi+1. For this boundary position,
the 6-gram including the three words before and the
three words after the boundary is included as a fea-
ture; additionally, all n-grams for n < 6 such that
either wi or wi+1 (or both) is in the n-gram are in-
cluded as features. In other words, all n-grams in a
six word window of boundary position i are included
as features, except those that include neither wi nor
wi+1 in the n-gram. The identical feature templates
are used with POS-tag and shallow tag sequences as
well, to define tag n-gram features.

This feature set is very close to that used in
Sporleder and Lapata (2005), but not identical.
Their n-gram feature definitions were different
(though similar), and they made use of cue phrases
from Knott (1996). In addition, they used a rule-
based clauser that we did not. Despite such differ-
ences, this feature set is quite close to what is de-
scribed in that paper.

2.5.2 Context-free features
To describe our context-free features, we first
present how SPADE made use of context-free parse
trees within their segmentation algorithm, since this
forms the basis of our features. The SPADE features
are based on productions extracted from full syntac-
tic parses of the given sentence. The primary feature
for a discourse boundary after word wi is based on
the lowest constituent in the tree that spans words
wm . . . wn such that m ≤ i < n. For example, in
the parse tree schematic in Figure 3, the constituent
labeled with A is the lowest constituent in the tree
whose span crosses the potential discourse bound-
ary after wi. The primary feature is the production

A
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PPPPPPPP
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�
��

H
HH

C1 . . . Cn

��HH
. . . Ti

wi

Bj . . . Bm

Figure 3: Parse tree schematic for describing context-free seg-
mentation features

that expands this constituent in the tree, with the
proposed segmentation boundary marked, which in
this case is: A → B1 . . . Bj−1||Bj . . . Bm, where
|| denotes the segmentation boundary. In SPADE,
the production is lexicalized by the head words of
each constituent, which are determined using stan-
dard head-percolation techniques. This feature is
used to predict a boundary as follows: if the relative
frequency estimate of a boundary given the produc-
tion feature in the corpus is greater than 0.5, then a
boundary is predicted; otherwise not. If the produc-
tion has not been observed frequently enough, the
lexicalization is removed and the relative frequency
of a boundary given the unlexicalized production is
used for prediction. If the observations of the unlex-
icalized production are also too sparse, then only the
children adjacent to the boundary are maintained in
the feature, e.g., A → ∗Bj−1||Bj∗ where ∗ repre-
sents zero or more categories. Further smoothing is
used when even this is unobserved.

We use these features as the starting point for our
context-free feature set: the lexicalized production
A → B1 . . . Bj−1||Bj . . . Bm, as defined above for
SPADE, is a feature in our model, as is the unlexi-
calized version of the production. As with the other
features that we have described, this feature is used
as an indicator feature in the classifier applied at the
word wi preceding the hypothesized boundary. In
addition to these full production features, we use the
production with only children adjacent to the bound-
ary, denoted by A → ∗Bj−1||Bj∗. This production
is used in four ways: fully lexicalized; unlexicalized;
only category Bj−1 lexicalized; and only category
Bj lexicalized. We also use A → ∗Bj−2Bj−1||∗
and A → ∗||BjBj+1∗ features, both unlexicalized
and with the boundary-adjacent category lexical-
ized. If there is no category Bj−2 or Bj+1, they are
replaced with “N/A”.

In addition to these features, we fire the same fea-
tures for all productions on the path from A down
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Segment Boundary accuracy Bracketing accuracy
Segmentation system Recall Precision F1 Recall Precision F1
SPADE 85.4 85.5 85.5 77.7 77.9 77.8
Classifier: Basic finite-state 81.5 83.3 82.4 73.6 74.5 74.0
Classifier: Full finite-state 84.1 87.9 86.0 78.0 80.0 79.0
Classifier: Context-free 84.7 91.1 87.8 80.3 83.7 82.0
Classifier: All features 89.7 91.3 90.5 84.9 85.8 85.3

Table 2: Segmentation results on all 991 sentences in the RST-DT test set. Segment boundary accuracy is for sentence internal
boundaries only, following Soricut and Marcu (2003). Bracketing accuracy is for unlabeled flat bracketing of the same segments.
While boundary accuracy correctly depicts segmentation results, the harsher flat bracketing metric better predicts discourse parsing
performance.

to the word wi. For these productions, the seg-
mentation boundary || will occur after all children
in the production, e.g., Bj−1 → C1 . . . Cn||, which
is then used in both lexicalized and unlexicalized
forms. For the feature with only categories adja-
cent to the boundary, we again use “N/A” to denote
the fact that no category occurs to the right of the
boundary: Bj−1 → ∗Cn||N/A. Once again, these
are lexicalized as described above.

2.5.3 Finite-state approximation features
An approximation to our context-free features can
be made by using the shallow parse tree, as shown
in Figure 2, in lieu of the full hierarchical parse
tree. For example, if the current word was “sell”
in the tree in Figure 2, the primary feature would
be ROOT → NP VP||NP NP, and it would have an
unlexicalized version and three lexicalized versions:
the category immediately prior to the boundary lex-
icalized; the category immediately after the bound-
ary lexicalized; and both lexicalized. For lexicaliza-
tion, we choose the final word in the constituent as
the lexical head for the constituent. This is a rea-
sonable first approximation, because such typically
left-headed categories as PP and VP lose their argu-
ments in the shallow parse.

As a practical matter, we limit the number of cat-
egories in the flat production to 8 to the left and 8 to
the right of the boundary. In a manner similar to the
n-gram features that we defined in Section 2.5.1, we
allow all combinations with less than 8 contiguous
categories on each side, provided that at least one
of the adjacent categories is included in the feature.
Each feature has an unlexicalized and three lexical-
ized versions, as described above.

3 Experiments
We performed a number of experiments to deter-
mine the relative utility of features derived from
full context-free syntactic parses and those derived
solely from shallow finite-state tagging. Our pri-
mary concern is with intra-sentential discourse seg-

mentation, but we are also interested in how much
the improved segmentation helps discourse parsing.

The syntactic parser we use for all context-free
syntactic parses used in either SPADE or our clas-
sifier is the Charniak parser with reranking, as de-
scribed in Charniak and Johnson (2005). The Char-
niak parser and reranker were trained on the sections
of the Penn Treebank not included in the RST-DT
test set.

All statistical significance testing is done via the
stratified shuffling test (Yeh, 2000).

3.1 Segmentation
Table 2 presents segmentation results for SPADE
and four versions of our classifier. The “Basic finite-
state” system uses only finite-state sequence fea-
tures as defined in Section 2.5.1, while the “Full
finite-state” also includes the finite-state approxima-
tion features from Section 2.5.3. The “Context-free”
system uses the SPADE-inspired features detailed in
Section 2.5.2, but none of the features from Sections
2.5.1 or 2.5.3. Finally, the “All features” section in-
cludes features from all three sections.5

Note that the full finite-state system is consider-
ably better than the basic finite-state system, demon-
strating the utility of these approximations of the
SPADE-like context-free features. The performance
of the resulting “Full” finite-state system is not sta-
tistically significantly different from that of SPADE
(p=0.193), despite no reliance on features derived
from context-free parses.

The context-free features, however, even without
any of the finite-state sequence features (even lex-
ical n-grams) outperforms the best finite-state sys-
tem by almost two percent absolute, and the sys-
tem with all features improves on the best finite-state
system by over four percent absolute. The system

5In the “All features” condition, the finite-state approxima-
tion features defined in Section 2.5.3 only include a maximum
of 3 children to the left and right of the boundary, versus a max-
imum of 8 for the “Full finite-state” system. This was found to
be optimal on the development set.
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Segmentation Unlabeled Nuc/Sat
SPADE 76.9 70.2
Classifier: Full finite state 78.1 71.1
Classifier: All features 83.5 76.1

Table 3: Discourse parsing results on the 951 sentence Sori-
cut and Marcu (2003) evaluation set, using SPADE for parsing,
and various methods for segmentation. Scores are unlabeled
and labeled (Nucleus/Satellite) bracketing accuracy (F1). The
first line shows SPADE performing both segmentation and dis-
course parsing. The other two lines show SPADE performing
discourse parsing with segmentations produced by our classi-
fier using different combinations of features.

with all features is statistically significantly better
than both SPADE and the “Full finite-state” classi-
fier system, at p < 0.001. This large improvement
demonstrates that the context-free features can pro-
vide a very large system improvement.

3.2 Discourse parsing
It has been shown that accurate discourse segmen-
tation within a sentence greatly improves the over-
all parsing accuracy to near human levels (Sori-
cut and Marcu, 2003). Given our improved seg-
mentation results presented in the previous section,
improvements would be expected in full sentence-
level discourse parsing. To achieve this, we modi-
fied the SPADE script to accept our segmentations
when building the fully hierarchical discourse tree.
The results for three systems are presented in Ta-
ble 3: SPADE, our “Full finite-state” system, and
our system with all features. Results for unlabeled
bracketing are presented, along with results for la-
beled bracketing, where the label is either Nucleus
or Satellite, depending upon whether or not the node
is more central (Nucleus) to the coherence of the text
than its sibling(s) (Satellite). This label set has been
shown to be of particular utility for indicating which
segments are more important to include in an auto-
matically created summary or compressed sentence
(Sporleder and Lapata, 2005; Marcu, 1998; Marcu,
1999; Cristea et al., 2005).

Once again, the finite-state system does not
perform statistically significantly different from
SPADE on either labeled or unlabeled discourse
parsing. Using all features, however, results in
greater than 5% absolute accuracy improvement
over both of these systems, which is significant, in
all cases, at p < 0.001.

4 Discussion and future directions
Our results show that context-free parse derived fea-
tures are critical for achieving the highest level of
accuracy in sentence-level discourse segmentation.
Given that edus are by definition clause-like units,

it is not surprising that accurate full syntactic parse
trees provide highly relevant information unavail-
able from finite-state approaches. Adding context-
free features to our best finite-state feature model
reduces error in segmentation by 32.1%, an in-
crease in absolute F-score of 4.5%. These increases
are against a finite-state segmentation model that is
powerful enough to be statistically indistinguishable
from SPADE.

Our experiments also confirm that increased seg-
mentation accuracy yields significantly better dis-
course parsing accuracy, as previously shown to be
the case when providing reference segmentations to
a parser (Soricut and Marcu, 2003). The segmen-
tation reduction in error of 34.5% propagates to a
28.6% reduction in error for unlabeled discourse
parse trees, and a 19.8% reduction in error for trees
labeled with Nucleus and Satellite.

We have several key directions in which to con-
tinue this work. First, given that a general ma-
chine learning approach allowed us to improve upon
SPADE’s segmentation performance, we also be-
lieve that it will prove useful for improving full
discourse parsing, both at the sentence level and
beyond. For efficient inter-sentential discourse
parsing, we see the need for an additional level
of segmentation at the paragraph level. Whereas
most sentences correspond to a well-formed subtree,
Sporleder and Lascarides (2004) report that over
20% of the paragraph boundaries in the RST-DT do
not correspond to a well-formed subtree in the hu-
man annotated discourse parse for that document.
Therefore, to perform accurate and efficient pars-
ing of the RST-DT at the paragraph level, the text
should be segmented into paragraph-like segments
that conform to the human-annotated subtree bound-
aries, just as sentences are segmented into edus.

We also intend to begin work on the other dis-
course annotated corpora. While most work on tex-
tual discourse parsing has made use of the RST-DT
corpus, the Discourse GraphBank corpus provides a
competing annotation that is not constrained to tree
structures (Wolf and Gibson, 2005). Once accurate
levels of segmentation and parsing for both corpora
are attained, it will be possible to perform extrinsic
evaluations to determine their relative utility for dif-
ferent NLP tasks. Recent work has shown promis-
ing preliminary results for recognizing and labeling
relations of GraphBank structures (Wellner et al.,
2006), in the case that the algorithm is provided with

494



manually segmented sentences. Sentence-level seg-
mentation in the GraphBank is very similar to that in
the RST-DT, so our segmentation approach should
work well for Discourse GraphBank style parsing.

The Penn Discourse Treebank (Miltsakaki et al.,
2004), or PDTB, uses a relatively flat annotation of
discourse structure, in contrast to the hierarchical
structures found in the other two corpora. It contains
annotations for discourse connectives and their argu-
ments, where an argument can be as small as a nom-
inalization or as large as several sentences. This ap-
proach obviates the need to create a set of discourse
relations, but sentence internal segmentation is still
a necessary step. Though segmentation in the PDTB
tends to larger units than edus, our approach to seg-
mentation should be straightforwardly applicable to
their segmentation style.
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Abstract

Over the last fifty years, the “Big Five”
model of personality traits has become a
standard in psychology, and research has
systematically documented correlations be-
tween a wide range of linguistic variables
and the Big Five traits. A distinct line of
research has explored methods for automati-
cally generating language that varies along
personality dimensions. We present PER-
SONAGE (PERSONAlity GEnerator), the
first highly parametrizable language gener-
ator for extraversion, an important aspect
of personality. We evaluate two personal-
ity generation methods: (1) direct genera-
tion with particular parameter settings sug-
gested by the psychology literature; and (2)
overgeneration and selection using statistical
models trained from judge’s ratings. Results
show that both methods reliably generate ut-
terances that vary along the extraversion di-
mension, according to human judges.

1 Introduction

Over the last fifty years, the “Big Five” model of per-
sonality traits has become a standard in psychology
(extraversion, neuroticism, agreeableness, conscien-
tiousness, and openness to experience), and research
has systematically documented correlations between
a wide range of linguistic variables and the Big Five
traits (Mehl et al., 2006; Norman, 1963; Oberlan-
der and Gill, 2006; Pennebaker and King, 1999). A
distinct line of research has explored methods for
automatically generating language that varies along
personality dimensions, targeting applications such
as computer gaming and educational virtual worlds
(André et al., 2000; Isard et al., 2006; Loyall and
Bates, 1997; Piwek, 2003; Walker et al., 1997)inter

alia. Other work suggests a clear utility for gener-
ating language manifesting personality (Reeves and
Nass, 1996). However, to date, (1) research in gener-
ation has not systematically exploited the psycholin-
guistic findings; and (2) there has been little evalua-
tion showing that automatic generators can produce
language with recognizable personality variation.

Alt Realization Extra
5 Err... it seems to me that Le Marais isn’t as bad

as the others.
1.83

4 Right, I mean, Le Marais is the only restaurant
that is any good.

2.83

8 Ok, I mean, Le Marais is a quite french, kosher
and steak house place, you know and the atmo-
sphere isn’t nasty, it has nice atmosphere. It has
friendly service. It seems to me that the service
is nice. It isn’t as bad as the others, is it?

5.17

9 Well, it seems to me that I am sure you would
like Le Marais. It has good food, the food is
sort of rather tasty, the ambience is nice, the at-
mosphere isn’t sort of nasty, it features rather
friendly servers and its price is around 44 dol-
lars.

5.83

3 I am sure you would like Le Marais, you know.
The atmosphere is acceptable, the servers are
nice and it’s a french, kosher and steak house
place. Actually, the food is good, even if its price
is 44 dollars.

6.00

10 It seems to me that Le Marais isn’t as bad as
the others. It’s a french, kosher and steak house
place. It has friendly servers, you know but it’s
somewhat expensive, you know!

6.17

2 Basically, actually, I am sure you would like Le
Marais. It features friendly service and accept-
able atmosphere and it’s a french, kosher and
steak house place. Even if its price is 44 dollars,
it just has really good food, nice food.

6.17

Table 1: Recommendations along the extraver-
sion dimension, with the average extraversion rating
from human judges on a scale from 1 to 7. Alt-2 and
3 are from the extravert set, Alt-4 and 5 are from the
introvert set, and others were randomly generated.

Our aim is to produce a highly parameterizable
generator whose outputs vary along personality di-
mensions. We hypothesize that such language can
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be generated by varying parameters suggested by
psycholinguistic research. So, we must first map
the psychological findings to parameters of a natural
language generator (NLG). However, this presents
several challenges: (1) The findings result from
studies of genres of language, such as stream-of-
consciousness essays (Pennebaker and King, 1999),
and informal conversations (Mehl et al., 2006), and
thus may not apply to fixed content domains used in
NLG; (2) Most findings are based on self-reports of
personality, but we want to affect observer’s percep-
tions; (3) The findings consist of weak but signifi-
cant correlations, so that individual parameters may
not have a strong enough effect to produce recog-
nizable variation within a single utterance; (4) There
are many possible mappings of the findings to gen-
eration parameters; and (5) It is unclear whether
only specific speech-act types manifest personality
or whether all utterances do.

Thus this paper makes several contributions.
First, Section 2 summarizes the linguistic reflexes of
extraversion, organized by the modules in a standard
NLG system, and propose a mapping from these
findings to NLG parameters. To our knowledge this
is the first attempt to put forward a systematic frame-
work for generating language manifesting personal-
ity. We start with the extraversion dimension be-
cause it is an important personality factor, with many
associated linguistic variables. We believe that our
framework will generalize to the other dimensions
in the Big Five model. Second, Sections 3 and 4
describe the PERSONAGE (PERSONAlity GEner-
ator) generator and its 29 parameters. Table 1 shows
examples generated by PERSONAGE for recom-
mendations in the restaurant domain, along with
human extraversion judgments. Third, Sections 5
and 6 describe experiments evaluating two genera-
tion methods. We first show that (1) the parame-
ters generate utterances that vary significantly on the
extraversion dimension, according to human judg-
ments; and (2) we can train a statistical model that
matches human performance in assigning extraver-
sion ratings to generation outputs produced with ran-
dom parameter settings. Section 7 sums up and dis-
cusses future work.

2 Psycholinguistic Findings and
PERSONAGE Parameters

We hypothesize that personality can be made man-
ifest in evaluative speech acts in any dialogue do-
main, i.e. utterances responding to requests toREC-
OMMEND or COMPARE domain entities, such as
restaurants or movies (Isard et al., 2006; Stent et al.,

2004). Thus, we start with the SPaRKy genera-
tor1, which produces evaluative recommendations
and comparisons in the restaurant domain, for a
database of restaurants in New York City. There
are eight attributes for each restaurant: the name and
address, scalar attributes forprice, food quality, at-
mosphere, andserviceand categorical attributes for
neighborhoodandtype of cuisine. SPaRKy is based
on the standard NLG architecture (Reiter and Dale,
2000), and consists of the following modules:

1. Content Planning: refine communicative goals, select and
structure content;

2. Sentence planning; choose linguistic resources (lexicon,
syntax) to achieve goals;

3. Realization: use grammar (syntax, morphology) to gen-
erate surface utterances.

Given the NLG architecture, speech-act types,
and domain, the first step then is to summarise psy-
chological findings on extraversion and map them
to this architecture. The columnNLG modules of
Table 2 gives the proposed mapping. The first row
specifies findings for the content planning module
and the other rows are aspects of sentence planning.
Realization is achieved with the RealPro surface re-
alizer (Lavoie and Rambow, 1997). An examina-
tion of the introvert and extravert findings in Table 2
highlights the challenges above, i.e. exploiting these
findings in a systematic way within a parameteriz-
able NLG system.

The columnParameter in Table 2 proposes pa-
rameters (explained in Sections 3 and 4) that are ma-
nipulated within each module to realize the findings
in the other columns. Each parameter varies con-
tinuously from 0 to 1, where end points are meant
to produce extreme but plausible output. Given the
challenges above, it is important to note that these
parameters representhypothesesabout how a find-
ing can be mapped intoanyNLG system. TheIntro
andExtra columns at the right hand side of thePa-
rameter column indicate a range of settings for this
parameter, suggested by the psychological findings,
to produce introverted vs. extraverted language.

SPaRKy produces content plans for restaurant
recommendations and comparisons that are modi-
fied by the parameters. The sample content plan
for a recommendation in Figure 1 corresponds to
the outputs in Table 1. While Table 1 shows that
PERSONAGE’s parameters have various pragmatic
effects, they preserve the meaning at the Gricean in-
tention level (dialogue goal). Each content plan con-
tains a claim (nucleus) about the overall quality of

1Available for download from
www.dcs.shef.ac.uk/cogsys/sparky.html
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NLG modules Introvert findings Extravert findings Parameter Intro Extra
Content Single topic Many topics VERBOSITY low high
selection Strict selection Think out loud* RESTATEMENTS low high
and REPETITIONS low low
structure Problem talk, Pleasure talk, agreement, CONTENT POLARITY low high

dissatisfaction compliment REPETITIONSPOLARITY low high
CLAIM POLARITY low high
CONCESSIONS avg avg
CONCESSIONSPOLARITY low high
POLARISATION low high
POSITIVE CONTENT FIRST low high

Syntactic Few self-references Many self-references SELF-REFERENCES low high
templates Elaborated constructions Simple constructions* CLAIM COMPLEXITY high low
selection Many articles Few articles
Aggregation Many words per Few words per RELATIVE CLAUSES high low
Operations sentence/clause sentence/clause WITH CUE WORD high low

CONJUNCTION low high
Many unfilled pauses Few unfilled pauses PERIOD high low

...
Pragmatic
transformations

Many nouns, adjectives, prepo-
sitions (explicit)

Many verbs, adverbs, pronouns
(implicit)

SUBJECT IMPLICITNESS low high

Many negations Few negations NEGATION INSERTION high low
Many tentative words Few tentative words DOWNTONER HEDGES:

·SORT OF, SOMEWHAT, QUITE, RATHER,
ERR, I THINK THAT , IT SEEMS THAT, IT
SEEMS TO ME THAT, I MEAN

high low

·AROUND avg avg
Formal Informal ·KIND OF, LIKE low high

ACKNOWLEDGMENTS:
·YEAH low high
·RIGHT, OK, I SEE, WELL high low

Realism Exaggeration* EMPHASIZER HEDGES:
·REALLY , BASICALLY , ACTUALLY , JUST
HAVE, JUST IS, EXCLAMATION

low high

·YOU KNOW low high
No politeness form Positive face redressment* TAG QUESTION INSERTION low high
Lower word count Higher word count HEDGE VARIATION low avg

HEDGE REPETITION low low
Lexical Rich Poor LEXICON FREQUENCY low high
choice Few positive emotion words Many positive emotion words see polarity parameters

Many negative emotion words Few negative emotion words see polarity parameters

Table 2: Summary of language cues for extraversion, based on Dewaele and Furnham (1999); Furnham
(1990); Mehl et al. (2006); Oberlander and Gill (2006); Pennebaker and King (1999), as well as PERSON-
AGE’s corresponding generation parameters. Asterisks indicate hypotheses, rather than results. For details
on aggregation parameters, see Section 4.2.

Relations: JUSTIFY (nuc:1, sat:2);JUSTIFY (nuc:1, sat:3);
JUSTIFY (nuc:1, sat:4);JUSTIFY (nuc:1, sat:5);
JUSTIFY (nuc:1, sat:6)

Content: 1. assert(best (Le Marais))
2. assert(is (Le Marais, cuisine (French)))
3. assert(has (Le Marais, food-quality (good)))
4. assert(has (Le Marais, service (good)))
5. assert(has (Le Marais, decor (decent)))
6. assert(is (Le Marais, price (44 dollars)))

Figure 1: A content plan for a recommendation.

the selected restaurant(s), supported by a set of satel-
lite content items describing their attributes. See Ta-
ble 1. Claims can be expressed in different ways,
such asRESTAURANTNAME is the best, while
the attribute satellites follow the patternRESTAU-
RANTNAME has MODIFIER ATTRIBUTENAME,
as inLe Marais has good food. Recommendations
are characterized by aJUSTIFY rhetorical relation
associating the claim with all other content items,
which are linked together through anINFER relation.
In comparisons, the attributes of multiple restaurants
are compared using aCONTRAST relation. An op-

tional claim about the quality of all restaurants can
also be expressed as the nucleus of anELABORATE

relation, with the rest of the content plan tree as a
satellite.

3 Content Planning

Content planning selects and structures the content
to be communicated. Table 2 specifies 10 param-
eters hypothesized to affect this process which are
explained below.

Content size: Extraverts are more talkative than
introverts (Furnham, 1990; Pennebaker and King,
1999), although it is not clear whether they actu-
ally produce more content, or are just redundant and
wordy. Thus various parameters relate to the amount
and type of content produced. TheVERBOSITY pa-
rameter controls the number of content items se-
lected from the content plan. For example, Alt-5 in
Table 1 is terse, while Alt-2 expresses all the items in
the content plan. TheREPETITION parameter adds
an exact repetition: the content item is duplicated
and linked to the original content by aRESTATE
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rhetorical relation. In a similar way, theRESTATE-
MENT parameter adds paraphrases of content items
to the plan, that are obtained from the initial hand-
crafted generation dictionary (see Section 4.1) and
by automatically substituting content words with the
most frequent WordNet synonym (see Section 4.4).
Alt-9 in Table 1 contains restatements for the food
quality and the atmosphere attributes.

Polarity: Extraverts tend to be more positive; in-
troverts are characterized as engaging in more ‘prob-
lem talk’ and expressions of dissatisfaction (Thorne,
1987). To control for polarity, content items are
defined as positive or negative based on the scalar
value of the corresponding attribute. Thetype of cui-
sineandneighborhoodattributes have neutral polar-
ity. There are multiple parameters associated with
polarity. TheCONTENT POLARITY parameter con-
trols whether the content is mostly negative (e.g.
X has mediocre food), neutral (e.g. X is a Thai
restaurant), or positive. From the filtered set of
content items, thePOLARISATION parameter deter-
mines whether the final content includes items with
extreme scalar values (e.g.X has fantastic staff).

In addition, polarity can also be implied more sub-
tly through rhetorical structure. TheCONCESSIONS

parameter controls how negative and positive infor-
mation is presented, i.e. whether two content items
with different polarity are presented objectively, or if
one is foregrounded and the other backgrounded. If
two opposed content items are selected for a con-
cession, aCONCESSrhetorical relation is inserted
between them. While theCONCESSIONSparam-
eter captures the tendency to put information into
perspective, theCONCESSION POLARITYparameter
controls whether the positive or the negative content
is concessed, i.e. marked as the satellite of theCON-
CESSrelation. The last sentence of Alt-3 in Table 1
illustrates a positive concession, in which the good
food quality is put before the high price.

Content ordering: Although extraverts use more
positive language (Pennebaker and King, 1999;
Thorne, 1987), it is unclear how they position the
positive content within their utterances. Addition-
ally, the position of the claim affects the persuasive-
ness of an argument (Carenini and Moore, 2000):
starting with the claim facilitates the hearer’s under-
standing, while finishing with the claim is more ef-
fective if the hearer disagrees. ThePOSITIVE CON-
TENT FIRST parameter therefore controls whether
positive content items – including the claim – appear
first or last, and the order in which the content items
are aggregated. However, some operations can still
impose a specific ordering (e.g.BECAUSEcue word

to realize theJUSTIFY relation, see Section 4.2).

4 Sentence Planning
Sentence planning chooses the linguistic resources
from the lexicon and the syntactic and discourse
structures to achieve the communicative goals spec-
ified in the input content plan. Table 2 specifies four
sets of findings and parameters for different aspects
of sentence planning discussed below.

4.1 Syntactic template selection

PERSONAGE’s input generation dictionary is made
of 27 Deep Syntactic Structures (DSyntS): 9 for
the recommendation claim, 12 for the comparison
claim, and one per attribute. Selecting a DSyntS re-
quires assigning it automatically to a point in a three
dimensional space described below. All parameter
values are normalized over all the DSyntS, so the
DSyntS closest to the target value can be computed.

Syntactic complexity: Furnham (1990) suggests
that introverts produce more complex constructions:
the CLAIM COMPLEXITY parameter controls the
depth of the syntactic structure chosen to represent
the claim, e.g. the claimX is the bestis rated as less
complex thanX is one of my favorite restaurants.

Self-references: Extraverts make more self-
references than introverts (Pennebaker and King,
1999). TheSELF-REFERENCEparameter controls
whether the claim is made in the first person, based
on the speaker’s own experience, or whether the
claim is reported as objective or information ob-
tained elsewhere. The self-reference value is ob-
tained from the syntactic structure by counting the
number of first person pronouns. For example, the
claim of Alt-2 in Table 1, i.e.I am sure you would
like Le Marais, will be rated higher thanLe Marais
isn’t as bad as the othersin Alt-5.

Polarity: While polarity can be expressed by con-
tent selection and structure, it can also be directly
associated with the DSyntS. TheCLAIM POLARITY

parameter determines the DSyntS selected to realize
the claim. DSyntS are manually annotated for po-
larity. For example, Alt-4’s claim in Table 1, i.e.Le
Marais is the only restaurant that is any good, has a
lower polarity than Alt-2.

4.2 Aggregation operations

SPaRKy aggregation operations are used (See Stent
et al. (2004)), with additional operations for conces-
sions and restatements. See Table 2. The probabil-
ity of the operations biases the production of com-
plex clauses, periods and formal cue words for in-
troverts, to express their preference for complex syn-
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tactic constructions, long pauses and rich vocabulary
(Furnham, 1990). Thus, the introvert parameters fa-
vor operations such asRELATIVE CLAUSE for the
INFER relation,PERIOD HOWEVER CUE WORDfor
CONTRAST, andALTHOUGH ADVERBIAL CLAUSE

for CONCESS, that we hypothesize to result in more
formal language. Extravert aggregation produces
longer sentences with simpler constructions and in-
formal cue words. Thus extravert utterances tend to
use operations such as aCONJUNCTION to realize
the INFER andRESTATE relations, and theEVEN IF

ADVERBIAL CLAUSE for CONCESSrelations.

4.3 Pragmatic transformations

This section describes the insertion of markers in the
DSyntS to produce various pragmatic effects.

Hedges:Hedges correlate with introversion (Pen-
nebaker and King, 1999) and affect politeness
(Brown and Levinson, 1987). Thus there are param-
eters for inserting a wide range of hedges, both af-
fective and epistemic, such askind of, sort of, quite,
rather, somewhat, like, around, err, I think that, it
seems that, it seems to me that, andI mean. Alt-5 in
Table 1 shows hedgeserr andit seems to me that.

To model extraverts use of more social language,
agreement and backchannel behavior (Dewaele and
Furnham, 1999; Pennebaker and King, 1999), we
use informal acknowledgments such asyeah, right,
ok. Acknowledgments that may affect introversion
are I see, expressing self-reference and cognitive
load, and thewell cue word implying reservation
from the speaker (see Alt-9).

To model social connection and emotion we
added mechanisms for inserting emphasizers such as
you know, basically, actually, just have, just is, and
exclamations. Alt-3 in Table 1 shows the insertion
of you knowandactually.

Although similar hedges can be grouped together,
each hedge has a unique pragmatic effect. For ex-
ample,you knowimplies positive-face redressment,
while actuallydoesn’t. A parameter for each hedge
controls the likelihood of its selection.

To control the general level of hedging, aHEDGE

VARIATION parameter defines how many different
hedges are selected (maximum of 5), while the fre-
quency of an individual hedge is controlled by a
HEDGE REPETITIONparameter, up to a maximum
of 2 identical hedges per utterance.

The syntactic structure of hedges are defined as
well as constraints on their insertion point in the ut-
terance’s syntactic structure. Each time a hedge is
selected, it is randomly inserted at one of the inser-
tion points respecting the constraints, until the spec-

ified frequency is reached. For example, a constraint
on the hedgekind of is that it modifies adjectives.

Tag questions: Tag questions are also polite-
ness markers (Brown and Levinson, 1987). They
redress the hearer’s positive face by claiming com-
mon ground. ATAG QUESTION INSERTIONparam-
eter leads to negating the auxiliary of the verb and
pronominalizing the subject, e.g.X has great food
results in the insertion ofdoesn’t it?, as in Alt-8.

Negations: Introverts use significantly more
negations (Pennebaker and King, 1999). Although
the content parameters select more negative polarity
content items for introvert utterances, we also ma-
nipulate negations, while keeping the content con-
stant, by converting adjectives to the negative of
their antonyms, e.g. the atmosphere is nicewas
transformed tonot nastyin Alt-9 in Table 1.

Subject implicitness: Heylighen and Dewaele
(2002) found that extraverts use more implicit lan-
guage than introverts. To control the level of implic-
itness, theSUBJECT IMPLICITNESSparameter deter-
mines whether predicates describing restaurant at-
tributes are expressed with the restaurant in the sub-
ject, or with the attribute itself (e.g.,it has good food
vs. the food is tastyin Alt-9).

4.4 Lexical choice

Introverts use a richer vocabulary (Dewaele and
Furnham, 1999), so theLEXICON FREQUENCYpa-
rameter selects lexical items by their normalized fre-
quency in the British National Corpus. WordNet
synonyms are used to obtain a pool of synonyms, as
well as adjectives extracted from a corpus of restau-
rant reviews for all levels of polarity (e.g. the ad-
jective tasty in Alt-9 is a high polarity modifier of
the food attribute). Synonyms are manually checked
to make sure they are interchangeable. For example,
the content item expressed originally asit has decent
serviceis transformed toit features friendly service
in Alt-2, and tothe servers are nicein Alt-3.

5 Experimental Method and Hypotheses
Our primary hypothesis is that language generated
by varying parameters suggested by psycholinguis-
tic research can be recognized as extravert or in-
trovert. To test this hypothesis, three expert judges
evaluated a set of generated utterances as if they had
been uttered by a friend responding in a dialogue to a
request to recommend restaurants. These utterances
had been generated to systematically manipulate ex-
traversion/introversion parameters.

The judges rated each utterance for perceived ex-
traversion, by answering the two questions measur-
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ing that trait from the Ten-Item Personality Inven-
tory, as this instrument was shown to be psychome-
trically superior to a ‘single item per trait’ question-
naire (Gosling et al., 2003). The answers are aver-
aged to produce an extraversion rating ranging from
1 (highly introvert) to 7 (highly extravert). Because
it was unclear whether the generation parameters in
Table 2 would produce natural sounding utterances,
the judges also evaluated the naturalness of each ut-
terance on the same scale. The judges rated 240 ut-
terances, grouped into 20 sets of 12 utterances gen-
erated from the same content plan. They rated one
randomly ordered set at a time, but viewed all 12
utterances in that set before rating them. The ut-
terances were generated to meet two experimental
goals. First, to test the direct control of the per-
ception of extraversion. 2 introvert utterances and
2 extravert utterances were generated for each con-
tent plan (80 in total) using the parameter values
in Table 2. Multiple outputs were generated with
both parameter settings normally distributed with a
15% standard deviation. Second, 8 utterances for
each content plan (160 in total) were generated with
random parameter values. These random utterances
make it possible to: (1) improve PERSONAGE’s di-
rect output by calibrating its parameters more pre-
cisely; and (2) build a statistical model that selects
utterances matching input personality values after an
overgeneration phase (see Section 6.2). The inter-
rater agreement for extraversion between the judges
over all 240 utterances (average Pearson’s correla-
tion of 0.57) shows that the magnitude of the differ-
ences of perception between judges is almost con-
stant (σ = .037). A low agreement can yield a high
correlation (e.g. if all values differ by a constant
factor), so we also compute the intraclass correla-
tion coefficientr based on a two-way random effect
model. We obtain ar of 0.79, which is significant
at thep < .001 level (reliability of average mea-
sures, identical to Cronbach’s alpha). This is com-
parable to the agreement of judgments of personality
in Mehl et al. (2006) (meanr = 0.84).

6 Experimental Results

6.1 Hypothesized parameter settings

Table 1 provides examples of PERSONAGE’s out-
put and extraversion ratings. To assess whether
PERSONAGE generates language that can be rec-
ognized as introvert and extravert, we did a indepen-
dent sample t-test between the average ratings of the
40 introvert and 40 extravert utterances (parameters
with 15% standard deviation as in Table 2). Table 3

Rating Introvert Extravert Random
Extraversion 2.96 5.98 5.02
Naturalness 4.93 5.78 4.51

Table 3: Average extraversion and naturalness rat-
ings for the utterances generated with introvert, ex-
travert, and random parameters.

shows that introvert utterances have an average rat-
ing of 2.96 out of 7 while extravert utterances have
an average rating of 5.98. These ratings are signifi-
cantly different at thep < .001 level (two-tailed).
In addition, if we divide the data into two equal-
width bins around the neutral extravert rating (4 out
of 7), then PERSONAGE’s utterance ratings fall in
the bin predicted by the parameter set 89.2% of the
time. Extravert utterance are also slightly more nat-
ural than the introvert ones (p < .001).

Table 3 also shows that the 160 random parame-
ter utterances produce an average extraversion rating
of 5.02, both significantly higher than the introvert
set and lower than the extravert set (p < .001). In-
terestingly, the random utterances, which may com-
bine linguistic variables associated with both intro-
verts and extraverts, are less natural than the intro-
vert (p = .059) and extravert sets (p < .001).

6.2 Statistical models evaluation

We also investigate a second approach: overgener-
ation with random parameter settings, followed by
ranking via a statistical model trained on the judges’
feedback. This approach supports generating utter-
ances for any input extraversion value, as well as de-
termining which parameters affect the judges’ per-
ception.

We model perceived personality ratings (1 . . . 7)
with regression models from the Weka toolbox (Wit-
ten and Frank, 2005). We used the full dataset of
160 averaged ratings for the random parameter utter-
ances. Each utterance was associated with a feature
vector with the generation decisions for each param-
eter in Section 2. To reduce data sparsity, we select
features that correlate significantly with the ratings
(p < .10) with a coefficient higher than 0.1.

Regression models are evaluated using the mean
absolute error and the correlation between the pre-
dicted score and the actual average rating. Table 4
shows the mean absolute error on a scale from 1 to
7 over ten 10-fold cross-validations for the 4 best
regression models: Linear Regression (LR), M5’
model tree (M5), and Support Vector Machines (i.e.
SMOreg) with linear kernels (SMO1) and radial-
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basis function kernels (SMOr). All models signif-
icantly outperform the baseline (0.83 mean absolute
error, p < .05), but surprisingly the linear model
performs the best with a mean absolute error of 0.65.
The best model produces a correlation coefficient of
0.59 with the judges’ ratings, which is higher than
the correlations between pairs of judges, suggesting
that the model performs as well as a human judge.

Metric LR M5 SMO 1 SMOr

Absolute error 0.65 0.66 0.72 0.70
Correlation 0.59 0.56 0.54 0.57

Table 4: Mean absolute regression errors (scale from
1 to 7) and correlation coefficients over ten 10-fold
cross-validations, for 4 models: Linear Regression
(LR), M5’ model tree (M5), Support Vector Ma-
chines with linear kernels (SMO1) and radial-basis
function kernels (SMOr). All models significantly
outperform the mean baseline (0.83 error,p < .05).

The M5’ regression tree in Figure 2 assigns a rat-
ing given the features. Verbosity plays the most im-
portant role: utterances with 4 or more content items
are modeled as more extravert. Given a low ver-
bosity, lexical frequency and restatements determine
the extraversion level, e.g. utterances with less than
4 content items and infrequent words are perceived
as very introverted (rating of 2.69 out of 7). For
verbose utterances, theyou knowhedge indicates
extraversion, as well as concessions, restatements,
self-references, and positive content. Although rel-
atively simple, these models are useful for identify-
ing new personality markers, as well as calibrating
parameters in the direct generation model.

7 Discussion and Conclusions
We present and evaluate PERSONAGE, a parame-
terizable generator that produces outputs that vary
along the extraversion personality dimension. This
paper makes four contributions:

1. We present a systematic review of psycholinguistic find-
ings, organized by the NLG reference architecture;

2. We propose a mapping from these findings to generation
parameters for each NLG module and a real-time imple-
mentation of a generator using these parameters2. To our
knowledge this is the first attempt to put forward a sys-
tematic framework for generating language that manifests
personality;

3. We present an evaluation experiment showing that we can
control the parameters to produce recognizable linguis-
tic variation along the extraversion personality dimen-
sion. Thus, we show that the weak correlations reported

2An online demo is available at
www.dcs.shef.ac.uk/cogsys/personage.html

in other genres of language, and for self-reports rather
than observers, carry over to the production of single eval-
uative utterances with recognizable personality in a re-
stricted domain;

4. We present the results of a training experiment showing
that given an output, we can train a model that matches
human performance in assigning an extraversion rating to
that output.

Some of the challenges discussed in the introduc-
tion remain. We have shown that evaluative utter-
ances in the restaurant domain can manifest person-
ality, but more research is needed on which speech
acts recognisably manifest personality in a restricted
domain. We also showed that the mapping we hy-
pothesised of findings to generation parameters was
effective, but there may be additional parameters
that the psycholinguistic findings could be mapped
to.

Our work was partially inspired by the ICONO-
CLAST and PAULINE parameterizable generators
(Bouayad-Agha et al., 2000; Hovy, 1988), which
vary the style, rather than the personality, of the gen-
erated texts. Walker et al. (1997) describe a gen-
erator intended to affect perceptions of personality,
based on Brown and Levinson’s theory of polite-
ness (Brown and Levinson, 1987), that uses some
of the linguistic constructions implemented here,
such as tag questions and hedges, but it was never
evaluated. Research by André et al. (2000); Piwek
(2003) uses personality variables to affect the lin-
guistic behaviour of conversational agents, but they
did not systematically manipulate parameters, and
their generators were not evaluated. Reeves and
Nass (1996) demonstrate that manipulations of per-
sonality affect many aspects of user’s perceptions,
but their experiments use handcrafted utterances,
rather than generated utterances. Cassell and Bick-
more (2003) show that extraverts prefer systems uti-
lizing discourse plans that include small talk. Paiva
and Evans’ trainable generator (2005) produces out-
puts that correspond to a set of linguistic variables
measured in a corpus of target texts. Their method
is similar to our statistical method using regression
trees, but provides direct control. The method re-
ported in Mairesse and Walker (2005) for training
individualized sentence planners ranks the outputs
produced by an overgeneration phase, rather than di-
rectly predicting a scalar value, as we do here. The
closest work to ours is probably Isard et al.’s CRAG-
2 system (2006), which overgenerates and ranks us-
ing ngram language models trained on a corpus la-
belled for all Big Five personality dimensions. How-
ever, CRAG-2 has no explicit parameter control, and
it has yet to be evaluated.
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Figure 2: M5’ regression tree. The output ranges from 1 to 7, where 7 means strongly extravert.

In future work, we hope to directly compare the
direct generation method of Section 6.1 with the
overgenerate and rank method of Section 6.2, and to
use these results to refine PERSONAGE’s parame-
ter settings. We also hope to extend PERSONAGE’s
generation capabilities to other Big Five traits, iden-
tify additional features to improve the model’s per-
formance, and evaluate the effect of personality vari-
ation on user satisfaction in various applications.
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Abstract

We address the task of unsupervised topic
segmentation of speech data operating over
raw acoustic information. In contrast to ex-
isting algorithms for topic segmentation of
speech, our approach does not require in-
put transcripts. Our method predicts topic
changes by analyzing the distribution of re-
occurring acoustic patterns in the speech sig-
nal corresponding to a single speaker. The
algorithm robustly handles noise inherent in
acoustic matching by intelligently aggregat-
ing information about the similarity profile
from multiple local comparisons. Our ex-
periments show that audio-based segmen-
tation compares favorably with transcript-
based segmentation computed over noisy
transcripts. These results demonstrate the
desirability of our method for applications
where a speech recognizer is not available,
or its output has a high word error rate.

1 Introduction

An important practical application of topic segmen-
tation is the analysis of spoken data. Paragraph
breaks, section markers and other structural cues
common in written documents are entirely missing
in spoken data. Insertion of these structural markers
can benefit multiple speech processing applications,
including audio browsing, retrieval, and summariza-
tion.

Not surprisingly, a variety of methods for
topic segmentation have been developed in the

past (Beeferman et al., 1999; Galley et al., 2003;
Dielmann and Renals, 2005). These methods typi-
cally assume that a segmentation algorithm has ac-
cess not only to acoustic input, but also to its tran-
script. This assumption is natural for applications
where the transcript has to be computed as part of the
system output, or it is readily available from other
system components. However, for some domains
and languages, the transcripts may not be available,
or the recognition performance may not be adequate
to achieve reliable segmentation. In order to process
such data, we need a method for topic segmentation
that does not require transcribed input.

In this paper, we explore a method for topic seg-
mentation that operates directly on a raw acoustic
speech signal, without using any input transcripts.
This method predicts topic changes by analyzing the
distribution of reoccurring acoustic patterns in the
speech signal corresponding to a single speaker. In
the same way that unsupervised segmentation algo-
rithms predict boundaries based on changes in lexi-
cal distribution, our algorithm is driven by changes
in the distribution of acoustic patterns. The central
hypothesis here is that similar sounding acoustic se-
quences produced by the same speaker correspond
to similar lexicographic sequences. Thus, by ana-
lyzing the distribution of acoustic patterns we could
approximate a traditional content analysis based on
the lexical distribution of words in a transcript.

Analyzing high-level content structure based on
low-level acoustic features poses interesting compu-
tational and linguistic challenges. For instance, we
need to handle the noise inherent in matching based
on acoustic similarity, because of possible varia-
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tions in speaking rate or pronunciation. Moreover,
in the absence of higher-level knowledge, informa-
tion about word boundaries is not always discernible
from the raw acoustic input. This causes problems
because we have no obvious unit of comparison. Fi-
nally, noise inherent in the acoustic matching pro-
cedure complicates the detection of distributional
changes in the comparison matrix.

The algorithm presented in this paper demon-
strates the feasibility of topic segmentation over raw
acoustic input corresponding to a single speaker. We
first apply a variant of the dynamic time warping al-
gorithm to find similar fragments in the speech input
through alignment. Next, we construct a compari-
son matrix that aggregates the output of the align-
ment stage. Since aligned utterances are separated
by gaps and differ in duration, this representation
gives rise to sparse and irregular input. To obtain ro-
bust similarity change detection, we invoke a series
of transformations to smooth and refine the compar-
ison matrix. Finally, we apply the minimum-cut seg-
mentation algorithm to the transformed comparison
matrix to detect topic boundaries.

We compare the performance of our method
against traditional transcript-based segmentation al-
gorithms. As expected, the performance of the lat-
ter depends on the accuracy of the input transcript.
When a manual transcription is available, the gap
between audio-based segmentation and transcript-
based segmentation is substantial. However, in
a more realistic scenario when the transcripts are
fraught with recognition errors, the two approaches
exhibit similar performance. These results demon-
strate that audio-based algorithms are an effective
and efficient solution for applications where tran-
scripts are unavailable or highly errorful.

2 Related Work

Speech-based Topic Segmentation A variety of
supervised and unsupervised methods have been
employed to segment speech input. Some of these
algorithms have been originally developed for pro-
cessing written text (Beeferman et al., 1999). Others
are specifically adapted for processing speech input
by adding relevant acoustic features such as pause
length and speaker change (Galley et al., 2003; Diel-
mann and Renals, 2005). In parallel, researchers ex-

tensively study the relationship between discourse
structure and intonational variation (Hirschberg and
Nakatani, 1996; Shriberg et al., 2000). However,
all of the existing segmentation methods require as
input a speech transcript of reasonable quality. In
contrast, the method presented in this paper does
not assume the availability of transcripts, which pre-
vents us from using segmentation algorithms devel-
oped for written text.

At the same time, our work is closely related to
unsupervised approaches for text segmentation. The
central assumption here is that sharp changes in lex-
ical distribution signal the presence of topic bound-
aries (Hearst, 1994; Choi et al., 2001). These ap-
proaches determine segment boundaries by identi-
fying homogeneous regions within a similarity ma-
trix that encodes pairwise similarity between textual
units, such as sentences. Our segmentation algo-
rithm operates over a distortion matrix, but the unit
of comparison is the speech signal over a time in-
terval. This change in representation gives rise to
multiple challenges related to the inherent noise of
acoustic matching, and requires the development of
new methods for signal discretization, interval com-
parison and matrix analysis.

Pattern Induction in Acoustic Data Our work
is related to research on unsupervised lexical acqui-
sition from continuous speech. These methods aim
to infer vocabulary from unsegmented audio streams
by analyzing regularities in pattern distribution (de
Marcken, 1996; Brent, 1999; Venkataraman, 2001).
Traditionally, the speech signal is first converted into
a string-like representation such as phonemes and
syllables using a phonetic recognizer.

Park and Glass (2006) have recently shown the
feasibility of an audio-based approach for word dis-
covery. They induce the vocabulary from the au-
dio stream directly, avoiding the need for phonetic
transcription. Their method can accurately discover
words which appear with high frequency in the au-
dio stream. While the results obtained by Park and
Glass inspire our approach, we cannot directly use
their output as proxies for words in topic segmen-
tation. Many of the content words occurring only
a few times in the text are pruned away by this
method. Our results show that this data that is too
sparse and noisy for robustly discerning changes in
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lexical distribution.

3 Algorithm

The audio-based segmentation algorithm identifies
topic boundaries by analyzing changes in the dis-
tribution of acoustic patterns. The analysis is per-
formed in three steps. First, we identify recurring
patterns in the audio stream and compute distortion
between them (Section 3.1). These acoustic patterns
correspond to high-frequency words and phrases,
but they only cover a fraction of the words that ap-
pear in the input. As a result, the distributional pro-
file obtained during this process is too sparse to de-
liver robust topic analysis. Second, we generate an
acoustic comparison matrix that aggregates infor-
mation from multiple pattern matches (Section 3.2).
Additional matrix transformations during this step
reduce the noise and irregularities inherent in acous-
tic matching. Third, we partition the matrix to iden-
tify segments with a homogeneous distribution of
acoustic patterns (Section 3.3).

3.1 Comparing Acoustic Patterns

Given a raw acoustic waveform, we extract a set of
acoustic patterns that occur frequently in the speech
document. Continuous speech includes many word
sequences that lack clear low-level acoustic cues to
denote word boundaries. Therefore, we cannot per-
form this task through simple counting of speech
segments separated by silence. Instead, we use a lo-
cal alignment algorithm to search for similar speech
segments and quantify the amount of distortion be-
tween them. In what follows, we first present a vec-
tor representation used in this computation, and then
specify the alignment algorithm that finds similar
segments.

MFCC Representation We start by transforming
the acoustic signal into a vector representation that
facilitates the comparison of acoustic sequences.
First, we perform silence detection on the original
waveform by registering a pause if the energy falls
below a certain threshold for a duration of 2s. This
enables us to break up the acoustic stream into con-
tinuous spoken utterances.

This step is necessary as it eliminates spurious
alignments between silent regions of the acoustic
waveform. Note that silence detection is not equiv-

alent to word boundary detection, as segmentation
by silence detection alone only accounts for 20% of
word boundaries in our corpus.

Next, we convert each utterance into a time se-
ries of vectors consisting of Mel-scale cepstral co-
efficients (MFCCs). This compact low-dimensional
representation is commonly used in speech process-
ing applications because it approximates human au-
ditory models.

The process of extracting MFCCs from the speech
signal can be summarized as follows. First, the 16
kHz digitized audio waveform is normalized by re-
moving the mean and scaling the peak amplitude.
Next, the short-time Fourier transform is taken at
a frame interval of 10 ms using a 25.6 ms Ham-
ming window. The spectral energy from the Fourier
transform is then weighted by Mel-frequency fil-
ters (Huang et al., 2001). Finally, the discrete cosine
transform of the log of these Mel-frequency spec-
tral coefficients is computed, yielding a series of 14-
dimensional MFCC vectors. We take the additional
step of whitening the feature vectors, which normal-
izes the variance and decorrelates the dimensions of
the feature vectors (Bishop, 1995). This whitened
spectral representation enables us to use the stan-
dard unweighted Euclidean distance metric. After
this transformation, the distances in each dimension
will be uncorrelated and have equal variance.

Alignment Now, our goal is to identify acoustic
patterns that occur multiple times in the audio wave-
form. The patterns may not be repeated exactly, but
will most likely reoccur in varied forms. We capture
this information by extracting pairs of patterns with
an associated distortion score. The computation is
performed using a sequence alignment algorithm.

Table 1 shows examples of alignments automati-
cally computed by our algorithm. The correspond-
ing phonetic transcriptions1 demonstrate that the
matching procedure can robustly handle variations
in pronunciations. For example, two instances of the
word “direction” are matched to one another despite
different pronunciations, (“d ay” vs. “d ax” in the
first syllable). At the same time, some aligned pairs
form erroneous matches, such as “my prediction”
matching “y direction” due to their high acoustic

1Phonetic transcriptions are not used by our algorithm and
are provided for illustrative purposes only.
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Aligned Word(s) Phonetic Transcription
the x direction dh iy eh kcl k s dcl d ax r eh kcl sh ax n

D iy Ek^k s d^d @r Ek^S@n

the y direction dh ax w ay dcl d ay r eh kcl sh epi en

D @w ay d^ay r Ek^k S@n

of my prediction ax v m ay kcl k r iy l iy kcl k sh ax n

@v m ay k^k r iy l iy k^k S@n

acceleration eh kcl k s eh l ax r ey sh epi en

Ek^k s El @r Ey S- n
"

acceleration ax kcl k s ah n ax r eh n epi sh epi en

@k^k s 2n @r En - S- n
"

the derivation dcl d ih dx ih z dcl dh ey sh epi en

d^d IRIz d^D Ey S- n
"

a demonstration uh dcl d eh m ax n epi s tcl t r ey sh en

Ud^d Em @n - s t^t r Ey Sn
"

Table 1: Aligned Word Paths. Each group of rows
represents audio segments that were aligned to one
another, along with their corresponding phonetic
transcriptions using TIMIT conventions (Garofolo et
al., 1993) and their IPA equivalents.

similarity.
The alignment algorithm operates on the audio

waveform represented by a list of silence-free utter-
ances (u1, u2, . . . , un). Each utterance u′ is a time
series of MFCC vectors ( ~x′

1
, ~x′

2
, . . . , ~x′m). Given

two input utterances u′ and u′′, the algorithm out-
puts a set of alignments between the corresponding
MFCC vectors. The alignment distortion score is
computed by summing the Euclidean distances of
matching vectors.

To compute the optimal alignment we use a vari-
ant of the dynamic time warping algorithm (Huang
et al., 2001). For every possible starting alignment
point, we optimize the following dynamic program-
ming objective:

D(ik, jk) = d(ik, jk) + min











D(ik − 1, jk)

D(ik, jk − 1)

D(ik − 1, jk − 1)

In the equation above, ik and jk are alignment end-
points in the k-th subproblem of dynamic program-
ming.

This objective corresponds to a descent through
a dynamic programming trellis by choosing right,
down, or diagonal steps at each stage.

During the search process, we consider not only
the alignment distortion score, but also the shape of
the alignment path. To limit the amount of temporal
warping, we enforce the following constraint:

∣

∣

(

ik − i1
)

−
(

jk − j1

)
∣

∣ ≤ R,∀k, (1)

ik ≤ Nx and jk ≤ Ny,

where Nx and Ny are the number of MFCC samples
in each utterance. The value 2R + 1 is the width of
the diagonal band that controls the extent of tempo-
ral warping. The parameter R is tuned on a develop-
ment set.

This alignment procedure may produce paths with
high distortion subpaths. Therefore, we trim each
path to retain the subpath with lowest average dis-
tortion and length at least L. More formally, given
an alignment of length N , we seek to find m and n

such that:

arg min
1≤m≤n≤N

1

n − m + 1

n
∑

k=m

d(ik, jk) n−m ≥ L

We accomplish this by computing the length con-
strained minimum average distortion subsequence
of the path sequence using an O(N log(L)) algo-
rithm proposed by Lin et al (2002). The length
parameter, L, allows us to avoid overtrimming and
control the length of alignments that are found. Af-
ter trimming, the distortion of each alignment path
is normalized by the path length.

Alignments with a distortion exceeding a prespec-
ified threshold are pruned away to ensure that the
aligned phrasal units are close acoustic matches.
This parameter is tuned on a development set.

In the next section, we describe how to aggregate
information from multiple noisy matches into a rep-
resentation that facilitates boundary detection.

3.2 Construction of Acoustic Comparison
Matrix

The goal of this step is to construct an acoustic com-
parison matrix that will guide topic segmentation.
This matrix encodes variations in the distribution of
acoustic patterns for a given speech document. We
construct this matrix by first discretizing the acoustic
signal into constant-length blocks and then comput-
ing the distortion between pairs of blocks.
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Figure 1: a) Similarity matrix for a Physics lecture constructed using a manual transcript. b) Similarity
matrix for the same lecture constructed from acoustic data. The intensity of a pixel indicates the degree of
block similarity. c) Acoustic comparison matrix after 2000 iterations of anisotropic diffusion. Vertical lines
correspond to the reference segmentation.

Unfortunately, the paths and distortions generated
during the alignment step (Section 3.1) cannot be
mapped directly to an acoustic comparison matrix.
Since we compare only commonly repeated acous-
tic patterns, some portions of the signal correspond
to gaps between alignment paths. In fact, in our cor-
pus only 67% of the data is covered by alignment
paths found during the alignment stage. Moreover,
many of these paths are not disjoint. For instance,
our experiments show that 74% of them overlap with
at least one additional alignment path. Finally, these
alignments vary significantly in duration, ranging
from 0.350 ms to 2.7 ms in our corpus.

Discretization and Distortion Computation To
compensate for the irregular distribution of align-
ment paths, we quantize the data by splitting the in-
put signal into uniform contiguous time blocks. A
time block does not necessarily correspond to any
one discovered alignment path. It may contain sev-
eral complete paths and also portions of other paths.
We compute the aggregate distortion score D(x, y)
of two blocks x and y by summing the distortions of
all alignment paths that fall within x and y.

Matrix Smoothing Equipped with a block dis-
tortion measure, we can now construct an acoustic
comparison matrix. In principle, this matrix can be
processed employing standard methods developed
for text segmentation. However, as Figure 1 illus-
trates, the structure of the acoustic matrix is quite

different from the one obtained from text. In a tran-
script similarity matrix shown in Figure 1 a), refer-
ence boundaries delimit homogeneous regions with
high internal similarity. On the other hand, looking
at the acoustic similarity matrix2 shown in Figure 1
b), it is difficult to observe any block structure cor-
responding to the reference segmentation.

This deficiency can be attributed to the sparsity of
acoustic alignments. Consider, for example, the case
when a segment is interspersed with blocks that con-
tain very few or no complete paths. Even though the
rest of the blocks in the segment could be closely
related, these path-free blocks dilute segment homo-
geneity. This is problematic because it is not always
possible to tell whether a sudden shift in scores sig-
nifies a transition or if it is just an artifact of irreg-
ularities in acoustic matching. Without additional
matrix processing, these irregularities will lead the
system astray.

We further refine the acoustic comparison matrix
using anisotropic diffusion. This technique has been
developed for enhancing edge detection accuracy in
image processing (Perona and Malik, 1990), and has
been shown to be an effective smoothing method in
text segmentation (Ji and Zha, 2003). When ap-
plied to a comparison matrix, anisotropic diffusion
reduces score variability within homogeneous re-

2We converted the original comparison distortion matrix to
the similarity matrix by subtracting the component distortions
from the maximum alignment distortion score.
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gions of the matrix and makes edges between these
regions more pronounced. Consequently, this trans-
formation facilitates boundary detection, potentially
increasing segmentation accuracy. In Figure 1 c), we
can observe that the boundary structure in the dif-
fused comparison matrix becomes more salient and
corresponds more closely to the reference segmen-
tation.

3.3 Matrix Partitioning

Given a target number of segments k, the goal of
the partitioning step is to divide a matrix into k

square submatrices along the diagonal. This pro-
cess is guided by an optimization function that max-
imizes the homogeneity within a segment or mini-
mizes the homogeneity across segments. This opti-
mization problem can be solved using one of many
unsupervised segmentation approaches (Choi et al.,
2001; Ji and Zha, 2003; Malioutov and Barzilay,
2006).

In our implementation, we employ the minimum-
cut segmentation algorithm (Shi and Malik, 2000;
Malioutov and Barzilay, 2006). In this graph-
theoretic framework, segmentation is cast as a prob-
lem of partitioning a weighted undirected graph
that minimizes the normalized-cut criterion. The
minimum-cut method achieves robust analysis by
jointly considering all possible partitionings of a
document, moving beyond localized decisions. This
allows us to aggregate comparisons from multiple
locations, thereby compensating for the noise of in-
dividual matches.

4 Evaluation Set-Up

Data We use a publicly available3 corpus of intro-
ductory Physics lectures described in our previous
work (Malioutov and Barzilay, 2006). This mate-
rial is a particularly appealing application area for an
audio-based segmentation algorithm — many aca-
demic subjects lack transcribed data for training,
while a high ratio of in-domain technical terms lim-
its the use of out-of-domain transcripts. This corpus
is also challenging from the segmentation perspec-
tive because the lectures are long and transitions be-
tween topics are subtle.

3See http://www.csail.mit.edu/˜igorm/
acl06.html

The corpus consists of 33 lectures, with an aver-
age length of 8500 words and an average duration
of 50 minutes. On average, a lecture was anno-
tated with six segments, and a typical segment cor-
responds to two pages of a transcript. Three lectures
from this set were used for development, and 30 lec-
tures were used for testing. The lectures were deliv-
ered by the same speaker.

To evaluate the performance of traditional
transcript-based segmentation algorithms on this
corpus, we also use several types of transcripts at
different levels of recognition accuracy. In addi-
tion to manual transcripts, our corpus contains two
types of automatic transcripts, one obtained using
speaker-dependent (SD) models and the other ob-
tained using speaker-independent (SI) models. The
speaker-independent model was trained on 85 hours
of out-of-domain general lecture material and con-
tained no speech from the speaker in the test set.
The speaker-dependent model was trained by us-
ing 38 hours of audio data from other lectures given
by the speaker. Both recognizers incorporated word
statistics from the accompanying class textbook into
the language model. The word error rates for the
speaker-independent and speaker-dependent models
are 44.9% and 19.4%, respectively.

Evaluation Metrics We use the Pk and WindowD-
iff measures to evaluate our system (Beeferman et
al., 1999; Pevzner and Hearst, 2002). The Pk mea-
sure estimates the probability that a randomly cho-
sen pair of words within a window of length k words
is inconsistently classified. The WindowDiff met-
ric is a variant of the Pk measure, which penalizes
false positives and near misses equally. For both of
these metrics, lower scores indicate better segmen-
tation accuracy.

Baseline We use the state-of-the-art mincut seg-
mentation system by Malioutov and Barzilay (2006)
as our point of comparison. This model is an appro-
priate baseline, because it has been shown to com-
pare favorably with other top-performing segmenta-
tion systems (Choi et al., 2001; Utiyama and Isa-
hara, 2001). We use the publicly available imple-
mentation of the system.

As additional points of comparison, we test the
uniform and random baselines. These correspond
to segmentations obtained by uniformly placing
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Pk WindowDiff
MAN 0.298 0.311
SD 0.340 0.351
AUDIO 0.358 0.370
SI 0.378 0.390
RAND 0.472 0.497
UNI 0.476 0.484

Table 2: Segmentation accuracy for audio-based
segmentor (AUDIO), random (RAND), uniform
(UNI) and three transcript-based segmentation algo-
rithms that use manual (MAN), speaker-dependent
(SD) and speaker-independent (SI) transcripts. For
all of the algorithms, the target number of segments
is set to the reference number of segments.

boundaries along the span of the lecture and select-
ing random boundaries, respectively.

To control for segmentation granularity, we spec-
ify the number of segments in the reference segmen-
tation for both our system and the baselines.

Parameter Tuning We tuned the number of quan-
tized blocks, the edge cutoff parameter of the min-
imum cut algorithm, and the anisotropic diffusion
parameters on a heldout set of three development
lectures. We used the same development set for the
baseline segmentation systems.

5 Results

The goal of our evaluation experiments is two-fold.
First, we are interested in understanding the condi-
tions in which an audio-based segmentation is ad-
vantageous over a transcript-based one. Second, we
aim to analyze the impact of various design deci-
sions on the performance of our algorithm.

Comparison with Transcript-Based Segmenta-
tion Table 2 shows the segmentation accuracy
of the audio-based segmentation algorithm and three
transcript-based segmentors on the set of 30 Physics
lectures. Our algorithm yields an average Pk mea-
sure of 0.358 and an average WindowDiff mea-
sure of 0.370. This result is markedly better than
the scores attained by uniform and random seg-
mentations. As expected, the best segmentation re-
sults are obtained using manual transcripts. How-
ever, the gap between audio-based segmentation
and transcript-based segmentation narrows when the

recognition accuracy decreases. In fact, perfor-
mance of the audio-based segmentation beats the
transcript-based segmentation baseline obtained us-
ing speaker-independent (SI) models (0.358 for AU-
DIO versus Pk measurements of 0.378 for SI).

Analysis of Audio-based Segmentation A cen-
tral challenge in audio-based segmentation is how to
overcome the noise inherent in acoustic matching.
We addressed this issue by using anisotropic diffu-
sion to refine the comparison matrix. We can quan-
tify the effects of this smoothing technique by gener-
ating segmentations directly from the similarity ma-
trix. We obtain similarities from the distortions in
the comparison matrix by subtracting the distortion
scores from the maximum distortion:

S(x, y) = max
si,sj

[D(si, sj)] − D(x, y)

Using this matrix with the min-cut algorithm, seg-
mentation accuracy drops to a Pk measure of 0.418
(0.450 WindowDiff). This difference in perfor-
mance shows that anisotropic diffusion compensates
for noise introduced during acoustic matching.

An alternative solution to the problem of irregu-
larities in audio-based matching is to compute clus-
ters of acoustically similar utterances. Each of the
derived clusters can be thought of as a unique word
type.4 We compute these clusters, employing a
method for unsupervised vocabulary induction de-
veloped by Park and Glass (2006). Using the out-
put of their algorithm, the continuous audio stream
is transformed into a sequence of word-like units,
which in turn can be segmented using any stan-
dard transcript-based segmentation algorithm, such
as the minimum-cut segmentor. On our corpus, this
method achieves disappointing results — a Pk mea-
sure of 0.423 (0.424 WindowDiff). The result can
be attributed to the sparsity of clusters5 generated by
this method, which focuses primarily on discovering
the frequently occurring content words.

6 Conclusion and Future Work

We presented an unsupervised algorithm for audio-
based topic segmentation. In contrast to existing

4In practice, a cluster can correspond to a phrase, word, or
word fragment (See Table 1 for examples).

5We tuned the number of clusters on the development set.
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algorithms for speech segmentation, our approach
does not require an input transcript. Thus, it can
be used in domains where a speech recognizer is
not available or its output is too noisy. Our ap-
proach approximates the distribution of cohesion
ties by considering the distribution of acoustic pat-
terns. Our experimental results demonstrate the util-
ity of this approach: audio-based segmentation com-
pares favorably with transcript-based segmentation
computed over noisy transcripts.

The segmentation algorithm presented in this pa-
per focuses on one source of linguistic information
for discourse analysis — lexical cohesion. Multiple
studies of discourse structure, however, have shown
that prosodic cues are highly predictive of changes
in topic structure (Hirschberg and Nakatani, 1996;
Shriberg et al., 2000). In a supervised framework,
we can further enhance audio-based segmentation
by combining features derived from pattern analy-
sis with prosodic information. We can also explore
an unsupervised fusion of these two sources of in-
formation; for instance, we can induce informative
prosodic cues by using distributional evidence.

Another interesting direction for future research
lies in combining the results of noisy recogni-
tion with information obtained from distribution of
acoustic patterns. We hypothesize that these two
sources provide complementary information about
the audio stream, and therefore can compensate for
each other’s mistakes. This combination can be par-
ticularly fruitful when processing speech documents
with multiple speakers or background noise.

7 Acknowledgements

The authors acknowledge the support of the Microsoft Faculty
Fellowship and the National Science Foundation (CAREER
grant IIS-0448168, grant IIS-0415865, and the NSF Graduate
Fellowship). Any opinions, findings, conclusions or recom-
mendations expressed in this publication are those of the au-
thor(s) and do not necessarily reflect the views of the National
Science Foundation. We would like to thank T.J. Hazen for
his assistance with the speech recognizer and to acknowledge
Tara Sainath, Natasha Singh, Ben Snyder, Chao Wang, Luke
Zettlemoyer and the three anonymous reviewers for their valu-
able comments and suggestions.

References

D. Beeferman, A. Berger, J. D. Lafferty. 1999. Statistical mod-
els for text segmentation. Machine Learning, 34(1-3):177–
210.

C. Bishop, 1995. Neural Networks for Pattern Recognition,
pg. 38. Oxford University Press, New York, 1995.

M. R. Brent. 1999. An efficient, probabilistically sound algo-
rithm for segmentation and word discovery. Machine Learn-
ing, 34(1-3):71–105.

F. Choi, P. Wiemer-Hastings, J. Moore. 2001. Latent semantic
analysis for text segmentation. In Proceedings of EMNLP,
109–117.

C. G. de Marcken. 1996. Unsupervised Language Acquisition.
Ph.D. thesis, Massachusetts Institute of Technology.

A. Dielmann, S. Renals. 2005. Multistream dynamic Bayesian
network for meeting segmentation. In Proceedings Mul-
timodal Interaction and Related Machine Learning Algo-
rithms Workshop (MLMI–04), 76–86.

M. Galley, K. McKeown, E. Fosler-Lussier, H. Jing. 2003.
Discourse segmentation of multi-party conversation. In Pro-
ceedings of the ACL, 562–569.

J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallet,
N. Dahlgren, V. Zue. 1993. TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus. Linguistic Data Consortium, 1993.

M. Hearst. 1994. Multi-paragraph segmentation of expository
text. In Proceedings of the ACL, 9–16.

J. Hirschberg, C. H. Nakatani. 1996. A prosodic analysis of
discourse segments in direction-giving monologues. In Pro-
ceedings of the ACL, 286–293.

X. Huang, A. Acero, H.-W. Hon. 2001. Spoken Language Pro-
cessing. Prentice Hall.

X. Ji, H. Zha. 2003. Domain-independent text segmentation
using anisotropic diffusion and dynamic programming. In
Proceedings of SIGIR, 322–329.

Y.-L. Lin, T. Jiang, K.-M. Chao. 2002. Efficient algorithms
for locating the length-constrained heaviest segments with
applications to biomolecular sequence analysis. J. Computer
and System Sciences, 65(3):570–586.

I. Malioutov, R. Barzilay. 2006. Minimum cut model for
spoken lecture segmentation. In Proceedings of the COL-
ING/ACL, 25–32.

A. Park, J. R. Glass. 2006. Unsupervised word acquisition from
speech using pattern discovery. In Proceedings of ICASSP.

P. Perona, J. Malik. 1990. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 12(7):629–639.

L. Pevzner, M. Hearst. 2002. A critique and improvement of
an evaluation metric for text segmentation. Computational
Linguistics, 28(1):19–36.

J. Shi, J. Malik. 2000. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905.

E. Shriberg, A. Stolcke, D. Hakkani-Tur, G. Tur. 2000.
Prosody-based automatic segmentation of speech into sen-
tences and topics. Speech Communication, 32(1-2):127–
154.

M. Utiyama, H. Isahara. 2001. A statistical model for domain-
independent text segmentation. In Proceedings of the ACL,
499–506.

A. Venkataraman. 2001. A statistical model for word dis-
covery in transcribed speech. Computational Linguistics,
27(3):353–372.

511



Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 512–519,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Randomised Language Modelling for Statistical Machine Translation

David Talbot and Miles Osborne
School of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh, EH8 9LW, UK

d.r.talbot@sms.ed.ac.uk, miles@inf.ed.ac.uk

Abstract

A Bloom filter (BF) is a randomised data
structure for set membership queries. Its
space requirements are significantly below
lossless information-theoretic lower bounds
but it produces false positives with some
quantifiable probability. Here we explore the
use of BFs for language modelling in statis-
tical machine translation.

We show how a BF containing n-grams can
enable us to use much larger corpora and
higher-order models complementing a con-
ventional n-gram LM within an SMT sys-
tem. We also consider (i) how to include ap-
proximate frequency information efficiently
within a BF and (ii) how to reduce the er-
ror rate of these models by first checking for
lower-order sub-sequences in candidate n-
grams. Our solutions in both cases retain the
one-sided error guarantees of the BF while
taking advantage of the Zipf-like distribution
of word frequencies to reduce the space re-
quirements.

1 Introduction
Language modelling (LM) is a crucial component in
statistical machine translation (SMT). Standard n-
gram language models assign probabilities to trans-
lation hypotheses in the target language, typically as
smoothed trigram models, e.g. (Chiang, 2005). Al-
though it is well-known that higher-order LMs and
models trained on additional monolingual corpora
can yield better translation performance, the chal-

lenges in deploying large LMs are not trivial. In-
creasing the order of an n-gram model can result in
an exponential increase in the number of parameters;
for corpora such as the English Gigaword corpus, for
instance, there are 300 million distinct trigrams and
over 1.2 billion 5-grams. Since a LM may be queried
millions of times per sentence, it should ideally re-
side locally in memory to avoid time-consuming re-
mote or disk-based look-ups.

Against this background, we consider a radically
different approach to language modelling: instead
of explicitly storing all distinct n-grams, we store a
randomised representation. In particular, we show
that the Bloom filter (Bloom (1970); BF), a sim-
ple space-efficient randomised data structure for rep-
resenting sets, may be used to represent statistics
from larger corpora and for higher-order n-grams to
complement a conventional smoothed trigram model
within an SMT decoder. 1

The space requirements of a Bloom filter are quite
spectacular, falling significantly below information-
theoretic error-free lower bounds while query times
are constant. This efficiency, however, comes at the
price of false positives: the filter may erroneously
report that an item not in the set is a member. False
negatives, on the other hand, will never occur: the
error is said to be one-sided.

In this paper, we show that a Bloom filter can be
used effectively for language modelling within an
SMT decoder and present the log-frequency Bloom
filter, an extension of the standard Boolean BF that

1For extensions of the framework presented here to stand-
alone smoothed Bloom filter language models, we refer the
reader to a companion paper (Talbot and Osborne, 2007).
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takes advantage of the Zipf-like distribution of cor-
pus statistics to allow frequency information to be
associated with n-grams in the filter in a space-
efficient manner. We then propose a mechanism,
sub-sequence filtering, for reducing the error rates
of these models by using the fact that an n-gram’s
frequency is bound from above by the frequency of
its least frequent sub-sequence.

We present machine translation experiments us-
ing these models to represent information regarding
higher-order n-grams and additional larger mono-
lingual corpora in combination with conventional
smoothed trigram models. We also run experiments
with these models in isolation to highlight the im-
pact of different order n-grams on the translation
process. Finally we provide some empirical analysis
of the effectiveness of both the log frequency Bloom
filter and sub-sequence filtering.

2 The Bloom filter
In this section, we give a brief overview of the
Bloom filter (BF); refer to Broder and Mitzenmacher
(2005) for a more in detailed presentation. A BF rep-
resents a set S = {x1, x2, ..., xn} with n elements
drawn from a universe U of size N . The structure is
attractive when N � n. The only significant stor-
age used by a BF consists of a bit array of size m.
This is initially set to hold zeroes. To train the filter
we hash each item in the set k times using distinct
hash functions h1, h2, ..., hk. Each function is as-
sumed to be independent from each other and to map
items in the universe to the range 1 to m uniformly
at random. The k bits indexed by the hash values
for each item are set to 1; the item is then discarded.
Once a bit has been set to 1 it remains set for the life-
time of the filter. Distinct items may not be hashed
to k distinct locations in the filter; we ignore col-
lisons. Bits in the filter can, therefore, be shared by
distinct items allowing significant space savings but
introducing a non-zero probability of false positives
at test time. There is no way of directly retrieving or
ennumerating the items stored in a BF.

At test time we wish to discover whether a given
item was a member of the original set. The filter is
queried by hashing the test item using the same k
hash functions. If all bits referenced by the k hash
values are 1 then we assume that the item was a
member; if any of them are 0 then we know it was

not. True members are always correctly identified,
but a false positive will occur if all k corresponding
bits were set by other items during training and the
item was not a member of the training set. This is
known as a one-sided error.

The probability of a false postive, f , is clearly the
probability that none of k randomly selected bits in
the filter are still 0 after training. Letting p be the
proportion of bits that are still zero after these n ele-
ments have been inserted, this gives,

f = (1− p)k.

As n items have been entered in the filter by hashing
each k times, the probability that a bit is still zero is,

p
′
=

(
1− 1

m

)kn

≈ e−
kn
m

which is the expected value of p. Hence the false
positive rate can be approximated as,

f = (1− p)k ≈ (1− p
′
)k ≈

(
1− e−

kn
m

)k
.

By taking the derivative we find that the number of
functions k∗ that minimizes f is,

k∗ = ln 2 · m
n

.

which leads to the intuitive result that exactly half
the bits in the filter will be set to 1 when the optimal
number of hash functions is chosen.

The fundmental difference between a Bloom fil-
ter’s space requirements and that of any lossless rep-
resentation of a set is that the former does not depend
on the size of the (exponential) universe N from
which the set is drawn. A lossless representation
scheme (for example, a hash map, trie etc.) must de-
pend on N since it assigns a distinct representation
to each possible set drawn from the universe.

3 Language modelling with Bloom filters
In our experiments we make use of both standard
(i.e. Boolean) BFs containing n-gram types drawn
from a training corpus and a novel BF scheme, the
log-frequency Bloom filter, that allows frequency
information to be associated efficiently with items
stored in the filter.
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Algorithm 1 Training frequency BF
Input: Strain, {h1, ...hk} and BF = ∅
Output: BF
for all x ∈ Strain do

c(x)← frequency of n-gram x in Strain

qc(x)← quantisation of c(x) (Eq. 1)
for j = 1 to qc(x) do

for i = 1 to k do
hi(x)← hash of event {x, j} under hi

BF [hi(x)]← 1
end for

end for
end for
return BF

3.1 Log-frequency Bloom filter
The efficiency of our scheme for storing n-gram
statistics within a BF relies on the Zipf-like distribu-
tion of n-gram frequencies in natural language cor-
pora: most events occur an extremely small number
of times, while a small number are very frequent.

We quantise raw frequencies, c(x), using a loga-
rithmic codebook as follows,

qc(x) = 1 + blogb c(x)c. (1)

The precision of this codebook decays exponentially
with the raw counts and the scale is determined by
the base of the logarithm b; we examine the effect of
this parameter in experiments below.

Given the quantised count qc(x) for an n-gram x,
the filter is trained by entering composite events con-
sisting of the n-gram appended by an integer counter
j that is incremented from 1 to qc(x) into the filter.
To retrieve the quantised count for an n-gram, it is
first appended with a count of 1 and hashed under
the k functions; if this tests positive, the count is in-
cremented and the process repeated. The procedure
terminates as soon as any of the k hash functions hits
a 0 and the previous count is reported. The one-sided
error of the BF and the training scheme ensure that
the actual quantised count cannot be larger than this
value. As the counts are quantised logarithmically,
the counter will be incremented only a small number
of times. The training and testing routines are given
here as Algorithms 1 and 2 respectively.

Errors for the log-frequency BF scheme are one-
sided: frequencies will never be underestimated.

Algorithm 2 Test frequency BF
Input: x, MAXQCOUNT , {h1, ...hk} and BF
Output: Upper bound on qc(x) ∈ Strain

for j = 1 to MAXQCOUNT do
for i = 1 to k do

hi(x)← hash of event {x, j} under hi

if BF [hi(x)] = 0 then
return j − 1

end if
end for

end for

The probability of overestimating an item’s fre-
quency decays exponentially with the size of the
overestimation error d (i.e. as fd for d > 0) since
each erroneous increment corresponds to a single
false positive and d such independent events must
occur together.

3.2 Sub-sequence filtering
The error analysis in Section 2 focused on the false
positive rate of a BF; if we deploy a BF within an
SMT decoder, however, the actual error rate will also
depend on the a priori membership probability of
items presented to it. The error rate Err is,

Err = Pr(x /∈ Strain|Decoder)f.

This implies that, unlike a conventional lossless data
structure, the model’s accuracy depends on other
components in system and how it is queried.

We take advantage of the monotonicity of the n-
gram event space to place upper bounds on the fre-
quency of an n-gram prior to testing for it in the filter
and potentially truncate the outer loop in Algorithm
2 when we know that the test could only return pos-
tive in error.

Specifically, if we have stored lower-order n-
grams in the filter, we can infer that an n-gram can-
not present, if any of its sub-sequences test nega-
tive. Since our scheme for storing frequencies can
never underestimate an item’s frequency, this rela-
tion will generalise to frequencies: an n-gram’s fre-
quency cannot be greater than the frequency of its
least frequent sub-sequence as reported by the filter,

c(w1, ..., wn) ≤ min {c(w1, ..., wn−1), c(w2, ..., wn)}.

We use this to reduce the effective error rate of BF-
LMs that we use in the experiments below.
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3.3 Bloom filter language model tests
A standard BF can implement a Boolean ‘language
model’ test: have we seen some fragment of lan-
guage before? This does not use any frequency in-
formation. The Boolean BF-LM is a standard BF
containing all n-grams of a certain length in the
training corpus, Strain. It implements the following
binary feature function in a log-linear decoder,

φbool(x) ≥ δ(x ∈ Strain)

Separate Boolean BF-LMs can be included for
different order n and assigned distinct log-linear
weights that are learned as part of a minimum error
rate training procedure (see Section 4).

The log-frequency BF-LM implements a multino-
mial feature function in the decoder that returns the
value associated with an n-gram by Algorithm 2.

φlogfreq(x) ≥ qc(x) ∈ Strain

Sub-sequence filtering can be performed by using
the minimum value returned by lower-order models
as an upper-bound on the higher-order models.

By boosting the score of hypotheses containing n-
grams observed in the training corpus while remain-
ing agnostic for unseen n-grams (with the exception
of errors), these feature functions have more in com-
mon with maximum entropy models than conven-
tionally smoothed n-gram models.

4 Experiments

We conducted a range of experiments to explore the
effectiveness and the error-space trade-off of Bloom
filters for language modelling in SMT. The space-
efficiency of these models also allows us to inves-
tigate the impact of using much larger corpora and
higher-order n-grams on translation quality. While
our main experiments use the Bloom filter models in
conjunction with a conventional smoothed trigram
model, we also present experiments with these mod-
els in isolation to highlight the impact of different
order n-grams on the translation process. Finally,
we present some empirical analysis of both the log-
frequency Bloom filter and the sub-sequence filter-
ing technique which may be of independent interest.

Model EP-KN-3 EP-KN-4 AFP-KN-3
Memory 64M 99M 1.3G
gzip size 21M 31M 481M
1-gms 62K 62K 871K
2-gms 1.3M 1.3M 16M
3-gms 1.1M 1.0M 31M
4-gms N/A 1.1M N/A

Table 1: Baseline and Comparison Models

4.1 Experimental set-up

All of our experiments use publically available re-
sources. We use the French-English section of the
Europarl (EP) corpus for parallel data and language
modelling (Koehn, 2003) and the English Giga-
word Corpus (LDC2003T05; GW) for additional
language modelling.

Decoding is carried-out using the Moses decoder
(Koehn and Hoang, 2007). We hold out 500 test sen-
tences and 250 development sentences from the par-
allel text for evaluation purposes. The feature func-
tions in our models are optimised using minimum
error rate training and evaluation is performed using
the BLEU score.

4.2 Baseline and comparison models

Our baseline LM and other comparison models are
conventional n-gram models smoothed using modi-
fied Kneser-Ney and built using the SRILM Toolkit
(Stolcke, 2002); as is standard practice these models
drop entries for n-grams of size 3 and above when
the corresponding discounted count is less than 1.
The baseline language model, EP-KN-3, is a trigram
model trained on the English portion of the parallel
corpus. For additional comparisons we also trained a
smoothed 4-gram model on this Europarl data (EP-
KN-4) and a trigram model on the Agence France
Press section of the Gigaword Corpus (AFP-KN-3).

Table 1 shows the amount of memory these mod-
els take up on disk and compressed using the gzip
utility in parentheses as well as the number of dis-
tinct n-grams of each order. We give the gzip com-
pressed size as an optimistic lower bound on the size
of any lossless representation of each model.2

2Note, in particular, that gzip compressed files do not sup-
port direct random access as required by our application.
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Corpus Europarl Gigaword
1-gms 61K 281K
2-gms 1.3M 5.4M
3-gms 4.7M 275M
4-gms 9.0M 599M
5-gms 10.3M 842M
6-gms 10.7M 957M

Table 2: Number of distinct n-grams

4.3 Bloom filter-based models

To create Bloom filter LMs we gathered n-gram
counts from both the Europarl (EP) and the whole
of the Gigaword Corpus (GW). Table 2 shows the
numbers of distinct n-grams in these corpora. Note
that we use no pruning for these models and that
the numbers of distinct n-grams is of the same or-
der as that of the recently released Google Ngrams
dataset (LDC2006T13). In our experiments we cre-
ate a range of models referred to by the corpus used
(EP or GW), the order of the n-gram(s) entered into
the filter (1 to 10), whether the model is Boolean
(Bool-BF) or provides frequency information (Freq-
BF), whether or not sub-sequence filtering was used
(FTR) and whether it was used in conjunction with
the baseline trigram (+EP-KN-3).

4.4 Machine translation experiments

Our first set of experiments examines the relation-
ship between memory allocated to the BF and BLEU
score. We present results using the Boolean BF-
LM in isolation and then both the Boolean and log-
frequency BF-LMS to add 4-grams to our baseline
3-gram model.Our second set of experiments adds
3-grams and 5-grams from the Gigaword Corpus to
our baseline. Here we constrast the Boolean BF-
LM with the log-frequency BF-LM with different
quantisation bases (2 = fine-grained and 5 = coarse-
grained). We then evaluate the sub-sequence fil-
tering approach to reducing the actual error rate of
these models by adding both 3 and 4-grams from the
Gigaword Corpus to the baseline. Since the BF-LMs
easily allow us to deploy very high-order n-gram
models, we use them to evaluate the impact of dif-
ferent order n-grams on the translation process pre-
senting results using the Boolean and log-frequency
BF-LM in isolation for n-grams of order 1 to 10.

Model EP-KN-3 EP-KN-4 AFP-KN-3
BLEU 28.51 29.24 29.17
Memory 64M 99M 1.3G
gzip size 21M 31M 481M

Table 3: Baseline and Comparison Models

4.5 Analysis of BF extensions

We analyse our log-frequency BF scheme in terms
of the additional memory it requires and the error
rate compared to a non-redundant scheme. The non-
redundant scheme involves entering just the exact
quantised count for each n-gram and then searching
over the range of possible counts at test time starting
with the count with maximum a priori probability
(i.e. 1) and incrementing until a count is found or
the whole codebook has been searched (here the size
is 16).

We also analyse the sub-sequence filtering
scheme directly by creating a BF with only 3-grams
and a BF containing both 2-grams and 3-grams and
comparing their actual error rates when presented
with 3-grams that are all known to be negatives.

5 Results

5.1 Machine translation experiments

Table 3 shows the results of the baseline (EP-KN-
3) and other conventional n-gram models trained on
larger corpora (AFP-KN-3) and using higher-order
dependencies (EP-KN-4). The larger models im-
prove somewhat on the baseline performance.

Figure 1 shows the relationship between space al-
located to the BF models and BLEU score (left) and
false positive rate (right) respectively. These experi-
ments do not include the baseline model. We can see
a clear correlation between memory / false positive
rate and translation performance.

Adding 4-grams in the form of a Boolean BF or a
log-frequency BF (see Figure 2) improves on the 3-
gram baseline with little additional memory (around
4MBs) while performing on a par with or above
the Europarl 4-gram model with around 10MBs;
this suggests that a lossy representation of the un-
pruned set of 4-grams contains more useful informa-
tion than a lossless representation of the pruned set.3

3An unpruned modified Kneser-Ney 4-gram model on the
Eurpoparl data scores slightly higher - 29.69 - while taking up
489MB (132MB gzipped).
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Figure 2: Adding 4-grams with Bloom filters.

As the false positive rate exceeds 0.20 the perfor-
mance is severly degraded. Adding 3-grams drawn
from the whole of the Gigaword corpus rather than
simply the Agence France Press section results in
slightly improved performance with signficantly less
memory than the AFP-KN-3 model (see Figure 3).

Figure 4 shows the results of adding 5-grams
drawn from the Gigaword corpus to the baseline. It
also contrasts the Boolean BF and the log-frequency
BF suggesting in this case that the log-frequency BF
can provide useful information when the quantisa-
tion base is relatively fine-grained (base 2). The
Boolean BF and the base 5 (coarse-grained quan-
tisation) log-frequency BF perform approximately
the same. The base 2 quantisation performs worse
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Figure 3: Adding GW 3-grams with Bloom filters.
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Figure 4: Comparison of different quantisation rates.

for smaller amounts of memory, possibly due to the
larger set of events it is required to store.

Figure 5 shows sub-sequence filtering resulting in
a small increase in performance when false positive
rates are high (i.e. less memory is allocated). We
believe this to be the result of an increased a pri-
ori membership probability for n-grams presented
to the filter under the sub-sequence filtering scheme.

Figure 6 shows that for this task the most useful
n-gram sizes are between 3 and 6.

5.2 Analysis of BF extensions

Figure 8 compares the memory requirements of
the log-frequencey BF (base 2) and the Boolean
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BF for various order n-gram sets from the Giga-
word Corpus with the same underlying false posi-
tive rate (0.125). The additional space required by
our scheme for storing frequency information is less
than a factor of 2 compared to the standard BF.

Figure 7 shows the number and size of frequency
estimation errors made by our log-frequency BF
scheme and a non-redundant scheme that stores only
the exact quantised count. We presented 500K nega-
tives to the filter and recorded the frequency of over-
estimation errors of each size. As shown in Section
3.1, the probability of overestimating an item’s fre-
quency under the log-frequency BF scheme decays
exponentially in the size of this overestimation er-
ror. Although the non-redundant scheme requires
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fewer items be stored in the filter and, therefore, has
a lower underlying false positive rate (0.076 versus
0.159), in practice it incurs a much higher error rate
(0.717) with many large errors.

Figure 9 shows the impact of sub-sequence filter-
ing on the actual error rate. Although, the false pos-
itive rate for the BF containing 2-grams, in addition,
to 3-grams (filtered) is higher than the false positive
rate of the unfiltered BF containing only 3-grams,
the actual error rate of the former is lower for mod-
els with less memory. By testing for 2-grams prior
to querying for the 3-grams, we can avoid perform-
ing some queries that may otherwise have incurred
errors using the fact that a 3-gram cannot be present
if one of its constituent 2-grams is absent.

518



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.5  1  1.5  2  2.5  3  3.5

E
rr

or
 r

at
e

Memory (MB)

Error rate with sub-sequence filtering

Filtered false positive rate
Unfiltered false pos rate / actual error rate

Filtered actual error rate

Figure 9: Error rate with sub-sequence filtering.

6 Related Work

We are not the first people to consider building very
large scale LMs: Kumar et al. used a four-gram
LM for re-ranking (Kumar et al., 2005) and in un-
published work, Google used substantially larger n-
grams in their SMT system. Deploying such LMs
requires either a cluster of machines (and the over-
heads of remote procedure calls), per-sentence fil-
tering (which again, is slow) and/or the use of some
other lossy compression (Goodman and Gao, 2000).
Our approach can complement all these techniques.

Bloom filters have been widely used in database
applications for reducing communications over-
heads and were recently applied to encode word
frequencies in information retrieval (Linari and
Weikum, 2006) using a method that resembles the
non-redundant scheme described above. Exten-
sions of the BF to associate frequencies with items
in the set have been proposed e.g., (Cormode and
Muthukrishn, 2005); while these schemes are more
general than ours, they incur greater space overheads
for the distributions that we consider here.

7 Conclusions

We have shown that Bloom Filters can form the ba-
sis for space-efficient language modelling in SMT.
Extending the standard BF structure to encode cor-
pus frequency information and developing a strat-
egy for reducing the error rates of these models by
sub-sequence filtering, our models enable higher-

order n-grams and larger monolingual corpora to be
used more easily for language modelling in SMT.
In a companion paper (Talbot and Osborne, 2007)
we have proposed a framework for deriving con-
ventional smoothed n-gram models from the log-
frequency BF scheme allowing us to do away en-
tirely with the standard n-gram model in an SMT
system. We hope the present work will help estab-
lish the Bloom filter as a practical alternative to con-
ventional associative data structures used in compu-
tational linguistics. The framework presented here
shows that with some consideration for its workings,
the randomised nature of the Bloom filter need not
be a significant impediment to is use in applications.
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Abstract

We propose a novel approach to crosslingual
language model (LM) adaptation based on
bilingual Latent Semantic Analysis (bLSA).
A bLSA model is introduced which enables
latent topic distributions to be efficiently
transferred across languages by enforcing
a one-to-one topic correspondence during
training. Using the proposed bLSA frame-
work crosslingual LM adaptation can be per-
formed by, first, inferring the topic poste-
rior distribution of the source text and then
applying the inferred distribution to the tar-
get language N-gram LM via marginal adap-
tation. The proposed framework also en-
ables rapid bootstrapping of LSA models
for new languages based on a source LSA
model from another language. On Chinese
to English speech and text translation the
proposed bLSA framework successfully re-
duced word perplexity of the English LM by
over 27% for a unigram LM and up to 13.6%
for a 4-gram LM. Furthermore, the pro-
posed approach consistently improved ma-
chine translation quality on both speech and
text based adaptation.

1 Introduction

Language model adaptation is crucial to numerous
speech and translation tasks as it enables higher-
level contextual information to be effectively incor-
porated into a background LM improving recogni-
tion or translation performance. One approach is

to employ Latent Semantic Analysis (LSA) to cap-
ture in-domain word unigram distributions which
are then integrated into the background N-gram
LM. This approach has been successfully applied
in automatic speech recognition (ASR) (Tam and
Schultz, 2006) using the Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003). The LDA model can
be viewed as a Bayesian topic mixture model with
the topic mixture weights drawn from a Dirichlet
distribution. For LM adaptation, the topic mixture
weights are estimated based on in-domain adapta-
tion text (e.g. ASR hypotheses). The adapted mix-
ture weights are then used to interpolate a topic-
dependent unigram LM, which is finally integrated
into the background N-gram LM using marginal
adaptation (Kneser et al., 1997)

In this paper, we propose a framework to per-
form LM adaptation across languages, enabling the
adaptation of a LM from one language based on the
adaptation text of another language. In statistical
machine translation (SMT), one approach is to ap-
ply LM adaptation on the target language based on
an initial translation of input references (Kim and
Khudanpur, 2003; Paulik et al., 2005). This scheme
is limited by the coverage of the translation model,
and overall by the quality of translation. Since this
approach only allows to apply LM adaptationaf-
ter translation, available knowledge cannot be ap-
plied to extend the coverage. We propose a bilingual
LSA model (bLSA) for crosslingual LM adaptation
that can be appliedbefore translation. The bLSA
model consists of two LSA models: one for each
side of the language trained on parallel document
corpora. The key property of the bLSA model is that
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the latent topic of the source and target LSA mod-
els can be assumed to be a one-to-one correspon-
dence and thus share a common latent topic space
since the training corpora consist of bilingual paral-
lel data. For instance, say topic 10 of the Chinese
LSA model is about politics. Then topic 10 of the
English LSA model is set to also correspond to pol-
itics and so forth. During LM adaptation, we first
infer the topic mixture weights from the source text
using the source LSA model. Then we transfer the
inferred mixture weights to the target LSA model
and thus obtain the target LSA marginals. The chal-
lenge is to enforce the one-to-one topic correspon-
dence. Our proposal is to share common variational
Dirichlet posteriors over the topic mixture weights
of a document pair in the LDA-style model. The
beauty of the bLSA framework is that the model
searches for a common latent topic space in an un-
supervised fashion, rather than to require manual in-
teraction. Since the topic space is language indepen-
dent, our approach supports topic transfer in multi-
ple language pairs in O(N) where N is the number of
languages.

Related work includes the Bilingual Topic Ad-
mixture Model (BiTAM) for word alignment pro-
posed by (Zhao and Xing, 2006). Basically, the
BiTAM model consists of topic-dependent transla-
tion lexicons modelingPr(c|e, k) where c, e and
k denotes the source Chinese word, target English
word and the topic index respectively. On the
other hand, the bLSA framework modelsPr(c|k)
and Pr(e|k) which is different from the BiTAM
model. By their different modeling nature, the bLSA
model usually supports more topics than the BiTAM
model. Another work by (Kim and Khudanpur,
2004) employed crosslingual LSA using singular
value decomposition which concatenates bilingual
documents into a single input supervector before
projection.

We organize the paper as follows: In Section 2,
we introduce the bLSA framework including La-
tent Dirichlet-Tree Allocation (LDTA) (Tam and
Schultz, 2007) as a correlated LSA model, bLSA
training and crosslingual LM adaptation. In Sec-
tion 3, we present the effect of LM adaptation on
word perplexity, followed by SMT experiments re-
ported in BLEU on both speech and text input in
Section 3.3. Section 4 describes conclusions and fu-

ASR hypo
Chinese LSA English LSA

Chinese N−gram LM English N−gram LM

Chinese ASR Chinese−>English SMT

Chinese−English

Adapt Adapt

MT hypoTopic distribution

Parallel document corpus

Chinese text English text

Figure 1: Topic transfer in bilingual LSA model.

ture works.

2 Bilingual Latent Semantic Analysis

The goal of a bLSA model is to enforce a one-
to-one topic correspondence between monolingual
LSA models, each of which can be modeled using
an LDA-style model. The role of the bLSA model
is to transfer the inferred latent topic distribution
from the source language to the target language as-
suming that the topic distributions on both sides are
identical. The assumption is reasonable for parallel
document pairs which are faithful translations. Fig-
ure 1 illustrates the idea of topic transfer between
monolingual LSA models followed by LM adapta-
tion. One observation is that the topic transfer can be
bi-directional meaning that the “flow” of topic can
be from ASR to SMT or vice versa. In this paper,
we only focus on ASR-to-SMT direction. Our tar-
get is to minimize the word perplexity on the target
language through LM adaptation. Before we intro-
duce the heuristic of enforcing a one-to-one topic
correspondence, we describe the Latent Dirichlet-
Tree Allocation (LDTA) for LSA.

2.1 Latent Dirichlet-Tree Allocation

The LDTA model extends the LDA model in which
correlation among latent topics are captured using a
Dirichlet-Tree prior. Figure 2 illustrates a depth-two
Dirichlet-Tree. A tree of depth one simply falls back
to the LDA model. The LDTA model is a generative
model with the following generative process:

1. Sample a vector of branch probabilitiesbj ∼
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Figure 2: Dirichlet-Tree prior of depth two.

Dir(αj) for each nodej = 1...J whereαj de-
notes the parameter (aka the pseudo-counts of
its outgoing branches) of the Dirichlet distribu-
tion at nodej.

2. Compute the topic proportions as:

θk =
∏

jc

b
δjc(k)
jc (1)

whereδjc(k) is an indicator function which sets
to unity when thec-th branch of thej-th node
leads to the leaf node of topick and zero other-
wise. Thek-th topic proportionθk is computed
as the product of branch probabilities from the
root node to the leaf node of topick.

3. Generate a document using the topic multino-
mial for each wordwi:

zi ∼ Mult(θ)

wi ∼ Mult(β.zi
)

where β.zi
denotes the topic-dependent uni-

gram LM indexed byzi.

The joint distribution of the latent variables (topic
sequencezn

1 and the Dirichlet nodes over child
branchesbj) and an observed documentwn

1 can be
written as follows:

p(wn
1 , zn

1 , bJ
1 ) = p(bJ

1 |{αj})
n

∏

i

βwizi
· θzi

where p(bJ
1 |{αj}) =

J
∏

j

Dir(bj;αj)

∝
∏

jc

b
αjc−1
jc

Similar to LDA training, we apply the variational
Bayes approach by optimizing the lower bound of
the marginalized document likelihood:

L(wn
1 ; Λ,Γ)=Eq[log

p(wn
1 , zn

1 , bJ
1 ; Λ)

q(zn
1 , bJ

1 ; Γ)
]

=Eq[log p(wn
1 |z

n
1 )] + Eq[log

p(zn
1 |b

J
1 )

q(zn
1 )

]

+Eq[log
p(bJ

1 ; {αj})

q(bJ
1 ; {γj})

]

whereq(zn
1 , bJ

1 ; Γ) =
∏n

i q(zi) ·
∏J

j q(bj) is a fac-
torizable variational posterior distribution over the
latent variables parameterized byΓ which are deter-
mined in the E-step.Λ is the model parameters for
a Dirichlet-Tree{αj} and the topic-dependent uni-
gram LM {βwk}. The LDTA model has an E-step
similar to the LDA model:

E-Step:

γjc = αjc +

n
∑

i

K
∑

k

qik · δjc(k) (2)

qik ∝ βwik · e
Eq[log θk] (3)

where

Eq[log θk] =
∑

jc

δjc(k)Eq[log bjc]

=
∑

jc

δjc(k)

(

Ψ(γjc)−Ψ(
∑

c

γjc)

)

whereqik denotesq(zi = k) meaning the variational
topic posterior of wordwi. Eqn 2 and Eqn 3 are
executed iteratively until convergence is reached.

M-Step:

βwk ∝

n
∑

i

qik · δ(wi, w) (4)

whereδ(wi, w) is a Kronecker Delta function. The
alpha parameters can be estimated with iterative
methods such as Newton-Raphson or simple gradi-
ent ascent procedure.

2.2 Bilingual LSA training

For the following explanations, we assume that our
source and target languages are Chinese and En-
glish respectively. The bLSA model training is a
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two-stage procedure. At the first stage, we train
a Chinese LSA model using the Chinese docu-
ments in parallel corpora. We applied the varia-
tional EM algorithm (Eqn 2–4) to train a Chinese
LSA model. Then we used the model to compute
the termeEq[log θk] needed in Eqn 3 for each Chinese
document in parallel corpora. At the second stage,
we apply the sameeEq [log θk] to bootstrap an English
LSA model, which is the key to enforce a one-to-one
topic correspondence. Now the hyper-parameters of
the variational Dirichlet posteriors of each node in
the Dirichlet-Tree are shared among the Chinese and
English model. Precisely, we apply only Eqn 3 with
fixedeEq [log θk] in the E-step and Eqn 4 in the M-step
on {βwk} to bootstrap an English LSA model. No-
tice that the E-step is non-iterative resulting in rapid
LSA training. In short, given a monolingual LSA
model, we can rapidly bootstrap LSA models of new
languages using parallel document corpora. Notice
that the English and Chinese vocabulary sizes do not
need to be similar. In our setup, the Chinese vo-
cabulary comes from the ASR system while the En-
glish vocabulary comes from the English part of the
parallel corpora. Since the topic transfer can be bi-
directional, we can perform the bLSA training in a
reverse manner, i.e. training an English LSA model
followed by bootstrapping a Chinese LSA model.

2.3 Crosslingual LM adaptation

Given a source text, we apply the E-step to estimate
variational Dirichlet posterior of each node in the
Dirichlet-Tree. We estimate the topic weights on the
source language using the following equation:

θ̂
(CH)
k ∝

∏

jc

(

γjc
∑

c′ γjc′

)δjc(k)

(5)

Then we apply the topic weights into the target LSA
model to obtain an in-domain LSA marginals:

PrEN (w) =

K
∑

k=1

β
(EN)
wk · θ̂

(CH)
k (6)

We integrate the LSA marginal into the target back-
ground LM using marginal adaptation (Kneser et al.,
1997) which minimizes the Kullback-Leibler diver-
gence between the adapted LM and the background

LM:

Pra(w|h) ∝

(

Prldta(w)

Prbg(w)

)β

· Prbg(w|h) (7)

Likewise, LM adaptation can take place on the
source language as well due to the bi-directional na-
ture of the bLSA framework when target-side adap-
tation text is available. In this paper, we focus on
LM adaptation on the target language for SMT.

3 Experimental Setup

We evaluated our bLSA model using the Chinese–
English parallel document corpora consisting of the
Xinhua news, Hong Kong news and Sina news. The
combined corpora contains 67k parallel documents
with 35M Chinese (CH) words and 43M English
(EN) words. Our spoken language translation sys-
tem translates from Chinese to English. The Chinese
vocabulary comes from the ASR decoder while the
English vocabulary is derived from the English por-
tion of the parallel training corpora. The vocabulary
sizes for Chinese and English are 108k and 69k re-
spectively. Our background English LM is a 4-gram
LM trained with the modified Kneser-Ney smooth-
ing scheme using the SRILM toolkit on the same
training text. We explore the bLSA training in both
directions: EN→CH and CH→EN meaning that an
English LSA model is trained first and a Chinese
LSA model is bootstrapped or vice versa. Exper-
iments explore which bootstrapping direction yield
best results measured in terms of English word per-
plexity. The number of latent topics is set to 200 and
a balanced binary Dirichlet-Tree prior is used.

With an increasing interest in the ASR-SMT cou-
pling for spoken language translation, we also eval-
uated our approach with Chinese ASR hypotheses
and compared with Chinese manual transcriptions.
We are interested to see the impact due to recog-
nition errors on the ASR hypotheses compared to
the manual transcriptions. We employed the CMU-
InterACT ASR system developed for the GALE
2006 evaluation. We trained acoustic models with
over 500 hours of quickly transcribed speech data re-
leased by the GALE program and the LM with over
800M-word Chinese corpora. The character error
rates on the CCTV, RFA and NTDTV shows in the
RT04 test set are 7.4%, 25.5% and 13.1% respec-
tively.
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Topic index Top words

“CH-40” flying, submarine, aircraft, air, pilot, land, mission, brand-new
“EN-40” air, sea, submarine, aircraft, flight, flying, ship, test

“CH-41” satellite, han-tian, launch, space, china, technology, astronomy
“EN-41” space, satellite, china, technology, satellites, science

“CH-42” fire, airport, services, marine, accident, air
“EN-42” fire, airport, services, department, marine, air, service

Table 1: Parallel topics extracted by the bLSA
model. Top words on the Chinese side are translated
into English for illustration purpose.
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Figure 3: Comparison of training log likelihood of
English LSA models bootstrapped from a Chinese
LSA and from a flat monolingual English LSA.

3.1 Analysis of the bLSA model

By examining the top-words of the extracted paral-
lel topics, we verify the validity of the heuristic de-
scribed in Section 2.2 which enforces a one-to-one
topic correspondence in the bLSA model. Table 1
shows the latent topics extracted by the CH→EN
bLSA model. We can see that the Chinese-English
topic words have strong correlations. Many of them
are actually translation pairs with similar word rank-
ings. From this viewpoint, we can interpret bLSA as
a crosslingual word trigger model. The result indi-
cates that our heuristic is effective to extract parallel
latent topics. As a sanity check, we also examine the
likelihood of the training data when an English LSA
model is bootstrapped. We can see from Figure 3
that the likelihood increases monotonically with the
number of training iterations. The figure also shows
that by sharing the variational Dirichlet posteriors
from the Chinese LSA model, we can bootstrap an
English LSA modelrapidly compared to monolin-
gual English LSA training with both training proce-
dures started from the same flat model.

LM (43M) CCTV RFA NTDTV

BG EN unigram 1065 1220 1549
+CH→EN (CH ref) 755 880 1113
+EN→CH (CH ref) 762 896 1111

+CH→EN (CH hypo) 757 885 1126
+EN→CH (CH hypo) 766 896 1129
+CH→EN (EN ref) 731 838 1075
+EN→CH (EN ref) 747 848 1087

Table 2: English word perplexity (PPL) on the RT04
test set using a unigram LM.

3.2 LM adaptation results

We trained the bLSA models on both CH→EN and
EN→CH directions and compared their LM adapta-
tion performance using the Chinese ASR hypothe-
ses (hypo) and the manual transcriptions (ref) as in-
put. We adapted the English background LM using
the LSA marginals described in Section 2.3 for each
show on the test set.

We first evaluated the English word perplexity us-
ing the EN unigram LM generated by the bLSA
model. Table 2 shows that the bLSA-based LM
adaptation reduces the word perplexity by over 27%
relative compared to an unadapted EN unigram LM.
The results indicate that the bLSA model success-
fully leverages the text from the source language and
improves the word perplexity on the target language.
We observe that there is almost no performance dif-
ference when either the ASR hypotheses or the man-
ual transcriptions are used for adaptation. The result
is encouraging since the bLSA model may be in-
sensitive to moderate recognition errors through the
projection of the input adaptation text into the latent
topic space. We also apply an English translation
reference for adaptation to show an oracle perfor-
mance. The results using the Chinese hypotheses are
not too far off from the oracle performance. Another
observation is that the CH→EN bLSA model seems
to give better performance than the EN→CH bLSA
model. However, their differences are not signifi-
cant. The result may imply that the direction of the
bLSA training is not important since the latent topic
space captured by either language is similar when
parallel training corpora are used. Table 3 shows the
word perplexity when the background 4-gram En-
glish LM is adapted with the tuning parameterβ set
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LM (43M, β = 0.7) CCTV RFA NTDTV

BG EN 4-gram 118 212 203
+CH→EN (CH ref) 102 191 179
+EN→CH (CH ref) 102 198 179

+CH→EN (CH hypo) 102 193 180
+EN→CH (CH hypo) 103 198 180
+CH→EN (EN ref) 100 186 176
+EN→CH (EN ref) 101 190 176

Table 3: English word perplexity (PPL) on the RT04
test set using a 4-gram LM.
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Figure 4: Word perplexity with differentβ using
manual reference or ASR hypotheses on CCTV.

to 0.7. Figure 4 shows the change of perplexity with
differentβ. We see that the adaptation performance
using the ASR hypotheses or the manual transcrip-
tions are almost identical on differentβ with an op-
timal value at around 0.7. The results show that the
proposed approach successfully reduces the perplex-
ity in the range of 9–13.6% relative compared to an
unadapted baseline on different shows when ASR
hypotheses are used. Moreover, we observe simi-
lar performance using ASR hypotheses or manual
Chinese transcriptions which is consistent with the
results on Table 2. On the other hand, it is interest-
ing to see that the performance gap from the oracle
adaptation is somewhat related to the degree of mis-
match between the test show and the training condi-
tion. The gap looks wider on the RFA and NTDTV
shows compared to the CCTV show.

3.3 Incorporating bLSA into Spoken Language
Translation

To investigate the effectiveness of bLSA LM adap-
tation for spoken language translation, we incorpo-

rated the proposed approach into our state-of-the-art
phrase-based SMT system. Translation performance
was evaluated on the RT04 broadcast news evalua-
tion set when applied to both the manual transcrip-
tions and 1-best ASR hypotheses. During evalua-
tion two performance metrics, BLEU (Papineni et
al., 2002) and NIST, were computed. In both cases, a
single English reference was used during scoring. In
the transcription case the original English references
were used. For the ASR case, as utterance segmen-
tation was performed automatically, the number of
sentences generated by ASR and SMT differed from
the number of English references. In this case, Lev-
enshtein alignment was used to align the translation
output to the English references before scoring.

3.4 Baseline SMT Setup

The baseline SMT system consisted of a non adap-
tive system trained using the same Chinese-English
parallel document corpora used in the previous ex-
periments (Sections 3.1 and 3.2). For phrase extrac-
tion a cleaned subset of these corpora, consisting of
1M Chinese-English sentence pairs, was used. SMT
decoding parameters were optimized using man-
ual transcriptions and translations of 272 utterances
from the RT04 development set (LDC2006E10).

SMT translation was performed in two stages us-
ing an approach similar to that in (Vogel, 2003).
First, a translation lattice was constructed by match-
ing all possible bilingual phrase-pairs, extracted
from the training corpora, to the input sentence.
Phrase extraction was performed using the “PESA”
(Phrase Pair Extraction as Sentence Splitting) ap-
proach described in (Vogel, 2005). Next, a search
was performed to find the best path through the lat-
tice, i.e. that with maximumtranslation-score. Dur-
ing search reordering was allowed on the target lan-
guage side. The final translation result was that
hypothesis with maximumtranslation-score, which
is a log-linear combination of 10 scores consist-
ing of Target LM probability, Distortion Penalty,
Word-Count Penalty, Phrase-Count and six Phrase-
Alignment scores. Weights for each component
score were optimized to maximize BLEU-score on
the development set using MER optimization as de-
scribed in (Venugopal et al., 2005).
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Translation Quality - BLEU (NIST)
SMT Target LM CCTV RFA NTDTV ALL

Manual Transcription
Baseline LM: 0.162 (5.212) 0.087 (3.854) 0.140 (4.859) 0.132 (5.146)

bLSA (bLSA-Adapted LM): 0.164 (5.212) 0.087 (3.897) 0.143 (4.864) 0.134 (5.162)

1-best ASR Output
CER (%) 7.4 25.5 13.1 14.9

Baseline LM: 0.129 (4.15) 0.051 (2.77) 0.086 (3.50) 0.095 (3.90)
bLSA (bLSA-Adapted LM): 0.132 (4.16) 0.050 (2.79) 0.089 (3.53) 0.096 (3.91)

Table 4: Translation performance of baseline and bLSA-Adapted Chinese-English SMT systems on manual
transcriptions and 1-best ASR hypotheses

3.5 Performance of Baseline SMT System

First, the baseline system performance was evalu-
ated by applying the system described above to the
reference transcriptions and 1-best ASR hypotheses
generated by our Mandarin speech recognition sys-
tem. The translation accuracy in terms of BLEU and
NIST for each individual show (“CCTV”, “ RFA”,
and “NTDTV”), and for the complete test-set, are
shown in Table 4 (Baseline LM). When applied to
the reference transcriptions an overall BLEU score
of 0.132 was obtained. BLEU-scores ranged be-
tween 0.087 and 0.162 for the “RFA”, “ NTDTV” and
“CCTV” shows, respectively. As the “RFA” show
contained a large segment of conversational speech,
translation quality was considerably lower for this
show due to genre mismatch with the training cor-
pora of newspaper text.

For the 1-best ASR hypotheses, an overall BLEU
score of 0.095 was achieved. For the ASR case,
the relative reduction in BLEU scores for the RFA
and NTDTV shows is large, due to the significantly
lower recognition accuracies for these shows. BLEU
score is also degraded due to poor alignment of ref-
erences during scoring.

3.6 Incorporation of bLSA Adaptation

Next, the effectiveness of bLSA based LM adapta-
tion was evaluated. For each show the target En-
glish LM was adapted using bLSA-adaptation, as
described in Section 2.3. SMT was then applied us-
ing an identical setup to that used in the baseline ex-
periments.

The translation accuracy when bLSA adaptation
was incorporated is shown in Table 4. When ap-
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Figure 5: BLEU score for those 25% utterances
which resulted in different translations after bLSA
adaptation (manual transcriptions)

plied to the manual transcriptions, bLSA adaptation
improved the overall BLEU-score by 1.7% relative
(from 0.132 to 0.134). For all three shows bLSA
adaptation gained higher BLEU and NIST metrics.
A similar trend was also observed when the pro-
posed approach was applied to the 1-best ASR out-
put. On the evaluation set a relative improvement in
BLEU score of 1.0% was gained.

The semantic interpretation of the majority of ut-
terances in broadcast news are not affected by topic
context. In the experimental evaluation it was ob-
served that only 25% of utterances produced differ-
ent translation output when bLSA adaptation was
performed compared to the topic-independent base-
line. Although the improvement in translation qual-
ity (BLEU) was small when evaluated over the en-
tire test set, the improvement in BLEU score for
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these 25% utterances was significant. The trans-
lation quality for the baseline and bLSA-adaptive
system when evaluated only on these utterances is
shown in Figure 5 for the manual transcription case.
On this subset of utterances an overall improvement
in BLEU of 0.007 (5.7% relative) was gained, with
a gain of 0.012 (10.6% relative) points for the “NT-
DTV” show. A similar trend was observed when ap-
plied to the 1-best ASR output. In this case a rel-
ative improvement in BLEU of 12.6% was gained
for “NTDTV”, and for “All shows” 0.007 (3.7%)
was gained. Current evaluation metrics for trans-
lation, such as “BLEU”, do not consider the rela-
tive importance of specific words or phrases during
translation and thus are unable to highlight the true
effectiveness of the proposed approach. In future
work, we intend to investigate other evaluation met-
rics which consider the relative informational con-
tent of words.

4 Conclusions

We proposed a bilingual latent semantic model
for crosslingual LM adaptation in spoken language
translation. The bLSA model consists of a set of
monolingual LSA models in which a one-to-one
topic correspondence is enforced between the LSA
models through the sharing of variational Dirich-
let posteriors. Bootstrapping a LSA model for a
new language can be performed rapidly with topic
transfer from a well-trained LSA model of another
language. We transfer the inferred topic distribu-
tion from the input source text to the target lan-
guage effectively to obtain an in-domain target LSA
marginals for LM adaptation. Results showed that
our approach significantly reduces the word per-
plexity on the target language in both cases using
ASR hypotheses and manual transcripts. Interest-
ingly, the adaptation performance is not much af-
fected when ASR hypotheses were used. We eval-
uated the adapted LM on SMT and found that the
evaluation metrics are crucial to reflect the actual
improvement in performance. Future directions in-
clude the exploration of story-dependent LM adap-
tation with automatic story segmentation instead of
show-dependent adaptation due to the possibility of
multiple stories within a show. We will investigate
the incorporation of monolingual documents for po-

tentially better bilingual LSA modeling.
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Abstract

Semantic relatedness is a very important fac-
tor for the coreference resolution task. To
obtain this semantic information, corpus-
based approaches commonly leverage pat-
terns that can express a specific semantic
relation. The patterns, however, are de-
signed manually and thus are not necessar-
ily the most effective ones in terms of ac-
curacy and breadth. To deal with this prob-
lem, in this paper we propose an approach
that can automatically find the effective pat-
terns for coreference resolution. We explore
how to automatically discover and evaluate
patterns, and how to exploit the patterns to
obtain the semantic relatedness information.
The evaluation on ACE data set shows that
the pattern based semantic information is
helpful for coreference resolution.

1 Introduction

Semantic relatedness is a very important factor for
coreference resolution, as noun phrases used to re-
fer to the same entity should have a certain semantic
relation. To obtain this semantic information, previ-
ous work on reference resolution usually leverages
a semantic lexicon like WordNet (Vieira and Poe-
sio, 2000; Harabagiu et al., 2001; Soon et al., 2001;
Ng and Cardie, 2002). However, the drawback of
WordNet is that many expressions (especially for
proper names), word senses and semantic relations
are not available from the database (Vieira and Poe-
sio, 2000). In recent years, increasing interest has

been seen in mining semantic relations from large
text corpora. One common solution is to utilize a
pattern that can represent a specific semantic rela-
tion (e.g., “X such as Y” for is-a relation, and “X
and other Y” for other-relation). Instantiated with
two given noun phrases, the pattern is searched in a
large corpus and the occurrence number is used as
a measure of their semantic relatedness (Markert et
al., 2003; Modjeska et al., 2003; Poesio et al., 2004).

However, in the previous pattern based ap-
proaches, the selection of the patterns to represent a
specific semantic relation is done in an ad hoc way,
usually by linguistic intuition. The manually se-
lected patterns, nevertheless, are not necessarily the
most effective ones for coreference resolution from
the following two concerns:

• Accuracy. Can the patterns (e.g., “X such as
Y”) find as many NP pairs of the specific se-
mantic relation (e.g.is-a) as possible, with a
high precision?

• Breadth. Can the patterns cover a wide variety
of semantic relations, not justis-a, by which
coreference relationship is realized? For ex-
ample, in some annotation schemes like ACE,
“Beijing:China” are coreferential as the capital
and the country could be used to represent the
government. The pattern for the common “is-
a” relation will fail to identify the NP pairs of
such a “capital-country” relation.

To deal with this problem, in this paper we pro-
pose an approach which can automatically discover
effective patterns to represent the semantic relations
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for coreference resolution. We explore two issues in
our study:

(1) How to automatically acquire and evaluate
the patterns?We utilize a set of coreferential NP
pairs as seeds. For each seed pair, we search a large
corpus for the texts where the two noun phrases co-
occur, and collect the surrounding words as the sur-
face patterns. We evaluate a pattern based on its
commonality or association with the positive seed
pairs.

(2) How to mine the patterns to obtain the seman-
tic relatedness information for coreference resolu-
tion? We present two strategies to exploit the pat-
terns: choosing the top best patterns as a set of pat-
tern features, or computing the reliability of seman-
tic relatedness as a single feature. In either strategy,
the obtained features are applied to do coreference
resolution in a supervised-learning way.

To our knowledge, our work is the first effort that
systematically explores these issues in the corefer-
ence resolution task. We evaluate our approach on
ACE data set. The experimental results show that
the pattern based semantic relatedness information
is helpful for the coreference resolution.

The remainder of the paper is organized as fol-
lows. Section 2 gives some related work. Section 3
introduces the framework for coreference resolution.
Section 4 presents the model to obtain the pattern-
based semantic relatedness information. Section 5
discusses the experimental results. Finally, Section
6 summarizes the conclusions.

2 Related Work

Earlier work on coreference resolution commonly
relies on semantic lexicons for semantic relatedness
knowledge. In the system by Vieira and Poesio
(2000), for example, WordNet is consulted to obtain
the synonymy, hypernymy and meronymy relations
for resolving the definite anaphora. In (Harabagiu
et al., 2001), the path patterns in WordNet are uti-
lized to compute the semantic consistency between
NPs. Recently, Ponzetto and Strube (2006) suggest
to mine semantic relatedness from Wikipedia, which
can deal with the data sparseness problem suffered
by using WordNet.

Instead of leveraging existing lexicons, many
researchers have investigated corpus-based ap-

proaches to mine semantic relations. Garera and
Yarowsky (2006) propose an unsupervised model
which extracts hypernym relation for resloving def-
inite NPs. Their model assumes that a definite NP
and its hypernym words usually co-occur in texts.
Thus, for a definite-NP anaphor, a preceding NP that
has a high co-occurrence statistics in a large corpus
is preferred for the antecedent.

Bean and Riloff (2004) present a system called
BABAR that uses contextual role knowledge to do
coreference resolution. They apply an IE component
to unannotated texts to generate a set of extraction
caseframes. Each caseframe represents a linguis-
tic expression and a syntactic position, e.g. “mur-
der of<NP>”, “killed <patient>”. From the case-
frames, they derive different types of contextual role
knowledge for resolution, for example, whether an
anaphor and an antecedent candidate can be filled
into co-occurring caseframes, or whether they are
substitutable for each other in their caseframes. Dif-
ferent from their system, our approach aims to find
surface patterns that can directly indicate the coref-
erence relation between two NPs.

Hearst (1998) presents a method to automate the
discovery of WordNet relations, by searching for the
corresponding patterns in large text corpora. She ex-
plores several patterns for the hyponymy relation,
including “X such as Y” “ X and/or other Y”, “ X
including / especially Y” and so on. The use of
Hearst’s style patterns can be seen for the reference
resolution task. Modjeska et al. (2003) explore the
use of the Web to do theother-anaphora resolution.
In their approach, a pattern “X and other Y” is used.
Given an anaphor and a candidate antecedent, the
pattern is instantiated with the two NPs and forms a
query. The query is submitted to the Google search-
ing engine, and the returned hit number is utilized to
compute the semantic relatedness between the two
NPs. In their work, the semantic information is used
as a feature for the learner. Markert et al. (2003) and
Poesio et al. (2004) adopt a similar strategy for the
bridginganaphora resolution.

In (Hearst, 1998), the author also proposes to dis-
cover new patterns instead of using the manually
designed ones. She employs a bootstrapping algo-
rithm to learn new patterns from the word pairs with
a known relation. Based on Hearst’s work, Pan-
tel and Pennacchiotti (2006) further give a method
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which measures the reliability of the patterns based
on the strength of association between patterns and
instances, employing the pointwise mutual informa-
tion (PMI).

3 Framework of Coreference Resolution

Our coreference resolution system adopts the
common learning-based framework as employed
by Soon et al. (2001) and Ng and Cardie (2002).

In the learning framework, a training or testing
instance has the form ofi{NPi, NPj}, in which
NPj is a possible anaphor andNPi is one of its an-
tecedent candidates. An instance is associated with
a vector of features, which is used to describe the
properties of the two noun phrases as well as their
relationships. In our baseline system, we adopt the
common features for coreference resolution such as
lexical property, distance, string-matching, name-
alias, apposition, grammatical role, number/gender
agreement and so on. The same feature set is de-
scribed in (Ng and Cardie, 2002) for reference.

During training, for each encountered anaphor
NPj , one single positive training instance is created
for its closest antecedent. And a group of negative
training instances is created for every intervening
noun phrases betweenNPj and the antecedent.

Based on the training instances, a binary classifier
can be generated using any discriminative learning
algorithm, like C5 in our study. For resolution, an
input document is processed from the first NP to the
last. For each encounteredNPj , a test instance is
formed for each antecedent candidate,NPi

1. This
instance is presented to the classifier to determine
the coreference relationship.NPj will be resolved
to the candidate that is classified as positive (if any)
and has the highest confidence value.

In our study, we augment the common framework
by incorporating non-anaphors into training. We fo-
cus on the non-anaphors that the original classifier
fails to identify. Specifically, we apply the learned
classifier to all the non-anaphors in the training doc-
uments. For each non-anaphor that is classified as
positive, a negative instance is created by pairing the
non-anaphor and its false antecedent. These neg-

1For resolution of pronouns, only the preceding NPs in cur-
rent and previous two sentences are considered as antecedent
candidates. For resolution of non-pronouns, all the preceding
non-pronouns are considered.

ative instances are added into the original training
instance set for learning, which will generate a clas-
sifier with the capability of not only antecedent iden-
tification, but also non-anaphorically identification.
The new classier is applied to the testing document
to do coreference resolution as usual.

4 Patterned Based Semantic Relatedness

4.1 Acquiring the Patterns

To derive patterns to indicate a specific semantic re-
lation, a set of seed NP pairs that have the relation of
interest is needed. As described in the previous sec-
tion, we have a set of training instances formed by
NP pairs with known coreference relationships. We
can just use this set of NP pairs as the seeds. That is,
an instancei{NPi, NPj} will become a seed pair
(Ei:Ej) in which NPi corresponds toEi andNPj

corresponds toEj . In creating the seed, for a com-
mon noun, only the head word is retained while for
a proper name, the whole string is kept. For ex-
ample, instancei{“Bill Clinton”, “the former pres-
ident”} will be converted to a NP pair (“Bill Clin-
ton”:“president”).

We create the seed pair for every training instance
i{NPi, NPj}, except when (1)NPi or NPj is a
pronoun; or (2)NPi andNPj have the same head
word. We denote S+ and S- the set of seed pairs
derived from the positive and the negative training
instances, respectively. Note that a seed pair may
possibly belong to S+ can S- at the same time.

For each of the seed NP pairs (Ei:Ej), we search
in a large corpus for the strings that match the reg-
ular expression “Ei * * * Ej” or “ Ej * * * Ei”,
where * is a wildcard for any word or symbol. The
regular expression is defined as such that all the co-
occurrences ofEi andEj with at most three words
(or symbols) in between are retrieved.

For each retrieved string, we extract a surface pat-
tern by replacing expressionEi with a mark<#t1#>
andEj with <#t2#>. If the string is followed by a
symbol, the symbol will be also included in the pat-
tern. This is to create patterns like “X * * * Y [, . ?]”
whereY, with a high possibility, is the head word,
but not a modifier of another noun phrase.

As an example, consider the pair (“Bill Clin-
ton”:“president”). Suppose that two sentences in a
corpus can be matched by the regular expressions:
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(S1) “ Bill Clinton is electedPresident of the
United States.”

(S2) “The USPresident, Mr Bill Clinton, to-
day advised India to move towards nuclear non-
proliferation and begin a dialogue with Pakistan to
... ”.

The patterns to be extracted for (S1) and (S2), re-
spectively, are

P1:<#t1#> is elected <#t2#>
P2:<#t2#> , Mr <#t1#> ,
We record the number of strings matched by a pat-

ternp instantiated with (Ei:Ej), noted|(Ei, p, Ej)|,
for later use.

For each seed pair, we generate a list of surface
patterns in the above way. We collect all the pat-
terns derived from the positive seed pairs as a set
of reference patterns, which will be scored and used
to evaluate the semantic relatedness for any new NP
pair.

4.2 Scoring the Patterns

4.2.1 Frequency

One possible scoring scheme is to evaluate a pat-
tern based on its commonality to positive seed pairs.
The intuition here is that the more often a pattern is
seen for the positive seed pairs, the more indicative
the pattern is to find positive coreferential NP pairs.
Based on this idea, we score a pattern by calculating
the number of positive seed pairs whose pattern list
contains the pattern. Formally, supposing the pat-
tern list associated with a seed pairs is PList(s), the
frequency score of a patternp is defined as

Freqency(p) = |{s|s ∈ S+, p ∈ PList(s)}| (1)

4.2.2 Reliability

Another possible way to evaluate a pattern is
based on its reliability, i.e., the degree that the pat-
tern is associated with the positive coreferential NPs.
In our study, we use pointwise mutual informa-
tion (Cover and Thomas, 1991) to measure associ-
ation strength, which has been proved effective in
the task of semantic relation identification (Pantel
and Pennacchiotti, 2006). Under pointwise mutual
information (PMI), the strength of association be-
tween two events x and y is defined as follows:

pmi(x, y) = log
P (x, y)

P (x)P (y)
(2)

Thus the association between a patternp and a
positive seed pairs:(Ei:Ej) is:

pmi(p, (Ei : Ej)) = log

|(Ei,p,Ej)|
|(∗,∗,∗)|

|(Ei,∗,Ej)|
|(∗,∗,∗)|

|(∗,p,∗)|
|(∗,∗,∗)|

(3)

where|(Ei,p,Ej)| is the count of strings matched
by patternp instantiated withEi andEj . Asterisk *
represents a wildcard, that is:

|(Ei, ∗, Ej)| =
∑

p∈PList(Ei:Ej)

|(Ei, p, Ej)| (4)

|(∗, p, ∗)| =
∑

(Ei:Ej)∈S+∪S−

|(Ei, p, Ej)| (5)

|(∗, ∗, ∗)| =
∑

(Ei:Ej)∈S+∪S−;p∈Plist(Ei:Ej)

|(Ei, p, Ej)| (6)

The reliability of pattern is the average strength of
association across each positive seed pair:

r(p) =

∑
s∈S+

pmi(p,s)
max pmi

|S + |
(7)

Heremaxpmi is used for the normalization pur-
pose, which is the maximum PMI between all pat-
terns and all positive seed pairs.

4.3 Exploiting the Patterns

4.3.1 Patterns Features

One strategy is to directly use the reference pat-
terns as a set of features for classifier learning and
testing. To select the most effective patterns for
the learner, we rank the patterns according to their
scores and then choose the top patterns (first 100 in
our study) as the features.

As mentioned, the frequency score is based on the
commonality of a pattern to the positive seed pairs.
However, if a pattern also occurs frequently for the
negative seed pairs, it should be not deemed a good
feature as it may lead to many false positive pairs
during real resolution. To take this factor into ac-
count, we filter the patterns based on their accuracy,
which is defined as follows:

Accuracy(p) =
|{s|s ∈ S+, p ∈ PList(s)}|

|{s|s ∈ S + ∪ S−, p ∈ PList(s)}|
(8)

A pattern with an accuracy below threshold 0.5 is
eliminated from the reference pattern set. The re-
maining patterns are sorted as normal, from which
the top 100 patterns are selected as features.
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NWire NPaper BNews
R P F R P F R P F

Normal Features 54.5 80.3 64.9 56.6 76.0 64.9 52.7 75.3 62.0
+ ”X such as Y” proper names 55.1 79.0 64.9 56.8 76.1 65.0 52.6 75.1 61.9

all types 55.1 78.3 64.7 56.8 74.7 64.4 53.0 74.4 61.9
+ “X and other Y” proper names 54.7 79.9 64.9 56.4 75.9 64.7 52.674.9 61.8

all types 54.8 79.8 65.0 56.4 75.9 64.7 52.8 73.3 61.4

+ pattern features (frequency) proper names 58.7 75.8 66.2 57.573.9 64.7 54.0 71.1 61.4
all types 59.7 67.3 63.3 57.4 62.4 59.8 55.9 57.7 56.8

+ pattern features (filtered frequency) proper names 57.8 79.1 66.8 56.9 75.1 64.7 54.1 72.4 61.9
all types 58.1 77.4 66.4 56.8 71.2 63.2 55.0 68.1 60.9

+ pattern features (PMIreliability) proper names 58.8 76.9 66.6 58.1 73.8 65.0 54.3 72.0 61.9
all types 59.6 70.4 64.6 58.7 61.6 60.1 56.0 58.8 57.4

+ single reliability feature proper names 57.4 80.867.1 56.6 76.2 65.0 54.0 74.7 62.7
all types 57.7 76.4 65.7 56.7 75.9 64.9 55.1 69.5 61.5

Table 1: The results of different systems for coreference resolution

Each selected patternp is used as a single fea-
ture, PFp. For an instancei{NPi, NPj}, a list of
patterns is generated for (Ei:Ej) in the same way as
described in Section 4.1. The value of PFp for the
instance is simply|(Ei, p, Ej)|.

The set of pattern features is used together with
the other normal features to do the learning and test-
ing. Thus, the actual importance of a pattern in
coreference resolution is automatically determined
in a supervised learning way.

4.3.2 Semantic Relatedness Feature

Another strategy is to use only one semantic fea-
ture which is able to reflect the reliability that a NP
pair is related in semantics. Intuitively, a NP pair
with strong semantic relatedness should be highly
associated with as many reliable patterns as possi-
ble. Based on this idea, we define the semantic re-
latedness feature (SRel) as follows:

SRel(i{NPi, NPj}) =

1000 ∗
∑

p∈PList(Ei:Ej)

pmi(p, (Ei : Ej)) ∗ r(p) (9)

where pmi(p, (Ei:Ej)) is the pointwise mutual in-
formation between patternp and a NP pair (Ei:Ej),
as defined in Eq. 3.r(p) is the reliability score ofp
(Eq. 7). As a relatedness value is always below 1,
we multiple it by 1000 so that the feature value will
be of integer type with a range from 0 to 1000. Note
that among PList(Ei:Ej), only the reference patterns
are involved in the feature computing.

5 Experiments and Discussion

5.1 Experimental setup

In our study we did evaluation on the ACE-2 V1.0
corpus (NIST, 2003), which contains two data set,
training and devtest, used for training and testing re-
spectively. Each of these sets is further divided by
three domains: newswire (NWire), newspaper (NPa-
per), and broadcast news (BNews).

An input raw text was preprocessed automati-
cally by a pipeline of NLP components, includ-
ing sentence boundary detection, POS-tagging, Text
Chunking and Named-Entity Recognition. Two dif-
ferent classifiers were learned respectively for re-
solving pronouns and non-pronouns. As mentioned,
the pattern based semantic information was only ap-
plied to the non-pronoun resolution. For evaluation,
Vilain et al. (1995)’s scoring algorithm was adopted
to compute the recall and precision of the whole
coreference resolution.

For pattern extraction and feature computing, we
used Wikipedia, a web-based free-content encyclo-
pedia, as the text corpus. We collected the English
Wikipedia database dump in November 2006 (re-
fer to http://download.wikimedia.org/). After all the
hyperlinks and other html tags were removed, the
whole pure text contains about 220 Million words.

5.2 Results and Discussion

Table 1 lists the performance of different coref-
erence resolution systems. The first line of the
table shows the baseline system that uses only
the common features proposed in (Ng and Cardie,
2002). From the table, our baseline system can
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NO Frequency Frequency (Filtered) PMI Reliabilty
1 <#t1> <#t2> <#t2> | | <#t1> | <#t1> : <#t2>
2 <#t2> <#t1> <#t1> ) is a<#t2> <#t2> : <#t1>
3 <#t1> , <#t2> <#t1> ) is an<#t2> <#t1> . the<#t2>
4 <#t2> , <#t1> <#t2> ) is an<#t1> <#t2> ( <#t1> )
5 <#t1> . <#t2> <#t2> ) is a<#t1> <#t1> ( <#t2>
6 <#t1> and<#t2> <#t1> or the<#t2> <#t1> ( <#t2> )
7 <#t2> . <#t1> <#t1> ( the<#t2> <#t1> | | <#t2> |
8 <#t1> . the<#t2> <#t1> . during the<#t2> <#t2> | | <#t1> |
9 <#t2> and<#t1> <#t1> | <#t2> <#t2> , the<#t1>
10 <#t1> , the<#t2> <#t1> , an<#t2> <#t1> , the<#t2>
11 <#t2> . the<#t1> <#t1> ) was a<#t2> <#t2> ( <#t1>
12 <#t2> , the<#t1> <#t1> in the<#t2> - <#t1> , <#t2>
13 <#t2> <#t1> , <#t1> - <#t2> <#t1> and the<#t2>
14 <#t1> <#t2> , <#t1> ) was an<#t2> <#t1> . <#t2>
15 <#t1> : <#t2> <#t1> , many<#t2> <#t1> ) is a<#t2>
16 <#t1> <#t2> . <#t2> ) was a<#t1> <#t1> during the<#t2>
17 <#t2> <#t1> . <#t1> ( <#t2> . <#t1> <#t2> .
18 <#t1> ( <#t2> ) <#t2> | <#t1> <#t1> ) is an<#t2>
19 <#t1> and the<#t2> <#t1> , not the<#t2> <#t2> in <#t1> .
20 <#t2> ( <#t1> ) <#t2> , many<#t1> <#t2> , <#t1>
. . . . . . . . . . . .

Table 2: Top patterns chosen under different scoring schemes

achieve a good precision (above 75%-80%) with a
recall around 50%-60%. The overall F-measure for
NWire, NPaper and BNews is 64.9%, 64.9% and
62.0% respectively. The results are comparable to
those reported in (Ng, 2005) which uses similar fea-
tures and gets an F-measure of about 62% for the
same data set.

The rest lines of Table 1 are for the systems us-
ing the pattern based information. In all the sys-
tems, we examine the utility of the semantic infor-
mation in resolving different types of NP Pairs: (1)
NP Pairs containing proper names (i.e., Name:Name
or Name:Definites), and (2) NP Pairs of all types.

In Table 1 (Line 2-5), we also list the results of
incorporating two commonly used patterns, “X(s)
such as Y” and “X and other Y(s)”. We can find that
neither of the manually designed patterns has signif-
icant impact on the resolution performance. For all
the domains, the manual patterns just achieve slight
improvement in recall (below 0.6%), indicating that
coverage of the patterns is not broad enough.

5.2.1 Pattern Features

In Section 4.3.1 we propose a strategy that di-
rectly uses the patterns as features. Table 2 lists the
top patterns that are sorted based onfrequency, fil-
tered frequency (by accuracy), andPMI reliability,
on the NWire domain for illustration.

From the table, evaluated only based onfre-
quency, the top patterns are those that indicate the
appositive structure like “X, an/a/the Y”. However,
if filtered by accuracy, patterns of such a kind will
be removed. Instead, the top patterns with both high
frequency and high accuracy are those for the copula
structure, like “X is/was/are Y”. Sorted by PMI reli-

ability, patterns for the above two structures can be
seen in the top of the list. These results are consis-
tent with the findings in (Cimiano and Staab, 2004)
that the appositive and copula structures are indica-
tive to find theis-arelation. Also, the two commonly
used patterns “X(s) such as Y” and “X and other
Y(s)” were found in the feature lists (not shown in
the table). Their importance for coreference resolu-
tion will be determined automatically by the learn-
ing algorithm.

An interesting pattern seen in the lists is “X || Y |”,
which represents the cases when Y and X appear in
the same of line of a table in Wikipedia. For exam-
ple, the following text
“American|| United States| Washington D.C.| . . .”
is found in the table “list of empires”. Thus the pair
“American:United States”, which is deemed coref-
erential in ACE, can be identified by the pattern.

The sixth till the eleventh lines of Table 1 list the
results of the system with pattern features. From the
table, adding the pattern features brings the improve-
ment of the recall against the baseline. Take the sys-
tem based onfiltered frequencyas an example. We
can observe that the recall increases by up to 3.3%
(for NWire). However, we see the precision drops
(up to 1.2% for NWire) at the same time. Over-
all the system achieves an F-measure better than the
baseline in NWire (1.9%), while equal (±0.2%) in
NPaper and BNews.

Among the three ranking schemes, simply using
frequencyleads to the lowest precision. By contrast,
usingfiltered frequencyyields the highest precision
with nevertheless the lowest recall. It is reasonable
since the lowaccuracy features prone to false posi-
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NameAlias = 1: ...
NameAlias = 0:
:..Appositive = 1: ...

Appositive = 0:
:..P014 > 0:

:...P003 <= 4: 0 (3)
: P003 > 4: 1 (25)
P014 <= 0:
:..P004 > 0:...

P004 <= 0:
:..P027 > 0: 1 (25/7)

P027 <= 0:
:..P002 > 0: ...

P002 <= 0:
:..P005 > 0: 1 (49/22)

P005 <= 0:
:..String_Match = 1: .

String_Match = 0: .

// p002: <t1> ) is a <t2>
// P003: <t1> ) is an <t2>
// P004: <t2> ) is an <t1>
// p005: <t2> ) is a <t1>
// P014: <t1> ) was an <t2>
// p027: <t1> , ( <t2> ,

Figure 1: The decision tree (NWire domain) for the
system using pattern features (filtered frequency)
(featureString Match records whether the string of anaphor
NP j matches that of a candidate antecedent NPi)

tive NP pairs are eliminated, at the price of recall.
Using PMI Reliability can achieve the highest re-
call with a medium level of precision. However, we
do not find significant difference in the overall F-
measure for all these three schemes. This should be
due to the fact that the pattern features need to be
further chosen by the learning algorithm, and only
those patterns deemed effective by the learner will
really matter in the real resolution.

From the table, the pattern features only work
well for NP pairs containing proper names. Ap-
plied on all types of NP pairs, the pattern features
further boost the recall of the systems, but in the
meanwhile degrade the precision significantly. The
F-measure of the systems is even worse than that
of the baseline. Our error analysis shows that a
non-anaphor is often wrongly resolved to a false an-
tecedent once the two NPs happen to satisfy a pat-
tern feature, which affects precision largely (as an
evidence, the decrease of precision is less significant
when usingfiltered frequencythan usingfrequency).
Still, these results suggest that we just apply the pat-
tern based semantic information in resolving proper
names which, in fact, is more compelling as the se-
mantic information of common nouns could be more
easily retrieved from WordNet.

We also notice that the patterned based semantic
information seems more effective in the NWire do-
main than the other two. Especially for NPaper, the
improvement in F-measure is less than 0.1% for all
the systems tested. The error analysis indicates it
may be because (1) there are less NP pairs in NPa-

per than in NWire that require the external seman-
tic knowledge for resolution; and (2) For many NP
pairs that require the semantic knowledge, no co-
occurrence can be found in the Wikipedia corpus.
To address this problem, we could resort to the Web
which contains a larger volume of texts and thus
could lead to more informative patterns. We would
like to explore this issue in our future work.

In Figure 1, we plot the decision tree learned
with the pattern features for non-pronoun resolution
(NWire domain,filtered frequency), which visually
illustrates which features are useful in the reference
determination. We can find the pattern features oc-
cur in the top of the decision tree, among the features
for namealias, appositionandstring-matchingthat
are crucial for coreference resolution as reported in
previous work (Soon et al., 2001). Most of the pat-
tern features deemed important by the learner are for
the copula structure.

5.2.2 Single Semantic Relatedness Feature

Section 4.3.2 presents another strategy to exploit
the patterns, which uses a single feature to reflect the
semantic relatedness between NP pairs. The last two
lines of Table 1 list the results of such a system.

Observed from the table, the system with the sin-
gle semantic relatedness feature beats those with
other solutions. Compared with the baseline, the
system can get improvement in recall (up to 2.9%
as in NWire), with a similar or even higher preci-
sion. The overall F-measure it produces is 67.1%,
65.0% and 62.7%, better than the baseline in all the
domains. Especially in the NWire domain, we can
see the significant (t-test, p≤ 0.05) improvement of
2.1% in F-measure. When applied on All-Type NP
pairs, the degrade of performance is less significant
as using pattern features. The resulting performance
is better than the baseline or equal. Compared with
the systems using the pattern features, it can still
achieve a higher precision and F-measure (with a lit-
tle loss in recall) .

There are several reasons why the single seman-
tic relatedness feature (SRel) can perform better than
the set of pattern features. Firstly, the feature value
of SReltakes into consideration the information of
all the patterns, instead of only the selected patterns.
Secondly, since theSRelfeature is computed based
on all the patterns, it reduces the risk of false posi-
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NameAlias = 1: ...
NameAlias = 0:
:..Appositive = 1: ...

Appositive = 0:
:..SRel > 28:

:..SRel > 47: ...
: SRel <= 47: ...
SRel <= 28:
:..String_Match = 1: ...

String_Match = 0: ...

Figure 2: The decision tree (Nwire) for the system
using the single semantic relatedness feature

tive when a NP pair happens to satisfy one or several
pattern features. Lastly, from the point of view of
machine learning, using only one semantic feature,
instead of hundreds of pattern features, can avoid
overfitting and thus benefit the classifier learning.

In Figure 2, we also show the decision tree learned
with the semantic relatedness feature. We observe
that the decision tree is simpler than that with pat-
tern features as depicted in Figure 1. After feature
name-aliasand apposite, the classifier checks dif-
ferent ranges of theSRelvalue and make different
resolution decision accordingly. This figure further
illustrates the importance of the semantic feature.

6 Conclusions

In this paper we present a pattern based approach to
coreference resolution. Different from the previous
work which utilizes manually designed patterns, our
approach can automatically discover the patterns ef-
fective for the coreference resolution task. In our
study, we explore how to acquire and evaluate pat-
terns, and investigate how to exploit the patterns to
mine semantic relatedness information for corefer-
ence resolution. The evaluation on ACE data set
shows that the patterned based features, when ap-
plied on NP pairs containing proper names, can ef-
fectively help the performance of coreference res-
olution in the recall (up to 4.3%) and the overall
F-measure (up to 2.1%). The results also indicate
that using the single semantic relatedness feature has
more advantages than using a set of pattern features.

For future work, we intend to investigate our
approach in more difficult tasks like the bridging
anaphora resolution, in which the semantic relations
involved are more complicated. Also, we would like
to explore the approach in technical (e.g., biomedi-
cal) domains, where jargons are frequently seen and
the need for external knowledge is more compelling.

Acknowledgements This research is supported by a

Specific Targeted Research Project (STREP) of the European

Union’s 6th Framework Programme within IST call 4, Boot-

strapping Of Ontologies and Terminologies STrategic REsearch

Project (BOOTStrep).

References
D. Bean and E. Riloff. 2004. Unsupervised learning of contex-

tual role knowledge for coreference resolution. InProceed-
ings of NAACL, pages 297–304.

P. Cimiano and S. Staab. 2004. Learning by googling.
SIGKDD Explorations Newsletter, 6(2):24–33.

T. Cover and J. Thomas. 1991.Elements of Information The-
ory. Hohn Wiley & Sons.

N. Garera and D. Yarowsky. 2006. Resolving and generating
definite anaphora by modeling hypernymy using unlabeled
corpora. InProceedings of CoNLL, pages 37–44.

S. Harabagiu, R. Bunescu, and S. Maiorano. 2001. Text knowl-
edge mining for coreference resolution. InProceedings of
NAACL, pages 55–62.

M. Hearst. 1998. Automated discovery of wordnet relations. In
Christiane Fellbaum, editor,WordNet: An Electronic Lexical
Database and Some of its Applications. MIT Press, Cam-
bridge, MA.

K. Markert, M. Nissim, and N. Modjeska. 2003. Using the
web for nominal anaphora resolution. InProceedings of the
EACL workshop on Computational Treatment of Anaphora,
pages 39–46.

N. Modjeska, K. Markert, and M. Nissim. 2003. Using the
web in machine learning for other-anaphora resolution. In
Proceedings of EMNLP, pages 176–183.

V. Ng and C. Cardie. 2002. Improving machine learning ap-
proaches to coreference resolution. InProceedings of ACL,
pages 104–111, Philadelphia.

V. Ng. 2005. Machine learning for coreference resolution:
From local classification to global ranking. InProceedings
of ACL, pages 157–164.

P. Pantel and M. Pennacchiotti. 2006. Espresso: Leveraging
generic patterns for automatically harvesting semantic rela-
tions. InProceedings of ACL, pages 113–1200.

M. Poesio, R. Mehta, A. Maroudas, and J. Hitzeman. 2004.
Learning to resolve bridging references. InProceedings of
ACL, pages 143–150.

S. Ponzetto and M. Strube. 2006. Exploiting semantic role
labeling, wordnet and wikipedia for coreference resolution.
In Proceedings of NAACL, pages 192–199.

W. Soon, H. Ng, and D. Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.Computa-
tional Linguistics, 27(4):521–544.

R. Vieira and M. Poesio. 2000. An empirically based system
for processing definite descriptions.Computational Linguis-
tics, 27(4):539–592.

M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and
L. Hirschman. 1995. A model-theoretic coreference scoring
scheme. InProceedings of the Sixth Message understand-
ing Conference (MUC-6), pages 45–52, San Francisco, CA.
Morgan Kaufmann Publishers.

535



Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 536–543,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Semantic Class Induction and Coreference Resolution

Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

vince@hlt.utdallas.edu

Abstract

This paper examines whether a learning-
based coreference resolver can be improved
using semantic class knowledge that is au-
tomatically acquired from a version of the
Penn Treebank in which the noun phrases
are labeled with their semantic classes. Ex-
periments on the ACE test data show that a
resolver that employs such induced semantic
class knowledge yields a statistically signif-
icant improvement of 2% in F-measure over
one that exploits heuristically computed se-
mantic class knowledge. In addition, the in-
duced knowledge improves the accuracy of
common noun resolution by 2-6%.

1 Introduction

In the past decade, knowledge-lean approaches have
significantly influenced research in noun phrase
(NP) coreference resolution — the problem of deter-
mining which NPs refer to the same real-world en-
tity in a document. In knowledge-lean approaches,
coreference resolvers employ only morpho-syntactic
cues as knowledge sources in the resolution process
(e.g., Mitkov (1998), Tetreault (2001)). While these
approaches have been reasonably successful (see
Mitkov (2002)), Kehler et al. (2004) speculate that
deeper linguistic knowledge needs to be made avail-
able to resolvers in order to reach the next level of
performance. In fact, semantics plays a crucially im-
portant role in the resolution of common NPs, allow-
ing us to identify the coreference relation between
two lexically dissimilar common nouns (e.g., talks

and negotiations) and to eliminate George W. Bush
from the list of candidate antecedents of the city, for
instance. As a result, researchers have re-adopted
the once-popular knowledge-rich approach, investi-
gating a variety of semantic knowledge sources for
common noun resolution, such as the semantic rela-
tions between two NPs (e.g., Ji et al. (2005)), their
semantic similarity as computed using WordNet
(e.g., Poesio et al. (2004)) or Wikipedia (Ponzetto
and Strube, 2006), and the contextual role played by
an NP (see Bean and Riloff (2004)).

Another type of semantic knowledge that has
been employed by coreference resolvers is the se-
mantic class (SC) of an NP, which can be used to dis-
allow coreference between semantically incompat-
ible NPs. However, learning-based resolvers have
not been able to benefit from having an SC agree-
ment feature, presumably because the method used
to compute the SC of an NP is too simplistic: while
the SC of a proper name is computed fairly accu-
rately using a named entity (NE) recognizer, many
resolvers simply assign to a common noun the first
(i.e., most frequent) WordNet sense as its SC (e.g.,
Soon et al. (2001), Markert and Nissim (2005)). It
is not easy to measure the accuracy of this heuristic,
but the fact that the SC agreement feature is not used
by Soon et al.’s decision tree coreference classifier
seems to suggest that the SC values of the NPs are
not computed accurately by this first-sense heuristic.

Motivated in part by this observation, we exam-
ine whether automatically induced semantic class
knowledge can improve the performance of a
learning-based coreference resolver, reporting eval-
uation results on the commonly-used ACE corefer-
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ence corpus. Our investigation proceeds as follows.
Train a classifier for labeling the SC of an NP.
In ACE, we are primarily concerned with classify-
ing an NP as belonging to one of the ACE seman-
tic classes. For instance, part of the ACE Phase 2
evaluation involves classifying an NP as PERSON,
ORGANIZATION, GPE (a geographical-political re-
gion), FACILITY, LOCATION, or OTHERS. We adopt
a corpus-based approach to SC determination, re-
casting the problem as a six-class classification task.
Derive two knowledge sources for coreference
resolution from the induced SCs. The first
knowledge source (KS) is semantic class agreement
(SCA). Following Soon et al. (2001), we represent
SCA as a binary value that indicates whether the in-
duced SCs of the two NPs involved are the same or
not. The second KS is mention, which is represented
as a binary value that indicates whether an NP be-
longs to one of the five ACE SCs mentioned above.
Hence, the mention value of an NP can be readily
derived from its induced SC: the value is NO if its
SC is OTHERS, and YES otherwise. This KS could
be useful for ACE coreference, since ACE is con-
cerned with resolving only NPs that are mentions.
Incorporate the two knowledge sources in a
coreference resolver. Next, we investigate whether
these two KSs can improve a learning-based base-
line resolver that employs a fairly standard feature
set. Since (1) the two KSs can each be repre-
sented in the resolver as a constraint (for filtering
non-mentions or disallowing coreference between
semantically incompatible NPs) or as a feature, and
(2) they can be applied to the resolver in isolation or
in combination, we have eight ways of incorporating
these KSs into the baseline resolver.

In our experiments on the ACE Phase 2 coref-
erence corpus, we found that (1) our SC induc-
tion method yields a significant improvement of 2%
in accuracy over Soon et al.’s first-sense heuristic
method as described above; (2) the coreference re-
solver that incorporates our induced SC knowledge
by means of the two KSs mentioned above yields
a significant improvement of 2% in F-measure over
the resolver that exploits the SC knowledge com-
puted by Soon et al.’s method; (3) the mention KS,
when used in the baseline resolver as a constraint,
improves the resolver by approximately 5-7% in F-
measure; and (4) SCA, when employed as a feature

by the baseline resolver, improves the accuracy of
common noun resolution by about 5-8%.

2 Related Work

Mention detection. Many ACE participants have
also adopted a corpus-based approach to SC deter-
mination that is investigated as part of the mention
detection (MD) task (e.g., Florian et al. (2006)).
Briefly, the goal of MD is to identify the boundary
of a mention, its mention type (e.g., pronoun, name),
and its semantic type (e.g., person, location). Un-
like them, (1) we do not perform the full MD task,
as our goal is to investigate the role of SC knowl-
edge in coreference resolution; and (2) we do not
use the ACE training data for acquiring our SC clas-
sifier; instead, we use the BBN Entity Type Corpus
(Weischedel and Brunstein, 2005), which consists of
all the Penn Treebank Wall Street Journal articles
with the ACE mentions manually identified and an-
notated with their SCs. This provides us with a train-
ing set that is approximately five times bigger than
that of ACE. More importantly, the ACE participants
do not evaluate the role of induced SC knowledge
in coreference resolution: many of them evaluate
coreference performance on perfect mentions (e.g.,
Luo et al. (2004)); and for those that do report per-
formance on automatically extracted mentions, they
do not explain whether or how the induced SC infor-
mation is used in their coreference algorithms.
Joint probabilistic models of coreference. Re-
cently, there has been a surge of interest in im-
proving coreference resolution by jointly modeling
coreference with a related task such as MD (e.g.,
Daumé and Marcu (2005)). However, joint models
typically need to be trained on data that is simulta-
neously annotated with information required by all
of the underlying models. For instance, Daumé and
Marcu’s model assumes as input a corpus annotated
with both MD and coreference information. On the
other hand, we tackle coreference and SC induction
separately (rather than jointly), since we train our SC
determination model on the BBN Entity Type Cor-
pus, where coreference information is absent.

3 Semantic Class Induction

This section describes how we train and evaluate a
classifier for determining the SC of an NP.
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3.1 Training the Classifier

Training corpus. As mentioned before, we use
the BBN Entity Type Corpus for training the SC
classifier. This corpus was originally developed to
support the ACE and AQUAINT programs and con-
sists of annotations of 12 named entity types and
nine nominal entity types. Nevertheless, we will
only make use of the annotations of the five ACE
semantic types that are present in our ACE Phase 2
coreference corpus, namely, PERSON, ORGANIZA-
TION, GPE, FACILITY, and LOCATION.
Training instance creation. We create one train-
ing instance for each proper or common NP (ex-
tracted using an NP chunker and an NE recognizer)
in each training text. Each instance is represented
by a set of lexical, syntactic, and semantic features,
as described below. If the NP under consideration is
annotated as one of the five ACE SCs in the corpus,
then the classification of the associated training in-
stance is simply the ACE SC value of the NP. Other-
wise, the instance is labeled as OTHERS. This results
in 310063 instances in the training set.
Features. We represent the training instance for a
noun phrase, NPi, using seven types of features:
(1) WORD: For each word w in NPi, we create a
WORD feature whose value is equal to w. No fea-
tures are created from stopwords, however.
(2) SUBJ VERB: If NPi is involved in a subject-
verb relation, we create a SUBJ VERB feature whose
value is the verb participating in the relation. We
use Lin’s (1998b) MINIPAR dependency parser to
extract grammatical relations. Our motivation here
is to coarsely model subcategorization.
(3) VERB OBJ: A VERB OBJ feature is created in
a similar fashion as SUBJ VERB if NPi participates
in a verb-object relation. Again, this represents our
attempt to coarsely model subcategorization.
(4) NE: We use BBN’s IdentiFinder (Bikel et al.,
1999), a MUC-style NE recognizer to determine the
NE type of NPi. If NPi is determined to be a PERSON
or ORGANIZATION, we create an NE feature whose
value is simply its MUC NE type. However, if NPi
is determined to be a LOCATION, we create a feature
with value GPE (because most of the MUC LOCA-
TION NEs are ACE GPE NEs). Otherwise, no NE
feature will be created (because we are not interested
in the other MUC NE types).

ACE SC Keywords
PERSON person
ORGANIZATION social group
FACILITY establishment, construction, building, facil-

ity, workplace
GPE country, province, government, town, city,

administration, society, island, community
LOCATION dry land, region, landmass, body of water,

geographical area, geological formation

Table 1: List of keywords used in WordNet search
for generating WN CLASS features.

(5) WN CLASS: For each keyword w shown in the
right column of Table 1, we determine whether the
head noun of NPi is a hyponym of w in WordNet,
using only the first WordNet sense of NPi.1 If so,
we create a WN CLASS feature with w as its value.
These keywords are potentially useful features be-
cause some of them are subclasses of the ACE SCs
shown in the left column of Table 1, while others
appear to be correlated with these ACE SCs.2
(6) INDUCED CLASS: Since the first-sense heuris-
tic used in the previous feature may not be accurate
in capturing the SC of an NP, we employ a corpus-
based method for inducing SCs that is motivated by
research in lexical semantics (e.g., Hearst (1992)).
Given a large, unannotated corpus3 , we use Identi-
Finder to label each NE with its NE type and MINI-
PAR to extract all the appositive relations. An ex-
ample extraction would be <Eastern Airlines, the
carrier>, where the first entry is a proper noun la-
beled with either one of the seven MUC-style NE
types4 or OTHERS5 and the second entry is a com-
mon noun. We then infer the SC of a common
noun as follows: (1) we compute the probability
that the common noun co-occurs with each of the
eight NE types6 based on the extracted appositive
relations, and (2) if the most likely NE type has a
co-occurrence probability above a certain threshold
(we set it to 0.7), we create a INDUCED CLASS fea-

1This is motivated by Lin’s (1998c) observation that a coref-
erence resolver that employs only the first WordNet sense per-
forms slightly better than one that employs more than one sense.

2The keywords are obtained via our experimentation with
WordNet and the ACE SCs of the NPs in the ACE training data.

3We used (1) the BLLIP corpus (30M words), which con-
sists of WSJ articles from 1987 to 1989, and (2) the Reuters
Corpus (3.7GB data), which has 806,791 Reuters articles.

4Person, organization, location, date, time, money, percent.
5This indicates the proper noun is not a MUC NE.
6For simplicity, OTHERS is viewed as an NE type here.
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ture for NPi whose value is the most likely NE type.
(7) NEIGHBOR: Research in lexical semantics sug-
gests that the SC of an NP can be inferred from its
distributionally similar NPs (see Lin (1998a)). Mo-
tivated by this observation, we create for each of
NPi’s ten most semantically similar NPs a NEIGH-
BOR feature whose value is the surface string of
the NP. To determine the ten nearest neighbors, we
use the semantic similarity values provided by Lin’s
dependency-based thesaurus, which is constructed
using a distributional approach combined with an
information-theoretic definition of similarity.
Learning algorithms. We experiment with four
learners commonly employed in language learning:
Decision List (DL): We use the DL learner as de-
scribed in Collins and Singer (1999), motivated by
its success in the related tasks of word sense dis-
ambiguation (Yarowsky, 1995) and NE classifica-
tion (Collins and Singer, 1999). We apply add-one
smoothing to smooth the class posteriors.
1-Nearest Neighbor (1-NN): We use the 1-NN clas-
sifier as implemented in TiMBL (Daelemans et al.,
2004), employing dot product as the similarity func-
tion (which defines similarity as the number of com-
mon feature-value pairs between two instances). All
other parameters are set to their default values.
Maximum Entropy (ME): We employ Lin’s ME
implementation7 , using a Gaussian prior for smooth-
ing and running the algorithm until convergence.
Naive Bayes (NB): We use an in-house implementa-
tion of NB, using add-one smoothing to smooth the
class priors and the class-conditional probabilities.

In addition, we train an SVM classifier for SC
determination by combining the output of five clas-
sification methods: DL, 1-NN, ME, NB, and Soon
et al.’s method as described in the introduction,8

with the goal of examining whether SC classifica-
tion accuracy can be improved by combining the
output of individual classifiers in a supervised man-
ner. Specifically, we (1) use 80% of the instances
generated from the BBN Entity Type Corpus to train
the four classifiers; (2) apply the four classifiers and
Soon et al.’s method to independently make predic-

7See http://www.cs.ualberta.ca/∼lindek/downloads.htm
8In our implementation of Soon’s method, we label an in-

stance as OTHERS if no NE or WN CLASS feature is generated;
otherwise its label is the value of the NE feature or the ACE SC
that has the WN CLASS features as its keywords (see Table 1).

PER ORG GPE FAC LOC OTH
Training 19.8 9.6 11.4 1.6 1.2 56.3
Test 19.5 9.0 9.6 1.8 1.1 59.0

Table 2: Distribution of SCs in the ACE corpus.

tions for the remaining 20% of the instances; and (3)
train an SVM classifier (using the LIBSVM pack-
age (Chang and Lin, 2001)) on these 20% of the in-
stances, where each instance, i, is represented by a
set of 31 binary features. More specifically, let Li =
{li1, li2, li3, li4, li5} be the set of predictions that we
obtained for i in step (2). To represent i, we generate
one feature from each non-empty subset of Li.

3.2 Evaluating the Classifiers

For evaluation, we use the ACE Phase 2 coreference
corpus, which comprises 422 training texts and 97
test texts. Each text has its mentions annotated with
their ACE SCs. We create our test instances from
the ACE texts in the same way as the training in-
stances described in Section 3.1. Table 2 shows the
percentages of instances corresponding to each SC.

Table 3 shows the accuracy of each classifier (see
row 1) for the ACE training set (54641 NPs, with
16414 proper NPs and 38227 common NPs) and the
ACE test set (13444 NPs, with 3713 proper NPs and
9731 common NPs), as well as their performance on
the proper NPs (row 2) and the common NPs (row
3). We employ as our baseline system the Soon et al.
method (see Footnote 8), whose accuracy is shown
under the Soon column. As we can see, DL, 1-NN,
and SVM show a statistically significant improve-
ment over the baseline for both data sets, whereas
ME and NB perform significantly worse.9 Addi-
tional experiments are needed to determine the rea-
son for ME and NB’s poor performance.

In an attempt to gain additional insight into the
performance contribution of each type of features,
we conduct feature ablation experiments using the
DL classifier (DL is chosen simply because it is the
best performer on the ACE training set). Results are
shown in Table 4, where each row shows the accu-
racy of the DL trained on all types of features except
for the one shown in that row (All), as well as accu-
racies on the proper NPs (PN) and the common NPs
(CN). For easy reference, the accuracy of the DL

9We use Noreen’s (1989) Approximate Randomization test
for significance testing, with p set to .05 unless otherwise stated.
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Training Set Test Set
Soon DL 1-NN ME NB SVM Soon DL 1-NN ME NB SVM

1 Overall 83.1 85.0 84.0 54.5 71.3 84.2 81.1 82.9 83.1 53.0 70.3 83.3
2 Proper NPs 83.1 84.1 81.0 54.2 65.5 82.2 79.6 82.0 79.8 55.8 64.4 80.4
3 Common NPs 83.1 85.4 85.2 54.6 73.8 85.1 81.6 83.3 84.3 51.9 72.6 84.4

Table 3: SC classification accuracies of different methods for the ACE training set and test set.

Training Set Test Set
Feature Type PN CN All PN CN All
All features 84.1 85.4 85.0 82.0 83.3 82.9
- WORD 84.2 85.4 85.0 82.0 83.1 82.8
- SUBJ VERB 84.1 85.4 85.0 82.0 83.3 82.9
- VERB OBJ 84.1 85.4 85.0 82.0 83.3 82.9
- NE 72.9 85.3 81.6 74.1 83.2 80.7
- WN CLASS 84.1 85.9 85.3 81.9 84.1 83.5
- INDUCED C 84.0 85.6 85.1 82.0 83.6 83.2
- NEIGHBOR 82.8 84.9 84.3 80.2 82.9 82.1

Table 4: Results for feature ablation experiments.
Training Set Test Set

Feature Type PN CN All PN CN All
WORD 64.0 83.9 77.9 66.5 82.4 78.0
SUBJ VERB 24.0 70.2 56.3 28.8 70.5 59.0
VERB OBJ 24.0 70.2 56.3 28.8 70.5 59.0
NE 81.1 72.1 74.8 78.4 71.4 73.3
WN CLASS 25.6 78.8 62.8 30.4 78.9 65.5
INDUCED C 25.8 81.1 64.5 30.0 80.3 66.3
NEIGHBOR 67.7 85.8 80.4 68.0 84.4 79.8

Table 5: Accuracies of single-feature classifiers.

classifier trained on all types of features is shown
in row 1 of the table. As we can see, accuracy drops
significantly with the removal of NE and NEIGHBOR.
As expected, removing NE precipitates a large drop
in proper NP accuracy; somewhat surprisingly, re-
moving NEIGHBOR also causes proper NP accuracy
to drop significantly. To our knowledge, there are no
prior results on using distributionally similar neigh-
bors as features for supervised SC induction.

Note, however, that these results do not imply
that the remaining feature types are not useful for
SC classification; they simply suggest, for instance,
that WORD is not important in the presence of other
feature types. To get a better idea of the utility of
each feature type, we conduct another experiment in
which we train seven classifiers, each of which em-
ploys exactly one type of features. The accuracies
of these classifiers are shown in Table 5. As we can
see, NEIGHBOR has the largest contribution. This
again demonstrates the effectiveness of a distribu-
tional approach to semantic similarity. Its superior
performance to WORD, the second largest contribu-
tor, could be attributed to its ability to combat data

sparseness. The NE feature, as expected, is crucial
to the classification of proper NPs.

4 Application to Coreference Resolution

We can now derive from the induced SC informa-
tion two KSs — semantic class agreement and men-
tion — and incorporate them into our learning-based
coreference resolver in eight different ways, as de-
scribed in the introduction. This section examines
whether our coreference resolver can benefit from
any of the eight ways of incorporating these KSs.

4.1 Experimental Setup

As in SC induction, we use the ACE Phase 2 coref-
erence corpus for evaluation purposes, acquiring the
coreference classifiers on the 422 training texts and
evaluating their output on the 97 test texts. We re-
port performance in terms of two metrics: (1) the F-
measure score as computed by the commonly-used
MUC scorer (Vilain et al., 1995), and (2) the accu-
racy on the anaphoric references, computed as the
fraction of anaphoric references correctly resolved.
Following Ponzetto and Strube (2006), we consider
an anaphoric reference, NPi, correctly resolved if NPi
and its closest antecedent are in the same corefer-
ence chain in the resulting partition. In all of our
experiments, we use NPs automatically extracted by
an in-house NP chunker and IdentiFinder.

4.2 The Baseline Coreference System

Our baseline coreference system uses the C4.5 deci-
sion tree learner (Quinlan, 1993) to acquire a classi-
fier on the training texts for determining whether two
NPs are coreferent. Following previous work (e.g.,
Soon et al. (2001) and Ponzetto and Strube (2006)),
we generate training instances as follows: a positive
instance is created for each anaphoric NP, NPj , and
its closest antecedent, NPi; and a negative instance is
created for NPj paired with each of the intervening
NPs, NPi+1, NPi+2, . . ., NPj−1. Each instance is rep-
resented by 33 lexical, grammatical, semantic, and
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positional features that have been employed by high-
performing resolvers such as Ng and Cardie (2002)
and Yang et al. (2003), as described below.
Lexical features. Nine features allow different
types of string matching operations to be performed
on the given pair of NPs, NPx and NPy10, including
(1) exact string match for pronouns, proper nouns,
and non-pronominal NPs (both before and after de-
terminers are removed); (2) substring match for
proper nouns and non-pronominal NPs; and (3) head
noun match. In addition, one feature tests whether
all the words that appear in one NP also appear in
the other NP. Finally, a nationality matching feature
is used to match, for instance, British with Britain.
Grammatical features. 22 features test the gram-
matical properties of one or both of the NPs. These
include ten features that test whether each of the two
NPs is a pronoun, a definite NP, an indefinite NP, a
nested NP, and a clausal subject. A similar set of
five features is used to test whether both NPs are
pronouns, definite NPs, nested NPs, proper nouns,
and clausal subjects. In addition, five features deter-
mine whether the two NPs are compatible with re-
spect to gender, number, animacy, and grammatical
role. Furthermore, two features test whether the two
NPs are in apposition or participate in a predicate
nominal construction (i.e., the IS-A relation).
Semantic features. Motivated by Soon et al.
(2001), we have a semantic feature that tests whether
one NP is a name alias or acronym of the other.
Positional feature. We have a feature that com-
putes the distance between the two NPs in sentences.

After training, the decision tree classifier is used
to select an antecedent for each NP in a test text.
Following Soon et al. (2001), we select as the an-
tecedent of each NP, NPj , the closest preceding NP
that is classified as coreferent with NPj . If no such
NP exists, no antecedent is selected for NPj .

Row 1 of Table 6 and Table 7 shows the results
of the baseline system in terms of F-measure (F)
and accuracy in resolving 4599 anaphoric references
(All), respectively. For further analysis, we also re-
port the corresponding recall (R) and precision (P)
in Table 6, as well as the accuracies of the system in
resolving 1769 pronouns (PRO), 1675 proper NPs
(PN), and 1155 common NPs (CN) in Table 7. As

10We assume that NPx precedes NPy in the associated text.

we can see, the baseline achieves an F-measure of
57.0 and a resolution accuracy of 48.4.

To get a better sense of how strong our baseline
is, we re-implement the Soon et al. (2001) corefer-
ence resolver. This simply amounts to replacing the
33 features in the baseline resolver with the 12 fea-
tures employed by Soon et al.’s system. Results of
our Duplicated Soon et al. system are shown in row
2 of Tables 6 and 7. In comparison to our baseline,
the Duplicated Soon et al. system performs worse
according to both metrics, and although the drop in
F-measure seems moderate, the performance differ-
ence is in fact highly significant (p=0.002).11

4.3 Coreference with Induced SC Knowledge

Recall from the introduction that our investigation of
the role of induced SC knowledge in learning-based
coreference resolution proceeds in three steps:
Label the SC of each NP in each ACE document.
If a noun phrase, NPi, is a proper or common NP,
then its SC value is determined using an SC classi-
fier that we acquired in Section 3. On the other hand,
if NPi is a pronoun, then we will be conservative and
posit its SC value as UNCONSTRAINED (i.e., it is se-
mantically compatible with all other NPs).12

Derive two KSs from the induced SCs. Recall that
our first KS, Mention, is defined on an NP; its value
is YES if the induced SC of the NP is not OTHERS,
and NO otherwise. On the other hand, our second
KS, SCA, is defined on a pair of NPs; its value is
YES if the two NPs have the same induced SC that
is not OTHERS, and NO otherwise.
Incorporate the two KSs into the baseline re-
solver. Recall that there are eight ways of incor-
porating these two KSs into our resolver: they can
each be represented as a constraint or as a feature,
and they can be applied to the resolver in isolation
and in combination. Constraints are applied dur-
ing the antecedent selection step. Specifically, when
employed as a constraint, the Mention KS disallows
coreference between two NPs if at least one of them
has a Mention value of NO, whereas the SCA KS dis-
allows coreference if the SCA value of the two NPs
involved is NO. When encoded as a feature for the
resolver, the Mention feature for an NP pair has the

11Again, we use Approximate Randomization with p=.05.
12The only exception is pronouns whose SC value can be eas-

ily determined to be PERSON (e.g., he, him, his, himself).
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System Variation R P F R P F R P F R P F
1 Baseline system 60.9 53.6 57.0 – – – – – – – – –
2 Duplicated Soon et al. 56.1 54.4 55.3 – – – – – – – – –

Add to the Baseline Soon’s SC Method Decision List SVM Perfect Information
3 Mention(C) only 56.9 69.7 62.6 59.5 70.6 64.6 59.5 70.7 64.6 61.2 83.1 70.5
4 Mention(F) only 60.9 54.0 57.2 61.2 52.9 56.7 60.9 53.6 57.0 62.3 33.7 43.8
5 SCA(C) only 56.4 70.0 62.5 57.7 71.2 63.7 58.9 70.7 64.3 61.3 86.1 71.6
6 SCA(F) only 62.0 52.8 57.0 62.5 53.5 57.6 63.0 53.3 57.7 71.1 33.0 45.1
7 Mention(C) + SCA(C) 56.4 70.0 62.5 57.7 71.2 63.7 58.9 70.8 64.3 61.3 86.1 71.6
8 Mention(C) + SCA(F) 58.2 66.4 62.0 60.9 66.8 63.7 61.4 66.5 63.8 71.1 76.7 73.8
9 Mention(F) + SCA(C) 56.4 69.8 62.4 57.7 71.3 63.8 58.9 70.6 64.3 62.7 85.3 72.3

10 Mention(F) + SCA(F) 62.0 52.7 57.0 62.6 52.8 57.3 63.2 52.6 57.4 71.8 30.3 42.6

Table 6: Coreference results obtained via the MUC scoring program for the ACE test set.

System Variation PRO PN CN All PRO PN CN All PRO PN CN All
1 Baseline system 59.2 54.8 22.5 48.4 – – – – – – – –
2 Duplicated Soon et al. 53.4 45.7 16.9 41.4 – – – – – – – –

Add to the Baseline Soon’s SC Method Decision List SVM
3 Mention(C) only 58.5 51.3 16.5 45.3 59.1 54.1 20.2 47.5 59.1 53.9 20.6 47.5
4 Mention(F) only 59.2 55.0 22.5 48.5 59.2 56.1 22.4 48.8 59.4 55.2 22.6 48.6
5 SCA(C) only 58.1 50.1 16.4 44.7 58.1 51.8 17.1 45.5 58.5 52.0 19.6 46.3
6 SCA(F) only 59.2 54.9 27.8 49.7 60.4 56.7 30.1 51.5 60.8 56.4 29.4 51.3
7 Mention(C) + SCA(C) 58.1 50.1 16.4 44.7 58.1 51.8 17.1 45.5 58.5 51.9 19.5 46.3
8 Mention(C) + SCA(F) 58.9 52.0 22.3 47.2 60.2 55.9 28.1 50.6 60.7 55.3 27.4 50.4
9 Mention(F) + SCA(C) 58.1 50.3 16.3 44.8 58.1 52.4 16.7 45.6 58.6 52.4 19.7 46.6

10 Mention(F) + SCA(F) 59.2 55.0 27.6 49.7 60.4 56.8 30.1 51.5 60.8 56.5 29.5 51.4

Table 7: Resolution accuracies for the ACE test set.

value YES if and only if the Mention value for both
NPs is YES, whereas the SCA feature for an NP pair
has its value taken from the SCA KS.

Now, we can evaluate the impact of the two KSs
on the performance of our baseline resolver. Specifi-
cally, rows 3-6 of Tables 6 and 7 show the F-measure
and the resolution accuracy, respectively, when ex-
actly one of the two KSs is employed by the baseline
as either a constraint (C) or a feature (F), and rows
7-10 of the two tables show the results when both
KSs are applied to the baseline. Furthermore, each
row of Table 6 contains four sets of results, each of
which corresponds to a different method for deter-
mining the SC value of an NP. For instance, the first
set is obtained by using Soon et al.’s method as de-
scribed in Footnote 8 to compute SC values, serving
as sort of a baseline for our results using induced SC
values. The second and third sets are obtained based
on the SC values computed by the DL and the SVM
classifier, respectively.13 The last set corresponds to
an oracle experiment in which the resolver has ac-
cess to perfect SC information. Rows 3-10 of Table

13Results using other learners are not shown due to space lim-
itations. DL and SVM are chosen simply because they achieve
the highest SC classification accuracies on the ACE training set.

7 can be interpreted in a similar manner.
From Table 6, we can see that (1) in comparison to

the baseline, F-measure increases significantly in the
five cases where at least one of the KSs is employed
as a constraint by the resolver, and such improve-
ments stem mainly from significant gains in preci-
sion; (2) in these five cases, the resolvers that use
SCs induced by DL and SVM achieve significantly
higher F-measure scores than their counterparts that
rely on Soon’s method for SC determination; and (3)
none of the resolvers appears to benefit from SCA in-
formation whenever mention is used as a constraint.

Moreover, note that even with perfectly computed
SC information, the performance of the baseline sys-
tem does not improve when neither MD nor SCA is
employed as a constraint. These results provide fur-
ther evidence that the decision tree learner is not ex-
ploiting these two semantic KSs in an optimal man-
ner, whether they are computed automatically or per-
fectly. Hence, in machine learning for coreference
resolution, it is important to determine not only what
linguistic KSs to use, but also how to use them.

While the coreference results in Table 6 seem to
suggest that SCA and mention should be employed
as constraints, the resolution results in Table 7 sug-
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gest that SCA is better encoded as a feature. Specifi-
cally, (1) in comparison to the baseline, the accuracy
of common NP resolution improves by about 5-8%
when SCA is encoded as a feature; and (2) whenever
SCA is employed as a feature, the overall resolution
accuracy is significantly higher for resolvers that use
SCs induced by DL and SVM than those that rely on
Soon’s method for SC determination, with improve-
ments in resolution observed on all three NP types.

Overall, these results provide suggestive evidence
that both KSs are useful for learning-based corefer-
ence resolution. In particular, mention should be em-
ployed as a constraint, whereas SCA should be used
as a feature. Interestingly, this is consistent with the
results that we obtained when the resolver has access
to perfect SC information (see Table 6), where the
highest F-measure is achieved by employing men-
tion as a constraint and SCA as a feature.

5 Conclusions

We have shown that (1) both mention and SCA can
be usefully employed to improve the performance
of a learning-based coreference system, and (2) em-
ploying SC knowledge induced in a supervised man-
ner enables a resolver to achieve better performance
than employing SC knowledge computed by Soon
et al.’s simple method. In addition, we found that
the MUC scoring program is unable to reveal the
usefulness of the SCA KS, which, when encoded
as a feature, substantially improves the accuracy of
common NP resolution. This underscores the im-
portance of reporting both resolution accuracy and
clustering-level accuracy when analyzing the perfor-
mance of a coreference resolver.
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H. Daumé III and D. Marcu. 2005. A large-scale exploration
of effective global features for a joint entity detection and
tracking model. In Proc. of HLT/EMNLP, pages 97–104.

R. Florian, H. Jing, N. Kambhatla, and I. Zitouni. 2006. Fac-
torizing complex models: A case study in mention detection.
In Proc. of COLING/ACL, pages 473–480.

M. Hearst. 1992. Automatic acquisition of hyponyms from
large text corpora. In Proc. of COLING.

H. Ji, D. Westbrook, and R. Grishman. 2005. Using seman-
tic relations to refine coreference decisions. In Proc. of
HLT/EMNLP, pages 17–24.

A. Kehler, D. Appelt, L. Taylor, and A. Simma. 2004. The
(non)utility of predicate-argument frequencies for pronoun
interpretation. In Proc. of NAACL, pages 289–296.

D. Lin. 1998a. Automatic retrieval and clustering of similar
words. In Proc. of COLING/ACL, pages 768–774.

D. Lin. 1998b. Dependency-based evaluation of MINIPAR. In
Proc. of the LREC Workshop on the Evaluation of Parsing
Systems, pages 48–56.

D. Lin. 1998c. Using collocation statistics in information ex-
traction. In Proc. of MUC-7.

X. Luo, A. Ittycheriah, H. Jing, N. Kambhatla, and S. Roukos.
2004. A mention-synchronous coreference resolution algo-
rithm based on the Bell tree. In Proc. of the ACL.

K. Markert and M. Nissim. 2005. Comparing knowledge
sources for nominal anaphora resolution. Computational
Linguistics, 31(3):367–402.

R. Mitkov. 2002. Anaphora Resolution. Longman.
R. Mitkov. 1998. Robust pronoun resolution with limited

knowledge. In Proc. of COLING/ACL, pages 869–875.
V. Ng and C. Cardie. 2002. Improving machine learning ap-

proaches to coreference resolution. In Proc. of the ACL.
E. W. Noreen. 1989. Computer Intensive Methods for Testing

Hypothesis: An Introduction. John Wiley & Sons.
M. Poesio, R. Mehta, A. Maroudas, and J. Hitzeman. 2004.

Learning to resolve bridging references. In Proc. of the ACL.
S. P. Ponzetto and M. Strube. 2006. Exploiting semantic role

labeling, WordNet and Wikipedia for coreference resolution.
In Proc. of HLT/NAACL, pages 192–199.

J. R. Quinlan. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA.

W. M. Soon, H. T. Ng, and D. Lim. 2001. A machine learning
approach to coreference resolution of noun phrases. Compu-
tational Linguistics, 27(4):521–544.

J. Tetreault. 2001. A corpus-based evaluation of centering and
pronoun resolution. Computational Linguistics, 27(4).

M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and
L. Hirschman. 1995. A model-theoretic coreference scor-
ing scheme. In Proc. of MUC-6, pages 45–52.

R. Weischedel and A. Brunstein. 2005. BBN pronoun corefer-
ence and entity type corpus. Linguistica Data Consortium.

X. Yang, G. Zhou, J. Su, and C. L. Tan. 2003. Coreference
resolution using competitive learning approach. In Proc. of
the ACL, pages 176–183.

D. Yarowsky. 1995. Unsupervised word sense disambiguation
rivaling supervised methods. In Proc. of the ACL.

543



Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 544–551,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Generating a Table-of-Contents

S.R.K. Branavan, Pawan Deshpande and Regina Barzilay
Massachusetts Institute of Technology

{branavan, pawand, regina}@csail.mit.edu

Abstract

This paper presents a method for the auto-
matic generation of a table-of-contents. This
type of summary could serve as an effec-
tive navigation tool for accessing informa-
tion in long texts, such as books. To gen-
erate a coherent table-of-contents, we need
to capture both global dependencies across
different titles in the table and local con-
straints within sections. Our algorithm ef-
fectively handles these complex dependen-
cies by factoring the model into local and
global components, and incrementally con-
structing the model’s output. The results of
automatic evaluation and manual assessment
confirm the benefits of this design: our sys-
tem is consistently ranked higher than non-
hierarchical baselines.

1 Introduction

Current research in summarization focuses on pro-
cessing short articles, primarily in the news domain.
While in practice the existing summarization meth-
ods are not limited to this material, they are not
universal: texts in many domains and genres can-
not be summarized using these techniques. A par-
ticularly significant challenge is the summarization
of longer texts, such as books. The requirement
for high compression rates and the increased need
for the preservation of contextual dependencies be-
tween summary sentences places summarization of
such texts beyond the scope of current methods.

In this paper, we investigate the automatic gener-
ation of tables-of-contents, a type of indicative sum-

mary particularly suited for accessing information in
long texts. A typical table-of-contents lists topics
described in the source text and provides informa-
tion about their location in the text. The hierarchical
organization of information in the table further re-
fines information access by specifying the relations
between different topics and providing rich contex-
tual information during browsing. Commonly found
in books, tables-of-contents can also facilitate access
to other types of texts. For instance, this type of
summary could serve as an effective navigation tool
for understanding a long, unstructured transcript for
an academic lecture or a meeting.

Given a text, our goal is to generate a tree wherein
a node represents a segment of text and a title that
summarizes its content. This process involves two
tasks: the hierarchical segmentation of the text, and
the generation of informative titles for each segment.
The first task can be addressed by using the hier-
archical structure readily available in the text (e.g.,
chapters, sections and subsections) or by employ-
ing existing topic segmentation algorithms (Hearst,
1994). In this paper, we take the former approach.
As for the second task, a naive approach would be to
employ existing methods of title generation to each
segment, and combine the results into a tree struc-
ture.

However, the latter approach cannot guarantee
that the generated table-of-contents forms a coher-
ent representation of the entire text. Since titles of
different segments are generated in isolation, some
of the generated titles may be repetitive. Even non-
repetitive titles may not provide sufficient informa-
tion to discriminate between the content of one seg-
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Scientific computing
Remarkable recursive algorithm for multiplying matrices

Divide and conquer algorithm design
Making a recursive algorithm

Solving systems of linear equations
Computing an LUP decomposition
Forward and back substitution

Symmetric positive definite matrices and least squares approximation

Figure 1: A fragment of a table-of-contents generated by our method.

ment and another. Therefore, it is essential to gen-
erate an entire table-of-contents tree in a concerted
fashion.

This paper presents a hierarchical discriminative
approach for table-of-contents generation. Figure 1
shows a fragment of a table-of-contents automat-
ically generated by this algorithm. Our method
has two important points of departure from exist-
ing techniques. First, we introduce a structured dis-
criminative model for table-of-contents generation
that accounts for a wide range of phrase-based and
collocational features. The flexibility of this model
results in improved summary quality. Second, our
model captures both global dependencies across dif-
ferent titles in the tree and local dependencies within
sections. We decompose the model into local and
global components that handle different classes of
dependencies. We further reduce the search space
through incremental construction of the model’s out-
put by considering only the promising parts of the
decision space.

We apply our method to process a 1,180 page al-
gorithms textbook. To assess the contribution of our
hierarchical model, we compare our method with
state-of-the-art methods that generate each segment
title independently.1 The results of automatic eval-
uation and manual assessment of title quality show
that the output of our system is consistently ranked
higher than that of non-hierarchical baselines.

2 Related Work

Although most current research in summarization
focuses on newspaper articles, a number of ap-
proaches have been developed for processing longer
texts. Most of these approaches are tailored to a par-

1The code and feature vector data for
our model and the baselines are available at
http://people.csail.mit.edu/branavan/code/toc.

ticular domain, such as medical literature or scien-
tific articles. By making strong assumptions about
the input structure and the desired format of the out-
put, these methods achieve a high compression rate
while preserving summary coherence. For instance,
Teufel and Moens (2002) summarize scientific arti-
cles by selecting rhetorical elements that are com-
monly present in scientific abstracts. Elhadad and
McKeown (2001) generate summaries of medical ar-
ticles by following a certain structural template in
content selection and realization.

Our work, however, is closer to domain-
independent methods for summarizing long texts.
Typically, these approaches employ topic segmen-
tation to identify a list of topics described in a
document, and then produce a summary for each
part (Boguraev and Neff, 2000; Angheluta et al.,
2002). In contrast to our method, these approaches
perform either sentence or phrase extraction, rather
than summary generation. Moreover, extraction for
each segment is performed in isolation, and global
constraints on the summary are not enforced.

Finally, our work is also related to research on ti-
tle generation (Banko et al., 2000; Jin and Haupt-
mann, 2001; Dorr et al., 2003). Since work in this
area focuses on generating titles for one article at a
time (e.g., newspaper reports), the issue of hierarchi-
cal generation, which is unique to our task, does not
arise. However, this is not the only novel aspect of
the proposed approach. Our model learns title gener-
ation in a fully discriminative framework, in contrast
to the commonly used noisy-channel model. Thus,
instead of independently modeling the selection and
grammaticality constraints, we learn both types of
features in a single framework. This joint training
regime supports greater flexibility in modeling fea-
ture interaction.
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3 Problem Formulation

We formalize the problem of table-of-contents gen-
eration as a supervised learning task where the goal
is to map a tree of text segments S to a tree of titles
T . A segment may correspond to a chapter, section
or subsection.

Since the focus of our work is on the generation
aspect of table-of-contents construction, we assume
that the hierarchical segmentation of a text is pro-
vided in the input. This division can either be au-
tomatically computed using one of the many avail-
able text segmentation algorithms (Hearst, 1994), or
it can be based on demarcations already present in
the input (e.g., paragraph markers).

During training, the algorithm is provided with a
set of pairs (Si, T i) for i = 1, . . . , p, where Si is
the ith tree of text segments, and T i is the table-of-
contents for that tree. During testing, the algorithm
generates tables-of-contents for unseen trees of text
segments.

We also assume that during testing the desired
title length is provided as a parameter to the algo-
rithm.

4 Algorithm

To generate a coherent table-of-contents, we need
to take into account multiple constraints: the titles
should be grammatical, they should adequately rep-
resent the content of their segments, and the table-
of-contents as a whole should clearly convey the re-
lations between the segments. Taking a discrimina-
tive approach for modeling this task would allow us
to achieve this goal: we can easily integrate a range
of constraints in a flexible manner. Since the num-
ber of possible labels (i.e., tables-of-contents) is pro-
hibitively large and the labels themselves exhibit a
rich internal structure, we employ a structured dis-
criminative model that can easily handle complex
dependencies. Our solution relies on two orthogo-
nal strategies to balance the tractability and the rich-
ness of the model. First, we factor the model into
local and global components. Second, we incremen-
tally construct the output of each component using
a search-based discriminative algorithm. Both of
these strategies have the effect of intelligently prun-
ing the decision space.

Our model factorization is driven by the different

types of dependencies which are captured by the two
components. The first model is local: for each seg-
ment, it generates a list of candidate titles ranked by
their individual likelihoods. This model focuses on
grammaticality and word selection constraints, but it
does not consider relations among different titles in
the table-of-contents. These latter dependencies are
captured in the global model that constructs a table-
of-contents by selecting titles for each segment from
the available candidates. Even after this factoriza-
tion, the decision space for each model is large: for
the local model, it is exponential in the length of the
segment title, and for the global model it is exponen-
tial in the size of the tree.

Therefore, we construct the output for each of
these models incrementally using beam search. The
algorithm maintains the most promising partial out-
put structures, which are extended at every itera-
tion. The model incorporates this decoding pro-
cedure into the training process, thereby learning
model parameters best suited for the specific decod-
ing algorithm. Similar models have been success-
fully applied in the past to other tasks including pars-
ing (Collins and Roark, 2004), chunking (Daumé
and Marcu, 2005), and machine translation (Cowan
et al., 2006).

4.1 Model Structure
The model takes as input a tree of text segments S.
Each segment s ∈ S and its title z are represented
as a local feature vector Φloc(s, z). Each compo-
nent of this vector stores a numerical value. This
feature vector can track any feature of the segment s
together with its title z. For instance, the ith compo-
nent of this vector may indicate whether the bigram
(z[j]z[j+ 1]) occurs in s, where z[j] is the jth word
in z:

(Φloc(s, z))i =
{

1 if (z[j]z[j + 1]) ∈ s
0 otherwise

In addition, our model captures dependencies
among multiple titles that appear in the same table-
of-contents. We represent a tree of segments S
paired with titles T with the global feature vector
Φglob(S, T ). The components here are also numer-
ical features. For example, the ith component of the
vector may indicate whether a title is repeated in the
table-of-contents T :
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(Φglob(S, T ))i =
{

1 repeated title
0 otherwise

Our model constructs a table-of-contents in two
basic steps:

Step One The goal of this step is to generate a
list of k candidate titles for each segment s ∈ S.
To do so, for each possible title z, the model maps
the feature vector Φloc(s, z) to a real number. This
mapping can take the form of a linear model,

Φloc(s, z) · αloc

where αloc is the local parameter vector.
Since the number of possible titles is exponen-

tial, we cannot consider all of them. Instead, we
prune the decision space by incrementally construct-
ing promising titles. At each iteration j, the algo-
rithm maintains a beam Q of the top k partially gen-
erated titles of length j. During iteration j + 1, a
new set of candidates is grown by appending a word
from s to the right of each member of the beam Q.
We then sort the entries in Q: z1, z2, . . . such that
Φloc(s, zi) ·αloc ≥ Φloc(s, zi+1) ·αloc, ∀i. Only the
top k candidates are retained, forming the beam for
the next iteration. This process continues until a title
of the desired length is generated. Finally, the list of
k candidates is returned.

Step Two Given a set of candidate titles
z1, z2, . . . , zk for each segment s ∈ S, our goal is
to construct a table-of-contents T by selecting the
most appropriate title from each segment’s candi-
date list. To do so, our model computes a score for
the pair (S, T ) based on the global feature vector
Φglob(S, T ):

Φglob(S, T ) · αglob

where αglob is the global parameter vector.
As with the local model (step one), the num-

ber of possible tables-of-contents is too large to be
considered exhaustively. Therefore, we incremen-
tally construct a table-of-contents by traversing the
tree of segments in a pre-order walk (i.e., the or-
der in which segments appear in the text). In this
case, the beam contains partially generated tables-
of-contents, which are expanded by one segment ti-
tle at a time. To further reduce the search space,
during decoding only the top five candidate titles for
a segment are given to the global model.

4.2 Training the Model

Training for Step One We now describe how the
local parameter vector αloc is estimated from train-
ing data. We are given a set of training examples
(si, yi) for i = 1, . . . , l, where si is the ith text seg-
ment, and yi is the title of this segment.

This linear model is learned using a variant of
the incremental perceptron algorithm (Collins and
Roark, 2004; Daumé and Marcu, 2005). This on-
line algorithm traverses the training set multiple
times, updating the parameter vector αloc after each
training example in case of mis-predictions. The al-
gorithm encourages a setting of the parameter vector
αloc that assigns the highest score to the feature vec-
tor associated with the correct title.

The pseudo-code of the algorithm is shown in Fig-
ure 2. Given a text segment s and the corresponding
title y, the training algorithm maintains a beam Q
containing the top k partial titles of length j. The
beam is updated on each iteration using the func-
tions GROW and PRUNE. For every word in seg-
ment s and for every partial title in Q, GROW cre-
ates a new title by appending this word to the title.
PRUNE retains only the top ranked candidates based
on the scoring function Φloc(s, z) ·αloc. If y[1 . . . j]
(i.e., the prefix of y of length j) is not in the modi-
fied beam Q, then αloc is updated2 as shown in line
4 of the pseudo-code in Figure 2. In addition, Q is
replaced with a beam containing only y[1 . . . j] (line
5). This process is performed |y| times. We repeat
this process for all training examples over 50 train-
ing iterations. 3

Training for Step Two To train the global param-
eter vector αglob, we are given training examples
(Si, T i) for i = 1, . . . , p, where Si is the ith tree of
text segments, and T i is the table-of-contents for that
tree. However, we cannot directly use these tables-
of-contents for training our global model: since this
model selects one of the candidate titles zi

1, . . . , z
i
k

returned by the local model, the true title of the seg-
ment may not be among these candidates. There-
fore, to determine a new target title for the segment,
we need to identify the title in the set of candidates

2If the word in the jth position of y does not occur in s, then
the parameter update is not performed.

3For decoding, αloc is averaged over the training iterations
as in Collins and Roark (2004).
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s – segment text.
y – segment title.
y[1 . . . j] – prefix of y of length j.
Q – beam containing partial titles.

1. for j = 1 . . . |y|
2. Q = PRUNE(GROW(s,Q))
3. if y[1 . . . j] /∈ Q
4. αloc = αloc + Φloc(s, y[1 . . . j])

−
∑

z∈Q
Φloc(s,z)
|Q|

5. Q = {y[1 . . . j]}

Figure 2: The training algorithm for the local model.

that is closest to the true title.
We employ the L1 distance measure to compare

the content word overlap between two titles.4 For
each input (S, T ), and each segment s ∈ S, we iden-
tify the segment title closest in the L1 measure to the
true title y5:

z∗ = arg min
i
L1(zi, y)

Once all the training targets in the corpus have
been identified through this procedure, the global
linear model Φglob(S, T ) ·αglob is learned using the
same perceptron algorithm as in step one. Rather
than maintaining the beam of partially generated ti-
tles, the beam Q holds partially generated tables-of-
contents. Also, the loop in line 1 of Figure 2 iterates
over segment titles rather than words. The global
model is trained over 200 iterations.

5 Features

Local Features Our local model aims to generate
titles which adequately represent the meaning of the
segment and are grammatical. Selection and contex-
tual preferences are encoded in the local features.
The features that capture selection constraints are
specified at the word level, and contextual features
are expressed at the word sequence level.

The selection features capture the position of the
word, its TF*IDF, and part-of-speech information.
In addition, they also record whether the word oc-
curs in the body of neighboring segments. We also

4This measure is close to ROUGE-1 which in addition con-
siders the overlap in auxiliary words.

5In the case of ties, one of the titles is picked arbitrarily.

Segment has the same title as its sibling
Segment has the same title as its parent
Two adjacent sibling titles have the same head
Two adjacent sibling titles start with the same word
Rank given to the title by the local model

Table 1: Examples of global features.

generate conjunctive features by combining features
of different types.

The contextual features record the bigram and tri-
gram language model scores, both for words and for
part-of-speech tags. The trigram scores are aver-
aged over the title. The language models are trained
using the SRILM toolkit. Another type of contex-
tual feature models the collocational properties of
noun phrases in the title. This feature aims to elim-
inate generic phrases, such as “the following sec-
tion” from the generated titles.6 To achieve this ef-
fect, for each noun phrase in the title, we measure
the ratio of their frequency in the segment to their
frequency in the corpus.

Global Features Our global model describes the
interaction between different titles in the tree (See
Table 1). These interactions are encoded in three
types of global features. The first type of global
feature indicates whether titles in the tree are re-
dundant at various levels of the tree structure. The
second type of feature encourages parallel construc-
tions within the same tree. For instance, titles of ad-
joining segments may be verbalized as noun phrases
with the same head (e.g., “Bubble sort algorithm”,
“Merge sort algorithm”). We capture this property
by comparing words that appear in certain positions
in adjacent sibling titles. Finally, our global model
also uses the rank of the title provided by the local
model. This feature enables the global model to ac-
count for the preferences of the local model in the
title selection process.

6 Evaluation Set-Up

Data We apply our method to an undergraduate al-
gorithms textbook. For detailed statistics on the data
see Table 2. We split its table-of-contents into a set

6Unfortunately, we could not use more sophisticated syntac-
tic features due to the low accuracy of statistical parsers on our
corpus.
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Number of Titles 540
Number of Trees 39
Tree Depth 4
Number of Words 269,650
Avg. Title Length 3.64
Avg. Branching 3.29
Avg. Title Duplicates 21

Table 2: Statistics on the corpus used in the experi-
ments.

of independent subtrees. Given a table-of-contents
of depth n with a root branching factor of r, we gen-
erate r subtrees, with a depth of at most n − 1. We
randomly select 80% of these trees for training, and
the rest are used for testing. In our experiments, we
use ten different randomizations to compensate for
the small number of available trees.

Admittedly, this method of generating training
and testing data omits some dependencies at the
level of the table-of-contents as a whole. However,
the subtrees used in our experiments still exhibit
a sufficiently deep hierarchical structure, rich with
contextual dependencies.

Baselines As an alternative to our hierarchical dis-
criminative method, we consider three baselines that
build a table-of-contents by generating a title for
each segment individually, without taking into ac-
count the tree structure, and one hierarchical gener-
ative baseline. The first method generates a title for a
segment by selecting the noun phrase from that seg-
ment with the highest TF*IDF. This simple method
is commonly used to generate keywords for brows-
ing applications in information retrieval, and has
been shown to be effective for summarizing techni-
cal content (Wacholder et al., 2001).

The second baseline is based on the noisy-channel
generative (flat generative, FG) model proposed by
Banko et al., (2000). Similar to our local model,
this method captures both selection and grammati-
cal constraints. However, these constraints are mod-
eled separately, and then combined in a generative
framework.

We use our local model (Flat Discriminative
model, FD) as the third baseline. Like the second
baseline, this model omits global dependencies, and
only focuses on features that capture relations within
individual segments.

In the hierarchical generative (HG) baseline we
run our global model on the ranked list of titles pro-
duced for each section by the noisy-channel genera-
tive model.

The last three baselines and our algorithm are pro-
vided with the title length as a parameter. In our
experiments, the algorithms use the reference title
length.

Experimental Design: Comparison with refer-
ence tables-of-contents Reference based evalu-
ation is commonly used to assess the quality of
machine-generated headlines (Wang et al., 2005).
We compare our system’s output with the table-of-
contents from the textbook using ROUGE metrics.
We employ a publicly available software package,7

with all the parameters set to default values.

Experimental Design: Human assessment The
judges were each given 30 segments randomly se-
lected from a set of 359 test segments. For each test
segment, the judges were presented with its text, and
3 alternative titles consisting of the reference and
the titles produced by the hierarchical discriminative
model, and the best performing baseline. In addi-
tion, the judges had access to all of the segments in
the book. A total of 498 titles for 166 unique seg-
ments were ranked. The system identities were hid-
den from the judges, and the titles were presented in
random order. The judges ranked the titles based on
how well they represent the content of the segment.
Titles were ranked equal if they were judged to be
equally representative of the segment.

Six people participated in this experiment. All the
participants were graduate students in computer sci-
ence who had taken the algorithms class in the past
and were reasonably familiar with the material.

7 Results

Figure 3 shows fragments of the tables-of-contents
generated by our method and the four baselines
along with the reference counterpart. These extracts
illustrate three general phenomena that we observed
in the test corpus. First, the titles produced by key-
word extraction exhibit a high degree of redundancy.
In fact, 40% of the titles produced by this method are
repeated more than once in the table-of-contents. In

7http://www.isi.edu/licensed-sw/see/rouge/
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Reference:
hash tables

direct address tables
hash tables

collision resolution by chaining
analysis of hashing with chaining

open addressing
linear probing
quadratic probing
double hashing

Flat Generative:
linked list

worst case time
wasted space

worst case running time
to show that there are

dynamic set
occupied slot
quadratic function
double hashing

Flat Discriminative:
dictionary operations

universe of keys
computer memory

element in the list
hash table with load factor

hash table
hash function
hash function
double hashing

Keyword Extraction:
hash table

dynamic set
hash function

worst case
expected number

hash table
hash function
hash table
double hashing

Hierarchical Generative:
dictionary operations

worst case time
wasted space

worst case running time
to show that there are

collision resolution
linear time
quadratic function
double hashing

Hierarchical Discriminative:
dictionary operations

direct address table
computer memory

worst case running time
hash table with load factor

address table
hash function
quadratic probing
double hashing

Figure 3: Fragments of tables-of-contents generated by our method and the four baselines along with the
corresponding reference.

Rouge-1 Rouge-L Rouge-W Full Match

HD 0.256 0.249 0.216 13.5
FD 0.241 0.234 0.203 13.1
HG 0.139 0.133 0.117 5.8
FG 0.094 0.090 0.079 4.1
Keyword 0.168 0.168 0.157 6.3

Table 3: Title quality as compared to the reference
for the hierarchical discriminative (HD), flat dis-
criminative (FD), hierarchical generative (HG), flat
generative (FG) and Keyword models. The improve-
ment given by HD over FD in all three Rouge mea-
sures is significant at p ≤ 0.03 based on the Sign
test.

better worse equal
HD vs. FD 68 32 49
Reference vs. HD 115 13 22
Reference vs. FD 123 7 20

Table 4: Overall pairwise comparisons of the rank-
ings given by the judges. The improvement in ti-
tle quality given by HD over FD is significant at
p ≤ 0.0002 based on the Sign test.

contrast, our method yields 5.5% of the titles as du-
plicates, as compared to 9% in the reference table-
of-contents.8

Second, the fragments show that the two discrim-
inative models — Flat and Hierarchical — have a
number of common titles. However, adding global
dependencies to rerank titles generated by the local
model changes 30% of the titles in the test set.

Comparison with reference tables-of-contents
Table 3 shows the average ROUGE scores over
the ten randomizations for the five automatic meth-
ods. The hierarchical discriminative method consis-
tently outperforms the four baselines according to
all ROUGE metrics.

At the same time, these results also show that only
a small ratio of the automatically generated titles
are identical to the reference ones. In some cases,
the machine-generated titles are very close in mean-
ing to the reference, but are verbalized differently.
Examples include pairs such as (“Minimum Span-
ning Trees”, “Spanning Tree Problem”) and (“Wal-
lace Tree”, “Multiplication Circuit”).9 While mea-
sures like ROUGE can capture the similarity in the
first pair, they cannot identify semantic proximity

8Titles such as “Analysis” and “Chapter Outline” are re-
peated multiple times in the text.

9A Wallace Tree is a circuit that multiplies two integers.
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between the titles in the second pair. Therefore,
we supplement the results of this experiment with
a manual assessment of title quality as described be-
low.

Human assessment We analyze the human rat-
ings by considering pairwise comparisons between
the models. Given two models, A and B, three out-
comes are possible: A is better than B, B is bet-
ter than A, or they are of equal quality. The re-
sults of the comparison are summarized in Table 4.
These results indicate that using hierarchical infor-
mation yields statistically significant improvement
(at p ≤ 0.0002 based on the Sign test) over a flat
counterpart.

8 Conclusion and Future Work

This paper presents a method for the automatic gen-
eration of a table-of-contents. The key strength of
our method lies in its ability to track dependencies
between generation decisions across different levels
of the tree structure. The results of automatic evalu-
ation and manual assessment confirm the benefits of
joint tree learning: our system is consistently ranked
higher than non-hierarchical baselines.

We also plan to expand our method for the task
of slide generation. Like tables-of-contents, slide
bullets are organized in a hierarchical fashion and
are written in relatively short phrases. From the
language viewpoint, however, slides exhibit more
variability and complexity than a typical table-of-
contents. To address this challenge, we will explore
more powerful generation methods that take into ac-
count syntactic information.
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Abstract 

Though both document summarization and 
keyword extraction aim to extract concise 
representations from documents, these two 
tasks have usually been investigated inde-
pendently. This paper proposes a novel it-
erative reinforcement approach to simulta-
neously extracting summary and keywords 
from single document under the assump-
tion that the summary and keywords of a 
document can be mutually boosted. The 
approach can naturally make full use of the 
reinforcement between sentences and key-
words by fusing three kinds of relation-
ships between sentences and words, either 
homogeneous or heterogeneous. Experi-
mental results show the effectiveness of the 
proposed approach for both tasks. The cor-
pus-based approach is validated to work 
almost as well as the knowledge-based ap-
proach for computing word semantics.  

1 Introduction 

Text summarization is the process of creating a 
compressed version of a given document that de-
livers the main topic of the document. Keyword 
extraction is the process of extracting a few salient 
words (or phrases) from a given text and using the 
words to represent the text. The two tasks are simi-
lar in essence because they both aim to extract 
concise representations for documents. Automatic 
text summarization and keyword extraction have 
drawn much attention for a long time because they 
both are very important for many text applications, 
including document retrieval, document clustering, 
etc.  For example, keywords of a document can be 

used for document indexing and thus benefit to 
improve the performance of document retrieval, 
and document summary can help to facilitate users 
to browse the search results and improve users’ 
search experience.  

Text summaries and keywords can be either 
query-relevant or generic. Generic summary and 
keyword should reflect the main topics of the 
document without any additional clues and prior 
knowledge. In this paper, we focus on generic 
document summarization and keyword extraction 
for single documents. 

Document summarization and keyword extrac-
tion have been widely explored in the natural lan-
guage processing and information retrieval com-
munities. A series of workshops and conferences 
on automatic text summarization (e.g. SUMMAC, 
DUC and NTCIR) have advanced the technology 
and produced a couple of experimental online sys-
tems. In recent years, graph-based ranking algo-
rithms have been successfully used for document 
summarization (Mihalcea and Tarau, 2004, 2005; 
ErKan and Radev, 2004) and keyword extraction 
(Mihalcea and Tarau, 2004). Such algorithms make 
use of “voting” or “recommendations” between 
sentences (or words) to extract sentences (or key-
words). Though the two tasks essentially share 
much in common, most algorithms have been de-
veloped particularly for either document summari-
zation or keyword extraction.  

Zha (2002) proposes a method for simultaneous 
keyphrase extraction and text summarization by 
using only the heterogeneous sentence-to-word 
relationships. Inspired by this, we aim to take into 
account all the three kinds of relationships among 
sentences and words (i.e. the homogeneous rela-
tionships between words, the homogeneous rela-
tionships between sentences, and the heterogene-
ous relationships between words and sentences) in 

552



a unified framework for both document summari-
zation and keyword extraction. The importance of 
a sentence (word) is determined by both the impor-
tance of related sentences (words) and the impor-
tance of related words (sentences). The proposed 
approach can be considered as a generalized form 
of previous graph-based ranking algorithms and 
Zha’s work (Zha, 2002).  

In this study, we propose an iterative reinforce-
ment approach to realize the above idea. The pro-
posed approach is evaluated on the DUC2002 
dataset and the results demonstrate its effectiveness 
for both document summarization and keyword 
extraction. Both knowledge-based approach and 
corpus-based approach have been investigated to 
compute word semantics and they both perform 
very well.  

The rest of this paper is organized as follows: 
Section 2 introduces related works. The details of 
the proposed approach are described in Section 3. 
Section 4 presents and discusses the evaluation 
results. Lastly we conclude our paper in Section 5. 

2 Related Works 

2.1 Document Summarization 

Generally speaking, single document summariza-
tion methods can be either extraction-based or ab-
straction-based and we focus on extraction-based 
methods in this study. 

Extraction-based methods usually assign a sali-
ency score to each sentence and then rank the sen-
tences in the document. The scores are usually 
computed based on a combination of statistical and 
linguistic features, including term frequency, sen-
tence position, cue words, stigma words, topic sig-
nature (Hovy and Lin, 1997; Lin and Hovy, 2000), 
etc. Machine learning methods have also been em-
ployed to extract sentences, including unsupervised 
methods (Nomoto and Matsumoto, 2001) and su-
pervised methods (Kupiec et al., 1995; Conroy and 
O’Leary, 2001; Amini and Gallinari, 2002; Shen et 
al., 2007). Other methods include maximal mar-
ginal relevance (MMR) (Carbonell and Goldstein, 
1998), latent semantic analysis (LSA) (Gong and 
Liu, 2001). In Zha (2002), the mutual reinforce-
ment principle is employed to iteratively extract 
key phrases and sentences from a document.   

Most recently, graph-based ranking methods, in-
cluding TextRank ((Mihalcea and Tarau, 2004, 
2005) and LexPageRank (ErKan and Radev, 2004) 

have been proposed for document summarization. 
Similar to Kleinberg’s HITS algorithm (Kleinberg, 
1999) or Google’s PageRank (Brin and Page, 
1998), these methods first build a graph based on 
the similarity between sentences in a document and 
then the importance of a sentence is determined by 
taking into account global information on the 
graph recursively, rather than relying only on local 
sentence-specific information. 

2.2 Keyword Extraction 

Keyword (or keyphrase) extraction usually in-
volves assigning a saliency score to each candidate 
keyword by considering various features. Krulwich 
and Burkey (1996) use heuristics to extract key-
phrases from a document. The heuristics are based 
on syntactic clues, such as the use of italics, the 
presence of phrases in section headers, and the use 
of acronyms. Muñoz (1996) uses an unsupervised 
learning algorithm to discover two-word key-
phrases. The algorithm is based on Adaptive Reso-
nance Theory (ART) neural networks. Steier and 
Belew (1993) use the mutual information statistics 
to discover two-word keyphrases. 

Supervised machine learning algorithms have 
been proposed to classify a candidate phrase into 
either keyphrase or not. GenEx (Turney, 2000) and 
Kea (Frank et al., 1999; Witten et al., 1999) are 
two typical systems, and the most important fea-
tures for classifying a candidate phrase are the fre-
quency and location of the phrase in the document. 
More linguistic knowledge (such as syntactic fea-
tures) has been explored by Hulth (2003). More 
recently, Mihalcea and Tarau (2004) propose the 
TextRank model to rank keywords based on the 
co-occurrence links between words. 

3 Iterative Reinforcement Approach 

3.1 Overview 

The proposed approach is intuitively based on the 
following assumptions: 

Assumption 1: A sentence should be salient if it 
is heavily linked with other salient sentences, and a 
word should be salient if it is heavily linked with 
other salient words. 

Assumption 2: A sentence should be salient if it 
contains many salient words, and a word should be 
salient if it appears in many salient sentences. 

The first assumption is similar to PageRank 
which makes use of mutual “recommendations” 
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between homogeneous objects to rank objects. The 
second assumption is similar to HITS if words and 
sentences are considered as authorities and hubs 
respectively. In other words, the proposed ap-
proach aims to fuse the ideas of PageRank and 
HITS in a unified framework.  

In more detail, given the heterogeneous data 
points of sentences and words, the following three 
kinds of relationships are fused in the proposed 
approach: 

SS-Relationship: It reflects the homogeneous 
relationships between sentences, usually computed 
by their content similarity. 

WW-Relationship: It reflects the homogeneous 
relationships between words, usually computed by 
knowledge-based approach or corpus-based ap-
proach. 

SW-Relationship: It reflects the heterogeneous 
relationships between sentences and words, usually 
computed as the relative importance of a word in a 
sentence. 

Figure 1 gives an illustration of the relationships.  
 

Figure 1. Illustration of the Relationships 
 
The proposed approach first builds three graphs 

to reflect the above relationships respectively, and 
then iteratively computes the saliency scores of the 
sentences and words based on the graphs. Finally, 
the algorithm converges and each sentence or word 
gets its saliency score. The sentences with high 
saliency scores are chosen into the summary, and 
the words with high saliency scores are combined 
to produce the keywords. 

3.2 Graph Building 

3.2.1  Sentence-to-Sentence Graph ( SS-Graph)  

Given the sentence collection S={si | 1≤i≤m} of a 
document,  if each sentence is considered as a node, 

the sentence collection can be modeled as an undi-
rected graph by generating an edge between two 
sentences if their content similarity exceeds 0, i.e. 
an undirected link between si and sj (i≠j) is con-
structed and the associated weight is their content 
similarity. Thus, we construct an undirected graph 
GSS to reflect the homogeneous relationship be-
tween sentences. The content similarity between 
two sentences is computed with the cosine measure. 
We use an adjacency matrix U to describe GSS with 
each entry corresponding to the weight of a link in 
the graph. U= [Uij]m×m is defined as follows: 
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where is and jsr are the corresponding term vec-
tors of sentences si and sj respectively. The weight 
associated with term t is calculated with tft.isft,
where tft is the frequency of term t in the sentence 
and isft is the inverse sentence frequency of term t,
i.e. 1+log(N/nt), where N is the total number of 
sentences and nt is the number of sentences con-
taining term t in a background corpus. Note that 
other measures (e.g. Jaccard, Dice, Overlap, etc.) 
can also be explored to compute the content simi-
larity between sentences, and we simply choose the 
cosine measure in this study. 

Then U is normalized to U~ as follows to make 
the sum of each row equal to 1: 
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3.2.2  Word-to-Word Graph ( WW-Graph)  

Given the word collection T={tj|1≤j≤n } of a docu-
ment1 , the semantic similarity between any two 
words ti and tj can be computed using approaches 
that are either knowledge-based or corpus-based 
(Mihalcea et al., 2006).   

Knowledge-based measures of word semantic 
similarity try to quantify the degree to which two 
words are semantically related using information 
drawn from semantic networks. WordNet (Fell-
baum, 1998) is a lexical database where each 

 
1 The stopwords defined in the Smart system have been re-

moved from the collection. 
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word
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WW
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unique meaning of a word is represented by a 
synonym set or synset. Each synset has a gloss that 
defines the concept that it represents. Synsets are 
connected to each other through explicit semantic 
relations that are defined in WordNet. Many ap-
proaches have been proposed to measure semantic 
relatedness based on WordNet. The measures vary 
from simple edge-counting to attempt to factor in 
peculiarities of the network structure by consider-
ing link direction, relative path, and density, such 
as  vector, lesk, hso, lch, wup, path, res, lin and jcn 
(Pedersen et al., 2004). For example, “cat” and 
“dog” has higher semantic similarity than “cat” 
and “computer”. In this study, we implement the 
vector measure to efficiently evaluate the similari-
ties of a large number of word pairs. The vector 
measure (Patwardhan, 2003) creates a co–
occurrence matrix from a corpus made up of the 
WordNet glosses. Each content word used in a 
WordNet gloss has an associated context vector. 
Each gloss is represented by a gloss vector that is 
the average of all the context vectors of the words 
found in the gloss. Relatedness between concepts 
is measured by finding the cosine between a pair of 
gloss vectors. 

 Corpus-based measures of word semantic simi-
larity try to identify the degree of similarity be-
tween words using information exclusively derived 
from large corpora. Such measures as mutual in-
formation (Turney 2001), latent semantic analysis 
(Landauer et al., 1998), log-likelihood ratio (Dun-
ning, 1993) have been proposed to evaluate word 
semantic similarity based on the co-occurrence 
information on a large corpus. In this study, we 
simply choose the mutual information to compute 
the semantic similarity between word ti and tj as 
follows: 

)()(
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´
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which indicates the degree of statistical depend-
ence between ti and tj. Here, N is the total number 
of words in the corpus and p(ti) and p(tj) are re-
spectively the probabilities of the occurrences of ti
and tj, i.e. count(ti)/N and count(tj)/N, where 
count(ti) and count(tj) are the frequencies of ti and tj.
p(ti, tj) is the probability of the co-occurrence of ti
and tj within a window with a predefined size k, i.e. 
count(ti, tj)/N, where count(ti, tj) is the number of 
the times ti and tj co-occur within the window.  

Similar to the SS-Graph, we can build an undi-
rected graph GWW to reflect the homogeneous rela-
tionship between words, in which each node corre-
sponds to a word and the weight associated with 
the edge between any different word ti and tj is 
computed by either the WordNet-based vector 
measure or the corpus-based mutual information 
measure. We use an adjacency matrix V to de-
scribe GWW with each entry corresponding to the 
weight of a link in the graph. V= [Vij]n×n, where Vij 
=sim(ti, tj) if i≠j and Vij=0 if i=j.

Then V is similarly normalized to V~ to make 
the sum of each row equal to 1. 

3.2.3  Sentence-to-Word Graph ( SW-Graph)  

Given the sentence collection S={si | 1≤i≤m} and 
the word collection T={tj|1≤j≤n } of a document, 
we can build a weighted bipartite graph GSW from S
and T in the following way: if word tj appears in 
sentence si, we then create an edge between si and 
tj. A nonnegative weight aff(si,tj) is specified on the 
edge, which is proportional to the importance of 
word tj in sentence si, computed as follows: 

∑
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where t represents a unique term in si and tft, isft
are respectively the term frequency in the sentence 
and the inverse sentence frequency.  

We use an adjacency (affinity) matrix 
W=[Wij]m×n to describe GSW  with each entry Wij 
corresponding to aff(si,tj). Similarly, W is normal-
ized to W~ to make the sum of each row equal to 1. 
In addition, we normalize the transpose of W, i.e. 
WT, to Ŵ to make the sum of each row in WT

equal to 1. 

3.3 Reinforcement Algorithm 

We use two column vectors u=[u(si)]m×1 and v
=[v(tj)]n×1 to denote the saliency scores of the sen-
tences and words in the specified document. The 
assumptions introduced in Section 3.1 can be ren-
dered as follows: 
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After fusing the above equations, we can obtain 

the following iterative forms: 
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And the matrix form is: 
vWuUu TT βα ˆ~ += (11)

uWvVv TT βα ~~ += (12) 

where α and β specify the relative contributions to 
the final saliency scores from the homogeneous 
nodes and the heterogeneous nodes and we have 
α+β=1. In order to guarantee the convergence of 
the iterative form, u and v are normalized after 
each iteration. 

For numerical computation of the saliency 
scores, the initial scores of all sentences and words 
are set to 1 and the following two steps are alter-
nated until convergence, 

1. Compute and normalize the scores of sen-
tences: 

)(n-T)(n-T(n) βα 11 ˆ~ vWuUu += ,

1

(n)(n)(n) / uuu =
2. Compute and normalize the scores of words: 

)(n-T)(n-T(n) βα 11 ~~ uWvVv += ,

1

(n)(n)(n) / vvv =
where u(n) and v(n) denote the vectors computed at 
the n-th iteration.   

Usually the convergence of the iteration algo-
rithm is achieved when the difference between the 
scores computed at two successive iterations for 
any sentences and words falls below a given 
threshold (0.0001 in this study).  

4 Empirical Evaluation 

4.1 Summarization Evaluation 

4.1.1 Evaluation Setup 

We used task 1 of DUC2002 (DUC, 2002) for 
evaluation. The task aimed to evaluate generic 
summaries with a length of approximately 100 
words or less. DUC2002 provided 567 English 
news articles collected from TREC-9 for single-

document summarization task. The sentences in 
each article have been separated and the sentence 
information was stored into files.  

In the experiments, the background corpus for 
using the mutual information measure to compute 
word semantics simply consisted of all the docu-
ments from DUC2001 to DUC2005, which could 
be easily expanded by adding more documents. 
The stopwords were removed and the remaining 
words were converted to the basic forms based on 
WordNet. Then the semantic similarity values be-
tween the words were computed.   

We used the ROUGE (Lin and Hovy, 2003) 
toolkit (i.e.ROUGEeval-1.4.2 in this study) for 
evaluation, which has been widely adopted by 
DUC for automatic summarization evaluation. It 
measured summary quality by counting overlap-
ping units such as the n-gram, word sequences and 
word pairs between the candidate summary and the 
reference summary. ROUGE toolkit reported sepa-
rate scores for 1, 2, 3 and 4-gram, and also for 
longest common subsequence co-occurrences. 
Among these different scores, unigram-based 
ROUGE score (ROUGE-1) has been shown to 
agree with human judgment most (Lin and Hovy, 
2003). We showed three of the ROUGE metrics in 
the experimental results: ROUGE-1 (unigram-
based), ROUGE-2 (bigram-based), and ROUGE-
W (based on weighted longest common subse-
quence, weight=1.2).  

In order to truncate summaries longer than the 
length limit, we used the “-l” option 2 in the 
ROUGE toolkit. 

4.1.2 Evaluation Results 

For simplicity, the parameters in the proposed ap-
proach are simply set to α=β=0.5, which means 
that the contributions from sentences and words 
are equally important. We adopt the WordNet-
based vector measure (WN) and the corpus-based 
mutual information measure (MI) for computing 
the semantic similarity between words.  When us-
ing the mutual information measure, we heuristi-
cally set the window size k to 2, 5 and 10, respec-
tively.  

The proposed approaches with different word 
similarity measures (WN and MI) are compared 
 
2 The “-l” option is very important for fair comparison. Some 

previous works not adopting this option are likely to overes-
timate the ROUGE scores.  

556



with two solid baselines: SentenceRank and Mutu-
alRank. SentenceRank is proposed in Mihalcea and 
Tarau (2004) to make use of only the sentence-to-
sentence relationships to rank sentences, which 
outperforms most popular summarization methods. 
MutualRank is proposed in Zha (2002) to make use 
of only the sentence-to-word relationships to rank 
sentences and words. For all the summarization 
methods, after the sentences are ranked by their 
saliency scores, we can apply a variant form of the 
MMR algorithm to remove redundancy and choose 
both the salient and novel sentences to the sum-
mary. Table 1 gives the comparison results of the 
methods before removing redundancy and Table 2 
gives the comparison results of the methods after 
removing redundancy. 

 
System ROUGE-1 ROUGE-2 ROUGE-W

Our Approach
(WN) 0.47100*# 0.20424*# 0.16336#

Our Approach
(MI:k=2) 0.46711# 0.20195# 0.16257#

Our Approach
(MI:k=5) 0.46803# 0.20259# 0.16310#

Our Approach
(MI:k=10) 0.46823# 0.20301# 0.16294#

SentenceRank 0.45591 0.19201 0.15789 
MutualRank 0.43743 0.17986 0.15333 
Table 1. Summarization Performance before Re-

moving Redundancy (w/o MMR) 
 

System ROUGE-1 ROUGE-2 ROUGE-W
Our Approach

(WN) 0.47329*# 0.20249# 0.16352#

Our Approach
(MI:k=2) 0.47281# 0.20281# 0.16373#

Our Approach
(MI:k=5) 0.47282# 0.20249# 0.16343#

Our Approach
(MI:k=10) 0.47223# 0.20225# 0.16308#

SentenceRank 0.46261 0.19457 0.16018 
MutualRank 0.43805 0.17253 0.15221 

Table 2. Summarization Performance after Remov-
ing Redundancy (w/ MMR) 

 (* indicates that the improvement over SentenceRank is sig-
nificant and # indicates that the improvement over Mutual-
Rank is significant, both by comparing the 95% confidence 
intervals provided by the ROUGE package.)

Seen from Tables 1 and 2, the proposed ap-
proaches always outperform the two baselines over 
all three metrics with different word semantic 
measures. Moreover, no matter whether the MMR 
algorithm is applied or not, almost all performance 
improvements over MutualRank are significant 

and the ROUGE-1 performance improvements 
over SentenceRank are significant when using 
WordNet-based measure (WN). Word semantics 
can be naturally incorporated into the computation 
process, which addresses the problem that Sen-
tenceRank cannot take into account word seman-
tics, and thus improves the summarization per-
formance. We also observe that the corpus-based 
measure (MI) works almost as well as the knowl-
edge-based measure (WN) for computing word 
semantic similarity. 

In order to better understand the relative contri-
butions from the sentence nodes and the word 
nodes, the parameter α is varied from 0 to 1. The 
larger α is, the more contribution is given from the 
sentences through the SS-Graph, while the less 
contribution is given from the words through the 
SW-Graph. Figures 2-4 show the curves over three 
ROUGE scores with respect to α. Without loss of 
generality, we use the case of k=5 for the MI 
measure as an illustration. The curves are similar 
to Figures 2-4 when k=2 and k=10.   
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Seen from Figures 2-4, no matter whether the 
MMR algorithm is applied or not (i.e. w/o MMR 
or w/ MMR), the ROUGE scores based on either 
word semantic measure (MI or WN) achieves the 
peak when α is set between 0.4 and 0.6. The per-
formance values decrease sharply when α is very 
large (near to 1) or very small (near to 0). The 
curves demonstrate that both the contribution from 
the sentences and the contribution from the words 
are important for ranking sentences; moreover, the 
contributions are almost equally important. Loss of 
either contribution will much deteriorate the final 
performance.  

Similar results and observations have been ob-
tained on task 1 of DUC2001 in our study and the 
details are omitted due to page limit. 

4.2 Keyword Evaluation 

4.1.1   Evaluation Setup 

In this study we performed a preliminary evalua-
tion of keyword extraction. The evaluation was 
conducted on the single word level instead of the 
multi-word phrase (n-gram) level, in other words, 
we compared the automatically extracted unigrams 
(words) and the manually labeled unigrams 
(words). The reasons were that: 1) there existed 
partial matching between phrases and it was not 
trivial to define an accurate measure to evaluate 
phrase quality; 2) each phrase was in fact com-
posed of a few words, so the keyphrases could be 
obtained by combining the consecutive keywords.  

We used 34 documents in the first five docu-
ment clusters in DUC2002 dataset (i.e. d061-d065).  
At most 10 salient words were manually labeled 
for each document to represent the document and 
the average number of manually assigned key-

words was 6.8. Each approach returned 10 words 
with highest saliency scores as the keywords. The 
extracted 10 words were compared with the manu-
ally labeled keywords. The words were converted 
to their corresponding basic forms based on 
WordNet before comparison. The precision p, re-
call r, F-measure (F=2pr/(p+r)) were obtained for 
each document and then the values were averaged 
over all documents for evaluation purpose. 

4.1.2 Evaluation Results 

Table 3 gives the comparison results. The proposed 
approaches are compared with two baselines: 
WordRank and MutualRank. WordRank is pro-
posed in Mihalcea and Tarau (2004) to make use 
of only the co-occurrence relationships between 
words to rank words, which outperforms tradi-
tional keyword extraction methods. The window 
size k for WordRank is also set to 2, 5 and 10, re-
spectively. 
 

System Precision Recall F-measure
Our Approach

(WN) 0.413 0.504 0.454 

Our Approach
(MI:k=2) 0.428 0.485 0.455 

Our Approach
(MI:k=5) 0.425 0.491 0.456 

Our Approach
(MI:k=10) 0.393 0.455 0.422 

WordRank 
(k=2) 0.373 0.412 0.392 

WordRank 
(k=5) 0.368 0.422 0.393 

WordRank 
(k=10) 0.379 0.407 0.393 

MutualRank 0.355 0.397 0.375 
Table 3. The Performance of Keyword Extraction  

Seen from the table, the proposed approaches 
significantly outperform the baseline approaches. 
Both the corpus-based measure (MI) and the 
knowledge-based measure (WN) perform well on 
the task of keyword extraction. 

A running example is given below to demon-
strate the results: 

Document ID: D062/AP891018-0301 
Labeled keywords:
insurance earthquake insurer damage california Francisco 

pay 
Extracted keywords:
WN: insurance earthquake insurer quake california 

spokesman cost million wednesday damage 
MI(k=5): insurance insurer earthquake percent benefit 

california property damage estimate rate 
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5 Conclusion and Future Work 

In this paper we propose a novel approach to si-
multaneously document summarization and key-
word extraction for single documents by fusing the 
sentence-to-sentence, word-to-word, sentence-to-
word relationships in a unified framework. The 
semantics between words computed by either cor-
pus-based approach or knowledge-based approach 
can be incorporated into the framework in a natural 
way. Evaluation results demonstrate the perform-
ance improvement of the proposed approach over 
the baselines for both tasks. 

In this study, only the mutual information meas-
ure and the vector measure are employed to com-
pute word semantics, and in future work many 
other measures mentioned earlier will be investi-
gated in the framework in order to show the ro-
bustness of the framework. The evaluation of key-
word extraction is preliminary in this study, and 
we will conduct more thorough experiments to 
make the results more convincing. Furthermore, 
the proposed approach will be applied to multi-
document summarization and keyword extraction, 
which are considered more difficult than single 
document summarization and keyword extraction. 
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Abstract

We describe a novel neural network archi-
tecture for the problem of semantic role la-
beling. Many current solutions are compli-
cated, consist of several stages and hand-
built features, and are too slow to be applied
as part of real applications that require such
semantic labels, partly because of their use
of a syntactic parser (Pradhan et al., 2004;
Gildea and Jurafsky, 2002). Our method in-
stead learns a direct mapping from source
sentence to semantic tags for a given pred-
icate without the aid of a parser or a chun-
ker. Our resulting system obtains accuracies
comparable to the current state-of-the-art at
a fraction of the computational cost.

1 Introduction

Semantic understanding plays an important role in
many end-user applications involving text: for infor-
mation extraction, web-crawling systems, question
and answer based systems, as well as machine trans-
lation, summarization and search. Such applications
typically have to be computationally cheap to deal
with an enormous quantity of data, e.g. web-based
systems process large numbers of documents, whilst
interactive human-machine applications require al-
most instant response. Another issue is the cost of
producing labeled training data required for statisti-
cal models, which is exacerbated when those models
also depend on syntactic features which must them-
selves be learnt.

To achieve the goal of semantic understanding,
the current consensus is to divide and conquer the

[The company]ARG0 [bought]REL [sugar]ARG1 [on the world
market]ARGM-LOC [to meet export commitments]ARGM-PNC

Figure 1: Example of Semantic Role Labeling from
the PropBank dataset (Palmer et al., 2005). ARG0
is typically an actor, REL an action, ARG1 an ob-
ject, and ARGM describe various modifiers such as
location (LOC) and purpose (PNC).

problem. Researchers tackle several layers of pro-
cessing tasks ranging from the syntactic, such as
part-of-speech labeling and parsing, to the semantic:
word-sense disambiguation, semantic role-labeling,
named entity extraction, co-reference resolution and
entailment. None of these tasks are end goals in
themselves but can be seen as layers of feature ex-
traction that can help in a language-based end ap-
plication, such as the ones described above. Un-
fortunately, the state-of-the-art solutions of many of
these tasks are simply too slow to be used in the ap-
plications previously described. For example, state-
of-the-art syntactic parsers theoretically have cubic
complexity in the sentence length (Younger, 1967)1

and several semantic extraction algorithms use the
parse tree as an initial feature.

In this work, we describe a novel type of neural
network architecture that could help to solve some
of these issues. We focus our experimental study on
the semantic role labeling problem (Palmer et al.,
2005): being able to give a semantic role to a syn-

1Even though some parsers effectively exhibit linear be-
havior in sentence length (Ratnaparkhi, 1997), fast statistical
parsers such as (Henderson, 2004) still take around 1.5 seconds
for sentences of length 35 in tests that we made.

560



tactic constituent of a sentence, i.e. annotating the
predicate argument structure in text (see for exam-
ple Figure 1). Because of its nature, role labeling
seems to require the syntactic analysis of a sentence
before attributing semantic labels. Using this intu-
ition, state-of-the-art systems first build a parse tree,
and syntactic constituents are then labeled by feed-
ing hand-built features extracted from the parse tree
to a machine learning system, e.g. the ASSERT sys-
tem (Pradhan et al., 2004). This is rather slow, tak-
ing a few seconds per sentence at test time, partly
because of the parse tree component, and partly be-
cause of the use of Support Vector Machines (Boser
et al., 1992), which have linear complexity in test-
ing time with respect to the number of training ex-
amples. This makes it hard to apply this method to
interesting end user applications.

Here, we propose a radically different approach
that avoids the more complex task of building a full
parse tree. From a machine learning point of view, a
human does not need to be taught about parse trees
to talk. It is possible, however, that our brains may
implicitly learn features highly correlated with those
extracted from a parse tree. We propose to develop
an architecture that implements this kind of implicit
learning, rather than using explicitly engineered fea-
tures. In practice, our system also provides semantic
tags at a fraction of the computational cost of other
methods, taking on average 0.02 seconds to label a
sentence from the Penn Treebank, with almost no
loss in accuracy.

The rest of the article is as follows. First, we de-
scribe the problem of shallow semantic parsing in
more detail, as well as existing solutions to this prob-
lem. We then detail our algorithmic approach – the
neural network architecture we employ – followed
by experiments that evaluate our method. Finally,
we conclude with a summary and discussion of fu-
ture work.

2 Shallow Semantic Parsing

FrameNet (Baker et al., 1998) and the Proposition
Bank (Palmer et al., 2005), or PropBank for short,
are the two main systems currently developed for
semantic role-labeling annotation. We focus here
on PropBank. PropBank encodes role labels by se-
mantically tagging the syntactic structures of hand

annotated parses of sentences. The current version
of the dataset gives semantic tags for the same sen-
tences as in the Penn Treebank (Marcus et al., 1993),
which are excerpts from the Wall Street Journal. The
central idea is that each verb in a sentence is la-
beled with its propositional arguments, where the
abstract numbered arguments are intended to fill typ-
ical roles. For example, ARG0 is typically the actor,
and ARG1 is typically the thing acted upon. The
precise usage of the numbering system is labeled for
each particular verb as so-called frames. Addition-
ally, semantic roles can also be labeled with one of
13 ARGM adjunct labels, such as ARGM-LOC or
ARGM-TMP for additional locational or temporal
information relative to some verb.

Shallow semantic parsing has immediate applica-
tions in tasks such as meta-data extraction (e.g. from
web documents) and question and answer based sys-
tems (e.g. call center systems), amongst others.

3 Previous Work

Several authors have already attempted to build ma-
chine learning approaches for the semantic role-
labeling problem. In (Gildea and Jurafsky, 2002)
the authors presented a statistical approach to learn-
ing (for FrameNet), with some success. They pro-
posed to take advantage of the syntactic tree struc-
ture that can be predicted by a parser, such as Char-
niak’s parser (Charniak, 2000). Their aim is, given
a node in the parse tree, to assign a semantic role
label to the words that are the children of that node.
They extract several key types of features from the
parse tree to be used in a statistical model for pre-
diction. These same features also proved crucial to
subsequent approaches, e.g. (Pradhan et al., 2004).
These features include:

• The parts of speech and syntactic labels of
words and nodes in the tree.

• The node’s position (left or right) in relation to
the verb.

• The syntactic path to the verb in the parse tree.

• Whether a node in the parse tree is part of a
noun or verb phrase (by looking at the parent
nodes of that node).
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• The voice of the sentence: active or passive
(part of the PropBank gold annotation);

as well as several other features (predicate, head
word, verb sub-categorization, . . . ).

The authors of (Pradhan et al., 2004) used a
similar structure, but added more features, notably
head word part-of-speech, the predicted named en-
tity class of the argument, word sense disambigua-
tion of the verb and verb clustering, and others (they
add 25 variants of 12 new feature types overall.)
Their system also uses a parser, as before, and then a
polynomial Support Vector Machine (SVM) (Boser
et al., 1992) is used in two further stages: to clas-
sify each node in the tree as being a semantic ar-
gument or not for a given verb; and then to clas-
sify each semantic argument into one of the classes
(ARG1, ARG2, etc.). The first SVM solves a two-
class problem, the second solves a multi-class prob-
lem using a one-vs-the-rest approach. The final sys-
tem, called ASSERT, gives state-of-the-art perfor-
mance and is also freely available at: http://
oak.colorado.edu/assert/. We compare
to this system in our experimental results in Sec-
tion 5. Several other competing methods exist, e.g.
the ones that participated in the CONLL 2004 and
2005 challenges (http://www.lsi.upc.edu/
˜srlconll/st05/st05.html). In this paper
we focus on a comparison with ASSERT because
software to re-run it is available online. This also
gives us a timing result for comparison purposes.

The three-step procedure used in ASSERT (calcu-
lating a parse tree and then applying SVMs twice)
leads to good classification performance, but has
several drawbacks. First in speed: predicting a
parse tree is extremely demanding in computing re-
sources. Secondly, choosing the features necessary
for SVM classification requires extensive research.
Finally, the SVM classification algorithm used in ex-
isting approaches is rather slow: SVM training is at
least quadratic in time with respect to the number
of training examples. The number of support vec-
tors involved in the SVM decision function also in-
creases linearly with the number of training exam-
ples. This makes SVMs slow on large-scale prob-
lems, both during training and testing phases.

To alleviate the burden of parse tree computation,
several attempts have been made to remove the full

parse tree information from the semantic role label-
ing system, in fact the shared task of CONLL 2004
was devoted to this goal, but the results were not
completely satisfactory. Previously, in (Gildea and
Palmer, 2001), the authors tried to show that the
parse tree is necessary for good generalization by
showing that segments derived from a shallow syn-
tactic parser or chunker do not perform as well for
this goal. A further analysis of using chunkers, with
improved results was also given in (Punyakanok et
al., 2005), but still concluded the full parse tree is
most useful.

4 Neural Network Architecture

Ideally, we want an end-to-end fast learning system
to output semantic roles for syntactic constituents
without using a time consuming parse tree.

Also, as explained before, we are interesting in
exploring whether machine learning approaches can
learn structure implicitly. Hence, even if there is a
deep relationship between syntax and semantics, we
prefer to avoid hand-engineered features that exploit
this, and see if we can develop a model that can learn
these features instead. We are thus not interested
in chunker-based techniques, even though they are
faster than parser-based techniques.

We propose here a neural network based architec-
ture which achieves these two goals.

4.1 Basic Architecture

The type of neural network that we employ is a Multi
Layer Perceptron (MLP). MLPs have been used for
many years in the machine learning field and slowly
abandoned for several reasons: partly because of
the difficulty of solving the non-convex optimization
problems associated with learning (LeCun et al.,
1998), and partly because of the difficulty of their
theoretical analysis compared to alternative convex
approaches.

An MLP works by successively projecting the
data to be classified into different spaces. These
projections are done in what is called hidden lay-
ers. Given an input vector z, a hidden layer applies
a linear transformation (matrix M ) followed by a
squashing function h:

z 7→ Mz 7→ h(Mz) . (1)
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A typical squashing function is the hyperbolic tan-
gent h(·) = tanh(·). The last layer (the output
layer) linearly separates the classes. The composi-
tion of the projections in the hidden layers could be
viewed as the work done by the kernel in SVMs.
However there is a very important difference: the
kernel in SVM is fixed and arbitrarily chosen, while
the hidden layers in an MLP are trained and adapted
to the classification task. This allows us to create
much more flexible classification architectures.

Our method for semantic role labeling classifies
each word of a sentence separately. We do not use
any semantic constituent information: if the model
is powerful enough, words in the same semantic
constituent should have the same class label. This
means we also do not separate the problem into
an identification and classification phase, but rather
solve in a single step.

4.1.1 Notation
We represent words as indices. We consider a fi-

nite dictionary of words D ⊂ N. Let us represent a
sentence of nw words to be analyzed as a function
s(·). The ith word in the sentence is given by the
index s(i):

1 ≤ i ≤ nw s(i) ∈ D .

We are interested in predicting the semantic role la-
bel of the word at position posw, given a verb at po-
sition posv (1 ≤ posw, posv ≤ nw). A mathemati-
cal description of our network architecture schemat-
ically shown in Figure 2 follows.

4.1.2 Transforming words into feature vectors
Our first concern in semantic role labeling is that

we have to deal with words, and that a simple in-
dex i ∈ D does not carry any information specific
to a word: for each word we need a set of features
relevant for the task. As described earlier, previous
methods construct a parse tree, and then compute
hand-built features which are then fed to a classi-
fication algorithm. In order to bypass the use of a
parse tree, we convert each word i ∈ D into a par-
ticular vector wi ∈ Rd which is going to be learnt
for the task we are interested in. This approach has
already been used with great success in the domain
of language models (Bengio and Ducharme, 2001;
Schwenk and Gauvain, 2002).
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C(position w.r.t. cat, position w.r.t. sat)

Softmax Squashing Layer
...

ARG1 ARG2 ARGM
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Classical Linear Layer

Tanh Squashing Layer

n
hu

Ci

ws(6)

ws(2)

s(1)w

...C1 C2 C6

Classical Linear Layer

ws(6)
...ws(2)s(1)w

s(1)  s(2)   ...                   s(6)

satthe
Input Sentence

on the matcat

Figure 2: MLP architecture for shallow semantic
parsing. The input sequence is at the top. The out-
put class probabilities for the word of interest (“cat”)
given the verb of interest (“sat”) are given at the bot-
tom.

The first layer of our MLP is thus a lookup table
which replaces the word indices into a concatenation
of vectors:

{s(1), . . . , s(nw)}
7→ (ws(1) . . . ws(nw)) ∈ Rnw d .

(2)

The weights {wi | i ∈ D} for this layer are consid-
ered during the backpropagation phase of the MLP,
and thus adapted automatically for the task we are
interested in.

4.1.3 Integrating the verb position
Feeding word vectors alone to a linear classifica-

tion layer as in (Bengio and Ducharme, 2001) leads
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to very poor accuracy because the semantic classifi-
cation of a given word also depends on the verb in
question. We need to provide the MLP with infor-
mation about the verb position within the sentence.
For that purpose we use a kind of linear layer which
is adapted to the sentence considered. It takes the
form:

(ws(1) . . . ws(nw)) 7→ M

 wT

s(1)
...

wT

s(nw)

 ,

where M ∈ Rnhu×nw d, and nhu is the number of
hidden units. The specific nature of this layer is
that the matrix M has a special block-column form
which depends on the sentence:

M = (C1| . . . |Cnw) ,

where each column Ci ∈ Rnhu×d depends on the
position of the ith word in s(·), with respect to the
position posw of the word of interest, and with re-
spect to the position posv of the verb of interest:

Ci = C(i− posw, i− posv) ,

where C(·, ·) is a function to be chosen.
In our experiments C(·, ·) was a linear layer with

discretized inputs (i − posw, i − posv) which were
transformed into two binary vectors of size wsz,
where a bit is set to 1 if it corresponds to the po-
sition to encode, and 0 otherwise. These two binary
vectors are then concatenated and fed to the linear
layer. We chose the “window size” wsz = 11. If
a position lies outside the window, then we still set
the leftmost or rightmost bit to 1. The parameters in-
volved in this function are also considered during the
backpropagation. With such an architecture we al-
low our MLP to automatically adapt the importance
of a word in the sentence given its distance to the
word we want to classify, and to the verb we are in-
terested in.

This idea is the major novelty in this work, and is
crucial for the success of the entire architecture, as
we will see in the experiments.

4.1.4 Learning class probabilities
The last layer in our MLP is a classical linear

layer as described in (1), with a softmax squashing

function (Bridle, 1990). Considering (1) and given
z̃ = Mz, we have

hi(z̃) =
exp z̃i∑
j exp z̃j

.

This allows us to interpret outputs as probabilities
for each semantic role label. The training of the
whole system is achieved using a normal stochastic
gradient descent.

4.2 Word representation
As we have seen, in our model we are learning one
d dimensional vector to represent each word. If the
dataset were large enough, this would be an elegant
solution. In practice many words occur infrequently
within PropBank, so (independent of the size of d)
we can still only learn a very poor representation for
words that only appear a few times. Hence, to con-
trol the capacity of our model we take the original
word and replace it with its part-of-speech if it is
a verb, noun, adjective, adverb or number as deter-
mined by a part-of-speech classifier, and keep the
words for all other parts of speech. This classifier is
itself a neural network. This way we keep linking
words which are important for this task. We do not
do this replacement for the predicate itself.

5 Experiments

We used Sections 02-21 of the PropBank dataset
version 1 for training and validation and Section
23 for testing as standard in all our experiments.
We first describe the part-of-speech tagger we em-
ploy, and then describe our semantic role labeling
experiments. Software for our method, SENNA (Se-
mantic Extraction using a Neural Network Archi-
tecture), more details on its implementation, an on-
line applet and test set predictions of our system
in comparison to ASSERT can be found at http:
//ml.nec-labs.com/software/senna.

Part-Of-Speech Tagger The part-of-speech clas-
sifier we employ is a neural network architecture of
the same type as in Section 4, where the function
Ci = C(i − posw) depends now only on the word
position, and not on a verb. More precisely:

Ci =
{

0 if 2 |i− posw| > wsz − 1
Wi−posw otherwise ,
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where Wk ∈ Rnhu×d and wsz is a window size.
We chose wsz = 5 in our experiments. The
d-dimensional vectors learnt take into account the
capitalization of a word, and the prefix and suf-
fix calculated using Porter-Stemmer. See http:
//ml.nec-labs.com/software/senna for
more details. We trained on the training set of Prop-
Bank supplemented with the Brown corpus, result-
ing in a test accuracy on the test set of PropBank of
96.85% which compares to 96.66% using the Brill
tagger (Brill, 1992).

Semantic Role Labeling In our experiments we
considered a 23-class problem of NULL (no la-
bel), the core arguments ARG0-5, REL, ARGA, and
ARGM- along with the 13 secondary modifier labels
such as ARGM-LOC and ARGM-TMP. We simpli-
fied R-ARGn and C-ARGn to be written as ARGn,
and post-processed ASSERT to do this as well.

We compared our system to the freely available
ASSERT system (Pradhan et al., 2004). Both sys-
tems are fed only the input sentence during testing,
with traces removed, so they cannot make use of
many PropBank features such as frameset identiti-
fier, person, tense, aspect, voice, and form of the
verb. As our algorithm outputs a semantic tag for
each word of a sentence, we directly compare this
per-word accuracy with ASSERT. Because ASSERT
uses a parser, and because PropBank was built by la-
beling the nodes of a hand-annotated parse tree, per-
node accuracy is usually reported in papers such as
(Pradhan et al., 2004). Unfortunately our approach
is based on a completely different premise: we tag
words, not syntactic constituents coming from the
parser. We discuss this further in Section 5.2.

The per-word accuracy comparison results can be
seen in Table 5. Before labeling the semantic roles
of each predicate, one must first identify the pred-
icates themselves. If a predicate is not identified,
NULL tags are assigned to each word for that pred-
icate. The first line of results in the table takes into
account this identification process. For the neural
network, we used our part-of-speech tagger to per-
form this as a verb-detection task.

We noticed ASSERT failed to identify relatively
many predicates. In particular, it seems predicates
such as “is” are sometimes labeled as AUX by
the part-of-speech tagger, and subsequently ignored.

We informed the authors of this, but we did not re-
ceive a response. To deal with this, we considered
the additional accuracy (second row in the table)
measured over only those sentences where the pred-
icate was identified by ASSERT.

Timing results The per-sentence compute time is
also given in Table 5, averaged over all sentences in
the test set. Our method is around 250 times faster
than ASSERT. It is not really feasible to run AS-
SERT for most applications.

Measurement NN ASSERT
Per-word accuracy

(all verbs) 83.64% 83.46%
Per-word accuracy
(ASSERT verbs) 84.09% 86.06%

Per-sentence
compute time (secs) 0.02 secs 5.08 secs

Table 1: Experimental comparison with ASSERT

5.1 Analysis of our MLP

While we gave an intuitive justification of the archi-
tecture choices of our model in Section 4, we now
give a systematic empirical study of those choices.
First of all, providing the position of the word and
the predicate in function C(·, ·) is essential: the best
model we obtained with a window around the word
only gave 51.3%, assuming correct identification of
all predicates. Our best model achieves 83.95% in
this setting.

If we do not cluster the words according to their
part-of-speech, we also lose some performance, ob-
taining 78.6% at best. On the other hand, clustering
all words (such as CC, DT, IN part-of-speech tags)
also gives weaker results (81.1% accuracy at best).
We believe that including all words would give very
good performance if the dataset was large enough,
but training only on PropBank leads to overfitting,
many words being infrequent. Clustering is a way
to fight against overfitting, by grouping infrequent
words: for example, words with the label NNP, JJ,
RB (which we cluster) appear on average 23, 22 and
72 times respectively in the training set, while CC,
DT, IN (which we do not cluster) appear 2420, 5659
and 1712 times respectively.
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Even though some verbs are infrequent, one can-
not cluster all verbs into a single group, as each verb
dictates the types of semantic roles in the sentence,
depending on its frame. Clustering all words into
their part-of-speech, including the predicate, gives
a poor 73.8% compared with 81.1%, where every-
thing is clustered apart from the predicate.

Figure 3 gives some anecdotal examples of test set
predictions of our final model compared to ASSERT.

5.2 Argument Classification Accuracy
So far we have not used the same accuracy measures
as in previous work (Gildea and Jurafsky, 2002;
Pradhan et al., 2004). Currently our architecture is
designed to label on a per-word basis, while existing
systems perform a segmentation process, and then
label segments. While we do not optimize our model
for the same criteria, it is still possible to measure the
accuracy using the same metrics. We measured the
argument classification accuracy of our network, as-
suming the correct segmentation is given to our sys-
tem, as in (Pradhan et al., 2004), by post-processing
our per-word tags to form a majority vote over each
segment. This gives 83.18% accuracy for our net-
work when we suppose the predicate must also be
identified, and 80.53% for the ASSERT software.
Measuring only on predicates identified by ASSERT
we instead obtain 84.32% accuracy for our network,
and 87.02% for ASSERT.

6 Discussion

We have introduced a neural network architecture
that can provide computationally efficient semantic
role tagging. It is also a general architecture that
could be applied to other problems as well. Because
our network currently outputs labels on a per-word
basis it is difficult to assess existing accuracy mea-
sures. However, it should be possible to combine
our approach with a shallow parser to enhance per-
formance, and make comparisons more direct.

We consider this work as a starting point for dif-
ferent research directions, including the following
areas:

• Incorporating hand-built features Currently,
the only prior knowledge our system encodes
comes from part-of-speech tags, in stark con-
trast to other methods. Of course, performance

TRUTH: He camped out at a high-tech nerve center
on the floor of [the Big Board, where]ARGM-LOC [he]ARG0
[could]ARGM-MOD [watch]REL [updates on prices and pend-
ing stock orders]ARG1.
ASSERT (68.7%): He camped out at a high-tech nerve
center on the floor of the Big Board, [ where]ARGM-LOC
[he]ARG0 [could]ARGM-MOD [watch]REL [updates]ARG1 on
prices and pending stock orders.
NN (100%): He camped out at a high-tech nerve center
on the floor of [the Big Board, where]ARGM-LOC [he]ARG0
[could]ARGM-MOD [watch]REL [updates on prices and pend-
ing stock orders]ARG1.

TRUTH: [United Auto Workers Local 1069, which]ARG0
[represents]REL [3,000 workers at Boeing’s helicopter unit
in Delaware County, Pa.]ARG1 , said it agreed to extend its
contract on a day-by-day basis, with a 10-day notification
to cancel, while it continues bargaining.
ASSERT (100%): [United Auto Workers Local 1069,
which]ARG0 [represents]REL [3,000 workers at Boeing’s
helicopter unit in Delaware County, Pa.]ARG1 , said it agreed
to extend its contract on a day-by-day basis, with a 10-day
notification to cancel, while it continues bargaining.
NN (89.1%): [United Auto Workers Local 1069,
which]ARG0 [represents]REL [3,000 workers at Boeing’s
helicopter unit]ARG1 [ in Delaware County]ARGM-LOC , Pa. ,
said it agreed to extend its contract on a day-by-day basis,
with a 10-day notification to cancel, while it continues
bargaining.

Figure 3: Two examples from the PropBank test set,
showing Neural Net and ASSERT and gold standard
labelings, with per-word accuracy in brackets. Note
that even though our labeling does not match the
hand-annotated one in the second sentence it still
seems to make some sense as “in Delaware County”
is labeled as a location modifier. The complete set
of predictions on the test set can be found at http:
//ml.nec-labs.com/software/senna.

would improve with more hand-built features.
For example, simply adding whether each word
is part of a noun or verb phrase using the hand-
annotated parse tree (the so-called “GOV” fea-
ture from (Gildea and Jurafsky, 2002)) im-
proves the performance of our system from
83.95% to 85.8%. One must trade the gener-
ality of the model with its specificity, and also
take into account how long the features take to
compute.

• Incorporating segment information Our system
has no prior knowledge about segmentation in
text. This could be encoded in many ways:
most obviously by using a chunker, but also by
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designing a different network architecture, e.g.
by encoding contiguity constraints. To show
the latter is useful, using hand-annotated seg-
ments to force contiguity by majority vote leads
to an improvement from 83.95% to 85.6%.

• Incorporating known invariances via virtual
training data. In image recognition problems
it is common to create artificial training data by
taking into account invariances in the images,
e.g. via rotation and scale. Such data improves
generalization substantially. It may be possible
to achieve similar results for text, by “warp-
ing” training data to create new sentences, or
by constructing sentences from scratch using a
hand-built grammar.

• Unlabeled data. Our representation of words
is as d dimensional vectors. We could try to
improve this representation by learning a lan-
guage model from unlabeled data (Bengio and
Ducharme, 2001). As many words in Prop-
Bank only appear a few times, the representa-
tion might improve, even though the learning is
unsupervised. This may also make the system
generalize better to types of data other than the
Wall Street Journal.

• Transductive Inference. Finally, one can also
use unlabeled data as part of the supervised
training process, which is called transduction
or semi-supervised learning.

In particular, we find the possibility of using un-
labeled data, invariances and the use of transduc-
tion exciting. These possibilities naturally fit into
our framework, whereas scalability issues will limit
their application in competing methods.
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Abstract

This paper addresses the automatic classifi-
cation of semantic relations in noun phrases
based on cross-linguistic evidence from a
set of five Romance languages. A set
of novel semantic and contextual English–
Romance NP features is derived based on
empirical observations on the distribution
of the syntax and meaning of noun phrases
on two corpora of different genre (Europarl
and CLUVI). The features were employed
in a Support Vector Machines algorithm
which achieved an accuracy of 77.9% (Eu-
roparl) and 74.31% (CLUVI), an improve-
ment compared with two state-of-the-art
models reported in the literature.

1 Introduction

Semantic knowledge is very important for any ap-
plication that requires a deep understanding of natu-
ral language. The automatic acquisition of semantic
information in text has become increasingly impor-
tant in ontology development, information extrac-
tion, question answering, and other advanced natural
language processing applications.

In this paper we present a model for the auto-
matic semantic interpretation of noun phrases (NPs),
which is the task of determining the semantic re-
lation among the noun constituents. For example,
family estateencodes aPOSSESSIONrelation, while
dress of silkrefers toPART-WHOLE. The problem,
while simple to state is hard to solve. The rea-
son is that the meaning of these constructions is

most of the time ambiguous or implicit. Interpreting
NPs correctly requires various types of information
from world knowledge to complex context features.
Moreover, the extension of this task to other natu-
ral languages brings forward new issues and prob-
lems. For instance,beer glasstranslates intotarro
de cervezain Spanish,bicchiere da birrain Italian,
verreà bière in French, andpahar de berein Roma-
nian. Thus, an important research question is how
do the syntactic constructions in the target language
contribute to the preservation of meaning in context.

In this paper we investigate noun phrases based on
cross-linguistic evidence and present a domain inde-
pendent model for their semantic interpretation. We
aim at uncovering the general aspects that govern
the semantics of NPs in English based on a set of
five Romance languages: Spanish, Italian, French,
Portuguese, and Romanian. The focus on Romance
languages is well motivated. It is mostly true that
English noun phrases translate into constructions of
the form N P N in Romance languages where, as
we will show below, theP (preposition) varies in
ways that correlate with the semantics. Thus Ro-
mance languages will give us another source of evi-
dence for disambiguating the semantic relations in
English NPs. We also present empirical observa-
tions on the distribution of the syntax and meaning
of noun phrases on two different corpora based on
two state-of-the-art classification tag sets: Lauer’s
set of 8 prepositions (Lauer, 1995) and our list of 22
semantic relations. We show that various crosslin-
gual cues can help in the NP interpretation task when
employed in an SVM model. The results are com-
pared against two state of the art approaches: a su-
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pervised machine learning model, Semantic Scatter-
ing (Moldovan and Badulescu, 2005), and a web-
based probabilistic model (Lapata and Keller, 2004).

The paper is organized as follows. In Section 2
we present a summary of the previous work. Sec-
tion 3 lists the syntactic and semantic interpretation
categories used along with observations regarding
their distribution on the two different cross-lingual
corpora. Sections 4 and 5 present a learning model
and results for the interpretation of English noun
phrases. Finally, in Section 6 we offer some dis-
cussion and conclusions.

2 Related Work

Currently, the best-performing NP interpretation
methods in computational linguistics focus mostly
on two consecutive noun instances (noun com-
pounds) and rely either on rather ad-hoc, domain-
specific semantic taxonomies, or on statistical mod-
els on large collections of unlabeled data. Recent
results have shown that symbolic noun compound
interpretation systems using machine learning tech-
niques coupled with a large lexical hierarchy per-
form with very good accuracy, but they are most of
the time tailored to a specific domain (Rosario and
Hearst, 2001). On the other hand, the majority of
corpus statistics approaches to noun compound in-
terpretation collect statistics on the occurrence fre-
quency of the noun constituents and use them in a
probabilistic model (Lauer, 1995). More recently,
(Lapata and Keller, 2004) showed that simple unsu-
pervised models perform significantly better when
the frequencies are obtained from the web, rather
than from a large standard corpus. Other researchers
(Pantel and Pennacchiotti, 2006), (Snow et al., 2006)
use clustering techniques coupled with syntactic de-
pendency features to identifyIS-A relations in large
text collections. (Kim and Baldwin, 2006) and (Tur-
ney, 2006) focus on the lexical similarity of unseen
noun compounds with those found in training.

However, although the web-based solution might
overcome the data sparseness problem, the current
probabilistic models are limited by the lack of deep
linguistic information. In this paper we investigate
the role of cross-linguistic information in the task
of English NP semantic interpretation and show the
importance of a set of novel linguistic features.

3 Corpus Analysis

For a better understanding of the meaning of the
N N and N P N instances, we analyzed the seman-
tic behavior of these constructions on a large cross-
linguistic corpora of examples. We are interested
in what syntactic constructions are used to trans-
late the English instances to the target Romance lan-
guages and vice-versa, what semantic relations do
these constructions encode, and what is the corpus
distribution of the semantic relations.

3.1 Lists of semantic classification relations

Although the NP interpretation problem has been
studied for a long time, researchers haven’t agreed
on the number and the level of abstraction of these
semantic categories. They can vary from a few
prepositions (Lauer, 1995) to hundreds or thousands
specific semantic relations (Finin, 1980). The more
abstract the categories, the more noun phrases are
covered, but also the more room for variation as to
which category a phrase should be assigned.

In this paper we experiment with two state of the
art classification sets used in NP interpretation. The
first is a core set of 22 semantic relations (22 SRs)
identified by us from the computational linguistics
literature. This list, presented in Table 1 along with
examples is general enough to cover a large major-
ity of text semantics while keeping the semantic re-
lations to a manageable number. The second set is
Lauer’s list of 8 prepositions (8 PP) and can be ap-
plied only to noun compounds (of, for, with, in, on,
at, about, andfrom – e.g., according to this classifi-
cation, love storycan be classified asstoryabout
love). We selected these sets as they are of different
size and contain semantic classification categories at
different levels of abstraction. Lauer’s list is more
abstract and, thus capable of encoding a large num-
ber of noun compound instances, while the 22-SR
list contains finer grained semantic categories. We
show below the coverage of these semantic lists on
two different corpora and how well they solve the
interpretation problem of noun phrases.

3.2 The data

The data was collected from two text collections
with different distributions and of different genre,
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POSSESSION(family estate);KINSHIP (sister of the boy);PROPERTY(lubricant viscosity);AGENT (return of the natives);
THEME (acquisition of stock);TEMPORAL (morning news);DEPICTION-DEPICTED(a picture of my niece);PART-WHOLE
(brush hut);HYPERNYMY (IS-A) (daisy flower);CAUSE (scream of pain);MAKE /PRODUCE(chocolate factory);INSTRUMENT
(laser treatment);LOCATION (castle in the desert);PURPOSE(cough syrup);SOURCE(grapefruit oil);TOPIC (weather report);
MANNER (performance with passion); beneficiary (rights of citizens);MEANS (bus service);EXPERIENCER(fear of the girl);
MEASURE (cup of sugar);TYPE (framework law);

Table 1: The list of 22 semantic relations (22-SRs).

Europarl1 and CLUVI2. The Europarl data was as-
sembled by combining the Spanish-English, Italian-
English, French-English and Portuguese-English
corpora which were automatically aligned based on
exact matches of English translations. Then, we
considered only the English sentences which ap-
peared verbatim in all four language pairs. The re-
sulting English corpus contained 10,000 sentences
which were syntactically parsed (Charniak, 2000).
From these we extracted the first 3,000 NP instances
(N N: 48.82% and N P N: 51.18%).

CLUVI is an open text repository of parallel cor-
pora of contemporary oral and written texts in some
of the Romance languages. Here, we focused only
on the English-Portuguese and English-Spanish par-
allel texts from the works of John Steinbeck, H. G.
Wells, J. Salinger, and others. Using the CLUVI
search interface we created a sentence-aligned par-
allel corpus of 2,800 English-Spanish and English-
Portuguese sentences. The English versions were
automatically parsed after which each N N and
N P N instance thus identified was manually mapped
to the corresponding translations. The resulting cor-
pus contains 2,200 English instances with a distribu-
tion of 26.77% N N and 73.23% N P N.

3.3 Corpus Annotation

For each corpus, each NP instance was presented
separately to two experienced annotators in a web
interface in context along with the English sentence
and its translations. Since the corpora do not cover
some of the languages (Romanian in Europarl and
CLUVI, and Italian and French in CLUVI), three
other native speakers of these languages and flu-
ent in English provided the translations which were

1http://www.isi.edu/koehn/europarl/. This corpus contains
over 20 million words in eleven official languages of the Euro-
pean Union covering the proceedings of the European Parlia-
ment from 1996 to 2001.

2CLUVI - Linguistic Corpus of the University of Vigo - Par-
allel Corpus 2.1 - http://sli.uvigo.es/CLUVI/

added to the list. The two computational semantics
annotators had to tag each English constituent noun
with its corresponding WordNet sense and each in-
stance with the corresponding semantic category. If
the word was not found in WordNet the instance was
not considered. Whenever the annotators found an
example encoding a semantic category other than
those provided or they didn’t know what interpre-
tation to give, they had to tag it as “OTHER-SR”, and
respectively “OTHER-PP”3. The details of the anno-
tation task and the observations drawn from there are
presented in a companion paper (Girju, 2007).

The corpus instances used in the corpus analy-
sis phase have the following format:<NPEn ;NPEs;
NPIt; NPFr; NPPort; NPRo; target>. The word
target is one of the 23 (22 +OTHER-SR) seman-
tic relations and one of the eight prepositions con-
sidered orOTHER-PP (with the exception of those
N P N instances that already contain a preposi-
tion). For example,<development cooperation;
cooperacíon para el desarrollo; cooperazione allo
sviluppo; cooṕeration au d́eveloppement; cooperare
pentru dezvoltare;PURPOSE/ FOR>.

The annotators’ agreement was measured using
Kappa statistics:K = Pr(A)−Pr(E)

1−Pr(E) , wherePr(A)
is the proportion of times the annotators agree and
Pr(E) is the probability of agreement by chance.
The Kappa values were obtained on Europarl (N N:
0.80 for 8-PP and 0.61 for 22-SR; N P N: 0.67 for
22-SR) and CLUVI (N N: 0.77 for 8-PP and 0.56 for
22-SR; N P N: 0.68 for 22-SR). We also computed
the number of pairs that were tagged withOTHER

by both annotators for each semantic relation and
preposition paraphrase, over the number of exam-
ples classified in that category by at least one of the
judges (in Europarl: 91% for 8-PP and 78% for 22-
SR; in CLUVI: 86% for 8-PP and 69% for 22-SR).

The agreement obtained on the Europarl corpus is

3The annotated corpora resulted in this research is available
at http://apfel.ai.uiuc.edu.
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higher than the one on CLUVI on both classification
sets. This is partially explained by the distribution of
semantic relations in both corpora, as will be shown
in the next subsection.

3.4 Cross-linguistic distribution of Syntactic
Constructions

From the sets of 2,954 (Europarl) and 2,168
(CLUVI) instances resulted after annotation, the
data show that over 83% of the translation patterns
for both text corpora on all languages were of the
type N N and N P N. However, while their distribu-
tion is balanced in the Europarl corpus (about 45%,
with a 64% N P N – 26% N N ratio for Romanian),
in CLUVI the N P N constructions occur in more
than 85% of the cases (again, with the exception of
Romanian – 50%). It is interesting to note here that
some of the English NPs are translated into both
noun–noun and noun–adjective compounds in the
target languages. For example,love affair translates
in Italian asstoria d’amoreor the noun–adjective
compoundrelazione amorosa. There are also in-
stances that have just one word correspondent in
the target language (e.g.,ankle bootis bottine in
French). The rest of the data is encoded by other
syntactic paraphrases (e.g.,bomb siteis luogo dove
è esplosa la bomba(It.)). 4.

From the initial corpus we considered those En-
glish instances that had all the translations encoded
only by N N and N P N. Out of these, we selected
only 1,023 Europarl and 1,008 CLUVI instances en-
coded by N N and N P N in all languages considered
and resulted after agreement.

4 Model

4.1 Feature space

We have identified and experimented with 13 NP
features presented below. With the exceptions of
features F1-F5 (Girju et al., 2005), all the other fea-
tures are novel.

A. English Features

F1 andF2. Noun semantic classspecifies the Word-
Net sense of the head (F1) and modifier noun (F2)
and implicitly points to all its hypernyms. For ex-
ample, the hypernyms ofcar#1 are: {motor vehi-

4“ the place where the bomb is exploded” (It.)

cle}, .. {entity}. This feature helps generalize over
the semantic classes of the two nouns in the corpus.

F3 and F4. WordNet derivationally related form
specifies if the head (F3) and the modifier (F4) nouns
are related to a corresponding WordNet verb (e.g.
statementderived fromto state; cry from to cry).

F5. Prepositional cuesthat link the two nouns in an
NP. These can be either simple or complex preposi-
tions such as “of” or “ according to”. In case of N N
instances, this feature is “–” (e.g.,framework law).

F6 and F7. Type of nominalized nounindicates the
specific class of nouns the head (F6) or modifier (F7)
belongs to depending on the verb it derives from.
First, we check if the noun is a nominalization. For
English we used NomLex-Plus (Meyers et al., 2004)
to map nouns to corresponding verbs.5 For exam-
ple, “destruction of the city”, where destructionis
a nominalization. F6 and F7 may overlap with fea-
tures F3 and F4 which are used in case the noun to be
checked does not have an entry in the NomLex-Plus
dictionary. These features are of particular impor-
tance since they impose some constraints on the pos-
sible set of relations the instance can encode. They
take the following values (identified based on list of
verbs extracted from VerbNet (Kipper et al., 2000)):

a. Active form nouns which have an intrinsic
active voice predicate-argument structure. (Giorgi
and Longobardi, 1991) argue that in English this is a
necessary restriction. Most of the time, they rep-
resent states of emotion, such as fear, desire, etc.
These nouns mark their internal argument through
of and require most of the time prepositions likepor
and notdewhen translated in Romance. Our obser-
vations on the Romanian translations (captured by
features F12 and F13 below) show that the possible
cases of ambiguity are solved by the type of syntac-
tic construction used. For example, N N genitive-
marked constructions are used forEXPERIENCER–
encoding instances, whileN de Nor N pentru N(N
for N) are used for other relations. Such examples
arethe love of children– THEME (and notthe love by
the children). (Giorgi and Longobardi, 1991) men-
tion that with such nouns that resist passivisation,

5NomLex-Plus is a hand-coded database of 5,000 verb nom-
inalizations, de-adjectival, and de-adverbial nouns including the
corresponding subcategorization frames (verb-argument struc-
ture information).
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the preposition introducing the internal argument,
even if it is of, has always a semantic content, and
is not a bare case-marker realizing the genitive case.

b. Unaccusative (ergative) nounswhich are de-
rived from ergative verbs that take only internal ar-
guments (e.g., not agentive ones). For example, the
transitive verbto disbandallows the subject to be
deleted as in the following sentences (1) “The lead
singer disbanded the group in 1991.” and (2) “The
group disbanded.”. Thus, the corresponding erga-
tive nominalizationthe disbandment of the groupen-
codes aTHEME relation and notAGENT.

c. Unergative (intransitive) nounsare derived
from intransitive verbs and take onlyAGENT seman-
tic relations. For example,the departure of the girl.

d. Inherently passive nounssuch asthe cap-
ture of the soldier. These nouns, like the verbs they
are derived from, assume a defaultAGENT (subject)
and being transitive, associate to their internal argu-
ment (introduced by “of” in the example above) the
THEME relation.

B. Romance Features

F8, F9, F10, F11andF12. Prepositional cuesthat
link the two nouns are extracted from each transla-
tion of the English instance: F8 (Es.), F9 (Fr.), F10
(It.), F11 (Port.), and F12 (Ro.). These can be either
simple or complex prepositions (e.g.,de, in materia
de (Es.)) in all five Romance languages, or the Ro-
manian genitival articlea/ai/ale. In Romanian the
genitive case is assigned by the definite article of the
first noun to the second noun, case realized as a suf-
fix if the second noun is preceded by the definite arti-
cle or as one of the genitival articlesa/ai/ale. For ex-
ample, the noun phrasethe beauty of the girlis trans-
lated asfrumuseţea fetei(beauty-the girl -gen), and
the beauty of a girlasfrumuseţea unei fete(beauty-
the gengirl ). For N N instances, this feature is “–”.

F13. Noun inflectionis defined only for Romanian
and shows if the modifier noun is inflected (indicates
the genitive case). This feature is used to help differ-
entiate between instances encodingIS-A and other
semantic relations in N N compounds in Romanian.
It also helps in features F6 and F7, case a) when the
choice of syntactic construction reflects different se-
mantic content. For example,iubirea pentru copii
(N P N) (the love for children) and notiubirea copi-
ilor (N N) (love expressed by the children).

4.2 Learning Models

We have experimented with the support vector ma-
chines (SVM) model6 and compared the results
against two state-of-the-art models: a supervised
model, Semantic Scattering (SS), (Moldovan and
Badulescu, 2005), and a web-based unsupervised
model (Lapata and Keller, 2004). The SVM and SS
models were trained and tested on the Europarl and
CLUVI corpora using a 8:2 ratio. The test dataset
was randomly selected from each corpus and the test
nouns (only for English) were tagged with the cor-
responding sense in context using a state of the art
WSD tool (Mihalcea and Faruque, 2004).

After the initial NP instances in the training and
test corpora were expanded with the corresponding
features, we had to prepare them for SVM and SS.
The method consists of a set of automatic iterative
procedures of specialization of the English nouns on
the WordNetIS-A hierarchy. Thus, after a set of nec-
essary specialization iterations, the method produces
specialized examples which through supervised ma-
chine learning are transformed into sets of seman-
tic rules. This specialization procedure improves
the system’s performance since it efficiently sepa-
rates the positive and negative noun-noun pairs in
the WordNet hierarchy.

Initially, the training corpus consists of examples
in the format exemplified by the feature space. Note
that for the English NP instances, each noun con-
stituent was expanded with the corresponding Word-
Net top semantic class. At this point, the general-
ized training corpus contains two types of examples:
unambiguous and ambiguous. The second situation
occurs when the training corpus classifies the same
noun – noun pair into more than one semantic cat-
egory. For example, both relationships “chocolate
cake”- PART-WHOLE and “chocolate article”- TOPIC

are mapped into the more general type<entity#1,
entity#1, PART-WHOLE/TOPIC>7. We recursively
specialize these examples to eliminate the ambigu-
ity. By specialization, the semantic class is replaced
with the corresponding hyponym for that particular
sense, i.e. the concept immediately below in the hi-
erarchy. These steps are repeated until there are no

6We used the package LIBSVM with a radial-based kernel
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

7The specialization procedure applies only to features 1, 2.
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more ambiguous examples. For the example above,
the specialization stops at the first hyponym ofen-
tity: physical entity(for cake) and abstract entity
(for article). For the unambiguous examples in the
generalized training corpus (those that are classified
with a single semantic relation), constraints are de-
termined using cross validation on SVM.

A. Semantic Scatteringuses a training data set
to establish a boundaryG∗ on WordNet noun hier-
archies such that each feature pair of noun – noun
sensesfij on this boundary maps uniquely into one
of a predefined list of semantic relations, and any
feature pair above the boundary maps into more than
one semantic relation. For any new pair of noun–
noun senses, the model finds the closest WordNet
boundary pair.

The authors define withSCm = {fm
i } and

SCh = {fh
j } the sets of semantic class features

for modifier noun and, respectively head noun. A
pair of <modifier – head> nouns maps uniquely
into a semantic class feature pair< fm

i , fh
j >,

denoted asfij . The probability of a semantic re-

lation r given feature pairfij , P (r|fij) =
n(r,fij)
n(fij)

,
is defined as the ratio between the number of oc-
currences of a relationr in the presence of fea-
ture pair fij over the number of occurrences of
feature pairfij in the corpus. The most proba-
ble semantic relation̂r is arg maxr∈R P (r|fij) =
arg maxr∈R P (fij |r)P (r).

B. (Lapata and Keller, 2004)’s web-based un-
supervised modelclassifies noun - noun instances
based on Lauer’s list of 8 prepositions and uses
the web as training corpus. They show that the
best performance is obtained with the trigram model
f(n1, p, n2). The count used for a given trigram is
the number of pages returned by Altavista on the tri-
gram corresponding queries. For example, for the
test instancewar stories, the best number of hits was
obtained with the querystories about war.

For the Europarl and CLUVI test sets, we repli-
cated Lapata & Keller’s experiments using Google8.
We formed inflected queries with the patterns they
proposed and searched the web.

8As Google limits the number of queries to 1,000 per day,
we repeated the experiment for a number of days. Although
(Lapata and Keller, 2004) used Altavista in their experiments,
they showed there is almost no difference between the correla-
tions achieved using Google and Altavista counts.

5 Experimental results

Table 2 shows the results obtained against SS and
Lapata & Keller’s model on both corpora and the
contribution the features exemplified in one baseline
and six versions of the SVM model. The baseline is
defined only for the English part of the NP feature
set and measures the the contribution of the Word-
Net IS-A lexical hierarchy specialization. The base-
line does not differentiate between unambiguous and
ambiguous training examples (after just one level
specialization) and thus, does not specialize the am-
biguous ones. Moreover, here we wanted to see what
is the difference between SS and SVM, and what is
the contribution of the other English features, such
as preposition and nominalization (F1–F7).

The table shows that, overall the performance is
better for the Europarl corpus than for CLUVI. For
the Baseline andSV M1, SS [F1 + F2] gives bet-
ter results than SVM. The inclusion of other English
features (SVM [F1–F7]) adds more than 15% (with
a higher increase in Europarl) forSV M1.

The contribution of Romance linguistic features.
Since our intuition is that the more translations are
provided for an English noun phrase instance, the
better the results, we wanted to see what is the im-
pact of each Romance language on the overall per-
formance. Thus,SV M2 shows the results obtained
for English and the Romance language that con-
tributed the least to the performance (F1–F12). Here
we computed the performance on all five English –
Romance language combinations and chose the Ro-
mance language that provided the best result. Thus,
SVM #2, #3, #4, #5, and #6 add Spanish, French,
Italian, Portuguese, and Romanian in this order and
show the contribution of each Romance preposition
and all features for English.

The language ranking in Table 2 shows that Ro-
mance languages considered here have a different
contribution to the overall performance. While the
addition of Italian in Europarl decreases the per-
formance, Portuguese doesn’t add anything. How-
ever, a closer analysis of the data shows that this
is mostly due to the distribution of the corpus in-
stances. For example, French, Italian, Spanish, and
Portuguese are most of the time consistent in the
choice of preposition (e.g. most of the time, if the
preposition ’de’ (’of’) is used in French, then the
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Learning models Results[%]
CLUVI Europarl

8-PP 22-SR 8-PP 22-SR
Baseline (En.) (no specializ.) SS (F1+F2) 44.11 48.03 38.7 38

SVM (F1+F2) 36.37 40.67 31.18 34.81
SVM (F1-F7) – 52.15 – 47.37

SVM1 (En.) SS (F1+F2) 56.22 61.33 53.1 56.81
SVM (F1+F2) 45.08 46.1 40.23 42.2
SVM (F1-F7) – 62.54 – 74.19

SVM2 (En. + Es.) SVM (F1-F8) – 64.18 – 75.74
SVM3 (En.+Es.+Fr.) SVM (F1-F9) – 67.8 – 76.52
SVM4 (En.+Es.+Fr.+It.) SVM (F1-F10) – 66.31 – 75.74
SVM5 (En.+Es.+Fr.+It+Port.) SVM (F1-F11) – 67.12 – 75.74
SVM6 (En.+Romance: F1–F13) – 74.31 – 77.9
Lapata & Keller’s unsupervised model (En.) 44.15 – 45.31 –

Table 2: The performance of the cross-linguistic SVM models compared against one baseline, SS model and
Lapata & Keller’s unsupervised model.Accuracy(number of correctly labeled instances over the number of
instances in the test set).

corresponding preposition is used in the other four
language translations). A notable exception here
is Romanian which provides two possible construc-
tions: the N P N and the genitive-marked N N. The
table shows (in the increase in performance between
SV M5 andSV M6) that this choice is not random,
but influenced by the meaning of the instances (fea-
tures F12, F13). This observation is also supported
by the contribution of each feature to the overall per-
formance. For example, in Europarl, the WordNet
verb and nominalization features of the head noun
(F3, F6) have a contribution of 4.08%, while for the
modifier nouns it decreases by about 2%. The prepo-
sition (F5) contributes 4.41% (Europarl) and 5.24%
(CLUVI) to the overall performance.

A closer analysis of the data shows that in Eu-
roparl most of the N N instances were naming noun
compounds such asframework law (TYPE) and,
most of the time, are encoded by N N patterns in
the target languages (e.g.,legge quadro(It.)). In
the CLUVI corpus, on the other hand, the N N Ro-
mance translations represented only 1% of the data.
A notable exception here is Romanian where most
NPs are represented as genitive–marked noun com-
pounds. However, there are instances that are en-
coded mostly or only as N P N constructions and this
choice correlates with the meaning of the instance.
For example,the milk glass(PURPOSE) translates
as paharul de lapte(glass-the of milk) and not as
paharul laptelui(glass-the milk-gen), the olive oil
(SOURCE) translates asuleiul de m̌asline(oil-theof

olive) and not asuleiul mǎslinei (oil-theolive-gen).
Other examples includeCAUSE andTOPIC.

Lauer’s set of 8 prepositions represents 94.5%
(Europarl) and 97% (CLUVI) of the N P N in-
stances. From these, the most frequent preposition
is “of” with a coverage of 70.31% (Europarl) and
85.08% (CLUVI). Moreover, in the Europarl cor-
pus, 26.39% of the instances are synthetic phrases
(where one of the nouns is a nominalization) encod-
ing AGENT, EXPERIENCER, THEME, BENEFICIARY.
Out of these instances, 74.81% use the preposition
of. In CLUVI, 11.71% of the examples were ver-
bal, from which the prepositionof has a coverage of
82.20%. The many-to-many mappings of the prepo-
sitions (especiallyof/de) to the semantic classes adds
to the complexity of the interpretation task. Thus,
for the interpretation of these constructions a system
must rely on the semantic information of the prepo-
sition and two constituent nouns in particular, and
on context in general.

In Europarl, the most frequently occurring re-
lations arePURPOSE, TYPE, and THEME that to-
gether represent about 57% of the data followed by
PART-WHOLE, PROPERTY, TOPIC, AGENT, andLO-
CATION with an average coverage of about 6.23%.
Moreover, other relations such asKINSHIP, DE-
PICTION, MANNER, MEANS did not occur in this
corpus and 5.08% representedOTHER-SR relations.
This semantic distribution contrasts with the one
in CLUVI, which uses a more descriptive lan-
guage. Here, the most frequent relation by far
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is PART-WHOLE (32.14%), followed byLOCATION

(12.40%),THEME (9.23%) andOTHER-SR (7.74%).
It is interesting to note here that only 5.70% of the
TYPE relation instances in Europarl were unique.
This is in contrast with the other relations in both
corpora, where instances were mostly unique.

We also report here our observations on Lap-
ata & Keller’s unsupervised model. An analysis
of these results showed that the order of the con-
stituent nouns in the N P N paraphrase plays an im-
portant role. For example, a search forblood ves-
selsgenerated similar frequency counts forvessels
of bloodandblood in vessels. About 30% noun -
noun paraphrasable pairs preserved the order in the
corresponding N P N paraphrases. We also manually
checked the first five entries generated by Google for
each most frequent prepositional paraphrase for 50
instances and noticed that about 35% of them were
wrong due to syntactic and/or semantic ambiguities.
Thus, since we wanted to measure the impact of
these ambiguities of noun compounds on the inter-
pretation performance, we further tested the prob-
abilistic web-based model on four distinct test sets
selected from Europarl, each containing 30 noun -
noun pairs encoding different types of ambiguity:
in set#1 the noun constituents had only one part of
speech and one WordNet sense; in set#2 the nouns
had at least two possible parts of speech and were
semantically unambiguous, in set#3 the nouns were
ambiguous only semantically, and in set#4 they were
ambiguous both syntactically and semantically. For
unambiguous noun-noun pairs (set#1), the model
obtained an accuracy of 35.01%, while for more se-
mantically ambiguous compounds it obtained an ac-
curacy of about 48.8%. This shows that for more
semantically ambiguous noun - noun pairs, the web-
based probabilistic model introduces a significant
number of false positives. Thus, the more abstract
the categories, the more noun compounds are cov-
ered, but also the more room for variation as to
which category a compound should be assigned.

6 Discussion and Conclusions

In this paper we presented a supervised, knowledge-
intensive interpretation model which takes advan-
tage of new linguistic information from English and
a list of five Romance languages. Our approach to

NP interpretation is novel in several ways. We de-
fined the problem in a cross-linguistic framework
and provided empirical observations on the distribu-
tion of the syntax and meaning of noun phrases on
two different corpora based on two state-of-the-art
classification tag sets.

As future work we consider the inclusion of other
features such as the semantic classes of Romance
nouns from aligned EuroWordNets, and other sen-
tence features. Since the results obtained can be seen
as an upper bound on NP interpretation due to per-
fect English - Romance NP alignment, we will ex-
periment with automatic translations generated for
the test data. Moreover, we like to extend the anal-
ysis to other set of languages whose structures are
very different from English and Romance.
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Abstract

We present a new approach to relation ex-

traction that requires only a handful of train-

ing examples. Given a few pairs of named

entities known to exhibit or not exhibit a

particular relation, bags of sentences con-

taining the pairs are extracted from the web.

We extend an existing relation extraction

method to handle this weaker form of su-

pervision, and present experimental results

demonstrating that our approach can reliably

extract relations from web documents.

1 Introduction

A growing body of recent work in information

extraction has addressed the problem of relation

extraction (RE), identifying relationships between

entities stated in text, such as LivesIn(Person,

Location) or EmployedBy(Person, Company).

Supervised learning has been shown to be effective

for RE (Zelenko et al., 2003; Culotta and Sorensen,

2004; Bunescu and Mooney, 2006); however, anno-

tating large corpora with examples of the relations

to be extracted is expensive and tedious.

In this paper, we introduce a supervised learning

approach to RE that requires only a handful of

training examples and uses the web as a corpus.

Given a few pairs of well-known entities that

clearly exhibit or do not exhibit a particular re-

lation, such as CorpAcquired(Google, YouTube)

and not(CorpAcquired(Yahoo, Microsoft)), a

search engine is used to find sentences on the web

that mention both of the entities in each of the pairs.

Although not all of the sentences for positive pairs

will state the desired relationship, many of them

will. Presumably, none of the sentences for negative

pairs state the targeted relation. Multiple instance

learning (MIL) is a machine learning framework

that exploits this sort of weak supervision, in

which a positive bag is a set of instances which is

guaranteed to contain at least one positive example,

and a negative bag is a set of instances all of which

are negative. MIL was originally introduced to

solve a problem in biochemistry (Dietterich et

al., 1997); however, it has since been applied to

problems in other areas such as classifying image

regions in computer vision (Zhang et al., 2002), and

text categorization (Andrews et al., 2003; Ray and

Craven, 2005).

We have extended an existing approach to rela-

tion extraction using support vector machines and

string kernels (Bunescu and Mooney, 2006) to han-

dle this weaker form of MIL supervision. This ap-

proach can sometimes be misled by textual features

correlated with the specific entities in the few train-

ing pairs provided. Therefore, we also describe a

method for weighting features in order to focus on

those correlated with the target relation rather than

with the individual entities. We present experimen-

tal results demonstrating that our approach is able to

accurately extract relations from the web by learning

from such weak supervision.

2 Problem Description

We address the task of learning a relation extrac-

tion system targeted to a fixed binary relationship

R. The only supervision given to the learning algo-
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rithm is a small set of pairs of named entities that are

known to belong (positive) or not belong (negative)

to the given relationship. Table 1 shows four posi-

tive and two negative example pairs for the corpo-

rate acquisition relationship. For each pair, a bag of

sentences containing the two arguments can be ex-

tracted from a corpus of text documents. The corpus

is assumed to be sufficiently large and diverse such

that, if the pair is positive, it is highly likely that the

corresponding bag contains at least one sentence that

explicitly asserts the relationship R between the two

arguments. In Section 6 we describe a method for

extracting bags of relevant sentences from the web.

+/− Arg a1 Arg a2

+ Google YouTube
+ Adobe Systems Macromedia
+ Viacom DreamWorks
+ Novartis Eon Labs
− Yahoo Microsoft
− Pfizer Teva

Table 1: Corporate Acquisition Pairs.

Using a limited set of entity pairs (e.g. those in

Table 1) and their associated bags as training data,

the aim is to induce a relation extraction system that

can reliably decide whether two entities mentioned

in the same sentence exhibit the target relationship

or not. In particular, when tested on the example

sentences from Figure 1, the system should classify

S1, S3,and S4 as positive, and S2 and S5 as negative.

+/S1: Search engine giant Google has bought video-
sharing website YouTube in a controversial $1.6 billion
deal.

−/S2: The companies will merge Google’s search ex-
pertise with YouTube’s video expertise, pushing what
executives believe is a hot emerging market of video
offered over the Internet.

+/S3: Google has acquired social media company,
YouTube for $1.65 billion in a stock-for-stock transaction
as announced by Google Inc. on October 9, 2006.

+/S4: Drug giant Pfizer Inc. has reached an agreement
to buy the private biotechnology firm Rinat Neuroscience
Corp., the companies announced Thursday.

−/S5: He has also received consulting fees from Al-
pharma, Eli Lilly and Company, Pfizer, Wyeth Pharmaceu-
ticals, Rinat Neuroscience, Elan Pharmaceuticals, and For-
est Laboratories.

Figure 1: Sentence examples.

As formulated above, the learning task can be

seen as an instance of multiple instance learning.

However, there are important properties that set it

apart from problems previously considered in MIL.

The most distinguishing characteristic is that the

number of bags is very small, while the average size

of the bags is very large.

3 Multiple Instance Learning

Since its introduction by Dietterich (1997), an ex-

tensive and quite diverse set of methods have been

proposed for solving the MIL problem. For the task

of relation extraction, we consider only MIL meth-

ods where the decision function can be expressed in

terms of kernels computed between bag instances.

This choice was motivated by the comparatively

high accuracy obtained by kernel-based SVMs when

applied to various natural language tasks, and in par-

ticular to relation extraction. Through the use of ker-

nels, SVMs (Vapnik, 1998; Schölkopf and Smola,

2002) can work efficiently with instances that im-

plicitly belong to a high dimensional feature space.

When used for classification, the decision function

computed by the learning algorithm is equivalent to

a hyperplane in this feature space. Overfitting is

avoided in the SVM formulation by requiring that

positive and negative training instances be maxi-

mally separated by the decision hyperplane.

Gartner et al. (2002) adapted SVMs to the MIL

setting using various multi-instance kernels. Two

of these – the normalized set kernel, and the statis-

tic kernel – have been experimentally compared to

other methods by Ray and Craven (2005), with com-

petitive results. Alternatively, a simple approach to

MIL is to transform it into a standard supervised

learning problem by labeling all instances from pos-

itive bags as positive. An interesting outcome of the

study conducted by Ray and Craven (2005) was that,

despite the class noise in the resulting positive ex-

amples, such a simple approach often obtains com-

petitive results when compared against other more

sophisticated MIL methods.

We believe that an MIL method based on multi-

instance kernels is not appropriate for training

datasets that contain just a few, very large bags. In

a multi-instance kernel approach, only bags (and

not instances) are considered as training examples,
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which means that the number of support vectors is

going to be upper bounded by the number of train-

ing bags. Taking the bags from Table 1 as a sam-

ple training set, the decision function is going to be

specified by at most seven parameters: the coeffi-

cients for at most six support vectors, plus an op-

tional bias parameter. A hypothesis space character-

ized by such a small number of parameters is likely

to have insufficient capacity.

Based on these observations, we decided to trans-

form the MIL problem into a standard supervised

problem as described above. The use of this ap-

proach is further motivated by its simplicity and its

observed competitive performance on very diverse

datasets (Ray and Craven, 2005). Let X be the set

of bags used for training, Xp ⊆ X the set of posi-

tive bags, and Xn ⊆ X the set of negative bags. For

any instance x ∈ X from a bag X ∈ X , let φ(x)
be the (implicit) feature vector representation of x.

Then the corresponding SVM optimization problem

can be formulated as in Figure 2:

minimize:

J(w, b, ξ) = 1
2‖w‖

2 + C
L

(

cp
Ln

L
Ξp + cn

Lp

L
Ξn

)

Ξp =
∑

X∈Xp

∑

x∈X

ξx

Ξn =
∑

X∈Xn

∑

x∈X

ξx

subject to:

w φ(x) + b ≥ +1− ξx, ∀x ∈ X ∈ Xp

w φ(x) + b ≤ −1 + ξx, ∀x ∈ X ∈ Xn

ξx ≥ 0

Figure 2: SVM Optimization Problem.

The capacity control parameter C is normalized

by the total number of instances L = Lp + Ln =
∑

X∈Xp
|X| +

∑

X∈Xn
|X|, so that it remains in-

dependent of the size of the dataset. The additional

non-negative parameter cp (cn = 1−cp) controls the

relative influence that false negative vs. false posi-

tive errors have on the value of the objective func-

tion. Because not all instances from positive bags

are real positive instances, it makes sense to have

false negative errors be penalized less than false pos-

itive errors (i.e. cp < 0.5).

In the dual formulation of the optimization prob-

lem from Figure 2, bag instances appear only inside

dot products of the form K(x1, x2) = φ(x1)φ(x2).
The kernel K is instantiated to a subsequence ker-

nel, as described in the next section.

4 Relation Extraction Kernel

The training bags consist of sentences extracted

from online documents, using the methodology de-

scribed in Section 6. Parsing web documents in

order to obtain a syntactic analysis often gives un-

reliable results – the type of narrative can vary

greatly from one web document to another, and sen-

tences with grammatical errors are frequent. There-

fore, for the initial experiments, we used a modi-

fied version of the subsequence kernel of Bunescu

and Mooney (2006), which does not require syn-

tactic information. This kernel computes the num-

ber of common subsequences of tokens between two

sentences. The subsequences are constrained to be

“anchored” at the two entity names, and there is

a maximum number of tokens that can appear in

a sequence. For example, a subsequence feature

for the sentence S1 in Figure 1 is s̃ = “〈e1〉 . . .
bought . . . 〈e2〉 . . . in . . . billion . . . deal”, where

〈e1〉 and 〈e2〉 are generic placeholders for the two

entity names. The subsequence kernel induces a

feature space where each dimension corresponds

to a sequence of words. Any such sequence that

matches a subsequence of words in a sentence exam-

ple is down-weighted as a function of the total length

of the gaps between every two consecutive words.

More exactly, let s = w1w2 . . . wk be a sequence of

k words, and s̃ = w1 g1 w2 g2 . . . wk−1 gk−1 wk a

matching subsequence in a relation example, where

gi stands for any sequence of words between wi and

wi+1. Then the sequence s will be represented in the

relation example as a feature with weight computed

as τ(s) = λg(s̃). The parameter λ controls the mag-

nitude of the gap penalty, where g(s̃) =
∑

i |gi| is

the total gap.

Many relations, like the ones that we explore in

the experimental evaluation, cannot be expressed

without using at least one content word. We there-

fore modified the kernel computation to optionally

ignore subsequence patterns formed exclusively of
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stop words and punctuation signs. In Section 5.1,

we introduce a new weighting scheme, wherein a

weight is assigned to every token. Correspondingly,

every sequence feature will have an additional mul-

tiplicative weight, computed as the product of the

weights of all the tokens in the sequence. The aim

of this new weighting scheme, as detailed in the next

section, is to eliminate the bias caused by the special

structure of the relation extraction MIL problem.

5 Two Types of Bias

As already hinted at the end of Section 2, there is

one important property that distinguishes the cur-

rent MIL setting for relation extraction from other

MIL problems: the training dataset contains very

few bags, and each bag can be very large. Con-

sequently, an application of the learning model de-

scribed in Sections 3 & 4 is bound to be affected by

the following two types of bias:

� [Type I Bias] By definition, all sentences inside

a bag are constrained to contain the same two ar-

guments. Words that are semantically correlated

with either of the two arguments are likely to oc-

cur in many sentences. For example, consider the

sentences S1 and S2 from the bag associated with

“Google” and “YouTube” (as shown in Figure 1).

They both contain the words “search” – highly cor-

related with “Google”, and “video” – highly corre-

lated with “YouTube”, and it is likely that a signifi-

cant percentage of sentences in this bag contain one

of the two words (or both). The two entities can be

mentioned in the same sentence for reasons other

than the target relation R, and these noisy training

sentences are likely to contain words that are corre-

lated with the two entities, without any relationship

to R. A learning model where the features are based

on words, or word sequences, is going to give too

much weight to words or combinations of words that

are correlated with either of individual arguments.

This overweighting will adversely affect extraction

performance through an increased number of errors.

A method for eliminating this type of bias is intro-

duced in Section 5.1.

� [Type II Bias] While Type I bias is due to words

that are correlated with the arguments of a relation

instance, the Type II bias is caused by words that

are specific to the relation instance itself. Using

FrameNet terminology (Baker et al., 1998), these

correspond to instantiated frame elements. For ex-

ample, the corporate acquisition frame can be seen

as a subtype of the “Getting” frame in FrameNet.

The core elements in this frame are the Recipi-

ent (e.g. Google) and the Theme (e.g. YouTube),

which for the acquisition relationship coincide with

the two arguments. They do not contribute any

bias, since they are replaced with the generic tags

〈e1〉 and 〈e2〉 in all sentences from the bag. There

are however other frame elements – peripheral, or

extra-thematic – that can be instantiated with the

same value in many sentences. In Figure 1, for in-

stance, sentence S3 contains two non-core frame ele-

ments: the Means element (e.g “in a stock-for-stock

transaction”) and the Time element (e.g. “on Oc-

tober 9, 2006”). Words from these elements, like

“stock”, or “October”, are likely to occur very often

in the Google-YouTube bag, and because the train-

ing dataset contains only a few other bags, subse-

quence patterns containing these words will be given

too much weight in the learned model. This is prob-

lematic, since these words can appear in many other

frames, and thus the learned model is likely to make

errors. Instead, we would like the model to fo-

cus on words that trigger the target relationship (in

FrameNet, these are the lexical units associated with

the target frame).

5.1 A Solution for Type I Bias

In order to account for how strongly the words in a

sequence are correlated with either of the individual

arguments of the relation, we modify the formula for

the sequence weight τ(s) by factoring in a weight

τ(w) for each word in the sequence, as illustrated in

Equation 1.

τ(s) = λg(s̃) ·
∏

w∈s

τ(w) (1)

Given a predefined set of weights τ(w), it is straight-

forward to update the recursive computation of

the subsequence kernel so that it reflects the new

weighting scheme.

If all the word weights are set to 1, then the new

kernel is equivalent to the old one. What we want,

however, is a set of weights where words that are

correlated with either of the two arguments are given

lower weights. For any word, the decrease in weight
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should reflect the degree of correlation between that

word and the two arguments. Before showing the

formula used for computing the word weights, we

first introduce some notation:

• Let X ∈ X be an arbitrary bag, and let X.a1

and X.a2 be the two arguments associated with

the bag.

• Let C(X) be the size of the bag (i.e. the num-

ber of sentences in the bag), and C(X, w) the

number of sentences in the bag X that contain

the word w. Let P (w|X) = C(X, w)/C(X).

• Let P (w|X.a1 ∨ X.a2) be the probability that

the word w appears in a sentence due only to

the presence of X.a1 or X.a2, assuming X.a1

and X.a2 are independent causes for w.

The word weights are computed as follows:

τ(w) =
C(X, w)− P (w|X.a1 ∨X.a2) · C(X)

C(X, w)

= 1−
P (w|X.a1 ∨X.a2)

P (w|X)
(2)

The quantity P (w|X.a1 ∨ X.a2) · C(X) represents

the expected number of sentences in which w would

occur, if the only causes were X.a1 or X.a2, inde-

pendent of each other. We want to discard this quan-

tity from the total number of occurrences C(X, w),
so that the effect of correlations with X.a1 or X.a2

is eliminated.

We still need to compute P (w|X.a1∨X.a2). Be-

cause in the definition of P (w|X.a1∨X.a2), the ar-

guments X.a1 and X.a2 were considered indepen-

dent causes, P (w|X.a1 ∨ X.a2) can be computed

with the noisy-or operator (Pearl, 1986):

P (·) = 1−(1−P (w|a1)) · (1−P (w|a2)) (3)

= P (w|a1)+P (w|a2)−P (w|a1) · P (w|a2)

The quantity P (w|a) represents the probability that

the word w appears in a sentence due only to the

presence of a, and it could be estimated using counts

on a sufficiently large corpus. For our experimen-

tal evaluation, we used the following approxima-

tion: given an argument a, a set of sentences con-

taining a are extracted from web documents (de-

tails in Section 6). Then P (w|a) is simply approxi-

mated with the ratio of the number of sentences con-

taining w over the total number of sentences, i.e.

P (w|a) = C(w, a)/C(a). Because this may be an

overestimate (w may appear in a sentence contain-

ing a due to causes other than a), and also because

of data sparsity, the quantity τ(w) may sometimes

result in a negative value – in these cases it is set to

0, which is equivalent to ignoring the word w in all

subsequence patterns.

6 MIL Relation Extraction Datasets

For the purpose of evaluation, we created two

datasets: one for corporate acquisitions, as shown

in Table 2, and one for the person-birthplace rela-

tion, with the example pairs from Table 3. In both

tables, the top part shows the training pairs, while

the bottom part shows the test pairs.

+/− Arg a1 Arg a2 Size

+ Google YouTube 1375
+ Adobe Systems Macromedia 622
+ Viacom DreamWorks 323
+ Novartis Eon Labs 311
− Yahoo Microsoft 163
− Pfizer Teva 247
+ Pfizer Rinat Neuroscience 50 (41)
+ Yahoo Inktomi 433 (115)
− Google Apple 281
− Viacom NBC 231

Table 2: Corporate Acquisition Pairs.

+/− Arg a1 Arg a2 Size

+ Franz Kafka Prague 552
+ Andre Agassi Las Vegas 386
+ Charlie Chaplin London 292
+ George Gershwin New York 260
− Luc Besson New York 74
− Wolfgang A. Mozart Vienna 288
+ Luc Besson Paris 126 (6)
+ Marie Antoinette Vienna 105 (39)
− Charlie Chaplin Hollywood 266
− George Gershwin London 104

Table 3: Person-Birthplace Pairs.

Given a pair of arguments (a1, a2), the corre-

sponding bag of sentences is created as follows:

� A query string “a1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ a2” containing

seven wildcard symbols between the two arguments

is submitted to Google. The preferences are set to

search only for pages written in English, with Safe-

search turned on. This type of query will match doc-

uments where an occurrence of a1 is separated from

an occurrence of a2 by at most seven content words.

This is an approximation of our actual information
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need: “return all documents containing a1 and a2 in

the same sentence”.

� The returned documents (limited by Google to

the first 1000) are downloaded, and then the text

is extracted using the HTML parser from the Java

Swing package. Whenever possible, the appropriate

HTML tags (e.g. BR, DD, P, etc.) are used as hard

end-of-sentence indicators. The text is further seg-

mented into sentences with the OpenNLP1 package.

� Sentences that do not contain both arguments a1

and a2 are discarded. For every remaining sentence,

we find the occurrences of a1 and a2 that are clos-

est to each other, and create a relation example by

replacing a1 with 〈e1〉 and a2 with 〈e2〉. All other

occurrences of a1 and a2 are replaced with a null

token ignored by the subsequence kernel.

The number of sentences in every bag is shown in

the last column of Tables 2 & 3. Because Google

also counts pages that are deemed too similar in the

first 1000, some of the bags can be relatively small.

As described in Section 5.1, the word-argument

correlations are modeled through the quantity

P (w|a) = C(w, a)/C(a), estimated as the ratio be-

tween the number of sentences containing w and a,

and the number of sentences containing a. These

counts are computed over a bag of sentences con-

taining a, which is created by querying Google for

the argument a, and then by processing the results

as described above.

7 Experimental Evaluation

Each dataset is split into two sets of bags: one

for training and one for testing. The test dataset

was purposefully made difficult by including neg-

ative bags with arguments that during training were

used in positive bags, and vice-versa. In order to

evaluate the relation extraction performance at the

sentence level, we manually annotated all instances

from the positive test bags. The last column in Ta-

bles 2 & 3 shows, between parentheses, how many

instances from the positive test bags are real pos-

itive instances. The corporate acquisition test set

has a total of 995 instances, out of which 156 are

positive. The person-birthplace test set has a total

of 601 instances, and only 45 of them are positive.

Extrapolating from the test set distribution, the pos-

1http://opennlp.sourceforge.net

itive bags in the person-birthplace dataset are sig-

nificantly sparser in real positive instances than the

positive bags in the corporate acquisition dataset.

The subsequence kernel described in Section 4

was used as a custom kernel for the LibSVM2 Java

package. When run with the default parameters,

the results were extremely poor – too much weight

was given to the slack term in the objective func-

tion. Minimizing the regularization term is essen-

tial in order to capture subsequence patterns shared

among positive bags. Therefore LibSVM was mod-

ified to solve the optimization problem from Fig-

ure 2, where the capacity parameter C is normal-

ized by the size of the transformed dataset. In this

new formulation, C is set to its default value of 1.0
– changing it to other values did not result in signifi-

cant improvement. The trade-off between false pos-

itive and false negative errors is controlled by the

parameter cp. When set to its default value of 0.5,

false-negative errors and false positive errors have

the same impact on the objective function. As ex-

pected, setting cp to a smaller value (0.1) resulted

in better performance. Tests with even lower values

did not improve the results.

We compare the following four systems:

� SSK–MIL: This corresponds to the MIL formu-

lation from Section 3, with the original subsequence

kernel described in Section 4.

� SSK–T1: This is the SSK–MIL system aug-

mented with word weights, so that the Type I bias

is reduced, as described in Section 5.1.

� BW-MIL: This is a bag-of-words kernel, in

which the relation examples are classified based on

the unordered words contained in the sentence. This

baseline shows the performance of a standard text-

classification approach to the problem using a state-

of-the art algorithm (SVM).

� SSK–SIL: This corresponds to the original sub-

sequence kernel trained with traditional, single in-

stance learning (SIL) supervision. For evaluation,

we train on the manually labeled instances from the

test bags. We use a combination of one positive bag

and one negative bag for training, while the other

two bags are used for testing. The results are aver-

aged over all four possible combinations. Note that

the supervision provided to SSK–SIL requires sig-

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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Figure 3: Precision-Recall graphs on the two datasets.

nificantly more annotation effort, therefore, given a

sufficient amount of training examples, we expect

this system to perform at least as well as its MIL

counterpart.

In Figure 3, precision is plotted against recall by

varying a threshold on the value of the SVM deci-

sion function. To avoid clutter, we show only the

graphs for the first three systems. In Table 4 we

show the area under the precision recall curves of

all four systems. Overall, the learned relation extrac-

tors are able to identify the relationship in novel sen-

tences quite accurately and significantly out-perform

a bag-of-words baseline. The new version of the

subsequence kernel SSK–T1 is significantly more

accurate in the MIL setting than the original sub-

sequence kernel SSK–MIL, and is also competitive

with SSK–SIL, which was trained using a reason-

able amount of manually labeled sentence examples.

Dataset SSK–MIL SSK–T1 BW–MIL SSK–SIL
(a) CA 76.9% 81.1% 45.9% 80.4%
(b) PB 72.5% 78.2% 69.2% 73.4%

Table 4: Area Under Precision-Recall Curve.

8 Future Work

An interesting potential application of our approach

is a web relation-extraction system similar to Google

Sets, in which the user provides only a handful of

pairs of entities known to exhibit or not to exhibit

a particular relation, and the system is used to find

other pairs of entities exhibiting the same relation.

Ideally, the user would only need to provide pos-

itive pairs. Sentences containing one of the rela-

tion arguments could be extracted from the web, and

likely negative sentence examples automatically cre-

ated by pairing this entity with other named enti-

ties mentioned in the sentence. In this scenario, the

training set can contain both false positive and false

negative noise. One useful side effect is that Type

I bias is partially removed – some bias still remains

due to combinations of at least two words, each cor-

related with a different argument of the relation.

We are also investigating methods for reducing Type

II bias, either by modifying the word weights, or by

integrating an appropriate measure of word distri-

bution across positive bags directly in the objective

function for the MIL problem. Alternatively, im-

plicit negative evidence can be extracted from sen-

tences in positive bags by exploiting the fact that, be-

sides the two relation arguments, a sentence from a

positive bag may contain other entity mentions. Any

pair of entities different from the relation pair is very

likely to be a negative example for that relation. This

is similar to the concept of negative neighborhoods

introduced by Smith and Eisner (2005), and has the

potential of eliminating both Type I and Type II bias.

9 Related Work

One of the earliest IE methods designed to work

with a reduced amount of supervision is that of

Hearst (1992), where a small set of seed patterns

is used in a bootstrapping fashion to mine pairs of
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hypernym-hyponym nouns. Bootstrapping is actu-

ally orthogonal to our method, which could be used

as the pattern learner in every bootstrapping itera-

tion. A more recent IE system that works by boot-

strapping relation extraction patterns from the web is

KNOWITALL (Etzioni et al., 2005). For a given tar-

get relation, supervision in KNOWITALL is provided

as a rule template containing words that describe the

class of the arguments (e.g. “company”), and a small

set of seed extraction patterns (e.g. “has acquired”).

In our approach, the type of supervision is different –

we ask only for pairs of entities known to exhibit the

target relation or not. Also, KNOWITALL requires

large numbers of search engine queries in order to

collect and validate extraction patterns, therefore ex-

periments can take weeks to complete. Compara-

tively, the approach presented in this paper requires

only a small number of queries: one query per rela-

tion pair, and one query for each relation argument.

Craven and Kumlien (1999) create a noisy train-

ing set for the subcellular-localization relation by

mining Medline for sentences that contain tuples

extracted from relevant medical databases. To our

knowledge, this is the first approach that is using a

“weakly” labeled dataset for relation extraction. The

resulting bags however are very dense in positive ex-

amples, and they are also many and small – conse-

quently, the two types of bias are not likely to have

significant impact on their system’s performance.

10 Conclusion

We have presented a new approach to relation ex-

traction that leverages the vast amount of informa-

tion available on the web. The new RE system is

trained using only a handful of entity pairs known to

exhibit and not exhibit the target relationship. We

have extended an existing relation extraction ker-

nel to learn in this setting and to resolve problems

caused by the minimal supervision provided. Exper-

imental results demonstrate that the new approach

can reliably extract relations from web documents.
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Abstract 

A minimally supervised machine learning 
framework is described for extracting rela-
tions of various complexity. Bootstrapping 
starts from a small set of n-ary relation in-
stances as “seeds”, in order to automati-
cally learn pattern rules from parsed data, 
which then can extract new instances of the 
relation and its projections. We propose a 
novel rule representation enabling the 
composition of n-ary relation rules on top 
of the rules for projections of the relation. 
The compositional approach to rule con-
struction is supported by a bottom-up pat-
tern extraction method. In comparison to 
other automatic approaches, our rules can-
not only localize relation arguments but 
also assign their exact target argument 
roles. The method is evaluated in two 
tasks: the extraction of Nobel Prize awards 
and management succession events. Perfor-
mance for the new Nobel Prize task is 
strong. For the management succession 
task the results compare favorably with 
those of existing pattern acquisition ap-
proaches.  

1 Introduction 

Information extraction (IE) has the task to discover 
n-tuples of relevant items (entities) belonging to an 
n-ary relation in natural language documents. One 
of the central goals of the ACE program1 is to de-
velop a more systematically grounded approach to 
IE starting from elementary entities, binary rela-

                                                 
1 http://projects.ldc.upenn.edu/ace/ 

tions to n-ary relations such as events. Current 
semi- or unsupervised approaches to automatic 
pattern acquisition are either limited to a certain 
linguistic representation (e.g., subject-verb-object), 
or only deal with binary relations, or cannot assign 
slot filler roles to the extracted arguments, or do 
not have good selection and filtering methods to 
handle the large number of tree patterns (Riloff, 
1996; Agichtein and Gravano, 2000; Yangarber, 
2003; Sudo et al., 2003; Greenwood and Stevenson, 
2006; Stevenson and Greenwood, 2006). Most of 
these approaches do not consider the linguistic in-
teraction between relations and their projections on 
k dimensional subspaces where 1≤k<n, which is 
important for scalability and reusability of rules.  
Stevenson and Greenwood (2006) present a sys-
tematic investigation of the pattern representation 
models and point out that substructures of the lin-
guistic representation and the access to the embed-
ded structures are important for obtaining a good 
coverage of the pattern acquisition. However, all 
considered representation models (subject-verb-
object, chain model, linked chain model and sub-
tree model) are verb-centered. Relations embedded 
in non-verb constructions such as a compound 
noun cannot be discovered: 
(1)  the 2005  Nobel Peace Prize 
 

(1) describes a ternary relation referring to three 
properties of a prize: year, area and prize name. 
We also observe that the automatically acquired 
patterns in Riloff (1996), Yangarber (2003), Sudo 
et al. (2003), Greenwood and Stevenson (2006) 
cannot be directly used as relation extraction rules 
because the relation-specific argument role infor-
mation is missing. E.g., in the management succes-
sion domain that concerns the identification of job 
changing events, a person can either move into a 
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job (called Person_In) or leave a job (called Per-
son_Out). (2) is a simplified example of patterns 
extracted by these systems: 
(2) <subject: person> verb <object:organisation> 
 

In (2), there is no further specification of whether 
the person entity in the subject position is Per-
son_In or Person_Out.   

The ambitious goal of our approach is to provide 
a general framework for the extraction of relations 
and events with various complexity. Within this 
framework, the IE system learns extraction pat-
terns automatically and induces rules of various 
complexity systematically, starting from sample 
relation instances as seeds. The arity of the seed 
determines the complexity of extracted relations. 
The seed helps us to identify the explicit linguistic 
expressions containing mentionings of relation in-
stances or instances of their k-ary projections 
where 1≤k<n. Because our seed samples are not 
linguistic patterns, the learning system is not re-
stricted to a particular linguistic representation and 
is therefore suitable for various linguistic analysis 
methods and representation formats. The pattern 
discovery is bottom-up and compositional, i.e., 
complex patterns can build on top of simple pat-
terns for projections.  

We propose a rule representation that supports 
this strategy. Therefore, our learning approach is 
seed-driven and bottom-up. Here we use depend-
ency trees as input for pattern extraction. We con-
sider only trees or their subtrees containing seed 
arguments. Therefore, our method is much more 
efficient than the subtree model of Sudo et al., 
(2003), where all subtrees containing verbs are 
taken into account. Our pattern rule ranking and 
filtering method considers two aspects of a pattern: 
its domain relevance and the trustworthiness of its 
origin. We tested our framework in two domains: 
Nobel Prize awards and management succession. 
Evaluations have been conducted to investigate the 
performance with respect to the seed parameters: 
the number of seeds and the influence of data size 
and its redundancy property.  The whole system 
has been evaluated for the two domains consider-
ing precision and recall. We utilize the evaluation 
strategy “Ideal Matrix” of Agichtein and Gravano 
(2000) to deal with unannotated test data.   

The remainder of the paper is organised as fol-
lows: Section 2 provides an overview of the system 
architecture. Section 3 discusses the rule represen-

tation. In Section 4, a detailed description of the 
seed-driven bottom-up pattern acquisition is pre-
sented. Section 5 describes our experiments with 
pattern ranking, filtering and rule induction. Sec-
tion 6 presents the experiments and evaluations for 
the two application domains. Section 7 provides a 
conclusion and an outline of future work.   

2 System Architecture 

Given the framework, our system architecture 
can be depicted as follows: 

 
Figure 1. Architecture 

 

This architecture has been inspired by several 
existing seed-oriented minimally supervised ma-
chine learning systems, in particular by Snowball 
(Agichtein and Gravano, 2000) and ExDisco 
(Yangarber et al., 2000). We call our system 
DARE, standing for “Domain Adaptive Relation 
Extraction based on Seeds”. DARE contains four 
major components: linguistic annotation, classifier, 
rule learning and relation extraction. The first com-
ponent only applies once, while the last three com-
ponents are integrated in a bootstrapping loop.  At 
each iteration, rules will be learned based on the 
seed and then new relation instances will be ex-
tracted by applying the learned rules. The new re-
lation instances are then used as seeds for the next 
iteration of the learning cycle.  The cycle termi-
nates when no new relations can be acquired. 

The linguistic annotation is responsible for en-
riching the natural language texts with linguistic 
information such as named entities and depend-
ency structures.  In our framework, the depth of the 
linguistic annotation can be varied depending on 
the domain and the available resources. 

The classifier has the task to deliver relevant 
paragraphs and sentences that contain seed ele-
ments. It has three subcomponents: document re-
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trieval, paragraph retrieval and sentence retrieval. 
The document retrieval component utilizes the 
open source IR-system Lucene2. A translation step 
is built in to convert the seed into the proper IR 
query format. As explained in Xu et al. (2006), we 
generate all possible lexical variants of the seed 
arguments to boost the retrieval coverage and for-
mulate a boolean query where the arguments are 
connected via conjunction and the lexical variants 
are associated via disjunction. However, the trans-
lation could be modified. The task of paragraph 
retrieval is to find text snippets from the relevant 
documents where the seed relation arguments co-
occur. Given the paragraphs, a sentence containing 
at least two arguments of a seed relation will be 
regarded as relevant. 

As mentioned above, the rule learning compo-
nent constitutes the core of our system. It identifies 
patterns from the annotated documents inducing 
extraction rules from the patterns, and validates 
them.  In section 4, we will give a detailed expla-
nation of this component.  

The relation extraction component applies the 
newly learned rules to the relevant documents and 
extracts relation instances. The validated relation 
instances will then be used as new seeds for the 
next iteration.  

3 DARE Rule Representation  

Our rule representation is designed to specify the 
location and the role of the arguments w.r.t. the 
target relation in a linguistic construction. In our 
framework, the rules should not be restricted to a 
particular linguistic representation and should be 
adaptable to various NLP tools on demand.  A 
DARE rule is allowed to call further DARE rules 
that extract a subset of the arguments. Let us step 
through some example rules for the prize award 
domain. One of the target relations in the domain is 
about a person who obtains a special prize in a cer-
tain area in a certain year, namely, a quaternary 
tuple, see (3). (4) is a domain relevant sentence.  
(3) <recipient, prize, area, year> 
(4) Mohamed ElBaradei won the 2005 Nobel 
Peace Prize on Friday for his efforts to limit the 
spread of atomic weapons. 
(5) is a rule that extracts a ternary projection in-
stance <prize, area, year>  from a  noun phrase 

                                                 
2 http://www.lucene.de 

compound, while (6) is a rule which triggers (5) in 
its object argument and extracts all four arguments. 
(5) and (6) are useful rules for  extracting argu-
ments from (4). 
(5)  

 
 (6) 

 
 
Next we provide a definition of a DARE rule: 
A DARE rule has three components  

1. rule name: ri; 
2. output: a set A containing the n arguments 

of the n-ary relation, labelled with their ar-
gument roles; 

3. rule body in AVM format containing: 
- specific linguistic labels or attributes 

(e.g., subject, object, head, mod), de-
rived from the linguistic analysis, e.g., 
dependency structures and the named en-
tity information 

- rule: its value is a DARE rule which ex-
tracts a subset of arguments of A  

The rule in (6) is a typical DARE rule. Its sub-
ject and object descriptions call appropriate DARE 
rules that extract a subset of the output relation 
arguments.  The advantages of this rule representa-
tion strategy are that (1) it supports the bottom-up 
rule composition; (2) it is expressive enough for 
the representation of rules of various complexity; 
(3) it reflects the precise linguistic relationship 
among the relation arguments and reduces the 
template merging task in the later phase; (4) the 
rules for the subset of arguments may be reused for 
other relation extraction tasks.  

The rule representation models for automatic or 
unsupervised pattern rule extraction discussed by 
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Stevenson and Greenwood (2006) do not account 
for these considerations.  

4 Seed-driven Bottom-up Rule Learning  

Two main approaches to seed construction have 
been discussed in the literature: pattern-oriented 
(e.g., ExDisco) and semantics-oriented (e.g., 
Snowball) strategies. The pattern-oriented method 
suffers from poor coverage because it makes the IE 
task too dependent on one linguistic representation 
construction (e.g., subject-verb-object) and has 
moreover ignored the fact that semantic relations 
and events could be dispersed over different sub-
structures of the linguistic representation. In prac-
tice, several tuples extracted by different patterns 
can contribute to one complex relation instance.   

The semantics-oriented method uses relation in-
stances as seeds. It can easily be adapted to all re-
lation/event instances. The complexity of the target 
relation is not restricted by the expressiveness of 
the seed pattern representation. In Brin (1998) and 
Agichtein and Gravano (2000),  the semantics-
oriented methods have proved to be effective in 
learning patterns for some general binary relations 
such as booktitle-author and company-headquarter 
relations. In Xu et al. (2006), the authors show that 
at least for the investigated task it is more effective 
to start with the most complex relation instance, 
namely, with an n-ary sample for the target n-ary 
relation as seed, because the seed arguments are 
often centred in a relevant textual snippet where 
the relation is mentioned.  Given the bottom-up 
extracted patterns, the task of the rule induction is 
to cluster and generalize the patterns. In compari-
son to the bottom-up rule induction strategy (Califf 
and Mooney, 2004), our method works also in a 
compositional way. For reasons of space this part 
of the work will be reported in Xu and Uszkoreit 
(forthcoming).  

4.1 Pattern Extraction 

Pattern extraction in DARE aims to find linguistic 
patterns which do not only trigger the relations but 
also locate the relation arguments. In DARE, the 
patterns can be extracted from a phrase, a clause or 
a sentence, depending on the location and the dis-
tribution of the seed relation arguments.   

 
Figure 2. Pattern extraction step 1 

 
Figure 3. Pattern extraction step 2 

 
Figures 2 and 3 depict the general steps of bot-

tom-up pattern extraction from a dependency tree t 
where three seed arguments arg1, arg2 and arg3 are 
located. All arguments are assigned their relation 
roles r1, r2 and r3. The pattern-relevant subtrees are 
trees in which seed arguments are embedded: t1, t2 
and t3. Their root nodes are n1, n2 and n3.  Figure 2 
shows the extraction of a unary pattern n2_r3_i, 
while Figure 3 illustrates the further extraction and 
construction of a binary pattern n1_r1_r2_j and a 
ternary pattern n3_r1_r2_r3_k. In practice, not all 
branches in the subtrees will be kept. In the follow-
ing, we give a general definition of our seed-driven 
bottom-up pattern extraction algorithm: 
input:  (i) relation = <r1, r2, ..., rn>: the target rela-

tion tuple with n argument roles. 
 T: a set of linguistic analysis trees anno-

tated with i seed relation arguments (1≤i≤n) 
output: P: a set of pattern instances which can ex-

tract i or a subset of i arguments.  
Pattern extraction: 
 for each tree t ∈T 
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Step 1: (depicted in Figure 2) 
1. replace all terminal nodes that are instanti-

ated with the seed arguments by new 
nodes. Label these new nodes with the 
seed argument roles and possibly the cor-
responding entity classes; 

2. identify the set of the lowest nonterminal 
nodes N1 in t that dominate only one ar-
gument (possibly among other nodes). 

3. substitute N1 by nodes labelled with the 
seed argument roles and their entity classes 

4. prune the subtrees dominated by N1 from t 
and add these subtrees into P. These sub-
trees are assigned the argument role infor-
mation and a unique id. 

Step2: For i=2 to n: (depicted in Figure 3) 
1. find the set of the lowest nodes N1 in t that 

dominate in addition to other children only 
i seed arguments; 

2. substitute N1 by nodes labelled with the i 
seed argument role combination informa-
tion (e.g., ri_rj) and with a unique id. 

3. prune the subtrees Ti dominated by Ni in t; 

4. add Ti to P together with the argument role 
combination information and the unique id  

With this approach, we can learn rules like (6) in 
a straightforward way. 

4.2 Rule Validation: Ranking and Filtering 

Our ranking strategy has incorporated the ideas 
proposed by Riloff (1996), Agichtein and Gravano 
(2000), Yangarber (2003) and Sudo et al. (2003). 
We take two properties of a pattern into account: 
• domain relevance: its distribution in the rele-

vant documents and irrelevant documents 
(documents in other domains); 

• trustworthiness of its origin: the relevance 
score of the seeds from which it is extracted.   

In Riloff (1996) and Sudo et al. (2003), the rele-
vance of a pattern is mainly dependent on its oc-
currences in the relevant documents vs. the whole 
corpus.  Relevant patterns with lower frequencies 
cannot float to the top. It is known that some com-
plex patterns are relevant even if they have low 
occurrence rates. We propose a new method for 
calculating the domain relevance of a pattern. We 
assume that the domain relevance of a pattern is 

dependent on the relevance of the lexical terms 
(words or collocations) constructing the pattern, 
e.g., the domain relevance of (5) and (6) are de-
pendent on the terms “prize” and “win” respec-
tively. Given n different domains, the domain rele-
vance score (DR) of a term t in a domain di is: 
DR(t, di)= 

0, if df(t, di) =0; 

df(t,di)
N×D

×LOG(n× df(t,di)

df(t,dj)
j=1

n
∑

), otherwise 

where 
• df(t, di): is the document frequency of a 

term t in the domain di  
• D: the number of the documents in di 
• N: the total number of the terms in di 

Here the domain relevance of a term is dependent 
both on its document frequency and its document 
frequency distribution in other domains. Terms 
mentioned by more documents within the domain 
than outside are more relevant (Xu et al., 2002).   
In the case of n=3 such different domains might 
be, e.g., management succession, book review or 
biomedical texts. Every domain corpus should ide-
ally have the same number of documents and simi-
lar average document size. In the calculation of the 
trustworthiness of the origin, we follow Agichtein 
and Gravano (2000) and Yangarber (2003). Thus, 
the relevance of a pattern is dependent on the rele-
vance of its terms and the score value of the most 
trustworthy seed from which it origins. Finally, the 
score of a pattern p is calculated as follows: 

score(p)= }:)(max{)(
0

SeedsssscoretDR
T

i
i ∈×∑

=

 

where    |T|> 0 and ti ∈ T 
• T: is the set of the terms occur in p; 
• Seeds: a set of seeds from which the pat-

tern is extracted; 
• score(s): is the score of the seed s; 

This relevance score is not dependent on the distri-
bution frequency of a pattern in the domain corpus. 
Therefore, patterns with lower frequency, in par-
ticular, some complex patterns, can be ranked 
higher when they contain relevant domain terms or 
come from reliable seeds. 
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5 Top down Rule Application 

After the acquisition of pattern rules, the DARE 
system applies these rules to the linguistically an-
notated corpus. The rule selection strategy moves 
from complex to simple. It first matches the most 
complex pattern to the analyzed sentence in order 
to extract the maximal number of relation argu-
ments. According to the duality principle (Yangar-
ber 2001), the score of the new extracted relation 
instance S is dependent on the patterns from which 
it origins. Our score method is a simplified version 
of that defined by Agichtein and Gravano (2000): 

score(S)=1− (1− score(Pi )
i=0

P
∏ )  

where P={Pi} is the set of patterns that extract S. 
 
The extracted instances can be used as potential 

seeds for the further pattern extraction iteration, 
when their scores are validated.  The initial seeds 
obtain 1 as their score. 

6 Experiments and Evaluation 

 We apply our framework to two application do-
mains: Nobel Prize awards and management suc-
cession events.  Table 1 gives an overview of our 
test data sets. 
Data Set Name Doc Number Data Amount 
Nobel Prize A  (1999-2005) 2296 12,6 MB 
Nobel Prize B (1981-1998)  1032 5,8 MB 
MUC-6 199 1 MB 
Table1. Overview of Test Data Sets.  

For the Nobel Prize award scenario, we use two 
test data sets with different sizes: Nobel Prize A 
and Nobel Prize B. They are Nobel Prize related 
articles from New York Times, online BBC and 
CNN news reports.   The target relation for the ex-
periment is a quaternary relation as mentioned in 
(3), repeated here again: 

<recipient, prize, area, year> 
 Our test data is not annotated with target rela-

tion instances. However, the entire list of Nobel 
Prize award events is available for the evaluation 
from the Nobel Prize official website3. We use it as 
our reference relation database for building our 
Ideal table (Agichtein and Gravano, 2000).      

For the management succession scenario, we use 
the test data from MUC-6 (MUC-6, 1995) and de-
                                                 
3 http://nobelprize.org/ 

fine a simpler relation structure than the MUC-6 
scenario template with four arguments:  

<Person_In, Person_Out, Position, Organisation> 
In the following tables, we use PI for Person_In, 

PO for Person_Out, POS for Position and ORG for 
Organisation. In our experiments, we attempt to 
investigate the influence of the size of the seed and 
the size of the test data on the performance. All 
these documents are processed by named entity 
recognition (Drozdzynski et al., 2004) and depend-
ency parser MINIPAR (Lin, 1998).      

6.1 Nobel Prize Domain Evaluation 

For this domain, three test runs have been evalu-
ated, initialized by one randomly selected relation 
instance as seed each time.  In the first run, we use 
the largest test data set Nobel Prize A. In the sec-
ond and third runs, we have compared two random 
selected seed samples with 50% of the data each, 
namely Nobel Prize B. For data sets in this do-
main, we are faced with an evaluation challenge 
pointed out by DIPRE (Brin, 1998) and Snowball 
(Agichtein and Gravano, 2000), because there is no 
gold-standard evaluation corpus available. We 
have adapted the evaluation method suggested by 
Agichtein and Gravano, i.e., our system is success-
ful if we capture one mentioning of a Nobel Prize 
winner event through one instance of the relation 
tuple or its projections. We constructed two tables 
(named Ideal) reflecting an approximation of the 
maximal detectable relation instances: one for No-
bel Prize A and another for Nobel Prize B. The 
Ideal tables contain the Nobel Prize winners that 
co-occur with the word “Nobel” in the test corpus. 
Then precision is the correctness of the extracted 
relation instances, while recall is the coverage of 
the extracted tuples that match with the Ideal table. 
In Table 2 we show the precision and recall of the 
three runs and their random seed sample: 

Recall Data 
Set 

Seed Preci-
sion total time interval 

Nobel 
Prize A

[Zewail, Ahmed H], 
nobel, chemistry,1999 

71,6% 50,7% 70,9% 
(1999-2005) 

Nobel 
Prize B

[Sen, Amartya], no-
bel, economics, 1998 

87,3% 31% 43% 
(1981-1998) 

Nobel 
Prize B

[Arias, Oscar],  
nobel, peace, 1987 

83,8% 32% 45% 
(1981-1998) 

Table 2. Precision, Recall against the Ideal Table  
The first experiment with the full test data has 
achieved much higher recall than the two experi-
ments with the set Nobel Prize B. The two experi-
ments with the Nobel Prize B corpus show similar 
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performance. All three experiments have better 
recalls when taking only the relation instances dur-
ing the report years into account, because there are 
more mentionings during these years in the corpus.  
Figure (6) depicts the pattern learning and new 
seed extracting behavior during the iterations for 
the first experiment. Similar behaviours are ob-
served in the other two experiments.   

 
Figure 6. Experiment with Nobel Prize A  

6.2 Management Succession Domain 

The MUC-6 corpus is much smaller than the Nobel 
Prize corpus. Since the gold standard of the target 
relations is available, we use the standard IE preci-
sion and recall method. The total gold standard 
table contains 256 event instances, from which we 
randomly select seeds for our experiments. Table 3 
gives an overview of performance of the experi-
ments. Our tests vary between one seed, 20 seeds 
and 55 seeds. 
Initial Seed Nr.  Precision Recall 

A 12.6% 7.0% 1  
B 15.1% 21.8% 

20  48.4%  34.2% 
55  62.0% 48.0% 
Table 3. Results for various initial seed sets  

The first two one-seed tests achieved poor per-
formance. With 55 seeds, we can extract additional  
67 instances to obtain the half size of the instances 
occurring in the corpus. Table 4 show evaluations 
of the single arguments. B works a little better be-
cause the randomly selected single seed appears a 
better sample for finding the pattern for extracting 
PI argument.  
Arg precision 

(A) 
precision 
(B) 

Recall 
(A) 

Recall 
(B) 

PI 10.9% 15.1% 8.6% 34.4% 
PO 28.6% - 2.3% 2.3% 
ORG 25.6% 100% 2.6% 2.6% 
POS 11.2% 11.2% 5.5% 5.5% 
Table 4. Evaluation of one-seed tests (A and B) 

Table 5 shows the performance with 20 and 55 
seeds respectively. Both of them are better than the 
one-seed tests, while 55 seeds deliver the best per-
formance in average, in particular, the recall value. 

  
arg precision 

(20) 
precision 
(55) 

recall 
(20) 

recall 
(55) 

PI 84% 62.8% 27.9% 56.1% 
PO 41.2% 59% 34.2% 31.2% 
ORG 82.4% 58.2% 7.4% 20.2% 
POS 42% 64.8% 25.6% 30.6% 
Table 5. Evaluation of 20 and 55 seeds tests 
Our result with 20 seeds (precision of 48.4% and 
recall of 34.2%) is comparable with the best result 
reported by Greenwood and Stevenson (2006) with 
the linked chain model (precision of 0.434 and re-
call of 0.265). Since the latter model uses patterns 
as seeds, applying a similarity measure for pattern 
ranking, a fair comparison is not possible. Our re-
sult is not restricted to binary relations and our 
model also assigns the exact argument role to the 
Person role, i.e. Person_In or Person_Out.   

We have also evaluated the top 100 event-
independent binary relations such as Person-
Organisation and Position-Organisation. The preci-
sion of these by-product relations of our IE system 
is above 98%.  

7 Conclusion and Future Work 

Several parameters are relevant for the success 
of a seed-based bootstrapping approach to relation 
extraction. One of these is the arity of the relation.  
Another one is the locality of the relation instance 
in an average mentioning. A third one is the types 
of the relation arguments:  Are they  named entities 
in the classical sense? Are they lexically marked? 
Are there several arguments of the same type? 
Both tasks we explored involved extracting quater-
nary relations. The Nobel Prize domain shows bet-
ter lexical marking because of the prize name.  The 
management succession domain has two slots of 
the same NE type, i.e., persons. These differences 
are relevant for any relation extraction approach.   

The success of the bootstrapping approach cru-
cially depends on the nature of the training data 
base.  One of the most relevant properties of this 
data base is the ratio of documents to relation in-
stances. Several independent reports of an instance 
usually yield a higher number of patterns.   

The two tasks we used to investigate our method 
drastically differ in this respect.  The Nobel Prize 
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domain we selected as a learning domain for gen-
eral award events since it exhibits a high degree of 
redundancy in reporting.  A Nobel Prize triggers 
more news reports than most other prizes.  The 
achieved results met our expectations.  With one 
randomly selected seed, we could finally extract 
most relevant events in some covered time interval. 

However, it turns out that it is not just the aver-
age number of reports per events that matters but 
also the distribution of reportings to events.  Since 
the Nobel prizes data exhibit a certain type of 
skewed distribution, the graph exhibits properties 
of scale-free graphs.  The distances between events 
are shortened to a few steps. Therefore, we can 
reach most events in a few iterations. The situation 
is different for the management succession task 
where the reports came from a single newspaper.  
The ratio of events to reports is close to one.  This 
lack of informational redundancy requires a higher 
number of seeds.  When we started the bootstrap-
ping with a single event, the results were rather 
poor.  Going up to twenty seeds, we still did not 
get the performance we obtain in the Nobel Prize 
task but our results compare favorably to the per-
formance of existing bootstrapping methods.  

The conclusion, we draw from the observed dif-
ference between the two tasks is simple:  We shall 
always try to find a highly redundant training data 
set.  If at all possible, the training data should ex-
hibit a skewed distribution of reports to events.  
Actually, such training data may be the only realis-
tic chance for reaching a large number of rare pat-
terns.  In future work we will try to exploit the web 
as training resource for acquiring patterns while 
using the parsed domain data as the source for ob-
taining new seeds in bootstrapping the rules before 
applying these to any other nonredundant docu-
ment base.  This is possible because our seed tu-
ples can be translated into simple IR queries and 
further linguistic processing is limited to the re-
trieved candidate documents.   
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Abstract 

Extraction of relations between entities is 
an important part of Information Extraction 
on free text. Previous methods are mostly 
based on statistical correlation and depend-
ency relations between entities. This paper 
re-examines the problem at the multi-
resolution layers of phrase, clause and sen-
tence using dependency and discourse rela-
tions. Our multi-resolution framework 
ARE (Anchor and Relation) uses clausal 
relations in 2 ways: 1) to filter noisy de-
pendency paths; and 2) to increase reliabil-
ity of dependency path extraction. The re-
sulting system outperforms the previous 
approaches by 3%, 7%, 4% on MUC4, 
MUC6 and ACE RDC domains respec-
tively. 

1 Introduction 

Information Extraction (IE) is the task of identify-
ing information in texts and converting it into a 
predefined format. The possible types of informa-
tion include entities, relations or events. In this 
paper, we follow the IE tasks as defined by the 
conferences MUC4, MUC6 and ACE RDC: slot-
based extraction, template filling and relation ex-
traction, respectively. 

Previous approaches to IE relied on co-
occurrence (Xiao et al., 2004) and dependency 
(Zhang et al., 2006) relations between entities. 
These relations enable us to make reliable extrac-
tion of correct entities/relations at the level of a 
single clause. However, Maslennikov et al. (2006) 
reported that the increase of relation path length 
will lead to considerable decrease in performance. 
In most cases, this decrease in performance occurs 

because entities may belong to different clauses.  
Since clauses in a sentence are connected by 
clausal relations (Halliday and Hasan, 1976), it is 
thus important to perform discourse analysis of a 
sentence.  

Discourse analysis may contribute to IE in sev-
eral ways. First, Taboada and Mann (2005) re-
ported that discourse analysis helps to decompose 
long sentences into clauses. Therefore, it helps to 
distinguish relevant clauses from non-relevant 
ones. Second, Miltsakaki (2003) stated that entities 
in subordinate clauses are less salient. Third, the 
knowledge of textual structure helps to interpret 
the meaning of entities in a text (Grosz and Sidner 
1986). As an example, consider the sentences 
“ABC Co. appointed a new chairman. Addition-
ally, the current CEO was retired”. The word ‘ad-
ditionally’ connects the event in the second sen-
tence to the entity ‘ABC Co.’ in the first sentence. 
Fourth, Moens and De Busser (2002) reported that 
discourse segments tend to be in a fixed order for 
structured texts such as court decisions or news. 
Hence, analysis of discourse order may reduce the 
variability of possible relations between entities. 

To model these factors, we propose a multi-
resolution framework ARE that integrates both 
discourse and dependency relations at 2 levels. 
ARE aims to filter noisy dependency relations 
from training and support their evaluation with 
discourse relations between entities. Additionally, 
we encode semantic roles of entities in order to 
utilize semantic relations. Evaluations on MUC4, 
MUC6 and ACE RDC 2003 corpora demonstrates 
that our approach outperforms the state-of-art sys-
tems mainly due to modeling of discourse rela-
tions. 

The contribution of this paper is in applying dis-
course relations to supplement dependency rela-
tions in a multi-resolution framework for IE. The 
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framework enables us to connect entities in differ-
ent clauses and thus improve the performance on 
long-distance dependency paths.  

Section 2 describes related work, while Section 
3 presents our proposed framework, including the 
extraction of anchor cues and various types of rela-
tions, integration of extracted relations, and com-
plexity classification. Section 4 describes our ex-
perimental results, with the analysis of results in 
Section 5. Section 6 concludes the paper. 

2 Related work 

Recent work in IE focuses on relation-based, se-
mantic parsing-based and discourse-based ap-
proaches. Several recent research efforts were 
based on modeling relations between entities. Cu-
lotta and Sorensen (2004) extracted relationships 
using dependency-based kernel trees in Support 
Vector Machines (SVM). They achieved an F1-
measure of 63% in relation detection. The authors 
reported that the primary source of mistakes comes 
from the heterogeneous nature of non-relation in-
stances. One possible direction to tackle this prob-
lem is to carry out further relationship classifica-
tion. Maslennikov et al. (2006) classified relation 
path between candidate entities into simple, aver-
age and hard cases. This classification is based on 
the length of connecting path in dependency parse 
tree. They reported that dependency relations are 
not reliable for the hard cases, which, in our opin-
ion, need the extraction of discourse relations to 
supplement dependency relation paths. 

Surdeanu et al. (2003) applied semantic parsing 
to capture the predicate-argument sentence struc-
ture. They suggested that semantic parsing is use-
ful to capture verb arguments, which may be con-
nected by long-distance dependency paths. How-
ever, current semantic parsers such as the ASSERT 
are not able to recognize support verb construc-
tions such as “X conducted an attack on Y” under 
the verb frame “attack” (Pradhan et al. 2004). 
Hence, many useful predicate-argument structures 
will be missed. Moreover, semantic parsing be-
longs to the intra-clausal level of sentence analysis, 
which, as in the dependency case, will need the 
support of discourse analysis to bridge inter-clausal 
relations. 

Webber et al. (2002) reported that discourse 
structure helps to extract anaphoric relations. How-
ever, their set of grammatical rules is heuristic. Our 

task needs construction of an automated approach 
to be portable across several domains. Cimiano et 
al. (2005) employed a discourse-based analysis for 
IE. However, their approach requires a predefined 
domain-dependent ontology in the format of ex-
tended logical description grammar as described by 
Cimiano and Reely (2003). Moreover, they used 
discourse relations between events, whereas in our 
approach, discourse relations connect entities. 

3 Motivation for using discourse relations  

Our method is based on Rhetorical Structure The-
ory (RST) by Taboada and Mann (2005). RST 
splits the texts into 2 parts: a) nuclei, the most im-
portant parts of texts; and b) satellites, the secon-
dary parts. We can often remove satellites without 
losing the meaning of text. Both nuclei and satel-
lites are connected with discourse relations in a 
hierarchical structure. In our work, we use 16 
classes of discourse relations between clauses: At-
tribution, Background, Cause, Comparison, Condi-
tion, Contrast, Elaboration, Enablement, Evalua-
tion, Explanation, Joint, Manner-Means, Topic-
Comment, Summary, Temporal, Topic-Change. 
The additional 3 relations impose a tree structure: 
textual-organization, span and same-unit. All the 
discourse relation classes are potentially useful, 
since they encode some knowledge about textual 
structure. Therefore, we decide to include all of 
them in the learning process to learn patterns with 
best possible performance. 

We consider two main rationales for utilizing 
discourse relations to IE. First, discourse relations 
help to narrow down the search space to the level 
of a single clause. For example, the sentence 
“[<Soc-A1>Trudeau</>'s <Soc-A2>son</> told 
everyone], [their prime minister was his father], 
[who took him to a secret base in the arctic] [and 
let him peek through a window].” contains 4 
clauses and 7 anchor cues (key phrases) for the 
type Social, which leads to 21 possible variants. 
Splitting this sentence into clauses reduces the 
combinations to 4 possible variants. Additionally, 
this reduction eliminates the long and noisy de-
pendency paths.  

Second, discourse analysis enables us to connect 
entities in different clauses with clausal relations. 
As an example, we consider a sentence “It’s a dark 
comedy about a boy named <AT-A1>Marshal</> 
played by Amourie Kats who discovers all kinds of 

593



on and scary things going on in <AT-A2>a seem-
ingly quiet little town</>”. In this example, we 
need to extract the relation “At” between the enti-
ties “Marshal” and “a seemingly quiet little town”. 
The discourse structure of this sentence is given in 

.Figure 1   
 

 
Figure 1. Example of discourse parsing 

The discourse path “Marshal <-elaboration- _ 
<-span- _ -elaboration-> _ -elaboration-> town” 
is relatively short and captures the necessary rela-
tions. At the same time, prediction based on de-
pendency path “Marshal <–obj- _ <-i- _ <-fc- _ 
<-pnmod- _ <-pred- _ <-i- _ <-null- _ -null-> _ -
rel-> _ -i-> _ -mod-> _ -pcomp-n-> town” is un-
reliable, since the relation path is long. Thus, it is 
important to rely on discourse analysis in this ex-
ample. In addition, we need to evaluate both the 
score and reliability of prediction by relation path 
of each type. 

4 Anchors and Relations 

In this section, we define the key components that 
we use in ARE: anchors, relation types and general 
architecture of our system. Some of these compo-
nents are also presented in detail in our previous 
work (Maslennikov et al., 2006). 

4.1 Anchors 

The first task in IE is to identify candidate phrases 
(which we call anchor or anchor cue) of a pre-
defined type  (anchor  type)  to  fill  a  desired  slot  in  
an   IE   template.   The   example   anchor   for   the   phrase 

 

 “Marshal” is shown in Figure 2. 
Given a training set of sentences, 
we extract the anchor cues ACj = 
[A1, …, ANanch] of type Cj using 
the procedures described in 
Maslennikov et al. (2006). The 
linguistic features of these an-
chors  for  the  anchor  types  of  Per-  
petrator, Action, Victim and Target for the MUC4 
domain are given in Table 1. 

 

Anchor  
types

Feature 

Perpetrator_Cue 
(A) 

Action_Cue 
(D) 

Victim_Cue 
(A) 

Target_Cue 
(A) 

Lexical  
(Head noun) 

terrorists,  
individuals,  
Soldiers 

attacked, 
murder,  
Massacre 

Mayor, 
general, 
priests 

bridge,  
house,  
Ministry 

Part-of-Speech Noun Verb Noun Noun 

Named Enti-
ties 

Soldiers  
(PERSON) 

- Jesuit priests 
(PERSON) 

WTC  
(OBJECT) 

Synonyms Synset 130, 166 Synset 22 Synset 68 Synset 71 
Concept Class ID 2, 3 ID 9  ID 22, 43 ID 61, 48 

Co-referenced 
entity 

He -> terrorist, 
soldier 

- They -> 
peasants 

- 

Clausal type Nucleus 
Satellite 

Nucleus, 
Satellite 

Nucleus, 
Satellite 

Nucleus, 
Satellite 

Argument type Arg0 , Arg1

Root 

 Target, -, 
ArgM-MNR 

Arg0 ,  Arg1 Arg1 , ArgM-
MNR 

Table 1. Linguistic features for anchor extraction 
 

Given an input phrase P from a test sentence, we 
need to classify if the phrase belongs to anchor cue 
type Cj. We calculate the entity score as: 

 
 Entity_Score(P) =∑  δ i * Feature_Scorei(P,Cj) (1) 
  

where Feature_Score(P,Cj) is a score function for 
a particular linguistic feature representation of type 
Cj, and δ i is the corresponding weight for that rep-
resentation in the overall entity score.  The weights 
are learned automatically using Expectation Maxi-
mization (Dempster et al., 1977). The Fea-
ture_Scorei(P,Cj) is estimated from the training set 
as the number of slots containing the correct fea-
ture representation type versus all the slots: 

 
 Feature_Scorei(P,Cj) = #(positive slots) / #(all slots) (2) 

 

We classify the phrase P as belonging to an anchor 
type Cj when its Entity_score(P) is above an em-
pirically determined threshold ω. We refer to this 
anchor as Aj. We allow a phrase to belong to mul-
tiple anchor types and hence the anchors alone are 
not enough for filling templates. 

4.2 Relations 

To resolve the correct filling of phrase P of type Ci 
in a desired slot in the template, we need to con-
sider the relations between multiple candidate 
phrases of related slots. To do so, we consider sev-
eral types of relations between anchors: discourse, 
dependency and semantic relations. These relations 
capture the interactions between anchors and are 
therefore useful for tackling the paraphrasing and 
alignment problems (Maslennikov et al., 2006). 
Given 2 anchors Ai and Aj of anchor types Ci and 
Cj, we consider a relation Pathl = [Ai, Rel1,…, 
Reln, Aj] between them, such that there are no an-
chors between Ai and Aj. Additionally, we assume 
that the relations between anchors are represented 
in the form of a tree Tl, where l = {s, c, d} refers to 

Satellite 
who discovers all kinds of on and 
scary things going on in a seem-
ingly quiet little town. 

Nucleus 
It's a dark 
comedy 
about a boy 

Satellite 
named Mar-
shal 

Nucleus 
played by 
Amourie Kats 

Nucleus Satellite

span elaboration 

span elaboration elaboration span 

Figure 2. Exam-
ple of anchor 

Anchor Ai 
 

Marshal 
pos_NNP 

list_personWord 
Cand_AtArg1 
Minipar_obj 

Arg2 
Spade_Satellite 
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discourse, dependency and semantic relation types 
respectively. We describe the nodes and edges of 
Tl separately for each type, because their represen-
tations are different: 
1) The nodes of discourse tree Tc consist of clauses 

[Clause1, …, ClauseNcl]; and their relation edges 
are obtained from the Spade system described in 
Soricut and Marcu (2003). This system performs 
RST-based parsing at the sentence level. The re-
ported accuracy of Spade is 49% on the RST-DT 
corpus. To obtain a clausal path, we map each 
anchor Ai to its clause in Spade. If anchors Ai 
and Aj belong to the same clause, we assign 
them the relation same-clause. 

es.  

2) The nodes of dependency tree Td consist of 
words in sentences; and their relation edges are 
obtained from Minipar by Lin (1997). Lin 
(1997) reported a parsing performance of Preci-
sion = 88.5% and Recall = 78.6% on the SU-
SANNE corpus. 

3) The nodes of semantic tree Ts consist of argu-
ments [Arg0, …, ArgNarg] and targets [Target1, 
…, TargetNtarg]. Both arguments and targets are 
obtained from the ASSERT parser developed by 
Pradhan (2004). The reported performance of 
ASSERT is F1=83.8% on the identification and 
classification task for all arguments, evaluated 
using PropBank and AQUAINT as the training 
and testing corpora, respectively. Since the rela-
tion edges have a form Targetk -> Argl, the rela-
tion path in semantic frame contains only a sin-
gle relation. Therefore, we encode semantic rela-
tions as part of the anchor features.  

In later parts of this paper, we consider only dis-
course and dependency relation paths Pathl, where 
l={c, d}. 
 

 
Figure 3. Architecture of the system 

4.3 Architecture of ARE system 

In order to perform IE, it is important to extract 
candidate entities (anchors) of appropriate anchor 
types, evaluate the relationships between them, 
further evaluate all possible candidate templates, 
and output the final template. For the case of rela-
tion extraction task, the final templates are the 
same as an extracted binary relation. The overall 
architecture of ARE is given in Figure 3. 

The focus of this paper is in applying discourse 
relations for binary relationship evaluation. 

5 Overall approach 

In this section, we describe our relation-based ap-
proach to IE. We start with the evaluation of rela-
tion paths (single relation ranking, relation path 
ranking) to assess the suitability of their anchors as 
entities to template slots. Here we want to evaluate 
given a single relation or relation path, whether the 
two anchors are correct in filling the appropriate 
slots in a template. This is followed by the integra-
tion of relation paths and evaluation of templates. 

5.1 Evaluation of relation path 

In the first stage, we evaluate from training data 
the relevance of relation path Pathl = [Ai, Rel1,…, 
Reln, Aj] between candidate anchors Ai and Aj of 
types Ci and Cj. We divide this task into 2 steps. 
The first step ranks each single relation Relk ∈ 
Pathl; while the second step combines the evalua-
tions of Relk to rank the whole relation path Pathl.  

Single relation ranking 

Let Seti and Setj be the set of linguistic features of 
anchors Ai and Aj respectively. To evaluate Relk, 
we consider 2 characteristics: (1) the direction of 
relation Relk as encoded in the tree structure; and 
(2) the linguistic features, Seti and Setj, of anchors 
Ai and Aj. We need to construct multiple single 
relation classifiers, one for each anchor pair of 
types Ci and Cj, to evaluate the relevance of Relk 
with respect to these 2 anchor typ

Preprocessing Corpus 

 

(a) Construction of classifiers. The training data 
to each classifier consists of anchor pairs of types 
Ci and Cj extracted from the training corpus. We 
use these anchor pairs to construct each classifier 
in four stages. First, we compose the set of possi-
ble patterns in the form P+ = { Pm = <Si –Rel-> 
Sj> | Si ∈ Seti , Sj ∈ Setj }. The construction of Pm 

Anchor 
evaluation 

Templates 

Anchor NEs 

Template 
evaluation 

Sentences 

Binary relationship 
evaluation 

Candidate 
templates 
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conforms to the 2 characteristics given above. 
Figure 4 illustrates several discourse and depend-
ency patterns of P+ constructed from a sample sen-
tence.  
 

 
Figure 4.  Examples of discourse and dependency patterns 

Second, we identify the candidate anchor A, 
whose type matches slot C in a template. Third, we 
find the correct patterns for the following 2 cases: 
1) Ai, Aj are of correct anchor types; and 2) Ai is an 
action anchor, while Aj is a correct anchor. Any 
other patterns are considered as incorrect. We note 
that the discourse and dependency paths between 
anchors Ai and Aj are either correct or wrong si-
multaneously. 

  

Fourth, we evaluate the relevance of each pat-
tern Pm ∈ P+. Given the training set, let PairSetm 
be the set of anchor pairs extracted by Pm; and 
PairSet+(Ci, Cj) be the set of correct anchor pairs 
of types Ci, Cj. We evaluate both precision and 
recall of Pm as
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These values are stored and used in the training 
model for use during testing. 
 

(b) Evaluation of relation. Here we want to 
evaluate whether relation InputRel belongs to a 
path between anchors InputAi and InputAj. We 
employ the constructed classifier for the anchor 
types InputCi and InputCj in 2 stages. First, we 
find a subset P(0) = { Pm = <Si –InputRel-> Sj> ∈ 

P+  | Si ∈ InputSeti, Sj ∈ InputSetj } of applicable 
patterns. Second, we utilize P(0) to find the pattern 
Pm

(0) with maximal precision: 
 

 

 
 Precision(Pm

(0)) = argmaxPm∈P(0) Precision (Pm) (5) 
 

A problem arises if Pm
(0) is evaluated only on a 

small amount of training instances. For example, 
we noticed that patterns that cover 1 or 2 instances 
may lead to Precision=1, whereas on the testing 
corpus their accuracy becomes less than 50%. 
Therefore, it is important to additionally consider 
the recall parameter of Pm

(0). 

Relation path ranking 

In this section, we want to evaluate relation path 
connecting template slots Ci and Cj. We do this 
independently for each relation of type discourse 
and dependency. Let Recallk and Precisionk be the 
recall  and precision values of Relk in Path = [Ai, 
Rel1,…, Reln, Aj], both obtained from the previous 
step. First, we calculate the average recall of the 
involved relations: 
 
 W = (1/LengthPath) * ∑Relk∈Path Recallk (6) 
 

W gives the average recall of the involved rela-
tions and can be used as a measure of reliability of 
the relation Path. Next, we compute a combined 
score of average Precisionk weighted by Recallk:  
 
 Score = 1/(W*LengthPath)*∑Relk∈Path Recallk*Precisionk (7) 
 

We use all Precisionk values in the path here, be-
cause omitting a single relation may turn a correct 
path into the wrong one, or vice versa. The com-
bined score value is used as a ranking of the rela-
tion path. Experiments show that we need to give 
priority to scores with higher reliability W. Hence 
we use (W, Score) to evaluate each Path.  

5.2 Integration of different relation path 
types 

The purpose of this stage is to integrate the evalua-
tions for different types of relation paths. The input 
to this stage consists of evaluated relation paths 
PathC and PathD for discourse and dependency 
relations respectively. Let (Wl, Scorel) be an 
evaluation for Pathl, l ∈ [c, d]. We first define an 
integral path PathI between Ai and Aj as: 1) PathI 
is enabled if at least one of Pathl, l ∈ [c, d], is en-
abled; and 2) PathI is correct if at least one of 
Pathl is correct. To evaluate PathI, we consider the 
average recall Wl of each Pathl, because Wl esti-

elaboration 

obj 

Anchor Aj 
 

town 
pos_NN 

Cand_AtArg2 
Minipar_pcompn

ArgM-Loc 
Spade_Satellite

Anchor Ai 
 

Marshal 
pos_NNP 

list_personWord 
Cand_AtArg1 
Minipar_obj 

Arg2 
Spade Satellite 

pcomp-n
fc 

span 
Discourse path 

Dependency path 

i 

elaboration 

Input sentence 
Marshal… named <At-A1> </> played by Amourie Kats who discovers all kinds 

of on and scary things going on in <At-A2>

Dependency patterns 
 

Minipar_obj <–i- ArgM-Loc 
Minipar_obj <–obj- ArgM-Loc 

Minipar_obj –pcompn-> Minipar_pcompn
Minipar_obj –mod-> Minipar_pcompn 

…

a seemingly quiet little town</> ... 

elaboration 

pnmod 
pred i 

null 
null 

rel 

i mod 

Discourse patterns 
 

list_personWord <–elaboration- pos_NN 
list_personWord –elaboration-> town 

list_personWord <–span- town 
list_personWord <–elaboration- town 

… 
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mates the reliability of Scorel. We define a 
weighted average for Pathl as: 

 
 WI = WC + WD (8) 
 
 ScoreI = 1/WI * ∑ l  Wl*Scorel (9) 
 

Next, we want to determine the threshold score 
ScoreI

O above which ScoreI is acceptable. This 
score may be found by analyzing the integral paths 
on the training corpus. Let SI = { PathI } be the set 
of integral paths between anchors Ai and Aj on the 
training set. Among the paths in SI, we need to de-
fine a set function SI(X) = { PathI | ScoreI(PathI) 
≥ X } and find the optimal threshold for X. We find 
the optimal threshold based on F1-measure, be-
cause precision and recall are equally important in 
IE. Let SI(X)+ ⊂ SI(X) and S(X)+ ⊂ S(X) be sets of 
correct path extractions. Let FI(X) be F1-measure 
of SI(X): 
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Based on the computed values FI(X) for each X on 
the training data, we determine the optimal thresh-
old as Score  = argmax  F  (X)I

O
X I , which corre-

sponds to the maximal expected F1-measure of 
anchor pair Ai and Aj.  

5.3 Evaluation of templates 

At this stage, we have a set of accepted integral 
relation paths between any anchor pair Ai and Aj. 
The next task is to merge appropriate set of an-
chors into candidate templates. Here we follow the 
methodology of Maslennikov et al. (2006). For 
each sentence, we compose a set of candidate tem-
plates T using the extracted relation paths between 
each Ai and Aj. To evaluate each template Ti∈T, 
we combine the integral scores from relation paths 
between its anchors Ai and Aj into the overall Rela-
tion_ScoreT: 

 

  

 
M

AAScore
TScoreelationR Kji jiI

iT
∑ ≤≤= ,1

),(
)(_  (13) 

 

where K is the number of extracted slots, M is the 
number of extracted relation paths between an-
chors Ai and Aj, and ScoreI(Ai, Aj) is obtained 
from Equation (9). 

Next, we calculate the extracted entity score 
based on the scores of all the anchors in Ti: 
 

 ∑ ≤≤
=

Kk kiT KAScoreEntityTScoreEntity
1

/)(_)(_  (14) 
 

where Entity_Score(Ai) is taken from Equation (1).  
Finally, we obtain the combined evaluation for a 

template:  
 
  

 
ScoreT(Ti) = (1- λ) * Entity_ScoreT (Ti) + 
                           λ  * Relation_ScoreT (Ti) 

(15) 
 

where λ is a predefined constant. 
In order to decide whether the template Ti 

should be accepted or rejected, we need to deter-
mine a threshold ScoreT

O from the training data. If 
anchors of a candidate template match slots in a 
correct template, we consider the candidate tem-
plate as correct. Let TrainT = { Ti }  be the set of 
candidate templates extracted from the training 
data, TrainT+ ⊂ TrainT be the subset of correct 
candidate templates, and TotalT+ be the total set of 
correct templates in the training data. Also, let 
TrainT(X) = { Ti | ScoreT(Ti) ≥ X, Ti ∈ TrainT } be 
the set of candidate templates with score above X 
and TrainT+(X) ⊂ TrainT(X) be the subset of cor-
rect candidate templates. We define the measures 
of precision, recall and F1 as follows: 
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Since the performance in IE is measured in F1-
measure, an appropriate threshold to be used for 
the most prominent candidate templates is: 
 

 ScoreT
O = argmaxX FT (X) (19) 

 

The value ScoreT
O is used as a training model. 

During testing, we accept a candidate template In-
putTi if ScoreT(InputTi) > Sco Ore . T

As an additional remark, we note that domains 
MUC4, MUC6 and ACE RDC 2003 are signifi-
cantly different in the evaluation methodology for 
the candidate templates. While the performance of 
the MUC4 domain is measured for each slot indi-
vidually; the MUC6 task measures the perform-
ance on the extracted templates; and the ACE RDC 
2003 task evaluates performance on the matching 
relations. To overcome these differences, we con-
struct candidate templates for all the domains and 
measure the required type of performance for each 
domain. Our candidate templates for the ACE 
RDC 2003 task consist of only 2 slots, which cor-
respond to entities of the correct relations. 
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6 Experimental results 

We carry out our experiments on 3 domains: 
MUC4 (Terrorism), MUC6 (Management Succes-
sion), and ACE-Relation Detection and Characteri-
zation (2003). The MUC4 corpus contains 1,300 
documents as training set and 200 documents 
(TST3 and TST4) as official testing set. We used a 
modified version of the MUC6 corpus described 
by Soderland (1999). This version includes 599 
documents as training set and 100 documents as 
testing set. Following the methodology of Zhang et 
al. (2006), we use only the English portion of ACE 
RDC 2003 training data. We used 97 documents 
for testing and the remaining 155 documents for 
training. Our task is to extract 5 major relation 
types and 24 subtypes. 

 

Case (%) P R F1

GRID 52% 62% 57% 
Riloff’05 46% 51% 48% 

ARE (2006) 58% 61% 60% 
ARE 65% 61% 63% 
Table 2. Results on MUC4 

To compare the results on the terrorism domain 
in MUC4, we choose the recent state-of-art sys-
tems GRID by Xiao et al. (2004), Riloff et al. 
(2005) and ARE (2006) by Maslennikov et al. 
(2006) which does not utilize discourse and seman-
tic relations. The comparative results are given in 
Table 2. It shows that our enhanced ARE results in 
3% improvement in F1 measure over ARE (2006) 
that does not use clausal relations. The improve-
ment was due to the use of discourse relations on 
long paths, such as “X distributed leaflets claiming 
responsibility for murder of Y”. At the same time, 
for many instances, it would be useful to store the 
extracted anchors for another round of learning. 
For example, the extracted features of discourse 
pattern “murder –same_clause-> HUM_PERSON” 
may boost the score for patterns that correspond to 
relation path “X <-span- _ -Elaboration->  mur-
der”. In this way, high-precision patterns will sup-
port the refinement of patterns with average recall 
and low precision. This observation is similar to 
that described in Ciravegna’s work on (LP)2 
(Ciravegna 2001). 
 

Case (%) P R F1  

Chieu et al.’02 75% 49% 59% 
ARE (2006) 73% 58% 65% 

ARE 73% 70% 72% 
Table 3. Results on MUC6 

Next, we present the performance of our system 
on MUC6 corpus (Management Succession) as 
shown in Table 3. The improvement of 7% in F1 is 
mainly due to the filtering of irrelevant depend-
ency relations. Additionally, we noticed that 22% 
of testing sentences contain 2 answer templates, 
and entities in many of such templates are inter-
twined. One example is the sentence “Mr. Bronc-
zek who is 39 years old succeeds Kenneth Newell 
55 who was named to the new post of senior vice 
president”, which refers to 2 positions. We there-
fore we need to extract 2 templates “PersonIn: 
Bronczek, PersonOut: Newell” and “PersonIn: 
Newell, Post: senior vice president”. The discourse 
analysis is useful to extract the second template, 
while rejecting another long-distance template 
“PersonIn: Bronczek, PersonOut: Newell, Post: 
seniour vice president”. Another remark is that it 
is important to assign 2 anchors of 
‘Cand_PersonIn’ and ‘Cand_PersonOut’ for the 
phrase “Kenneth Newell”.  

The characteristic of the ACE corpus is that it 
contains a large amount of variations, while only 
2% of possible dependency paths are correct. Since 
many of the relations occur only at the level of sin-
gle clause (for example, most instances of relation 
At), the discourse analysis is used to eliminate 
long-distance dependency paths. It allows us to 
significantly decrease the dimensionality of the 
problem. We noticed that 38% of relation paths in 
ACE contain a single relation, 28% contain 2 rela-
tions and 34% contain  ≥ 3 relations. For the case 
of  ≥ 3 relations, the analysis of dependency paths 
alone is not sufficient to eliminate the unreliable 
paths. Our results for general types and specific 
subtypes are presented in Tables 6 and 7, respec-
tively. 

 
 

Case (%) P R F1  

Zhang et al.’06 77% 65% 70% 
ARE 79% 66% 73% 

Table 4. Results on ACE RDC’03, general types 

Based on our results in Table 4, discourse and 
dependency relations support each other in differ-
ent situations. We also notice that multiple in-
stances require modeling of entities in the path. 
Thus, in our future work we need to enrich the 
search space for relation patterns. This observation 
corresponds to that reported in Zhang et al. (2006). 

Discourse parsing is very important to reduce 
the amount of variations for specific types on ACE  
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RDC’03, as there are 48 possible anchor types.  
 

Case (%) P R F1

Zhang et al.’06 64% 51% 57% 
ARE 67% 54% 61% 

Table 5. Results on ACE RDC’03, specific types 

The relatively small improvement of results in 
Table 5 may be attributed to the following reasons: 
1) it is important to model the commonality rela-
tions, as was done by Zhou et al. (2006); and 2) 
our relation paths do not encode entities. This is 
different from Zhang et al. (2006), who were using 
entities in their subtrees. 

Overall, the results indicate that the use of dis-
course relations leads to improvement over the 
state-of-art systems.  

7 Conclusion 

We presented a framework that permits the inte-
gration of discourse relations with dependency re-
lations. Different from previous works, we tried to 
use the information about sentence structure based 
on discourse analysis. Consequently, our system 
improves the performance in comparison with the 
state-of-art IE systems. Another advantage of our 
approach is in using domain-independent parsers 
and features. Therefore, ARE may be easily port-
able into new domains.  

Currently, we explored only 2 types of relation 
paths: dependency and discourse. For future re-
search, we plan to integrate more relations in our 
multi-resolution framework. 
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Abstract 

Many errors produced by unsupervised and 
semi-supervised relation extraction (RE) 
systems occur because of wrong recogni-
tion of entities that participate in the rela-
tions. This is especially true for systems 
that do not use separate named-entity rec-
ognition components, instead relying on 
general-purpose shallow parsing. Such sys-
tems have greater applicability, because 
they are able to extract relations that 
contain attributes of unknown types. 
However, this generality comes with the 
cost in accuracy. In this paper we show 
how to use corpus statistics to validate and 
correct the arguments of extracted relation 
instances, improving the overall RE 
performance. We test the methods on 
SRES – a self-supervised Web relation 
extraction system. We also compare the 
performance of corpus-based methods to 
the performance of validation and correc-
tion methods based on supervised NER 
components.  
 

1 Introduction 

Information Extraction (IE) is the task of extract-
ing factual assertions from text. Most IE systems 
rely on knowledge engineering or on machine 
learning to generate the “task model” that is subse-
quently used for extracting instances of entities and 
relations from new text. In the knowledge engi-
neering approach the model (usually in the form of 

extraction rules) is created manually, and in the 
machine learning approach the model is learned 
automatically from a manually labeled training set 
of documents. Both approaches require substantial 
human effort, particularly when applied to the 
broad range of documents, entities, and relations 
on the Web.  In order to minimize the manual ef-
fort necessary to build Web IE systems, semi-
supervised and completely unsupervised systems 
are being developed by many researchers.  

The task of extracting facts from the Web has 
significantly different aims than the regular infor-
mation extraction. The goal of regular IE is to 
identify and label all mentions of all instances of 
the given relation type inside a document or inside 
a collection of documents. Whereas, in the Web 
Extraction (WE) tasks we are only interested in 
extracting relation instances and not interested in 
particular mentions. 

This difference in goals leads to a difference in 
the methods of performance evaluation. The usual 
measures of performance of regular IE systems are 
precision, recall, and their combinations – the 
breakeven point and F-measure. Unfortunately, the 
true recall usually cannot be known for WE tasks. 
Consequently, for evaluating the performance of 
WE systems, the recall is substituted by the num-
ber of extracted instances. 

WE systems usually order the extracted in-
stances by the system’s confidence in their cor-
rectness. The precision of top-confidence extrac-
tions is usually very high, but it gets progressively 
lower when lower-confidence candidates are con-
sidered. The curve that plots the number of extrac-
tions against precision level is the best indicator of 
system’s quality. Naturally, for a comparision be-
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tween different systems to be meaningful, the 
evaluations must be performed on the same corpus. 

In this paper we are concerned with Web RE 
systems that extract binary relations between 
named entities. Most of such systems utilize sepa-
rate named entity recognition (NER) components, 
which are usualy trained in a supervised way on a 
separate set of manually labeled documents. The 
NER components recognize and extract the values 
of relation attributes (also called arguments, or 
slots), while the RE systems are concerned with 
patterns of contexts in which the slots appear. 
However, good NER components only exist for 
common and very general entity types, such as 
Person, Organization, and Location. For some re-
lations, the types of attributes are less common, 
and no ready NER components (or ready labeled 
training sets) exist for them. Also, some Web RE 
systems (e.g., KnowItAll (Etzioni, Cafarella et al. 
2005)) do not use separate NER components even 
for known entity types, because such components 
are usually domain-specific and may perform 
poorly on cross-domain text collections extracted 
from the Web. 

In such cases, the values for relation attributes 
must be extracted by generic methods – shallow 
parsing (extracting noun phrases), or even simple 
substring extraction. Such methods are naturally 
much less precise and produce many entity-
recognition errors (Feldman and Rosenfeld 2006). 

In this paper we propose several methods of us-
ing corpus statistics to improve Web RE precision 
by validating and correcting the entities extracted 
by generic methods. The task of Web Extraction is 
particularly suited for the corpus statistics-based 
methods because of very large size of the corpora 
involved, and because the system is not required to 
identify individual mentions of the relations. 

Our methods of entity validation and correction 
are based on the following two observations: 

First, the entities that appear in target relations 
will often also appear in many other contexts, 
some of which may strongly discriminate in favor 
of entities of specific type. For example, assume 
the system encounters a sentence “Oracle bought 
PeopleSoft.” If the system works without a NER 
component, it only knows that “Oracle” and “Peo-
pleSoft” are proper noun phrases, and its confi-
dence in correctness of a candidate relation in-
stance  Acquisition(Oracle, PeopleSoft)  cannot be 
very high. However, both entities occur many 

times elsewhere in the corpus, sometimes in 
strongly discriminating contexts, such as “Oracle 
is a company that…” or “PeopleSoft Inc.” If the 
system somehow learned that such contexts indi-
cate entities of the correct type for the Acquisition 
relation (i.e., companies), then the system would 
be able to boost its confidence in both entities 
(“Oracle” and “PeopleSoft”) being of correct types 
and, consequently, in (Oracle, PeopleSoft) being a 
correct instance of the Acquisition relation. 

Another observation that we can use is the fact 
that the entities, in which we are interested, usually 
have sufficient frequency in the corpus for statisti-
cal term extraction methods to perform reasonably 
well. These methods may often correct a wrongly 
placed entity boundary, which is a common mis-
take of general-purpose shallow parsers. 

In this paper we show how to use these observa-
tions to supplement a Web RE system with an en-
tity validation and correction component, which is 
able to significantly improve the system’s accu-
racy. We evaluate the methods using SRES 
(Feldman and Rosenfeld 2006) – a Web RE sys-
tem, designed to extend and improve KnowItAll 
(Etzioni, Cafarella et al. 2005). The contributions 
of this paper are as follows: 

• We show how to automatically generate 
the validating patterns for the target relation 
arguments, and how to integrate the results 
produced by the validating patterns into the 
whole relation extraction system. 

• We show how to use corpus statistics and 
term extraction methods to correct the 
boundaries of relation arguments. 

• We experimentally compare the improve-
ment produced by the corpus-based entity 
validation and correction methods with the 
improvements produced by two alternative 
validators – a CRF-based NER system 
trained on a separate labeled corpus, and a 
small manually-built rule-based NER com-
ponent. 

The rest of the paper is organized as follows:  
Section 2 describes previous work.  Section 3 out-
lines the general design principles of SRES and 
briefly describes its components. Section 4 de-
scribes in detail the different entity validation and 
correction methods, and Section 5 presents their 
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experimental evaluation. Section 6 contains con-
clusions and directions for future work. 

2 Related Work 

We are not aware of any work that deals specifi-
cally with validation and/or correction of entity 
recognition for the purposes of improving relation 
extraction accuracy. However, the background 
techniques of our methods are relatively simple 
and known. The validation is based on the same 
ideas that underlie semi-supervised entity extrac-
tion (Etzioni, Cafarella et al. 2005), and uses a 
simplified SRES code. The boundary correction 
process utilizes well-known term extraction meth-
ods, e.g., (Su, Wu et al. 1994). 

We also recently became aware of the work by 
Downey, Broadhead and Etzioni (2007) that deals 
with locating entities of arbitrary types in large 
corpora using corpus statistics. 

The IE systems most similar to SRES are based 
on bootstrap learning: Mutual Bootstrapping 
(Riloff and Jones 1999), the DIPRE system (Brin 
1998), and the Snowball system (Agichtein and 
Gravano 2000). Ravichandran and Hovy 
(Ravichandran and Hovy 2002) also use bootstrap-
ping, and learn simple surface patterns for extract-
ing binary relations from the Web. 

Unlike these systems, SRES surface patterns al-
low gaps that can be matched by any sequences of 
tokens. This makes SRES patterns more general, 
and allows to recognize instances in sentences in-
accessible to the simple surface patterns of systems 
such as (Brin 1998; Riloff and Jones 1999; Ravi-
chandran and Hovy 2002). 

Another direction for unsupervised relation 
learning was taken in (Hasegawa, Sekine et al. 
2004; Chen, Ji et al. 2005). These systems use a 
NER system to identify frequent pairs of entities 
and then cluster the pairs based on the types of the 
entities and the words appearing between the enti-
ties. The main benefit of this approach is that all 
relations between two entity types can be discov-
ered simultaneously and there is no need for the 
user to supply the relations definitions. 

3 Description of SRES 

The goal of SRES is extracting instances of speci-
fied relations from the Web without human super-
vision. Accordingly, the supervised input to the 
system is limited to the specifications of the target 

relations. A specification for a given relation con-
sists of the relation schema and a small set of seeds 
– known true instances of the relation. In the full-
scale SRES, the seeds are also generated automati-
cally, by using a set of generic patterns instantiated 
with the relation schema. However, the seed gen-
eration is not relevant to this paper. 

A relation schema specifies the name of the rela-
tion, the names and types of its arguments, and the 
arguments ordering. For example, the schema of 
the Acquisition relation 

Acquisition(Buyer=ProperNP, 
                   Acquired=ProperNP)  ordered  

specifies that Acquisition has two slots, named 
Buyer and Acquired, which must be filled with en-
tities of type ProperNP. The order of the slots is 
important (as signified by the word “ordered”, and 
as opposed to relations like Merger, which are 
“unordered” or, in binary case, “symmetric”). 

The baseline SRES does not utilize a named en-
tity recognizer, instead using a shallow parser for 
exracting the relation slots. Thus, the only allowed 
entity types are ProperNP, CommonNP, and 
AnyNP, which mean the heads of, respectively, 
proper, common, and arbitrary noun phrases. In the 
experimental section we compare the baseline 
SRES to its extensions containing additional NER 
components. When using those components we 
allow further subtypes of ProperNP, and the rela-
tion schema above becomes 

… (Buyer=Company, Acquired=Company) … 

The main components of SRES are the Pattern 
Learner, the Instance Extractor, and the Classifier. 
The Pattern Learner uses the seeds to learn likely 
patterns of relation occurrences. Then, the Instance 
Extractor uses the patterns to extract the candidate 
instances from the sentences. Finally, the Classifier 
assigns the confidence score to each extraction. We 
shall now briefly describe these components. 

3.1 Pattern Learner 

The Pattern Learner receives a relation schema 
and a set of seeds. Then it finds the occurences of 
seeds inside a large (unlabeled) text corpus, ana-
lyzes their contexts, and extracts common patterns 
among these contexts. The details of the patterns 
language and the process of pattern learning are 
not significant for this paper, and are described 
fully in (Feldman and Rosenfeld 2006). 
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3.2 Instance Extractor 

The Instance Extractor applies the patterns gener-
ated by the Pattern Learner to the text corpus. In 
order to be able to match the slots of the patterns, 
the Instance Extractor utilizes an external shallow 
parser from the OpenNLP package 
(http://opennlp.sourceforge.net/), which is able to 
find all proper and common noun phrases in a sen-
tence. These phrases are matched to the slots of the 
patterns. In other respects, the pattern matching 
and extraction process is straightforward. 

3.3 Classifier 

The goal of the final classification stage is to filter 
the list of all extracted instances, keeping the cor-
rect extractions, and removing mistakes that would 
always occur regardless of the quality of the pat-
terns. It is of course impossible to know which ex-
tractions are correct, but there exist properties of 
patterns and pattern matches that increase or de-
crease the confidence in the extractions that they 
produce. 

These properties are turned into a set of binary 
features, which are processed by a linear feature-
rich classifier. The classifier receives a feature vec-
tor for a candidate, and produces a confidence 
score between 0 and 1. 

 The set of features is small and is not specific to 
any particular relation. This allows to train a model 
using a small amount of labeled data for one rela-
tion, and then use the model for scoring the candi-
dates of all other relations. Since the supervised 
training stage needs to be run only once, it is a part 
of the system development, and the complete sys-
tem remains unsupervised, as demonstrated in 
(Feldman and Rosenfeld 2006). 

4 Entity Validation and Correction 

In this paper we describe three different methods 
of validation and correction of relation arguments 
in the extracted instances. Two of them are “classi-
cal” and are based, respectively, on the knowledge-
engineering, and on the statistical supervised ap-
proaches to the named entity recognition problems. 
The third is our novel approach, based on redun-
dancy and corpus statistics. 

The methods are implemented as components 
for SRES, called Entity Validators, inserted be-
tween the Instance Extractor and the Classifier. 
The result of applying Entity Validator to a candi-

date instance is an (optionally) fixed instance, with 
validity values attached to all slots. There are three 
validity values: valid, invalid, and uncertain. 

The Classifier uses the validity values by con-
verting them into two additional binary features, 
which are then able to influence the confidence of 
extractions. 

We shall now describe the three different valida-
tors in details. 

4.1 Small Rule-based NER validator 

This validator is a small Perl script that checks 
whether a character string conforms to a set of 
simple regular expression patterns, and whether it 
appears inside lists of known named entities. There 
are two sets of regular expression patterns – for 
Person and for Company entity types, and three 
large lists – for known personal names, known 
companies, and “other known named entities”, cur-
rently including locations, universities, and gov-
ernment agencies. 

The manually written regular expression repre-
sent simple regularities in the internal structure of 
the entity types. For example, the patterns for Per-
son include: 

Person = KnownFirstName  [Initial]  LastName 
Person = Honorific [FirstName] [Initial] LastName 
Honorific = (“Mr” | “Ms” | “Dr” |…) [“.”] 
Initial = CapitalLetter [“.”] 
KnownFirstName = member of  
                                      KnownPersonalNamesList 
FirstName = CapitalizedWord  
LastName = CapitalizedWord 
LastName = CapitalizedWord [“–”CapitalizedWord] 
LastName = (“o” | “de” | …) “`”CapitalizedWord 
          … 

while the patterns for Company include: 
Company = KnownCompanyName 
Company = CompanyName CompanyDesignator 
Company = CompanyName FrequentCompanySfx 
KnownCompanyName = member of 
                                              KnownCompaniesList 
CompanyName = CapitalizedWord + 
CompanyDesignator = “inc” | “corp” | “co” | … 
FrequentCompanySfx = “systems” | “software” | … 
          … 

The validator works in the following way: it re-
ceives a sentence with a labeled candidate entity of 
a specified entity type (which can be either Person 
or Company). It then applies all of the regular ex-
pression patterns to the labeled text and to its en-
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closing context. It also checks for membership in 
the lists of known entities. If a boundary is incor-
rectly placed according to the patterns or to the 
lists, it is fixed. Then, the following result is re-
turned: 

Valid, if some pattern/list of the right entity type 
matched the candidate entity, while there 
were no matches for patterns/lists of other 
entity types. 

Invalid, if no pattern/list of the right entity type 
matched the candidate entity, while there 
were matches for patterns/lists of other entity 
types. 

Uncertain, otherwise, that is either if there were 
no matches at all, or if both correct and in-
correct entity types matched. 

The number of patterns is relatively small, and 
the whole component consists of about 300 lines in 
Perl and costs several person-days of knowledge 
engineering work. Despite its simplicity, we will 
show in the experimental section that it is quite 
effective, and even often outperforms the CRF-
based NER component, described below. 

4.2 CRF-based NER validator 

This validator is built using a feature-rich CRF-
based sequence classifier, trained upon an English 
dataset of the CoNLL 2003 shared task (Rosenfeld, 
Fresko et al. 2005). For the gazetteer lists it uses 
the same large lists as the rule-based component 
described above. 

The validator receives a sentence with a labeled 
candidate entity of a specified entity type (which 
can be either Person or Company). It then sends 
the sentence to the CRF-based classifier, which 
labels all named entities it knows – Dates, Times, 
Percents, Persons, Organizations, and Locations. 
If the CRF classifier places the entity boundaries 
differently, they are fixed. Then, the following re-
sult is returned: 

Valid, if CRF classification of the entity accords 
with the expected argument type. 

Invalid, if CRF classification of the entity is dif-
ferent from the expected argument type. 

Uncertain, otherwise, that is if the CRF classi-
fier didn’t recognize the entity at all. 

4.3 Corpus-based NER validator 

The goal of building the corpus-based NER valida-
tor is to provide the same level of performance as 
the supervised NER components, while requiring 
neither additional human supervision nor addi-
tional labeled corpora or other resources. There are 
several important facts that help achieve this goal. 

First, the relation instances that are used as seeds 
for the pattern learning are known to contain cor-
rect instances of the right entity type. These in-
stances can be used as seeds in their own right, for 
learning the patterns of occurrence of the corre-
sponding entity types. Second, the entities in which 
we are interested usually appear in the corpus with 
a sufficient frequency. The validation is based on 
the first observation, while the boundary fixing on 
the second. 

Corpus-based entity validation 
There is a preparation stage, during which the 
information required for validation is extracted 
from the corpus. This information is the lists of all 
entities of every type that appears in the target rela-
tions. In order to extract these lists we use a simpli-
fied SRES. The entities are considered to be unary 
relations, and the seeds for them are taken from the 
slots of the target binary relations seeds. We don’t 
use the Classifier on the extracted entity instances. 
Instead, for every extracted instance we record the 
number of different sentences the entity was ex-
tracted from. 

During the validation process, the validator’s 
task is to evaluate a given candidate entity in-
stance. The validator compares the number of 
times the instance was extracted (during the prepa-
ration stage) by the patterns for the correct entity 
type, and by the patterns for all other entity types. 
The validator then returns 

Valid, if the number of times the entity was ex-
tracted for the specified entity type is at least 
5, and at least two times bigger than the 
number of times it was extracted for all other 
entity types. 

Invalid, if the number of times the instance was 
extracted for the specified entity type is less 
than 5, and at least 2 times smaller than the 
number of times it was extracted for all other 
entity types. 
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Uncertain, otherwise, that is if it was never ex-
tracted at all, or extracted with similar fre-
quency for both correct and wrong entity 
types. 

Corpus-based correction of entity boundaries 
Our entity boundaries correction mechanism is 
similar to the known statistical term extraction 
techniques (Su, Wu et al. 1994). It is based on the 
assumption that the component words of a term (an 
entity in our case) are more tightly bound to each 
other than to the context. In the statistical sense, 
this fact is expressed by a high mutual information 
between the adjacent words belonging to the same 
term. 

There are two possible boundary fixes: remov-
ing words from the candidate entity, or adding 
words from the context to the entity. There is a 
significant practical difference between the two 
cases. 

Assume that an entity boundary was placed too 
broadly, and included extra words. If this was a 
chance occurrence (and only such cases can be 
found by statistical methods), then the resulting 
sequence of tokens will be very infrequent, while 
its parts will have relatively high frequency. For 
example, consider a sequence “Formerly Microsoft 
Corp.”, which is produced by mistakenly labeling 
“Formerly” as a proper noun by the PoS tagger. 
While it is easy to know from the frequencies that 
a boundary mistake was made, it is unclear (to the 
system) which part is the correct entity. But since 
the entity (one of the parts of the candidate) has a 
high frequency, there is a chance that the relation 
instance, in which the entity appears, will be re-
peated elsewhere in the corpus and will be ex-
tracted correctly there. Therefore, in such case, the 
simplest recourse is to simply label the entity as 
Invalid, and not to try fixing the boundaries. 

On the other hand, if a word was missed from an 
entity (e.g., “Beverly O”, instead of “Beverly O ' 
Neill”), the resulting sequence will be frequent. 
Moreover, it is quite probable that the same 
boundary mistake is made in many places, because 
the same sequence of tokens is being analyzed in 
all those places. Therefore, it makes sense to try to 
fix the bounary in this case, especially since it can 
be done simply and  reliably: a word (or several 
words) is attached to the entity string if both their 
frequencies and their mutual information are above 
a threshold. 

5 Experimental Evaluation 

The experiments described in this paper aim to 
confirm the effectiveness of the proposed corpus-
based relation argument validation and correction 
method, and to compare its performance with the 
classical knowledge-engineering-based and super-
vised-training-based methods. The experiments 
were performed with five relations: 

Acquisition(BuyerCompany, AcquiredCompany), 
Merger(Company1, Company2), 
CEO_Of(Company, Person), 
MayorOf(City, Person), 
InventorOf(Person, Invention). 

The data for the experiments were collected by the 
KnowItAll crawler. The data for the Acquisition 
and Merger consist of about 900,000 sentences for 
each of the two relations. The data for the bound 
relations consist of sentences, such that each con-
tains one of a hundred values of the first (bound) 
attribute. Half of the hundred are frequent entities 
(>100,000 search engine hits), and another half are 
rare (<10,000 hits). 

For evaluating the validators we randomly se-
lected a set of 10000 sentences from the corpora 
for each of the relations, and manually evaluated 
the SRES results generated from these sentences. 
Four sets of results were evaluated: the baseline 
results produced without any NER validator, and 
three sets of results produced using three different 
NER validators. For the InventorOf relation, only 
the corpus-based validator results can be produced, 
since the other two NER components cannot be 
adapted to validate/correct entities of type Inven-
tion. 

The results for the five relations are shown in 
the Figure 1. Several conclusions can be drawn 
from the graphs. First, all of the NER validators 
improve over the baseline SRES, sometimes as 
much as doubling the recall at the same level of 
precision. In most cases the three validators show 
roughly similar levels of performance. A notable 
difference is the CEO_Of relation, where the sim-
ple rule-based component performs much better 
than CRF, which performs yet better than the cor-
pus-based component. The CEO_Of relation is 
tested as bound, which means that only the second 
relation argument, of type Person, is validated. The 
Person entities have much more rigid internal 
structure than the other entities – Companies and 
Inventions. Consequently, the best performing of 
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Figure 1. Comparison between Baseline-SRES and its extensions with three different NER validators:  a 
simple Rule-Based one, a CRF-based statistical one, and a Corpus-based one. 

 
 

the three validators is the rule-based, which di-
rectly tests this internal structure. The CRF-based 
validator is also able to take advantage of the struc-
ture, although in a weaker manner. The Corpus-
based validator, however, works purely on the ba-
sis of context, entirely disregarding the internal 
structure of entities, and thus performs worst of all 
in this case. On the other hand, the Corpus-based 
validator is able to improve the results for the In-
ventor relation, which the other two validators are 
completely unable to do. 

It is also of interest to compare the performance 
of CRF-based and the rule-based NER components 
in other cases. As can be seen, in most cases the 
rule-based component, despite its simplicity, out-
performs the CRF-based one. The possible reason 
for this is that relation extraction setting is signifi-
cantly different from the classical named entity 
recognition setting. A classical NER system is set 
to maximize  the F1 measure of all mentions of all 

entities in the corpus. A relation argument extrac-
tor, on the other hand, should maximize its per-
formance on relation arguments, and apparently 
their statistical properties are often significantly 
different. 

6 Conclusions 

We have presented a novel method for validation 
and correction of relation arguments for the state-
of-the-art unsupervised Web relation extraction 
system SRES. The method is based on corpus sta-
tistics and requires no human supervision and no 
additional corpus resources beyond the corpus that 
is used for relation extraction. 

We showed experimentally the effectiveness of 
our method, which performed comparably to both 
simple rule-based NER and a statistical CRF-based 
NER in the task of validating Companies, and 
somewhat worse in the task of validating Persons, 
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due to its complete disregard of internal structure 
of entities. The ways to learn and use this structure 
in an unsupervised way are left for future research. 

Our method also successfully validated the 
Invention entities, which are inaccessible to the 
other methods due to the lack of training data. 

In our experiments we made use of a unique fea-
ture of SRES system – a feature-rich classifier that 
assigns confidence score to the candidate in-
stances, basing its decisions on various features of 
the patterns and of the contexts from which the 
candidates were extracted. This architecture allows 
easy integration of the entity validation compo-
nents as additional feature generators. We believe, 
however, that our results have greater applicability, 
and that the corpus statistics-based components can 
be added to RE systems with other architectures as 
well. 
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Abstract

Dependency analysis of natural language

has gained importance for its applicability

to NLP tasks. Non-projective structures

are common in dependency analysis, there-

fore we need fine-grained means of describ-

ing them, especially for the purposes of

machine-learning oriented approaches like

parsing. We present an evaluation on

twelve languages which explores several

constraints and measures on non-projective

structures. We pursue an edge-based ap-

proach concentrating on properties of in-

dividual edges as opposed to properties of

whole trees. In our evaluation, we include

previously unreported measures taking into

account levels of nodes in dependency trees.

Our empirical results corroborate theoreti-

cal results and show that an edge-based ap-

proach using levels of nodes provides an

accurate and at the same time expressive

means for capturing non-projective struc-

tures in natural language.

1 Introduction

Dependency analysis of natural language has been

gaining an ever increasing interest thanks to its ap-

plicability in many tasks of NLP—a recent example

is the dependency parsing work of McDonald et al.

(2005), which introduces an approach based on the

search for maximum spanning trees, capable of han-

dling non-projective structures naturally.

The study of dependency structures occurring in

natural language can be approached from two sides:

by trying to delimit permissible dependency struc-

tures through formal constraints (for a recent review

paper, see Kuhlmann and Nivre (2006)), or by pro-

viding their linguistic description (see e.g. Veselá et

al. (2004) and Hajičová et al. (2004) for a linguistic

analysis of non-projective constructions in Czech.1)

We think that it is worth bearing in mind that

neither syntactic structures in dependency tree-

banks, nor structures arising in machine-learning ap-

proaches, such as MST dependency parsing, need a

priori fall into any formal subclass of dependency

trees. We should therefore aim at formal means ca-

pable of describing all non-projective structures that

are both expressive and fine-grained enough to be

useful in statistical approaches, and at the same time

suitable for an adequate linguistic description.2

Holan et al. (1998) first defined an infinite hierar-

chy of classes of dependency trees, going from pro-

jective to unrestricted dependency trees, based on

the notion of gap degree for subtrees (cf. Section 3).

Holan et al. (2000) present linguistic considerations

concerning Czech and English with respect to this

hierarchy (cf. also Section 6).

In this paper, we consider all constraints and mea-

sures evaluated by Kuhlmann and Nivre (2006)—

with some minor variations, cf. Section 4.2. Ad-

1These two papers contain an error concerning an alternative
condition of projectivity, which is rectified in Havelka (2005).
2The importance of such means becomes more evident from

the asymptotically negligible proportion of projective trees to
all dependency trees; there are super-exponentially many unre-
stricted trees compared to exponentially many projective trees
on n nodes. Unrestricted dependency trees (i.e. labelled rooted
trees) and projective dependency trees are counted by sequences
A000169 and A006013 (offset 1), respectively, in the On-Line
Encyclopedia of Sequences (Sloane, 2007).
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ditionally, we introduce several measures not con-

sidered in their work. We also extend the empirical

basis from Czech and Danish to twelve languages,

which were made available in the CoNLL-X shared

task on dependency parsing.

In our evaluation, we do not address the issue of

what possible effects the annotations and/or conver-

sions used when creating the data might have on

non-projective structures in the different languages.

The newly considered measures have the first or

both of the following desiderata: they are based

on properties of individual non-projective edges (cf.

Definition 3); and they take into account levels of

nodes in dependency trees explicitly. None of the

constraints and measures in Kuhlmann and Nivre

(2006) take into account levels of nodes explicitly.

Level types of non-projective edges, introduced

by Havelka (2005), have both desiderata. They pro-

vide an edge-based means of characterizing all non-

projective structures; they also have some further in-

teresting formal properties.

We propose a novel, more detailed measure, level

signatures of non-projective edges, combining lev-

els of nodes with the partitioning of gaps of non-

projective edges into components. We derive a for-

mal property of these signatures that links them to

the constraint of well-nestedness, which is an exten-

sion of the result for level types (see also Havelka

(2007b)).

The paper is organized as follows: Section 2 con-

tains formal preliminaries; in Section 3 we review

the constraint of projectivity and define related no-

tions necessary in Section 4, where we define and

discuss all evaluated constraints and measures; Sec-

tion 5 describes our data and experimental setup;

empirical results are presented in Section 6.

2 Formal preliminaries

Here we provide basic definitions and notation used

in subsequent sections.

Definition 1 A dependency tree is a triple

(V,→,�), where V is a finite set of nodes,→ a de-
pendency relation on V , and � a total order on V .3

3We adopt the following convention: nodes are drawn top-
down according to their increasing level, with nodes on the
same level being the same distance from the root; nodes are
drawn from left to right according to the total order on nodes;
edges are drawn as solid lines, paths as dotted curves.

Relation→ models linguistic dependency, and so
represents a directed, rooted tree on V . There are

many ways of characterizing rooted trees, we give

here a characterization via the properties of→: there
is a root r∈V such that r→∗ v for all v∈V and there
is a unique edge p→ v for all v ∈ V , v 6= r, and no
edge into r. Relation →∗ is the reflexive transitive

closure of→ and is usually called subordination.

For each node i we define its level as the length of

the path r→∗ i; we denote it leveli. The symmetriza-

tion ↔ =→∪→−1 makes it possible to talk about

edges (pairs of nodes i, j such that i→ j) without

explicitly specifying the parent (head; i here) and

the child (dependent; j here); so → represents di-
rected edges and↔ undirected edges. To retain the
ability to talk about the direction of edges, we define

Parenti↔ j =

{

i if i→ j

j if j→ i
and Childi↔ j =

{

j if i→ j

i if j→ i
.

To make the exposition clearer by avoiding overuse

of the symbol →, we introduce notation for rooted
subtrees not only for nodes, but also for edges:

Subtreei = {v ∈ V | i→∗ v}, Subtreei↔ j = {v ∈ V |
Parenti↔ j→

∗ v} (note that the subtree of an edge is
defined relative to its parent node). To be able to talk

concisely about the total order on nodes �, we de-
fine open intervals whose endpoints need not be in

a prescribed order (i, j) = {v ∈V |min�{i, j} ≺ v≺
max�{i, j}}.

3 Condition of projectivity

Projectivity of a dependency tree can be character-

ized both through the properties of its subtrees and

through the properties of its edges.4

Definition 2 A dependency tree T = (V,→,�) is
projective if it satisfies the following equivalent con-

ditions:

i→ j & v ∈ (i, j) =⇒ v ∈ Subtreei ,
(Harper & Hays)

j ∈ Subtreei & v ∈ (i, j) =⇒ v ∈ Subtreei ,
(Lecerf & Ihm)

j1, j2 ∈ Subtreei & v ∈ ( j1, j2) =⇒ v ∈ Subtreei .
(Fitialov)

Otherwise T is non-projective.

4There are many other equivalent characterizations of pro-
jectivity, we give only three historically prominent ones.
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It was Marcus (1965) who proved the equivalence

of the conditions in Definition 2, proposed in the

early 1960’s (we denote them by the names of those

to whom Marcus attributes their authorship).

We see that the antecedents of the projectiv-

ity conditions move from edge-focused to subtree-

focused (i.e. from talking about dependency to talk-

ing about subordination).

It is the condition of Fitialov that has been mostly

explored when studying so-called relaxations of pro-

jectivity. (The condition is usually worded as fol-

lows: A dependency tree is projective if the nodes

of all its subtrees constitute contiguous intervals in

the total order on nodes.)

However, we find the condition of Harper & Hays

to be the most appealing from the linguistic point

of view because it gives prominence to the primary

notion of dependency edges over the derived notion

of subordination. We therefore use an edge-based

approach whenever we find it suitable.

To that end, we need the notion of a non-

projective edge and its gap.

Definition 3 For any edge i↔ j in a dependency

tree T we define its gap as follows

Gapi↔ j = {v ∈V | v ∈ (i, j) & v /∈ Subtreei↔ j} .

An edge with an empty gap is projective, an edge

whose gap is non-empty is non-projective.5

We see that non-projective are those edges i↔ j
for which there is a node v such that together they

violate the condition of Harper & Hays; we group

all such nodes v into Gapi↔ j, the gap of the non-

projective edge i↔ j.
The notion of gap is defined differently for sub-

trees of a dependency tree (Holan et al., 1998;

Bodirsky et al., 2005). There it is defined through

the nodes of the whole dependency tree not in the

considered subtree that intervene between its nodes

in the total order on nodes �.

4 Relaxations of projectivity: evaluated

constraints and measures

In this section we present all constraints and mea-

sures on dependency trees that we evaluate empir-

5In figures with sample configurations we adopt this con-
vention: for a non-projective edge, we draw all nodes in its gap
explicitly and assume that no node on any path crossing the span
of the edge lies in the interval delimited by its endpoints.

ically in Section 6. First we give definitions of

global constraints on dependency trees, then we

present measures of non-projectivity based on prop-

erties of individual non-projective edges (some of

the edge-based measures have corresponding tree-

based counterparts, however we do not discuss them

in detail).

4.1 Tree constraints

We consider the following three global constraints

on dependency trees: projectivity, planarity, and

well-nestedness. All three constraints can be applied

to more general structures, e.g. dependency forests

or even general directed graphs. Here we adhere to

their primary application to dependency trees.

Definition 4 A dependency tree T is non-planar if

there are two edges i1↔ j1, i2↔ j2 in T such that

i1 ∈ (i2, j2) & i2 ∈ (i1, j1) .

Otherwise T is planar.

Planarity is a relaxation of projectivity that cor-

responds to the “no crossing edges” constraint. Al-

though it might get confused with projectivity, it is in

fact a strictly weaker constraint. Planarity is equiv-

alent to projectivity for dependency trees with their

root node at either the left or right fringe of the tree.

Planarity is a recent name for a constraint stud-

ied under different names already in the 1960’s—

we are aware of independent work in the USSR

(weakly non-projective trees; see the survey paper

by Dikovsky and Modina (2000) for references) and

in Czechoslovakia (smooth trees; Nebeský (1979)

presents a survey of his results).

Definition 5 A dependency tree T is ill-nested if

there are two non-projective edges i1↔ j1, i2↔ j2
in T such that

i1 ∈ Gapi2↔ j2 & i2 ∈ Gapi1↔ j1 .

Otherwise T is well-nested.

Well-nestedness was proposed by Bodirsky et al.

(2005). The original formulation forbids interleav-

ing of disjoint subtrees in the total order on nodes;

we present an equivalent formulation in terms of

non-projective edges, derived in (Havelka, 2007b).

Figure 1 illustrates the subset hierarchy between

classes of dependency trees satisfying the particular

constraints:

projective( planar( well-nested( unrestricted
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projective planar well-nested unrestricted

Figure 1: Sample dependency trees (trees satisfy corre-
sponding constraints and violate all preceding ones)

4.2 Edge measures

The first two measures are based on two ways of

partitioning the gap of a non-projective edge—into

intervals and into components. The third measure,

level type, is based on levels of nodes. We also pro-

pose a novel measure combining levels of nodes and

the partitioning of gaps into components.

Definition 6 For any edge i↔ j in a dependency

tree T we define its interval degree as follows

idegi↔ j = number of intervals in Gapi↔ j .

By an interval we mean a contiguous interval in �,
i.e. a maximal set of nodes comprising all nodes be-

tween its endpoints in the total order on nodes �.

This measure corresponds to the tree-based gap

degree measure in (Kuhlmann and Nivre, 2006),

which was first introduced in (Holan et al., 1998)—

there it is defined as the maximum over gap degrees

of all subtrees of a dependency tree (the gap degree

of a subtree is the number of contiguous intervals

in the gap of the subtree). The interval degree of an

edge is bounded from above by the gap degree of the

subtree rooted in its parent node.

Definition 7 For any edge i↔ j in a dependency

tree T we define its component degree as follows

cdegi↔ j = number of components in Gapi↔ j .

By a component we mean a connected component

in the relation↔, in other words a weak component
in the relation→ (we consider relations induced on
the set Gapi↔ j by relations on T ).

This measure was introduced by Nivre (2006);

Kuhlmann and Nivre (2006) call it edge degree.

Again, they define it as the maximum over all edges.

Each component of a gap can be represented by

a single node, its root in the dependency relation in-

duced on the nodes of the gap (i.e. a node of the com-

ponent closest to the root of the whole tree). Note

that a component need not constitute a full subtree

positive type type 0 negative type

Figure 2: Sample configurations with non-projective

edges of different level types

of the dependency tree (there may be nodes in the

subtree of the component root that lie outside the

span of the particular non-projective edge).

Definition 8 The level type (or just type) of a non-

projective edge i↔ j in a dependency tree T is de-
fined as follows

Typei↔ j = levelChildi↔ j −minn∈Gapi↔ j leveln .

The level type of an edge is the relative distance in

levels of its child node and a node in its gap closest

to the root; there may be more than one node wit-

nessing an edge’s type. For sample configurations

see Figure 2. Properties of level types are presented

in Havelka (2005; 2007b).6

We propose a new measure combining level types

and component degrees. (We do not use interval de-

grees, i.e. the partitioning of gaps into intervals, be-

cause we cannot specify a unique representative of

an interval with respect to the tree structure.)

Definition 9 The level signature (or just signature)

of an edge i↔ j in a dependency tree T is a mapping
Signaturei↔ j : P (V )→ ZN0 defined as follows

Signaturei↔ j = {levelChildi↔ j − levelr |

r is component root in Gapi↔ j} .

(The right-hand side is considered as a multiset, i.e.

elements may repeat.) We call the elements of a sig-

nature component levels.

The signature of an edge is a multiset consisting

of the relative distances in levels of all component

roots in its gap from its child node.

Further, we disregard any possible orderings on

signatures and concentrate only on the relative dis-

tances in levels. We present signatures as non-

6For example, presence of non-projective edges of nonnega-
tive level type in equivalent to non-projectivity of a dependency
tree; moreover, all such edges can be found in linear time.
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decreasing sequences and write them in angle brack-

ets 〈 〉, component levels separated by commas (by
doing so, we avoid combinatorial explosion).

Notice that level signatures subsume level types:

the level type of a non-projective edge is the com-

ponent level of any of possibly several component

roots closest to the root of the whole tree. In other

words, the level type of an edge is equal to the largest

component level occurring in its level signature.

Level signatures share interesting formal proper-

ties with level types of non-projective edges. The

following result is a direct extension of the results

presented in Havelka (2005; 2007b).

Theorem 10 Let i↔ j be a non-projective edge in a
dependency tree T . For any component c in Gapi↔ j
represented by root rc with component level lc ≤ 0
(< 0) there is a non-projective edge v→ rc in T with
Typev↔rc ≥ 0 (> 0) such that either i ∈ Gapv↔rc , or
j ∈ Gapv↔rc .

PROOF. From the assumptions lc ≤ 0 and rc ∈
Gapi↔ j the parent v of node rc lies outside the

span of the edge i ↔ j, hence v /∈ Gapi↔ j. Thus
either i ∈ (v,rc), or j ∈ (v,rc). Since levelv ≥
levelParenti↔ j , we have that Parenti↔ j /∈ Subtreev, and
so either i ∈ Gapv↔rc , or j ∈ Gapv↔rc . Finally from
lc = levelChildi↔ j − levelrc ≤ 0 (< 0) we get levelrc −
levelChildi↔ j ≥ 0 (> 0), hence Typev↔rc ≥ 0 (> 0).

This result links level signatures to well-

nestedness: it tells us that whenever an edge’s sig-

nature contains a nonpositive component level, the

whole dependency tree is ill-nested (because then

there are two edges satisfying Definition 5).

All discussed edge measures take integer values:

interval and component degrees take only nonneg-

ative values, level types and level signatures take

integer values (in all cases, their absolute values

are bounded by the size of the whole dependency

tree). Both interval and component degrees are de-

fined also for projective edges (for which they take

value 0), level type is undefined for projective edges,

however the level signature of projective edges is

defined—it is the empty multiset/sequence.

5 Data and experimental setup

We evaluate all constraints and measures described

in the previous section on 12 languages, whose tree-

banks were made available in the CoNLL-X shared

Figure 3: Sample non-projective tree considered

planar in empirical evaluation

task on dependency parsing (Buchholz and Marsi,

2006). In alphabetical order they are: Arabic, Bul-

garian, Czech, Danish, Dutch, German, Japanese,

Portuguese, Slovene, Spanish, Swedish, and Turk-

ish (Hajič et al., 2004; Simov et al., 2005; Böhmová

et al., 2003; Kromann, 2003; van der Beek et al.,

2002; Brants et al., 2002; Kawata and Bartels, 2000;

Afonso et al., 2002; Džeroski et al., 2006; Civit Tor-

ruella and Martı́ Antonı́n, 2002; Nilsson et al., 2005;

Oflazer et al., 2003).7 We do not include Chinese,

which is also available in this data format, because

all trees in this data set are projective.

We take the data “as is”, although we are aware

that structures occurring in different languages de-

pend on the annotations and/or conversions used

(some languages were not originally annotated with

dependency syntax, but only converted to a unified

dependency format from other representations).

The CoNLL data format is a simple tabular for-

mat for capturing dependency analyses of natural

language sentences. For each sentence, it uses a

technical root node to which dependency analyses of

parts of the sentence (possibly several) are attached.

Equivalently, the representation of a sentence can be

viewed as a forest consisting of dependency trees.

By conjoining partial dependency analyses under

one technical root node, we let all their edges inter-

act. Since the technical root comes before the sen-

tence itself, no new non-projective edges are intro-

duced. However, edges from technical roots may

introduce non-planarity. Therefore, in our empirical

evaluation we disregard all such edges when count-

ing trees conforming to the planarity constraint; we

also exclude them from the total numbers of edges.

Figure 3 exemplifies how this may affect counts of

non-planar trees;8 cf. also the remark after Defini-

tion 4. Counts of well-nested trees are not affected.

7All data sets are the train parts of the CoNLL-X shared task.
8The sample tree is non-planar according to Definition 4,

however we do not consider it as such, because all pairs of
“crossing edges” involve an edge from the technical root (edges
from the technical root are depicted as dotted lines).
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6 Empirical results

Our complete results for global constraints on de-

pendency trees are given in Table 1. They confirm

the findings of Kuhlmann and Nivre (2006): pla-

narity seems to be almost as restrictive as projectiv-

ity; well-nestedness, on the other hand, covers large

proportions of trees in all languages.

In contrast to global constraints, properties of in-

dividual non-projective edges allow us to pinpoint

the causes of non-projectivity. Therefore they pro-

vide a means for a much more fine-grained classifi-

cation of non-projective structures occurring in natu-

ral language. Table 2 presents highlights of our anal-

ysis of edge measures.

Both interval and component degrees take gen-

erally low values. On the other hand, Holan et al.

(1998; 2000) show that at least for Czech neither of

these two measures can in principle be bounded.

Taking levels of nodes into account seems to bring

both better accuracy and expressivity. Since level

signatures subsume level types as their last compo-

nents, we only provide counts of edges of positive,

nonpositive, and negative level types. For lack of

space, we do not present full distributions of level

types nor of level signatures.

Positive level types give an even better fit with

real linguistic data than the global constraint of well-

nestedness (an ill-nested tree need not contain a non-

projective edge of nonpositive level type; cf. The-

orem 10). For example, in German less than one

tenth of ill-nested trees contain an edge of nonpos-

itive level type. Minimum negative level types for

Czech, Slovene, Swedish, and Turkish are respec-

tively −1, −5, −2, and −4.

Level signatures combine level types and compo-

nent degrees, and so give an even more detailed pic-

ture of the gaps of non-projective edges. In some

languages the actually occurring signatures are quite

limited, in others there is a large variation.

Because we consider it linguistically relevant, we

also count how many non-projective edges contain

in their gaps a component rooted in an ancestor of

the edge (an ancestor of an edge is any node on the

path from the root of the whole tree to the parent

node of the edge). The proportions of such non-

projective edges vary widely among languages and

for some this property seems highly important.

Empirical evidence shows that edge measures of

non-projectivity taking into account levels of nodes

fit very well with linguistic data. This supports

our theoretical results and confirms that properties

of non-projective edges provide a more accurate

as well as expressive means for describing non-

projective structures in natural language than the

constraints and measures considered by Kuhlmann

and Nivre (2006).

7 Conclusion

In this paper, we evaluate several constraints and

measures on non-projective dependency structures.

We pursue an edge-based approach giving promi-

nence to properties of individual edges. At the same

time, we consider levels of nodes in dependency

trees. We find an edge-based approach also more

appealing linguistically than traditional approaches

based on properties of whole dependency trees or

their subtrees. Furthermore, edge-based properties

allow machine-learning techniques to model global

phenomena locally, resulting in less sparse models.

We propose a new edge measure of non-

projectivity, level signatures of non-projective

edges. We prove that, analogously to level types,

they relate to the constraint of well-nestedness.

Our empirical results on twelve languages can

be summarized as follows: Among the global con-

straints, well-nestedness fits best with linguistic

data. Among edge measures, the previously unre-

ported measures taking into account levels of nodes

stand out. They provide both the best fit with lin-

guistic data of all constraints and measures we have

considered, as well as a substantially more detailed

capability of describing non-projective structures.

The interested reader can find a more in-depth and

broader-coverage discussion of properties of depen-

dency trees and their application to natural language

syntax in (Havelka, 2007a).

As future work, we plan to investigate more lan-

guages and carry out linguistic analyses of non-

projective structures in some of them. We will also

apply our results to statistical approaches to NLP

tasks, such as dependency parsing.
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Abstract

Creating large amounts of annotated data to
train statistical PCFG parsers is expensive,
and the performance of such parsers declines
when training and test data are taken from
different domains. In this paper we use self-
training in order to improve the quality of
a parser and to adapt it to a different do-
main, using only small amounts of manually
annotated seed data. We report significant
improvement both when the seed and test
data are in the same domain and in the out-
of-domain adaptation scenario. In particu-
lar, we achieve 50% reduction in annotation
cost for the in-domain case, yielding an im-
provement of 66% over previous work, and a
20-33% reduction for the domain adaptation
case. This is the first time that self-training
with small labeled datasets is applied suc-
cessfully to these tasks. We were also able
to formulate a characterization of when self-
training is valuable.

1 Introduction

State of the art statistical parsers (Collins, 1999;
Charniak, 2000; Koo and Collins, 2005; Charniak
and Johnson, 2005) are trained on manually anno-
tated treebanks that are highly expensive to create.
Furthermore, the performance of these parsers de-
creases as the distance between the genres of their
training and test data increases. Therefore, enhanc-
ing the performance of parsers when trained on
smallmanually annotated datasets is of great impor-
tance, both when the seed and test data are taken

from the same domain (thein-domainscenario) and
when they are taken from different domains (theout-
of-domainor parser adaptationscenario). Since the
problem is the expense in manual annotation, we de-
fine ‘small’ to be 100-2,000 sentences, which are the
sizes of sentence sets that can be manually annotated
by constituent structure in a few hours1.

Self-training is a method for using unannotated
data when training supervised models. The model is
first trained using manually annotated (‘seed’) data,
then the model is used to automatically annotate a
pool of unannotated (‘self-training’) data, and then
the manually and automatically annotated datasets
are combined to create the training data for the fi-
nal model. Self-training of parsers trained on small
datasets is of enormous potential practical impor-
tance, due to the huge amounts of unannotated data
that are becoming available today and to the high
cost of manual annotation.

In this paper we use self-training to enhance the
performance of a generative statistical PCFG parser
(Collins, 1999) for both the in-domain and the parser
adaptation scenarios, using only small amounts of
manually annotated data. We perform four experi-
ments, examining all combinations of in-domain and
out-of-domain seed and self-training data.

Our results show that self-training is of substantial
benefit for the problem. In particular, we present:

• 50% reduction in annotation cost when the seed
and test data are taken from the same domain,
which is 66% higher than any previous result
with small manually annotated datasets.

1We note in passing that quantitative research on the cost of
annotation using various annotation schemes is clearly lacking.
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• The first time that self-training improves a gen-
erative parser when the seed and test data are
from the same domain.

• 20-33% reduction in annotation cost when the
seed and test data are from different domains.

• The first time that self-training succeeds in
adapting a generative parser between domains
using a small manually annotated dataset.

• The first formulation (related to the number of
unknown words in a sentence) of when self-
training is valuable.

Section 2 discusses previous work, and Section 3
compares in-depth our protocol to a previous one.
Sections 4 and 5 present the experimental setup and
our results, and Section 6 analyzes the results in an
attempt to shed light on the phenomenon of self-
training.

2 Related Work

Self-training might seem a strange idea: why should
a parser trained on its own output learn anything
new? Indeed, (Clark et al., 2003) applied self-
training to POS-tagging with poor results, and
(Charniak, 1997) applied it to a generative statisti-
cal PCFG parser trained on a large seed set (40K
sentences), without any gain in performance.

Recently, (McClosky et al., 2006a; McClosky et
al., 2006b) have successfully applied self-training to
various parser adaptation scenarios using the rerank-
ing parser of (Charniak and Johnson, 2005). A
reranking parser (see also (Koo and Collins, 2005))
is a layered model: the base layer is a generative sta-
tistical PCFG parser that creates a ranked list of k
parses (say, 50), and the second layer is a reranker
that reorders these parses using more detailed fea-
tures. McClosky et al (2006a) use sections 2-21 of
the WSJ PennTreebank as seed data and between
50K to 2,500K unlabeled NANC corpus sentences
as self-training data. They train the PCFG parser and
the reranker with the manually annotated WSJ data,
and parse the NANC data with the 50-best PCFG
parser. Then they proceed in two directions. In
the first, they reorder the 50-best parse list with the
reranker to create a new 1-best list. In the second,

they leave the 1-best list produced by the genera-
tive PCFG parser untouched. Then they combine the
1-best list (each direction has its own list) with the
WSJ training set, to retrain the PCFG parser. The
final PCFG model and the reranker (trained only on
annotated WSJ material) are then used to parse the
test section (23) of WSJ.

There are two major differences between these pa-
pers and the current one, stemming from their usage
of a reranker and of large seed data. First, when
their 1-best list of the base PCFG parser was used
as self training data for the PCFG parser (the sec-
ond direction), the performance of the base parser
did not improve. It had improved only when the 1-
best list of thererankerwas used. In this paper we
show how the 1-best list of a base (generative) PCFG
parser can be used as a self-training material for the
base parser itself and enhance its performance, with-
out using any reranker. This reveals a noteworthy
characteristic of generative PCFG models and offers
a potential direction for parser improvement, since
the quality of a parser-reranker combination criti-
cally depends on that of the base parser.

Second, these papers did not explore self-training
when the seed is small, a scenario whose importance
has been discussed above. In general, PCFG mod-
els trained on small datasets are less likely to parse
the self-training data correctly. For example, the f-
score of WSJ data parsed by the base PCFG parser
of (Charniak and Johnson, 2005) when trained on
the training sections of WSJ is between 89% to
90%, while the f-score of WSJ data parsed with the
Collins’ model that we use, and a small seed, is be-
tween 40% and 80%. As a result, the good results of
(McClosky et al, 2006a; 2006b) with large seed sets
do not immediately imply success with small seed
sets. Demonstration of such success is a contribu-
tion of the present paper.

Bacchiani et al (2006) explored the scenario of
out-of-domain seed data (the Brown training set
containing about 20K sentences) and in-domain
self-training data (between 4K to 200K sentences
from the WSJ) and showed an improvement over
the baseline of training the parser with the seed data
only. However, they did not explore the case of small
seed datasets (the effort in manually annotating 20K
is substantial) and their work addresses only one of
our scenarios (OI, see below).
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A work closely related to ours is (Steedman et
al., 2003a), which applied co-training (Blum and
Mitchell, 1998) and self-training to Collins’ pars-
ing model using a small seed dataset (500 sentences
for both methods and 1,000 sentences for co-training
only). The seed, self-training and test datasets they
used are similar to those we use in our II experi-
ment (see below), but the self-training protocols are
different. They first train the parser with the seed
sentences sampled from WSJ sections 2-21. Then,
iteratively, 30 sentences are sampled from these sec-
tions, parsed by the parser, and the 20 best sentences
(in terms of parser confidence defined as probability
of top parse) are selected and combined with the pre-
viously annotated data to retrain the parser. The co-
training protocol is similar except that each parser
is trained with the 20 best sentences of the other
parser. Self-training did not improve parser perfor-
mance on the WSJ test section (23). Steedman et
al (2003b) followed a similar co-training protocol
except that the selection function (three functions
were explored) considered the differences between
the confidence scores of the two parsers. In this pa-
per we show a self-training protocol that achieves
better results than all of these methods (Table 2).
The next section discusses possible explanations for
the difference in results. Steedman et al (2003b) and
Hwa et al, (2003) also used several versions of cor-
rected co-training which are not comparable to ours
and other suggested methods because their evalua-
tion requires different measures (e.g. reviewed and
corrected constituents are separately counted).

As far as we know, (Becker and Osborne, 2005)
is the only additional work that tries to improve a
generative PCFG parsers using small seed data. The
techniques used are based on active learning (Cohn
et al., 1994). The authors test two novel methods,
along with the tree entropy (TE) method of (Hwa,
2004). The seed, the unannotated and the test sets,
as well as the parser used in that work, are similar
to those we use in our II experiment. Our results are
superior, as shown in Table 3.

3 Self-Training Protocols

There are many possible ways to do self-training.
A main goal of this paper is to identify a self-
training protocol most suitable for enhancement and

domain adaptation of statistical parsers trained on
small datasets. No previous work has succeeded in
identifying such a protocol for this task. In this sec-
tion we try to understand why.

In the protocol we apply, the self-training set con-
tains several thousand sentences A parser trained
with a small seed set parses the self-training set, and
then thewholeautomatically annotated self-training
set is combined with the manually annotated seed
set to retrain the parser. This protocol and that of
Steedman et al (2003a) were applied to the problem,
with the same seed, self-training and test sets. As
we show below (see Section 4 and Section 5), while
Steedman’s protocol does not improve over the base-
line of using only the seed data, our protocol does.

There are four differences between the protocols.
First, Steedman et al’s seed set consists ofconsecu-
tiveWSJ sentences, while we select them randomly.
In the next section we show that this difference is
immaterial. Second, Steedman et al’s protocol looks
for sentences of high quality parse, while our pro-
tocol prefers to use many sentences without check-
ing their parse quality. Third, their protocol is itera-
tive while ours uses a single step. Fourth, our self-
training set is orders of magnitude larger than theirs.
To examine the parse quality issue, we performed
their experiment using their setting but selecting the
high quality parse sentences using their f-score rel-
ative to the gold standard annotation from secs 2-
21 rather than a quality estimate. No improvement
over the baseline was achieved even with this or-
acle. Thus the problem with their protocol does
not lie with the parse quality assessment function;
no other function would produce results better than
the oracle. To examine the iteration issue, we per-
formed their experiment in a single step, selecting at
once the oracle-best 2,000 among 3,000 sentences2,
which produced only a mediocre improvement. We
thus conclude that the size of the self-training set is a
major factor responsible for the difference between
the protocols.

4 Experimental Setup

We used a reimplementation of Collins’ parsing
model 2 (Bikel, 2004). We performed four experi-
ments, II, IO, OI, and OO, two with in-domain seed

2Corresponding to a 100 iterations of 30 sentences each.
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(II, IO) and two with out-of-domain seed (OI, OO),
examining in-domain self-training (II, OI) and out-
of-domain self-training (IO, OO). Note that being
‘in’ or ‘out’ of domain is determined by thetestdata.
Each experiment contained 19 runs. In each run a
different seed size was used, from 100 sentences on-
wards, in steps of 100. For statistical significance,
we repeated each experiment five times, in each rep-
etition randomly sampling different manually anno-
tated sentences to form the seed dataset3.

The seed data were taken from WSJ sections 2-
21. For II and IO, the test data is WSJ section 23
(2416 sentences) and the self-training data are either
WSJ sections 2-21 (in II, excluding the seed sen-
tences) or the Brown training section (in IO). For
OI and OO, the test data is the Brown test section
(2424 sentences), and the self-training data is either
the Brown training section (in OI) or WSJ sections
2-21 (in OO). We removed the manual annotations
from the self-training sections before using them.

For the Brown corpus, we based our division
on (Bacchiani et al., 2006; McClosky et al., 2006b).
The test and training sections consist of sentences
from all of the genres that form the corpus. The
training division consists of 90% (9 of each 10 con-
secutive sentences) of the data, and the test section
are the remaining 10% (We did not use any held out
data). Parsing performance is measured by f-score,
f =

2×P×R

P+R
, whereP, R are labeled precision and

recall.
To further demonstrate our results for parser adap-

tation, we also performed the OI experiment where
seed data is taken from WSJ sections 2-21 and both
self-training and test data are taken from the Switch-
board corpus. The distance between the domains of
these corpora is much greater than the distance be-
tween the domains of WSJ and Brown. The Brown
and Switchboard corpora were divided to sections in
the same way.

We have also performed all four experiments with
the seed data taken from the Brown training section.

3 (Steedman et al., 2003a) used thefirst 500 sentences of
WSJ training section as seed data. For direct comparison, we
performed our protocol in the II scenario using the first 500 or
1000 sentences of WSJ training section as seed data and got
similar results to those reported below for our protocol withran-
domselection. We also applied the protocol of Steedman et al
to scenario II with 500 randomly selected sentences, getting no
improvement over the random baseline.

The results were very similar and will not be detailed
here due to space constraints.

5 Results

5.1 In-domain seed data

In these two experiments we show that when the
seed and test data are taken from the same domain, a
very significant enhancement of parser performance
can be achieved, whether the self-training material
is in-domain (II) or out-of-domain (IO). Figure 1
shows the improvement in parser f-score when self-
training data is used, compared to when it is not
used. Table 1 shows the reduction in manually an-
notated seed data needed to achieve certain f-score
levels. The enhancement in performance is very im-
pressive in the in-domain self-training data scenario
– a reduction of 50% in the number of manually an-
notated sentences needed for achieving 75 and 80 f-
score values. A significant improvement is achieved
in the out-of-domain self-training scenario as well.

Table 2 compares our results with self-training
and co-training results reported by (Steedman et al,
20003a; 2003b). As stated earlier, the experimental
setup of these works is similar to ours, but the self-
training protocols are different. For self-training,
our II improves an absolute 3.74% over their 74.3%
result, which constitutes a 14.5% reduction in error
(from 25.7%).

The table shows that for both seed sizes our
self training protocol outperforms both the self-
training and co-training protocols of (Steedman et
al, 20003a; 2003b). Results are not included in the
table only if they are not reported in the relevant pa-
per. The self-training protocol of (Steedman et al.,
2003a) does not actually improve over the baseline
of using only the seed data. Section 3 discussed a
possible explanation to the difference in results.

In Table 3 we compare our results to the results of
the methods tested in (Becker and Osborne, 2005)
(including TE)4. To do that, we compare the reduc-
tion in manually annotated data needed to achieve
an f-score value of 80 on WSJ section 23 achieved
by each method. We chose this measure since it is

4The measure is constituents and not sentences because this
is how results are reported in (Becker and Osborne, 2005).
However, the same reduction is obtained when sentences are
counted, because the number of constituents is averaged when
taking many sentences.
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f-score 75 80
Seed data only 600(0%) 1400(0%)
II 300(50%) 700(50%)
IO 500(17%) 1200(14.5%)

Table 1: Number of in-domain seed sentences
needed for achieving certain f-scores. Reductions
compared to no self-training (line 1) are given in
parentheses.

Seed
size

our
II

our
IO

Steedman
ST

Steedman
CT

Steedman
CT

2003a 2003b
500
sent.

78.04 75.81 74.3 76.9 —-

1,000
sent.

81.43 79.49 —- 79 81.2

Table 2: F-scores of our in-domain-seed self-
training vs. self-training (ST) and co-training (CT)
of (Steedman et al, 20003a; 2003b).

the only explicitly reported number in that work. As
the table shows, our method is superior: our reduc-
tion of 50% constitutes an improvement of 66% over
their best reduction of 30.6%.

When applying self-training to a parser trained
with a small dataset we expect the coverage of the
parser to increase, since the combined training set
should contain items that the seed dataset does not.
On the other hand, since the accuracy of annota-
tion of such a parser is poor (see the no self-training
curve in Figure 1) the combined training set surely
includes inaccurate labels that might harm parser
performance. Figure 2 (left) shows the increase in
coverage achieved for in-domain and out-of-domain
self-training data. The improvements induced by
both methods are similar. This is quite surpris-
ing given that the Brown sections we used as self-
training data contain science, fiction, humor, ro-
mance, mystery and adventure texts while the test
section in these experiments, WSJ section 23, con-
tains only news articles.

Figure 2 also compares recall (middle) and preci-
sion (right) for the different methods. For II there
is a significant improvement in both precision and
recall even though many more sentences are parsed.
For IO, there is a large gain in recall and a much
smaller loss in precision, yielding a substantial im-
provement in f-score (Figure 1).

F -
score

This
work - II

Becker
unparsed

Becker en-
tropy/unparsed

Hwa
TE

80 50% 29.4% 30.6% -5.7%

Table 3: Reduction of the number of manually anno-
tated constituents needed for achieving f score value
of 80 on section 23 of the WSJ. In all cases the seed
and additional sentences selected to train the parser
are taken from sections 02-21 of WSJ.

5.2 Out-of-domain seed data

In these two experiments we show that self-training
is valuable for adapting parsers from one domain to
another. Figure 3 compares out-of-domain seed data
used with in-domain (OI) or out-of-domain (OO)
self-training data against the baseline of training
only with the out-of-domain seed data.

The left graph shows a significant improvement
in f-score. In the middle and right graphs we exam-
ine the quality of the parses produced by the model
by plotting recall and precision vs. seed size. Re-
garding precision, the difference between the three
conditions is small relative to the f-score difference
shown in the left graph. The improvement in the
recall measure is much greater than the precision
differences, and this is reflected in the f-score re-
sult. The gain in coverage achieved by both meth-
ods, which is not shown in the figure, is similar to
that reported for the in-domain seed experiments.
The left graph along with the increase in coverage
show the power of self-training in parser adaptation
when small seed datasets are used: not only do OO
and OI parse many more sentences than the baseline,
but their f-score values are consistently better.

To see how much manually annotated data can
be saved by using out-of-domain seed, we train the
parsing model with manually annotated data from
the Brown training section, as described in Sec-
tion 4. We assume that given a fixed number of
training sentences the best performance of the parser
without self-training will occur when these sen-
tences are selected from the domain of the test sec-
tion, the Brown corpus. We compare the amounts of
manually annotated data needed to achieve certain f-
score levels in this condition with the corresponding
amounts of data needed by OI and OO. The results
are summarized in Table 4. We compare to two base-
lines using in- and out-of-domain seed data without
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Figure 1: Number of seed sentences vs. f-score, for the two in-domain seed experiments: II (triangles) and
IO (squares), and for the no self-training baseline. Self-training provides a substantial improvement.
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Figure 2: Number of seed sentences vs. coverage (left), recall (middle) and precision (right) for the two
in-domain seed experiments: II (triangles) and IO (squares), and for the no self-training baseline.

any self-training. The second line (ID) serves as a
reference to compute how much manual annotation
of the test domain was saved, and the first line (OD)
serves as a reference to show by how much self-
training improves the out-of-domain baseline. The
table stops at an f-score of 74 because that is the
best that the baselines can do.

A significant reduction in annotation cost over the
ID baseline is achieved where the seed size is be-
tween 100 and 1200. Improvement over the OD
baseline is for the whole range of seed sizes. Both
OO and OI achieve 20-33% reduction in manual an-
notation compared to the ID baseline and enhance
the performance of the parser by as much as 42.9%.

The only previous work that adapts a parser
trained on a small dataset between domains is that
of (Steedman et al., 2003a), which used co-training
(no self-training results were reported there or else-
where). In order to compare with that work, we per-
formed OI with seed taken from the Brown corpus
and self-training and test taken from WSJ, which
is the setup they use, obtaining a similar improve-

ment to that reported there. However, co-training is
a more complex method that requires an additional
parser (LTAG in their case).

To further substantiate our results for the parser
adaptation scenario, we used an additional corpus,
Switchboard. Figure 4 shows the results of an OI
experiment with WSJ seed and Switchboard self-
training and test data. Although the domains of these
two corpora are very different (more so than WSJ
and Brown), self-training provides a substantial im-
provement.

We have also performed all four experiments with
Brown and WSJ trading places. The results obtained
were very similar to those reported here, and will not
be detailed due to lack of space.

6 Analysis

In this section we try to better understand the ben-
efit in using self-training with small seed datasets.
We formulate the following criterion: the number of
words in a test sentence that do not appear in the
seed data (‘unknown words’) is a strong indicator
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Figure 3: Number of seed sentences vs. f-score (left), recall (middle)and precision (right), for the two
out-of-domain seed data experiments: OO (triangles) and OI (squares),and for the no self-training baseline.

f-sc. 66 68 70 72 74
OD 600 800 1, 000 1, 400 –
ID 600 700 800 1, 000 1, 200
OO 400 500 600 800 1100

33, 33 28.6, 37.5 33, 40 20, 42.9 8, –
OI 400 500 600 800 1, 300

33, 33 28.6, 37.5 33, 40 20, 42.9 −8, –

Table 4: Number of manually annotated seed sen-
tences needed for achieving certain f-score values.
The first two lines show the out-of-domain and in-
domain seed baselines. The reductions compared to
the baselines is given as ID, OD.
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Figure 4: Number of seed sentences vs. f-score,
for the OI experiment using WSJ seed data and
SwitchBoard self-training and test data. In spite of
the strong dissimilarity between the domains, self-
training provides a substantial improvement.

to whether it is worthwhile to use small seed self-
training. Figure 5 shows the number of unknown
words in a sentence vs. the probability that the self-
training model will parse a sentence no worse (up-
per curve) or better (lower curve) than the baseline
model.

The upper curve shows that regardless of the
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Figure 5: For sentences having the same number of
unknown words, we show the probability that the
self-training model parses a sentence from the set
no worse (upper curve) or better (lower curve) than
the baseline model.

number of unknown words in the sentence, there is
more than 50% chance that the self-training model
will not harm the result. This probability decreases
from almost 1 for a very small number of unknown
words to about 0.55 for 50 unknown words. The
lower curve shows that when the number of un-
known words increases, the probability that the
self-training model will do better than the baseline
model increases from almost 0 (for a very small
number of unknown words) to about 0.55. Hence,
the number of unknown words is an indication for
the potential benefit (value on the lower curve)
and risk (1 minus the value on the upper curve) in
using the self-training model compared to using the
baseline model. Unknown words were not identified
in (McClosky et al., 2006a) as a useful predictor for
the benefit of self-training.
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We also identified a length effect similar to that
studied by (McClosky et al., 2006a) for self-training
(using a reranker and large seed, as detailed in Sec-
tion 2). Due to space limitations we do not discuss
it here.

7 Discussion

Self-training is usually not considered to be a valu-
able technique in improving the performance of gen-
erative statistical parsers, especially when the man-
ually annotated seed sentence dataset is small. In-
deed, in the II scenario, (Steedman et al., 2003a;
McClosky et al., 2006a; Charniak, 1997) reported
no improvement of the base parser for small (500
sentences, in the first paper) and large (40K sen-
tences, in the last two papers) seed datasets respec-
tively. In the II, OO, and OI scenarios, (McClosky et
al, 2006a; 2006b) succeeded in improving the parser
performance only when a reranker was used to re-
order the 50-best list of the generative parser, with a
seed size of 40K sentences. Bacchiani et al (2006)
improved the parser performance in the OI scenario
but their seed size was large (about 20K sentences).

In this paper we have shown that self-training
can enhance the performance of generative parsers,
without a reranker, in four in- and out-of-domain
scenarios using a small seed dataset. For the II, IO
and OO scenarios, we are the first to show improve-
ment by self-training for generative parsers. We
achieved a 50% (20-33%) reduction in annotation
cost for the in-domain (out-of-domain) seed data
scenarios. Previous work with small seed datasets
considered only the II and OI scenarios. Our results
for the former are better than any previous method,
and our results for the latter (which are the first
reported self-training results) are similar to previ-
ous results for co-training, a more complex method.
We demonstrated our results using three corpora of
varying degrees of domain difference.

A direction for future research is combining
self-training data from various domains to enhance
parser adaptation.

Acknowledgement. We would like to thank Dan
Roth for his constructive comments on this paper.
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Abstract

We present a novel framework that com-
bines strengths from surface syntactic pars-
ing and deep syntactic parsing to increase
deep parsing accuracy, specifically by com-
bining dependency and HPSG parsing. We
show that by using surface dependencies to
constrain the application of wide-coverage
HPSG rules, we can benefit from a num-
ber of parsing techniques designed for high-
accuracy dependency parsing, while actu-
ally performing deep syntactic analysis. Our
framework results in a 1.4% absolute im-
provement over a state-of-the-art approach
for wide coverage HPSG parsing.

1 Introduction

Several efficient, accurate and robust approaches to
data-driven dependency parsing have been proposed
recently (Nivre and Scholz, 2004; McDonald et al.,
2005; Buchholz and Marsi, 2006) for syntactic anal-
ysis of natural language using bilexical dependency
relations (Eisner, 1996). Much of the appeal of these
approaches is tied to the use of a simple formalism,
which allows for the use of efficient parsing algo-
rithms, as well as straightforward ways to train dis-
criminative models to perform disambiguation. At
the same time, there is growing interest in pars-
ing with more sophisticated lexicalized grammar
formalisms, such as Lexical Functional Grammar
(LFG) (Bresnan, 1982), Lexicalized Tree Adjoin-
ing Grammar (LTAG) (Schabes et al., 1988), Head-
driven Phrase Structure Grammar (HPSG) (Pollard

and Sag, 1994) and Combinatory Categorial Gram-
mar (CCG) (Steedman, 2000), which represent deep
syntactic structures that cannot be expressed in a
shallower formalism designed to represent only as-
pects of surface syntax, such as the dependency
formalism used in current mainstream dependency
parsing.

We present a novel framework that combines
strengths from surface syntactic parsing and deep
syntactic parsing, specifically by combining depen-
dency and HPSG parsing. We show that, by us-
ing surface dependencies to constrain the applica-
tion of wide-coverage HPSG rules, we can bene-
fit from a number of parsing techniques designed
for high-accuracy dependency parsing, while actu-
ally performing deep syntactic analysis. From the
point of view of HPSG parsing, accuracy can be im-
proved significantly through the use of highly ac-
curate discriminative dependency models, without
the difficulties involved in adapting these models
to a more complex and linguistically sophisticated
formalism. In addition, improvements in depen-
dency parsing accuracy are converted directly into
improvements in HPSG parsing accuracy. From the
point of view of dependency parsing, the applica-
tion of HPSG rules to structures generated by a sur-
face dependency model provides a principled and
linguistically motivated way to identify deep syntac-
tic phenomena, such as long-distance dependencies,
raising and control.

We begin by describing our dependency and
HPSG parsing approaches in section 2. In section
3, we present our framework for HPSG parsing with
shallow dependency constraints, and in section 4 we
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Figure 1: HPSG parsing

evaluate this framework empirically. Sections 5 and
6 discuss related work and conclusions.

2 Fast dependency parsing and
wide-coverage HPSG parsing

2.1 Data-driven dependency parsing

Because we use dependency parsing as a step in
deep parsing, it is important that we choose a pars-
ing approach that is not only accurate, but also effi-
cient. The deterministic shift/reduce classifier-based
dependency parsing approach (Nivre and Scholz,
2004) has been shown to offer state-of-the-art accu-
racy (Nivre et al., 2006) with high efficiency due to
a greedy search strategy. Our approach is based on
Nivre and Scholz’s approach, using support vector
machines for classification of shift/reduce actions.

2.2 Wide-coverage HPSG parsing

HPSG (Pollard and Sag, 1994) is a syntactic the-
ory based on lexicalized grammar formalism. In
HPSG, a small number of schemas explain general
construction rules, and a large number of lexical en-
tries express word-specific syntactic/semantic con-
straints. Figure 1 shows an example of the process
of HPSG parsing. First, lexical entries are assigned
to each word in a sentence. In Figure 1, lexical
entries express subcategorization frames and pred-
icate argument structures. Parsing proceeds by ap-
plying schemas to lexical entries. In this example,
the Head-Complement Schema is applied to the lex-
ical entries of “tried” and “running”. We then obtain
a phrasal structure for “tried running”. By repeat-
edly applying schemas to lexical/phrasal structures,

Figure 2: Extracting HPSG lexical entries from the
Penn Treebank

we finally obtain an HPSG parse tree that covers the
entire sentence.

In this paper, we use an HPSG parser developed
by Miyao and Tsujii (2005). This parser has a wide-
coverage HPSG lexicon which is extracted from the
Penn Treebank. Figure 2 illustrates their method
for extraction of HPSG lexical entries. First, given
a parse tree from the Penn Treebank (top), HPSG-
style constraints are added and an HPSG-style parse
tree is obtained (middle). Lexical entries are then ex-
tracted from the terminal nodes of the HPSG parse
tree (bottom). This way, in addition to a wide-
coverage lexicon, we also obtain an HPSG treebank,
which can be used as training data for disambigua-
tion models.

The disambiguation model of this parser is based
on a maximum entropy model (Berger et al., 1996).
The probability p(T |W ) of an HPSG parse tree T
for the sentence W = 〈w1, . . . , wn〉 is given as:

p(T |W ) = p(T |L,W )p(L|W )

=
1
Z

exp

(∑
i

λifi(T )

)∏
j

p(lj |W ),

where L = 〈l1, . . . , ln〉 are lexical entries and
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p(li|W ) is the supertagging probability, i.e., the
probability of assignining the lexical entry li to wi

(Ninomiya et al., 2006). The probability p(T |L,W )
is a maximum entropy model on HPSG parse trees,
where Z is a normalization factor, and feature func-
tions fi(T ) represent syntactic characteristics, such
as head words, lengths of phrases, and applied
schemas. Given the HPSG treebank as training data,
the model parameters λi are estimated so as to maxi-
mize the log-likelihood of the training data (Malouf,
2002).

3 HPSG parsing with dependency
constraints

While a number of fairly straightforward models can
be applied successfully to dependency parsing, de-
signing and training HPSG parsing models has been
regarded as a significantly more complex task. Al-
though it seems intuitive that a more sophisticated
linguistic formalism should be more difficult to pa-
rameterize properly, we argue that the difference in
complexity between HPSG and dependency struc-
tures can be seen as incremental, and that the use
of accurate and efficient techniques to determine the
surface dependency structure of a sentence provides
valuable information that aids HPSG disambigua-
tion. This is largely because HPSG is based on a lex-
icalized grammar formalism, and as such its syntac-
tic structures have an underlying dependency back-
bone. However, HPSG syntactic structures includes
long-distance dependencies, and the underlying de-
pendency structure described by and HPSG structure
is a directed acyclic graph, not a dependency tree (as
used by mainstream approaches to data-driven de-
pendency parsing). This difference manifests itself
in words that have multiple heads. For example, in
the sentence I tried to run, the pronoun I is a depen-
dent of tried and of run. This makes it possible to
represent that I is the subject of both verbs, precisely
the kind of information that cannot be represented in
dependency parsing. If we ignore long-distance de-
pendencies, however, HPSG structures can be seen
as lexicalized trees that can be easily converted into
dependency trees.

Given that for an HPSG representation of the syn-
tactic structure of a sentence we can determine a
dependency tree by removing long-distance depen-

dencies, we can use dependency parsing techniques
(such as the deterministic dependency parsing ap-
proach mentioned in section 2.1) to determine the
underlying dependency trees in HPSG structures.
This is the basis for the parsing framework presented
here. In this approach, deep dependency analysis
is done in two stages. First, a dependency parser
determines the shallow dependency tree for the in-
put sentence. This shallow dependency tree corre-
sponds to the underlying dependency graph of the
HPSG structure for the input sentence, without de-
pendencies that roughly correspond to deep syntax.
The second step is to perform HPSG parsing, as
described in section 2.2, but using the shallow de-
pendency tree to constrain the application of HPSG
rules. We now discuss these two steps in more detail.

3.1 Determining shallow dependencies in
HPSG structures using dependency parsing

In order to apply a data-driven dependency ap-
proach to the task of identifying the shallow de-
pendency tree in HPSG structures, we first need a
corpus of such dependency trees to serve as train-
ing data. We created a dependency training corpus
based on the Penn Treebank (Marcus et al., 1993),
or more specifically on the HPSG Treebank gener-
ated from the Penn Treebank (see section 2.2). For
each HPSG structure in the HPSG Treebank, a de-
pendency tree is extracted in two steps. First, the
HPSG tree is converted into a CFG-style tree, sim-
ply by removing long-distance dependency links be-
tween nodes. A dependency tree is then extracted
from the resulting lexicalized CFG-style tree, as is
commonly done for converting constituent trees into
dependency trees after the application of a head-
percolation table (Collins, 1999).

Once a dependency training corpus is available,
it is used to train a dependency parser as described
in section 2.1. This is done by training a classifier
to determine parser actions based on local features
that represent the current state of the parser (Nivre
and Scholz, 2004; Sagae and Lavie, 2005). Train-
ing data for the classifier is obtained by applying the
parsing algorithm over the training sentences (for
which the correct dependency structures are known)
and recording the appropriate parser actions that re-
sult in the formation of the correct dependency trees,
coupled with the features that represent the state of
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the parser mentioned in section 2.1. An evaluation
of the resulting dependency parser and its efficacy in
aiding HPSG parsing is presented in section 4.

3.2 Parsing with dependency constraints

Given a set of dependencies, the bottom-up process
of HPSG parsing can be constrained so that it does
not violate the given dependencies. This can be
achieved by a simple extension of the parsing algo-
rithm, as follows. During parsing, we store the lex-
ical head of each partial parse tree. In each schema
application, we can determine which child is the
head; for example, the left child is the head when
we apply the Head-Complement Schema. Given this
information and lexical heads, the parser can iden-
tify the dependency produced by this schema appli-
cation, and can therefore judge whether the schema
application violates the dependency constraints.

This method forces the HPSG parser to produce
parse trees that strictly conform to the output of
the dependency parser. However, this means that
the HPSG parser outputs no successful parse results
when it cannot find the parse tree that is completely
consistent with the given dependencies. This situ-
ation may occur when the dependency parser pro-
duces structures that are not covered in the HPSG
grammar. This is especially likely with a fully data-
driven dependency parser that uses local classifica-
tion, since its output may not be globally consistent
grammatically. In addition, the HPSG grammar is
extracted from the HPSG Treebank using a corpus-
based procedure, and it does not necessarily cover
all possible grammatical phenomena in unseen text
(Miyao and Tsujii, 2005).

We therefore propose an extension of this ap-
proach that uses predetermined dependencies as soft
constraints. Violations of schema applications are
detected in the same way as before, but instead of
strictly prohibiting schema applications, we penal-
ize the log-likelihood of partial parse trees created
by schema applications that violate the dependen-
cies constraints. Given a negative value α, we add
α to the log-probability of a partial parse tree when
the schema application violates the dependency con-
straints. That is, when a parse tree violates n depen-
dencies, the log-probability of the parse tree is low-
ered by nα. The meta parameter α is determined so
as to maximize the accuracy on the development set.

Soft dependency constraints can be implemented
as explained above as a straightforward extension of
the parsing algorithm. In addition, it is easily inte-
grated with beam thresholding methods of parsing.
Because beam thresholding discards partial parse
trees that have low log-probabilities, we can ex-
pect that the parser would discard partial parse trees
based on violation of the dependency constraints.

4 Experiments

We evaluate the accuracy of HPSG parsing with de-
pendency constraints on the HPSG Treebank (Miyao
et al., 2003), which is extracted from the Wall Street
Journal portion of the Penn Treebank (Marcus et
al., 1993)1. Sections 02-21 were used for training
(for HPSG and dependency parsers), section 22 was
used as development data, and final testing was per-
formed on section 23. Following previous work on
wide-coverage parsing with lexicalized grammars
using the Penn Treebank, we evaluate the parser by
measuring the accuracy of predicate-argument rela-
tions in the parser’s output. A predicate-argument
relation is defined as a tuple 〈σ,wh, a, wa〉, where
σ is the predicate type (e.g. adjective, intransitive
verb), wh is the head word of the predicate, a is the
argument label (MODARG, ARG1, ... , ARG4), and
wa is the head word of the argument. Labeled pre-
cision (LP)/labeled recall (LR) is the ratio of tuples
correctly identified by the parser. These predicate-
argument relations cover the full range of syntactic
dependencies produced by the HPSG parser (includ-
ing, long-distance dependencies, raising and control,
in addition to surface dependencies).

In the experiments presented in this section, in-
put sentences were automatically tagged with parts-
of-speech with about 97% accuracy, using a max-
imum entropy POS tagger. We also report results
on parsing text with gold standard POS tags, where
explicitly noted. This provides an upper-bound on
what can be expected if a more sophisticated multi-
tagging scheme (James R. Curran and Vadas, 2006)
is used, instead of hard assignment of single tags in
a preprocessing step as done here.

1The extraction software can be obtained from http://www-
tsujii.is.s.u-tokyo.ac.jp/enju.
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4.1 Baseline

HPSG parsing results using the same HPSG gram-
mar and treebank have recently been reported by
Miyao and Tsujii (2005) and Ninomia et al. (2006).
By running the HPSG parser described in section 2.2
on the development data without dependency con-
straints, we obtain similar values of LP (86.8%) and
LR (85.6%) as those reported by Miyao and Tsu-
jii (Miyao and Tsujii, 2005). Using the extremely
lexicalized framework of (Ninomiya et al., 2006) by
performing supertagging before parsing, we obtain
similar accuracy as Ninomiya et al. (87.1% LP and
85.9% LR).

4.2 Dependency constraints and the penalty
parameter

Parsing the development data with hard dependency
constraints confirmed the intuition that these con-
straints often describe dependency structures that do
not conform to HPSG schema used in parsing, re-
sulting in parse failures. To determine the upper-
bound on HPSG parsing with hard dependency con-
straints, we set the HPSG parser to disallow the ap-
plication of any rules that result in the creation of
dependencies that violate gold standard dependen-
cies. This results in high precision (96.7%), but re-
call is low (82.3%) due to parse failures caused by
lack of grammatical coverage 2. Using dependen-
cies produced by the shift-reduce SVM parser, we
obtain 91.5% LP and 65.7% LR. This represents a
large gain in precision over the baseline, but an even
greater loss in recall, which limits the usefulness of
the parser, and severely hurts the appeal of hard con-
straints.

We focus the rest of our experiments on parsing
with soft dependency constraints. As explained in
section 3, this involves setting the penalty parame-
ter α. During parsing, we subtract α from the log-
probability of applying any schema that violates the
dependency constraints given to the HPSG parser.
Figure 3 illustrates the effect of α when gold stan-
dard dependencies (and gold standard POS tags) are
used. We note that setting α = 0 causes the parser

2Although the HPSG grammar does not have perfect cov-
erage of unseen text, it supports complete and mostly correct
analyses for all sentences in the development set. However,
when we require completely correct analyses by using hard con-
straints, lack of coverage may cause parse failures.
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Figure 3: The effect of α on HPSG parsing con-
strained by gold standard dependencies.

to ignore dependency constraints, providing base-
line performance. Conversely, setting a high enough
value (α = 30 is sufficient, in practice) causes any
substructures that violate the dependency constraints
to be used only when they are absolutely neces-
sary to produce a valid parse for the input sentence.
In figure 3, this corresponds to an upper-bound on
the accuracy of parsing with soft dependency con-
straints (94.7% f-score), since gold standard depen-
dencies are used.

We set α empirically with simple hill climbing on
the development set. Because it is expected that the
optimal value of α depends on the accuracy of the
surface dependency parser, we set separate values
for parsing with a POS tagger or with gold standard
POS tags. Figure 4 shows the accuracy of HPSG
predicate-argument relations obtained with depen-
dency constraints determined by dependency pars-
ing with gold standard POS tags. With both au-
tomatically assigned and gold standard POS tags,
we observe an improvement of about 0.6% in pre-
cision, recall and f-score, when the optimal α value
is used in each case. While this corresponds to a rel-
ative error reduction of over 6% (or 12%, if we con-
sider the upper-bound dictated by imperfect gram-
matical coverage), a more interesting aspect of this
framework is that it allows techniques designed for
improving dependency accuracy to improve HPSG
parsing accuracy directly, as we illustrate next.
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Figure 4: The effect of α on HPSG parsing con-
strained by the output of a dependency parser using
gold standard POS tags.

4.3 Determining constraints with dependency
parser combination

Parser combination has been shown to be a power-
ful way to obtain very high accuracy in dependency
parsing (Sagae and Lavie, 2006). Using dependency
constraints allows us to improve HPSG parsing ac-
curacy simply by using an existing parser combina-
tion approach. As a first step, we train two addi-
tional parsers with the dependencies extracted from
the HPSG Treebank. The first uses the same shift-
reduce framework described in section 2.1, but it
process the input from right to left (RL). This has
been found to work well in previous work on depen-
dency parser combination (Zeman and Žabokrtský,
2005; Sagae and Lavie, 2006). The second parser
is MSTParser, the large-margin maximum spanning
tree parser described in (McDonald et al., 2005)3.

We examine the use of two combination schemes:
one using two parsers, and one using three parsers.
The first combination approach is to keep only de-
pendencies for which there is agreement between the
two parsers. In other words, dependencies that are
proposed by one parser but not the other are simply
discarded. Using the left-to-right shift-reduce parser
and MSTParser, we find that this results in very high
precision of surface dependencies on the develop-
ment data. In the second approach, combination of

3Downloaded from http://sourceforge.net/projects/mstparser

the three dependency parsers is done according to
the maximum spanning tree combination scheme of
Sagae and Lavie (2006), which results in high accu-
racy of surface dependencies. For each of the com-
bination approaches, we use the resulting dependen-
cies as constraints for HPSG parsing, determining
the optimal value of α on the development set in
the same way as done for a single parser. Table 1
summarizes our experiments on development data
using parser combinations to produce dependency
constraints 4. The two combination approaches are
denoted as C1 and C2.

Parser Dep α HPSG Diff
none (baseline) – – 86.5 –
LR shift-reduce 91.2 1.5 87.1 0.6
RL shift-reduce 90.1 – –
MSTParser 91.0 – –
C1 (agreement) 96.8* 2.5 87.4 0.9
C2 (MST) 92.4 2.5 87.4 0.9

Table 1: Summary of results on development data.
* The shallow accuracy of combination C1 corre-
sponds to the dependency precision (no dependen-
cies were reported for 8% of all words in the devel-
opment set).

4.4 Results
Having determined α values on development data
for the shift-reduce dependency parser, the two-
parser agreement combination, and the three-parser
maximum spanning tree combination, we parse the
test data (section 23) using these three different
sources of dependency constraints for HPSG pars-
ing. Our final results are shown in table 2, where
we also include the results published in (Ninomiya
et al., 2006) for comparison purposes, and the result
of using dependency constraints obtained with gold
standard POS tags.

By using two unlabeled dependency parsers to
provide soft dependency constraints, we obtain a
1% absolute improvement in precision and recall of
predicate-argument identification in HPSG parsing
over a strong baseline. Our baseline approach out-
performed previously published results on this test

4The accuracy figures for the dependency parsers is ex-
pressed as unlabeled accuracy of the surface dependencies only,
and are not comparable to the HPSG parsing accuracy figures
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Parser LP LR F-score
HPSG Baseline 87.4 87.0 87.2
Shift-Reduce + HPSG 88.2 87.7 87.9
C1 + HPSG 88.5 88.0 88.2
C2 + HPSG 88.4 87.9 88.1
Baseline(gold) 89.8 89.4 89.6
Shift-Reduce(gold) 90.62 90.23 90.42
C1+HPSG(gold) 90.9 90.4 90.6
C2+HPSG(gold) 90.8 90.4 90.6
Miyao and Tsujii, 2005 85.0 84.3 84.6
Ninomiya et al., 2006 87.4 86.3 86.8

Table 2: Final results on test set. The first set of
results show our HPSG baseline and HPSG with soft
dependency constraints using three different sources
of dependency constraints. The second set of results
show the accuracy of the same parsers when gold
part-of-speech tags are used. The third set of results
is from existing published models on the same data.

set, and our best performing combination scheme
obtains an absolute improvement of 1.4% over the
best previously published results using the HPSG
Treebank. It is interesting to note that the results ob-
tained with dependency parser combinations C1 and
C2 were very similar, even though in C1 only two
parsers were used, and constraints were provided for
about 92% of shallow dependencies (with accuracy
higher than 96%). Clearly, precision is crucial in de-
pendency constraints.

Finally, although it is necessary to perform de-
pendency parsing to pre-compute dependency con-
straints, the total time required to perform the en-
tire process of HPSG parsing with dependency con-
straints is close to that of the baseline HPSG ap-
proach. This is due to two reasons: (1) the de-
pendency parsing approaches used to pre-compute
constraints are several times faster than the baseline
HPSG approach, and (2) the HPSG portion of the
process is significantly faster when dependency con-
straints are used, since the constraints help sharpen
the search space, making search more efficient. Us-
ing the baseline HPSG approach, it takes approx-
imately 25 minutes to parse the test set. The to-
tal time required to parse the test set using HPSG
with dependency constraints generated by the shift-
reduce parser is 27 minutes. With combination C1,

parsing time increases to 30 minutes, since two de-
pendency parsers are used sequentially.

5 Related work

There are other approaches that combine shallow
processing with deep parsing (Crysmann et al.,
2002; Frank et al., 2003; Daum et al., 2003) to im-
prove parsing efficiency. Typically, shallow parsing
is used to create robust minimal recursion seman-
tics, which are used as constraints to limit ambigu-
ity during parsing. Our approach, in contrast, uses
syntactic dependencies to achieve a significant im-
provement in the accuracy of wide-coverage HPSG
parsing. Additionally, our approach is in many
ways similar to supertagging (Bangalore and Joshi,
1999), which uses sequence labeling techniques as
an efficient way to pre-compute parsing constraints
(specifically, the assignment of lexical entries to in-
put words).

6 Conclusion

We have presented a novel framework for taking ad-
vantage of the strengths of a shallow parsing ap-
proach and a deep parsing approach. We have
shown that by constraining the application of rules
in HPSG parsing according to results from a depen-
dency parser, we can significantly improve the ac-
curacy of deep parsing by using shallow syntactic
analyses.

To illustrate how this framework allows for im-
provements in the accuracy of dependency parsing
to be used directly to improve the accuracy of HPSG
parsing, we showed that by combining the results of
different dependency parsers using the search-based
parsing ensemble approach of (Sagae and Lavie,
2006), we obtain improved HPSG parsing accuracy
as a result of the improved dependency accuracy.

Although we have focused on the use of HPSG
and dependency parsing, the general framework pre-
sented here can be applied to other lexicalized gram-
mar formalisms, such as LTAG, CCG and LFG.
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Abstract

We introduce a framework for syntactic
parsing with latent variables based on a form
of dynamic Sigmoid Belief Networks called
Incremental Sigmoid Belief Networks. We
demonstrate that a previous feed-forward
neural network parsing model can be viewed
as a coarse approximation to inference with
this class of graphical model. By construct-
ing a more accurate but still tractable ap-
proximation, we significantly improve pars-
ing accuracy, suggesting that ISBNs provide
a good idealization for parsing. This gener-
ative model of parsing achieves state-of-the-
art results on WSJ text and 8% error reduc-
tion over the baseline neural network parser.

1 Introduction

Latent variable models have recently been of in-
creasing interest in Natural Language Processing,
and in parsing in particular (e.g. (Koo and Collins,
2005; Matsuzaki et al., 2005; Riezler et al., 2002)).
Latent variables provide a principled way to in-
clude features in a probability model without need-
ing to have data labeled with those features in ad-
vance. Instead, a labeling with these features can
be induced as part of the training process. The
difficulty with latent variable models is that even
small numbers of latent variables can lead to com-
putationally intractable inference (a.k.a. decoding,
parsing). In this paper we propose a solution to
this problem based on dynamic Sigmoid Belief Net-
works (SBNs) (Neal, 1992). The dynamic SBNs

which we peopose, called Incremental Sigmoid Be-
lief Networks (ISBNs) have large numbers of latent
variables, which makes exact inference intractable.
However, they can be approximated sufficiently well
to build fast and accurate statistical parsers which in-
duce features during training.

We use SBNs in a generative history-based model
of constituent structure parsing. The probability of
an unbounded structure is decomposed into a se-
quence of probabilities for individual derivation de-
cisions, each decision conditioned on the unbounded
history of previous decisions. The most common ap-
proach to handling the unbounded nature of the his-
tories is to choose a pre-defined set of features which
can be unambiguously derived from the history (e.g.
(Charniak, 2000; Collins, 1999)). Decision prob-
abilities are then assumed to be independent of all
information not represented by this finite set of fea-
tures. Another previous approach is to use neural
networks to compute a compressed representation of
the history and condition decisions on this represen-
tation (Henderson, 2003; Henderson, 2004). It is
possible that an unbounded amount of information
is encoded in the compressed representation via its
continuous values, but it is not clear whether this is
actually happening due to the lack of any principled
interpretation for these continuous values.

Like the former approach, we assume that there
are a finite set of features which encode the relevant
information about the parse history. But unlike that
approach, we allow feature values to be ambiguous,
and represent each feature as a distribution over (bi-
nary) values. In other words, these history features
are treated as latent variables. Unfortunately, inter-
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preting the history representations as distributions
over discrete values of latent variables makes the ex-
act computation of decision probabilities intractable.
Exact computation requires marginalizing out the la-
tent variables, which involves summing over all pos-
sible vectors of discrete values, which is exponential
in the length of the vector.

We propose two forms of approximation for dy-
namic SBNs, a neural network approximation and
a form of mean field approximation (Saul and Jor-
dan, 1999). We first show that the previous neural
network model of (Henderson, 2003) can be viewed
as a coarse approximation to inference with ISBNs.
We then propose an incremental mean field method,
which results in an improved approximation over
the neural network but remains tractable. The re-
sulting parser achieves significantly higher accuracy
than the neural network parser (90.0% F-measure vs
89.1%). We argue that this correlation between bet-
ter approximation and better accuracy suggests that
dynamic SBNs are a good abstract model for natural
language parsing.

2 Sigmoid Belief Networks

A belief network, or a Bayesian network, is a di-
rected acyclic graph which encodes statistical de-
pendencies between variables. Each variable Si in
the graph has an associated conditional probability
distributions P (Si|Par(Si)) over its values given
the values of its parents Par(Si) in the graph. A
Sigmoid Belief Network (Neal, 1992) is a particu-
lar type of belief networks with binary variables and
conditional probability distributions in the form of
the logistic sigmoid function:

P (Si =1|Par(Si)) =
1

1+exp(−
∑

Sj∈Par(Si) JijSj)
,

where Jij is the weight for the edge from variable
Sj to variable Si. In this paper we consider a gen-
eralized version of SBNs where we allow variables
with any range of discrete values. We thus general-
ize the logistic sigmoid function to the normalized
exponential (a.k.a. softmax) function to define the
conditional probabilities for non-binary variables.

Exact inference with all but very small SBNs
is not tractable. Initially sampling methods were
used (Neal, 1992), but this is also not feasible for

large networks, especially for the dynamic models
of the type described in section 2.2. Variational
methods have also been proposed for approximat-
ing SBNs (Saul and Jordan, 1999). The main idea of
variational methods (Jordan et al., 1999) is, roughly,
to construct a tractable approximate model with a
number of free parameters. The free parameters are
set so that the resulting approximate model is as
close as possible to the original graphical model for
a given inference problem.

2.1 Mean Field Approximation Methods

The simplest example of a variation method is the
mean field method, originally introduced in statis-
tical mechanics and later applied to unsupervised
neural networks in (Hinton et al., 1995). Let us de-
note the set of visible variables in the model (i.e. the
inputs and outputs) by V and hidden variables by
H = h1, . . . , hl. The mean field method uses a fully
factorized distribution Q as the approximate model:

Q(H|V ) =
∏

i

Qi(hi|V ).

where each Qi is the distribution of an individual
latent variable. The independence between the vari-
ables hi in this approximate distribution Q does not
imply independence of the free parameters which
define the Qi. These parameters are set to min-
imize the Kullback-Leibler divergence (Cover and
Thomas, 1991) between the approximate distribu-
tion Q(H|V ) and the true distribution P (H|V ):

KL(Q‖P ) =
∑

H

Q(H|V ) ln
Q(H|V )

P (H|V )
, (1)

or, equivalently, to maximize the expression:

LV =
∑

H

Q(H|V ) ln
P (H, V )

Q(H|V )
. (2)

The expression LV is a lower bound on the log-
likelihood ln P (V ). It is used in the mean field
theory (Saul and Jordan, 1999) to approximate the
likelihood. However, in our case of dynamic graph-
ical models, we have to use a different approach
which allows us to construct an incremental parsing
method without needing to introduce the additional
parameters proposed in (Saul and Jordan, 1999).
We will describe our modification of the mean field
method in section 3.3.
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2.2 Dynamics

Dynamic Bayesian networks are Bayesian networks
applied to arbitrarily long sequences. A new set of
variables is instantiated for each position in the se-
quence, but the edges and weights for these variables
are the same as in other positions. The edges which
connect variables instantiated for different positions
must be directed forward in the sequence, thereby
allowing a temporal interpretation of the sequence.
Typically a dynamic Bayesian Network will only in-
volve edges between adjacent positions in the se-
quence (i.e. they are Markovian), but in our parsing
models the pattern of interconnection is determined
by structural locality, rather than sequence locality,
as in the neural networks of (Henderson, 2003).

Using structural locality to define the graph in a
dynamic SBN means that the subgraph of edges with
destinations at a given position cannot be determined
until all the parser decisions for previous positions
have been chosen. We therefore call these models
Incremental SBNs, because, at any given position
in the parse, we only know the graph of edges for
that position and previous positions in the parse. For
example in figure 1, discussed below, it would not
be possible to draw the portion of the graph after t,
because we do not yet know the decision dt

k.

The incremental specification of model structure
means that we cannot use an undirected graphical
model, such as Conditional Random Fields. With
a directed dynamic model, all edges connecting the
known portion of the graph to the unknown portion
of the graph are directed toward the unknown por-
tion. Also there are no variables in the unknown
portion of the graph whose values are known (i.e. no
visible variables), because at each step in a history-
based model the decision probability is conditioned
only on the parsing history. Only visible variables
can result in information being reflected backward
through a directed edge, so it is impossible for any-
thing in the unknown portion of the graph to affect
the probabilities in the known portion of the graph.
Therefore inference can be performed by simply ig-
noring the unknown portion of the graph, and there
is no need to sum over all possible structures for the
unknown portion of the graph, as would be neces-
sary for an undirected graphical model.

Figure 1: Illustration of an ISBN.

3 The Probabilistic Model of Parsing

In this section we present our framework for syn-
tactic parsing with dynamic Sigmoid Belief Net-
works. We first specify the form of SBN we propose,
namely ISBNs, and then two methods for approx-
imating the inference problems required for pars-
ing. We only consider generative models of pars-
ing, since generative probability models are simpler
and we are focused on probability estimation, not
decision making. Although the most accurate pars-
ing models (Charniak and Johnson, 2005; Hender-
son, 2004; Collins, 2000) are discriminative, all the
most accurate discriminative models make use of a
generative model. More accurate generative models
should make the discriminative models which use
them more accurate as well. Also, there are some
applications, such as language modeling, which re-
quire generative models.

3.1 The Graphical Model

In ISBNs, we use a history-based model, which de-
composes the probability of the parse as:

P (T ) = P (D1, ..., Dm) =
∏

t

P (Dt|D1, . . . , Dt−1),

where T is the parse tree and D1, . . . , Dm is its
equivalent sequence of parser decisions. Instead of
treating each Dt as atomic decisions, it is convenient
to further split them into a sequence of elementary
decisions Dt = dt

1, . . . , d
t
n:

P (Dt|D1, . . . , Dt−1) =
∏

k

P (dt
k|h(t, k)),

where h(t, k) denotes the parsing history
D1, . . . , Dt−1, dt

1, . . . , d
t
k−1. For example, a
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decision to create a new constituent can be divided
in two elementary decisions: deciding to create a
constituent and deciding which label to assign to it.
We use a graphical model to define our proposed
class of probability models. An example graphical
model for the computation of P (dt

k|h(t, k)) is
illustrated in figure 1.

The graphical model is organized into vectors
of variables: latent state variable vectors St′ =
st′

1 , . . . , st′

n , representing an intermediate state of the
parser at derivation step t′, and decision variable
vectors Dt′ = dt′

1 , . . . , dt′

l , representing a parser de-
cision at derivation step t′, where t′ ≤ t. Variables
whose value are given at the current decision (t, k)
are shaded in figure 1, latent and output variables are
left unshaded.

As illustrated by the arrows in figure 1, the prob-
ability of each state variable st′

i depends on all the
variables in a finite set of relevant previous state and
decision vectors, but there are no direct dependen-
cies between the different variables in a single state
vector. Which previous state and decision vectors
are connected to the current state vector is deter-
mined by a set of structural relations specified by
the parser designer. For example, we could select
the most recent state where the same constituent was
on the top of the stack, and a decision variable rep-
resenting the constituent’s label. Each such selected
relation has its own distinct weight matrix for the
resulting edges in the graph, but the same weight
matrix is used at each derivation position where the
relation is relevant.

As indicated in figure 1, the probability of each
elementary decision dt′

k depends both on the current
state vector St′ and on the previously chosen ele-
mentary action dt′

k−1 from Dt′ . This probability dis-
tribution has the form of a normalized exponential:

P (dt′

k = d|St′, dt′

k−1)=
Φh(t′,k)(d) e

∑

j
Wdjst′

j

∑

d′Φh(t′,k)(d′) e

∑

j
Wd′jst′

j

, (3)

where Φh(t′,k) is the indicator function of a set of
elementary decisions that may possibly follow the
parsing history h(t′, k), and the Wdj are the weights.

For our experiments, we replicated the same pat-
tern of interconnection between state variables as
described in (Henderson, 2003).1 We also used the

1In the neural network of (Henderson, 2003), our variables

same left-corner parsing strategy, and the same set of
decisions, features, and states. We refer the reader to
(Henderson, 2003) for details.

Exact computation with this model is not
tractable. Sampling of parse trees from the model
is not feasible, because a generative model defines a
joint model of both a sentence and a tree, thereby re-
quiring sampling over the space of sentences. Gibbs
sampling (Geman and Geman, 1984) is also impos-
sible, because of the huge space of variables and
need to resample after making each new decision in
the sequence. Thus, we know of no reasonable alter-
natives to the use of variational methods.

3.2 A Feed-Forward Approximation

The first model we consider is a strictly incremental
computation of a variational approximation, which
we will call the feed-forward approximation. It can
be viewed as the simplest form of mean field approx-
imation. As in any mean field approximation, each
of the latent variables is independently distributed.
But unlike the general case of mean field approxi-
mation, in the feed-forward approximation we only
allow the parameters of the distributions Qi to de-
pend on the distributions of their parents. This addi-
tional constraint increases the potential for a large
Kullback-Leibler divergence with the true model,
defined in expression (1), but it significantly simpli-
fies the computations.

The set of hidden variables H in our graphical
model consists of all the state vectors St′ , t′ ≤ t,
and the last decision dt

k. All the previously observed
decisions h(t, k) comprise the set of visible vari-
ables V . The approximate fully factorisable distri-
bution Q(H|V ) can be written as:

Q(H|V ) = qt
k(d

t
k)

∏

t′,i

(

µt′

i

)st′

i
(

1− µt′

i

)1−st′

i
.

where µt′

i is the free parameter which determines the
distribution of state variable i at position t′, namely
its mean, and qt

k(d
t
k) is the free parameter which de-

termines the distribution over decisions dt
k.

Because we are only allowed to use information
about the distributions of the parent variables to

map to their “units”, and our dependencies/edges map to their
“links”.
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compute the free parameters µt′

i , the optimal assign-
ment of values to the µt′

i is:

µt′

i = σ
(

ηt′

i

)

,

where σ denotes the logistic sigmoid function and
ηt′

i is a weighted sum of the parent variables’ means:

ηt′

i =
∑

t′′∈RS(t′)

∑

j

J
τ(t′,t′′)
ij µt′′

j +
∑

t′′∈RD(t′)

∑

k

B
τ(t′,t′′)

idt′′

k

, (4)

where RS(t′) is the set of previous positions with
edges from their state vectors to the state vector at t′,
RD(t′) is the set of previous positions with edges
from their decision vectors to the state vector at t′,
τ(t′, t′′) is the relevant relation between the position
t′′ and the position t′, and Jτ

ij and Bτ
id are weight

matrices.
In order to maximize (2), the approximate distri-

bution of the next decisions qt
k(d) should be set to

qt
k(d) =

Φh(t,k) (d) e

∑

j
Wdjµt

j

∑

d′ Φh(t,k) (d′) e

∑

j
Wd′jµt

j

, (5)

as follows from expression (3). The resulting esti-
mate of the tree probability is given by:

P (T ) ≈
∏

t,k

qt
k(d

t
k).

This approximation method replicates exactly the
computation of the feed-forward neural network
in (Henderson, 2003), where the above means µt′

i

are equivalent to the neural network hidden unit acti-
vations. Thus, that neural network probability model
can be regarded as a simple approximation to the
graphical model introduced in section 3.1.

In addition to the drawbacks shared by any mean
field approximation method, this feed-forward ap-
proximation cannot capture backward reasoning.
By backward (a.k.a. top-down) reasoning we mean
the need to update the state vector means µt′

i after
observing a decision dt

k, for t′ ≤ t. The next section
discusses how backward reasoning can be incorpo-
rated in the approximate model.

3.3 A Mean Field Approximation

This section proposes a more accurate way to ap-
proximate ISBNs with mean field methods, which

we will call the mean field approximation. Again,
we are interested in finding the distribution Q which
maximizes the quantity LV in expression (2). The
decision distribution qt

k(d
t
k) maximizes LV when it

has the same dependence on the state vector means
µt

k as in the feed-forward approximation, namely ex-
pression (5). However, as we mentioned above, the
feed-forward computation does not allow us to com-
pute the optimal values of state means µt′

i .
Optimally, after each new decision dt

k, we should
recompute all the means µt′

i for all the state vec-
tors St′ , t′ ≤ t. However, this would make the
method intractable, due to the length of derivations
in constituent parsing and the interdependence be-
tween these means. Instead, after making each deci-
sion dt

k and adding it to the set of visible variables V ,
we recompute only means of the current state vector
St.

The denominator of the normalized exponential
function in (3) does not allow us to compute LV ex-
actly. Instead, we use a simple first order approxi-
mation:

EQ[ln
∑

d

Φh(t,k) (d) exp(
∑

j

Wdjs
t
j)]

≈ ln
∑

d

Φh(t,k)(d) exp(
∑

j

Wdjµ
t
j), (6)

where the expectation EQ[. . .] is taken over the state
vector St distributed according to the approximate
distribution Q.

Unfortunately, even with this assumption there is
no analytic way to maximize LV with respect to the
means µt

k, so we need to use numerical methods.
Assuming (6), we can rewrite the expression (2) as
follows, substituting the true P (H, V ) defined by
the graphical model and the approximate distribu-
tion Q(H|V ), omitting parts independent of µt

k:

L
t,k
V =

∑

i

−µt
i ln µt

i − (1− µt
i) ln

(

1− µt
i

)

+µt
iη

t
i +

∑

k′<k

Φh(t,k′)(d
t
k′)

∑

j

Wdt
k′

jµ
t
j

−
∑

k′<k

ln





∑

d

Φh(t,k′)(d) exp(
∑

j

Wdjµ
t
j)



, (7)

here, ηt
i is computed from the previous relevant state

means and decisions as in (4). This expression is
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concave with respect to the parameters µt
i, so the

global maximum can be found. We use coordinate-
wise ascent, where each µt

i is selected by an efficient
line search (Press et al., 1996), while keeping other
µt

i′ fixed.

3.4 Parameter Estimation

We train these models to maximize the fit of the
approximate model to the data. We use gradient
descent and a maximum likelihood objective func-
tion. This requires computation of the gradient of
the approximate log-likelihood with respect to the
model parameters. In order to compute these deriva-
tives, the error should be propagated all the way
back through the structure of the graphical model.
For the feed-forward approximation, computation of
the derivatives is straightforward, as in neural net-
works. But for the mean field approximation, it re-
quires computation of the derivatives of the means
µt

i with respect to the other parameters in expres-
sion (7). The use of a numerical search in the mean
field approximation makes the analytical computa-
tion of these derivatives impossible, so a different
method needs to be used to compute their values. If
maximization of L

t,k
V is done until convergence, then

the derivatives of L
t,k
V with respect to µt

i are close to
zero:

F
t,k
i =

∂L
t,k
V

∂µt
i

≈ 0 for all i.

This system of equations allows us to use implicit
differentiation to compute the needed derivatives.

4 Experimental Evaluation

In this section we evaluate the two approximations
to dynamic SBNs discussed in the previous section,
the feed-forward method equivalent to the neural
network of (Henderson, 2003) (NN method) and the
mean field method (MF method). The hypothesis
we wish to test is that the more accurate approxima-
tion of dynamic SBNs will result in a more accurate
model of constituent structure parsing. If this is true,
then it suggests that dynamic SBNs of the form pro-
posed here are a good abstract model of the nature
of natural language parsing.

We used the Penn Treebank WSJ corpus (Marcus
et al., 1993) to perform the empirical evaluation of
the considered approaches. It is expensive to train

R P F1

Bikel, 2004 87.9 88.8 88.3
Taskar et al., 2004 89.1 89.1 89.1
NN method 89.1 89.2 89.1
Turian and Melamed, 2006 89.3 89.6 89.4
MF method 89.3 90.7 90.0
Charniak, 2000 90.0 90.2 90.1

Table 1: Percentage labeled constituent recall (R),
precision (P), combination of both (F1) on the test-
ing set.

the MF approximation on the whole WSJ corpus, so
instead we use only sentences of length at most 15,
as in (Taskar et al., 2004) and (Turian and Melamed,
2006). The standard split of the corpus into training
(sections 2–22, 9,753 sentences), validation (section
24, 321 sentences), and testing (section 23, 603 sen-
tences) was performed.2

As in (Henderson, 2003; Turian and Melamed,
2006) we used a publicly available tagger (Ratna-
parkhi, 1996) to provide the part-of-speech tag for
each word in the sentence. For each tag, there is an
unknown-word vocabulary item which is used for all
those words which are not sufficiently frequent with
that tag to be included individually in the vocabu-
lary. We only included a specific tag-word pair in the
vocabulary if it occurred at least 20 time in the train-
ing set, which (with tag-unknown-word pairs) led to
the very small vocabulary of 567 tag-word pairs.

During parsing with both the NN method and the
MF method, we used beam search with a post-word
beam of 10. Increasing the beam size beyond this
value did not significantly effect parsing accuracy.
For both of the models, the state vector size of 40
was used. All the parameters for both the NN and
MF models were tuned on the validation set. A sin-
gle best model of each type was then applied to the
final testing set.

Table 1 lists the results of the NN approximation
and the MF approximation, along with results of dif-

2Training of our MF method on this subset of WSJ took less
than 6 days on a standard desktop PC. We would expect that
a model for the entire WSJ corpus can be trained in about 3
months time. The training time is about linear with the num-
ber of words, but a larger state vector is needed to accommo-
date all the information. The long training times on the entire
WSJ would not allow us to tune the model parameters properly,
which would have increased the randomness of the empirical
comparison, although it would be feasible for building a sys-
tem.
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ferent generative and discriminative parsing meth-
ods (Bikel, 2004; Taskar et al., 2004; Turian and
Melamed, 2006; Charniak, 2000) evaluated in the
same experimental setup. The MF model improves
over the baseline NN approximation, with an error
reduction in F-measure exceeding 8%. This im-
provement is statically significant.3 The MF model
achieves results which do not appear to be signifi-
cantly different from the results of the best model
in the list (Charniak, 2000). It should also be noted
that the model (Charniak, 2000) is the most accu-
rate generative model on the standard WSJ parsing
benchmark, which confirms the viability of our gen-
erative model.

These experimental results suggest that Incre-
mental Sigmoid Belief Networks are an appropriate
model for natural language parsing. Even approxi-
mations such as those tested here, with a very strong
factorisability assumption, allow us to build quite
accurate parsing models. The main drawback of our
proposed mean field approach is the relative compu-
tational complexity of the numerical procedure used
to maximize L

t,k
V . But this approximation has suc-

ceeded in showing that a more accurate approxima-
tion of ISBNs results in a more accurate parser. We
believe this provides strong justification for more ac-
curate approximations of ISBNs for parsing.

5 Related Work

There has not been much previous work on graph-
ical models for full parsing, although recently sev-
eral latent variable models for parsing have been
proposed (Koo and Collins, 2005; Matsuzaki et al.,
2005; Riezler et al., 2002). In (Koo and Collins,
2005), an undirected graphical model is used for
parse reranking. Dependency parsing with dynamic
Bayesian networks was considered in (Peshkin and
Savova, 2005), with limited success. Their model
is very different from ours. Roughly, it considered
the whole sentence at a time, with the graphical
model being used to decide which words correspond
to leaves of the tree. The chosen words are then
removed from the sentence and the model is recur-
sively applied to the reduced sentence.

Undirected graphical models, in particular Condi-

3We measured significance of all the experiments in this pa-
per with the randomized significance test (Yeh, 2000).

tional Random Fields, are the standard tools for shal-
low parsing (Sha and Pereira, 2003). However, shal-
low parsing is effectively a sequence labeling prob-
lem and therefore differs significantly from full pars-
ing. As discussed in section 2.2, undirected graph-
ical models do not seem to be suitable for history-
based full parsing models.

Sigmoid Belief Networks were used originally
for character recognition tasks, but later a dynamic
modification of this model was applied to the rein-
forcement learning task (Sallans, 2002). However,
their graphical model, approximation method, and
learning method differ significantly from those of
this paper.

6 Conclusions

This paper proposes a new generative framework
for constituent parsing based on dynamic Sigmoid
Belief Networks with vectors of latent variables.
Exact inference with the proposed graphical model
(called Incremental Sigmoid Belief Networks) is
not tractable, but two approximations are consid-
ered. First, it is shown that the neural network
parser of (Henderson, 2003) can be considered as a
simple feed-forward approximation to the graphical
model. Second, a more accurate but still tractable
approximation based on mean field theory is pro-
posed. Both methods are empirically compared, and
the mean field approach achieves significantly better
results, which are non-significantly different from
the results of the most accurate generative parsing
model (Charniak, 2000) on our testing set. The fact
that a more accurate approximation leads to a more
accurate parser suggests that ISBNs are a good ab-
stract model for constituent structure parsing. This
empirical result motivates research into more accu-
rate approximations of dynamic SBNs.

We focused in this paper on generative models
of parsing. The results of such a generative model
can be easily improved by a discriminative rerank-
ing model, even without any additional feature en-
gineering. For example, the discriminative train-
ing techniques successfully applied in (Henderson,
2004) to the feed-forward neural network model can
be directly applied to the mean field model pro-
posed in this paper. The same is true for rerank-
ing with data-defined kernels, with which we would
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expect similar improvements as were achieved with
the neural network parser (Henderson and Titov,
2005). Such improvements should situate the result-
ing model among the best current parsing models.
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Abstract

Most current machine transliteration sys-
tems employ a corpus of known source-
target word pairs to train their system, and
typically evaluate their systems on a similar
corpus. In this paper we explore the perfor-
mance of transliteration systems on corpora
that are varied in a controlled way. In partic-
ular, we control the number, and prior lan-
guage knowledge of human transliterators
used to construct the corpora, and the origin
of the source words that make up the cor-
pora. We find that the word accuracy of au-
tomated transliteration systems can vary by
up to 30% (in absolute terms) depending on
the corpus on which they are run. We con-
clude that at least four human transliterators
should be used to construct corpora for eval-
uating automated transliteration systems;
and that although absolute word accuracy
metrics may not translate across corpora, the
relative rankings of system performance re-
mains stable across differing corpora.

1 Introduction

Machine transliteration is the process of transform-
ing a word written in a source language into a word
in a target language without the aid of a bilingual
dictionary. Word pronunciation is preserved, as far
as possible, but the script used to render the target
word is different from that of the source language.
Transliteration is applied to proper nouns and out-
of-vocabulary terms as part of machine translation
and cross-lingual information retrieval (CLIR) (Ab-
dulJaleel and Larkey, 2003; Pirkola et al., 2006).

Several transliteration methods are reported in the
literature for a variety of languages, with their per-
formance being evaluated on multilingual corpora.
Source-target pairs are either extracted from bilin-
gual documents or dictionaries (AbdulJaleel and
Larkey, 2003; Bilac and Tanaka, 2005; Oh and Choi,
2006; Zelenko and Aone, 2006), or gathered ex-
plicitly from human transliterators (Al-Onaizan and
Knight, 2002; Zelenko and Aone, 2006). Some eval-
uations of transliteration methods depend on a single
unique transliteration for each source word, while
others take multiple target words for a single source
word into account. In their work on transliterating
English to Persian, Karimi et al. (2006) observed
that the content of the corpus used for evaluating
systems could have dramatic affects on the reported
accuracy of methods.

The effects of corpus composition on the evalua-
tion of transliteration systems has not been specif-
ically studied, with only implicit experiments or
claims made in the literature such as introduc-
ing the effects of different transliteration mod-
els (AbdulJaleel and Larkey, 2003), language fam-
ilies (Lindén, 2005) or application based (CLIR)
evaluation (Pirkola et al., 2006). In this paper, we re-
port our experiments designed to explicitly examine
the effect that varying the underlying corpus used in
both training and testing systems has on translitera-
tion accuracy. Specifically, we vary the number of
human transliterators that are used to construct the
corpus; and the origin of the English words used in
the corpus.

Our experiments show that the word accuracy of
automated transliteration systems can vary by up to
30% (in absolute terms), depending on the corpus
used. Despite the wide range of absolute values
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in performance, the ranking of our two translitera-
tion systems was preserved on all corpora. We also
find that a human’s confidence in the language from
which they are transliterating can affect the corpus
in such a way that word accuracy rates are altered.

2 Background

Machine transliteration methods are divided into
grapheme-based (AbdulJaleel and Larkey, 2003;
Lindén, 2005), phoneme-based (Jung et al., 2000;
Virga and Khudanpur, 2003) and combined tech-
niques (Bilac and Tanaka, 2005; Oh and Choi,
2006). Grapheme-based methods derive transforma-
tion rules for character combinations in the source
text from a training data set, while phoneme-based
methods use an intermediate phonetic transforma-
tion. In this paper, we use two grapheme-based
methods for English to Persian transliteration. Dur-
ing a training phase, both methods derive rules for
transforming character combinations (segments) in
the source language into character combinations in
the target language with some probability.

During transliteration, the source wordsi is seg-
mented and rules are chosen and applied to each seg-
ment according to heuristics. The probability of a
resulting word is the product of the probabilities of
the applied rules. The result is a list of target words
sorted by their associated probabilities,Li .

The first system we use (SYS-1) is an n-gram
approach that uses the last character of the previ-
ous source segment to condition the choice of the
rule for the current source segment. This system has
been shown to outperform other n-gram based meth-
ods for English to Persian transliteration (Karimi et
al., 2006).

The second system we employ (SYS-2) makes
use of some explicit knowledge of our chosen lan-
guage pair, English and Persian, and is also on
the collapsed-vowel scheme presented by Karimi et
al. (2006). In particular, it exploits the tendency for
runs of English vowels to be collapsed into a single
Persian character, or perhaps omitted from the Per-
sian altogether. As such, segments are chosen based
on surrounding consonants and vowels. The full de-
tails of this system are not important for this paper;
here we focus on the performance evaluation of sys-
tems, not the systems themselves.

2.1 System Evaluation

In order to evaluate the listLi of target words pro-
duced by a transliteration system for source wordsi ,
a test corpus is constructed. The test corpus con-
sists of a source word,si , and a list of possible target
words {ti j }, where 1≤ j ≤ di , the number of dis-
tinct target words for source wordsi . Associated
with eachti j is a countni j which is the number of
human transliterators who transliteratedsi into ti j .

Often the test corpus is a proportion of a larger
corpus, the remainder of which has been used for
training the system’s rule base. In this work we
adopt the standard ten-fold cross validation tech-
nique for all of our results, where 90% of a corpus
is used for training and 10% for testing. The pro-
cess is repeated ten times, and the mean result taken.
Forthwith, we use the term corpus to refer to the sin-
gle corpus from which both training and test sets are
drawn in this fashion.

Once the corpus is decided upon, a metric to mea-
sure the system’s accuracy is required. The appro-
priate metric depends on the scenario in which the
transliteration system is to be used. For example,
in a machine translation application where only one
target word can be inserted in the text to represent a
source word, it is important that the word at the top
of the system generated list of target words (by def-
inition the most probable) is one of the words gen-
erated by a human in the corpus. More formally,
the first word generated for source wordsi , Li

1, must
be one ofti j ,1≤ j ≤ di . It may even be desirable
that this is the target word most commonly used for
this source word; that is,Li

1 = ti j such thatni j ≥ nik,
for all 1 ≤ k ≤ di . Alternately, in a CLIR appli-
cation, all variants of a source word might be re-
quired. For example, if a user searches for an En-
glish term “Tom” in Persian documents, the search
engine should try and locate documents that contain
both “�A�K” (3 letters: �H- �-�) and ”Õç�'”(2 letters: �H-�),
two possible transliterations of “Tom” that would be
generated by human transliterators. In this case, a
metric that counts the number ofti j that appear in
the topdi elements of the system generated list,Li,
might be appropriate.

In this paper we focus on the “Top-1” case, where
it is important for the most probable target word gen-
erated by the system,Li

1 to be either the most pop-
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ular ti j (labeled theMajority, with ties broken ar-
bitrarily), or just one of theti j ’s (labeledUniform
because all possible transliterations are equally re-
warded). A third scheme (labeledWeighted) is also
possible where the reward forti j appearing asLi

1

is ni j /∑di
j=1ni j ; here, each target word is given a

weight proportional to how often a human translit-
erator chose that target word. Due to space consid-
erations, we focus on the first two variants only.

In general, there are two commonly used met-
rics for transliteration evaluation: word accuracy
(WA) and character accuracy (CA) (Hall and Dowl-
ing, 1980). In all of our experiments, CA based
metrics closely mirrored WA based metrics, and
so conclusions drawn from the data would be the
same whether WA metrics or CA metrics were used.
Hence we only discuss and report WA based metrics
in this paper.

For each source word in the test corpus ofK
words, word accuracy calculates the percentage of
correctly transliterated terms. Hence for the major-
ity case, where every source word in the corpus only
has one target word, the word accuracy is defined as

MWA= |{si |L
i
1 = ti1,1≤ i ≤ K}|/K,

and for theUniform case, where every target variant
is included with equal weight in the corpus, the word
accuracy is defined as

UWA= |{si |L
i
1 ∈ {ti j },1≤ i ≤ K,1≤ j ≤ di}|/K.

2.2 Human Evaluation

To evaluate the level of agreement between translit-
erators, we use an agreement measure based on Mun
and Eye (2004).

For any source wordsi , there aredi different
transliterations made by theni human translitera-
tors (ni = ∑di

j=1 ni j , whereni j is the number of times
source wordsi was transliterated into target word
ti j ). When any two transliterators agree on the
same target word, there are two agreements being
made: transliterator one agrees with transliterator
two, and vice versa. In general, therefore, the to-
tal number of agreements made on source wordsi is
∑di

j=1ni j (ni j − 1). Hence the total number of actual
agreements made on the entire corpus ofK words is

Aact =
K

∑
i=1

di

∑
j=1

ni j (ni j −1).

The total number of possible agreements (that is,
when all human transliterators agree on a single tar-
get word for each source word), is

Aposs=
K

∑
i=1

ni(ni −1).

The proportion of overall agreement is therefore

PA =
Aact
Aposs

.

2.3 Corpora

Seven transliterators (T1, T2,. . ., T7: all native Per-
sian speakers from Iran) were recruited to transliter-
ate 1500 proper names that we provided. The names
were taken from lists of names written in English on
English Web sites. Five hundred of these names also
appeared in lists of names on Arabic Web sites, and
five hundred on Dutch name lists. The transliterators
were not told of the origin of each word. The en-
tire corpus, therefore, was easily separated into three
sub-corpora of 500 words each based on the origin
of each word. To distinguish these collections, we
useE7, A7 andD7 to denote the English, Arabic and
Dutch sub-corpora, respectively. The whole 1500
word corpus is referred to asEDA7.

Dutch and Arabic were chosen with an assump-
tion that most Iranian Persian speakers have little
knowledge of Dutch, while their familiarity with
Arabic should be in the second rank after English.
All of the participants held at least a Bachelors de-
gree. Table 1 summarizes the information about
the transliterators and their perception of the given
task. Participants were asked to scale the difficulty
of the transliteration of each sub-corpus, indicated
as a scale from 1 (hard) to 3 (easy). Similarly, the
participants’ confidence in performing the task was
rated from 1 (no confidence) to 3 (quite confident).
The level of familiarity with second languages was
also reported based on a scale of zero (not familiar)
to 3 (excellent knowledge).

The information provided by participants con-
firms our assumption of transliterators knowledge
of second languages: high familiarity with English,
some knowledge of Arabic, and little or no prior
knowledge of Dutch. Also, the majority of them
found the transliteration of English terms of medium
difficulty, Dutch was considered mostly hard, and
Arabic as easy to medium.
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Second Language Knowledge Difficulty,Confidence
Transliterator English Dutch Arabic Other English Dutch Arabic

1 2 0 1 - 1,1 1,2 2,3
2 2 0 2 - 2,2 2,3 3,3
3 2 0 1 - 2,2 1,2 2,2
4 2 0 1 - 2,2 2,1 3,3
5 2 0 2 Turkish 2,2 1,1 3,2
6 2 0 1 - 2,2 1,1 3,3
7 2 0 1 - 2,2 1,1 2,2

Table 1: Transliterator’s language knowledge (0=not familiar to 3=excellent knowledge), perception of
difficulty (1=hard to 3=easy) and confidence (1=no confidenceto 3=quite confident) in creating the corpus.
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Figure 1: Comparison of the two evaluation metrics
using the two systems on four corpora. (Lines were
added for clarity, and do not represent data points.)
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Figure 2: Comparison of the two evaluation metrics
using the two systems on 100 randomly generated
sub-corpora.

3 Results

Figure 1 shows the values of UWA and MWA for
E7, A7, D7 andEDA7 using the two transliteration
systems. Immediately obvious is that varying the
corpora (x-axis) results in different values for word
accuracy, whether by theUWAor MWAmethod. For
example, if you chose to evaluate SYS-2 with the
UWA metric on theD7 corpus, you would obtain a
result of 82%, but if you chose to evaluate it with the
A7 corpus you would receive a result of only 73%.
This makes comparing systems that report results

obtained on different corpora very difficult. Encour-
agingly, however, SYS-2 consistently outperforms
the SYS-1 on all corpora for both metrics except
MWAon E7. This implies that ranking system per-
formance on the same corpus most likely yields a
system ranking that is transferable to other corpora.
To further investigate this, we randomly extracted
100 corpora of 500 word pairs fromEDA7 and ran
the two systems on them and evaluated the results
using bothMWA andUWA. Both of the measures
ranked the systems consistently using all these cor-
pora (Figure 2).

As expected, theUWA metric is consistently
higher than theMWA metric; it allows for the top
transliteration to appear in any of the possible vari-
ants for that word in the corpus, unlike theMWA
metric which insists upon a single target word. For
example, for theE7 corpus using the SYS-2 ap-
proach,UWA is 76.4% andMWA is 47.0%.

Each of the three sub-corpora can be further di-
vided based on the seven individual transliterators,
in different combinations. That is, construct a sub-
corpus from T1’s transliterations, T2’s, and so on;
then take all combinations of two transliterators,
then three, and so on. In general we can construct
7Cr such corpora fromr transliterators in this fash-
ion, all of which have 500 source words, but may
have between one to seven different transliterations
for each of those words.

Figure 3 shows theMWA for these sub-corpora.
The x-axis shows the number of transliterators used
to form the sub-corpora. For example, whenx = 3,
the performance figures plotted are achieved on cor-
pora when taking all triples of the seven translitera-
tor’s transliterations.

From the boxplots it can be seen that performance
varies considerably when the number of transliter-
ators used to determine a majority vote is varied.
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Figure 3: Performance on sub-corpora derived by combining the number of transliterators shown on the x-
axis. Boxes show the 25th and 75th percentile of theMWA for all 7Cx combinations of transliterators using
SYS-2, with whiskers showing extreme values.

However, the changes do not follow a fixed trend
across the languages. ForE7, the range of accuracies
achieved is high when only two or three translitera-
tors are involved, ranging from 37.0% to 50.6% in
SYS-2 method and from 33.8% to 48.0% in SYS-1
(not shown) when only two transliterators’ data are
available. When more than three transliterators are
used, the range of performance is noticeably smaller.
Hence if at least four transliterators are used, then it
is more likely that a system’sMWA will be stable.
This finding is supported by Papineni et al. (2002)
who recommend that four people should be used for
collecting judgments for machine translation exper-
iments.

The corpora derived fromA7 show consistent me-
dian increases as the number of transliterators in-
creases, but the median accuracy is lower than for
other languages. TheD7 collection does not show
any stable results until at least six transliterator’s are
used.

The results indicate that creating a collection used
for the evaluation of transliteration systems, based
on a “gold standard” created by only one human
transliterator may lead to word accuracy results that
could show a 10% absolute difference compared to
results on a corpus derived using a different translit-
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Figure 4: Word accuracy on the sub-corpora using
only a single transliterator’s transliterations.

erator. This is evidenced by the leftmost box in each
panel of the figure which has a wide range of results.

Figure 4 shows this box in more detail for each
collection, plotting the word accuracy for each
user for all sub-corpora for SYS-2. The accuracy
achieved varies significantly between translitera-
tors; for example, forE7 collections, word accuracy
varies from 37.2% for T1 to 50.0% for T5. This
variance is more obvious for theD7 dataset where
the difference ranges from 23.2% forT1 to 56.2%
for T3. Origin language also has an effect: accuracy
for the Arabic collection (A7) is generally less than
that of English (E7). The Dutch collection (D7),
shows an unstable trend across transliterators. In
other words, accuracy differs in a narrower range for
Arabic and English, but in wider range for Dutch.
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This is likely due to the fact that most transliterators
found Dutch a difficult language to work with, as
reported in Table 1.

3.1 Transliterator Consistency

To investigate the effect of invididual transliterator
consistency on system accuracy, we consider the
number of Persian characters used by each transliter-
ator on each sub-corpus, and the average number of
rules generated by SYS-2 on the ten training sets de-
rived in the ten-fold cross validation process, which
are shown in Table 2. For example, when translit-
erating words fromE7 into Persian, T3 only ever
used 21 out of 32 characters available in the Persian
alphabet; T7, on the other hand, used 24 different
Persian characters. It is expected that an increase in
number of characters or rules provides more “noise”
for the automated system, hence may lead to lower
accuracy. Superficially the opposite seems true for
rules: the mean number of rules generated by SYS-
2 is much higher for theEDA7 corpus than for theA7

corpus, and yet Figure 1 shows that word accuracy
is higher on theEDA7 corpus. A correlation test,
however, reveals that there is no significant relation-
ship between either the number of characters used,
nor the number of rules generated, and the result-
ing word accuracy of SYS-2 (Spearman correlation,
p = 0.09 (characters) andp = 0.98 (rules)).

A better indication of “noise” in the corpus may
be given by the consistency with which a translit-
erator applies a certain rule. For example, a large
number of rules generated from a particular translit-
erator’s corpus may not be problematic if many of
the rules get applied with a low probability. If, on
the other hand, there were many rules with approx-
imately equal probabilities, the system may have
difficulty distinguishing when to apply some rules,
and not others. One way to quantify this effect
is to compute theself entropyof the rule distribu-
tion for each segment in the corpus for an indi-
vidual. If pi j is the probability of applying rule
1 ≤ j ≤ m when confronted with source segment
i, thenHi = −∑m

j=1 pi j log2 pi j is the entropy of the
probability distribution for that rule.H is maximized
when the probabilitiespi j are all equal, and mini-
mized when the probabilities are very skewed (Shan-
non, 1948). As an example, consider the rules:
t →< �H,0.5>, t →< ,0.3 > andt →<X,0.2>; for

which Ht = 0.79.
The expected entropy can be used to obtain a sin-

gle entropy value over the whole corpus,

E =−
R

∑
i=1

fi
S

Hi,

whereHi is the entropy of the rule probabilities for
segmenti, R is the total number of segments,fi is
the frequency with which segmenti occurs at any
position in all source words in the corpus, andS is
the sum of allfi .

The expected entropy for each transliterator is
shown in Figure 5, separated by corpus. Compar-
ison of this graph with Figure 4 shows that gen-
erally transliterators that have used rules inconsis-
tently generate a corpus that leads to low accuracy
for the systems. For example, T1 who has the low-
est accuracy for all the collections in both methods,
also has the highest expected entropy of rules for
all the collections. For theE7 collection, the max-
imum accuracy of 50.0%, belongs toT5 who has
the minimum expected entropy. The same applies
to theD7 collection, where the maximum accuracy
of 56.2% and the minimum expected entropy both
belong toT3. These observations are confirmed
by a statistically significant Spearman correlation
between expected rule entropy and word accuracy
(r = −0.54, p = 0.003). Therefore, the consistency
with which transliterators employ their own internal
rules in developing a corpus has a direct effect on
system performance measures.

3.2 Inter-Transliterator Agreement and
Perceived Difficulty

Here we present various agreement proportions (PA

from Section 2.2), which give a measure of consis-
tency in the corpora across all users, as opposed to
the entropy measure which gives a consistency mea-
sure for a single user. ForE7, PA was 33.6%, for
A7 it was 33.3% and forD7, agreement was 15.5%.
In general, humans agree less than 33% of the time
when transliterating English to Persian.

In addition, we examined agreement among
transliterators based on their perception of the task
difficulty shown in Table 1. ForA7, agreement
among those who found the taskeasywas higher
(22.3%) than those who found it inmediumlevel
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E7 D7 A7 EDA7
Char Rules Char Rules Char Rules Char Rules

T1 23 523 23 623 28 330 31 1075
T2 22 487 25 550 29 304 32 956
T3 21 466 20 500 28 280 31 870
T4 23 497 22 524 28 307 30 956
T5 21 492 22 508 28 296 29 896
T6 24 493 21 563 25 313 29 968
T7 24 495 21 529 28 299 30 952

Mean 23 493 22 542 28 304 30 953

Table 2: Number of characters used and rules generated usingSYS-2, per transliterator.

(18.8%). PA is 12.0% for those who found the
D7 collection hard to transliterate; while the six
transliterators who found theE7 collection difficulty
mediumhad PA = 30.2%. Hence, the harder par-
ticipants rated the transliteration task, the lower the
agreement scores tend to be for the derived corpus.

Finally, in Table 3 we show word accuracy results
for the two systems on corpora derived from translit-
erators grouped by perceived level of difficulty on
A7. It is readily apparent that SYS-2 outperforms
SYS-1 on the corpus comprised of human translit-
erations from people who saw the task as easy with
both word accuracy metrics; the relative improve-
ment of over 50% is statistically significant (paired
t-test on ten-fold cross validation runs). However,
on the corpus composed of transliterations that were
perceived as more difficult, “Medium”, the advan-
tage of SYS-2 is significantly eroded, but is still
statistically significant forUWA. Here again, using
only one transliteration,MWA, did not distinguish
the performance of each system.

4 Discussion

We have evaluated two English to Persian translit-
eration systems on a variety of controlled corpora
using evaluation metrics that appear in previous
transliteration studies. Varying the evaluation cor-
pus in a controlled fashion has revealed several in-
teresting facts.

We report that human agreement on the English
to Persian transliteration task is about 33%. The ef-
fect that this level of disagreement on the evalua-
tion of systems has, can be seen in Figure 4, where
word accuracy is computed on corpora derived from
single transliterators. Accuracy can vary by up to
30% in absolute terms depending on the translitera-
tor chosen. To our knowledge, this is the first paper
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Figure 5: Entropy of the generated segments based
on the collections created by different transliterators.

to report human agreement, and examine its effects
on transliteration accuracy.

In order to alleviate some of these effects on the
stability of word accuracy measures across corpora,
we recommend that at least four transliterators are
used to construct a corpus. Figure 3 shows that con-
structing a corpus with four or more transliterators,
the range of possible word accuracies achieved is
less than that of using fewer transliterators.

Some past studies do not use more than a sin-
gle target word for every source word in the cor-
pus (Bilac and Tanaka, 2005; Oh and Choi, 2006).
Our results indicate that it is unlikely that these re-
sults would translate onto a corpus other than the
one used in these studies, except in rare cases where
human transliterators are in 100% agreement for a
given language pair.

Given the nature of the English language, an En-
glish corpus can contain English words from a vari-
ety of different origins. In this study we have used
English words from an Arabic and Dutch origin to
show that word accuracy of the systems can vary by
up to 25% (in absolute terms) depending on the ori-
gin of English words in the corpus, as demonstrated
in Figure 1.

In addition to computing agreement, we also in-
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Relative
Perception SYS-1 SYS-2 Improvement (%)

UWA Easy 33.4 55.4 54.4 (p < 0.001)
Medium 44.6 48.4 8.52 (p < 0.001)

MWA Easy 23.2 36.2 56.0 (p < 0.001)
Medium 30.6 37.4 22.2 (p = 0.038)

Table 3: System performance whenA7 is split into sub-corpora based on transliterators perception of the
task (Easy or Medium).

vestigated the transliterator’s perception of difficulty
of the transliteration task with the ensuing word ac-
curacy of the systems. Interestingly, when using cor-
pora built from transliterators that perceive the task
to be easy, there is a large difference in the word
accuracy between the two systems, but on corpora
built from transliterators who perceive the task to be
more difficult, the gap between the systems narrows.
Hence, a corpus applied for evaluation of transliter-
ation should either be made carefully with translit-
erators with a variety of backgrounds, or should be
large enough and be gathered from various sources
so as to simulate different expectations of its ex-
pected non-homogeneous users.

The self entropy of rule probability distributions
derived by the automated transliteration system can
be used to measure the consistency with which in-
dividual transliterators apply their own rules in con-
structing a corpus. It was demonstrated that when
systems are evaluated on corpora built by transliter-
ators who are less consistent in their application of
transliteration rules, word accuracy is reduced.

Given the large variations in system accuracy that
are demonstrated by the varying corpora used in this
study, we recommend that extreme care be taken
when constructing corpora for evaluating translitera-
tion systems. Studies should also give details of their
corpora that would allow any of the effects observed
in this paper to be taken into account.
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Abstract

We propose a novel algorithm for English
to Persian transliteration. Previous meth-
ods proposed for this language pair apply
a word alignment tool for training. By
contrast, we introduce an alignment algo-
rithm particularly designed for translitera-
tion. Our new model improves the English
to Persian transliteration accuracy by 14%
over ann-gram baseline. We also propose
a novel back-transliteration method for this
language pair, a previously unstudied prob-
lem. Experimental results demonstrate that
our algorithm leads to an absolute improve-
ment of 25% over standard transliteration
approaches.

1 Introduction

Translation of a text from a source language to
a target language requires dealing with technical
terms and proper names. These occur in almost
any text, but rarely appear in bilingual dictionar-
ies. The solution is the transliteration of suchout-of-
dictionary terms: a word from the source language
is transformed to a word in the target language, pre-
serving its pronunciation. Recovering the original
word from the transliterated target is called back-
transliteration. Automatic transliteration is impor-
tant for many different applications, including ma-
chine translation, cross-lingual information retrieval
and cross-lingual question answering.

Transliteration methods can be categorized into
grapheme-based (AbdulJaleel and Larkey, 2003; Li

et al., 2004), phoneme-based (Knight and Graehl,
1998; Jung et al., 2000), and combined (Bilac and
Tanaka, 2005) approaches. Grapheme-based meth-
ods perform a direct orthographical mapping be-
tween source and target words, while phoneme-
based approaches use an intermediate phonetic rep-
resentation. Both grapheme- or phoneme-based
methods usually begin by breaking the source word
into segments, and then use a source segment to tar-
get segment mapping to generate the target word.
The rules of this mapping are obtained by aligning
already available transliterated word pairs (training
data); alternatively, such rules can be handcrafted.
From this perspective, past work is roughly divided
into those methods which apply a word alignment
tool such asGIZA++ (Och and Ney, 2003), and ap-
proaches that combine the alignment step into their
main transliteration process.

Transliteration is language dependent, and meth-
ods that are effective for one language pair may
not work as well for another. In this paper, we
investigate the English-Persian transliteration prob-
lem. Persian (Farsi) is an Indo-European language,
written in Arabic script from right to left, but with
an extended alphabet and different pronunciation
from Arabic. Our previous approach to English-
Persian transliteration introduced the grapheme-
basedcollapsed-vowel method, employingGIZA++
for source to target alignment (Karimi et al., 2006).
We propose a new transliteration approach that ex-
tends thecollapsed-vowel method. To meet Per-
sian language transliteration requirements, we also
propose a novel alignment algorithm in our training
stage, which makes use of statistical information of
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the corpus, transliteration specifications, and simple
language properties. This approach handles possi-
ble consequences of elision (omission of sounds to
make the word easier to read) and epenthesis (adding
extra sounds to a word to make it fluent) in written
target words that happen due to the change of lan-
guage. Our method shows an absolute accuracy im-
provement of 14.2% over ann-gram baseline.

In addition, we investigate the problem of back-
transliteration from Persian to English. To our
knowledge, this is the first report of such a study.
There are two challenges in Persian to English
transliteration that makes it particularly difficult.
First, written Persian omits short vowels, while only
long vowels appear in texts. Second, monophthon-
gization (changing diphthongs to monophthongs) is
popular among Persian speakers when adapting for-
eign words into their language. To take these into
account, we propose a novel method to form trans-
formation rules by changing the normal segmenta-
tion algorithm. We find that this method signifi-
cantly improves the Persian to English translitera-
tion effectiveness, demonstrating an absolute perfor-
mance gain of 25.1% over standard transliteration
approaches.

2 Background

In general, transliteration consists of a training stage
(running on a bilingual training corpus), and a gen-
eration – also called testing – stage.

The training step of a transliteration develops
transformation rules mapping characters in the
source to characters in the target language using
knowledge of corresponding characters in translit-
erated pairs provided by an alignment. For example,
for the source-target word pair (pat,H� � �H), an align-

ment may map “p” to “H� ” and “a” to “ �”, and the

training stage may develop the rulepa → �, with “ �”
as the transliteration of “a” in the context of “pa”.
The generation stage applies these rules on a seg-
mented source word, transforming it to a word in
the target language.

Previous work on transliteration either employs a
word alignment tool (usuallyGIZA++), or develops
specific alignment strategies. Transliteration meth-
ods that useGIZA++ as their word pair aligner (Ab-
dulJaleel and Larkey, 2003; Virga and Khudanpur,

2003; Karimi et al., 2006) have based their work on
the assumption that the provided alignments are re-
liable. Gao et al. (2004) argue that precise align-
ment can improve transliteration effectiveness, ex-
perimenting on English-Chinese data and compar-
ing IBM models (Brown et al., 1993) with phoneme-
based alignments using direct probabilities.

Other transliteration systems focus on alignment
for transliteration, for example the joint source-
channel model suggested by Li et al. (2004). Their
method outperforms the noisy channel model in
direct orthographical mapping for English-Chinese
transliteration. Li et al. also find that grapheme-
based methods that use the joint source-channel
model are more effective than phoneme-based meth-
ods due to removing the intermediate phonetic
transformation step. Alignment has also been in-
vestigated for transliteration by adopting Coving-
ton’s algorithm on cognate identification (Coving-
ton, 1996); this is a character alignment algorithm
based on matching or skipping of characters, with
a manually assigned cost of association. Coving-
ton considers consonant to consonant and vowel to
vowel correspondence more valid than consonant to
vowel. Kang and Choi (2000) revise this method for
transliteration where a skip is defined as inserting a
null in the target string when two characters do not
match based on their phonetic similarities or their
consonant and vowel nature. Oh and Choi (2002)
revise this method by introducingbinding, in which
many to many correspondences are allowed. How-
ever, all of these approaches rely on the manually
assigned penalties that need to be defined for each
possible matching.

In addition, some recent studies investigate dis-
criminative transliteration methods (Klementiev and
Roth, 2006; Zelenko and Aone, 2006) in which each
segment of the source can be aligned to each seg-
ment of the target, where some restrictive conditions
based on the distance of the segments and phonetic
similarities are applied.

3 The Proposed Alignment Approach

We propose an alignment method based on segment
occurrence frequencies, thereby avoiding predefined
matching patterns and penalty assignments. We also
apply the observed tendency of aligning consonants
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to consonants, and vowels to vowels, as a substi-
tute for phonetic similarities. Many to many, one to
many, one to null and many to one alignments can
be generated.

3.1 Formulation

Our alignment approach consists of two steps: the
first is based on the consonant and vowel nature
of the word’s letters, while the second uses a
frequency-based sequential search.

Definition 1 A bilingual corpus B is the set
{(S, T )}, where S = s1..sℓ, T = t1..tm, si is a
letter in the source language alphabet, and tj is a
letter in the target language alphabet.

Definition 2 Given some word, w, the consonant-
vowel sequence p = (C|V )+ for w is obtained
by replacing each consonant with C and each vowel
with V .

Definition 3 Given some consonant-vowel se-
quence, p, a reduced consonant-vowel sequence q

replaces all runs of C’s with C, and all runs of V ’s
with V; hence q = q′|q′′, q′ = V(CV)∗(C|ǫ)
and q′′ = C(VC)∗(V|ǫ).

For each natural language word, we can determine
the consonant-vowel sequence (p) from which the
reduced consonant-vowel sequence (q) can be de-
rived, giving a common notation between two dif-
ferent languages, no matter which script either of
them use. To simplify, semi-vowels and approxi-
mants (sounds intermediate between consonants and
vowels, such as “w” and “y” in English) are treated
according to their target language counterparts.

In general, for all the word pairs(S, T ) in a corpus
B, an alignment can be achieved using the function

f : B → A; (S, T ) 7→ (Ŝ, T̂ , r).

The functionf maps the word pair(S, T ) ∈ B to
the triple (Ŝ, T̂ , r) ∈ A where Ŝ and T̂ are sub-
strings ofS andT respectively. The frequency of
this correspondence is denoted byr. A represents a
set of substring alignments, and we use a per word
alignment notation ofa

e2p
when aligning English to

Persian anda
p2e

for Persian to English.

3.2 Algorithm Details

Our algorithm consists of two steps.

Step 1 (Consonant-Vowel based)

For any word pair(S, T ) ∈ B, the corresponding
reduced consonant-vowel sequences,q

S
andq

T
, are

generated. If the sequences match, then the aligned
consonant clusters and vowel sequences are added
to the alignment setA. If q

S
does not match with

q
T

, the word pair remains unaligned inStep 1.
The assumption in this step is that transliteration

of each vowel sequence of the source is a vowel se-
quence in the target language, and similarly for con-
sonants. However, consonants do not always map to
consonants, or vowels to vowels (for example, the
English letter “s” may be written as “��” in Persian
which consists of one vowel and one consonant). Al-
ternatively, they might be omitted altogether, which
can be specified as the null string,ε. We therefore
require a second step.

Step 2 (Frequency based)

For most natural languages, the maximum length
of corresponding phonemes of each grapheme is a
digraph (two letters) or at most a trigraph. Hence,
alignment can be defined as a search problem that
seeks for units with a maximum length of two or
three in both strings that need to be aligned. In our
approach, we search based on statistical occurrence
data available fromStep 1.

In Step 2, only those words that remain unaligned
at the end ofStep 1 need to be considered. For each
pair of words(S, T ), matching proceeds from left to
right, examining one of the three possible options of
transliteration: single letter to single letter, digraph
to single letter and single letter to digraph. Trigraphs
are unnecessary in alignment as they can be effec-
tively captured during transliteration generation, as
we explain below.

We define four different valid alignments for the
source (S = s

1
s

2
. . . s

i
. . . s

l
) and target (T =

t
1
t
2
. . . t

j
. . . tm) strings: (s

i
, t

j
, r), (s

i
s

i+1, tj
, r),

(s
i
, t

j
t
j+1, r) and (s

i
, ε, r). These four options are

considered as the only possible valid alignments,
and the most frequently occurring alignment (high-
estr) is chosen. These frequencies are dynamically
updated after successfully aligning a pair. For ex-
ceptional situations, where there is no character in
the target string to match with the source character
s

i
, it is aligned with the empty string.
It is possible that none of the four valid alignment
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options have occurred previously (that is,r = 0
for each). This situation can arise in two ways:
first, such a tuple may simply not have occurred in
the training data; and, second, the previous align-
ment in the current string pair may have been incor-
rect. To account for this second possibility, a par-
tial backtracking is considered. Most misalignments
are derived from the simultaneous comparison of
alignment possibilities, giving the highest priority to
the most frequent. For example ifS=bbc,T=H. �
andA = {(b,H. ,100),(bb,H. ,40),(c,�,60)}, starting
from the initial positions

1
andt

1
, the first alignment

choice is (b,H. ,101). However immediately after, we
face the problem of aligning the second “b”. There
are two solutions: insertingε and adding the triple
(b,ε,1), or backtracking the previous alignment and
substituting that with the less frequent but possible
alignment of (bb,H. ,41). The second solution is a
better choice as it adds less ambiguous alignments
containingε. At the end, the alignment set is up-
dated asA = {(b,H. ,100),(bb,H. ,41),(c,�,61)}.

In case of equal frequencies, we check possible
subsequent alignments to decide on which align-
ment should be chosen. For example, if (b,H. ,100)

and (bb,H. ,100) both exist as possible options, we
consider if choosing the former leads to a subse-
quentε insertion. If so, we opt for the latter.

At the end of a string, if just one character in the
target string remains unaligned while the last align-
ment is aε insertion, that final alignment will be sub-
stituted forε. This usually happens when the align-
ment of final characters is not yet registered in the
alignment set, mainly because Persian speakers tend
to transliterate the final vowels to consonants to pre-
serve their existence in the word. For example, in
the word “Jose” the final “e” might be transliterated
to “ è” which is a consonant (“h”) and therefore is not
captured inStep 1.

Backparsing

The process of aligning words explained above
can handle words with already known components
in the alignment setA (the frequency of occurrence
is greater than zero). However, when this is not the
case, the system may repeatedly insertε while part
or all of the target characters are left intact (unsuc-
cessful alignment). In such cases, processing the
source and target backwards helps to find the prob-

lematic substrings:backparsing.

The poorly aligned substrings of the source and
target are taken as new pairs of strings, which are
then reintroduced into the system as new entries.
Note that they themselves are not subject to back-
parsing. Most strings of repeating nulls can be bro-
ken up this way, and in the worst case will remain as
one tuple in the alignment set.

To clarify, consider the example given in Figure 1.
For the word pair (patricia,H� �HPø ��ø�), where an

association between “c” and “��” is not yet regis-
tered. Forward parsing, as shown in the figure, does
not resolve all target characters; after the incorrect
alignment of “c” with “ε”, subsequent characters are
also aligned with null, and the substring “��ø�” re-
mains intact. Backward parsing, shown in the next
line of the figure, is also not successful. It is able to
correctly align the last two characters of the string,
before generating repeated null alignments. There-
fore, the central region — substrings of the source
and target which remained unaligned plus one extra
aligned segment to the left and right — is entered
as a new pair to the system (ici,ø ��ø), as shown
in the line labelledInput 2 in the figure. This new
input meetsStep 1 requirements, and is aligned suc-
cessfully. The resulting tuples are then merged with
the alignment setA.

An advantage of our backparsing strategy is that
it takes care of casual transliterations happening due
to elision and epenthesis (adding or removing ex-
tra sounds). It is not only in translation that people
may add extra words to make fluent target text; for
transliteration also, it is possible that spurious char-
acters are introduced for fluency. However, this of-
ten follows patterns, such as adding vowels to the
target form. These irregularities are consistently
covered in the backparsing strategy, where they re-
main connected to their previous character.

4 Transliteration Method

Transliteration algorithms use aligned data (the out-
put from the alignment process,a

e2p
or a

p2e
align-

ment tuples) for training to derive transformation
rules. These rules are then used to generate a tar-
get wordT given a new input source wordS.
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Initial alignment set:
A = {(p,H� ,42),(a,�,320),(a,ε,99),(a,�ø,10),(a,ø,35),(r,P,200),(i,ø,60),(i,ε,5),(c,�,80),(c,h� ,25),(t, �H,51)}

Input: (patricia,H� �HPø ��ø�) q
S

= CVCVCV q
T

= CVCV

Step 1: q
S
6= q

T

Forward alignment: (p,H� ,43), (a,ε,100), (t, �H,52), (r,P,201), (i,ø,61), (c,ε,1), (i,ε,6), (a,ε,100)

Backward alignment: (a,�,321), (i,ø,61), (c,ε,1), (i,ε,6), (r,ε,1), (t,ε,1), (a,ε,100), (p,ε,1)
Input 2: (ici,ø ��ø) q

S
= VCV q

T
= VCV

Step 1: (i,ø,61),(c, ��,1), (i,ø,61)

Final Alignment: a
e2p

= ((p,H� ),(a,ε),(t, �H),((r,P),(i,ø),(c, ��),(i,ø),(a,�))
Updated alignment set:
A = {(p,H� ,43),(a,�,321),(a,ε,100),(a,�ø,10),(a,ø,35),(r,P,201),(i,ø,62),(i,ε,5),(c,�,80),(c,h� ,25),(c, ��,1),(t, �H,52)}

Figure 1: A backparsing example. Note middle tuples in forward and backward parsings are not merged in
A till the alignment is successfully completed.

Method Intermediate Sequence Segment(Pattern) Backoff
Bigram N/A #s, sh, he, el, ll , le, ey s,h,e,l,e,y
CV-MODEL1 CCVCCV sh(CC), hel(CVC), ll (CC), lley(CV) s(C), h(C), e(V), l(C), e(V), y(V)
CV-MODEL2 CCVCCV sh(CC), e(CVC), ll(CC), ey(CV) As Above.
CV-MODEL3 CVCV #sh(C), e(CVC), ll (C), ey(CV) sh(C), s(C), h(C), e(V), l(C), e(V), y(V)

Figure 2: An example of transliteration for the word pair (shelley, ��Èø). Underlined characters are actually
transliterated for each segment.

4.1 Baseline

Most transliteration methods reported in the litera-
ture — either grapheme- or phoneme-based — use
n-grams (AbdulJaleel and Larkey, 2003; Jung et al.,
2000). Then-gram-based methods differ mainly in
the way that words are segmented, both for train-
ing and transliteration generation. A simplen-
gram based method works only on single charac-
ters (unigram) and transformation rules are defined
as si → tj, while an advanced method may take
the surrounding context into account (Jung et al.,
2000). We found that using one past symbol (bigram
model) works better than othern-gram based meth-
ods for English to Persian transliteration (Karimi et
al., 2006).

Our collapsed-vowel methods consider language
knowledge to improve the string segmentation of
n-gram techniques (Karimi et al., 2006). The pro-
cess begins by generating theconsonant-vowel se-
quence (Definition 2) of a source word. For ex-
ample, the word “shelley” is represented by the se-
quencep = CCV CCV V . Then, following the col-
lapsed vowel concept (Definition 3), this sequence
becomes “CCVCCV”. These approaches, which
we refer to asCV-MODEL1 and CV-MODEL2 re-
spectively, partition these sequences using basic pat-
terns (C andV) and main patterns (CC, CVC, VC

andCV). In the training phase, transliteration rules
are formed according to the boundaries of the de-
fined patterns and their aligned counterparts (based
onae2p or ap2e) in the target language wordT . Simi-
lar segmentation is applied during the transliteration
generation stage.

4.2 The Proposed Transliteration Approach

The restriction on the context length of consonants
imposed byCV-MODEL1 and CV-MODEL2 makes
the transliteration of consecutive consonants map-
ping to a particular character in the target language
difficult. For example, “ght” in English maps to
only one character in Persian: “�H”. Dealing with
languages which have different alphabets, and for
which the number of characters in their alphabets
also differs (such as26 and32 for English and Per-
sian), increases the possibility of facing these cases,
especially when moving from the language with
smaller alphabet size to the one with a larger size.
To more effectively address this, we propose acol-
lapsed consonant and vowel method (CV-MODEL3)
which uses the full reduced sequence (Definition 3),
rather than simply reduced vowel sequences. Al-
though recognition of consonant segments is based
on the vowel positions, consonants are considered as
independent blocks in each string. Conversely, vow-
els are transliterated in the context of surrounding
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consonants, as demonstrated in the example below.
A special symbol is used to indicate the start

and/or end of each word if the beginning and end
of the word is a consonant respectively. Therefore,
for the words starting or ending with consonants, the
symbol “#” is added, which is treated as a consonant
and therefore grouped in the consonant segment.
An example of applying this technique is shown in
Figure 2 for the string “shelley”. In this example,
“sh” and “ll” are treated as two consonant segments,
where the transliteration of individual characters in-
side a segment is dependent on the other members
but not the surrounding segments. However, this is
not the case for vowel sequences which incorporate
a level of knowledge about any segment neighbours.
Therefore, for the example “shelley”, the first seg-
ment is “sh” which belongs toC pattern. During
transliteration, if “#sh” does not appear in any ex-
isting rules, a backoff splits the segment to smaller
segments: “#” and “sh”, or “s”and “h”. The second
segment contains the vowel “e”. Since this vowel
is surrounded by consonants, the segment pattern is
CVC. In this case, backoff only applies for vowels as
consonants are supposed to be part of their own in-
dependent segments. That is, if search in the rules of
patternCVC was unsuccessful, it looks for “e” inV
pattern. Similarly, segmentation for this word con-
tinues with “ll” in C pattern and “ey” inCV pattern
(“y” is an approximant, and therefore considered as
a vowel when transliterating English to Persian).

4.3 Rules for Back-Transliteration

Written Persian ignores short vowels, and only long
vowels appear in text. This causes most English
vowels to disappear when transliterating from En-
glish to Persian; hence, these vowels must be re-
stored during back-transliteration.

When the initial transliteration happens from En-
glish to Persian, the transliterator (whether hu-
man or machine) uses the rules of transliterat-
ing from English as the source language. There-
fore, transliterating back to the original language
should consider the original process, to avoid los-
ing essential information. In terms of segmenta-
tion in collapsed-vowel models, different patterns
define segment boundaries in which vowels are
necessary clues. Although we do not have most
of these vowels in the transliteration generation

phase, it is possible to benefit from their existence
in the training phase. For example, usingCV-
MODEL3, the pair (�P¸È,merkel) with q

S
=C and

a
p2e

=((�,me),(P,r),(¸,ke),(È,l)), produces just one

transformation rule “�P¸È → merkel” based on a
C pattern. That is, the Persian string contains no
vowel characters. If, during the transliteration gen-
eration phase, a source word “É¿QÓ” (S=�P¸È) is
entered, there would be one and only one output
of “merkel”, while an alternative such as “mercle”
might be required instead. To avoid overfitting the
system by long consonant clusters, we perform seg-
mentation based on the Englishq sequence, but cate-
gorise the rules based on their Persian segment coun-
terparts. That is, for the pair (�P¸È,merkel) with

a
e2p

=((m,�),(e,ε),(r,P),(k,¸),(e,ε),(l,È)), these rules
are generated (with category patterns given in paren-
thesis): � → m (C), P¸ → rk (C), È → l (C), �P¸
→merk (C),P¸È→ rkel (C). We call the suggested
training approachreverse segmentation.

Reverse segmentation avoids clustering all the
consonants in one rule, since many English words
might be transliterated to all-consonant Persian
words.

4.4 Transliteration Generation and Ranking

In the transliteration generation stage, the source
word is segmented following the same process of
segmenting words in training stage, and a probabil-
ity is computed for each generated target word:

P (T |S) =

|K|
Y

k=1

P (T̂k|Ŝk),

where |K| is the number of distinct source seg-
ments. P (T̂k|Ŝk) is the probability of theŜk→T̂k

transformation rule, as obtained from the training
stage:

P (T̂k|Ŝk) =
frequency ofŜk → T̂k

frequency ofŜk

,

where frequency ofŜk is the number of its oc-
currence in the transformation rules. We apply a
tree structure, following Dijkstra’sα-shortest path,
to generate theα highest scoring (most probable)
transliterations, ranked based on their probabilities.
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Corpus
Baseline CV-MODEL3

Bigram CV-MODEL1 CV-MODEL2 GIZA++ New Alignment
Small Corpus

TOP-1 58.0 (2.2) 61.7 (3.0) 60.0 (3.9) 67.4 (5.5) 72.2 (2.2)
TOP-5 85.6 (3.4) 80.9 (2.2) 86.0 (2.8) 90.9 (2.1) 92.9 (1.6)
TOP-10 89.4 (2.9) 82.0 (2.1) 91.2 (2.5) 93.8 (2.1) 93.5 (1.7)

Large Corpus
TOP-1 47.2 (1.0) 50.6 (2.5) 47.4 (1.0) 55.3 (0.8) 59.8 (1.1)
TOP-5 77.6 (1.4) 79.8 (3.4) 79.2 (1.0) 84.5 (0.7) 85.4 (0.8)
TOP-10 83.3 (1.5) 84.9 (3.1) 87.0 (0.9) 89.5 (0.4) 92.6 (0.7)

Table 1: Mean (standard deviation) word accuracy (%) for English to Persian transliteration.

5 Experiments

To investigate the effectiveness ofCV-MODEL3 and
the new alignment approach on transliteration, we
first compareCV-MODEL3 with baseline systems,
employingGIZA++ for alignment generation during
system training. We then evaluate the same sys-
tems, using our new alignment approach. Back-
transliteration is also investigated, applying both
alignment systems andreverse segmentation. In all
our experiments, we used ten-fold cross-validation.
The statistical significance of different performance
levels are evaluated using a paired t-test. The no-
tation TOP-X indicates the firstX transliterations
prodcued by the automatic methods.

We used two corpora of word pairs in English
and Persian: the first, calledLarge, contains 16,670
word pairs; the second,Small, contains 1,857 word
pairs, and are described fully in our previous paper
(Karimi et al., 2006).

The results of transliteration experiments are eval-
uated using word accuracy (Kang and Choi, 2000)
which measures the proportion of transliterations
that are correct out of the test corpus.

5.1 Accuracy of Transliteration Approaches

The results of our experiments for transliterating En-
glish to Persian, usingGIZA++ for alignment gen-
eration, are shown in Table 1.CV-MODEL3 out-
performs all three baseline systems significantly in
TOP-1 andTOP-5 results, for both Persian corpora.
TOP-1 results were improved by 9.2% to 16.2%
(p<0.0001, paired t-test) relative to the baseline sys-
tems for theSmall corpus. For theLarge corpus,
CV-MODEL3 was 9.3% to 17.2% (p<0.0001) more
accurate relative to the baseline systems.

The results of applying our new alignment al-
gorithm are presented in the last column of Ta-
ble 1, comparing word accuracy ofCV-MODEL3 us-

ing GIZA++ and the new alignment for English to
Persian transliteration. Transliteration accuracy in-
creases inTOP-1 for both corpora (a relative increase
of 7.1% (p=0.002) for theSmall corpus and 8.1%
(p<0.0001) for theLarge corpus). TheTOP-10 re-
sults of the Large corpus again show a relative in-
crease of 3.5% (p=0.004). Although the new align-
ment also increases the performance forTOP-5 and
TOP-10 of theSmall corpus, these increases are not
statistically significant.

5.2 Accuracy of Back-Transliteration

The results of back-transliteration are shown in Ta-
ble 2. We first consider performance improvements
gained from usingCV-MODEL3: CV-MODEL3 using
GIZA++ outperforms Bigram,CV-MODEL1 andCV-
MODEL2 by 12.8% to 40.7% (p<0.0001) inTOP-
1 for the Small corpus. The corresponding im-
provement for theLarge corpus is 12.8% to 74.2%
(p<0.0001).

The fifth column of the table shows the perfor-
mance increase when usingCV-MODEL3 with the
new alignment algorithm: for theLarge corpus, the
new alignment approach gives a relative increase in
accuracy of 15.5% forTOP-5 (p<0.0001) and 10%
for TOP-10 (p=0.005). The new alignment method
does not show a significant difference usingCV-
MODEL3 for theSmall corpus.

The final column of Table 2 shows the perfor-
mance of theCV-MODEL3 with the new reverse seg-
mentation approach. Reverse segmentation leads to
a significant improvement over the new alignment
approach inTOP-1 results for theSmall corpus by
40.1% (p<0.0001), and 49.4% (p<0.0001) for the
Large corpus.
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Corpus Bigram CV-MODEL1 CV-MODEL2
CV-MODEL3

GIZA++ New Alignment Reverse
Small Corpus

TOP-1 23.1 (2.0) 28.8 (4.6) 24.9 (2.8) 32.5 (3.6) 34.4 (3.8) 48.2(2.9)
TOP-5 40.8 (3.1) 51.0 (4.8) 52.9 (3.4) 56.0 (3.5) 54.8 (3.7) 68.1(4.9)
TOP-10 50.1 (4.1) 58.2 (5.3) 63.2 (3.1) 64.2 (3.2) 63.8 (3.6) 75.7 (4.2)

Large Corpus
TOP-1 10.1 (0.6) 15.6 (1.0) 12.0 (1.0) 17.6 (0.8) 18.0 (1.2) 26.9(0.7)
TOP-5 20.6 (1.2) 31.7 (0.9) 28.0 (0.7) 36.2 (0.5) 41.8 (1.2) 41.3(1.7)
TOP-10 27.2 (1.0) 40.1 (1.1) 37.4 (0.8) 46.0 (0.8) 50.6 (1.1) 49.3 (1.6)

Table 2: Comparison of mean (standard deviation) word accuracy (%) for Persian to English transliteration.

6 Conclusions

We have presented a new algorithm for English to
Persian transliteration, and a novel alignment al-
gorithm applicable for transliteration. Our new
transliteration method (CV-MODEL3) outperforms
the previous approaches for English to Persian, in-
creasing word accuracy by a relative 9.2% to 17.2%
(TOP-1), when usingGIZA++ for alignment in train-
ing. This method shows further 7.1% to 8.1% in-
crease in word accuracy (TOP-1) with our new align-
ment algorithm.

Persian to English back-transliteration is also in-
vestigated, withCV-MODEL3 significantly outper-
forming other methods. Enriching this model with
a new reverse segmentation algorithm gives rise to
further accuracy gains in comparison to directly ap-
plying English to Persian methods.

In future work we will investigate whether pho-
netic information can help refine ourCV-MODEL3,
and experiment with manually constructed rules as
a baseline system.
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Abstract

A character-based measure of similarity is
an important component of many natu-
ral language processing systems, including
approaches to transliteration, coreference,
word alignment, spelling correction, and the
identification of cognates in related vocabu-
laries. We propose an alignment-based dis-
criminative framework for string similarity.
We gather features from substring pairs con-
sistent with a character-based alignment of
the two strings. This approach achieves
exceptional performance; on nine separate
cognate identification experiments using six
language pairs, we more than double the pre-
cision of traditional orthographic measures
like Longest Common Subsequence Ratio
and Dice’s Coefficient. We also show strong
improvements over other recent discrimina-
tive and heuristic similarity functions.

1 Introduction

String similarity is often used as a means of quan-
tifying the likelihood that two pairs of strings have
the same underlying meaning, based purely on the
character composition of the two words. Strube et
al. (2002) use Edit Distance as a feature for de-
termining if two words are coreferent. Taskar et
al. (2005) use French-English common letter se-
quences as a feature for discriminative word align-
ment in bilingual texts. Brill and Moore (2000) learn
misspelled-word to correctly-spelled-word similari-
ties for spelling correction. In each of these exam-
ples, a similarity measure can make use of the recur-
rent substring pairings that reliably occur between

words having the same meaning.
Across natural languages, these recurrent sub-

string correspondences are found in word pairs
known as cognates: words with a common form
and meaning across languages. Cognates arise ei-
ther from words in a common ancestor language
(e.g. light/Licht, night/Nacht in English/German)
or from foreign word borrowings (e.g. trampo-
line/toranporin in English/Japanese). Knowledge of
cognates is useful for a number of applications, in-
cluding sentence alignment (Melamed, 1999) and
learning translation lexicons (Mann and Yarowsky,
2001; Koehn and Knight, 2002).

We propose an alignment-based, discriminative
approach to string similarity and evaluate this ap-
proach on cognate identification. Section 2 de-
scribes previous approaches and their limitations. In
Section 3, we explain our technique for automati-
cally creating a cognate-identification training set. A
novel aspect of this set is the inclusion of competitive
counter-examples for learning. Section 4 shows how
discriminative features are created from a character-
based, minimum-edit-distance alignment of a pair
of strings. In Section 5, we describe our bitext and
dictionary-based experiments on six language pairs,
including three based on non-Roman alphabets. In
Section 6, we show significant improvements over
traditional approaches, as well as significant gains
over more recent techniques by Ristad and Yiani-
los (1998), Tiedemann (1999), Kondrak (2005), and
Klementiev and Roth (2006).

2 Related Work

String similarity is a fundamental concept in a va-
riety of fields and hence a range of techniques
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have been developed. We focus on approaches
that have been applied to words, i.e., uninterrupted
sequences of characters found in natural language
text. The most well-known measure of the simi-
larity of two strings is the Edit Distance or Lev-
enshtein Distance (Levenshtein, 1966): the number
of insertions, deletions and substitutions required to
transform one string into another. In our experi-
ments, we use Normalized Edit Distance (NED):
Edit Distance divided by the length of the longer
word. Other popular measures include Dice’s Coef-
ficient (DICE) (Adamson and Boreham, 1974), and
the length-normalized measures Longest Common
Subsequence Ratio (LCSR) (Melamed, 1999), and
Longest Common Prefix Ratio (PREFIX) (Kondrak,
2005). These baseline approaches have the impor-
tant advantage of not requiring training data. We
can also include in the non-learning category Kon-
drak (2005)’s Longest Common Subsequence For-
mula (LCSF), a probabilistic measure designed to
mitigate LCSR’s preference for shorter words.

Although simple to use, the untrained measures
cannot adapt to the specific spelling differences be-
tween a pair of languages. Researchers have there-
fore investigated adaptive measures that are learned
from a set of known cognate pairs. Ristad and Yiani-
los (1998) developed a stochastic transducer version
of Edit Distance learned from unaligned string pairs.
Mann and Yarowsky (2001) saw little improvement
over Edit Distance when applying this transducer to
cognates, even when filtering the transducer’s proba-
bilities into different weight classes to better approx-
imate Edit Distance. Tiedemann (1999) used various
measures to learn the recurrent spelling changes be-
tween English and Swedish, and used these changes
to re-weight LCSR to identify more cognates, with
modest performance improvements. Mulloni and
Pekar (2006) developed a similar technique to im-
prove NED for English/German.

Essentially, all these techniques improve on the
baseline approaches by using a set of positive (true)
cognate pairs to re-weight the costs of edit op-
erations or the score of sequence matches. Ide-
ally, we would prefer a more flexible approach that
can learn positive or negative weights on substring
pairings in order to better identify related strings.
One system that can potentially provide this flexi-
bility is a discriminative string-similarity approach

to named-entity transliteration by Klementiev and
Roth (2006). Although not compared to other simi-
larity measures in the original paper, we show that
this discriminative technique can strongly outper-
form traditional methods on cognate identification.

Unlike many recent generative systems, the Kle-
mentiev and Roth approach does not exploit the
known positions in the strings where the characters
match. For example, Brill and Moore (2000) com-
bine a character-based alignment with the Expec-
tation Maximization (EM) algorithm to develop an
improved probabilistic error model for spelling cor-
rection. Rappoport and Levent-Levi (2006) apply
this approach to learn substring correspondences for
cognates. Zelenko and Aone (2006) recently showed
a Klementiev and Roth (2006)-style discriminative
approach to be superior to alignment-based genera-
tive techniques for name transliteration. Our work
successfully uses the alignment-based methodology
of the generative approaches to enhance the feature
set for discriminative string similarity.

3 The Cognate Identification Task

Given two string lists, E and F , the task of cog-
nate identification is to find all pairs of strings (e, f)
that are cognate. In other similarity-driven applica-
tions, E and F could be misspelled and correctly
spelled words, or the orthographic and the phonetic
representation of words, etc. The task remains to
link strings with common meaning in E and F us-
ing only the string similarity measure.

We can facilitate the application of string simi-
larity to cognates by using a definition of cognation
not dependent on etymological analysis. For ex-
ample, Mann and Yarowsky (2001) define a word
pair (e, f) to be cognate if they are a translation
pair (same meaning) and their Edit Distance is less
than three (same form). We adopt an improved
definition (suggested by Melamed (1999) for the
French-English Canadian Hansards) that does not
over-propose shorter word pairs: (e, f) are cog-
nate if they are translations and their LCSR ≥
0.58. Note that this cutoff is somewhat conser-
vative: the English/German cognates light/Licht
(LCSR=0.8) are included, but not the cognates
eight/acht (LCSR=0.4).

If two words must have LCSR ≥ 0.58 to be cog-
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Foreign Language F Words f ∈ F Cognates Ef+ False Friends Ef−

Japanese (Rômaji) napukin napkin nanking, pumpkin, snacking, sneaking
French abondamment abundantly abandonment, abatement, ... wonderment
German prozyklische procyclical polished, prophylactic, prophylaxis

Table 1: Foreign-English cognates and false friend training examples.

nate, then for a given word f ∈ F , we need only
consider as possible cognates the subset of words in
E having an LCSR with f larger than 0.58, a set we
call Ef . The portion of Ef with the same meaning
as f , Ef+, are cognates, while the part with differ-
ent meanings, Ef−, are not cognates. The words
Ef− with similar spelling but different meaning are
sometimes called false friends. The cognate identi-
fication task is, for every word f ∈ F , and a list of
similarly spelled words Ef , to distinguish the cog-
nate subset Ef+ from the false friend set Ef−.

To create training data for our learning ap-
proaches, and to generate a high-quality labelled test
set, we need to annotate some of the (f, ef ∈ Ef )
word pairs for whether or not the words share a
common meaning. In Section 5, we explain our
two high-precision automatic annotation methods:
checking if each pair of words (a) were aligned in
a word-aligned bitext, or (b) were listed as transla-
tion pairs in a bilingual dictionary.

Table 1 provides some labelled examples with
non-empty cognate and false friend lists. Note that
despite these examples, this is not a ranking task:
even in highly related languages, most words in F

have empty Ef+ lists, and many have empty Ef−

as well. Thus one natural formulation for cognate
identification is a pairwise (and symmetric) cogna-
tion classification that looks at each pair (f, ef ) sep-
arately and individually makes a decision:

+(napukin,napkin)
– (napukin,nanking)
– (napukin,pumpkin)
In this formulation, the benefits of a discrimina-

tive approach are clear: it must find substrings that
distinguish cognate pairs from word pairs with oth-
erwise similar form. Klementiev and Roth (2006),
although using a discriminative approach, do not
provide their infinite-attribute perceptron with com-
petitive counter-examples. They instead use translit-
erations as positives and randomly-paired English
and Russian words as negative examples. In the fol-

lowing section, we also improve on Klementiev and
Roth (2006) by using a character-based string align-
ment to focus the features for discrimination.

4 Features for Discriminative Similarity

Discriminative learning works by providing a train-
ing set of labelled examples, each represented as a
set of features, to a module that learns a classifier. In
the previous section we showed how labelled word
pairs can be collected. We now address methods of
representing these word pairs as sets of features use-
ful for determining cognation.

Consider the Rômaji Japanese/English cognates:
(sutoresu,stress). The LCSR is 0.625. Note that the
LCSR of sutoresu with the English false friend sto-
ries is higher: 0.75. LCSR alone is too weak a fea-
ture to pick out cognates. We need to look at the
actual character substrings.

Klementiev and Roth (2006) generate features for
a pair of words by splitting both words into all pos-
sible substrings of up to size two:
sutoresu ⇒ { s, u, t, o, r, e, s, u, su, ut, to, ... su }
stress ⇒ { s, t, r, e, s, s, st, tr, re, es, ss }
Then, a feature vector is built from all substring pairs
from the two words such that the difference in posi-
tions of the substrings is within one:
{s-s, s-t, s-st, su-s, su-t, su-st, su-tr... r-s, r-s, r-es...}
This feature vector provides the feature representa-
tion used in supervised machine learning.

This example also highlights the limitations of the
Klementiev and Roth approach. The learner can pro-
vide weight to features like s-s or s-st at the begin-
ning of the word, but because of the gradual accu-
mulation of positional differences, the learner never
sees the tor-tr and es-es correspondences that really
help indicate the words are cognate.

Our solution is to use the minimum-edit-distance
alignment of the two strings as the basis for fea-
ture extraction, rather than the positional correspon-
dences. We also include beginning-of-word (ˆ) and
end-of-word ($) markers (referred to as boundary
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markers) to highlight correspondences at those po-
sitions. The pair (sutoresu, stress) can be aligned:

For the feature representation, we only extract sub-
string pairs that are consistent with this alignment.1

That is, the letters in our pairs can only be aligned to
each other and not to letters outside the pairing:
{ ˆ-ˆ,ˆs-ˆs, s-s, su-s, ut-t, t-t,... es-es, s-s, su-ss...}
We define phrase pairs to be the pairs of substrings
consistent with the alignment. A similar use of the
term “phrase” exists in machine translation, where
phrases are often pairs of word sequences consistent
with word-based alignments (Koehn et al., 2003).

By limiting the substrings to only those pairs
that are consistent with the alignment, we gener-
ate fewer, more-informative features. Using more
precise features allows a larger maximum substring
size L than is feasible with the positional approach.
Larger substrings allow us to capture important re-
curring deletions like the “u” in sut-st.

Tiedemann (1999) and others have shown the im-
portance of using the mismatching portions of cog-
nate pairs to learn the recurrent spelling changes be-
tween two languages. In order to capture mismatch-
ing segments longer than our maximum substring
size will allow, we include special features in our
representation called mismatches. Mismatches are
phrases that span the entire sequence of unaligned
characters between two pairs of aligned end char-
acters (similar to the “rules” extracted by Mulloni
and Pekar (2006)). In the above example, su$-ss$
is a mismatch with “s” and “$” as the aligned end
characters. Two sets of features are taken from each
mismatch, one that includes the beginning/ending
aligned characters as context and one that does not.
For example, for the endings of the French/English
pair (économique,economic), we include both the
substring pairs ique$:ic$ and que:c as features.

One consideration is whether substring features
should be binary presence/absence, or the count of
the feature in the pair normalized by the length of
the longer word. We investigate both of these ap-

1If the words are from different alphabets, we can get the
alignment by mapping the letters to their closest Roman equiv-
alent, or by using the EM algorithm to learn the edits (Ristad
and Yianilos, 1998).

proaches in our experiments. Also, there is no rea-
son not to include the scores of baseline approaches
like NED, LCSR, PREFIX or DICE as features in
the representation as well. Features like the lengths
of the two words and the difference in lengths of the
words have also proved to be useful in preliminary
experiments. Semantic features like frequency simi-
larity or contextual similarity might also be included
to help determine cognation between words that are
not present in a translation lexicon or bitext.

5 Experiments

Section 3 introduced two high-precision methods for
generating labelled cognate pairs: using the word
alignments from a bilingual corpus or using the en-
tries in a translation lexicon. We investigate both of
these methods in our experiments. In each case, we
generate sets of labelled word pairs for training, test-
ing, and development. The proportion of positive ex-
amples in the bitext-labelled test sets range between
1.4% and 1.8%, while ranging between 1.0% and
1.6% for the dictionary data.2

For the discriminative methods, we use a popu-
lar Support Vector Machine (SVM) learning pack-
age called SVMlight (Joachims, 1999). SVMs are
maximum-margin classifiers that achieve good per-
formance on a range of tasks. In each case, we
learn a linear kernel on the training set pairs and
tune the parameter that trades-off training error and
margin on the development set. We apply our classi-
fier to the test set and score the pairs by their pos-
itive distance from the SVM classification hyper-
plane (also done by Bilenko and Mooney (2003)
with their token-based SVM similarity measure).

We also score the test sets using traditional ortho-
graphic similarity measures PREFIX, DICE, LCSR,
and NED, an average of these four, and Kondrak
(2005)’s LCSF. We also use the log of the edit prob-
ability from the stochastic decoder of Ristad and
Yianilos (1998) (normalized by the length of the
longer word) and Tiedemann (1999)’s highest per-
forming system (Approach #3). Both use only the
positive examples in our training set. Our evaluation
metric is 11-pt average precision on the score-sorted
pair lists (also used by Kondrak and Sherif (2006)).

2The cognate data sets used in our experiments are available
at http://www.cs.ualberta.ca/˜bergsma/Cognates/
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5.1 Bitext Experiments

For the bitext-based annotation, we use publicly-
available word alignments from the Europarl corpus,
automatically generated by GIZA++ for French-
English (Fr), Spanish-English (Es) and German-
English (De) (Koehn and Monz, 2006). Initial clean-
ing of these noisy word pairs is necessary. We thus
remove all pairs with numbers, punctuation, a capi-
talized English word, and all words that occur fewer
than ten times. We also remove many incorrectly
aligned words by filtering pairs where the pairwise
Mutual Information between the words is less than
7.5. This processing leaves vocabulary sizes of 39K
for French, 31K for Spanish, and 60K for German.

Our labelled set is then generated from pairs
with LCSR ≥ 0.58 (using the cutoff from Melamed
(1999)). Each labelled set entry is a triple of a) the
foreign word f , b) the cognates Ef+ and c) the false
friends Ef−. For each language pair, we randomly
take 20K triples for training, 5K for development
and 5K for testing. Each triple is converted to a set
of pairwise examples for learning and classification.

5.2 Dictionary Experiments

For the dictionary-based cognate identification, we
use French, Spanish, German, Greek (Gr), Japanese
(Jp), and Russian (Rs) to English translation pairs
from the Freelang program.3 The latter three pairs
were chosen so that we can evaluate on more distant
languages that use non-Roman alphabets (although
the Rômaji Japanese is Romanized by definition).
We take 10K labelled-set triples for training, 2K for
testing and 2K for development.

The baseline approaches and our definition of
cognation require comparison in a common alpha-
bet. Thus we use a simple context-free mapping to
convert every Russian and Greek character in the
word pairs to their nearest Roman equivalent. We
then label a translation pair as cognate if the LCSR
between the words’ Romanized representations is
greater than 0.58. We also operate all of our com-
parison systems on these Romanized pairs.

6 Results

We were interested in whether our working defini-
tion of cognation (translations and LCSR ≥ 0.58)

3http://www.freelang.net/dictionary/

Figure 1: LCSR histogram and polynomial trendline
of French-English dictionary pairs.

System Prec
Klementiev-Roth (KR) L≤2 58.6
KR L≤2 (normalized, boundary markers) 62.9
phrases L≤2 61.0
phrases L≤3 65.1
phrases L≤3 + mismatches 65.6
phrases L≤3 + mismatches + NED 65.8

Table 2: Bitext French-English development set cog-
nate identification 11-pt average precision (%).

reflects true etymological relatedness. We looked at
the LCSR histogram for translation pairs in one of
our translation dictionaries (Figure 1). The trendline
suggests a bimodal distribution, with two distinct
distributions of translation pairs making up the dic-
tionary: incidental letter agreement gives low LCSR
for the larger, non-cognate portion and high LCSR
characterizes the likely cognates. A threshold of
0.58 captures most of the cognate distribution while
excluding non-cognate pairs. This hypothesis was
confirmed by checking the LCSR values of a list
of known French-English cognates (randomly col-
lected from a dictionary for another project): 87.4%
were above 0.58. We also checked cognation on
100 randomly-sampled, positively-labelled French-
English pairs (i.e. translated or aligned and having
LCSR ≥ 0.58) from both the dictionary and bitext
data. 100% of the dictionary pairs and 93% of the
bitext pairs were cognate.

Next, we investigate various configurations of the
discriminative systems on one of our cognate iden-
tification development sets (Table 2). The origi-
nal Klementiev and Roth (2006) (KR) system can
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Bitext Dictionary
System Fr Es De Fr Es De Gr Jp Rs
PREFIX 34.7 27.3 36.3 45.5 34.7 25.5 28.5 16.1 29.8
DICE 33.7 28.2 33.5 44.3 33.7 21.3 30.6 20.1 33.6
LCSR 34.0 28.7 28.5 48.3 36.5 18.4 30.2 24.2 36.6
NED 36.5 31.9 32.3 50.1 40.3 23.3 33.9 28.2 41.4
PREFIX+DICE+LCSR+NED 38.7 31.8 39.3 51.6 40.1 28.6 33.7 22.9 37.9
Kondrak (2005): LCSF 29.8 28.9 29.1 39.9 36.6 25.0 30.5 33.4 45.5
Ristad & Yanilos (1998) 37.7 32.5 34.6 56.1 46.9 36.9 38.0 52.7 51.8
Tiedemann (1999) 38.8 33.0 34.7 55.3 49.0 24.9 37.6 33.9 45.8
Klementiev & Roth (2006) 61.1 55.5 53.2 73.4 62.3 48.3 51.4 62.0 64.4
Alignment-Based Discriminative 66.5 63.2 64.1 77.7 72.1 65.6 65.7 82.0 76.9

Table 3: Bitext, Dictionary Foreign-to-English cognate identification 11-pt average precision (%).

be improved by normalizing the feature count by
the longer string length and including the bound-
ary markers. This is therefore done with all the
alignment-based approaches. Also, because of the
way its features are constructed, the KR system
is limited to a maximum substring length of two
(L≤2). A maximum length of three (L≤3) in the KR
framework produces millions of features and pro-
hibitive training times, while L≤3 is computation-
ally feasible in the phrasal case, and increases pre-
cision by 4.1% over the phrases L≤2 system.4 In-
cluding mismatches results in another small boost in
performance (0.5%), while using an Edit Distance
feature again increases performance by a slight mar-
gin (0.2%). This ranking of configurations is consis-
tent across all the bitext-based development sets; we
therefore take the configuration of the highest scor-
ing system as our Alignment-Based Discriminative
system for the remainder of this paper.

We next compare the Alignment-Based Discrim-
inative scorer to the various other implemented ap-
proaches across the three bitext and six dictionary-
based cognate identification test sets (Table 3). The
table highlights the top system among both the
non-adaptive and adaptive similarity scorers.5 In

4Preliminary experiments using even longer phrases (be-
yond L≤3) currently produce a computationally prohibitive
number of features for SVM learning. Deploying current fea-
ture selection techniques might enable the use of even more ex-
pressive and powerful feature sets with longer phrase lengths.

5Using the training data and the SVM to weight the com-
ponents of the PREFIX+DICE+LCSR+NED scorer resulted in
negligible improvements over the simple average on our devel-
opment data.

each language pair, the alignment-based discrimi-
native approach outperforms all other approaches,
but the KR system also shows strong gains over
non-adaptive techniques and their re-weighted ex-
tensions. This is in contrast to previous compar-
isons which have only demonstrated minor improve-
ments with adaptive over traditional similarity mea-
sures (Kondrak and Sherif, 2006).

We consistently found that the original KR perfor-
mance could be surpassed by a system that normal-
izes the KR feature count and adds boundary mark-
ers. Across all the test sets, this modification results
in a 6% average gain in performance over baseline
KR, but is still on average 5% below the Alignment-
Based Discriminative technique, with a statistically
significantly difference on each of the nine sets.6

Figure 2 shows the relationship between train-
ing data size and performance in our bitext-based
French-English data. Note again that the Tiedemann
and Ristad & Yanilos systems only use the positive
examples in the training data. Our alignment-based
similarity function outperforms all the other systems
across nearly the entire range of training data. Note
also that the discriminative learning curves show no
signs of slowing down: performance grows logarith-
mically from 1K to 846K word pairs.

For insight into the power of our discrimina-
tive approach, we provide some of our classifiers’
highest and lowest-weighted features (Table 4).

6Following Evert (2004), significance was computed using
Fisher’s exact test (at p = 0.05) to compare the n-best word pairs
from the scored test sets, where n was taken as the number of
positive pairs in the set.
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Figure 2: Bitext French-English cognate identifica-
tion learning curve.

Lang. Feat. Wt. Example
Fr (Bitext) ées-ed +8.0 vérifiées:verified
Jp (Dict.) ru-l +5.9 penaruti:penalty
De (Bitext) k-c +5.5 kreativ:creative
Rs (Dict.) irov- +4.9 motivirovat:motivate
Gr (Dict.) f-ph +4.1 symfonia:symphony
Gr (Dict.) kos-c +3.3 anarchikos:anarchic
Gr (Dict.) os$-y$ -2.5 anarchikos:anarchy
Jp (Dict.) ou-ou -2.6 handoutai:handout
Es (Dict.) -un -3.1 balance:unbalance
Fr (Dict.) er$-er$ -5.0 former:former
Es (Bitext) mos-s -5.1 toleramos:tolerates

Table 4: Example features and weights for var-
ious Alignment-Based Discriminative classifiers
(Foreign-English, negative pairs in italics).

Note the expected correspondences between foreign
spellings and English (k-c, f-ph), but also features
that leverage derivational and inflectional morphol-
ogy. For example, Greek-English pairs with the
adjective-ending correspondence kos-c, e.g. anar-
chikos:anarchic, are favoured, but pairs with the ad-
jective ending in Greek and noun ending in English,
os$-y$, are penalized; indeed, by our definition, an-
archikos:anarchy is not cognate. In a bitext, the
feature ées-ed captures that feminine-plural inflec-
tion of past tense verbs in French corresponds to
regular past tense in English. On the other hand,
words ending in the Spanish first person plural verb
suffix -amos are rarely translated to English words
ending with the suffix -s, causing mos-s to be pe-

Gr-En (Dict.) Es-En (Bitext)
alkali:alkali agenda:agenda

makaroni:macaroni natural:natural
adrenalini:adrenaline márgenes:margins
flamingko:flamingo hormonal:hormonal

spasmodikos:spasmodic radón:radon
amvrosia:ambrosia higiénico:hygienic

Table 5: Highest scored pairs by Alignment-Based
Discriminative classifier (negative pairs in italics).

nalized. The ability to leverage negative features,
learned from appropriate counter examples, is a key
innovation of our discriminative framework.

Table 5 gives the top pairs scored by our system
on two of the sets. Notice that unlike traditional sim-
ilarity measures that always score identical words
higher than all other pairs, by virtue of our feature
weighting, our discriminative classifier prefers some
pairs with very characteristic spelling changes.

We performed error analysis by looking at all the
pairs our system scored quite confidently (highly
positive or highly negative similarity), but which
were labelled oppositely. Highly-scored false pos-
itives arose equally from 1) actual cognates not
linked as translations in the data, 2) related words
with diverged meanings, e.g. the error in Table 5:
makaroni in Greek actually means spaghetti in En-
glish, and 3) the same word stem, a different part
of speech (e.g. the Greek/English adjective/noun
synonymos:synonym). Meanwhile, inspection of the
highly-confident false negatives revealed some (of-
ten erroneously-aligned in the bitext) positive pairs
with incidental letter match (e.g. the French/English
recettes:proceeds) that we would not actually deem
to be cognate. Thus the errors that our system makes
are often either linguistically interesting or point out
mistakes in our automatically-labelled bitext and (to
a lesser extent) dictionary data.

7 Conclusion

This is the first research to apply discriminative
string similarity to the task of cognate identification.
We have introduced and successfully applied an
alignment-based framework for discriminative sim-
ilarity that consistently demonstrates improved per-
formance in both bitext and dictionary-based cog-
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nate identification on six language pairs. Our im-
proved approach can be applied in any of the di-
verse applications where traditional similarity mea-
sures like Edit Distance and LCSR are prevalent. We
have also made available our cognate identification
data sets, which will be of interest to general string
similarity researchers.

Furthermore, we have provided a natural frame-
work for future cognate identification research. Pho-
netic, semantic, or syntactic features could be in-
cluded within our discriminative infrastructure to aid
in the identification of cognates in text. In particu-
lar, we plan to investigate approaches that do not re-
quire the bilingual dictionaries or bitexts to generate
training data. For example, researchers have auto-
matically developed translation lexicons by seeing
if words from each language have similar frequen-
cies, contexts (Koehn and Knight, 2002), bursti-
ness, inverse document frequencies, and date dis-
tributions (Schafer and Yarowsky, 2002). Semantic
and string similarity might be learned jointly with a
co-training or bootstrapping approach (Klementiev
and Roth, 2006). We may also compare alignment-
based discriminative string similarity with a more
complex discriminative model that learns the align-
ments as latent structure (McCallum et al., 2005).
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Abstract

Current research in text mining favours the
quantity of texts over their quality. But for
bilingual terminology mining, and for many
language pairs, large comparable corpora
are not available. More importantly, as terms
are defined vis-à-vis a specific domain with
a restricted register, it is expected that the
quality rather than the quantity of the corpus
matters more in terminology mining. Our
hypothesis, therefore, is that the quality of
the corpus is more important than the quan-
tity and ensures the quality of the acquired
terminological resources. We show how im-
portant the type of discourse is as a charac-
teristic of the comparable corpus.

1 Introduction

Two main approaches exist for compiling corpora:
“Big is beautiful” or “Insecurity in large collec-
tions”. Text mining research commonly adopts the
first approach and favors data quantity over qual-
ity. This is normally justified on the one hand by
the need for large amounts of data in order to make
use of statistic or stochastic methods (Manning and
Schütze, 1999), and on the other by the lack of oper-
ational methods to automatize the building of a cor-
pus answering to selected criteria, such as domain,
register, media, style or discourse.

For lexical alignment from comparable corpora,
good results on single words can be obtained from
large corpora — several millions words — the accu-
racy of proposed translation is about 80% for the top
10-20 candidates (Fung, 1998; Rapp, 1999; Chiao
and Zweigenbaum, 2002). (Cao and Li, 2002) have
achieved 91% accuracy for the top three candidates
using the Web as a comparable corpus. But for spe-
cific domains, and many pairs of languages, such
huge corpora are not available. More importantly,
as terms are defined vis-à-vis a specific domain with
a restricted register, it is expected that the quality
rather than the quantity of the corpus matters more in
terminology mining. For terminology mining, there-
fore, our hypothesis is that the quality of the corpora
is more important than the quantity and that this en-
sures the quality of the acquired terminological re-
sources.

Comparable corpora are “sets of texts in different
languages, that are not translations of each other”
(Bowker and Pearson, 2002, p. 93). The term com-
parable is used to indicate that these texts share
some characteristics or features: topic, period, me-
dia, author, register (Biber, 1994), discourse... This
corpus comparability is discussed by lexical align-
ment researchers but never demonstrated: it is of-
ten reduced to a specific domain, such as the med-
ical (Chiao and Zweigenbaum, 2002) or financial
domains (Fung, 1998), or to a register, such as
newspaper articles (Fung, 1998). For terminology
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mining, the comparability of the corpus should be
based on the domain or the sub-domaine, but also
on the type of discourse. Indeed, discourse acts
semantically upon the lexical units. For a defined
topic, some terms are specific to one discourse or
another. For example, for French, within the sub-
domain of obesity in the domain of medicine, we
find the term excès de poids (overweight) only in-
side texts sharing a popular science discourse, and
the synonym excès pondéral (overweight) only in
scientific discourse. In order to evaluate how impor-
tant the discourse criterion is for building bilingual
terminological lists, we carried out experiments on
French-Japanese comparable corpora in the domain
of medicine, more precisely on the topic of diabetes
and nutrition, using texts collected from the Web and
manually selected and classified into two discourse
categories: one contains only scientific documents
and the other contains both scientific and popular
science documents.

We used a state-of-the-art multilingual terminol-
ogy mining chain composed of two term extraction
programs, one in each language, and an alignment
program. The term extraction programs are pub-
licly available and both extract multi-word terms
that are more precise and specific to a particular sci-
entific domain than single word terms. The align-
ment program makes use of the direct context-vector
approach (Fung, 1998; Peters and Picchi, 1998;
Rapp, 1999) slightly modified to handle both single-
and multi-word terms. We evaluated the candidate
translations of multi-word terms using a reference
list compiled from publicly available resources. We
found that taking discourse type into account re-
sulted in candidate translations of a better quality
even when the corpus size is reduced by half. Thus,
even using a state-of-the-art alignment method well-
known as data greedy, we reached the conclusion
that the quantity of data is not sufficient to obtain
a terminological list of high quality and that a real
comparability of corpora is required.

2 Multilingual terminology mining chain

Taking as input a comparable corpora, the multilin-
gual terminology chain outputs a list of single- and
multi-word candidate terms along with their candi-
date translations. Its architecture is summarized in

Figure 1 and comprises term extraction and align-
ment programs.

2.1 Term extraction programs

The terminology extraction programs are avail-
able for both French1 (Daille, 2003) and Japanese2

(Takeuchi et al., 2004). The terminological units
that are extracted are multi-word terms whose syn-
tactic patterns correspond either to a canonical or a
variation structure. The patterns are expressed us-
ing part-of-speech tags: for French, Brill’s POS tag-
ger3 and the FLEM lemmatiser4 are utilised, and for
Japanese, CHASEN5. For French, the main patterns
are N N, N Prep N et N Adj and for Japanese, N N,
N Suff, Adj N and Pref N. The variants handled are
morphological for both languages, syntactical only
for French, and compounding only for Japanese. We
consider as a morphological variant a morphological
modification of one of the components of the base
form, as a syntactical variant the insertion of another
word into the components of the base form, and as
a compounding variant the agglutination of another
word to one of the components of the base form. For
example, in French, the candidate MWT sécrétion
d’insuline (insulin secretion) appears in the follow-
ing forms:

� base form of N Prep N pattern: sécrétion
d’insuline (insulin secretion);

� inflexional variant: sécrétions d’insuline (in-
sulin secretions);

� syntactic variant (insertion inside the base
form of a modifier): sécrétion pancréatique
d’insuline (pancreatic insulin secretion);

� syntactic variant (expansion coordination of
base form): secrétion de peptide et d’insuline
(insulin and peptide secretion).

The MWT candidates secrétion insulinique (insulin
secretion) and hypersécrétion insulinique (insulin

1http://www.sciences.univ-nantes.fr/
info/perso/permanents/daille/ and release
LINUX.

2http://research.nii.ac.jp/~koichi/
study/hotal/

3http://www.atilf.fr/winbrill/
4http://www.univ-nancy2.fr/pers/namer/
5http://chasen.org/$\sim$taku/software/

mecab/
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Figure 1: Architecture of the multilingual terminology mining chain

hypersecretion) have also been identified and lead
together with sécrétion d’insuline (insulin secretion)
to a cluster of semantically linked MWTs.

In Japanese, the MWT
���������

. �
	 6 (in-
sulin secretion) appears in the following forms:

� base form of NN pattern:
�������
�

/N � . �
	 /N � (insulin secretion);

� compounding variant (agglutination of a
word at the end of the base form):

�����
���

/N � . ��	 /N � . ��� /N � (insulin secretion
ability)

At present, the Japanese term extraction program
does not cluster terms.

2.2 Term alignment

The lexical alignment program adapts the direct
context-vector approach proposed by (Fung, 1998)
for single-word terms (SWTs) to multi-word terms
(MWTs). It aligns source MWTs with target single

6For all Japanese examples, we explicitly segment the com-
pound into its component parts through the use of the “.” sym-
bol.

words, SWTs or MWTs. From now on, we will refer
to lexical units as words, SWTs or MWTs.

2.2.1 Implementation of the direct
context-vector method

Our implementation of the direct context-vector
method consists of the following 4 steps:

1. We collect all the lexical units in the context of
each lexical unit � and count their occurrence
frequency in a window of � words around � .
For each lexical unit � of the source and the
target language, we obtain a context vector ���
which gathers the set of co-occurrence units �
associated with the number of times that � and �
occur together � �!� �" . We normalise context vec-
tors using an association score such as Mutual
Information or Log-likelihood. In order to re-
duce the arity of context vectors, we keep only
the co-occurrences with the highest association
scores.

2. Using a bilingual dictionary, we translate the
lexical units of the source context vector.
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3. For a word to be translated, we compute the
similarity between the translated context vector
and all target vectors through vector distance
measures such as Cosine (Salton and Lesk,
1968) or Jaccard (Tanimoto, 1958).

4. The candidate translations of a lexical unit are
the target lexical units closest to the translated
context vector according to vector distance.

2.2.2 Translation of lexical units

The translation of the lexical units of the context
vectors, which depends on the coverage of the bilin-
gual dictionary vis-à-vis the corpus, is an important
step of the direct approach: more elements of the
context vector are translated more the context vector
will be discrimating for selecting translations in the
target language. If the bilingual dictionary provides
several translations for a lexical unit, we consider all
of them but weight the different translations by their
frequency in the target language. If an MWT cannot
be directly translated, we generate possible trans-
lations by using a compositional method (Grefen-
stette, 1999). For each element of the MWT found
in the bilingual dictionary, we generate all the trans-
lated combinations identified by the term extraction
program. For example, in the case of the MWT fa-
tigue chronique (chronic fatigue), we have the fol-
lowing four translations for fatigue: ��� , ��� ,���

, �
	 and the following two translations for
chronique: �
����� , ��� . Next, we generate all
combinations of translated elements (See Table 17)
and select those which refer to an existing MWT
in the target language. Here, only one term has
been identified by the Japanese terminology extrac-
tion program: ��� . ��� . In this approach, when
it is not possible to translate all parts of an MWT,
or when the translated combinations are not identi-
fied by the term extraction program, the MWT is not
taken into account in the translation process.

This approach differs from that used by (Ro-
bitaille et al., 2006) for French/Japanese translation.
They first decompose the French MWT into com-
binations of shorter multi-word units (MWU) ele-
ments. This approach makes the direct translation of
a subpart of the MWT possible if it is present in the

7the French word order is inverted to take into account the
different constraints between French and Japanese.

chronique fatigue

������� ���
��� ���
������� ���
��� ���
������� �
�
��� �
�
������� ��	
��� ��	

Table 1: Illustration of the compositional method.
The underlined Japanese MWT actually exists.

bilingual dictionary. For an MWT of length � , (Ro-
bitaille et al., 2006) produce all the combinations of
MWU elements of a length less than or equal to � .
For example, the French term syndrome de fatigue
chronique (chronic fatigue disease) yields the fol-
lowing four combinations: i) � syndrome de fatigue
chronique � , ii) � syndrome de fatigue ��� chronique � , iii)
� syndrome ��� fatigue chronique � and iv) � syndrome �
� fatigue ��� chronique � . We limit ourselves to the com-
bination of type iv) above since 90% of the candidate
terms provided by the term extraction process, after
clustering, are only composed of two content words.

3 Linguistic resources

In this section we outline the different textual re-
sources used for our experiments: the comparable
corpora, bilingual dictionary and reference lexicon.

3.1 Comparable corpora

The French and Japanese documents were harvested
from the Web by native speakers of each language
who are not domain specialists. The texts are from
the medical domain, within the sub-domain of dia-
betes and nutrition. Document harvesting was car-
ried out by a domain-based search, then by man-
ual selection. The search for documents sharing the
same domain can be achieved using keywords re-
flecting the specialized domain: for French, diabète
and obésité (diabetes and obesity); for Japanese,  !�"

and #
$ . Then the documents were classified
according to the type of discourse: scientific or pop-
ularized science. At present, the selection and clas-
sification phases are carried out manually although
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research into how to automatize these two steps is
ongoing. Table 2 shows the main features of the
harvested comparable corpora: the number of doc-
uments, and the number of words for each language
and each type of discourse.

French Japanese
doc. words doc. words

Scientific 65 425,781 119 234,857
Popular 183 267,885 419 572,430
science

Total 248 693,666 538 807,287

Table 2: Comparable corpora statistics

From these documents, we created two compara-
ble corpora:

� � scientific corpora � , composed only of scientific
documents;

� �mixed corpora � , composed of both popular and
scientific documents.

3.2 Bilingual dictionary

The French-Japanese bilingual dictionary required
for the translation phase is composed of four dic-
tionaries freely available from the Web8, and of
the French-Japanese Scientific Dictionary (1989).
It contains about 173,156 entries (114,461 single
words and 58,695 multi words) with an average of
2.1 translations per entry.

3.3 Terminology reference lists

To evaluate the quality of the terminology min-
ing chain, we built two bilingual terminology refer-
ence lists which include either SWTs or SMTs and
MWTs:

� � lexicon 1 � 100 French SWTs of which the
translation are Japanese SWTs.

� � lexicon 2 � 60 French SWTs and MWTs of
which the translation could be Japanese SWTs
or MWTs.

8http://kanji.free.fr/, http://
quebec-japon.com/lexique/index.php?a=
index&d=25, http://dico.fj.free.fr/index.
php, http://quebec-japon.com/lexique/index.
php?a=index&d=3

These lexicons contains terms that occur at least
twice in the scientific corpus, have been identified
monolingually by both the French and the Japanese
term extraction programs, and are found in either
the UMLS9 thesaurus or in the French part of the
Grand dictionnaire terminologique10 in the domain
of medicine. These constraints prevented us from
obtaining 100 French SWTs and MWTs for lexicon
2. The main reasons for this are the small number
of UMLS terms dealing with the sub-domain of di-
abetes and the great difference between the linguis-
tic structures of French and Japanese terms: French
pattern definitions tend to cover more phrasal units
while Japanese pattern definitions focus more nar-
rowly on compounds. So, even if monolingually
the same percentage of terms are detected in both
languages, this does not guarantee a good result in
bilingual terminology extraction. For example, the
French term diabète de type 1 (Diabetes mellitus
type I) extracted by the French term extraction pro-
gram and found in UMLS was not extracted by the
Japanese term extraction program although it ap-
pears frequently in the Japanese corpus ( �

�  ! "
).

In bilingual terminology mining from specialized
comparable corpora, the terminology reference lists
are often composed of a hundred words (180 SWTs
in (Déjean and Gaussier, 2002) and 97 SWTs in
(Chiao and Zweigenbaum, 2002)).

4 Experiments

In order to evaluate the influence of discourse type
on the quality of bilingual terminology extraction,
two experiments were carried out. Since the main
studies relating to bilingual lexicon extraction from
comparable corpora concentrate on finding transla-
tion candidates for SWTs, we first perform an ex-
periment using � lexicon 1 � , which is composed of
SWTs. In order to evaluate the hypothesis of this
study, we then conducted a second experiment using
� lexicon 2 � , which is composed of MWTs.

4.1 Alignment results for � lexicon 1 �
Table 3 shows the results obtained. The first three
columns indicate the number of translations found

9http://www.nlm.nih.gov/research/umls
10http://www.granddictionnaire.com/
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���������
	�� 
���������� ����������������� � �"! �$# � �"! ��#
� scientific corpora � 64 11.6 20.2 49 52
�mixed corpora � 76 11.5 16.3 51 60

Table 3: Bilingual terminology extraction results for � lexicon 1 �
��� �����
	�� 
���� ����� ����������� ����� � �"! �$# � �"! ��#

� scientific corpora � 32 16.1 21.9 18 25
�mixed corpora � 32 23.9 27.6 17 20

Table 4: Bilingual terminology extraction results for � lexicon 2 �

(
��� �����%	&�

), and the average (

���� �����

) and standard
deviation (

�������'��� �����
) positions for the transla-

tions in the ranked list of candidate translations.
The other two columns indicate the percentage of
French terms for which the correct translation was
obtained among the top ten and top twenty candi-
dates (

����! �$# , � �"! ��# ).
The results of this experiment (see Table 3) show

that the terms belonging to � lexicon 1 � were more
easily identified in the corpus of scientific and pop-
ular documents (51% and 60% respectively for� �"! �$# and

� ��! ��# ) than in the corpus of scien-
tific documents (49% and 52%). Since � lexicon 1 � is
composed of SWTs, these terms are not more char-
acteristic of popular discourse than scientific dis-
course.

The frequency of the terms to be translated is an
important factor in the vectorial approach. In fact,
the higher the frequency of the term to be translated,
the more the associated context vector will be dis-
criminant. Table 5 confirms this hypothesis since
the most frequent terms, such as insuline (#occ. 364
- insulin:

��� � � �
), obésité (#occ. 333 - obe-

sity: #
$ ), and prévention (#occ. 120 - prevention:(*)
), were the best translated.

[2,10] [11,50] [51,100] [101,...]

fr 3/17 12/29 17/23 28/31
jp 4/26 32/41 14/20 10/13

Table 5: Frequency in � corpus 2 � of the terms trans-
lated belonging to � lexicon 1 � (for

� �"! ��# )

As a baseline, (Déjean et al., 2002) obtain 43%
and 51% for the first 10 and 20 candidates respec-
tively in a 100,000-word medical corpus, and 79%
and 84% in a multi-domain 8 million-word cor-
pus. For single-item French-English words applied
on a medical corpus of 0.66 million words, (Chiao
and Zweigenbaum, 2002) obtained 61% and 94%
precision on the top-10 and top-20 candidates. In
our case, we obtained 51% and 60% precision for
the top 10 and 20 candidates in a 1.5 million-word
French/Japanese corpus.

4.2 Alignment results for � lexicon 2 �
The analysis results in table 4 indicate only a small
number of the terms in � lexicon 2 � were found.
Since we work with small-size corpora, this result
is not surprising. Because multi-word terms are
more specific than single-word terms, they tend to
occur less frequently in a corpus and are more diffi-
cult to translate. Here, the terms belonging � lexicon
2 � were more accurately identified from the corpus
which consists of scientific documents than the cor-
pus which consists of scientific and popular doc-
uments. In this instance, we obtained 30% and
42% precision for the top 10 and top 20 candi-
dates in a 0.84 million-word scientific corpus. More-
over, if we count the number of terms which are
correctly translated between � scientific corpora � and
�mixed corpora � , we find the majority of the trans-
lated terms with �mixed corpora � in those obtained
with � scientific corpora � 11 By combining parameters

11Here, +�,.-0/2143�57683
9;:<3
= , +�,.-?>@1
A4=B6�A%C;:D3E5 andF G�HJILKEM%N AO6 N A.:PA%5 .
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Figure 2: Evolution of the number of translations found in
� �"! ��# according to the size of the contextual

window for several combinations of parameters with � lexicon 2 � ( � scientific corpora � —–; �mixed corpora � -
- -, the points indicated are the computed values)

such as the window size of the context vector, as-
sociation score, and vector distance measure, the
terms were often identified with more precision from
the corpus consisting of scientific documents than
the corpus consisting of scientific and popular docu-
ments (see Figure 2).

Here again, the most frequent terms (see Table 6),
such as diabète (#occ. 899 - diabetes:  ! .

"
),

facteur de risque (#occ. 267 - risk factor:
���

. 	

), hyperglycémie (#occ. 127 - hyperglycaemia:�
. �� ), tissu adipeux (#occ. 62 - adipose tissue:
��

. ��� ) were the best translated. On the other
hand, some terms with low frequency, such as édul-
corant (#occ. 13 - sweetener: ��� . � ) and choix al-
imentaire (#occ. 11 - feeding preferences: ��� . ��

), or very low frequency, such as obésité massive
(#occ. 6 - massive obesity:

���
. #�$ ), were also

identified with this approach.

[2,10] [11,50] [51,100] [101,...]

fr 1/11 11/25 6/14 7/10
jp 5/21 13/25 5/9 2/5

Table 6: Frequency in � scientific corpora � of trans-
lated terms belonging to � lexicon 2 � (for

� ��! ��# )

5 Conclusion

This article describes a first attempt at compiling
French-Japanese terminology from comparable cor-
pora taking into account both single- and multi-word
terms. Our claim was that a real comparability of
the corpora is required to obtain relevant terms of
the domain. This comparability should be based not
only on the domain and the sub-domain but also on
the type of discourse, which acts semantically upon
the lexical units. The discourse categorization of
documents allows lexical acquisition to increase pre-
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cision despite the data sparsity problem that is of-
ten encountered for terminology mining and for lan-
guage pairs not involving the English language, such
as French-Japanese. We carried out experiments us-
ing two corpora of the specialised domain concern-
ing diabetes and nutrition: one gathering documents
from both scientific and popular science discourses,
the other limited to scientific discourse. Our align-
ment results are close to previous works involving
the English language, and are of better quality for
the scientific corpus despite a corpus size that was
reduced by half. The results demonstrate that the
more frequent a term and its translation, the better
the quality of the alignment will be, but also that the
data sparsity problem could be partially solved by
using comparable corpora of high quality.
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Abstract 

Language model (LM) adaptation is im-
portant for both speech and language 
processing. It is often achieved by com-
bining a generic LM with a topic-specific 
model that is more relevant to the target 
document.  Unlike previous work on un-
supervised LM adaptation, this paper in-
vestigates how effectively using named 
entity (NE) information, instead of con-
sidering all the words, helps LM adapta-
tion. We evaluate two latent topic analysis 
approaches in this paper, namely, cluster-
ing and Latent Dirichlet Allocation 
(LDA). In addition, a new dynamically 
adapted weighting scheme for topic mix-
ture models is proposed based on LDA 
topic analysis. Our experimental results 
show that the NE-driven LM adaptation 
framework outperforms the baseline ge-
neric LM. The best result is obtained us-
ing the LDA-based approach by 
expanding the named entities with syntac-
tically filtered words, together with using 
a large number of topics, which yields a 
perplexity reduction of 14.23% compared 
to the baseline generic LM. 

1 Introduction 

Language model (LM) adaptation plays an impor-
tant role in speech recognition and many natural 
language processing tasks, such as machine trans-
lation and information retrieval. Statistical N-gram 
LMs have been widely used; however, they capture 

only local contextual information. In addition, even 
with the increasing amount of LM training data, 
there is often a mismatch problem because of dif-
ferences in domain, topics, or styles. Adaptation of 
LM, therefore, is very important in order to better 
deal with a variety of topics and styles. 

Many studies have been conducted for LM ad-
aptation. One method is supervised LM adaptation, 
where topic information is typically available and a 
topic specific LM is interpolated with the generic 
LM (Kneser and Steinbiss, 1993; Suzuki and Gao, 
2005). In contrast, various unsupervised ap-
proaches perform latent topic analysis for LM ad-
aptation. To identify implicit topics from the 
unlabeled corpus, one simple technique is to group 
the documents into topic clusters by assigning only 
one topic label to a document (Iyer and Ostendorf, 
1996). Recently several other methods in the line 
of latent semantic analysis have been proposed and 
used in LM adaptation, such as latent semantic 
analysis (LSA) (Bellegarda, 2000), probabilistic 
latent semantic analysis (PLSA) (Gildea and Hof-
mann, 1999), and LDA (Blei et al., 2003). Most of 
these existing approaches are based on the “bag of 
words” model to represent documents, where all 
the words are treated equally and no relation or 
association between words is considered.  

Unlike prior work in LM adaptation, this paper 
investigates how to effectively leverage named 
entity information for latent topic analysis. Named 
entities are very common in domains such as 
newswire or broadcast news, and carry valuable 
information, which we hypothesize is topic indica-
tive and useful for latent topic analysis. We com-
pare different latent topic generation approaches as 
well as model adaptation methods, and propose an 
LDA based dynamic weighting method for the 
topic mixture model. Furthermore, we expand 
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named entities by incorporating other content 
words, in order to capture more topic information. 
Our experimental results show that the proposed 
method of incorporating named information in LM 
adaptation is effective. In addition, we find that for 
the LDA based adaptation scheme, adding more 
content words and increasing the number of topics 
can further improve the performance significantly. 

The paper is organized as follows. In Section 2 
we review some related work. Section 3 describes 
in detail our unsupervised LM adaptation approach 
using named entities. Experimental results are pre-
sented and discussed in Section 4. Conclusion and 
future work appear in Section 5. 

2 Related Work 

There has been a lot of previous related work on 
LM adaptation. Suzuki and Gao (2005) compared 
different supervised LM adaptation approaches, 
and showed that three discriminative methods sig-
nificantly outperform the maximum a posteriori 
(MAP) method. For unsupervised LM adaptation, 
an earlier attempt is a cache-based model (Kuhn 
and Mori, 1990), developed based on the assump-
tion that words appearing earlier in a document are 
likely to appear again. The cache concept has also 
been used to increase the probability of unseen but 
topically related words, for example, the trigger-
based LM adaptation using the maximum entropy 
approach (Rosenfeld, 1996). 

Latent topic analysis has recently been investi-
gated extensively for language modeling. Iyer and 
Ostendorf (1996) used hard clustering to obtain 
topic clusters for LM adaptation, where a single 
topic is assigned to each document. Bellegarda 
(2000) employed Latent Semantic Analysis (LSA) 
to map documents into implicit topic sub-spaces 
and demonstrated significant reduction in perplex-
ity and word error rate (WER). Its probabilistic 
extension, PLSA, is powerful for characterizing 
topics and documents in a probabilistic space and 
has been used in LM adaptation. For example, 
Gildea and Hofmann (1999) reported noticeable 
perplexity reduction via a dynamic combination of 
many unigram topic models with a generic trigram 
model. Proposed by Blei et al. (2003), Latent 
Dirichlet Allocation (LDA) loosens the constraint 
of the document-specific fixed weights by using a 
prior distribution and has quickly become one of 
the most popular probabilistic text modeling tech-

niques. LDA can overcome the drawbacks in the 
PLSA model, and has been shown to outperform 
PLSA in corpus perplexity and text classification 
experiments (Blei et al., 2003). Tam and Schultz 
(2005) successfully applied the LDA model to un-
supervised LM adaptation by interpolating the 
background LM with the dynamic unigram LM 
estimated by the LDA model. Hsu and Glass (2006) 
investigated using hidden Markov model with 
LDA to allow for both topic and style adaptation. 
Mrva and Woodland (2006) achieved WER reduc-
tion on broadcast conversation recognition using 
an LDA based adaptation approach that effectively 
combined the LMs trained from corpora with dif-
ferent styles: broadcast news and broadcast con-
versation data. 

In this paper, we investigate unsupervised LM 
adaptation using clustering and LDA based topic 
analysis. Unlike the clustering based interpolation 
method as in (Iyer and Ostendorf, 1996), we ex-
plore different distance measure methods for topic 
analysis. Different from the LDA based framework 
as in (Tam and Schultz, 2005), we propose a novel 
dynamic weighting scheme for the topic adapted 
LM. More importantly, the focus of our work is to 
investigate the role of named entity information in 
LM adaptation, which to our knowledge has not 
been explored.  

3 Unsupervised LM Adaptation Integrat-
ing Named Entities (NEs) 

3.1 Overview of the NE-driven LM Adapta-
tion Framework 

Figure 1 shows our unsupervised LM adaptation 
framework using NEs. For training, we use the text 
collection to train the generic word-based N-gram 
LM. Then we apply named entity recognition 
(NER) and topic analysis to train multiple topic 
specific N-gram LMs. During testing, NER is per-
formed on each test document, and then a dynami-
cally adaptive LM based on the topic analysis 
result is combined with the general LM. Note that 
in this figure, we evaluate the performance of LM 
adaptation using the perplexity measure. We will 
evaluate this framework for N-best or lattice res-
coring in speech recognition in the future. 

In our experiments, different topic analysis 
methods combined with different topic matching 
and adaptive schemes result in several LM adapta-
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tion paradigms, which are described below in de-
tails. 

 
Training Text Test Text

NER NER

Latent Topic 
Analysis

Compute 
Perplexity

Generic N-gram 
Training

Topic Model 
Training

Topic Matching

Topic Model 
Adaptation

Model 
Interpolation

 
Figure 1. Framework of NE-driven LM adaptation. 
 

3.2 NE-based Clustering for LM Adaptation 

Clustering is a simple unsupervised topic analysis 
method. We use NEs to construct feature vectors 
for the documents, rather than considering all the 
words as in most previous work. We use the 
CLUTO1 toolkit to perform clustering. It finds a 
predefined number of clusters based on a specific 
criterion, for which we chose the following func-
tion: 

∑ ∑
= ∈

=
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where K is the desired number of clusters, Si is the 
set of documents belonging to the ith cluster, v and 
u represent two documents, and sim(v, u) is the 
similarity between them. We use the cosine dis-
tance to measure the similarity between two docu-
ments: 

||||||||
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⋅
⋅

=                         (1) 

where vr  and ur  are the feature vectors represent-
ing the two documents respectively, in our experi-
ments composed of NEs. For clustering, the 
elements in every feature vector are scaled based 
on their term frequency and inverse document fre-
                                                           
1 Available at http://glaros.dtc.umn.edu/gkhome/views/cluto 

quency, a concept widely used in information re-
trieval.   

After clustering, we train an N-gram LM, called 
a topic LM, for each cluster using the documents in 
it. 

During testing, we identify the ‘topic’ for the 
test document, and interpolate the topic specific 
LM with the background LM, that is, if the test 
document belongs to the cluster S*, we can predict 
a word wk in the document given the word’s his-
tory hk using the following equation: 
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      (2) 

where λ  is the interpolation weight. 
We investigate two approaches to find the topic 

assignment S* for a given test document. 

(A) cross-entropy measure 

For a test document d=w1,w2,…,wn with a word 
distribution pd(w) and a cluster S with a topic LM 
ps(w), the cross entropy CE(d, S) can be computed 
as: 

∑
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    From the information theoretic perspective, the 
cluster with the lower cross entropy value is ex-
pected to be more topically correlated to the test 
document. For each test document, we compute the 
cross entropy values according to different clusters, 
and select the cluster S* that satisfies: 
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(B) cosine similarity  

For each cluster, its centroid can be obtained by: 
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where uik is the vector for the kth document in the ith 
cluster, and ni is the number of documents in the ith 

cluster. The distance between the test document 
and a cluster can then be easily measured by the 
cosine similarity function as in Equation (1). Our 
goal here is to find the cluster S* which the test 
document is closest to, that is, 
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where d
r

is the feature vector for the test document.   

3.3 NE-based LDA for LM Adaptation 

LDA model (Blei et al., 2003) has been introduced 
as a new, semantically consistent generative model, 
which overcomes overfitting and the problem of 
generating new documents in PLSA. It is a three-
level hierarchical Bayesian model. Based on the 
LDA model, a document d is generated as follows. 

• Sample a vector of K topic mixture weights 
θ  from a prior Dirichlet distribution with 
parameter α : 

∏
=

−=
K

k
k

kf
1

1);( αθαθ  

• For each word w in d, pick a topic k from the 
multinomial distribution θ . 

• Pick a word w from the multinomial distri-
bution kw,β  given the kth topic. 

For a document d=w1,w2,…wn, the LDA model 
assigns it the following probability: 
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We use the MATLAB topic Toolbox 1.3 (Grif-
fiths et al., 2004) in the training set to obtain the 
document-topic matrix, DP, and the word-topic 
matrix, WP. Note that here “words” correspond to 
the elements in the feature vector used to represent 
the document (e.g., NEs). In the DP matrix, an en-
try cik represents the counts of words in a document 
di that are from a topic zk (k=1,2,…,K). In the WP 
matrix, an entry fjk represents the frequency of a 
word wj generated from a topic zk (k=1,2,…,K) 
over the training set.  

For training, we assign a topic zi
* to a document 

di such that ik
Kk

i cz
≤≤

=
1

* maxarg . Based on the docu-

ments belonging to the different topics, K topic N-
gram LMs are trained. This “hard clustering” strat-
egy allows us to train an LM that accounts for all 
the words rather than simply those NEs used in 
LDA analysis, as well as use higher order N-gram 
LMs, unlike the ‘unigram’ based LDA in previous 
work. 

For a test document d = w1,w2,…,wn that is gen-
erated by multiple topics under the LDA assump-
tion, we formulate a dynamically adapted topic 

model using the mixture of LMs from different 
topics: 

∑
=

− ×=
K

i
kkzikkadaptLDA hwphwp

i
1

)|()|( γ  
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i

 stands for the ith topic LM, and 
γi is the mixture weight. Different from the idea of 
dynamic topic adaptation in (Tam and Schultz, 
2005), we propose a new weighting scheme to cal-
culate γi that directly uses the two resulting matri-
ces from LDA analysis during training: 
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where freq(wj) is the frequency of a word wj in the 
document d. Other notations are consistent with the 
previous definitions.  

Then we interpolate this adapted topic model 
with the generic LM, similar to Equation (2): 
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      (3) 

4 Experiments 

4.1 Experimental Setup 

 # of files # of words # of NEs
Training Data 23,985 7,345,644 590,656

Test Data 2,661 831,283 65,867 
Table 1. Statistics of our experimental data. 
 
The data set we used is the LDC Mandarin TDT4 
corpus, consisting of 337 broadcast news shows 
with transcriptions. These files were split into 
small pieces, which we call documents here, ac-
cording to the topic segmentation information 
marked in the LDC’s transcription. In total, there 
are 26,646 such documents in our data set. We 
randomly chose 2661 files as the test data (which 
is balanced for different news sources). The rest 
was used for topic analysis and also generic LM 
training. Punctuation marks were used to deter-
mine sentences in the transcriptions. We used the 
NYU NE tagger (Ji and Grishman, 2005) to recog-
nize four kinds of NEs: Person, Location, Organi-
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zation, and Geo-political. Table 1 shows the statis-
tics of the data set in our experiments.  

We trained trigram LMs using the SRILM tool-
kit (Stolcke, 2002). A fixed weight (i.e., λ  in 
Equation (2) and (3)) was used for the entire test 
set when interpolating the generic LM with the 
adapted topic LM. Perplexity was used to measure 
the performance of different adapted LMs in our 
experiments.  

4.2 Latent Topic Analysis Results 

 

 Topic # of  
Files 

Top 10 Descriptive Items  
(Translated from Chinese) 

1 3526 
U.S., Israel, Washington, Palestine, 

Bush, Clinton, Gore, Voice of Amer-
ica, Mid-East, Republican Party 

2 3067 

Taiwan, Taipei, Mainland, Taipei 
City, Chinese People’s Broadcasting 
Station, Shuibian Chen,  the Execu-
tive Yuan, the Legislative Yuan, De-

mocratic Progressive Party, 
Nationalist Party 

3 4857 
Singapore, Japan, Hong Kong, Indo-
nesia, Asia, Tokyo, Malaysia, Thai-

land, World, China 

4 4495 
World, German, Landon, Russia, 
France, England, Xinhua News 

Agency, Europe, U.S., Italy 

Cluster-
ing 

Based 

5 7586 
China, Beijing, Nation, China Central 

Television Station, Xinhua News 
Agency, Shanghai, World, State 

Council, Zemin Jiang, Beijing City

1 5859 
China, Japan, Hong Kong, Beijing, 
Shanghai, World, Zemin Jiang, Ma-
cao,  China Central Television Sta-

tion, Africa 

2 3794 
U.S., Bush, World,  Gore,  South 

Korea, North Korea, Clinton, George 
Walker Bush, Asia, Thailand 

3 4640 
Singapore, Indonesia, Team, Israel, 
Europe, Germany, England, France, 

Palestine, Wahid 

4 4623 
Taiwan, Russia, Mainland, India, 

Taipei, Shuibian Chen, Philippine, 
Estrada, Communist Party of China, 

RUS. 

LDA 
Based 

5 4729 
Xinhua News Agency, Nation, Bei-

jing, World, Canada, Sydney, Brazil, 
Beijing City, Education Ministry, 

Cuba 
Table 2.  Topic analysis results using clustering 
and LDA (the number of documents and the top 10 
words (NEs) in each cluster). 

 
For latent topic analysis, we investigated two ap-
proaches using named entities, i.e., clustering and 

LDA. 5 latent topics were used in both approaches. 
Table 2 illustrates the resulting topics using the top 
10 words in each topic. We can see that the words 
in the same cluster share some similarity and that 
the words in different clusters seem to be ‘topi-
cally’ different. Note that errors from automatic 
NE recognition may impact the clustering results. 
For example, ‘队/team’ in the table (in topic 3 in 
LDA results) is an error and is less discriminative 
for topic analysis. 

Table 3 shows the perplexity of the test set us-
ing the background LM (baseline) and each of the 
topic LMs, from clustering and LDA respectively. 
We can see that for the entire test set, a topic LM 
generally performs much worse than the generic 
LM. This is expected, since the size of a topic clus-
ter is much smaller than that of the entire training 
set, and the test set may contain documents from 
different topics. However, we found that when us-
ing an optimal topic model (i.e., the topic LM that 
yields the lowest perplexity among the 5 topic 
LMs), 23.45% of the documents in the test set have 
a lower perplexity value than that obtained from 
the generic LM. This suggests that a topic model 
could benefit LM adaptation and motivates a dy-
namic topic adaptation approach for different test 
documents. 

 
 Perplexity 

Baseline 502.02 
CL-1 1054.36 
CL-2 1399.16 
CL-3 919.237 
CL-4 962.996 
CL-5 981.072 

LDA-1 1224.54 
LDA-2 1375.97 
LDA-3 1330.44 
LDA-4 1328.81 
LDA-5 1287.05 

Table 3. Perplexity results using the baseline LM 
vs. the single topic LMs. 

 

4.3 Clustering vs. LDA Based LM Adaptation 

In this section, we compare three LM adaptation 
paradigms. As we discussed in Section 3, two of 
them are clustering based topic analysis, but using 
different strategies to choose the optimal cluster; 
and the third one is based on LDA analysis that 
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uses a dynamic weighting scheme for adapted 
topic mixture model.  

Figure 2 shows the perplexity results using dif-
ferent interpolation parameters with the general 
LM.  5 topics were used in both clustering and 
LDA based approaches (as in Section 4.2). “CL-
CE” means clustering based topic analysis via 
cross entropy criterion, “CL-Cos” represents clus-
tering based topic analysis via cosine distance cri-
terion, and “LDA-MIX” denotes LDA based topic 
mixture model, which uses 5 mixture topic LMs. 
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Figure 2. Perplexity using different LM adaptation 
approaches and different interpolation weightsλ  
with the general LM. 
 

We observe that all three adaptation approaches 
outperform the baseline when using a proper inter-
polation weight. “CL-CE” yields the best perplex-
ity of 469.75 when λ  is 0.5, a reduction of 6.46% 
against the baseline perplexity of 502.02. For clus-
tering based adaptation, between the two strategies 
used to determine the topic for a test document, 
“CL-CE” outperforms “CL-Cos”. This indicates 
that the cosine distance measure using only names 
is less effective than cross entropy for LM adapta-
tion. In addition, cosine similarity does not match 
perplexity as well as the CE-based distance meas-
ure. Similarly, for the LDA based approach, using 
only NEs may not be sufficient to find appropriate 
weights for the topic model. This also explains the 
bigger interpolation weight for the general LM in 
CL-Cos and LDA-MIX than that in “CL-CE”.   

For a fair comparison between the clustering 
and LDA based LM adaptation approaches, we 
also evaluated using the topic mixture model for 
the clustering based approach and using only one 
topic in the LDA based method. For clustering 
based adaptation, we constructed topic mixture 

models using the weights obtained from a linear 
normalization of the two distance measures pre-
sented in Section 3.2. In order to use only one topic 
model in LDA based adaptation, we chose the 
topic cluster that has the largest weight in the 
adapted topic mixture model (as in Sec 3.3). Table 
4 shows the perplexity for the three approaches 
(CL-Cos, CL-CE, and LDA) using the mixture 
topic models versus a single topic LM. We observe 
similar trends as in Figure 2 when changing the 
interpolation weight λ with the generic LM; there-
fore, in Table 4 we only present results for one op-
timal interpolation weight. 

 
 Single-Topic Mixture-Topic

CL-Cos (λ =0.7) 498.01 497.86 
CL-CE (λ =0.5) 469.75 483.09 
LDA (λ =0.7) 488.96 489.14 

Table 4. Perplexity results using the adapted topic 
model (single vs. mixture) for clustering and LDA 
based approaches. 

 
We can see from Table 4 that using the mixture 

model in clustering based adaptation does not im-
prove performance. This may be attributed to how 
the interpolation weights are calculated. For ex-
ample, only names are used in cosine distance, 
and the normalized distance may not be appropri-
ate weights. We also notice negligible difference 
when only using one topic in the LDA based 
framework. This might be because of the small 
number of topics currently used. Intuitively, using 
a mixture model should yield better performance, 
since LDA itself is based on the assumption of 
generating words from multiple topics. We will 
investigate the impact of the number of topics on 
LM adaptation in Section 4.5. 

4.4 Effect of Different Feature Configura-
tions on LM Adaptation 

We suspect that using only named entities may not 
provide enough information about the ‘topics’ of 
the documents, therefore we investigate expanding 
the feature vectors with other words. Since gener-
ally content words are more indicative of the topic 
of a document than function words, we used a POS 
tagger (Hillard et al., 2006) to select words for la-
tent topic analysis. We kept words with three POS 
classes: noun (NN, NR, NT), verb (VV), and modi-
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fier (JJ), selected from the LDC POS set2. This is 
similar to the removal of stop words widely used in 
information retrieval.  

Figure 3 shows the perplexity results for three 
different feature configurations, namely, all-words 
(w), names (n), and names plus syntactically fil-
tered items (n+), for the CL-CE and LDA based 
approaches. The LDA based LM adaptation para-
digm supports our hypothesis. Using named infor-
mation instead of all the words seems to efficiently 
eliminate redundant information and achieve better 
performance. In addition, expanding named enti-
ties with syntactically filtered items yields further 
improvement. For CL-CE, using named informa-
tion achieves the best result among the three con-
figurations. This might be because that the 
clustering method is less powerful in analyzing the 
principal components as well as dealing with re-
dundant information than the LDA model. 
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Figure 3. Comparison of perplexity using different 
feature configurations. 

4.5 Impact of Predefined Topic Number on 
LM Adaptation 

LDA based topic analysis typically uses a large 
number of topics to capture the fine grained topic 
space. In this section, we evaluate the effect of the 
number of topics on LM adaptation. For compari-
son, we evaluate this for both LDA and CL-CE, 
similar to Section 4.3. We use the “n+” feature 
configuration as in Section 4.4, that is, names plus 
POS filtered items. When using a single-topic 
adapted model in the LDA or CL-CE based ap-
proach, finer-grained topic analysis (i.e., increasing 
the number of topics) leads to worse performance 
mainly because of the smaller clusters for each 
topic; therefore, we only show results here using 
                                                           
2 See http://www.cis.upenn.edu/~chinese/posguide.3rd.ch.pdf 

the mixture topic adapted models. Figure 4 shows 
the perplexity results using different numbers of 
topics. The interpolation weightλ with the general 
LM is 0.5 in all the experiments. For the topic mix-
ture LMs, we used a maximum of 9 mixtures (a 
limitation in the current SRILM toolkit) when the 
number of topics is greater than 9.  

We observe that as the number of topics in-
creases, the perplexity reduces significantly for 
LDA. When the number of topics is 50, the 
adapted LM using LDA achieves a perplexity re-
duction of 11.35% compared to using 5 topics, and 
14.23% against the baseline generic LM. Therefore, 
using finer-grained multiple topics in dynamic ad-
aptation improves system performance. When the 
number of topics increases further, e.g., to 100, the 
performance degrades slightly. This might be due 
to the limitation of the number of the topic mix-
tures used. A similar trend is observable for the 
CL-CE approach, but the effect of the topic num-
ber is much greater in LDA than CL-CE.  
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Figure 4. Perplexity results using different prede-
fined numbers of topics for LDA and CL-CE.  

4.6 Discussion 

As we know, although there is an increasing 
amount of training data available for LM training, 
it is still only for limited domains and styles. Creat-
ing new training data for different domains is time 
consuming and labor intensive, therefore it is very 
important to develop algorithms for LM adaptation. 
We investigate leveraging named entities in the 
LM adaptation task. Though some errors of NER 
may be introduced, our experimental results have 
shown that exploring named information for topic 
analysis is promising for LM adaptation.  

Furthermore, this framework may have other 
advantages. For speech recognition, using NEs for 
topic analysis can be less vulnerable to recognition 
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errors. For instance, we may add a simple module 
to compute the similarity between two NEs based 
on the word tokens or phonetics, and thus compen-
sate the recognition errors inside NEs. Whereas, 
word-based models, such as the traditional cache 
LMs, may be more sensitive to recognition errors 
that are likely to have a negative impact on the 
prediction of the current word. From this point of 
view, our framework can potentially be more ro-
bust in the speech processing task. In addition, the 
number of NEs in a document is much smaller than 
that of the words, as shown in Table 1; hence, us-
ing NEs can also reduce the computational com-
plexity, in particular in topic analysis for training. 

5 Conclusion and Future Work 

We compared several unsupervised LM adaptation 
methods leveraging named entities, and proposed a 
new dynamic weighting scheme for topic mixture 
model based on LDA topic analysis. Experimental 
results have shown that the NE-driven LM adapta-
tion approach outperforms using all the words, and 
yields perplexity reduction compared to the base-
line generic LM. In addition, we find that for the 
LDA based method, adding other content words, 
combined with an increased number of topics, can 
further improve the performance, achieving up to 
14.23% perplexity reduction compared to the base-
line LM. 

The experiments in this paper combine models 
primarily through simple linear interpolation. Thus 
one direction of our future work is to develop algo-
rithms to automatically learn appropriate interpola-
tion weights. In addition, our work in this paper 
has only showed promising results in perplexity 
reduction. We will investigate using this frame-
work of LM adaptation for N-best or lattice rescor-
ing in speech recognition. 
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Abstract

In this paper we present methods for im-
proving the disambiguation of noun phrase
(NP) coordination within the framework of a
lexicalised history-based parsing model. As
well as reducing noise in the data, we look at
modelling two main sources of information
for disambiguation: symmetry in conjunct
structure, and the dependency between con-
junct lexical heads. Our changes to the base-
line model result in an increase in NP coor-
dination dependency f-score from 69.9% to
73.8%, which represents a relative reduction
in f-score error of 13%.

1 Introduction

Coordination disambiguation is a relatively little
studied area, yet the correct bracketing of coordina-
tion constructions is one of the most difficult prob-
lems for natural language parsers. In the Collins
parser (Collins, 1999), for example, dependencies
involving coordination achieve an f-score as low as
61.8%, by far the worst performance of all depen-
dency types.

Take the phrase busloads of executives and their
wives (taken from the WSJ treebank). The coordi-
nating conjunction (CC) and and the noun phrase
their wives could attach to the noun phrase exec-
utives, as illustrated in Tree 1, Figure 1. Alterna-
tively, their wives could be incorrectly conjoined to
the noun phrase busloads of executives as in Tree 2,
Figure 1.

∗ Now at the National Centre for Language Technology,
Dublin City University, Ireland.

As with PP attachment, most previous attempts
at tackling coordination as a subproblem of parsing
have treated it as a separate task to parsing and it
is not always obvious how to integrate the methods
proposed for disambiguation into existing parsing
models. We therefore approach coordination disam-
biguation, not as a separate task, but from within the
framework of a generative parsing model.

As noun phrase coordination accounts for over
50% of coordination dependency error in our base-
line model we focus on NP coordination. Us-
ing a model based on the generative parsing model
of (Collins, 1999) Model 1, we attempt to improve
the ability of the parsing model to make the correct
coordination decisions. This is done in the context
of parse reranking, where the n-best parses output
from Bikel’s parser (Bikel, 2004) are reranked ac-
cording to a generative history-based model.

In Section 2 we summarise previous work on co-
ordination disambiguation. There is often a consid-
erable bias toward symmetry in the syntactic struc-
ture of two conjuncts and in Section 3 we introduce
new parameter classes to allow the model to prefer
symmetry in conjunct structure. Section 4 is con-
cerned with modelling the dependency between con-
junct head words and begins by looking at how the
different handling of coordination in noun phrases
and base noun phrases (NPB) affects coordination
disambiguation.1 We look at how we might improve
the model’s handling of coordinate head-head de-
pendencies by altering the model so that a common

1A base noun phrase, as defined in (Collins, 1999), is a noun
phrase which does not directly dominate another noun phrase,
unless that noun phrase is possessive.
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their wives

Figure 1: Tree 1. The correct noun phrase parse.
Tree 2. The incorrect parse for the noun phrase.

parameter class is used for coordinate word prob-
ability estimation in both NPs and NPBs. In Sec-
tion 4.2 we focus on improving the estimation of
this parameter class by incorporating BNC data, and
a measure of word similarity based on vector cosine
similarity, to reduce data sparseness. In Section 5 we
suggest a new head-finding rule for NPBs so that the
lexicalisation process for coordinate NPBs is more
similar to that of other NPs.

Section 6 examines inconsistencies in the annota-
tion of coordinate NPs in the Penn Treebank which
can lead to errors in coordination disambiguation.
We show how some coordinate noun phrase incon-
sistencies can be automatically detected and cleaned
from the data sets. Section 7 details how the model is
evaluated, presents the experiments made and gives
a breakdown of results.

2 Previous Work

Most previous attempts at tackling coordination
have focused on a particular type of NP coordination
to disambiguate. Both Resnik (1999) and Nakov and
Hearst (2005) consider NP coordinations of the form
n1 and n2 n3 where two structural analyses are pos-
sible: ((n1 and n2) n3) and ((n1) and (n2 n3)). They
aim to show more structure than is shown in trees

following the Penn guidelines, whereas in our ap-
proach we aim to reproduce Penn guideline trees.
To resolve the ambiguities, Resnik combines num-
ber agreement information of candidate conjoined
nouns, an information theoretic measure of semantic
similarity, and a measure of the appropriateness of
noun-noun modification. Nakov and Hearst (2005)
disambiguate by combining Web-based statistics on
head word co-occurrences with other mainly heuris-
tic information sources.

A probabilistic approach is presented in (Gold-
berg, 1999), where an unsupervised maximum en-
tropy statistical model is used to disambiguate coor-
dinate noun phrases of the form n1 preposition n2
cc n3. Here the problem is framed as an attachment
decision: does n3 attach ‘high’ to the first noun, n1,
or ‘low’ to n2?

In (Agarwal and Boggess, 1992) the task is to
identify pre-CC conjuncts which appear in text that
has been part-of-speech (POS) tagged and semi-
parsed, as well as tagged with semantic labels spe-
cific to the domain. The identification of the pre-
CC conjunct is based on heuristics which choose the
pre-CC conjunct that maximises the symmetry be-
tween pre- and post-CC conjuncts.

Insofar as we do not separate coordination dis-
ambiguation from the overall parsing task, our ap-
proach resembles the efforts to improve coordi-
nation disambiguation in (Kurohashi, 1994; Rat-
naparkhi, 1994; Charniak and Johnson, 2005).
In (Kurohashi, 1994) coordination disambiguation
is carried out as the first component of a Japanese
dependency parser using a technique which calcu-
lates similarity between series of words from the left
and right of a conjunction. Similarity is measured
based on matching POS tags, matching words and a
thesaurus-based measure of semantic similarity. In
both the discriminative reranker of Ratnaparkhi et
al. (1994) and that of Charniak and Johnson (2005)
features are included to capture syntactic parallelism
across conjuncts at various depths.

3 Modelling Symmetry Between Conjuncts

There is often a considerable bias toward symme-
try in the syntactic structure of two conjuncts, see
for example (Dubey et al., 2005). Take Figure 2: If
we take as level 0 the level in the coordinate sub-
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NNP19

Delta

Figure 2: Example of symmetry in conjunct structure in a lexicalised subtree.

tree where the coordinating conjunction CC occurs,
then there is exact symmetry in the two conjuncts in
terms of non-terminal labels and head word part-of-
speech tags for levels 0, 1 and 2. Learning a bias
toward parallelism in conjuncts should improve the
parsing model’s ability to correctly attach a coordi-
nation conjunction and second conjunct to the cor-
rect position in the tree.

In history-based models, features are limited to
being functions of the tree generated so far. The task
is to incorporate a feature into the model that cap-
tures a particular bias yet still adheres to derivation-
based restrictions. Parses are generated top-down,
head-first, left-to-right. Each node in the tree in
Figure 2 is annotated with the order the nodes are
generated (we omit, for the sake of clarity, the gen-
eration of the STOP nodes). Note that when the
decision to attach the second conjunct to the head
conjunct is being made (i.e. Step 11, when the CC
and NP(states) nodes are being generated) the sub-
tree rooted at NP(states) has not yet been generated.
Thus at the point that the conjunct attachment de-
cision is made it is not possible to use information
about symmetry of conjunct structure, as the struc-
ture of the second conjunct is not yet known.

It is possible, however, to condition on structure
of the already generated head conjunct when build-
ing the internal structure of the second conjunct. In
our model when the structure of the second conjunct
is being generated we condition on features which
are functions of the first conjunct. When generat-
ing a node Ni in the second conjunct, we retrieve
the corresponding node NipreCC

in the first conjunct,
via a left to right traversal of the first conjunct. For

example, from Figure 2 the pre-CC node NP(Texas)
is the node corresponding to NP(Delta) in the post-
CC conjunct. From NipreCC

we extract information,
such as its part-of-speech, for use as a feature when
predicting a POS tag for the corresponding node in
the post-CC conjunct.

When generating a second conjunct, instead of
the usual parameter classes for estimating the prob-
ability of the head label Ch and the POS label of a
dependent node ti, we created two new parameter
classes which are used only in the generation of sec-
ond conjunct nodes:

PccCh
(Ch|γ(headC), Cp, wp, tp, tgp, depth) (1)

Pccti
(ti|α(headC), dir, Cp, wp, tp, dist, ti 1, ti 2, depth)

(2)

where γ(headC) returns the non-terminal label of
NipreCC

for the node in question and α(headC) re-
turns the POS tag of NipreCC

. Both functions return
+NOMATCH+ if there is no NipreCC

for the node.
Depth is the level of the post-CC conjunct node be-
ing generated.

4 Modelling Coordinate Head Words

Some noun pairs are more likely to be conjoined
than others. Take again the trees in Figure 1. The
two head nouns coordinated in Tree 1 are execu-
tives and wives, and in Tree 2: busloads and wives.
Clearly, the former pair of head nouns is more likely
and, for the purpose of discrimination, the model
would benefit if it could learn that executives and
wives is a more likely combination than busloads
and wives.

Bilexical head-head dependencies of the type
found in coordinate structures are a somewhat dif-
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ferent class of dependency to modifier-head depen-
dencies. In the fat cat, for example, there is clearly
one head to the noun phrase: cat. In cats and dogs
however there are two heads, though in the parsing
model just one is chosen, somewhat arbitrarily, to
head the entire noun phrase.

In the baseline model there is essentially one pa-
rameter class for the estimation of word probabili-
ties:

Pword(wi|H(i)) (3)

where wi is the lexical head of constituent i and
H(i) is the history of the constituent. The history is
made up of conditioning features chosen from struc-
ture that has already been determined in the top-
down derivation of the tree.

In Section 4.1 we discuss how though the coordi-
nate head-head dependency is captured for NPs, it is
not captured for NPBs. We look at how we might
improve the model’s handling of coordinate head-
head dependencies by altering the model so that a
common parameter class in (4) is used for coordi-
nate word probability estimation in both NPs and
NPBs.

PcoordWord(wi|wp, H(i)) (4)

In Section 4.2 we focus on improving the estimation
of this parameter class by reducing data sparseness.

4.1 Extending PcoordWord to Coordinate NPBs

In the baseline model each node in the tree is an-
notated with a coordination flag which is set to true
for the node immediately following the coordinating
conjunction. For coordinate NPs the head-head de-
pendency is captured when this flag is set to true. In
Figure 1, discarding for simplicity the other features
in the history, the probability of the coordinate head
wives, is estimated in Tree 1 as:

Pword(wi = wives|coord = true, wp = executives, ...)
(5)

and in Tree 2:

Pword(wi = wives|coord = true, wp = busloads, ...) (6)

where wp is the head word of the node to which the
node headed by wi is attaching and coord is the co-
ordination flag.

Unlike NPs, in NPBs (i.e. flat, non-recursive NPs)
the coordination flag is not used to mark whether a
node is a coordinated head or not. This flag is always

set to false for NPBs. In addition, modifiers within
NPBs are conditioned on the previously generated
modifier rather than the head of the phrase.2 This
means that in an NPB such as (cats and dogs), the
estimate for the word cats will look like:

Pword(wi = cats|coord = false, wp = and, ...) (7)

In our new model, for NPs, when the coordination
flag is set to true, we use the parameter class in (4)
to estimate the probability of one lexical head noun,
given another. For NPBs, if a noun is generated di-
rectly after a CC then it is taken to be a coordinate
head, wi, and conditioned on the noun generated be-
fore the coordinating conjunction, which is chosen
as wp, and also estimated using (4).

4.2 Estimating the PcoordWord parameter class

Data for bilexical statistics are particularly sparse.
In order to decrease the sparseness of the coordinate
head noun data, we extracted from the BNC exam-
ples of coordinate head noun pairs. We extracted all
noun pairs occurring in a pattern of the form: noun
cc noun, as well as lists of any number of nouns
separated by commas and ending in cc noun.3 To
this data we added all head noun pairs from the WSJ
that occurred together in a coordinate noun phrase,
identified when the coordination flag was set to true.
Every occurrence ni CC nj was also counted as an
occurrence of nj CC ni. This further helps reduce
sparseness.

The probability of one noun, ni being coordinated
with another nj can be calculated simply as:

Plex(ni|nj) =
|ninj |

|nj |
(8)

Again to reduce data sparseness, we introduce a
measure of word similarity. A word can be rep-
resented as a vector where every dimension of the
vector represents another word type. The values of
the vector components, the term weights, are derived
from word co-occurrence counts. Cosine similar-
ity between two word vectors can then be used to
measure the similarity of two words. Measures of

2A full explanation of the handling of coordination in the
model is given in (Bikel, 2004).

3Extracting coordinate noun pairs from the BNC in such
a fashion follows work on networks of concepts described
in (Widdows, 2004).
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similarity between words based on similarity of co-
occurrence vectors have been used before, for exam-
ple, for word sense disambiguation (Schütze, 1998)
and for PP-attachment disambiguation (Zhao and
Lin, 2004). Our measure resembles that of (Cara-
ballo, 99) where co-occurrence is also defined with
respect to coordination patterns, although the exper-
imental details in terms of data collection and vector
term weights differ.

We can now incorporate the similarity measure
into the probability estimate of (8) to give a new
k-NN style method of estimating bilexical statistics
based on weighting events according to the word
similarity measure:

Psim(ni|nj) =

∑
nx∈N(nj)

sim(nj , nx)|ninx|
∑

nx∈N(nj)
sim(nj , nx)|nx|

(9)

where sim(nj, nx) is a similarity score between
words nj and nx and N(nj) is the set of words in
the neighbourhood of nj . This neighbourhood can
be based on the k-nearest neighbours of nj , where
nearness is measured with the similarity function.

In order to smooth the bilexical estimate in (9) we
combine it with another estimate, trained from WSJ
data, by way of linear interpolation:

PcoordWord(ni|nj) =

λnj
Psim(ni|nj) + (1− λnj

)PMLE(ni|ti) (10)

where ti is the POS tag of word ni, PMLE(ni|ti)
is the maximum-likelihood estimate calculated from
annotated WSJ data, and λnj

is calculated as in (11).
In (11) we adapt the Witten-Bell method for the
calculation of the weight λ, as used in the Collins
parser, so that it incorporates the similarity measure
for all words in the neighbourhood of nj .

λnj
=

∑
nx∈N(nj )

sim(nj , nx)|nx|
∑

nx∈N(nj)
sim(nj , nx)(|nx| + CD(nx))

(11)

where C is a constant that can be optimised using
held-out data and D(nj) is the diversity of a word
nj: the number of distinct words with which nj has
been coordinated in the training set.

The estimate in (9) can be viewed as the estimate
with the more general history context than that of (8)
because the context includes not only nj but also
words similar to nj . The final probability estimate

for PcoordWord is calculated as the most specific es-
timate, Plex, combined via regular Witten-Bell inter-
polation with the estimate in (10).

5 NPB Head-Finding Rules

Head-finding rules for coordinate NPBs differ from
coordinate NPs.4 Take the following two versions
of the noun phrase hard work and harmony: (c) (NP
(NPB hard work and harmony)) and (d) (NP (NP
(NPB hard work)) and (NP (NPB harmony))). In the
first example, harmony is chosen as head word of the
NP; in example (d) the head of the entire NP is work.
The choice of head affects the various dependencies
in the model. However, in the case of two coordinate
NPs which, as in the above example, cover the same
span of words and differ only in whether the coordi-
nate noun phrase is flat as in (c) or structured as in
(d), the choice of head for the phrase is not particu-
larly informative. In both cases the head words be-
ing coordinated are the same and either word could
plausibly head the phrase; discrimination between
trees in such cases should not be influenced by the
choice of head, but rather by other, salient features
that distinguish the trees.5

We would like to alter the head-finding rules for
coordinate NPBs so that, in cases like those above,
the word chosen to head the entire coordinate noun
phrase would be the same for both base and non-
base noun phrases. We experiment with slightly
modified head-finding rules for coordinate NPBs. In
an NPB such as NPB→ n1 CC n2 n3, the head rules
remain unchanged and the head of the phrase is (usu-
ally) the rightmost noun in the phrase. Thus, when
n2 is immediately followed by another noun the de-
fault is to assume nominal modifier coordination and
the head rules stay the same. The modification we
make to the head rules for NPBs is as follows: when
n2 is not immediately followed by a noun then the
noun chosen to head the entire phrase is n1.

6 Inconsistencies in WSJ Coordinate NP
Annotation

An inspection of NP coordination error in the base-
line model revealed inconsistencies in WSJ annota-

4See (Collins, 1999) for the rules used in the baseline model.
5For example, it would be better if discrimination was

largely based on whether hard modifies both work and harmony
(c), or whether it modifies work alone (d).
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tion. In this section we outline some types of co-
ordinate NP inconsistency and outline a method for
detecting some of these inconsistencies, which we
later use to automatically clean noise from the data.
Eliminating noise from treebanks has been previ-
ously used successfully to increase overall parser ac-
curacy (Dickinson and Meurers, 2005).

The annotation of NPs in the Penn Treebank (Bies
et al., 1995) follows somewhat different guidelines
to that of other syntactic categories. Because their
interpretation is so ambiguous, no internal structure
is shown for nominal modifiers. For NPs with more
than one head noun, if the only unshared modifiers
in the constituent are nominal modifiers, then a flat
structure is also given. Thus in (NP the Manhattan
phone book and tour guide)6 a flat structure is given
because although the is a non-nominal modifier, it is
shared, modifying both tour guide and phone book,
and all other modifiers in the phrase are nominal.

However, we found that out of 1,417 examples
of NP coordination in sections 02 to 21, involving
phrases containing only nouns (common nouns or a
mixture of common and proper nouns) and the co-
ordinating conjunction, as many as 21.3%, contrary
to the guidelines, were given internal structure, in-
stead of a flat annotation. When all proper nouns are
involved this phenomenon is even more common.7

Another common source of inconsistency in co-
ordinate noun phrase bracketing occurs when a non-
nominal modifier appears in the coordinate noun
phrase. As previously discussed, according to the
guidelines the modifier is annotated flat if it is
shared. When the non-nominal modifier is un-
shared, more internal structure is shown, as in:
(NP (NP (NNS fangs)) (CC and) (NP (JJ pointed)
(NNS ears))). However, the following two struc-
tured phrases, for example, were given a com-
pletely flat structure in the treebank: (a) (NP (NP
(NN oversight))(CC and) (NP (JJ disciplinary)(NNS
procedures))), (b) (NP (ADJP (JJ moderate)(CC
and)(JJ low-cost))(NN housing)). If we follow the
guidelines then any coordinate NPB which ends
with the following tag sequence can be automat-
ically detected as incorrectly bracketed: CC/non-
nominal modifier/noun. This is because either the

6In this section we do not show the NPB levels.
7In the guidelines it is recognised however that proper names

are frequently annotated with internal structure.

non-nominal modifier, which is unambiguously un-
shared, is part of a noun phrase as (a) above, or it
conjoined with another modifier as in (b). We found
202 examples of this in the training set, out of a total
of 4,895 coordinate base noun phrases.

Finally, inconsistencies in POS tagging can also
lead to problems with coordination. Take the bi-
gram executive officer. We found 151 examples in
the training set of a base noun phrase which ended
with this bigram. 48% of the cases were POS tagged
JJ NN, 52% tagged NN NN. 8 This has repercussions
for coordinate noun phrase structure, as the presence
of an adjectival pre-modifier indicates a structured
annotation should be given.

These inconsistencies pose problems both for
training and testing. With a relatively large amount
of noise in the training set the model learns to give
structures, which should be very unlikely, too high
a probability. In testing, given inconsistencies in
the gold standard trees, it becomes more difficult
to judge how well the model is doing. Although it
would be difficult to automatically detect the POS
tagging errors, the other inconsistencies outlined
above can be detected automatically by simple pat-
tern matching. Automatically eliminating such ex-
amples is a simple method of cleaning the data.

7 Experimental Evaluation

We use a parsing model similar to that described
in (Hogan, 2005) which is based on (Collins, 1999)
Model 1 and uses k-NN for parameter estimation.
The n-best output from Bikel’s parser (Bikel, 2004)
is reranked according to this k-NN parsing model,
which achieves an f-score of 89.4% on section 23.
For the coordination experiments, sections 02 to 21
are used for training, section 23 for testing and the
remaining sections for validation. Results are for
sentences containing 40 words or less.

As outlined in Section 6, the treebank guide-
lines are somewhat ambiguous as to the appropriate
bracketing for coordinate NPs which consist entirely
of proper nouns. We therefore do not include, in the
coordination test and validation sets, coordinate NPs
where in the gold standard NP the leaf nodes consist
entirely of proper nouns (or CCs or commas). In do-

8According to the POS bracketing guidelines (Santorini,
1991) the correct sequence of POS tags should be NN NN.
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ing so we hope to avoid a situation whereby the suc-
cess of the model is measured in part by how well
it can predict the often inconsistent bracketing deci-
sions made for a particular portion of the treebank.

In addition, and for the same reasons, if a gold
standard tree is inconsistent with the guidelines in
either of the following two ways the tree is not used
when calculating coordinate precision and recall of
the model: the gold tree is a noun phrase which ends
with the sequence CC/non-nominal modifier/noun;
the gold tree is a structured coordinate noun phrase
where each word in the noun phrase is a noun.9 Call
these inconsistencies type a and type b respectively.
This left us with a coordination validation set con-
sisting of 1064 coordinate noun phrases and a test
set of 416 coordinate NPs from section 23.

A coordinate phrase was deemed correct if the
parent constituent label, and the two conjunct node
labels (at level 0) match those in the gold subtree and
if, in addition, each of the conjunct head words are
the same in both test and gold tree. This follows the
definition of a coordinate dependency in (Collins,
1999). Based on these criteria, the baseline f-scores
for test and validation set were 69.1% and 67.1% re-
spectively. The coordination f-score for the oracle
trees on section 23 is 83.56%. In other words: if an
‘oracle’ were to choose from each set of n-best trees
the tree that maximised constituent precision and re-
call, then the resulting set of oracle trees would have
a NP coordination dependency f-score of 83.56%.
For the validation set the oracle trees coordination
dependency f-score is 82.47%.

7.1 Experiments and Results

We first eliminated from the training set all coordi-
nate noun phrase subtrees, of type a and type b de-
scribed in Section 7. The effect of this on the vali-
dation set is outlined in Table 1, step 2.

For the new parameter class in (1) we found that
the best results occurred when it was used only in
conjuncts of depth 1 and 2, although the case base
for this parameter class contained head events from
all post-CC conjunct depths. Parameter class (2) was
used for predicting POS tags at level 1 in right-of-
head conjuncts, although again the sample contained

9Recall from §6 that for this latter case the noun phrase
should be flat - an NPB - rather than a noun phrase with internal
structure.

Model f-score significance
1. Baseline 67.1
2. NoiseElimination 68.7 � 1

3. Symmetry 69.9 > 2,� 1

4. NPB head rule 70.6 NOT > 3, > 2,� 1

5. PcoordWord WSJ 71.7 NOT > 4, > 3,� 2

6. BNC data 72.1 NOT > 5, > 4,� 3

7. sim(wi, wp) 72.4 NOT > 6, NOT > 5,� 4

Table 1: Results on the Validation Set. 1064 coordi-
nate noun phrase dependencies. In the significance
column > means at level .05 and � means at level
.005, for McNemar’s test of significance. Results are
cumulative.

events from all depths.
For the PcoordWord parameter class we extracted

9961 coordinate noun pairs from the WSJ train-
ing set and 815,323 pairs from the BNC. As pairs
are considered symmetric this resulted in a total of
1,650,568 coordinate noun events. The term weights
for the word vectors were dampened co-occurrence
counts, of the form: 1 + log(count). For the es-
timation of Psim(ni|nj) we found it too computa-
tionally expensive to calculate similarity measures
between nj and each word token collected. The best
results were obtained when the neighbourhood of nj

was taken to be the k-nearest neighbours of nj from
among the set of word that had previously occurred
in a coordination pattern with nj , where k is 1000.
Table 1 shows the effect of the PcoordWord parame-
ter class estimated from WSJ data only (step 5), with
the addition of BNC data (step 6) and finally with the
word similarity measure (step 7).

The result of these experiments, as well as that
involving the change in the head-finding heuristics,
outlined in Section 5, was an increase in coordinate
noun phrase f-score from 69.9% to 73.8% on the test
set. This represents a 13% relative reduction in co-
ordinate f-score error over the baseline, and, using
McNemar’s test for significance, is significant at the
0.05 level (p = 0.034). The reranker f-score for
all constituents (not excluding any coordinate NPs)
for section 23 rose slightly from 89.4% to 89.6%, a
small but significant increase in f-score.10

Finally, we report results on an unaltered coor-
dination test set, that is, a test set from which no

10Significance was calculated using the software available at
www.cis.upenn.edu/ dbikel/software.html.
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noisy events were eliminated. The baseline coordi-
nation dependency f-score for all NP coordination
dependencies (550 dependencies) from section 23 is
69.27%. This rises to 72.74% when all experiments
described in Section 7 are applied, which is also a
statistically significant increase (p = 0.042).

8 Conclusion and Future Work

This paper outlined a novel method for modelling
symmetry in conjunct structure, for modelling the
dependency between noun phrase conjunct head
words and for incorporating a measure of word sim-
ilarity in the estimation of a model parameter. We
also demonstrated how simple pattern matching can
be used to reduce noise in WSJ noun phrase coor-
dination data. Combined, these techniques resulted
in a statistically significant improvement in noun
phrase coordination accuracy.

Coordination disambiguation necessitates in-
formation from a variety of sources. Another
information source important to NP coordinate
disambiguation is the dependency between non-
nominal modifiers and nouns which cross CCs
in NPBs. For example, modelling this type of
dependency could help the model learn that the
phrase the cats and dogs should be bracketed flat,
whereas the phrase the U.S. and Washington should
be given structure.
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Abstract 

This paper addresses the issue of text nor-
malization, an important yet often over-
looked problem in natural language proc-
essing. By text normalization, we mean 
converting ‘informally inputted’ text into 
the canonical form, by eliminating ‘noises’ 
in the text and detecting paragraph and sen-
tence boundaries in the text. Previously, 
text normalization issues were often under-
taken in an ad-hoc fashion or studied sepa-
rately. This paper first gives a formaliza-
tion of the entire problem. It then proposes 
a unified tagging approach to perform the 
task using Conditional Random Fields 
(CRF). The paper shows that with the in-
troduction of a small set of tags, most of 
the text normalization tasks can be per-
formed within the approach. The accuracy 
of the proposed method is high, because 
the subtasks of normalization are interde-
pendent and should be performed together. 
Experimental results on email data cleaning 
show that the proposed method signifi-
cantly outperforms the approach of using 
cascaded models and that of employing in-
dependent models. 

1 Introduction 

More and more ‘informally inputted’ text data be-
comes available to natural language processing, 

such as raw text data in emails, newsgroups, fo-
rums, and blogs. Consequently, how to effectively 
process the data and make it suitable for natural 
language processing becomes a challenging issue. 
This is because informally inputted text data is 
usually very noisy and is not properly segmented. 
For example, it may contain extra line breaks, extra 
spaces, and extra punctuation marks; and it may 
contain words badly cased. Moreover, the bounda-
ries between paragraphs and the boundaries be-
tween sentences are not clear. 

We have examined 5,000 randomly collected 
emails and found that 98.4% of the emails contain 
noises (based on the definition in Section 5.1). 

In order to perform high quality natural lan-
guage processing, it is necessary to perform ‘nor-
malization’ on informally inputted data first, spe-
cifically, to remove extra line breaks, segment the 
text into paragraphs, add missing spaces and miss-
ing punctuation marks, eliminate extra spaces and 
extra punctuation marks, delete unnecessary tokens, 
correct misused punctuation marks, restore badly 
cased words, correct misspelled words, and iden-
tify sentence boundaries. 

Traditionally, text normalization is viewed as an 
engineering issue and is conducted in a more or 
less ad-hoc manner. For example, it is done by us-
ing rules or machine learning models at different 
levels. In natural language processing, several is-
sues of text normalization were studied, but were 
only done separately. 

This paper aims to conduct a thorough investiga-
tion on the issue. First, it gives a formalization of 
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the problem; specifically, it defines the subtasks of 
the problem. Next, it proposes a unified approach 
to the whole task on the basis of tagging. Specifi-
cally, it takes the problem as that of assigning tags 
to the input texts, with a tag representing deletion, 
preservation, or replacement of a token. As the 
tagging model, it employs Conditional Random 
Fields (CRF). The unified model can achieve better 
performances in text normalization, because the 
subtasks of text normalization are often interde-
pendent. Furthermore, there is no need to define 
specialized models and features to conduct differ-
ent types of cleaning; all the cleaning processes 
have been formalized and conducted as assign-
ments of the three types of tags. 

Experimental results indicate that our method 
significantly outperforms the methods using cas-
caded models or independent models on normali-
zation. Our experiments also indicate that with the 
use of the tags defined, we can conduct most of the 
text normalization in the unified framework. 

Our contributions in this paper include: (a) for-
malization of the text normalization problem, (b) 
proposal of a unified tagging approach, and (c) 
empirical verification of the effectiveness of the 
proposed approach. 

The rest of the paper is organized as follows. In 
Section 2, we introduce related work. In Section 3, 
we formalize the text normalization problem. In 
Section 4, we explain our approach to the problem 
and in Section 5 we give the experimental results. 
We conclude the paper in Section 6. 

2 Related Work 

Text normalization is usually viewed as an 
engineering issue and is addressed in an ad-hoc 
manner. Much of the previous work focuses on 
processing texts in clean form, not texts in 
informal form. Also, prior work mostly focuses on 
processing one type or a small number of types of 
errors, whereas this paper deals with many 
different types of errors. 

Clark (2003) has investigated the problem of 
preprocessing noisy texts for natural language 
processing. He proposes identifying token bounda-
ries and sentence boundaries, restoring cases of 
words, and correcting misspelled words by using a 
source channel model. 

Minkov et al. (2005) have investigated the prob-
lem of named entity recognition in informally in-

putted texts. They propose improving the perform-
ance of personal name recognition in emails using 
two machine-learning based methods: Conditional 
Random Fields and Perceptron for learning HMMs. 
See also (Carvalho and Cohen, 2004). 

Tang et al. (2005) propose a cascaded approach 
for email data cleaning by employing Support Vec-
tor Machines and rules. Their method can detect 
email headers, signatures, program codes, and ex-
tra line breaks in emails. See also (Wong et al., 
2007). 

Palmer and Hearst (1997) propose using a Neu-
ral Network model to determine whether a period 
in a sentence is the ending mark of the sentence, an 
abbreviation, or both. See also (Mikheev, 2000; 
Mikheev, 2002). 

Lita et al. (2003) propose employing a language 
modeling approach to address the case restoration 
problem. They define four classes for word casing: 
all letters in lower case, first letter in uppercase, all 
letters in upper case, and mixed case, and formal-
ize the problem as assigning class labels to words 
in natural language texts. Mikheev (2002) proposes 
using not only local information but also global 
information in a document in case restoration. 

Spelling error correction can be formalized as a 
classification problem. Golding and Roth (1996) 
propose using the Winnow algorithm to address 
the issue. The problem can also be formalized as 
that of data conversion using the source channel 
model. The source model can be built as an n-gram 
language model and the channel model can be con-
structed with confusing words measured by edit 
distance. Brill and Moore, Church and Gale, and 
Mayes et al. have developed different techniques 
for confusing words calculation (Brill and Moore, 
2000; Church and Gale, 1991; Mays et al., 1991). 

Sproat et al. (1999) have investigated normaliza-
tion of non-standard words in texts, including 
numbers, abbreviations, dates, currency amounts, 
and acronyms. They propose a taxonomy of non-
standard words and apply n-gram language models, 
decision trees, and weighted finite-state transduc-
ers to the normalization. 

3 Text Normalization 

In this paper we define text normalization at three 
levels: paragraph, sentence, and word level. The 
subtasks at each level are listed in Table 1. For ex-
ample, at the paragraph level, there are two sub-
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tasks: extra line-break deletion and paragraph 
boundary detection. Similarly, there are six (three) 
subtasks at the sentence (word) level, as shown in 
Table 1. Unnecessary token deletion refers to dele-
tion of tokens like ‘-----’ and ‘====’, which are 
not needed in natural language processing. Note 
that most of the subtasks conduct ‘cleaning’ of 
noises, except paragraph boundary detection and 
sentence boundary detection. 

Level Task Percentages 
of Noises

Extra line break deletion 49.53 Paragraph 
Paragraph boundary detection  

Extra space deletion 15.58 
Extra punctuation mark deletion 0.71 

Missing space insertion 1.55 
Missing punctuation mark insertion 3.85 

Misused punctuation mark correction 0.64 

Sentence 

Sentence boundary detection  
Case restoration 15.04 

Unnecessary token deletion 9.69 Word 
Misspelled word correction 3.41 

Table 1. Text Normalization Subtasks 

As a result of text normalization, a text is seg-
mented into paragraphs; each paragraph is seg-
mented into sentences with clear boundaries; and 
each word is converted into the canonical form. 
After normalization, most of the natural language 
processing tasks can be performed, for example, 
part-of-speech tagging and parsing. 

We have manually cleaned up some email data 
(cf., Section 5) and found that nearly all the noises 
can be eliminated by performing the subtasks de-
fined above. Table 1 gives the statistics. 

1.  i’m thinking about buying a pocket 
2.  pc    device for my wife this christmas,. 
3.  the worry that i have is that she won’t 
4.  be able to sync it to her outlook express  
5.  contacts… 

Figure 1. An example of informal text 
I’m thinking about buying a Pocket PC device for my 
wife this Christmas.// The worry that I have is that 
she won’t be able to sync it to her Outlook Express 
contacts.// 

Figure 2. Normalized text 

Figure 1 shows an example of informally input-
ted text data. It includes many typical noises. From 
line 1 to line 4, there are four extra line breaks at 
the end of each line. In line 2, there is an extra 

comma after the word ‘Christmas’. The first word 
in each sentence and the proper nouns (e.g., 
‘Pocket PC’ and ‘Outlook Express’) should be 
capitalized. The extra spaces between the words 
‘PC’ and ‘device’ should be removed. At the end 
of line 2, the line break should be removed and a 
space is needed after the period. The text should be 
segmented into two sentences. 

Figure 2 shows an ideal output of text normali-
zation on the input text in Figure 1. All the noises 
in Figure 1 have been cleaned and paragraph and 
sentence endings have been identified. 

We must note that dependencies (sometimes 
even strong dependencies) exist between different 
types of noises. For example, word case restoration 
needs help from sentence boundary detection, and 
vice versa. An ideal normalization method should 
consider processing all the tasks together. 

4 A Unified Tagging Approach 

4.1 Process 

In this paper, we formalize text normalization as a 
tagging problem and employ a unified approach to 
perform the task (no matter whether the processing 
is at paragraph level, sentence level, or word level). 

There are two steps in the method: preprocess-
ing and tagging. In preprocessing, (A) we separate 
the text into paragraphs (i.e., sequences of tokens), 
(B) we determine tokens in the paragraphs, and (C) 
we assign possible tags to each token. The tokens 
form the basic units and the paragraphs form the 
sequences of units in the tagging problem. In tag-
ging, given a sequence of units, we determine the 
most likely corresponding sequence of tags by us-
ing a trained tagging model. In this paper, as the 
tagging model, we make use of CRF. 

Next we describe the steps (A)-(C) in detail and 
explain why our method can accomplish many of 
the normalization subtasks in Table 1. 

(A). We separate the text into paragraphs by tak-
ing two or more consecutive line breaks as the end-
ings of paragraphs. 

(B). We identify tokens by using heuristics. 
There are five types of tokens: ‘standard word’, 
‘non-standard word’, punctuation mark, space, and 
line break. Standard words are words in natural 
language. Non-standard words include several 
general ‘special words’ (Sproat et al., 1999), email 
address, IP address, URL, date, number, money, 
percentage, unnecessary tokens (e.g., ‘===‘ and 
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‘###’), etc. We identify non-standard words by 
using regular expressions. Punctuation marks in-
clude period, question mark, and exclamation mark. 
Words and punctuation marks are separated into 
different tokens if they are joined together. Natural 
spaces and line breaks are also regarded as tokens. 

(C). We assign tags to each token based on the 
type of the token. Table 2 summarizes the types of 
tags defined. 

Token Type Tag Description 
PRV Preserve line break 
RPA Replace line break by space Line break 
DEL Delete line break 
PRV Preserve space Space 
DEL Delete space 

PSB Preserve punctuation mark and view it 
as sentence ending 

PRV Preserve punctuation mark without 
viewing it as sentence ending 

Punctuation 
mark 

DEL Delete punctuation mark 
AUC Make all characters in uppercase 
ALC Make all characters in lowercase 
FUC Make the first character in uppercase

Word 

AMC Make characters in mixed case 
PRV Preserve the special token Special token 
DEL Delete the special token 

Table 2. Types of tags 

 
Figure 3. An example of tagging 

Figure 3 shows an example of the tagging proc-
ess. (The symbol ‘’ indicates a space). In the fig-
ure, a white circle denotes a token and a gray circle 
denotes a tag. Each token can be assigned several 
possible tags. 

Using the tags, we can perform most of the text 
normalization processing (conducting seven types 
of subtasks defined in Table 1 and cleaning 
90.55% of the noises). 

In this paper, we do not conduct three subtasks, 
although we could do them in principle. These in-
clude missing space insertion, missing punctuation 

mark insertion, and misspelled word correction. In 
our email data, it corresponds to 8.81% of the 
noises. Adding tags for insertions would increase 
the search space dramatically. We did not do that 
due to computation consideration. Misspelled word 
correction can be done in the same framework eas-
ily. We did not do that in this work, because the 
percentage of misspelling in the data is small. 

We do not conduct misused punctuation mark 
correction as well (e.g., correcting ‘.’ with ‘?’). It 
consists of 0.64% of the noises in the email data. 
To handle it, one might need to parse the sentences. 

4.2 CRF Model 

We employ Conditional Random Fields (CRF) as 
the tagging model. CRF is a conditional probability 
distribution of a sequence of tags given a sequence 
of tokens, represented as P(Y|X) , where X denotes 
the token sequence and Y the tag sequence 
(Lafferty et al., 2001). 

In tagging, the CRF model is used to find the 
sequence of tags Y* having the highest likelihood 
Y* = maxYP(Y|X), with an efficient algorithm (the 
Viterbi algorithm). 

In training, the CRF model is built with labeled 
data and by means of an iterative algorithm based 
on Maximum Likelihood Estimation. 

Transition Features 
yi-1=y’, yi=y 

yi-1=y’, yi=y, wi=w 
yi-1=y’, yi=y, ti=t 
State Features 

wi=w, yi=y 
wi-1=w, yi=y 
wi-2=w, yi=y 
wi-3=w, yi=y 
wi-4=w, yi=y 
wi+1=w, yi=y 
wi+2=w, yi=y 
wi+3=w, yi=y 
wi+4=w, yi=y 

wi-1=w’, wi=w, yi=y
wi+1=w’, wi=w, yi=y 

ti=t, yi=y 
ti-1=t, yi=y 
ti-2=t, yi=y 
ti-3=t, yi=y 
ti-4=t, yi=y 
ti+1=t, yi=y 
ti+2=t, yi=y 
ti+3=t, yi=y 
ti+4=t, yi=y 

ti-2=t’’, ti-1=t’, yi=y 
ti-1=t’, ti=t, yi=y 
ti=t, ti+1=t’, yi=y 

ti+1=t’, ti+2=t’’, yi=y 
ti-2=t’’, ti-1=t’, ti=t, yi=y 
ti-1=t’’, ti=t, ti+1=t’, yi=y 
ti=t, ti+1=t’, ti+2=t’’, yi=y 

Table 3. Features used in the unified CRF model 
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4.3 Features 

Two sets of features are defined in the CRF model: 
transition features and state features. Table 3 
shows the features used in the model. 

Suppose that at position i in token sequence x, wi 
is the token, ti the type of token (see Table 2), and 
yi the possible tag. Binary features are defined as 
described in Table 3. For example, the transition 
feature yi-1=y’, yi=y implies that if the current tag is 
y and the previous tag is y’, then the feature value 
is true; otherwise false. The state feature wi=w, 
yi=y implies that if the current token is w and the 
current label is y, then the feature value is true; 
otherwise false. In our experiments, an actual fea-
ture might be the word at position 5 is ‘PC’ and the 
current tag is AUC. In total, 4,168,723 features 
were used in our experiments. 

4.4 Baseline Methods 

We can consider two baseline methods based on 
previous work, namely cascaded and independent 
approaches. The independent approach performs 
text normalization with several passes on the text. 
All of the processes take the raw text as input and 
output the normalized/cleaned result independently. 
The cascaded approach also performs normaliza-
tion in several passes on the text. Each process car-
ries out cleaning/normalization from the output of 
the previous process. 

4.5 Advantages 

Our method offers some advantages. 
(1) As indicated, the text normalization tasks are 

interdependent. The cascaded approach or the in-
dependent approach cannot simultaneously per-
form the tasks. In contrast, our method can effec-
tively overcome the drawback by employing a uni-
fied framework and achieve more accurate per-
formances. 

(2) There are many specific types of errors one 
must correct in text normalization. As shown in 
Figure 1, there exist four types of errors with each 
type having several correction results. If one de-
fines a specialized model or rule to handle each of 
the cases, the number of needed models will be 
extremely large and thus the text normalization 
processing will be impractical. In contrast, our 
method naturally formalizes all the tasks as as-
signments of different types of tags and trains a 
unified model to tackle all the problems at once. 

5 Experimental Results 

5.1 Experiment Setting 

Data Sets 

We used email data in our experiments. We ran-
domly chose in total 5,000 posts (i.e., emails) from 
12 newsgroups. DC, Ontology, NLP, and ML are 
from newsgroups at Google (http://groups-
beta.google.com/groups). Jena is a newsgroup at Ya-
hoo (http://groups.yahoo.com/group/jena-dev). Weka 
is a newsgroup at Waikato University (https://list. 
scms.waikato.ac.nz). Protégé and OWL are from a 
project at Stanford University 
(http://protege.stanford.edu/). Mobility, WinServer, 
Windows, and PSS are email collections from a 
company. 

Five human annotators conducted normalization 
on the emails. A spec was created to guide the an-
notation process. All the errors in the emails were 
labeled and corrected. For disagreements in the 
annotation, we conducted “majority voting”.  For 
example, extra line breaks, extra spaces, and extra 
punctuation marks in the emails were labeled. Un-
necessary tokens were deleted. Missing spaces and 
missing punctuation marks were added and marked. 
Mistakenly cased words, misspelled words, and 
misused punctuation marks were corrected. Fur-
thermore, paragraph boundaries and sentence 
boundaries were also marked. The noises fell into 
the categories defined in Table 1. 

Table 4 shows the statistics in the data sets. 
From the table, we can see that a large number of 
noises (41,407) exist in the emails. We can also see 
that the major noise types are extra line breaks, 
extra spaces, casing errors, and unnecessary tokens. 

In the experiments, we conducted evaluations in 
terms of precision, recall, F1-measure, and accu-
racy (for definitions of the measures, see for ex-
ample (van Rijsbergen, 1979; Lita et al., 2003)). 

Implementation of Baseline Methods 

We used the cascaded approach and the independ-
ent approach as baselines. 

For the baseline methods, we defined several 
basic prediction subtasks: extra line break detec-
tion, extra space detection, extra punctuation mark 
detection, sentence boundary detection, unneces-
sary token detection, and case restoration. We 
compared the performances of our method with 
those of the baseline methods on the subtasks. 
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Data Set 
Number 

of 
Email 

Number 
of 

Noises 

Extra 
Line 

Break 

Extra 
Space 

Extra
 Punc.

Missing
Space

Missing
Punc.

Casing
Error

Spelling
Error

Misused 
Punc.

Unnece-
ssary 
Token 

Number of 
Paragraph 
Boundary 

Number of 
Sentence 

Boundary
DC 100 702 476 31 8 3 24 53 14 2 91 457 291 

Ontology 100 2,731 2,132 24 3 10 68 205 79 15 195 677 1,132 
NLP 60 861 623 12 1 3 23 135 13 2 49 244 296 
ML 40 980 868 17 0 2 13 12 7 0 61 240 589 
Jena 700 5,833 3,066 117 42 38 234 888 288 59 1,101 2,999 1,836 

Weka 200 1,721 886 44 0 30 37 295 77 13 339 699 602 
Protégé 700 3,306 1,770 127 48 151 136 552 116 9 397 1,645 1,035 
OWL 300 1,232 680 43 24 47 41 152 44 3 198 578 424 

Mobility 400 2,296 1,292 64 22 35 87 495 92 8 201 891 892 
WinServer 400 3,487 2,029 59 26 57 142 822 121 21 210 1,232 1,151 
Windows 1,000 9,293 3,416 3,056 60 116 348 1,309 291 67 630 3,581 2,742 

PSS 1,000 8,965 3,348 2,880 59 153 296 1,331 276 66 556 3,411 2,590 
Total 5,000 41,407 20,586 6,474 293 645 1,449 6,249 1,418 265 4,028 16,654 13,580 

Table 4. Statistics on data sets 

For the case restoration subtask (processing on 
token sequence), we employed the TrueCasing 
method (Lita et al., 2003). The method estimates a 
tri-gram language model using a large data corpus 
with correctly cased words and then makes use of 
the model in case restoration. We also employed 
Conditional Random Fields to perform case 
restoration, for comparison purposes. The CRF 
based casing method estimates a conditional 
probabilistic model using the same data and the 
same tags defined in TrueCasing. 

For unnecessary token deletion, we used rules as 
follows. If a token consists of non-ASCII charac-
ters or consecutive duplicate characters, such as 
‘===‘, then we identify it as an unnecessary token. 

For each of the other subtasks, we exploited the 
classification approach. For example, in extra line 
break detection, we made use of a classification 
model to identify whether or not a line break is a 
paragraph ending. We employed Support Vector 
Machines (SVM) as the classification model (Vap-
nik, 1998). In the classification model we utilized 
the same features as those in our unified model 
(see Table 3 for details). 

In the cascaded approach, the prediction tasks 
are performed in sequence, where the output of 
each task becomes the input of each immediately 
following task. The order of the prediction tasks is: 
(1) Extra line break detection: Is a line break a 
paragraph ending? It then separates the text into 
paragraphs using the remaining line breaks. (2) 
Extra space detection: Is a space an extra space? (3) 
Extra punctuation mark detection: Is a punctuation 
mark a noise? (4) Sentence boundary detection: Is 
a punctuation mark a sentence boundary? (5) Un-
necessary token deletion: Is a token an unnecessary 

token? (6) Case restoration. Each of steps (1) to (4) 
uses a classification model (SVM), step (5) uses 
rules, whereas step (6) uses either a language 
model (TrueCasing) or a CRF model (CRF). 

In the independent approach, we perform the 
prediction tasks independently. When there is a 
conflict between the outcomes of two classifiers, 
we adopt the result of the latter classifier, as de-
termined by the order of classifiers in the cascaded 
approach. 

To test how dependencies between different 
types of noises affect the performance of normali-
zation, we also conducted experiments using the 
unified model by removing the transition features. 

Implementation of Our Method 

In the implementation of our method, we used the 
tool CRF++, available at http://chasen.org/~taku 
/software/CRF++/. We made use of all the default 
settings of the tool in the experiments. 

5.2 Text Normalization Experiments 

Results 

We evaluated the performances of our method 
(Unified) and the baseline methods (Cascaded and 
Independent) on the 12 data sets. Table 5 shows 
the five-fold cross-validation results. Our method 
outperforms the two baseline methods. 

Table 6 shows the overall performances of text 
normalization by our method and the two baseline 
methods. We see that our method outperforms the 
two baseline methods. It can also be seen that the 
performance of the unified method decreases when 
removing the transition features (Unified w/o 
Transition Features). 
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We conducted sign tests for each subtask on the 
results, which indicate that all the improvements of 
Unified over Cascaded and Independent are statis-
tically significant (p << 0.01). 

Detection Task Prec. Rec. F1 Acc.
Independent 95.16 91.52 93.30 93.81

Cascaded 95.16 91.52 93.30 93.81Extra Line 
Break  Unified 93.87 93.63 93.75 94.53

Independent 91.85 94.64 93.22 99.87
Cascaded 94.54 94.56 94.55 99.89Extra Space 
Unified 95.17 93.98 94.57 99.90

Independent 88.63 82.69 85.56 99.66
Cascaded 87.17 85.37 86.26 99.66

Extra 
 Punctuation 

Mark Unified 90.94 84.84 87.78 99.71
Independent 98.46 99.62 99.04 98.36

Cascaded 98.55 99.20 98.87 98.08Sentence 
Boundary  Unified 98.76 99.61 99.18 98.61

Independent 72.51 100.0 84.06 84.27
Cascaded 72.51 100.0 84.06 84.27Unnecessary 

Token Unified 98.06 95.47 96.75 96.18
Independent 27.32 87.44 41.63 96.22Case  

Restoration 
(TrueCasing) Cascaded 28.04 88.21 42.55 96.35

Independent 84.96 62.79 72.21 99.01
Cascaded 85.85 63.99 73.33 99.07

Case  
Restoration 

(CRF) Unified 86.65 67.09 75.63 99.21

Table 5. Performances of text normalization (%) 
Text Normalization Prec. Rec. F1 Acc.

Independent (TrueCasing) 69.54 91.33 78.96 97.90
Independent (CRF) 85.05 92.52 88.63 98.91

Cascaded (TrueCasing) 70.29 92.07 79.72 97.88
Cascaded (CRF) 85.06 92.70 88.72 98.92

Unified w/o Transition 
Features 86.03 93.45 89.59 99.01

Unified 86.46 93.92 90.04 99.05

Table 6. Performances of text normalization (%) 

Discussions 

Our method outperforms the independent method 
and the cascaded method in all the subtasks, espe-
cially in the subtasks that have strong dependen-
cies with each other, for example, sentence bound-
ary detection, extra punctuation mark detection, 
and case restoration. 

The cascaded method suffered from ignorance 
of the dependencies between the subtasks. For ex-
ample, there were 3,314 cases in which sentence 
boundary detection needs to use the results of extra 
line break detection, extra punctuation mark detec-
tion, and case restoration. However, in the cas-
caded method, sentence boundary detection is con-
ducted after extra punctuation mark detection and 
before case restoration, and thus it cannot leverage 

the results of case restoration. Furthermore, errors 
of extra punctuation mark detection can lead to 
errors in sentence boundary detection. 

The independent method also cannot make use 
of dependencies across different subtasks, because 
it conducts all the subtasks from the raw input data. 
This is why for detection of extra space, extra 
punctuation mark, and casing error, the independ-
ent method cannot perform as well as our method. 

Our method benefits from the ability of model-
ing dependencies between subtasks. We see from 
Table 6 that by leveraging the dependencies, our 
method can outperform the method without using 
dependencies (Unified w/o Transition Features) by 
0.62% in terms of F1-measure. 

Here we use the example in Figure 1 to show the 
advantage of our method compared with the inde-
pendent and the cascaded methods. With normali-
zation by the independent method, we obtain: 

I’m thinking about buying a pocket PC   device for my wife 
this Christmas, The worry that I have is that she won’t be able 
to sync it to her outlook express contacts.// 

With normalization by the cascaded method, we 
obtain: 

I’m thinking about buying a pocket PC device for my wife 
this Christmas, the worry that I have is that she won’t be able 
to sync it to her outlook express contacts.// 

With normalization by our method, we obtain: 
I’m thinking about buying a Pocket PC device for my wife 

this Christmas.// The worry that I have is that she won’t be 
able to sync it to her Outlook Express contacts.// 

The independent method can correctly deal with 
some of the errors. For instance, it can capitalize 
the first word in the first and the third line, remove 
extra periods in the fifth line, and remove the four 
extra line breaks. However, it mistakenly removes 
the period in the second line and it cannot restore 
the cases of some words, for example ‘pocket’ and 
‘outlook express’. 

In the cascaded method, each process carries out 
cleaning/normalization from the output of the pre-
vious process and thus can make use of the 
cleaned/normalized results from the previous proc-
ess. However, errors in the previous processes will 
also propagate to the later processes. For example, 
the cascaded method mistakenly removes the pe-
riod in the second line. The error allows case resto-
ration to make the error of keeping the word ‘the’ 
in lower case. 
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TrueCasing-based methods for case restoration 
suffer from low precision (27.32% by Independent 
and 28.04% by Cascaded), although their recalls 
are high (87.44% and 88.21% respectively). There 
are two reasons: 1) About 10% of the errors in 
Cascaded are due to errors of sentence boundary 
detection and extra line break detection in previous 
steps; 2) The two baselines tend to restore cases of 
words to the forms having higher probabilities in 
the data set and cannot take advantage of the de-
pendencies with the other normalization subtasks. 
For example, ‘outlook’ was restored to first letter 
capitalized in both ‘Outlook Express’ and ‘a pleas-
ant outlook’. Our method can take advantage of the 
dependencies with other subtasks and thus correct 
85.01% of the errors that the two baseline methods 
cannot handle. Cascaded and Independent methods 
employing CRF for case restoration improve the 
accuracies somewhat. However, they are still infe-
rior to our method. 

Although we have conducted error analysis on 
the results given by our method, we omit the de-
tails here due to space limitation and will report 
them in a future expanded version of this paper. 

We also compared the speed of our method with 
those of the independent and cascaded methods. 
We tested the three methods on a computer with 
two 2.8G Dual-Core CPUs and three Gigabyte 
memory. On average, it needs about 5 hours for 
training the normalization models using our 
method and 25 seconds for tagging in the cross-
validation experiments. The independent and the 
cascaded methods (with TrueCasing) require less 
time for training (about 2 minutes and 3 minutes 
respectively) and for tagging (several seconds). 
This indicates that the efficiency of our method 
still needs improvement. 

6 Conclusion 

In this paper, we have investigated the problem of 
text normalization, an important issue for natural 
language processing. We have first defined the 
problem as a task consisting of noise elimination 
and boundary detection subtasks. We have then 
proposed a unified tagging approach to perform the 
task, specifically to treat text normalization as as-
signing tags representing deletion, preservation, or 
replacement of the tokens in the text. Experiments 
show that our approach significantly outperforms 
the two baseline methods for text normalization. 
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Abstract

Even in a massive corpus such as the Web, a
substantial fraction of extractions appear in-
frequently. This paper shows how to assess
the correctness of sparse extractions by uti-
lizing unsupervised language models. The
REALM system, which combines HMM-
based and n-gram-based language models,
ranks candidate extractions by the likeli-
hood that they are correct. Our experiments
show that REALM reduces extraction error
by 39%, on average, when compared with
previous work.

Because REALM pre-computes language
models based on its corpus and does not re-
quire any hand-tagged seeds, it is far more
scalable than approaches that learn mod-
els for each individual relation from hand-
tagged data. Thus, REALM is ideally suited
for open information extraction where the
relations of interest are not specified in ad-
vance and their number is potentially vast.

1 Introduction

Information Extraction (IE) from text is far from in-
fallible. In response, researchers have begun to ex-
ploit the redundancy in massive corpora such as the
Web in order to assess the veracity of extractions
(e.g., (Downey et al., 2005; Etzioni et al., 2005;
Feldman et al., 2006)). In essence, such methods uti-
lize extraction patterns to generate candidate extrac-
tions (e.g., “Istanbul”) and then assess each candi-
date by computing co-occurrence statistics between

the extraction and words or phrases indicative of
class membership (e.g., “cities such as”).

However, Zipf’s Law governs the distribution of
extractions. Thus, even the Web has limited redun-
dancy for less prominent instances of relations. In-
deed, 50% of the extractions in the data sets em-
ployed by (Downey et al., 2005) appeared only
once. As a result, Downey et al.’s model, and re-
lated methods, had no way of assessing which ex-
traction is more likely to be correct for fully half of
the extractions. This problem is particularly acute
when moving beyond unary relations. We refer to
this challenge as the task of assessing sparse extrac-
tions.

This paper introduces the idea that language mod-
eling techniques such as n-gram statistics (Manning
and Schütze, 1999) and HMMs (Rabiner, 1989) can
be used to effectively assess sparse extractions. The
paper introduces the REALM system, and highlights
its unique properties. Notably, REALM does not
require any hand-tagged seeds, which enables it to
scale to Open IE—extraction where the relations of
interest are not specified in advance, and their num-
ber is potentially vast (Banko et al., 2007).

REALM is based on two key hypotheses. The
KnowItAll hypothesis is that extractions that oc-
cur more frequently in distinct sentences in the
corpus are more likely to be correct. For exam-
ple, the hypothesis suggests that the argument pair
(Giuliani, New York) is relatively likely to be
appropriate for the Mayor relation, simply because
this pair is extracted for the Mayor relation rela-
tively frequently. Second, we employ an instance of
the distributional hypothesis (Harris, 1985), which
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can be phrased as follows: different instances of
the same semantic relation tend to appear in sim-
ilar textual contexts. We assess sparse extractions
by comparing the contexts in which they appear to
those of more common extractions. Sparse extrac-
tions whose contexts are more similar to those of
common extractions are judged more likely to be
correct based on the conjunction of the KnowItAll
and the distributional hypotheses.

The contributions of the paper are as follows:
• The paper introduces the insight that the sub-

field of language modeling provides unsuper-
vised methods that can be leveraged to assess
sparse extractions. These methods are more
scalable than previous assessment techniques,
and require no hand tagging whatsoever.

• The paper introduces an HMM-based tech-
nique for checking whether two arguments are
of the proper type for a relation.

• The paper introduces a relational n-gram
model for the purpose of determining whether
a sentence that mentions multiple arguments
actually expresses a particular relationship be-
tween them.

• The paper introduces a novel language-
modeling system called REALM that combines
both HMM-based models and relational n-
gram models, and shows that REALM reduces
error by an average of 39% over previous meth-
ods, when applied to sparse extraction data.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the IE assessment task,
and describes the REALM system in detail. Section
3 reports on our experimental results followed by a
discussion of related work in Section 4. Finally, we
conclude with a discussion of scalability and with
directions for future work.

2 IE Assessment

This section formalizes the IE assessment task and
describes the REALM system for solving it. An IE
assessor takes as input a list of candidate extractions
meant to denote instances of a relation, and outputs
a ranking of the extractions with the goal that cor-
rect extractions rank higher than incorrect ones. A
correct extraction is defined to be a true instance of
the relation mentioned in the input text.

More formally, the list of candidate extrac-
tions for a relation R is denoted as ER =
{(a1, b1), . . . , (am, bm)}. An extraction (ai, bi) is
an ordered pair of strings. The extraction is correct
if and only if the relation R holds between the argu-
ments named by ai and bi. For example, for R =
Headquartered, a pair (ai, bi) is correct iff there
exists an organization ai that is in fact headquartered
in the location bi.1

ER is generated by applying an extraction mech-
anism, typically a set of extraction “patterns”, to
each sentence in a corpus, and recording the results.
Thus, many elements of ER are identical extractions
derived from different sentences in the corpus.

This task definition is notable for the minimal
inputs required—IE assessment does not require
knowing the relation name nor does it require hand-
tagged seed examples of the relation. Thus, an IE
Assessor is applicable to Open IE.

2.1 System Overview

In this section, we describe the REALM system,
which utilizes language modeling techniques to per-
form IE Assessment.

REALM takes as input a set of extractions ER,
and outputs a ranking of those extractions. The
algorithm REALM follows is outlined in Figure 1.
REALM begins by automatically selecting from ER

a set of bootstrapped seeds SR intended to serve as
correct examples of the relation R. REALM utilizes
the KnowItAll hypothesis, setting SR equal to the
h elements in ER extracted most frequently from
the underlying corpus. This results in a noisy set of
seeds, but the methods that use these seeds are noise
tolerant.

REALM then proceeds to rank the remaining
(non-seed) extractions by utilizing two language-
modeling components. An n-gram language model
is a probability distribution P (w1, ..., wn) over con-
secutive word sequences of length n in a corpus.
Formally, if we assume a seed (s1, s2) is a correct
extraction of a relation R, the distributional hypoth-
esis states that the context distribution around the
seed extraction, P (w1, ..., wn|wi = s1, wj = s2)
for 1 ≤ i, j ≤ n tends to be “more similar” to

1For clarity, our discussion focuses on relations between
pairs of arguments. However, the methods we propose can be
extended to relations of any arity.

697



P (w1, ..., wn|wi = e1, wj = e2) when the extrac-
tion (e1, e2) is correct. Naively comparing context
distributions is problematic, however, because the
arguments to a relation often appear separated by
several intervening words. In our experiments, we
found that when relation arguments appear together
in a sentence, 75% of the time the arguments are
separated by at least three words. This implies that
n must be large, and for sparse argument pairs it is
not possible to estimate such a large language model
accurately, because the number of modeling param-
eters is proportional to the vocabulary size raised to
the nth power. To mitigate sparsity, REALM utilizes
smaller language models in its two components as a
means of “backing-off’ from estimating context dis-
tributions explicitly, as described below.

First, REALM utilizes an HMM to estimate
whether each extraction has arguments of the proper
type for the relation. Each relation R has a set
of types for its arguments. For example, the rela-
tion AuthorOf(a, b) requires that its first ar-
gument be an author, and that its second be some
kind of written work. Knowing whether extracted
arguments are of the proper type for a relation can
be quite informative for assessing extractions. The
challenge is, however, that this type information is
not given to the system since the relations (and the
types of the arguments) are not known in advance.
REALM solves this problem by comparing the dis-
tributions of the seed arguments and extraction ar-
guments. Type checking mitigates data sparsity by
leveraging every occurrence of the individual extrac-
tion arguments in the corpus, rather than only those
cases in which argument pairs occur near each other.

Although argument type checking is invalu-
able for extraction assessment, it is not suf-
ficient for extracting relationships between ar-
guments. For example, an IE system us-
ing only type information might determine that
Intel is a corporation and that Seattle is
a city, and therefore erroneously conclude that
Headquartered(Intel, Seattle) is cor-
rect. Thus, REALM’s second step is to employ an
n-gram-based language model to assess whether the
extracted arguments share the appropriate relation.
Again, this information is not given to the system,
so REALM compares the context distributions of the
extractions to those of the seeds. As described in

REALM(Extractions ER = {e1, ..., em})
SR = the h most frequent extractions in ER

UR = ER - SR

TypeRankings(UR)← HMM-T(SR, UR)

RelationRankings(UR)← REL-GRAMS(SR, UR)

return a ranking of ER with the elements of SR at the

top (ranked by frequency) followed by the elements of

UR = {u1, ..., um−h} ranked in ascending order of

TypeRanking(ui) ∗RelationRanking(ui).

Figure 1: Pseudocode for REALM at run-time.
The language models used by the HMM-T and
REL-GRAMS components are constructed in a pre-
processing step.

Section 2.3, REALM employs a relational n-gram
language model in order to accurately compare con-
text distributions when extractions are sparse.

REALM executes the type checking and relation
assessment components separately; each component
takes the seed and non-seed extractions as arguments
and returns a ranking of the non-seeds. REALM then
combines the two components’ assessments into a
single ranking. Although several such combinations
are possible, REALM simply ranks the extractions in
ascending order of the product of the ranks assigned
by the two components. The following subsections
describe REALM’s two components in detail.

We identify the proper nouns in our corpus us-
ing the LEX method (Downey et al., 2007). In ad-
dition to locating the proper nouns in the corpus,
LEX also concatenates each multi-token proper noun
(e.g.,Los Angeles) together into a single token.
Both of REALM’s components construct language
models from this tokenized corpus.

2.2 Type Checking with HMM-T

In this section, we describe our type-checking com-
ponent, which takes the form of a Hidden Markov
Model and is referred to as HMM-T. HMM-T ranks
the set UR of non-seed extractions, with a goal of
ranking those extractions with arguments of proper
type for R above extractions containing type errors.
Formally, let URi denote the set of the ith arguments
of the extractions in UR. Let SRi be defined simi-
larly for the seed set SR.

Our type checking technique exploits the distri-
butional hypothesis—in this case, the intuition that
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Intel , headquartered in Santa+Clara

Figure 2: Graphical model employed by HMM-
T. Shown is the case in which k = 2. Corpus
pre-processing results in the proper noun Santa
Clara being concatenated into a single token.

extraction arguments in URi of the proper type will
likely appear in contexts similar to those in which
the seed arguments SRi appear. In order to iden-
tify terms that are distributionally similar, we train
a probabilistic generative Hidden Markov Model
(HMM), which treats each token in the corpus as
generated by a single hidden state variable. Here, the
hidden states take integral values from {1, . . . , T},
and each hidden state variable is itself generated by
some number k of previous hidden states.2 For-
mally, the joint distribution of the corpus, repre-
sented as a vector of tokens w, given a correspond-
ing vector of states t is:

P (w|t) =
∏

i

P (wi|ti)P (ti|ti−1, . . . , ti−k) (1)

The distributions on the right side of Equation 1
can be learned from a corpus in an unsupervised
manner, such that words which are distributed sim-
ilarly in the corpus tend to be generated by simi-
lar hidden states (Rabiner, 1989). The generative
model is depicted as a Bayesian network in Figure 2.
The figure also illustrates the one way in which our
implementation is distinct from a standard HMM,
namely that proper nouns are detected a priori and
modeled as single tokens (e.g., Santa Clara is
generated by a single hidden state). This allows
the type checker to compare the state distributions
of different proper nouns directly, even when the
proper nouns contain differing numbers of words.

To generate a ranking of UR using the learned
HMM parameters, we rank the arguments ei accord-
ing to how similar their state distributions P (t|ei)

2Our implementation makes the simplifying assumption that
each sentence in the corpus is generated independently.

are to those of the seed arguments.3 Specifically, we
define a function:

f(e) =
∑
ei∈e

KL(

∑
w′∈SRi

P (t|w′)
|SRi|

, P (t|ei)) (2)

where KL represents KL divergence, and the outer
sum is taken over the arguments ei of the extraction
e. We rank the elements of UR in ascending order of
f(e).

HMM-T has two advantages over a more tradi-
tional type checking approach of simply counting
the number of times in the corpus that each extrac-
tion appears in a context in which a seed also ap-
pears (cf. (Ravichandran et al., 2005)). The first
advantage of HMM-T is efficiency, as the traditional
approach involves a computationally expensive step
of retrieving the potentially large set of contexts in
which the extractions and seeds appear. In our ex-
periments, using HMM-T instead of a context-based
approach results in a 10-50x reduction in the amount
of data that is retrieved to perform type checking.
Secondly, on sparse data HMM-T has the poten-
tial to improve type checking accuracy. For exam-
ple, consider comparing Pickerington, a sparse
candidate argument of the type City, to the seed
argument Chicago, for which the following two
phrases appear in the corpus:

(i) “Pickerington, Ohio”
(ii) “Chicago, Illinois”

In these phrases, the textual contexts surrounding
Chicago and Pickerington are not identical,
so to the traditional approach these contexts offer
no evidence that Pickerington and Chicago
are of the same type. For a sparse token like
Pickerington, this is problematic because the
token may never occur in a context that precisely
matches that of a seed. In contrast, in the HMM, the
non-sparse tokens Ohio and Illinois are likely
to have similar state distributions, as they are both
the names of U.S. States. Thus, in the state space
employed by the HMM, the contexts in phrases (i)
and (ii) are in fact quite similar, allowing HMM-
T to detect that Pickerington and Chicago
are likely of the same type. Our experiments quan-
tify the performance improvements that HMM-T of-

3The distribution P (t|ei) for any ei can be obtained from
the HMM parameters using Bayes Rule.
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fers over the traditional approach for type checking
sparse data.

The time required to learn HMM-T’s parameters
scales proportional to T k+1 times the corpus size.
Thus, for tractability, HMM-T uses a relatively small
state space of T = 20 states and a limited k value
of 3. While these settings are sufficient for type
checking (e.g., determining that Santa Clara is
a city) they are too coarse-grained to assess relations
between arguments (e.g., determining that Santa
Clara is the particular city in which Intel is
headquartered). We now turn to the REL-GRAMS

component, which performs the latter task.

2.3 Relation Assessment with REL-GRAMS

REALM’s relation assessment component, called
REL-GRAMS, tests whether the extracted arguments
have a desired relationship, but given REALM’s min-
imal input it has no a priori information about the
relationship. REL-GRAMS relies instead on the dis-
tributional hypothesis to test each extraction.

As argued in Section 2.1, it is intractable to build
an accurate language model for context distributions
surrounding sparse argument pairs. To overcome
this problem, we introduce relational n-gram mod-
els. Rather than simply modeling the context distri-
bution around a given argument, a relational n-gram
model specifies separate context distributions for an
arguments conditioned on each of the other argu-
ments with which it appears. The relational n-gram
model allows us to estimate context distributions for
pairs of arguments, even when the arguments do not
appear together within a fixed window of n words.
Further, by considering only consecutive argument
pairs, the number of distinct argument pairs in the
model grows at most linearly with the number of
sentences in the corpus. Thus, the relational n-gram
model can scale.

Formally, for a pair of arguments (e1, e2), a re-
lational n-gram model estimates the distributions
P (w1, ..., wn|wi = e1, e1 ↔ e2) for each 1 ≤ i ≤
n, where the notation e1 ↔ e2 indicates the event
that e2 is the next argument to either the right or the
left of e1 in the corpus.

REL-GRAMS begins by building a relational n-
gram model of the arguments in the corpus. For
notational convenience, we represent the model’s
distributions in terms of “context vectors” for each

pair of arguments. Formally, for a given sentence
containing arguments e1 and e2 consecutively, we
define a context of the ordered pair (e1, e2) to be
any window of n tokens around e1. Let C =
{c1, c2, ..., c|C|} be the set of all contexts of all ar-
gument pairs found in the corpus.4 For a pair of ar-
guments (ej , ek), we model their relationship using
a |C| dimensional context vector v(ej ,ek), whose i-th
dimension corresponds to the number of times con-
text ci occurred with the pair (ej , ek) in the corpus.
These context vectors are similar to document vec-
tors from Information Retrieval (IR), and we lever-
age IR research to compare them, as described be-
low.

To assess each extraction, we determine how sim-
ilar its context vector is to a canonical seed vec-
tor (created by summing the context vectors of the
seeds). While there are many potential methods
for determining similarity, in this work we rank ex-
tractions by decreasing values of the BM25 dis-
tance metric. BM25 is a TF-IDF variant intro-
duced in TREC-3(Robertson et al., 1992), which
outperformed both the standard cosine distance and
a smoothed KL divergence on our data.

3 Experimental Results

This section describes our experiments on IE assess-
ment for sparse data. We start by describing our
experimental methodology, and then present our re-
sults. The first experiment tests the hypothesis that
HMM-T outperforms an n-gram-based method on
the task of type checking. The second experiment
tests the hypothesis that REALM outperforms multi-
ple approaches from previous work, and also outper-
forms each of its HMM-T and REL-GRAMS compo-
nents taken in isolation.

3.1 Experimental Methodology

The corpus used for our experiments consisted of a
sample of sentences taken from Web pages. From
an initial crawl of nine million Web pages, we se-
lected sentences containing relations between proper
nouns. The resulting text corpus consisted of about

4Pre-computing the set C requires identifying in advance
the potential relation arguments in the corpus. We consider the
proper nouns identified by the LEX method (see Section 2.1) to
be the potential arguments.
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three million sentences, and was tokenized as de-
scribed in Section 2. For tractability, before and after
performing tokenization, we replaced each token oc-
curring fewer than five times in the corpus with one
of two “unknown word” markers (one for capital-
ized words, and one for uncapitalized words). This
preprocessing resulted in a corpus containing about
sixty-five million total tokens, and 214,787 unique
tokens.

We evaluated performance on four relations:
Conquered, Founded, Headquartered, and
Merged. These four relations were chosen because
they typically take proper nouns as arguments, and
included a large number of sparse extractions. For
each relation R, the candidate extraction list ER was
obtained using TEXTRUNNER (Banko et al., 2007).
TEXTRUNNER is an IE system that computes an in-
dex of all extracted relationships it recognizes, in the
form of (object, predicate, object) triples. For each
of our target relations, we executed a single query
to the TEXTRUNNER index for extractions whose
predicate contained a phrase indicative of the rela-
tion (e.g., “founded by”, “headquartered in”), and
the results formed our extraction list. For each rela-
tion, the 10 most frequent extractions served as boot-
strapped seeds. All of the non-seed extractions were
sparse (no argument pairs were extracted more than
twice for a given relation). These test sets contained
a total of 361 extractions.

3.2 Type Checking Experiments

As discussed in Section 2.2, on sparse data HMM-T
has the potential to outperform type checking meth-
ods that rely on textual similarities of context vec-
tors. To evaluate this claim, we tested the HMM-T
system against an N-GRAMS type checking method
on the task of type-checking the arguments to a re-
lation. The N-GRAMS method compares the context
vectors of extractions in the same way as the REL-
GRAMS method described in Section 2.3, but is not
relational (N-GRAMS considers the distribution of
each extraction argument independently, similar to
HMM-T). We tagged an extraction as type correct iff
both arguments were valid for the relation, ignoring
whether the relation held between the arguments.

The results of our type checking experiments are
shown in Table 1. For all types, HMM-T outper-
forms N-GRAMS, and HMM-T reduces error (mea-

Type HMM-T N-GRAMS

Conquered 0.917 0.767
Founded 0.827 0.636
Headquartered 0.734 0.589
Merged 0.920 0.854
Average 0.849 0.712

Table 1: Type Checking Performance. Listed is area
under the precision/recall curve. HMM-T outper-
forms N-GRAMS for all relations, and reduces the
error in terms of missing area under the curve by
46% on average.

sured in missing area under the precision/recall
curve) by 46%. The performance difference on each
relation is statistically significant (p < 0.01, two-
sampled t-test), using the methodology for measur-
ing the standard deviation of area under the preci-
sion/recall curve given in (Richardson and Domin-
gos, 2006). N-GRAMS, like REL-GRAMS, employs
the BM-25 metric to measure distributional similar-
ity between extractions and seeds. Replacing BM-
25 with cosine distance cuts HMM-T’s advantage
over N-GRAMS, but HMM-T’s error rate is still 23%
lower on average.

3.3 Experiments with REALM

The REALM system combines the type checking
and relation assessment components to assess ex-
tractions. Here, we test the ability of REALM to
improve the ranking of a state of the art IE system,
TEXTRUNNER. For these experiments, we evalu-
ate REALM against the TEXTRUNNER frequency-
based ordering, a pattern-learning approach, and the
HMM-T and REL-GRAMS components taken in iso-
lation. The TEXTRUNNER frequency-based order-
ing ranks extractions in decreasing order of their ex-
traction frequency, and importantly, for our task this
ordering is essentially equivalent to that produced by
the “Urns” (Downey et al., 2005) and Pointwise Mu-
tual Information (Etzioni et al., 2005) approaches
employed in previous work.

The pattern-learning approach, denoted as PL, is
modeled after Snowball (Agichtein, 2006). The al-
gorithm and parameter settings for PL were those
manually tuned for the Headquartered relation
in previous work (Agichtein, 2005). A sensitivity
analysis of these parameters indicated that the re-
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Conquered Founded Headquartered Merged Average
Avg. Prec. 0.698 0.578 0.400 0.742 0.605
TEXTRUNNER 0.738 0.699 0.710 0.784 0.733
PL 0.885 0.633 0.651 0.852 0.785
PL+ HMM-T 0.883 0.722 0.727 0.900 0.808
HMM-T 0.830 0.776 0.678 0.864 0.787
REL-GRAMS 0.929 (39%) 0.713 0.758 0.886 0.822
REALM 0.907 (19%) 0.781 (27%) 0.810 (35%) 0.908 (38%) 0.851 (39%)

Table 2: Performance of REALM for assessment of sparse extractions. Listed is area under the preci-
sion/recall curve for each method. In parentheses is the percentage reduction in error over the strongest
baseline method (TEXTRUNNER or PL) for each relation. “Avg. Prec.” denotes the fraction of correct
examples in the test set for each relation. REALM outperforms its REL-GRAMS and HMM-T components
taken in isolation, as well as the TEXTRUNNER and PL systems from previous work.

sults are sensitive to the parameter settings. How-
ever, we found no parameter settings that performed
significantly better, and many settings performed
significantly worse. As such, we believe our re-
sults reasonably reflect the performance of a pattern
learning system on this task. Because PL performs
relation assessment, we also attempted combining
PL with HMM-T in a hybrid method (PL+ HMM-T)
analogous to REALM.

The results of these experiments are shown in Ta-
ble 2. REALM outperforms the TEXTRUNNER and
PL baselines for all relations, and reduces the miss-
ing area under the curve by an average of 39% rel-
ative to the strongest baseline. The performance
differences between REALM and TEXTRUNNER are
statistically significant for all relations, as are differ-
ences between REALM and PL for all relations ex-
cept Conquered (p < 0.01, two-sampled t-test).
The hybrid REALM system also outperforms each
of its components in isolation.

4 Related Work

To our knowledge, REALM is the first system to use
language modeling techniques for IE Assessment.

Redundancy-based approaches to pattern-based
IE assessment (Downey et al., 2005; Etzioni et al.,
2005) require that extractions appear relatively fre-
quently with a limited set of patterns. In contrast,
REALM utilizes all contexts to build a model of ex-
tractions, rather than a limited set of patterns. Our
experiments demonstrate that REALM outperforms
these approaches on sparse data.

Type checking using named-entity taggers has
been previously shown to improve the precision of
pattern-based IE systems (Agichtein, 2005; Feld-
man et al., 2006), but the HMM-T type-checking
component we develop differs from this work in im-
portant ways. Named-entity taggers are limited in
that they typically recognize only small set of types
(e.g., ORGANIZATION, LOCATION, PERSON),
and they require hand-tagged training data for each
type. HMM-T, by contrast, performs type check-
ing for any type. Finally, HMM-T does not require
hand-tagged training data.

Pattern learning is a common technique for ex-
tracting and assessing sparse data (e.g. (Agichtein,
2005; Riloff and Jones, 1999; Paşca et al., 2006)).
Our experiments demonstrate that REALM outper-
forms a pattern learning system closely modeled af-
ter (Agichtein, 2005). REALM is inspired by pat-
tern learning techniques (in particular, both use the
distributional hypothesis to assess sparse data) but
is distinct in important ways. Pattern learning tech-
niques require substantial processing of the corpus
after the relations they assess have been specified.
Because of this, pattern learning systems are un-
suited to Open IE. Unlike these techniques, REALM

pre-computes language models which allow it to as-
sess extractions for arbitrary relations at run-time.
In essence, pattern-learning methods run in time lin-
ear in the number of relations whereas REALM’s run
time is constant in the number of relations. Thus,
REALM scales readily to large numbers of relations
whereas pattern-learning methods do not.
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A second distinction of REALM is that its type
checker, unlike the named entity taggers employed
in pattern learning systems (e.g., Snowball), can be
used to identify arbitrary types. A final distinction is
that the language models REALM employs require
fewer parameters and heuristics than pattern learn-
ing techniques.

Similar distinctions exist between REALM and a
recent system designed to assess sparse extractions
by bootstrapping a classifier for each target relation
(Feldman et al., 2006). As in pattern learning, con-
structing the classifiers requires substantial process-
ing after the target relations have been specified, and
a set of hand-tagged examples per relation, making
it unsuitable for Open IE.

5 Conclusions

This paper demonstrated that unsupervised language
models, as embodied in the REALM system, are an
effective means of assessing sparse extractions.

Another attractive feature of REALM is its scal-
ability. Scalability is a particularly important con-
cern for Open Information Extraction, the task of ex-
tracting large numbers of relations that are not spec-
ified in advance. Because HMM-T and REL-GRAMS

both pre-compute language models, REALM can be
queried efficiently to perform IE Assessment. Fur-
ther, the language models are constructed indepen-
dently of the target relations, allowing REALM to
perform IE Assessment even when relations are not
specified in advance.

In future work, we plan to develop a probabilistic
model of the information computed by REALM. We
also plan to evaluate the use of non-local context for
IE Assessment by integrating document-level mod-
eling techniques (e.g., Latent Dirichlet Allocation).
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Abstract

In this paper, we propose forest-to-string
rules to enhance the expressive power of
tree-to-string translation models. A forest-
to-string rule is capable of capturing non-
syntactic phrase pairs by describing the cor-
respondence between multiple parse trees
and one string. To integrate these rules
into tree-to-string translation models, auxil-
iary rules are introduced to provide a gen-
eralization level. Experimental results show
that, on the NIST 2005 Chinese-English test
set, the tree-to-string model augmented with
forest-to-string rules achieves a relative im-
provement of 4.3% in terms of BLEU score
over the original model which allows tree-
to-string rules only.

1 Introduction

The past two years have witnessed the rapid de-
velopment of linguistically syntax-based translation
models (Quirk et al., 2005; Galley et al., 2006;
Marcu et al., 2006; Liu et al., 2006), which induce
tree-to-string translation rules from parallel texts
with linguistic annotations. They demonstrated very
promising results when compared with the state of
the art phrase-based system (Och and Ney, 2004)
in the NIST 2006 machine translation evaluation 1.
While Galley et al. (2006) and Marcu et al. (2006)
put emphasis on target language analysis, Quirk et
al. (2005) and Liu et al. (2006) show benefits from
modeling the syntax of source language.

1See http://www.nist.gov/speech/tests/mt/

One major problem with linguistically syntax-
based models, however, is that tree-to-string rules
fail to syntactify non-syntactic phrase pairs because
they require a syntax tree fragment over the phrase
to be syntactified. Here, we distinguish between syn-
tactic and non-syntactic phrase pairs. By “syntactic”
we mean that the phrase pair is subsumed by some
syntax tree fragment. The phrase pairs without trees
over them are non-syntactic. Marcu et al. (2006)
report that approximately 28% of bilingual phrases
are non-syntactic on their English-Chinese corpus.

We believe that it is important to make available
to syntax-based models all the bilingual phrases that
are typically available to phrase-based models. On
one hand, phrases have been proven to be a simple
and powerful mechanism for machine translation.
They excel at capturing translations of short idioms,
providing local re-ordering decisions, and incorpo-
rating context information straightforwardly. Chi-
ang (2005) shows significant improvement by keep-
ing the strengths of phrases while incorporating syn-
tax into statistical translation. On the other hand,
the performance of linguistically syntax-based mod-
els can be hindered by making use of only syntac-
tic phrase pairs. Studies reveal that linguistically
syntax-based models are sensitive to syntactic anal-
ysis (Quirk and Corston-Oliver, 2006), which is still
not reliable enough to handle real-world texts due to
limited size and domain of training data.

Various solutions are proposed to tackle the prob-
lem. Galley et al. (2004) handle non-constituent
phrasal translation by traversing the tree upwards
until reaches a node that subsumes the phrase.
Marcu et al. (2006) argue that this choice is inap-
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propriate because large applicability contexts are re-
quired.

For a non-syntactic phrase pair, Marcu et al.
(2006) create a xRS rule headed by a pseudo, non-
syntactic nonterminal symbol that subsumes the
phrase and corresponding multi-headed syntactic
structure; and one sibling xRS rule that explains how
the non-syntactic nonterminal symbol can be com-
bined with other genuine nonterminals so as to ob-
tain genuine parse trees. The name of the pseudo
nonterminal is designed to reflect how the corre-
sponding rule can be fully realized. However, they
neglect alignment consistency when creating sibling
rules. In addition, it is hard for the naming mecha-
nism to deal with more complex phenomena.

Liu et al. (2006) treat bilingual phrases as lexi-
calized TATs (Tree-to-string Alignment Template).
A bilingual phrase can be used in decoding if the
source phrase is subsumed by the input parse tree.
Although this solution does help, only syntactic
bilingual phrases are available to the TAT-based
model. Moreover, it is problematic to combine
the translation probabilities of bilingual phrases and
TATs, which are estimated independently.

In this paper, we propose forest-to-string rules
which describe the correspondence between multi-
ple parse trees and a string. They can not only cap-
ture non-syntactic phrase pairs but also have the ca-
pability of generalization. To integrate these rules
into tree-to-string translation models, auxiliary rules
are introduced to provide a generalization level. As
there is no pseudo node or naming mechanism, the
integration of forest-to-string rules is flexible, rely-
ing only on their root nodes. The forest-to-string and
auxiliary rules enable tree-to-string models to derive
in a more general way, while the strengths of con-
ventional tree-to-string rules still remain.

2 Forest-to-String Translation Rules

We define a tree-to-string rule r as a triple 〈T̃ , S̃, Ã〉,
which describes the alignment Ã between a source
parse tree T̃ = T (fJ ′

1 ) and a target string S̃ = eI′
1 .

A source string fJ ′
1 , which is the sequence of leaf

nodes of T (fJ ′
1 ), consists of both terminals (source

words) and nonterminals (phrasal categories). A tar-
get string eI′

1 is also composed of both terminals
(target words) and nonterminals (placeholders). An

IP

NP

NN

��

VP

SB

�

VP

NP

NN

��

VV

��

PU

�

The gunman was killed by police .

Figure 1: An English sentence aligned with a Chi-
nese parse tree.

alignment Ã is defined as a subset of the Cartesian
product of source and target symbol positions:

Ã ⊆ {(j, i) : j = 1, . . . , J ′; i = 1, . . . , I ′}

A derivation θ = r1 ◦ r2 ◦ . . . ◦ rn is a left-
most composition of translation rules that explains
how a source parse tree T = T (fJ

1 ), a target sen-
tence S = eI

1, and the word alignment A are syn-
chronously generated. For example, Table 1 demon-
strates a derivation composed of only tree-to-string
rules for the 〈T, S,A〉 tuple in Figure 1 2.

As we mentioned before, tree-to-string rules can
not syntactify phrase pairs that are not subsumed
by any syntax tree fragments. For example, for the
phrase pair 〈“���”, “The gunman was”〉 in Fig-
ure 1, it is impossible to extract an equivalent tree-
to-string rule that subsumes the same phrase pair
because valid tree-to-string rules can not be multi-
headed.

To address this problem, we propose forest-to-
string rules3 to subsume the non-syntactic phrase
pairs. A forest-to-string rule r 4 is a triple 〈F̃ , S̃, Ã〉,
which describes the alignment Ã between K source
parse trees F̃ = T̃K

1 and a target string S̃. The
source string fJ ′

1 is therefore the sequence of leaf
nodes of F̃ .

Auxiliary rules are introduced to integrate forest-
to-string rules into tree-to-string translation models.
An auxiliary rule is a special unlexicalized tree-to-
string rule that allows multiple source nonterminals

2We use “X” to denote a nonterminal in the target string. If
there are more than one nonterminals, they are indexed.

3The term “forest” refers to an ordered and finite set of trees.
4We still use “r” to represent a forest-to-string rule to reduce

notational overhead.
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No. Rule
(1) ( IP ( NP ) ( VP ) ( PU ) ) X1 X2 X3 1:1 2:2 3:3
(2) ( NP ( NN�� ) ) The gunman 1:1 1:2
(3) ( VP ( SB� ) ( VP ( NP ( NN ) ) ( VV�� ) ) ) was killed by X 1:1 2:4 3:2
(4) ( NN�� ) police 1:1
(5) ( PU� ) . 1:1

Table 1: A derivation composed of only tree-to-string rules for Figure 1.

No. Rule
(1) ( IP ( NP ) ( VP ( SB ) ( VP ) ) ( PU ) ) X1 X2 1:1 2:1 3:2 4:2
(2) ( NP ( NN�� ) ) ( SB� ) The gunman was 1:1 1:2 2:3
(3) ( VP ( NP ) ( VV�� ) ) ( PU� ) killed by X . 1:3 2:1 3:4
(4) ( NP ( NN�� ) ) police 1:1

Table 2: A derivation composed of tree-to-string, forest-to-string, and auxiliary rules for Figure 1.

to correspond to one target nonterminal, suggesting
that the forest-to-string rules that are rooted at such
source nonterminals can be integrated.

For example, Table 2 shows a derivation com-
posed of tree-to-string, forest-to-string, and auxil-
iary rules for the 〈T, S,A〉 tuple in Figure 1. r1 is
an auxiliary rule, r2 and r3 are forest-to-string rules,
and r4 is a conventional tree-to-string rule.

Following Marcu et al. (2006), we define the
probability of a tuple 〈T, S,A〉 as the sum over all
derivations θi ∈ Θ that are consistent with the tuple,
c(Θ) = 〈T, S,A〉. The probability of each deriva-
tion θi is given by the product of the probabilities of
all the rules p(rj) in the derivation.

Pr(T, S,A) =
∑

θi∈Θ,c(Θ)=〈T,S,A〉

∏

rj∈θi

p(rj) (1)

3 Training

We obtain tree-to-string and forest-to-string rules
from word-aligned, source side parsed bilingual cor-
pus. The extraction algorithm is shown in Figure 2.
Note that T ′ denotes either a tree or a forest.

For each span, the 〈tree/forest, string, alignment〉
triples are identified first. If a triple is consistent with
the alignment, the skeleton of the triple is computed
then. A skeleton s is a rule satisfying the following:

1. s ∈ R(t), s is induced from t.

2. node(T (s)) ≥ 2, the tree/forest of s contains
two or more nodes.

3. ∀r ∈ R(t) ∧ node(T (r)) ≥ 2, T (s) ⊆ T (r),
the tree/forest of s is the subgraph of that of any
r containing two or more nodes.

1: Input: a source tree T = T (fJ
1 ), a target string

S = eI
1, and word alignment A between them

2: R := ∅
3: for u := 0 to J − 1 do
4: for v := 1 to J − u do
5: identify the triple set T corresponding to

span (v, v + u)
6: for each triple t = 〈T ′, S′, A′〉 ∈ T do
7: if 〈T ′, S′〉 is not consistent with A then
8: continue
9: end if

10: if u = 0 ∧ node(T ′) = 1 then
11: add t to R
12: add 〈root(T ′), “X”, 1:1〉 to R
13: else
14: compute the skeleton s of the triple t
15: register rules that are built on s using rules

extracted from the sub-triples of t:
R := R∪ build(s,R)

16: end if
17: end for
18: end for
19: end for
20: Output: rule set R

Figure 2: Rule extraction algorithm.

Given the skeleton and rules extracted from the
sub-triples, the rules for the triple can be acquired.

For example, the algorithm identifies the follow-
ing triple for span (1, 2) in Figure 1:
〈( NP ( NN�� ) ) ( SB� ),“The gunman was”, 1:1 1:2 2:3〉

The skeleton of the triple is:
〈( NP ) ( SB ),“X1 X2”, 1:1 2:2〉

As the algorithm proceeds bottom-up, five rules
have already been extracted from the sub-triples,
rooted at “NP” and “SB” respectively:

〈( NP ),“X”, 1:1〉
〈( NP ( NN ) ),“X”, 1:1〉

〈( NP ( NN�� ) ),“The gunman”, 1:1 1:2〉
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〈( SB ),“X”, 1:1〉
〈( SB� ),“was”, 1:1〉

Hence, we can obtain new rules by replacing the
source and target symbols of the skeleton with corre-
sponding rules and also by modifying the alignment
information. For the above triple, the combination
of the five rules produces 2× 3 = 6 new rules:

〈( NP ) ( SB ),“X1 X2”, 1:1 2:2〉
〈( NP ) ( SB� ),“X was”, 1:1 2:2〉

〈( NP ( NN ) ) ( SB ),“X1 X2”, 1:1 2:2〉
〈( NP ( NN ) ) ( SB� ),“X was”, 1:1 2:2〉

〈( NP ( NN�� ) ) ( SB ),“The gunman X”, 1:1 1:2〉
〈( NP ( NN�� ) ) ( SB� ),“The gunman was”, 1:1 1:2 2:3〉

Since we need only to check the alignment con-
sistency, in principle all phrase pairs can be captured
by tree-to-string and forest-to-string rules. To lower
the complexity for both training and decoding, we
impose four restrictions:

1. Both the first and the last symbols in the target
string must be aligned to some source symbols.

2. The height of a tree or forest is no greater than
h.

3. The number of direct descendants of a node is
no greater than c.

4. The number of leaf nodes is no greater than l.

Although possible, it is infeasible to learn aux-
iliary rules from training data. To extract an auxil-
iary rule which integrates at least one forest-to-string
rule, one need traverse the parse tree upwards until
one reaches a node that subsumes the entire forest
without violating the alignment consistency. This
usually results in very complex auxiliary rules, es-
pecially on real-world training data, making both
training and decoding very slow. As a result, we
construct auxiliary rules in decoding instead.

4 Decoding

Given a source parse tree T (fJ
1 ), our decoder finds

the target yield of the single best derivation that has
source yield of T (fJ

1 ):

Ŝ = argmax
S,A

Pr(T, S,A)

= argmax
S,A

∑

θi∈Θ,c(Θ)=〈T,S,A〉

∏

rj∈θi

p(rj)

1: Input: a source parse tree T = T (fJ
1 )

2: for u := 0 to J − 1 do
3: for v := 1 to J − u do
4: for each T ′ spanning from v to v + u do
5: if T ′ is a tree then
6: for each usable tree-to-string rule r do
7: for each derivation θ inferred from r

and derivations in matrix do
8: add θ to matrix[v, v + u, root(T ′)]
9: end for

10: end for
11: search subcell divisions D[v, v + u]
12: for each subcell division d ∈ D[v, v + u] do
13: if d contains at least one forest cell then
14: construct auxiliary rule ra

15: for each derivation θ inferred from ra

and derivations in matrix do
16: add θ to matrix[v, v + u, root(T ′)]
17: end for
18: end if
19: end for
20: else
21: for each usable forest-to-string rule r do
22: for each derivation θ inferred from r

and derivations in matrix do
23: add θ to matrix[v, v + u, “”]
24: end for
25: end for
26: search subcell divisions D[v, v + u]
27: end if
28: end for
29: end for
30: end for
31: find the best derivation θ̂ in matrix[1, J, root(T )] and

get the best translation Ŝ = e(θ̂)

32: Output: a target string Ŝ

Figure 3: Decoding algorithm.

≈ argmax
S,A,θ

∏

rj∈θ,c(θ)=〈T,S,A〉
p(rj) (2)

Figure 3 demonstrates the decoding algorithm.
It organizes the derivations into an array matrix
whose cells matrix[j1, j2,X] are sets of derivations.
[j1, j2,X] represents a tree/forest rooted at X span-
ning from j1 to j2. We use the empty string “” to
denote the pseudo root of a forest.

Next, we will explain how to infer derivations for
a tree/forest provided a usable rule. If T (r) = T′,
there is only one derivation which contains only the
rule r. This usually happens for leaf nodes. If
T (r) ⊂ T ′, the rule r resorts to derivations from
subcells to infer new derivations. Suppose that the
decoder is to translate the source tree in Figure 1
and finds a usable rule for [1, 5, “IP”]:

〈( IP ( NP ) ( VP ) ( PU ) ),“X1 X2 X3”, 1:1 2:2 3:3〉
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Subcell Division Auxiliary Rule
[1, 1][2, 2][3, 5] ( IP ( NP ) ( VP ( SB ) ( VP ) ) ( PU ) ) X1 X2 X3 1:1 2:2 3:3 4:3
[1, 2][3, 4][5, 5] ( IP ( NP ) ( VP ( SB ) ( VP ) ) ( PU ) ) X1 X2 X3 1:1 2:1 3:2 4:3

[1, 3][4, 5] ( IP ( NP ) ( VP ( SB ) ( VP ( NP ) ( VV ) ) ) ( PU ) ) X1 X2 1:1 2:1 3:1 4:2 5:2
[1, 1][2, 5] ( IP ( NP ) ( VP ) ( PU ) ) X1 X2 1:1 2:2 3:2

Table 3: Subcell divisions and corresponding auxiliary rules for the source tree in Figure 1

Since the decoding algorithm proceeds in a
bottom-up fashion, the uncovered portions have al-
ready been translated.

For [1, 1, “NP”], suppose that we can find a
derivation in matrix:

〈( NP ( NN�� ) ),“The gunman”, 1:1 1:2〉

For [2, 4, “VP”], we find a derivation in matrix:
〈( VP ( SB� ) ( VP ( NP ( NN )) (VV��) ) ),

“was killed by X”, 1:1 2:4 3:2〉
〈( NN�� ),“police”, 1:1〉

For [5, 5, “PU”], we find a derivation in matrix:
〈( PU� ),“.”, 1:1〉

Henceforth, we get a derivation for [1, 5, “IP”],
shown in Table 1.

A translation rule r is said to be usable to an input
tree/forest T ′ if and only if:

1. T (r) ⊆ T ′, the tree/forest of r is the subgraph
of T ′.

2. root(T (r)) = root(T ′), the root sequence of
T (r) is identical to that of T ′.

For example, the following rules are usable to the
tree “( NP ( NR�� ) ( NN�� ) )”:

〈( NP ( NR ) ( NN ) ),“X1 X2”, 1:2 2:1〉
〈( NP ( NR�� ) ( NN ) ),“China X”, 1:1 2:2〉

〈( NP ( NR�� ) ( NN�� ) ),“China economy”, 1:1 2:2〉

Similarly, the forest-to-string rule
〈( ( NP ( NR ) ( NN ) ) ( VP ) ),“X1 X2 X3”, 1:2 2:1 3:3〉

is usable to the forest
( NP ( NR�� ) ( NN�� ) ) ( VP (VV�� )( NN�� ) )

As we mentioned before, auxiliary rules are spe-
cial unlexicalized tree-to-string rules that are built in
decoding rather than learnt from real-world data. To
get an auxiliary rule for a cell, we need first identify
its subcell division.

A cell sequence c1, c2, . . . , cn is referred to as a
subcell division of a cell c if and only if:

1. c1.begin = c.begin

1: Input: a cell [j1, j2], the derivation array matrix,
the subcell division array D

2: if j1 = j2 then
3: p̂ := 0
4: for each derivation θ in matrix[j1, j2, ·] do
5: p̂ := max(p(θ), p̂)
6: end for
7: add {[j1, j2]} : p̂ to D[j1, j2]
8: else
9: if [j1, j2] is a forest cell then

10: p̂ := 0
11: for each derivation θ in matrix[j1, j2, ·] do
12: p̂ := max(p(θ), p̂)
13: end for
14: add {[j1, j2]} : p̂ to D[j1, j2]
15: end if
16: for j := j1 to j2 − 1 do
17: for each division d1 ∈ D[j1, j] do
18: for each division d2 ∈ D[j + 1, j2] do
19: create a new division: d := d1 ⊕ d2

20: add d to D[j1, j2]
21: end for
22: end for
23: end for
24: end if
25: Output: subcell divisions D[j1, j2]

Figure 4: Subcell division search algorithm.

2. cn.end = c.end

3. cj .end + 1 = cj+1.begin, 1 ≤ j < n

Given a subcell division, it is easy to construct the
auxiliary rule for a cell. For each subcell, one need
transverse the parse tree upwards until one reaches
nodes that subsume it. All descendants of these
nodes are dropped. The target string consists of only
nonterminals, the number of which is identical to
that of subcells. To limit the search space, we as-
sume that the alignment between the source tree and
the target string is monotone.

Table 3 shows some subcell divisions and corre-
sponding auxiliary rules constructed for the source
tree in Figure 1. For simplicity, we ignore the root
node label.

There are 2n−1 subcell divisions for a cell which
has a length of n. We need only consider the sub-
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cell divisions which contain at least one forest cell
because tree-to-string rules have already explored
those contain only tree cells.

The actual search algorithm for subcell divisions
is shown in Figure 4. We use matrix[j1, j2, ·] to de-
note all trees or forests spanning from j1 to j2. The
subcell divisions and their associated probabilities
are stored in an array D. We define an operator ⊕
between two divisions: their cell sequences are con-
catenated and the probabilities are accumulated.

As sometimes there are no usable rules available,
we introduce default rules to ensure that we can al-
ways get a translation for any input parse tree. A de-
fault rule is a tree-to-string rule 5, built in two ways:

1. If the input tree contains only one node, the
target string of the default rule is equal to the
source string.

2. If the height of the input tree is greater than
one, the tree of the default rule contains only
the root node and its direct descendants of the
input tree, the string contains only nontermi-
nals, and the alignment is monotone.

To speed up the decoder, we limit the search space
by reducing the number of rules used for each cell.
There are two ways to limit the rule table size: by
a fixed limit a of how many rules are retrieved for
each cell, and by a probability threshold α that spec-
ify that the rule probability has to be above some
value. Also, instead of keeping the full list of deriva-
tions for a cell, we store a top-scoring subset of the
derivations. This can also be done by a fixed limit
b or a threshold β. The subcell division array D, in
which divisions containing forest cells have priority
over those composed of only tree cells, is pruned by
keeping only a-best divisions.

Following Och and Ney (2002), we base our
model on log-linear framework and adopt the seven
feature functions described in (Liu et al., 2006). It
is very important to balance the preference between
conventional tree-to-string rules and the newly-
introduced forest-to-string and auxiliary rules. As
the probabilities of auxiliary rules are not learnt
from training data, we add a feature that sums up the

5There are no default rules for forests because only tree-to-
string rules are essential to tree-to-string translation models.

node count of auxiliary rules of a derivation to pe-
nalize the use of forest-to-string and auxiliary rules.

5 Experiments

In this section, we report on experiments with
Chinese-to-English translation. The training corpus
consists of 31, 149 sentence pairs with 843, 256 Chi-
nese words and 949, 583 English words. For the
language model, we used SRI Language Modeling
Toolkit (Stolcke, 2002) to train a trigram model with
modified Kneser-Ney smoothing (Chen and Good-
man, 1998) on the 31, 149 English sentences. We
selected 571 short sentences from the 2002 NIST
MT Evaluation test set as our development corpus,
and used the 2005 NIST MT Evaluation test set as
our test corpus. Our evaluation metric is BLEU-4
(Papineni et al., 2002), as calculated by the script
mteval-v11b.pl with its default setting except that
we used case-sensitive matching of n-grams. To
perform minimum error rate training (Och, 2003)
to tune the feature weights to maximize the sys-
tem’s BLEU score on development set, we used the
script optimizeV5IBMBLEU.m (Venugopal and Vo-
gel, 2005).

We ran GIZA++ (Och and Ney, 2000) on the
training corpus in both directions using its default
setting, and then applied the refinement rule “diag-
and” described in (Koehn et al., 2003) to obtain a
single many-to-many word alignment for each sen-
tence pair. Next, we employed a Chinese parser
written by Deyi Xiong (Xiong et al., 2005) to parse
all the 31, 149 Chinese sentences. The parser was
trained on articles 1-270 of Penn Chinese Treebank
version 1.0 and achieved 79.4% in terms of F1 mea-
sure.

Given the word-aligned, source side parsed bilin-
gual corpus, we obtained bilingual phrases using the
training toolkits publicly released by Philipp Koehn
with its default setting. Then, we applied extrac-
tion algorithm described in Figure 2 to extract both
tree-to-string and forest-to-string rules by restricting
h = 3, c = 5, and l = 7. All the rules, including
bilingual phrases, tree-to-string rules, and forest-to-
string rules, are filtered for the development and test
sets.

According to different levels of lexicalization, we
divide translation rules into three categories:
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Rule L P U Total

BP 251, 173 0 0 251, 173
TR 56, 983 41, 027 3, 529 101, 539
FR 16, 609 254, 346 25, 051 296, 006

Table 4: Number of rules used in experiments (BP:
bilingual phrase, TR: tree-to-string rule, FR: forest-
to-string rule; L: lexicalized, P: partial lexicalized,
U: unlexicalized).

System Rule Set BLEU4

Pharaoh BP 0.2182 ± 0.0089

BP 0.2059 ± 0.0083
TR 0.2302 ± 0.0089

Lynx
TR + BP 0.2346 ± 0.0088

TR + FR + AR 0.2402 ± 0.0087

Table 5: Comparison of Pharaoh and Lynx with dif-
ferent rule sets.

1. lexicalized: all symbols in both the source and
target strings are terminals

2. unlexicalized: all symbols in both the source
and target strings are nonterminals

3. partial lexicalized: otherwise

Table 4 shows the statistics of rules used in our ex-
periments. We find that even though forest-to-string
rules are introduced the total number (i.e. 73, 592)
of lexicalized tree-to-string and forest-to-string rules
is still far less than that (i.e. 251, 173) of bilingual
phrases. This difference results from the restriction
we impose in training that both the first and last sym-
bols in the target string must be aligned to some
source symbols. For the forest-to-string rules, par-
tial lexicalized ones are in the majority.

We compared our system Lynx against a freely
available phrase-based decoder Pharaoh (Koehn et
al., 2003). For Pharaoh, we set a = 20, α = 0,
b = 100, β = 10−5, and distortion limit dl = 4. For
Lynx, we set a = 20, α = 0, b = 100, and β = 0.
Two postprocessing procedures ran to improve the
outputs of both systems: OOVs removal and recapi-
talization.

Table 5 shows results on test set using Pharaoh
and Lynx with different rule sets. Note that Lynx
is capable of using only bilingual phrases plus de-

Forest-to-String Rule Set BLEU4

None 0.2225 ± 0.0085

L 0.2297 ± 0.0081
P 0.2279 ± 0.0083
U 0.2270 ± 0.0087

L + P + U 0.2312 ± 0.0082

Table 6: Effect of lexicalized, partial lexicalized,
and unlexicalized forest-to-string rules.

fault rules to perform monotone search. The 95%
confidence intervals were computed using Zhang’s
significance tester (Zhang et al., 2004). We mod-
ified it to conform to NIST’s current definition of
the BLEU brevity penalty. We find that Lynx out-
performs Pharaoh significantly. The integration of
forest-to-string rules achieves an absolute improve-
ment of 1.0% (4.3% relative) over using tree-to-
string rules only. This difference is statistically sig-
nificant (p < 0.01). It also achieves better result
than treating bilingual phrases as lexicalized tree-to-
string rules. To produce the best result of 0.2402,
Lynx made use of 26, 082 tree-to-string rules, 9, 219
default rules, 5, 432 forest-to-string rules, and 2, 919
auxiliary rules. This suggests that tree-to-string
rules still play a central role, although the integra-
tion of forest-to-string and auxiliary rules is really
beneficial.

Table 6 demonstrates the effect of forest-to-string
rules with different lexicalization levels. We set
a = 3, α = 0, b = 10, and β = 0. The second row
“None” shows the result of using only tree-to-string
rules. “L” denotes using tree-to-string rules and lex-
icalized forest-to-string rules. Similarly, “L+P+U”
denotes using tree-to-string rules and all forest-to-
string rules. We find that lexicalized forest-to-string
rules are more useful.

6 Conclusion

In this paper, we introduce forest-to-string rules to
capture non-syntactic phrase pairs that are usually
unaccessible to traditional tree-to-string translation
models. With the help of auxiliary rules, forest-to-
string rules can be integrated into tree-to-string mod-
els to offer more general derivations. Experiment re-
sults show that the tree-to-string model augmented
with forest-to-string rules significantly outperforms
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the original model which allows tree-to-string rules
only.

Our current rule extraction algorithm attaches the
unaligned target words to the nearest ascendants that
subsume them. This constraint hampers the expres-
sive power of our model. We will try a more general
way as suggested in (Galley et al., 2006), making
no a priori assumption about assignment and using
EM training to learn the probability distribution. We
will also conduct experiments on large scale training
data to further examine our design philosophy.
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Abstract

This paper presents a Function Word cen-
tered, Syntax-based (FWS) solution to ad-
dress phrase ordering in the context of
statistical machine translation (SMT). Mo-
tivated by the observation that function
words often encode grammatical relation-
ship among phrases within a sentence, we
propose a probabilistic synchronous gram-
mar to model the ordering of function words
and their left and right arguments. We im-
prove phrase ordering performance by lexi-
calizing the resulting rules in a small number
of cases corresponding to function words.
The experiments show that the FWS ap-
proach consistently outperforms the base-
line system in ordering function words’ ar-
guments and improving translation quality
in both perfect and noisy word alignment
scenarios.

1 Introduction

The focus of this paper is on function words, a class
of words with little intrinsic meaning but is vital in
expressing grammatical relationships among words
within a sentence. Such encoded grammatical infor-
mation, often implicit, makes function words piv-
otal in modeling structural divergences, as project-
ing them in different languages often result in long-
range structural changes to the realized sentences.

Just as a foreign language learner often makes
mistakes in using function words, we observe that
current machine translation (MT) systems often per-
form poorly in ordering function words’ arguments;

lexically correct translations often end up reordered
incorrectly. Thus, we are interested in modeling
the structural divergence encoded by such function
words. A key finding of our work is that modeling
the ordering of the dependent arguments of function
words results in better translation quality.

Most current systems use statistical knowledge
obtained from corpora in favor of rich natural lan-
guage knowledge. Instead of using syntactic knowl-
edge to determine function words, we approximate
this by equating the most frequent words as func-
tion words. By explicitly modeling phrase ordering
around these frequent words, we aim to capture the
most important and prevalent ordering productions.

2 Related Work

A good translation should be both faithful with ade-
quate lexical choice to the source language and flu-
ent in its word ordering to the target language. In
pursuit of better translation, phrase-based models
(Och and Ney, 2004) have significantly improved the
quality over classical word-based models (Brown et
al., 1993). These multiword phrasal units contribute
to fluency by inherently capturing intra-phrase re-
ordering. However, despite this progress, inter-
phrase reordering (especially long distance ones)
still poses a great challenge to statistical machine
translation (SMT).

The basic phrase reordering model is a simple
unlexicalized, context-insensitive distortion penalty
model (Koehn et al., 2003). This model assumes
little or no structural divergence between language
pairs, preferring the original, translated order by pe-
nalizing reordering. This simple model works well
when properly coupled with a well-trained language
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model, but is otherwise impoverished without any
lexical evidence to characterize the reordering.

To address this, lexicalized context-sensitive
models incorporate contextual evidence. The local
prediction model (Tillmann and Zhang, 2005) mod-
els structural divergence as the relative position be-
tween the translation of two neighboring phrases.
Other further generalizations of orientation include
the global prediction model (Nagata et al., 2006) and
distortion model (Al-Onaizan and Papineni, 2006).

However, these models are often fully lexicalized
and sensitive to individual phrases. As a result, they
are not robust to unseen phrases. A careful approx-
imation is vital to avoid data sparseness. Proposals
to alleviate this problem include utilizing bilingual
phrase cluster or words at the phrase boundary (Na-
gata et al., 2006) as the phrase identity.

The benefit of introducing lexical evidence with-
out being fully lexicalized has been demonstrated
by a recent state-of-the-art formally syntax-based
model1, Hiero (Chiang, 2005). Hiero performs
phrase ordering by using linked non-terminal sym-
bols in its synchronous CFG production rules cou-
pled with lexical evidence. However, since it is dif-
ficult to specify a well-defined rule, Hiero has to rely
on weak heuristics (i.e., length-based thresholds) to
extract rules. As a result, Hiero produces grammars
of enormous size. Watanabe et al. (2006) further
reduces the grammar’s size by enforcing all rules to
comply with Greibach Normal Form.

Taking the lexicalization an intuitive a step for-
ward, we propose a novel, finer-grained solution
which models the content and context information
encoded by function words - approximated by high
frequency words. Inspired by the success of syntax-
based approaches, we propose a synchronous gram-
mar that accommodates gapping production rules,
while focusing on the statistical modeling in rela-
tion to function words. We refer to our approach
as the Function Word-centered Syntax-based ap-
proach (FWS). Our FWS approach is different from
Hiero in two key aspects. First, we use only a
small set of high frequency lexical items to lexi-
calize non-terminals in the grammar. This results
in a much smaller set of rules compared to Hiero,

1Chiang (2005) used the term “formal” to indicate the use of
synchronous grammar but without linguistic commitment
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Figure 1: A Chinese-English sentence pair.

greatly reducing the computational overhead that
arises when moving from phrase-based to syntax-
based approach. Furthermore, by modeling only
high frequency words, we are able to obtain reliable
statistics even in small datasets. Second, as opposed
to Hiero, where phrase ordering is done implicitly
alongside phrase translation and lexical weighting,
we directly model the reordering process using ori-
entation statistics.

The FWS approach is also akin to (Xiong et al.,
2006) in using a synchronous grammar as a reorder-
ing constraint. Instead of using Inversion Transduc-
tion Grammar (ITG) (Wu, 1997) directly, we will
discuss an ITG extension to accommodate gapping.

3 Phrase Ordering around Function
Words

We use the following Chinese (c) to English (e)
translation in Fig.1 as an illustration to conduct an
inquiry to the problem. Note that the sentence trans-
lation requires some translations of English words
to be ordered far from their original position in Chi-
nese. Recovering the correct English ordering re-
quires the inversion of the Chinese postpositional
phrase, followed by the inversion of the first smaller
noun phrase, and finally the inversion of the sec-
ond larger noun phrase. Nevertheless, the correct
ordering can be recovered if the position and the se-
mantic roles of the arguments of the boxed function
words were known. Such a function word centered
approach also hinges on knowing the correct phrase
boundaries for the function words’ arguments and
which reorderings are given precedence, in case of
conflicts.

We propose modeling these sources of knowl-
edge using a statistical formalism. It includes 1) a
model to capture bilingual orientations of the left
and right arguments of these function words; 2) a
model to approximate correct reordering sequence;
and 3) a model for finding constituent boundaries of
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the left and right arguments. Assuming that the most
frequent words in a language are function words,
we can apply orientation statistics associated with
these words to reorder their adjacent left and right
neighbors. We follow the notation in (Nagata et
al., 2006) and define the following bilingual ori-
entation values given two neighboring source (Chi-
nese) phrases: Monotone-Adjacent (MA); Reverse-
Adjacent (RA); Monotone-Gap (MG); and Reverse-
Gap (RG). The first clause (monotone, reverse) in-
dicates whether the target language translation order
follows the source order; the second (adjacent, gap)
indicates whether the source phrases are adjacent or
separated by an intervening phrase on the target side.

Table 1 shows the orientation statistics for several
function words. Note that we separate the statistics
for left and right arguments to account for differ-
ences in argument structures: some function words
take a single argument (e.g., prepositions), while
others take two or more (e.g., copulas). To han-
dle other reordering decisions not explicitly encoded
(i.e., lexicalized) in our FWS model, we introduce a
universal token U , to be used as a backoff statistic
when function words are absent.

For example, orientation statistics for 4 (to be)
overwhelmingly suggests that the English transla-
tion of its surrounding phrases is identical to its Chi-
nese ordering. This reflects the fact that the argu-
ments of copulas in both languages are realized in
the same order. The orientation statistics for post-
position Þ (on) suggests inversion which captures
the divergence between Chinese postposition to the
English preposition. Similarly, the dominant orien-
tation for particle { (of) suggests the noun-phrase
shift from modified-modifier to modifier-modified,
which is common when translating Chinese noun
phrases to English.

Taking all parts of the model, which we detail
later, together with the knowledge in Table 1, we
demonstrate the steps taken to translate the exam-
ple in Fig. 2. We highlight the function words with
boxed characters and encapsulate content words as
indexed symbols. As shown, orientation statistics
from function words alone are adequate to recover
the English ordering - in practice, content words also
influence the reordering through a language model.
One can think of the FWS approach as a foreign lan-
guage learner with limited knowledge about Chinese

grammar but fairly knowledgable about the role of
Chinese function words.
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Figure 2: In Step 1, function words (boxed char-
acters) and content words (indexed symbols) are
identified. Step 2 reorders phrases according to
knowledge embedded in function words. A new in-
dexed symbol is introduced to indicate previously
reordered phrases for conciseness. Step 3 finally
maps Chinese phrases to their English translation.

4 The FWS Model

We first discuss the extension of standard ITG to
accommodate gapping and then detail the statistical
components of the model later.

4.1 Single Gap ITG (SG-ITG)
The FWS model employs a synchronous grammar
to describe the admissible orderings.

The utility of ITG as a reordering constraint for
most language pairs, is well-known both empirically
(Zens and Ney, 2003) and analytically (Wu, 1997),
however ITG’s straight (monotone) and inverted (re-
verse) rules exhibit strong cohesiveness, which is in-
adequate to express orientations that require gaps.
We propose SG-ITG that follows Wellington et al.
(2006)’s suggestion to model at most one gap.

We show the rules for SG-ITG below. Rules 1-
3 are identical to those defined in standard ITG, in
which monotone and reverse orderings are repre-
sented by square and angle brackets, respectively.
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Rank Word unigram MAL RAL MGL RGL MAR RAR MGR RGR

1 { 0.0580 0.45 0.52 0.01 0.02 0.44 0.52 0.01 0.03
2 Ç 0.0507 0.85 0.12 0.02 0.01 0.84 0.12 0.02 0.02
3 � 0.0550 0.99 0.01 0.00 0.00 0.92 0.08 0.00 0.00
4 � 0.0155 0.87 0.10 0.02 0.00 0.82 0.12 0.05 0.02
5 � 0.0153 0.84 0.11 0.01 0.04 0.88 0.11 0.01 0.01
6 Z 0.0138 0.95 0.02 0.01 0.01 0.97 0.02 0.01 0.00
7 �Ö 0.0123 0.73 0.12 0.10 0.04 0.51 0.14 0.14 0.20
8 ,1 0.0114 0.78 0.12 0.03 0.07 0.86 0.05 0.08 0.01
9 Ý 0.0099 0.95 0.02 0.02 0.01 0.96 0.01 0.02 0.01
10 R 0.0091 0.87 0.10 0.01 0.02 0.88 0.10 0.01 0.00
21 4 0.0056 0.85 0.11 0.02 0.02 0.85 0.04 0.09 0.02
37 Þ 0.0035 0.33 0.65 0.02 0.01 0.31 0.63 0.03 0.03
- U 0.0002 0.76 0.14 0.06 0.05 0.74 0.13 0.07 0.06

Table 1: Orientation statistics and unigram probability of selected frequent Chinese words in the HIT corpus.
Subscripts L/R refers to lexical unit’s orientation with respect to its left/right neighbor. U is the universal
token used in back-off for N = 128. Dominant orientations of each word are in bold.

(1) X → c/e
(2) X → [XX] (3) X → 〈XX〉
(4) X�→ [X � X] (5) X�→ 〈X � X〉
(6) X → [X ∗ X] (7) X → 〈X ∗ X〉

SG-ITG introduces two new sets of rules: gap-
ping (Rules 4-5) and dovetailing (Rules 6-7) that
deal specifically with gaps. On the RHS of the gap-
ping rules, a diamond symbol (�) indicates a gap,
while on the LHS, it emits a superscripted symbol
X� to indicate a gapped phrase (plain Xs without
superscripts are thus contiguous phrases). Gaps in
X� are eventually filled by actual phrases via dove-
tailing (marked with an ∗ on the RHS).

Fig.3 illustrates gapping and dovetailing rules
using an example where two Chinese adjectival
phrases are translated into a single English subordi-
nate clause. SG-ITG can generate the correct order-
ing by employing gapping followed by dovetailing,
as shown in the following simplified trace:

X�
1 → 〈 1997{��Ç, V.1 � 1997 〉

X�
2 → 〈 1998{��Ç, V.2 � 1998 〉

X3 → [X1 ∗ X2]

→ [ 1997{��Ç Z 1998{��Ç,
V.1 � 1997 ∗ V.2 � 1998 ]

→ 1997{��ÇZ1998{��Ç,
V.1 and V.2 that were released in 1997 and 1998

where X�
1 and X�

2 each generate the translation of
their respective Chinese noun phrase using gapping
and X3 generates the English subclause by dovetail-
ing the two gapped phrases together.

Thus far, the grammar is unlexicalized, and does

1997#�q{ ��Ç Z 1998#�q{��Ç

V.1 and V.2 that were released in 1997 and 1998.
!!!!!!

(((((((((((((
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Figure 3: An example of an alignment that can be
generated only by allowing gaps.

not incorporate any lexical evidence. Now we mod-
ify the grammar to introduce lexicalized function
words to SG-ITG. In practice, we introduce a new
set of lexicalized non-terminal symbols Yi, i ∈
{1...N}, to represent the top N most-frequent words
in the vocabulary; the existing unlexicalized X is
now reserved for content words. This difference
does not inherently affect the structure of the gram-
mar, but rather lexicalizes the statistical model.

In this way, although different Yis follow the same
production rules, they are associated with different
statistics. This is reflected in Rules 8-9. Rule 8 emits
the function word; Rule 9 reorders the arguments
around the function word, resembling our orienta-
tion model (see Section 4.2) where a function word
influences the orientation of its left and right argu-
ments. For clarity, we omit notation that denotes
which rules have been applied (monotone, reverse;
gapping, dovetailing).

(8) Yi→ c/e (9) X→ XYiX

In practice, we replace Rule 9 with its equivalent
2-normal form set of rules (Rules 10-13). Finally,
we introduce rules to handle back-off (Rules 14-16)
and upgrade (Rule 17). These allow SG-ITG to re-
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vert function words to normal words and vice versa.
(10) R→ YiX (11) L → XYi

(12) X→ LX (13) X→ XR
(14) Yi→ X (15) R→ X
(16) L → X (17) X→ YU

Back-off rules are needed when the grammar has
to reorder two adjacent function words, where one
set of orientation statistics must take precedence
over the other. The example in Fig.1 illustrates such
a case where the orientation of Þ (on) and { (of)
compete for influence. In this case, the grammar
chooses to use{ (of) and reverts the function word
Þ (on) to the unlexicalized form.

The upgrade rule is used for cases where there are
two adjacent phrases, both of which are not function
words. Upgrading allows either phrase to act as a
function word, making use of the universal word’s
orientation statistics to reorder its neighbor.

4.2 Statistical model
We now formulate the FWS model as a statistical
framework. We replace the deterministic rules in our
SG-ITG grammar with probabilistic ones, elevating
it to a stochastic grammar. In particular, we develop
the three sub models (see Section 3) which influence
the choice of production rules for ordering decision.
These models operate on the 2-norm rules, where the
RHS contains one function word and its argument
(except in the case of the phrase boundary model).
We provide the intuition for these models next, but
their actual form will be discussed in the next section
on training.

1) Orientation Model ori(o|H,Yi): This model
captures the preference of a function word Yi to a
particular orientation o ∈ {MA, RA,MG,RG} in
reordering its H ∈ {left, right} argument X . The
parameter H determines which set of Yi’s statistics
to use (left or right); the model consults Yi’s left ori-
entation statistic for Rules 11 and 13 where X pre-
cedes Yi, otherwise Yi’s right orientation statistic is
used for Rules 10 and 12.

2) Preference Model pref(Yi): This model ar-
bitrates reordering in the cases where two function
words are adjacent and the backoff rules have to de-
cide which function word takes precedence, revert-
ing the other to the unlexicalized X form. This
model prefers the function word with higher uni-
gram probability to take the precedence.

3) Phrase Boundary Model pb(X): This model is
a penalty-based model, favoring the resulting align-
ment that conforms to the source constituent bound-
ary. It penalizes Rule 1 if the terminal rule X
emits a Chinese phrase that violates the boundary
(pb = e−1), otherwise it is inactive (pb = 1).

These three sub models act as features alongside
seven other standard SMT features in a log-linear
model, resulting in the following set of features
{f1, . . . , f10}: f1) orientation ori(o|H,Yi); f2)
preference pref(Yi); f3) phrase boundary pb(X);
f4) language model lm(e); f5 − f6) phrase trans-
lation score φ(e|c) and its inverse φ(c|e); f7 − f8)
lexical weight lex(e|c) and its inverse lex(c|e); f9)
word penalty wp; and f10) phrase penalty pp.

The translation is then obtained from the most
probable derivation of the stochastic SG-ITG. The
formula for a single derivation is shown in Eq. (18),
where X1, X2, ..., XL is a sequence of rules with
w(Xl) being the weight of each particular rule Xl.
w(Xl) is estimated through a log-linear model, as
in Eq. (19), with all the abovementioned features
where λj reflects the contribution of each feature fj .

P (X1, ..., XL) =
∏L

l=1
w(Xl)(18)

w(Xl) =
∏10

j=1
fj(Xl)λj(19)

5 Training

We train the orientation and preference models from
statistics of a training corpus. To this end, we first
derive the event counts and then compute the rela-
tive frequency of each event. The remaining phrase
boundary model can be modeled by the output of a
standard text chunker, as in practice it is simply a
constituent boundary detection mechanism together
with a penalty scheme.

The events of interest to the orientation model are
(Yi, o) tuples, where o ∈ {MA, RA,MG,RG} is
an orientation value of a particular function word
Yi. Note that these tuples are not directly observable
from training data. Hence, we need an algorithm to
derive (Yi, o) tuples from a parallel corpus. Since
both left and right statistics share identical training
steps, thus we omit references to them.

The algorithm to derive (Yi, o) involves several
steps. First, we estimate the bi-directional alignment
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by running GIZA++ and applying the “grow-diag-
final” heuristic. Then, the algorithm enumerates all
Yi and determines its orientation o with respect to
its argument X to derive (Yi, o). To determine o,
the algorithm inspects the monotonicity (monotone
or reverse) and adjacency (adjacent or gap) between
Yi’s and X’s alignments.

Monotonicity can be determined by looking at the
Yi’s alignment with respect to the most fine-grained
level of X (i.e., word level alignment). However,
such a heuristic may inaccurately suggest gap ori-
entation. Figure 1 illustrates this problem when de-
riving the orientation for the second{ (of). Look-
ing only at the word alignment of its left argument
­ (fields) incorrectly suggests a gapped orientation,
where the alignment of jâQ� (data entry) in-
tervened. It is desirable to look at the alignment of
jâQ�­ (data entry fields) at the phrase level,
which suggests the correct adjacent orientation in-
stead.

To address this issue, the algorithm uses gap-
ping conservatively by utilizing the consistency con-
straint (Och and Ney, 2004) to suggest phrase level
alignment of X . The algorithm exhaustively grows
consistent blocks containing the most fine-grained
level of X not including Yi. Subsequently, it merges
each hypothetical argument with the Yi’s alignment.
The algorithm decides that Yi has a gapped orienta-
tion only if all merged blocks violate the consistency
constraint, concluding an adjacent orientation other-
wise.

With the event counts C(Yi, o) of tuple (Yi, o), we
estimate the orientation model for Yi and U using
Eqs. (20) and (21). We also estimate the prefer-
ence model with word unigram counts C(Yi) using
Eqs. (22) and (23), where V indicates the vocabu-
lary size.

ori(o|Yi) = C(Yi, o)/C(Yi, ·), i 6 N(20)

ori(o|U) =
∑
i>N

C(Yi, o)/
∑
i>N

C(Yi, ·)(21)

pref(Yi) = C(Yi)/C(·), i 6 N(22)

pref(U) = 1/(V − N)
∑
i>N

C(Yi)/C(·)(23)

Samples of these statistics are found in Table 1
and have been used in the running examples. For
instance, the statistic ori(RAL|{) = 0.52, which

is the dominant one, suggests that the grammar in-
versely order {(of)’s left argument; while in our
illustration of backoff rules in Fig.1, the grammar
chooses{(of) to take precedence since pref({) >
pref(Þ).

6 Decoding

We employ a bottom-up CKY parser with a beam
to find the derivation of a Chinese sentence which
maximizes Eq. (18). The English translation is then
obtained by post-processing the best parse.

We set the beam size to 30 in our experiment and
further constrain reordering to occur within a win-
dow of 10 words. Our decoder also prunes entries
that violate the following constraints: 1) each entry
contains at most one gap; 2) any gapped entries must
be dovetailed at the next level higher; 3) an entry
spanning the whole sentence must not contain gaps.

The score of each newly-created entry is derived
from the scores of its parts accordingly. When scor-
ing entries, we treat gapped entries as contiguous
phrases by ignoring the gap symbol and rely on the
orientation model to penalize such entries. This al-
lows a fair score comparison between gapped and
contiguous entries.

7 Experiments

We would like to study how the FWS model affects
1) the ordering of phrases around function words; 2)
the overall translation quality. We achieve this by
evaluating the FWS model against a baseline system
using two metrics, namely, orientation accuracy and
BLEU respectively.

We define the orientation accuracy of a (function)
word as the accuracy of assigning correct orientation
values to both its left and right arguments. We report
the aggregate for the top 1024 most frequent words;
these words cover 90% of the test set.

We devise a series of experiments and run it in two
scenarios - manual and automatic alignment - to as-
sess the effects of using perfect or real-world input.
We utilize the HIT bilingual computer manual cor-
pus, which has been manually aligned, to perform
Chinese-to-English translation (see Table 2). Man-
ual alignment is essential as we need to measure ori-
entation accuracy with respect to a gold standard.
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Chinese English
train words 145,731 135,032

(7K sentences) vocabulary 5,267 8,064
dev words 13,986 14,638

(1K sentences) untranslatable 486 (3.47%)
test words 27,732 28,490

(2K sentences) untranslatable 935 (3.37%)

Table 2: Statistics for the HIT corpus.

A language model is trained using the SRILM-
Toolkit, and a text chunker (Chen et al., 2006) is ap-
plied to the Chinese sentences in the test and dev
sets to extract the constituent boundaries necessary
for the phrase boundary model. We run minimum er-
ror rate training on dev set using Chiang’s toolkit to
find a set of parameters that optimizes BLEU score.

7.1 Perfect Lexical Choice

Here, the task is simplified to recovering the correct
order of the English sentence from the scrambled
Chinese order. We trained the orientation model us-
ing manual alignment as input. The aforementioned
decoder is used with phrase translation, lexical map-
ping and penalty features turned off.

Table 4 compares orientation accuracy and BLEU
between our FWS model and the baseline. The
baseline (lm+d) employs a language model and
distortion penalty features, emulating the standard
Pharaoh model. We study the behavior of the
FWS model with different numbers of lexicalized
items N . We start with the language model alone
(N=0) and incrementally add the orientation (+ori),
preference (+ori+pref) and phrase boundary models
(+ori+pref+pb).

As shown, the language model alone is rela-
tively weak, assigning the correct orientation in only
62.28% of the cases. A closer inspection reveals that
the lm component aggressively promotes reverse re-
orderings. Including a distortion penalty model (the
baseline) improves the accuracy to 72.55%. This
trend is also apparent for the BLEU score.

When we incorporate the FSW model, including
just the most frequent word (Y1={), we see im-
provement. This model promotes non-monotone re-
ordering conservatively around Y1 (where the dom-
inant statistic suggests reverse ordering). Increasing
the value of N leads to greater improvement. The
most effective improvement is obtained by increas-

pharaoh (dl=5) 22.44 ± 0.94
+ori 23.80 ± 0.98

+ori+pref 23.85 ± 1.00
+ori+pref+pb 23.86 ± 1.08

Table 3: BLEU score with the 95% confidence in-
tervals based on (Zhang and Vogel, 2004). All im-
provement over the baseline (row 1) are statistically
significant under paired bootstrap resampling.

ing N to 128. Additional (marginal) improvement
is obtained at the expense of modeling an additional
900+ lexical items. We see these results as validat-
ing our claim that modeling the top few most fre-
quent words captures most important and prevalent
ordering productions.

Lastly, we study the effect of the pref and pb fea-
tures. The inclusion of both sub models has little af-
fect on orientation accuracy, but it improves BLEU
consistently (although not significantly). This sug-
gests that both models correct the mistakes made by
the ori model while preserving the gain. They are
not as effective as the addition of the basic orienta-
tion model as they only play a role when two lexi-
calized entries are adjacent.

7.2 Full SMT experiments

Here, all knowledge is automatically trained on the
train set, and as a result, the input word alignment
is noisy. As a baseline, we use the state-of-the-art
phrase-based Pharaoh decoder. For a fair compari-
son, we run minimum error rate training for different
distortion limits from 0 to 10 and report the best pa-
rameter (dl=5) as the baseline.

We use the phrase translation table from the base-
line and perform an identical set of experiments as
the perfect lexical choice scenario, except that we
only report the result for N=128, due to space con-
straint. Table 3 reports the resulting BLEU scores.

As shown, the FWS model improves BLEU score
significantly over the baseline. We observe the same
trend as the one in perfect lexical choice scenario
where top 128 most frequent words provides the ma-
jority of improvement. However, the pb features
yields no noticeable improvement unlike in prefect
lexical choice scenario; this is similar to the findings
in (Koehn et al., 2003).
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N=0 N=1 N=4 N=16 N=64 N=128 N=256 N=1024

O
ri

en
ta

tio
n

A
cc

.(
%

)

lm+d 72.55
+ori 62.28 76.52 76.58 77.38 77.54 78.17 77.76 78.38

+ori+pref 76.66 76.82 77.57 77.74 78.13 77.94 78.54
+ori+pref+pb 76.70 76.85 77.58 77.70 78.20 77.94 78.56

B
L

E
U

lm+d 75.13
+ori 66.54 77.54 77.57 78.22 78.48 78.76 78.58 79.20

+ori+pref 77.60 77.70 78.29 78.65 78.77 78.70 79.30
+ori+pref+pb 77.69 77.80 78.34 78.65 78.93 78.79 79.30

Table 4: Results using perfect aligned input. Here, (lm+d) is the baseline; (+ori), (+ori+pref) and
(+ori+pref+pb) are different FWS configurations. The results of the model (where N is varied) that fea-
tures the largest gain are bold, whereas the highest score is italicized.

8 Conclusion

In this paper, we present a statistical model to cap-
ture the grammatical information encoded in func-
tion words. Formally, we develop the Function Word
Syntax-based (FWS) model, a probabilistic syn-
chronous grammar, to encode the orientation statis-
tics of arguments to function words. Our experimen-
tal results shows that the FWS model significantly
improves the state-of-the-art phrase-based model.

We have touched only the surface benefits of mod-
eling function words. In particular, our proposal is
limited to modeling function words in the source
language. We believe that conditioning on both
source and target pair would result in more fine-
grained, accurate orientation statistics.

From our error analysis, we observe that 1) re-
ordering may span several levels and the preference
model does not handle this phenomena well; 2) cor-
rectly reordered phrases with incorrect boundaries
severely affects BLEU score and the phrase bound-
ary model is inadequate to correct the boundaries es-
pecially for cases of long phrase. In future, we hope
to address these issues while maintaining the bene-
fits offered by modeling function words.
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Abstract

Inspired by previous preprocessing ap-
proaches to SMT, this paper proposes a
novel, probabilistic approach to reordering
which combines the merits of syntax and
phrase-based SMT. Given a source sentence
and its parse tree, our method generates,
by tree operations, an n-best list of re-
ordered inputs, which are then fed to stan-
dard phrase-based decoder to produce the
optimal translation. Experiments show that,
for the NIST MT-05 task of Chinese-to-
English translation, the proposal leads to
BLEU improvement of 1.56%.

1 Introduction

The phrase-based approach has been considered the
default strategy to Statistical Machine Translation
(SMT) in recent years. It is widely known that the
phrase-based approach is powerful in local lexical
choice and word reordering within short distance.
However, long-distance reordering is problematic
in phrase-based SMT. For example, the distance-
based reordering model (Koehn et al., 2003) al-
lows a decoder to translate in non-monotonous or-
der, under the constraint that the distance between
two phrases translated consecutively does not ex-
ceed a limit known as distortion limit. In theory the
distortion limit can be assigned a very large value
so that all possible reorderings are allowed, yet in
practise it is observed that too high a distortion limit
not only harms efficiency but also translation per-
formance (Koehn et al., 2005). In our own exper-

iment setting, the best distortion limit for Chinese-
English translation is 4. However, some ideal trans-
lations exhibit reorderings longer than such distor-
tion limit. Consider the sentence pair in NIST MT-
2005 test set shown in figure 1(a): after translating
the word “�V/mend”, the decoder should ‘jump’
across six words and translate the last phrase “�
ø ð_/fissures in the relationship”. Therefore,
while short-distance reordering is under the scope
of the distance-based model, long-distance reorder-
ing is simply out of the question.

A terminological remark: In the rest of the paper,
we will use the terms global reordering and local
reordering in place of long-distance reordering and
short-distance reordering respectively. The distinc-
tion between long and short distance reordering is
solely defined by distortion limit.

Syntax1 is certainly a potential solution to global
reordering. For example, for the last two Chinese
phrases in figure 1(a), simply swapping the two chil-
dren of the NP node will produce the correct word
order on the English side. However, there are also
reorderings which do not agree with syntactic anal-
ysis. Figure 1(b) shows how our phrase-based de-
coder2 obtains a good English translation by reorder-
ing two blocks. It should be noted that the second
Chinese block “�e�” and its English counterpart
“at the end of” are not constituents at all.

In this paper, our interest is the value of syntax in
reordering, and the major statement is that syntactic
information is useful in handling global reordering

1Here by syntax it is meant linguistic syntax rather than for-
mal syntax.

2The decoder is introduced in section 6.
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Figure 1: Examples on how syntax (a) helps and (b) harms reordering in Chinese-to-English translation
The lines and nodes on the top half of the figures show the phrase structure of the Chinese sentences, while the links on the bottom

half of the figures show the alignments between Chinese and English phrases. Square brackets indicate the boundaries of blocks

found by our decoder.

and it achieves better MT performance on the ba-
sis of the standard phrase-based model. To prove it,
we developed a hybrid approach which preserves the
strength of phrase-based SMT in local reordering as
well as the strength of syntax in global reordering.

Our method is inspired by previous preprocessing
approaches like (Xia and McCord, 2004), (Collins
et al., 2005), and (Costa-jussà and Fonollosa, 2006),
which split translation into two stages:

S → S′ → T (1)

where a sentence of the source language (SL), S,
is first reordered with respect to the word order of
the target language (TL), and then the reordered SL
sentence S′ is translated as a TL sentence T by
monotonous translation.

Our first contribution is a new translation model
as represented by formula 2:

S → n× S′ → n× T → T̂ (2)

where an n-best list of S′, instead of only one S′, is
generated. The reason of such change will be given
in section 2. Note also that the translation process
S′→T is not monotonous, since the distance-based
model is needed for local reordering. Our second
contribution is our definition of the best translation:

arg max
T

exp(λrlogPr(S→S′)+
∑

i

λiFi(S′→T ))

where Fi are the features in the standard phrase-
based model and Pr(S → S′) is our new feature,
viz. the probability of reordering S as S′. The de-
tails of this model are elaborated in sections 3 to 6.
The settings and results of experiments on this new
model are given in section 7.

2 Related Work

There have been various attempts to syntax-
based SMT, such as (Yamada and Knight, 2001)
and (Quirk et al., 2005). We do not adopt these
models since a lot of subtle issues would then be in-
troduced due to the complexity of syntax-based de-
coder, and the impact of syntax on reordering will
be difficult to single out.

There have been many reordering strategies un-
der the phrase-based camp. A notable approach is
lexicalized reordering (Koehn et al., 2005) and (Till-
mann, 2004). It should be noted that this approach
achieves the best result within certain distortion limit
and is therefore not a good model for global reorder-
ing.

There are a few attempts to the preprocessing
approach to reordering. The most notable ones
are (Xia and McCord, 2004) and (Collins et al.,
2005), both of which make use of linguistic syntax
in the preprocessing stage. (Collins et al., 2005) an-
alyze German clause structure and propose six types
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of rules for transforming German parse trees with
respect to English word order. Instead of relying
on manual rules, (Xia and McCord, 2004) propose
a method in learning patterns of rewriting SL sen-
tences. This method parses training data and uses
some heuristics to align SL phrases with TL ones.
From such alignment it can extract rewriting pat-
terns, of which the units are words and POSs. The
learned rewriting rules are then applied to rewrite SL
sentences before monotonous translation.

Despite the encouraging results reported in these
papers, the two attempts share the same shortcoming
that their reordering is deterministic. As pointed out
in (Al-Onaizan and Papineni, 2006), these strategies
make hard decisions in reordering which cannot be
undone during decoding. That is, the choice of re-
ordering is independent from other translation fac-
tors, and once a reordering mistake is made, it can-
not be corrected by the subsequent decoding.

To overcome this weakness, we suggest a method
to ‘soften’ the hard decisions in preprocessing. The
essence is that our preprocessing module generates
n-best S′s rather than merely one S′. A variety of
reordered SL sentences are fed to the decoder so
that the decoder can consider, to certain extent, the
interaction between reordering and other factors of
translation. The entire process can be depicted by
formula 2, recapitulated as follows:

S → n× S′ → n× T → T̂ .

Apart from their deterministic nature, the two
previous preprocessing approaches have their own
weaknesses. (Collins et al., 2005) count on man-
ual rules and it is suspicious if reordering rules for
other language pairs can be easily made. (Xia and
McCord, 2004) propose a way to learn rewriting
patterns, nevertheless the units of such patterns are
words and their POSs. Although there is no limit to
the length of rewriting patterns, due to data sparse-
ness most patterns being applied would be short
ones. Many instances of global reordering are there-
fore left unhandled.

3 The Acquisition of Reordering
Knowledge

To avoid this problem, we give up using rewriting
patterns and design a form of reordering knowledge

which can be directly applied to parse tree nodes.
Given a node N on the parse tree of an SL sentence,
the required reordering knowledge should enable the
preprocessing module to determine how probable
the children of N are reordered.3 For simplicity, let
us first consider the case of binary nodes only. Let
N1 and N2, which yield phrases p1 and p2 respec-
tively, be the child nodes of N . We want to deter-
mine the order of p1 and p2 with respect to their TL
counterparts, T (p1) and T (p2). The knowledge for
making such a decision can be learned from a word-
aligned parallel corpus. There are two questions in-
volved in obtaining training instances:

• How to define T (pi)?

• How to define the order of T (pi)s?

For the first question, we adopt a similar method
as in (Fox, 2002): given an SL phrase ps =
s1 . . . si . . . sn and a word alignment matrix A, we
can enumerate the set of TL words {ti : tiεA(si)},
and then arrange the words in the order as they ap-
pear in the TL sentence. Let first(t) be the first word
in this sorted set and last(t) be the last word. T (ps)
is defined as the phrase first(t) . . . last(t) in the TL
sentence. Note that T (ps) may contain words not in
the set {ti}.

The question of the order of two TL phrases is not
a trivial one. Since a word alignment matrix usu-
ally contains a lot of noises as well as one-to-many
and many-to-many alignments, two TL phrases may
overlap with each other. For the sake of the quality
of reordering knowledge, if T (p1) and T (p2) over-
lap, then the node N with children N1 and N2 is
not taken as a training instance. Obviously it will
greatly reduce the amount of training input. To rem-
edy data sparseness, less probable alignment points
are removed so as to minimize overlapping phrases,
since, after removing some alignment point, one of
the TL phrases may become shorter and the two
phrases may no longer overlap. The implementation
is similar to the idea of lexical weight in (Koehn et
al., 2003): all points in the alignment matrices of the
entire training corpus are collected to calculate the
probabilistic distribution, P (t|s), of some TL word

3Some readers may prefer the expression the subtree rooted
at node N to node N . The latter term is used in this paper for
simplicity.
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t given some SL word s. Any pair of overlapping
T (pi)s will be redefined by iteratively removing less
probable word alignments until they no longer over-
lap. If they still overlap after all one/many-to-many
alignments have been removed, then the refinement
will stop and N , which covers pis, is no longer taken
as a training instance.

In sum, given a bilingual training corpus, a parser
for the SL, and a word alignment tool, we can collect
all binary parse tree nodes, each of which may be an
instance of the required reordering knowledge. The
next question is what kind of reordering knowledge
can be formed out of these training instances. Two
forms of reordering knowledge are investigated:

1. Reordering Rules, which have the form

Z : X Y ⇒
{

X Y Pr(IN-ORDER)
Y X Pr(INVERTED)

where Z is the phrase label of a binary node
and X and Y are the phrase labels of Z’s chil-
dren, and Pr(INVERTED) and Pr(IN-ORDER)
are the probability that X and Y are inverted on
TL side and that not inverted, respectively. The
probability figures are estimated by Maximum
Likelihood Estimation.

2. Maximum Entropy (ME) Model, which does
the binary classification whether a binary
node’s children are inverted or not, based on a
set of features over the SL phrases correspond-
ing to the two children nodes. The features that
we investigated include the leftmost, rightmost,
head, and context words4, and their POSs, of
the SL phrases, as well as the phrase labels of
the SL phrases and their parent.

4 The Application of Reordering
Knowledge

After learning reordering knowledge, the prepro-
cessing module can apply it to the parse tree, tS ,
of an SL sentence S and obtain the n-best list of
S′. Since a ranking of S′ is needed, we need some
way to score each S′. Here probability is used as
the scoring metric. In this section it is explained

4The context words of the SL phrases are the word to the left
of the left phrase and the word to the right of the right phrase.

how the n-best reorderings of S and their associated
scores/probabilites are computed.

Let us first look into the scoring of a particular
reordering. Let Pr(p→p′) be the probability of re-
ordering a phrase p into p′. For a phrase q yielded by
a non-binary node, there is only one ‘reordering’ of
q, viz. q itself, thus Pr(q→q) = 1. For a phrase p
yielded by a binary node N , whose left child N1 has
reorderings pi

1 and right child N2 has the reorder-
ings pj

2 (1 ≤ i, j ≤ n), p′ has the form pi
1p

j
2 or pj

2p
i
1.

Therefore, Pr(p→p′) =
{

Pr(IN-ORDER)× Pr(pi
1→pi′

1 )× Pr(pj
2→pj′

2 )
Pr(INVERTED)× Pr(pj

2→pj′
2 )× Pr(pi

1→pi′
1 )

The figures Pr(IN-ORDER) and Pr(INVERTED) are
obtained from the learned reordering knowledge. If
reordering knowledge is represented as rules, then
the required probability is the probability associated
with the rule that can apply to N . If reordering
knowledge is represented as an ME model, then the
required probability is:

P (r|N) =
exp(

∑
i λifi(N, r))∑

r′ exp(
∑

i λifi(N, r′))

where rε{IN-ORDER, INVERTED}, and fi’s are fea-
tures used in the ME model.

Let us turn to the computation of the n-best re-
ordering list. Let R(N) be the number of reorder-
ings of the phrase yielded by N , then:

R(N) =

{
2R(N1)R(N2) if N has children N1, N2

1 otherwise

It is easily seen that the number of S′s increases ex-
ponentially. Fortunately, what we need is merely an
n-best list rather than a full list of reorderings. Start-
ing from the leaves of tS , for each node N covering
phrase p, we only keep track of the n p′s that have
the highest reordering probability. Thus R(N) ≤ n.
There are at most 2n2 reorderings for any node and
only the top-scored n reorderings are recorded. The
n-best reorderings of S, i.e. the n-best reorderings
of the yield of the root node of tS , can be obtained
by this efficient bottom-up method.

5 The Generalization of Reordering
Knowledge

In the last two sections reordering knowledge is
learned from and applied to binary parse tree nodes
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only. It is not difficult to generalize the theory of
reordering knowledge to nodes of other branching
factors. The case of binary nodes is simple as there
are only two possible reorderings. The case of 3-ary
nodes is a bit more complicated as there are six.5 In
general, an n-ary node has n! possible reorderings
of its children. The maximum entropy model has the
same form as in the binary case, except that there are
more classes of reordering patterns as n increases.
The form of reordering rules, and the calculation of
reordering probability for a particular node, can also
be generalized easily.6 The only problem for the
generalized reordering knowledge is that, as there
are more classes, data sparseness becomes more se-
vere.

6 The Decoder

The last three sections explain how the S→n×S′

part of formula 2 is done. The S′→T
part is simply done by our re-implementation
of PHARAOH (Koehn, 2004). Note that non-
monotonous translation is used here since the
distance-based model is needed for local reordering.
For the n×T→ T̂ part, the factors in consideration
include the score of T returned by the decoder, and
the reordering probability Pr(S → S′). In order
to conform to the log-linear model used in the de-
coder, we integrate the two factors by defining the
total score of T as formula 3:

exp(λr logPr(S→S′) +
∑

i

λiFi(S′→T )) (3)

The first term corresponds to the contribution of
syntax-based reordering, while the second term that
of the features Fi used in the decoder. All the fea-
ture weights (λs) were trained using our implemen-
tation of Minimum Error Rate Training (Och, 2003).
The final translation T̂ is the T with the highest total
score.

5Namely, N1N2N3, N1N3N2, N2N1N3, N2N3N1,
N3N1N2, and N3N2N1, if the child nodes in the original order
are N1, N2, and N3.

6For example, the reordering probability of a phrase p =
p1p2p3 generated by a 3-ary node N is

Pr(r)×Pr(pi
1)×Pr(pj

2)×Pr(pk
3)

where r is one of the six reordering patterns for 3-ary nodes.

It is observed in pilot experiments that, for a lot of
long sentences containing several clauses, only one
of the clauses is reordered. That is, our greedy re-
ordering algorithm (c.f. section 4) has a tendency to
focus only on a particular clause of a long sentence.

The problem was remedied by modifying our de-
coder such that it no longer translates a sentence at
once; instead the new decoder does:

1. split an input sentence S into clauses {Ci};

2. obtain the reorderings among {Ci}, {Sj};

3. for each Sj , do

(a) for each clause Ci in Sj , do
i. reorder Ci into n-best C

′
is,

ii. translate each C
′
i into T (C

′
i),

iii. select T̂ (C
′
i);

(b) concatenate {T̂ (C
′
i)} into Tj ;

4. select T̂j .

Step 1 is done by checking the parse tree if there
are any IP or CP nodes7 immediately under the root
node. If yes, then all these IPs, CPs, and the remain-
ing segments are treated as clauses. If no, then the
entire input is treated as one single clause. Step 2
and step 3(a)(i) still follow the algorithm in sec-
tion 4. Step 3(a)(ii) is trivial, but there is a subtle
point about the calculation of language model score:
the language model score of a translated clause is not
independent from other clauses; it should take into
account the last few words of the previous translated
clause. The best translated clause T̂ (C

′
i) is selected

in step 3(a)(iii) by equation 3. In step 4 the best
translation T̂j is

arg max
Tj

exp(λrlogPr(S→Sj)+
∑

i

score(T (C
′
i))).

7 Experiments

7.1 Corpora
Our experiments are about Chinese-to-English
translation. The NIST MT-2005 test data set is used
for evaluation. (Case-sensitive) BLEU-4 (Papineni
et al., 2002) is used as the evaluation metric. The

7 IP stands for inflectional phrase and CP for complementizer
phrase. These two types of phrases are clauses in terms of the
Government and Binding Theory.
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Branching Factor 2 3 >3
Count 12294 3173 1280
Percentage 73.41 18.95 7.64

Table 1: Distribution of Parse Tree Nodes with Dif-
ferent Branching Factors Note that nodes with only one

child are excluded from the survey as reordering does not apply

to such nodes.

test set and development set of NIST MT-2002 are
merged to form our development set. The training
data for both reordering knowledge and translation
table is the one for NIST MT-2005. The GIGA-
WORD corpus is used for training language model.
The Chinese side of all corpora are segmented into
words by our implementation of (Gao et al., 2003).

7.2 The Preprocessing Module

As mentioned in section 3, the preprocessing mod-
ule for reordering needs a parser of the SL, a word
alignment tool, and a Maximum Entropy training
tool. We use the Stanford parser (Klein and Man-
ning, 2003) with its default Chinese grammar, the
GIZA++ (Och and Ney, 2000) alignment package
with its default settings, and the ME tool developed
by (Zhang, 2004).

Section 5 mentions that our reordering model can
apply to nodes of any branching factor. It is inter-
esting to know how many branching factors should
be included. The distribution of parse tree nodes
as shown in table 1 is based on the result of pars-
ing the Chinese side of NIST MT-2002 test set by
the Stanford parser. It is easily seen that the major-
ity of parse tree nodes are binary ones. Nodes with
more than 3 children seem to be negligible. The 3-
ary nodes occupy a certain proportion of the distri-
bution, and their impact on translation performance
will be shown in our experiments.

7.3 The decoder

The data needed by our Pharaoh-like decoder are
translation table and language model. Our 5-gram
language model is trained by the SRI language mod-
eling toolkit (Stolcke, 2002). The translation table
is obtained as described in (Koehn et al., 2003), i.e.
the alignment tool GIZA++ is run over the training
data in both translation directions, and the two align-

Test Setting BLEU
B1 standard phrase-based SMT 29.22
B2 (B1) + clause splitting 29.13

Table 2: Experiment Baseline

Test Setting BLEU BLEU
2-ary 2,3-ary

1 rule 29.77 30.31
2 ME (phrase label) 29.93 30.49
3 ME (left,right) 30.10 30.53
4 ME ((3)+head) 30.24 30.71
5 ME ((3)+phrase label) 30.12 30.30
6 ME ((4)+context) 30.24 30.76

Table 3: Tests on Various Reordering Models
The 3rd column comprises the BLEU scores obtained by re-

ordering binary nodes only, the 4th column the scores by re-

ordering both binary and 3-ary nodes. The features used in the

ME models are explained in section 3.

ment matrices are integrated by the GROW-DIAG-
FINAL method into one matrix, from which phrase
translation probabilities and lexical weights of both
directions are obtained.

The most important system parameter is, of
course, distortion limit. Pilot experiments using the
standard phrase-based model show that the optimal
distortion limit is 4, which was therefore selected for
all our experiments.

7.4 Experiment Results and Analysis
The baseline of our experiments is the standard
phrase-based model, which achieves, as shown by
table 2, the BLEU score of 29.22. From the same
table we can also see that the clause splitting mech-
anism introduced in section 6 does not significantly
affect translation performance.

Two sets of experiments were run. The first set,
of which the results are shown in table 3, tests the
effect of different forms of reordering knowledge.
In all these tests only the top 10 reorderings of
each clause are generated. The contrast between
tests 1 and 2 shows that ME modeling of reordering
outperforms reordering rules. Tests 3 and 4 show
that phrase labels can achieve as good performance
as the lexical features of mere leftmost and right-
most words. However, when more lexical features
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Input 0�� 2005#¤R����éÚáqÖZöÌ/�äú÷�=ý
Reference Hainan province will continue to increase its investment in the public services and

social services infrastructures in 2005
Baseline Hainan Province in 2005 will continue to increase for the public service and social

infrastructure investment
Translation with
Preprocessing

Hainan Province in 2005 will continue to increase investment in public services
and social infrastructure

Table 4: Translation Example 1

Test Setting BLEU
a length constraint 30.52
b DL=0 30.48
c n=100 30.78

Table 5: Tests on Various Constraints

are added (tests 4 and 6), phrase labels can no longer
compete with lexical features. Surprisingly, test 5
shows that the combination of phrase labels and lex-
ical features is even worse than using either phrase
labels or lexical features only.

Apart from quantitative evaluation, let us con-
sider the translation example of test 6 shown in ta-
ble 4. To generate the correct translation, a phrase-
based decoder should, after translating the word
“��” as “increase”, jump to the last word “=
ý(investment)”. This is obviously out of the capa-
bility of the baseline model, and our approach can
accomplish the desired reordering as expected.

By and large, the experiment results show that no
matter what kind of reordering knowledge is used,
the preprocessing of syntax-based reordering does
greatly improve translation performance, and that
the reordering of 3-ary nodes is crucial.

The second set of experiments test the effect of
some constraints. The basic setting is the same as
that of test 6 in the first experiment set, and reorder-
ing is applied to both binary and 3-ary nodes. The
results are shown in table 5.

In test (a), the constraint is that the module does
not consider any reordering of a node if the yield
of this node contains not more than four words.
The underlying rationale is that reordering within
distortion limit should be left to the distance-based
model during decoding, and syntax-based reorder-
ing should focus on global reordering only. The

result shows that this hypothesis does not hold.
In practice syntax-based reordering also helps lo-
cal reordering. Consider the translation example
of test (a) shown in table 6. Both the baseline
model and our model translate in the same way up
to the word “�w” (which is incorrectly translated
as “and”). From this point, the proposed preprocess-
ing model correctly jump to the last phrase “�qê
ÿX/discussed”, while the baseline model fail to do
so for the best translation. It should be noted, how-
ever, that there are only four words between “�w”
and the last phrase, and the desired order of decod-
ing is within the capability of the baseline system.
With the feature of syntax-based global reordering,
a phrase-based decoder performs better even with
respect to local reordering. It is because syntax-
based reordering adds more weight to a hypothesis
that moves words across longer distance, which is
penalized by the distance-based model.

In test (b) distortion limit is set as 0; i.e. reorder-
ing is done merely by syntax-based preprocessing.
The worse result is not surprising since, after all,
preprocessing discards many possibilities and thus
reduce the search space of the decoder. Some local
reordering model is still needed during decoding.

Finally, test (c) shows that translation perfor-
mance does not improve significantly by raising the
number of reorderings. This implies that our ap-
proach is very efficient in that only a small value of
n is capable of capturing the most important global
reordering patterns.

8 Conclusion and Future Work

This paper proposes a novel, probabilistic approach
to reordering which combines the merits of syntax
and phrase-based SMT. On the one hand, global
reordering, which cannot be accomplished by the
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Input ¦$3� ,��)ZÏC�w�Ocu�¯��qêÿX
Reference Meanwhile , Yushchenko and his assistants discussed issues concerning the estab-

lishment of a new government
Baseline The same time , Yushchenko assistants and a new Government on issues discussed
Translation with
Preprocessing

The same time , Yushchenko assistants and held discussions on the issue of a new
government

Table 6: Translation Example 2

phrase-based model, is enabled by the tree opera-
tions in preprocessing. On the other hand, local re-
ordering is preserved and even strengthened in our
approach. Experiments show that, for the NIST MT-
05 task of Chinese-to-English translation, the pro-
posal leads to BLEU improvement of 1.56%.

Despite the encouraging experiment results, it
is still not very clear how the syntax-based and
distance-based models complement each other in
improving word reordering. In future we need to
investigate their interaction and identify the contri-
bution of each component. Moreover, it is observed
that the parse trees returned by a full parser like
the Stanford parser contain too many nodes which
seem not be involved in desired reorderings. Shal-
low parsers should be tried to see if they improve
the quality of reordering knowledge.
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Abstract
Current phrase-based SMT systems perform
poorly when using small training sets. This
is a consequence of unreliable translation es-
timates and low coverage over source and
target phrases. This paper presents a method
which alleviates this problem by exploit-
ing multiple translations of the same source
phrase. Central to our approach is triangula-
tion, the process of translating from a source
to a target language via an intermediate third
language. This allows the use of a much
wider range of parallel corpora for train-
ing, and can be combined with a standard
phrase-table using conventional smoothing
methods. Experimental results demonstrate
BLEU improvements for triangulated mod-
els over a standard phrase-based system.

1 Introduction

Statistical machine translation (Brown et al., 1993)
has seen many improvements in recent years, most
notably the transition from word- to phrase-based
models (Koehn et al., 2003). Modern SMT sys-
tems are capable of producing high quality transla-
tions when provided with large quantities of training
data. With only a small training sample, the trans-
lation output is often inferior to the output from us-
ing larger corpora because the translation algorithm
must rely on more sparse estimates of phrase fre-
quencies and must also ‘back-off’ to smaller sized
phrases. This often leads to poor choices of target
phrases and reduces the coherence of the output. Un-
fortunately, parallel corpora are not readily available
in large quantities, except for a small subset of the
world’s languages (see Resnik and Smith (2003) for
discussion), therefore limiting the potential use of
current SMT systems.

In this paper we provide a means for obtaining
more reliable translation frequency estimates from
small datasets. We make use of multi-parallel cor-
pora (sentence aligned parallel texts over three or
more languages). Such corpora are often created
by international organisations, the United Nations
(UN) being a prime example. They present a chal-
lenge for current SMT systems due to their rela-
tively moderate size and domain variability (exam-
ples of UN texts include policy documents, proceed-
ings of meetings, letters, etc.). Our method translates
each target phrase, t, first to an intermediate lan-
guage, i, and then into the source language, s. We
call this two-stage translation process triangulation
(Kay, 1997). We present a probabilistic formulation
through which we can estimate the desired phrase
translation distribution (phrase-table) by marginali-
sation, p(s|t) =

∑
i p(s, i|t).

As with conventional smoothing methods (Koehn
et al., 2003; Foster et al., 2006), triangulation in-
creases the robustness of phrase translation esti-
mates. In contrast to smoothing, our method allevi-
ates data sparseness by exploring additional multi-
parallel data rather than adjusting the probabilities of
existing data. Importantly, triangulation provides us
with separately estimated phrase-tables which could
be further smoothed to provide more reliable dis-
tributions. Moreover, the triangulated phrase-tables
can be easily combined with the standard source-
target phrase-table, thereby improving the coverage
over unseen source phrases.

As an example, consider Figure 1 which shows
the coverage of unigrams and larger n-gram phrases
when using a standard source target phrase-table, a
triangulated phrase-table with one (it) and nine lan-
guages (all), and a combination of standard and tri-
angulated phrase-tables (all+standard). The phrases
were harvested from a small French-English bitext
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and evaluated against a test set. Although very few
small phrases are unknown, the majority of larger
phrases are unseen. The Italian and all results show
that triangulation alone can provide similar or im-
proved coverage compared to the standard source-
target model; further improvement is achieved by
combining the triangulated and standard models
(all+standard). These models and datasets will be
described in detail in Section 3.

We also demonstrate that triangulation can be
used on its own, that is without a source-target dis-
tribution, and still yield acceptable translation out-
put. This is particularly heartening, as it provides a
means of translating between the many “low den-
sity” language pairs for which we don’t yet have a
source-target bitext. This allows SMT to be applied
to a much larger set of language pairs than was pre-
viously possible.

In the following section we provide an overview
of related work. Section 3 introduces a generative
formulation of triangulation. We present our evalua-
tion framework in Section 4 and results in Section 5.

2 Related Work

The idea of using multiple source languages for
improving the translation quality of the target lan-
guage dates back at least to Kay (1997), who ob-
served that ambiguities in translating from one lan-
guage onto another may be resolved if a transla-
tion into some third language is available. Systems
which have used this notion of triangulation typi-
cally create several candidate sentential target trans-
lations for source sentences via different languages.
A single translation is then selected by finding the
candidate that yields the best overall score (Och and
Ney, 2001; Utiyama and Isahara, 2007) or by co-
training (Callison-Burch and Osborne, 2003). This
ties in with recent work on ensemble combinations
of SMT systems, which have used alignment tech-
niques (Matusov et al., 2006) or simple heuristics
(Eisele, 2005) to guide target sentence selection and
generation. Beyond SMT, the use of an intermediate
language as a translation aid has also found appli-
cation in cross-lingual information retrieval (Gollins
and Sanderson, 2001).

Callison-Burch et al. (2006) propose the use of
paraphrases as a means of dealing with unseen
source phrases. Their method acquires paraphrases
by identifying candidate phrases in the source lan-
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Figure 1: Coverage of fr → en test phrases using a 10,000 sen-
tence bitext. The standard model is shown alongside triangu-
lated models using one (Italian) or nine other languages (all).

guage, translating them into multiple target lan-
guages, and then back to the source. Unknown
source phrases are substituted by the back-translated
paraphrases and translation proceeds on the para-
phrases.

In line with previous work, we exploit multi-
ple source corpora to alleviate data sparseness and
increase translation coverage. However, we differ
in several important respects. Our method oper-
ates over phrases rather than sentences. We propose
a generative formulation which treats triangulation
not as a post-processing step but as part of the trans-
lation model itself. The induced phrase-table entries
are fed directly into the decoder, thus avoiding the
additional inefficiencies of merging the output of
several translation systems.

Although related to Callison-Burch et al. (2006)
our method is conceptually simpler and more gen-
eral. Phrase-table entries are created via multiple
source languages without the intermediate step of
paraphrase extraction, thereby reducing the expo-
sure to compounding errors. Our phrase-tables may
well contain paraphrases but these are naturally in-
duced as part of our model, without extra processing
effort. Furthermore, we improve the translation esti-
mates for both seen and unseen phrase-table entries,
whereas Callison-Burch et al. concentrate solely on
unknown phrases. In contrast to Utiyama and Isa-
hara (2007), we employ a large number of inter-
mediate languages and demonstrate how triangu-
lated phrase-tables can be combined with standard
phrase-tables to improve translation output.
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en varm kartoffeleen hete aardappel uma batata quente

une patate une patate chauddélicate une question délicate

a hot potatosource

intermediate

target

Figure 2: Triangulation between English (source) and French (target), showing three phrases in Dutch, Danish and Portuguese,
respectively. Arrows denote phrases aligned in a language pair and also the generative translation process.

3 Triangulation

We start with a motivating example before formalis-
ing the mechanics of triangulation. Consider trans-
lating the English phrase a hot potato1 into French,
as shown in Figure 2. In our corpus this English
phrase occurs only three times. Due to errors in
the word alignment the phrase was not included in
the English-French phrase-table. Triangulation first
translates hot potato into a set of intermediate lan-
guages (Dutch, Danish and Portuguese are shown in
the figure), and then these phrases are further trans-
lated into the target language (French). In the ex-
ample, four different target phrases are obtained, all
of which are useful phrase-table entries. We argue
that the redundancy introduced by a large suite of
other languages can correct for errors in the word
alignments and also provide greater generalisation,
since the translation distribution is estimated from a
richer set of data-points. For example, instances of
the Danish en varm kartoffel may be used to trans-
late several English phrases, not only a hot potato.

In general we expect that a wider range of pos-
sible translations are found for any source phrase,
simply due to the extra layer of indirection. So, if a
source phrase tends to align with two different tar-
get phrases, then we would also expect it to align
with two phrases in the ‘intermediate’ language.
These intermediate phrases should then each align
with two target phrases, yielding up to four target
phrases. Consequently, triangulation will often pro-
duce more varied translation distributions than the
standard source-target approach.

3.1 Formalisation
We now formalise triangulation as a generative
probabilistic process operating independently on
phrase pairs. We start with the conditional distri-
bution over three languages, p(s, i|t), where the ar-
guments denote phrases in the source, intermediate

1An idiom meaning a situation for which no one wants to
claim responsibility.

and target language, respectively. From this distri-
bution, we can find the desired conditional over the
source-target pair by marginalising out the interme-
diate phrases:2

p(s|t) =
∑

i

p(s|i, t)p(i|t)

≈
∑

i

p(s|i)p(i|t) (1)

where (1) imposes a simplifying conditional inde-
pendence assumption: the intermediate phrase fully
represents the information (semantics, syntax, etc.)
in the source phrase, rendering the target phrase re-
dundant in p(s|i, t).

Equation (1) requires that all phrases in the
intermediate-target bitext must also be found in the
source-intermediate bitext, such that p(s|i) is de-
fined. Clearly this will often not be the case. In these
situations we could back-off to another distribution
(by discarding part, or all, of the conditioning con-
text), however we take a more pragmatic approach
and ignore the missing phrases. This problem of
missing contexts is uncommon in multi-parallel cor-
pora, but is more common when the two bitexts are
drawn from different sources.

While triangulation is intuitively appealing, it
may suffer from a few problems. Firstly, as with any
SMT approach, the translation estimates are based
on noisy automatic word alignments. This leads to
many errors and omissions in the phrase-table. With
a standard source-target phrase-table these errors are
only encountered once, however with triangulation
they are encountered twice, and therefore the errors
will compound. This leads to more noisy estimates
than in the source-target phrase-table.

Secondly, the increased exposure to noise means
that triangulation will omit a greater proportion of
large or rare phrases than the standard method. An

2Equation (1) is used with the source and target arguments
reversed to give p(t|s).
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alignment error in either of the source-intermediate
or intermediate-target bitexts can prevent the extrac-
tion of a source-target phrase pair. This effect can be
seen in Figure 1, where the coverage of the Italian
triangulated phrase-table is worse than the standard
source-target model, despite the two models using
the same sized bitexts. As we explain in the next
section, these problems can be ameliorated by us-
ing the triangulated phrase-table in conjunction with
a standard phrase-table.

Finally, another potential problem stems from the
independence assumption in (1), which may be an
oversimplification and lead to a loss of information.
The experiments in Section 5 show that this effect is
only mild.

3.2 Merging the phrase-tables
Once induced, the triangulated phrase-table can be
usefully combined with the standard source-target
phrase-table. The simplest approach is to use linear
interpolation to combine the two (or more) distribu-
tions, as follows:

p(s, t) =
∑

j

λjpj(s, t) (2)

where each joint distribution, pj , has a non-negative
weight, λj , and the weights sum to one. The joint
distribution for triangulated phrase-tables is defined
in an analogous way to Equation (1). We expect
that the standard phrase-table should be allocated
a higher weight than triangulated phrase-tables, as
it will be less noisy. The joint distribution is now
conditionalised to yield p(s|t) and p(t|s), which are
both used as features in the decoder. Note that the re-
sulting conditional distribution will be drawn solely
from one input distribution when the conditioning
context is unseen in the remaining distributions. This
may lead to an over-reliance on unreliable distribu-
tions, which can be ameliorated by smoothing (e.g.,
Foster et al. (2006)).

As an alternative to linear interpolation, we also
employ a weighted product for phrase-table combi-
nation:

p(s|t) ∝
∏
j

pj(s|t)λj (3)

This has the same form used for log-linear training
of SMT decoders (Och, 2003), which allows us to
treat each distribution as a feature, and learn the mix-
ing weights automatically. Note that we must indi-

vidually smooth the component distributions in (3)
to stop zeros from propagating. For this we use
Simple Good-Turing smoothing (Gale and Samp-
son, 1995) for each distribution, which provides es-
timates for zero count events.

4 Experimental Design

Corpora We used the Europarl corpus (Koehn,
2005) for experimentation. This corpus consists of
about 700,000 sentences of parliamentary proceed-
ings from the European Union in eleven European
languages. We present results on the full corpus for a
range of language pairs. In addition, we have created
smaller parallel corpora by sub-sampling 10,000
sentence bitexts for each language pair. These cor-
pora are likely to have minimal overlap — about
1.5% of the sentences will be shared between each
pair. However, the phrasal overlap is much greater
(10 to 20%), which allows for triangulation using
these common phrases. This training setting was
chosen to simulate translating to or from a “low
density” language, where only a few small indepen-
dently sourced parallel corpora are available. These
bitexts were used for direct translation and triangula-
tion. All experimental results were evaluated on the
ACL/WMT 20053 set of 2,000 sentences, and are
reported in BLEU percentage-points.
Decoding Pharaoh (Koehn, 2003), a beam-
search decoder, was used to maximise:

T∗ = arg max
T

∏
j

fj(T,S)λj (4)

where T and S denote a target and source sentence
respectively. The parameters, λj , were trained using
minimum error rate training (Och, 2003) to max-
imise the BLEU score (Papineni et al., 2002) on
a 150 sentence development set. We used a stan-
dard set of features, comprising a 4-gram language
model, distance based distortion model, forward
and backward translation probabilities, forward and
backward lexical translation scores and the phrase-
and word-counts. The translation models and lex-
ical scores were estimated on the training corpus
which was automatically aligned using Giza++ (Och
et al., 1999) in both directions between source and
target and symmetrised using the growing heuristic
(Koehn et al., 2003).

3For details see http://www.statmt.org/wpt05/
mt-shared-task.
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Lexical weights The lexical translation score is
used for smoothing the phrase-table translation esti-
mate. This represents the translation probability of a
phrase when it is decomposed into a series of inde-
pendent word-for-word translation steps (Koehn et
al., 2003), and has proven a very effective feature
(Zens and Ney, 2004; Foster et al., 2006). Pharaoh’s
lexical weights require access to word-alignments;
calculating these alignments between the source and
target words in a phrase would prove difficult for
a triangulated model. Therefore we use a modified
lexical score, corresponding to the maximum IBM
model 1 score for the phrase pair:

lex(t|s) =
1
Z

max
a

∏
k

p(tk|sak
) (5)

where the maximisation4 ranges over all one-to-
many alignments and Z normalises the score by the
number of possible alignments.

The lexical probability is obtained by interpo-
lating a relative frequency estimate on the source-
target bitext with estimates from triangulation, in
the same manner used for phrase translations in (1)
and (2). The addition of the lexical probability fea-
ture yielded a substantial gain of up to two BLEU
points over a basic feature set.

5 Experimental Results

The evaluation of our method was motivated by
three questions: (1) How do different training re-
quirements affect the performance of the triangu-
lated models presented in this paper? We expect
performance gains with triangulation on small and
moderate datasets. (2) Is machine translation out-
put influenced by the choice of the intermediate lan-
guage/s? Here, we would like to evaluate whether
the number and choice of intermediate languages
matters. (3) What is the quality of the triangulated
phrase-table? In particular, we are interested in the
resulting distribution and whether it is sufficiently
distinct from the standard phrase-table.

5.1 Training requirements
Before reporting our results, we briefly discuss the
specific choice of model for our experiments. As
mentioned in Section 3, our method combines the

4The maximisation in (5) can be replaced with a sum with
similar experimental results.

standard interp +indic separate
en → de 12.03 12.66 12.95 12.25
fr → en 23.02 24.63 23.86 23.43

Table 1: Different feature sets used with the 10K training
corpora, using a single language (es) for triangulation. The
columns refer to standard, uniform interpolation, interpolation
with 0-1 indicator features, and separate phrase-tables, respec-
tively.

triangulated phrase-table with the standard source-
target one. This is desired in order to compensate for
the noise incurred by the triangulation process. We
used two combination methods, namely linear inter-
polation (see (2)) and a weighted geometric mean
(see (3)).

Table 1 reports the results for two translation tasks
when triangulating with a single language (es) us-
ing three different feature sets, each with different
translation features. The interpolation model uses
uniform linear interpolation to merge the standard
and triangulated phrase-tables. Non-uniform mix-
tures did not provide consistent gains, although,
as expected, biasing towards the standard phrase-
table was more effective than against. The indicator
model uses the same interpolated distribution along
with a series of 0-1 indicator features to identify the
source of each event, i.e., if each (s, t) pair is present
in phrase-table j. We also tried per-context features
with similar results. The separate model has a sepa-
rate feature for each phrase-table.

All three feature sets improve over the standard
source-target system, while the interpolated features
provided the best overall performance. The rela-
tively poorer performance of the separate model
is perhaps surprising, as it is able to differentially
weight the component distributions; this is probably
due to MERT not properly handling the larger fea-
ture sets. In all subsequent experiments we report
results using linear interpolation.

As a proof of concept, we first assessed the ef-
fect of triangulation on corpora consisting of 10,000
sentence bitexts. We expect triangulation to de-
liver performance gains on small corpora, since a
large number of phrase-table entries will be un-
seen. In Table 2 each entry shows the BLEU score
when using the standard phrase-table and the ab-
solute improvement when using triangulation. Here
we have used three languages for triangulation
(it ∪ {de, en, es, fr}\{s, t}). The source-target lan-
guages were chosen so as to mirror the evaluation
setup of NAACL/WMT. The translation tasks range
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s ↓ t → de en es fr
de - 17.58 16.84 18.06

- +1.20 +1.99 +1.94
en 12.45 - 23.83 24.05

+1.22 - +1.04 +1.48
es 12.31 23.83 - 32.69

+2.24 +1.35 - +0.85
fr 11.76 23.02 31.22 -

+2.41 +2.24 +1.30 -

Table 2: BLEU improvements over the standard phrase-table
(top) when interpolating with three triangulated phrase-tables
(bottom) on the small training sample.

from easy (es → fr) to very hard (de → en). In all
cases triangulation resulted in an improvement in
translation quality, with the highest gains observed
for the most difficult tasks (to and from German).
For these tasks the standard systems have poor cov-
erage (due in part to the sizeable vocabulary of Ger-
man phrases) and therefore the gain can be largely
explained by the additional coverage afforded by the
triangulated phrase-tables.

To test whether triangulation can also improve
performance of larger corpora we ran six separate
translation tasks on the full Europarl corpus. The
results are presented in Table 3, for a single trian-
gulation language used alone (triang) or uniformly
interpolated with the standard phrase-table (interp).
These results show that triangulation can produce
high quality translations on its own, which is note-
worthy, as it allows for SMT between a much larger
set of language pairs. Using triangulation in con-
junction with the standard phrase-table improved
over the standard system in most instances, and
only degraded performance once. The improvement
is largest for the German tasks which can be ex-
plained by triangulation providing better robustness
to noisy alignments (which are often quite poor for
German) and better estimates of low-count events.
The difficulty of aligning German with the other lan-
guages is apparent from the Giza++ perplexity: the
final Model 4 perplexities for German are quite high,
as much as double the perplexity for more easily
aligned language pairs (e.g., Spanish-French).

Figure 3 shows the effect of triangulation on dif-
ferent sized corpora for the language pair fr → en.
It presents learning curves for the standard system
and a triangulated system using one language (es).
As can be seen, gains from triangulation only di-
minish slightly for larger training corpora, and that

task standard interm triang interp
de → en 23.85 es 23.48 24.36
en → de 17.24 es 16.28 17.42
es → en 30.48 fr 29.06 30.52
en → es 29.09 fr 28.19 29.09
fr → en 29.66 es 29.59 30.36
en → fr 30.07 es 28.94 29.62

Table 3: Results on the full training set showing triangulation
with a single language, both alone (triang) and alongside a stan-
dard model (interp).
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Figure 3: Learning curve for fr → en translation for the standard
source-target model and a triangulated model using Spanish as
an intermediate language.

the purely triangulated models have very competi-
tive performance. The gain from interpolation with
a triangulated model is roughly equivalent to having
twice as much training data.

Finally, notice that triangulation may benefit
when the sentences in each bitext are drawn from the
same source, in that there are no unseen ‘intermedi-
ate’ phrases, and therefore (1) can be easily evalu-
ated. We investigate this by examining the robust-
ness of our method in the face of disjoint bitexts.
The concepts contained in each bitext will be more
varied, potentially leading to better coverage of the
target language. In lieu of a study on different do-
main bitexts which we plan for the future, we bi-
sected the Europarl corpus for fr → en, triangulat-
ing with Spanish. The triangulated models were pre-
sented with fr-es and es-en bitexts drawn from either
the same half of the corpus or from different halves,
resulting in scores of 28.37 and 28.13, respectively.5

These results indicate that triangulation is effective

5The baseline source-target system on one half has a score
of 28.85.
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Figure 4: Comparison of different triangulation languages for
fr → en translation, relative to the standard model (10K training
sample). The bar for fi has been truncated to fit on the graph.

for disjoint bitexts, although ideally we would test
this with independently sourced parallel texts.

5.2 The choice of intermediate languages
The previous experiments used an ad-hoc choice
of ‘intermediate’ language/s for triangulation, and
we now examine which languages are most effec-
tive. Figure 4 shows the efficacy of the remaining
nine languages when translating fr → en. Minimum
error-rate training was not used for this experiment,
or the next shown in Figure 5, in order to highlight
the effect of the changing translation estimates. Ro-
mance languages (es, it, pt) give the best results,
both on their own and when used together with the
standard phrase-table (using uniform interpolation);
Germanic languages (de, nl, da, sv) are a distant sec-
ond, with the less related Greek and Finnish the least
useful. Interpolation yields an improvement for all
‘intermediate’ languages, even Finnish, which has a
very low score when used alone.

The same experiment was repeated for en → de
translation with similar trends, except that the
Germanic languages out-scored the Romance lan-
guages. These findings suggest that ‘intermediate’
languages which exhibit a high degree of similarity
with the source or target language are desirable. We
conjecture that this is a consequence of better auto-
matic word alignments and a generally easier trans-
lation task, as well as a better preservation of infor-
mation between aligned phrases.

Using a single language for triangulation clearly
improves performance, but can we realise further
improvements by using additional languages? Fig-

1 2 3 4 5 6 7 8 9
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interp

Figure 5: Increasing the number of intermediate languages used
for triangulation increases performance for fr → en (10K train-
ing sample). The dashed line shows the BLEU score for the
standard phrase-table.

ure 5 shows the performance profile for fr → en
when adding languages in a fixed order. The lan-
guages were ordered by family, with Romance be-
fore Germanic before Greek and Finnish. Each ad-
dition results in an increase in performance, even for
the final languages, from which we expect little in-
formation. The purely triangulated (triang) and in-
terpolated scores (interp) are converging, suggesting
that the source-target bitext is redundant given suf-
ficient triangulated data. We obtained similar results
for en → de.

5.3 Evaluating the quality of the phrase-table
Our experimental results so far have shown that
triangulation is not a mere approximation of the
source-target phrase-table, but that it extracts addi-
tional useful translation information. We now as-
sess the phrase-table quality more directly. Com-
parative statistics of a standard and a triangulated
phrase-table are given in Table 4. The coverage over
source and target phrases is much higher in the stan-
dard table than the triangulated tables, which reflects
the reduced ability of triangulation to extract large
phrases — despite the large increase in the num-
ber of events. The table also shows the overlapping
probability mass which measures the sum of prob-
ability in one table for which the events are present
in the other. This shows that the majority of mass
is shared by both tables (as joint distributions), al-
though there are significant differences. The Jensen-
Shannon divergence is perhaps more appropriate for
the comparison, giving a relatively high divergence
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standard triang
source phrases (M) 8 2.5
target phrases (M) 7 2.5

events (M) 12 70
overlapping mass 0.646 0.750

Table 4: Comparative statistics of the standard triangulated table
on fr → en using the full training set and Spanish as an inter-
mediate language.

of 0.3937. This augurs well for the combination of
standard and triangulated phrase-tables, where di-
versity is valued. The decoding results (shown in
Table 3 for fr → en) indicate that the two meth-
ods have similar efficacy, and that their interpolated
combination provides the best overall performance.

6 Conclusion

In this paper we have presented a novel method for
obtaining more reliable translation estimates from
small datasets. The key premise of our work is that
multi-parallel data can be usefully exploited for im-
proving the coverage and quality of phrase-based
SMT. Our triangulation method translates from a
source to a target via one or many intermediate lan-
guages. We present a generative formulation of this
process and show how it can be used together with
the entries of a standard source-target phrase-table.

We observe large performance gains when trans-
lating with triangulated models trained on small
datasets. Furthermore, when combined with a stan-
dard phrase-table, our models also yield perfor-
mance improvements on larger datasets. Our exper-
iments revealed that triangulation benefits from a
large set of intermediate languages and that perfor-
mance is increased when languages of the same fam-
ily to the source or target are used as intermediates.

We have just scratched the surface of the possi-
bilities for the framework discussed here. Important
future directions lie in combining triangulation with
richer means of conventional smoothing and using
triangulation to translate between low-density lan-
guage pairs.
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Abstract
We consider the problem of predictive infer-
ence for probabilistic binary sequence label-
ing models under F-score as utility. For a
simple class of models, we show that the
number of hypotheses whose expected F-
score needs to be evaluated is linear in the
sequence length and present a framework for
efficiently evaluating the expectation of many
common loss/utility functions, including the
F-score. This framework includes both exact
and faster inexact calculation methods.

1 Introduction

1.1 Motivation and Scope
The weighted F-score (van Rijsbergen, 1974) plays
an important role in the evaluation of binary classi-
fiers, as it neatly summarizes a classifier’s ability to
identify the positive class. A variety of methods ex-
ists for training classifiers that optimize the F-score,
or some similar trade-off between false positives and
false negatives, precision and recall, sensitivity and
specificity, type I error and type II error rate, etc.
Among the most general methods are those of Mozer
et al. (2001), whose constrained optimization tech-
nique is similar to those in (Gao et al., 2006; Jansche,
2005). More specialized methods also exist, for ex-
ample for support vector machines (Musicant et al.,
2003) and for conditional random fields (Gross et al.,
2007; Suzuki et al., 2006).

All of these methods are about classifier training.
In this paper we focus primarily on the related, but
orthogonal, issue of predictive inference with a fully
trained probabilistic classifier. Using the weighted
F-score as our utility function, predictive inference
amounts to choosing an optimal hypothesis which
maximizes the expected utility. We refer to this as

∗Current affiliation: Google Inc. Former affiliation: Center
of Computational Learning Systems, Columbia University.

the prediction or decoding task. In general, decoding
can be a hard computational problem (Casacuberta
and de la Higuera, 2000; Knight, 1999). In this paper
we show that the maximum expected F-score decod-
ing problem can be solved in polynomial time under
certain assumptions about the underlying probabil-
ity model. One key ingredient in our solution is a
very general framework for evaluating the expected
F-score, and indeed many other utility functions, of
a fixed hypothesis.1 This framework can also be ap-
plied to discriminative classifier training.

1.2 Background and Notation

We formulate our approach in terms of sequence la-
beling, although it has applications beyond that. This
is motivated by the fact that our framework for evalu-
ating expected utility is indeed applicable to general
sequence labeling tasks, while our decoding method
is more restricted. Another reason is that the F-score
is only meaningful for comparing two (multi)sets or
two binary sequences, but the notation for multisets
is slightly more awkward.

All tasks considered here involve strings of binary
labels. We write the length of a given string y ∈
{0,1}n as |y|= n. It is convenient to view such strings
as real vectors – whose components happen to be 0
or 1 – with the dot product defined as usual. Then
y · y is the number of ones that occur in the string y.
For two strings x,y of the same length |x| = |y| the
number of ones that occur at corresponding indices
is x · y.

Given a hypothesis z and a gold standard label
sequence y, we define the following quantities:

1. T = y · y, the genuine positives;
2. P = z · z, the predicted positives;
3. A = z · y, the true positives (predicted positives

that are genuinely positive);

1A proof-of-concept implementation is available at http:
//purl.org/net/jansche/meu_framework/.
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4. Recl = A/T , recall (a.k.a. sensitivity or power);
5. Prec = A/P, precision.

The β -weighted F-score is then defined as the
weighted harmonic mean of recall and precision. This
simplifies to

Fβ =
(β +1)A
P+β T

(β > 0) (1)

where we assume for convenience that 0/0 def= 1 to
avoid explicitly dealing with the special case of the
denominator being zero. We will write the weighted
F-score from now on as F(z,y) to emphasize that it
is a function of z and y.

1.3 Expected F-Score
In Section 3 we will develop a method for evaluating
the expectation of the F-score, which can also be
used as a smooth approximation of the raw F-score
during classifier training: in that task (which we will
not discuss further in this paper), z are the supervised
labels, y is the classifier output, and the challenge is
that F(z,y) does not depend smoothly on the param-
eters of the classifier. Gradient-based optimization
techniques are not applicable unless some of the quan-
tities defined above are replaced by approximations
that depend smoothly on the classifier’s parameters.
For example, the constrained optimization method
of (Mozer et al., 2001) relies on approximations of
sensitivity (which they call CA) and specificity2 (their
CR); related techniques (Gao et al., 2006; Jansche,
2005) rely on approximations of true positives, false
positives, and false negatives, and, indirectly, recall
and precision. Unlike these methods we compute the
expected F-score exactly, without relying on ad hoc
approximations of the true positives, etc.

Being able to efficiently compute the expected
F-score is a prerequisite for maximizing it during de-
coding. More precisely, we compute the expectation
of the function

y 7→ F(z,y), (2)

which is a unary function obtained by holding the
first argument of the binary function F fixed. It will
henceforth be abbreviated as F(z, ·), and we will de-
note its expected value by

E [F(z, ·)] = ∑
y∈{0,1}|z|

F(z,y) Pr(y). (3)

2Defined as [(~1− z) · (~1− y)]
/
[(~1− y) · (~1− y)].

This expectation is taken with respect to a probability
model over binary label sequences, written as Pr(y)
for simplicity. This probability model may be condi-
tional, that is, in general it will depend on covariates
x and parameters θ . We have suppressed both in our
notation, since x is fixed during training and decod-
ing, and we assume that the model is fully identified
during decoding. This is for clarity only and does not
limit the class of models, though we will introduce
additional, limiting assumptions shortly. We are now
ready to tackle the inference task formally.

2 Maximum Expected F-Score Inference

2.1 Problem Statement

Optimal predictive inference under F-score utility
requires us to find an hypothesis ẑ of length n which
maximizes the expected F-score relative to a given
probabilistic sequence labeling model:

ẑ = argmax
z∈{0,1}n

E [F(z, ·)] = argmax
z∈{0,1}n

∑
y

F(z,y) Pr(y).

(4)
We require the probability model to factor into inde-
pendent Bernoulli components (Markov order zero):

Pr(y = (y1, . . . ,yn)) =
n

∏
i=1

pyi
i (1− pi)1−yi . (5)

In practical applications we might choose the overall
probability distribution to be the product of indepen-
dent logistic regression models, for example. Ordi-
nary classification arises as a special case when the
yi are i.i.d., that is, a single probabilistic classifier is
used to find Pr(yi = 1 | xi). For our present purposes
it is sufficient to assume that the inference algorithm
takes as its input the vector (p1, . . . , pn), where pi is
the probability that yi = 1.

The discrete maximization problem (4) cannot be
solved naively, since the number of hypotheses that
would need to be evaluated in a brute-force search for
an optimal hypothesis ẑ is exponential in the sequence
length n. We show below that in fact only a few
hypotheses (n+1 instead of 2n) need to be examined
in order to find an optimal one.

The inference algorithm is the intuitive one, analo-
gous to the following simple observation: Start with
the hypothesis z = 00 . . .0 and evaluate its raw F-
score F(z,y) relative to a fixed but unknown binary
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string y. Then z will have perfect precision (no posi-
tive labels means no chance to make mistakes), and
zero recall (unless y = z). Switch on any bit of z that
is currently off. Then precision will decrease or re-
main equal, while recall will increase or remain equal.
Repeat until z = 11 . . .1 is reached, in which case re-
call will be perfect and precision at its minimum. The
inference algorithm for expected F-score follows the
same strategy, and in particular it switches on the
bits of z in order of non-increasing probability: start
with 00 . . .0, then switch on the bit i1 = argmaxi pi,
etc. until 11 . . .1 is reached. We now show that this
intuitive strategy is indeed admissible.

2.2 Outer and Inner Maximization
In general, maximization can be carried out piece-
wise, since

argmax
x∈X

f (x) = argmax
x∈{argmaxy∈Y f (y)|Y∈π(X)}

f (x),

where π(X) is any family (Y1,Y2, . . .) of nonempty
subsets of X whose union

⋃
iYi is equal to X . (Recur-

sive application would lead to a divide-and-conquer
algorithm.) Duplication of effort is avoided if π(X)
is a partition of X .

Here we partition the set {0,1}n into equivalence
classes based on the number of ones in a string
(viewed as a real vector). Define Sm to be the set

Sm = {s ∈ {0,1}n | s · s = m}

consisting of all binary strings of fixed length n that
contain exactly m ones. Then the maximization prob-
lem (4) can be transformed into an inner maximiza-
tion

ŝ(m) = argmax
s∈Sm

E [F(s, ·)] , (6)

followed by an outer maximization

ẑ = argmax
z∈{ŝ(0),...,ŝ(n)}

E [F(z, ·)] . (7)

2.3 Closed-Form Inner Maximization
The key insight is that the inner maximization prob-
lem (6) can be solved analytically. Given a vector
p = (p1, . . . , pn) of probabilities, define z(m) to be the
binary label sequence with exactly m ones and n−m
zeroes where for all indices i,k we have[

z(m)
i = 1∧ z(m)

k = 0
]
→ pi ≥ pk.

Algorithm 1 Maximizing the Expected F-Score.
1: Input: probabilities p = (p1, . . . , pn)
2: I← indices of p sorted by non-increasing probability
3: z← 0 . . .0
4: a← 0
5: v← expectF(z, p)
6: for j← 1 to n do
7: i← I[ j]
8: z[i]← 1 // switch on the ith bit
9: u← expectF(z, p)

10: if u > v then
11: a← j
12: v← u
13: for j← a+1 to n do
14: z[I[ j]]← 0
15: return (z,v)

In other words, the most probable m bits (according
to p) in z(m) are set and the least probable n−m bits
are off. We rely on the following result, whose proof
is deferred to Appendix A:

Theorem 1. (∀s ∈ Sm) E [F(z(m), ·)]≥ E [F(s, ·)].
Because z(m) is maximal in Sm, we may equate

z(m) = argmaxs∈Sm
E [F(s, ·)] = ŝ(m) (modulo ties,

which can always arise with argmax).

2.4 Pedestrian Outer Maximization

With the inner maximization (6) thus solved, the outer
maximization (7) can be carried out naively, since
only n + 1 hypotheses need to be evaluated. This
is precisely what Algorithm 1 does, which keeps
track of the maximum value in v. On termination
z = argmaxs E [F(s, ·)]. Correctness follows directly
from our results in this section.

Algorithm 1 runs in time O(n logn + n f (n)). A
total of O(n logn) time is required for accessing the
vector p in sorted order (line 2). This dominates the
O(n) time required to explicitly generate the optimal
hypothesis (lines 13–14). The algorithm invokes a
subroutine expectF(z, p) a total of n+1 times. This
subroutine, which is the topic of the next section,
evaluates, in time f (n), the expected F-score (with
respect to p) of a given hypothesis z of length n.

3 Computing the Expected F-Score

3.1 Problem Statement

We now turn to the problem of computing the ex-
pected value (3) of the F-score for a given hypothesis
z relative to a fully identified probability model. The
method presented here does not strictly require the
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zeroth-order Markov assumption (5) instated earlier
(a higher-order Markov assumption will suffice), but
it shall remain in effect for simplicity.

As with the maximization problem (4), the sum
in (3) is over exponentially many terms and cannot be
computed naively. But observe that the F-score (1)
is a (rational) function of integer counts which are
bounded, so it can take on only a finite, and indeed
small, number of distinct values. We shall see shortly
that the function (2) whose expectation we wish to
compute has a domain whose cardinality is exponen-
tial in n, but the cardinality of its range is polynomial
in n. The latter is sufficient to ensure that its ex-
pectation can be computed in polynomial time. The
method we are about to develop is in fact very general
and applies to many other loss and utility functions
besides the F-score.

3.2 Expected F-Score as an Integral

A few notions from real analysis are helpful because
they highlight the importance of thinking about func-
tions in terms of their range, level sets, and the equiv-
alence classes they induce on their domain (the kernel
of the function). A function g : Ω→ R is said to be
simple if it can be expressed as a linear combination
of indicator functions (characteristic functions):

g(x) = ∑
k∈K

ak χBk(x),

where K is a finite index set, ak ∈ R, and Bk ⊆ Ω.
(χS : S→{0,1} is the characteristic function of set S.)

Let Ω be a countable set and P be a probability
measure on Ω. Then the expectation of g is given by
the Lebesgue integral of g. In the case of a simple
function g as defined above, the integral, and hence
the expectation, is defined as

E [g] =
∫

Ω

g dP = ∑
k∈K

ak P(Bk). (8)

This gives us a general recipe for evaluating E[g]
when Ω is much larger than the range of g. Instead of
computing the sum ∑y∈Ω g(y)P({y}) we can com-
pute the sum in (8) above. This directly yields an
efficient algorithm whenever K is sufficiently small
and P(Bk) can be evaluated efficiently.

The expected F-score is thus the Lebesgue integral
of the function (2). Looking at the definition of the
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Figure 1: Finite State Classifier h′.

F-score in (1) we see that the only expressions which
depend on y are A = z · y and T = y · y (P = z · z is
fixed because z is). But 0 ≤ z · y ≤ y · y ≤ n = |z|.
Therefore F(z, ·) takes on at most (n + 1)(n + 2)/2,
i.e. quadratically many, distinct values. It is a simple
function with

K = {(A,T ) ∈ N0×N0 | A≤ T ≤ |z|, A≤ z · z}

a(A,T ) =
(β +1)A
z · z+β T

where 0/0 def= 1

B(A,T ) = {y | z · y = A, y · y = T}.

3.3 Computing Membership in Bk

Observe that the family of sets
(
B(A,T )

)
(A,T )∈K is a

partition (namely the kernel of F(z, ·)) of the set Ω =
{0,1}n of all label sequences of length n. In turn it
gives rise to a function h : Ω→ K where h(y) = k
iff y ∈ Bk. The function h can be computed by a
deterministic finite automaton, viewed as a sequence
classifier: rather than assigning binary accept/reject
labels, it assigns arbitrary labels from a finite set, in
this case the index set K. For simplicity we show
the initial portion of a slightly more general two-tape
automaton h′ in Figure 1. It reads the two sequences
z and y on its two input tapes and counts the number
of matching positive labels (represented as Y) as well
as the number of positive labels on the second tape.
Its behavior is therefore h′(z,y) = (z · y, y · y). The
function h is obtained as a special case when z (the
first tape) is fixed.

Note that this only applies to the special case when
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Algorithm 2 Simple Function Instance for F-Score.
def start():

return (0,0)

def transition(k,z, i,yi):
(A,T )← k
if yi = 1 then

T ← T +1
if z[i] = 1 then

A← A+1
return (A,T )

def a(k,z):
(A,T )← k

F ← (β +1)A
z · z+β T

// where 0/0 def= 1

return F

Algorithm 3 Value of a Simple Function.
1: Input: instance g of the simple function interface, strings z

and y of length n
2: k← g.start()
3: for i← 1 to n do
4: k← g.transition(k,z, i,y[i])
5: return g.a(k,z)

the family B = (Bk)k∈K is a partition of Ω. It is al-
ways possible to express any simple function in this
way, but in general there may be an exponential in-
crease in the size of K when the family B is required
to be a partition. However for the special cases we
consider here this problem does not arise.

3.4 The Simple Function Trick
In general, what we will call the simple function trick
amounts to representing the simple function g whose
expectation we want to compute by:

1. a finite index set K (perhaps implicit),
2. a deterministic finite state classifier h : Ω→ K,
3. and a vector of coefficients (ak)k∈K .

In practice, this means instantiating an interface with
three methods: the start and transition function of the
transducer which computes h′ (and from which h can
be derived), and an accessor method for the coeffi-
cients a. Algorithm 2 shows the F-score instance.

Any simple function g expressed as an instance of
this interface can then be evaluated very simply as
g(x) = ah(x). This is shown in Algorithm 3.

Evaluating E [g] is also straightforward: Compose
the DFA h with the probability model p and use an al-
gebraic path algorithm to compute the total probabil-
ity mass P(Bk) for each final state k of the resulting
automaton. If p factors into independent components
as required by (5), the composition is greatly sim-

Algorithm 4 Expectation of a Simple Function.
1: Input: instance g of the simple function interface, string z

and probability vector p of length n
2: M←Map()
3: M[g.start()]← 1
4: for i← 1 to n do
5: N←Map()
6: for (k,P) ∈M do
7: // transition on yi = 0
8: k0← g.transition(k,z, i,0)
9: if k0 /∈ N then

10: N[k0]← 0
11: N[k0]← N[k0]+P× (1− p[i])
12: // transition on yi = 1
13: k1← g.transition(k,z, i,1)
14: if k1 /∈ N then
15: N[k1]← 0
16: N[k1]← N[k1]+P× p[i]
17: M← N
18: E← 0
19: for (k,P) ∈M do
20: E← E +g.a(k,z)×P
21: return E

plified. If p incorporates label history (higher-order
Markov assumption), nothing changes in principle,
though the following algorithm assumes for simplic-
ity that the stronger assumption is in effect.

Algorithm 4 expands the following composed au-
tomaton, represented implicitly: the finite-state trans-
ducer h′ specified as part of the simple function object
g is composed on the left with the string z (yielding
h) and on the right with the probability model p. The
outer loop variable i is an index into z and hence a
state in the automaton that accepts z; the variable
k keeps track of the states of the automaton imple-
mented by g; and the probability model has a single
state by assumption, which does not need to be rep-
resented explicitly. Exploring the states in order of
increasing i puts them in topological order, which
means that the algebraic path problem can be solved
in time linear in the size of the composed automaton.
The maps M and N keep track of the algebraic dis-
tance from the start state to each intermediate state.
On termination of the first outer loop (lines 4–17),
the map M contains the final states together with
their distances. The algebraic distance of a final state
k is now equal to P(Bk), so the expected value E
can be computed in the second loop (lines 18–20) as
suggested by (8).

When the utility function interface g is instantiated
as in Algorithm 2 to represent the F-score, the run-
time of Algorithm 4 is cubic in n, with very small
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constants.3 The first main loop iterates over n. The
inner loop iterates over the states expanded at itera-
tion i, of which there are O(i2) many when dealing
with the F-score. The second main loop iterates over
the final states, whose number is quadratic in n in
this case. The overall cubic runtime of the first loop
dominates the computation.

3.5 Other Utility Functions

With other functions g the runtime of Algorithm 4
will depend on the asymptotic size of the index set K.
If there are asymptotically as many intermediate
states at any point as there are final states, then the
general asymptotic runtime is O(n |K|).

Many loss/utility functions are subsumed by the
present framework. Zero–one loss is trivial: the au-
tomaton has two states (success, failure); it starts and
remains in the success state as long as the symbols
read on both tapes match; on the first mismatch it
transitions to, and remains in, the failure state.

Hamming (1950) distance is similar to zero–one
loss, but counts the number of mismatches (bounded
by n), whereas zero–one loss only counts up to a
threshold of one.

A more interesting case is given by the Pk-score
(Beeferman et al., 1999) and its generalizations,
which moves a sliding window of size k over a pair
of label sequences (z,y) and counts the number of
windows which contain a segment boundary on one
of the sequences but not the other. To compute its
expectation in our framework, all we have to do is
express the sliding window mechanism as an automa-
ton, which can be done very naturally (see the proof-
of-concept implementation for further details).

4 Faster Inexact Computations

Because the exact computation of the expected F-
score by Algorithm 4 requires cubic time, the overall
runtime of Algorithm 1 (the decoder) is quartic.4

3A tight upper bound on the total number of states of the com-
posed automaton in the worst case is

⌊
1
12 n3 + 5

8 n2 + 17
12 n+1

⌋
.

4It is possible to speed up the decoding algorithm in absolute
terms, though not asymptotically, by exploiting the fact that it
explores very similar hypotheses in sequence. Algorithm 4 can
be modified to store and return all of its intermediate map data-
structures. This modified algorithm then requires cubic space
instead of quadratic space. This additional storage cost pays
off when the algorithm is called a second time, with its formal
parameter z bound to a string that differs from the one of the

Faster decoding can be achieved by modifying Al-
gorithm 4 to compute an approximation (in fact, a
lower bound) of the expected F-score.5 This is done
by introducing an additional parameter L which limits
the number of intermediate states that get expanded.
Instead of iterating over all states and their associ-
ated probabilities (inner loop starting at line 6), one
iterates over the top L states only. We require that
L≥ 1 for this to be meaningful. Before entering the
inner loop the entries of the map M are expanded
and, using the linear time selection algorithm, the
top L entries are selected. Because each state that
gets expanded in the inner loop has out-degree 2, the
new state map N will contain at most 2L states. This
means that we have an additional loop invariant: the
size of M is always less than or equal to 2L. There-
fore the selection algorithm runs in time O(L), and
so does the abridged inner loop, as well as the sec-
ond outer loop. The overall runtime of this modified
algorithm is therefore O(n L).

If L is a constant function, the inexact computation
of the expected F-score runs in linear time and the
overall decoding algorithm in quadratic time. In par-
ticular if L = 1 the approximate expected F-score is
equal to the F-score of the MAP hypothesis, and the
modified inference algorithm reduces to a variant of
Viterbi decoding. If L is a linear function of n, the
overall decoding algorithm runs in cubic time.

We experimentally compared the exact quartic-
time decoding algorithm with the approximate decod-
ing algorithm for L = 2n and for L = 1. We computed
the absolute difference between the expected F-score
of the optimal hypothesis (as found by the exact al-
gorithm) and the expected F-score of the winning
hypothesis found by the approximate decoding algo-
rithm. For different sequence lengths n ∈ {1, . . . ,50}
we performed 10 runs of the different decoding al-
gorithms on randomly generated probability vectors
p, where each pi was randomly drawn from a contin-
uous uniform distribution on (0,1), or, in a second
experiment, from a Beta(1/2,1/2) distribution (to
simulate an over-trained classifier).

For L = 1 there is a substantial difference of about

preceding run in just one position. This means that the map
data-structures only need to be recomputed from that position
forward. However, this does not lead to an asymptotically faster
algorithm in the worst case.

5For error bounds, see the proof-of-concept implementation.
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0.6 between the expected F-scores of the winning
hypothesis computed by the exact algorithm and by
the approximate algorithm. Nevertheless the approx-
imate decoding algorithm found the optimal hypoth-
esis more than 99% of the time. This is presumably
due to the additional regularization inherent in the
discrete maximization of the decoder proper: even
though the computed expected F-scores may be far
from their exact values, this does not necessarily af-
fect the behavior of the decoder very much, since it
only needs to find the maximum among a small num-
ber of such scores. The error introduced by the ap-
proximation would have to be large enough to disturb
the order of the hypotheses examined by the decoder
in such a way that the true maximum is reordered.
This generally does not seem to happen.

For L = 2n the computed approximate expected F-
scores were indistinguishable from their exact values.
Consequently the approximate decoder found the true
maximum every time.

5 Conclusion and Related Work

We have presented efficient algorithms for maximum
expected F-score decoding. Our exact algorithm runs
in quartic time, but an approximate cubic-time variant
is indistinguishable in practice. A quadratic-time
approximation makes very few mistakes and remains
practically useful.

We have further described a general framework
for computing the expectations of certain loss/utility
functions. Our method relies on the fact that many
functions are sparse, in the sense of having a finite
range that is much smaller than their codomain. To
evaluate their expectations, we can use the simple
function trick and concentrate on their level sets:
it suffices to evaluate the probability of those sets/
events. The fact that the commonly used utility func-
tions like the F-score have only polynomially many
level sets is sufficient (but not necessary) to ensure
that our method is efficient. Because the coefficients
ak can be arbitrary (in fact, they can be generalized to
be elements of a vector space over the reals), we can
deal with functions that go beyond simple counts.

Like the methods developed by Allauzen et al.
(2003) and Cortes et al. (2003) our technique incor-
porates finite automata, but uses a direct threshold-
counting technique, rather than a nondeterministic

counting technique which relies on path multiplici-
ties. This makes it easy to formulate the simultaneous
counting of two distinct quantities, such as our A and
T , and to reason about the resulting automata.

The method described here is similar in spirit to
those of Gao et al. (2006) and Jansche (2005), who
discuss maximum expected F-score training of deci-
sion trees and logistic regression models. However,
the present work is considerably more general in two
ways: (1) the expected utility computations presented
here are not tied in any way to particular classifiers,
but can be used with large classes of probabilistic
models; and (2) our framework extends beyond the
computation of F-scores, which fall out as a special
case, to other loss and utility functions, including the
Pk score. More importantly, expected F-score com-
putation as presented here can be exact, if desired,
whereas the cited works always use an approximation
to the quantities we have called A and T .
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Appendix A Proof of Theorem 1
The proof of Theorem 1 employs the following lemma:
Theorem 2. For fixed n and p, let s, t ∈ Sm for some m with
1 ≤ m < n. Further assume that s and t differ only in two bits,
i and k, in such a way that si = 1, sk = 0; ti = 0, tk = 1; and
pi ≥ pk. Then E [F(s, ·)]≥ E [F(t, ·)].

Proof. Express the expected F-score E [F(s, ·)] as a sum and
split the summation into two parts:

∑
y

F(s,y) Pr(y) = ∑
y

yi=yk

F(s,y) Pr(y) + ∑
y

yi 6=yk

F(s,y) Pr(y).

If yi = yk then F(s,y) = F(t,y), for three reasons: the number
of ones in s and t is the same (namely m) by assumption; y is
constant; and the number of true positives is the same, that is
s · y = t · y. The latter holds because s and y agree everywhere
except on i and k; if yi = yk = 0, then there are no true positives
at i and k; and if yi = yk = 1 then si is a true positive but sk is
not, and conversely tk is but ti is not. Therefore

∑
y

yi=yk

F(s,y) Pr(y) = ∑
y

yi=yk

F(t,y) Pr(y). (9)

Focus on those summands where yi 6= yk. Specifically group
them into pairs (y,z) where y and z are identical except that
yi = 1 and yk = 0, but zi = 0 and zk = 1. In other words, the two
summations on the right-hand side of the following equality are
carried out in parallel:

∑
y

yi 6=yk

F(s,y) Pr(y) = ∑
y

yi=1
yk=0

F(s,y) Pr(y)+ ∑
z

zi=0
zk=1

F(s,z) Pr(z).

Then, focusing on s first:

F(s,y) Pr(y)+F(s,z) Pr(z)

=
(β +1)(A+1)

m+βT
Pr(y)+

(β +1)A
m+βT

Pr(z)

= [(A+1)pi (1− pk)+A(1− pi)pk]
(β +1)
m+βT

C

= [pi +(pi + pk−2pi pk)A− pi pk]
(β +1)
m+βT

C

= [pi +C0] C1,

where A = s · z is the number of true positives between s and z
(s and y have an additional true positive at i by construction);
T = y ·y = z ·z is the number of positive labels in y and z (identical
by assumption); and

C =
Pr(y)

pi (1− pk)
=

Pr(z)
(1− pi) pk

is the probability of y and z evaluated on all positions except for
i and k. This equality holds because of the zeroth-order Markov
assumption (5) imposed on Pr(y). C0 and C1 are constants that
allow us to focus on the essential aspects.

The situation for t is similar, except for the true positives:

F(t,y) Pr(y)+F(t,z) Pr(z)

=
(β +1)A
m+βT

Pr(y)+
(β +1)(A+1)

m+βT
Pr(z)

= [A pi (1− pk)+(A+1)(1− pi)pk]
(β +1)
m+βT

C

= [pk +(pi + pk−2pi pk)A− pi pk]
(β +1)
m+βT

C

= [pk +C0] C1

where all constants have the same values as above. But pi ≥ pk
by assumption, pk +C0 ≥ 0, and C1 ≥ 0, so we have

F(s,y) Pr(y)+F(s,z) Pr(z) = [pi +C0] C1

≥ F(t,y) Pr(y)+F(t,z) Pr(z) = [pk +C0] C1,

and therefore

∑
y

yi 6=yk

F(s,y) Pr(y)≥ ∑
y

yi 6=yk

F(t,y) Pr(y). (10)

The theorem follows from equality (9) and inequality (10).

Proof of Theorem 1: (∀s ∈ Sm) E [F(z(m), ·)]≥ E [F(s, ·)].
Observe that z(m) ∈ Sm by definition (see Section 2.3). For
m = 0 and m = n the theorem holds trivially because Sm is a
singleton set. In the nontrivial cases, Theorem 2 is applied
repeatedly. The string z(m) can be transformed into any other
string s ∈ Sm by repeatedly clearing a more likely set bit and
setting a less likely unset bit.

In particular this can be done as follows: First, find the indices
where z(m) and s disagree. By construction there must be an even
number of such indices; indeed there are equinumerous sets{

i
∣∣ z(m)

i = 1∧ si = 0
}
≈
{

j
∣∣ z(m)

j = 0∧ s j = 1
}

.

This holds because the total number of ones is fixed and identical
in z(m) and s, and so is the total number of zeroes. Next, sort
those indices by non-increasing probability and represent them
as i1, . . . , ik and j1, . . . , jk. Let s0 = z(m). Then let s1 be identical
to s0 except that si1 = 0 and s j1 = 1. Form s2, . . . ,sk along the
same lines and observe that sk = s by construction. By definition
of z(m) it must be the case that pir ≥ p jr for all r ∈ {1, . . . ,k}.
Therefore Theorem 2 applies at every step along the way from
z(m) = s0 to sk = s, and so the expected utility is non-increasing
along that path.
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Abstract

Unsupervised learning of linguistic structure
is a difficult problem. A common approach
is to define a generative model and max-
imize the probability of the hidden struc-
ture given the observed data. Typically,
this is done using maximum-likelihood es-
timation (MLE) of the model parameters.
We show using part-of-speech tagging that
a fully Bayesian approach can greatly im-
prove performance. Rather than estimating
a single set of parameters, the Bayesian ap-
proach integrates over all possible parame-
ter values. This difference ensures that the
learned structure will have high probability
over a range of possible parameters, and per-
mits the use of priors favoring the sparse
distributions that are typical of natural lan-
guage. Our model has the structure of a
standard trigram HMM, yet its accuracy is
closer to that of a state-of-the-art discrimi-
native model (Smith and Eisner, 2005), up
to 14 percentage points better than MLE. We
find improvements both when training from
data alone, and using a tagging dictionary.

1 Introduction

Unsupervised learning of linguistic structure is a dif-
ficult problem. Recently, several new model-based
approaches have improved performance on a vari-
ety of tasks (Klein and Manning, 2002; Smith and

∗This work was supported by grants NSF 0631518 and
ONR MURI N000140510388. We would also like to thank
Noah Smith for providing us with his data sets.

Eisner, 2005). Nearly all of these approaches have
one aspect in common: the goal of learning is to
identify the set of model parameters that maximizes
some objective function. Values for the hidden vari-
ables in the model are then chosen based on the
learned parameterization. Here, we propose a dif-
ferent approach based on Bayesian statistical prin-
ciples: rather than searching for an optimal set of
parameter values, we seek to directly maximize the
probability of the hidden variables given the ob-
served data, integrating over all possible parame-
ter values. Using part-of-speech (POS) tagging as
an example application, we show that the Bayesian
approach provides large performance improvements
over maximum-likelihood estimation (MLE) for the
same model structure. Two factors can explain the
improvement. First, integrating over parameter val-
ues leads to greater robustness in the choice of tag
sequence, since it must have high probability over
a range of parameters. Second, integration permits
the use of priors favoring sparse distributions, which
are typical of natural language. These kinds of pri-
ors can lead to degenerate solutions if the parameters
are estimated directly.

Before describing our approach in more detail,
we briefly review previous work on unsupervised
POS tagging. Perhaps the most well-known is that
of Merialdo (1994), who used MLE to train a tri-
gram hidden Markov model (HMM). More recent
work has shown that improvements can be made
by modifying the basic HMM structure (Banko and
Moore, 2004), using better smoothing techniques or
added constraints (Wang and Schuurmans, 2005), or
using a discriminative model rather than an HMM
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(Smith and Eisner, 2005). Non-model-based ap-
proaches have also been proposed (Brill (1995); see
also discussion in Banko and Moore (2004)). All of
this work is really POSdisambiguation: learning is
strongly constrained by a dictionary listing the al-
lowable tags for each word in the text. Smith and
Eisner (2005) also present results using a diluted
dictionary, where infrequent words may have any
tag. Haghighi and Klein (2006) use a small list of
labeled prototypes and no dictionary.

A different tradition treats the identification of
syntactic classes as a knowledge-free clustering
problem. Distributional clustering and dimen-
sionality reduction techniques are typically applied
when linguistically meaningful classes are desired
(Schütze, 1995; Clark, 2000; Finch et al., 1995);
probabilistic models have been used to find classes
that can improve smoothing and reduce perplexity
(Brown et al., 1992; Saul and Pereira, 1997). Unfor-
tunately, due to a lack of standard and informative
evaluation techniques, it is difficult to compare the
effectiveness of different clustering methods.

In this paper, we hope to unify the problems of
POS disambiguation and syntactic clustering by pre-
senting results for conditions ranging from a full tag
dictionary to no dictionary at all. We introduce the
use of a new information-theoretic criterion,varia-
tion of information (Meilǎ, 2002), which can be used
to compare a gold standard clustering to the clus-
tering induced from a tagger’s output, regardless of
the cluster labels. We also evaluate using tag ac-
curacy when possible. Our system outperforms an
HMM trained with MLE on both metrics in all cir-
cumstances tested, often by a wide margin. Its ac-
curacy in some cases is close to that of Smith and
Eisner’s (2005) discriminative model. Our results
show that the Bayesian approach is particularly use-
ful when learning is less constrained, either because
less evidence is available (corpus size is small) or
because the dictionary contains less information.

In the following section, we discuss the motiva-
tion for a Bayesian approach and present our model
and search procedure. Section 3 gives results illus-
trating how the parameters of the prior affect re-
sults, and Section 4 describes how to infer a good
choice of parameters from unlabeled data. Section 5
presents results for a range of corpus sizes and dic-
tionary information, and Section 6 concludes.

2 A Bayesian HMM

2.1 Motivation

In model-based approaches to unsupervised lan-
guage learning, the problem is formulated in terms
of identifying latent structure from data. We de-
fine a model with parametersθ, some observed vari-
ablesw (the linguistic input), and some latent vari-
ablest (the hidden structure). The goal is to as-
sign appropriate values to the latent variables. Stan-
dard approaches do so by selecting values for the
model parameters, and then choosing the most prob-
able variable assignment based on those parame-
ters. For example, maximum-likelihood estimation
(MLE) seeks parameterŝθ such that

θ̂ = argmax
θ

P (w|θ), (1)

where P (w|θ) =
∑

t
P (w, t|θ). Sometimes, a

non-uniform prior distribution overθ is introduced,
in which casêθ is themaximum a posteriori (MAP)
solution forθ:

θ̂ = argmax
θ

P (w|θ)P (θ). (2)

The values of the latent variables are then taken to
be those that maximizeP (t|w, θ̂).

In contrast, the Bayesian approach we advocate in
this paper seeks to identify a distribution over latent
variables directly, without ever fixing particular val-
ues for the model parameters. The distribution over
latent variables given the observed data is obtained
by integrating over all possible values ofθ:

P (t|w) =

∫

P (t|w, θ)P (θ|w)dθ. (3)

This distribution can be used in various ways, in-
cluding choosing the MAP assignment to the latent
variables, or estimating expected values for them.

To see why integrating over possible parameter
values can be useful when inducing latent structure,
consider the following example. We are given a
coin, which may be biased (t = 1) or fair (t = 0),
each with probability .5. Letθ be the probability of
heads. If the coin is biased, we assume a uniform
distribution overθ, otherwiseθ = .5. We observe
w, the outcomes of10 coin flips, and we wish to de-
termine whether the coin is biased (i.e. the value of
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t). Assume that we have a uniform prior onθ, with
p(θ) = 1 for all θ ∈ [0, 1]. First, we apply the stan-
dard methodology of finding the MAP estimate for
θ and then selecting the value oft that maximizes
P (t|w, θ̂). In this case, an elementary calculation
shows that the MAP estimate iŝθ = nH/10, where
nH is the number of heads inw (likewise, nT is
the number of tails). Consequently,P (t|w, θ̂) favors
t = 1 for any sequence that does not contain exactly
five heads, and assigns equal probability tot = 1
andt = 0 for any sequence that does contain exactly
five heads — a counterintuitive result. In contrast,
using some standard results in Bayesian analysis we
can show that applying Equation 3 yields

P (t = 1|w) = 1/

(

1 +
11!

nH !nT !210

)

(4)

which is significantly less than .5 whennH = 5, and
only favorst = 1 for sequences wherenH ≥ 8 or
nH ≤ 2. This intuitively sensible prediction results
from the fact that the Bayesian approach is sensitive
to therobustness of a choice oft to the value ofθ,
as illustrated in Figure 1. Even though a sequence
with nH = 6 yields a MAP estimate of̂θ = 0.6
(Figure 1 (a)),P (t = 1|w, θ) is only greater than
0.5 for a small range ofθ aroundθ̂ (Figure 1 (b)),
meaning that the choice oft = 1 is not very robust to
variation inθ. In contrast, a sequence withnH = 8
favors t = 1 for a wide range ofθ aroundθ̂. By
integrating overθ, Equation 3 takes into account the
consequences of possible variation inθ.

Another advantage of integrating overθ is that
it permits the use of linguistically appropriate pri-
ors. In many linguistic models, including HMMs,
the distributions over variables are multinomial. For
a multinomial with parametersθ = (θ1, . . . , θK), a
natural choice of prior is theK-dimensional Dirich-
let distribution, which is conjugate to the multino-
mial.1 For simplicity, we initially assume that all
K parameters (also known ashyperparameters) of
the Dirichlet distribution are equal toβ, i.e. the
Dirichlet is symmetric. The value ofβ determines
which parametersθ will have high probability: when
β = 1, all parameter values are equally likely; when
β > 1, multinomials that are closer to uniform are

1A prior is conjugate to a distribution if the posterior has the
same form as the prior.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
θ

 P
( 

θ 
| w

 )

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

θ

 P
( 

t 
=

 1
 | 

w
, θ

 )

 

 

 w = HHTHTTHHTH

 w = HHTHHHTHHH

 w = HHTHTTHHTH

 w = HHTHHHTHHH

(a)

(b)

Figure 1: The Bayesian approach to estimating the
value of a latent variable,t, from observed data,w,
chooses a value oft robust to uncertainty inθ. (a)
Posterior distribution onθ givenw. (b) Probability
thatt = 1 givenw andθ as a function ofθ.

preferred; and whenβ < 1, high probability is as-
signed to sparse multinomials, where one or more
parameters are at or near 0.

Typically, linguistic structures are characterized
by sparse distributions (e.g., POS tags are followed
with high probability by only a few other tags, and
have highly skewed output distributions). Conse-
quently, it makes sense to use a Dirichlet prior with
β < 1. However, as noted by Johnson et al. (2007),
this choice ofβ leads to difficulties with MAP esti-
mation. For a sequence of drawsx = (x1, . . . , xn)
from a multinomial distributionθ with observed
countsn1, . . . , nK , a symmetric Dirichlet(β) prior
over θ yields the MAP estimateθk = nk+β−1

n+K(β−1) .
When β ≥ 1, standard MLE techniques such as
EM can be used to find the MAP estimate simply
by adding “pseudocounts” of sizeβ − 1 to each of
the expected countsnk at each iteration. However,
whenβ < 1, the values ofθ that set one or more
of the θk equal to 0 can have infinitely high poste-
rior probability, meaning that MAP estimation can
yield degenerate solutions. If, instead of estimating
θ, we integrate over all possible values, we no longer
encounter such difficulties. Instead, the probability
that outcomexi takes valuek given previous out-
comesx−i = (x1, . . . , xi−1) is

P (k|x−i, β) =

∫

P (k|θ)P (θ|x−i, β) dθ

=
nk + β

i− 1 + Kβ
(5)
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wherenk is the number of timesk occurred inx−i.
See MacKay and Peto (1995) for a derivation.

2.2 Model Definition

Our model has the structure of a standard trigram
HMM, with the addition of symmetric Dirichlet pri-
ors over the transition and output distributions:

ti|ti−1 = t, ti−2 = t′, τ (t,t′) ∼ Mult(τ (t,t′))

wi|ti = t, ω(t) ∼ Mult(ω(t))

τ (t,t′)|α ∼ Dirichlet(α)

ω(t)|β ∼ Dirichlet(β)

whereti andwi are theith tag and word. We assume
that sentence boundaries are marked with a distin-
guished tag. For a model withT possible tags, each
of the transition distributionsτ (t,t′) hasT compo-
nents, and each of the output distributionsω(t) has
Wt components, whereWt is the number of word
types that are permissible outputs for tagt. We will
useτ andω to refer to the entire transition and out-
put parameter sets. This model assumes that the
prior over state transitions is the same for all his-
tories, and the prior over output distributions is the
same for all states. We relax the latter assumption in
Section 4.

Under this model, Equation 5 gives us

P (ti|t−i, α) =
n(ti−2,ti−1,ti) + α

n(ti−2,ti−1) + Tα
(6)

P (wi|ti, t−i,w−i, β) =
n(ti,wi) + β

n(ti) + Wtiβ
(7)

wheren(ti−2,ti−1,ti) and n(ti,wi) are the number of
occurrences of the trigram(ti−2, ti−1, ti) and the
tag-word pair(ti, wi) in thei − 1 previously gener-
ated tags and words. Note that, by integrating out
the parametersτ and ω, we induce dependencies
between the variables in the model. The probabil-
ity of generating a particular trigram tag sequence
(likewise, output) depends on the number of times
that sequence (output) has been generated previ-
ously. Importantly, trigrams (and outputs) remain
exchangeable: the probability of a set of trigrams
(outputs) is the same regardless of the order in which
it was generated. The property of exchangeability is
crucial to the inference algorithm we describe next.

2.3 Inference

To perform inference in our model, we use Gibbs
sampling (Geman and Geman, 1984), a stochastic
procedure that produces samples from the posterior
distributionP (t|w, α, β) ∝ P (w|t, β)P (t|α). We
initialize the tags at random, then iteratively resam-
ple each tag according to its conditional distribution
given the current values of all other tags. Exchange-
ability allows us to treat the current counts of the
other tag trigrams and outputs as “previous” obser-
vations. The only complication is that resampling
a tag changes the identity of three trigrams at once,
and we must account for this in computing its condi-
tional distribution. The sampling distribution forti
is given in Figure 2.

In Bayesian statistical inference, multiple samples
from the posterior are often used in order to obtain
statistics such as the expected values of model vari-
ables. For POS tagging, estimates based on multi-
ple samples might be useful if we were interested in,
for example, the probability that two words have the
same tag. However, computing such probabilities
across all pairs of words does not necessarily lead to
a consistent clustering, and the result would be diffi-
cult to evaluate. Using a single sample makes stan-
dard evaluation methods possible, but yields sub-
optimal results because the value for each tag is sam-
pled from a distribution, and some tags will be as-
signed low-probability values. Our solution is to
treat the Gibbs sampler as a stochastic search pro-
cedure with the goal of identifying the MAP tag se-
quence. This can be done using tempering (anneal-
ing), where a temperature ofφ is equivalent to rais-
ing the probabilities in the sampling distribution to
the power of1

φ
. As φ approaches 0, even a single

sample will provide a good MAP estimate.

3 Fixed Hyperparameter Experiments

3.1 Method

Our initial experiments follow in the tradition begun
by Merialdo (1994), using a tag dictionary to con-
strain the possible parts of speech allowed for each
word. (This also fixesWt, the number of possible
words for tagt.) The dictionary was constructed by
listing, for each word, all tags found for that word in
the entire WSJ treebank. For the experiments in this
section, we used a 24,000-word subset of the tree-
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P (ti|t−i,w, α, β) ∝
n(ti,wi) + β

nti + Wtiβ
·
n(ti−2,ti−1,ti) + α

n(ti−2,ti−1) + Tα
·
n(ti−1,ti,ti+1) + I(ti−2 = ti−1 = ti = ti+1) + α

n(ti−1,ti) + I(ti−2 = ti−1 = ti) + Tα

·
n(ti,ti+1,ti+2) + I(ti−2 = ti = ti+2, ti−1 = ti+1) + I(ti−1 = ti = ti+1 = ti+2) + α

n(ti,ti+1) + I(ti−2 = ti, ti−1 = ti+1) + I(ti−1 = ti = ti+1) + Tα

Figure 2: Conditional distribution forti. Here,t−i refers to the current values of all tags except forti, I(.)
is a function that takes on the value 1 when its argument is true and 0 otherwise, and all countsnx are with
respect to the tag trigrams and tag-word pairs in(t−i,w−i).

bank as our unlabeled training corpus. 54.5% of the
tokens in this corpus have at least two possible tags,
with the average number of tags per token being 2.3.
We varied the values of the hyperparametersα and
β and evaluated overall tagging accuracy. For com-
parison with our Bayesian HMM (BHMM) in this
and following sections, we also present results from
the Viterbi decoding of an HMM trained using MLE
by running EM to convergence (MLHMM). Where
direct comparison is possible, we list the scores re-
ported by Smith and Eisner (2005) for their condi-
tional random field model trained using contrastive
estimation (CRF/CE).2

For all experiments, we ran our Gibbs sampling
algorithm for 20,000 iterations over the entire data
set. The algorithm was initialized with a random tag
assignment and a temperature of 2, and the temper-
ature was gradually decreased to .08. Since our in-
ference procedure is stochastic, our reported results
are an average over 5 independent runs.

Results from our model for a range of hyperpa-
rameters are presented in Table 1. With the best
choice of hyperparameters (α = .003, β = 1), we
achieve average tagging accuracy of 86.8%. This
far surpasses the MLHMM performance of 74.5%,
and is closer to the 90.1% accuracy of CRF/CE on
the same data set using oracle parameter selection.
The effects ofα, which determines the probabil-

2Results of CRF/CE depend on the set of features used and
the contrast neighborhood. In all cases, we list the best score
reported for any contrast neighborhood using trigram (but no
spelling) features. To ensure proper comparison, all corpora
used in our experiments consist of the same randomized sets of
sentences used by Smith and Eisner. Note that training on sets
of contiguous sentences from the beginning of the treebank con-
sistently improves our results, often by 1-2 percentage points or
more. MLHMM scores show less difference between random-
ized and contiguous corpora.

Value Value ofβ
of α .001 .003 .01 .03 .1 .3 1.0
.001 85.0 85.7 86.1 86.0 86.2 86.5 86.6
.003 85.5 85.5 85.8 86.6 86.7 86.7 86.8
.01 85.3 85.5 85.6 85.9 86.4 86.4 86.2
.03 85.9 85.8 86.1 86.2 86.6 86.8 86.4
.1 85.2 85.0 85.2 85.1 84.9 85.5 84.9
.3 84.4 84.4 84.6 84.4 84.5 85.7 85.3

1.0 83.1 83.0 83.2 83.3 83.5 83.7 83.9

Table 1: Percentage of words tagged correctly by
BHMM as a function of the hyperparametersα and
β. Results are averaged over 5 runs on the 24k cor-
pus with full tag dictionary. Standard deviations in
most cases are less than .5.

ity of the transition distributions, are stronger than
the effects ofβ, which determines the probability
of the output distributions. The optimal value of
.003 for α reflects the fact that the true transition
probability matrix for this corpus is indeed sparse.
As α grows larger, the model prefers more uniform
transition probabilities, which causes it to perform
worse. Although the true output distributions tend to
be sparse as well, the level of sparseness depends on
the tag (consider function words vs. content words
in particular). Therefore, a value ofβ that accu-
rately reflects the most probable output distributions
for some tags may be a poor choice for other tags.
This leads to the smaller effect ofβ, and suggests
that performance might be improved by selecting a
differentβ for each tag, as we do in the next section.

A final point worth noting is that even when
α = β = 1 (i.e., the Dirichlet priors exert no influ-
ence) the BHMM still performs much better than the
MLHMM. This result underscores the importance
of integrating over model parameters: the BHMM
identifies a sequence of tags that have high proba-
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bility over a range of parameter values, rather than
choosing tags based on the single best set of para-
meters. The improved results of the BHMM demon-
strate that selecting a sequence that is robust to vari-
ations in the parameters leads to better performance.

4 Hyperparameter Inference

In our initial experiments, we experimented with dif-
ferent fixed values of the hyperparameters and re-
ported results based on their optimal values. How-
ever, choosing hyperparameters in this way is time-
consuming at best and impossible at worst, if there
is no gold standard available. Luckily, the Bayesian
approach allows us to automatically select values
for the hyperparameters by treating them as addi-
tional variables in the model. We augment the model
with priors over the hyperparameters (here, we as-
sume an improper uniform prior), and use a sin-
gle Metropolis-Hastings update (Gilks et al., 1996)
to resample the value of each hyperparameter after
each iteration of the Gibbs sampler. Informally, to
update the value of hyperparameterα, we sample a
proposed new valueα′ from a normal distribution
with µ = α andσ = .1α. The probability of ac-
cepting the new value depends on the ratio between
P (t|w, α) andP (t|w, α′) and a term correcting for
the asymmetric proposal distribution.

Performing inference on the hyperparameters al-
lows us to relax the assumption that every tag has
the same prior on its output distribution. In the ex-
periments reported in the following section, we used
two different versions of our model. The first ver-
sion (BHMM1) uses a single value ofβ for all word
classes (as above); the second version (BHMM2)
uses a separateβj for each tag classj.

5 Inferred Hyperparameter Experiments

5.1 Varying corpus size

In this set of experiments, we used the full tag dictio-
nary (as above), but performed inference on the hy-
perparameters. Following Smith and Eisner (2005),
we trained on four different corpora, consisting of
the first 12k, 24k, 48k, and 96k words of the WSJ
corpus. For all corpora, the percentage of ambigu-
ous tokens is 54%-55% and the average number of
tags per token is 2.3. Table 2 shows results for
the various models and a random baseline (averaged

Corpus size
Accuracy 12k 24k 48k 96k
random 64.8 64.6 64.6 64.6
MLHMM 71.3 74.5 76.7 78.3
CRF/CE 86.2 88.6 88.4 89.4
BHMM1 85.8 85.2 83.6 85.0
BHMM2 85.8 84.4 85.7 85.8
σ < .7 .2 .6 .2

Table 2: Percentage of words tagged correctly
by the various models on different sized corpora.
BHMM1 and BHMM2 use hyperparameter infer-
ence; CRF/CE uses parameter selection based on an
unlabeled development set. Standard deviations (σ)
for the BHMM results fell below those shown for
each corpus size.

over 5 random tag assignments). Hyperparameter
inference leads to slightly lower scores than are ob-
tained by oracle hyperparameter selection, but both
versions of BHMM are still far superior to MLHMM
for all corpus sizes. Not surprisingly, the advantages
of BHMM are most pronounced on the smallest cor-
pus: the effects of parameter integration and sensible
priors are stronger when less evidence is available
from the input. In the limit as corpus size goes to in-
finity, the BHMM and MLHMM will make identical
predictions.

5.2 Varying dictionary knowledge

In unsupervised learning, it is not always reasonable
to assume that a large tag dictionary is available. To
determine the effects of reduced or absent dictionary
information, we ran a set of experiments inspired
by those of Smith and Eisner (2005). First, we col-
lapsed the set of 45 treebank tags onto a smaller set
of 17 (the same set used by Smith and Eisner). We
created a full tag dictionary for this set of tags from
the entire treebank, and also created several reduced
dictionaries. Each reduced dictionary contains the
tag information only for words that appear at least
d times in the training corpus (the 24k corpus, for
these experiments). All other words are fully am-
biguous between all 17 classes. We ran tests with
d = 1, 2, 3, 5, 10, and∞ (i.e., knowledge-free syn-
tactic clustering).

With standard accuracy measures, it is difficult to
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Value ofd
Accuracy 1 2 3 5 10 ∞

random 69.6 56.7 51.0 45.2 38.6
MLHMM 83.2 70.6 65.5 59.0 50.9
CRF/CE 90.4 77.0 71.7
BHMM1 86.0 76.4 71.0 64.3 58.0
BHMM2 87.3 79.6 65.0 59.2 49.7
σ < .2 .8 .6 .3 1.4
VI
random 2.65 3.96 4.38 4.75 5.13 7.29
MLHMM 1.13 2.51 3.00 3.41 3.89 6.50
BHMM1 1.09 2.44 2.82 3.19 3.47 4.30
BHMM2 1.04 1.78 2.31 2.49 2.97 4.04
σ < .02 .03 .04 .03 .07 .17
Corpus stats
% ambig. 49.0 61.3 66.3 70.9 75.8 100
tags/token 1.9 4.4 5.5 6.8 8.3 17

Table 3: Percentage of words tagged correctly and
variation of information between clusterings in-
duced by the assigned and gold standard tags as the
amount of information in the dictionary is varied.
Standard deviations (σ) for the BHMM results fell
below those shown in each column. The percentage
of ambiguous tokens and average number of tags per
token for each value ofd is also shown.

evaluate the quality of a syntactic clustering when
no dictionary is used, since cluster names are inter-
changeable. We therefore introduce another evalua-
tion measure for these experiments, a distance met-
ric on clusterings known asvariation of information
(Meilǎ, 2002). The variation of information (VI) be-
tween two clusteringsC (the gold standard) andC ′

(the found clustering) of a set of data points is a sum
of the amount of information lost in moving fromC
to C ′, and the amount that must be gained. It is de-
fined in terms of entropyH and mutual information
I: V I(C,C ′) = H(C)+ H(C ′)− 2I(C,C ′). Even
when accuracy can be measured, VI may be more in-
formative: two different tag assignments may have
the same accuracy but different VI with respect to
the gold standard if theerrors in one assignment are
less consistent than those in the other.

Table 3 gives the results for this set of experi-
ments. One or both versions of BHMM outperform
MLHMM in terms of tag accuracy for all values of
d, although the differences are not as great as in ear-
lier experiments. The differences in VI are more
striking, particularly as the amount of dictionary in-
formation is reduced. When ambiguity is greater,
both versions of BHMM show less confusion with

respect to the true tags than does MLHMM, and
BHMM2 performs the best in all circumstances. The
confusion matrices in Figure 3 provide a more intu-
itive picture of the very different sorts of clusterings
produced by MLHMM and BHMM2 when no tag
dictionary is available. Similar differences hold to a
lesser degree when a partial dictionary is provided.
With MLHMM, different tokens of the same word
type are usually assigned to the same cluster, but
types are assigned to clusters more or less at ran-
dom, and all clusters have approximately the same
number of types (542 on average, with a standard
deviation of 174). The clusters found by BHMM2
tend to be more coherent and more variable in size:
in the 5 runs of BHMM2, the average number of
types per cluster ranged from 436 to 465 (i.e., to-
kens of the same word are spread over fewer clus-
ters than in MLHMM), with a standard deviation
between 460 and 674. Determiners, prepositions,
the possessive marker, and various kinds of punc-
tuation are mostly clustered coherently. Nouns are
spread over a few clusters, partly due to a distinction
found between common and proper nouns. Like-
wise, modal verbs and the copula are mostly sep-
arated from other verbs. Errors are often sensible:
adjectives and nouns are frequently confused, as are
verbs and adverbs.

The kinds of results produced by BHMM1 and
BHMM2 are more similar to each other than to
the results of MLHMM, but the differences are still
informative. Recall that BHMM1 learns a single
value for β that is used for all output distribu-
tions, while BHMM2 learns separate hyperparame-
ters for each cluster. This leads to different treat-
ments of difficult-to-classify low-frequency items.
In BHMM1, these items tend to be spread evenly
among all clusters, so that all clusters have simi-
larly sparse output distributions. In BHMM2, the
system creates one or two clusters consisting en-
tirely of very infrequent items, where the priors on
these clusters strongly prefer uniform outputs, and
all other clusters prefer extremely sparse outputs
(and are more coherent than in BHMM1). This
explains the difference in VI between the two sys-
tems, as well as the higher accuracy of BHMM1
for d ≥ 3: the singleβ discourages placing low-
frequency items in their own cluster, so they are
more likely to be clustered with items that have sim-
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Figure 3: Confusion matrices for the dictionary-free clusterings found by (a) BHMM2 and (b) MLHMM.

ilar transition probabilities. The problem of junk
clusters in BHMM2 might be alleviated by using a
non-uniform prior over the hyperparameters to en-
courage some degree of sparsity in all clusters.

6 Conclusion

In this paper, we have demonstrated that, for a stan-
dard trigram HMM, taking a Bayesian approach
to POS tagging dramatically improves performance
over maximum-likelihood estimation. Integrating
over possible parameter values leads to more robust
solutions and allows the use of priors favoring sparse
distributions. The Bayesian approach is particularly
helpful when learning is less constrained, either be-
cause less data is available or because dictionary
information is limited or absent. For knowledge-
free clustering, our approach can also be extended
through the use of infinite models so that the num-
ber of clusters need not be specified in advance. We
hope that our success with POS tagging will inspire
further research into Bayesian methods for other nat-
ural language learning tasks.
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Abstract

We describe a new loss function, due to Jeon
and Lin (2006), for estimating structured
log-linear models on arbitrary features. The
loss function can be seen as a (generative) al-
ternative to maximum likelihood estimation
with an interesting information-theoretic in-
terpretation, and it is statistically consis-
tent. It is substantially faster than maximum
(conditional) likelihood estimation of condi-
tional random fields (Lafferty et al., 2001;
an order of magnitude or more). We com-
pare its performance and training time to an
HMM, a CRF, an MEMM, and pseudolike-
lihood on a shallow parsing task. These ex-
periments help tease apart the contributions
of rich features and discriminative training,
which are shown to be more than additive.

1 Introduction

Log-linear models are a very popular tool in natural
language processing, and are often lauded for per-
mitting the use of “arbitrary” and “correlated” fea-
tures of the data by a model. Users of log-linear
models know, however, that this claim requires some
qualification: any feature is permitted in principle,
but training log-linear models (and decoding under
them) is tractable only when the model’s indepen-
dence assumptions permit efficient inference proce-
dures. For example, in the original conditional ran-
dom fields (Lafferty et al., 2001), features were con-

∗This work was supported by NSF grant IIS-0427206 and
the DARPA CALO project. The authors are grateful for feed-
back from David Smith and from three anonymous ACL re-
viewers, and helpful discussions with Charles Sutton.

fined to locally-factored indicators on label bigrams
and label unigrams (with any of the observation).

Even in cases where inference in log-linear mod-
els is tractable, it requires the computation of a parti-
tion function. More formally, a log-linear model for
random variables X and Y over X,Y defines:

pw(x, y) =
ew>f(x,y)∑

x′,y′∈X×Y ew>f(x′,y′)
=

ew>f(x,y)

Z(w)
(1)

where f : X×Y→ Rm is the feature vector-function
and w ∈ Rm is a weight vector that parameterizes
the model. In NLP, we rarely train this model by
maximizing likelihood, because the partition func-
tion Z(w) is expensive to compute exactly. Z(w)
can be approximated (e.g., using Gibbs sampling;
Rosenfeld, 1997).

In this paper, we propose the use of a new loss
function that is computationally efficient and statis-
tically consistent (§2). Notably, repeated inference
is not required during estimation. This loss func-
tion can be seen as a case of M-estimation1 that
was originally developed by Jeon and Lin (2006) for
nonparametric density estimation. This paper gives
an information-theoretic motivation that helps eluci-
date the objective function (§3), shows how to ap-
ply the new estimator to structured models used in
NLP (§4), and compares it to a state-of-the-art noun
phrase chunker (§5). We discuss implications and
future directions in §6.

2 Loss Function

As before, let X be a random variable over a high-
dimensional space X, and similarly Y over Y. X

1“M-estimation” is a generalization of MLE (van der Vaart,
1998); space does not permit a full discussion.
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might be the set of all sentences in a language, and
Y the set of all POS tag sequences or the set of all
parse trees. Let q0 be a “base” distribution that is
our first approximation to the true distribution over
X × Y. HMMs and PCFGs, while less accurate as
predictors than the rich-featured log-linear models
we desire, might be used to define q0.

The model we estimate will have the form

pw(x, y) ∝ q0(x, y)ew>f(x,y) (2)

Notice that pw(x, y) = 0 whenever q0(x, y) = 0.
It is therefore important for q0 to be smooth, since
the support of pw is a subset of the support of q0.
Notice that we have not written the partition function
explicitly in Eq. 2; it will never need to be computed
during estimation or inference. The unnormalized
distribution will suffice for all computation.

Suppose we have observations 〈x1, x2, ..., xn〉
with annotations 〈y1, ..., yn〉. The (unregularized)
loss function, due to Jeon and Lin (2006), is2

`(w) =
1
n

n∑
i=1

e−w>f(xi,yi)

+
∑
x,y

q0(x, y)
(
w>f(x, y)

)
(3)

=
1
n

n∑
i=1

e−w>f(xi,yi) + w>
∑
x,y

q0(x, y)f(x, y)

=
1
n

n∑
i=1

e−w>f(xi,yi) + w> Eq0(X,Y )[f(X, Y )]︸ ︷︷ ︸
constant(w)

Before explaining this objective, we point out
some attractive computational properties. Notice
that f(xi, yi) (for all i) and the expectations of the
feature vectors under q0 are constant with respect
to w. Computing the function in Eq. 3, then, re-
quires no inference and no dynamic programming,
only O(nm) floating-point operations.

3 An Interpretation

Here we give an account of the loss function as a
way of “cleaning up” a mediocre model (q0). We

2We give only the discrete version here, because it is most
relevant for an ACL audience. Also, our linear function
w>f(xi, yi) is a simple case; another kernel (for example)
could be used.

show that this estimate aims to model a presumed
perturbation that created q0, by minimizing the KL
divergence between q0 and a perturbed version of the
sample distribution p̃.

Consider Eq. 2. Given a training dataset, maxi-
mizing likelihood under this model means assuming
that there is some w∗ for which the true distribu-
tion p∗(x, y) = pw∗(x, y). Carrying out MLE, how-
ever, would require computing the partition function∑

x′,y′ q0(x′, y′)ew>f(x′,y′), which is in general in-
tractable. Rearranging Eq. 2 slightly, we have

q0(x, y) ∝ p∗(x, y)e−w>f(x,y) (4)

If q0 is close to the true model, e−w>f(x,y) should
be close to 1 and w close to zero. In the sequence
model setting, for example, if q0 is an HMM that ex-
plains the data well, then the additional features are
not necessary (equivalently, their weights should be
0). If q0 is imperfect, we might wish to make it more
powerful by adding features (e.g., f ), but q0 nonethe-
less provides a reasonable “starting point” for defin-
ing our model.

So instead of maximizing likelihood, we will min-
imize the KL divergence between the two sides of
Eq. 4.3

DKL(q0(x, y)‖p∗(x, y)e−w>f(x,y)) (5)

=
∑
x,y

q0(x, y) log
q0(x, y)

p∗(x, y)e−w>f(x,y)
(6)

+
∑
x,y

p∗(x, y)e−w>f(x,y) −
∑
x,y

q0(x, y)

= −H(q0) +
∑
x,y

p∗(x, y)e−w>f(x,y) − 1

−
∑
x,y

q0(x, y) log
(
p∗(x, y)e−w>f(x,y)

)
= constant(w) +

∑
x,y

p∗(x, y)e−w>f(x,y)

+
∑
x,y

q0(x, y)
(
w>f(x, y)

)
3The KL divergence here is generalized for unnormalized

distributions, following O’Sullivan (1998):

DKL(u‖v) =
P

j

“
uj log

uj

vj
− uj + vj

”
where u and v are nonnegative vectors defining unnormal-
ized distributions over the same event space. Note that whenP

j uj =
P

j vj = 1, this formula takes on the more familiar
form, as −

P
j uj and

P
j vj cancel.
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If we replace p∗ with the empirical (sampled) dis-
tribution p̃, minimizing the above KL divergence is
equivalent to minimizing `(w) (Eq. 3). It may be
helpful to think of−w as the parameters of a process
that “damage” the true model p∗, producing q0, and
the estimation of w as learning to undo that damage.

In the remainder of the paper, we use the general
term “M-estimation” to refer to the minimization of
`(w) as a way of training a log-linear model.

4 Algorithms for Models of Sequences and
Trees

We discuss here some implementation aspects of the
application of M-estimation to NLP models.

4.1 Expectations under q0

The base distribution q0 enters into implementation
in two places: Eq0(X,Y )[f(X, Y )] must be computed
for training, and q0(x, y) is a factor in the model
used in decoding.

If q0 is a familiar stochastic grammar, such as an
HMM or a PCFG, or any generative model from
which sampling is straightforward, it is possible to
estimate the feature expectations by sampling from
the model directly; for sample 〈(x̃i, ỹi)〉si=1 let:

Eq0(X,Y )[fj(X, Y )]← 1
s

s∑
i=1

fj(x̃i, ỹi) (7)

If the feature space is sparse under q0 (likely in most
settings), then smoothing may be required.

If q0 is an HMM or a PCFG, the expectation vec-
tor can be computed exactly by solving a system of
equations. We will see that for the common cases
where features are local substructures, inference is
straightforward. We briefly describe how this can be
done for a bigram HMM and a PCFG.

4.1.1 Expectations under an HMM
Let S be the state space of a first-order HMM.

If s = 〈s1, ..., sk〉 is a state sequence and x =
〈x1, ..., xk〉 is an observed sequence of emissions,
then:

q0(s,x) =

(
k∏

i=1

tsi−1(si)esi(xi)

)
tsk

(stop) (8)

(Assume s0 = start is the single, silent, initial state,
and stop is the only stop state, also silent. We as-
sume no other states are silent.)

The first step is to compute path-sums into and out
of each state, under the HMM q0. To do this, define
is as the total weight of state-prefixes (beginning in
start) ending in s and os as the total weight of state-
suffixes beginning in s (and ending in stop):4

istart = ostop = 1 (9)

∀s ∈ S \ {start, stop} :

is =
∞∑

n=1

∑
〈s1,...,sn〉∈Sn

(
n∏

i=1

tsi−1(si)

)
tsn(s)

=
∑
s′∈S

is′ts′(s) (10)

os =
∞∑

n=1

∑
〈s1,...,sn〉∈Sn

ts(s1)

(
n∏

i=2

tsi−1(si)

)

=
∑
s′∈S

ts(s′)os′ (11)

This amounts to two linear systems given the tran-
sition probabilities t, where the variables are i• and
o•, respectively. In each system there are |S| vari-
ables and |S| equations. Once solved, expected
counts of transition and emission features under q0

are straightforward:

Eq0 [s
transit→ s′] = ists(s′)os′

Eq0 [s
emit→ x] = ises(x)os

Given i and o, Eq0 can be computed for other fea-
tures in the model in a similar way, provided they
correspond to contiguous substructures. For exam-
ple, a feature f627 that counts occurrences of “Si =
s and Xi+3 = x” has expected value Eq0 [f627] =∑

s′,s′′,s′′′∈S

ists(s′)ts′(s′′)ts′′(s′′′)es′′′(x)os′′′ (12)

Non-contiguous substructure features with “gaps”
require summing over paths between any pair of
states. This is straightforward (we omit it for space),
but of course using such features (while interesting)
would complicate inference in decoding.

4It may be helpful to think of i as forward probabilities, but
for the observation set Y∗ rather than a particular observation
y. o are like backward probabilities. Note that, because some
counted prefixes are prefixes of others, i can be > 1; similarly
for o.
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4.1.2 Expectations under a PCFG
In general, the expectations for a PCFG require

solving a quadratic system of equations. The anal-
ogy this time is to inside and outside probabilities.
Let the PCFG have nonterminal set N, start symbol
S ∈ N, terminal alphabet Σ, and rules of the form
A → B C and A → x. (We assume Chomsky nor-
mal form for clarity; the generalization is straight-
forward.) Let rA(B C) and rA(x) denote the proba-
bilities of nonterminal A rewriting to child sequence
B C or x, respectively. Then ∀A ∈ N:

oA =
∑
B∈N

∑
C∈N

oBiC [rB(A C) + rB(C A)]

+
{

1 if A = S
0 otherwise

iA =
∑
B∈N

∑
C∈N

rA(B C)iBiC +
∑

x

rA(x)ix

ox =
∑
A∈N

oArA(x),∀x ∈ Σ

ix = 1,∀x ∈ Σ

In most practical applications, the PCFG will be
“tight” (Booth and Thompson, 1973; Chi and Ge-
man, 1998). Informally, this means that the proba-
bility of a derivation rooted in S failing to terminate
is zero. If that is the case, then iA = 1 for all A ∈ N,
and the system becomes linear (see also Corazza
and Satta, 2006).5 If tightness is not guaranteed,
iterative propagation of weights, following Stolcke
(1995), works well in our experience for solving the
quadratic system, and converges quickly.

As in the HMM case, expected counts of arbitrary
contiguous tree substructures can be computed as
products of probabilities of rules appearing within
the structure, factoring in the o value of the struc-
ture’s root and the i values of the structure’s leaves.

4.2 Optimization

To carry out M-estimation, we minimize the func-
tion `(w) in Eq. 3. To apply gradient de-
scent or a quasi-Newton numerical optimization
method,6 it suffices to specify the fixed quantities

5The same is true for HMMs: if the probability of non-
termination is zero, then for all s ∈ S, os = 1.

6We use L-BFGS (Liu and Nocedal, 1989) as implemented
in the R language’s optim function.

f(xi, yi) (for all i ∈ {1, 2, ..., n}) and the vector
Eq0(X,Y )[f(X, Y )]. The gradient is:7

∂`

∂wj
= −

n∑
i=1

e−w>f(xi,yi)fj(xi, yi) + Eq0 [fj ]

(13)
The Hessian (matrix of second derivatives) can also
be computed with relative ease, though the space re-
quirement could become prohibitive. For problems
where m is relatively small, this would allow the use
of second-order optimization methods that are likely
to converge in fewer iterations.

It is easy to see that Eq. 3 is convex in w. There-
fore, convergence to a global optimum is guaranteed
and does not depend on the initializing value of w.

4.3 Regularization
Regularization is a technique from pattern recogni-
tion that aims to keep parameters (like w) from over-
fitting the training data. It is crucial to the perfor-
mance of most statistical learning algorithms, and
our experiments show it has a major effect on the
success of the M-estimator. Here we use a quadratic
regularizer, minimizing `(w) + (w>w)/2c. Note
that this is also convex and differentiable if c > 0.
The value of c can be chosen using a tuning dataset.
This regularizer aims to keep each coordinate of w
close to zero.

In the M-estimator, regularization is particularly
important when the expectation of some feature fj ,
Eq0(X,Y )[fj(X, Y )] is equal to zero. This can hap-
pen either due to sampling error (fj simply failed
to appear with a positive value in the finite sample)
or because q0 assigns zero probability mass to any
x ∈ X, y ∈ Y where fj(x, y) 6= 0. Without regular-
ization, the weight wj will tend toward ±∞, but the
quadratic penalty term will prevent that undesirable
tendency. Just as the addition of a quadratic regular-
izer to likelihood can be interpreted as a zero-mean
Gaussian prior on w (Chen and Rosenfeld, 2000), it
can be so-interpreted here. The regularized objective
is analogous to maximum a posteriori estimation.

5 Shallow Parsing

We compared M-estimation to a hidden Markov
model and other training methods on English noun

7Taking the limit as n → ∞ and setting equal to zero, we
have the basis for a proof that `(w) is statistically consistent.
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Figure 1: Wall time (hours:minutes) of training the
HMM and 100 L-BFGS iterations for each of the
extended-feature models on a 2.2 GHz Sun Opteron
with 8GB RAM. See discussion in text for details.

phrase (NP) chunking. The dataset comes from
the Conference on Natural Language Learning
(CoNLL) 2000 shallow parsing shared task (Tjong
Kim Sang and Buchholz, 2000); we apply the model
to NP chunking only. About 900 sentences were re-
served for tuning regularization parameters.

Baseline/q0 In this experiment, the simple base-
line is a second-order HMM. The states correspond
to {B, I,O} labels, denoting the beginning, inside,
and outside of noun phrases. Each state emits a
tag and a word (independent of each other given the
state). We replaced the first occurrence of every tag
and of every word in the training data with an OOV
symbol, giving a fixed tag vocabulary of 46 and a
fixed word vocabulary of 9,014. Transition distribu-
tions were estimated using MLE, and tag- and word-
emission distributions were estimated using add-1
smoothing. The HMM had 27,213 parameters. This
HMM achieves 86.3% F1-measure on the develop-
ment dataset (slightly better than the lowest-scoring
of the CoNLL-2000 systems). Heavier or weaker
smoothing (an order of magnitude difference in add-
λ) of the emission distributions had very little effect.
Note that HMM training time is negligible (roughly
2 seconds); it requires counting events, smoothing
the counts, and normalizing.

Extended Feature Set Sha and Pereira (2003) ap-
plied a conditional random field to the NP chunk-
ing task, achieving excellent results. To improve the
performance of the HMM and test different estima-
tion methods, we use Sha and Pereira’s feature tem-
plates, which include subsequences of labels, tags,
and words of different lengths and offsets. Here,
we use only features observed to occur at least once
in the training data, accounting (in addition to our
OOV treatment) for the slight drop in performance

prec. recall F1

HMM features:
HMM 85.60 88.68 87.11
CRF 90.40 89.56 89.98
PL 80.31 81.37 80.84
MEMM 86.03 88.62 87.31
M-est. 85.57 88.65 87.08
extended features:
CRF 94.04 93.68 93.86
PL 91.88 91.79 91.83
MEMM 90.89 92.15 91.51
M-est. 88.88 90.42 89.64

Table 1: NP chunking accuracy on test data us-
ing different training methods. The effects of dis-
criminative training (CRF) and extended feature sets
(lower section) are more than additive.

compared to what Sha and Pereira report. There are
630,862 such features.

Using the original HMM feature set and the ex-
tended feature set, we trained four models that can
use arbitrary features: conditional random fields
(a near-replication of Sha and Pereira, 2003), maxi-
mum entropy Markov models (MEMMs; McCal-
lum et al., 2000), pseudolikelihood (Besag, 1975;
see Toutanova et al., 2003, for a tagging applica-
tion), and our M-estimator with the HMM as q0.
CRFs and MEMMs are discriminatively-trained to
maximize conditional likelihood (the former is pa-
rameterized using a sequence-normalized log-linear
model, the latter using a locally-normalized log-
linear model). Pseudolikelihood is a consistent esti-
mator for the joint likelihood, like our M-estimator;
its objective function is a sum of log probabilities.

In each case, we trained seven models for
each feature set with quadratic regularizers c ∈
[10−1, 10], spaced at equal intervals in the log-scale,
plus an unregularized model (c =∞). As discussed
in §4.2, we trained using L-BFGS; training contin-
ued until relative improvement fell within machine
precision or 100 iterations, whichever came first.
After training, the value of c is chosen that maxi-
mizes F1 accuracy on the tuning set.

Runtime Fig. 1 compares the wall time of
carefully-timed training runs on a dedicated server.
Note that Dyna, a high-level programming language,
was used for dynamic programming (in the CRF)
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and summations (MEMM and pseudolikelihood).
The runtime overhead incurred by using Dyna is es-
timated as a slow-down factor of 3–5 against a hand-
tuned implementation (Eisner et al., 2005), though
the slow-down factor is almost certainly less for the
MEMM and pseudolikelihood. All training (except
the HMM, of course) was done using the R language
implementation of L-BFGS. In our implementation,
the M-estimator trained substantially faster than the
other methods. Of the 64 minutes required to train
the M-estimator, 6 minutes were spent precomput-
ing Eq0(X,Y )[f(X, Y )] (this need not be repeated if
the regularization settings are altered).

Accuracy Tab. 1 shows how NP chunking accu-
racy compares among the models. With HMM
features, the M-estimator is about the same as the
HMM and MEMM (better than PL and worse than
the CRF). With extended features, the M-estimator
lags behind the slower methods, but performs about
the same as the HMM-featured CRF (2.5–3 points
over the HMM). The full-featured CRF improves
performance by another 4 points. Performance as
a function of training set size is plotted in Fig. 2;
the different methods behave relatively similarly as
the training data are reduced. Fig. 3 plots accuracy
(on tuning data) against training time, for a vari-
ety of training dataset sizes and regularizaton set-
tings, under different training methods. This illus-
trates the training-time/accuracy tradeoff: the M-
estimator, when well-regularized, is considerably
faster than the other methods, at the expense of ac-
curacy. This experiment gives some insight into the
relative importance of extended features versus es-
timation methods. The M-estimated model is, like
the maximum likelihood-estimated HMM, a gener-
ative model. Unlike the HMM, it uses a much larger
set of features–the same features that the discrimina-
tive models use. Our result supports the claim that
good features are necessary for state-of-the-art per-
formance, but so is good training.

5.1 Effect of the Base Distribution

We now turn to the question of the base distribution
q0: how accurate does it need to be? Given that the
M-estimator is consistent, it should be clear that, in
the limit and assuming that our model family p is
correct, q0 should not matter (except in its support).

q0 selection prec. recall F1

HMM F1, prec. 88.88 90.42 89.64
l.u. F1 72.91 57.56 64.33

prec. 84.40 37.68 52.10
emp. F1 84.38 89.43 86.83

Table 2: NP chunking accuracy on test data using
different base models for the M-estimator. The “se-
lection” column shows which accuracy measure was
optimized when selecting the hyperparameter c.

In NLP, we deal with finite datasets and imperfect
models, so q0 may have practical importance.

We next consider an alternative q0 that is far less
powerful; in fact, it is uninformative about the vari-
able to be predicted. Let x be a sequence of words,
t be a sequence of part-of-speech tags, and y be a
sequence of {B, I,O}-labels. The model is:

ql.u.
0 (x, t,y) def=

 |x|∏
i=1

puni(xi)puni(ti)
1

Nyi−1

 1
Ny|x|

(14)
where Ny is the number of labels (including stop)
that can follow y (3 for O and y0 = start, 4 for
B and I). puni are the tag and word unigram distri-
butions, estimated using MLE with add-1 smooth-
ing. This model ignores temporal effects. On its
own, this model achieves 0% precision and recall,
because it labels every word O (the most likely label
sequence is O|x|). We call this model l.u. (“locally
uniform”).

Tab. 2 shows that, while an M-estimate that uses
ql.u.
0 is not nearly as accurate as the one based on

an HMM, the M-estimator did manage to improve
considerably over ql.u.

0 . So the M-estimator is far
better than nothing, and in this case, tuning c to
maximize precision (rather than F1) led to an M-
estimated model with precision competitive with the
HMM. We point this out because, in applications in-
volving very large corpora, a model with good preci-
sion may be useful even if its coverage is mediocre.

Another question about q0 is whether it should
take into account all possible values of the input
variables (here, x and t), or only those seen in train-
ing. Consider the following model:

qemp
0 (x, t,y) def= q0(y | x, t)p̃(x, t) (15)

Here we use the empirical distribution over tag/word
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Figure 3: Accuracy (tuning data) vs. training time.
The M-estimator trains notably faster. The points
in a given curve correspond to different regulariza-
tion strengths (c); M-estimation is more damaged by
weak than strong regularization.

sequences, and the HMM to define the distri-
bution over label sequences. The expectations
Eqemp

0 (X)[f(X)] can be computed using dynamic
programming over the training data (recall that this
only needs to be done once, cf. the CRF). Strictly
speaking, qemp

0 assigns probability zero to any se-
quence not seen in training, but we can ignore the
p̃ marginal at decoding time. As shown in Tab. 2,
this model slightly improves recall over the HMM,
but damages precision; the gains of M-estimation
seen with the HMM as q0, are not reproduced. From
these experiments, we conclude that the M-estimator
might perform considerably better, given a better q0.

5.2 Input-Only Features

We present briefly one negative result. Noting that
the M-estimator is a modeling technique that esti-
mates a distribution over both input and output vari-
ables (i.e., a generative model), we wanted a way
to make the objective more discriminative while still
maintaining the computational property that infer-
ence (of any kind) not be required during the inner
loop of iterative training.

The idea is to reduce the predictive burden on
the feature weights for f . When designing a CRF,
features that do not depend on the output variable
(here, y) are unnecessary. They cannot distinguish
between competing labelings for an input, and so
their weights will be set to zero during conditional
estimation. The feature vector function in Sha and
Pereira’s chunking model does not include such
features. In M-estimation, however, adding such
“input-only” features might permit better modeling
of the data and, more importantly, use the origi-
nal features primarily for the discriminative task of
modeling y given the input.

Adding unigram, bigram, and trigram features
to f for M-estimation resulted in a very small de-
crease in performance: selecting for F1, this model
achieves 89.33 F1 on test data.

6 Discussion

M-estimation fills a gap in the plethora of train-
ing techniques that are available for NLP mod-
els today: it permits arbitrary features (like so-
called conditional “maximum entropy” models such
as CRFs) but estimates a generative model (permit-
ting, among other things, classification on input vari-
ables and meaningful combination with other mod-
els). It is similar in spirit to pseudolikelihood (Be-
sag, 1975), to which it compares favorably on train-
ing runtime and unfavorably on accuracy.

Further, since no inference is required during
training, any features really are permitted, so long
as their expected values can be estimated under the
base model q0. Indeed, M-estimation is consider-
ably easier to implement than conditional estima-
tion. Both require feature counts from the train-
ing data; M-estimation replaces repeated calculation
and differentiation of normalizing constants with in-
ference or sampling (once) under a base model. So
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the M-estimator is much faster to train.
Generative and discriminative models have been

compared and discussed a great deal (Ng and Jordan,
2002), including for NLP models (Johnson, 2001;
Klein and Manning, 2002). Sutton and McCallum
(2005) present approximate methods that keep a dis-
criminative objective while avoiding full inference.

We see M-estimation as a particularly promising
method in settings where performance depends on
high-dimensional, highly-correlated feature spaces,
where the desired features “large,” making discrimi-
native training too time-consuming—a compelling
example is machine translation. Further, in some
settings a locally-normalized conditional log-linear
model (like an MEMM) may be difficult to design;
our estimator avoids normalization altogether.8 The
M-estimator may also be useful as a tool in design-
ing and selecting feature combinations, since more
trials can be run in less time. After selecting a fea-
ture set under M-estimation, discriminative training
can be applied on that set. The M-estimator might
also serve as an initializer to discriminative mod-
els, perhaps reducing the number of times inference
must be performed—this could be particularly use-
ful in very-large data scenarios. In future work we
hope to explore the use of the M-estimator within
hidden variable learning, such as the Expectation-
Maximization algorithm (Dempster et al., 1977).

7 Conclusions

We have presented a new loss function for genera-
tively estimating the parameters of log-linear mod-
els. The M-estimator is fast to train, requiring
no repeated, expensive calculation of normalization
terms. It was shown to improve performance on
a shallow parsing task over a baseline (generative)
HMM, but it is not competitive with the state-of-
the-art. Our sequence modeling experiments support
the widely accepted claim that discriminative, rich-
feature modeling works as well as it does not just
because of rich features in the model, but also be-
cause of discriminative training. Our technique fills
an important gap in the spectrum of learning meth-
ods for NLP models and shows promise for applica-
tion when discriminative methods are too expensive.

8Note that MEMMs also require local partition functions—
which may be expensive—to be computed at decoding time.
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Abstract

In this paper, we propose guided learning,
a new learning framework for bidirectional
sequence classification. The tasks of learn-
ing the order of inference and training the
local classifier are dynamically incorporated
into a single Perceptron like learning algo-
rithm. We apply this novel learning algo-
rithm to POS tagging. It obtains an error rate
of 2.67% on the standard PTB test set, which
represents 3.3% relative error reduction over
the previous best result on the same data set,
while using fewer features.

1 Introduction

Many NLP tasks can be modeled as a sequence clas-
sification problem, such as POS tagging, chunking,
and incremental parsing. A traditional method to
solve this problem is to decompose the whole task
into a set of individual tasks for each token in the in-
put sequence, and solve these small tasks in a fixed
order, usually from left to right. In this way, the out-
put of the previous small tasks can be used as the
input of the later tasks. HMM and MaxEnt Markov
Model are examples of this method.

Lafferty et al. (2001) showed that this approach
suffered from the so calledlabel bias problem(Bot-
tou, 1991). They proposed Conditional Random
Fields (CRF) as a general solution for sequence clas-
sification. CRF models a sequence as an undirected
graph, which means that all the individual tasks are
solved simultaneously. Taskar et al. (2003) improved
the CRF method by employing the large margin
method to separate the gold standard sequence la-

beling from incorrect labellings. However, the com-
plexity of quadratic programming for the large mar-
gin approach prevented it from being used in large
scale NLP tasks.

Collins (2002) proposed a Perceptron like learn-
ing algorithm to solve sequence classification in the
traditional left-to-right order. This solution does not
suffer from the label bias problem. Compared to the
undirected methods, the Perceptron like algorithm
is faster in training. In this paper, we will improve
upon Collins’ algorithm by introducing a bidirec-
tional searching strategy, so as to effectively utilize
more context information at little extra cost.

When a bidirectional strategy is used, the main
problem is how to select the order of inference. Tsu-
ruoka and Tsujii (2005) proposed theeasiest-firstap-
proach which greatly reduced the computation com-
plexity of inference while maintaining the accuracy
on labeling. However, the easiest-first approach only
serves as a heuristic rule. The order of inference is
not incorporated into the training of the MaxEnt clas-
sifier for individual labeling.

Here, we will propose a novel learning frame-
work, namelyguided learning, to integrate classifi-
cation of individual tokens and inference order selec-
tion into a single learning task. We proposed a Per-
ceptron like learning algorithm (Collins and Roark,
2004; Dauḿe III and Marcu, 2005) for guided learn-
ing. We apply this algorithm to POS tagging, a clas-
sic sequence learning problem. Our system reports
an error rate of 2.67% on the standard PTB test set,
a relative 3.3% error reduction of the previous best
system (Toutanova et al., 2003) by using fewer fea-
tures. By using deterministic search, it obtains an
error rate of 2.73%, a 5.9% relative error reduction
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over the previous best deterministic algorithm (Tsu-
ruoka and Tsujii, 2005).

The new POS tagger is similar to (Toutanova et
al., 2003; Tsuruoka and Tsujii, 2005) in the way
that we employ context features. We use a bidi-
rectional search strategy (Woods, 1976; Satta and
Stock, 1994), and our algorithm is based on Percep-
tron learning (Collins, 2002). A unique contribution
of our work is on the integration of individual clas-
sification and inference order selection, which are
learned simultaneously.

2 Guided Learning for Bidirectional
Labeling

We first present an example of POS tagging to show
the idea of bidirectional labeling. Then we present
the inference algorithm and the learning algorithm.

2.1 An Example of POS tagging

Suppose that we have an input sentence

Agatha found that book interesting
w1 w2 w3 w4 w5

(Step 0)

If we scan from left to right, we may find it
difficult to resolve the ambiguity of the label for
that , which could be either DT (determiner), or
IN (preposition or subordinating conjunction) in the
Penn Treebank. However, if we resolve the labels for
book andinteresting , it would be relatively easy to
figure out the correct label forthat .

Now, we show how bidirectional inference works
on this sample. Suppose we use beam search with
width of 2, and we use a window of (-2, 2) for con-
text features.

For the first step, we enumerate hypotheses for
each word. For example,found could have a label
VBN or VBD. Suppose that at this point the most
favorable action, out of the candidate hypotheses, is
the assignment of NN tobook , according to the con-
text features defined on words. Then, we resolve the
label for book first. We maintain the top two hy-
potheses as shown below. Here, the second most fa-
vorable label forbook is VB.

NN
VB

Agatha found that book interesting
w1 w2 w3 w4 w5

(Step 1)

At the second step, assume the most favorable ac-
tion is the assignment of label JJ tointeresting in
the context of NN forbook . Then we maintain the
top two hypotheses for spanbook interesting as
shown below. The second most favorable label for
interesting is still JJ, but in the context of VB for
book .

NN------JJ
VB------JJ

Agatha found that book interesting
w1 w2 w3 w4 w5

(Step 2)

Then, suppose we are most confident for assigning
labels VBD and VBN tofound , in that order. We get
two separated tagged spans as shown below.

VBD NN------JJ
VBN VB------JJ

Agatha found that book interesting
w1 w2 w3 w4 w5

(Step 3)

In the next step, suppose we are most confident for
assigning label DT tothat under the context of VBD
on the left and NN-JJ on the right side, as shown
below (second most favorable action, not discussed
here, is also displayed). After taggingw3, two sep-
arated spans merge into one, starting fromfound to
interesting .

VBD---DT---NN------JJ
VBD---IN---NN------JJ

Agatha found that book interesting
w1 w2 w3 w4 w5

(Step 4)

For the last step, we assign label NNP toAgatha ,
which could be an out-of-vocabulary word, under the
context of VBD-DT on the right.

NNP---VBD---DT---NN------JJ
NNP---VBD---IN---NN------JJ

Agatha found that book interesting
w1 w2 w3 w4 w5

(Step 5)

This simple example has shown the advantage of
adopting a flexible search strategy. However, it is
still unclear how we maintain the hypotheses, how
we keep candidates and accepted labels and spans,
and how we employ dynamic programming. We will
answer these questions in the formal definition of the
inference algorithm in the next section.
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2.2 Inference Algorithm

Terminology: Let the input sequence be
w1w2 · · ·wn. For each tokenwi, we are expected
to assign a labelti ∈ T, with T the label set.

A subsequencewi · · ·wj is called aspan, and is
denoted[i, j]. Each spanp considered by the al-
gorithm is associated with one or morehypotheses,
that is, sequences overT having the same length as
p. Part of the label sequence of each hypothesis is
used as a context for labeling tokens outside the span
p. For example, if a tri-gram model is adopted, we
use the two labels on the left boundary and the two
labels on the right boundary of the hypothesis for la-
beling outside tokens. The left two labels are called
the left interface, and the right two labels are called
the right interface . Left and right interfaces have
only one label in case of spans of length one.

A pair s = (Ileft , Iright) with a left and a right
interface is called astate. We partition the hypothe-
ses associated with spanp into sets compatible with
the same state. In practice, for spanp, we use a ma-
trix Mp indexed by states, so thatMp(s), s = (Ileft ,
Iright), is the set of all hypotheses associated withp
that are compatible withIleft andIright .

For a spanp and a states, we denote the associated
top hypothesis as

s.T = argmax
h∈Mp(s)

V (h),

whereV is the score of a hypothesis (defined in (1)
below). Similarly, we denote the top state forp as

p.S = argmax
s: Mp(s) 6=∅

V (s.T ).

Therefore, for each spanp, we have a top hypothe-
sisp.S.T , whose score is the highest among all the
hypotheses for spanp.

Hypotheses are started and grown by means of
labeling actions. For each hypothesish associated
with a spanp we maintain its most recent labeling
actionh.A, involving some token withinp, as well
as the statesh.SL andh.SR that have been used as
context by such an action, if any. Note thath.SL and
h.SR refer to spans that are subsequences ofp. We
recursively compute the score ofh as

V (h) = V (h.SL.T ) + V (h.SR.T ) + U(h.A), (1)

Algorithm 1 Inference Algorithm
Require: token sequencew1 · · ·wn;
Require: beam widthB;
Require: weight vectorw;

1: Initialize P , the set of accepted spans;
2: Initialize Q, the queue of candidate spans;
3: repeat
4: spanp′ ← argmaxp∈Q U(p.S.T.A);
5: UpdateP with p′;
6: UpdateQ with p′ andP ;
7: until (Q = ∅)

whereU is the score of an action. In other words,
the score of an hypothesis is the sum of the score
of the most recent actionh.A and the scores of the
top hypotheses of the context states. The score of
an actionh.A is computed through a linear function
whose weight vector isw, as

U(h.A) = w · f(h.A), (2)

where f(h.A) is the feature vector of actionh.A,
which depends onh.SL andh.SR.
Algorithm : Algorithm 1 is the inference algorithm.
We are given the input sequence and two parame-
ters, beam widthB to determine the number of states
maintained for each span, and weight vectorw used
to compute the score of an action.

We first initialize the setP of accepted spans with
the empty set. Then we initialize the queueQ of
candidate spans with span[i, i] for each tokenwi,
and for eacht ∈ T assigned towi we set

M[i,i]((t, t)) = {i→ t},

wherei → t represents the hypothesis consisting of
a single action which assigns labelt to wi. This pro-
vides the set of starting hypotheses.

As for the exampleAgatha found that book

interesting in the previous subsection, we have
• P = ∅
• Q = {[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]}

Suppose NN and VB are the two possible POS tags
for w4 book . We have
• M[4,4](NN, NN) = {h441 = 4→ NN}
• M[4,4](VB, VB) = {h442 = 4→ VB}

The most recent action of hypothesish441 is to as-
sign NN tow4. According to Equation (2), the score
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of this actionU(h441.A) depends on the features de-
fined on the local context of action. For example,

f1001(h441.A) =
{

1 if t = NN ∧ w−1 = that

0 otherwise,

wherew−1 represents the left word. It should be
noted that, for all the features depending on the
neighboring tags, the value is always 0, since those
tags are still unknown in the step of initialization.
Since this operation does not depend on solved tags,
we haveV (h441) = U(h411.A), according to Equa-
tion (1).

The core of the algorithm repeatedly selects a can-
didate span fromQ, and uses it to updateP andQ,
until a span covering the whole sequence is added to
P andQ becomes empty. This is explained in detail
below.

At each step, we remove fromQ the spanp′ such
that theaction (not hypothesis) score of its top hy-
pothesis,p′.S.T , is the highest. This represents the
labeling action for the next move that we are most
confident about. Now we need to updateP andQ
with the selected spanp′. We addp′ to P , and re-
move fromP the spans included inp′, if any. Let
S be the set of removed spans. We remove fromQ
each span which takes one of the spans inS as con-
text, and replace it with a new candidate span taking
p′ (and another accepted span) as context. We always
maintainB different states for each span.

Back to the previous example, after Step 3 is com-
pleted, w2 found , w4 book and w5 interesting

have been tagged and we have
• P = {[2, 2], [4, 5]}
• Q = {[1, 2], [2, 5]}

There are two candidate spans inQ, each with its as-
sociated hypotheses and most recent actions. More
specifically, we can either solvew1 based on the con-
text hypotheses for[2, 2], resulting in span[1, 2], or
else solvew3 based on the context hypotheses in
[2, 2] and[4, 5], resulting in span[2, 5].

The top two states for span[2, 2] are
• M[2,2](VBD, VBD) = {h221 = 2→ VBD}
• M[2,2](VBN, VBN) = {h222 = 2→ VBN}

and the top two states for span[4, 5] are
• M[4,5](NN-JJ, NN-JJ)

= {h451 = (NN,NN)5→ JJ}
• M[4,5](VB-JJ, VB-JJ)

= {h452 = (VB,VB)5→ JJ}

Here (NN,NN)5 → JJ represents the hypothesis
coming from the action of assigning JJ tow5 under
the left context state of (NN,NN).(VB,VB)5 → JJ
has a similar meaning.1

We first compute the hypotheses resulting from all
possible POS tag assignments tow3, under all possi-
ble state combinations of the neighboring spans[2, 2]
and[4, 5]. Suppose the highest score action consists
in the assignment of DT under the left context state
(VBD, VBD) and the right context state (NN-JJ, NN-
JJ). We obtain hypothesish251 = (VBD,VBD)3 →
DT(NN-JJ, NN-JJ) with

V (h251) = V ((VBD,VBD).T ) +
V ((NN-JJ,NN-JJ).T ) + U(h251.A)

= V (h221) + V (h451) + w · f(h251.A)

Here, features for actionh251.A may depend on
the left tag VBD and right tags NN-JJ, which have
been solved before. More details of the feature func-
tions are given in Section 4.2. For example, we can
have features like

f2002(h251.A) =
{

1 if t = DT ∧ t+2 = JJ
0 otherwise,

We maintain the top two states with the highest
hypothesis scores, if the beam width is set to two.
We have
• M[2,5](VBD-DT, NN-JJ) = {h251 =

(VBD,VBD)3→ DT(NN-JJ,NN-JJ)}
• M[2,5](VBD-IN, NN-JJ) = {h252 =

(VBD,VBD)3→ IN(NN-JJ,NN-JJ)}
Similarly, we compute the top hypotheses and

states for span[1, 2]. Suppose now the hypothesis
with the highestaction score ish251. Then we up-
dateP by adding[2, 5] and removing[2, 2] and[4, 5],
which are covered by[2, 5]. We also updateQ by re-
moving[2, 5] and[1, 2],2 and add new candidate span
[1, 5] resulting in
• P = {[2, 5]}
• Q = {[1, 5]}
1It should be noted that, in these cases, each state con-

tains only one hypothesis. However, if the span is longer than
4 words, there may exist multiple hypotheses for the same
state. For example, hypotheses DT-NN-VBD-DT-JJ and DT-
NN-VBN-DT-JJ have the same left interface DT-NN and right
interface DT-JJ.

2Span[1, 2] depends on[2, 2] and [2, 2] has been removed
from P . So it is no longer a valid candidate given the accepted
spans inP .
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The algorithm is especially designed in such a way
that, at each step, some new span is added toP or
else some spans already present inP are extended
by some token(s). Furthermore, no pair of overlap-
ping spans is ever found inP , and the number of
pairs of overlapping spans that may be found inQ is
always bounded by a constant. This means that the
algorithm performs at mostn iterations, and its run-
ning time is thereforeO(B2n), that is, linear in the
length of the input sequence.

2.3 Learning Algorithm

In this section, we proposeguided learning, a Per-
ceptron like algorithm, to learn the weight vectorw,
as shown in Algorithm 2. We usep′.G to represent
the gold standard hypothesis on spanp′.

For each input sequenceXr and the gold standard
sequence of labelingYr, we first initializeP andQ
as in the inference algorithm. Then we select the
span for the next move as in Algorithm 1. Ifp′.S.T ,
the top hypothesis of the selected spanp′, is com-
patible with the gold standard, we updateP andQ
as in Algorithm 1. Otherwise, we update the weight
vector in the Perceptron style, by promoting the fea-
tures of the gold standard action, and demoting the
features of the action of the top hypothesis. Then
we re-generate the queueQ with P and the updated
weight vectorw. Specifically, we first remove all the
elements inQ, and then generate hypotheses for all
the possible spans based on the context spans inP .
Hypothesis scores and action scores are calculated
with the updated weight vectorw.

A special aspect of Algorithm 2 is that we main-
tain two scores: the score of the action represents the
confidence for the next move, and the score of the
hypothesis represents the overall quality of a partial
result. The selection for the next action directly de-
pends on the score of the action, but not on the score
of the hypothesis. On the other hand, the score of the
hypothesis is used to maintain top partial results for
each span.

We briefly describe the soundness of the Guided
Learning Algorithm in terms of two aspects. First,
in Algorithm 2 weight update is activated whenever
there exists an incorrect states, the action score of
whose top hypothesiss.T is higher than that of any
state in each span. We demote this action and pro-
mote the gold standard action on the same span.

Algorithm 2 Guided Learning Algorithm
Require: training sequence pairs{(Xr, Yr)}1≤r≤R;
Require: beam widthB and iterationsI;

1: w← 0;
2: for (i← 1; i ≤ I; i++) do
3: for (r ← 1; r ≤ R; r++) do
4: Load sequenceXr and gold labelingYr.
5: Initialize P , the set of accepted spans
6: Initialize Q, the queue of candidate spans;
7: repeat
8: p′ ← argmaxp∈Q U(p.S.T.A);
9: if (p′.S.T = p′.G) then

10: UpdateP with p′;
11: UpdateQ with p′ andP ;
12: else
13: promote(w, f(p′.G.A));
14: demote(w, f(p′.S.T.A));
15: Re-generateQ with w andP ;
16: end if
17: until (Q = ∅)
18: end for
19: end for

However, we do not automatically adopt the gold
standard action on this span. Instead, in the next
step, the top hypothesis of another span might be se-
lected based on the score of action, which means that
it becomes the most favorable action according to the
updated weights.

As a second aspect, if the action score of a gold
standard hypothesis is higher than that of any oth-
ers, this hypothesis and the corresponding span are
guaranteed to be selected at line 8 of Algorithm 2.
The reason for this is that the scores of the context
hypotheses of a gold standard hypothesis must be
no less than those of other hypotheses of the same
span. This could be shown recursively with respect
to Equation 1, because the context hypotheses of a
gold standard hypothesis are also compatible with
the gold standard.

Furthermore, if we take

(xi = f(p′.G.A)− f(p′.S.T.A), yi = +1)

as a positive sample, and

(xj = f(p′.S.T.A)− f(p′.G.A), yj = −1)

as a negative sample, the weight updates at lines 13
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and 14 are a stochastic approximation of gradient de-
scent that minimizes the squared errors of the mis-
classified samples (Widrow and Hoff, 1960). What
is special with our learning algorithm is the strategy
used to select samples for training.

In general, this novel learning framework lies be-
tween supervised learning and reinforcement learn-
ing. Guided learning is more difficult than super-
vised learning, because we do not know the order of
inference. The order is learned automatically, and
partial output is in turn used to train the local clas-
sifier. Therefore, the order of inference and the lo-
cal classification are dynamically incorporated in the
learning phase.

Guided learning is not as hard as reinforcement
learning. At each local step in learning, we always
know the undesirable labeling actions according to
the gold standard, although we do not know which
is the most desirable. In this approach, we can eas-
ily collect the automatically generated negative sam-
ples, and use them in learning. These negative sam-
ples are exactly those we will face during inference
with the current weight vector.

In our experiments, we have used Averaged Per-
ceptron (Collins, 2002; Freund and Schapire, 1999)
and Perceptron with margin (Krauth and Mézard,
1987) to improve performance.

3 Related Works

Tsuruoka and Tsujii (2005) proposed a bidirectional
POS tagger, in which the order of inference is han-
dled with the easiest-first heuristic. Giménez and
Màrquez (2004) combined the results of a left-to-
right scan and a right-to-left scan. In our model, the
order of inference is dynamically incorporated into
the training of the local classifier.

Toutanova et al. (2003) reported a POS tagger
based on cyclic dependency network. In their work,
the order of inference is fixed as from left to right. In
this approach, large beam width is required to main-
tain the ambiguous hypotheses. In our approach, we
can handle tokens that we are most confident about
first, so that our system does not need a large beam.
As shown in Section 4.2, even deterministic infer-
ence shows rather good results.

Our guided learning can be modeled as a search
algorithm with Perceptron like learning (Daumé III
and Marcu, 2005). However, as far as we know,

Data Set Sections Sentences Tokens
Training 0-18 38,219 912,344
Develop 19-21 5,527 131,768

Test 22-24 5,462 129,654

Table 1: Data set splits

the mechanism of bidirectional search with an on-
line learning algorithm has not been investigated be-
fore. In (Dauḿe III and Marcu, 2005), as well
as other similar works (Collins, 2002; Collins and
Roark, 2004; Shen and Joshi, 2005), only left-to-
right search was employed. Our guided learning al-
gorithm provides more flexibility in search with an
automatically learned order. In addition, our treat-
ment of the score of action and the score of hypoth-
esis is unique (see discussion in Section 2.3).

Furthermore, compared to the above works, our
guided learning algorithm is more aggressive on
learning. In (Collins and Roark, 2004; Shen and
Joshi, 2005), a search stops if there is no hypothe-
sis compatible with the gold standard in the queue
of candidates. In (Dauḿe III and Marcu, 2005), the
search is resumed after some gold standard compat-
ible hypotheses are inserted into a queue for future
expansion, and the weights are updated correspond-
ingly. However, there is no guarantee that the up-
dated weights assign a higher score to those inserted
gold standard compatible hypotheses. In our algo-
rithm, the gold standard compatible hypotheses are
used for weight update only. As a result, after each
sentence is processed, the weight vector can usually
successfully predict the gold standard parse. There-
fore our learning algorithm isaggressiveon weight
update.

As far as this aspect is concerned, our algorithm
is similar to the MIRA algorithm in (Crammer and
Singer, 2003). In MIRA, one always knows the cor-
rect hypothesis. In our case, we do not know the
correct order of operations. So we use our form of
weight update to implement aggressive learning.

4 Experiments on POS Tagging

4.1 Settings

We apply our guided learning algorithm to POS tag-
ging. We carry out experiments on the standard
data set of the Penn Treebank (PTB) (Marcus et al.,
1994). Following (Ratnaparkhi, 1996; Collins, 2002;
Toutanova et al., 2003; Tsuruoka and Tsujii, 2005),
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Feature Sets Templates Error%
A Ratnaparkhi’s 3.05
B A + [t0, t1], [t0, t−1, t1], [t0, t1, t2] 2.92
C B + [t0, t−2], [t0, t2], [t0, t−2, w0], [t0, t−1, w0], [t0, t1, w0],

[t0, t2, w0], [t0, t−2, t−1, w0], [t0, t−1, t1, w0], [t0, t1, t2, w0]
2.84

D C + [t0, w−1, w0], [t0, w1, w0] 2.78
E D + [t0, X = prefix or suffix ofw0], 4 < |X| ≤ 9 2.72

Table 2: Experiments on thedevelopmentdata with beam width of 3

we cut the PTB into the training, development and
test sets as shown in Table 1. We use tools provided
by CoNLL-20053 to extract POS tags from themrg
files of PTB. So the data set is the same as previous
work. We use the development set to select features
and estimate the number of iterations in training. In
our experiments, we enumerate all the POS tags for
each word instead of using a dictionary as in (Ratna-
parkhi, 1996), since the size of the tag set is tractable
and our learning algorithm is efficient enough.

4.2 Results

Effect of Features: We first run the experiments to
evaluate the effect of features. We use templates to
define features. For this set of experiments, we set
the beam widthB = 3 as a balance between speed
and accuracy. The guided learning algorithm usually
converges on the development data set in 4-8 itera-
tions over the training data.

Table 2 shows the error rate on the development
set with different features. We first use the same fea-
ture set used in (Ratnaparkhi, 1996), which includes
a set of prefix, suffix and lexical features, as well
as some bi-gram and tri-gram context features. Fol-
lowing (Collins, 2002), we do not distinguish rare
words. On set A, Ratnaparkhi’s feature set, our sys-
tem reports an error rate of 3.05% on the develop-
ment data set.

With set B, we include a few feature templates
which are symmetric to those in Ratnaparkhi’s set,
but are only available with bidirectional search. With
set C, we add more bi-gram and tri-gram features.
With set D, we include bi-lexical features. With set
E, we use prefixes and suffixes of length up to 9, as in
(Toutanova et al., 2003; Tsuruoka and Tsujii, 2005).
We obtain 2.72% of error rate. We will use this fea-
ture set on our final experiments on the test data.
Effect of Search and Learning Strategies: For the
second set of experiments, we evaluate the effect of

3http://www.lsi.upc.es/˜srlconll/soft.html, package srlconll-
1.1.tgz.

Search Aggressive? Beam=1 Beam=3
L-to-R Yes 2.94 2.82
L-to-R No 3.24 2.75
Bi-Dir Yes 2.84 2.72
Bi-Dir No does not converge

Table 3: Experiments on thedevelopmentdata

search methods, learning strategies, and beam width.
We use feature set E for this set of experiments. Ta-
ble 3 shows the error rates on the development data
set with both left-to-right (L-to-R) and bidirectional
(Bi-Dir) search methods. We also tested both aggres-
sive learning and non-aggressive learning strategies
with beam width of 1 and 3.

First, with non-aggressive learning on bidirec-
tional search, the error rate does not converge to a
comparable number. This is due to the fact that the
search space is too large in bidirectional search, if
we do not use aggressive learning to constrain the
samples for learning.

With aggressive learning, the bidirectional ap-
proach always shows advantages over left-to-right
search. However, the gap is not large. This is
due to the fact that the accuracy of POS tagging
is very high. As a result, we can always keep the
gold-standard tags in the beam even with left-to-right
search in training.

This can also explain why the performance of left-
to-right search with non-aggressive learning is close
to bidirectional search if the beam is large enough.
However, with beam width = 1, non-aggressive
learning over left-to-right search performs much
worse, because in this case it is more likely that the
gold-standard tag is not in the beam.

This set of experiments show that guided learn-
ing is more preferable for tasks with higher ambi-
guities. In our recent work (Shen and Joshi, 2007),
we have applied a variant of this algorithm to depen-
dency parsing, and showed significant improvement
over left-to-right non-aggressive learning strategy.
Comparison: Table 4 shows the comparison with
the previous works on the PTB test sections.
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System Beam Error%
(Ratnaparkhi, 1996) 5 3.37
(Tsuruoka and Tsujii, 2005) 1 2.90
(Collins, 2002) - 2.89
Guided Learning, feature B 3 2.85
(Tsuruoka and Tsujii, 2005) all 2.85
(Giménez and M̀arquez, 2004) - 2.84
(Toutanova et al., 2003) - 2.76
Guided Learning, feature E 1 2.73
Guided Learning, feature E 3 2.67

Table 4: Comparison with the previous works

According to the experiments shown above, we
build our best system by using feature set E with
beam widthB = 3. The number of iterations on
the training data is estimated with respect to the de-
velopment data. We obtain an error rate of2.67%
on the test data. With deterministic search, or beam
with B = 1, we obtain an error rate of 2.73%.

Compared to previous best result on the same data
set, 2.76% by (Toutanova et al., 2003), our best re-
sult shows a relative error reduction of 3.3%. This
result is very promising, since we have not used any
specially designed features in our experiments. It is
reported in (Toutanova et al., 2003) that a crude com-
pany name detector was used to generate features,
and it gave rise to significant improvement in per-
formance. However, it is difficult for us to duplicate
exactly the same feature for the purpose of compari-
son, although it is convenient to use features like that
in our framework.

5 Conclusions

In this paper, we proposeguided learning, a new
learning framework for bidirectional sequence clas-
sification. The tasks of learning the order of infer-
ence and training the local classifier are dynamically
incorporated into a single Perceptron like algorithm.

We apply this novel algorithm to POS tagging. It
obtains an error rate of 2.67% on the standard PTB
test set, which represents 3.3% relative error reduc-
tion over the previous best result (Toutanova et al.,
2003) on the same data set, while using fewer fea-
tures. By using deterministic search, it obtains an
error rate of 2.73%, a 5.9% relative error reduction
over the previous best deterministic algorithm (Tsu-
ruoka and Tsujii, 2005). It should be noted that the
error rate is close to the inter-annotator discrepancy
on PTB, the standard test set for POS tagging, there-
fore it is very difficult to achieve improvement.
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M. Collins and B. Roark. 2004. Incremental parsing with the
perceptron algorithm. InACL-2004.

M. Collins. 2002. Discriminative training methods for hidden
markov models: Theory and experiments with perceptron al-
gorithms. InEMNLP-2002.

K. Crammer and Y. Singer. 2003. Ultraconservative online
algorithms for multiclass problems.Journal of Machine
Learning Research, 3:951–991.
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Abstract

The idea of “nugget pyramids” has re-
cently been introduced as a refinement to the
nugget-based methodology used to evaluate
answers to complex questions in the TREC
QA tracks. This paper examines data from
the 2006 evaluation, the first large-scale de-
ployment of the nugget pyramids scheme.
We show that this method of combining
judgments of nugget importance from multi-
ple assessors increases the stability and dis-
criminative power of the evaluation while in-
troducing only a small additional burden in
terms of manual assessment. We also con-
sider an alternative method for combining
assessor opinions, which yields a distinction
similar to micro- and macro-averaging in the
context of classification tasks. While the
two approaches differ in terms of underly-
ing assumptions, their results are neverthe-
less highly correlated.

1 Introduction

The emergence of question answering (QA) systems
for addressing complex information needs has ne-
cessitated the development and refinement of new
methodologies for evaluating and comparing sys-
tems. In the Text REtrieval Conference (TREC) QA
tracks organized by the U.S. National Institute of
Standards and Technology (NIST), improvements in
evaluation processes have kept pace with the evolu-
tion of QA tasks. For the past several years, NIST
has implemented an evaluation methodology based

on the notion of “information nuggets” to assess an-
swers to complex questions. As it has become the
de facto standard for evaluating such systems, the
research community stands to benefit from a better
understanding of the characteristics of this evalua-
tion methodology.

This paper explores recent refinements to the
nugget-based evaluation methodology developed by
NIST. In particular, we examine the recent so-called
“pyramid extension” that incorporates relevance
judgments from multiple assessors to improve eval-
uation stability (Lin and Demner-Fushman, 2006).

We organize our discussion as follows: The next
section begins by providing a brief overview of
nugget-based evaluations and the pyramid exten-
sion. Section 3 presents results from the first large-
scale implementation of nugget pyramids for QA
evaluation in TREC 2006. Analysis shows that this
extension improves both stability and discriminative
power. In Section 4, we discuss an alternative for
combining multiple judgments that parallels the dis-
tinction between micro- and macro-averaging often
seen in classification tasks. Experiments reveal that
the methods yield almost exactly the same results,
despite operating on different granularities (individ-
ual nuggets vs. individual users).

2 Evaluating Complex Questions

Complex questions are distinguished from factoid
questions such as “Who shot Abraham Lincoln?” in
that they cannot be answered by named entities (e.g.,
persons, organizations, dates, etc.). Typically, these
information needs are embedded in the context of a
scenario (i.e., user task) and often require systems to
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synthesize information from multiple documents or
to generate answers that cannot be easily extracted
(e.g., by leveraging inference capabilities).

To date, NIST has already conducted several
large-scale evaluations of complex questions: def-
inition questions in TREC 2003, “Other” ques-
tions in TREC 2004–2006, “relationship” questions
in TREC 2005, and the complex, interactive QA
(ciQA) task in TREC 2006. Definition and Other
questions are similar in that they both request novel
facts about “targets”, which can be persons, orga-
nizations, things, and events. Relationship ques-
tions evolved into the ciQA task and focus on in-
formation needs such as “What financial relation-
ships exist between South American drug cartels and
banks in Liechtenstein?” Such complex questions
focus on ties (financial, military, familial, etc.) that
connect two or more entities. All of these evalua-
tions have employed the nugget-based methodology,
which demonstrates its versatility and applicability
to a wide range of information needs.

2.1 Basic Setup

In the TREC QA evaluations, an answer to a
complex question consists of an unordered set of
[document-id, answer string] pairs, where the strings
are presumed to provide some relevant information
that addresses the question. Although no explicit
limit is placed on the length of the answer, the final
metric penalizes verbosity (see below).

Evaluation of system output proceeds in two
steps. First, answer strings from all submissions
are gathered together and presented to a single as-
sessor. The source of each answer string is blinded
so that the assessor can not obviously tell which
systems generated what output. Using these an-
swers and searches performed during question de-
velopment, the assessor creates a list of relevant
nuggets. A nugget is a piece of information (i.e.,
“fact”) that addresses one aspect of the user’s ques-
tion. Nuggets should be atomic, in the sense that
an assessor should be able to make a binary de-
cision as to whether the nugget appears in an an-
swer string. Although a nugget represents a con-
ceptual entity, the assessor provides a natural lan-
guage description—primarily as a memory aid for
the subsequent evaluation steps. These descriptions
range from sentence-length document extracts to

r = # of vital nuggets returned
a = # of okay nuggets returned
R = # of vital nuggets in the answer key
l = # of non-whitespace characters in entire run

recall: R = r/R
allowance: α = 100× (r + a)

precision: P =

{
1 if l < α

1− l−α
l otherwise

F (β) = (β2 + 1)× P ×R
β2 × P +R

Figure 1: Official definition of F-score for nugget
evaluation in TREC.

key phrases to telegraphic short-hand notes—their
readability greatly varies from assessor to assessor.

The assessor also manually classifies each nugget
as either vital or okay (non-vital). Vital nuggets rep-
resent concepts that must be present in a “good” an-
swer. Okay nuggets may contain interesting infor-
mation, but are not essential.

In the second step, the same assessor who cre-
ated the nuggets reads each system’s output in turn
and marks the appearance of the nuggets. An an-
swer string contains a nugget if there is a conceptual
match; that is, the match is independent of the partic-
ular wording used in the system’s output. A nugget
match is marked at most once per run—i.e., a sys-
tem is not rewarded for retrieving a nugget multiple
times. If the system’s output contains more than one
match for a nugget, the best match is selected and
the rest are left unmarked. A single [document-id,
answer string] pair in a system response can match
0, 1, or multiple nuggets.

The final F-score for an answer is calculated in the
manner described in Figure 1, and the final score of
a run is the average across the F-scores of all ques-
tions. The metric is a weighted harmonic mean be-
tween nugget precision and nugget recall, where re-
call is heavily favored (controlled by the β parame-
ter, usually set to three). Nugget recall is calculated
solely on vital nuggets, while nugget precision is ap-
proximated by a length allowance based on the num-
ber of both vital and okay nuggets returned. In an
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earlier pilot study, researchers discovered that it was
not possible for assessors to consistently enumer-
ate the total set of nuggets contained in an answer,
which corresponds to the denominator in a precision
calculation (Voorhees, 2003). Thus, a penalty for
verbosity serves as a surrogate for precision.

2.2 The Pyramid Extension

The vital/okay distinction has been identified as
a weakness in the TREC nugget-based evalua-
tion methodology (Hildebrandt et al., 2004; Lin
and Demner-Fushman, 2005; Lin and Demner-
Fushman, 2006). There do not appear to be any re-
liable indicators for predicting nugget importance,
which makes it challenging to develop algorithms
sensitive to this consideration. Since only vital
nuggets affect nugget recall, it is difficult for sys-
tems to achieve non-zero scores on topics with few
vital nuggets in the answer key. Thus, scores are
easily affected by assessor errors and other random
variations in evaluation conditions.

One direct consequence is that in previous TREC
evaluations, the median score for many questions
turned out to be zero. A binary distinction on nugget
importance is insufficient to discriminate between
the quality of runs that return no vital nuggets but
different numbers of okay nuggets. Also, a score
distribution heavily skewed towards zero makes
meta-analyses of evaluation stability difficult to per-
form (Voorhees, 2005).

The pyramid extension (Lin and Demner-
Fushman, 2006) was proposed to address the issues
mentioned above. The idea was relatively simple: by
soliciting vital/okay judgments from multiple asses-
sors (after the list of nuggets has been produced by
a primary assessor), it is possible to define nugget
importance with greater granularity. Each nugget is
assigned a weight between zero and one that is pro-
portional to the number of assessors who judged it
to be vital. Nugget recall from Figure 1 can be rede-
fined to incorporate these weights:

R =
∑

m∈A wm∑
n∈V wn

Where A is the set of reference nuggets that are
matched in a system’s output and V is the set of all
reference nuggets; wm and wn are the weights of

nuggets m and n, respectively.1 The calculation of
nugget precision remains the same.

3 Nugget Pyramids in TREC 2006

Lin and Demner-Fushman (2006) present exper-
imental evidence in support of nugget pyramids
by applying the proposal to results from previous
TREC QA evaluations. Their simulation studies ap-
pear to support the assertion that pyramids address
many of the issues raised in Section 2.2. Based on
the results, NIST proceeded with a trial deployment
of nugget pyramids in the TREC 2006 QA track. Al-
though scores based on the binary vital/okay distinc-
tion were retained as the “official” metric, pyramid
scores were simultaneously computed. This pro-
vided an opportunity to compare the two method-
ologies on a large scale.

3.1 The Data
The basic unit of evaluation for the main QA task
at TREC 2006 was the “question series”. Each se-
ries focused on a “target”, which could be a person,
organization, thing, or event. Individual questions
in a series inquired about different facets of the tar-
get, and were explicitly classified as factoid, list, or
Other. One complete series is shown in Figure 2.
The Other questions can be best paraphrased as “Tell
me interesting things about X that I haven’t already
explicitly asked about.” It was the system’s task to
retrieve interesting nuggets about the target (in the
opinion of the assessor), but credit was not given
for retrieving facts already explicitly asked for in the
factoid and list questions. The Other questions were
evaluated using the nugget-based methodology, and
are the subject of this analysis.

The QA test set in TREC 2006 contained 75 se-
ries. Of the 75 targets, 19 were persons, 19 were
organizations, 19 were events, and 18 were things.
The series contained a total of 75 Other questions
(one per target). Each series contained 6–9 ques-
tions (counting the Other question), with most se-
ries containing 8 questions. The task employed the
AQUAINT collection of newswire text (LDC cat-
alog number LDC2002T31), consisting of English
data drawn from three sources: the New York Times,

1Note that this new scoring model captures the existing
binary vital/okay distinction in a straightforward way: vital
nuggets get a score of one, and okay nuggets zero.
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147 Britain’s Prince Edward marries
147.1 FACTOID When did Prince Edward engage to marry?
147.2 FACTOID Who did the Prince marry?
147.3 FACTOID Where did they honeymoon?
147.4 FACTOID Where was Edward in line for the throne at the time of the wedding?
147.5 FACTOID What was the Prince’s occupation?
147.6 FACTOID How many people viewed the wedding on television?
147.7 LIST What individuals were at the wedding?
147.8 OTHER

Figure 2: Sample question series from TREC 2006.

Nugget 0 1 2 3 4 5 6 7 8
The couple had a long courtship 1 0 0 0 0 0 1 1 0
Queen Elizabeth II was delighted with the match 0 1 0 1 0 0 0 0 1
Queen named couple Earl and Contessa of Wessex 0 1 0 0 1 1 1 0 0
All marriages of Edward’s siblings ended in divorce 0 0 0 0 0 1 0 0 1
Edward arranged for William to appear more cheerful in photo 0 0 0 0 0 0 0 0 0
they were married in St. Georges Chapel, Windsor 1 1 1 0 1 0 1 1 0

Figure 3: Multiple assessors’ judgments of nugget importance for Series 147 (vital=1, okay=0). Assessor 2
was the same as the primary assessor (assessor 0), but judgments were elicited at different times.

the Associated Press, and the Xinhua News Service.
There are approximately one million articles in the
collection, totaling roughly three gigabytes. In to-
tal, 59 runs from 27 participants were submitted to
NIST. For more details, see (Dang et al., 2006).

For the Other questions, nine sets of judgments
were elicited from eight judges (the primary assessor
who originally created the nuggets later annotated
the nuggets once again). Each assessor was asked to
assign the vital/okay label in a rapid fashion, without
giving each decision much thought. Figure 3 gives
an example of the multiple judgments for nuggets in
Series 147. There is variation in notions of impor-
tance not only between different assessors, but also
for a single assessor over time.

3.2 Results

After the human annotation process, nugget pyra-
mids were built in the manner described by Lin and
Demner-Fushman (2006). Two scores were com-
puted for each run submitted to the TREC 2006 main
QA task: one based on the vital/okay judgments of
the primary assessor (which we call the binary F-
score) and one based on the nugget pyramids (the

pyramid F-score). The characteristics of the pyra-
mid method can be inferred by comparing these two
sets of scores.

Figure 4 plots the average binary and average
pyramid F-scores for each run (which represents av-
erage performance across all series). Even though
the nugget pyramid does not represent any single
real user (a point we return to later), pyramid F-
scores do correlate highly with the binary F-scores.
The Pearson’s correlation is 0.987, with a 95% con-
fidence interval of [0.980, 1.00].

While the average F-score for a run is stable given
a sufficient number of questions, the F-score for
a single Other question exhibits greater variability
across assessors. This is shown in Figure 5, which
plots binary and pyramid F-scores for individual
questions from all runs. In this case, the Pearson
correlation is 0.870, with a 95% confidence interval
of [0.863, 1.00].

For 16.4% of all Other questions, the nugget pyra-
mid assigned a non-zero F-score where the origi-
nal binary F-score was zero. This can be seen in
the band of points on the left edge of the plot in
Figure 5. This highlights the strength of nugget
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Figure 4: Scatter plot comparing the binary and
pyramid F-scores for each run.

pyramids—their ability to smooth out assessor dif-
ferences and more finely discriminate among sys-
tem outputs. This is a key capability that is useful
for system developers, particularly since algorithmic
improvements are often incremental and small.

Because it is more stable than the single-assessor
method of evaluation, the pyramid method also ap-
pears to have greater discriminative power. We fit
a two-way analysis of variance model with the se-
ries and run as factors, and the binary F-score as
the dependent variable. We found significant differ-
ences between series and between runs (p essentially
equal to 0 for both factors). To determine which runs
were significantly different from each other, we per-
formed a multiple comparison using Tukey’s hon-
estly significant difference criterion and controlling
for the experiment-wise Type I error so that the prob-
ability of declaring a difference between two runs to
be significant, when it is actually not, is at most 5%.
With 59 runs, there are C59

2 = 1711 different pairs
that can be compared. The single-assessor method
was able to declare one run to be significantly better
than the other in 557 of these pairs. Using the pyra-
mid F-scores, it was possible to find significant dif-
ferences in performance between runs in 617 pairs.

3.3 Discussion

Any evaluation represents a compromise between
effort (which correlates with cost) and insightful-
ness of results. The level of detail and meaning-

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Binary F−score

P
yr

am
id

 F
−

sc
or

e

Figure 5: Scatter plot comparing the binary and
pyramid F-scores for each Other question.

fulness of evaluations are constantly in tension with
the availability of resources. Modifications to exist-
ing processes usually come at a cost that needs to be
weighed against potential gains. Based on these con-
siderations, the balance sheet for nugget pyramids
shows a favorable orientation. In the TREC 2006
QA evaluation, soliciting vital/okay judgments from
multiple assessors was not very time-consuming (a
couple of hours per assessor). Analysis confirms
that pyramid scores confer many benefits at an ac-
ceptable cost, thus arguing for its adoption in future
evaluations.

Cost considerations precluded exploring other re-
finements to the nugget-based evaluation methodol-
ogy. One possible alternative would involve ask-
ing multiple assessors to create different sets of
nuggets from scratch. Not only would this be time-
consuming, one would then need to deal with the
additional complexities of aligning each assessor’s
nuggets list. This includes resolving issues such as
nugget granularity, overlap in information content,
implicature and other relations between nuggets, etc.

4 Exploration of Alternative Structures

Despite the demonstrated effectiveness of nugget
pyramids, there are a few potential drawbacks that
are worth discussing. One downside is that the
nugget pyramid does not represent a single assessor.
The nugget weights reflect the aggregation of opin-
ions across a sample population, but there is no guar-
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antee that the method for computing those weights
actually captures any aspect of real user behavior.
It can be argued that the binary F-score is more re-
alistic since it reflects the opinion of a real user (the
primary assessor), whereas the pyramid F-score tries
to model the opinion of a mythical average user.

Although this point may seem somewhat counter-
intuitive, it represents a well-established tradition
in the information retrieval literature (Voorhees,
2002). In document retrieval, for example, relevance
judgments are provided by a single assessor—even
though it is well known that there are large indi-
vidual differences in notions of relevance. IR re-
searchers believe that human idiosyncrasies are an
inescapable fact present in any system designed for
human users, and hence any attempt to remove those
elements in the evaluation setup is actually undesir-
able. It is the responsibility of researchers to develop
systems that are robust and flexible. This premise,
however, does not mean that IR evaluation results
are unstable or unreliable. Analyses have shown
that despite large variations in human opinions, sys-
tem rankings are remarkably stable (Voorhees, 2000;
Sormunen, 2002)—that is, one can usually be confi-
dent about system comparisons.

The philosophy in IR sharply contrasts with work
in NLP annotation tasks such as parsing, word sense
disambiguation, and semantic role labeling—where
researchers strive for high levels of interannota-
tor agreement, often through elaborate guidelines.
The difference in philosophies arises because unlike
these NLP annotation tasks, where the products are
used primarily by other NLP system components, IR
(and likewise QA) is an end-user task. These sys-
tems are intended for real world use. Since people
differ, systems must be able to accommodate these
differences. Hence, there is a strong preference in
QA for evaluations that maintain a model of the in-
dividual user.

4.1 Micro- vs. Macro-Averaging

The current nugget pyramid method leverages mul-
tiple judgments to define a weight for each individ-
ual nugget, and then incorporates this weight into
the F-score computation. As an alternative, we pro-
pose another method for combining the opinions of
multiple assessors: evaluate system responses indi-
vidually against N sets of binary judgments, and

then compute the mean across those scores. We de-
fine the macro-averaged binary F-score over a set
A = {a1, ..., aN} of N assessors as:

F =
∑

a∈A Fa

N

Where Fa is the binary F-score according to the
vital/okay judgments of assessor a. The differ-
ences between the pyramid F-score and the macro-
averaged binary F-score correspond to the distinc-
tion between micro- and macro-averaging discussed
in the context of text classification (Lewis, 1991).
In those applications, both measures are mean-
ingful depending on focus: individual instances or
entire classes. In tasks where it is important
to correctly classify individual instances, micro-
averaging is more appropriate. In tasks where it
is important to correctly identify a class, macro-
averaging better quantifies performance. In classi-
fication tasks, imbalance in the prevalence of each
class can lead to large differences in macro- and
micro-averaged scores. Analogizing to our work,
the original formulation of nugget pyramids corre-
sponds to micro-averaging (since we focus on indi-
vidual nuggets), while the alternative corresponds to
macro-averaging (since we focus on the assessor).

We additionally note that the two methods en-
code different assumptions. Macro-averaging as-
sumes that there is nothing intrinsically interesting
about a nugget—it is simply a matter of a particular
user with particular needs finding a particular nugget
to be of interest. Micro-averaging, on the other hand,
assumes that some nuggets are inherently interest-
ing, independent of the particular interests of users.2

Each approach has characteristics that make it
desirable. From the perspective of evaluators, the
macro-averaged binary F-score is preferable be-
cause it models real users; each set of binary judg-
ments represents the information need of a real user,
each binary F-score represents how well an answer
will satisfy a real user, and the macro-averaged bi-
nary F-score represents how well an answer will sat-
isfy, on average, a sample population of real users.
From the perspective of QA system developers, the
micro-averaged nugget pyramid F-score is prefer-
able because it allows finer discrimination in in-

2We are grateful to an anonymous reviewer for this insight.
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dividual nugget performance, which enables better
techniques for system training and optimization.

The macro-averaged binary F-score has the same
desirable properties as the micro-averaged pyramid
F-score in that fewer responses will have zero F-
scores as compared to the single-assessor binary F-
score. We demonstrate this as follows. Let X be a
response that receives a non-zero pyramid F-score.
Let A = {a1, a2, a3, ..., aN} be the set of N asses-
sors. Then it can be proven that X also receives a
non-zero macro-averaged binary F-score:

1. There exists some nugget v with weight greater
than 0, such that an answer string r in X
matches v. (def. of pyramid recall)

2. There exists some assessor ap ∈ A who marked
v as vital. (def. of pyramid nugget weight)

3. To show that X will also receive a non-zero
macro-averaged binary score, it is sufficient to
show that there is some assessor am ∈ A such
that X receives a non-zero F-score when evalu-
ated using just the vital/okay judgments of am.
(def. of macro-averaged binary F-score)

4. But, such an assessor does exist, namely asses-
sor ap: Consider the binary F-score assigned
to X according to just assessor ap. The re-
call of X is greater than zero, since X contains
the response r that matches the nugget v that
was marked as vital by ap (from (2), (1), and
the def. of recall). The precision must also be
greater than zero (def. of precision). Therefore,
the macro-averaged binary F-score of X is non-
zero. (def. of F-score)

4.2 Analysis from TREC 2006

While the macro-averaged method is guaranteed to
produce no more zero-valued scores than the micro-
averaged pyramid method, it is not guaranteed that
the scores will be the same for any given response.
What are the empirical characteristics of each ap-
proach? To explore this question, we once again ex-
amined data from TREC 2006.

Figure 6 shows a scatter plot of the pyramid F-
score and macro-averaged binary F-score for every
Other questions in all runs from the TREC 2006
QA track main task. Despite focusing on differ-
ent aspects of the evaluation setup, these measures
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Figure 6: Scatter plot comparing the pyramid and
macro-averaged binary F-scores for all questions.

binary micro macro
binary 1.000/1.000 0.870/0.987 0.861/0.988

micro - 1.000/1.000 0.985/0.996

macro - - 1.000/1.000

Table 1: Pearson’s correlation of F-scores, by ques-
tion and by run.

are highly correlated, even at the level of individ-
ual questions. Table 1 provides a summary of the
correlations between the original binary F-score, the
(micro-averaged) pyramid F-score, and the macro-
averaged binary F-score. Pearson’s r is given for
F-scores at the individual question level (first num-
ber) and at the run level (second number). The cor-
relation between all three variants are about equal at
the level of system runs. At the level of individual
questions, the micro- and macro-averaged F-scores
(using multiple judgments) are still highly correlated
with each other, but each is less correlated with the
single-assessor binary F-score.

4.3 Discussion

The differences between macro- and micro-
averaging methods invoke a more general discus-
sion on notions of nugget importance. There are
actually two different issues we are attempting to
address with our different approaches: the first is
a more granular scale of nugget importance, the
second is variations across a population of users. In
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the micro-averaged pyramid F-scores, we achieve
the first by leveraging the second, i.e., binary
judgments from a large population are combined
to yield weights for individual nuggets. In the
macro-averaged binary F-score, we focus solely on
population effects without addressing granularity of
nugget importance.

Exploring this thread of argument, we can for-
mulate additional approaches for tackling these is-
sues. We could, for example, solicit more granular
individual judgments on each nugget from each as-
sessor, perhaps on a Likert scale or as a continuous
quantity ranging from zero to one. This would yield
two more methods for computing F-scores, both a
macro-averaged and a micro-averaged variant. The
macro-averaged variant would be especially attrac-
tive because it reflects real users and yet individual
F-scores remain discriminative. Despite its possi-
ble advantages, this extension is rejected based on
resource considerations; making snap binary judg-
ments on individual nuggets is much quicker than a
multi-scaled value assignment—at least at present,
the additional costs are not sufficient to offset the
potential gains.

5 Conclusion

The important role that large-scale evaluations play
in guiding research in human language technologies
means that the community must “get it right.” This
would ordinarily call for a more conservative ap-
proach to avoid changes that might have unintended
consequences. However, evaluation methodologies
must evolve to reflect the shifting interests of the re-
search community to remain relevant. Thus, orga-
nizers of evaluations must walk a fine line between
progress and chaos. Nevertheless, the introduction
of nugget pyramids in the TREC QA evaluation pro-
vides a case study showing how this fine balance can
indeed be achieved. The addition of multiple judg-
ments of nugget importance yields an evaluation that
is both more stable and more discriminative than the
original single-assessor evaluation, while requiring
only a small additional cost in terms of human labor.

We have explored two different methods for com-
bining judgments from multiple assessors to address
shortcomings in the original nugget-based evalua-
tion setup. Although they make different assump-

tions about the evaluation, results from both ap-
proaches are highly correlated. Thus, we can con-
tinue employing the pyramid-based method, which
is well-suited for developing systems, and still be as-
sured that the results remain consistent with an eval-
uation method that maintains a model of real indi-
vidual users.
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Abstract

We study the impact of syntactic and shallow
semantic information in automatic classifi-
cation of questions and answers and answer
re-ranking. We define (a) new tree struc-
tures based on shallow semantics encoded
in Predicate Argument Structures (PASs)
and (b) new kernel functions to exploit the
representational power of such structures
with Support Vector Machines. Our ex-
periments suggest that syntactic information
helps tasks such as question/answer classifi-
cation and that shallow semantics gives re-
markable contribution when a reliable set of
PASs can be extracted, e.g. from answers.

1 Introduction

Question answering (QA) is as a form of informa-
tion retrieval where one or more answers are re-
turned to a question in natural language in the form
of sentences or phrases. The typical QA system ar-
chitecture consists of three phases: question pro-
cessing, document retrieval and answer extraction
(Kwok et al., 2001).

Question processing is often centered on question
classification, which selects one ofk expected an-
swer classes. Most accurate models apply super-
vised machine learning techniques, e.g. SNoW (Li
and Roth, 2005), where questions are encoded us-
ing various lexical, syntactic and semantic features.
The retrieval and answer extraction phases consist in
retrieving relevant documents (Collins-Thompson et
al., 2004) and selecting candidate answer passages

from them. A further answer re-ranking phase is op-
tionally applied. Here, too, the syntactic structure
of a sentence appears to provide more useful infor-
mation than a bag of words (Chen et al., 2006), al-
though the correct way to exploit it is still an open
problem.

An effective way to integrate syntactic structures
in machine learning algorithms is the use of tree ker-
nel (TK) functions (Collins and Duffy, 2002), which
have been successfully applied to question classifi-
cation (Zhang and Lee, 2003; Moschitti, 2006) and
other tasks, e.g. relation extraction (Zelenko et al.,
2003; Moschitti, 2006). In more complex tasks such
as computing the relatedness between questions and
answers in answer re-ranking, to our knowledge no
study uses kernel functions to encode syntactic in-
formation. Moreover, the study of shallow semantic
information such as predicate argument structures
annotated in the PropBank (PB) project (Kingsbury
and Palmer, 2002) (www.cis.upenn.edu/∼ace) is a
promising research direction. We argue that seman-
tic structures can be used to characterize the relation
between a question and a candidate answer.

In this paper, we extensively study new structural
representations, encoding parse trees, bag-of-words,
POS tags and predicate argument structures (PASs)
for question classification and answer re-ranking.
We define new tree representations for both simple
and nested PASs, i.e. PASs whose arguments are
other predicates (Section 2). Moreover, we define
new kernel functions to exploit PASs, which we au-
tomatically derive with our SRL system (Moschitti
et al., 2005) (Section 3).

Our experiments using SVMs and the above ker-
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nels and data (Section 4) shows the following: (a)
our approach reaches state-of-the-art accuracy on
question classification. (b) PB predicative structures
are not effective for question classification but show
promising results for answer classification on a cor-
pus of answers to TREC-QA 2001 description ques-
tions. We created such dataset by using YourQA
(Quarteroni and Manandhar, 2006), our basic Web-
based QA system1. (c) The answer classifier in-
creases the ranking accuracy of our QA system by
about 25%.

Our results show that PAS and syntactic parsing
are promising methods to address tasks affected by
data sparseness like question/answer categorization.

2 Encoding Shallow Semantic Structures

Traditionally, information retrieval techniques are
based on thebag-of-words(BOW) approach aug-
mented by language modeling (Allan et al., 2002).
When the task requires the use of more complex se-
mantics, the above approaches are often inadequate
to perform fine-level textual analysis.

An improvement on BOW is given by the use of
syntactic parse trees, e.g. for question classification
(Zhang and Lee, 2003), but these, too are inadequate
when dealing with definitional answers expressed by
long and articulated sentences or even paragraphs.
On the contrary, shallow semantic representations,
bearing a more “compact” information, could pre-
vent the sparseness of deep structural approaches
and the weakness of BOW models.

Initiatives such as PropBank (PB) (Kingsbury
and Palmer, 2002) have made possible the design of
accurate automatic Semantic Role Labeling (SRL)
systems (Carreras and Màrquez, 2005). Attempting
an application of SRL to QA hence seems natural,
as pinpointing the answer to a question relies on a
deep understanding of the semantics of both.
Let us consider the PB annotation: [ARG1

Antigens] were [AM−TMP originally] [rel

defined] [ARG2 as non-self molecules].

Such annotation can be used to design a shallow
semantic representation that can be matched against
other semantically similar sentences, e.g.[ARG0

Researchers] [rel describe] [ARG1 antigens]

[ARG2 as foreign molecules] [ARGM−LOC in

1Demo at:http://cs.york.ac.uk/aig/aqua.
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Figure 1: Compact predicate argument structures of
two different sentences.

the body].

For this purpose, we can represent the above anno-
tated sentences using the tree structures described in
Figure 1. In this compact representation, hereafter
Predicate-Argument Structures (PAS), arguments
are replaced with their most important word – often
referred to as the semantic head. This reduces
data sparseness with respect to a typical BOW
representation.

However, sentences rarely contain a single pred-
icate; it happens more generally that propositions
contain one or more subordinate clauses. For
instance let us consider a slight modification of the
first sentence: “Antigens were originally defined
as non-self moleculeswhich bound specifically to
antibodies2.” Here, the main predicate is “defined”,
followed by a subordinate predicate “bound”. Our
SRL system outputs the followingtwoannotations:
(1) [ARG1 Antigens] were [ARGM−TMP

originally] [rel defined] [ARG2 as non-self

molecules which bound specifically to

antibodies].

(2) Antigens were originally defined as

[ARG1 non-self molecules] [R−A1 which] [rel

bound] [ARGM−MNR specifically] [ARG2 to

antibodies].

giving the PASs in Figure 2.(a) resp. 2.(b).
As visible in Figure 2.(a), when an argument node

corresponds to an entire subordinate clause, we label
its leaf with PAS, e.g. the leaf of ARG2. Such PAS
node is actually the root of the subordinate clause
in Figure 2.(b). Taken as standalone, such PASs do
not express the whole meaning of the sentence; it
is more accurate to define a single structure encod-
ing the dependency between the two predicates as in

2This is an actual answer to ”What are antibodies?” from
our question answering system, YourQA.
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Figure 2: Two PASs composing a PASN

Figure 2.(c). We refer to nested PASs as PASNs.
It is worth to note that semantically equivalent

sentences syntactically expressed in different ways
share the same PB arguments and the same PASs,
whereas semantically different sentences result in
different PASs. For example, the sentence: “Anti-
gens were originally defined asantibodieswhich
bound specifically tonon-self molecules”, uses the
same words as (2) but has different meaning. Its PB
annotation:
(3) Antigens were originally defined

as [ARG1 antibodies] [R−A1 which] [rel

bound] [ARGM−MNR specifically] [ARG2 to

non-self molecules],
clearly differs from (2), as ARG2 is nownon-
self molecules; consequently, the PASs are also
different.

Once we have assumed that parse trees and PASs
can improve on the simple BOW representation, we
face the problem of representing tree structures in
learning machines. Section 3 introduces a viable ap-
proach based on tree kernels.

3 Syntactic and Semantic Kernels for Text

As mentioned above, encoding syntactic/semantic
information represented by means of tree structures
in the learning algorithm is problematic. A first so-
lution is to use all its possible substructures as fea-
tures. Given the combinatorial explosion of consid-
ering subparts, the resulting feature space is usually
very large. A tree kernel (TK) function which com-
putes the number of common subtrees between two
syntactic parse trees has been given in (Collins and
Duffy, 2002). Unfortunately, such subtrees are sub-
ject to the constraint that their nodes are taken with
all or none of the children they have in the original
tree. This makes the TK function not well suited for
the PAS trees defined above. For instance, although
the two PASs of Figure 1 share most of the subtrees

rooted in thePAS node, Collins and Duffy’s kernel
would compute no match.

In the next section we describe a new kernel de-
rived from the above tree kernel, able to evaluate the
meaningful substructures for PAS trees. Moreover,
as a single PAS may not be sufficient for text rep-
resentation, we propose a new kernel that combines
the contributions of different PASs.

3.1 Tree kernels

Given two treesT1 andT2, let {f1, f2, ..} = F be
the set of substructures (fragments) andIi(n) be
equal to 1 iffi is rooted at noden, 0 otherwise.
Collins and Duffy’s kernel is defined as

TK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2), (1)

where NT1
and NT2

are the sets of nodes
in T1 and T2, respectively and∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). The latter is equal to the number
of common fragments rooted in nodesn1 andn2. ∆
can be computed as follows:
(1) if the productions (i.e. the nodes with their
direct children) atn1 and n2 are different then
∆(n1, n2) = 0;
(2) if the productions atn1 andn2 are the same, and
n1 andn2 only have leaf children (i.e. they are pre-
terminal symbols) then∆(n1, n2) = 1;
(3) if the productions atn1 andn2 are the same, and
n1 andn2 are not pre-terminals then∆(n1, n2) =
∏nc(n1)

j=1 (1+∆(cj
n1

, cj
n2

)), wherenc(n1) is the num-
ber of children ofn1 andcj

n is thej-th child ofn.
Such tree kernel can be normalized and aλ factor

can be added to reduce the weight of large structures
(refer to (Collins and Duffy, 2002) for a complete
description). The critical aspect of steps (1), (2) and
(3) is that the productions of two evaluated nodes
have to be identical to allow the match of further de-
scendants. This means that common substructures
cannot be composed by a node with only some of its
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Figure 3: A PAS with some of its fragments.

children as an effective PAS representation would
require. We solve this problem by designing the
Shallow Semantic Tree Kernel (SSTK) which allows
to match portions of a PAS.

3.2 The Shallow Semantic Tree Kernel (SSTK)

The SSTK is based on two ideas: first, we change
the PAS, as shown in Figure 3.(a) by addingSLOT
nodes. These accommodate argument labels in a
specific order, i.e. we provide a fixed number of
slots, possibly filled withnull arguments, that en-
code all possible predicate arguments. For simplic-
ity, the figure shows a structure of just 4 arguments,
but more can be added to accommodate the max-
imum number of arguments a predicate can have.
Leaf nodes are filled with the wildcard character*
but they may alternatively accommodate additional
information.

The slot nodes are used in such a way that the
adopted TK function can generate fragments con-
taining one or more children like for example those
shown in frames (b) and (c) of Figure 3. As pre-
viously pointed out, if the arguments were directly
attached to the root node, the kernel function would
only generate the structure with all children (or the
structure with no children, i.e. empty).

Second, as the original tree kernel would generate
many matches with slots filled with the null label,
we have set a new step 0:

(0) if n1 (or n2) is a pre-terminal node and its child
label isnull, ∆(n1, n2) = 0;

and subtract one unit to∆(n1, n2), in step 3:

(3) ∆(n1, n2) =
∏nc(n1)

j=1 (1 + ∆(cj
n1

, cj
n2

)) − 1,

The above changes generate a new∆ which,
when substituted (in place of the original∆) in Eq.
1, gives the new Shallow Semantic Tree Kernel. To

show that SSTK is effective in counting the number
of relations shared by two PASs, we propose the fol-
lowing:

Proposition 1 The new∆ function applied to the
modified PAS counts the number of all possiblek-
ary relations derivable from a set ofk arguments,
i.e.

∑k
i=1

(k
i

)

relations of arity from 1 tok (the pred-
icate being considered as a special argument).

Proof We observe that a kernel applied to a tree and
itself computes all its substructures, thus if we eval-
uate SSTK between a PAS and itself we must obtain
the number of generatedk-ary relations. We prove
by induction the above claim.
For the base case(k = 0): we use a PAS with no
arguments, i.e. all its slots are filled with null la-
bels. Letr be the PAS root; sincer is not a pre-
terminal, step 3 is selected and∆ is recursively ap-
plied to all r’s children, i.e. the slot nodes. For the
latter, step 0 assigns∆(cj

r, c
j
r) = 0. As a result,

∆(r, r) =
∏nc(r)

j=1 (1 + 0) − 1 = 0 and the base case
holds.
For the general case, r is the root of a PAS withk+1

arguments.∆(r, r) =
∏nc(r)

j=1 (1 + ∆(cj
r, c

j
r)) − 1

=
∏k

j=1(1+∆(cj
r , c

j
r))×(1+∆(ck+1

r , ck+1
r ))−1. For

k arguments, we assume by induction that
∏k

j=1(1+

∆(cj
r, c

j
r)) − 1 =

∑k
i=1

(k
i

)

, i.e. the number ofk-ary
relations. Moreover,(1 + ∆(ck+1

r , ck+1
r )) = 2, thus

∆(r, r) =
∑k

i=1

(k
i

)

× 2 = 2k × 2 = 2k+1 =
∑k+1

i=1
(k+1

i

)

, i.e. all the relations until arityk + 1 2

TK functions can be applied to sentence parse
trees, therefore their usefulness for text processing
applications, e.g. question classification, is evident.
On the contrary, the SSTK applied to one PAS ex-
tracted from a text fragment may not be meaningful
since its representation needs to take into account all
the PASs that it contains. We address such problem
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by defining a kernel onmultiplePASs.
Let Pt andPt′ be the sets of PASs extracted from

the text fragmentt andt′. We define:

Kall(Pt, Pt′) =
∑

p∈Pt

∑

p′∈P
t′

SSTK(p, p′), (2)

While during the experiments (Sect. 4) theKall
kernel is used to handle predicate argument struc-
tures, TK (Eq. 1) is used to process parse trees and
the linear kernel to handle POS and BOW features.

4 Experiments

The purpose of our experiments is to study the im-
pact of the new representations introduced earlier for
QA tasks. In particular, we focus on question clas-
sification and answer re-ranking for Web-based QA
systems.

In the question classification task, we extend pre-
vious studies, e.g. (Zhang and Lee, 2003; Moschitti,
2006), by testing a set of previously designed ker-
nels and their combination with our new Shallow Se-
mantic Tree Kernel. In the answer re-ranking task,
we approach the problem of detecting description
answers, among the most complex in the literature
(Cui et al., 2005; Kazawa et al., 2001).

The representations that we adopt are: bag-of-
words (BOW), bag-of-POS tags (POS), parse tree
(PT), predicate argument structure (PAS) and nested
PAS (PASN). BOW and POS are processed by
means of a linear kernel, PT is processed with TK,
PAS and PASN are processed by SSTK. We imple-
mented the proposed kernels in the SVM-light-TK
software available atai-nlp.info.uniroma2.it/
moschitti/ which encodes tree kernel functions in
SVM-light (Joachims, 1999).

4.1 Question classification

As a first experiment, we focus on question classi-
fication, for which benchmarks and baseline results
are available (Zhang and Lee, 2003; Li and Roth,
2005). We design a question multi-classifier by
combiningn binary SVMs3 according to the ONE-
vs-ALL scheme, where the final output class is the
one associated with the most probable prediction.
The PASs were automatically derived by our SRL

3We adopted the default regularization parameter (i.e., the
average of1/||~x||) and tried a few cost-factor values to adjust
the rate between Precision and Recall on the development set.

system which achieves a 76% F1-measure (Mos-
chitti et al., 2005).

As benchmark data, we use the question train-
ing and test set available at:l2r.cs.uiuc.edu/
∼cogcomp/Data/QA/QC/, where the test set are the
500 TREC 2001 test questions (Voorhees, 2001).
We refer to this split as UIUC. The performance of
the multi-classifier and the individual binary classi-
fiers is measured with accuracy resp. F1-measure.
To collect statistically significant information, we
run 10-fold cross validation on the 6,000 questions.

Features Accuracy (UIUC) Accuracy (c.v.)
PT 90.4 84.8±1.2
BOW 90.6 84.7±1.2
PAS 34.2 43.0±1.9
POS 26.4 32.4±2.1
PT+BOW 91.8 86.1±1.1
PT+BOW+POS 91.8 84.7±1.5
PAS+BOW 90.0 82.1±1.3
PAS+BOW+POS 88.8 81.0±1.5

Table 1: Accuracy of the question classifier with dif-
ferent feature combinations

Question classification results Table 1 shows the
accuracy of different question representations on the
UIUC split (Column 1) and the average accuracy±
the corresponding confidence limit (at 90% signifi-
cance) on the cross validation splits (Column 2).(i)
The TK on PT and the linear kernel on BOW pro-
duce a very high result, i.e. about 90.5%. This is
higher than the best outcome derived in (Zhang and
Lee, 2003), i.e. 90%, obtained with a kernel combin-
ing BOW and PT on the same data. Combined with
PT, BOW reaches 91.8%, very close to the 92.5%
accuracy reached in (Li and Roth, 2005) using com-
plex semantic information from external resources.
(ii) The PAS feature provides no improvement. This
is mainly because at least half of the training and
test questions only contain the predicate “to be”, for
which a PAS cannot be derived by a PB-based shal-
low semantic parser.
(iii) The 10-fold cross-validation experiments con-
firm the trends observed in the UIUC split. The
best model (according to statistical significance) is
PT+BOW, achieving an 86.1% average accuracy4.

4This value is lower than the UIUC split one as the UIUC
test set is not consistent with the training set (it containsthe
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4.2 Answer classification

Question classification does not allow to fully ex-
ploit the PAS potential since questions tend to be
short and with few verbal predicates (i.e. the only
ones that our SRL system can extract). A differ-
ent scenario is answer classification, i.e. deciding
if a passage/sentence correctly answers a question.
Here, the semantics to be generated by the classi-
fier are not constrained to a small taxonomy and an-
swer length may make the PT-based representation
too sparse.

We learn answer classification with a binary SVM
which determines if an answer is correct for the tar-
get question: here, the classification instances are
〈question, answer〉 pairs. Each pair component can
be encoded with PT, BOW, PAS and PASN repre-
sentations (processed by previous kernels).

As test data, we collected the 138 TREC 2001 test
questions labeled as “description” and for each, we
obtained a list of answer paragraphs extracted from
Web documents using YourQA. Each paragraph sen-
tence was manually evaluated based on whether it
contained an answer to the corresponding question.
Moreover, to simplify the classification problem, we
isolated for each paragraph the sentence which ob-
tained the maximal judgment (in case more than one
sentence in the paragraph had the same judgment,
we chose the first one). We collected a corpus con-
taining 1309 sentences, 416 of which – labeled “+1”
– answered the question either concisely or with
noise; the rest – labeled “-1”– were either irrele-
vant to the question or contained hints relating to the
question but could not be judged as valid answers5.

Answer classification results To test the impact
of our models on answer classification, we ran 5-fold
cross-validation, with the constraint that two pairs
〈q, a1〉 and 〈q, a2〉 associated with the same ques-
tion q could not be split between training and test-
ing. Hence, each reported value is the average over 5
different outcomes. The standard deviations ranged

TREC 2001 questions) and includes a larger percentage of eas-
ily classified question types, e.g. the numeric (22.6%) and de-
scription classes (27.6%) whose percentage in training is 16.4%
resp. 16.2%.

5For instance, given the question “What are invertebrates?”,
the sentence “At least 99% of all animal species are inverte-
brates, comprising . . . ” was labeled “-1” , while “Invertebrates
are animals without backbones.” was labeled “+1”.
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Figure 4: Impact of the BOW and PT features on
answer classification
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Figure 5: Impact of the PAS and PASN features
combined with the BOW and PT features on answer
classification
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approximately between 2.5 and 5. The experiments
were organized as follows:

First, we examined the contributions of BOW and
PT representations as they proved very important for
question classification. Figure 4 reports the plot of
the F1-measure of answer classifiers trained with all
combinations of the above models according to dif-
ferent values of the cost-factor parameter, adjusting
the rate between Precision and Recall. We see here
that the most accurate classifiers are the ones using
both the answer’s BOW and PT feature and either
the question’s PT or BOW feature (i.e. Q(BOW) +
A(PT,BOW) resp. Q(PT) + A(PT,BOW) combina-
tions). When PT is used for the answer the sim-
ple BOW model is outperformed by 2 to 3 points.
Hence, we infer that both the answer’s PT and BOW
features are very useful in the classification task.
However, PT does not seem to provide additional
information to BOW when used for question repre-
sentation. This can be explained by considering that
answer classification (restricted to description ques-
tions) does not require question type classification
since its main purpose is to detect question/answer
relations. In this scenario, the question’s syntactic
structure does not seem to provide much more infor-
mation than BOW.

Secondly, we evaluated the impact of the newly
defined PAS and PASN features combined with the
best performing previous model, i.e. Q(BOW) +
A(PT,BOW). Figure 5 illustrates the F1-measure
plots again according to the cost-factor param-
eter. We observe here that model Q(BOW)
+ A(PT,BOW,PAS) greatly outperforms model
Q(BOW) + A(PT,BOW), proving that the PAS fea-
ture is very useful for answer classification, i.e.
the improvement is about 2 to 3 points while the
difference with the BOW model, i.e. Q(BOW)
+ A(BOW), exceeds 3 points. The Q(BOW) +
A(PT,BOW,PASN) model is not more effective than
Q(BOW) + A(PT,BOW,PAS). This suggests either
that PAS is more effective than PASN or that when
the PT information is added, the PASN contribution
fades out.

To further investigate the previous issue, we fi-
nally compared the contribution of the PAS and
PASN when combined with the question’s BOW
feature alone, i.e. no PT is used. The results, re-
ported in Figure 6, show that this time PASN per-

forms better than PAS. This suggests that the depen-
dencies between the nested PASs are in some way
captured by the PT information. Indeed, it should
be noted that we join predicates only in case one is
subordinate to the other, thus considering only a re-
stricted set of all possible predicate dependencies.
However, the improvement over PAS confirms that
PASN is the right direction to encode shallow se-
mantics from different sentence predicates.

Baseline P R F1-measure
Gg@5 39.22±3.59 33.15±4.22 35.92±3.95
QA@5 39.72±3.44 34.22±3.63 36.76±3.56
Gg@all 31.58±0.58 100 48.02±0.67
QA@all 31.58±0.58 100 48.02±0.67

Gg QA Re-ranker
MRR 48.97±3.77 56.21±3.18 81.12±2.12

Table 2: Baseline classifiers accuracy and MRR of
YourQA (QA), Google (Gg) and the best re-ranker

4.3 Answer re-ranking

The output of the answer classifier can be used to
re-rank the list of candidate answers of a QA sys-
tem. Starting from the top answer, each instance can
be classified based on its correctness with respect
to the question. If it is classified as correct its rank
is unchanged; otherwise it is pushed down, until a
lower ranked incorrect answer is found.

We used the answer classifier with the highest F1-
measure on the development set according to differ-
ent cost-factor values6. We applied such model to
the Google ranks and to the ranks of our Web-based
QA system, i.e. YourQA. The latter uses Web docu-
ments corresponding to the top 20 Google results for
the question. Then, each sentence in each document
is compared to the question via a blend of similar-
ity metrics used in the answer extraction phase to
select the most relevant sentence. A passage of up
to 750 bytes is then created around the sentence and
returned as an answer.

Table 2 illustrates the results of the answer classi-
fiers derived by exploiting Google (Gg) and YourQA
(QA) ranks: the topN ranked results are considered
as correct definitions and the remaining ones as in-

6However, by observing the curves in Fig. 5, the selected
parameters appear as pessimistic estimates for the best model
improvement: the one for BOW is the absolute maximum, but
an average one is selected for the best model.
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correct for different values ofN . We showN = 5
and the maximumN (all), i.e. all the available an-
swers. Each measure is the average of the Precision,
Recall and F1-measure from cross validation. The
F1-measure of Google and YourQA are greatly out-
performed by our answer classifier.

The last row of Table 2 reports the MRR7

achieved by Google, YourQA (QA) and YourQA af-
ter re-ranking (Re-ranker). We note that Google is
outperformed by YourQA since its ranks are based
on whole documents, not on single passages. Thus
Google may rank a document containing several
sparsely distributed question words higher than doc-
uments with several words concentrated in one pas-
sage, which are more interesting. When the answer
classifier is applied to improve the YourQA ranking,
the MRR reaches 81.1%, rising by about 25%.

Finally, it is worth to note that the answer clas-
sifier based on Q(BOW)+A(BOW,PT,PAS) model
(parameterized as described) gave a 4% higher MRR
than the one based on the simple BOW features. As
an example, for question “What is foreclosure?”, the
sentence “Foreclosure means that the lender takes
possession of your home and sells it in order to get
its money back.” was correctly classified by the best
model, while BOW failed.

5 Conclusion

In this paper, we have introduced new structures to
represent textual information in three question an-
swering tasks: question classification, answer classi-
fication and answer re-ranking. We have defined tree
structures (PAS and PASN) to represent predicate-
argument relations, which we automatically extract
using our SRL system. We have also introduced two
functions,SSTK andKall, to exploit their repre-
sentative power.
Our experiments with SVMs and the above models
suggest that syntactic information helps tasks such
as question classification whereas semantic informa-
tion contained in PAS and PASN gives promising re-
sults in answer classification.

In the future, we aim to study ways to capture re-
lations between predicates so that more general se-

7The Mean Reciprocal Rank is defined as:MRR =
1

n

∑

n

i=1

1

ranki

, wheren is the number of questions andranki

is the rank of the first correct answer to questioni.

mantics can be encoded by PASN. Forms of general-
ization for predicates and arguments within PASNs
like LSA clusters, WordNet synsets and FrameNet
(roles and frames) information also appear as a
promising research area.
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Abstract

This paper presents a language-independent
probabilistic answer ranking framework for
question answering. The framework esti-
mates the probability of an individual an-
swer candidate given the degree of answer
relevance and the amount of supporting evi-
dence provided in the set of answer candi-
dates for the question. Our approach was
evaluated by comparing the candidate an-
swer sets generated by Chinese and Japanese
answer extractors with the re-ranked answer
sets produced by the answer ranking frame-
work. Empirical results from testing on NT-
CIR factoid questions show a 40% perfor-
mance improvement in Chinese answer se-
lection and a 45% improvement in Japanese
answer selection.

1 Introduction

Question answering (QA) systems aim at find-
ing precise answers to natural language questions
from large document collections. Typical QA sys-
tems (Prager et al., 2000; Clarke et al., 2001;
Harabagiu et al., 2000) adopt a pipeline architec-
ture that incorporates four major steps: (1) question
analysis, (2) document retrieval, (3) answer extrac-
tion and (4) answer selection. Question analysis is
a process which analyzes a question and produces a
list of keywords. Document retrieval is a step that
searches for relevant documents or passages. An-
swer extraction extracts a list of answer candidates
from the retrieved documents. Answer selection is a

process which pinpoints correct answer(s) from the
extracted candidate answers.

Since the first three steps in the QA pipeline may
produce erroneous outputs, the final answer selec-
tion step often entails identifying correct answer(s)
amongst many incorrect ones. For example, given
the question“Which Chinese city has the largest
number of foreign financial companies?”, the an-
swer extraction component produces a ranked list of
five answer candidates: Beijing (AP880603-0268)1,
Hong Kong (WSJ920110-0013), Shanghai (FBIS3-
58), Taiwan (FT942-2016) and Shanghai (FBIS3-
45320). Due to imprecision in answer extraction,
an incorrect answer (“Beijing”) can be ranked in
the first position, and the correct answer (“Shang-
hai”) was extracted from two different documents
and ranked in the third and the fifth positions. In or-
der to rank “Shanghai” in the top position, we have
to address two interesting challenges:

• Answer Similarity. How do we exploit simi-
larity among answer candidates? For example,
when the candidates list contains redundant an-
swers (e.g., “Shanghai” as above) or several an-
swers which represent a single instance (e.g.
“U.S.A.” and “the United States”), how much
should we boost the rank of the redundant an-
swers?

• Answer Relevance. How do we identify
relevant answer(s) amongst irrelevant ones?
This task may involve searching for evi-
dence of a relationship between the answer

1Answer candidates are shown with the identifier of the
TREC document where they were found.
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and the answer type or a question key-
word. For example, we might wish to query
a knowledge base to determine if “Shang-
hai” is a city (IS-A(Shanghai, city) ),
or to determine if Shanghai is in China
(IS-IN(Shanghai, China) ).

The first challenge is to exploit redundancy in the
set of answer candidates. As answer candidates are
extracted from different documents, they may con-
tain identical, similar or complementary text snip-
pets. For example, “U.S.” can appear as “United
States” or “USA” in different documents. It is im-
portant to detect redundant information and boost
answer confidence, especially for list questions that
require a set of unique answers. One approach is
to perform answer clustering (Nyberg et al., 2002;
Jijkoun et al., 2006). However, the use of cluster-
ing raises additional questions: how to calculate the
score of the clustered answers, and how to select the
cluster label.

To address the second question, several answer
selection approaches have used external knowledge
resources such as WordNet, CYC and gazetteers for
answer validation or answer reranking. Answer can-
didates are either removed or discounted if they are
not of the expected answer type (Xu et al., 2002;
Moldovan et al., 2003; Chu-Carroll et al., 2003;
Echihabi et al., 2004). The Web also has been used
for answer reranking by exploiting search engine re-
sults produced by queries containing the answer can-
didate and question keywords (Magnini et al., 2002).
This approach has been used in various languages
for answer validation. Wikipedia’s structured in-
formation was used for Spanish answer type check-
ing (Buscaldi and Rosso, 2006).

Although many QA systems have incorporated in-
dividual features and/or resources for answer selec-
tion in a single language, there has been little re-
search on a generalized probabilistic framework that
supports answer ranking in multiple languages using
any answer relevance and answer similarity features
that are appropriate for the language in question.

In this paper, we describe a probabilistic answer
ranking framework for multiple languages. The
framework uses logistic regression to estimate the
probability that an answer candidate is correct given
multiple answer relevance features and answer sim-

ilarity features. An existing framework which was
originally developed for English (Ko et al., 2007)
was extended for Chinese and Japanese answer
ranking by incorporating language-specific features.
Empirical results on NTCIR Chinese and Japanese
factoid questions show that the framework signifi-
cantly improved answer selection performance; Chi-
nese performance improved by 40% over the base-
line, and Japanese performance improved by 45%
over the baseline.

The remainder of this paper is organized as fol-
lows: Section 2 contains an overview of the answer
ranking task. Section 3 summarizes the answer rank-
ing framework. In Section 4, we explain how we
extended the framework by incorporating language-
specific features. Section 5 describes the experimen-
tal methodology and results. Finally, Section 6 con-
cludes with suggestions for future research.

2 Answer Ranking Task

The relevance of an answer to a question can be es-
timated by the probability P(correct(Ai) |Ai, Q),
where Q is a question andAi is an answer can-
didate. To exploit answer similarity, we estimate
the probabilityP (correct(Ai) |Ai, Aj), where Aj
is similar to Ai. Since both probabilities influence
overall answer ranking performance, it is important
to combine them in a unified framework and es-
timate the probability of an answer candidate as:
P (correct(Ai)|Q,A1, ..., An).

The estimated probability is used to rank answer
candidates and select final answers from the list. For
factoid questions, the top answer is selected as a fi-
nal answer to the question. In addition, we can use
the estimated probability to classify incorrect an-
swers: if the probability of an answer candidate is
lower than 0.5, it is considered to be a wrong answer
and is filtered out of the answer list. This is useful
in deciding whether or not a valid answer to a ques-
tion exists in a given corpus (Voorhees, 2002). The
estimated probability can also be used in conjunc-
tion with a cutoff threshold when selecting multiple
answers to list questions.

3 Answer Ranking Framework

This section summarizes our answer ranking frame-
work, originally developed for English answers (Ko
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P (correct(Ai)|Q,A1, ..., An)
≈ P (correct(Ai)|rel1(Ai), ..., relK1(Ai), sim1(Ai), ..., simK2(Ai))

=
exp(α0 +

K1∑
k=1

βkrelk(Ai) +
K2∑
k=1

λksimk(Ai))

1 + exp(α0 +
K1∑
k=1

βkrelk(Ai) +
K2∑
k=1

λksimk(Ai))

where, simk(Ai) =
N∑

j=1(j 6=i)

sim′k(Ai, Aj).

Figure 1: Estimating correctness of an answer candidate given a question and a set of answer candidates

et al., 2007). The model uses logistic regression
to estimate the probability of an answer candidate
(Figure 1). Each relk(Ai) is a feature function used
to produce an answer relevance score for an an-
swer candidate Ai. Each sim′k(Ai, Aj) is a similar-
ity function used to calculate an answer similarity
between Ai and Aj . K1 and K2 are the number of
answer relevance and answer similarity features, re-
spectively. N is the number of answer candidates.

To incorporate multiple similarity features, each
simk(Ai) is obtained from an individual similarity
metric, sim′k(Ai, Aj). For example, if Levenshtein
distance is used as one similarity metric, simk(Ai)
is calculated by summing N-1 Levenshtein distances
between one answer candidate and all other candi-
dates.

The parametersα, β, λwere estimated from train-
ing data by maximizing the log likelihood. We used
the Quasi-Newton algorithm (Minka, 2003) for pa-
rameter estimation.

Multiple features were used to generate answer
relevance scores and answer similarity scores; these
are discussed below.

3.1 Answer Relevance Features

Answer relevance features can be classified into
knowledge-based features or data-driven features.
1) Knowledge-based features
Gazetteers: Gazetteers provide geographic infor-
mation, which allows us to identify strings as in-
stances of countries, their cities, continents, capitals,
etc. For answer ranking, three gazetteer resources
were used: the Tipster Gazetteer, the CIA World

Factbook and information about the US states pro-
vided by 50states.com. These resources were used
to assign an answer relevance score between -1 and
1 to each candidate. For example, given the question
“Which city in China has the largest number of for-
eign financial companies?”, the candidate “Shang-
hai” receives a score of 0.5 because it is a city in the
gazetteers. But “Taiwan” receives a score of -1.0 be-
cause it is not a city in the gazetteers. A score of 0
means the gazetteers did not contribute to the answer
selection process for that candidate.

Ontology: Ontologies such as WordNet contain
information about relationships between words and
general meaning types (synsets, semantic categories,
etc.). WordNet was used to identify answer rele-
vance in a manner analogous to the use of gazetteers.
For example, given the question “Who wrote the
book ’Song of Solomon’?”, the candidate “Mark
Twain” receives a score of 0.5 because its hyper-
nyms include “writer”.
2) Data-driven features
Wikipedia : Wikipedia was used to generate an an-
swer relevance score. If there is a Wikipedia docu-
ment whose title matches an answer candidate, the
document is analyzed to obtain the term frequency
(tf) and the inverse term frequency (idf) of the can-
didate, from which a tf.idf score is calculated. When
there is no matched document, each question key-
word is also processed as a back-off strategy, and the
answer relevance score is calculated by summing the
tf.idf scores obtained from individual keywords.

Google: Following Magnini et al. (2002), a query
consisting of an answer candidate and question key-
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words was sent to the Google search engine. Then
the top 10 text snippets returned by Google were
analyzed to generate an answer relevance score by
computing the minimum number of words between
a keyword and the answer candidate.

3.2 Answer Similarity Features

Answer similarity is calculated using multiple string
distance metrics and a list of synonyms.

String Distance Metrics: String distance metrics
such as Levenshtein, Jaro-Winkler, and Cosine sim-
ilarity were used to calculate the similarity between
two English answer candidates.

Synonyms: Synonyms can be used as another
metric to calculate answer similarity. If one answer
is synonym of another answer, the score is 1. Other-
wise the score is 0. To get a list of synonyms, three
knowledge bases were used: WordNet, Wikipedia
and the CIA World Factbook. In addition, manually
generated rules were used to obtain synonyms for
different types of answer candidates. For example,
“April 12 1914” and “12th Apr. 1914” are converted
into “1914-04-12” and treated as synonyms.

4 Extensions for Multiple Languages

We extended the framework for Chinese and
Japanese QA. This section details how we incor-
porated language-specific resources into the frame-
work. As logistic regression is based on a proba-
bilistic framework, the model does not need to be
changed to support other languages. We only re-
trained the model for individual languages. To sup-
port Chinese and Japanese QA, we incorporated new
features for individual languages.

4.1 Answer Relevance Features

We replaced the English gazetteers and WordNet
with language-specific resources for Japanese and
Chinese. As Wikipedia and the Web support mul-
tiple languages, the same algorithm was used in
searching language-specific corpora for the two lan-
guages.
1) Knowledge-based features
The knowledge-based features involve searching for
facts in a knowledge base such as gazetteers and
WordNet. We utilized comparable resources for
Chinese and Japanese. Using language-specific re-

#Articles
Language Nov. 2005 Aug. 2006
English 1,811,554 3,583,699
Japanese 201,703 446,122
Chinese 69,936 197,447

Table 1: Articles in Wikipedia for different lan-
guages

sources, the same algorithms were applied to gener-
ate an answer relevance score between -1 and 1.

Gazetteers: There are few available gazetteers
for Chinese and Japanese. Therefore, we extracted
location data from language-specific resources. For
Japanese, we extracted Japanese location informa-
tion from Yahoo2, which contains many location
names in Japan and the relationships among them.
For Chinese, we extracted location names from the
Web. In addition, we translated country names pro-
vided by the CIA World Factbook and the Tipster
gazetteers into Chinese and Japanese names. As
there is more than one translation, top 3 translations
were used.

Ontology: For Chinese, we used HowNet (Dong,
2000) which is a Chinese version of WordNet.
It contains 65,000 Chinese concepts and 75,000
corresponding English equivalents. For Japanese,
we used semantic classes provided by Gengo
GoiTaikei3. Gengo GoiTaikei is a Japanese lexicon
containing 300,000 Japanese words with their asso-
ciated 3,000 semantic classes. The semantic infor-
mation provided by HowNet and Gengo GoiTaikei
was used to assign an answer relevance score be-
tween -1 and 1.
2) Data-driven features
Wikipedia : As Wikipedia supports more than 200
language editions, the approach used in English can
be used for different languages without any modifi-
cation. Table 1 shows the number of text articles in
three different languages. Wikipedia’s current cov-
erage in Japanese and Chinese does not match its
coverage in English, but coverage in these languages
continues to improve.

To supplement the small corpus of Chi-
nese documents available, we used Baidu

2http://map.yahoo.co.jp/
3http://www.kecl.ntt.co.jp/mtg/resources/GoiTaikei
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(http://baike.baidu.com), which is similar to
Wikipedia but contains more articles written in
Chinese. We first search for Chinese Wikipedia.
When there is no matching document in Wikipedia,
each answer candidate is sent to Baidu and the
retrieved document is analyzed in the same way to
analyze Wikipedia documents.

The idf score was calculated using word statis-
tics from Japanese Yomiuri newspaper corpus and
the NTCIR Chinese corpus.

Google: The same algorithm was applied to ana-
lyze Japanese and Chinese snippets returned from
Google. But we restricted the language to Chi-
nese or Japanese so that Google returned only Chi-
nese or Japanese documents. To calculate the dis-
tance between an answer candidate and question
keywords, segmentation was done with linguistic
tools. For Japanese, Chasen4 was used. For Chinese
segmentation, a maximum-entropy based parser was
used (Wang et al., 2006).

3) Manual Filtering

Other than the features mentioned above, we man-
ually created many rules for numeric and temporal
questions to filter out invalid answers. For example,
when the question is looking for a year as an answer,
an answer candidate which contains only the month
receives a score of -1. Otherwise, the score is 0.

4.2 Answer Similarity Features

The same features used for English were applied
to calculate the similarity of Chinese/Japanese an-
swer candidates. To identify synonyms, Wikipedia
were used for both Chinese and Japanese. EIJIRO
dictionary was used to obtain Japanese synonyms.
EIJIRO is a English-Japanese dictionary contain-
ing 1,576,138 words and provides synonyms for
Japanese words.

As there are several different ways to represent
temporal and numeric expressions (Nyberg et al.,
2002; Greenwood, 2006), language-specific conver-
sion rules were applied to convert them into a canon-
ical format; for example, a rule to convert Japanese
Kanji characters to Arabic numbers is shown in Fig-
ure 2.

4http://chasen.aist-nara.ac.jp/hiki/ChaSen

0.25四分の一

1993-07-041993 年 7 月4 日

50 %５割

1993-07-04一九九三年 七月四 日

3E+11 円3,000億円

3E+11 円三 千 億 円

Normalized answer stringOriginal answer string

Figure 2: Example of normalized answer strings

5 Experiments

This section describes the experiments to evaluate
the extended answer ranking framework for Chinese
and Japanese QA.

5.1 Experimental Setup

We used Chinese and Japanese questions provided
by the NTCIR (NII Test Collection for IR Sys-
tems), which focuses on evaluating cross-lingual
and monolingual QA tasks for Chinese, Japanese
and English. For Chinese, a total of 550 fac-
toid questions from the NTCIR5-6 QA evaluations
served as the dataset. Among them, 200 questions
were used to train the Chinese answer extractor and
350 questions were used to evaluate our answer
ranking framework. For Japanese, 700 questions
from the NTCIR5-6 QA evaluations served as the
dataset. Among them, 300 questions were used to
train the Japanese answer extractor and 400 ques-
tions were used to evaluate our framework.

Both the Chinese and Japanese answer extractors
use maximum-entropy to extract answer candidates
based on multiple features such as named entity, de-
pendency structures and some language-dependent
features.

Performance of the answer ranking framework
was measured by average answer accuracy: the
number of correct top answers divided by the num-
ber of questions where at least one correct answer
exists in the candidate list provided by an extrac-
tor. Mean Reciprocal Rank (MRR5) was also used
to calculate the average reciprocal rank of the first
correct answer in the top 5 answers.

The baseline for average answer accuracy was
calculated using the answer candidate likelihood
scores provided by each individual extractor; the
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Figure 3: Performance of the answer ranking framework for Chinese and Japanese answer selection (TOP1:
average accuracy of top answer, TOP3: average accuracy of top 3 answers, MRR5: average of mean recip-
rocal rank of top 5 answers)

answer with the best extractor score was chosen,
and no validation or similarity processing was per-
formed.

3-fold cross-validation was performed, and we
used a version of Wikipedia downloaded in Aug
2006.

5.2 Results and Analysis

We first analyzed the average accuracy of top 1, top3
and top 5 answers. Figure 3 compares the average
accuracy using the baseline and the answer selec-
tion framework. As can be seen, the answer rank-
ing framework significantly improved performance
on both Chinese and Japanese answer selection. As
for the average top answer accuracy, there were 40%
improvement over the baseline (Chinese) and 45%
improvement over the baseline (Japanese).

We also analyzed the degree to which the average
accuracy was affected by answer similarity and rel-
evance features. Table 2 compares the average top
answer accuracy using the baseline, the answer rel-
evance features, the answer similarity features and
all feature combinations. Both the similarity and the
relevance features significantly improved answer se-
lection performance compared to the baseline, and
combining both sets of features together produced
the best performance.

We further analyzed the utility of individual rele-
vance features (Figure 4). For both languages, filter-
ing was useful in ruling out wrong answers. The im-

Baseline Rel Sim All
Chinese 0.442 0.482 0.597 0.619
Japanese 0.367 0.463 0.502 0.532

Table 2: Average top answer accuracy of individ-
ual features (Rel: merging relevance features, Sim:
merging similarity features, ALL: merging all fea-
tures).

pact of the ontology was more positive for Japanese;
we assume that this is because the Chinese ontol-
ogy (HowNet) contains much less information over-
all than the Japanese ontology (Gengo GoiTaikei).
The comparative impact of Wikipedia was similar.
For Chinese, there were many fewer Wikipedia doc-
uments available. Even though we used Baidu as a
supplemental resource for Chinese, this did not im-
prove answer selection performance. On the other
hand, the use of Wikipedia was very helpful for
Japanese, improving performance by 26% over the
baseline. This shows that the quality of answer
relevance estimation is significantly affected by re-
source coverage.

When comparing the data-driven features with the
knowledge-based features, the data-driven features
(such as Wikipedia and Google) tended to increase
performance more than the knowledge-based fea-
tures (such as gazetteers and WordNet).

Table 3 shows the effect of individual similar-
ity features on Chinese and Japanese answer selec-
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Figure 4: Average top answer accuracy of individ-
ual answer relevance features.(FIL: filtering, ONT,
ontology, GAZ: gazetteers, GL: Google, WIKI:
Wikipedia, ALL: combination of all relevance fea-
tures)

Chinese Japanese
0.3 0.5 0.3 0.5

Cosine 0.597 0.597 0.488 0.488
Jaro-Winkler 0.544 0.518 0.410 0.415
Levenshtein 0.558 0.544 0.434 0.449
Synonyms 0.527 0.527 0.493 0.493

All 0.588 0.580 0.502 0.488

Table 3: Average accuracy using individual similar-
ity features under different thresholds: 0.3 and 0.5
(“All”: combination of all similarity metrics)

tion. As some string similarity features (e.g., Lev-
enshtein distance) produce a number between 0 and
1 (where 1 means two strings are identical and 0
means they are different), similarity scores less than
a threshold can be ignored. We used two thresh-
olds: 0.3 and 0.5. In our experiments, using 0.3
as a threshold produced better results in Chinese.
In Japanese, 0,5 was a better threshold for individ-
ual features. Among three different string similar-
ity features (Levenshtein, Jaro-Winkler and Cosine
similarity), cosine similarity tended to perform bet-
ter than the others.

When comparing synonym features with string
similarity features, synonyms performed better than
string similarity in Japanese, but not in Chinese. We
had many more synonyms available for Japanese

Data-driven features All features
Chinese 0.606 0.619
Japanese 0.517 0.532

Table 4: Average top answer accuracy when using
data-driven features v.s. when using all features.

and they helped the system to better exploit answer
redundancy.

We also analyzed answer selection performance
when combining all four similarity features (“All”
in Table 3). Combining all similarity features im-
proved the performance in Japanese, but hurt the
performance in Chinese, because adding a small set
of synonyms to the string metrics worsened the per-
formance of logistic regression.

5.3 Utility of data-driven features

In our experiments we used data-driven fea-
tures as well as knowledge-based features. As
knowledge-based features need manual effort to ac-
cess language-specific resources for individual lan-
guages, we conducted an additional experiment only
with data-driven features in order to see how much
performance gain is available without the manual
work. As Google, Wikipedia and string similarity
metrics can be used without any additional manual
effort when extended to other languages, we used
these three features and compared the performance.

Table 4 shows the performance when using data-
driven features v.s. all features. It can be seen that
data-driven features alone achieved significant im-
provement over the baseline. This indicates that the
framework can easily be extended to any language
where appropriate data resources are available, even
if knowledge-based features and resources for the
language are still under development.

6 Conclusion

In this paper, we presented a generalized answer se-
lection framework which was applied to Chinese and
Japanese question answering. An empirical evalu-
ation using NTCIR test questions showed that the
framework significantly improves baseline answer
selection performance. For Chinese, the perfor-
mance improved by 40% over the baseline. For
Japanese, the performance improved by 45% over
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the baseline. This shows that our probabilistic
framework can be easily extended for multiple lan-
guages by reusing data-driven features (with new
corpora) and adding language-specific resources
(ontologies, gazetteers) for knowledge-based fea-
tures.

In our previous work, we evaluated the perfor-
mance of the framework for English QA using ques-
tions from past TREC evaluations (Ko et al., 2007).
The experimental results showed that the combina-
tion of all answer ranking features improved per-
formance by an average of 102% over the baseline.
The relevance features improved performance by an
average of 99% over the baseline, and the similar-
ity features improved performance by an average of
46% over the baseline. Our hypothesis is that answer
relevance features had a greater impact for English
QA because the quality and coverage of the data re-
sources available for English answer validation is
much higher than the quality and coverage of ex-
isting resources for Japanese and Chinese. In future
work, we will continue to evaluate the robustness of
the framework. It is also clear from our comparison
with English QA that more work can and should be
done in acquiring data resources for answer valida-
tion in Chinese and Japanese.
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Abstract

This paper describes a method for automat-
ically learning effective dialogue strategies,
generated from a library of dialogue content,
using reinforcement learning from user feed-
back. This library includes greetings, so-
cial dialogue, chit-chat, jokes and relation-
ship building, as well as the more usual clar-
ification and verification components of dia-
logue. We tested the method through a mo-
tivational dialogue system that encourages
take-up of exercise and show that it can be
used to construct good dialogue strategies
with little effort.

1 Introduction

Interactions between humans and machines have be-
come quite common in our daily life. Many ser-
vices that used to be performed by humans have
been automated by natural language dialogue sys-
tems, including information seeking functions, as
in timetable or banking applications, but also more
complex areas such as tutoring, health coaching and
sales where communication is much richer, embed-
ding the provision and gathering of information in
e.g. social dialogue. In the latter category of dia-
logue systems, a high level of naturalness of interac-
tion and the occurrence of longer periods of satisfac-
tory engagement with the system are a prerequisite
for task completion and user satisfaction.

Typically, such systems are based on a dialogue
strategy that is manually designed by an expert
based on knowledge of the system and the domain,
and on continuous experimentation with test users.

In this process, the expert has to make many de-
sign choices which influence task completion and
user satisfaction in a manner which is hard to assess,
because the effectiveness of a strategy depends on
many different factors, such as classification/ASR
performance, the dialogue domain and task, and,
perhaps most importantly, personality characteris-
tics and knowledge of the user.

We believe that the key to maximum dialogue ef-
fectiveness is to listen to the user. This paper de-
scribes the development of an adaptive dialogue sys-
tem that uses the feedback of users to automatically
improve its strategy. The system starts with a library
of generic and task-/domain-specific dialogue com-
ponents, including social dialogue, chit-chat, enter-
taining parts, profiling questions, and informative
and diagnostic parts. Given this variety of possi-
ble dialogue actions, the system can follow many
different strategies within the dialogue state space.
We conducted training sessions in which users inter-
acted with a version of the system which randomly
generates a possible dialogue strategy for each in-
teraction (restricted by global dialogue constraints).
After each interaction, the users were asked to re-
ward different aspects of the conversation. We ap-
plied reinforcement learning to use this feedback to
compute the optimal dialogue policy.

The following section provides a brief overview
of previous research related to this area and how our
work differs from these studies. We then proceed
with a concise description of the dialogue system
used for our experiments in section 3. Section 4
is about the training process and the reward model.
Section 5 goes into detail about dialogue policy op-
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timization with reinforcement learning. In section 6
we discuss our experimental results.

2 Related Work

Previous work has examined learning of effective
dialogue strategies for information seeking spo-
ken dialogue systems, and in particular the use of
reinforcement learning methods to learn policies
for action selection in dialogue management (see
e.g. Levin et al., 2000; Walker, 2000; Scheffler and
Young, 2002; Peek and Chickering, 2005; Frampton
and Lemon, 2006), for selecting initiative and con-
firmation strategies (Singh et al., 2002); for detect-
ing speech recognition problem (Litman and Pan,
2002); changing the dialogue according to the ex-
pertise of the user (Maloor and Chai, 2000); adapt-
ing responses according to previous interactions
with the users (Rudary et al., 2004); optimizing
mixed initiative in collaborative dialogue (English
and Heeman, 2005), and optimizing confirmations
(Cuayáhuitl et al., 2006). Other researchers have
focussed their attention on the learning aspect of
the task, examining, for example hybrid reinforce-
ment/supervised learning (Henderson et al., 2005).

Previous work on learning dialogue management
strategies has however generally been limited to well
defined areas of the dialogue, in particular dealing
with speech recognition and clarification problems,
with small state spaces and a limited set of actions
to choose from (Henderson et al., 2005). In a num-
ber of contexts, however, dialogues need to have a
far greater degree of complexity not just in the num-
ber of states and possible actions but also in the va-
riety of dialogue acts: for example in motivational
dialogue systems where the task is not limited to
information gathering, slot-filling or querying of a
database, and where dialogues must contain more
social and relational elements to be successful (for
the usefulness of social dialogue see e.g. Bickmore,
2003; Liu and Picard, 2005). Only little effort has
been directed to the question what dialogue compo-
nents should make up the dialogue, involving deci-
sions like how much and what type of social interac-
tion should be used, different ways of forming a re-
lationship with the user such as using chit-chat (for
example asking about a user’s hobbies or asking for
the user’s name), using humour, as well as the more
conventional tasks of clarifying user input, estab-

lishing common ground and ensuring system replies
are appropriate. Our work has focused on these as-
pects of dialogue strategy construction, in order to
create good dialogue strategies incorporating appro-
priate levels of social interaction, humour, chit-chat,
as well as successful information gathering and pro-
vision.

3 A Motivational Dialogue System

The domain of our system is physical exercise. The
system is set up as an exercise advisor that asks
the user what is preventing him/her from exercis-
ing more. After the user has worded his/her exercise
‘barrier’, the system will give motivational advice
for how to overcome this barrier. As an illustration,
Table 1 shows an example dialogue, generated by
our system. Our dialogue system istext-based, so
it does not involve speech recognition. This section
describes the system’s three main modules: the di-
alogue state/action manager, the utterance classifier
and the dialogue component library.

Speaker Utterance
system Good evening!
system What’s your name?
user my name is Brenda
system So Brenda, how are you today?
user fine thank you
system Tell me what is preventing you from exercising

more.
user I don’t have anyone to exercise with...
system So your barrier is Loneliness (e.g. You don’t

like exercising on your own ).
user sort of, yeah
system A solution for this barrier is: Try going on your

own and see whether it’s really that different to
going with a friend. Try talking to other people
who are exercising, you’re likely to find they
welcome a little conversation!

system Did you find this solution useful?
user I guess...
system Ok. Try to work on this to overcome your

barrier.
system Bye!

Table 1: Example dialogue.

3.1 Dialogue state/action management

The dialogue state is unique at every stage of
the conversation and is represented as a vector of
feature-values. We use only a limited set of fea-
tures because, as also noted in (Singh et al., 2002;
Levin et al., 2000), it is important to keep the state
space as small as possible (but with enough distinc-
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tive power to support learning) so we can construct
a non-sparse Markov decision process (see section
5) based on our limited training dialogues. The state
features are listed in Table 2.

Feature Values Description
curnode c ∈ N the current dialogue node
actiontype utt, trans action type
trigger t ∈ T utterance classifier category
confidence 1, 0 category confidence
problem 1, 0 communication problem earlier

Table 2: Dialogue state features.

In each dialogue state, the dialogue manager will
look up the next action that should be taken. In our
system, an action is either asystem utteranceor a
transition in the dialogue structure. In the initial
system, the dialogue structure was manually con-
structed. In many states, the next action requires
a choice to be made. Dialogue states in which the
system can choose among several possible actions
are calledchoice-states. For example, in our sys-
tem, immediately after greeting the user, the dia-
logue structure allows for different directions: the
system can first ask some personal questions, or
it can immediately discuss the main topic without
any digressions. Utterance actions may also re-
quire a choice (e.g.directive versusopen formula-
tion of a question). In training mode, the system will
make random choices in the choice-states. This ap-
proach will generate many different dialogue strate-
gies, i.e.pathsthrough the dialogue structure.

User replies are sent to an utterance classifier. The
category assigned by this classifier is returned to
the dialogue manager and triggers a transition to the
next node in the dialogue structure. The system also
accommodates a simple rule-based extraction mod-
ule, which can be used to extract information from
user utterances (e.g. the user’s name, which is tem-
plated in subsequent system prompts in order to per-
sonalize the dialogue).

3.2 Utterance classification

The (memory-based) classifier uses a rich set of fea-
tures for accurate classification, including words,
phrases, regular expressions, domain-specific word-
relations (using a taxonomy-plugin) and syntacti-
cally motivated expressions. For utterance pars-
ing we used a memory-based shallow parser, called

MBSP (Daelemans et al., 1999). This parser pro-
vides part of speech labels, chunk brackets, subject-
verb-object relations, and has been enriched with de-
tection of negation scope and clause boundaries.

The feature-matching mechanism in our classifi-
cation system can match terms or phrases at speci-
fied positions in the token stream of the utterance,
also in combination with syntactic and semantic
class labels. This allows us to define features that are
particularly useful for resolving confusing linguis-
tic phenomena like ambiguity and negation. A base
feature set was generated automatically, but quite
a lot of features were manually tuned or added to
cope with certain common dialogue situations. The
overall classification accuracy, measured on the dia-
logues that were produced during the training phase,
is 93.6%. Average precision/recall is 98.6/97.3% for
the non-barrier categories (confirmation, negation,
unwillingness, etc.), and 99.1/83.4% for the barrier
categories (injury, lack of motivation, etc.).

3.3 Dialogue Component Library

The dialogue component library contains generic
as well as task-/domain-specific dialogue content,
combining different aspects of dialogue (task/topic
structure, communication goals, etc.). Table 3 lists
all components in the library that was used for train-
ing our dialogue system. A dialogue component is
basically a coherent set of dialogue node represen-
tations with a certain dialogue function. The library
is set up in a flexible, generic way: new components
can easily be plugged in to test their usefulness in
different dialogue contexts or for new domains.

4 Training the Dialogue System

4.1 Random strategy generation

In its training mode, the dialogue system uses ran-
dom exploration: it generates different dialogue
strategies by choosing randomly among theallowed
actionsin the choice-states. Note that dialogue gen-
eration is constrained to contain certain fixed actions
that are essential for task completion (e.g. asking the
exercise barrier, giving a solution, closing the ses-
sion). This excludes a vast number of useless strate-
gies from exploration by the system. Still, given all
action choices and possible user reactions, the total
number of unique dialogues that can be generated by
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Component Description pa pe

StartSession Dialogue openings, including various greetings • •
PersonalQuestionnaire Personal questions, e.g. name; age; hobbies; interests,how are you today? •
ElizaChitChat Eliza-like chit-chat, e.g.please go on...
ExerciseChitChat Chit-chat about exercise, e.g.have you been doing any exercise this week? ◦
Barrier Prompts concerning the barrier, e.g. ask the barrier; barrier verification; ask a rephrase• •
Solution Prompts concerning the solution, e.g. give the solution; verify usefulness • •
GiveBenefits Talk about the benefits of exercising
AskCommitment Ask user to commit his implementation of the given solution •
Encourage Encourage the user to work on the given solution • •
GiveJoke The humor component: ask if the user wants to hear a joke; tellrandom jokes ◦ •
VerifyCloseSession Verification for closing the session (are you sure you want to close this session?) ◦ ◦
CloseSession Dialogue endings, including various farewells • •

Table 3: Components in the dialogue component library. The last two columns show which of the compo-
nents was used in the learned policy (pa) and the expert policy (pe), discussed in section 6.• means the
component is always used,◦ means it is sometimes used, depending on the dialogue state.

the system is approximately 345000 (many of which
are unlikely to ever occur). During training, the sys-
tem generated 490 different strategies. There are 71
choice-states that can actually occur in a dialogue.
In our training dialogues, the opening state was ob-
viously visited most frequently (572 times), almost
60% of all states was visited at least 50 times, and
only 16 states were visited less than 10 times.

4.2 The reward model

When the dialogue has reached its final state, a sur-
vey is presented to the user for dialogue evaluation.
The survey consists of five statements that can each
be rated on a five-point scale (indicating the user’s
level of agreement). The responses are mapped to
rewards of -2 to 2. The statements we used are partly
based on the user survey that was used in (Singh et
al., 2002). We considered these statements to reflect
the most important aspects of conversation that are
relevant for learning a good dialogue policy. The
five statements we used are listed below.

M1 Overall, this conversation went well

M2 The system understood what I said

M3 I knew what I could say at each point in the dialogue

M4 I found this conversation engaging

M5 The system provided useful advice

4.3 Training set-up

Eight subjects carried out a total of 572 conversa-
tions with the system. Because of the variety of pos-
sible exercise barriers known by the system (52 in
total) and the fact that some of these barriers are
more complex or harder to detect than others, the

system’s classification accuracy depends largely on
the user’s barrier. To prevent classification accuracy
distorting the user evaluations, we asked the subjects
to act as if they had one of five predefined exercise
barriers (e.g.Imagine that you don’t feel comfort-
able exercising in public. See what the advisor rec-
ommends for this barrier to your exercise).

5 Dialogue Policy Optimization with
Reinforcement Learning

Reinforcement learning refers to a class of machine
learning algorithms in which an agent explores an
environment and takes actions based on its current
state. In certain states, the environment provides
a reward. Reinforcement learning algorithms at-
tempt to find the optimal policy, i.e. the policy that
maximizes cumulative reward for the agent over the
course of the problem. In our case, a policy can be
seen as a mapping from the dialogue states to the
possible actions in those states. The environment is
typically formulated as a Markov decision process
(MDP).

The idea of using reinforcement learning to au-
tomate the design of strategies for dialogue systems
was first proposed by Levin et al. (2000) and has
subsequently been applied in a.o. (Walker, 2000;
Singh et al., 2002; Frampton and Lemon, 2006;
Williams et al., 2005).

5.1 Markov decision processes

We follow past lines of research (such as Levin et
al., 2000; Singh et al., 2002) by representing a dia-
logue as a trajectory in the state space, determined
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by the user responses and system actions:s1

a1,r1

−−−→

s2

a2,r2

−−−→ . . . sn
an,rn

−−−→ sn+1, in whichsi
ai,ri

−−−→ si+1

means that the system performed actionai in state
si, received1 rewardri and changed to statesi+1.
In our system, a state is a dialogue context vector
of feature values. This feature vector contains the
available information about the dialogue so far that
is relevant for deciding what action to take next in
the current dialogue state. We want the system to
learn the optimal decisions, i.e. to choose the actions
that maximize the expected reward.

5.2 Q-value iteration

The field of reinforcement learning includes many
algorithms for finding the optimal policy in an MDP
(see Sutton and Barto, 1998). We applied the algo-
rithm of (Singh et al., 2002), as their experimental
set-up is similar to ours, constisting of: generation
of (limited) exploratory dialogue data, using a train-
ing system; creating an MDP from these data and
the rewards assigned by the training users; off-line
policy learning based on this MDP.

The Q-function for a certain action taken in a cer-
tain state describes the total reward expected be-
tween taking that action and the end of the dialogue.
For each state-action pair(s, a), we calculated this
expected cumulative rewardQ(s, a) of taking action
a from states, with the following equation (Sutton
and Barto, 1998; Singh et al., 2002):

Q(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a)max
a′

Q(s′, a′)

(1)
where: P (s′|s, a) is the probability of a transition
from states to states′ by taking actiona, and
R(s, a) is the expected reward obtained when tak-
ing actiona in states. γ is a weight (0 ≤ γ ≤ 1),
that discounts rewards obtained later in time when
it is set to a value< 1. In our system,γ was set
to 1. Equation 1 is recursive: the Q-value of a cer-
tain state is computed in terms of the Q-values of
its successor states. The Q-values can be estimated
to within a desired threshold using Q-value iteration
(Sutton and Barto, 1998). Once the value iteration

1In our experiments, we did not make use of immediate re-
warding (e.g. at every turn) during the conversation. Rewards
were given after the final state of the dialogue had been reached.

process is completed, by selecting the action with
the maximum Q-value (the maximum expected fu-
ture reward) at each choice-state, we can obtain the
optimal dialogue policyπ.

6 Results and Discussion

6.1 Reward analysis

Figure 1 shows a graph of the distribution of the five
different evaluation measures in the training data
(see section 4.2 for the statement wordings). M1
is probably the most important measure of success.
The distribution of this reward is quite symmetri-
cal, with a slightly higher peak in the positive area.
The distribution of M2 shows that M1 and M2 are
related. From the distribution of M4 we can con-
clude that the majority of dialogues during the train-
ing phase was not very engaging. Users obviously
had a good feeling about what they could say at each
point in the dialogue (M3), which implies good qual-
ity of the system prompts. The judgement about the
usefulness of the provided advice is pretty average,
tending a bit more to negative than to positive. We
do think that this measure might be distorted by the
fact that we asked the subjects toimaginethat they
have the given exercise barriers. Furthermore, they
were sometimes confronted with advice that had al-
ready been presented to them in earlier conversa-
tions.
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Figure 1: Reward distributions in the training data.

In our analysis of the users’ rewarding behavior,
we found several significant correlations. We found
that longer dialogues (> 3 user turns) are appreci-
ated more than short ones (< 4 user turns), which
seems rather logical, as dialogues in which the user
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barely gets to say anything are neither natural nor
engaging.

We also looked at the relationship between user
input verification and the given rewards. Our intu-
ition is that the choice of barrier verification is one
of the most important choices the system can make
in the dialogue. We found that it is much better to
first verify the detected barrier than to immediately
give advice. The percentage of appropriate advice
provided in dialogues with barrier verification is sig-
nificantly higher than in dialogues without verifica-
tion.

In several states of the dialogue, we let the sys-
tem choose from different wordings of the system
prompt. One of these choices is whether to use an
open question to ask what the user’s barrier is (How
can I help you?), or a directive question (Tell me
what is preventing you from exercising more.). The
motivation behind the open question is that the user
gets the initiative and is basically free to talk about
anything he/she likes. Naturally, the advantage of
directive questions is that the chance of making clas-
sification errors is much lower than with open ques-
tions because the user will be better able to assess
what kind of answer the system expects. Dialogues
in which the key-question (asking the user’s barrier)
was directive, were rewarded more positively than
dialogues with the open question.

6.2 Learned dialogue policies

We learned a different policy for each evaluation
measure separately (by only using the rewards given
for that particular measure), and a policy based on
a combination (sum) of the rewards for all evalu-
ation measures. We found that the learned policy
based on the combination of all measures, and the
policy based on measure M1 alone (Overall, this
conversation went well) were nearly identical. Ta-
ble 4 compares the most important decisions of the
different policies. For convenience of comparison,
we only listed the main, structural choices. Table 3
shows which of the dialogue components in the li-
brary were used in the learned and the expert policy.

Note that, for the sake of clarity, the state descrip-
tions in Table 4 are basically summaries of a set of
more specific states since a state is a specific repre-
sentation of the dialogue context at a particular mo-
ment (composed of the values of the features listed

in Table 2). For instance, in thepa policy, the deci-
sion in the last row of the table (give a joke or not),
depends on whether or not there has been a classifi-
cation failure (i.e. a communication problem earlier
in the dialogue). If there has been a classification
failure, the policy prescribes the decisionnot to give
a joke, as it was not appreciated by the training users
in that context. Otherwise, if there were no commu-
nication problems during the conversation, the users
did appreciate a joke.

6.3 Evaluation

We compared the learned dialogue policy with a pol-
icy which was independently hand-designed by ex-
perts2 for this system. The decisions made in the
learned strategy were very similar to the ones made
by the experts, with only a few differences, indicat-
ing that the automated method would indeed per-
form as well as an expert. The main differences
were the inclusion of a personal questionnaire for re-
lation building at the beginning of the dialogue and
a commitment question at the end of the dialogue.
Another difference was the more restricted use of
the humour element, described in section 6.2 which
turns out to be intuitively better than the expert’s de-
cision to simply always include a joke. Of course,
we can only draw conclusions with regard to the ef-
fectiveness of these two policies if we empirically
compare them with real test users. Such evaluations
are planned as part of our future research.

As some additional evidence against the possibil-
ity that the learned policy was generated by chance,
we performed a simple experiment in which we took
several random samples of 300 training dialogues
from the complete training set. For each sample, we
learned the optimal policy. We mutually compared
these policies and found that they were very similar:
only in 15-20% of the states, the policies disagreed
on which action to take next. On closer inspection
we found that this disagreement mainly concerned
states that were poorly visited (1-10 times) in these
samples. These results suggest that the learned pol-
icy is unreliable at infrequently visited states. Note
however, that all main decisions listed in Table 4 are

2The experts were a team made up of psychologists with
experience in the psychology of health behaviour change and
a scientist with experience in the design of automated dialogue
systems.
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State description Action choices p1 p2 p3 p4 p5 pa pe

After greeting the user - ask the exercise barrier • • •
- ask personal information • • • •
- chit-chat about exercise

When asking the barrier - use a directive question • • • • • • •
- use an open question

User gives exercise barrier - verify detected barrier • • • • • • •
- give solution

User rephrased barrier - verify detected barrier • • • • • •
- give solution •

Before presenting solution - ask if the user wants to see a solution for the barrier •
- give a solution • • • • • •

After presenting solution - verify solution usefulness • • • • • •
- encourage the user to work on the given solution •
- ask user to commit solution implementation

User found solution useful - encourage the user to work on the solution • • • •
- ask user to commit solution implementation • • •

User found solution not useful - give another solution • • • • • • •
- ask the user wants to propose his own solution

After giving second solution - verify solution usefulness • •
- encourage the user to work on the given solution • • • •
- ask user to commit solution implementation •

End of dialogue - close the session • • •
- ask if the user wants to hear a joke • • • •

Table 4: Comparison of the most important decisions made by the learned policies.pn is the policy based
on evaluation measuren; pa is the policy based on all measures;pe contains the decisions made by experts
in the manually designed policy.

made at frequently visited states. The only disagree-
ment in frequently visited states concerned system-
prompt choices. We might conclude that these par-
ticular (often very subtle) system-prompt choices
(e.g. careful versus direct formulation of the exercise
barrier) are harder to learn than the more noticable
dialogue structure-related choices.

7 Conclusions and Future Work

We have explored reinforcement learning for auto-
matic dialogue policy optimization in a question-
based motivational dialogue system. Our system can
automatically compose a dialogue strategy from a li-
brary of dialogue components, that is very similar
to a manually designed expert strategy, by learning
from user feedback.

Thus, in order to build a new dialogue system,
dialogue system engineers will have to set up a
rough dialogue template containing several ‘multi-
ple choice’-action nodes. At these nodes, various
dialogue components or prompt wordings (e.g. en-
tertaining parts, clarification questions, social dia-
logue, personal questions) from an existing or self-
made library can be plugged in without knowing be-
forehand which of them would be most effective.

The automatically generated dialogue policy is
very similar (see Table 4) –but arguably improved in
many details– to the hand-designed policy for this
system. Automatically learning dialogue policies
also allows us to test a number of interesting issues
in parallel, for example, we have learned that users
appreciated dialogues that were longer, starting with
some personal questions (e.gWhat is your name?,
What are your hobbies?). We think that altogether,
this relation building component gave the dialogue
a more natural and engaging character, although it
was left out in the expert strategy.

We think that the methodology described in this
paper may be able to yield more effective dialogue
policies than experts. Especially in complicated di-
alogue systems with large state spaces. In our sys-
tem, state representations are composed of multiple
context feature values (e.g. communication problem
earlier in the dialogue, the confidence of the utter-
ance classifier). Our experiments showed that some-
times different decisions were learned in dialogue
contexts where only one of these features was differ-
ent (for example use humour only if the system has
been successful in recognising a user’s exercise bar-
rier): all context features are implicitly used to learn
the optimal decisions and when hand-designing a di-
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alogue policy, experts can impossibly take into ac-
count all possible different dialogue contexts.

With respect to future work, we plan to examine
the impact of different state representations. We did
not yet empirically compare the effects of each fea-
ture on policy learning or experiment with other fea-
tures than the ones listed in Table 2. As Tetreault and
Litman (2006) show, incorporating more or different
information into the state representation might how-
ever result in different policies.

Furthermore, we will evaluate the actual generic-
ity of our approach by applying it to different do-
mains. As part of that, we will look at automatically
mining libraries of dialogue components from ex-
isting dialogue transcript data (e.g. available scripts
or transcripts of films, tv series and interviews con-
taining real-life examples of different types of dia-
logue). These components can then be plugged into
our current adaptive system in order to discover what
works best in dialogue for new domains. We should
note here that extending the system’s dialogue com-
ponent library will automatically increase the state
space and thus policy generation and optimization
will become more difficult and require more train-
ing data. It will therefore be very important to care-
fully control the size of the state space and the global
structure of the dialogue.
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Abstract

We examine the effect of contextual and
acoustic cues in the disambiguation of three
discourse-pragmatic functions of the word
okay. Results of a perception study show
that contextual cues are stronger predictors
of discourse function than acoustic cues.
However, acoustic features capturing the
pitch excursion at the right edge of okay fea-
ture prominently in disambiguation, whether
other contextual cues are present or not.

1 Introduction

CUE PHRASES (also known as DISCOURSE MARK-
ERS) are linguistic expressions that can be used to
convey explicit information about the structure of
a discourse or to convey a semantic contribution
(Grosz and Sidner, 1986; Reichman, 1985; Cohen,
1984). For example, the word okay can be used to
convey a ‘satisfactory’ evaluation of some entity in
the discourse (the movie was okay); as a backchan-
nel in a dialogue to indicate that one interlocutor
is still attending to another; to convey acknowledg-
ment or agreement; or, in its ‘cue’ use, to start or fin-
ish a discourse segment (Jefferson, 1972; Schegloff
and Sacks, 1973; Kowtko, 1997; Ward and Tsuka-
hara, 2000). A major question is how speakers indi-
cate and listeners interpret such variation in mean-
ing. From a practical perspective, understanding
how speakers and listeners disambiguate cue phrases
is important to spoken dialogue systems, so that sys-
tems can convey potentially ambiguous terms with
their intended meaning and can interpret user input
correctly.

There is considerable evidence that the different

uses of individual cue phrases can be distinguished
by variation in the prosody with which they are re-
alized. For example, (Hirschberg and Litman, 1993)
found that cue phrases in general could be disam-
biguated between their ‘semantic’ and their ‘dis-
course marker’ uses in terms of the type of pitch
accent borne by the cue phrase, the position of the
phrase in the intonational phrase, and the amount
of additional information in the phrase. Despite the
frequence of the word okay in natural dialogues,
relatively little attention has been paid to the rela-
tionship between its use and its prosodic realization.
(Hockey, 1993) did find that okay differs in terms of
the pitch contour speakers use in uttering it, suggest-
ing that a final rising pitch contour “categorically
marks a turn change,” while a downstepped falling
pitch contour usually indicates a discourse segment
boundary. However, it is not clear which, if any, of
the prosodic differences identified in this study are
actually used by listeners in interpreting these po-
tentially ambiguous items.

In this study, we address the question of how hear-
ers disambiguate the interpretation of okay. Our goal
is to identify the acoustic, prosodic and phonetic fea-
tures of okay tokens for which listeners assign differ-
ent meanings. Additionally, we want to determine
the role that discourse context plays in this classi-
fication: i.e., can subjects classify okay tokens reli-
ably from the word alone or do they require addi-
tional context?

Below we describe a perception study in which
listeners were presented with a number of spoken
productions of okay, taken from a corpus of dia-
logues between subjects playing a computer game.
The tokens were presented both in isolation and in
context. Users were asked to select the meaning
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of each token from three of the meanings that okay
can take on: ACKNOWLEDGEMENT/AGREEMENT,
BACKCHANNEL, and CUE OF AN INITIAL DIS-
COURSE SEGMENT. Subsequently, we examined the
acoustic, prosodic and phonetic correlates of these
classifications to try to infer what cues listeners used
to interpret the tokens, and how these varied by con-
text condition. Section 2 describes our corpus. Sec-
tion 3 describes the perception experiment. In Sec-
tion 4 we analyze inter-subject agreement, introduce
a novel representation of subject judgments, and ex-
amine the acoustic, prosodic, phonetic and contex-
tual correlates of subject classification of okays. In
Section 5 we discuss our results and future work.

2 Corpus

The materials for our perception study were selected
from a portion of the Columbia Games Corpus, a
collection of 12 spontaneous task-oriented dyadic
conversations elicited from speakers of Standard
American English. The corpus was collected and
annotated jointly by the Spoken Language Group
at Columbia University and the Department of Lin-
guistics at Northwestern University.

Subjects were paid to play two series of com-
puter games (the CARDS GAMES and the OBJECTS
GAMES), requiring collaboration between partners
to achieve a common goal. Participants sat in front
of laptops in a soundproof booth with a curtain be-
tween them, so that all communication would be ver-
bal. Each player played with two different partners
in two different sessions. On average, each session
took 45m 39s, totalling 9h 8m of dialogue for the
whole corpus. All interactions were recorded, digi-
tized, and downsampled to 16K.

The recordings were orthographically transcribed
and words were aligned by hand by trained annota-
tors in a ToBI (Beckman and Hirschberg, 1994) or-
thographic tier using Praat (Boersma and Weenink,
2001) to manipulate waveforms. The corpus con-
tains 2239 unique words, with 73,831 words in total.
Nearly all of the Objects Games part of the corpus
has been intonationally transcribed, using the ToBI
conventions. Pitch, energy and duration information
has been extracted for the entire corpus automati-
cally, using Praat.

In the Objects Games portion of the corpus each

player’s laptop displayed a gameboard containing 5–
7 objects (Figure 1). In each segment of the game,
both players saw the same set of objects at the same
position on each screen, except for one object (the
TARGET). For one player (the DESCRIBER), this tar-
get appeared in a random location among other ob-
jects on the screen. For the other player (the FOL-
LOWER), the target object appeared at the bottom of
the screen. The describer was instructed to describe
the position of the target object on their screen so
that the follower could move their representation of
the target to the same location on their own screen.
After the players had negotiated what they deter-
mined to be the best location, they were awarded
up to 100 points based on the actual match of the
target location on the two screens. The game pro-
ceeded in this way through 14 tasks, with describer
and follower alternating roles. On average, the Ob-
jects Games portion of each session took 21m 36s,
resulting in 4h 19m of dialogue for the twelve ses-
sions in the corpus. There are 1484 unique words in
this portion of the corpus, and 36,503 words in total.

Figure 1: Sample screen of the Objects Games.

Throughout the Objects Games, we noted that
subjects made frequent use of affirmative cue words,
such as okay, yeah, alright, which appeared to vary
in meaning. To investigate the discourse functions
of such words, we first asked three labelers to inde-
pendently classify all occurrences of alright, gotcha,
huh, mmhm, okay, right, uhhuh, yeah, yep, yes, yup
in the entire Games Corpus into one of ten cate-
gories, including acknowledgment/agreement, cue
beginning or ending discourse segment, backchan-
nel, and literal modifier. Labelers were asked to
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choose the most appropriate category for each to-
ken, or indicate with ‘?’ if they could not make a
decision. They were allowed to read the transcripts
and listen to the speech as they labeled.

For our perception experiment we chose materials
from the tokens of the most frequent of our labeled
affirmative words, okay, from the Objects Games,
which contained most of these tokens. Altogether,
there are 1151 instances of okay in this part of the
corpus; it is the third most frequent word, follow-
ing the, with 4565 instances, and of, with 1534.
At least two labelers agreed on the functional cat-
egory of 902 (78%) okay tokens. Of those tokens,
286 (32%) were classified as BACKCHANNEL, 255
(28%) as ACKNOWLEDGEMENT/AGREEMENT, 141
(16%) as CUE BEGINNING, 116 (13%) as PIVOT
BEGINNING (a function that combines Acknowl-
edgement/agreement and Cue beginning), and 104
(11%) as one of the other functions. We sampled
from tokens the annotators had labeled as Cue be-
ginning discourse segment, Backchannel, and Ac-
knowledgement/agreement, the most frequent cate-
gories in the corpus; we will refer to these below
simply as ‘C’, ‘B’, and ‘A’ classes, respectively.

3 Experiment

We next designed a perception experiment to ex-
amine naive subjects’ perception of these tokens of
okay. To obtain good coverage both of the (labeled)
A, B, and C classes, as well as the degrees of po-
tential ambiguity among these classes, we identified
9 categories of okay tokens to include in the experi-
ment: 3 classes (A, B, C) × 3 levels of labeler agree-
ment (UNANIMOUS, MAJORITY, NO-AGREEMENT).
‘Unanimous’ refers to tokens assigned to a particu-
lar class label by all 3 labelers, ‘majority’ to tokens
assigned to this class by 2 of the 3 labelers, and ‘no-
agreement’ to tokens assigned to this class by only
1 labeler. To decrease variability in the stimuli, we
selected tokens only from speakers who produced at
least one token for each of the 9 conditions. There
were 6 such speakers (3 female, 3 male), which gave
us a total of 54 tokens.

To see whether subjects’ classifications of okay
were dependent upon contextual information or not,
we prepared two versions of each token. The iso-
lated versions consisted of only the word okay ex-

tracted from the waveform. For the contextualized
versions, we extracted two full speaker turns for
each okay including the full turn1 containing the tar-
get okay plus the full turn of the previous speaker. In
the following three sample contexts, pauses are indi-
cated with ‘#’, and the target okays are underlined:
Speaker A: yeah # um there’s like there’s some space there’s
Speaker B: okay # I think I got it

Speaker A: but it’s gonna be below the onion
Speaker B: okay

Speaker A: okay # alright # I’ll try it # okay
Speaker B: okay the owl is blinking

The isolated okay tokens were single channel au-
dio files; the contextualized okay tokens were for-
matted so that each speaker was presented to sub-
jects on a different channel, with the speaker uttering
the target okay consistently on the same channel.

The perception study was divided into two parts.
In the first part, each subject was presented with
the 54 isolated okay tokens, in a different ran-
dom ordering for each subject. They were given
a forced choice task to classify them as A, B, or
C, with the corresponding labels (Acknowledge-
ment/agreement, Backchannel, and Cue beginning)
also presented in a random order for each token. In
the second part, the same subject was given 54 con-
textualized tokens, presented in a different random
order, and asked to make the same choice.

We recruited 20 (paid) subjects for the study, 10
female, and 10 male, all between the ages of 20 and
60. All subjects were native speakers of Standard
American English, except for one subject who was
born in Jamaica but a native speaker of English. All
subjects reported no hearing problems. Subjects per-
formed the study in a quiet lab using headphones to
listen to the tokens and indicating their classification
decisions in a GUI interface on a lab workstation.
They were given instructions on how to use the in-
terface before each of the two sections of the study.

For the study itself, for each token in the isolated
condition, subjects were shown a screen with the
three randomly ordered classes and a link to the to-
ken’s sound file. They could listen to the sound files
as many times as they wished but were instructed
not to be concerned with answering the questions

1We define a TURN as a maximal sequence of words spoken
by the same speaker during which the speaker holds the floor.
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“correctly”, but to answer with their immediate re-
sponse if possible. However, they were allowed to
change their selection as many times as they liked
before moving to the next screen. In the contex-
tualized condition, they were also shown an ortho-
graphic transcription of part of the contextualized to-
ken, to help them identify the target okay. The mean
duration of the first part of the study was 25 minutes,
and of the second part, 27 minutes.

4 Results

4.1 Subject ratings

The distribution of class labels in each experimental
condition is shown in Table 1. While this distribu-
tion roughly mirrors our selection of equal numbers
of tokens from each previously-labeled class, in both
parts of the study more tokens were labeled as A
(acknowledgment/agreement) than as B (backchan-
nel) or C (cue to topic beginning). This supports
the hypothesis that acknowledgment/agreement may
function as the default interpretation of okay.

Isolated Contextualized
A 426 (39%) 452 (42%)
B 324 (30%) 306 (28%)
C 330 (31%) 322 (30%)

Total 1080 (100%) 1080 (100%)

Table 1: Distribution of label classes in each
study condition.

We examined inter-subject agreement using
Fleiss’ κ measure of inter-rater agreement for mul-
tiple raters (Fleiss, 1971).2 Table 2 shows Fleiss’ κ

calculated for each individual label vs. the other two
labels and for all three labels, in both study condi-
tions. From this table we see that, while there is very
little overall agreement among subjects about how
to classify tokens in the isolated condition, agree-
ment is higher in the contextualized condition, with
a moderate agreement for class C (κ score of .497).
This suggests that context helps distinguish the cue
beginning discourse segment function more than the
other two functions of okay.

2 This measure of agreement above chance is interpreted as
follows: 0 = None, 0 - 0.2 = Small, 0.2 - 0.4 = Fair, 0.4 - 0.6 =
Moderate, 0.6 - 0.8 = Substantial, 0.8 - 1 = Almost perfect.

Isolated Contextualized
A vs. rest .089 .227
B vs. rest .118 .164
C vs. rest .157 .497

all .120 .293

Table 2: Fleiss’ κ for each label class
in each study condition.

Recall from Section 3 that the okay tokens were
chosen in equal numbers from three classes accord-
ing to the level of agreement of our three original
labelers (unanimous, majority, and no-agreement),
who had the full dialogue context to use in making
their decisions. Table 3 shows Fleiss’ κ measure
now grouped by amount of agreement of the orig-
inal labelers, again presented for each context con-
dition. We see here that the inter-subject agreement

Isolated Context. OL
no-agreement .085 .104 -

majority .092 .299 -
unanimous .158 .452 -

all .120 .293 .312

Table 3: Fleiss’ κ in each study condition, grouped
by agreement of the three original labelers (‘OL’).

also mirrors the agreement of the three original la-
belers. In both study conditions, tokens which the
original labelers agreed on also had the highest κ

scores, followed by tokens in the majority and no-
agreement classes, in that order. In all cases, tokens
which subjects heard in context showed more agree-
ment than those they heard in isolation.

The overall κ is small at .120 for the isolated con-
dition, and fair at .293 for the contextualized con-
dition. The three original labelers also achieved fair
agreement at .312.3 The similarity between the lat-
ter two κ scores suggests that the full context avail-
able to the original labelers and the limited context
presented to the experiment subjets offer compara-
ble amounts of information to disambiguate between
the three functions, although lack of any context
clearly affected subjects’ decisions. We conclude

3 For the calculation of this κ, we considered four label
classes: A, B, C, and a fourth class ‘other’ that comprises the
remaining 7 word functions mentioned in Section 2. In conse-
quence, these κ scores should be compared with caution.
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from these results that context is of considerable im-
portance in the interpretation of the word okay, al-
though even a very limited context appears to suf-
fice.

4.2 Representing subject judgments

In this section, we present a graphical representa-
tion of subject decisions, useful for interpreting, vi-
sualizing, and comparing the way our subjects in-
terpreted the different tokens of okay. For each in-
dividual okay in the study, we define an associated
three-dimensional VOTE VECTOR, whose compo-
nents are the proportions of subjects that classified
the token as A, B or C. For example, if a particu-
lar okay was labeled as A by 5 subjects, as B by 3,
and as C by 12, then its associated vote vector is
(

5

20
, 3

20
, 12

20

)

= (0.25, 0.15, 0.6). Following this def-
inition, the vectors A = (1, 0, 0), B = (0, 1, 0) and
C = (0, 0, 1) correspond to the ideal situations in
which all 20 subjects agreed on the label. We call
these vectors the UNANIMOUS-VOTE VECTORS.

Figure 2.i shows a two-dimensional representa-
tion that illustrates these definitions. The black dot

Figure 2: 2D representation of a vote vector (i)
and of the cluster centroids (ii).

represents the vote vector for our example okay,
the vertices of the triangle correspond to the three
unanimous-vote vectors (A, B and C), and the cross
in the center of the triangle represents the vote vector
of a three-way tie between the labelers

(

1

3
, 1

3
, 1

3

)

.
We are thus able to calculate the Euclidean dis-

tance of a vote vector to each of the unanimous-vote
vectors. The shortest of these distances corresponds
to the label assigned by the plurality4 of subjects.
Also, the smaller that distance, the higher the inter-
subject agreement for that particular token. For our

4Plurality is also known as simple majority: the candidate
who gets more votes than any other candidate is the winner.

example okay, the distances to A, B and C are 0.972,
1.070 and 0.495, respectively; its plurality label is C.

In our experiment, each okay has two associated
vote vectors, one for each context condition. To
illustrate the relationship between decisions in the
isolated and the contextualized conditions, we first
grouped each condition’s 54 vote vectors into three
clusters, according to their plurality label. Figure
2.ii shows the cluster centroids in a two-dimensional
representation of vote vectors. The filled dots corre-
spond to the cluster centroids of the isolated condi-
tion, and the empty dots, to the centroids of the con-
textualized condition. Table 4 shows the distances
in each condition from the cluster centroids (denoted
Ac, Bc, Cc) to the respective unanimous-vote vec-
tors (A, B, C), and also the distance between each
pair of cluster centroids.

Isolated Contextualized
d(Ac,A) .54 .44 (–18%)
d(Bc,B) .57 .52 (–10%)
d(Cc, C) .52 .28 (–47%)

d(Ac, Bc) .41 .48 (+17%)
d(Ac, Cc) .49 .86 (+75%)
d(Bc, Cc) .54 .91 (+69%)

Table 4: Distances from the cluster centroids (Ac,
Bc, Cc) to the unanimous-vote vectors (A, B, C)
and between cluster centroids, in each condition.

In the isolated condition, the three cluster cen-
troids are approximately equidistant from each other
—that is, the three word functions appear to be
equally confusable. In the contextualized condi-
tion, while Cc is further apart from the other two
centroids, the distance between Ac and Bc remains
practically the same. This suggests that, with some
context available, A and B tokens are still fairly con-
fusable, while both are more easily distinguished
from C tokens. We posit two possible explanations
for this: First, C is the only function for which
the speaker uttering the okay necessarily continues
speaking; thus the role of context in disambiguat-
ing seems quite clear. Second, both A and B have a
common element of ‘acknowledgement’ that might
affect inter-subject agreement.
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4.3 Features of the okay tokens

In this section, we describe a set of acoustic,
prosodic, phonetic and contextual features which
may help to explain why subjects interpret okay dif-
ferently. Acoustic features were extracted automat-
ically using Praat. Phonetic and prosodic features
were hand-labeled by expert annotators. Contextual
features were considered only in the analysis of the
contextualized condition, since they were not avail-
able to subjects in the isolated condition.

We examined a number of phonetic features to de-
termine whether these correlated with subject clas-
sifications. We first looked at the production of the
three phonemes in the target okay (/oU/, /k/, /eI/),
noting the following possible variations:

• /oU/: [], [A], [5], [O], [OU], [m], [N], [@], [@U].
• /k/: [G], [k], [kx], [q], [x].
• /eI/: [e], [eI], [E], [e@].

We also calculated the duration of each phone and
of the velar closure. Whether the target okay was at
least partially whispered or not, and whether there
was glottalization in the target okay were also noted.

For each target okay, we also examined its du-
ration and its maximum, mean and minimum pitch
and intensity, as well as the speaker-normalized ver-
sions of these values.5 We considered its pitch slope,
intensity slope, and stylized pitch slope, calculated
over the whole target okay, its last 50, 80 and 100
milliseconds, its second half, its second syllable, and
the second half of its second syllable, as well.

We used the ToBI labeling scheme (Pitrelli et al.,
1994) to label the prosody of the target okays and
their surrounding context.

• Pitch accent, if any, of the target okay (e.g., H*,
H+!H*, L*).

• Break index after the target okay (0-4).
• Phrase accent and boundary tone, if any, fol-

lowing the target okay (e.g., L-L%, !H-H%).

For contextualized tokens, we included several fea-
tures related to the exchange between the speaker
uttering the target okay (Speaker B) and the other
speaker (Speaker A).

5Speaker-normalized features were normalized by comput-
ing z-scores (z = (X −mean)/st.dev) for the feature, where
mean and st.dev were calculated from all okays uttered by the
speaker in the session.

• Number of words uttered by Speaker A in the
context, before and after the target okay. Same
for Speaker B.

• Latency of Speaker A before Speaker B’s turn.
• Duration of silence of Speaker B before and af-

ter the target okay.
• Duration of speech by Speaker B immediately

before and after the target okay and up to a si-
lence.

4.4 Cues to interpretation

We conducted a series of Pearson’s tests to look for
correlations between the proportion of subjects that
chose each label and the numeric features described
in Section 4.3, together with two-sided t-tests to find
whether such correlations differed significantly from
zero. Tables 5 and 6 show the significant results
(two-sided t-tests, p < 0.05) for the isolated and
contextualized conditions, respectively.

Acknowledgement/agreement r

duration of realization of /k/ –0.299

Backchannel r

stylized pitch slope over 2nd half 2nd syl. 0.752
pitch slope over 2nd half of 2nd syllable 0.409
speaker-normalized maximum intensity –0.372
pitch slope over last 80 ms 0.349
speaker-normalized mean intensity –0.327
duration of realization of /eI/ 0.278
word duration 0.277

Cue to discourse segment beginning r

stylized pitch slope over the whole word –0.380
pitch slope over the whole word –0.342
pitch slope over 2nd half of 2nd syllable –0.319

Table 5: Features correlated to the proportion of
votes for each label. Isolated condition.

Table 5 shows that in the isolated condition, sub-
jects tended to classify tokens of okay as Acknowl-
edgment/agreement (A) which had a longer realiza-
tion of the /k/ phoneme. They tended to classify
tokens as Backchannels (B) which had a lower in-
tensity, a longer duration, a longer realization of the
/eI/ phoneme, and a final rising pitch. They tended
to classify tokens as C (cue to topic beginning) that
ended with falling pitch.
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Acknowledgement/agreement r

latency of Spkr A before Spkr B’s turn –0.528
duration of silence by Spkr B before okay –0.404
number of words by Spkr B after okay –0.277

Backchannel r

pitch slope over 2nd half of 2nd syllable 0.520
pitch slope over last 80 ms 0.455
number of words by Spkr A before okay 0.451
number of words by Spkr B after okay –0.433
duration of speech by Spkr B after okay –0.413
latency of Spkr A before Spkr B’s turn –0.385
duration of silence by Spkr B before okay 0.295
intensity slope over 2nd syllable –0.279

Cue to discourse segment beginning r

latency of Spkr A before Spkr B’s turn 0.645
number of words by Spkr B after okay 0.481
number of words by Spkr A before okay –0.426
pitch slope over 2nd half of 2nd syllable –0.385
pitch slope over last 80 ms –0.377
duration of speech by Spkr B after okay 0.338

Table 6: Features correlated to the proportion of
votes for each label. Contextualized condition.

In the contextualized condition, we find very dif-
ferent correlations. Table 6 shows that nearly all of
the strong correlations in this condition involve con-
textual features, such as the latency before Speaker
B’s turn, or the number of words by each speaker be-
fore and after the target okay. Notably, only one of
the features that show strong correlations in the iso-
lated condition shows the same strong correlation in
the contextualized condition: the pitch slope at the
end of the word. In both conditions subjects tended
to label tokens with a final rising pitch contour as
B, and tokens with a final falling pitch contour as C.
This supports (Hockey, 1993)’s findings on the role
of pitch contour in disambiguating okay.

We next conducted a series of two-sided Fisher’s
exact tests to find correlations between subjects’ la-
belings of okay and the nominal features described
in Section 4.3. We found significant associations be-
tween the realization of the /oU/ phoneme and the
okay function in the isolated condition (p < 0.005).
Table 7 shows that, in particular, [m] seems to be the
preferred realization for B okays, while [@] seems to
be the preferred one for A okays, and [OU] and [O]
for A and C okays.

? [A] [5] [OU] [O] [N] [@U] [@] [] [m]
A 0 0 5 6 4 0 0 8 0 0
B 2 0 4 1 0 1 0 1 1 5
C 1 1 2 3 4 0 1 3 0 0

Table 7: Realization of the /oU/ phoneme, grouped
by subject plurality label. Isolated condition only.

Notably, we did not find such significant asso-
ciations in the contextualized condition. We did
find significant correlations in both conditions, how-
ever, between okay classifications and the type of
phrase accent and boundary tone following the target
(Fisher’s Exact Test, p < 0.05 for the isolated con-
dition, p < 0.005 for the contextualized condition).
Table 8 shows that L-L% tends to be associated with
A and C classes, H-H% with B classes, and L-H%
with A and B classes. In this case, such correlations
are present in the isolated condition, and sustained
or enhanced in the contextualized condition.

H-H% H-L% L-H% L-L% other

Isolated
A 0 2 4 8 9
B 3 3 1 5 3
C 1 1 0 8 5

Context.
A 0 2 3 10 10
B 4 3 2 1 2
C 0 1 0 10 5

Table 8: Phrase accent and boundary tone, grouped
by subject plurality label.

Summing up, when subjects listened to the okay
tokens in isolation, with only their acoustic, prosodic
and phonetic properties available, a few features
seem to strongly correlate with the perception of
word function; for example, maximum intensity,
word duration, and realizing the /oU/ phoneme as
[m] tend to be associated with backchannel, while
the duration of the realization of the /k/ phoneme,
and realizing the /oU/ phoneme as [@] tend to be as-
sociated with acknowledgment/agreement.

In the second part of the study, when subjects
listened to contextualized versions of the same to-
kens of okay, most of the strong correlations of word
function with acoustic, prosodic and phonetic fea-
tures were replaced by correlations with contextual
features, like latency and turn duration. In other
words, these results suggest that contextual features
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might override the effect of most acoustic, prosodic
and phonetic features of okay. There is nonethe-
less one notable exception: word final intonation —
captured by the pitch slope and the ToBI labels for
phrase accent and boundary tone — seems to play a
central role in the interpretation of both isolated and
contextualized okays.

5 Conclusion and future work

In this study, we have presented evidence of differ-
ences in the interpretation of the function of isolated
and contextualized okays. We have shown that word
final intonation strongly correlates with the subjects’
classification of okays in both conditions. Addition-
ally, the higher degree of inter-subject agreement in
the contextualized condition, along with the strong
correlations found for contextualized features, sug-
gests that context, when available, plays a central
role in the disambiguation of okay. (Note, how-
ever, that further research is needed in order to assess
whether these features are indeed, in fact, perceptu-
ally important, both individually and combined.)

We have also presented results suggesting that ac-
knowledgment/agreement acts as a default function
for both isolated an contextualized okays. Further-
more, while that function remains confusable with
backchannel in both conditions, the availability of
some context helps in distinguishing those two func-
tions from cue to topic beginning.

These results are relevant to spoken dialogue sys-
tems in suggesting how systems can convey the cue
word okay with the intended meaning and can inter-
pret users’ productions of okay correctly. How these
results extend to other cue words and to other word
functions remains an open question.

As future work, we will extend this study to in-
clude the over 5800 occurrences of alright, gotcha,
huh, mmhm, okay, right, uhhuh, yeah, yep, yes, yup
in the entire Games Corpus, and all 10 discourse
functions mentioned in Section 2, as annotated by
our three original labelers. Since we have observed
considerable differences in conversation style in the
two parts of the corpus (the Objects Games elicited
more ‘dynamic’ conversations, with more overlaps
and interruptions than the Cards Games), we will
compare cue phrase usage in these two settings. Fi-
nally, we are also interested in examining speaker

entrainment in cue phrase usage, or how subjects
adapt their choice and production of cue phrases to
their conversation partner’s.
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Abstract

Task-solving in dialogue depends on the lin-
guistic alignment of the interlocutors, which
Pickering & Garrod (2004) have suggested
to be based on mechanistic repetition ef-
fects. In this paper, we seek confirmation
of this hypothesis by looking at repetition
in corpora, and whether repetition is cor-
related with task success. We show that
the relevant repetition tendency is based on
slow adaptation rather than short-term prim-
ing and demonstrate that lexical and syntac-
tic repetition is a reliable predictor of task
success given the first five minutes of a task-
oriented dialogue.

1 Introduction

While humans are remarkably efficient, flexible and
reliable communicators, we are far from perfect.
Our dialogues differ in how successfully informa-
tion is conveyed. In task-oriented dialogue, where
the interlocutors are communicating to solve a prob-
lem, task success is a crucial indicator of the success
of the communication.

An automatic measure of task success would be
useful for evaluating conversations among humans,
e.g., for evaluating agents in a call center. In human-
computer dialogues, predicting the task success after
just a first few turns of the conversation could avoid
disappointment: if the conversation isn’t going well,
a caller may be passed on to a human operator, or
the system may switch dialogue strategies. As a first
step, we focus on human-human dialogue, since cur-

rent spoken dialogue systems do not yet yield long,
syntactically complex conversations.

In this paper, we use syntactic and lexical features
to predict task success in an environment where we
assume no speaker model, no semantic information
and no information typical for a human-computer
dialogue system, e.g., ASR confidence. The fea-
tures we use are based on a psychological theory,
linking alignment between dialogue participants to
low-level syntactic priming. An examination of this
priming reveals differences between short-term and
long-term effects.

1.1 Repetition supports dialogue

In their Interactive Alignment Model(IAM), Pick-
ering and Garrod (2004) suggest that dialogue be-
tween humans is greatly aided byaligning repre-
sentations on several linguistic and conceptual lev-
els. This effect is assumed to be driven by a cas-
cade of linguistic priming effects, where interlocu-
tors tend to re-use lexical, syntactic and other lin-
guistic structures after their introduction. Such re-
use leads speakers to agree on a common situa-
tion model. Several studies have shown that speak-
ers copy their interlocutor’s syntax (Branigan et al.,
1999). This effect is usually referred to asstructural
(or: syntactic) priming. These persistence effects
are inter-related, as lexical repetition implies pref-
erences for syntactic choices, and syntactic choices
lead to preferred semantic interpretations. Without
demanding additional cognitive resources, the ef-
fects form a causal chain that will benefit the inter-
locutor’s purposes. Or, at the very least, it will be
easier for them to repeat linguistic choices than to
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actively discuss their terminology and keep track of
each other’s current knowledge of the situation in
order to come to a mutual understanding.

1.2 Structural priming

The repetition effect at the center of this paper, prim-
ing, is defined as a tendency to repeat linguistic de-
cisions. Priming has been shown to affect language
production and, to a lesser extent, comprehension, at
different levels of linguistic analysis. This tendency
may show up in various ways, for instance in the
case of lexical priming as a shorter response time in
lexical decision making tasks, or as a preference for
one syntactic construction over an alternative one in
syntactic priming (Bock, 1986). In an experimental
study (Branigan et al., 1999), subjects were primed
by completing either sentence (1a) or (1b):

1a.The racing driver showed the torn overall...
1b. The racing driver showed the helpful mechanic...

Sentence (1a) was to be completed with a prepo-
sitional object (“to the helpful mechanic”), while
(1b) required a double object construction (“the torn
overall”). Subsequently, subjects were allowed to
freely complete a sentence such as the following
one, describing a picture they were shown:

2. The patient showed ...

Subjects were more likely to complete (2) with a
double-object construction when primed with (1b),
and with a prepositional object construction when
primed with (1a).

In a previous corpus-study, using transcriptions
of spontaneous, task-oriented and non-task-oriented
dialogue, utterances were annotated with syntactic
trees, which we then used to determine the phrase-
structure rules that licensed production (and com-
prehension) of the utterances (Reitter et al., 2006b).
For each rule, the time of its occurrence was noted,
e.g. we noted

3. 117.9s NP→ AT AP NN a fenced meadow
4. 125.5s NP→ AT AP NN the abandoned cottage

In this study, we then found that the re-occurrence
of a rule (as in 4) was correlated with the temporal
distance to the first occurrence (3), e.g.,7.6 seconds.
The shorter the distance between prime (3) and tar-
get (4), the more likely were rules to re-occur.

In a conversation, priming may lead a speaker
to choose a verb over a synonym because their in-
terlocutor has used it a few seconds before. This,
in turn, will increase the likelihood of the struc-
tural form of the arguments in the governed verbal
phrase–simply because lexical items have their pref-
erences for particular syntactic structures, but also
because structural priming may be stronger if lexi-
cal items are repeated (lexical boost, Pickering and
Branigan (1998)). Additionally, the structural prim-
ing effects introduced above will make a previously
observed or produced syntactic structure more likely
to be re-used. This chain reaction leads interlocu-
tors in dialogue to reach a common situation model.
Note that the IAM, in which interlocutors automati-
cally and cheaply build a common representation of
common knowledge, is at odds with views that af-
ford each dialogue participant an explicit and sepa-
rate representation of their interlocutor’s knowledge.

The connection between linguistic persistence or
priming effects and the success of dialogue is cru-
cial for the IAM. The predictions arising from this,
however, have eluded testing so far. In our previous
study (Reitter et al., 2006b), we found more syn-
tactic priming in the task-oriented dialogues of the
Map Task corpus than in the spontaneous conversa-
tion collected in the Switchboard corpus. However,
we compared priming effects across two datasets,
where participants and conversation topics differed
greatly. Switchboard contains spontaneous conver-
sation over the telephone, while the task-oriented
Map Task corpus was recorded with interlocutors
co-present. While the result (more priming in
task-oriented dialogue) supported the predictions of
IAM, cognitive load effects could not be distin-
guished from priming. In the current study, we ex-
amine structural repetition in task-oriented dialogue
only and focus on an extrinsic measure, namely task
success.

2 Related Work

Prior work on predicting task success has been
done in the context of human-computer spoken di-
alogue systems. Features such as recognition er-
ror rates, natural language understanding confidence
and context shifts, confirmations and re-prompts (di-
alogue management) have been used classify dia-
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logues intosuccessfulandproblematicones (Walker
et al., 2000). With these automatically obtainable
features, an accuracy of 79% can be achieved given
the first two turns of “How may I help you?” di-
alogues, where callers are supposed to be routed
given a short statement from them about what they
would like to do. From the whole interaction (very
rarely more than five turns), 87% accuracy can be
achieved (36% of dialogues had been hand-labeled
“problematic”). However, the most predictive fea-
tures, which related to automatic speech recognition
errors, are neither available in the human-human di-
alogue we are concerned with, nor are they likely to
be the cause of communication problems there.

Moreover, failures in the Map Task dialogues are
due to the actual goings-on when two interlocutors
engage in collaborative problem-solving to jointly
reach an understanding. In such dialogues, inter-
locutors work over a period of about half an hour.
To predict their degree of success, we will leverage
the phenomenon ofpersistence, or priming.

In previous work, two paradigms have seen exten-
sive use to measure repetition and priming effects.
Experimental studiesexpose subjects to a particular
syntactic construction, either by having them pro-
duce the construction by completing a sample sen-
tence, or by having an experimenter or confederate
interlocutor use the construction. Then, subjects are
asked to describe a picture or continue with a given
task, eliciting the target construction or a compet-
ing, semantically equivalent alternative. The analy-
sis then shows an effect of the controlled condition
on the subject’s use of the target construction.

Observational studies use naturalistic data, such
as text and dialogue found in corpora. Here, the
prime construction is not controlled–but again, a
correlation between primes and targets is sought.
Specific competing constructions such as ac-
tive/passive, verbal particle placement orthat-
deletion in English are often the object of study
(Szmrecsanyi, 2005; Gries, 2005; Dubey et al.,
2005; J̈ager, 2006), but the effect can also be gen-
eralized to syntactic phrase-structure rules or com-
binatorial categories (Reitter et al., 2006a).

Church (2000) proposes adaptive language mod-
els to account for lexical adaptation. Each document
is split into prime and target halves. Then, for se-

lected wordsw, the model estimates

P (+adapt) = P (w ∈ target|w ∈ prime)

P (+adapt) is higher thanPprior = P (w ∈
target), which is not surprising, since texts are usu-
ally about a limited number of topics.

This method looks at repetition over whole doc-
ument halves, independently of decay. In this pa-
per, we apply the same technique to syntactic rules,
where we expect to estimate syntactic priming ef-
fects of the long-term variety.

3 Repetition-based Success Prediction

3.1 The Success Prediction Task

In the following, we define two variants of the task
and then describe a model that uses repetition effects
to predict success.

Task 1: Success is estimatedwhen an entire di-
alogue is given. All linguistic and non-linguistic
information available may be used. This task re-
flects post-hoc analysis applications, where dia-
logues need to be evaluated without the actual suc-
cess measure being available for each dialogue. This
covers cases where, e.g., it is unclear whether a call
center agent or an automated system actually re-
sponded to the call satisfactorily.

Task 2:Success is predictedwhen just the initial
5-minute portion of the dialogue is available. A dia-
logue system’s or a call center agent’s strategy may
be influenced depending on such a prediction.

3.2 Method

To address the tasks described in the previous Sec-
tion, we train support vector machines (SVM) to
predict the task success score of a dialogue from
lexical and syntactic repetition information accumu-
lated up to a specified point in time in the dialogue.

Data

The HCRC Map Task corpus (Anderson et al.,
1991) contains 128 dialogues between subjects, who
were given two slightly different maps depicting the
same (imaginary) landscape. One subject gives di-
rections for a predefined route to another subject,
who follows them and draws a route on their map.

The spoken interactions were recorded, tran-
scribed and syntactically annotated with phrase-
structure grammar.
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The Map Task provides us with a precise measure
of success, namely the deviation of the predefined
and followed route. Success can be quantified by
computing the inverse deviation between subjects’
paths. Both subjects in each trial were asked to draw
”their” respective route on the map that they were
given. The deviation between the respective paths
drawn by interlocutors was then determined as the
area covered in between the paths (PATHDEV).

Features

Repetition is measured on a lexical and a syntactic
level. To do so, we identify all constituents in the
utterances as per phrase-structure analysis.[Go [to
[the [[white house] [on [the right]]]]]] would yield
11 constituents. Each constituent is licensed by a
syntactic rule, for instanceVP → V PP for the top-
most constituent in the above example.

For each constituent, we check whether it is a lex-
ical or syntactic repetition, i.e. if the same words
occurred before, or if the licensing rule has occurred
before in the same dialogue. If so, we increment
counters for lexical and/or syntactic repetitions, and
increase a further counter for string repetition by the
length of the phrase (in characters). The latter vari-
able accounts for the repetition of long phrases.

We include a data point for each 10-second inter-
val of the dialogue, with features reporting the lexi-
cal (LEXREP), syntactic (SYNREP) and character-
based (CHARREP) repetitions up to that point in
time. A time stamp and the total numbers of con-
stituents and characters are also included (LENGTH).
This way, the model may work with repetition pro-
portions rather than the absolute counts.

We train a support vector machine for regression
with a radial basis function kernel (γ = 5), using the
features as described above and the PATHDEV score
as output.

3.3 Evaluation

We cast the task as a regression problem. To pre-
dict a dialogue’s score, we apply the SVM to its data
points. The mean outcome is the estimated score.

A suitable evaluation measure, the classicalr2,
indicates the proportion of the variance in the ac-
tual task success score that can be predicted by
the model. All results reported here are produced
from 10-fold cross-validated 90% training / 10% test

Task 1 Task 2
ALL Features 0.17 0.14
ALL w/o SYNREP 0.15 0.06
ALL w/o LEX/CHARREP 0.09 0.07
LENGTH ONLY 0.09 n/a
Baseline 0.01 0.01

Table 1: Portion of variance explained (r2)

splits of the dialogues. No full dialogue was in-
cluded in both test and training sets.

Task 1 was evaluated with all data, the Task 2
model was trained and tested on data points sampled
from the first 5 minutes of the dialogue.

For Task 1 (full dialogues), the results (Table 1)
indicate that ALL repetition features together with
the LENGTH of the conversation, account for about
17% of the total score variance. The repetition fea-
tures improve on the performance achieved from di-
alogue length alone (about 9%).

For the more difficult Task 2, ALL features to-
gether achieve 14% of the variance. (Note that
LENGTH is not available.) When the syntactic repe-
tition feature is taken out and only lexical (LEXREP)
and character repetition (CHARREP) are used, we
achieve 6% in explained variance.

The baseline is implemented as a model that al-
ways estimates the mean score. It should, theoreti-
cally, be close to0.

3.4 Discussion

Obviously, linguistic information alone will not ex-
plain the majority of the task-solving abilities. Apart
from subject-related factors, communicative strate-
gies will play a role.

However, linguistic repetition serves as a good
predictor of how well interlocutors will complete
their joint task. The features used are relatively sim-
ple: provided there is some syntactic annotation,
rule repetition can easily be detected. Even with-
out syntactic information, lexical repetition already
goes a long way.

But what kind of repetition is it that plays a role in
task-oriented dialogue? Leaving out features is not
an ideal method to quantify their influence–in par-
ticular, where features inter-correlate. The contribu-
tion of syntactic repetition is still unclear from the

811



present results: it acts as a useful predictor only over
the course of the whole dialogues, but not within a
5-minute time span, where the SVM cannot incor-
porate its informational content.

We will therefore turn to a more detailed analysis
of structural repetition, which should help us draw
conclusions relating to the psycholinguistics of dia-
logue.

4 Long term and short term priming

In the following, we will examine syntactic (struc-
tural) priming as one of the driving forces behind
alignment. We choose syntactic over lexical priming
for two reasons. Lexical repetition due to priming is
difficult to distinguish from repetition that is due to
interlocutors attending to a particular topic of con-
versation, which, in coherent dialogue, means that
topics are clustered. Lexical choice reflects those
topics, hence we expect clusters of particular termi-
nology. Secondly: the maps used to collect the dia-
logues in the Map Task corpus contained landmarks
with labels. It is only natural (even if by means
to cross-modal priming) that speakers will identify
landmarks using the labels and show little variability
in lexical choice. We will measure repetition of syn-
tactic rules, whereby word-by-word repetition (topi-
cality effects, parroting) is explicitly excluded.

For syntactic priming1, two repetition effects
have been identified. Classical priming effects are
strong: around 10% for syntactic rules (Reitter et al.,
2006b). However, they decay quickly (Branigan
et al., 1999) and reach a low plateau after a few sec-
onds, which likens to the effect to semantic (similar-
ity) priming. What complicates matters is that there
is also a different, long-term adaptation effect that is
also commonly called (repetition) priming.

Adaptationhas been shown to last longer, from
minutes (Bock and Griffin, 2000) to several days.
Lexical boost interactions, where the lexical rep-
etition of material within the repeated structure
strengthens structural priming, have been observed
for short-term priming, but not for long-term prim-
ing trials where material intervened between prime
and target utterances (Konopka and Bock, 2005).
Thus, short- and long-term adaptation effects may

1in production and comprehension, which we will not dis-
tinguish further for space reasons. Our data are (off-line) pro-
duction data.

well be due to separate cognitive processes, as re-
cently argued by (Ferreira and Bock, 2006). Section
5 deals with decay-based short-term priming, Sec-
tion 6 with long-term adaptation.

Pickering and Garrod (2004) do not make the type
of priming supporting alignment explicit. Should
we find differences in the way task success interacts
with different kinds of repetition effects, then this
would be a good indication about what effect sup-
ports IAM. More concretely, we could say whether
alignment is due to the automatic, classicalpriming
effect, or whether it is based on a long-term effect
that is possibly closer to implicit learning (Chang
et al., 2006).

5 Short-term priming

In this section, we attempt to detect differences in
the strength of short-term priming in successful and
less successful dialogues. To do so, we use the mea-
sure of priming strength established by Reitter et al.
(2006b), which then allows us to test whether prim-
ing interacts with task success. Under the assump-
tions of IAM we would expect successful dialogues
to show more priming than unsuccessful ones.

Obviously, difficulties with the task at hand may
be due to a range of problems that the subjects may
have, linguistic and otherwise. But given that the di-
alogues contain variable levels of syntactic priming,
one would expect that this has at least some influ-
ence on the outcome of the task.

5.1 Method: Logistic Regression

We used mixed-effects regression models that pre-
dict a binary outcome (repetition) using a number of
discrete and continuous factors.2

As a first step, our modeling effort tries to estab-
lish a priming effect. To do so, we can make use
of the fact that the priming effect decays over time.
How strong that decay is gives us an indication of
how much repetition probability we see shortly after
the stimulus (prime) compared to the probability of
chance repetition–without ever explicitly calculating
such a prior.

Thus we define the strength of priming as the de-
cay rate of repetition probability, from shortly after

2We use Generalized Linear Mixed Effects models fitted us-
ing GlmmPQL in the MASS R library.
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the prime to 15 seconds afterward (predictor: DIST).
Thus, we take several samples at varying distances
(d), looking at cases of structural repetition, and
cases where structure has not been repeated.

In the syntactic context, syntactic rules such as VP
→ VP PP reflect syntactic decisions. Priming of a

syntactic construction shows up in the tendency to
repeat such rules in different lexical contexts. Thus,
we examine whether syntactic rules have been re-
peated at a distanced. For each syntactic rule that
occurs at timet1, we check a one-second time pe-
riod [t1 − d − 0.5, t1 − d + 0.5] for an occurrence
of the same rule, which would constitute a prime.
Thus, the model will be able to implicitly estimate
the probability of repetition.

Generalized Linear Regression Models(GLMs)
can then model the decay by estimating the rela-
tionship betweend and the probability of rule repe-
tition. The model is designed to predict whether rep-
etition will occur, or, more precisely, whether there
is a prime for a given target (priming). Under a no-
priming null-hypothesis, we would assume that the
priming probability is independent ofd. If there is
priming, however, increasingd will negatively influ-
ence the priming probability (decay). So, we expect
a model parameter (DIST) for d that is reliably neg-
ative, and lower, if there is more priming.

With this method, we draw multiple samples from
the same utterance–for differentd, but also for dif-
ferent syntactic rules occurring in those utterances.
Because these samples are inter-dependent, we use
a grouping variable indicating the source utterance.
Because the dataset is sparse with respect to PRIME,
balanced sampling is needed to ensure an equal
number of data points of priming and non-priming
cases (PRIME) is included.

This method has been previously used to confirm
priming effects for the general case of syntactic rules
by Reitter et al. (2006b). Additionally, the GLM can
take into account categorical and continuous covari-
ates that may interact with the priming effect. In
the present experiment, we use an interaction term
to model the effect of task success.3 The crucial in-
teraction, in our case, is task success: PATHDEV is
the deviation of the paths that the interlocutors drew,

3We use theA∗B operator in the model formulas to indicate
the inclusion of main effects of the featuresA andB and their
interactionsA : B.

normalized to the range [0,1]. The core model is
thus PRIME ∼ log(DIST) ∗ PATHDEV.

If IAM is correct, we would expect that the devia-
tion of paths, which indicates negative task success,
will negatively correlate with the priming effect.

5.2 Results

Short-term priming reliably correlated (negatively)
with the distance, hence we see a decay and priming
effect (DIST, b = −0.151, p < 0.0001, as shown in
previous work).

Notably, path deviation and short-term priming
did not correlate. The model showed was no such
interaction (DIST:PATHDEV, p = 0.91).

We also tested for an interaction with an ad-
ditional factor indicating whether prime and tar-
get were uttered by the same or a different
speaker (comprehension-production vs. production-
production priming). No such interaction ap-
proached reliability (log(DIST):PATHDEV:ROLE,
p = 0.60).

We also tested whether priming changes over time
over the course of each dialogue. It does not. There
were no reliable interaction effects of centered
prime/target times (log(DIST):log(STARTTIME),
p = 0.75, log(DIST):PATHDEV:log(STARTTIME),
p = 0.63). Reducing the model by removing
unreliable interactions did not yield any reliable
effects.

5.3 Discussion

We have shown that while there is a clear priming
effect in the short term, the size of this priming effect
does not correlate with task success. There is no
reliable interaction with success.

Does this indicate that there is no strong func-
tional component to priming in the dialogue con-
text? There may still be an influence of cognitive
load due to speakers working on the task, or an over-
all disposition for higher priming in task-oriented di-
alogue: Reitter et al. (2006b) point at stronger prim-
ing in such situations. But our results here are diffi-
cult to reconcile with the model suggested by Picker-
ing and Garrod (2004), if we take short-term priming
as the driving force behind IAM.

Short-term priming decays within a few seconds.
Thus, to what extent could syntactic priming help in-
terlocutors align their situation models? In the Map
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Task experiments, interlocutors need to refer to land-
marks regularly–but not every few seconds. It would
be sensible to expect longer-term adaptation (within
minutes) to drive dialogue success.

6 Long-term adapation

Long-term adaptation is a form of priming that
occurs over minutes and could, therefore, support
linguistic and situation model alignment in task-
oriented dialogue. IAM and the success of the
SVM based method could be based on such an ef-
fect instead of short-term priming. Analogous to the
the previous experiment, we hypothesize that more
adaptation relates to more task success.

6.1 Method

After the initial few seconds, structural repetition
shows little decay, but can be demonstrated even
minutes or longer after the stimulus. To measure this
type of adapation, we need a different strategy to es-
timate the size of this effect.

While short-term priming can be pin-pointed us-
ing the characteristic decay, for long-term priming
we need to inspect whole dialogues and construct
and contrast dialogues where priming is possible and
ones where it is not. Factor SAMEDOC distinguishes
the two situations: 1) Priming can happen in con-
tiguous dialogues. We treat the first half of the dia-
logue as priming period, and the rule instances in the
second half as targets. 2) The control case is when
priming cannot have taken place, i.e., between unre-
lated dialogues. Prime period and targets stem from
separate randomly sampled dialogue halves that al-
ways come from different dialogues.

Thus, our model (PRIME ∼ SAMEDOC ∗
PATHDEV) estimates the influence of priming on
rule us. From a Bayesian perspective, we would
say that the second kind of data (non-priming) al-
low the model to estimate a prior for rule repetitions.
The goal is now to establish a correlation between
SAMEDOC and the existence of repetition. If and
only if there is long-term adapation would we ex-
pect such a correlation.

Analogous to the short-term priming model, we
define repetition as the occurrence of a prime within
the first document half (PRIME), and sample rule in-
stances from the second document half. To exclude
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Figure 1: Relative rule repetition probability
(chance repetition exluded) over (neg.) task success.

short-term priming effects, we drop a 10-second por-
tion in the middle of the dialogues.

Task success is inverse path deviation PATHDEV

as before, which should, under IAM assumptions,
interact with the effect estimated for SAMEDOC.

6.2 Results

Long-term repetition showed a positive priming ef-
fect (SAMEDOC, b = 3.303, p < 0.0001). This
generalizes previous experimental priming results in
long-term priming.

Long-term-repetition did not inter-
act with (normalized) rule frequency
(SAMEDOC:log(RULEFREQ, b = −0.044, p =
0.35). The interaction was removed for all other
parameters reported.4

The effect interacted reliably with the path
deviation scores (SAMEDOC:PATHDEV, b =
−0.624, p < 0.05). We find a reliable correlation
of task success and syntactic priming. Stronger path
deviations relate to weaker priming.

6.3 Discussion

The more priming we see, the better subjects per-
form at synchronizing their routes on the maps. This
is exactly what one would expect under the assump-

4Such an interaction also could not be found in a reduced
model with only SAMEDOC and RULEFREQ.
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tion of IAM. Also, there is no evidence for stronger
long-term adaptation of rare rules, which may point
out a qualitative difference to short-term priming.

Of course, this correlation does not necessarily in-
dicate a causal relationship. However, participants
in Map Task did not receive an explicit indication
about whether they were on the “right track”. Mis-
takes, such as passing a landmark on its East and
not on the West side, were made and went unno-
ticed. Thus, it is not very likely that task success
caused alignment to improve at large. We suspect
such a possibility, however, for very unsuccessful
dialogues. A closer look at the correlation (Figure
1) reveals that while adaptation indeed decreases as
task success decreases, adaptation increased again
for some of the least successful dialogues. It is pos-
sible that here, miscoordination became apparent to
the participants, who then tried to switch strategies.
Or, simply put: too much alignment (and too little
risk-taking) is unhelpful. Further, qualitative, work
needs to be done to investigate this hypothesis.

From an applied perspective, the correlation
shows that of the repetition effects included in our
task-success prediction model, it is long-term syn-
tactic adaptation as opposed to the more automatic
short-term priming effect that contributes to predic-
tion accuracy. We take this as an indication to in-
clude adaptation rather than just priming in a model
of alignment in dialogue.

7 Conclusion

Task success in human-human dialogue is
predictable–the more successfully speakers collab-
orate, the more they show linguistic adaptation.
This confirms our initial hypothesis of IAM. In the
applied model, knowledge of lexical and syntactic
repetition helps to determine task success even after
just a few minutes of the conversation.

We suggested two application-oriented tasks (es-
timating and predicting task success) and an ap-
proach to address them. They now provide an op-
portunity to explore and exploit other linguistic and
extra-linguistic parameters.

The second contribution is a closer inspection of
structural repetition, which showed that it is long-
term adaptation that varies with task success, while
short-term priming appears largely autonomous.

Long-term adaptation may thus be a strategy that
aids dialogue partners in aligning their language and
their situation models.
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Abstract

We present an implemented system for the
resolution of it, this, and that in tran-
scribed multi-party dialog. The system han-
dles NP-anaphoric as well as discourse-
deictic anaphors, i.e. pronouns with VP an-
tecedents. Selectional preferences for NP or
VP antecedents are determined on the basis
of corpus counts. Our results show that the
system performs significantly better than a
recency-based baseline.

1 Introduction

This paper describes a fully automatic system for
resolving the pronouns it, this, and that in unre-
stricted multi-party dialog. The system processes
manual transcriptions from the ICSI Meeting Cor-
pus (Janin et al., 2003). The following is a short
fragment from one of these transcripts. The letters
FN in the speaker tag mean that the speaker is a fe-
male non-native speaker of English. The brackets
and subscript numbers are not part of the original
transcript.

FN083: Maybe you can also read through the - all the text
which is on the web pages cuz I’d like to change the text
a bit cuz sometimes [it]1’s too long, sometimes [it]2’s too
short, inbreath maybe the English is not that good, so in-
breath um, but anyways - So I tried to do [this]3 today
and if you could do [it]4 afterwards [it]5 would be really
nice cuz I’m quite sure that I can’t find every, like, ortho-
graphic mistake in [it]6 or something. (Bns003)

For each of the six 3rd-person pronouns in the exam-
ple, the task is to automatically identify its referent,
i.e. the entity (if any) to which the speaker makes

reference. Once a referent has been identified, the
pronoun is resolved by linking it to one of its an-
tecedents, i.e. one of the referent’s earlier mentions.
For humans, identification of a pronoun’s referent
is often easy: it1, it2, and it6 are probably used to
refer to the text on the web pages, while it4 is prob-
ably used to refer to reading this text. Humans also
have no problem determining that it5 is not a normal
pronoun at all. In other cases, resolving a pronoun
is difficult even for humans: this3 could be used to
refer to either reading or changing the text on the
web pages. The pronoun is ambiguous because evi-
dence for more than one interpretation can be found.
Ambiguous pronouns are common in spoken dialog
(Poesio & Artstein, 2005), a fact that has to be taken
into account when building a spoken dialog pronoun
resolution system. Our system is intended as a com-
ponent in an extractive dialog summarization sys-
tem. There are several ways in which coreference in-
formation can be integrated into extractive summa-
rization. Kabadjov et al. (2005) e.g. obtained their
best extraction results by specifying for each sen-
tence whether it contained a mention of a particular
anaphoric chain. Apart from improving the extrac-
tion itself, coreference information can also be used
to substitute anaphors with their antecedents, thus
improving the readability of a summary by minimiz-
ing the number of dangling anaphors, i.e. anaphors
whose antecedents occur in utterances that are not
part of the summary. The paper is structured as fol-
lows: Section 2 outlines the most important chal-
lenges and the state of the art in spoken dialog pro-
noun resolution. Section 3 describes our annotation
experiments, and Section 4 describes the automatic
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dialog preprocessing. Resolution experiments and
results can be found in Section 5.

2 Pronoun Resolution in Spoken Dialog

Spoken language poses some challenges for pro-
noun resolution. Some of these arise from nonrefer-
ential resp. nonresolvable pronouns, which are im-
portant to identify because failure to do so can harm
pronoun resolution precision. One common type
of nonreferential pronoun is pleonastic it. Another
cause of nonreferentiality that only applies to spoken
language is that the pronoun is discarded, i.e. it is
part of an incomplete or abandoned utterance. Dis-
carded pronouns occur in utterances that are aban-
doned altogether.

ME010: Yeah. Yeah. No, no. There was a whole co- There
was a little contract signed. It was - Yeah. (Bed017)

If the utterance contains a speech repair (Heeman &
Allen, 1999), a pronoun in the reparandum part is
also treated as discarded because it is not part of the
final utterance.

ME10: That’s - that’s - so that’s a - that’s a very good question,
then - now that it - I understand it. (Bro004)

In the corpus of task-oriented TRAINS dialogs de-
scribed in Byron (2004), the rate of discarded pro-
nouns is 7 out of 57 (12.3%) for it and 7 out of
100 (7.0%) for that. Schiffman (1985) reports that
in her corpus of career-counseling interviews, 164

out of 838 (19.57%) instances of it and 80 out of
582 (13.75%) instances of that occur in abandoned
utterances.
There is a third class of pronouns which is referen-
tial but nonetheless unresolvable: vague pronouns
(Eckert & Strube, 2000) are characterized by having
no clearly defined textual antecedent. Rather, vague
pronouns are often used to refer to the topic of the
current (sub-)dialog as a whole.
Finally, in spoken language the pronouns it, this, and
that are often discourse deictic (Webber, 1991), i.e.
they are used to refer to an abstract object (Asher,
1993). We treat as abstract objects all referents of
VP antecedents, and do not distinguish between VP
and S antecedents.

ME013: Well, I mean there’s this Cyber Transcriber service,
right?

ME025: Yeah, that’s true, that’s true. (Bmr001)

Discourse deixis is very frequent in spoken dialog:
The rate of discourse deictic expressions reported in
Eckert & Strube (2000) is 11.8% for pronouns and
as much as 70.9% for demonstratives.

2.1 State of the Art

Pronoun resolution in spoken dialog has not received
much attention yet, and a major limitation of the few
implemented systems is that they are not fully au-
tomatic. Instead, they depend on manual removal
of unresolvable pronouns like pleonastic it and dis-
carded and vague pronouns, which are thus pre-
vented from triggering a resolution attempt. This
eliminates a major source of error, but it renders the
systems inapplicable in a real-world setting where
no such manual preprocessing is feasible.
One of the earliest empirically based works adress-
ing (discourse deictic) pronoun resolution in spo-
ken dialog is Eckert & Strube (2000). The au-
thors outline two algorithms for identifying the an-
tecedents of personal and demonstrative pronouns in
two-party telephone conversations from the Switch-
board corpus. The algorithms depend on two non-
trivial types of information: the incompatibility of
a given pronoun with either concrete or abstract an-
tecedents, and the structure of the dialog in terms of
dialog acts. The algorithms are not implemented,
and Eckert & Strube (2000) report results of the
manual application to a set of three dialogs (199 ex-
pressions, including other pronouns than it, this, and
that). Precision and recall are 66.2 resp. 68.2 for
pronouns and 63.6 resp. 70.0 for demonstratives.
An implemented system for resolving personal and
demonstrative pronouns in task-oriented TRAINS
dialogs is described in Byron (2004). The system
uses an explicit representation of domain-dependent
semantic category restrictions for predicate argu-
ment positions, and achieves a precision of 75.0 and
a recall of 65.0 for it (50 instances) and a precision
of 67.0 and a recall of 62.0 for that (93 instances)
if all available restrictions are used. Precision drops
to 52.0 for it and 43.0 for that when only domain-
independent restrictions are used.
To our knowledge, there is only one implemented
system so far that resolves normal and discourse de-
ictic pronouns in unrestricted spoken dialog (Strube
& Müller, 2003). The system runs on dialogs from
the Switchboard portion of the Penn Treebank. For
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it, this and that, the authors report 40.41 precision
and 12.64 recall. The recall does not reflect the ac-
tual pronoun resolution performance as it is calcu-
lated against all coreferential links in the corpus, not
just those with pronominal anaphors. The system
draws some non-trivial information from the Penn
Treebank, including correct NP chunks, grammati-
cal function tags (subject, object, etc.) and discarded
pronouns (based on the -UNF-tag). The treebank
information is also used for determining the acces-
sibility of potential candidates for discourse deictic
pronouns.
In contrast to these approaches, the work described
in the following is fully automatic, using only infor-
mation from the raw, transcribed corpus. No manual
preprocessing is performed, so that during testing,
the system is exposed to the full range of discarded,
pleonastic, and other unresolvable pronouns.

3 Data Collection

The ICSI Meeting Corpus (Janin et al., 2003) is
a collection of 75 manually transcribed group dis-
cussions of about one hour each, involving three
to ten speakers. A considerable number of partic-
ipants are non-native speakers of English, whose
proficiency is sometimes poor, resulting in disflu-
ent or incomprehensible speech. The discussions are
real, unstaged meetings on various, technical topics.
Most of the discussions are regular weekly meet-
ings of a quite informal conversational style, con-
taining many interrupts, asides, and jokes (Janin,
2002). The corpus features a semi-automatically
generated segmentation in which each segment is as-
sociated with a speaker tag and a start and end time
stamp. Time stamps on the word level are not avail-
able. The transcription contains capitalization and
punctuation, and it also explicitly records interrup-
tion points and word fragments (Heeman & Allen,
1999), but not the extent of the related disfluencies.

3.1 Annotation

The annotation was done by naive project-external
annotators, two non-native and two native speak-
ers of English, with the annotation tool MMAX21

on five randomly selected dialogs2. The annotation

1http://mmax.eml-research.de
2Bed017, Bmr001, Bns003, Bro004, and Bro005.

instructions were deliberately kept simple, explain-
ing and illustrating the basic notions of anaphora
and discourse deixis, and describing how markables
were to be created and linked in the annotation tool.
This practice of using a higher number of naive –
rather than fewer, highly trained – annotators was
motivated by our intention to elicit as many plau-
sible interpretations as possible in the presence of
ambiguity. It was inspired by the annotation ex-
periments of Poesio & Artstein (2005) and Artstein
& Poesio (2006). Their experiments employed up
to 20 annotators, and they allowed for the explicit
annotation of ambiguity. In contrast, our annota-
tors were instructed to choose the single most plau-
sible interpretation in case of perceived ambigu-
ity. The annotation covered the pronouns it, this,
and that only. Markables for these tokens were
created automatically. From among the pronomi-
nal3 instances, the annotators then identified normal,
vague, and nonreferential pronouns. For normal pro-
nouns, they also marked the most recent antecedent
using the annotation tool’s coreference annotation
function. Markables for antecedents other than it,
this, and that had to be created by the annotators
by dragging the mouse over the respective words
in the tool’s GUI. Nominal antecedents could be ei-
ther noun phrases (NP) or pronouns (PRO). VP an-
tecedents (for discourse deictic pronouns) spanned
only the verb phrase head, i.e. the verb, not the en-
tire phrase. By this, we tried to reduce the number
of disagreements caused by differing markable de-
marcations. The annotation of discourse deixis was
limited to cases where the antecedent was a finite or
infinite verb phrase expressing a proposition, event
type, etc.4

3.2 Reliability

Inter-annotator agreement was checked by comput-
ing the variant of Krippendorff’s α described in Pas-
sonneau (2004). This metric requires all annotations
to contain the same set of markables, a condition
that is not met in our case. Therefore, we report
α values computed on the intersection of the com-

3The automatically created markables included all instances
of this and that, i.e. also relative pronouns, determiners, com-
plementizers, etc.

4Arbitrary spans of text could not serve as antecedents for
discourse deictic pronouns. The respective pronouns were to be
treated as vague, due to lack of a well-defined antecedent.
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pared annotations, i.e. on those markables that can
be found in all four annotations. Only a subset of
the markables in each annotation is relevant for the
determination of inter-annotator agreement: all non-
pronominal markables, i.e. all antecedent markables
manually created by the annotators, and all referen-
tial instances of it, this, and that. The second column
in Table 1 contains the cardinality of the union of
all four annotators’ markables, i.e. the number of all
distinct relevant markables in all four annotations.
The third and fourth column contain the cardinality
and the relative size of the intersection of these four
markable sets. The fifth column contains α calcu-
lated on the markables in the intersection only. The
four annotators only agreed in the identification of
markables in approx. 28% of cases. α in the five
dialogs ranges from .43 to .52.

| 1 ∪ 2 ∪ 3 ∪ 4 | | 1 ∩ 2 ∩ 3 ∩ 4 | α

Bed017 397 109 27.46 % .47
Bmr001 619 195 31.50 % .43
Bns003 529 131 24.76 % .45
Bro004 703 142 20.20 % .45
Bro005 530 132 24.91 % .52

Table 1: Krippendorff’s α for four annotators.

3.3 Data Subsets

In view of the subjectivity of the annotation task,
which is partly reflected in the low agreement even
on markable identification, the manual creation of a
consensus-based gold standard data set did not seem
feasible. Instead, we created core data sets from
all four annotations by means of majority decisions.
The core data sets were generated by automatically
collecting in each dialog those anaphor-antecedent
pairs that at least three annotators identified indepen-
dently of each other. The rationale for this approach
was that an anaphoric link is the more plausible the
more annotators identify it. Such a data set certainly
contains some spurious or dubious links, while lack-
ing some correct but more difficult ones. However,
we argue that it constitutes a plausible subset of
anaphoric links that are useful to resolve.
Table 2 shows the number and lengths of anaphoric
chains in the core data set, broken down accord-
ing to the type of the chain-initial antecedent. The
rare type OTHER mainly contains adjectival an-
tecedents. More than 75% of all chains consist of

two elements only. More than 33% begin with a
pronoun. From the perspective of extractive sum-
marization, the resolution of these latter chains is not
helpful since there is no non-pronominal antecedent
that it can be linked to or substituted with.

length 2 3 4 5 6 > 6 total

Bed017

NP 17 3 2 - 1 - 23
PRO 14 - 2 - - - 16
VP 6 1 - - - - 7

OTHER - - - - - - -

all
37

4 4 - 1 - 46
80.44%

Bmr001

NP 14 4 1 1 1 2 23
PRO 19 9 2 2 1 1 34
VP 9 5 - - - - 14

OTHER - - - - - - -

all
42

18 3 3 2 3 71
59.16%

Bns003

NP 18 3 3 1 - - 25
PRO 18 1 1 - - - 20
VP 14 4 - - - - 18

OTHER - - - - - - -

all
50

8 4 1 - - 63
79.37%

Bro004

NP 38 5 3 1 - - 47
PRO 21 4 - 1 - - 26
VP 8 1 1 - - - 10

OTHER 2 1 - - - - 3

all
69

11 4 2 - - 86
80.23%

Bro005

NP 37 7 1 - - - 45
PRO 15 3 1 - - - 19
VP 8 1 - 1 - - 10

OTHER 3 - - - - - 3

all
63

11 2 1 - - 77
81.82%

Σ

NP 124 22 10 3 2 2 163
PRO 87 17 6 3 1 1 115
VP 45 12 1 1 - - 59

OTHER 5 1 - - - - 6

all
261

52 17 7 3 3 343
76.01%

Table 2: Anaphoric chains in core data set.

4 Automatic Preprocessing

Data preprocessing was done fully automatically,
using only information from the manual tran-
scription. Punctuation signs and some heuristics
were used to split each dialog into a sequence
of graphemic sentences. Then, a shallow disflu-
ency detection and removal method was applied,
which removed direct repetitions, nonlexicalized
filled pauses like uh, um, interruption points, and
word fragments. Each sentence was then matched
against a list of potential discourse markers (actu-
ally, like, you know, I mean, etc.) If a sentence
contained one or more matches, string variants were
created in which the respective words were deleted.
Each of these variants was then submitted to a parser
trained on written text (Charniak, 2000). The vari-
ant with the highest probability (as determined by
the parser) was chosen. NP chunk markables were
created for all non-recursive NP constituents identi-
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fied by the parser. Then, VP chunk markables were
created. Complex verbal constructions like MD +
INFINITIVE were modelled by creating markables
for the individual expressions, and attaching them
to each other with labelled relations like INFINI-
TIVE COMP. NP chunks were also attached, using
relations like SUBJECT, OBJECT, etc.

5 Automatic Pronoun Resolution

We model pronoun resolution as binary classifica-
tion, i.e. as the mapping of anaphoric mentions to
previous mentions of the same referent. This method
is not incremental, i.e. it cannot take into account
earlier resolution decisions or any other information
beyond that which is conveyed by the two mentions.
Since more than 75% of the anaphoric chains in our
data set would not benefit from incremental process-
ing because they contain one anaphor only, we see
this limitation as acceptable. In addition, incremen-
tal processing bears the risk of system degradation
due to error propagation.

5.1 Features

In the binary classification model, a pronoun is re-
solved by creating a set of candidate antecedents and
searching this set for a matching one. This search
process is mainly influenced by two factors: ex-
clusion of candidates due to constraints, and selec-
tion of candidates due to preferences (Mitkov, 2002).
Our features encode information relevant to these
two factors, plus more generally descriptive factors
like distance etc. Computation of all features was
fully automatic.
Shallow constraints for nominal antecedents include
number, gender and person incompatibility, embed-
ding of the anaphor into the antecedent, and coar-
gumenthood (i.e. the antecedent and anaphor must
not be governed by the same verb). For VP an-
tecedents, a common shallow constraint is that the
anaphor must not be governed by the VP antecedent
(so-called argumenthood). Preferences, on the other
hand, define conditions under which a candidate
probably is the correct antecedent for a given pro-
noun. A common shallow preference for nomi-
nal antecedents is the parallel function preference,
which states that a pronoun with a particular gram-
matical function (i.e. subject or object) preferably

has an antecedent with a similar function. The sub-
ject preference, in contrast, states that subject an-
tecedents are generally preferred over those with
less salient functions, independent of the grammat-
ical function of the anaphor. Some of our features
encode this functional and structural parallelism, in-
cluding identity of form (for PRO antecedents) and
identity of grammatical function or governing verb.
A more sophisticated constraint on NP an-
tecedents is what Eckert & Strube (2000) call I-
Incompatibility, i.e. the semantic incompatibility of
a pronoun with an individual (i.e. NP) antecedent.
As Eckert & Strube (2000) note, subject pronouns
in copula constructions with adjectives that can only
modify abstract entities (like e.g. true, correct, right)
are incompatible with concrete antecedents like car.
We postulate that the preference of an adjective to
modify an abstract entity (in the sense of Eckert &
Strube (2000)) can be operationalized as the condi-
tional probability of the adjective to appear with a
to-infinitive resp. a that-sentence complement, and
introduce two features which calculate the respec-
tive preference on the basis of corpus5 counts. For
the first feature, the following query is used:

# it (’s|is|was|were) ADJ to
# it (’s|is|was|were) ADJ

According to Eckert & Strube (2000), pronouns that
are objects of verbs which mainly take sentence
complements (like assume, say) exhibit a similar
incompatibility with NP antecedents, and we cap-
ture this with a similar feature. Constraints for
VPs include the following: VPs are inaccessible for
discourse deictic reference if they fail to meet the
right frontier condition (Webber, 1991). We use
a feature which is similar to that used by Strube
& Müller (2003) in that it approximates the right
frontier on the basis of syntactic (rather than dis-
course structural) relations. Another constraint is
A-Incompatibility, i.e. the incompatibility of a pro-
noun with an abstract (i.e. VP) antecedent. Accord-
ing to Eckert & Strube (2000), subject pronouns in
copula constructions with adjectives that can only
modify concrete entities (like e.g. expensive, tasty)
are incompatible with abstract antecedents, i.e. they

5Based on the approx. 250,000,000 word TIPSTER corpus
(Harman & Liberman, 1994).
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cannot be discourse deictic. The function of this
constraint is already covered by the two corpus-
based features described above in the context of I-
Incompatibility. Another feature, based on Yang
et al. (2005), encodes the semantic compatibility
of anaphor and NP antecedent. We operationalize
the concept of semantic compatibility by substitut-
ing the anaphor with the antecedent head and per-
forming corpus queries. E.g., if the anaphor is ob-
ject, the following query6 is used:

# (V|Vs|Ved|Ving) (∅|a|an|the|this|that) ANTE+

# (V|Vs|Ved|Ving) (∅|the|these|those) ANTES

# (ANTE|ANTES)

If the anaphor is the subject in an adjective cop-
ula construction, we use the following corpus count
to quantify the compatibility between the predi-
cated adjective and the NP antecedent (Lapata et al.,
1999):

# ADJ (ANTE|ANTES) + # ANTE (is|was) ADJ+

# ANTES (are|were) ADJ

# ADJ

A third class of more general properties of the po-
tential anaphor-antecedent pair includes the type of
anaphor (personal vs. demonstrative), type of an-
tecedent (definite vs. indefinite noun phrase, pro-
noun, finite vs. infinite verb phrase, etc.). Special
features for the identification of discarded expres-
sions include the distance (in words) to the closest
preceeding resp. following disfluency (indicated in
the transcription as an interruption point, word frag-
ment, or uh resp. um). The relation between po-
tential anaphor and (any type of) antecedent is de-
scribed in terms of distance in seconds7 and words.
For VP antecedents, the distance is calculated from
the last word in the entire phrase, not from the
phrase head. Another feature which is relevant for
dialog encodes whether both expressions are uttered
by the same speaker.

6V is the verb governing the anaphor. Correct inflected
forms were also generated for irregular verbs. ANTE resp.
ANTES is the singular resp. plural head of the antecedent.

7Since the data does not contain word-level time stamps, this
distance is determined on the basis of a simple forced align-
ment. For this, we estimated the number of syllables in each
word on the basis of its vowel clusters, and simply distributed
the known duration of the segment evenly on all words it con-
tains.

5.2 Data Representation and Generation

Machine learning data for training and testing was
created by pairing each anaphor with each of its
compatible potential antecedents within a certain
temporal distance (9 seconds for NP and 7 seconds
for VP antecedents), and labelling the resulting data
instance as positive resp. negative. VP antecedent
candidates were created only if the anaphor was ei-
ther that8 or the object of a form of do.
Our core data set does not contain any nonreferen-
tial pronouns, though the classifier is exposed to the
full range of pronouns, including discarded and oth-
erwise nonreferential ones, during testing. We try
to make the classifier robust against nonreferential
pronouns in the following way: From the manual
annotations, we select instances of it, this, and that
that at least three annotators identified as nonrefer-
ential. For each of these, we add the full range of
all-negative instances to the training data, applying
the constraints mentioned above.

5.3 Evaluation Measure

As Bagga & Baldwin (1998) point out, in an
application-oriented setting, not all anaphoric links
are equally important: If a pronoun is resolved to
an anaphoric chain that contains only pronouns, this
resolution can be treated as neutral because it has
no application-level effect. The common corefer-
ence evaluation measure described in Vilain et al.
(1995) is inappropriate in this setting. We calculate
precision, recall and F-measure on the basis of the
following definitions: A pronoun is resolved cor-
rectly resp. incorrectly only if it is linked (directly
or transitively) to the correct resp. incorrect non-
pronominal antecedent. Likewise, the number of
maximally resolvable pronouns in the core data set
(i.e. the evaluation key) is determined by consider-
ing only pronouns in those chains that do not begin
with a pronoun. Note that our definition of precision
is stricter (and yields lower figures) than that ap-
plied in the ACE context, as the latter ignores incor-
rect links between two expressions in the response

8It is a common observation that demonstratives (in partic-
ular that) are preferred over it for discourse deictic reference
(Schiffman, 1985; Webber, 1991; Asher, 1993; Eckert & Strube,
2000; Byron, 2004; Poesio & Artstein, 2005). This preference
can also be observed in our core data set: 44 out of 59 VP an-
tecedents (69.49%) are anaphorically referred to by that.
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if these expressions happen to be unannotated in the
key, while we treat them as precision errors unless
the antecedent is a pronoun. The same is true for
links in the response that were identified by less than
three annotators in the key. While it is practical to
treat those links as wrong, it is also simplistic be-
cause it does not do justice to ambiguous pronouns
(cf. Section 6).

5.4 Experiments and Results

Our best machine learning results were obtained
with the Weka9 Logistic Regression classifier.10 All
experiments were performed with dialog-wise cross-
validation. For each run, training data was created
from the manually annotated markables in four di-
alogs from the core data set, while testing was per-
formed on the automatically detected chunks in the
remaining fifth dialog. For training and testing, the
person, number11, gender, and (co-)argument con-
straints were used. If an anaphor gave rise to a pos-
itive instance, no negative training instances were
created beyond that instance. If a referential anaphor
did not give rise to a positive training instance (be-
cause its antecedent fell outside the search scope
or because it was removed by a constraint), no in-
stances were created for that anaphor. Instances for
nonreferential pronouns were added to the training
data as described in Section 5.2.
During testing, we select for each potential anaphor
the positive antecedent with the highest overall con-
fidence. Testing parameters include it-filter,
which switches on and off the module for the detec-
tion of nonreferential it described in Müller (2006).
When evaluated alone, this module yields a preci-
sion of 80.0 and a recall of 60.9 for the detection
of pleonastic and discarded it in the five ICSI di-
alogs. For training, this module was always on.
We also vary the parameter tipster, which con-
trols whether or not the corpus frequency features
are used. If tipster is off, we ignore the corpus
frequency features both during training and testing.
We first ran a simple baseline system which re-
solved pronouns to their most recent compatible an-
tecedent, applying the same settings and constraints

9http://www.cs.waikato.ac.nz/ml/weka/
10The full set of experiments is described in Müller (2007).
11The number constraint applies to it only, as this and that

can have both singular and plural antecedents (Byron, 2004).

as for testing (cf. above). The results can be found
in the first part of Table 3. Precision, recall and F-
measure are provided for ALL and for NP and VP
antecedents individually. The parameter tipster
is not available for the baseline system. The best
baseline performance is precision 4.88, recall 20.06

and F-measure 7.85 in the setting with it-filter
on. As expected, this filter yields an increase in pre-
cision and a decrease in recall. The negative effect
is outweighed by the positive effect, leading to a
small but insignificant12 increase in F-measure for
all types of antecedents.

Baseline Logistic Regression
Setting Ante P R F P R F

-it-filter

-tipster
NP 4.62 27.12 7.90 18.53 20.34 19.39∗

VP 1.72 2.63 2.08 13.79 10.53 11.94
ALL 4.40 20.69 7.25 17.67 17.56 17.61∗

+tipster
NP - - - 19.33 22.03 20.59∗∗∗

VP - - - 13.43 11.84 12.59
ALL - - - 18.16 19.12 18.63∗∗

+it-filter

-tipster
NP 5.18 26.27 8.65 17.87 17.80 17.83∗

VP 1.77 2.63 2.12 13.12 10.53 11.68
ALL 4.88 20.06 7.85 16.89 15.67 16.26∗

+tipster
NP - - - 20.82 21.61 21.21∗∗

VP - - - 11.27 10.53 10.88
ALL - - - 18.67 18.50 18.58∗∗

Table 3: Resolution results.

The second part of Table 3 shows the results of the
Logistic Regression classifier. When compared to
the best baseline, the F-measures are consistently
better for NP, VP, and ALL. The improvement is
(sometimes highly) significant for NP and ALL, but
never for VP. The best F-measure for ALL is 18.63,
yielded by the setting with it-filter off and
tipster on. This setting also yields the best F-
measure for VP and the second best for NP. The
contribution of the it-filter is disappointing: In both
tipster settings, the it-filter causes F-measure for
ALL to go down. The contribution of the corpus
features, on the other hand, is somewhat inconclu-
sive: In both it-filter settings, they cause an in-
crease in F-measure for ALL. In the first setting, this
increase is accompanied by an increase in F-measure
for VP, while in the second setting, F-measure for
VP goes down. It has to be noted, however, that
none of the improvements brought about by the it-
filter or the tipster corpus features is statistically sig-
nificant. This also confirms some of the findings of
Kehler et al. (2004), who found features similar to

12Significance of improvement in F-measure is tested using
a paired one-tailed t-test and p <= 0.05 (∗), p <= 0.01 (∗∗),
and p <= 0.005 (∗∗∗).
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our tipster corpus features not to be significant for
NP-anaphoric pronoun resolution in written text.

6 Conclusions and Future Work

The system described in this paper is – to our knowl-
edge – the first attempt towards fully automatic res-
olution of NP-anaphoric and discourse deictic pro-
nouns (it, this, and that) in multi-party dialog. Un-
like other implemented systems, it is usable in a re-
alistic setting because it does not depend on manual
pronoun preselection or non-trivial discourse struc-
ture or domain knowledge. The downside is that,
at least in our strict evaluation scheme, the perfor-
mance is rather low, especially when compared to
that of state-of-the-art systems for pronoun resolu-
tion in written text. In future work, it might be
worthwhile to consider less rigorous and thus more
appropriate evaluation schemes in which links are
weighted according to how many annotators identi-
fied them.
In its current state, the system only processes man-
ual dialog transcripts, but it also needs to be eval-
uated on the output of an automatic speech recog-
nizer. While this will add more noise, it will also
give access to useful prosodic features like stress.
Finally, the system also needs to be evaluated extrin-
sically, i.e. with respect to its contribution to dialog
summarization. It might turn out that our system al-
ready has a positive effect on extractive summariza-
tion, even though its performance is low in absolute
terms.
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Abstract 

This paper presents a comparative study of 

five parameter estimation algorithms on four 

NLP tasks. Three of the five algorithms are 

well-known in the computational linguistics 

community: Maximum Entropy (ME) estima-

tion with L2 regularization, the Averaged 

Perceptron (AP), and Boosting.  We also in-

vestigate ME estimation with L1 regularization 

using a novel optimization algorithm, and 

BLasso, which is a version of Boosting with 

Lasso (L1) regularization.  We first investigate 

all of our estimators on two re-ranking tasks: a 

parse selection task and a language model 

(LM) adaptation task.  Then we apply the best 

of these estimators to two additional tasks 

involving conditional sequence models: a 

Conditional Markov Model (CMM) for part of 

speech tagging and a Conditional Random 

Field (CRF) for Chinese word segmentation. 

Our experiments show that across tasks, three 

of the estimators — ME estimation with L1 or 

L2 regularization, and AP — are in a near sta-

tistical tie for first place. 

1 Introduction 

Parameter estimation is fundamental to many sta-

tistical approaches to NLP. Because of the 

high-dimensional nature of natural language, it is 

often easy to generate an extremely large number of 

features.  The challenge of parameter estimation is 

to find a combination of the typically noisy, re-

dundant features that accurately predicts the target 

output variable and avoids overfitting. Intuitively, 

this can be achieved either by selecting a small 

number of highly-effective features and ignoring 

the others, or by averaging over a large number of 

weakly informative features.  The first intuition 

motivates feature selection methods such as 

Boosting and BLasso (e.g., Collins 2000; Zhao and 

Yu, 2004), which usually work best when many 

features are completely irrelevant. L1 or Lasso 

regularization of linear models, introduced by 

Tibshirani (1996), embeds feature selection into 

regularization so that both an assessment of the 

reliability of a feature and the decision about 

whether to remove it are done in the same frame-

work, and has generated a large amount of interest 

in the NLP community recently (e.g., Goodman 

2003; Riezler and Vasserman 2004).  If on the other 

hand most features are noisy but at least weakly 

correlated with the target, it may be reasonable to 

attempt to reduce noise by averaging over all of the 

features.  ME estimators with L2 regularization, 

which have been widely used in NLP tasks (e.g., 

Chen and Rosenfeld 2000; Charniak and Johnson 

2005; Johnson et al. 1999), tend to produce models 

that have this property.  In addition, the perceptron 

algorithm and its variants, e.g., the voted or aver-

aged perceptron, is becoming increasingly popular 

due to their competitive performance, simplicity in 

implementation and low computational cost in 

training (e.g., Collins 2002). 

While recent studies claim advantages for L1 

regularization, this study is the first of which we are 

aware to systematically compare it to a range of 

estimators on a diverse set of NLP tasks.  Gao et al. 

(2006) showed that BLasso, due to its explicit use of 

L1 regularization, outperformed Boosting in the LM 

adaptation task.  Ng (2004) showed that for logistic 

regression, L1 regularization outperforms L2 regu-

larization on artificial datasets which contain many 

completely irrelevant features.  Goodman (2003) 

showed that in two out of three tasks, an ME esti-

mator with a one-sided Laplacian prior (i.e., L1 

regularization with the constraint that all feature 

weights are positive) outperformed a comparable 

estimator using a Gaussian prior (i.e., L2 regulari-

zation).  Riezler and Vasserman (2004) showed that 

an L1-regularized ME estimator outperformed an 

L2-regularized estimator for ranking the parses of a 

stochastic unification-based grammar. 
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While these individual estimators are well de-

scribed in the literature, little is known about the 

relative performance of these methods because the 

published results are generally not directly compa-

rable.  For example, in the parse re-ranking task, 

one cannot tell whether the L2- regularized ME 

approach used by Charniak and Johnson (2005) 

significantly outperforms the Boosting method by 

Collins (2000) because different feature sets and 

n-best parses were used in the evaluations of these 

methods.  

This paper conducts a much-needed comparative 

study of these five parameter estimation algorithms 

on four NLP tasks: ME estimation with L1 and L2 

regularization, the Averaged Perceptron (AP), 

Boosting, and BLasso, a version of Boosting with 

Lasso (L1) regularization.  We first investigate all of 

our estimators on two re-ranking tasks: a parse 

selection task and a language model adaptation task. 

Then we apply the best of these estimators to two 

additional tasks involving conditional sequence 

models: a CMM for POS tagging and a CRF for 

Chinese word segmentation.  Our results show that 

ME estimation with L2 regularization achieves the 

best performing estimators in all of the tasks, and 

AP achieves almost as well and requires much less 

training time. L1 (Lasso) regularization also per-

forms well and leads to sparser models. 

2 Estimators 

All the four NLP tasks studied in this paper are 

based on linear models (Collins 2000) which re-

quire learning a mapping from inputs 𝑥 ∈ 𝑋 to 

outputs 𝑦 ∈ 𝑌.  We are given: 

 Training samples (𝑥𝑖 , 𝑦𝑖) for 𝑖 = 1…𝑁, 

 A procedure 𝑮𝑬𝑵 to generate a set of candi-

dates 𝑮𝑬𝑵(𝑥) for an input x,  

 A feature mapping Φ: 𝑋 × 𝑌 ↦ ℝ𝐷  to map 

each (𝑥, 𝑦) to a vector of feature values, and 

 A parameter vector 𝒘 ∈ ℝ𝐷 , which assigns a 

real-valued weight to each feature. 

For all models except the CMM sequence model for 

POS tagging, the components 𝑮𝑬𝑵, Φ and 𝒘 di-

rectly define a mapping from an input 𝑥 to an output 

𝐹(𝑥) as follows: 

𝐹 𝑥 = arg max𝑦∈𝑮𝑬𝑵 𝑋 Φ 𝑥, 𝑦 ⋅ 𝒘. (1) 

In the CMM sequence classifier, locally normalized 

linear models to predict the tag of each word token 

are chained together to arrive at a probability esti-

mate for the entire tag sequence, resulting in a 

slightly different decision rule. 

Linear models, though simple, can capture very 

complex dependencies because the features can be 

arbitrary functions of the input/output pair.  For 

example, we can define a feature to be the log con-

ditional probability of the output as estimated by 

some other model, which may in turn depend on 

arbitrarily complex interactions of „basic‟ features.  

In practice, with an appropriate feature set, linear 

models achieve very good empirical results on 

various NLP tasks.  The focus of this paper however 

is not on feature definition (which requires domain 

knowledge and varies from task to task), but on 

parameter estimation (which is generic across 

tasks).  We assume we are given fixed feature 

templates from which a large number of features are 

generated.  The task of the estimator is to use the 

training samples to choose a parameter vector 𝒘, 

such that the mapping 𝐹(𝑥) is capable of correctly 

classifying unseen examples. We will describe the 

five estimators in our study individually. 

2.1 ME estimation with L2 regularization 

Like many linear models, the ME estimator chooses 

𝒘 to minimize the sum of the empirical loss on the 

training set and a regularization term: 

𝒘 = arg min𝒘  𝐿 𝒘 + 𝑅 𝒘   . (2) 

In this case, the loss term L(w) is the negative con-

ditional log-likelihood of the training data, 

 𝐿 𝒘 = − log𝑃 𝑦𝑖  𝑥𝑖)
𝑛
𝑖=1 ,  where 

𝑃 𝑦 𝑥) =
exp Φ 𝑥, 𝑦 ⋅ 𝒘 

 exp(Φ 𝑥, 𝑦 ′ ⋅ 𝒘)𝑦 ′∈𝐺𝐸𝑁 𝑥 
 

and the regularizer term 𝑅 𝒘 = 𝛼 𝑤𝑗
2

𝑗  is the 

weighted squared L2 norm of the parameters. Here, 

 is a parameter that controls the amount of regu-

larization, optimized on held-out data.  

This is one of the most popular estimators,  

largely due to its appealing computational proper-

ties: both 𝐿 𝒘  and 𝑅(𝒘) are convex and differen-

tiable, so gradient-based numerical algorithms can 

be used to find the global minimum efficiently.  

In our experiments, we used the limited memory 

quasi-Newton algorithm (or L-BFGS, Nocedal and 

Wright 1999) to find the optimal 𝒘 because this 

method has been shown to be substantially faster 

than other methods such as Generalized Iterative 

Scaling (Malouf 2002).  
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Because for some sentences there are multiple 

best parses (i.e., parses with the same F-Score), we 

used the variant of ME estimator described in 

Riezler et al. (2002), where 𝐿 𝒘  is defined as the 

likelihood of the best parses 𝑦 ∈ 𝑌(𝑥) relative to 

the n-best parser output 𝑮𝑬𝑵 𝑥 ,  (i.e., 𝑌 𝑥 ⊑
𝑮𝑬𝑵(𝑥)): 𝐿 𝒘 = − log 𝑃(𝑦𝑖 |𝑥𝑖)𝑦𝑖∈𝑌(𝑥𝑖)

𝑛
𝑖=1 . 

We applied this variant in our experiments of 

parse re-ranking and LM adaptation, and found that 

on both tasks it leads to a significant improvement 

in performance for the L2-regularied ME estimator 

but not for the L1-regularied ME estimator. 

2.2 ME estimation with L1 regularization 

This estimator also minimizes the negative condi-

tional log-likelihood, but uses an L1 (or Lasso) 

penalty. That is, 𝑅(𝒘) in Equation (2) is defined 

according to 𝑅 𝒘 = 𝛼  𝑤𝑗  𝑗 . L1 regularization 

typically leads to sparse solutions in which many 

feature weights are exactly zero, so it is a natural 

candidate when feature selection is desirable. By 

contrast, L2 regularization produces solutions in 

which most weights are small but non-zero. 

Optimizing the L1-regularized objective function 

is challenging because its gradient is discontinuous 

whenever some parameter equals zero. Kazama and 

Tsujii (2003) described an estimation method that 

constructs an equivalent constrained optimization 

problem with twice the number of variables.  

However, we found that this method is impracti-

cally slow for large-scale NLP tasks. In this work 

we use the orthant-wise limited-memory qua-

si-Newton algorithm (OWL-QN), which is a mod-

ification of L-BFGS that allows it to effectively 

handle the discontinuity of the gradient (Andrew 

and Gao 2007). We provide here a high-level de-

scription of the algorithm. 

A quasi-Newton method such as L-BFGS uses 

first order information at each iterate to build an 

approximation to the Hessian matrix, 𝑯, thus mod-

eling the local curvature of the function. At each 

step, a search direction is chosen by minimizing a 

quadratic approximation to the function: 

𝑄 𝑥 =
1

2
 𝑥 − 𝑥0 

′𝑯 𝑥 − 𝑥0 + 𝑔0
′ (𝑥 − 𝑥0) 

where 𝑥0 is the current iterate, and 𝑔0 is the func-

tion gradient at 𝑥0 .  If 𝑯 is positive definite, the 

minimizing value of 𝑥 can be computed analytically 

according to: 𝑥∗ = 𝑥0 −𝑯−1𝑔0. 

L-BFGS maintains vectors of the change in gradient 

𝑔𝑘 − 𝑔𝑘−1 from the most recent iterations, and uses 

them to construct an estimate of the inverse Hessian 

𝑯−𝟏. Furthermore, it does so in such a way that 

𝑯−1𝑔0 can be computed without expanding out the 

full matrix, which is typically unmanageably large. 

The computation requires a number of operations 

linear in the number of variables. 

OWL-QN is based on the observation that when 

restricted to a single orthant, the L1 regularizer is 

differentiable, and is in fact a linear function of 𝒘.  

Thus, so long as each coordinate of any two con-

secutive search points does not pass through zero, 

𝑅(𝒘) does not contribute at all to the curvature of 

the function on the segment joining them.  There-

fore, we can use L-BFGS to approximate the Hes-

sian of 𝐿 𝒘  alone, and use it to build an approxi-

mation to the full regularized objective that is valid 

on a given orthant. To ensure that the next point is in 

the valid region, we project each point during the 

line search back onto the chosen orthant.1 At each 

iteration, we choose the orthant containing the 

current point and into which the direction giving the 

greatest local rate of function decrease points. 

This algorithm, although only a simple modifi-

cation of L-BFGS, works quite well in practice. It 

typically reaches convergence in even fewer itera-

tions than standard L-BFGS takes on the analogous 

L2-regularized objective (which translates to less 

training time, since the time per iteration is only 

negligibly higher, and total time is dominated by 

function evaluations). We describe OWL-QN more 

fully in (Andrew and Gao 2007). We also show that 

it is significantly faster than Kazama and Tsujii‟s 

algorithm for L1 regularization and prove that it is 

guaranteed converge to a parameter vector that 

globally optimizes the L1-regularized objective. 

2.3 Boosting 

The Boosting algorithm we used is based on Collins 

(2000).  It optimizes the pairwise exponential loss 

(ExpLoss) function (rather than the logarithmic loss 

optimized by ME).  Given a training sample 

(𝑥𝑖 , 𝑦𝑖), for each possible output 𝑦𝑗 ∈ 𝑮𝑬𝑵(𝑥𝑖), we 

                                                      
1 This projection just entails zeroing-out any coordinates 

that change sign. Note that it is possible for a variable to 

change sign in two iterations, by moving from a negative 

value to zero, and on a the next iteration moving from 

zero to a positive value. 
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define the margin of the pair (𝑦𝑖 , 𝑦𝑗 ) with respect to 

𝒘 as 𝑀 𝑦𝑖 , 𝑦𝑗  = Φ 𝑥𝑖 , 𝑦𝑖 ⋅ 𝒘 −  Φ 𝑥𝑖 , 𝑦𝑗  ⋅ 𝒘. 

Then ExpLoss is defined as 

ExpLoss 𝒘 =   exp  −M yi , yj  

𝑦𝑗∈𝑮𝑬𝑵 𝑥𝑖 𝑖

 (3) 

Figure 1 summarizes the Boosting algorithm we 

used. It is an incremental feature selection proce-

dure. After initialization, Steps 2 and 3 are repeated 

T times; at each iteration, a feature is chosen and its 

weight is updated as follows.  

First, we define Upd(𝒘, 𝑘, 𝛿)  as an updated 

model, with the same parameter values as 𝑤 with 

the exception of 𝑤𝑘 , which is incremented by 𝛿: 

Upd 𝒘, 𝑘, 𝛿 = (𝑤1 , … , 𝑤𝑘 + 𝛿,… ,𝑤𝐷)  

Then, Steps 2 and 3 in Figure 1 can be rewritten as 

Equations (4) and (5), respectively. 

 𝑘∗, 𝛿∗ = arg min
𝑘,𝛿

ExpLoss(Upd 𝒘, 𝑘, 𝛿 ) (4) 

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝛿∗) (5) 

Because Boosting can overfit we update the weight 

of 𝑓𝑘∗ by a small fixed step size , as in Equation (6), 

following the FSLR algorithm (Hastie et al. 2001).  

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝜖 × sign 𝛿∗ ) (6) 

By taking such small steps, Boosting imposes a 

kind of implicit regularization, and can closely 

approximate the effect of L1 regularization in a local 

sense (Hastie et al. 2001).  Empirically, smaller 

values of 𝜖 lead to smaller numbers of test errors. 

2.4 Boosted Lasso 

The Boosted Lasso (BLasso) algorithm was origi-

nally proposed in Zhao and Yu (2004), and was 

adapted for language modeling by Gao et al. (2006). 

BLasso can be viewed as a version of Boosting with 

L1 regularization. It optimizes an L1-regularized 

ExpLoss function: 

LassoLoss 𝒘 = ExpLoss(𝒘) + 𝑅(𝒘) (7) 

where 𝑅 𝒘 = 𝛼  𝑤𝑗  𝑗  . 

BLasso also uses an incremental feature selec-

tion procedure to learn parameter vector 𝒘, just as 

Boosting does.  Due to the explicit use of the regu-

larization term 𝑅(𝒘), however, there are two major 

differences from Boosting.  

At each iteration, BLasso takes either a forward 

step or a backward step.  Similar to Boosting, at 

each forward step, a feature is selected and its 

weight is updated according to Eq. (8) and (9). 

 𝑘∗, 𝛿∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑘,𝛿=±𝜖

ExpLoss(Upd 𝒘, 𝑘, 𝛿 ) (8) 

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝜖 × sign 𝛿∗ ) (9) 

There is a small but important difference between 

Equations (8) and (4). In Boosting, as shown in 

Equation (4), a feature is selected by its impact on 

reducing the loss with its optimal update 𝛿∗ . By 

contrast, in BLasso, as shown in Equation (8), 

rather than optimizing over 𝛿 for each feature, the 

loss is calculated with an update of either +𝜖 or −𝜖, 

i.e., grid search is used for feature weight estima-

tion.  We found in our experiments that this mod-

ification brings a consistent improvement. 

The backward step is unique to BLasso.  At each 

iteration, a feature is selected and the absolute value 

of its weight is reduced by 𝜖 if and only if it leads to 

a decrease of the LassoLoss, as shown in Equations 

(10) and (11), where   is a tolerance parameter. 

𝑘∗ = arg min
𝑘:𝑤𝑘≠0

ExpLoss(Upd(𝒘, 𝑘, −𝜖sign 𝑤𝑘 ) (10) 

𝒘𝑡 = Upd(𝒘𝑡−1 , 𝑘∗,sign(𝑤𝑘∗) × 𝜖)  (11) 

if LassoLoss 𝒘𝑡−1, 𝛼𝑡−1 − LassoLoss 𝒘𝑡 , 𝛼𝑡 > 𝜃 

Figure 2 summarizes the BLasso algorithm we 

used. After initialization, Steps 4 and 5 are repeated 

T times; at each iteration, a feature is chosen and its 

weight is updated either backward or forward by a 

fixed amount 𝜖.  Notice that the value of 𝛼 is adap-

tively chosen according to the reduction of ExpLoss 

during training.  The algorithm starts with a large 

initial 𝛼, and then at each forward step the value of 

𝛼 decreases until ExpLoss stops decreasing.  This is 

intuitively desirable: it is expected that most highly 

effective features are selected in early stages of 

training, so the reduction of ExpLoss at each step in 

early stages are more substantial than in later stages.  

These early steps coincide with the Boosting steps 

most of the time.  In other words, the effect of 

backward steps is more visible at later stages.  It can 

be proved that for a finite number of features and 

𝜃 =0, the BLasso algorithm shown in Figure 2 

converges to the Lasso solution when 𝜖 → 0. See 

Gao et al. (2006) for implementation details, and 

Zhao and Yu (2004) for a theoretical justification 

for BLasso. 

1 Set w0 = argminw0ExpLoss(w); and wd = 0 for d=1…D 

2 Select a feature fk* which has largest estimated 
impact on reducing ExpLoss of Equation (3) 

3 Update λk*   λk* + δ*, and return to Step 2 

Figure 1: The boosting algorithm 
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2.5 Averaged Perceptron 

The perceptron algorithm can be viewed as a form 

of incremental training procedure (e.g., using sto-

chastic approximation) that optimizes a minimum 

square error (MSE) loss function (Mitchell, 1997).  

As shown in Figure 3, it starts with an initial pa-

rameter setting and updates it for each training 

example. In our experiments, we used the Averaged 

Perceptron algorithm of Freund and Schapire 

(1999), a variation that has been shown to be more 

effective than the standard algorithm (Collins 

2002).  Let 𝒘𝑡,𝑖  be the parameter vector after the 𝑖th
 

training sample has been processed in pass 𝑡 over 

the training data. The average parameters are de-

fined as𝒘  =
𝟏

𝑻𝑵
  𝒘𝒕,𝒊

𝒊𝒕  where T is the number of 

epochs, and N is the number of training samples. 

3 Evaluations 

From the four tasks we consider, parsing and lan-

guage model adaptation are both examples of 

re-ranking.  In these tasks, we assume that we have 

been given a list of candidates 𝑮𝑬𝑵(𝑥) for each 

training or test sample  𝑥, 𝑦 , generated using a 

baseline model.  Then, a linear model of the form in 

Equation (1) is used to discriminatively re-rank the 

candidate list using additional features which may 

or may not be included in the baseline model.  Since 

the mapping from 𝑥 to 𝑦 by the linear model may 

make use of arbitrary global features of the output 

and is performed “all at once”, we call such a linear 

model a global model.  

In the other two tasks (i.e., Chinese word seg-

mentation and POS tagging), there is no explicit 

enumeration of 𝑮𝑬𝑵(𝑥).  The mapping from 𝑥 to 𝑦 

is determined by a sequence model which aggre-

gates the decisions of local linear models via a 

dynamic program.  In the CMM, the local linear 

models are trained independently, while in the CRF 

model, the local models are trained jointly.  We call 

these two linear models local models because they 

dynamically combine the output of models that use 

only local features. 

While it is straightforward to apply the five es-

timators to global models in the re-ranking 

framework, the application of some estimators to 

the local models is problematic. Boosting and 

BLasso are too computationally expensive to be 

applied to CRF training and we compared the other 

three better performing estimation methods for this 

model. The CMM is a probabilistic sequence model 

and the log-loss used by ME estimation is most 

natural for it; thus we limit the comparison to the 

two kinds of ME models for CMMs. Note that our 

goal is not to compare locally trained models to 

globally trained ones; for a study which focuses on 

this issue, see (Punyakanok et al. 2005). 

In each task we compared the performance of 

different estimators using task-specific measures. 

We used the Wilcoxon signed rank test to test the 

statistical significance of the difference among the 

competing estimators. We also report other results 

such as number of non-zero features after estima-

tion, number of training iterations, and computation 

time (in minutes of elapsed time on an XEON
TM

 MP 

3.6GHz machine). 

3.1 Parse re-ranking 

We follow the experimental paradigm of parse 

re-ranking outlined in Charniak and Johnson 

(2005), and fed the features extracted by their pro-

gram to the five rerankers we developed.  Each uses 

a linear model trained using one of the five esti-

mators. These rerankers attempt to select the best 

parse 𝑦  for a sentence 𝑥  from the 50-best list of 

possible parses 𝑮𝑬𝑵 𝑥  for the sentence. The li-

near model combines the log probability calculated 

by the Charniak (2000) parser as a feature with 

1,219,272 additional features.  We trained the fea-

1 Initialize w0: set w0 = argminw0ExpLoss(w), and wd = 0 
for d=1…D. 

2 Take a forward step according to Eq. (8) and (9), and 
the updated model is denoted by w1 

3 Initialize  = (ExpLoss(w0)-ExpLoss(w1))/ 
4 Take a backward step if and only if it leads to a de-

crease of LassoLoss according to Eq. (10) and (11), 

where   = 0; otherwise 
5 Take a forward step according to Eq. (8) and (9); 

update  = min(, (ExpLoss(wt-1)-ExpLoss(wt))/ ); 
and return to Step 4. 

Figure 2: The BLasso algorithm 

1 Set w0 = 1 and wd = 0 for d=1…D 
2 For t = 1…T (T = the total number of iterations) 
3    For each training sample (xi, yi), i = 1…N 
4 

𝑧𝑖 = arg max
𝑧∈𝐺𝐸𝑁 𝑥_𝑖 

Φ 𝑥𝑖 , 𝑧 ⋅ 𝑤 

Choose the best candidate zi from GEN(xi) using 
the current model w, 

5       w = w +  η((xi, yi) – (xi, zi)), where η is the size of 
learning step, optimized on held-out data. 

Figure 3: The perceptron algorithm 

 

828



ture weights w on Sections 2-19 of the Penn Tree-

bank, adjusted the regularizer constant 𝛼 to max-

imize the F-Score on Sections 20-21 of the Tree-

bank, and evaluated the rerankers on Section 22.  

The results are presented in Tables 12 and 2, where 

Baseline results were obtained using the parser by 

Charniak (2000).  

The ME estimation with L2 regularization out-

performs all of the other estimators significantly 

except for the AP, which performs almost as well 

and requires an order of magnitude less time in 

training.  Boosting and BLasso are feature selection 

methods in nature, so they achieve the sparsest 

models, but at the cost of slightly lower perfor-

mance and much longer training time. The 

L1-regularized ME estimator also produces a rela-

tively sparse solution whereas the Averaged Per-

ceptron and the L2-regularized ME estimator assign 

almost all features a non-zero weight.  

3.2 Language model adaptation 

Our experiments with LM adaptation are based on 

the work described in Gao et al. (2006). The va-

riously trained language models were evaluated 

according to their impact on Japanese text input 

accuracy, where input phonetic symbols 𝑥  are 

mapped into a word string 𝑦. Performance of the 

application is measured in terms of character error 

                                                      
2
 The result of ME/L2 is better than that reported in 

Andrew and Gao (2007) due to the use of the variant of 

L2-regularized ME estimator, as described in Section 2.1. 

 CER # features time (min) #train iter 

Baseline 10.24%    
MAP 7.98%    
ME/L2 6.99% 295,337 27 665 
ME/L1 7.01% 53,342 25 864 
AP 7.23% 167,591 6 56 
Boost 7.54% 32,994 175 71,000 
BLasso 7.20% 33,126 238 250,000 

Table 3. Performance summary of estimators 

(lower is better) on language model adaptation 

 ME/L2 ME/L1 AP Boost BLasso 

ME/L2  ~ >> >> >> 
ME/L1 ~  >> >> >> 
AP << <<  >> ~ 
Boost << << <<  << 
BLasso << << ~ >>  

Table 4. Statistical significance test results. 

rate (CER), which is the number of characters 

wrongly converted from 𝑥 divided by the number of 

characters in the correct transcript. 

Again we evaluated five linear rerankers, one for 

each estimator. These rerankers attempt to select the 

best conversions 𝑦 for an input phonetic string 𝑥 

from a 100-best list 𝑮𝑬𝑵(𝑥)of possible conver-

sions proposed by a baseline system. The linear 

model combines the log probability under a trigram 

language model as base feature and additional 

865,190 word uni/bi-gram features.  These 

uni/bi-gram features were already included in the 

trigram model which was trained on a background 

domain corpus (Nikkei Newspaper). But in the 

linear model their feature weights were trained 

discriminatively on an adaptation domain corpus 

(Encarta Encyclopedia). Thus, this forms a cross 

domain adaptation paradigm.  This also implies that 

the portion of redundant features in this task could 

be much larger than that in the parse re-ranking 

task, especially because the background domain is 

reasonably similar to the adaptation domain.  

We divided the Encarta corpus into three sets 

that do not overlap.  A 72K-sentences set was used 

as training data, a 5K-sentence set as development 

data, and another 5K-sentence set as testing data. 

The results are presented in Tables 3 and 4, where 

Baseline is the word-based trigram model trained 

on background domain corpus, and MAP (maxi-

mum a posteriori) is a traditional model adaptation 

method, where the parameters of the background 

model are adjusted so as to maximize the likelihood 

of the adaptation data.  

 F-Score # features time (min) # train iter 

Baseline 0.8986     
ME/L2 0.9176 1,211,026 62     129  
ME/L1 0.9165 19,121 37 174  
AP 0.9164 939,248 2 8  
Boosting 0.9131 6,714 495 92,600  
BLasso 0.9133 8,085 239 56,500  

Table 1: Performance summary of estimators on 

parsing re-ranking (ME/L2: ME with L2 regulari-

zation; ME/L1:  ME with L1 regularization) 

 ME/L2 ME/L1 AP Boost BLasso 

ME/L2  >> ~ >> >> 
ME/L1 <<  ~ > ~ 
AP ~ ~  >> > 
Boost << < <<  ~ 
Blasso << ~ < ~  

Table 2: Statistical significance test results (“>>” 

or “<<” means P-value < 0.01; > or < means 0.01 < 

P-value  0.05; “~” means P-value > 0.05)  
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The results are more or less similar to those in 

the parsing task with one visible difference: L1 

regularization achieved relatively better perfor-

mance in this task.  For example, while in the 

parsing task ME with L2 regularization significantly 

outperforms ME with L1 regularization, their per-

formance difference is not significant in this task. 

While in the parsing task the performance differ-

ence between BLasso and Boosting is not signifi-

cant, BLasso outperforms Boosting significantly in 

this task.  Considering that a much higher propor-

tion of the features are redundant in this task than 

the parsing task, the results seem to corroborate the 

observation that L1 regularization is robust to the 

presence of many redundant features. 

3.3 Chinese word segmentation 

Our third task is Chinese word segmentation 

(CWS). The goal of CWS is to determine the 

boundaries between words in a section of Chinese 

text.  The model we used is the hybrid Mar-

kov/semi- Markov CRF described by Andrew 

(2006), which was shown to have state-of-the-art 

accuracy. We tested models trained with the various 

estimation methods on the Microsoft Research Asia 

corpus from the Second International Chinese Word 

Segmentation, and we used the same train/test split 

used in the competition.  The model and experi-

mental setup is identical with that of Andrew (2006) 

except for two differences.  First, we extracted 

features from both positive and negative training 

examples, while Andrew (2006) uses only features 

that occur in some positive training example. 

Second, we used the last 4K sentences of the 

training data to select the weight of the regularizers 

and to determine when to stop perceptron training. 

We compared three of the best performing es-

timation procedures on this task: ME with L2 regu-

larization, ME with L1 regularization, and the Av-

eraged Perceptron.  In this case, ME refers to mi-

nimizing the negative log-probability of the correct 

segmentation, which is globally normalized, while 

the perceptron is trained using at each iteration the 

exact maximum-scoring segmentation with the 

current weights. We observed the same pattern as in 

the other tasks: the three algorithms have nearly 

identical performance, while L1 uses only 6% of the 

features, and the Averaged Perceptron requires 

significantly fewer training iterations.  In this case, 

L1 was also several times faster than L2. The results 

are summarized in Table 5.3 

We note that all three algorithms performed 

slightly better than the model used by Andrew 

(2006), which also used L2 regularization (96.84 

F1).  We believe the difference is due to the use of 

features derived from negative training examples. 

3.4 POS tagging 

Finally we studied the impact of the regularization 

methods on a Maximum Entropy conditional 

Markov Model (MEMM, McCallum et al. 2000) for 

POS tagging. MEMMs decompose the conditional 

probability of a tag sequence given a word sequence 

as follows: 

𝑃 𝑡1 … 𝑡𝑛  𝑤1 …𝑤𝑛 =  𝑃(𝑡𝑖|𝑡𝑖−1 …𝑡𝑖−𝑘 , 𝑤1 …𝑤𝑛)

𝑛

𝑖=1

 

where the probability distributions for each tag 

given its context are ME models.  Following pre-

vious work (Ratnaparkhi, 1996), we assume that the 

tag of a word is independent of the tags of all pre-

ceding words given the tags of the previous two 

words (i.e., 𝑘=2 in the equation above). The local 

models at each position include features of the 

current word, the previous word, the next word, and 

features of the previous two tags.  In addition to 

lexical identity of the words, we used features of 

word suffixes, capitalization, and number/special 

character signatures of the words. 

We used the standard splits of the Penn Treebank 

from the tagging literature (Toutanova et al. 2003) 

for training, development and test sets.  The training 

set comprises Sections 0-18, the development set — 

Sections 19-21, and the test set — Sections 22-24.  

We compared training the ME models using L1 and 

L2 regularization.  For each of the two types of 

regularization we selected the best value of the 

regularization constant using grid search to optim-

ize the accuracy on the development set.  We report 

final accuracy measures on the test set in Table 6.  

The results on this task confirm the trends we 

have seen so far.  There is almost no difference in 

                                                      
3 Only the L2 vs. AP comparison is significant at a 0.05 

level according to the Wilcoxon signed rank test. 

 Test F1 # features # train iter 

ME/L2 0.9719 8,084,086 713 
ME/L1 0.9713 317,146 201 
AP 0.9703 1,965,719 162 

Table 5. Performance summary of estimators on 

CWS 
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accuracy of the two kinds of regularizations, and 

indeed the differences were not statistically signif-

icant.  Estimation with L1 regularization required 

considerably less time than estimation with L2, and 

resulted in a model which is more than ten times 

smaller.  

4 Conclusions 

We compared five of the most competitive para-

meter estimation methods on four NLP tasks em-

ploying a variety of models, and the results were 

remarkably consistent across tasks.  Three of the 

methods — ME estimation with L2 regularization, 

ME estimation with L1 regularization, and the Av-

eraged Perceptron — were nearly indistinguishable 

in terms of test set accuracy, with ME estimation 

with L2 regularization perhaps enjoying a slight 

lead.  Meanwhile, ME estimation with L1 regulari-

zation achieves the same level of performance while 

at the same time producing sparse models, and the 

Averaged Perceptron provides an excellent com-

promise of high performance and fast training. 

These results suggest that when deciding which 

type of parameter estimation to use on these or 

similar NLP tasks, one may choose any of these 

three popular methods and expect to achieve com-

parable performance.  The choice of which to im-

plement should come down to other considerations: 

if model sparsity is desired, choose ME estimation 

with L1 regularization (or feature selection methods 

such as BLasso); if quick implementation and 

training is necessary, use the Averaged Perceptron; 

and ME estimation with L2 regularization may be 

used if it is important to achieve the highest ob-

tainable level of performance. 
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Abstract

We propose a new language learning model
that learns a syntactic-semantic grammar
from a small number of natural language
strings annotated with their semantics, along
with basic assumptions about natural lan-
guage syntax. We show that the search space
for grammar induction is a complete gram-
mar lattice, which guarantees the uniqueness
of the learned grammar.

1 Introduction

There is considerable interest in learning computa-
tional grammars.1 While much attention has focused
on learning syntactic grammars either in a super-
vised or unsupervised manner, recently there is a
growing interest toward learning grammars/parsers
that capture semantics as well (Bos et al., 2004;
Zettlemoyer and Collins, 2005; Ge and Mooney,
2005).

Learning both syntax and semantics is arguably
more difficult than learning syntax alone. In for-
mal grammar learning theory it has been shown that
learning from “good examples,” or representative
examples, is more powerful than learning from all
the examples (Freivalds et al., 1993). Haghighi and
Klein (2006) show that using a handful of “proto-

1This research was supported by the National Science Foun-
dation under Digital Library Initiative Phase II Grant Number
IIS-98-17434 (Judith Klavans and Kathleen McKeown, PIs).
We would like to thank Judith Klavans for her contributions
over the course of this research, Kathy McKeown for her in-
put, and several anonymous reviewers for very useful feedback
on earlier drafts of this paper.

types” significantly improves over a fully unsuper-
vised PCFG induction model (their prototypes were
formed by sequences of POS tags; for example, pro-
totypical NPs were DT NN, JJ NN).

In this paper, we present a new grammar formal-
ism and a new learning method which together ad-
dress the problem of learning a syntactic-semantic
grammar in the presence of a representative sample
of strings annotated with their semantics, along with
minimal assumptions about syntax (such as syntac-
tic categories). The semantic representation is an
ontology-based semantic representation. The anno-
tation of the representative examples does not in-
clude the entire derivation, unlike most of the ex-
isting syntactic treebanks. The aim of the paper is to
present the formal aspects of our grammar induction
model.

In Section 2, we present a new grammar formal-
ism, called Lexicalized Well-Founded Grammars,
a type of constraint-based grammars that combine
syntax and semantics. We then turn to the two main
results of this paper. In Section 3 we show that
our grammars can always be learned from a set of
positive representative examples (with no negative
examples), and the search space for grammar in-
duction is a complete grammar lattice, which guar-
antees the uniqueness of the learned grammar. In
Section 4, we propose a new computationally effi-
cient model for grammar induction from pairs of ut-
terances and their semantic representations, called
Grammar Approximation by Representative Sublan-
guage (GARS). Section 5 discusses the practical use
of our model and Section 6 states our conclusions
and future work.
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2 Lexicalized Well-Founded Grammars

Lexicalized Well-Founded Grammars (LWFGs) are
a type of Definite Clause Grammars (Pereira and
Warren, 1980) where: (1) the Context-Free Gram-
mar backbone is extended by introducing a par-
tial ordering relation among nonterminals (well-
founded) 2) each string is associated with a
syntactic-semantic representation called semantic
molecule; 3) grammar rules have two types of con-
straints: one for semantic composition and one for
ontology-based semantic interpretation.

The partial ordering among nonterminals allows
the ordering of the grammar rules, and thus facili-
tates the bottom-up induction of these grammars.

The semantic molecule is a syntactic-semantic
representation of natural language strings ��������� 	�

where � (head) encodes the information required
for semantic composition, and 
 (body) is the ac-
tual semantic representation of the string. Figure 1
shows examples of semantic molecules for an ad-
jective, a noun and a noun phrase. The represen-
tations associated with the lexical items are called
elementary semantic molecules (I), while the rep-
resentations built by the combination of others are
called derived semantic molecules (II). The head
of the semantic molecule is a flat feature structure,
having at least two attributes encoding the syntac-
tic category of the associated string, cat, and the
head of the string, head. The set of attributes is
finite and known a priori for each syntactic cate-
gory. The body of the semantic molecule is a flat,
ontology-based semantic representation. It is a log-
ical form, built as a conjunction of atomic predi-
cates ������������������� ��!"�#�%$&� � ���'���������(��� , where vari-
ables are either concept or slot identifiers in an on-
tology. For example, the adjective major is repre-
sented as �*),+-�/.%01! �32 !546��$�7�)98:�<; � ),+�� , which
says that the meaning of an adjective is a concept
( ),+-�/.#0=! �>2 !546��$ ), which is a value of a property
of another concept ( )?85�<; � ),+ ) in the ontology.

The grammar nonterminals are augmented with
pairs of strings and their semantic molecules. These
pairs are called syntagmas, and are denoted by @ �A � 7 � �CB � A � 7 � � 	�
 B . There are two types of con-
straints at the grammar rule level — one for semantic
composition (defines how the meaning of a natural
language expression is composed from the meaning

I. Elementary Semantic Molecules
(major/adj) D = EFFFFFFG�H�I

JKL cat adj

head M I
mod MON

P QR
S IUT M I

.isa = major, MON .Y= M I�V
W*XXXXXXY

(damage/noun) D = EFFFFFFG H�Z
JKL cat noun

nr sg

head M Z
P QR

S Z T M Z
.isa = damage

V
W XXXXXXY

II. Derived Semantic Molecule
(major damage) D = EFFFFFFG H

JKL cat n

nr sg

head X

P QR
S T M I

.isa = major, X.Y= M I
, X.isa=damage

V
W*XXXXXXY

III. Constraint Grammar Rule[]\_^a`�bUc d�e�f6gihkjUl�\_^ I `�b c Id I e�f�`C[]\_^ N `�b c Nd N emf�n'oqp r*sut-`*o"r*vxwyrx\zS*foqp r*sut-\ H ` H'I ` H N f:{}| H1~ ����� {��5` H1~ H'�m� j�{ H'I�~ ��� j�`H1~ H'�m� j�{ H N ~ H'�m� j�` H1~ �-�({ H N ~ �-�#` H I ~ ����� { � jUl#` H N ~ ����� {��=�o r*vxwyr \ySCf
returns M I

=MAJOR, M =DAMAGE, � =DEGREE from ontology

Figure 1: Examples of two elementary semantic
molecules (I), a derived semantic molecule (II) ob-
tained by combining them, and a constraint grammar
rule together with the constraints ���m�%��� , ���%�=��� (III)
.

of its parts) and one for ontology-based semantic in-
terpretation. An example of a LWFG rule is given
in Figure 1(III). The composition constraints � �m�%���
applied to the heads of the semantic molecules, form
a system of equations that is a simplified version of
“path equations” (Shieber et al., 1983), because the
heads are flat feature structures. These constraints
are learned together with the grammar rules. The
ontology-based constraints represent the validation
on the ontology, and are applied to the body of the
semantic molecule associated with the left-hand side
nonterminal. They are not learned. Currently, ���%�=���
is a predicate which can succeed or fail. When it
succeeds, it instantiates the variables of the semantic
representation with concepts/slots in the ontology.
For example, given the phrase major damage, ���%�=���
succeeds and returns ( )�+ =MAJOR, ) =DAMAGE,; =DEGREE), while given the phrase major birth it
fails. We leave the discussion of the ontology con-
straints for a future paper, since it is not needed for
the main result of this paper.

We give below the formal definition of Lexical-
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ized Well-Founded Grammars, except that we do not
define formally the constraints due to lack of space
(see (Muresan, 2006) for details).

Definition 1. A Lexicalized Well-Founded Gram-
mar (LWFG) is a 6-tuple, � � ����7�� � 7���� 7	�7�
 � 7�� � , where:

1. � is a finite set of terminal symbols.
2. � � is a finite set of elementary semantic

molecules corresponding to the set of terminal
symbols.

3. ��� is a finite set of nonterminal symbols.
4. � is a partial ordering relation among the non-

terminals.
5. 
�� is a set of constraint rules. A

constraint rule is written 
 A @ B �� + A @ + B 7������=7 � � A @ � B�� � A��@ B , where�@ � A @O7�@ +17��U�U�U7�@(� B such that @ � A � 7 � �CB 7�@�� �A � �%7 � � � B 7	��� .�� ��7 � � � +������ � ��7 � �9�� � +�� ����� � � �� , and � is the semantic compo-
sition operator. For brevity, we denote a rule
by 
 � ��� � , where 
  !� � 7 �  !�#"� .
For the rules whose left-hand side are
preterminals, 
 A @ B$� , we use the notation

 � @ . There are three types of rules:
ordered non-recursive, ordered recursive,
and non-ordered rules. A grammar rule

 A @ B%� � + A @ + B 7������=7 � � A @k� B�� � A��@ B , is an
ordered rule, if for all

� � , we have 
&� � � .
In LWFGs, each nonterminal symbol is a left-
hand side in at least one ordered non-recursive
rule and the empty string cannot be derived
from any nonterminal symbol.

6. �' ���� is the start nonterminal symbol, and( 
) *�+�]7��%�'
 (we use the same notation
for the reflexive, transitive closure of � ).

The relation � is a partial ordering only among
nonterminals, and it should not be confused with
information ordering derived from the flat feature
structures. This relation makes the set of nontermi-
nals well-founded, which allows the ordering of the
grammar rules, as well as the ordering of the syntag-
mas generated by LWFGs.

Definition 2. Given a LWFG, � , the ground

syntagma derivation relation, , �- ,2 is de-
fined as: .0/21.43 56 1 (if @ � A � 7 � � B 7 �  

2The ground derivation (“reduction” in (Wintner, 1999)) can
be viewed as the bottom-up counterpart of the usual derivation.

��7 � �  � � , i.e., 
 is a preterminal), and798 3 56 1 8;: �=<�+ :?>?>?> : � : .A@B1DCE/ 7�F @B1 F C :?>?>?> : 79G @B1 G C�H�IJ@;K1LC. 3
56 1 .

In LWFGs all syntagmas @ � A � 7 ��� B , derived
from a nonterminal 
 have the same category of
their semantic molecules � � .3

The language of a grammar � is the set of all
syntagmas generated from the start symbol � , i.e.,M A � B � N @PO @ � A � 7 ��� B 7 �  Q� " 7�� , �- @SR .
The set of all syntagmas generated by a grammar
� is

M
1
A � B �TN @PO @ � A � 7 � �CB 7 �  U� " 7�VW
T 

� � 7�
X, �- @SR . Given a LWFG � we call a set Y 1[ZM
1
A � B a sublanguage of � . Extending the notation,

given a LWFG � , the set of syntagmas generated by
a rule

A 
 � ��� � B  \
�� is
M
1
A 
 � ��� � B �

N @PO @ � A � 7 � � B 7 �  ]� " 7 A 
 � ��� � B , �- @SR ,
where

A 
 �^��� � B , �- @ denotes the ground deriva-

tion 
_, �- @ obtained using the rule 
 � ��� � in
the last derivation step (we have bottom-up deriva-
tion). We will use the short notation

M
1
A $ B , where $

is a grammar rule.
Given a LWFG � and a sublanguage Y 1 (not nec-

essarily of � ) we denote by ` A � B � M
1
A � Bba Y 1 ,

the set of syntagmas generated by � reduced to the
sublanguage Y 1 . Given a grammar rule $� c
d� ,
we call ` A $ B � M

1
A $ Bea Y 1 the set of syntagmas

generated by $ reduced to the sublanguage Y 1 .
As we have previously mentioned, the partial or-

dering among grammar nonterminals allows the or-
dering of the syntagmas generated by the grammar,
which allows us to define the representative exam-
ples of a LWFG.
Representative Examples. Informally, the repre-
sentative examples Ygf of a LWFG, � , are the sim-
plest syntagmas ground-derived by the grammar � ,
i.e., for each grammar rule there exist a syntagma
which is ground-derived from it in the minimum
number of steps. Thus, the size of the representa-
tive example set is equal with the size of the set of
grammar rules, O YgfhO � O 
��hO .

This set of representative examples is used by
the grammar learning model to generate the candi-
date hypotheses. For generalization, a larger sublan-
guage Y 1#i Yjf is used, which we call representa-
tive sublanguage.

3This property is used for determining the lhs nonterminal
of the learned rule.
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Figure 2: Example of a simple grammar lattice. All grammars generate Y+f , and only _ generates Y 1 ( � is
a common lexicon for all the grammars)

3 A Grammar Lattice as a Search Space
for Grammar Induction

In this section we present a class of Lexicalized
Well-Founded Grammars that form a complete lat-
tice. This grammar lattice is the search space for
our grammar induction model, which we present in
Section 4. An example of a grammar lattice is given
in Figure 2, where for simplicity, we only show the
context-free backbone of the grammar rules, and
only strings, not syntagmas. Intuitively, the gram-
mars found lower in the lattice are more specialized
than the ones higher in the lattice. For learning,
Y f is used to generate the most specific hypotheses
(grammar rules), and thus all the grammars should
be able to generate those examples. The sublan-
guage Y 1 is used during generalization, thus only
the most general grammar, _ , is able to generate
the entire sublanguage. In other words, the gener-
alization process is bounded by Y 1 , that is why our
model is called Grammar Approximation by Repre-
sentative Sublanguage.

There are two properties that LWFGs should have
in order to form a complete lattice: 1) they should be
unambiguous, and 2) they should preserve the pars-
ing of the representative example set, Y�f . We define
these two properties in turn.

Definition 3. A LWFG, � , is unambiguous w.r.t. a
sublanguage Y 1 Z

M
1
A � B if

( @  Y 1 there is one
and only one rule that derives @ .

Since the unambiguity is relative to a set of
syntagmas (pairs of strings and their semantic

molecules) and not to a set of natural language
strings, the requirement is compatible with model-
ing natural language. For example, an ambiguous
string such as John saw the man with the telescope
corresponds to two unambiguous syntagmas.

In order to define the second property, we need
to define the rule specialization step and the rule
generalization step of unambiguous LWFGs, such
that they are Ygf -parsing-preserving and are the in-
verse of each other. The property of Y�f -parsing-
preserving means that both the initial and the spe-
cialized/generalized rules ground-derive the same
syntagma, @ .  Y f .

Definition 4. The rule specialization step:

.A@B1&` CE/�a 7 @ 1 3b Cdc0H�I�` 7 @ 1 b C /*e4H	I b.�@ 1&` C /�afe�cJH�I Z `
is Y f -parsing-preserving, if there exists @ .  Y f
and $hgVi�� , �- @ . and $�j �1i%� , � Z- @ . , where $1gQi�� =k Fdl ` I�mon�p�Fdl 3b IrqSsut ` , $ 7 =

pvFdl b I�mxwJsyt b , and

$�jC�1i%� =
k Fdl ` Izm{nyw|q@sft Z` . We write $hgVi#� } b~ $�jC�1i%� .

The rule generalization step :

.A@B1&`9C /�afe�c9H	I Z ` 7 @ 1 b C /*e0H I b.A@B1&`9C /�a 7 @ 1 3b C�c0H�Iz`
is Y f -parsing-preserving, if there exists @ .  Y f
and $ jC�1i%� , � Z- @ . and $ gVi#� , �- @ . . We write $ j �1i%� } b�$1gVi#� .

Since @ . is a representative example, it is derived
in the minimum number of derivation steps, and thus
the rule $ 7 is always an ordered, non-recursive rule.
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The goal of the rule specialization step is to ob-
tain a new target grammar � � from � by modify-
ing a rule of � . Similarly, the goal of the rule gen-
eralization step is to obtain a new target grammar
� from � � by modifying a rule of � � . They are
not to be taken as the derivation/reduction concepts
in parsing. The specialization/generalization steps
are the inverse of each other. From both the spe-
cialization and the generalization step we have that:M
1

A $ gVi#� B i M 1 A $ jC�1i%� B .
In Figure 2, the specialization step $:8 } F~ $ �8 is

Y f -parsing-preserving, because the rule $ �8 ground-
derives the syntagma loud noise. If instead we

would have a specialization step $:8 } U~ $ � �8 ( $ � �8 �
� � � 
��#4 
��%4�� � ), it would not be Y f -parsing-
preserving since the syntagma loud noise could no
longer be ground-derived from the rule $ � �8 (which
requires two adjectives).

Definition 5. A grammar � � is one-step special-

ized from a grammar � , �
} F~ � � , if Vq$=7�$6+� 
��

and Vq$ � 7�$6+  \
 � Z , s.t. $ } F~ $ � , and
(����� $�7 �  


 � iff
�  
 � Z . A grammar � � is specialized from

a grammar � , � ,~ � � , if it is obtained from � in

� -specialization steps: �
} F~ �����

} G~ � � , where � is fi-

nite. We extend the notation so that we have � ,~ � .
Similarly, we define the concept of a grammar �
generalized from a grammar � � , � � ,� � using the
rule generalization step.

In Figure 2, the grammar � is one-step special-

ized from the grammar � + , i.e., � + } F~ � , since
� preserve the parsing of the representative exam-
ples Yjf . A grammar which contains the rule $ � �8 �
� � � 
��%4�
��%4 � � instead of $ �8 is not specialized
from the grammar � + since it does not preserve the
parsing of the representative example set, Y f . Such
grammars will not be in the lattice.

In order to define the grammar lattice we need to
introduce one more concept: a normalized grammar
w.r.t. a sublanguage.

Definition 6. A LWFG � is called normalized w.r.t.
a sublanguage Y 1 (not necessarily of G), if none of
the grammar rules $fj �hi#� of � can be further gener-
alized to a rule $hgVi#� by the rule generalization step
such that ` A $�jC�&i#� B	� ` A $1gVi#� B .

In Figure 2, grammar _ is normalized w.r.t. Y 1 ,
while � , � + and ��8 are not.

We now define a grammar lattice 
 which will be
the search space for our grammar learning model.
We first define the set of lattice elements � .

Let _ be a LWFG, normalized and unambiguous
w.r.t. a sublanguage Y 1 Z

M
1
A _ B which includes

the representative example set Y2f of the grammar

_ ( Y 1 i Yjf ). Let � �_N � O _ ,~ � R be the set of
grammars specialized from _ . We call _ the top
element of � , and � the bottom element of � , if( �  ���7Q_ ,~ ��
 � ,~ � . The bottom element,
� , is the grammar specialized from _ , such that the
right-hand side of all grammar rules contains only
preterminals. We have ` A _ B � Y 1 and ` A � B i Y f .

The grammars in � have the following two prop-
erties (Muresan, 2006):
� For two grammars � and � � , we have that � �

is specialized from � if and only if � is gener-
alized from � � , with

M
1
A � B i M 1 A � � B .

� All grammars in � preserve the parsing of the
representative example set Y2f .

Note that we have that for � 7�� �  �� , if � ,~ � �
then ` A � B i ` A � � B .

The system 
 � ��� 7 ,~ � is a complete gram-
mar lattice (see (Muresan, 2006) for the full formal
proof). In Figure 2 the grammars � + , � 8 , _ , � pre-
serve the parsing of the representative examples Y f .

We have that _
} F~ � + , _ } F~ � 8 , � 8 } F~ � , � + } F~ �

and _ ,~ � . Due to space limitation we do not define
here the least upper bound ( ���a
 ), � and the greatest
lower bound ( ����
 ), � operators, but in this example
_ = � +�� � 8 , � = � +�����8 .

In oder to give a learnability theorem we need to
show that � and _ elements of the lattice can be
built. First, an assumption in our learning model is
that the rules corresponding to the grammar preter-
minals are given. Thus, for a given set of representa-
tive examples, Y f , we can build the grammar � us-
ing a bottom-up robust parser, which returns partial
analyses (chunks) if it cannot return a full parse. In
order to soundly build the _ element of the grammar
lattice from the � grammar through generalization,
we must give the definition of a grammar � confor-
mal w.r.t. Y 1 .
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Definition 7. A LWFG � is conformal w.r.t. a sub-
language Y 1 Z

M
1
A � B iff � is normalized and un-

ambiguous w.r.t. Y 1 and the rule specialization step
guarantees that ` A $�gVi#� B�� ` A $�jC�&i#� B for all grammars
specialized from � .

The only rule generalization steps allowed in the
grammar induction process are those which guaran-
tee the same relation ` A $fjC�&i#� B � ` A $1gVi#� B , which en-
sures that all the generalized grammars belong to the
grammar lattice.

In Figure 2, _ is conformal to the given sub-
language Y 1 . If the sublanguage were Y ,1 �
Y f�� N clear loud noise R then _ would not be con-
formal to Y ,1 since ` A _ B � ` A � + B � Y ,1 and thus
the specialization step would not satisfy the relation
` A ��� ��� �-��� � B�� ` A ��� ��� ����� � ��� B . Dur-
ing learning, the generalization step cannot general-
ize from grammar � + to _ .

Theorem 1 (Learnability Theorem). If Y2f is the
set of representative examples associated with a
LWFG � conformal w.r.t. a sublanguage Y 1 i Yjf ,
then � can always be learned from Y2f and Y 1 as
the grammar lattice top element ( _ � � ).

The proof is given in (Muresan, 2006).
If the hypothesis of Theorem 1 holds, then any

grammar induction algorithm that uses the complete
lattice search space can converge to the lattice top el-
ement, using different search strategies. In the next
section we present our new model of grammar learn-
ing which relies on the property of the search space
as grammar lattice.

4 Grammar Induction Model

Based on the theoretical foundation of the hypoth-
esis search space for LWFG learning given in the
previous section, we define our grammar induction
model. First, we present the LWFG induction as an
Inductive Logic Programming problem. Second, we
present our new relational learning model for LWFG
induction, called Grammar Approximation by Rep-
resentative Sublanguage (GARS).

4.1 Grammar Induction Problem in
ILP-setting

Inductive Logic Programming (ILP) is a class of re-
lational learning methods concerned with inducing

first-order Horn clauses from examples and back-
ground knowledge. Kietz and Džeroski (1994) have
formally defined the ILP-learning problem as the tu-
ple � ~ 7 Me� 7 M Y97 M
	 � , where

~
is the provability re-

lation (also called the generalization model),
MP�

is
the language of the background knowledge,

M Y is
the language of the (positive and negative) exam-
ples, and

M
	
is the hypothesis language. The gen-

eral ILP-learning problem is undecidable. Possible
choices to restrict the ILP-problem are: the provabil-
ity relation,

~
, the background knowledge and the

hypothesis language. Research in ILP has presented
positive results only for very limited subclasses of
first-order logic (Kietz and Džeroski, 1994; Cohen,
1995), which are not appropriate to model natural
language grammars.

Our grammar induction problem can be formu-
lated as an ILP-learning problem � ~ 7 MP� 7 M Y 7 M�	 �
as follows:
� The provability relation,

~
, is given by robust

parsing, and we denote it by
~ } � . We use the

“parsing as deduction” technique (Shieber et
al., 1995). For all syntagmas we can say in
polynomial time whether they belong or not to
the grammar language. Thus, using the

~ } � as
generalization model, our grammar induction
problem is decidable.

� The language of background knowledge,
MP�

,
is the set of LWFG rules that are already
learned together with elementary syntagmas
(i.e., corresponding to the lexicon), which are
ground atoms (the variables are made con-
stants).

� The language of examples,
M Y are syntagmas

of the representative sublanguage, which are
ground atoms. We only have positive examples.

� The hypothesis language,
M
	

, is a LWFG lat-
tice whose top element is a conformal gram-
mar, and which preserve the parsing of repre-
sentative examples.

4.2 Grammar Approximation by
Representative Sublanguage Model

We have formulated the grammar induction problem
in the ILP-setting. The theoretical learning model,
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called Grammar Approximation by Representative
Sublanguage (GARS), can be formulated as follows:
Given:� a representative example set Y2f , lexically con-

sistent (i.e., it allows the construction of the
grammar lattice � element)

� a finite sublanguage Y 1 , conformal and thus
unambiguous, which includes the representa-
tive example set, Y 1 i Yjf . We called this
sublanguage, the representative sublanguage

Learn a grammar � , using the above ILP-learning
setting, such that � is unique and Y 1 Z

M
1
A � B .

The hypothesis space is a complete grammar lat-
tice, and thus the uniqueness property of the learned
grammar is guaranteed by the learnability theorem
(i.e., the learned grammar is the lattice top ele-
ment). This learnability result extends significantly
the class of problems learnable by ILP methods.

The GARS model uses two polynomial algo-
rithms for LWFG learning. In the first algorithm,
the learner is presented with an ordered set of rep-
resentative examples (syntagmas), i.e., the examples
are ordered from the simplest to the most complex.
The reader should remember that for a LWFG � ,
there exists a partial ordering among the grammar
nonterminals, which allows a total ordering of the
representative examples of the grammar � . Thus, in
this algorithm, the learner has access to the ordered
representative syntagmas when learning the gram-
mar. However, in practice it might be difficult to
provide the learner with the “true” order of exam-
ples, especially when modeling complex language
phenomena. The second algorithm is an iterative al-
gorithm that learns starting from a random order of
the representative example set. Due to the property
of the search space, both algorithms converge to the
same target grammar.

Using ILP and theory revision terminology
(Greiner, 1999), we can establish the following anal-
ogy: syntagmas (examples) are “labeled queries”,
the LWFG lattice is the “space of theories”, and a
LWFG in the lattice is “a theory.” The first algorithm
learns from an “empty theory”, while the second al-
gorithm is an instance of “theory revision”, since the
grammar (“theory”) learned during the first iteration,
is then revised, by deleting and adding rules.

Both of these algorithms are cover set algorithms.
In the first step the most specific grammar rule

is generated from the current representative exam-
ple. The category name annotated in the represen-
tative example gives the name of the lhs nontermi-
nal (predicate invention in ILP terminology), while
the robust parser returns the minimum number of
chunks that cover the representative example. In the
second step this most specific rule is generalized us-
ing as performance criterion the number of the ex-
amples in Y 1 that can be parsed using the candidate
grammar rule (hypothesis) together with the previ-
ous learned rules. For the full details for these two
algorithms, and the proof of their polynomial effi-
ciency, we refer the reader to (Muresan, 2006).

5 Discussion

A practical advantage of our GARS model is that
instead of writing syntactic-semantic grammars by
hand (both rules and constraints), we construct just
a small annotated treebank - utterances and their se-
mantic molecules. If the grammar needs to be re-
fined, or enhanced, we only refine, or enhance the
representative examples/sublanguage, and not the
grammar rules and constraints, which would be a
more difficult task.

We have built a framework to test whether our
GARS model can learn diverse and complex lin-
guistic phenomena. We have primarily analyzed a
set of definitional-type sentences in the medical do-
main. The phenomena covered by our learned gram-
mar includes complex noun phrases (including noun
compounds, nominalization), prepositional phrases,
relative clauses and reduced relative clauses, finite
and non-finite verbal constructions (including, tense,
aspect, negation, and subject-verb agreement), cop-
ula to be, and raising and control constructions. We
also learned rules for wh-questions (including long-
distance dependencies). In Figure 3 we show the
ontology-level representation of a definition-type
sentence obtained using our learned grammar. It
includes the treatment of reduced relative clauses,
raising construction (tends to persist, where virus
is not the argument of tends but the argument of
persist), and noun compounds. The learned gram-
mar together with a semantic interpreter targeted
to terminological knowledge has been used in an
acquisition-query experiment, where the answers
are at the concept level (the querying is a graph
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Hepatitis B is an acute viral hepatitis caused by a virus that
tends to persist in the blood serum.

#hepatitis

#acute #viral

#cause

#blood

#virus

sub

kind_of

th

of

duration

ag

prop

locationth

#tend

#persist

#serum

#’HepatitisB’

Figure 3: A definition-type sentence and its
ontology-based representation obtained using our
learned LWFG

matching problem where the “wh-word” matches
the answer concept). A detailed discussion of the
linguistic phenomena covered by our learned gram-
mar using the GARS model, as well as the use of this
grammar for terminological knowledge acquisition,
is given in (Muresan, 2006).

To learn the grammar used in these experiments
we annotated 151 representative examples and 448
examples used as a representative sublanguage for
generalization. Annotating these examples requires
knowledge about categories and their attributes. We
used 31 categories (nonterminals) and 37 attributes
(e.g., category, head, number, person). In this
experiment, we chose the representative examples
guided by the type of phenomena we wanted to mod-
eled and which occurred in our corpus. We also
used 13 lexical categories (i.e., parts of speech). The
learned grammar contains 151 rules and 151 con-
straints.

6 Conclusion

We have presented Lexicalized Well-Founded
Grammars, a type of constraint-based grammars
for natural language specifically designed to en-
able learning from representative examples anno-
tated with semantics. We have presented a new
grammar learning model and showed that the search
space is a complete grammar lattice that guarantees
the uniqueness of the learned grammar. Starting
from these fundamental theoretical results, there are
several directions into which to take this research.

A first obvious extension is to have probabilistic-
LWFGs. For example, the ontology constraints
might not be “hard” constraints, but “soft” ones (be-
cause language expressions are more or less likely to
be used in a certain context). Investigating where to
add probabilities (ontology, grammar rules, or both)
is part of our planned future work. Another future
extension of this work is to investigate how to auto-
matically select the representative examples from an
existing treebank.
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Abstract

Standard approaches to Chinese word seg-
mentation treat the problem as a tagging
task, assigning labels to the characters in
the sequence indicating whether the char-
acter marks a word boundary. Discrimina-
tively trained models based on local char-
acter features are used to make the tagging
decisions, with Viterbi decoding finding the
highest scoring segmentation. In this paper
we propose an alternative, word-based seg-
mentor, which uses features based on com-
plete words and word sequences. The gener-
alized perceptron algorithm is used for dis-
criminative training, and we use a beam-
search decoder. Closed tests on the first and
secondSIGHAN bakeoffs show that our sys-
tem is competitive with the best in the litera-
ture, achieving the highest reported F-scores
for a number of corpora.

1 Introduction

Words are the basic units to process for mostNLP

tasks. The problem of Chinese word segmentation
(CWS) is to find these basic units for a given sen-
tence, which is written as a continuous sequence of
characters. It is the initial step for most Chinese pro-
cessing applications.

Chinese character sequences are ambiguous, of-
ten requiring knowledge from a variety of sources
for disambiguation. Out-of-vocabulary (OOV) words
are a major source of ambiguity. For example, a
difficult case occurs when anOOV word consists

of characters which have themselves been seen as
words; here an automatic segmentor may split the
OOV word into individual single-character words.
Typical examples of unseen words include Chinese
names, translated foreign names and idioms.

The segmentation of known words can also be
ambiguous. For example, “ÙÌb” should be “Ù
Ì (here)b (flour)” in the sentence “ÙÌb�s�
5” (flour and rice are expensive here) or “Ù (here)
Ìb (inside)” in the sentence “ÙÌb�·” (it’s
cold inside here). The ambiguity can be resolved
with information about the neighboring words. In
comparison, for the sentences “=�����”,
possible segmentations include “=� (the discus-
sion)� (will) � (very)�� (be successful)” and
“=�� (the discussion meeting)� (very)�� (be
successful)”. The ambiguity can only be resolved
with contextual information outside the sentence.
Human readers often use semantics, contextual in-
formation about the document and world knowledge
to resolve segmentation ambiguities.

There is no fixed standard for Chinese word seg-
mentation. Experiments have shown that there is
only about75% agreement among native speakers
regarding the correct word segmentation (Sproat et
al., 1996). Also, specificNLP tasks may require dif-
ferent segmentation criteria. For example, “�¬ö
L” could be treated as a single word (Bank of Bei-
jing) for machine translation, while it is more natu-
rally segmented into “�¬ (Beijing)öL (bank)”
for tasks such as text-to-speech synthesis. There-
fore, supervised learning with specifically defined
training data has become the dominant approach.

Following Xue (2003), the standard approach to
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supervised learning forCWS is to treat it as a tagging
task. Tags are assigned to each character in the sen-
tence, indicating whether the character is a single-
character word or the start, middle or end of a multi-
character word. The features are usually confined to
a five-character window with the current character
in the middle. In this way, dynamic programming
algorithms such as the Viterbi algorithm can be used
for decoding.

Several discriminatively trained models have re-
cently been applied to theCWS problem. Exam-
ples include Xue (2003), Peng et al. (2004) and Shi
and Wang (2007); these use maximum entropy (ME)
and conditional random field (CRF) models (Ratna-
parkhi, 1998; Lafferty et al., 2001). An advantage
of these models is their flexibility in allowing knowl-
edge from various sources to be encoded as features.

Contextual information plays an important role in
word segmentation decisions; especially useful is in-
formation about surrounding words. Consider the
sentence “-ý���”, which can be from “v-
(among which)ý� (foreign)�� (companies)”,
or “-ý (in China)�� (foreign companies)�
¡ (business)”. Note that the five-character window
surrounding “�” is the same in both cases, making
the tagging decision for that character difficult given
the local window. However, the correct decision can
be made by comparison of the two three-word win-
dows containing this character.

In order to explore the potential of word-based
models, we adapt the perceptron discriminative
learning algorithm to theCWS problem. Collins
(2002) proposed the perceptron as an alternative to
the CRF method forHMM -style taggers. However,
our model does not map the segmentation problem
to a tag sequence learning problem, but defines fea-
tures on segmented sentences directly. Hence we
use a beam-search decoder during training and test-
ing; our idea is similar to that of Collins and Roark
(2004) who used a beam-search decoder as part of
a perceptron parsing model. Our work can also be
seen as part of the recent move towardssearch-based
learning methods which do not rely on dynamic pro-
gramming and are thus able to exploit larger parts of
the context for making decisions (Daume III, 2006).

We study several factors that influence the per-
formance of the perceptron word segmentor, includ-
ing the averaged perceptron method, the size of the

beam and the importance of word-based features.
We compare the accuracy of our final system to the
state-of-the-artCWS systems in the literature using
the first and secondSIGHAN bakeoff data. Our sys-
tem is competitive with the best systems, obtaining
the highest reported F-scores on a number of the
bakeoff corpora. These results demonstrate the im-
portance of word-based features forCWS. Further-
more, our approach provides an example of the po-
tential of search-based discriminative training meth-
ods forNLP tasks.

2 The Perceptron Training Algorithm

We formulate theCWSproblem as finding a mapping
from an input sentencex ∈ X to an output sentence
y ∈ Y , whereX is the set of possible raw sentences
and Y is the set of possible segmented sentences.
Given an input sentencex, the correct output seg-
mentationF (x) satisfies:

F (x) = arg max
y∈GEN(x)

Score(y)

where GEN(x) denotes the set of possible segmen-
tations for an input sentencex, consistent with nota-
tion from Collins (2002).

The score for a segmented sentence is computed
by first mapping it into a set of features. A feature
is an indicator of the occurrence of a certain pattern
in a segmented sentence. For example, it can be the
occurrence of “Ìb” as a single word, or the occur-
rence of “Ì” separated from “b” in two adjacent
words. By defining features, a segmented sentence
is mapped into a global feature vector, in which each
dimension represents the count of a particular fea-
ture in the sentence. The term “global” feature vec-
tor is used by Collins (2002) to distinguish between
feature count vectors for whole sequences and the
“local” feature vectors inME tagging models, which
are Boolean valued vectors containing the indicator
features for one element in the sequence.

Denote the global feature vector for segmented
sentencey with Φ(y) ∈ Rd, whered is the total
number of features in the model; then Score(y) is
computed by the dot product of vectorΦ(y) and a
parameter vectorα ∈ Rd, whereαi is the weight for
theith feature:

Score(y) = Φ(y) · α
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Inputs: training examples(xi, yi)
Initialization : setα = 0
Algorithm :

for t = 1..T , i = 1..N
calculatezi = arg maxy∈GEN(xi) Φ(y) · α
if zi 6= yi

α = α + Φ(yi)− Φ(zi)
Outputs: α

Figure 1: the perceptron learning algorithm, adapted
from Collins (2002)

The perceptron training algorithm is used to deter-
mine the weight valuesα.

The training algorithm initializes the parameter
vector as all zeros, and updates the vector by decod-
ing the training examples. Each training sentence
is turned into the raw input form, and then decoded
with the current parameter vector. The output seg-
mented sentence is compared with the original train-
ing example. If the output is incorrect, the parameter
vector is updated by adding the global feature vector
of the training example and subtracting the global
feature vector of the decoder output. The algorithm
can perform multiple passes over the same training
sentences. Figure 1 gives the algorithm, whereN is
the number of training sentences andT is the num-
ber of passes over the data.

Note that the algorithm from Collins (2002) was
designed for discriminatively training anHMM -style
tagger. Features are extracted from an input se-
quencex and its corresponding tag sequencey:

Score(x, y) = Φ(x, y) · α

Our algorithm is not based on anHMM . For a given
input sequencex, even the length of different candi-
datesy (the number of words) is not fixed. Because
the output sequencey (the segmented sentence) con-
tains all the information from the input sequencex
(the raw sentence), the global feature vectorΦ(x, y)
is replaced withΦ(y), which is extracted from the
candidate segmented sentences directly.

Despite the above differences, since the theorems
of convergence and their proof (Collins, 2002) are
only dependent on the feature vectors, and not on
the source of the feature definitions, the perceptron
algorithm is applicable to the training of ourCWS

model.

2.1 The averaged perceptron

The averaged perceptron algorithm (Collins, 2002)
was proposed as a way of reducing overfitting on
the training data. It was motivated by the voted-
perceptron algorithm (Freund and Schapire, 1999)
and has been shown to give improved accuracy over
the non-averaged perceptron on a number of tasks.
Let N be the number of training sentences,T the
number of training iterations, andαn,t the parame-
ter vector immediately after thenth sentence in the
tth iteration. The averaged parameter vectorγ ∈ Rd

is defined as:

γ =
1

NT

∑

n=1..N,t=1..T

αn,t

To compute the averaged parametersγ, the train-
ing algorithm in Figure 1 can be modified by keep-
ing a total parameter vectorσn,t =

∑
αn,t, which is

updated usingα after each training example. After
the final iteration,γ is computed asσn,t/NT . In the
averaged perceptron algorithm,γ is used instead of
α as the final parameter vector.

With a large number of features, calculating the
total parameter vectorσn,t after each training exam-
ple is expensive. Since the number of changed di-
mensions in the parameter vectorα after each train-
ing example is a small proportion of the total vec-
tor, we use a lazy update optimization for the train-
ing process.1 Define an update vectorτ to record
the number of the training sentencen and iteration
t when each dimension of the averaged parameter
vector was last updated. Then after each training
sentence is processed, only update the dimensions
of the total parameter vector corresponding to the
features in the sentence. (Except for the last exam-
ple in the last iteration, when each dimension ofτ
is updated, no matter whether the decoder output is
correct or not).

Denote thesth dimension in each vector before
processing thenth example in thetth iteration as
αn−1,t

s , σn−1,t
s and τn−1,t

s = (nτ,s, tτ,s). Suppose
that the decoder outputzn,t is different from the
training exampleyn. Now αn,t

s , σn,t
s and τn,t

s can

1Daume III (2006) describes a similar algorithm.
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be updated in the following way:

σn,t
s = σn−1,t

s + αn−1,t
s × (tN+n−tτ,sN− nτ,s)

αn,t
s = αn−1,t

s + Φ(yn)− Φ(zn,t)

σn,t
s = σn,t

s + Φ(yn)− Φ(zn,t)

τn,t
s = (n, t)

We found that this lazy update method was signif-
icantly faster than the naive method.

3 The Beam-Search Decoder

The decoder reads characters from the input sen-
tence one at a time, and generates candidate seg-
mentations incrementally. At each stage, the next in-
coming character is combined with an existing can-
didate in two different ways to generate new candi-
dates: it is either appended to the last word in the
candidate, or taken as the start of a new word. This
method guarantees exhaustive generation of possible
segmentations for any input sentence.

Two agendas are used: the source agenda and the
target agenda. Initially the source agenda contains
an empty sentence and the target agenda is empty.
At each processing stage, the decoder reads in a
character from the input sentence, combines it with
each candidate in the source agenda and puts the
generated candidates onto the target agenda. After
each character is processed, the items in the target
agenda are copied to the source agenda, and then the
target agenda is cleaned, so that the newly generated
candidates can be combined with the next incom-
ing character to generate new candidates. After the
last character is processed, the decoder returns the
candidate with the best score in the source agenda.
Figure 2 gives the decoding algorithm.

For a sentence with lengthl, there are2l−1 differ-
ent possible segmentations. To guarantee reasonable
running speed, the size of the target agenda is lim-
ited, keeping only theB best candidates.

4 Feature templates

The feature templates are shown in Table 1. Features
1 and 2 contain only word information, 3 to 5 con-
tain character and length information, 6 and 7 con-
tain only character information, 8 to 12 contain word
and character information, while 13 and 14 contain

Input : raw sentencesent – a list of characters
Initialization : set agendassrc = [[]], tgt = []
Variables: candidate sentenceitem – a list of words
Algorithm :

for index = 0..sent.length−1:
var char = sent[index]
foreachitem in src:

// append as a new word to the candidate
var item1 = item
item1.append(char.toWord())
tgt.insert(item1)
// append the character to the last word
if item.length> 1:

var item2 = item
item2[item2.length−1].append(char)
tgt.insert(item2)

src = tgt
tgt = []

Outputs: src.bestitem

Figure 2: The decoding algorithm

word and length information. Any segmented sen-
tence is mapped to a global feature vector according
to these templates. There are356, 337 features with
non-zero values after6 training iterations using the
development data.

For this particular feature set, the longest range
features are word bigrams. Therefore, among partial
candidates ending with the same bigram, the best
one will also be in the best final candidate. The
decoder can be optimized accordingly: when an in-
coming character is combined with candidate items
as a new word, only the best candidate is kept among
those having the same last word.

5 Comparison with Previous Work

Among the character-taggingCWS models, Li et al.
(2005) uses an uneven margin alteration of the tradi-
tional perceptron classifier (Li et al., 2002). Each
character is classified independently, using infor-
mation in the neighboring five-character window.
Liang (2005) uses the discriminative perceptron al-
gorithm (Collins, 2002) to score whole character tag
sequences, finding the best candidate by the global
score. It can be seen as an alternative to theME and
CRF models (Xue, 2003; Peng et al., 2004), which
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1 wordw
2 word bigramw1w2

3 single-character wordw
4 a word starting with characterc and having

lengthl
5 a word ending with characterc and having

lengthl
6 space-separated charactersc1 andc2

7 character bigramc1c2 in any word
8 the first and last charactersc1 andc2 of any

word
9 wordw immediately before characterc
10 characterc immediately before wordw
11 the starting charactersc1 andc2 of two con-

secutive words
12 the ending charactersc1 andc2 of two con-

secutive words
13 a word of lengthl and the previous wordw
14 a word of lengthl and the next wordw

Table 1: feature templates

do not involve word information. Wang et al. (2006)
incorporates an N-gram language model inME tag-
ging, making use of word information to improve
the character tagging model. The key difference be-
tween our model and the above models is the word-
based nature of our system.

One existing method that is based on sub-word in-
formation, Zhang et al. (2006), combines aCRF and
a rule-based model. Unlike the character-tagging
models, theCRF submodel assigns tags to sub-
words, which include single-character words and
the most frequent multiple-character words from the
training corpus. Thus it can be seen as a step towards
a word-based model. However, sub-words do not
necessarily contain full word information. More-
over, sub-word extraction is performed separately
from feature extraction. Another difference from
our model is the rule-based submodel, which uses a
dictionary-based forward maximum match method
described by Sproat et al. (1996).

6 Experiments

Two sets of experiments were conducted. The first,
used for development, was based on the part of Chi-
nese Treebank 4 that is not in Chinese Treebank

3 (sinceCTB3 was used as part of the first bake-
off). This corpus contains240K characters (150K
words and4798 sentences).80% of the sentences
(3813) were randomly chosen for training and the
rest (985 sentences) were used as development test-
ing data. The accuracies and learning curves for the
non-averaged and averaged perceptron were com-
pared. The influence of particular features and the
agenda size were also studied.

The second set of experiments used training and
testing sets from the first and second international
Chinese word segmentation bakeoffs (Sproat and
Emerson, 2003; Emerson, 2005). The accuracies are
compared to other models in the literature.

F-measure is used as the accuracy measure. De-
fine precisionp as the percentage of words in the de-
coder output that are segmented correctly, and recall
r as the percentage of gold standard output words
that are correctly segmented by the decoder. The
(balanced) F-measure is2pr/(p + r).

CWS systems are evaluated by two types of tests.
The closed tests require that the system is trained
only with a designated training corpus. Any extra
knowledge is not allowed, including common sur-
names, Chinese and Arabic numbers, European let-
ters, lexicons, part-of-speech, semantics and so on.
Theopen tests do not impose such restrictions.

Open tests measure a model’s capability to utilize
extra information and domain knowledge, which can
lead to improved performance, but since this extra
information is not standardized, direct comparison
between open test results is less informative.

In this paper, we focus only on the closed test.
However, the perceptron model allows a wide range
of features, and so future work will consider how to
integrate open resources into our system.

6.1 Learning curve

In this experiment, the agenda size was set to16, for
both training and testing. Table 2 shows the preci-
sion, recall and F-measure for the development set
after1 to 10 training iterations, as well as the num-
ber of mistakes made in each iteration. The corre-
sponding learning curves for both the non-averaged
and averaged perceptron are given in Figure 3.

The table shows that the number of mistakes made
in each iteration decreases, reflecting the conver-
gence of the learning algorithm. The averaged per-
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Iteration 1 2 3 4 5 6 7 8 9 10
P (non-avg) 89.0 91.6 92.0 92.3 92.5 92.5 92.5 92.7 92.6 92.6
R (non-avg) 88.3 91.4 92.2 92.6 92.7 92.8 93.0 93.0 93.1 93.2
F (non-avg) 88.6 91.5 92.1 92.5 92.6 92.6 92.7 92.8 92.8 92.9
P (avg) 91.7 92.8 93.1 92.2 93.1 93.2 93.2 93.2 93.2 93.2
R (avg) 91.6 92.9 93.3 93.4 93.4 93.5 93.5 93.5 93.6 93.6
F (avg) 91.6 92.9 93.2 93.3 93.3 93.4 93.3 93.3 93.4 93.4
#Wrong sentences 3401 1652 945 621 463 288 217 176 151 139

Table 2: accuracy using non-averaged and averaged perceptron.
P - precision (%), R - recall (%), F - F-measure.

B 2 4 8 16 32 64 128 256 512 1024
Tr 660 610 683 830 1111 1645 2545 4922 9104 15598
Seg 18.65 18.18 28.85 26.52 36.58 56.45 95.45 173.38 325.99 559.87
F 86.90 92.95 93.33 93.38 93.25 93.29 93.19 93.07 93.24 93.34

Table 3: the influence of agenda size.
B - agenda size, Tr - training time (seconds), Seg - testing time (seconds), F -F-measure.
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Figure 3: learning curves of the averaged and non-
averaged perceptron algorithms

ceptron algorithm improves the segmentation ac-
curacy at each iteration, compared with the non-
averaged perceptron. The learning curve was used
to fix the number of training iterations at6 for the
remaining experiments.

6.2 The influence of agenda size

Reducing the agenda size increases the decoding
speed, but it could cause loss of accuracy by elimi-
nating potentially good candidates. The agenda size

also affects the training time, and resulting model,
since the perceptron training algorithm uses the de-
coder output to adjust the model parameters. Table 3
shows the accuracies with ten different agenda sizes,
each used for both training and testing.

Accuracy does not increase beyondB = 16.
Moreover, the accuracy is quite competitive even
with B as low as 4. This reflects the fact that the best
segmentation is often within the current top few can-
didates in the agenda.2 Since the training and testing
time generally increases asN increases, the agenda
size is fixed to16 for the remaining experiments.

6.3 The influence of particular features

Our CWS model is highly dependent upon word in-
formation. Most of the features in Table 1 are related
to words. Table 4 shows the accuracy with various
features from the model removed.

Among the features, vocabulary words (feature 1)
and length prediction by characters (features 3 to 5)
showed strong influence on the accuracy, while word
bigrams (feature 2) and special characters in them
(features 11 and 12) showed comparatively weak in-
fluence.

2The optimization in Section 4, which has a pruning effect,
was applied to this experiment. Similar observations were made
in separate experiments without such optimization.
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Features F Features F
All 93.38 w/o 1 92.88
w/o 2 93.36 w/o 3, 4, 5 92.72
w/o 6 93.13 w/o 7 93.13
w/o 8 93.14 w/o 9, 10 93.31
w/o 11, 12 93.38 w/o 13, 14 93.23

Table 4: the influence of features. (F: F-measure.
Feature numbers are from Table 1)

6.4 Closed test on theSIGHAN bakeoffs

Four training and testing corpora were used in the
first bakeoff (Sproat and Emerson, 2003), including
the Academia Sinica Corpus (AS), the Penn Chinese
Treebank Corpus (CTB), the Hong Kong City Uni-
versity Corpus (CU) and the Peking University Cor-
pus (PU). However, because the testing data from
the Penn Chinese Treebank Corpus is currently un-
available, we excluded this corpus. The corpora are
encoded in GB (PU, CTB) and BIG5 (AS, CU). In
order to test them consistently in our system, they
are all converted to UTF8 without loss of informa-
tion.

The results are shown in Table 5. We follow the
format from Peng et al. (2004). Each row repre-
sents aCWS model. The first eight rows represent
models from Sproat and Emerson (2003) that partic-
ipated in at least one closed test from the table, row
“Peng” represents theCRF model from Peng et al.
(2004), and the last row represents our model. The
first three columns represent tests with the AS, CU
and PU corpora, respectively. The best score in each
column is shown in bold. The last two columns rep-
resent the average accuracy of each model over the
tests it participated in (SAV), and our average over
the same tests (OAV), respectively. For each row the
best average is shown in bold.

We achieved the best accuracy in two of the three
corpora, and better overall accuracy than the major-
ity of the other models. The average score of S10
is 0.7% higher than our model, but S10 only partici-
pated in the HK test.

Four training and testing corpora were used in
the second bakeoff (Emerson, 2005), including the
Academia Sinica corpus (AS), the Hong Kong City
University Corpus (CU), the Peking University Cor-
pus (PK) and the Microsoft Research Corpus (MR).

AS CU PU SAV OAV
S01 93.8 90.1 95.1 93.0 95.0
S04 93.9 93.9 94.0
S05 94.2 89.4 91.8 95.3
S06 94.5 92.4 92.4 93.1 95.0
S08 90.4 93.6 92.0 94.3
S09 96.1 94.6 95.4 95.3
S10 94.7 94.7 94.0
S12 95.9 91.6 93.8 95.6
Peng 95.6 92.8 94.1 94.2 95.0

96.5 94.6 94.0

Table 5: the accuracies over the firstSIGHAN bake-
off data.

AS CU PK MR SAV OAV
S14 94.7 94.3 95.0 96.4 95.1 95.4
S15b 95.2 94.1 94.1 95.8 94.8 95.4
S27 94.5 94.0 95.0 96.0 94.9 95.4
Zh-a 94.7 94.6 94.5 96.4 95.1 95.4
Zh-b 95.1 95.1 95.1 97.1 95.6 95.4

94.6 95.1 94.5 97.2

Table 6: the accuracies over the secondSIGHAN

bakeoff data.

Different encodings were provided, and the UTF8
data for all four corpora were used in this experi-
ment.

Following the format of Table 5, the results for
this bakeoff are shown in Table 6. We chose the
three models that achieved at least one best score
in the closed tests from Emerson (2005), as well as
the sub-word-based model of Zhang et al. (2006) for
comparison. Row “Zh-a” and “Zh-b” represent the
pure sub-wordCRF model and the confidence-based
combination of theCRF and rule-based models, re-
spectively.

Again, our model achieved better overall accu-
racy than the majority of the other models. One sys-
tem to achieve comparable accuracy with our sys-
tem is Zh-b, which improves upon the sub-wordCRF

model (Zh-a) by combining it with an independent
dictionary-based submodel and improving the accu-
racy of known words. In comparison, our system is
based on a single perceptron model.

In summary, closed tests for both the first and the
second bakeoff showed competitive results for our
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system compared with the best results in the litera-
ture. Our word-based system achieved the best F-
measures over the AS (96.5%) and CU (94.6%) cor-
pora in the first bakeoff, and the CU (95.1%) and
MR (97.2%) corpora in the second bakeoff.

7 Conclusions and Future Work

We proposed a word-basedCWS model using the
discriminative perceptron learning algorithm. This
model is an alternative to the existing character-
based tagging models, and allows word information
to be used as features. One attractive feature of the
perceptron training algorithm is its simplicity, con-
sisting of only a decoder and a trivial update process.
We use a beam-search decoder, which places our
work in the context of recent proposals for search-
based discriminative learning algorithms. Closed
tests using the first and secondSIGHAN CWS bake-
off data demonstrated our system to be competitive
with the best in the literature.

Open features, such as knowledge of numbers and
European letters, and relationships from semantic
networks (Shi and Wang, 2007), have been reported
to improve accuracy. Therefore, given the flexibility
of the feature-based perceptron model, an obvious
next step is the study of open features in the seg-
mentor.

Also, we wish to explore the possibility of in-
corporatingPOS tagging and parsing features into
the discriminative model, leading to joint decod-
ing. The advantage is two-fold: higher level syn-
tactic information can be used in word segmenta-
tion, while joint decoding helps to prevent bottom-
up error propagation among the different processing
steps.
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Abstract

We present an unsupervised, nonparamet-
ric Bayesian approach to coreference reso-
lution which models both global entity iden-
tity across a corpus as well as the sequen-
tial anaphoric structure within each docu-
ment. While most existing coreference work
is driven by pairwise decisions, our model
is fully generative, producing each mention
from a combination of global entity proper-
ties and local attentional state. Despite be-
ing unsupervised, our system achieves a 70.3
MUC F1 measure on the MUC-6 test set,
broadly in the range of some recent super-
vised results.

1 Introduction

Referring to an entity in natural language can
broadly be decomposed into two processes. First,
speakers directly introduce new entities into dis-
course, entities which may be shared across dis-
courses. This initial reference is typically accom-
plished with proper or nominal expressions. Second,
speakers refer back to entities already introduced.
This anaphoric reference is canonically, though of
course not always, accomplished with pronouns, and
is governed by linguistic and cognitive constraints.
In this paper, we present a nonparametric generative
model of a document corpus which naturally con-
nects these two processes.

Most recent coreference resolution work has fo-
cused on the task of deciding which mentions (noun
phrases) in a document are coreferent. The domi-
nant approach is to decompose the task into a col-
lection of pairwise coreference decisions. One then

applies discriminative learning methods to pairs of
mentions, using features which encode properties
such as distance, syntactic environment, and so on
(Soon et al., 2001; Ng and Cardie, 2002). Although
such approaches have been successful, they have
several liabilities. First, rich features require plen-
tiful labeled data, which we do not have for corefer-
ence tasks in most domains and languages. Second,
coreference is inherently a clustering or partitioning
task. Naive pairwise methods can and do fail to pro-
duce coherent partitions. One classic solution is to
make greedy left-to-right linkage decisions. Recent
work has addressed this issue in more global ways.
McCallum and Wellner (2004) use graph partion-
ing in order to reconcile pairwise scores into a final
coherent clustering. Nonetheless, all these systems
crucially rely on pairwise models because cluster-
level models are much harder to work with, combi-
natorially, in discriminative approaches.

Another thread of coreference work has focused
on the problem of identifying matches between
documents (Milch et al., 2005; Bhattacharya and
Getoor, 2006; Daume and Marcu, 2005). These
methods ignore the sequential anaphoric structure
inside documents, but construct models of how and
when entities are shared between them.1 These
models, as ours, are generative ones, since the fo-
cus is on cluster discovery and the data is generally
unlabeled.

In this paper, we present a novel, fully genera-
tive, nonparametric Bayesian model of mentions in a
document corpus. Our model captures both within-
and cross-document coreference. At the top, a hi-
erarchical Dirichlet process (Teh et al., 2006) cap-

1Milch et al. (2005) works with citations rather than dis-
courses and does model the linear structure of the citations.

848



tures cross-document entity (and parameter) shar-
ing, while, at the bottom, a sequential model of
salience captures within-document sequential struc-
ture. As a joint model of several kinds of discourse
variables, it can be used to make predictions about
either kind of coreference, though we focus experi-
mentally on within-document measures. To the best
of our ability to compare, our model achieves the
best unsupervised coreference performance.

2 Experimental Setup

We adopt the terminology of the Automatic Context
Extraction (ACE) task (NIST, 2004). For this paper,
we assume that each document in a corpus consists
of a set of mentions, typically noun phrases. Each
mention is a reference to some entity in the domain
of discourse. The coreference resolution task is to
partition the mentions according to referent. Men-
tions can be divided into three categories, proper
mentions (names), nominal mentions (descriptions),
and pronominal mentions (pronouns).

In section 3, we present a sequence of increas-
ingly enriched models, motivating each from short-
comings of the previous. As we go, we will indicate
the performance of each model on data from ACE
2004 (NIST, 2004). In particular, we used as our
development corpus the English translations of the
Arabic and Chinese treebanks, comprising 95 docu-
ments and about 3,905 mentions. This data was used
heavily for model design and hyperparameter selec-
tion. In section 5, we present final results for new
test data from MUC-6 on which no tuning or devel-
opment was performed. This test data will form our
basis for comparison to previous work.

In all experiments, as is common, we will assume
that we have been given as part of our input the true
mention boundaries, the head word of each mention
and the mention type (proper, nominal, or pronom-
inal). For the ACE data sets, the head and mention
type are given as part of the mention annotation. For
the MUC data, the head was crudely chosen to be
the rightmost mention token, and the mention type
was automatically detected. We will not assume
any other information to be present in the data be-
yond the text itself. In particular, unlike much re-
lated work, we do not assume gold named entity
recognition (NER) labels; indeed we do not assume
observed NER labels or POS tags at all. Our pri-
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β
∞

φ
∞

Zi
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I
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(a) (b)

Figure 1: Graphical model depiction of document level en-
tity models described in sections 3.1 and 3.2 respectively. The
shaded nodes indicate observed variables.

mary performance metric will be the MUC F1 mea-
sure (Vilain et al., 1995), commonly used to evalu-
ate coreference systems on a within-document basis.
Since our system relies on sampling, all results are
averaged over five random runs.

3 Coreference Resolution Models

In this section, we present a sequence of gener-
ative coreference resolution models for document
corpora. All are essentially mixture models, where
the mixture components correspond to entities. As
far as notation, we assume a collection of I docu-
ments, each with Ji mentions. We use random vari-
ables Z to refer to (indices of) entities. We will use
φz to denote the parameters for an entity z, and φ
to refer to the concatenation of all such φz . X will
refer somewhat loosely to the collection of variables
associated with a mention in our model (such as the
head or gender). We will be explicit about X and φz

shortly.
Our goal will be to find the setting of the entity

indices which maximize the posterior probability:

Z∗ = arg max
Z

P (Z|X) = arg max
Z

P (Z,X)

= arg max
Z

∫
P (Z,X,φ) dP (φ)

where Z,X, and φ denote all the entity indices, ob-
served values, and parameters of the model. Note
that we take a Bayesian approach in which all pa-
rameters are integrated out (or sampled). The infer-
ence task is thus primarily a search problem over the
index labels Z.
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(a)

(b)

(c)

The Weir Group1, whose2  headquarters3 is in the US4, is a large, specialized corporation5 investing in the area of electricity 
generation. This  power plant6, which7  will be situated in Rudong8, Jiangsu9, has an annual generation capacity of 2.4 million kilowatts.  

The Weir Group1, whose1  headquarters2 is in the US3, is a large, specialized corporation4 investing in the area of electricity 
generation. This  power plant5, which1  will be situated in Rudong6, Jiangsu7, has an annual generation capacity of 2.4 million kilowatts.  

The Weir Group1, whose1  headquarters2 is in the US3, is a large, specialized corporation4 investing in the area of electricity 
generation. This  power plant5, which5  will be situated in Rudong6, Jiangsu7, has an annual generation capacity of 2.4 million kilowatts.  

Figure 2: Example output from various models. The output from (a) is from the infinite mixture model of section 3.2. It incorrectly
labels both boxed cases of anaphora. The output from (b) uses the pronoun head model of section 3.3. It correctly labels the first
case of anaphora but incorrectly labels the second pronominal as being coreferent with the dominant document entity The Weir
Group. This error is fixed by adding the salience feature component from section 3.4 as can be seen in (c).

3.1 A Finite Mixture Model

Our first, overly simplistic, corpus model is the stan-
dard finite mixture of multinomials shown in fig-
ure 1(a). In this model, each document is indepen-
dent save for some global hyperparameters. Inside
each document, there is a finite mixture model with
a fixed number K of components. The distribution β
over components (entities) is a draw from a symmet-
ric Dirichlet distribution with concentration α. For
each mention in the document, we choose a compo-
nent (an entity index) z from β. Entity z is then asso-
ciated with a multinomial emission distribution over
head words with parameters φh

Z , which are drawn
from a symmetric Dirichlet over possible mention
heads with concentration λH .2 Note that here the X
for a mention consists only of the mention head H .

As we enrich our models, we simultaneously de-
velop an accompanying Gibbs sampling procedure
to obtain samples from P (Z|X).3 For now, all heads
H are observed and all parameters (β and φ) can be
integrated out analytically: for details see Teh et al.
(2006). The only sampling is for the values of Zi,j ,
the entity index of mention j in document i. The
relevant conditional distribution is:4

P (Zi,j |Z−i,j ,H) ∝ P (Zi,j |Z−i,j)P (Hi,j |Z,H−i,j)

where Hi,j is the head of mention j in document i.
Expanding each term, we have the contribution of
the prior:

P (Zi,j = z|Z−i,j) ∝ nz + α

2In general, we will use a subscripted λ to indicate concen-
tration for finite Dirichlet distributions. Unless otherwise spec-
ified, λ concentration parameters will be set to e−4 and omitted
from diagrams.

3One could use the EM algorithm with this model, but EM
will not extend effectively to the subsequent models.

4Here, Z−i,j denotes Z− {Zi,j}

where nz is the number of elements of Z−i,j with
entity index z. Similarly we have for the contribu-
tion of the emissions:

P (Hi,j = h|Z,H−i,j) ∝ nh,z + λH

where nh,z is the number of times we have seen head
h associated with entity index z in (Z,H−i,j).

3.2 An Infinite Mixture Model
A clear drawback of the finite mixture model is the
requirement that we specify a priori a number of en-
tities K for a document. We would like our model
to select K in an effective, principled way. A mech-
anism for doing so is to replace the finite Dirichlet
prior on β with the non-parametric Dirichlet process
(DP) prior (Ferguson, 1973).5 Doing so gives the
model in figure 1(b). Note that we now list an in-
finite number of mixture components in this model
since there can be an unbounded number of entities.
Rather than a finite β with a symmetric Dirichlet
distribution, in which draws tend to have balanced
clusters, we now have an infinite β. However, most
draws will have weights which decay exponentially
quickly in the prior (though not necessarily in the
posterior). Therefore, there is a natural penalty for
each cluster which is actually used.

With Z observed during sampling, we can inte-
grate out β and calculate P (Zi,j |Z−i,j) analytically,
using the Chinese restaurant process representation:

P (Zi,j = z|Z−i,j) ∝
{

α, if z = znew

nz, otherwise
(1)

where znew is a new entity index not used in Z−i,j

and nz is the number of mentions that have entity in-
dex z. Aside from this change, sampling is identical

5We do not give a detailed presentation of the Dirichlet pro-
cess here, but see Teh et al. (2006) for a presentation.
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PERS : 0.97,   LOC : 0.01,  ORG: 0.01,  MISC: 0.01 

Entity Type

SING: 0.99, PLURAL: 0.01

Number

     MALE: 0.98, FEM: 0.01, NEUTER: 0.01

Gender

Bush : 0.90,   President : 0.06,  .....

Head

φt

φh

φn

φg

X =

Z Z

M T N G

H

φ θ∞

(a) (b)

Figure 3: (a) An entity and its parameters. (b)The head model
described in section 3.3. The shaded nodes indicate observed
variables. The mention type determines which set of parents are
used. The dependence of mention variable on entity parameters
φ and pronoun head model θ is omitted.

to the finite mixture case, though with the number
of clusters actually occupied in each sample drifting
upwards or downwards.

This model yielded a 54.5 F1 on our develop-
ment data.6 This model is, however, hopelessly
crude, capturing nothing of the structure of coref-
erence. Its largest empirical problem is that, un-
surprisingly, pronoun mentions such as he are given
their own clusters, not labeled as coreferent with any
non-pronominal mention (see figure 2(a)).

3.3 Pronoun Head Model
While an entity-specific multinomial distribution
over heads makes sense for proper, and some nom-
inal, mention heads, it does not make sense to gen-
erate pronominal mentions this same way. I.e., all
entities can be referred to by generic pronouns, the
choice of which depends on entity properties such as
gender, not the specific entity.

We therefore enrich an entity’s parameters φ to
contain not only a distribution over lexical heads
φh, but also distributions (φt, φg, φn) over proper-
ties, where φt parametrizes a distribution over en-
tity types (PER, LOC, ORG, MISC), and φg for gen-
der (MALE, FEMALE, NEUTER), and φn for number
(SG, PL).7 We assume each of these property distri-
butions is drawn from a symmetric Dirichlet distri-
bution with small concentration parameter in order
to encourage a peaked posterior distribution.

6See section 4 for inference details.
7It might seem that entities should simply have, for exam-

ple, a gender g rather than a distribution over genders φg . There
are two reasons to adopt the softer approach. First, one can
rationalize it in principle, for entities like cars or ships whose
grammatical gender is not deterministic. However, the real rea-
son is that inference is simplified. In any event, we found these
property distributions to be highly determinized in the posterior.
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Figure 4: Coreference model at the document level with entity
properties as well salience lists used for mention type distri-
butions. The diamond nodes indicate deterministic functions.
Shaded nodes indicate observed variables. Although it appears
that each mention head node has many parents, for a given men-
tion type, the mention head depends on only a small subset. De-
pendencies involving parameters φ and θ are omitted.

Previously, when an entity z generated a mention,
it drew a head word from φh

z . It now undergoes a
more complex and structured process. It first draws
an entity type T , a gender G, a number N from the
distributions φt, φg, and φn, respectively. Once the
properties are fetched, a mention type M is chosen
(proper, nominal, pronoun), according to a global
multinomial (again with a symmetric Dirichlet prior
and parameter λM ). This corresponds to the (tem-
porary) assumption that the speaker makes a random
i.i.d. choice for the type of each mention.

Our head model will then generate a head, con-
ditioning on the entity, its properties, and the men-
tion type, as shown in figure 3(b). If M is not a
pronoun, the head is drawn directly from the en-
tity head multinomial with parameters φh

z . Other-
wise, it is drawn based on a global pronoun head dis-
tribution, conditioning on the entity properties and
parametrized by θ. Formally, it is given by:

P (H|Z, T,G, N,M,φ,θ) ={
P (H|T,G, N,θ), if M =PRO

P (H|φh
Z), otherwise

Although we can observe the number and gen-
der draws for some mentions, like personal pro-
nouns, there are some for which properties aren’t
observed (e.g., it). Because the entity prop-
erty draws are not (all) observed, we must now
sample the unobserved ones as well as the en-
tity indices Z. For instance, we could sample
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Salience Feature Pronoun Proper Nominal
TOP 0.75 0.17 0.08

HIGH 0.55 0.28 0.17
MID 0.39 0.40 0.21
LOW 0.20 0.45 0.35
NONE 0.00 0.88 0.12

Table 1: Posterior distribution of mention type given salience
by bucketing entity activation rank. Pronouns are preferred for
entities which have high salience and non-pronominal mentions
are preferred for inactive entities.

Ti,j , the entity type of pronominal mention j in
document i, using, P (Ti,j |Z,N,G,H,T−i,j) ∝
P (Ti,j |Z)P (Hi,j |T,N,G,H), where the posterior
distributions on the right hand side are straight-
forward because the parameter priors are all finite
Dirichlet. Sampling G and N are identical.

Of course we have prior knowledge about the re-
lationship between entity type and pronoun head
choice. For example, we expect that he is used for
mentions with T = PERSON. In general, we assume
that for each pronominal head we have a list of com-
patible entity types, which we encode via the prior
on θ. We assume θ is drawn from a Dirichlet distri-
bution where each pronoun head is given a synthetic
count of (1 + λP ) for each (t, g, n) where t is com-
patible with the pronoun and given λP otherwise.
So, while it will be possible in the posterior to use
he to refer to a non-person, it will be biased towards
being used with persons.

This model gives substantially improved predic-
tions: 64.1 F1 on our development data. As can be
seen in figure 2(b), this model does correct the sys-
tematic problem of pronouns being considered their
own entities. However, it still does not have a pref-
erence for associating pronominal references to en-
tities which are in any way local.

3.4 Adding Salience

We would like our model to capture how mention
types are generated for a given entity in a robust and
somewhat language independent way. The choice of
entities may reasonably be considered to be indepen-
dent given the mixing weights β, but how we realize
an entity is strongly dependent on context (Ge et al.,
1998).

In order to capture this in our model, we enrich
it as shown in figure 4. As we proceed through a

document, generating entities and their mentions,
we maintain a list of the active entities and their
saliences, or activity scores. Every time an entity is
mentioned, we increment its activity score by 1, and
every time we move to generate the next mention,
all activity scores decay by a constant factor of 0.5.
This gives rise to an ordered list of entity activations,
L, where the rank of an entity decays exponentially
as new mentions are generated. We call this list a
salience list. Given a salience list, L, each possible
entity z has some rank on this list. We discretize
these ranks into five buckets S: TOP (1), HIGH (2-
3), MID (4-6), LOW (7+), and NONE. Given the entity
choices Z, both the list L and buckets S are deter-
ministic (see figure 4). We assume that the mention
type M is conditioned on S as shown in figure 4.

We note that correctly sampling an entity now re-
quires that we incorporate terms for how a change
will affect all future salience values. This changes
our sampling equation for existing entities:

P (Zi,j = z|Z−i,j) ∝ nz

∏
j′≥j

P (Mi,j′ |Si,j′ ,Z) (2)

where the product ranges over future mentions in the
document and Si,j′ is the value of future salience
feature given the setting of all entities, including set-
ting the current entity Zi,j to z. A similar equation
holds for sampling a new entity. Note that, as dis-
cussed below, this full product can be truncated as
an approximation.

This model gives a 71.5 F1 on our development
data. Table 1 shows the posterior distribution of the
mention type given the salience feature. This model
fixes many anaphora errors and in particular fixes the
second anaphora error in figure 2(c).

3.5 Cross Document Coreference

One advantage of a fully generative approach is that
we can allow entities to be shared between docu-
ments in a principled way, giving us the capacity to
do cross-document coreference. Moreover, sharing
across documents pools information about the prop-
erties of an entity across documents.

We can easily link entities across a corpus by as-
suming that the pool of entities is global, with global
mixing weights β0 drawn from a DP prior with
concentration parameter γ. Each document uses
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Figure 5: Graphical depiction of the HDP coreference model
described in section 3.5. The dependencies between the global
entity parameters φ and pronoun head parameters θ on the men-
tion observations are not depicted.

the same global entities, but each has a document-
specific distribution βi drawn from a DP centered on
β0 with concentration parameter α. Up to the point
where entities are chosen, this formulation follows
the basic hierarchical Dirichlet process prior of Teh
et al. (2006). Once the entities are chosen, our model
for the realization of the mentions is as before. This
model is depicted graphically in figure 5.

Although it is possible to integrate out β0 as we
did the individual βi, we instead choose for ef-
ficiency and simplicity to sample the global mix-
ture distribution β0 from the posterior distribution
P (β0|Z).8 The mention generation terms in the
model and sampler are unchanged.

In the full hierarchical model, our equation (1) for
sampling entities, ignoring the salience component
of section 3.4, becomes:

P (Zi,j = z|Z−i,j , β0)∝
{

αβu
0 , if z = znew

nz + αβz
0 , otherwise

where βz
0 is the probability of the entity z under the

sampled global entity distribution and βu
0 is the un-

known component mass of this distribution.
The HDP layer of sharing improves the model’s

predictions to 72.5 F1 on our development data. We
should emphasize that our evaluation is of course
per-document and does not reflect cross-document
coreference decisions, only the gains through cross-
document sharing (see section 6.2).

8We do not give the details here; see Teh et al. (2006) for de-
tails on how to implement this component of the sampler (called
“direct assignment” in that reference).

4 Inference Details

Up until now, we’ve discussed Gibbs sampling, but
we are not interested in sampling from the poste-
rior P (Z|X), but in finding its mode. Instead of
sampling directly from the posterior distribution, we
instead sample entities proportionally to exponen-
tiated entity posteriors. The exponent is given by
exp ci

k−1 , where i is the current round number (start-
ing at i = 0), c = 1.5 and k = 20 is the total num-
ber of sampling epochs. This slowly raises the pos-
terior exponent from 1.0 to ec. In our experiments,
we found this procedure to outperform simulated an-
nealing. We also found sampling the T , G, and N
variables to be particularly inefficient, so instead we
maintain soft counts over each of these variables and
use these in place of a hard sampling scheme. We
also found that correctly accounting for the future
impact of salience changes to be particularly ineffi-
cient. However, ignoring those terms entirely made
negligible difference in final accuracy.9

5 Final Experiments

We present our final experiments using the full
model developed in section 3. As in section 3, we
use true mention boundaries and evaluate using the
MUC F1 measure (Vilain et al., 1995). All hyper-
parameters were tuned on the development set only.
The document concentration parameter α was set by
taking a constant proportion of the average number
of mentions in a document across the corpus. This
number was chosen to minimize the squared error
between the number of proposed entities and true
entities in a document. It was not tuned to maximize
the F1 measure. A coefficient of 0.4 was chosen.
The global concentration coefficient γ was chosen
to be a constant proportion of αM , where M is the
number of documents in the corpus. We found 0.15
to be a good value using the same least-square pro-
cedure. The values for these coefficients were not
changed for the experiments on the test sets.

5.1 MUC-6

Our main evaluation is on the standard MUC-6 for-
mal test set.10 The standard experimental setup for

9This corresponds to truncating equation (2) at j′ = j.
10Since the MUC data is not annotated with mention types,

we automatically detect this information in the same way as Luo

853



Dataset Num Docs. Prec. Recall F1

MUC-6 60 80.8 52.8 63.9
+DRYRUN-TRAIN 251 79.1 59.7 68.0
+ENGLISH-NWIRE 381 80.4 62.4 70.3

Dataset Prec. Recall F1

ENGLISH-NWIRE 66.7 62.3 64.2
ENGLISH-BNEWS 63.2 61.3 62.3
CHINESE-NWIRE 71.6 63.3 67.2
CHINESE-BNEWS 71.2 61.8 66.2

(a) (b)

Table 2: Formal Results: Our system evaluated using the MUC model theoretic measure Vilain et al. (1995). The table in (a) is
our performance on the thirty document MUC-6 formal test set with increasing amounts of training data. In all cases for the table,
we are evaluating on the same thirty document test set which is included in our training set, since our system in unsupervised. The
table in (b) is our performance on the ACE 2004 training sets.

this data is a 30/30 document train/test split. Train-
ing our system on all 60 documents of the training
and test set (as this is in an unsupervised system,
the unlabeled test documents are present at train-
ing time), but evaluating only on the test documents,
gave 63.9 F1 and is labeled MUC-6 in table 2(a).

One advantage of an unsupervised approach is
that we can easily utilize more data when learning a
model. We demonstrate the effectiveness of this fact
by evaluating on the MUC-6 test documents with in-
creasing amounts of unannotated training data. We
first added the 191 documents from the MUC-6
dryrun training set (which were not part of the train-
ing data for official MUC-6 evaluation). This model
gave 68.0 F1 and is labeled +DRYRUN-TRAIN in ta-
ble 2(a). We then added the ACE ENGLISH-NWIRE

training data, which is from a different corpora than
the MUC-6 test set and from a different time period.
This model gave 70.3 F1 and is labeled +ENGLISH-

NWIRE in table 2(a).
Our results on this test set are surprisingly com-

parable to, though slightly lower than, some recent
supervised systems. McCallum and Wellner (2004)
report 73.4 F1 on the formal MUC-6 test set, which
is reasonably close to our best MUC-6 number of
70.3 F1. McCallum and Wellner (2004) also report
a much lower 91.6 F1 on only proper nouns men-
tions. Our system achieves a 89.8 F1 when evalu-
ation is restricted to only proper mentions.11 The

et al. (2004). A mention is proper if it is annotated with NER
information. It is a pronoun if the head is on the list of En-
glish pronouns. Otherwise, it is a nominal mention. Note we do
not use the NER information for any purpose but determining
whether the mention is proper.

11The best results we know on the MUC-6 test set using the
standard setting are due to Luo et al. (2004) who report a 81.3
F1 (much higher than others). However, it is not clear this is a
comparable number, due to the apparent use of gold NER fea-
tures, which provide a strong clue to coreference. Regardless, it
is unsurprising that their system, which has many rich features,
would outperform ours.

HEAD ENT TYPE GENDER NUMBER

Bush: 1.0 PERS MALE SG

AP: 1.0 ORG NEUTER PL

viacom: 0.64, company: 0.36 ORG NEUTER SG

teamsters: 0.22, union: 0.78, MISC NEUTER PL

Table 3: Frequent entities occurring across documents along
with head distribution and mode of property distributions.

closest comparable unsupervised system is Cardie
and Wagstaff (1999) who use pairwise NP distances
to cluster document mentions. They report a 53.6 F1

on MUC6 when tuning distance metric weights to
maximize F1 on the development set.

5.2 ACE 2004

We also performed experiments on ACE 2004 data.
Due to licensing restrictions, we did not have access
to the ACE 2004 formal development and test sets,
and so the results presented are on the training sets.

We report results on the newswire section (NWIRE

in table 2b) and the broadcast news section (BNEWS

in table 2b). These datasets include the prenomi-
nal mention type, which is not present in the MUC-
6 data. We treated prenominals analogously to the
treatment of proper and nominal mentions.

We also tested our system on the Chinese
newswire and broadcast news sections of the ACE
2004 training sets. Our relatively higher perfor-
mance on Chinese compared to English is perhaps
due to the lack of prenominal mentions in the Chi-
nese data, as well as the presence of fewer pronouns
compared to English.

Our ACE results are difficult to compare exactly
to previous work because we did not have access
to the restricted formal test set. However, we can
perform a rough comparison between our results on
the training data (without coreference annotation) to
supervised work which has used the same training
data (with coreference annotation) and evaluated on
the formal test set. Denis and Baldridge (2007) re-
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port 67.1 F1 and 69.2 F1 on the English NWIRE and
BNEWS respectively using true mention boundaries.
While our system underperforms the supervised sys-
tems, its accuracy is nonetheless promising.

6 Discussion

6.1 Error Analysis

The largest source of error in our system is between
coreferent proper and nominal mentions. The most
common examples of this kind of error are appos-
itive usages e.g. George W. Bush, president of the
US, visited Idaho. Another error of this sort can be
seen in figure 2, where the corporation mention is
not labeled coreferent with the The Weir Group men-
tion. Examples such as these illustrate the regular (at
least in newswire) phenomenon that nominal men-
tions are used with informative intent, even when the
entity is salient and a pronoun could have been used
unambiguously. This aspect of nominal mentions is
entirely unmodeled in our system.

6.2 Global Coreference

Since we do not have labeled cross-document coref-
erence data, we cannot evaluate our system’s cross-
document performance quantitatively. However, in
addition to observing the within-document gains
from sharing shown in section 3, we can manually
inspect the most frequently occurring entities in our
corpora. Table 3 shows some of the most frequently
occurring entities across the English ACE NWIRE

corpus. Note that Bush is the most frequent entity,
though his (and others’) nominal cluster president
is mistakenly its own entity. Merging of proper and
nominal clusters does occur as can be seen in table 3.

6.3 Unsupervised NER

We can use our model to for unsupervised NER
tagging: for each proper mention, assign the mode
of the generating entity’s distribution over entity
types. Note that in our model the only way an en-
tity becomes associated with an entity type is by
the pronouns used to refer to it.12 If we evaluate
our system as an unsupervised NER tagger for the
proper mentions in the MUC-6 test set, it yields a

12Ge et al. (1998) exploit a similar idea to assign gender to
proper mentions.

per-label accuracy of 61.2% (on MUC labels). Al-
though nowhere near the performance of state-of-
the-art systems, this result beats a simple baseline of
always guessing PERSON (the most common entity
type), which yields 46.4%. This result is interest-
ing given that the model was not developed for the
purpose of inferring entity types whatsoever.

7 Conclusion

We have presented a novel, unsupervised approach
to coreference resolution: global entities are shared
across documents, the number of entities is deter-
mined by the model, and mentions are generated by
a sequential salience model and a model of pronoun-
entity association. Although our system does not
perform quite as well as state-of-the-art supervised
systems, its performance is in the same general
range, despite the system being unsupervised.
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Abstract 

This paper proposes a novel method for 
phrase-based statistical machine translation 
by using pivot language. To conduct trans-
lation between languages Lf and Le with a 
small bilingual corpus, we bring in a third 
language Lp, which is named the pivot lan-
guage. For Lf-Lp and Lp-Le, there exist 
large bilingual corpora. Using only Lf-Lp 
and Lp-Le bilingual corpora, we can build a 
translation model for Lf-Le. The advantage 
of this method lies in that we can perform 
translation between Lf and Le even if there 
is no bilingual corpus available for this 
language pair. Using BLEU as a metric, 
our pivot language method achieves an ab-
solute improvement of 0.06 (22.13% rela-
tive) as compared with the model directly 
trained with 5,000 Lf-Le sentence pairs for 
French-Spanish translation. Moreover, with 
a small Lf-Le bilingual corpus available, 
our method can further improve the transla-
tion quality by using the additional Lf-Lp 
and Lp-Le bilingual corpora. 

1 Introduction 

For statistical machine translation (SMT), phrase-
based methods (Koehn et al., 2003; Och and Ney, 
2004) and syntax-based methods (Wu, 1997; Al-
shawi et al. 2000; Yamada and Knignt, 2001; 
Melamed, 2004; Chiang, 2005; Quick et al., 2005; 
Mellebeek et al., 2006) outperform word-based 
methods (Brown et al., 1993). These methods need 
large bilingual corpora. However, for some lan-

guages pairs, only a small bilingual corpus is 
available, which will degrade the performance of 
statistical translation systems. 

To solve this problem, this paper proposes a 
novel method for phrase-based SMT by using a 
pivot language. To perform translation between 
languages Lf and Le, we bring in a pivot language 
Lp, for which there exist large bilingual corpora for 
language pairs Lf-Lp and Lp-Le. With the Lf-Lp and 
Lp-Le bilingual corpora, we can build a translation 
model for Lf-Le by using Lp as the pivot language. 
We name the translation model pivot model. The 
advantage of this method lies in that we can con-
duct translation between Lf and Le even if there is 
no bilingual corpus available for this language pair. 
Moreover, if a small corpus is available for Lf-Le, 
we build another translation model, which is 
named standard model. Then, we build an interpo-
lated model by performing linear interpolation on 
the standard model and the pivot model. Thus, the 
interpolated model can employ both the small Lf-
Le corpus and the large Lf-Lp and Lp-Le corpora. 

We perform experiments on the Europarl corpus 
(Koehn, 2005). Using BLEU (Papineni et al., 2002) 
as a metric, our method achieves an absolute im-
provement of 0.06 (22.13% relative) as compared 
with the standard model trained with 5,000 Lf-Le 
sentence pairs for French-Spanish translation. The 
translation quality is comparable with that of the 
model trained with a bilingual corpus of 30,000 Lf-
Le sentence pairs. Moreover, translation quality is 
further boosted by using both the small Lf-Le bilin-
gual corpus and the large Lf-Lp and Lp-Le corpora. 

Experimental results on Chinese-Japanese trans-
lation also indicate that our method achieves satis-
factory results using English as the pivot language.  
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The remainder of this paper is organized as fol-
lows. In section 2, we describe the related work. 
Section 3 briefly introduces phrase-based SMT. 
Section 4 and Section 5 describes our method for 
phrase-based SMT using pivot language. We de-
scribe the experimental results in sections 6 and 7. 
Lastly, we conclude in section 8. 

2 Related Work 

Our method is mainly related to two kinds of 
methods: those using pivot language and those 
using a small bilingual corpus or scarce resources.  

For the first kind, pivot languages are employed 
to translate queries in cross-language information 
retrieval (CLIR) (Gollins and Sanderson, 2001; 
Kishida and Kando, 2003). These methods only 
used the available dictionaries to perform word by 
word translation. In addition, NTCIR 4 workshop 
organized a shared task for CLIR using pivot lan-
guage. Machine translation systems are used to 
translate queries into pivot language sentences, and 
then into target sentences (Sakai et al., 2004). 

Callison-Burch et al. (2006) used pivot lan-
guages for paraphrase extraction to handle the un-
seen phrases for phrase-based SMT. Borin (2000) 
and Wang et al. (2006) used pivot languages to 
improve word alignment. Borin (2000) used multi-
lingual corpora to increase alignment coverage. 
Wang et al. (2006) induced alignment models by 
using two additional bilingual corpora to improve 
word alignment quality. Pivot Language methods 
were also used for translation dictionary induction 
(Schafer and Yarowsky, 2002), word sense disam-
biguation (Diab and Resnik, 2002), and so on. 

For the second kind, Niessen and Ney (2004) 
used morpho-syntactic information for translation 
between language pairs with scarce resources. 
Vandeghinste et al. (2006) used translation dic-
tionaries and shallow analysis tools for translation 
between the language pair with low resources. A 
shared task on word alignment was organized as 
part of the ACL 2005 Workshop on Building and 
Using Parallel Texts (Martin et al., 2005). This 
task focused on languages with scarce resources. 
For the subtask of unlimited resources, some re-
searchers (Aswani and Gaizauskas, 2005; Lopez 
and Resnik, 2005; Tufis et al., 2005) used lan-
guage-dependent resources such as dictionary, the-
saurus, and dependency parser to improve word 
alignment results. 

In this paper, we address the translation problem 
for language pairs with scarce resources by bring-
ing in a pivot language, via which we can make 
use of large bilingual corpora. Our method does 
not need language-dependent resources or deep 
linguistic processing. Thus, the method is easy to 
be adapted to any language pair where a pivot lan-
guage and corresponding large bilingual corpora 
are available. 

3 Phrase-Based SMT 

According to the translation model presented in 
(Koehn et al., 2003), given a source sentence f , 
the best target translation beste  can be obtained 
according to the following model 
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Where )|( ii efφ  and )( 1−− ii bad  denote phrase 
translation probability and distortion probability, 
respectively. ),|( aefp iiw  is the lexical weight, 
and λ  is the strength of the lexical weight. 

4 Phrase-Based SMT Via Pivot Language 

This section will introduce the method that per-
forms phrase-based SMT for the language pair Lf-
Le by using the two bilingual corpora of Lf-Lp and 
Lp-Le. With the two additional bilingual corpora, 
we train two translation models for Lf-Lp and Lp-Le, 
respectively. Based on these two models, we build 
a pivot translation model for Lf-Le, with Lp as a 
pivot language. 

According to equation (2), the phrase translation 
probability and the lexical weight are language 
dependent. We will introduce them in sections 4.1 
and 4.2, respectively. 

4.1 Phrase Translation Probability 

Using the Lf-Lp and Lp-Le bilingual corpora, we 
train two phrase translation probabilities 
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)|( ii pfφ  and )|( ii epφ , where ip  is the phrase 
in the pivot language Lp. Given the phrase 
translation probabilities )|( ii pfφ  and )|( ii epφ , 
we obtain the phrase translation probability 

)|( ii efφ  according to the following model. 

∑=
ip

iiiiiii epepfef )|(),|()|( φφφ  (3)

The phrase translation probability ),|( iii epfφ  

does not depend on the phase ie  in the language Le, 

since it is estimated from the Lf-Lp bilingual corpus. 
Thus, equation (3) can be rewritten as  

∑=
ip

iiiiii eppfef )|()|()|( φφφ  (4)

4.2 Lexical Weight 

Given a phrase pair ),( ef  and a word alignment 
a  between the source word positions ni ,...,1=  
and the target word positions mj ,...,1= , the 
lexical weight can be estimated according to the 
following method (Koehn et al., 2003). 
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In order to estimate the lexical weight, we first 
need to obtain the alignment information a  be-
tween the two phrases f  and e , and then estimate 
the lexical translation probability )|( efw  accord-
ing to the alignment information. The alignment 
information of the phrase pair ),( ef  can be in-
duced from the two phrase pairs ),( pf  and ),( ep . 

 
Figure 1. Alignment Information Induction 

Let 1a  and 2a  represent the word alignment in-
formation inside the phrase pairs ),( pf  and ),( ep  
respectively, then the alignment information a  
inside ),( ef  can be obtained as shown in (6). An 
example is shown in Figure 1. 

}),(&),(:|),{( 21 aepapfpefa ∈∈∃=  (6)

With the induced alignment information, this 
paper proposes a method to estimate the probabil-
ity directly from the induced phrase pairs. We 
name this method phrase method. If we use K to 
denote the number of the induced phrase pairs, we 
estimate the co-occurring frequency of the word 
pair ),( ef  according to the following model. 
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Where )|( efkφ  is the phrase translation probabil-
ity for phrase pair k . 1),( =yxδ  if yx = ; other-
wise, 0),( =yxδ . Thus, lexical translation prob-
ability can be estimated as in (8). 

∑
=

'
),'(

),()|(

f
efcount

efcountefw  (8)

We also estimate the lexical translation prob-
ability )|( efw  using the method described in 
(Wang et al., 2006), which is shown in (9). We 
named it word method in this paper. 

);,()|()|()|( pefsimepwpfwefw
p
∑= (9)

Where )|( pfw  and )|( epw  are two lexical 
probabilities, and );,( pefsim  is the cross-
language word similarity. 

5 Interpolated Model 

If we have a small Lf-Le bilingual corpus, we can 
employ this corpus to estimate a translation model 
as described in section 3. However, this model may 
perform poorly due to the sparseness of the data. In 
order to improve its performance, we can employ 
the additional Lf-Lp and Lp-Le bilingual corpora. 
Moreover, we can use more than one pivot lan-
guage to improve the translation performance if the 
corresponding bilingual corpora exist. Different 
pivot languages may catch different linguistic phe-
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nomena, and improve translation quality for the 
desired language pair Lf-Le in different ways. 

If we include n  pivot languages, n  pivot mod-
els can be estimated using the method as described 
in section 4. In order to combine these n  pivot 
models with the standard model trained with the 
Lf-Le corpus, we use the linear interpolation 
method. The phrase translation probability and the 
lexical weight are estimated as shown in (10) and 
(11), respectively. 

∑
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Where )|(0 efφ  and ),|( aefpw,0  denote the 
phrase translation probability and lexical weight 
trained with the Lf-Le bilingual corpus, respec-
tively. )|( efiφ  and ),|( aefp iw,  ( ni ,...,1= ) are 
the phrase translation probability and lexical 
weight estimated by using the pivot languages. iα  
and iβ  are the interpolation coefficients. 

6 Experiments on the Europarl Corpus 

6.1 Data 

A shared task to evaluate machine translation per-
formance was organized as part of the 
NAACL/HLT 2006 Workshop on Statistical Ma-
chine Translation (Koehn and Monz, 2006). The 
shared task used the Europarl corpus (Koehn, 
2005), in which four languages are involved: Eng-
lish, French, Spanish, and German. The shared task 
performed translation between English and the 
other three languages. In our work, we perform 
translation from French to the other three lan-
guages. We select French to Spanish and French to 
German translation that are not in the shared task 
because we want to use English as the pivot lan-
guage. In general, for most of the languages, there 
exist bilingual corpora between these languages 
and English since English is an internationally 
used language. 

Table 1 shows the information about the bilin-
gual training data. In the table, "Fr", "En", "Es", 
and "De" denotes "French", "English", "Spanish", 
and "German", respectively. For the language pairs 
Lf-Le not including English, the bilingual corpus is 

Language 
Pairs 

Sentence 
Pairs 

Source 
Words 

Target 
Words 

Fr-En 688,031 15,323,737 13,808,104
Fr-Es 640,661 14,148,926 13,134,411
Fr-De 639,693 14,215,058 12,155,876
Es-En 730,740 15,676,710 15,222,105
De-En 751,088 15,256,793 16,052,269
De-Es 672,813 13,246,255 14,362,615

Table 1. Training Corpus for European Languages 

extracted from Lf-English and English-Le since 
Europarl corpus is a multilingual corpus.  

For the language models, we use the same data 
provided in the shared task. We also use the same 
development set and test set provided by the shared 
task. The in-domain test set includes 2,000 sen-
tences and the out-of-domain test set includes 
1,064 sentences for each language. 

6.2 Translation System and Evaluation 
Method 

To perform phrase-based SMT, we use Koehn's 
training scripts1 and the Pharaoh decoder (Koehn, 
2004). We run the decoder with its default settings 
and then use Koehn's implementation of minimum 
error rate training (Och, 2003) to tune the feature 
weights on the development set. 

The translation quality was evaluated using a 
well-established automatic measure: BLEU score 
(Papineni et al., 2002). And we also use the tool 
provided in the NAACL/HLT 2006 shared task on 
SMT to calculate the BLEU scores. 

6.3 Comparison of Different Lexical Weights 

As described in section 4, we employ two methods 
to estimate the lexical weight in the translation 
model. In order to compare the two methods, we 
translate from French to Spanish, using English as 
the pivot language. We use the French-English and 
English-Spanish corpora described in Table 1 as 
training data.  During training, before estimating 
the Spanish to French phrase translation probabil-
ity, we filter those French-English and English-
Spanish phrase pairs whose translation probabili-
ties are below a fixed threshold 0.001.2 The trans-
lation results are shown in Table 2. 

                                                 
1  It is located at http://www.statmt.org/wmt06/shared-
task/baseline.htm  
2 In the following experiments using pivot languages, we use 
the same filtering threshold for all of the language pairs. 
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The phrase method proposed in this paper per-
forms better than the word method proposed in 
(Wang et al., 2006). This is because our method 
uses phrase translation probability as a confidence 
weight to estimate the lexical translation probabil-
ity. It strengthens the frequently aligned pairs and 
weakens the infrequently aligned pairs. Thus, the 
following sections will use the phrase method to 
estimate the lexical weight. 

Method In-Domain Out-of-Domain
Phrase  0.3212 0.2098 
Word 0.2583 0.1672 

Table 2. Results with Different Lexical Weights 

6.4 Results of Using One Pivot Language 

This section describes the translation results by 
using only one pivot language. For the language 
pair French and Spanish, we use English as the 
pivot language. The entire French-English and 
English-Spanish corpora as described in section 4 
are used to train a pivot model for French-Spanish. 

As described in section 5, if we have a small Lf-
Le bilingual corpus and large Lf-Lp and Lp-Le bilin-
gual corpora, we can obtain interpolated models. 

In order to conduct the experiments, we ran-
domly select 5K, 10K, 20K, 30K, 40K, 50K, and 
100K sentence pairs from the French-Spanish cor-
pus. Using each of these corpora, we train a stan-
dard translation model.  

For each standard model, we interpolate it with 
the pivot model to get an interpolated model. The 
interpolation weights are tuned using the develop-
ment set. For all the interpolated models, we set 

9.00 =α , 1.01 =α , 9.00 =β , and 1.01 =β . We 
test the three kinds of models on both the in-
domain and out-of-domain test sets. The results are 
shown in Figures 2 and 3.  

The pivot model achieves BLEU scores of 
0.3212 and 0.2098 on the in-domain and out-of-
domain test set, respectively. It achieves an abso-
lute improvement of 0.05 on both test sets (16.92% 
and 35.35% relative) over the standard model 
trained with 5,000 French-Spanish sentence pairs. 
And the performance of the pivot models are com-
parable with that of the standard models trained 
with 20,000 and 30,000 sentence pairs on the in-
domain and out-of-domain test set, respectively. 
When the French-Spanish training corpus is in-
creased, the standard models quickly outperform 
the pivot model. 
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Figure 2. In-Domain French-Spanish Results 
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Figure 3. Out-of-Domain French-Spanish Results 
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Figure 4. In-Domain French-English Results 
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Figure 5. In-Domain French-German Results 

When only a very small French-Spanish bilin-
gual corpus is available, the interpolated method 
can greatly improve the translation quality. For 
example, when only 5,000 French-Spanish sen-
tence pairs are available, the interpolated model 
outperforms the standard model by achieving a 
relative improvement of 17.55%, with the BLEU 
score improved from 0.2747 to 0.3229. With 
50,000 French-Spanish sentence pairs available, 
the interpolated model significantly3 improves the 
translation quality by achieving an absolute im-

                                                 
3 We conduct the significance test using the same method as 
described in (Koehn and Monz, 2006). 
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provement of 0.01 BLEU. When the French-
Spanish training corpus increases to 100,000 sen-
tence pairs, the interpolated model achieves almost 
the same result as the standard model. This indi-
cates that our pivot language method is suitable for 
the language pairs with small quantities of training 
data available. 

Besides experiments on French-Spanish transla-
tion, we also conduct translation from French to 
English and French to German, using German and 
English as the pivot language, respectively. The 
results on the in-domain test set4 are shown in Fig-
ures 4 and 5. The tendency of the results is similar 
to that in Figure 2. 

6.5 Results of Using More Than One Pivot 
Language 

For French to Spanish translation, we also intro-
duce German as a pivot language besides English. 
Using these two pivot languages, we build two dif-
ferent pivot models, and then perform linear inter-
polation on them. The interpolation weights for the 
English pivot model and the German pivot model 
are set to 0.6 and 0.4 respectively5. The translation 
results on the in-domain test set are 0.3212, 0.3077, 
and 0.3355 for the pivot models using English, 
German, and both German and English as pivot 
languages, respectively. 

With the pivot model using both English and 
German as pivot languages, we interpolate it with 
the standard models trained with French-Spanish 
corpora of different sizes as described in the above 
section. The comparison of the translation results 
among the interpolated models, standard models, 
and the pivot model are shown in Figure 6. 

It can be seen that the translation results can be 
further improved by using more than one pivot 
language. The pivot model "Pivot-En+De" using 
two pivot languages achieves an absolute im-
provement of 0.06 (22.13% relative) as compared 
with the standard model trained with 5,000 sen-
tence pairs. And it achieves comparable translation 
result as compared with the standard model trained 
with 30,000 French-Spanish sentence pairs. 

The results in Figure 6 also indicate the interpo-
lated models using two pivot languages achieve the 

                                                 
4 The results on the out-of-domain test set are similar to that in 
Figure 3. We only show the in-domain translation results in all 
of the following experiments because of space limit. 
5 The weights are tuned on the development set. 

best results of all. Significance test shows that the 
interpolated models using two pivot languages sig-
nificantly outperform those using one pivot lan-
guage when less than 50,000 French-Spanish sen-
tence pairs are available. 
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Figure 6. In-Domain French-Spanish Translation 

Results by Using Two Pivot Languages 

6.6 Results by Using Pivot Language Related 
Corpora of Different Sizes 

In all of the above results, the corpora used to train 
the pivot models are not changed. In order to ex-
amine the effect of the size of the pivot corpora, 
we decrease the French-English and English-
French corpora. We randomly select 200,000 and 
400,000 sentence pairs from both of them to train 
two pivot models, respectively. The translation 
results on the in-domain test set are 0.2376, 0.2954, 
and 0.3212 for the pivot models trained with 
200,000, 400,000, and the entire French-English 
and English-Spanish corpora, respectively. The 
results of the interpolated models and the standard 
models are shown in Figure 7. The results indicate 
that the larger the training corpora used to train the 
pivot model are, the better the translation quality is. 
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Figure 7. In-Domain French-Spanish Results by 
Using Lf-Lp and Lp-Le Corpora of Different Sizes 
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7 Experiments on Chinese to Japanese 
Translation 

In section 6, translation results on the Europarl 
multilingual corpus indicate the effectiveness of 
our method. To investigate the effectiveness of our 
method by using independently sourced parallel 
corpora, we conduct Chinese-Japanese translation 
using English as a pivot language in this section, 
where the training data are not limited to a specific 
domain. 

The data used for this experiment is the same as 
those used in (Wang et al., 2006). There are 21,977, 
329,350, and 160,535 sentence pairs for the lan-
guage pairs Chinese-Japanese, Chinese-English, 
and English-Japanese, respectively. The develop-
ment data and testing data include 500 and 1,000 
Chinese sentences respectively, with one reference 
for each sentence. For Japanese language model 
training, we use about 100M bytes Japanese corpus. 

The translation result is shown in Figure 8. The 
pivot model only outperforms the standard model 
trained with 2,500 sentence pairs. This is because 
(1) the corpora used to train the pivot model are 
smaller as compared with the Europarl corpus; (2) 
the training data and the testing data are not limited 
to a specific domain; (3) The languages are not 
closely related. 

6

8

10

12

14

16

18

2.5 5 10 21.9
Chinese-Japanese Data (k pairs)

B
LE

U
 (%

)

Interpolated
Standard
Pivot 

  
Figure 8. Chinese-Japanese Translation Results 

The interpolated models significantly outper-
form the other models. When only 5,000 sentence 
pairs are available, the BLEU score increases rela-
tively by 20.53%. With the entire (21,977 pairs) 
Chinese-Japanese available, the interpolated model 
relatively increases the BLEU score by 5.62%, 
from 0.1708 to 0.1804. 

8 Conclusion 

This paper proposed a novel method for phrase-
based SMT on language pairs with a small bilin-

gual corpus by bringing in pivot languages. To per-
form translation between Lf and Le, we bring in a 
pivot language Lp, via which the large corpora of 
Lf-Lp and Lp-Le can be used to induce a translation 
model for Lf-Le. The advantage of this method is 
that it can perform translation between the lan-
guage pair Lf-Le even if no bilingual corpus for this 
pair is available. Using BLEU as a metric, our 
method achieves an absolute improvement of 0.06 
(22.13% relative) as compared with the model di-
rectly trained with 5,000 sentence pairs for French-
Spanish translation. And the translation quality is 
comparable with that of the model directly trained 
with 30,000 French-Spanish sentence pairs. The 
results also indicate that using more pivot lan-
guages leads to better translation quality. 

With a small bilingual corpus available for Lf-Le, 
we built a translation model, and interpolated it 
with the pivot model trained with the large Lf-Lp 
and Lp-Le bilingual corpora. The results on both 
the Europarl corpus and Chinese-Japanese transla-
tion indicate that the interpolated models achieve 
the best results. Results also indicate that our pivot 
language approach is suitable for translation on 
language pairs with a small bilingual corpus. The 
less the Lf-Le bilingual corpus is, the bigger the 
improvement is. 

We also performed experiments using Lf-Lp and 
Lp-Le corpora of different sizes. The results indi-
cate that using larger training corpora to train the 
pivot model leads to better translation quality. 
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Abstract

We propose a bootstrapping approach to
training a memoriless stochastic transducer
for the task of extracting transliterations
from an English-Arabic bitext. The trans-
ducer learns its similarity metric from the
data in the bitext, and thus can func-
tion directly on strings written in different
writing scripts without any additional lan-
guage knowledge. We show that this boot-
strapped transducer performs as well or bet-
ter than a model designed specifically to de-
tect Arabic-English transliterations.

1 Introduction

Transliterations are words that are converted from
one writing script to another on the basis of their pro-
nunciation, rather than being translated on the basis
of their meaning. Transliterations include named en-
tities (e.g. 	á���ð� 	á�
g. /Jane Austen) and lexical loans
(e.g. 	àñK
 	Q�
 	®Ê�K/television).

An algorithm to detect transliterations automati-
cally in a bitext can be an effective tool for many
tasks. Models of machine transliteration such as
those presented in (Al-Onaizan and Knight, 2002) or
(AbdulJaleel and Larkey, 2003) require a large set of
sample transliterations to use for training. If such a
training set is unavailable for a particular language
pair, a detection algorithm would lead to a signif-
icant gain in time over attempting to build the set
manually. Algorithms for cross-language informa-
tion retrieval often encounter the problem of out-of-
vocabulary words, or words not present in the algo-

rithm’s lexicon. Often, a significant proportion of
these words are named entities and thus are candi-
dates for transliteration. A transliteration detection
algorithm could be used to map named entities in a
query to potential transliterations in the target lan-
guage text.

The main challenge in transliteration detection
lies in the fact that transliteration is alossyprocess.
In other words, information can be lost about the
original word when it is transliterated. This can oc-
cur because of phonetic gaps in one language or the
other. For example, the English [p] sound does not
exist in Arabic, and the Arabic [Q] sound (made by
the letter¨) does not exist in English. Thus,Paul is
transliterated asÈñK. [bul], and ú
Î« [Qali] is translit-
erated asAli. Another form of loss occurs when the
relationship between the orthographic and phonetic
representations of a word are unclear. For example,
the [k] sound will always be written with the letter¼
in Arabic, but in English it can be written asc, k ch,
ck, cc or kk (not to mention being one of the sounds
produced byx). Finally, letters may be deleted in
one language or the other. In Arabic, short vowels
will often be omitted (e.g.

	­�ñK
/Yousef), while in
English the ArabicZ and ¨ are often deleted (e.g.ÉJ
«AÖÞ� �/Ismael).

We explore the use of word similarity metrics on
the task of Arabic-English transliteration detection
and extraction. One of our primary goals in explor-
ing these metrics is to assess whether it is possible
maintain high performance without making the al-
gorithms language-specific. Many word-similarity
metrics require that the strings being compared be
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written in the same script. Levenshtein edit distance,
for example, does not produce a meaningful score in
the absence of character identities. Thus, if these
metrics are to be used for transliteration extraction,
modifications must be made to allow them to com-
pare different scripts.

Freeman et al. (2006) take the approach of man-
ually encoding a great deal of language knowl-
edge directly into their Arabic-English fuzzy match-
ing algorithm. They define equivalence classes be-
tween letters in the two scripts and perform several
rule-based transformations to make word pairs more
comparable. This approach is unattractive for two
reasons. Firstly, predicting all possible relationships
between letters in English and Arabic is difficult.
For example, allowances have to be made for un-
usual pronunciations in foreign words such as thech
in cliché or thec in Milosevic. Secondly, the algo-
rithm becomes completely language-specific, which
means that it cannot be used for any other language
pair.

We propose a method to learn letter relation-
ships directly from the bitext containing the translit-
erations. Our model is based on the memoriless
stochastic transducer proposed by Ristad and Yian-
ilos (1998), which derives a probabilistic word-
similarity function from a set of examples. The
transducer is able to learn edit distance costs be-
tween disjoint sets of characters representing dif-
ferent writing scripts without any language-specific
knowledge. The transducer approach, however, re-
quires a large set of training examples, which is a
limitation not present in the fuzzy matching algo-
rithm. Thus, we propose a bootstrapping approach
(Yarowsky, 1995) to train the stochastic transducer
iteratively as it extracts transliterations from a bi-
text. The bootstrapped stochastic transducer is com-
pletely language-independent, and we show that it is
able to perform at least as well as the Arabic-English
specific fuzzy matching algorithm.

The remainder of this paper is organized as fol-
lows. Section 2 presents our bootstrapping method
to train a stochastic transducer. Section 3 outlines
the Arabic-English fuzzy matching algorithm. Sec-
tion 4 discusses other word-similarity models used
for comparison. Section 5 describes the results of
two experiments performed to test the models. Sec-
tion 6 briefly discusses previous approaches to de-

tecting transliterations. Section 7 presents our con-
clusions and possibilities for future work.

2 Bootstrapping with a Stochastic
Transducer

Ristad and Yianilos (1998) propose a probabilistic
framework for word similarity, in which the simi-
larity of a pair of words is defined as the sum of
the probabilities of all paths through a memoriless
stochastic transducer that generate the pair of words.
This is referred to as the forward score of the pair of
words. They outline a forward-backward algorithm
to train the model and show that it outperforms Lev-
enshtein edit distance on the task of pronunciation
classification.

The training algorithm begins by calling the for-
ward (Equation 1) and backward (Equation 2) func-
tions to fill in theF andB tables for training pairs
andt with respective lengthsI andJ .

F (0, 0) = 1
F (i, j) = P (si, ǫ)F (i − 1, j)

+P (ǫ, tj)F (i, j − 1)
+P (si, tj)F (i − 1, j − 1)

(1)

B(I, J) = 1
B(i, j) = P (si+1, ǫ)B(i + 1, j)

+P (ǫ, tj+1)B(i, j + 1)
+P (si+1, tj+1)B(i + 1, j + 1)

(2)
The forward value at each position(i, j) in the F

matrix signifies the sum of the probabilities of all
paths through the transducer that produce the prefix
pair (si

1, t
j
1
), while B(i, j) contains the sum of the

probabilities of all paths through the transducer that
generate the suffix pair(sI

i+1, t
J
j+1). These tables

can then be used to collect partial counts to update
the probabilities. For example, the mapping(si, tj)
would contribute a count according to Equation 3.
These counts are then normalized to produce the up-
dated probability distribution.

C(si, tj)+ =
F (i− 1, j − 1)P (si, tj)B(i, j)

F (I, J)
(3)

The major issue in porting the memoriless trans-
ducer over to our task of transliteration extraction
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is that its training is supervised. In other words, it
would require a relatively large set of known translit-
erations for training, and this is exactly what we
would like the model to acquire. In order to over-
come this problem, we look to the bootstrapping
method outlined in (Yarowsky, 1995). Yarowsky
trains a rule-based classifier for word sense disam-
biguation by starting with a small set of seed ex-
amples for which the sense is known. The trained
classifier is then used to label examples for which
the sense is unknown, and these newly labeled ex-
amples are then used to retrain the classifier. The
process is repeated until convergence.

Our method uses a similar approach to train the
stochastic transducer. The algorithm proceeds as
follows:

1. Initialize the training set with the seed pairs.

2. Train the transducer using the forward-
backward algorithm on the current training set.

3. Calculate the forward score for all word pairs
under consideration.

4. If the forward score for a pair of words is above
a predetermined acceptance threshold, add the
pair to the training set.

5. Repeat steps 2-4 until the training set ceases to
grow.

Once training stops, the transducer can be used
to score pairs of words not in the training set. For
our experiments, the acceptance threshold was op-
timized on a separate development set. Forward
scores were normalized by the average of the lengths
of the two words.

3 Arabic-English Fuzzy String Matching

In this section, we outline the fuzzy string matching
algorithm proposed by Freeman et al. (2006). The
algorithm is based on the standard Levenshtein dis-
tance approach, but encodes a great deal of knowl-
edge about the relationships between English and
Arabic letters.

Initially, the candidate word pair is modified in
two ways. The first transformation is a rule-based
letter normalization of both words. Some examples
of normalization include:

• English double letter collapse: e.g.
Miller→Miler.

�,
�,Æ�,ø↔ a,e,i,o,u H. ↔ b,p,v�H, , �H↔ t h. ↔ j,g	 ↔ d,z ¨,Z↔ ’,c,a,e,i,o,u��↔ q,g,k ¼↔ k,c,sø
 ↔ y,i,e,j
�è↔ a,e

Table 1: A sample of the letter equivalence classes
for fuzzy string matching.

Algorithm VowelNorm(Estring,Astring)

for each i := 0 to min(|Estring|, |Astring|)
for each j := 0 to min(|Estring|, |Astring|)

if Astringi = Estringj

Outstring. = Estringj; i + +; j + +;
if vowel(Astringi) ∧ vowel(Estringj)

Outstring. = Estringj; i + +; j + +;
if ¬vowel(Astringi) ∧ vowel(Estringj)

j + +;
if j < |Estringj |

Outstring. = Estringj ; i + +; j + +;
else

Outstring. = Estringj; i + +; j + +;
while j < |Estring|

if ¬vowel(Estringj)
Outstring. = Estringj ;

j + +;
return Outstring;

Figure 1: Pseudocode for the vowel transformation
procedure.

• Arabic hamza collapse: e.g.
	¬Qå��
�→ 	¬Qå�� �.

• Individual letter normalizations: e.g.Hen-
drix→Hendriksor

	­K
Qå��→ 	­K
QîD�.
The second transformation is an iteration through
both words to remove any vowels in the English
word for which there is no similarly positioned
vowel in the Arabic word. The pseudocode for our
implementation of this vowel transformation is pre-
sented in Figure 1.

After letter and vowel transformations, the Leven-
shtein distance is computed using the letter equiva-
lences as matches instead of identities. Some equiv-
alence classes between English and Arabic letters
are shown in Table 1. The Arabic and English letters
within a class are treated as identities. For example,
the Arabic

	¬ can match bothf andv in English with
no cost. The resulting Levenshtein distance is nor-
malized by the sum of the lengths of both words.
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Levenshtein ALINE Fuzzy Match Bootstrap
Lang.-specific No No Yes No
Preprocessing Romanization Phon. Conversion None None
Data-driven No No No Yes

Table 2: Comparison of the word-similarity models.

Several other modifications, such as light stem-
ming and multiple passes to discover more diffi-
cult mappings, were also proposed, but they were
found to influence performance minimally. Thus,
the equivalence classes and transformations are the
only modifications we reproduce for our experi-
ments here.

4 Other Models of Word Similarity

In this section, we present two models of word simi-
larity used for purposes of comparison. Levenshtein
distance and ALINE are not language-specific per
se, but require that the words being compared be
written in a common script. Thus, they require some
language knowledge in order to convert one or both
of the words into the common script. A comparison
of all the models presented is given in Table 2.

4.1 Levenshtein Edit Distance

As a baseline for our experiments, we used Leven-
shtein edit distance. The algorithm simply counts
the minimum number of insertions, deletions and
substitutions required to convert one string into an-
other. Levenshtein distance depends on finding iden-
tical letters, so both words must use the same al-
phabet. Prior to comparison, we convert the Ara-
bic words into the Latin alphabet using the intuitive
mappings for each letter shown in Table 3. The
distances are also normalized by the length of the
longer of the two words to avoid excessively penal-
izing longer words.

4.2 ALINE

Unlike other algorithms presented here, the ALINE
algorithm (Kondrak, 2000) operates in the phonetic,
rather than the orthographic, domain. It was orig-
inally designed to identify cognates in related lan-
guages, but it can be used to compute similarity be-
tween any pair of words, provided that they are ex-
pressed in a standard phonetic notation. Individual

�,
�,Æ�,Z→ a H. → b �H, → t�è→ a �H→ th h. → jh, è→ h p→ kh X, 	�→ d	X, 	 → th P→ r 	P→ z�,�→ s ��→ sh ¨→ ’	̈
→ g

	¬→ f
��→ q¼→ k È→ l �→m	à→ n ð→ w ø
 → y

Table 3: Arabic Romanization for Levenshtein dis-
tance.

phonemes input to the algorithm are decomposed
into a dozen phonetic features, such as Place, Man-
ner and Voice. A substitution score between a pair
of phonemes is based on the similarity as assessed
by a comparison of the individual features. After
an optimal alignment of the two words is computed
with a dynamic programming algorithm, the overall
similarity score is set to the sum of the scores of all
links in the alignment normalized by the length of
the longer of the two words.

In our experiments, the Arabic and English words
were converted into phonetic transcriptions using a
deterministic rule-based transformation. The tran-
scriptions were only approximate, especially for En-
glish vowels. Arabic emphatic consonants were de-
pharyngealized.

5 Evaluation

The word-similarity metrics were evaluated on two
separate tasks. In experiment 1 (Section 5.1) the
task was to extract transliterations from a sentence
aligned bitext. Experiment 2 (Section 5.2) provides
the algorithms with named entities from an English
document and requires them to extract the transliter-
ations from the document’s Arabic translation.

The two bitexts used in the experiments were the
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Figure 2: Precision per number of words extracted for the various algorithms from a sentence-aligned bitext.

Arabic Treebank Part 1-10k word English Transla-
tion corpus and the Arabic English Parallel News
Part 1 corpus (approx. 2.5M words). Both bi-
texts contain Arabic news articles and their English
translations aligned at the sentence level, and both
are available from the Linguistic Date Consortium.
The Treebank data was used as a development set
to optimize the acceptance threshold used by the
bootstrapped transducer. Testing for the sentence-
aligned extraction task was done on the first 20k
sentences (approx. 50k words) of the parallel news
data, while the named entity extraction task was per-
formed on the first 1000 documents of the paral-
lel news data. The seed set for bootstrapping the
stochastic transducer was manually constructed and
consisted of 14 names and their transliterations.

5.1 Experiment 1: Sentence-Aligned Data

The first task used to test the models was to compare
and score the words remaining in each bitext sen-
tence pair after preprocessing the bitext in the fol-
lowing way:

• The English corpus is tokenized using a modi-
fied1 version of Word Splitter2.

• All uncapitalized English words are removed.

• Stop words (mainly prepositions and auxiliary

1The way the program handles apostrophes(’) had to be
modified since they are sometimes used to represent glottal
stops in transliterations of Arabic words, e.g. qala’a.

2Available at http://l2r.cs.uiuc.edu/˜cogcomp/tools.php.

verbs) are removed from both sides of the bi-
text.

• Any English words of length less than 4 and
Arabic words of length less than 3 are removed.

Each algorithm finds the top match for each En-
glish word and the top match for each Arabic word.
If two words mark each other as their top scorers,
then the pair is marked as a transliteration pair. This
one-to-one constraint is meant to boost precision,
though it will also lower recall. This is because for
many of the tasks in which transliteration extraction
would be useful (such as building a lexicon), preci-
sion is deemed more important. Transliteration pairs
are sorted according to their scores, and the top 500
hundred scoring pairs are returned.

The results for the sentence-aligned extraction
task are presented in Figure 2. Since the number
of actual transliterations in the data was unknown,
there was no way to compute recall. The measure
used here is the precision for each 100 words ex-
tracted up to 500. The bootstrapping method is equal
to or outperforms the other methods at all levels, in-
cluding the Arabic-English specific fuzzy match al-
gorithm. Fuzzy matching does well for the first few
hundred words extracted, but eventually falls below
the level of the baseline Levenshtein.

Interestingly, the bootstrapped transducer does
not seem to have trouble with digraphs, despite the
one-to-one nature of the character operations. Word
pairs with two-to-one mappings such assh/ �� or

868



Metric Arabic Romanized English
1 Bootstrap 	áK
Q�
 	gB� alakhyryn Algerian

2 Bootstrap ÕÎ�ð wslm Islam

3 Fuzzy M. É¾Ë lkl Alkella

4 Fuzzy M. 	àAÔ« ’mAn common

5 ALINE Qº� skr sugar

6 Leven. H. A�
� asab Arab

7 All ¼PAÓ mark Marks

8 All 	àñJ
�ðP rwsywn Russian

9 All
�éJ
j. �
�K�Q���� istratyjya strategic

10 All ½	KQ 	̄ frnk French

Table 4: A sample of the errors made by the word-
similarity metrics.

x/�» tend to score lower than their counterparts
composed of only one-to-one mappings, but never-
theless score highly.

A sample of the errors made by each word-
similarity metric is presented in Table 4. Errors 1-
6 are indicative of the weaknesses of each individ-
ual algorithm. The bootstrapping method encoun-
ters problems when erroneous pairs become part of
the training data, thereby reinforcing the errors. The
only problematic mapping in Error 1 is thep/g map-
ping, and thus the pair has little trouble getting into
the training data. Once the pair is part of training
data, the algorithm learns that the mapping is ac-
ceptable and uses it to acquire other training pairs
that contain the same erroneous mapping. The prob-
lem with the fuzzy matching algorithm seems to be
that it creates too large a class of equivalent words.
The pairs in errors 3 and 4 are given a total edit cost
of 0. This is possible because of the overly gen-
eral letter and vowel transformations, as well as un-
usual choices made for letter equivalences (e.g.¨/c
in error 4). ALINE’s errors tend to occur when it
links two letters, based on phonetic similarity, that
are never mapped to each other in transliteration be-
cause they each have a more direct equivalent in the
other language (error 5). Although the Arabic¼ [k]
is phonetically similar to the Englishg, they would
never be mapped to each other since English has sev-
eral ways of representing an actual [k] sound. Errors
made by Levenshtein distance (error 6) are simply
due to the fact that it considers all non-identity map-
pings to be equivalent.

Errors 7-10 are examples of general errors made
by all the algorithms. The most common error was
related to inflection (error 7). The words are essen-
tially transliterations of each other, but one or the
other of the two words takes a plural or some other
inflectional ending that corrupts the phonetic match.
Error 8 represents the common problem of inciden-
tal letter similarity. The English-ian ending used for
nationalities is very similar to the Arabic	àñJ
 [ijun]
and 	á�
J
 [ijin] endings which are used for the same
purpose. They are similar phonetically and, since
they are functionally similar, will tend to co-occur.
Since neither can be said to be derived from the
other, however, they cannot be considered translit-
erations. Error 9 is a case of two words of common
origin taking on language-specific derivational end-
ings that corrupt the phonetic match. Finally, error
10 shows a mapping (¼/c) that is often correct in
transliteration, but is inappropriate in this particular
case.

5.2 Experiment 2: Document-Aligned Named
Entity Recognition

The second experiment provides a more challenging
task for the evaluation of the models. It is struc-
tured as a cross-language named entity recognition
task similar to those outlined in (Lee and Chang,
2003) and (Klementiev and Roth, 2006). Essen-
tially, the goal is to use a language for which named
entity recognition software is readily available as a
reference for tagging named entities in a language
for which such software is not available. For this
task, the sentence alignment of the bitext is ignored.
For each named entity in an English document, the
models must select a transliteration from within the
document’s entire Arabic translation. This is meant
to be a loose approximation of the “comparable”
corpora used in (Klementiev and Roth, 2006). The
comparable corpora are related documents in differ-
ent languages that are not translations (e.g. news ar-
ticles describing the same event), and thus sentence
alignment is not possible.

The first 1000 documents in the parallel news data
were used for testing. The English side of the bi-
text was tagged with Named Entity Tagger3, which
labels named entities asperson, location, organiza-

3Available at http://l2r.cs.uiuc.edu/˜cogcomp/tools.php.
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Method Accuracy
Levenshtein 69.3

ALINE 71.9
Fuzzy Match 74.6
Bootstrapping 74.6

Table 5: Precision of the various algorithms on the
NER detection task.

Metric Arabic Romanized English
1 Both YJ.« ’bd Abdallah

2 Bootstrap YK
YªË� al’dyd Alhadidi

3 Fuzzy Match 	áÖ �ß thmn Othman

Table 6: A sample of errors made on the NER detec-
tion task.

tion or miscellaneous. The words labeled asper-
sonwere extracted. Person names are almost always
transliterated, while for the other categories this is
far less certain. The list was then hand-checked to
ensure that all names were candidates for transliter-
ation, leaving 822 names. The restrictions on word
length and stop words were the same as before, but
in this task each of the English person names from
a given document were compared to all valid words
in the corresponding Arabic document, and the top
scorer for each English name was returned.

The results for the NER detection task are pre-
sented in Table 5. It seems the bootstrapped trans-
ducer’s advantage is relative to the proportion of
correct transliteration pairs to the total number of
candidates. As this proportion becomes smaller the
transducer is given more opportunities to corrupt its
training data and performance is affected accord-
ingly. Nevertheless, the transducer is able to per-
form as well as the language-specific fuzzy match-
ing algorithm on this task, despite the greater chal-
lenge posed by selecting candidates from entire doc-
uments.

A sample of errors made by the bootstrapped
transducer and fuzzy matching algorithms is shown
in Table 6. Error 1 was due to the fact that names are
sometimes split differently in Arabic and English.
The Arabic éÊË � YJ. « (2 words) is generally written
as Abdallah in English, leading to partial matches
with part of the Arabic name. Error 2 shows an issue
with the one-to-one nature of the transducer. The

deletedh can be learned in mappings such assh/ ��
or ph/

	¬, but it is generally inappropriate to delete
anh on its own. Error 3 again shows that the fuzzy
matching algorithm’s letter transformations are too
general. The vowel removals lead to a 0 cost match
in this case.

6 Related Work

Several other methods for detecting transliterations
between various language pairs have been proposed.
These methods differ in their complexity as well as
in their applicability to language pairs other than the
pair for which they were originally designed.

Collier et al. (1997) present a method for identi-
fying transliterations in an English-Japanese bitext.
Their model first transcribes the Japanese word ex-
pressed in thekatakanasyllabic script as the con-
catenation of all possible transliterations of the in-
dividual symbols. A depth-first search is then ap-
plied to compute the number of matches between
this transcription and a candidate English transliter-
ation. The method requires a manual enumeration of
the possible transliterations for each katakana sym-
bol, which is unfeasible for many language pairs.

In the method developed by Tsuji (2002),
katakana strings are first split into their mora units,
and then the transliterations of the units are assessed
manually from a set of training pairs. For each
katakana string in a bitext, all possible translitera-
tions are produced based on the transliteration units
determined from the training set. The translitera-
tion candidates are then compared to the English
words according to the Dice score. The manual enu-
meration of possible mappings makes this approach
unattractive for many language pairs, and the gen-
eration of all possible transliteration candidates is
problematic in terms of computational complexity.

Lee and Chang (2003) detect transliterations with
a generative noisy channel transliteration model
similar to the transducer presented in (Knight and
Graehl, 1998). The English side of the corpus is
tagged with a named entity tagger, and the model
is used to isolate the transliterations in the Chinese
translation. This model, like the transducer pro-
posed by Ristad and Yianilos (1998), must be trained
on a large number of sample transliterations, mean-
ing it cannot be used if such a resource is not avail-
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able.

Klementiev and Roth (2006) bootstrap with a per-
ceptron and use temporal analysis to detect translit-
erations in comparable Russian-English news cor-
pora. The English side is first tagged by a named
entity tagger, and the perceptron proposes transliter-
ations for the named entities. The candidate translit-
eration pairs are then reranked according the similar-
ity of their distributions across dates, as calculated
by a discrete Fourier transform.

7 Conclusion and Future Work

We presented a bootstrapping approach to training
a stochastic transducer, which learns scoring param-
eters automatically from a bitext. The approach is
completely language-independent, and was shown
to perform as well or better than an Arabic-English
specific similarity metric on the task of Arabic-
English transliteration extraction.

Although the bootstrapped transducer is
language-independent, it learns only one-to-one
letter relationships, which is a potential drawback in
terms of porting it to other languages. Our model is
able to capture English digraphs and trigraphs, but,
as of yet, we cannot guarantee the model’s success
on languages with more complex letter relationships
(e.g. a logographic writing system such as Chinese).
More research is necessary to evaluate the model’s
performance on other languages.

Another area open to future research is the use
of more complex transducers for word comparison.
For example, Linden (2006) presents a model which
learns probabilities for edit operations by taking into
account the context in which the characters appear.
It remains to be seen how such a model could be
adapted to a bootstrapping setting.

Acknowledgments

We would like to thank the members of the NLP re-
search group at the University of Alberta for their
helpful comments and suggestions. This research
was supported by the Natural Sciences and Engi-
neering Research Council of Canada.

References

N. AbdulJaleel and L. S. Larkey. 2003. Statistical
transliteration for English-Arabic cross language in-
formation retrieval. InCIKM, pages 139–146.

Y. Al-Onaizan and K. Knight. 2002. Machine translit-
eration of names in Arabic text. InACL Workshop on
Comp. Approaches to Semitic Languages.

N. Collier, A. Kumano, and H. Hirakawa. 1997. Acqui-
sition of English-Japanese proper nouns from noisy-
parallel newswire articles using Katakana matching.
In Natural Language Pacific Rim Symposium (NL-
PRS’97), Phuket, Thailand, pages 309–314, Decem-
ber.

A. Freeman, S. Condon, and C. Ackerman. 2006.
Cross linguistic name matching in English and Ara-
bic. In Human Language Technology Conference of
the NAACL, pages 471–478, New York City, USA,
June. Association for Computational Linguistics.

A. Klementiev and D. Roth. 2006. Named entity translit-
eration and discovery from multilingual comparable
corpora. InHuman Language Technology Conference
of the NAACL, pages 82–88, New York City, USA,
June. Association for Computational Linguistics.

K. Knight and J. Graehl. 1998. Machine transliteration.
Computational Linguistics, 24(4):599–612.

G. Kondrak. 2000. A new algorithm for the alignment of
phonetic sequences. InNAACL 2000, pages 288–295.

C. Lee and J. S. Chang. 2003. Acquisition of English-
Chinese transliterated word pairs from parallel-aligned
texts using a statistical machine transliteration model.
In HLT-NAACL 2003 Workshop on Building and using
parallel texts, pages 96–103, Morristown, NJ, USA.
Association for Computational Linguistics.

K. Linden. 2006. Multilingual modeling of cross-lingual
spelling variants. Information Retrieval, 9(3):295–
310, June.

E. S. Ristad and P. N. Yianilos. 1998. Learning string-
edit distance.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(5):522–532.

K. Tsuji. 2002. Automatic extraction of translational
Japanese-katakana and English word pairs.Interna-
tional Journal of Computer Processing of Oriental
Languages, 15(3):261–279.

D. Yarowsky. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. InMeeting of
the Association for Computational Linguistics, pages
189–196.

871



Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 872–879,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Benefits of the ‘Massively Parallel Rosetta Stone’:  
Cross-Language Information Retrieval with over 30 Languages 

Peter A. Chew 
Sandia National Laboratories 

P. O. Box 5800, MS 1012 
Albuquerque, NM 87185-1012, USA 

pchew@sandia.gov

Ahmed Abdelali 
New Mexico State University 

P.O. Box 30002, Mail Stop 3CRL 
Las Cruces, NM 88003-8001, USA 

ahmed@crl.nmsu.edu

Abstract 

In this paper, we describe our experiences 
in extending a standard cross-language in-
formation retrieval (CLIR) approach 
which uses parallel aligned corpora and 
Latent Semantic Indexing. Most, if not 
all, previous work which follows this ap-
proach has focused on bilingual retrieval; 
two examples involve the use of French-
English or English-Greek parallel cor-
pora. Our extension to the approach is 
‘massively parallel’ in two senses, one 
linguistic and the other computational. 
First, we make use of a parallel aligned 
corpus consisting of almost 50 parallel 
translations in over 30 distinct languages, 
each in over 30,000 documents. Given the 
size of this dataset, a ‘massively parallel’ 
approach was also necessitated in the 
more usual computational sense. Our re-
sults indicate that, far from adding more 
noise, more linguistic parallelism is better 
when it comes to cross-language retrieval 
precision, in addition to the self-evident 
benefit that CLIR can be performed on 
more languages. 

1 Introduction 

Approaches to cross-language information retrieval 
(CLIR) fall generally into one of two types, or 
some combination thereof: the ‘query translation’ 
approach or the ‘parallel corpus’ approach. The 
first of these, which is perhaps more common, in-

volves translation of the query into the target lan-
guage, for example using machine translation or 
on-line dictionaries.  The second makes use of par-
allel aligned corpora as training sets. One approach 
which uses parallel corpora does this in conjunc-
tion with Latent Semantic Indexing (LSI) (Lan-
dauer and Littman 1990, Young 1994). According 
to Berry et al. (1994:21), the use of LSI with paral-
lel corpora can be just as effective as the query 
translation approach, and avoids some of the draw-
backs of the latter, discussed in Nie et al. (1999). 

Generally, research in CLIR has not attempted 
to use very many languages at a time (see for ex-
ample Nie and Jin 2002). With query translation 
(although that is not the approach that Nie and Jin 
take), this is perhaps understandable, as for each 
new language, a new translation algorithm must be 
included. The effort involved in extending query 
translation to multiple languages, therefore, is 
likely to be in proportion to the number of lan-
guages. 

With parallel corpora, the reason that research 
has been limited to only a few languages at a time 
– and usually just two at a time, as in the LSI work 
cited above – is more likely to be rooted in the 
widespread perception that good parallel corpora 
are difficult to obtain (see for example Asker 
2004). However, recent work (Resnik et al. 1999, 
Chew et al. 2006) has challenged this idea. 

One advantage of a ‘massively parallel’ multi-
lingual corpus is perhaps self-evident: within the 
LSI framework, the more languages are mapped 
into the single conceptual space, the fewer restric-
tions there are on which languages documents can 
be selected from for cross-language retrieval. 
However, several questions were raised for us as 

872



we contemplated the use of a massively parallel 
corpus. Would the addition of languages not used 
in testing create ‘noise’ for a given language pair, 
reducing the precision of CLIR? Could partially 
parallel corpora be used? Our work appears to 
show both that more languages are generally bene-
ficial, and even incomplete parallel corpora can be 
used. In the remainder of this paper, we provide 
evidence for this claim. The paper is organized as 
follows: section 2 describes the work we undertook 
to build the parallel corpus and its characteristics. 
In section 3, we outline the mechanics behind the 
'Rosetta-Stone' type method we use for cross-
language comparison. In section 4, we present and 
discuss the results of the various tests we per-
formed. Finally, we conclude on our findings in 
section 5. 

2 The massively parallel corpus  

Following Chew et al. (2006), our parallel corpus 
was built up from translations of the Bible which 
are freely available on the World Wide Web. Al-
though reliable comparable statistics are hard to 
find, it appears to be generally agreed that the Bi-
ble is the world’s most widely translated book, 
with complete translations in 426 languages and 
partial translations in 2,403 as of December 31, 
2005 (Bible Society, 2006). Great care is taken 
over the translations, and they are alignable by 
chapter and verse. According to Resnik et al. 
(1999), the Bible’s coverage of modern vocabulary 
may be as high as 85%. The vast majority of the 
translations we used came from the ‘Unbound Bi-
ble’ website (Biola University, 2005-2006); from 
this website, the text of a large number of different 
translations of the Bible can – most importantly for 
our purposes – be downloaded in a tab-delimited 
format convenient for loading into a database and 
then indexing by chapter and verse in order to en-
sure ‘parallelism’ in the corpus. The number of 
translations available at the website is apparently 
being added to, based on our observations access-
ing the website on a number of different occasions. 

The languages we have included in our multilin-
gual parallel corpus include those both ancient and 
modern, and are as follows: 

Language No. of 
translations 

Used in 
tests 

Afrikaans 1 12+ 
Albanian 1 27+ 
Arabic 1 All 
Chinese (Simplified) 1 44+ 
Chinese (Traditional) 1 44+ 
Croatian 1 27+ 
Czech 2 12+ 
Danish 1 12+ 
Dutch 1 12+ 
English 7 All 
Finnish 3 27+ 
French 2 All 
German 4 8,27+ 
Greek (New Testament) 2 46+ 
Hebrew (Old Testament) 1 46+ 
Hebrew (Modern) 1 6,12+ 
Hungarian 1 6+ 
Italian 2 8,27+ 
Japanese* 1 9+ 
Korean 1 27+ 
Latin 1 8,9,28+ 
Maori 1 7,8,9,27+ 
Norwegian 1 27+ 
Polish* 1 27+ 
Portuguese 1 27+ 
Russian 1 All 
Spanish 2 All 
Swedish 1 27+ 
Tagalog 1 27+ 
Thai 1 27+ 
Vietnamese 1 27,44+ 

Table 1. Languages1

The languages above represent many of the ma-
jor language groups: Austronesian (Maori and 
Tagalog); Altaic (Japanese and Korean); Sino-
Tibetan (Chinese); Semitic (Arabic and Hebrew);  
Finno-Ugric (Finnish and Hungarian); Austro-
Asiatic (Vietnamese); Tai-Kadai (Thai); and Indo-
European (the remaining languages). The two New 
Testament Greek versions are the Byzan-
tine/Majority Text (2000), and the parsed version 
of the same text, in which we treated distinct mor-
phological elements (such as roots or inflectional 
endings) as distinct terms. Overall, the list includes 

 
1 Translations in languages marked with an asterisk above 
were obtained from websites other than the ‘Unbound Bible’ 
website. ‘Used in tests’ indicates in which tests in Table 2 
below the language was used as training data, and hence the 
order of addition of languages to the training data. 
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47 versions in 31 distinct languages (assuming 
without further discussion here that each entry in 
the list represents a distinct language). 

We aligned the translations by verse, and, since 
there are some differences in versification between 
translations (for example, the Hebrew Old Testa-
ment includes the headings for the Psalms as sepa-
rate verses, unlike most translations), we spent 
some time cleaning the data to ensure the align-
ment was as good as possible, given available re-
sources and our knowledge of the languages. (Even 
after this process, the alignment was not perfect, 
and differences in how well the various transla-
tions were aligned may account for some of the 
variability in the outcome of our experiments, de-
pending on which translations were used.) The end 
result was that our parallel corpus consisted of 
31,226 ‘mini-documents’ – the total number of text 
chunks2 after the cleaning process, aligned across 
all 47 versions. The two New Testament Greek 
versions, and the one Old Testament Hebrew ver-
sion, were exceptions because these are only par-
tially complete; the former have text in only 7,953 
of the verses, and the latter has text in 23,266 of 
the verses. For some versions, a few of the verse 
translations are incomplete where a particular verse 
has been skipped in translation; this also explains 
the fact that the number of Hebrew and Greek text 
chunks together do not add up to 31,226. However, 
the number of such verses is negligible in compari-
son to the total. 

3 Framework 

The framework we used was the standard LSI 
framework described in Berry et al. (1994). Each 
aligned mini-document from the parallel corpus 
consists of the combination of text from all the 31 
languages. A document-by-term matrix is formed 
in which each cell represents a weighted frequency 
of a particular term t in a particular document k.
We used a standard log-entropy weighting scheme, 
where the weighted frequency W is given by: 

 
W = log2 (F) × (1 + Ht / log2 (N)) 

 
where F is the raw frequency of t in k, Ht is the 
standard ‘p log p’ measure of the entropy of the 
term across all documents, and N is the number of 
 
2 The text chunks generally had the same boundaries as the 
verses in the original text. 

documents in the corpus. The last term in the ex-
pression above, log2 (N), is the maximum entropy 
that any term can have in the corpus, and therefore 
(1 + Ht / log2 (N)) is 1 for the most distinctive 
terms in the corpus, 0 for those which are least dis-
tinctive. 

The sparse document-by-term matrix is sub-
jected to singular value decomposition (SVD), and 
a reduced non-sparse matrix is output. Generally, 
we used the output corresponding to the top 300 
singular values in our experiments. When we had a 
smaller number of languages in the mix, it was 
possible to use SVDPACK (Berry et al. 1996), 
which is an open-source non-parallel algorithm for 
computing the SVD, but for larger problems (in-
volving more than a couple of dozen parallel ver-
sions), use of a parallel algorithm (in a library 
called Trilinos) was necessitated. (This was run on 
a Linux cluster consisting of 4,096 dual CPU com-
pute nodes, running on Dell PowerEdge 1850 1U 
Servers with 6GB of RAM.) 

In order to test the precision versus recall of our 
framework, we used translations of the 114 suras 
of the Qu’ran into five languages, Arabic, English, 
French, Russian and Spanish. The number of 
documents used for testing is fairly small, but large 
enough to give comparative results for our pur-
poses which are still highly statistically significant. 
The test set was split into each of the 10 possible 
language-pair combinations: Arabic-English, Ara-
bic-French, English-French, and so on. 

For each language pair and test, 228 distinct 
‘queries’ were submitted – each query consisting 
of one of the 228 sura ‘documents’. If the highest-
ranking document in the other language of the pair 
was in fact the query’s translation, then the result 
was deemed ‘correct’. To assess the aggregate per-
formance of the framework, we used two meas-
ures: average precision at 0 (the maximum 
precision at any level of recall), and average preci-
sion at 1 document (1 if the ‘correct’ document 
ranked highest, zero otherwise). The second meas-
ure is a stricter one, but we generally found that 
there is a high rate of correlation between the two 
measures anyway. 

4 Results and Discussion 

The following tables show the results of our tests. 
First, we present in Table 2 the overall summary, 
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with averages across all language pairs used in 
testing. 
 

Average precision No. of 
parallel 
versions

At 0 at 1 doc. 

2 0.706064 0.571491 
3 0.747620 0.649269 
4 0.617615 0.531873 
5 0.744951 0.656140 
6 0.811666 0.732602 
7 0.827246 0.753070 
8 0.824501 0.750000 
9 0.823430 0.746053 
12 0.827761 0.752632 
27 0.825577 0.751316 
28 0.823137 0.747807 
44 0.839346 0.765789 
46 0.839319 0.766667 
47 0.842936 0.774561 

Table 2. Summary results for all language pairs 
 

From the above, the following should be clear: 
as more parallel translations are added to the index, 
the average precision rises considerably at first, 
and then begins to level off after about the seventh 
parallel translation. The results will of course vary 
according to which combination of translations is 
selected for the index. The number of such combi-
nations is generally very large: for example, with 
47 translations available, there are 47! / (40! 7!), or 
62,891,499, possible ways of selecting 7 transla-
tions. Thus, for any particular number of parallel 
versions, we had to use some judgement in which 
parallel versions to select, since there was no way 
to achieve anything like exhaustive coverage of the 
possibilities. 

Further, with more than 7 parallel translations, 
there is certainly no justification for saying that 
adding more translations or languages increases the 
‘noise’ for languages in the test set, since beyond 7 
the average precision remains fairly level. If any-
thing, in fact, the precision still appears to rise 
slightly. For example, the average precision at 1 
document rises by more than 0.75 percentage 
points between 46 and 47 versions. Given that in 
each of these experiments, we are measuring preci-
sion 228 times per language pair, and therefore 
2,280 times in total, this small rise in precision is 
significant (p ≈ 0.034). Interestingly, the 47th ver-

sion to be added was parsed New Testament 
Greek. It appears, therefore, that the parsing helped 
in particular; we also have evidence from other 
experiments (not presented here) that overall preci-
sion is generally improved for all languages when 
Arabic wordforms are replaced by their respective 
citation forms (the bare root, or stem) – also a form 
of morphological parsing. Ancient Greek, like 
Arabic, is morphologically highly complex, so it 
would be understandable that parsing (or stem-
ming) would help when parsing of either language 
is used in training. 

One other point needs to be made here: the three 
versions added after the 44th version were the three 
incomplete versions (the two Greek versions cover 
just the New Testament, while Ancient Hebrew 
covers just the Old Testament). The above-
mentioned increase in precision which resulted 
from the addition of these three versions is clear 
evidence that even in the case where a parallel cor-
pus is defective for some language(s), including 
those languages can still result in the twofold bene-
fit that (1) those languages are now available for 
analysis, and (2) precision is maintained or in-
creased for the remaining languages. 

Finally, precision at 1 document, the stricter of 
the two measures, is by definition less than or 
equal to precision at 0. This taken into account, it 
is also interesting that the gap between the two 
measures seems to narrow as more parallel transla-
tions and parsing are added, as Figure 1 shows. 

For certain applications where it is important 
that the translation is ranked first, not just highly, 
among all retrieved documents, there is thus a par-
ticular benefit in using a ‘massively parallel’ 
aligned corpus. 
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Now we move on to look at more detailed re-
sults by language pair. Figure 2 below breaks 
down the results for precision at 1 document by 
language pair. In all tests, the two languages in 
each pair were (naturally) always included in the 
languages used for training. There is more volatil-
ity in the results by language pair than there is in 
the overall results, shown again at the right of the 
graph, which should come as no surprise since the 
averages are based on samples a tenth of the size. 
Generally, however, the pattern is the same for 
particular language pairs as it is overall; the more 

parallel versions are used in training, the better the 
average precision. 

There are some more detailed observations 
which should also be made from Figure 2. First, 
the average precision clearly varies quite widely 
between language pairs. The language pairs with 
the best average precision are those in which two 
of English, French and Spanish are present. Of the  
five languages used for testing, these three cluster 
together genetically, since all three are Western 
(Germanic or Romance) Indo-European languages. 
Moreover, these are the three languages of the five 
which are written in the Roman alphabet. 
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Figure 2. Chart of precision at 1 doc. by language pair and number of parallel training versions 
 

However, we believe the explanation for the 
poorer results for language pairs involving either 
Arabic, Russian, or both, can be pinned down to 
something more specific. We have already par-
tially alluded to the obvious difference between 
Arabic and Russian on the one hand, and English, 
French and Spanish on the other: that Arabic and 
Russian are highly morphologically rich, while 
English, French and Spanish are generally analytic 
languages. This has a clear effect on the statistics 
for the languages in question, as can be seen in 

Table 3, which is based on selected translations of 
the Bible for each of the languages in question. 
 

Translation Types Tokens 
English (King James) 12,335 789,744 
Spanish (Reina Valera 1909) 28,456 704,004 
Russian (Synodal 1876) 47,226 560,524 
Arabic (Smith Van Dyke) 55,300 440,435 
French (Darby) 20,428 812,947 

Table 3. Statistics for Bible translations in 5 lan-
guages used in test data 
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Assuming that the respective translations are 
faithful (and we have no reason to believe other-
wise), and based on the statistics in Table 3, it 
should be the case that Arabic contains the most 
‘information’ per term (in the information theoretic 
sense), followed by Russian, Spanish, English and 
French.3 Again, this corresponds to our intuition 
that much information is contained in Arabic pat-
terns and Russian inflectional morphemes, which 
in English, French and Spanish would be contained 
in separate terms (for example, prepositions). 

Without additional pre-processing, however, 
LSI cannot deal adequately with root-pattern or 
inflectional morphology. Moreover, it is clearly a 
weakness of LSI, or at least the standard log-
entropy weighting scheme as applied within this 
framework, that it makes no adjustment for differ-
ences in information content per word between 
languages. Even though we can assume near-
equivalency of information content between the 
different translations above, according to the stan-
dard log-entropy weighting scheme there are large 
differences between the total entropy of particular 
parallel documents; in general, languages such as 
English are overweighted while those such as Ara-
bic are underweighted. 

Now that this issue is in perspective, we should 
draw attention to another detail in Figure 2. Note 
that the language pairs which benefited most from 
the addition of Ancient Greek and Hebrew into the 
training data were those which included Russian, 
and Russian-Arabic saw the greatest increase in 
precision. Recall also that the 47th version to be 
added was the parsed Greek, so that essentially 
each Greek morpheme is represented by a distinct 
term. From Figure 2, it seems clear that the inclu-
sion of parsed Greek in particular boosted the pre-
cision for Russian (this is most visible at the right-
hand side of the set of columns for Russian-Arabic 
and English-Russian). There are, after all, notable 
similarities between modern Russian and Ancient 
Greek morphology (for example, the nominal case 
system). Essentially, the parsed Greek acts as a 
‘clue’ to LSI in associating inflected forms in Rus-

 
3 To clarify the meaning of ‘term’ here: for all languages ex-
cept Chinese, text is tokenized in our framework into terms 
using regular expressions; each non-word character (such as 
punctuation or white space) is assumed to mark the boundary 
of a word. For Chinese, we made the simplifying assumption 
that each character represented a separate term. 

sian with preposition/non-inflected combinations 
in other languages. These results seem to be further 
confirmation of the notion that parsing just one of 
the languages in the mix helps overall; the greatest 
boost is for those languages with morphology re-
lated to that of the parsed language, but there is at 
least a maintenance, and perhaps a small boost, in 
the precision for unrelated languages too. 

Finally, we turn to look at some effects of the 
particular languages selected for training. Included 
in the results above, there were three separate tests 
run in which there were 6 training versions. In all 
three, Arabic, English, French, Russian and Span-
ish were included. The only factor we varied in the 
three tests was the sixth version. In the three tests, 
we used Modern Hebrew (a Semitic language, 
along with Arabic), Hungarian (a Uralic language, 
not closely related to any of the other five lan-
guages), and a second English version respectively. 
The results of these tests are shown in Figure 3, 
with figures for the test in which only 5 versions 
were included for comparative purposes. 

From these results, it is apparent first of all that 
it was generally beneficial to add a sixth version, 
regardless of whether the version added was Eng-
lish, Hebrew or Hungarian. This is consistent with 
the results reported elsewhere in this paper. Sec-
ond, it is also apparent that the greatest benefit 
overall was had by using an additional English ver-
sion, rather than using Hebrew or Hungarian. 
Moreover, perhaps surprisingly, the use of Hebrew 
in training – even though Hebrew is related to 
Arabic – was of less benefit to Arabic than either 
Hungarian or an additional English version. It ap-
pears that the use of multiple versions in the same 
language is beneficial because it enables LSI to 
make use of the many different instantiations in the 
expression of a concept in a single language, and 
that this effect can be greater than the effect which 
obtains from using heterogeneous languages, even 
if there is a genetic relationship to existing lan-
guages. 
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Figure 3 may also shed some additional light on 
one other detail from Figure 2: a perceptible jump 
in precision between 28 and 44 training versions 
for Arabic-English and Arabic-French. It should be 
mentioned that among the 16 additional versions 
were five English versions (American Standard 
Version, Basic English Bible, Darby, Webster’s 
Bible, and Young’s Literal Translation), and one 
French version (Louis Segond 1910). It seems that 
Figure 2 and Figure 3 both point to the same thing: 
that the use of parallel versions or translations in a 
single language can be particularly beneficial to 
overall precision within the LSI framework – even 
to a greater extent than the use of parallel transla-
tions in different languages. 

5 Conclusion 

In this paper, we have shown how ‘massive paral-
lelism’ in an aligned corpus can be used to im-
prove the results of cross-language information 
retrieval. Apart from the obvious advantage (the 

ability to automate the processing of a greater vari-
ety of linguistic data within a single framework), 
we have shown that including more parallel trans-
lations in training improves the precision of CLIR 
across the board. This is true whether the addi-
tional translations are in the language of another 
translation already within the training set, whether 
they are in a related language, or whether they are 
in an unrelated language; although this is not to say 
that these choices do not lead to (generally minor) 
variations in the results. The improvement in preci-
sion also appears to hold whether the additional 
translations are complete or incomplete, and it ap-
pears that morphological pre-processing helps, not 
just for the languages pre-processed, but again 
across the board. 

Our work also offers further evidence that the 
supply of useful pre-existing parallel corpora is not 
perhaps as scarce as it is sometimes claimed to be. 
Compilation of the 47-version parallel corpus we 
used was not very time-consuming, especially if 
the time taken to clean the data is not taken into 
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account, and all the textual material we used is 
publicly available on the World Wide Web. 

While the experiments we performed were on 
non-standard test collections (primarily because 
the Qu’ran was easy to obtain in multiple lan-
guages), it seems that there is no reason to believe 
our general observation – that more parallelism in 
the training data is beneficial for cross-language 
retrieval – would not hold for text from other do-
mains. Whether the genre of text used as training 
data affects the absolute rate of retrieval precision 
for text of a different genre (e.g. news articles, 
shopping websites) is a separate question, and one 
we intend to address more fully in future work. 

In summary, it appears that we are able to 
achieve the results we do partly because of the in-
herent properties of LSI. In essence, when the data 
from more and more parallel translations are sub-
jected to SVD, the LSI ‘concepts’ become more 
and more reinforced. The resulting trend for preci-
sion to increase, despite ‘blips’ for individual lan-
guages, can be seen for all languages. To put it in 
more prosaic terms, the more different ways the 
same things are said in, the more understandable 
they become – including in cross-language infor-
mation retrieval. 
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Abstract

Recent studies suggest that machine learn-
ing can be applied to develop good auto-
matic evaluation metrics for machine trans-
lated sentences. This paper further ana-
lyzes aspects of learning that impact per-
formance. We argue that previously pro-
posed approaches of training aHuman-
Likeness classifieris not as well correlated
with human judgments of translation qual-
ity, but that regression-based learningpro-
duces more reliable metrics. We demon-
strate the feasibility of regression-based
metrics through empirical analysis of learn-
ing curves and generalization studies and
show that they can achieve higher correla-
tions with human judgments than standard
automatic metrics.

1 Introduction

As machine translation (MT) research advances, the
importance of its evaluation also grows. Efficient
evaluation methodologies are needed both for facili-
tating the system development cycle and for provid-
ing an unbiased comparison between systems. To
this end, a number of automatic evaluation metrics
have been proposed to approximate human judg-
ments of MT output quality. Although studies have
shown them to correlate with human judgments at
the document level, they are not sensitive enough
to provide reliable evaluations at the sentence level
(Blatz et al., 2003). This suggests that current met-
rics do not fully reflect the set of criteria that people
use in judging sentential translation quality.

A recent direction in the development of met-
rics for sentence-level evaluation is to apply ma-
chine learning to create an improved composite met-
ric out of less indicative ones (Corston-Oliver et al.,
2001; Kulesza and Shieber, 2004). Under the as-
sumption that good machine translation will pro-
duce “human-like” sentences, classifiers are trained
to predict whether a sentence is authored by a human
or by a machine based on features of that sentence,
which may be the sentence’s scores from individ-
ual automatic evaluation metrics. The confidence of
the classifier’s prediction can then be interpreted as a
judgment on the translation quality of the sentence.
Thus, the composite metric is encoded in the confi-
dence scores of the classification labels.

While the learning approach to metric design of-
fers the promise of ease of combining multiple met-
rics and the potential for improved performance,
several salient questions should be addressed more
fully. First, is learning a “Human Likeness” classi-
fier the most suitable approach for framing the MT-
evaluation question? An alternative is regression, in
which the composite metric is explicitly learned as
a function that approximates humans’ quantitative
judgments, based on a set of human evaluated train-
ing sentences. Although regression has been con-
sidered on a small scale for a single system as con-
fidence estimation (Quirk, 2004), this approach has
not been studied as extensively due to scalability and
generalization concerns. Second, how does the di-
versity of the model features impact the learned met-
ric? Third, how well do learning-based metrics gen-
eralize beyond their training examples? In particu-
lar, how well can a metric that was developed based
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on one group of MT systems evaluate the translation
qualities of new systems?

In this paper, we argue for the viability of a
regression-based framework for sentence-level MT-
evaluation. Through empirical studies, we first
show that having an accurate Human-Likeness clas-
sifier does not necessarily imply having a good MT-
evaluation metric. Second, we analyze the resource
requirement for regression models for different sizes
of feature sets through learning curves. Finally, we
show that SVM-regression metrics generalize better
than SVM-classification metrics in their evaluation
of systems that are different from those in the train-
ing set (by languages and by years), and their corre-
lations with human assessment are higher than stan-
dard automatic evaluation metrics.

2 MT Evaluation

Recent automatic evaluation metrics typically frame
the evaluation problem as a comparison task: how
similar is the machine-produced output to a set of
human-produced reference translations for the same
source text? However, as the notion of similar-
ity is itself underspecified, several different fami-
lies of metrics have been developed. First, simi-
larity can be expressed in terms of string edit dis-
tances. In addition to the well-known word error
rate (WER), more sophisticated modifications have
been proposed (Tillmann et al., 1997; Snover et
al., 2006; Leusch et al., 2006). Second, similar-
ity can be expressed in terms of common word se-
quences. Since the introduction of BLEU (Papineni
et al., 2002) the basicn-gram precision idea has
been augmented in a number of ways. Metrics in the
Rouge family allow for skipn-grams (Lin and Och,
2004a); Kauchak and Barzilay (2006) take para-
phrasing into account; metrics such as METEOR
(Banerjee and Lavie, 2005) and GTM (Melamed et
al., 2003) calculate both recall and precision; ME-
TEOR is also similar to SIA (Liu and Gildea, 2006)
in that word class information is used. Finally, re-
searchers have begun to look for similarities at a
deeper structural level. For example, Liu and Gildea
(2005) developed the Sub-Tree Metric (STM) over
constituent parse trees and the Head-Word Chain
Metric (HWCM) over dependency parse trees.

With this wide array of metrics to choose from,

MT developers need a way to evaluate them. One
possibility is to examine whether the automatic met-
ric ranks the human reference translations highly
with respect to machine translations (Lin and Och,
2004b; Amiǵo et al., 2006). The reliability of a
metric can also be more directly assessed by de-
termining how well it correlates with human judg-
ments of the same data. For instance, as a part of the
recent NIST sponsored MT Evaluation, each trans-
lated sentence by participating systems is evaluated
by two (non-reference) human judges on a five point
scale for itsadequacy(does the translation retain the
meaning of the original source text?) andfluency
(does the translation sound natural in the target lan-
guage?). These human assessment data are an in-
valuable resource for measuring the reliability of au-
tomatic evaluation metrics. In this paper, we show
that they are also informative in developing better
metrics.

3 MT Evaluation with Machine Learning

A good automatic evaluation metric can be seen as
a computational model that captures a human’s de-
cision process in making judgments about the ade-
quacy and fluency of translation outputs. Inferring a
cognitive model of human judgments is a challeng-
ing problem because the ultimate judgment encom-
passes a multitude of fine-grained decisions, and the
decision process may differ slightly from person to
person. The metrics cited in the previous section
aim to capture certain aspects of human judgments.
One way to combine these metrics in a uniform and
principled manner is through a learning framework.
The individual metrics participate as input features,
from which the learning algorithm infers a compos-
ite metric that is optimized on training examples.

Reframing sentence-level translation evaluation
as a classification task was first proposed by
Corston-Oliver et al. (2001). Interestingly, instead
of recasting the classification problem as a “Hu-
man Acceptability” test (distinguishing good trans-
lations outputs from bad one), they chose to develop
a Human-Likeness classifier (distinguishing out-
puts seem human-produced from machine-produced
ones) to avoid the necessity of obtaining manu-
ally labeled training examples. Later, Kulesza and
Shieber (2004) noted that if a classifier provides a
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confidence score for its output, that value can be
interpreted as a quantitative estimate of the input
instance’s translation quality. In particular, they
trained an SVM classifier that makes its decisions
based on a set of input features computed from the
sentence to be evaluated; the distance between input
feature vector and the separating hyperplane then
serves as the evaluation score. The underlying as-
sumption for both is that improving the accuracy of
the classifier on the Human-Likeness test will also
improve the implicit MT evaluation metric.

A more direct alternative to the classification ap-
proach is to learn via regression and explicitly op-
timize for a function (i.e. MT evaluation metric)
that approximates human judgments in training ex-
amples. Kulesza and Shieber (2004) raised two
main objections against regression for MT evalua-
tions. One is that regression requires a large set of
labeled training examples. Another is that regression
may not generalize well over time, and re-training
may become necessary, which would require col-
lecting additional human assessment data. While
these are legitimate concerns, we show through em-
pirical studies (in Section 4.2) that the additional re-
source requirement is not impractically high, and
that a regression-based metric has higher correla-
tions with human judgments and generalizes better
than a metric derived from a Human-Likeness clas-
sifier.

3.1 Relationship between Classification and
Regression

Classification and regression are both processes of
function approximation; they use training examples
as sample instances to learn the mapping from in-
puts to the desired outputs. The major difference be-
tween classification and regression is that the func-
tion learned by a classifier is a set of decision bound-
aries by which to classify its inputs; thus its outputs
are discrete. In contrast, a regression model learns
a continuous function that directly maps an input
to a continuous value. An MT evaluation metric is
inherently a continuous function. Casting the task
as a 2-way classification may be too coarse-grained.
The Human-Likeness formulation of the problem in-
troduces another layer of approximation by assum-
ing equivalence between “Like Human-Produced”
and “Well-formed” sentences. In Section 4.1, we

show empirically that high accuracy in the Human-
Likeness test does not necessarily entail good MT
evaluation judgments.

3.2 Feature Representation

To ascertain the resource requirements for different
model sizes, we considered two feature models. The
smaller one uses the same nine features as Kulesza
and Shieber, which were derived from BLEU and
WER. The full model consists of 53 features: some
are adapted from recently developed metrics; others
are new features of our own. They fall into the fol-
lowing major categories1:

String-based metrics over references These in-
clude the nine Kulesza and Shieber features as well
as precision, recall, and fragmentation, as calcu-
lated in METEOR; ROUGE-inspired features that
are non-consecutive bigrams with a gap size ofm,
where1 ≤ m ≤ 5 (skip-m-bigram), and ROUGE-L
(longest common subsequence).

Syntax-based metrics over references We un-
rolled HWCM into their individual chains of length
c (where2 ≤ c ≤ 4); we modified STM so that it is
computed over unlexicalized constituent parse trees
as well as over dependency parse trees.

String-based metrics over corpus Features in
this category are similar to those inString-based
metric over referenceexcept that a large English cor-
pus is used as “reference” instead.

Syntax-based metrics over corpus A large de-
pendency treebank is used as the “reference” instead
of parsed human translations. In addition to adap-
tations of theSyntax-based metrics over references,
we have also created features to verify the argument
structures for certain syntactic categories.

4 Empirical Studies

In these studies, the learning models used for both
classification and regression are support vector ma-
chines (SVM) with Gaussian kernels. All models
are trained with SVM-Light (Joachims, 1999). Our
primary experimental dataset is from NIST’s 2003

1As feature engineering is not the primary focus of this pa-
per, the features are briefly described here, but implementa-
tional details will be made available in a technical report.
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Chinese MT Evaluations, in which the fluency and
adequacy of 919 sentences produced by six MT sys-
tems are scored by two human judges on a 5-point
scale2. Because the judges evaluate sentences ac-
cording to their individual standards, the resulting
scores may exhibit a biased distribution. We normal-
ize human judges’ scores following the process de-
scribed by Blatz et al. (2003). The overall human as-
sessment score for a translation output is the average
of the sum of two judges’ normalized fluency and
adequacy scores. The full dataset (6 × 919 = 5514
instances) is split into sets of training, heldout and
test data. Heldout data is used for parameter tuning
(i.e., the slack variable and the width of the Gaus-
sian). When training classifiers, assessment scores
are not used, and the training set is augmented with
all available human reference translation sentences
(4 × 919 = 3676 instances) to serve as positive ex-
amples.

To judge the quality of a metric, we compute
Spearman rank-correlation coefficient, which is a
real number ranging from -1 (indicating perfect neg-
ative correlations) to +1 (indicating perfect posi-
tive correlations), between the metric’s scores and
the averaged human assessments on test sentences.
We use Spearman instead of Pearson because it
is a distribution-free test. To evaluate the rela-
tive reliability of different metrics, we use boot-
strapping re-sampling and paired t-test to determine
whether the difference between the metrics’ correla-
tion scores has statistical significance (at 99.8% con-
fidence level)(Koehn, 2004). Each reported correla-
tion rate is the average of 1000 trials; each trial con-
sists ofn sampled points, wheren is the size of the
test set. Unless explicitly noted, the qualitative dif-
ferences between metrics we report are statistically
significant. As a baseline comparison, we report the
correlation rates of three standard automatic metrics:
BLEU, METEOR, which incorporates recall and
stemming, and HWCM, which uses syntax. BLEU
is smoothed to be more appropriate for sentence-
level evaluation (Lin and Och, 2004b), and the bi-
gram versions of BLEU and HWCM are reported
because they have higher correlations than when
longern-grams are included. This phenomenon has

2This corpus is available from the Linguistic Data Consor-
tium as Multiple Translation Chinese Part 4.
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Figure 1: This scatter plot compares classifiers’ ac-
curacy with their corresponding metrics’ correla-
tions with human assessments

been previously observed by Liu and Gildea (2005).

4.1 Relationship between Classification
Accuracy and Quality of Evaluation Metric

A concern in using a metric derived from a Human-
Likeness classifier is whether it would be predic-
tive for MT evaluation. Kulesza and Shieber (2004)
tried to demonstrate a positive correlation between
the Human-Likeness classification task and the MT
evaluation task empirically. They plotted the clas-
sification accuracy and evaluation reliability for a
number of classifiers, which were generated as a
part of a greedy search for kernel parameters and
found some linear correlation between the two. This
proof of concept is a little misleading, however, be-
cause the population of the sampled classifiers was
biased toward those from the same neighborhood as
the local optimal classifier (so accuracy and corre-
lation may only exhibit linear relationship locally).
Here, we perform a similar study except that we
sampled the kernel parameter more uniformly (on
a log scale). As Figure 1 confirms, having an ac-
curate Human-Likeness classifier does not necessar-
ily entail having a good MT evaluation metric. Al-
though the two tasks do seem to be positively re-
lated, and in the limit there may be a system that is
good at both tasks, one may improve classification
without improving MT evaluation. For this set of
heldout data, at the near 80% accuracy range, a de-
rived metric might have an MT evaluation correla-
tion coefficient anywhere between 0.25 (on par with
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unsmoothed BLEU, which is known to be unsuitable
for sentence-level evaluation) and 0.35 (competitive
with standard metrics).

4.2 Learning Curves

To investigate the feasibility of training regression
models from assessment data that are currently
available, we consider both a small and a large
regression model. The smaller model consists of
nine features (same as the set used by Kulesza and
Shieber); the other uses the full set of 53 features
as described in Section 3.2. The reliability of the
trained metrics are compared with those developed
from Human-Likeness classifiers. We follow a sim-
ilar training and testing methodology as previous
studies: we held out 1/6 of the assessment dataset for
SVM parameter tuning; five-fold cross validation is
performed with the remaining sentences. Although
the metrics are evaluated on unseen test sentences,
the sentences are produced by the same MT systems
that produced the training sentences. In later exper-
iments, we investigate generalizing to more distant
MT systems.

Figure 2(a) shows the learning curves for the two
regression models. As the graph indicates, even
with a limited amount of human assessment data,
regression models can be trained to be comparable
to standard metrics (represented by METEOR in the
graph). The small feature model is close to conver-
gence after 1000 training examples3. The model
with a more complex feature set does require more
training data, but its correlation began to overtake
METEOR after 2000 training examples. This study
suggests that the start-up cost of building even a
moderately complex regression model is not impos-
sibly high.

Although we cannot directly compare the learning
curves of the Human-Likeness classifiers to those of
the regression models (since the classifier’s training
examples are automatically labeled), training exam-
ples for classifiers are not entirely free: human ref-
erence translations still must be developed for the
source sentences. Figure 2(c) shows the learning
curves for training Human-Likeness classifiers (in
terms of improving a classifier’s accuracy) using the
same two feature sets, and Figure 2(b) shows the

3The total number of labeled examples required is closer to
2000, since the heldout set uses 919 labeled examples.

correlations of the metrics derived from the corre-
sponding classifiers. The pair of graphs show, es-
pecially in the case of the larger feature set, that a
large improvement in classification accuracy does
not bring proportional improvement in its corre-
sponding metrics’s correlation; with an accuracy of
near 90%, its correlation coefficient is 0.362, well
below METEOR.

This experiment further confirms that judging
Human-Likeness and judging Human-Acceptability
are not tightly coupled. Earlier, we have shown in
Figure 1 that different SVM parameterizations may
result in classifiers with the same accuracy rate but
different correlations rates. As a way to incorpo-
rate some assessment information into classification
training, we modify the parameter tuning process so
that SVM parameters are chosen to optimize for as-
sessment correlations in the heldout data. By incur-
ring this small amount of human assessed data, this
parameter search improves the classifier’s correla-
tions: the metric using the smaller feature set in-
creased from 0.423 to 0.431, and that of the larger
set increased from 0.361 to 0.422.

4.3 Generalization

We conducted two generalization studies. The first
investigates how well the trained metrics evaluate
systems from other years and systems developed
for a different source language. The second study
delves more deeply into how variations in the train-
ing examples affect a learned metric’s ability to gen-
eralize to distant systems. The learning models for
both experiments use the full feature set.

Cross-Year Generalization To test how well the
learning-based metrics generalize to systems from
different years, we trained both a regression-based
metric (R03) and a classifier-based metric (C03)
with the entire NIST 2003 Chinese dataset (using
20% of the data as heldout4). All metrics are then
applied to three new datasets: NIST 2002 Chinese
MT Evaluation (3 systems, 2634 sentences total),
NIST 2003 Arabic MT Evaluation (2 systems, 1326
sentences total), and NIST 2004 Chinese MT Evalu-
ation (10 systems, 4470 sentences total). The results

4Here, too, we allowed the classifier’s parameters to be
tuned for correlation with human assessment on the heldout data
rather than accuracy.
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(a) (b) (c)

Figure 2: Learning curves: (a) correlations with human assessment using regression models; (b) correlations
with human assessment using classifiers; (c) classifier accuracy on determining Human-Likeness.

Dataset R03 C03 BLEU MET. HWCM
2002 Ara 0.466 0.384 0.423 0.431 0.424
2002 Chn 0.309 0.250 0.269 0.290 0.260
2004 Chn 0.602 0.566 0.588 0.563 0.546

Table 1: Correlations for cross-year generalization.
Learning-based metrics are developed from NIST
2003 Chinese data. All metrics are tested on datasets
from 2003 Arabic, 2002 Chinese and 2004 Chinese.

are summarized in Table 1. We see that R03 con-
sistently has a better correlation rate than the other
metrics.

At first, it may seem as if the difference between
R03 and BLEU is not as pronounced for the 2004
dataset, calling to question whether a learned met-
ric might become quickly out-dated, we argue that
this is not the case. The 2004 dataset has many
more participating systems, and they span a wider
range of qualities. Thus, it is easier to achieve a
high rank correlation on this dataset than previous
years because most metrics can qualitatively discern
that sentences from one MT system are better than
those from another. In the next experiment, we ex-
amine the performance of R03 with respect to each
MT system in the 2004 dataset and show that its cor-
relation rate is higher for better MT systems.

Relationship between Training Examples and
Generalization Table 2 shows the result of a gen-
eralization study similar to before, except that cor-
relations are performed on each system. The rows
order the test systems by their translation quali-
ties from the best performing system (2004-Chn1,
whose average human assessment score is 0.655 out
of 1.0) to the worst (2004-Chn10, whose score is

0.255). In addition to the regression metric from
the previous experiment (R03-all), we consider two
more regression metrics trained from subsets of the
2003 dataset: R03-Bottom5 is trained from the sub-
set that excludes the best 2003 MT system, and R03-
Top5 is trained from the subset that excludes the
worst 2003 MT system.

We first observe that on a per test-system basis,
the regression-based metrics generally have better
correlation rates than BLEU, and that the gap is as
wide as what we have observed in the earlier cross-
years studies. The one exception is when evaluating
2004-Chn8. None of the metrics seems to correlate
very well with human judges on this system. Be-
cause the regression-based metric uses these individ-
ual metrics as features, its correlation also suffers.

During regression training, the metric is opti-
mized to minimize the difference between its pre-
diction and the human assessments of the training
data. If the input feature vector of a test instance
is in a very distant space from training examples,
the chance for error is higher. As seen from the
results, the learned metrics typically perform better
when the training examples include sentences from
higher-quality systems. Consider, for example, the
differences between R03-all and R03-Top5 versus
the differences between R03-all and R03-Bottom5.
Both R03-Top5 and R03-Bottom5 differ from R03-
all by one subset of training examples. Since R03-
all’s correlation rates are generally closer to R03-
Top5 than to R03-Bottom5, we see that having seen
extra training examples from a bad system is not as
harmful as having not seen training examples from a
good system. This is expected, since there are many
ways to create bad translations, so seeing a partic-
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R03-all R03-Bottom5 R03-Top5 BLEU METEOR HWCM
2004-Chn1 0.495 0.460 0.518 0.456 0.457 0.444
2004-Chn2 0.398 0.330 0.440 0.352 0.347 0.344
2004-Chn3 0.425 0.389 0.459 0.369 0.402 0.369
2004-Chn4 0.432 0.392 0.434 0.400 0.400 0.362
2004-Chn5 0.452 0.441 0.443 0.370 0.426 0.326
2004-Chn6 0.405 0.392 0.406 0.390 0.357 0.380
2004-Chn7 0.443 0.432 0.448 0.390 0.408 0.392
2004-Chn8 0.237 0.256 0.256 0.265 0.259 0.179
2004-Chn9 0.581 0.569 0.591 0.527 0.537 0.535
2004-Chn10 0.314 0.313 0.354 0.321 0.303 0.358
2004-all 0.602 0.567 0.617 0.588 0.563 0.546

Table 2: Metric correlations within each system. The columns specify which metric is used. The rows
specify which MT system is under evaluation; they are ordered by human-judged system quality, from best
to worst. For each evaluated MT system (row), the highest coefficient in bold font, and those that are
statistically comparable to the highest are shown in italics.

ular type of bad translations from one system may
not be very informative. In contrast, the neighbor-
hood of good translations is much smaller, and is
where all the systems are aiming for; thus, assess-
ments of sentences from a good system can be much
more informative.

4.4 Discussion

Experimental results confirm that learning from
training examples that have been doubly approx-
imated (class labels instead of ordinals, human-
likeness instead of human-acceptability) does nega-
tively impact the performance of the derived metrics.
In particular, we showed that they do not generalize
as well to new data as metrics trained from direct
regression.

We see two lingering potential objections toward
developing metrics with regression-learning. One
is the concern that a system under evaluation might
try to explicitly “game the metric5.” This is a con-
cern shared by all automatic evaluation metrics, and
potential problems in stand-alone metrics have been
analyzed (Callison-Burch et al., 2006). In a learning
framework, potential pitfalls for individual metrics
are ameliorated through a combination of evidences.
That said, it is still prudent to defend against the po-
tential of a system gaming a subset of the features.
For example, our fluency-predictor features are not
strong indicators of translation qualities by them-
selves. We want to avoid training a metric that as-

5Or, in a less adversarial setting, a system may be perform-
ing minimum error-rate training (Och, 2003)

signs a higher than deserving score to a sentence that
just happens to have manyn-gram matches against
the target-language reference corpus. This can be
achieved by supplementing the current set of hu-
man assessed training examples with automatically
assessed training examples, similar to the labeling
process used in the Human-Likeness classification
framework. For instance, as negative training ex-
amples, we can incorporate fluent sentences that are
not adequate translations and assign them low over-
all assessment scores.

A second, related concern is that because the met-
ric is trained on examples from current systems us-
ing currently relevant features, even though it gener-
alizes well in the near term, it may not continue to
be a good predictor in the distant future. While pe-
riodic retraining may be necessary, we see value in
the flexibility of the learning framework, which al-
lows for new features to be added. Moreover, adap-
tive learning methods may be applicable if a small
sample of outputs of some representative translation
systems is manually assessed periodically.

5 Conclusion

Human judgment of sentence-level translation qual-
ity depends on many criteria. Machine learning af-
fords a unified framework to compose these crite-
ria into a single metric. In this paper, we have
demonstrated the viability of a regression approach
to learning the composite metric. Our experimental
results show that by training from some human as-
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sessments, regression methods result in metrics that
have better correlations with human judgments even
as the distribution of the tested population changes.
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Abstract

This paper presents an approach for the au-
tomatic acquisition of qualia structures for
nouns from the Web and thus opens the pos-
sibility to explore the impact of qualia struc-
tures for natural language processing at a
larger scale. The approach builds on ear-
lier work based on the idea of matching spe-
cific lexico-syntactic patterns conveying a
certain semantic relation on the World Wide
Web using standard search engines. In our
approach, the qualia elements are actually
ranked for each qualia role with respect to
some measure. The specific contribution of
the paper lies in the extensive analysis and
quantitative comparison of different mea-
sures for ranking the qualia elements. Fur-
ther, for the first time, we present a quan-
titative evaluation of such an approach for
learning qualia structures with respect to a
handcrafted gold standard.

1 Introduction

Qualia structures have been originally introduced
by (Pustejovsky, 1991) and are used for a variety
of purposes in natural language processing (NLP),
such as for the analysis of compounds (Johnston and
Busa, 1996) as well as co-composition and coercion
(Pustejovsky, 1991), but also for bridging reference
resolution (Bos et al., 1995). Further, it has also

1The work reported in this paper has been supported by the
X-Media project, funded by the European Commission under
EC grant number IST-FP6-026978 as well by the SmartWeb
project, funded by the German Ministry of Research. Thanks
to all our colleagues for helping to evaluate the approach.

been argued that qualia structures and lexical seman-
tic relations in general have applications in informa-
tion retrieval (Voorhees, 1994; Pustejovsky et al.,
1993). One major bottleneck however is that cur-
rently qualia structures need to be created by hand,
which is probably also the reason why there are al-
most no practical NLP systems using qualia struc-
tures, but a lot of systems relying on publicly avail-
able resources such as WordNet (Fellbaum, 1998)
or FrameNet (Baker et al., 1998) as source of lex-
ical/world knowledge. The work described in this
paper addresses this issue and presents an approach
to automatically learning qualia structures for nouns
from the Web. The approach is inspired in recent
work on using the Web to identify instances of a re-
lation of interest such as in (Markert et al., 2003) and
(Etzioni et al., 2005). These approaches rely on a
combination of the usage of lexico-syntactic pattens
conveying a certain relation of interest as described
in (Hearst, 1992) with the idea of using the web as a
big corpus (cf. (Kilgariff and Grefenstette, 2003)).
Our approach directly builds on our previous work
(Cimiano and Wenderoth, 2005) an adheres to the
principled idea of learning ranked qualia structures.
In fact, a ranking of qualia elements is useful as it
helps to determine a cut-off point and as a reliabil-
ity indicator for lexicographers inspecting the qualia
structures. In contrast to our previous work, the fo-
cus of this paper lies in analyzing different measures
for ranking the qualia elements in the automatically
acquired qualia structures. We also introduce ad-
ditional patterns for the agentive role which make
use of wildcard operators. Further, we present a
gold standard for qualia structures created for the 30
words used in the evaluation of Yamada and Bald-
win (Yamada and Baldwin, 2004). The evaluation
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presented here is thus much more extensive than our
previous one (Cimiano and Wenderoth, 2005), in
which only 7 words were used. We present a quanti-
tative evaluation of our approach and a comparison
of the different ranking measures with respect to this
gold standard. Finally, we also provide an evaluation
in which test persons were asked to inspect and rate
the learned qualia structures a posteriori. The paper
is structured as follows: Section 2 introduces qualia
structures for the sake of completeness and describes
the specific structures we aim to acquire. Section
3 describes our approach in detail, while Section 4
discusses the ranking measures used. Section 5 then
presents the gold standard as well as the qualitative
evaluation of our approach. Before concluding, we
discuss related work in Section 6.

2 Qualia Structures

In the Generative Lexicon (GL) framework (Puste-
jovsky, 1991), Pustejovsky reused Aristotle’s basic
factors (i.e. the material, agentive, formal and final
causes) for the description of the meaning of lexi-
cal elements. In fact, he introduced so called qualia
structures by which the meaning of a lexical ele-
ment is described in terms of four roles: Constitutive
(describing physical properties of an object, i.e. its
weight, material as well as parts and components),
Agentive (describing factors involved in the bringing
about of an object, i.e. its creator or the causal chain
leading to its creation), Formal (describing proper-
ties which distinguish an object within a larger do-
main, i.e. orientation, magnitude, shape and dimen-
sionality), and Telic (describing the purpose or func-
tion of an object).

Most of the qualia structures used in (Pustejovsky,
1991) however seem to have a more restricted inter-
pretation. In fact, in most examples the Constitutive
role seems to describe the parts or components of an
object, while the Agentive role is typically described
by a verb denoting an action which typically brings
the object in question into existence. The Formal
role normally consists in typing information about
the object, i.e. its hypernym. In our approach, we
aim to acquire qualia structures according to this re-
stricted interpretation.

3 Automatically Acquiring Qualia
Structures

Our approach to learning qualia structures from the
Web is on the one hand based on the assumption
that instances of a certain semantic relation can be
acquired by matching certain lexico-syntactic pat-
terns more or less reliably conveying the relation
of interest in line with the seminal work of Hearst
(Hearst, 1992), who defined patterns conveying hy-
ponym/hypernym relations. However, it is well
known that Hearst-style patterns occur rarely, such
that matching these patterns on the Web in order
to alleviate the problem of data sparseness seems a
promising solution. In fact, in our case we are not
only looking for the hypernym relation (comparable
to the Formal-role) but for similar patterns convey-
ing a Constitutive, Telic or Agentive relation. Our
approach consists of 5 phases; for each qualia term
(the word we want to find the qualia structure for)
we:

1. generate for each qualia role a set of so called
clues, i.e. search engine queries indicating the
relation of interest,

2. download the snippets (abstracts) of the 50 first
web search engine results matching the generated
clues,

3. part-of-speech-tag the downloaded snippets,
4. match patterns in the form of regular expressions

conveying the qualia role of interest, and
5. weight and rank the returned qualia elements ac-

cording to some measure.

The patterns in our pattern library are actually
tuples (p, c) where p is a regular expression de-
fined over part-of-speech tags and c a function c :
string → string called the clue. Given a nomi-
nal n and a clue c, the query c(n) is sent to the web
search engine and the abstracts of the first m docu-
ments matching this query are downloaded. Then
the snippets are processed to find matches of the
pattern p. For example, given the clue f(x) =
“such as p(x)′′ and the qualia term computer we
would download m abstracts matching the query
f(computer), i.e. ”such as computers”. Hereby p(x)
is a function returning the plural form of x. We im-
plemented this function as a lookup in a lexicon in
which plural nouns are mapped to their base form.
With the use of such clues, we thus download a num-
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ber of snippets returned by the web search engine in
which a corresponding regular expression will prob-
ably be matched, thus restricting the linguistic anal-
ysis to a few promising pages. The downloaded ab-
stracts are then part-of-speech tagged using QTag
(Tufis and Mason, 1998). Then we match the corre-
sponding pattern p in the downloaded snippets thus
yielding candidate qualia elements as output. The
qualia elements are then ranked according to some
measure (compare Section 4), resulting in what we
call Ranked Qualia Structures (RQSs). The clues
and patterns used for the different roles can be found
in Tables 1 - 4. In the specification of the clues, the
function a(x) returns the appropriate indefinite arti-
cle – ‘a’ or ‘an’ – or no article at all for the noun x.
The use of an indefinite article or no article at all ac-
counts for the distinction between countable nouns
(e.g. such as knife) and mass nouns (e.g. water).
The choice between using the articles ’a’, ’an’ or
no article at all is determined by issuing appropriate
queries to the web search engine and choosing the
article leading to the highest number of results. The
corresponding patterns are then matched in the 50
snippets returned by the search engine for each clue,
thus leading to up to 50 potential qualia elements per
clue and pattern2. The patterns are actually defined
over part-of-speech tags. We indicate POS-tags in
square brackets. However, for the sake of simplic-
ity, we largely omit the POS-tags for the lexical ele-
ments in the patterns described in Tables 1 - 4. Note
that we use traditional regular expression operators
such as ∗ (sequence), + (sequence with at least one
element) | (alternative) and ? (option). In general,
we define a noun phrase (NP) by the following reg-
ular expression: NP:=[DT]? ([JJ])+? [NN(S?)])+3,
where the head is the underlined expression, which
is lemmatized and considered as a candidate qualia
element. For all the patterns described in this sec-
tion, the underlined part corresponds to the extracted
qualia element. In the patterns for the formal role
(compare Table 1), NPQT is a noun phrase with the
qualia term as head, whereas NPF is a noun phrase
with the potential qualia element as head. For the
constitutive role patterns, we use a noun phrase vari-

2For the constitutive role these can be even more due to the
fact that we consider enumerations.

3Though Qtag uses another part-of-speech tagset, we rely on
the well-known Penn Treebank tagset for presentation purposes.

Clue Pattern
Singular

“a(x) x is a kind of ” NPQT is a kind of NPF

“a(x) x is” NPQT is a kind of NPF

“a(x) x and other” NPQT (,)? and other NPF

“a(x) x or other” NPQT (,)? or other NPF

Plural
“such as p(x)” NPF such as NPQT

“p(x) and other” NPQT (,)? and other NPF

“p(x) or other” NPQT (,)? or other NPF

“especially p(x)” NPF (,)? especially NPQT

“including p(x)” NPF (,)? including NPQT

Table 1: Clues and Patterns for the Formal role

ant NP’ defined by the regular expression NP’:=
(NP of[IN])? NP (, NP)* ((,)? (and|or) NP)?, which
allows to extract enumerations of constituents (com-
pare Table 2). It is important to mention that in the
case of expressions such as ”a car comprises a fixed
number of basic components”, ”data mining com-
prises a range of data analysis techniques”, ”books
consist of a series of dots”, or ”a conversation is
made up of a series of observable interpersonal ex-
changes”, only the NP after the preposition ’of’ is
taken into account as qualia element. The Telic Role
is in principle acquired in the same way as the For-
mal and Constitutive roles with the exception that
the qualia element is not only the head of a noun
phrase, but also a verb or a verb followed by a noun
phrase. Table 3 gives the corresponding clues and
patterns. In particular, the returned candidate qualia
elements are the lemmatized underlined expressions
in PURP:=[VB] NP | NP | be[VBD]. Finally, con-
cerning the clues and patterns for the agentive role
shown in Table 4, it is interesting to emphasize the
usage of the adjectives ’new’ and ’complete’. These
adjectives are used in the patterns to increase the ex-
pectation for the occurrence of a creation verb. Ac-
cording to our experiments, these patterns are in-
deed more reliable in finding appropriate qualia ele-
ments than the alternative version without the adjec-
tives ‘new’ and ‘complete’. Note that in all patterns,
the participle (VBD) is always reduced to base form
(VB) via a lexicon lookup. In general, the patterns
have been crafted by hand, testing and refining them
in an iterative process, paying attention to maximize
their coverage but also accuracy. In the future, we
plan to exploit an approach to automatically learn
the patterns.
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Clue Pattern
Singular

“a(x) x is made up of ” NPQT is made up of NP’C
“a(x) x is made of” NPQT is made of NP’C
“a(x) x comprises” NPQT comprises (of)? NP’C
“a(x) x consists of” NPQT consists of NP’C

Plural
“p(x) are made up of ” NPQT is made up of NP’C
“p(x) are made of” NPQT are made of NP’C
“p(x) comprise” NPQT comprise (of)? NP’C
“p(x) consist of” NPQT consist of NP’C

Table 2: Clues and Patterns for the Constitutive Role

Clue Pattern
Singular

“purpose of a(x) x is” purpose of (a|an) x is (to)? PURP
“a(x) is used to” (a|an) x is used to PURP

Plural
“purpose of p(x) is” purpose of p(x) is (to)? PURP
“p(x) are used to” p(x) are used to PURP

Table 3: Clues and Patterns for the Telic Role

4 Ranking Measures

In order to rank the different qualia elements of a
given qualia structure, we rely on a certain ranking
measure. In our experiments, we analyze four differ-
ent ranking measures. On the one hand, we explore
measures which use the Web to calculate the corre-
lation strength between a qualia term and its qualia
elements. These measures are Web-based versions
of the Jaccard coefficient (Web-Jac), the Pointwise
Mutual Information (Web-PMI) and the conditional
probability (Web-P). We also present a version of
the conditional probability which does not use the
Web but merely relies on the counts of each qualia
element as produced by the lexico-syntactic patterns
(P-measure). We describe these measures in the fol-
lowing.

4.1 Web-based Jaccard Measure (Web-Jac)
Our web-based Jaccard (Web-Jac) measure relies on
the web search engine to calculate the number of
documents in which x and y co-occur close to each
other, divided by the number of documents each one
occurs, i.e.

Web-Jac(x, y) :=
Hits(x ∗ y)

Hits(x) + Hits(y) − Hits(x AND y)

So here we are relying on the wildcard operator ’*’
provided by the Google search engine API4. Though

4In fact, for the experiments described in this paper we rely
on the Google API.

Clue Pattern
Singular

“to * a(x) new x” to [RB]? [VB] a? new x
“to * a(x) complete x” to [RB]? [VB] a? complete x
“a(x) new has been *” a? new x has been [VBD]
“a(x) complete x has been *” a? complete has been [VBD]

Plural
“to * new p(x)” to [RB]? [VB] new p(x)
“to * complete p(x)” to [RB]? [VB] complete p(x)

Table 4: Clues and Patterns for the Agentive Role

the specific function of the ’*’ operator as imple-
mented by Google is actually unknown, the behavior
is similar to the formerly available Altavista NEAR
operator5.

4.2 Web-based Pointwise Mutual Information
(Web-PMI)

In line with Magnini et al. (Magnini et al., 2001),
we define a PMI-based measure as follows:

Web − PMI(x, y) := log2
Hits(x AND y) MaxPages

Hits(y) Hits(y)

where maxPages is an approximation for the maxi-
mum number of English web pages6.

4.3 Web-based Conditional Probability
(Web-P)

The conditional probability P (x|y) is essentially
the probability that x is true given that y is true, i.e.

Web-P(x, y) := P (x|y) = P (x,y)
P (y)

= Hits(x NEAR y)
Hits(y)

whereby Hits(x NEAR y) is calculated as
mentioned above using the ‘*’ operator. In contrast
to the measures described above, this one is asym-
metric so that order indeed matters. Given a qualia
term qt as well as a qualia element qe we actually
calculate Web-P(qe,qt) for a specific qualia role.

4.4 Conditional Probability (P)
The non web-based conditional probability essen-
tially differs from the Web-based conditional prob-
ability in that we only rely on the qualia elements

5Initial experiments indeed showed that counting pages in
which the two terms occur near each other in contrast to count-
ing pages in which they merely co-occur improved the results
of the Jaccard measure by about 15%.

6We determine this number experimentally as the number of
web pages containing the words ’the’ and ’and’.
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matched. On the basis of these, we then calculate
the probability of a certain qualia element given a
certain role on the basis of its frequency of appear-
ance with respect to the total number of qualia ele-
ments derived for this role, i.e. we simply calculate
P (qe|qr, qt) on the basis of the derived occurrences,
where qt is a given qualia term, qr is the specific
qualia role and qe is a qualia element.

5 Evaluation

In this section, we first of all describe our evaluation
measures. Then we describe the creation of the gold
standard. Further, we present the results of the com-
parison of the different ranking measures with re-
spect to the gold standard. Finally, we present an ‘a
posteriori’ evaluation showing that the qualia struc-
tures learned are indeed reasonable.

5.1 Evaluation Measures

As our focus is to compare the different measures
described above, we need to evaluate their corre-
sponding rankings of the qualia elements for each
qualia structure. This is a similar case to evaluat-
ing the ranking of documents within information re-
trieval systems. In fact, as done in standard infor-
mation retrieval research, our aim is to determine
for each ranking the precision/recall trade-off when
considering more or less of the items starting from
the top of the ranked list. Thus, we evaluate our ap-
proach calculating precision at standard recall levels
as typically done in information retrieval research
(compare (Baeza-Yates and Ribeiro-Neto, 1999)).
Hereby the 11 standard recall levels are 0%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and
100%. Further, precision at these standard recall
levels is calculated by interpolating recall as fol-
lows: P (rj) = maxrj≤r≤rj+1P (r), where, j ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. This
way we can compare the precision over standard re-
call figures for the different rankings, thus observing
which measure leads to the better precision/recall
trade-off.

In addition, in order to provide one single value
to compare, we also calculate the F-Measure cor-
responding to the best precision/recall trade-off for
each ranking measure. This F-Measure thus corre-
sponds to the best cut-off point we can find for the

items in the ranked list. In fact, we use the well-
known F1 measure corresponding to the harmonic
mean between recall and precision:

F1 := maxj
2 P (rj) rj

P (rj) + rj

As a baseline, we compare our results to a naive
strategy without any ranking, i.e. we calculate the
F-Measure for all the items in the (unranked) list of
qualia elements. Consequently, for the rankings to
be useful, they need to yield higher F-Measures than
this naive baseline.

5.2 Gold Standard
The gold standard was created for the 30 words used
already in the experiments described in (Yamada and
Baldwin, 2004): accounting, beef, book, car, cash,
clinic, complexity, counter, county, delegation, door,
estimate, executive, food, gaze, imagination, inves-
tigation, juice, knife, letter, maturity, novel, phone,
prisoner, profession, review, register, speech, sun-
shine, table. These words were distributed more or
less uniformly between 30 participants of our exper-
iment, making sure that three qualia structures for
each word were created by three different subjects.
The participants, who were all non-linguistics, re-
ceived a short instruction in the form of a short pre-
sentation explaining what qualia structures are, the
aims of the experiment as well as their specific task.
They were also shown some examples for qualia
structures for words not considered in our experi-
ments. Further, they were asked to provide between
5 and 10 qualia elements for each qualia role. The
participants completed the test via e-mail. As a first
interesting observation, it is worth mentioning that
the participants only delivered 3-5 qualia elements
on average depending on the role in question. This
shows already that participants had trouble in find-
ing different qualia elements for a given qualia role.
We calculate the agreement for the task of specify-
ing qualia structures for a particular term and role as
the averaged pairwise agreement between the qualia
elements delivered by the three subjects, henceforth
S1, S2 and S3 as:

Agr :=

|S1∩S2|
|S1∪S2|

+ |S1∩S3|
|S1∪S3|

+ |S2∪S3|
|S2∩S3|

3

Averaging over all the roles and words, we get an
average agreement of 11.8%, i.e. our human test
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subjects coincide in slightly more than every 10th
qualia element. This is certainly a very low agree-
ment and certainly hints at the fact that the task con-
sidered is certainly difficult. The agreement was
lowest (7.29%) for the telic role.

A further interesting observation is that the lowest
agreement is yielded for more abstract words, while
the agreement for very concrete words is reasonable.
For example, the five words with the highest agree-
ment are indeed concrete things: knife (31%), cash
(29%), juice (21%), car (20%) and door (19%). The
words with an agreement below 5% are gaze, pris-
oner, accounting, maturity, complexity and delega-
tion. In particular, our test subjects had substantial
difficulties in finding the purpose of such abstract
words. In fact, the agreement on the telic role is be-
low 5% for more than half of the words.

In general, this shows that any automatic ap-
proach towards learning qualia structures faces se-
vere limits. For sure, we can not expect the results
of an automatic evaluation to be very high. For ex-
ample, for the telic role of ‘clinic’, one test subject
specified the qualia element ‘cure’, while another
one specified ‘cure disease’, thus leading to a dis-
agreement in spite of the obvious agreement at the
semantic level. In this line, the average agreement
reported above has in fact to be regarded as a lower
bound for the actual agreement. Of course, our ap-
proach to calculating agreement is too strict, but in
absence of a clear and computable definition of se-
mantic agreement, it will suffice for the purposes of
this paper.

5.3 Gold Standard Evaluation
We ran experiments calculating the qualia structure
for each of the 30 words, ranking the resulting qualia
elements for each qualia structure using the different
measures described in Section 4.

Figure 1 shows the best F-Measure correspond-
ing to a cut-off leading to an optimal precision/recall
trade-off. We see that the P -measure performs best,
while the Web-P measure and the Web-Jac measure
follow at about 0.05 and 0.2 points distance. The
PMI-based measure indeed leads to the worst F-
Measure values.

Indeed, the P -measure delivered the best results
for the formal and agentive roles, while for the con-
stitutive and telic roles the Web-Jac measure per-

Figure 1: Average F1 measure for the different rank-
ing measures

formed best. The reason why PMI performs so badly
is the fact that it favors too specific results which
are unlikely to occur as such in the gold standard.
For example, while the conditional probability ranks
highest: explore, help illustrate, illustrate and en-
rich for the telic role of novel, the PMI-based mea-
sure ranks highest: explore great themes, illustrate
theological points, convey truth, teach reading skills
and illustrate concepts. A series of significance tests
(paired Student’s t-test at an α-level of 0.05) showed
that the three best performing measures (P , Web-
P and Web-Jaccard) show no real difference among
them, while all three show significant difference to
the Web-PMI measure. A second series of signif-
icance tests (again paired Student’s t-test at an α-
level of 0.05) showed that all ranking measures in-
deed significantly outperform the baseline, which
shows that our rankings are indeed reasonable. In-
terestingly, there seems to be an interesting positive
correlation between the F-Measure and the human
agreement. For example, for the best performing
ranking measure, i.e. the P -measure, we get an av-
erage F-Measure of 21% for words with an agree-
ment over 5%, while we get an F-Measure of 9%
for words with an agreement below 5%. The rea-
son here probably is that those words and qualia ele-
ments for which people are more confident also have
a higher frequency of appearance on the Web.

5.4 A posteriori Evaluation

In order to check whether the automatically learned
qualia structures are reasonable from an intuitive
point of view, we also performed an a posteriori
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evaluation in the lines of (Cimiano and Wenderoth,
2005). In this experiment, we presented the top 10
ranked qualia elements for each qualia role for 10
randomly selected words to the different test per-
sons. Here we only used the P -measure for rank-
ing as it performed best in our previous evaluation
with regard to the gold standard. In order to ver-
ify that our sample is not biased, we checked that
the F-Measure yielded by our 10 randomly selected
words (17.7%) does not differ substantially from the
overall average F-Measure (17.1%) to be sure that
we have chosen words from all F-Measure ranges.
In particular, we asked different test subjects which
also participated in the creation of the gold standard
to rate the qualia elements with respect to their ap-
propriateness for the qualia term using a scale from
0 to 3, whereby 0 means ’wrong’, 1 ’not totally
wrong’, 2 ’acceptable’ and 3 ’totally correct’. The
participants confirmed that it was easier to validate
existing qualia structures than to create them from
scratch, which already corroborates the usefulness
of our automatic approach. The qualia structure for
each of the 10 randomly selected words was vali-
dated independently by three test persons. In fact,
in what follows we always report results averaged
for three test subjects. Figure 2 shows the average
values for different roles. We observe that the con-
stitutive role yields the best results, followed by the
formal, telic and agentive roles (in this order). In
general, all results are above 2, which shows that
the qualia structures produced are indeed acceptable.
Though we do not present these results in more de-
tail due to space limitations, it is also interesting to
mention that the F-Measure calculated with respect
to the gold standard was in general highly correlated
with the values assigned by the human test subjects
in this a posteriori validation.

6 Related Work

Instead of matching Hearst-style patterns (Hearst,
1992) in a large text collection, some researchers
have recently turned to the Web to match these pat-
terns such as in (Markert et al., 2003) or (Etzioni et
al., 2005). Our approach goes further in that it not
only learns typing, superconcept or instance-of rela-
tions, but also Constitutive, Telic and Agentive rela-
tions.

Figure 2: Average ratings for each qualia role

There also exist approaches specifically aiming at
learning qualia elements from corpora based on ma-
chine learning techniques. Claveau et al. (Claveau
et al., 2003) for example use Inductive Logic Pro-
gramming to learn if a given verb is a qualia ele-
ment or not. However, their approach does no go
as far as learning the complete qualia structure for a
lexical element as in our approach. Further, in their
approach they do not distinguish between different
qualia roles and restrict themselves to verbs as po-
tential fillers of qualia roles.
Yamada and Baldwin (Yamada and Baldwin, 2004)
present an approach to learning Telic and Agentive
relations from corpora analyzing two different ap-
proaches: one relying on matching certain lexico-
syntactic patterns as in the work presented here, but
also a second approach consisting in training a max-
imum entropy model classifier. The patterns used
by (Yamada and Baldwin, 2004) differ substantially
from the ones used in this paper, which is mainly
due to the fact that search engines do not provide
support for regular expressions and thus instantiat-
ing a pattern as ’V[+ing] Noun’ is impossible in our
approach as the verbs are unknown a priori.
Poesio and Almuhareb (Poesio and Almuhareb,
2005) present a machine learning based approach to
classifying attributes into the six categories: qual-
ity, part, related-object, activity, related-agent and
non-attribute.

7 Conclusion

We have presented an approach to automatically
learning qualia structures from the Web. Such an
approach is especially interesting either for lexicog-
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raphers aiming at constructing lexicons, but even
more for natural language processing systems re-
lying on deep lexical knowledge as represented by
qualia structures. In particular, we have focused
on learning ranked qualia structures which allow
to find an ideal cut-off point to increase the preci-
sion/recall trade-off of the learned structures. We
have abstracted from the issue of finding the appro-
priate cut-off, leaving this for future work. In partic-
ular, we have evaluated different ranking measures
for this purpose, showing that all of the analyzed
measures (Web-P, Web-Jaccard, Web-PMI and the
conditional probability) significantly outperformed
a baseline using no ranking measure. Overall, the
plain conditional probability P (not calculated over
the Web) as well as the conditional probability cal-
culated over the Web (Web-P) delivered the best re-
sults, while the PMI-based ranking measure yielded
the worst results. In general, our main aim has been
to show that, though the task of automatically learn-
ing qualia structures is indeed very difficult as shown
by our low human agreement, reasonable structures
can indeed be learned with a pattern-based approach
as presented in this paper. Further work will aim
at inducing the patterns automatically given some
seed examples, but also at using the automatically
learned structures within NLP applications. The cre-
ated qualia structure gold standard is available for
the community7.
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Abstract

Situation entities (SEs) are the events, states,
generic statements, and embedded facts and
propositions introduced to a discourse by
clauses of text. We report on the first data-
driven models for labeling clauses according
to the type of SE they introduce. SE classifi-
cation is important for discourse mode iden-
tification and for tracking the temporal pro-
gression of a discourse. We show that (a)
linguistically-motivated cooccurrence fea-
tures and grammatical relation information
from deep syntactic analysis improve clas-
sification accuracy and (b) using a sequenc-
ing model provides improvements over as-
signing labels based on the utterance alone.
We report on genre effects which support the
analysis of discourse modes having charac-
teristic distributions and sequences of SEs.

1 Introduction

Understanding discourse requires identifying the
participants in the discourse, the situations they par-
ticipate in, and the various relationships between and
among both participants and situations. Coreference
resolution, for example, is concerned with under-
standing the relationships between references to dis-
course participants. This paper addresses the prob-
lem of identifying and classifying references to situ-
ations expressed in written English texts.

Situation entities (SEs) are the events, states,
generic statements, and embedded facts and propo-
sitions which clauses introduce (Vendler, 1967;

Verkuyl, 1972; Dowty, 1979; Smith, 1991; Asher,
1993; Carlson and Pelletier, 1995). Consider the
text passage below, which introduces an event-type
entity in (1), a report-type entity in (2), and a state-
type entity in (3).

(1) Sony Corp. has heavily promoted the Video Walkman
since the product’s introduction last summer ,

(2) but Bob Gerson , video editor of This Week in Con-
sumer Electronics , says

(3) Sony conceives of 8mm as a “family of products ,

camcorders and VCR decks , ”

SE classification is a fundamental component in de-
termining the discourse mode of texts (Smith, 2003)
and, along with aspectual classification, for tempo-
ral interpretation (Moens and Steedman, 1988). It
may be useful for discourse relation projection and
discourse parsing.

Though situation entities are well-studied in lin-
guistics, they have received very little computational
treatment. This paper presents the first data-driven
models for SE classification. Our two main strate-
gies are (a) the use of linguistically-motivated fea-
tures and (b) the implementation of SE classification
as a sequencing task. Our results also provide empir-
ical support for the very notion of discourse modes,
as we see clear genre effects in SE classification.

We begin by discussing SEs in more detail. Sec-
tion 3 describes our two annotated data sets and pro-
vides examples of each SE type. Section 4 discusses
feature sets, and sections 5 and 6 present models,
experiments, and results.
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2 Discourse modes and situation entities

In this section, we discuss some of the linguistic mo-
tivation for SE classification and the relation of SE
classification to discourse mode identification.

2.1 Situation entities
The categorization of SEs into aspectual classes is
motivated by patterns in their linguistic behavior.
We adopt an expanded version of a paradigm relat-
ing SEs to discourse mode (Smith, 2003) and char-
acterize SEs with four broad categories:

1. Eventualities. Events (E), particular states (S),
and reports (R). R is a sub-type of E for SEs
introduced by verbs of speech (e.g., say).

2. General statives. Generics (G) and generaliz-
ing sentences (GS). The former are utterances
predicated of a general class or kind rather than
of any specific individual. The latter are habit-
ual utterances that refer to ongoing actions or
properties predicated of specific individuals.

3. Abstract entities. Facts (F) and proposi-
tions (P).1

4. Speech-act types. Questions (Q) and impera-
tives (IMP).

Examples of each SE type are given in section 3.2.
There are a number of linguistic tests for iden-

tifying situation entities (Smith, 2003). The term
linguistic test refers to a rule which correlates an
SE type to particular linguistic forms. For exam-
ple, event-type verbs in simple present tense are a
linguistic correlate of GS-type SEs.

These linguistic tests vary in their precision and
different tests may predict different SE types for
the same clause. A rule-based implementation us-
ing them to classify SEs would require careful rule
ordering or mediation of rule conflicts. However,
since these rules are exactly the sort of information
extracted as features in data-driven classifiers, they

1In our system these two SE types are identified largely as
complements of factive and propositional verbs as discussed
in Peterson (1997). Fact and propositional complements have
some linguistic as well as some notional differences. Facts may
have causal effects, and facts are in the world. Neither of these
is true for propositions. In addition, the two have somewhat
different semantic consequences of a presuppositional nature.

can be cleanly integrated by assigning them empiri-
cally determined weights. We use maximum entropy
models (Berger et al., 1996), which are particularly
well-suited for tasks (like ours) with many overlap-
ping features, to harness these linguistic insights by
using features in our models which encode, directly
or indirectly, the linguistic correlates to SE types.
The features are described in detail in section 4.

2.2 Basic and derived situation types

Situation entities each have a basic situation type,
determined by the verb plus its arguments, the verb
constellation. The verb itself plays a key role in de-
termining basic situation type but it is not the only
factor. Changes in the arguments or tense of the verb
sometimes change the basic situation types:

(4) Mickey painted the house. (E)

(5) Mickey paints houses. (GS)

If SE type could be determined solely by the verb
constellation, automatic classification of SEs would
be a relatively straightforward task. However, other
parts of the clause often override the basic situation
type, resulting in aspectual coercion and a derived
situation type. For example, a modal adverb can
trigger aspectual coercion:

(6) Mickey probably paints houses. (P)

Serious challenges for SE classification arise from
the aspectual ambiguity and flexibility of many
predicates as well as from aspectual coercion.

2.3 Discourse modes

Much of the motivation of SE classification is
toward the broader goal of identifying discourse
modes, which provide a linguistic characterization
of textual passages according to the situation enti-
ties introduced. They correspond to intuitions as to
the rhetorical or semantic character of a text. Pas-
sages of written text can be classified into modes
of discourse – Narrative, Description, Argument, In-
formation, and Report – by examining concrete lin-
guistic cues in the text (Smith, 2003). These cues
are of two forms: the distribution of situation entity
types and the mode of progression (either temporal
or metaphorical) through the text.
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For example, the Narration and Report modes
both contain mainly events and temporally bounded
states; they differ in their principles of temporal pro-
gression. Report passages progress with respect to
(deictic) speech time, whereas Narrative passages
progress with respect to (anaphoric) reference time.
Passages in the Description mode are predominantly
stative, and Argument mode passages tend to be
characterized by propositions and Information mode
passages by facts and states.

3 Data

This section describes the data sets used in the ex-
periments, the process for creating annotated train-
ing data, and preprocessing steps. Also, we give ex-
amples of the ten SE types.

There are no established data sets for SE classifi-
cation, so we created annotated training data to test
our models. We have annotated two data sets, one
from the Brown corpus and one based on data from
the Message Understanding Conference 6 (MUC6).

3.1 Segmentation
The Brown texts were segmented according to SE-
containing clausal boundaries, and each clause was
labeled with an SE label. Segmentation is itself a
difficult task, and we made some simplifications.
In general, clausal complements of verbs like say
which have clausal direct objects were treated as
separate clauses and given an SE label. Clausal com-
plements of verbs which have an entity as a direct
object and second clausal complement (such as no-
tify) were not treated as separate clauses. In addi-
tion, some modifying and adjunct clauses were not
assigned separate SE labels.

The MUC texts came to us segmented into ele-
mentary discourse units (EDUs), and each EDU was
labeled by the annotators. The two data sets were
segmented according to slightly different conven-
tions, and we did not normalize the segmentation.
The inconsistencies in segmentation introduce some
error to the otherwise gold-standard segmentations.

3.2 Annotation
Each text was independently annotated by two ex-
perts and reviewed by a third. Each clause was as-
signed precisely one SE label from the set of ten
possible labels. For clauses which introduce more

SE Text
S That compares with roughly paperback-book

dimensions for VHS.
G Accordingly, most VHS camcorders are usually

bulky and weigh around eight pounds or more.
S “Carl is a tenacious fellow,”
R said a source close to USAir.
GS “He doesn’t give up easily
GS and one should never underestimate what he can

or will do.”
S For Jenks knew
F that Bari’s defenses were made of paper.
E Mr. Icahn then proposed
P that USAir buy TWA,
IMP “Fermate”!
R Musmanno bellowed to his Italian crewmen.
Q What’s her name?
S Quite seriously, the names mentioned as possibilities

were three male apparatchiks from the Beltway’s
Democratic political machine

N By Andrew B. Cohen Staff Reporter of The WSJ

Table 1: Example clauses and their SE annota-
tion. Horizontal lines separate extracts from differ-
ent texts.

than one SE, the annotators selected the most salient
one. This situation arose primarily when comple-
ment clauses were not treated as distinct clauses, in
which case the SE selected was the one introduced
by the main verb. The label N was used for clauses
which do not introduce any situation entity.

The Brown data set consists of 20 “popular lore”
texts from section cf of the Brown corpus. Seg-
mentation of these texts resulted in a total of 4390
clauses. Of these, 3604 were used for training and
development, and 786 were held out as final test-
ing data. The MUC data set consists of 50 Wall
Street Journal newspaper articles segmented to a to-
tal of 1675 clauses. 137 MUC clauses were held
out for testing. The Brown texts are longer than
the MUC texts, with an average of 219.5 clauses
per document as compared to MUC’s average of
33.5 clauses. The average clause in the Brown data
contains 12.6 words, slightly longer than the MUC
texts’ average of 10.9 words.

Table 1 provides examples of the ten SE types as
well as showing how clauses were segmented. Each
SE-containing example is a sequence of EDUs from
the data sets used in this study.
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W
WORDS words & punctuation
WT
W (see above)
POSONLY POS tag for each word
WORD/POS word/POS pair for each word
WTL
WT (see above)
FORCEPRED T if clause (or preceding clause)

contains force predicate
PROPPRED T if clause (or preceding clause)

contains propositional verb
FACTPRED T if clause (or preceding clause)

contains factive verb
GENPRED T if clause contains generic predicate
HASFIN T if clause contains finite verb
HASMODAL T if clause contains modal verb
FREQADV T if clause contains frequency adverb
MODALADV T if clause contains modal adverb
VOLADV T if clause contains volitional adverb
FIRSTVB lexical item and POS tag for first verb
WTLG
WTL (see above)
VERBS all verbs in clause
VERBTAGS POS tags for all verbs
MAINVB main verb of clause
SUBJ subject of clause (lexical item)
SUPER CCG supertag

Table 2: Feature sets for SE classification

3.3 Preprocessing

The linguistic tests for SE classification appeal to
multiple levels of linguistic information; there are
lexical, morphological, syntactic, categorial, and
structural tests. In order to access categorial and
structural information, we used the C&C2 toolkit
(Clark and Curran, 2004). It provides part-of-speech
tags and Combinatory Categorial Grammar (CCG)
(Steedman, 2000) categories for words and syntac-
tic dependencies across words.

4 Features

One of our goals in undertaking this study was to
explore the use of linguistically-motivated features
and deep syntactic features in probabilistic models
for SE classification. The nature of the task requires
features characterizing the entire clause. Here, we
describe our four feature sets, summarized in table 2.
The feature sets are additive, extending very basic
feature sets first with linguistically-motivated fea-
tures and then with deep syntactic features.

2svn.ask.it.usyd.edu.ap/trac/candc/wiki

4.1 Basic feature sets: W and WT

The WORDS (W) feature set looks only at the words
and punctuation in the clause. These features are
obtained with no linguistic processing.

WORDS/TAGS (WT) incorporates part-of-speech
(POS) tags for each word, number, and punctuation
mark in the clause and the word/tag pairs for each
element of the clause. POS tags provide valuable in-
formation about syntactic category as well as certain
kinds of shallow semantic information (such as verb
tense). The tags are useful for identifying verbs,
nouns, and adverbs, and the words themselves repre-
sent lexico-semantic information in the feature sets.

4.2 Linguistically-motivated feature set: WTL

The WORDS/TAGS/LINGUISTIC CORRELATES

(WTL) feature set introduces linguistically-
motivated features gleaned from the literature
on SEs; each feature encodes a linguistic cue that
may correlate to one or more SE types. These
features are not directly annotated; instead they are
extracted by comparing words and their tags for
the current and immediately preceding clauses to
lists containing appropriate triggers. The lists are
compiled from the literature on SEs.

For example, clauses embedded under predicates
like force generally introduce E-type SEs:

(7) I forced [John to run the race with me].

(8) * I forced [John to know French].

The feature force-PREV is extracted if a member
of the force-type predicate word list occurs in the
previous clause.

Some of the correlations discussed in the litera-
ture rely on a level of syntactic analysis not available
in the WTL feature set. For example, stativity of the
main verb is one feature used to distinguish between
event and state SEs, and particular verbs and verb
tenses have tendencies with respect to stativity. To
approximate the main verb without syntactic analy-
sis, WTL uses the lexical item of the first verb in the
clause and the POS tags of all verbs in the clause.

These linguistic tests are non-absolute, making
them inappropriate for a rule-based model. Our
models handle the defeasibility of these correlations
probabilistically, as is standard for machine learning
for natural language processing.
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4.3 Addition of deep features: WTLG

The WORDS/TAGS/LINGUISTIC CORRE-
LATES/GRAMMATICAL RELATIONS (WTLG)
feature set uses a deeper level of syntactic analysis
via features extracted from CCG parse representa-
tions for each clause. This feature set requires an
additional step of linguistic processing but provides
a basis for more accurate classification.

WTL approximated the main verb by sloppily tak-
ing the first verb in the clause; in contrast, WTLG

uses the main verb identified by the parser. The
parser also reliably identifies the subject, which is
used as a feature.

Supertags –CCG categories assigned to words–
provide an interesting class of features in WTLG.
They succinctly encode richer grammatical informa-
tion than simple POS tags, especially subcategoriza-
tion and argument types. For example, the tag S\NP
denotes an intransitive verb, whereas (S\NP)/NP
denotes a transitive verb. As such, they can be seen
as a way of encoding the verbal constellation and its
effect on aspectual classification.

5 Models

We consider two types of models for the automatic
classification of situation entities. The first, a la-
beling model, utilizes a maximum entropy model
to predict SE labels based on clause-level linguistic
features as discussed above. This model ignores the
discourse patterns that link multiple utterances. Be-
cause these patterns recur, a sequencing model may
be better suited to the SE classification task. Our
second model thus extends the first by incorporating
the previous n (0 ≤ n ≤ 6) labels as features.

Sequencing is standardly used for tasks like part-
of-speech tagging, which generally assume smaller
units to be both tagged and considered as context
for tagging. We are tagging at the clause level rather
than at the word level, but the structure of the prob-
lem is essentially the same. We thus adapted the
OpenNLP maximum entropy part-of-speech tagger3

(Hockenmaier et al., 2004) to extract features from
utterances and to tag sequences of utterances instead
of words. This allows the use of features of adjacent
clauses as well as previously-predicted labels when
making classification decisions.

3http://opennlp.sourceforge.net.

6 Experiments

In this section we give results for testing on Brown
data. All results are reported in terms of accu-
racy, defined as the percentage of correctly-labeled
clauses. Standard 10-fold cross-validation on the
training data was used to develop models and fea-
ture sets. The optimized models were then tested on
the held-out Brown and MUC data.

The baseline was determined by assigning S
(state), the most frequent label in both training sets,
to each clause. Baseline accuracy was 38.5% and
36.2% for Brown and MUC, respectively.

In general, accuracy figures for MUC are much
higher than for Brown. This is likely due to the fact
that the MUC texts are more consistent: they are all
newswire texts of a fairly consistent tone and genre.
The Brown texts, in contrast, are from the ‘popular
lore’ section of the corpus and span a wide range
of topics and text types. Nonetheless, the patterns
between the feature sets and use of sequence predic-
tion hold across both data sets; here, we focus our
discussion on the results for the Brown data.

6.1 Labeling results

The results for the labeling model appear in the two
columns labeled ‘n=0’ in table 3. On Brown, the
simple W feature set beats the baseline by 6.9% with
an accuracy of 45.4%. Adding POS information
(WT) boosts accuracy 4.5% to 49.9%. We did not
see the expected increase in performance from the
linguistically motivated WTL features, but rather a
slight decrease in accuracy to 48.9%. These features
may require a greater amount of training material to
be effective. Addition of deep linguistic information
with WTLG improved performance to 50.6%, a gain
of 5.2% over words alone.

6.2 Oracle results

To determine the potential effectiveness of sequence
prediction, we performed oracle experiments on
Brown by including previous gold-standard labels as
features. Figure 1 illustrates the results from ora-
cle experiments incorporating from zero to six pre-
vious gold-standard SE labels (the lookback). The
increase in performance illustrates the importance of
context in the identification of SEs and motivates the
use of sequence prediction.
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Figure 1: Oracle results on Brown data.

6.3 Sequencing results

Table 3 gives the results of classification with the se-
quencing model on the Brown data. As with the la-
beling model, accuracy is boosted by WT and WTLG

feature sets. We see an unexpected degradation in
performance in the transition from WT to WTL.

The most interesting results here, though, are the
gains in accuracy from use of previously-predicted
labels as features for classification. When labeling
performance is relatively poor, as with feature set W,
previous labels help very little, but as labeling accu-
racy increases, previous labels begin to effect notice-
able increases in accuracy. For the best two feature
sets, considering the previous two labels raises the
accuracy 2.0% and 2.5%, respectively.

In most cases, though, performance starts to de-
grade as the model incorporates more than two pre-
vious labels. This degradation is illustrated in Fig-
ure 2. The explanation for this is that the model is
still very weak, with an accuracy of less than 54%
for the Brown data. The more previous predicted la-
bels the model conditions on, the greater the likeli-
hood that one or more of the labels is incorrect. With
gold-standard labels, we see a steady increase in ac-
curacy as we look further back, and we would need
a better performing model to fully take advantage of
knowledge of SE patterns in discourse.

The sequencing model plays a crucial role, partic-
ularly with such a small amount of training material,
and our results indicate the importance of local con-
text in discourse analysis.
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54

0 1 2 3 4 5 6

W
WT

WTL
WTLG

Figure 2: Sequencing results on Brown data.

BROWN Lookback (n)
0 1 2 3 4 5 6

W 45.4 45.2 46.1 46.6 42.8 43.0 42.4
WT 49.9 52.4 51.9 49.2 47.2 46.2 44.8
WTL 48.9 50.5 50.1 48.9 46.7 44.9 45.0
WTLG 50.6 52.9 53.1 48.1 46.4 45.9 45.7
Baseline 38.5

Table 3: SE classification results with sequencing
on Brown test set. Bold cell indicates accuracy at-
tained by model parameters that performed best on
development data.

6.4 Error analysis

Given that a single one of the ten possible labels
occurs for more than 35% of clauses in both data
sets, it is useful to look at the distribution of er-
rors over the labels. Table 4 is a confusion matrix
for the held-out Brown data using the best feature
set.4 The first column gives the label and number
of occurrences of that label, and the second column
is the accuracy achieved for that label. The next
two columns show the percentage of erroneous la-
bels taken by the labels S and GS. These two labels
are the most common labels in the development set
(38.5% and 32.5%). The final column sums the per-
centages of errors assigned to the remaining seven
labels. As one would expect, the model learns the
predominance of these two labels. There are a few
interesting points to make about this data.

First, 66% of G-type clauses are mistakenly as-
signed the label GS. This is interesting because
these two SE-types constitute the broader SE cat-

4Thanks to the anonymous reviewer who suggested this use-
ful way of looking at the data.
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% Correct % Incorrect
Label Label S GS Other
S(278) 72.7 n/a 14.0 13.3
E(203) 50.7 37.0 11.8 0.5
GS(203) 44.8 46.3 n/a 8.9
R(26) 38.5 30.8 11.5 19.2
N(47) 23.4 31.9 23.4 21.3
G(12) 0.0 25.0 66.7 8.3
IMP(8) 0.0 75.0 25.0 0.0
P(7) 0.0 71.4 28.6 0.0
F(2) 0.0 100.0 0.0 0.0

Table 4: Confusion matrix for Brown held-out test
data, WTLG feature set, lookback n = 2. Numbers
in parentheses indicate how many clauses have the
associated gold standard label.

egory of generalizing statives. The distribution of
errors for R-type clauses points out another interest-
ing classification difficulty.5 Unlike the other cat-
egories, the percentage of false-other labels for R-
type clauses is higher than that of false-GS labels.
80% of these false-other labels are of type E. The
explanation for this is that R-type clauses are a sub-
type of the event class.

6.5 Genre effects in classification
Different text domains frequently have different
characteristic properties. Discourse modes are one
way of analyzing these differences. It is thus in-
teresting to compare SE classification when training
and testing material come from different domains.

Table 5 shows the performance on Brown when
training on Brown and/or MUC using the WTLG

feature set with simple labeling and with sequence
prediction with a lookback of two. A number of
things are suggested by these figures. First, the la-
beling model (lookback of zero), beats the baseline
even when training on out-of-domain texts (43.1%
vs. 38.5%), but this is unsurprisingly far below
training on in-domain texts (43.1% vs. 50.6%).
Second, while sequence prediction helps with in-
domain training (53.1% vs 50.6%), it makes no
difference with out-of-domain training (42.9% vs
43.1%). This indicates that the patterns of SEs in a
text do indeed correlate with domains and their dis-
course modes, in line with case-studies in the dis-
course modes theory (Smith, 2003). Finally, mix-

5Thanks to an anonymous reviewer for bringing this to our
attention.

lookback Brown test set
WTLG
train:Brown 0 50.6

2 53.1
train:MUC 0 43.1

2 42.9
train:all 0 50.4

2 49.5

Table 5: Cross-domain SE classification

ing out-of-domain training material with in-domain
material does not hurt labelling accuracy (50.4% vs
50.6%), but it does take away the gains from se-
quencing (49.5% vs 53.1%).

These genre effects are suggestive, but inconclu-
sive. A similar setup with much larger training and
testing sets would be necessary to provide a clearer
picture of the effect of mixed domain training.

7 Related work

Though we are aware of no previous work in SE
classification, others have focused on automatic de-
tection of aspectual and temporal data.

Klavans and Chodorow (1992) laid the founda-
tion for probabilistic verb classification with their
interpretation of aspectual properties as gradient and
their use of statistics to model the gradience. They
implement a single linguistic test for stativity, treat-
ing lexical properties of verbs as tendencies rather
than absolute characteristics.

Linguistic indicators for aspectual classification
are also used by Siegel (1999), who evaluates 14 in-
dicators to test verbs for stativity and telicity. Many
of his indicators overlap with our features.

Siegel and McKeown (2001) address classifica-
tion of verbs for stativity (event vs. state) and
for completedness (culminated vs. non-culminated
events). They compare three supervised and one un-
supervised machine learning systems. The systems
obtain relatively high accuracy figures, but they are
domain-specific, require extensive human supervi-
sion, and do not address aspectual coercion.

Merlo and Stevenson (2001) use corpus-based
thematic role information to identify and classify
unergative, unaccusative, and object-drop verbs.
Stevenson and Merlo note that statistical analysis
cannot and should not be separated from deeper lin-
guistic analysis, and our results support that claim.
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The advantages of our approach are the broadened
conception of the classification task and the use of
sequence prediction to capture a wider context.

8 Conclusions

Situation entity classification is a little-studied but
important classification task for the analysis of dis-
course. We have presented the first data-driven mod-
els for SE classification, motivating the treatment of
SE classification as a sequencing task.

We have shown that linguistic correlations to sit-
uation entity type are useful features for proba-
bilistic models, as are grammatical relations and
CCG supertags derived from syntactic analysis of
clauses. Models for the task perform poorly given
very basic feature sets, but minimal linguistic pro-
cessing in the form of part-of-speech tagging im-
proves performance even on small data sets used for
this study. Performance improves even more when
we move beyond simple feature sets and incorpo-
rate linguistically-motivated features and grammat-
ical relations from deep syntactic analysis. Finally,
using sequence prediction by adapting a POS-tagger
further improves results.

The tagger we adapted uses beam search; this al-
lows tractable use of maximum entropy for each la-
beling decision but forgoes the ability to find the
optimal label sequence using dynamic programming
techniques. In contrast, Conditional Random Fields
(CRFs) (Lafferty et al., 2001) allow the use of max-
imum entropy to set feature weights with efficient
recovery of the optimal sequence. Though CRFs are
more computationally intensive, the small set of SE
labels should make the task tractable for CRFs.

In future, we intend to test the utility of SEs in dis-
course parsing, discourse mode identification, and
discourse relation projection.
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Abstract

Frequency distribution models tuned to
words and other linguistic events can pre-
dict the number of distinct types and their
frequency distribution in samples of arbi-
trary sizes. We conduct, for the first time,
a rigorous evaluation of these models based
on cross-validation and separation of train-
ing and test data. Our experiments reveal
that the prediction accuracy of the models
is marred by serious overfitting problems,
due to violations of the random sampling as-
sumption in corpus data. We then propose
a simple pre-processing method to allevi-
ate such non-randomness problems. Further
evaluation confirms the effectiveness of the
method, which compares favourably to more
complex correction techniques.

1 Introduction

Large-Number-of-Rare-Events (LNRE) models
(Baayen, 2001) are a class of specialized statistical
models that allow us to estimate the characteristics
of the distribution of type probabilities in type-rich
linguistic populations (such as words) from limited
samples (our corpora). They also allow us to
extrapolate quantities such as vocabulary size (the
number of distinct types) and the number of hapaxes
(types occurring just once) beyond a given corpus or
make predictions for completely unseen data from
the same underlying population.

LNRE models have applications in theoretical lin-
guistics, e.g. for comparing the type richness of mor-
phological or syntactic processes that are attested to

different degrees in the data (Baayen, 1992). Con-
sider for example a very common prefix such as re-
and a rather rare prefix such as meta-. With LNRE
models we can answer questions such as: If we
could obtain as many tokens of meta- as we have
of re-, would we also see as many distinct types?
In other words, is the prefix meta- as productive as
the prefix re-? Practical NLP applications, on the
other hand, include estimating how many out-of-
vocabulary words we will encounter given a lexicon
of a certain size, or making informed guesses about
type counts in very large data sets (e.g., how many
typos are there on the Internet?)

In this paper, after introducing LNRE models
(Section 2), we present an evaluation of their per-
formance based on separate training and test data
as well as cross-validation (Section 3). As far as
we know, this is the first time that such a rigorous
evaluation has been conducted. The results show
how evaluating on the training set, a common strat-
egy in LNRE research, favours models that overfit
the training data and perform poorly on unseen data.
They also confirm the observation by Evert and Ba-
roni (2006) that current LNRE models achieve only
unsatisfactory prediction accuracy, and this is the is-
sue we turn to in the second part of the paper (Sec-
tion 4). Having identified the violation of the ran-
dom sampling assumption by real-world data as one
of the main factors affecting the quality of the mod-
els, we present a new approach to alleviating non-
randomness problems. Further evaluation shows our
solution to outperform Baayen’s (2001) partition-
adjustment method, the former state-of-the-art in
non-randomness correction. Section 5 concludes by
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pointing out directions for future work.

2 LNRE models

Baayen (2001) introduces a family of models for
Zipf-like frequency distributions of linguistic pop-
ulations, referred to as LNRE models. Such a lin-
guistic population is formally described by a finite
or countably infinite set of types ωi and their occur-
rence probabilities πi. Word frequency models are
not concerned with the probabilities (i.e., relative
frequencies) of specific individual types, but rather
the overall distribution of these probabilities.

Numbering the types in order of decreasing prob-
ability (π1 ≥ π2 ≥ π3 ≥ . . ., called a popula-
tion Zipf ranking), we can specify a LNRE model
for their distribution as a function that computes πi

from the Zipf rank i of ωi. For instance, the Zipf-
Mandelbrot law1 is defined by the equation

πi =
C

(i + b)a
(1)

with parameters a > 1 and b > 0. It is mathemati-
cally more convenient to formulate LNRE models in
terms of a type density function g(π) on the interval
π ∈ [0, 1], such that∫ B

A
g(π) dπ (2)

is the (approximate) number of types ωi with A ≤
πi ≤ B. Evert (2004) shows that Zipf-Mandelbrot
corresponds to a type density of the form

g(π) :=

{
C · π−α−1 A ≤ π ≤ B

0 otherwise
(3)

with parameters 0 < α < 1 and 0 ≤ A < B.2

Models that are formulated in terms of such a type
density g have many direct applications (e.g. using g
as a Bayesian prior), and we refer to them as proper
LNRE models.

Assuming that a corpus of N tokens is a random
sample from such a population, we can make pre-
dictions about lexical statistics such as the number

1The Zipf-Mandelbrot law is an extension of Zipf’s law
(which has a = 1 and b = 0). While the latter originally refers
to type frequencies in a given sample, the Zipf-Mandelbrot law
is formulated for type probabilities in a population.

2In this equation, C is a normalizing constant required in
order to ensure

R 1

0
πg(π) dπ = 1, the equivalent of

P
i πi = 1.

V (N) of different types in the corpus (the vocab-
ulary size), the number V1(N) of hapax legomena
(types occurring just once), as well as the further dis-
tribution of type frequencies Vm(N). Since the pre-
cise values would be different from sample to sam-
ple, the model predictions are given by expectations
E[V (N)] and E[Vm(N)], which can be computed
with relative ease from the type density function g.

By comparing expected and observed values of V
and Vm (for the lowest frequency ranks, usually up
to m = 15), the parameters of a LNRE model can
be estimated (we refer to this as training the model),
allowing inferences about the population (such as
the total number of types in the population) as well
as further applications of the estimated type density
(e.g. for Good-Turing smoothing). Since we can cal-
culate expected values for samples of arbitrary size
N , we can use the trained model to predict how
many new types would be seen in a larger corpus,
how many hapaxes there would be, etc. This kind of
vocabulary growth extrapolation has become one of
the most important applications of LNRE models in
linguistics and NLP.

A detailed account of the mathematics of LNRE
models can be found in Baayen (2001, Ch. 2).
Baayen describes two LNRE models, lognormal
and GIGP, as well as several other approaches (in-
cluding a version of Zipf’s law and the Yule-Simon
model) that are not based on a type density and
hence do not qualify as proper LNRE models. Two
LNRE models based on Zipf’s law, ZM and fZM, are
introduced by Evert (2004).

In the following, we will only consider proper
LNRE models because of their considerably greater
utility, and because their performance in extrapo-
lation tasks appears to be better than, or at least
comparable to, the other models (Evert and Baroni,
2006). In addition, we exclude the lognormal model
because of its computational complexity and numer-
ical instability.3 In initial evaluation experiments,
the performance of lognormal was also inferior to
the remaining three models (ZM, fZM and GIGP).
Note that ZM is the most simplistic model, with only
2 parameters and assuming an infinite population
vocabulary, while fZM and GIGP have 3 parameters

3There are no closed form equations for the expectations of
the lognormal model, which have to be calculated by numerical
integration.
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and can model populations of different sizes.

3 Evaluation of LNRE models

LNRE models are traditionally evaluated by look-
ing at how well expected values generated by them
fit empirical counts extracted from the same data-
set used for parameter estimation, often by visual
inspection of differences between observed and pre-
dicted data in plots. More rigorously, Baayen (2001)
and Evert (2004) compare the frequency distribu-
tion observed in the training set to the one predicted
by the model with a multivariate chi-squared test.
As we will show below, evaluating standard LNRE
models on the same data that were used to estimate
their parameters favours overfitting, which results in
poor performance on unseen data.

Evert and Baroni (2006) attempt, for the first time,
to evaluate LNRE models on unseen data. However,
rather than splitting the data into separate training
and test sets, they evaluate the models in an extra-
polation setting, where the parameters of the model
are estimated on a subset of the data used for testing.
Evert and Baroni do not attempt to cross-validate the
results, and they do not provide a quantitative evalu-
ation, relying instead on visual inspection of empir-
ical and observed vocabulary growth curves.

3.1 Data and procedure
We ran our experiments with three corpora in differ-
ent languages and representing different textual ty-
pologies: the British National Corpus (BNC), a “bal-
anced” corpus of British English of about 100 mil-
lion tokens illustrating different communicative set-
tings, genres and topics; the deWaC corpus, a Web-
crawled corpus of about 1.5 billion German words;
and the la Repubblica corpus, an Italian newspaper
corpus of about 380 million words.4

From each corpus, we extracted 20 non-
overlapping samples of randomly selected docu-
ments, amounting to a total of 4 million tokens each
(punctuation marks and entirely non-alphabetical to-
kens were removed before sampling, and all words
were converted to lowercase). Each of these sam-
ples was then split into a training set of 1 million to-
kens (the training size N0) and a test set of 3 million

4See www.natcorp.ox.ac.uk, http://wacky.
sslmit.unibo.it and http://sslmit.unibo.it/
repubblica

tokens. The documents in the la Repubblica sam-
ples were ordered chronologically before splitting,
to simulate a typical scenario arising when working
with newspaper data, where the data available for
training precede, chronologically, the data one wants
to generalize to.

We estimate parameters of the ZM, fZM and
GIGP models on each training set, using the zipfR
toolkit.5 The models are then used to predict the
expected number of distinct types, i.e., vocabulary
size V , at sample sizes of 1, 2 and 3 million tokens,
equivalent to 1, 2 and 3 times the size of the training
set (we refer to these as the prediction sizes N0, 2N0

and 3N0, respectively). Finally, the expected vo-
cabulary size E[V (N)] is compared to the observed
value V (N) in the test set for N = N0, N = 2N0

and N = 3N0. We also look at V1(N), the number
of hapax legomena, in the same way.

Our main focus is V prediction, since this is by
far the most useful measure in practical applica-
tions, where we are typically interested in knowing
how many types (or how many types belonging to
a certain category) we will see as our sample size
increases (How many typos are there on the Web?
How many types with prefix meta- would we see
if we had as many types of meta- as we have of
re-?) Hapax legomena counts, on the other hand,
play a central role in quantifying morphological pro-
ductivity (Baayen, 1992) and they give us a first in-
sight into how good the models are at predicting fre-
quency distributions, besides vocabulary size (as we
will see, a model’s success in predicting V does not
necessary imply that the model is also capturing the
right frequency distribution).

For all models, corpora and prediction sizes,
goodness-of-fit of the model on the training set
is measured with a multivariate chi-squared test
(Baayen, 2001, 118-122). Performance of the mod-
els in prediction of V is assessed via relative error,
computed for each of the 20 samples from a corpus
and the 3 prediction sizes as follows:

e =
E[V (N)]− V (N)

V (N)

where N = k · N0 is the prediction size (for k =
1, 2, 3), V (N) is the observed V in the relevant test

5http://purl.org/stefan.evert/zipfR
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set at size N , and E[V (N)] is the corresponding ex-
pected V predicted by a model.6

For each corpus and prediction size we obtain 20
values ei (viz., e1, . . . , e20). As a summary measure,
we report the square root of the mean square relative
error (rMSE) calculated according to

√
rMSE =

√√√√ 1
20
·

20∑
i=1

(ei)2

This gives us an overall assessment of prediction ac-
curacy (we take the square root to obtain values on
the same scale as relative errors, and thus easier to
interpret). We complement rMSEs with reports on
the average relative error (indicating whether there
is a systematic under- or overestimation bias) and its
asymptotic 95% confidence intervals, based on the
empirical standard deviation of the ei across the 20
trials (the confidence intervals are usually somewhat
larger than the actual range of values found in the
experiments, so they should be seen as “pessimistic
estimates” of the actual variance).

3.2 Results

The panels of Figure 1 report rMSE values for the
3 corpora and for each prediction size. For now,
we focus on the first 3 histograms of each panel,
that present rMSEs for the 3 LNRE models intro-
duced above: ZM, fZM and GIGP (the remaining
histograms will be discussed later).7

For all corpora and all extrapolation sizes beyond
N0, the simple ZM model outperforms the more so-
phisticated fZM and GIGP models (which seem to
be very similar to each other). Even at the largest
prediction size of 3N0, ZM’s rMSE is well below
10%, whereas the other models have, in the worst
case (BNC 3N0), a rMSE above 15%. Figure 2
presents plots of average relative error and its em-
pirical confidence intervals (again, focus for now on
the ZM, fZM and GIGP results; the rest of the figure
is discussed later). We see that the poor performance

6We normalize by V (N) rather than (a function of)
E[V (N)] because in the latter case we would favour models
that overestimate V , compared to ones that are equally “close”
to the correct value but underestimate V .

7A table with the full numerical results is available upon
request; we find, however, that graphical summaries such as
those presented in this paper make the results easier to interpret.

of fZM and GIGP is due to their tendency to under-
estimate the true vocabulary size V , while variance
is comparable across models.

The rMSEs of V1 prediction are reported in Fig-
ure 3. V1 prediction performance is poorer across
the board, and ZM is no longer outperforming the
other models. For space reasons, we do not present
relative error and variance plots for V1, but the gen-
eral trends are the same observed for V , except that
the bias of ZM towards V1 overestimation is much
clearer than for V .

Interestingly, goodness-of-fit on the training data
is not a good predictor of V and V1 prediction per-
formance on unseen data. This is shown in Figure
4, which plots rMSE for prediction of V against
goodness-of-fit (quantified by multivariate X2 on
the training set, as discussed above) for all corpora
and LNRE models at the 3N0 prediction size (but the
same patterns emerge at other prediction sizes and
with V1). The larger X2, the poorer the training set
fit; the larger rMSE, the worse the prediction. Thus,
ideally, we should see a positive correlation between
X2 and rMSE. Focusing for now on the circles (pin-
pointing the ZM, fZM and GIGP models), we see
that there is instead a negative correlation between
goodness of fit on the training set and quality of pre-
diction on unseen data.8

First, these results indicate that, if we take good-
ness of fit on the training set as a criterion for choos-
ing the best model (as done by Baayen and Evert),
we end up selecting the worst model for actual pre-
diction tasks. This is, we believe, a very strong
case for applying the split train-test cross-validation
method used in other areas of statistical NLP to fre-
quency distribution modeling. Second, the data sug-
gest that the more sophisticated models are overfit-
ting the training set, leading to poorer performance
than the simpler ZM on unseen data. We turn now to
what we think is the main cause for this overfitting.

4 Non-randomness and echoes

The results in the previous section indicate that the
V s predicted by LNRE models are at best “ballpark
estimates” (and V1 predictions, with a relative error
that is often above 20%, do not even qualify as plau-

8With correlation coefficients of r < −.8, significant at the
0.01 level despite the small sample size.

907



ZM fZM GIGP fZM
echo

GIGP
echo

GIGP
partition

N0

2N0

3N0

rMSE for E[V] vs. V on test set (BNC)

rM
S

E
    (

%
)

0
5

10
15

20

ZM fZM GIGP fZM
echo

GIGP
echo

GIGP
partition

N0

2N0

3N0

rMSE for E[V] vs. V on test set (DEWAC)

rM
S

E
    (

%
)

0
5

10
15

20

ZM fZM GIGP fZM
echo

GIGP
echo

GIGP
partition

N0

2N0

3N0

rMSE for E[V] vs. V on test set (REPUBBLICA)

rM
S

E
    (

%
)

0
5

10
15

20

Figure 1: rMSEs of predicted V on the BNC, deWaC and la Repubblica data-sets
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Figure 2: Average relative errors and asymptotic 95% confidence intervals of V prediction on BNC, deWaC
and la Repubblica data-sets
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Figure 3: rMSEs of predicted V1 on the BNC, deWaC and la Repubblica data-sets
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sible ballpark estimates). Although such rough esti-
mates might be more than adequate for many practi-
cal applications, is it possible to further improve the
quality of LNRE predictions?

A major factor hampering prediction quality is
that real texts massively violate the randomness as-
sumption made in LNRE modeling: words, rather
obviously, are not picked at random on the basis
of their population probability (Evert and Baroni,
2006; Baayen, 2001). The topic-driven “clumpi-
ness” of low frequency content words reduces the
number of hapax legomena and other rare events
used to estimate the parameters of LNRE models,
leading the models to underestimate the type rich-
ness of the population. Interestingly (but unsurpris-
ingly), ZM with its assumption of an infinite pop-
ulation, is less prone to this effect, and thus it has
a better prediction performance than the more so-
phisticated fZM and GIGP models, despite its poor
goodness-of-fit.

The effect of non-randomness is illustrated very
clearly for the BNC (but the same could be shown
for the other corpora) by Figure 5, a comparison
of rMSE for prediction of V from our experiments
above to results obtained on versions of the BNC
samples with words scrambled in random order,
thus forcibly removing non-randomness effects. We
see from this figure that the performance of both
fZM and GIGP improves dramatically when they
are trained and tested on randomized sequences of

words. Interestingly, randomization has instead a
negative effect on ZM performance.
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Figure 5: rMSEs of predicted V on unmodified
vs. randomized versions of the BNC sets

4.1 Previous approaches to non-randomness
While non-randomness is widely acknowledged as
a serious problem for the statistical analysis of cor-
pus data, very few authors have suggested correc-
tion strategies. The key problem of non-random data
seems to be that the occurrence frequencies of a type
in different documents do not follow the binomial
distribution assumed by random sampling models.
One approach is therefore to model this distribu-
tion explicitly, replacing the binomial with its sin-
gle parameter π by a more complex distribution that
has additional parameters (Church and Gale, 1995;
Katz, 1996). However, these distributions are cur-
rently not applicable to LNRE modeling, which is
based on the overall frequencies of types in a cor-
pus rather than their frequencies in individual doc-
uments. The overall frequencies can only be calcu-
lated by summation over all documents in the cor-
pus, resulting in a mathematically and numerically
intractable model. In addition, the type density g(π)
would have to be extended to a multi-dimensional
function, requiring a large number of parameters to
be estimated from the data.

Baayen (2001) suggests a different approach,
which partitions the population into “normal” types
that satisfy the random sampling assumption, and
“totally underdispersed” types, which are assumed
to concentrate all occurrences in the corpus into a
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single “burst”. Using a standard LNRE model for
the normal part of the population and a simple lin-
ear growth model for the underdispersed part, ad-
justed values for E[V ] and E[Vm] can easily be cal-
culated. These so-called partition-adjusted models
(which introduce one additional parameter) are thus
the only viable models for non-randomness correc-
tion in LNRE modeling and have to be considered
the state of the art.

4.2 Echo adjustment

Rather than making more complex assumptions
about the population distribution or the sampling
model, we propose that non-randomness should be
tackled as a pre-processing problem. The issue, we
argue, is really with the way we count occurrences
of types. The fact that a rare topic-specific word oc-
curs, say, four times in a single document does not
make it any less a hapax legomenon for our purposes
than if the word occurred once (this is the case, for
example, of the word chondritic in the BNC, which
occurs 4 times, all in the same scientific document).

We operationalize our intuition by proposing that,
for our purposes, each content word (at least each
rare, topic-specific content word) occurs maximally
once in a document, and all other instances of that
word in the document are really instances of a spe-
cial “anaphoric” type, whose function is that of
“echoing” the content words in the document. Thus,
in the BNC document mentioned above, the word
chondritic is counted only once, whereas the other
three occurrences are considered as tokens of the
echo type. Thus, we are counting what in the in-
formation retrieval literature is known as document
frequencies. Intuitively, these are less susceptible to
topical clumpiness effects than plain token frequen-
cies. However, by replacing repeated words with
echo tokens, we can stick to a sampling model based
on random word token sampling (rather than docu-
ment sampling), so that the LNRE models can be
applied “as is” to echo-adjusted corpora.

Echo-adjustment does not affect the sample size
N nor the vocabulary size V , making the interpre-
tation of results obtained with echo-adjusted mod-
els entirely straightforward. N does not change be-
cause repeated types are replaced with echo tokens,
not deleted. V does not change because only re-
peated types are replaced. Thus, no type present in

the original corpus disappears (more precisely, V in-
creases by 1 because of the addition of the echo type,
but given the large size of V this can be ignored for
all practical purposes). Thus, the expected V com-
puted for a specified sample size N with a model
trained on an echo-adjusted corpus can be directly
compared to observed values at N , and to predic-
tions made for the same N by models trained on an
unprocessed corpus. The same is not true for the pre-
diction of the frequency distribution, where, for the
same N , echo-based models predict the distribution
of document frequencies.

We are proposing echoes as a model for the us-
age of (rare) content words. It would be diffi-
cult to decide where the boundary is between top-
ical words that are inserted once in a discourse
and then anaphorically modulated and “general-
purpose” words that constitute the frame of the dis-
course and can occur multiple times. Luckily, we
do not have to make this decision when estimating
a LNRE model, since model fitting is based on the
distribution of the lowest frequencies. For example,
with the default zipfR model fitting setting, only the
lowest 15 spectrum elements are used to fit the mod-
els. For any reasonably sized corpus, it is unlikely
that function words and common content words will
occur in less than 16 documents, and thus their dis-
tribution will be irrelevant for model fitting. Thus,
we can ignore the issue of what is the boundary be-
tween topical words to be echo-adjusted and general
words, as long as we can be confident that the set
of lowest frequency words used for model fitting be-
long to the topical set.9 This makes practical echo-
adjustment extremely simple, since all we have to
do is to replace all repetitions of a word in the same
document with echo tokens, and estimate the param-
eters of a plain LNRE model with the resulting ver-
sion of the training corpus.

4.3 Experiments with echo adjustment

Using the same training and test sets as in Sec-
tion 3.1, we train the partition-adjusted GIGP model

9The issue becomes more delicate if we want to predict
the frequency spectrum rather than V , since a model trained
on echo-adjusted data will predict echo-adjusted frequencies
across the board. However, in many theoretical and practical
settings only the lowest frequency spectrum elements are of in-
terest, where, again, it is safe to assume that words are highly
topic-dependent, and echo-adjustment is appropriate.
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implemented in the LEXSTATS toolkit (Baayen,
2001). We estimate the parameters of echo-adjusted
ZM, fZM and GIGP models on versions of the train-
ing corpora that have been pre-processed as de-
scribed above. The performance of the models is
evaluated with the same measures as in Section 3.1
(for prediction of V1, echo-adjusted versions of the
test data are used).

Figure 1 reports the performance of the echo-
adjusted fZM and GIGP models and of partition-
adjusted GIGP (echo-adjusted ZM performed sys-
tematically much worse than the other echo-adjusted
models and typically worse than uncorrected ZM,
and it is not reported in the figure). Both correction
methods lead to a dramatic improvement, bringing
the prediction performance of fZM and GIGP to lev-
els comparable to ZM (with the latter outperforming
the corrected models on the BNC, but being outper-
formed on la Repubblica). Moreover, echo-adjusted
GIGP is as good as partitioned GIGP on la Repub-
blica, and better on both BNC and deWaC, suggest-
ing that the much simpler echo-adjustment method
is at least as good and probably better than Baayen’s
partitioning. The mean error and confidence interval
plots in Figure 2 show that the echo-adjusted models
have a much weaker underestimation bias than the
corresponding unadjusted models, and are compara-
ble to, if not better than, ZM (although they might
have a tendency to display more variance, as clearly
illustrated by the performance of echo-adjusted fZM
on la Repubblica at 3N0 prediction size). Finally,
the echo-adjusted models clearly stand out with re-
spect to ZM when it comes to V1 prediction (Fig-
ure 3), indicating that echo-adjusted versions of the
more sophisticated fZM and GIGP models should
be the focus of future work on improving predic-
tion of the full frequency distribution, rather than
plain ZM. Moreover, echo-adjusted GIGP is outper-
forming partitioned GIGP, and emerging as the best
model overall.10 Reassuringly, for the echoed mod-
els there is a very strong positive correlation between
goodness-of-fit on the training set and quality of pre-
diction, as illustrated for V prediction at 3N0 by
the triangles in Figure 4 (again, the patterns in this

10In looking at the V1 data, it must be kept in mind, how-
ever, that V1 has a different interpretation when predicted by
echo-adjusted models, i.e., it is the number of document-based
hapaxes, the number of types that occur in one document only.

figure represent the general trend for echo-adjusted
models found in all settings).11 This indicates that
the over-fitting problem has been resolved, and for
echo-adjusted models goodness-of-fit on the train-
ing set is a reliable indicator of prediction accuracy.

5 Conclusion

Despite the encouraging results we reported, much
work, of course, remains to be done. Even with
the echo-adjusted models, prediction of V1 suffers
from large errors and prediction of V quickly deteri-
orates with increasing prediction size N . If the mod-
els’ estimates for 3 times the size of the training set
have acceptable errors of around 5%, for many ap-
plications we might want to extrapolate to 100N0 or
more (recall the example of estimating type counts
for the entire Web). Moreover, echo-adjusted mod-
els make predictions pertaining to the distribution of
document frequencies, rather than plain token fre-
quencies. The full implications of this remain to
be investigated. Finally, future work should system-
atically explore to what extent different textual ty-
pologies are affected by the non-randomness prob-
lem (notice, e.g., that non-randomness seems to be a
greater problem for the BNC than for the more uni-
form la Repubblica corpus).
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Abstract

This paper describes the first system for
large-scale acquisition of subcategorization
frames (SCFs) from English corpus data
which can be used to acquire comprehen-
sive lexicons for verbs, nouns and adjectives.
The system incorporates an extensive rule-
based classifier which identifies 168 verbal,
37 adjectival and 31 nominal frames from
grammatical relations (GRs) output by a ro-
bust parser. The system achieves state-of-
the-art performance on all three sets.

1 Introduction

Research into automatic acquisition of lexical in-
formation from large repositories of unannotated
text (such as the web, corpora of published text,
etc.) is starting to produce large scale lexical re-
sources which include frequency and usage infor-
mation tuned to genres and sublanguages. Such
resources are critical for natural language process-
ing (NLP), both for enhancing the performance of
state-of-art statistical systems and for improving the
portability of these systems between domains.

One type of lexical information with particular
importance forNLP is subcategorization. Access
to an accurate and comprehensive subcategoriza-
tion lexicon is vital for the development of success-
ful parsing technology (e.g. (Carroll et al., 1998),
important for manyNLP tasks (e.g. automatic verb
classification (Schulte im Walde and Brew, 2002))
and useful for any application which can benefit

from information about predicate-argument struc-
ture (e.g. Information Extraction (IE) ((Surdeanu et
al., 2003)).

The first systems capable of automatically learn-
ing a small number of verbal subcategorization
frames (SCFs) from unannotated English corpora
emerged over a decade ago (Brent, 1991; Manning,
1993). Subsequent research has yielded systems for
English (Carroll and Rooth, 1998; Briscoe and Car-
roll, 1997; Korhonen, 2002) capable of detecting
comprehensive sets ofSCFs with promising accu-
racy and demonstrated success in application tasks
(e.g. (Carroll et al., 1998; Korhonen et al., 2003)).
Recently, a large publicly available subcategoriza-
tion lexicon was produced using such technology
which contains frame and frequency information for
over 6,300 English verbs – theVALEX lexicon (Ko-
rhonen et al., 2006).

While there has been considerable work in the
area, most of it has focussed on verbs. Although
verbs are the richest words in terms of subcatego-
rization and although verbSCF distribution data is
likely to offer the greatest boost in parser perfor-
mance, accurate and comprehensive knowledge of
the many noun and adjectiveSCFs in English could
improve the accuracy of parsing at several levels
(from tagging to syntactic and semantic analysis).

Furthermore the selection of the correct analysis
from the set returned by a parser which does not ini-
tially utilize fine-grained lexico-syntactic informa-
tion can depend on theinteraction of conditional
probabilities of lemmas of different classes occur-
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ring with specificSCFs. For example, a) and b) be-
low indicate the most plausible analyses in which the
sentential complement attaches to the noun and verb
respectively

a) Kim (VP believes (NP the evidence (Scomp that
Sandy was present)))

b) Kim (VP persuaded (NP the judge) (Scomp that
Sandy was present))

However, both a) and b) consist of an identical
sequence of coarse-grained lexical syntactic cate-
gories, so correctly ranking them requires learn-
ing that P (NP | believe).P (Scomp | evidence) >

P (NP&Scomp | believe).P (None | evidence)

and P (NP | persuade).P (Scomp | judge) <

P (NP&Scomp | persuade).P (None | judge). If
we acquired frames and frame frequencies for all
open-class predicates takingSCFs using a single sys-
tem applied to similar data, we would have a better
chance of modeling such interactions accurately.

In this paper we present the first system for large-
scale acquisition ofSCFs from English corpus data
which can be used to acquire comprehensive lexi-
cons for verbs, nouns and adjectives. The classifier
incorporates 168 verbal, 37 adjectival and 31 nomi-
nal SCFdistinctions. An improved acquisition tech-
nique is used which expands on the ideas Yallop et
al. (2005) recently explored for a small experiment
on adjectivalSCFacquisition. It involves identifying
SCFs on the basis of grammatical relations (GRs) in
the output of theRASP (Robust Accurate Statistical
Parsing) system (Briscoe et al., 2006).

As detailed later, the system performs better with
verbs than previous comparable state-of-art systems,
achieving 68.9 F-measure in detectingSCF types. It
achieves similarly good performance with nouns and
adjectives (62.2 and 71.9 F-measure, respectively).

Additionally, we have developed a tool for lin-
guistic annotation ofSCFs in corpus data aimed at
alleviating the process of obtaining training and test
data for subcategorization acquisition. The tool in-
corporates an intuitive interface with the ability to
significantly reduce the number of frames presented
to the user for each sentence.

We introduce the new system forSCFacquisition
in section 2. Details of the experimental evaluation
are supplied in section 3. Section 4 provides discus-

sion of our results and future work, and section 5
concludes.

2 Description of the System

A common strategy in existing large-scaleSCF ac-
quisition systems (e.g. (Briscoe and Carroll, 1997))
is to extractSCFs from parse trees, introducing an
unnecessary dependence on the details of a particu-
lar parser. In our approachSCFs are extracted from
GRs — representations of head-dependent relations
which are more parser/grammar independent but at
the appropriate level of abstraction for extraction of
SCFs.

A similar approach was recently motivated and
explored by Yallop et al. (2005). A decision-tree
classifier was developed for 30 adjectivalSCF types
which tests for the presence ofGRs in theGR out-
put of theRASP (Robust Accurate Statistical Pars-
ing) system (Briscoe and Carroll, 2002). The results
reported with 9 test adjectives were promising (68.9
F-measure in detectingSCF types).

Our acquisition process consists of four main
steps: 1) extractingGRs from corpus data, 2) feeding
the GR sets as input to a rule-based classifier which
incrementally matches them with the corresponding
SCFs, 3) building lexical entries from the classified
data, and 4) filtering those entries to obtain a more
accurate lexicon. The details of these steps are pro-
vided in the subsequent sections.

2.1 Obtaining Grammatical Relations

We obtain theGRs using the recent, second release
of theRASP toolkit (Briscoe et al., 2006).RASP is a
modular statistical parsing system which includes a
tokenizer, tagger, lemmatizer, and a wide-coverage
unification-based tag-sequence parser. We use the
standard scripts supplied withRASPto output the set
of GRs for the most probable analysis returned by the
parser or, in the case of parse failures, theGRs for
the most likely sequence of subanalyses. TheGRs
are organized as a subsumption hierarchy as shown
in Figure 1.

The dependency relationships which theGRs em-
body correspond closely to the head-complement
structure which subcategorization acquisition at-
tempts to recover, which makesGRs ideal input to
the SCF classifier. Consider the arguments ofeasy
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dependent

ta arg mod det aux conj

mod arg

ncmod xmod cmod pmod
subj dobj

subj
comp

ncsubj xsubj csubj
obj pcomp clausal

dobj obj2 iobj xcomp ccomp

Figure 1: The GR hierarchy used by RASP
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Figure 2: Feature structure for SCF

adj-obj-for-to-inf

(|These:1_DD2| |example+s:2_NN2| |of:3_IO|
|animal:4_JJ| |senses:5_NN2| |be+:6_VBR|
|relatively:7_RR| |easy:8_JJ| |for:9_IF|
|we+:10_PPIO2| |to:11_TO| |comprehend:12_VV0|)

...
xcomp(_ be+[6] easy:[8])
xcomp(to[11] be+[6] comprehend:[12])

ncsubj(be+[6] example+s[2] _)
ncmod(for[9] easy[8] we+[10])

ncsubj(comprehend[12] we+[10], _)
...

Figure 3:GRs fromRASP for adj-obj-for-to-inf

in the sentence:These examples of animal senses
are relatively easy for us to comprehend as they are
not too far removed from our own experience.Ac-
cording to theCOMLEX classification, this is an ex-
ample of the frameadj-obj-for-to-inf, shown in
Figure 2, (usingAVM notation in place ofCOMLEX

s-expressions). Part of the output ofRASP for this
sentence is shown in Figure 3.

Each instantiatedGR in Figure 3 corresponds to
one or more parts of the feature structure in Fig-
ure 2. xcomp( be[6] easy[8]) establishesbe[6]
as the head of theVP in which easy[8] occurs as
a complement. The first (PP)-complement isfor us,
as indicated byncmod(for[9] easy[8] we+[10]),
with for as PFORM and we+ (us) as NP. The sec-
ond complement is represented byxcomp(to[11]
be+[6] comprehend[12]): a to-infinitive VP. The

xcomp ?Y : pos=vb,val=be ?X : pos=adj
xcomp ?S : val=to ?Y : pos=vb,val=be ?W : pos=VV0
ncsubj ?Y : pos=vb,val=be ?Z : pos=noun
ncmod ?T : val=for ?X : pos=adj ?Y: pos=pron
ncsubj ?W : pos=VV0 ?V : pos=pron

Figure 4: Pattern for frameadj-obj-for-to-inf

NP headed byexamplesis marked as the subject
of the frame byncsubj(be[6] examples[2]), and
ncsubj(comprehend[12] we+[10]) corresponds to
the coindexation marked by3 : the subject of the
VP is theNP of the PP. The only part of the feature
structure which is not represented by theGRs is coin-
dexation between the omitted direct object1 of the
VP-complement and the subject of the whole clause.

2.2 SCF Classifier

SCF Frames

The SCFs recognized by the classifier were ob-
tained by manually merging the frames exempli-
fied in theCOMLEX Syntax (Grishman et al., 1994),
ANLT (Boguraev et al., 1987) and/orNOMLEX

(Macleod et al., 1997) dictionaries and including
additional frames found by manual inspection of
unclassifiable examples during development of the
classifier. These consisted of e.g. some occurrences
of phrasal verbs with complex complementation and
with flexible ordering of the preposition/particle,
some non-passivizable words with a surface direct
object, and some rarer combinations of governed
preposition and complementizer combinations.

The frames were created so that they abstract
over specific lexically-governed particles and prepo-
sitions and specific predicate selectional preferences
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but include some derived semi-predictable bounded
dependency constructions.

Classifier

The classifier operates by attempting to match the
set ofGRs associated with each sentence against one
or more rules which express the possible mappings
from GRs to SCFs. The rules were manually devel-
oped by examining a set of development sentences
to determine which relations were actually emitted
by the parser for eachSCF.

In our rule representation, aGR pattern is a set of
partially instantiatedGRs with variables in place of
heads and dependents, augmented with constraints
that restrict the possible instantiations of the vari-
ables. A match is successful if the set ofGRs for
a sentence can be unified with any rule. Unifica-
tion of sentenceGRs and a ruleGR pattern occurs
when there is a one-to-one correspondence between
sentence elements and rule elements that includes a
consistent mapping from variables to values.

A sample pattern for matching
adj-obj-for-to-inf can be seen in Fig-
ure 4. Each element matches either an emptyGR

slot ( ), a variable with possible constraints on part
of speech (pos) and word value (val), or an already
instantiated variable. Unlike in Yallop’s work (Yal-
lop et al., 2005), our rules are declarative rather than
procedural and these rules, written independently
of the acquisition system, are expanded by the
system in a number of ways prior to execution. For
example, the verb rules which contain anncsubj
relation will not contain one inside an embedded
clause. For verbs, the basic rule set contains 248
rules but automatic expansion gives rise to 1088
classifier rules for verbs.

Numerous approaches were investigated to allow
an efficient execution of the system: for example, for
each target word in a sentence, we initially find the
number ofARGumentGRs (see Figure 1) containing
it in head position, as the word must appear in ex-
actly the same set in a matching rule. This allows
us to discard all patterns which specify a different
number ofGRs: for example, for verbs each group
only contains an average of 109 patterns.

For a further increase in speed, both the sentence
GRs and theGRs within the patterns are ordered (ac-
cording to frequency) and matching is performed us-

ing a backing off strategy allowing us to exploit the
relatively low number of possibleGRs (compared
to the number of possible rules). The system exe-
cutes on 3500 sentences in approx. 1.5 seconds of
real time on a machine with a 3.2 GHz Intel Xenon
processor and 4GB of RAM.

Lexicon Creation and Filtering

Lexical entries are constructed for each word and
SCFcombination found in the corpus data. Each lex-
ical entry includes the raw and relative frequency of
theSCFwith the word in question, and includes var-
ious additional information e.g. about the syntax of
detected arguments and the argument heads in dif-
ferent argument positions1.

Finally the entries are filtered to obtain a more
accurate lexicon. A way to maximise the accu-
racy of the lexicon would be to smooth (correct) the
acquiredSCF distributions with back-off estimates
based on lexical-semantic classes of verbs (Korho-
nen, 2002) (see section 4) before filtering them.
However, in this first experiment with the new sys-
tem we filtered the entries directly so that we could
evaluate the performance of the new classifier with-
out any additional modules. For the same reason, the
filtering was done by using a very simple method:
by setting empirically determined thresholds on the
relative frequencies ofSCFs.

3 Experimental Evaluation

3.1 Data

In order to test the accuracy of our system, we se-
lected a set of 183 verbs, 30 nouns and 30 adjec-
tives for experimentation. The words were selected
at random, subject to the constraint that they exhib-
ited multiple complementation patterns and had a
sufficient number of corpus occurrences (> 150) for
experimentation. We took the 100M-word British
National Corpus (BNC) (Burnard, 1995), and ex-
tracted all sentences containing an occurrence of one
of the test words. The sentences were processed us-
ing theSCFacquisition system described in the pre-
vious section. The citations from which entries were
derived totaled approximately 744K for verbs and
219K for nouns and adjectives, respectively.

1The lexical entries are similar to those in theVALEX lexi-
con. See (Korhonen et al., 2006) for a sample entry.
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3.2 Gold Standard

Our gold standard was based on a manual analysis
of some of the test corpus data, supplemented with
additional frames from theANLT , COMLEX, and/or
NOMLEX dictionaries. The gold standard for verbs
was available, but it was extended to include addi-
tional SCFs missing from the old system. For nouns
and adjectives the gold standard was created. For
each noun and adjective, 100-300 sentences from the
BNC (an average of 267 per word) were randomly
extracted. The resulting c. 16K sentences were then
manually associated with appropriateSCFs, and the
SCF frequency counts were recorded.

To alleviate the manual analysis we developed
a tool which first uses theRASP parser with some
heuristics to reduce the number ofSCF presented,
and then allows an annotator to select the preferred
choice in a window. The heuristics reduced the av-
erage number ofSCFs presented alongside each sen-
tence from 52 to 7. The annotator was also presented
with an example sentence of eachSCF and an intu-
itive name for the frame, such asPRED (e.g. Kim
is silly). The program includes an option to record
that particular sentences could not (initially) be clas-
sified. A screenshot of the tool is shown in Figure 5.

The manual analysis was done by two linguists;
one who did the first annotation for the whole data,
and another who re-evaluated and corrected some of
the initial frame assignments, and classified most of
the data left unclassified by the first annotator2). A
total of 27SCF types were found for the nouns and
30 for the adjectives in the annotated data. The av-
erage number ofSCFs taken by nouns was 9 (with
the average of 2 added from dictionaries to supple-
ment the manual annotation) and by adjectives 11
(3 of which were from dictionaries). The latter are
rare and may not be exemplified in the data given the
extraction system.

3.3 Evaluation Measures

We used the standard evaluation metrics to evaluate
the accuracy of theSCF lexicons: type precision (the
percentage ofSCF types that the system proposes

2The process precluded measurements of inter-annotator
agreement, but this was judged less important than the enhanced
accuracy of the gold standard data.

Figure 5: Sample screen of the annotation tool

which are correct), type recall (the percentage ofSCF

types in the gold standard that the system proposes)
and the F-measure which is the harmonic mean of
type precision and recall.

We also compared the similarity between the ac-
quired unfiltered3 SCF distributions and gold stan-
dard SCF distributions using various measures of
distributional similarity: the Spearman rank corre-
lation (RC), Kullback-Leibler distance (KL ), Jensen-
Shannon divergence (JS), cross entropy (CE), skew
divergence (SD) and intersection (IS). The details of
these measures and their application to subcatego-
rization acquisition can be found in (Korhonen and
Krymolowski, 2002).

Finally, we recorded the total number of gold
standardSCFs unseen in the system output, i.e. the
type of false negatives which were never detected
by the classifier.

3.4 Results

Table 1 includes the average results for the 183
verbs. The first column shows the results for Briscoe
and Carroll’s (1997) (B&C) system when this sys-
tem is run with the original classifier but a more
recent version of the parser (Briscoe and Carroll,
2002) and the same filtering technique as our new
system (thresholding based on the relative frequen-
cies ofSCFs). The classifier of B&C system is com-
parable to our classifier in the sense that it targets al-
most the same set of verbalSCFs (165 out of the 168;
the 3 additional ones are infrequent in language and
thus unlikely to affect the comparison). The second
column shows the results for our new system (New).

3No threshold was applied to remove the noisySCFs from
the distributions.
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Verbs - Method
Measures B&C New
Precision (%) 47.3 81.8
Recall (%) 40.4 59.5
F-measure 43.6 68.9
KL 3.24 1.57
JS 0.20 0.11
CE 4.85 3.10
SD 1.39 0.74
RC 0.33 0.66
IS 0.49 0.76
Unseen SCFs 28 17

Table 1: Average results for verbs

The figures show that the new system clearly per-
forms better than the B&C system. It yields 68.9 F-
measure which is a 25.3 absolute improvement over
the B&C system. The better performance can be ob-
served on all measures, but particularly onSCF type
precision (81.8% with our system vs. 47.3% with the
B&C system) and on measures of distributional sim-
ilarity. The clearly higherIS (0.76 vs. 0.49) and the
fewer gold standardSCFs unseen in the output of the
classifier (17 vs. 28) indicate that the new system is
capable of detecting a higher number ofSCFs.

The main reason for better performance is the
ability of the new system to detect a number of chal-
lenging or complexSCFs which the B&C system
could not detect4. The improvement is partly at-
tributable to more accurate parses produced by the
second release ofRASP and partly to the improved
SCFclassifier developed here. For example, the new
system is now able to distinguish predicative PP ar-
guments, such asI sent him as a messengerfrom the
wider class of referential PP arguments, supporting
discrimination of several syntactically similarSCFs
with distinct semantics.

Running our system on the adjective and noun test
data yielded the results summarized in Table 2. The
F-measure is lower for nouns (62.2) than for verbs
(68.9); for adjectives it is slightly better (71.9).5

4The results reported here for the B&C system are lower
than those recently reported in (Korhonen et al., 2006) for the
same set of 183 test verbs. This is because we use an improved
gold standard. However, the results for the B&C system re-
ported using the less ambitious gold standard are still less ac-
curate (58.6 F-measure) than the ones reported here for the new
system.

5The results for different word classes are not directly com-
parable because they are affected by the total number ofSCFs
evaluated for each word class, which is higher for verbs and

Measures Nouns Adjectives
Precision (%) 91.2 95.5
Recall (%) 47.2 57.6
F-measure 62.2 71.9
KL 0.91 0.69
JS 0.09 0.05
CE 2.03 2.01
SD 0.48 0.36
RC 0.70 0.77
IS 0.62 0.72
Unseen SCFs 15 7

Table 2: Average results for nouns and adjectives

The noun and adjective classifiers yield very high
precision compared to recall. The lower recall fig-
ures are mostly due to the higher number of gold
standardSCFs unseen in the classifier output (rather
than, for example, the filtering step). This is par-
ticularly evident for nouns for which 15 of the 27
frames exemplified in the gold standard are missing
in the classifier output. For adjectives only 7 of the
30 gold standardSCFs are unseen, resulting in better
recall (57.6% vs. 47.2% for nouns).

For verbs, subcategorization acquisition perfor-
mance often correlates with the size of the input
data to acquisition (the more data, the better perfor-
mance). When considering the F-measure results for
the individual words shown in Table 3 there appears
to be little such correlation for nouns and adjectives.
For example, although there are individual high fre-
quency nouns with high performance (e.g.plan,
freq. 5046, F 90.9) and low frequency nouns with
low performance (e.g.characterisation, freq. 91, F
40.0), there are also many nouns which contradict
the trend (compare e.g.answer, freq. 2510, F 50.0
with fondness, freq. 71, F 85.7).6

Although theSCF distributions for nouns and ad-
jectives appear Zipfian (i.e. the most frequent frames
are highly probable, but most frames are infre-
quent), the total number ofSCFs per word is typi-
cally smaller than for verbs, resulting in better resis-
tance to sparse data problems.

There is, however, a clear correlation between
the performance and the type of gold standardSCFs
taken by individual words. Many of the gold stan-

lower for nouns and adjectives. This particularly applies to the
sensitive measures of distributional similarity.

6The frequencies here refer to the number of citations suc-
cessfully processed by the parser and the classifier.
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Noun F Adjective F
abundance 75.0 able 66.7
acknowledgement 47.1 angry 62.5
answer 50.0 anxious 82.4
anxiety 53.3 aware 87.5
apology 50.0 certain 73.7
appearance 46.2 clear 77.8
appointment 66.7 curious 57.1
belief 76.9 desperate 83.3
call 58.8 difficult 77.8
characterisation 40.0 doubtful 63.6
communication 40.0 eager 83.3
condition 66.7 easy 66.7
danger 76.9 generous 57.1
decision 70.6 imperative 81.8
definition 42.8 important 60.9
demand 66.7 impractical 71.4
desire 71.4 improbable 54.6
doubt 66.7 insistent 80.0
evidence 66.7 kind 66.7
examination 54.6 likely 66.7
experimentation 60.0 practical 88.9
fondness 85.7 probable 80.0
message 66.7 sure 84.2
obsession 54.6 unaware 85.7
plan 90.9 uncertain 60.0
provision 70.6 unclear 63.2
reminder 63.2 unimportant 61.5
rumour 61.5 unlikely 69.6
temptation 71.4 unspecified 50.0
use 60.0 unsure 90.0

Table 3: System performance for each test noun and
adjective

dard nominal and adjectivalSCFs unseen by the
classifier involve complex complementation patterns
which are challenging to extract, e.g. those exem-
plified in Theargument of Jo with Kim about Fido
surfaced, Jo’s preference that Kim be sacked sur-
faced, andthat Sandy came iscertain. In addition,
many of theseSCFs unseen in the data are also very
low in frequency, and some may even be true nega-
tives (recall that the gold standard was supplemented
with additionalSCFs from dictionaries, which may
not necessarily appear in the test data).

The main problem is that theRASPparser system-
atically fails to select the correct analysis for some
SCFs with nouns and adjectives regardless of their
context of occurrence. In future work, we hope to al-
leviate this problem by using the weightedGR output
from the topn-ranked parses returned by the parser
as input to theSCFclassifier.

4 Discussion

The current system needs refinement to alleviate the
bias against someSCFs introduced by the parser’s
unlexicalized parse selection model. We plan to in-
vestigate using weightedGR output with the clas-
sifier rather than just theGR set from the highest
ranked parse. SomeSCFclasses also need to be fur-
ther resolved mainly to differentiate control options
with predicative complementation. This requires a
lexico-semantic classification of predicate classes.

Experiments with Briscoe and Carroll’s system
have shown that it is possible to incorporate some
semantic information in the acquisition process us-
ing a technique that smooths the acquiredSCF dis-
tributions using back-off (i.e. probability) estimates
based on lexical-semantic classes of verbs (Korho-
nen, 2002). The estimates help to correct the ac-
quiredSCFdistributions and predictSCFs which are
rare or unseen e.g. due to sparse data. They could
also form the basis for predicting control of predica-
tive complements.

We plan to modify and extend this technique for
the new system and use it to improve the perfor-
mance further. The technique has so far been applied
to verbs only, but it can also be applied to nouns
and adjectives because they can also be classified on
lexical-semantic grounds. For example, the adjec-
tive simplebelongs to the class ofEASY adjectives,
and this knowledge can help to predict that it takes
similar SCFs to the other class members and that
control of ‘understood’ arguments will pattern with
easy(e.g.easy, difficult, convenient): The problem
will be simple for John to solve, For John to solve
the problem will be simple, The problem will be sim-
ple to solve, etc.

Further research is needed before highly accurate
lexicons encoding information also about semantic
aspects of subcategorization (e.g. different predicate
senses, the mapping from syntactic arguments to
semantic representation of argument structure, se-
lectional preferences on argument heads, diathesis
alternations, etc.) can be obtained automatically.
However, with the extensions suggested above, the
system presented here is sufficiently accurate for
building an extensiveSCF lexicon capable of sup-
porting variousNLP application tasks. Such a lex-
icon will be built and distributed for research pur-
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poses along with the gold standard described here.

5 Conclusion

We have described the first system for automatically
acquiring verbal, nominal and adjectival subcat-
egorization and associated frequency information
from English corpora, which can be used to build
large-scale lexicons forNLP purposes. We have
also described a new annotation tool for producing
training and test data for the task. The acquisition
system, which is capable of distinguishing 168
verbal, 37 adjectival and 31 nominal frames, clas-
sifies corpus occurrences toSCFs on the basis of
GRs produced by a robust statistical parser. The
information provided byGRs closely matches the
structure that subcategorization acquisition seeks
to recover. Our experiment shows that the system
achieves state-of-the-art performance with each
word class. The discussion suggests ways in which
we could improve the system further before using it
to build a large subcategorization lexicon capable of
supporting variousNLP application tasks.

Acknowledgements

This work was supported by the Royal Society and
UK EPSRC project ‘Accurate and Comprehensive
Lexical Classification for Natural Language Pro-
cessing Applications’ (ACLEX). We would like to
thank Diane Nicholls for her help during this work.

References
B. Boguraev, J. Carroll, E. J. Briscoe, D. Carter, and C. Grover.

1987. The derivation of a grammatically-indexed lexicon
from the Longman Dictionary of Contemporary English. In
Proc. of the 25th Annual Meeting of ACL, pages 193–200,
Stanford, CA.

M. Brent. 1991. Automatic acquisition of subcategorization
frames from untagged text. InProc. of the 29th Meeting of
ACL, pages 209–214.

E. J. Briscoe and J. Carroll. 1997. Automatic Extraction of
Subcategorization from Corpora. InProc. of the 5th ANLP,
Washington DC, USA.

E. J. Briscoe and J. Carroll. 2002. Robust accurate statistical
annotation of general text. InProc. of the 3rd LREC, pages
1499–1504, Las Palmas, Canary Islands, May.

E. J. Briscoe, J. Carroll, and R. Watson. 2006. The second
release of the rasp system. InProc. of the COLING/ACL
2006 Interactive Presentation Sessions, Sydney, Australia.

L. Burnard, 1995. The BNC Users Reference Guide. British
National Corpus Consortium, Oxford, May.

G. Carroll and M. Rooth. 1998. Valence induction with a head-
lexicalized pcfg. InProc. of the 3rd Conference on EMNLP,
Granada, Spain.

J. Carroll, G. Minnen, and E. J. Briscoe. 1998. Can Subcat-
egorisation Probabilities Help a Statistical Parser? InPro-
ceedings of the 6th ACL/SIGDAT Workshop on Very Large
Corpora, pages 118–126, Montreal, Canada.

R. Grishman, C. Macleod, and A. Meyers. 1994.COMLEX
Syntax: Building a Computational Lexicon. InCOLING,
Kyoto.

A. Korhonen and Y. Krymolowski. 2002. On the Robustness
of Entropy-Based Similarity Measures in Evaluation of Sub-
categorization Acquisition Systems. InProc. of the Sixth
CoNLL, pages 91–97, Taipei, Taiwan.

A. Korhonen, Y. Krymolowski, and Z. Marx. 2003. Clustering
Polysemic Subcategorization Frame Distributions Semanti-
cally. In Proc. of the 41st Annual Meeting of ACL, pages
64–71, Sapporo, Japan.

A. Korhonen, Y. Krymolowski, and E. J. Briscoe. 2006. A
large subcategorization lexicon for natural language process-
ing applications. InProc. of the 5th LREC, Genova, Italy.

A. Korhonen. 2002.Subcategorization acquisition. Ph.D. the-
sis, University of Cambridge Computer Laboratory.

C. Macleod, A. Meyers, R. Grishman, L. Barrett, and R. Reeves.
1997. Designing a dictionary of derived nominals. InProc.
of RANLP, Tzigov Chark, Bulgaria.

C. Manning. 1993. Automatic Acquisition of a Large Subcat-
egorization Dictionary from Corpora. InProc. of the 31st
Meeting of ACL, pages 235–242.

S. Schulte im Walde and C. Brew. 2002. Inducing german se-
mantic verb classes from purely syntactic subcategorisation
information. InProc. of the 40th Annual Meeting of ACL,
Philadephia, USA.

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth. 2003.
Using predicate-argument structures for information extrac-
tion. In Proc. of the 41st Annual Meeting of ACL, Sapporo.

J. Yallop, A. Korhonen, and E. J. Briscoe. 2005. Auto-
matic acquisition of adjectival subcategorization from cor-
pora. InProc. of the 43rd Annual Meeting of the Association
for Computational Linguistics, pages 614–621, Ann Arbor,
Michigan.

919



Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 920–927,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

A Language-Independent Unsupervised Model
for Morphological Segmentation

Vera Demberg
School of Informatics

University of Edinburgh
Edinburgh, EH8 9LW, GB

v.demberg@sms.ed.ac.uk

Abstract

Morphological segmentation has been
shown to be beneficial to a range of NLP
tasks such as machine translation, speech
recognition, speech synthesis and infor-
mation retrieval. Recently, a number of
approaches to unsupervised morphological
segmentation have been proposed. This
paper describes an algorithm that draws
from previous approaches and combines
them into a simple model for morpholog-
ical segmentation that outperforms other
approaches on English and German, and
also yields good results on agglutinative
languages such as Finnish and Turkish.
We also propose a method for detecting
variation within stems in an unsupervised
fashion. The segmentation quality reached
with the new algorithm is good enough to
improve grapheme-to-phoneme conversion.

1 Introduction

Morphological segmentation has been shown to be
beneficial to a number of NLP tasks such as ma-
chine translation (Goldwater and McClosky, 2005),
speech recognition (Kurimo et al., 2006), informa-
tion retrieval (Monz and de Rijke, 2002) and ques-
tion answering. Segmenting a word into meaning-
bearing units is particularly interesting for morpho-
logically complex languages where words can be
composed of several morphemes through inflection,
derivation and composition. Data sparseness for
such languages can be significantly decreased when

words are decomposed morphologically. There ex-
ist a number of rule-based morphological segmen-
tation systems for a range of languages. However,
expert knowledge and labour are expensive, and the
analyzers must be updated on a regular basis in or-
der to cope with language change (the emergence of
new words and their inflections). One might argue
that unsupervised algorithms are not an interesting
option from the engineering point of view, because
rule-based systems usually lead to better results.
However, segmentations from an unsupervised algo-
rithm that is language-independent are “cheap”, be-
cause the only resource needed is unannotated text.
If such an unsupervised system reaches a perfor-
mance level that is good enough to help another task,
it can constitute an attractive additional component.

Recently, a number of approaches to unsupervised
morphological segmentation have been proposed.
These algorithms autonomously discover morpheme
segmentations in unannotated text corpora. Here we
describe a modification of one such unsupervised al-
gorithm, RePortS (Keshava and Pitler, 2006). The
RePortS algorithm performed best on English in a
recent competition on unsupervised morphological
segmentation (Kurimo et al., 2006), but had very low
recall on morphologically more complex languages
like German, Finnish or Turkish. We add a new
step designed to achieve higher recall on morpho-
logically complex languages and propose a method
for identifying related stems that underwent regular
non-concatenative morphological processes such as
umlauting or ablauting, as well as morphological al-
ternations along morpheme boundaries.

The paper is structured as follows: Section
920



2 discusses the relationship between language-
dependency and the level of supervision of a learn-
ing algorithm. We then give an outline of the main
steps of the RePortS algorithm in section 3 and ex-
plain the modifications to the original algorithm in
section 4. Section 5 compares results for different
languages, quantifies the gains from the modifica-
tions on the algorithm and evaluates the algorithm
on a grapheme-to-phoneme conversion task. We fi-
nally summarize our results in section 6.

2 Previous Work

The world’s languages can be classified according
to their morphology into isolating languages (little
or no morphology, e.g. Chinese), agglutinative lan-
guages (where a word can be decomposed into a
large number of morphemes, e.g. Turkish) and in-
flectional languages (morphemes are fused together,
e.g. Latin).

Phenomena that are difficult to cope with for
many of the unsupervised algorithms are non-
concatenative processes such as vowel harmoniza-
tion, ablauting and umlauting, or modifications at
the boundaries of morphemes, as well as infixation
(e.g. in Tagalog: sulat ‘write’, s-um-ulat ‘wrote’, s-
in-ulat ‘was written’), circumfixation (e.g. in Ger-
man: mach-en ‘do’, ge-mach-t ‘done’), the Ara-
bic broken plural or reduplications (e.g. in Pinge-
lapese: mejr ‘to sleep’, mejmejr ‘sleeping’, mejme-
jmejr ‘still sleeping’). For words that are subject to
one of the above processes it is not trivial to automat-
ically group related words and detect regular trans-
formational patterns.

A range of automated algorithms for morpholog-
ical analysis cope with concatenative phenomena,
and base their mechanics on statistics about hypoth-
esized stems and affixes. These approaches can be
further categorized into ones that use conditional
entropy between letters to detect segment bound-
aries (Harris, 1955; Hafer and Weiss, 1974; Déjean,
1998; Monson et al., 2004; Bernhard, 2006; Ke-
shava and Pitler, 2006; Bordag, 2006), approaches
that use minimal description length and thereby min-
imize the size of the lexicon as measured in en-
tries and links between the entries to constitute a
word form (Goldsmith, 2001; Creutz and Lagus,
2006). These two types of approaches very closely

tie the orthographic form of the word to the mor-
phemes. They are thus not well-suited for coping
with stem changes or modifications at the edges of
morphemes. Only very few approaches have ad-
dressed word internal variations (Yarowski and Wi-
centowski, 2000; Neuvel and Fulop, 2002).

A popular and effective approach for detecting in-
flectional paradigms and filter affix lists is to cluster
together affixes or regular transformational patterns
that occur with the same stem (Monson et al., 2004;
Goldsmith, 2001; Gaussier, 1999; Schone and Juraf-
sky, 2000; Yarowski and Wicentowski, 2000; Neu-
vel and Fulop, 2002; Jacquemin, 1997). We draw
from this idea of clustering in order to detect ortho-
graphic variants of stems; see Section 4.3.

A few approaches also take into account syntac-
tic and semantic information from the context the
word occurs (Schone and Jurafsky, 2000; Bordag,
2006; Yarowski and Wicentowski, 2000; Jacquemin,
1997). Exploiting semantic and syntactic informa-
tion is very attractive because it adds an additional
dimension, but these approaches have to cope with
more severe data sparseness issues than approaches
that emphasize word-internal cues, and they can
be computationally expensive, especially when they
use LSA.

The original RePortS algorithm assumes mor-
phology to be concatenative, and specializes on pre-
fixation and suffixation, like most of the above ap-
proaches, which were developed and implemented
for English (Goldsmith, 2001; Schone and Jurafsky,
2000; Neuvel and Fulop, 2002; Yarowski and Wi-
centowski, 2000; Gaussier, 1999). However, many
languages are morphologically more complex. For
example in German, an algorithm also needs to cope
with compounding, and in Turkish words can be
very long and complex. We therefore extended the
original RePortS algorithm to be better adapted to
complex morphology and suggest a method for cop-
ing with stem variation. These modifications ren-
der the algorithm more language-independent and
thereby make it attractive for applying to other lan-
guages as well.

3 The RePortS Algorithm

On English, the RePortS algorithm clearly out-
performed all other systems in Morpho Challenge

921



20051 (Kurimo et al., 2006), obtaining an F-measure
of 76.8% (76.2% prec., 77.4% recall). The next best
system obtained an F-score of 69%. However, the
algorithm does not perform as well on other lan-
guages (Turkish, Finnish, German) due to low re-
call (see (Keshava and Pitler, 2006) and (Demberg,
2006), p. 47).

There are three main steps in the algorithm. First,
the data is structured in two trees, which provide the
basis for efficient calculation of transitional proba-
bilities of a letter given its context. The second step
is the affix acquisition step, during which a set of
morphemes is identified from the corpus data. The
third step uses these morphemes to segment words.

3.1 Data Structure

The data is stored in two trees, the forward tree and
the backward tree. Branches correspond to letters,
and nodes are annotated with the total corpus fre-
quency of the letter sequence from the root of the
tree up to the node. During the affix identification
process, the forward tree is used for discovering suf-
fixes by calculating the probability of seeing a cer-
tain letter given the previous letters of the word. The
backward tree is used to determine the probability
of a letter given the following letters of a word in
order to find prefixes. If the transitional probabil-
ity is high, the word should not be split, whereas
low probability is a good indicator of a morpheme
boundary. In such a tree, stems tend to stay together
in long unary branches, while the branching factor is
high in places where morpheme boundaries occur.

The underlying idea of exploiting “Letter Succes-
sor Variety” was first proposed in (Harris, 1955), and
has since been used in a number of morphemic seg-
mentation algorithms (Hafer and Weiss, 1974; Bern-
hard, 2006; Bordag, 2006).

3.2 Finding Affixes

The second step is concerned with finding good af-
fixes. The procedure is quite simple and can be di-
vided into two subtasks. (1) generating all possible
affixes and (2) validating them. The validation step
is necessary to exclude bad affix candidates (e.g. let-
ter sequences that occur together frequently such as
sch, spr or ch in German orsh, th, qu in English).

1www.cis.hut.fi/morphochallenge2005/

An affix is validated if all three criteria are satisfied
for at least 5% of its occurrences:

1. The substring that remains after peeling off an
affix is also a word in the lexicon.

2. The transitional probability between the
second-last and the last stem letter is≈ 1.

3. The transitional probability of the affix letter
next to the stem is<1 (tolerance 0.02).

Finally, all affixes that are concatenations of two or
more other suffixes (e.g.,-ungencan be split up in
-ungand-en in German) are removed. This step re-
turns two lists of morphological segments. The pre-
fix list contains prefixes as well as stems that usually
occur at the beginning of words, while the suffix list
contains suffixes and stems that occur at the end of
words. In the remainder of the paper, we will refer
to the content of these lists as “prefixes” and “suf-
fixes”, although they also include stems. There are
several assumptions encoded in this procedure that
are specific to English, and cause recall to be low for
other languages: 1) all stems are valid words in the
lexicon; 2) affixes occur at the beginning or end of
words only; and 3) affixation does not change stems.
In section 4, we propose ways of relaxing these as-
sumptions to make this step less language-specific.

3.3 Segmenting Words

The final step is the complete segmentation of words
given the list of affixes acquired in the previous step.
The original RePortS algorithm uses a very simple
method that peels off the most probable suffix that
has a transitional probability smaller than 1, until no
more affixes match or until less than half of the word
remains. This last condition is problematic since it
does not scale up well to languages with complex
morphology. The same peeling-off process is exe-
cuted for prefixes.

Although this method is better than using a
heuristic such as ‘always peel off the longest pos-
sible affix’, because it takes into account probable
sites of fractures in words, it is not sensitive to
the affix context or the morphotactics of the lan-
guage. Typical mistakes that arise from this con-
dition are that inflectional suffixes, which can only
occur word-finally, might be split off in the middle
of a word after previously having peeled off a num-
ber of other suffixes.
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4 Modifications and Extensions

4.1 Morpheme Acquisition

When we ran the original algorithm on a German
data set, no suffixes were validated but reasonable
prefix lists were found. The algorithm works fine
for English suffixes – why does it fail on German?
The algorithm’s failure to detect German suffixes is
caused by the invalid assumption that a stem must
be a word in the corpus. German verb stems do
not occur on their own (except for certain impera-
tive forms). After stripping off the suffix of the verb
abholst‘fetch’, the remaining stringabholcannot be
found in the lexicon. However, words likeabholen,
abholt, abholeor Abholungare part of the corpus.
The same problem also occurs for German nouns.

Therefore, this first condition of the affix acqui-
sition step needs to be replaced. We therefore intro-
duced an additional step for building an intermediate
stem candidate list into the affix acquisition process.
The first condition is replaced by a condition that
checks whether a stem is in the stem candidate list.
This new stem candidate acquisition procedure com-
prises three steps:
Step 1: Creation of stem candidate list
All substrings that satisfy conditions 2 and 3 but
not condition 1, are stored together with the set of
affixes they occur with. This process is similar to
the idea of registering signatures (Goldsmith, 2001;
Neuvel and Fulop, 2002). For example, let us as-
sume our corpus contains the wordsAufführender,
Aufführung, aufführt and Aufführlaunebut not the
stem itself, sinceaufführ ‘act’ is not a valid Ger-
man word. Conditions 2 and 3 are met, because
the transitional probability betweenaufführ and the
next letter is low (there are a lot of different pos-
sible continuations) and the transitional probability
P (r|auffüh) ≈ 1. The stem candidateaufführ is then
stored together with the suffix candidates{ender,
ung, en, t, laune}.
Step 2: Ranking candidate stems
There are two types of affix candidates: type-1 affix
candidates are words that are contained in the data
base as full words (those are due to compounding);
type-2 affix candidates are inflectional and deriva-
tional suffixes. When ranking the stem candidates,
we take into account the number of type-1 affix can-
didates and the average frequency of tpye-2 affix

Figure 1: Determining the threshold for validating
the best candidates from the stem candidate list.

candidates.

The first condition has very good precision, sim-
ilar to the original method. The morphemes found
with this method are predominantly stem forms that
occur in compounding or derivation (Komposition-
ssẗamme and Derivationsstämme). The second con-
dition enables us to differentiate between stems that
occur with common suffixes (and therefore have
high average frequencies), and pseudostems such
as runterschwhose affix list contains many non-
morphemes (e.g.lucken, iebt, aute). These non-
morphemes are very rare since they are not gener-
ated by a regular process.
Step 3: Pruning
All stem candidates that occur less than three times
are removed from the list. The remaining stem can-
didates are ordered according to the average fre-
quency of their non-word suffixes. This criterion
puts the high quality stem candidates (that occur
with very common suffixes) to the top of the list.
In order to obtain a high-precision stem list, it is
necessary to cut the list of candidates at some point.
The threshold for this is determined by the data: we
choose the point at which the function of list-rank
vs. score changes steepness (see Figure 1). This
visual change of steepness corresponds to the point
where potential stems found get more noisy because
the strings with which they occur are not common
affixes. We found the performance of the result-
ing morphological system to be quite stable (±1%
f-score) for any cutting point on the slope between
20% and 50% of the list (for the German data set
ranks 4000 and 12000), but importantly before the
function tails off. The threshold was also robust
across the other languages and data sets.
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4.2 Morphological Segmentation
As discussed in section 3.3, the original implemen-
tation of the algorithm iteratively chops off the most
probable affixes at both edges of the word without
taking into account the context of the affix. In mor-
phologically complex languages, this context-blind
approach often leads to suboptimal results, and also
allows segmentations that are morphotactically im-
possible, such as inflectional suffixes in the middle
of words. Another risk is that the letter sequence that
is left after removing potential prefixes and suffixes
from both ends is not a proper stem itself but just a
single letter or vowel-less letter-sequence.

These problems can be solved by using a bi-gram
language model to capture the morphotactic proper-
ties of a particular language. Instead of simply peel-
ing off the most probable affixes from both ends of
the word, all possible segmentations of the word are
generated and ranked using the language model. The
probabilities for the language model are learnt from
a set of words that were segmented with the origi-
nal simple approach. This bootstrapping allows us
to ensure that the approach remains fully unsuper-
vised. At the beginning and end of each word, an
edge marker ‘#’ is attached to the word. The model
can then also acquire probabilities about which af-
fixes occur most often at the edges of words.

Table 2 shows that filtering the segmentation re-
sults with the n-gram language model caused a sig-
nificant improvement on the overall F-score for most
languages, and led to significant changes in pre-
cision and recall. Whereas the original segmen-
tation yielded balanced precision and recall (both
68%), the new filtering boosts precision to over
73%, with 64% recall. Which method is preferable
(i.e. whether precision or recall is more important)
is task-dependent.

In future work, we plan to draw on (Creutz and
Lagus, 2006), who use a HMM with morphemic cat-
egories to impose morphotactic constraints. In such
an approach, each element from the affix list is as-
signed with a certain probability to the underlying
categories of “stem”, “prefix” or “suffix”, depend-
ing on the left and right perplexity of morphemes, as
well as morpheme length and frequency. The tran-
sitional probabilities from one category to the next
model the morphotactic rules of a language, which
can thus be learnt automatically.

4.3 Learning Stem Variation
Stem variation through ablauting and umlauting
(an English example is run–ran) is an interest-
ing problem that cannot be captured by the algo-
rithm outlined above, as variations take place within
the morphemes. Stem variations can be context-
dependent and do not constitute a morpheme in
themselves. German umlauting and ablauting leads
to data sparseness problems in morphological seg-
mentation and affix acquisition. One problem is that
affixes which usually cause ablauting or umlauting
are very difficult to find. Typically, ablauted or um-
lauted stems are only seen with a very small number
of different affixes, which means that the affix sets
of such stems are divided into several unrelated sub-
sets, causing the stem to be pruned from the stem
candidate list. Secondly, ablauting and umlauting
lead to low transitional probabilities at the positions
in stems where these phenomena occur. Consider
for example the affix set for the stem candidatebock-
spr, which contains the pseudoaffixesung, üngeand
ingen. The morphemessprung, sprüng andsprin-
genare derived from the rootspring ‘to jump’. In
the segmentation step this low transitional probabil-
ity thus leads to oversegmentation.

We therefore investigated whether we can learn
these regular stem variations automatically. A sim-
ple way to acquire the stem variations is to look at
the suffix clusters which are calculated during the
stem-acquisition step. When looking at the sets of
substrings that are clustered together by having the
same prefix, we found that they are often inflections
of one another, because lexicalized compounds are
used frequently in different inflectional variants. For
example, we findTrainingssprungas well asTrain-
ingsspr̈ungein the corpus. The affix list of the stem
candidatetrainings thus contains the wordssprung
and sprünge. Edit distance can then be used to
find differences between all words in a certain affix
list. Pairs with small edit distances are stored and
ranked by frequency. Regular transformation rules
(e.g. ablauting and umlauting,u → ü..e) occur at
the top of the list and are automatically accepted as
rules (see Table 1). This method allows us to not
only find the relation between two words in the lex-
icon (SprungandSpr̈unge) but also to automatically
learn rules that can be applied to unknown words to
check whether their variant is a word in the lexicon.
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freq. diff. examples
1682 aä..e sack-s̈acke, brach-br̈ache, stark-stärke
344 aä sahen-s̈ahen, garten-g̈arten
321 uü..e flug-fl̈uge, bund-b̈unde
289 ä a..s vertr̈age-vertrages, p̈asse-passes
189 oö..e chor-cḧore, strom-str̈ome, ?r̈ohre-rohr
175 t en setzt-setzen, bringt-bringen
168 a u laden-luden, *damm-dumm
160 ß ss l̈aßt-l̈asst, mißbrauch-missbrauch

[. . .]
136 a en firma-firmen, thema-themen

[. . .]
2 ß g *fließen-fliegen, *laßt-lagt
2 um o *studiums-studios

Table 1: Excerpts from the stem variation detection
algorithm results. Morphologically unrelated word
pairs are marked with an asterisk.

We integrated information about stem variation
from the regular stem transformation rules (those
with the highest frequencies) into the segmentation
step by creating equivalence sets of letters. For ex-
ample, the ruleu→ ü..e generates an equivalence
set{ü, u}. These two letters then count as the same
letter when calculating transitional probabilities. We
evaluated the benefit of integrating stem variation
information for German on the German CELEX
data set, and achieved an improvement of 2% in
recall, without any loss in precision (F-measure:
69.4%, Precision: 68.1%, Recall: 70.8%; values for
RePortS-stems). For better comparability to other
systems and languages, results reported in the next
section refer to the system version that does not in-
corporate stem variation.

5 Evaluation

For evaluating the different versions of the algorithm
on English, Turkish and Finnish, we used the train-
ing and test sets from MorphoChallenge to enable
comparison with other systems. Performance of the
algorithm on German was evaluated on 244k manu-
ally annotated words from CELEX because German
was not included in the MorphoChallenge data.

Table 2 shows that the introduction of the stem
candidate acquisition step led to much higher recall
on German, Finnish and Turkish, but caused some
losses in precision. For English, adding both com-
ponents did not have a large effect on either preci-
sion or recall. This means that this component is
well behaved, i.e. it improves performance on lan-
guages where the intermediate stem-acquisition step

Lang. alg.version F-Meas. Prec. Recall

Eng1 original 76.8% 76.2% 77.4%
stems 67.6% 62.9% 73.1%
n-gram seg. 75.1% 74.4% 75.9%

Ger2 original 59.2% 71.1% 50.7%
stems 68.4% 68.1% 68.6%
n-gram seg. 68.9% 73.7% 64.6%

Tur1 original 54.2% 72.9% 43.1%
stems 61.8% 65.9% 58.2%
n-gram seg. 64.2% 65.2% 63.3%

Fin1 original 47.1% 84.5% 32.6%
stems 56.6% 74.1% 45.8%
n-gram seg. 58.9% 76.1% 48.1%
max-split* 61.3% 66.3% 56.9%

Table 2: Performance of the algorithm with the mod-
ifications on different languages.
1MorphoChallenge Data,2German CELEX

is needed, but does not impair results on other lan-
guages. Recall for Finnish is still very low. It can be
improved (at the expense of precision) by selecting
the analysis with the largest number of segments in
the segmentation step. The results for this heuris-
tic was only evaluated on a smaller test set (ca. 700
wds), hence marked with an asterisk in Table 2.

The algorithm is very efficient: When trained on
the 240m tokens of the German TAZ corpus, it takes
up less than 1 GB of memory. The training phase
takes approx. 5 min on a 2.4GHz machine, and the
segmentation of the 250k test words takes 3 min for
the version that does the simple segmentation and
about 8 min for the version that generates all possi-
ble segmentations and uses the language model.

5.1 Comparison to other systems

This modified version of the algorithm performs sec-
ond best for English (after original RePortS) and
ranks third for Turkish (after Bernhards algorithm
with 65.3% F-measure and Morfessor-Categories-
MAP with 70.7%). On German, our method sig-
nificantly outperformed the other unsupervised al-
gorithms, see Table 3. While most of the systems
compared here were developed for languages other
than German, (Bordag, 2006) describes a system ini-
tially built for German. When trained on the “Pro-
jekt Deutscher Wortschatz” corpus which comprises
24 million sentences, it achieves an F-score of 61%
(precision 60%, recall 62%2) when evaluated on the
full CELEX corpus.

2Data from personal communication.
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morphology F-Meas. Prec. Recall
SMOR-disamb2 83.6% 87.1% 80.4%
ETI 79.5% 75.4% 84.1%
SMOR-disamb1 71.8% 95.4% 57.6%
RePortS-lm 68.8% 73.7% 64.6%
RePortS-stems 68.4% 68.1% 68.6%
best Bernhard 63.5% 64.9% 62.1%
Bordag 61.4% 60.6% 62.3%
orig. RePortS 59.2% 71.1% 50.7%
best Morfessor 1.0 52.6% 70.9% 41.8%

Table 3: Evaluating rule-based and data-based sys-
tems for morphological segmentation with respect to
CELEX manual morphological annotation.

Rule-based systems are currently the most com-
mon approach to morphological decomposition and
perform better at segmenting words than state-of-
the-art unsupervised algorithms (see Table 3 for per-
formance of state-of-the-art rule-based systems eval-
uated on the same data). Both the ETI3 and the
SMOR (Schmid et al., 2004) systems rely on a large
lexicon and a set of rules. The SMOR system re-
turns a set of analyses that can be disambiguated in
different ways. For details refer to pp. 29–33 in
(Demberg, 2006).

5.2 Evaluation on Grapheme-to-Phoneme
Conversion

Morphological segmentation is not of value in itself
– the question is whether it can help improve results
on an application. Performance improvements due
to morphological information have been reported for
example in MT, information retrieval, and speech
recognition. For the latter task, morphological seg-
mentations from the unsupervised systems presented
here have been shown to improve accuracy (Kurimo
et al., 2006).

Another motivation for evaluating the system on
a task rather than on manually annotated data is
that linguistically motivated morphological segmen-
tation is not necessarily the best possible segmenta-
tion for a certain task. Evaluation against a manu-
ally annotated corpus prefers segmentations that are
closest to linguistically motivated analyses. Further-
more, it might be important for a certain task to
find a particular type of morpheme boundaries (e.g.
boundaries between stems), but for another task it

3Eloquent Technology, Inc. (ETI) TTS system.
www.mindspring.com/˜ssshp/ssshp_cd/ss_
eloq.htm

morphology F-Meas. (CELEX) PER (dt)
CELEX 100% 2.64%
ETI 79.5% 2.78%
SMOR-disamb2 83.0% 3.00%
SMOR-disamb1 71.8% 3.28%
RePortS-lm 68.8% 3.45%
no morphology 3.63%
orig. RePortS 59.2% 3.83%
Bernhard 63.5% 3.88%
RePortS-stem 68.4% 3.98%
Morfessor 1.0 52.6% 4.10%
Bordag 64.1% 4.38%

Table 4: F-measure for evaluation on manually an-
notated CELEX and phoneme error rate (PER) from
g2p conversion using a decision tree (dt).

might be very important to find boundaries between
stems and suffixes. The standard evaluation proce-
dure does not differentiate between the types of mis-
takes made. Finally, only evaluation on a task can
provide information as to whether high precision or
high recall is more important, therefore, the decision
as to which version of the algorithm should be cho-
sen can only be taken given a specific task.

For these reasons we decided to evaluate the seg-
mentation from the new versions of the RePortS al-
gorithm on a German grapheme-to-phoneme (g2p)
conversion task. The evaluation on this task is moti-
vated by the fact that (Demberg, 2007) showed that
good-quality morphological preprocessing can im-
prove g2p conversion results. We here compare the
effect of using our system’s segmentations to a range
of different morphological segmentations from other
systems. We ran each of the rule-based systems
(ETI, SMOR-disamb1, SMOR-disamb2) and the
unsupervised algorithms (original RePortS, Bern-
hard, Morfessor 1.0, Bordag) on the CELEX data
set and retrained our decision tree (an implementa-
tion based on (Lucassen and Mercer, 1984)) on the
different morphological segmentations.

Table 4 shows the F-score of the different systems
when evaluated on the manually annotated CELEX
data (full data set) and the phoneme error rate (PER)
for the g2p conversion algorithm when annotated
with morphological boundaries (smaller test set,
since the decision tree is a supervised method and
needs training data). As we can see from the results,
the distribution of precision and recall (see Table 3)
has an important impact on the conversion quality:
the RePortS version with higher precision signifi-
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cantly outperforms the other version on the task, al-
though their F-measures are almost identical. Re-
markably, the RePortS version that uses the filter-
ing step is the only unsupervised system that beats
the no-morphology baseline (p < 0.0001). While
all other unsupervised systems tested here make the
system perform worse than it would without mor-
phological information, this new version improves
accuracy on g2p conversion.

6 Conclusions
A significant improvement in F-score was achieved
by three simple modifications to the RePortS al-
gorithm: generating an intermediary high-precision
stem candidate list, using a language model to dis-
ambiguate between alternative segmentations, and
learning patterns for regular stem variation, which
can then also be exploited for segmentation. These
modifications improved results on four different lan-
guages considered: English, German, Turkish and
Finnish, and achieved the best results reported so far
for an unsupervised system for morphological seg-
mentation on German. We showed that the new ver-
sion of the algorithm is the only unsupervised sys-
tem among the systems evaluated here that achieves
sufficient quality to improve transcription perfor-
mance on a grapheme-to-phoneme conversion task.
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Abstract

Partition-based morphology is an approach
of finite-state morphology where a grammar
describes a special kind of regular relations,
which split all the strings of a given tuple
into the same number of substrings. They
are compiled in finite-state machines. In this
paper, we address the question of merging
grammars using different partitionings into
a single finite-state machine. A morphologi-
cal description may then be obtained by par-
allel or sequential application of constraints
expressed on different partition notions (e.g.
morpheme, phoneme, grapheme). The the-
ory of Mazurkiewicz Trace Languages, a
well known semantics of parallel systems,
provides a way of representing and compil-
ing such a description.

1 Partition-Based Morphology

Finite-State Morphology is based on the idea that
regular relations are an appropriate formalism to de-
scribe the morphology of a natural language. Such a
relation is a set of pairs, the first component being an
actual form called surface form, the second compo-
nent being an abstract description of this form called
lexical form. It is usually implemented by a finite-
state transducer. Relations are not oriented, so the
same transducer may be used both for analysis and
generation. They may be non-deterministic, when
the same form belongs to several pairs. Further-
more, finite state machines have interesting proper-
ties, they are composable and efficient.

There are two main trends in Finite-State Mor-
phology: rewrite-rule systems and two-level rule
systems. Rewrite-rule systems describe the mor-
phology of languages using contextual rewrite rules
which are easily applied in cascade. Rules are com-
piled into finite-state transducers and merged using
transducer composition (Kaplan and Kay, 1994).

The other important trend of Finite-State Mor-
phology is Two-Level Morphology (Koskenniemi,
1983). In this approach, not only pairs of lexical and
surface strings are related, but there is a one-to-one
correspondence between their symbols. It means
that the two strings of a given pair must have the
same length. Whenever a symbol of one side does
not have an actual counterpart in the other string,
a special symbol 0 is inserted at the relevant po-
sition in order to fulfill the same-length constraint.
For example, the correspondence between the sur-
face form spies and the morpheme concatenation

spy+s is given as follows:
s p y 0 + s
s p i e 0 s

Same-length relations are closed under intersection,
so two-level grammars describe a system as the si-
multaneous application of local constraints.

A third approach, Partition-Based Morphology,
consists in splitting the strings of a pair into the same
number of substrings. The same-length constraint
does not hold on symbols but on substrings. For ex-
ample, spies and spy+s may be partitioned as

follows:
s p y + s
s p ie ε s

The partition-based approach was first proposed
by (Black et al., 1987) and further improved by (Pul-
man and Hepple, 1993) and (Grimley-Evans et al.,
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1996). It has been used to describe the morphol-
ogy of Syriac (Kiraz, 2000), Akkadian (Barthélemy,
2006) and Arabic Dialects (Habash et al., 2005).
These works use multi-tape transducers instead of
usual two tape transducers, describing a special case
of n-ary relations instead of binary relations.

Definition 1 Partitioned n-relation
A partitioned n-relation is a set of finite sequences
of string n-tuples.

For instance, the n-tuple sequence of
the example (spy, spies) given above is
(s, s)(p, p)(y, ie)(+, ε)(s, s). Of course, all
the partitioned n-relations are not recognizable
using a finite-state machine. Grimley-Evans and
al. propose a partition-based formalism with a
strong restriction: the string n-tuples used in the
sequences belong to a finite set of such n-tuples (the
centers of context-restriction rules). They describe
an algorithm which compiles a set of contextual
rules describing a partitioned n-relation into an
epsilon-free letter transducer. (Barthélemy, 2005)
proposed a more powerful framework, where the
relations are defined by concatenating tuples of
independent regular expressions and operations
on partitioned n-relations such as intersection and
complementation are considered.

In this paper, we propose to use Mazurkiewicz
Trace Languages instead of partitioned relation as
the semantics of partition-based morphological for-
malisms. The benefits are twofold: firstly, there is
an extension of the formal power which allows the
combination of morphological description using dif-
ferent partitionings of forms. Secondly, the compi-
lation of such languages into finite-state machines
has been exhaustively studied. Their closure prop-
erties provide operations useful for morphological
purposes.

They include the concatenation (for instance for
compound words), the intersection used to merge
local constraints, the union (modular lexicon), the
composition (cascading descriptions, form recogni-
tion and generation), the projection (to extract one
level of the relation), the complementation and set
difference, used to compile contextual rules fol-
lowing the algorithms in (Kaplan and Kay, 1994),
(Grimley-Evans et al., 1996) and (Yli-Jyrä and
Koskenniemi, 2004).

The use of the new semantics does not imply
any change of the user-level formalisms, thanks to
a straightforward homomorphism from partitioned
n-relations to Mazurkiewicz Trace Languages.

2 Mazurkiewicz Trace Languages

Within a given n-tuple, there is no meaningful
order between symbols of the different levels.
Mazurkiewicz trace languages is a theory which ex-
presses partial ordering between symbols. They
have been defined and studied in the realm of par-
allel computing. In this section, we recall their
definition and some classical results. (Diekert and
Métivier, 1997) gives an exhaustive presentation on
the subject with a detailed bibliography. It contains
all the results mentioned here and refers to their orig-
inal publication.

2.1 Definitions
A Partially Commutative Monoid is defined on an
alphabet Σ with an independence binary relation I
over Σ×Σ which is symmetric and irreflexive. Two
independent symbols commute freely whereas non-
independent symbols do not. I defines an equiva-
lence relation ∼I on Σ∗: two words are equivalent if
one is the result of a series of commutation of pairs
of successive symbols which belong to I. The nota-
tion [x] is used to denote the equivalence class of a
string x with respect to ∼I .

The Partially Commutative Monoid M(Σ, I) is
the quotient of the free monoid Σ∗ by the equiva-
lence relation ∼I .

The binary relation D = (Σ×Σ)− I is called the
dependence relation. It is reflexive and symmetric.

ϕ is the canonical homomorphism defined by:

ϕ : Σ∗ → M(Σ, I)
x 7→ [x]

A Mazurkiewicz trace language (abbreviation:
trace language) is a subset of a partially commuta-
tive monoid M(Σ, I).

2.2 Recognizable Trace Languages
A trace language T is said recognizable if there
exists an homomorphism ν from M(Σ, I) to a fi-
nite monoid S such that T = ν−1(F ) for some
F ⊆ S. A recognizable Trace Language may be
implemented by a Finite-State Automaton.

929



A trace [x] is said to be connected if the depen-
dence relation restricted to the alphabet of [x] is a
connected graph. A trace language is connected if
all its traces are connected.

A string x is said to be in lexicographic normal
form if x is the smallest string of its equivalence
class [x] with respect to the lexicographic ordering
induced by an ordering on Σ. The set of strings in
lexicographic normal form is written LexNF . This
set is a regular language which is described by the
following regular expression:
LexNF = Σ∗ −

⋃
(a,b)∈I,a<b Σ∗b(I(a))∗aΣ∗

where I(a) denotes the set of symbols independent
from a.

Property 1 Let T ⊆ M(Σ, I) be a trace language.
The following assertions are equivalent:

• T is recognizable

• T is expressible as a rational expression where
the Kleene star is used only on connected lan-
guages.

• The set Min(T ) = {x ∈ LexNF |[x] ∈ T} is
a regular language over Σ∗.

Recognizability is closely related to the notion of
iterative factor, which is the language-level equiva-
lent of a loop in a finite-state machine. If two sym-
bols a and b such that a < b belong to a loop, and if
the loop is traversed several times, then occurrences
of a and b are interlaced. For such a string to be
in lexicographic normal form, a dependent symbol
must appear in the loop between b and a.

2.3 Operations and closure properties
Recognizable trace languages are closed under in-
tersection and union. Furthermore, Min(T1) ∪
Min(T2) = Min(T1∪T2) and Min(T1)∩Min(T2) =
Min(T1 ∩ T2). It comes from the fact that intersec-
tion and union do not create new iterative factor. The
property on lexicographic normal form comes from
the fact that all the traces in the result of the opera-
tion belong to at least one of the operands which are
in normal form.

Recognizable trace language are closed under
concatenation. Concatenation do not create new it-
erative factors. The concatenation Min(T1)Min(T2)
is not necessarily in lexicographic normal form. For

instance, suppose that a > b. Then {[a]}.{[b]} =
{[ab]}, but Min({[a]}) = a, Min({[b]}) = b, and
Min({[ab]}) = ba.

Recognizable trace languages are closed under
complementation.

Recognizable Trace Languages are not closed un-
der Kleene star. For instance, a < b, Min([ab]∗) =
anbn which is known not to be regular.

The projection on a subset S of Σ is the opera-
tion written πS , which deletes all the occurrences
of symbols in Σ − S from the traces. Recogniz-
able trace languages are not closed under projection.
The reason is that the projection may delete symbols
which makes the languages of loops connected.

3 Partitioned relations and trace languages

It is possible to convert a partitioned relation into a
trace language as follows:

• represent the partition boundaries using a sym-
bol ω not in Σ.

• distinguish the symbols according to the com-
ponent (tape) of the n-tuple they belong to. For
this purpose, we will use a subscript.

• define the dependence relation D by:

– ω is dependent from all the other symbols
– symbols in Σ sharing the same subscript

are mutually dependent whereas symbols
having different subscript are mutually in-
dependent.

For instance, the spy n-tuple sequence
(s, s)(p, p)(y, ie)(+, ε)(s, s) is translated into
the trace ωs1s2ωp1p2ωy1i2e2ω+1 ωs1s2ω. The
figure 1 gives the partial order between symbols of
this trace.

The dependence relation is intuitively sound. For
instance, in the third n-tuple, there is a dependency
between i and e which cannot be permuted, but there
is no dependency between i (resp. e) and y: i is nei-
ther before nor after y. There are three equivalent
permutations: y1i2e2, i2y1e2 and i2e2y1. In an im-
plementation, one canonical representation must be
chosen, in order to ensure that set operations, such as
intersection, are correct. The notion of lexicographic
normal form, based on any arbitrary but fixed order
on symbols, gives such a canonical form.
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Figure 1: Partially ordered symbols

The compilation of the trace language into a
finite-state automaton has been studied through the
notion of recognizability. This automaton is very
similar to an n-tape transducer. The Trace Lan-
guage theory gives properties such as closure under
intersection and soundness of the lexicographic nor-
mal form, which do not hold for usual transducers
classes. It also provides a criterion to restrict the de-
scription of languages through regular expressions.
This restriction is that the closure operator (Kleene
star) must occur on connected languages only. In the
translation of a partition-based regular expression, a
star may appear either on a string of symbols of a
given tape or on a string with at least one occurrence
of ω.

Another benefit of Mazurkiewicz trace languages
with respect to partitioned relations is their ability
to represent the segmentation of the same form us-
ing two different partitionings. The example of fig-
ure 2 uses two partitionings of the form spy+s,
one based on the notion of morpheme, the other on
the notion of phoneme. The notation <pos=noun>
and <number=pl> stands for two single symbols.
Flat feature structures over (small) finite domains
are easily represented by a string of such symbols.
N-tuples are not very convenient to represent such a
system.

Partition-based formalism are especially adapted
to express relations between different representation
such as feature structures and affixes, with respect
to two-level morphology which imposes an artificial
symbol-to-symbol mapping.

A multi-partitioned relation may be obtained by
merging the translation of two partition-based gram-
mars which share one or more common tapes. Such
a merging is performed by the join operator of the
relational algebra. Using a partition-based grammar
for recognition or generation implies such an oper-
ation: the grammar is joined with a 1-tape machine

without partitioning representing the form to be rec-
ognized (surface level) or generated (lexical level).

4 Multi-Tape Trace Languages

In this section, we define a subclass of
Mazurkiewicz Trace Languages especially adapted
to partition-based morphology, thanks to an explicit
notion of tape partially synchronized by partition
boundaries.

Definition 2 A multi-tape partially commutative
monoid is defined by a tuple (Σ,Θ,Ω, µ) where

• Σ is a finite set of symbols called the alphabet.

• Θ is a finite set of symbols called the tapes.

• Ω is a finite set of symbols which do not belong
to Σ, called the partition boundaries.

• µ is a mapping from Σ∪Ω to 2θ such that µ(x)
is a singleton for any x ∈ Σ.

It is the Partially Commutative Monoid M(Σ ∪
Ω, Iµ) where the independence relation is defined by
Iµ = {(x, y) ∈ Σ ∪ Ω× Σ ∪Ω|µ(x) ∩ µ(y) = ∅}.
Notation: MPM(Σ,Θ,Ω, µ).

A Multi-Tape Trace Language is a subset of a
Multi-Tape partially commutative monoid.

We now address the problem of relational op-
erations over Recognizable Multi-Tape Trace Lan-
guages. Recognizable languages may be imple-
mented by finite-state automata in lexicographic
normal form, using the morphism ϕ−1. Operations
on trace languages are implemented by operations
on finite-state automata. We are looking for imple-
mentations preserving the normal form property, be-
cause changing the order in regular languages is not
a standard operation.

Some set operations are very simple to imple-
ment, namely union, intersection and difference.
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Figure 2: Two partitions of the same tape

The elements of the result of such an operation be-
longs to one or both operands, and are therefore in
lexicographic normal form. If we write Min(T ) the
set Min(T ) = {x ∈ LexNF |[x] ∈ T}, where T is
a Multi-Tape Trace Language, we have trivially the
properties:

• Min(T1 ∪ T2) = Min(T1) ∪Min(T2)

• Min(T1 ∩ T2) = Min(T1) ∩Min(T2)

• Min(T1 − T2) = Min(T1)−Min(T2)

Implementing the complementation is not so
straightforward because Min(T ) is usually not
equal to Min(T ). The later set contains strings not
in lexical normal forms which may belong to the
equivalence class of a member of T with respect to
∼I . The complementation must not be computed
with respect to regular languages but to LexNF.
Min(T ) = LexNF −Min(T )

As already mentioned, the concatenation of two
regular languages in lexicographic normal form is
not necessarily in normal form. We do not have a
general solution to the problem but two partial so-
lutions. Firstly, it is easy to test whether the re-
sult is actually in normal form or not. Secondly,
the result is in normal form whenever a synchro-
nization point belonging to all the levels is inserted
between the strings of the two languages. Let
ωu ∈ Ω, µ(ωu) = Θ. Then, Min(T1.{ωu}.T2) =
Min(T1).Min(ωu).Min(T2).

The closure (Kleene star) operation creates a new
iterative factor and therefore, the result may be a
non recognizable trace language. Here again, con-
catenating a global synchronization point at the end
of the language gives a trace language closed under

Kleene star. By definition, such a language is con-
nected. Furthermore, the result is in normal form.

So far, operations have operands and the result be-
longing to the same Multi-tape Monoid. It is not the
case of the last two operations: projection and join.

We use the the operators Dom, Range, and the
relations Id and Insert as defined in (Kaplan and Kay,
1994):

• Dom(R) = {x|∃y, (x, y) ∈ R}

• Range(R) = {y|∃x, (x, y) ∈ R}

• Id(L) = {(x, x)|x ∈ L}

• Insert(S) = (Id(Σ) ∪ ({ε} × S))∗. It is used
to insert freely symbols from S in a string from
Σ∗. Conversely, Insert(S)−1 removes all the
occurrences of symbols from S, if S ∩ Σ = ∅.

The result of a projection operation may not be
recognizable if it deletes symbols making iterative
factors connected. Furthermore, when the result is
recognizable, the projection on Min(T ) is not nec-
essarily in normal form. Both phenomena come
from the deletion of synchronization points. There-
fore, a projection which deletes only symbols from
Σ is safe. The deletion of synchronization points is
also possible whenever they do not synchronize any-
thing more in the result of the projection because all
but possibly one of its tapes have been deleted.

In the tape-oriented computation system, we are
mainly interested in the projection which deletes
some tapes and possibly some related synchroniza-
tion points.

Property 2 Projection
Let T be a trace language over the MTM
M = (Σ,Θ, w, µ). Let Ω1 ⊂ Ω and Θ1 ⊂ Θ. If
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∀ω ∈ Ω− Ω1, |µ(ω) ∩Θ1| ≤ 1, then
Min(πΘ1,Ω1

(T )) = Range(Insert({x ∈
Σ|µ(x) /∈ Θ1} ∪ Ω− Ω1)

−1 ◦Min(T ))

The join operation is named by analogy with the
operator of the relational algebra. It has been defined
on finite-state transducers (Kempe et al., 2004).

Definition 3 Multi-tape join
Let T1 ⊂ MTM(Σ1,Θ1,Ω1, µ1) and T2 ⊂
TM(Σ2,Θ2,Ω2, µ2) be two multi-tape trace lan-
guages. T1 1 T2 is defined if and only if

• ∀σ ∈ Σ1 ∩ Σ2, µ1(σ) ∩Θ2 = µ2(σ) ∩Θ1

• ∀ω ∈ Ω1 ∩Ω2, µ1(ω) ∩Θ2 = µ2(ω) ∩Θ1

The Multi-tape Trace Language T1 1 T2 is defined
on the Multi-tape Partially Commutative Monoid
MTM(Σ1∪Σ2,Θ1∪Θ2,Ω1∪Ω2, µ) where µ(x) =
µ1(x) ∪ µ2(x). It is defined by πΣ1∪Θ1∪Ω1

(T1 1

T2) = T1 and πΣ2∪Θ2∪Ω2
(T1 1 T2) = T2.

If the two operands T1 and T2 belong to the same
MTM, then T1 1 T2 = T1 ∩ T2. If the operands
belong to disjoint monoids (which do not share any
symbol), then the join is a Cartesian product.

The implementation of the join relies on the finite-
state intersection algorithm. This algorithm works
whenever the common symbols of the two languages
appear in the same order in the two operands. The
normal form does not ensure this property, because
symbols in the common part of the join may be syn-
chronized by tapes not in the common part, by tran-
sitivity, like in the example of the figure 3. In this
example, c on tape 3 and f on tape 1 are ordered
c < f by transitivity using tape 2.

b

c
w1

a
w2

f

g

tape 1

tape 2

tape 3

w0 w0d

e

Figure 3: indirect tape synchronization

Let T ⊆ MPM(Σ,Θ,Ω, µ) a multi-partition
trace language. Let GT be the labeled graph where
the nodes are the tape symbols from Θ and the
edges are the set {(x, ω, y) ∈ Θ × Ω × Θ|x ∈
µ(ω) and y ∈ µ(ω)}. Let Sync(Θ) be the set de-
fined by Sync(Θ) = {ω ∈ Ω|ω appears in GT on a
path between two tapes of Θ}.

The GT graph for example of the figure 3 is given
in figure 4 and Sync({1, 3}) = {ω0, ω1, ω2}.

tape 2

w0

w0w1
tape 1 w2

w0

tape 3

Figure 4: the GT graph

Sync(Θ) is different from µ−1(Θ) ∩ Ω because
some synchronization points may induce an order
between two tapes by transitivity, using other tapes.
Property 3 Let T1 ⊆ MPM(Σ1,Θ1,Ω1, µ1)
and T2 ⊆ MPM(Σ2,Θ2,Ω2, µ2) be two multi-
partition trace languages. Let Σ = Σ1 ∩ Σ2

and Ω = Ω1 ∩ Ω2. If Sync(Θ1 ∩ Θ2) ⊆
Ω, then πΣ∪Ω(Min(T1)) ∩ πΣ∪Ω(Min(T2)) =
Min(πΣ∪Ω(T1) ∩ πΣ∪Ω(T2)

This property expresses the fact that symbols be-
longing to both languages appear in the same order
in lexicographic normal forms whenever all the di-
rect and indirect synchronization symbols belong to
the two languages too.
Property 4 Let T1 ⊆ MPM(Σ1,Θ1,Ω1, µ1)
and T2 ⊆ MPM(Σ2,Θ2,Ω2, µ2) be two multi-
partition trace languages. If Θ1 ∩ Θ2 is a
singleton {θ} and if ∀ω ∈ Ω1 ∩ Ω2, θ ∈
µ(ω), then πΣ∪Ω(Min(T1)) ∩ πΣ∪Ω(Min(T2)) =
Min(πΣ∪Ω(T1) ∩ πΣ∪Ω(T2)

This second property expresses the fact that sym-
bols appear necessarily in the same order in the two
operands if the intersection of the two languages is
restricted to symbols of a single tape. This property
is straightforward since symbols of a given tape are
mutually dependent.

We now define a computation over (Σ∪Ω)∗ which
computes Min(T1 1 T2).

Let T1 ⊂ MTM(Σ1,Θ1, ω1, µ1) and T2 ⊂
MTM(Σ2,Θ2,Ω2, µ2) be two recognizable multi-
tape trace languages.
If Sync(Θ1 ∩ Θ2) ⊆ Ω, then Min(T1 1 T2) =
Range(Min(T1 ◦ Insert(Σ2 − Σ1) ◦ Id(LexNF)) ∩
Range(Min(T2) ◦ Insert(Σ1 − Σ2) ◦ Id(LexNF)).
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5 A short example

We have written a morphological description of
Turkish verbal morphology using two different par-
titionings. The first one corresponds to the notion
of affix (morpheme). It is used to describe the mor-
photactics of the language using rules such as the
following context-restriction rule:
(y?I4m,1 sing) ⇒

(I?yor,prog)|(y?E2cE2k,future)
In this rule, y? stands for an optional y, I4 and E2

for abstract vowels which realizations are subject to
vowel harmony and I? is an optional occurrence of
the first vowel. The rule may be read: the suffix
y?I4m denoting a first person singular may appear
only after the suffix of progressive or the suffix of
future1. Such rules describe simply affix order in
verbal forms.

The second partitioning is a symbol-to-symbol
correspondence similar to the one used in standard
two-level morphology. This partitioning is more
convenient to express the constraints of vowel har-
mony which occurs anywhere in the affixes and does
not depend on affix boundaries.

Here are two of the rules implementing vowel har-
mony:
(I4,i) ⇒ (Vow,e|i) (Cons,Cons)*
(I4,u) ⇒ (Vow,o|u) (Cons,Cons)*
Vow and Cons denote respectively the sets of vowels
and consonants. These rules may be read: a symbol
I4 is realized as i (resp. u) whenever the closest pre-
ceding vowel is realized as e or i (resp. o or u).

The realization or not of an optional letter may be
expressed using one or the other partitioning. These
optional letters always appear in the first position of
an affix and depends only on the last letter of the
preceding affix.
(y?,y) ⇒ (Vow,Vow)

Here is an example of a verbal form given as a 3-
tape relation partitioned using the two partitionings.

verbal root prog 1 sing
g e l I? y o r Y? I4 m
g e l i y o r ε u m

The translation of each rule into a Multi-tape
Trace Language involves two tasks: introducing par-

1The actual rule has 5 other alternative tenses. It has been
shortened for clarity.

tition boundary symbols at each frontier between
partitions. A different symbol is used for each kind
of partitioning. Distinguishing symbols from differ-
ent tapes in order to ensure that µ(x) is a singleton
for each x ∈ Σ. Symbols of Σ are therefore pairs
with the symbol appearing in the rule as first com-
ponent and the tape identifier, a number, as second
component.

Any complete order between symbols would
define a lexicographic normal form. The order
used by our system orders symbol with respect
to tapes: symbols of the first tape are smaller
than the symbols of tape 2, and so on. The or-
der between symbols of a same tape is not impor-
tant because these symbols are mutually dependent.
The translation of a tuple (a1 . . . an, b1 . . . bm) is
(a1, 1) . . . (an, 1)(b1, 2) . . . (bm, 2)ω1. Such a string
is in lexicographic normal form. Furthermore, this
expression is connected, thanks to the partition
boundary which synchronizes all the tapes, so its
closure is recognizable. The concatenation too is
safe.

All contextual rules are compiled following the
algorithm in (Yli-Jyrä and Koskenniemi, 2004) 2.
Then all the rules describing affixes are intersected
in an automaton, and all the rules describing surface
transformation are intersected in another automaton.
Then a join is performed to obtain the final machine.
This join is possible because the intersection of the
two languages consists in one tape (cf. property 4).
Using it either for recognition or generation is also
done by a join, possibly followed by a projection.

For instance, to recognize a surface form
geliyorum, first compile it in the multi-tape trace
language (g, 3)(e, 3)(l, 3) . . . (m, 3), join it with the
morphological description, and then project the re-
sult on tape 1 to obtain an abstract form (verbal
root,1)(prog,1)(1 sing,1). Finally ex-
tract the first component of each pair.

6 Conclusion

Partition-oriented rules are a convenient way to de-
scribe some of the constraints involved in the mor-
phology of the language, but not all the constraints
refer to the same partition notion. Describing a rule

2Two other compilation algorithm also work on the rules of
this example (Kaplan and Kay, 1994), (Grimley-Evans et al.,
1996). (Yli-Jyrä and Koskenniemi, 2004) is more general.
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with an irrelevant one is sometimes difficult and in-
elegant. For instance, describing vowel harmony us-
ing a partitioning based on morphemes takes neces-
sarily several rules corresponding to the cases where
the harmony is within a morpheme or across several
morphemes.

Previous partition-based formalisms use a unique
partitioning which is used in all the contextual rules.
Our proposition is to use several partitionings in or-
der to express constraints with the proper granular-
ity. Typically, these partitionings correspond to the
notions of morphemes, phonemes and graphemes.

Partition-based grammars have the same theoret-
ical power as two-level morphology, which is the
power of regular languages. It was designed to re-
main finite-state and closed under intersection. It is
compiled in finite-state automata which are formally
equivalent to the epsilon-free letter transducers used
by two-level morphology. It is simply more easy to
use in some cases, just like two-level rules are more
convenient than simple regular expressions for some
applications.

Partition-Based morphology is convenient when-
ever the different levels use very different represen-
tations, like feature structures and strings, or dif-
ferent writing systems (e.g. Japanese hiragana and
transcription). Two-level rules on the other hand
are convenient whenever the related strings are vari-
ants of the same representation like in the example
(spy+s,spies). Note that multi-partition morphology
may use a one-to-one correspondence as one of its
partitionings, and therefore is compatible with usual
two-level morphology.

With respect to rewrite rule systems, partition-
based morphology gives better support to parallel
rule application and context definition may involve
several levels. The counterpart is a risk of conflicts
between contextual rules.
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Abstract 

A number of Russian verbs lack 1sg non-
past forms. These paradigmatic gaps are 
puzzling because they seemingly contradict 
the highly productive nature of inflectional 
systems. We model the persistence and 
spread of Russian gaps via a multi-agent 
model with Bayesian learning. We ran 
three simulations: no grammar learning, 
learning with arbitrary analogical pressure, 
and morphophonologically conditioned 
learning. We compare the results to the 
attested historical development of the gaps. 
Contradicting previous accounts, we 
propose that the persistence of gaps can be 
explained in the absence of synchronic 
competition between forms. 

1 Introduction 

Paradigmatic gaps present an interesting challenge 
for theories of inflectional structure and language 
learning. Wug tests, analogical change and 
children’s overextensions of regular patterns 
demonstrate that inflectional morphology is highly 
productive. Yet lemmas sometimes have “missing” 
inflected forms. For example, in Russian the 
majority of verbs have first person singular (1sg) 
non-past forms (e.g., posadit’ ‘to plant’, posažu ‘I 
will plant’), but no 1sg form for a number of 
similar verbs (e.g., pobedit’ ‘to win’, *pobežu ‘I 
will win’). The challenge lies in explaining this 
apparent contradiction. Given the highly produc-

tive nature of inflection, why do paradigmatic gaps 
arise? Why do they persist?     

One approach explains paradigmatic gaps as a 
problem in generating an acceptable form.  Under 
this hypothesis, gaps result from irreconcilable 
conflict between two or more inflectional patterns.  
For example, Albright (2003) presents an analysis 
of Spanish verbal gaps based on the Minimal 
Generalization Learner (Albright and Hayes 2002). 
In his account, competition between mid-vowel 
diphthongization (e.g., s[e]ntir ‘to feel’, s[je]nto ‘I 
feel’) and non-diphthongization (e.g., p[e]dir ‘to 
ask’, p[i]do ‘I ask’) leads to paradigmatic gaps in 
lexemes for which the applicability of diphthon-
gization has low reliability (e.g., abolir ‘to abolish, 
*ab[we]lo, *ab[o]lo ‘I abolish’).   

However, this approach both overpredicts and 
underpredicts the existence of gaps cross-
linguistically.  First, it predicts that gaps should 
occur whenever the analogical forces determining 
word forms are contradictory and evenly weighted. 
However, variation between two inflectional 
patterns seems to more commonly result from such 
a scenario.  Second, the model predicts that if the 
form-based conflict disappears, the gaps should 
also disappear. However, in Russian and probably 
in other languages, gaps persist even after the loss 
of competing inflectional patterns or other 
synchronic form-based motivation (Sims 2006).   

By contrast, our approach operates at the level 
of inflectional property sets (IPS), or more 
properly, at the level of inflectional paradigms.  
We propose that once gaps are established in a 
language for whatever reason, they persist because 
learners infer the relative non-use of a given 
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combination of stem and IPS.1  Put differently, we 
hypothesize that speakers possess at least two 
kinds of knowledge about inflectional structure: (1) 
knowledge of how to generate the appropriate form 
for a given lemma and IPS, and (2) knowledge of 
the probability with which that combination of 
lemma and property set is expressed, regardless of 
the form. Our approach differs from previous 
accounts in that persistence of gaps is attributed to 
the latter kind of knowledge, and does not depend 
on synchronic morphological competition. 

We present a case study of the Russian verbal 
gaps, which are notable for their persistence.  They 
arose between the mid 19th and early 20th century 
(Baerman 2007), and are still strongly attested in 
the modern language, but have no apparent 
synchronic morphological cause.   

We model the persistence and spread of the 
Russian verbal gaps with a multi-agent model with 
Bayesian learning.  Our model has two kinds of 
agents, adults and children. A model cycle consists 
of two phases: a production-perception phase, and 
a learning-maturation phase. In the production-
perception phase, adults produce a batch of 
linguistic data (verb forms), and children listen to 
the productions from the adults they know. In the 
learning-maturation phase, children build a 
grammar based on the input they have received, 
then mature into adults.  The existing adults die off, 
and the next generation of children is born. 

Our model exhibits similar behavior to what is 
known about the development of Russian gaps. 

2 The historical and distributional facts 
of Russian verbal gaps 

2.1 Traditional descriptions 

Grammars and dictionaries of Russian frequently 
cite paradigmatic gaps in the 1sg non-past.  Nine 
major dictionaries and grammars, including 
Švedova (1982) and Zaliznjak (1977), yielded a 
combined list of 96 gaps representing 68 distinct 
stems.  These verbal gaps fall almost entirely into 
the second conjugation class, and they 
overwhelmingly affect the subgroup of dental 
stems.  Commonly cited gaps include: *galžu ‘I 
make a hubbub’; *očučus’ ‘I come to be (REFL)’; 

1SG *oščušču ‘I feel’; *pobežu ‘I will win’; and 
*ubežu ‘I will convince’.2 

                                                 

                                                

1 Paradigmatic gaps also probably serve a sociolinguistic 
purpose, for example as markers of education, but socio-
linguistic issues are beyond the scope of this paper. 

There is no satisfactory synchronic reason for 
the existence of the gaps.  The grouping of gaps 
among 2nd conjugation dental stems is seemingly 
non-arbitrary because these are exactly the forms 
that would be subject to a palatalizing morphopho-
nological alternation (tj → tS or Sj, dj → Z, sj → S, zj 
→ Z). Yet the Russian gaps do not meet the criteria 
for morphophonological competition as intended 
by Albright’s (2003) model, because the 
alternations apply automatically in Contemporary 
Standard Russian. Analogical forces should thus 
heavily favor a single form, for example, pobežu. 

Traditional explanations for the gaps, such as 
homophony avoidance (Švedova 1982) are also 
unsatisfactory since they can, at best, explain only 
a small percentage of the gaps. 

Thus, the data suggest that gaps persist in 
Russian primarily because they are not uttered, and 
this non-use is learned by succeeding generations 
of Russian speakers.3  The clustering of the gaps 
among 2nd conjugation dental stems most likely is 
partially a remnant of their original causes, and 
partially represents analogic extension of gaps 
along morphophonological lines (see 2.3 below). 

2.2 Empirical evidence for and operational 
definition of gaps 

When dealing with descriptions in semi- 
prescriptive sources such as dictionaries, we must 
always ask whether they accurately represent 
language use. In other words, is there empirical 
evidence that speakers fail to use these words? 

We sought evidence of gaps from the Russian 
National Corpus (RNC). 4  The RNC is a balanced 
textual corpus with 77.6 million words consisting 
primarily of the contemporary Russian literary 
language.  The content is prose, plays, memoirs 
and biographies, literary criticism, newspaper and 
magazine articles, school texts, religious and 

 
2  We use here the standard Cyrillic transliteration used by 
linguists.  It should not be considered an accurate 
phonological representation.  Elsewhere, when phonological 
issues are relevant, we use IPA. 
3 See Manning (2003) and Zuraw (2003) on learning from 
implicit negative evidence. 
4 Documentation: http://ruscorpora.ru/corpora-structure.html 
Mirror site used for searching: 
http://corpus.leeds.ac.uk/ruscorpora.html.    
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philosophical materials, technical and scientific 
texts, judicial and governmental publications, etc. 

We gathered token frequencies for the six non-
past forms of 3,265 randomly selected second 
conjugation verb lemmas.  This produced 11,729 
inflected forms with non-zero frequency. 5   As 
described in Section 3 below, these 11,729 form 
frequencies became our model’s seed data. 

To test the claim that Russian has verbal gaps, 
we examined a subsample of 557 2nd conjugation 
lemmas meeting the following criteria: (a) total 
non-past frequency greater than 36 raw tokens, and 
(b) 3sg and 3pl constituting less than 85% of total 
non-past frequency. 6   These constraints were 
designed to select verbs for which all six person-
number combinations should be robustly attested, 
and to minimize sampling errors by removing 
lemmas with low attestation. 

We calculated the probability of the 1sg 
inflection by dividing the number of 1sg forms by 
the total number of non-past forms. The subset was 
bimodally distributed with one peak near 0%, a 
trough at around 2%, and the other peak at 13.3%.  
The first peak represents lemmas in which the 1sg 
form is basically not used – gaps. Accordingly, we 
define gaps as second conjugation verbs which 
meet criteria (a) and (b) above, and for which the 
1sg non-past form constitutes less than 2% of total 
non-past frequency for that lemma (N=56). 

In accordance with the grammatical descrip-
tions, our criteria are disproportionately likely to 
identify dental stems as gaps. Still, only 43 of 412 
dental stems (10.4%) have gaps, compared with 13 
gaps among 397 examples of other stems (3.3%).   

Second, not all dental stems are equally affected.  
There seems to be a weak prototypicality effect 
centered around stems ending in /dj/, from which 
/tj/ and /zj/ each differ by one phonological feature.  
There may also be some weak semantic factors that 
we do not consider here. 
 

/dj/ /tj/ /zj/ /sj/ /stj/ 
13.3% 

(19/143) 
12.4% 

(14/118) 
11.9% 
(5/42) 

4.8% 
(3/62) 

4.3% 
(2/47) 

Table 1. Distribution of Russian verbal gaps 
among dental stems 

                                                 
5  We excluded 29 high-frequency lemmas for which the 
corpus did not provide accurate counts. 
6 Russian has a number of verbs for which only the 3sg and 
3pl are regularly used. 

2.3 Some relevant historical facts 

A significant difference between the morpho-
logical competition approach and our statistical 
learning approach is that the former attempts to 
provide a single account for both the rise and the 
perpetuation of paradigmatic gaps.  By contrast, 
our statistical learning model does not require that 
the morphological system provide synchronic 
motivation. The following question thus arises: 
Were the Russian gaps originally caused by forces 
which are no longer in play in the language? 

Baerman and Corbett (2006) find evidence that 
the gaps began with a single root, -bed- (e.g., 
pobedit’ ‘to win’), and subsequently spread 
analogically within dental stems.  Baerman (2007) 
expands on the historical evidence, finding that a 
conspiracy of several factors provided the initial 
push towards defective 1sg forms. Most important 
among these, many of the verbs with 1sg gaps in 
modern Russian are historically associated with 
aberrant morphophonological alternations. He 
argues that when these unusual alternations were 
eliminated in the language, some of the words 
failed to be integrated into the new morphological 
patterns, which resulted in lexically specified gaps. 

Important to the point here is that the 
elimination of marginal alternations removed an 
earlier synchronic motivation for the gaps.  Yet 
gaps have persisted and new gaps have arisen (e.g., 
pylesosit’ ‘to vacuum’). This persistence is the 
behavior that we seek to model. 

3 Formal aspects of the model 

We take up two questions: How much machinery 
do we need for gaps to persist? How much 
machinery do we need for gaps to spread to phono-
logically similar words?  We model three scenarios.  

In the first scenario there is no grammar learning.   
Adult agents produce forms by random sampling 
from the forms that heard as children, and child 
agents hear those forms. In the subsequent 
generation children become adults. In this scenario 
there is thus no analogical pressure. Any perse-
verance of gaps results from word-specific learning. 

The second scenario is similar to the first, except 
that the learning process includes analogical 
pressure from a random set of words.  Specifically, 
for a target concept, the estimated distribution of 
its IPS is influenced by the distribution of known 
words. This enables the learner to express a known 
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concept with a novel IPS. For example, imagine 
that a learner hears the present tense verb form 
googles, but not the past tense googled. By analogy 
with other verbs, learners can expect the past tense 
to occur with a certain frequency, even if they have 
not encountered it.   

The third scenario builds upon the second.  In 
this version, the analogical pressure is not 
completely random.  Instead, it is weighted by 
morphophonological similarity – similar word 
forms contribute more to the analogical force on a 
target concept than do dissimilar forms.  This 
addition to the model is motivated by the pervasive 
importance of stem shape in the Russian 
morphological system generally, and potentially 
provides an account for the phonological 
prototypicality effect among Russian gaps. 

The three scenarios thus represent increasing 
machinery for the model, and we use them to 
explore the conditions necessary for gaps to persist 
and spread.  We created a multi-agent network 
model with Bayesian learning component.  In the 
following sections we describe the model’s 
structure, and outline the criteria by which we 
evaluate its output under the various conditions. 

3.1 Social structure 

Our model includes two generations of agents.  
Adult agents output linguistic forms, which 
provide linguistic input for child agents.  
Output/input occurs in batches.7  After each batch 
all adults die, all children mature into adults, and a 
new generation of children is born. Each run of the 
model included 10 generations of agents.   

We model the social structure with a random 
network.  Each adult produces 100,000 verb forms, 
and each child is exposed to every production from 
every adult to whom they are connected. Each 
generation consisted of 50 adult agents, and child 
agents are connected to adults with some 
probability p.  On average, each child agent is 
connected to 10 adult agents, meaning that each 
child hears, on average, 1,000,000 tokens. 

3.2 Linguistic events 

Russian gaps are localized to second conjugation 
non-past verb forms, so productions of these forms 
are the focus of interest.  Formally, we define a 

linguistic event as a concept-inflection-form (C,I,F) 
triple. The concept serves to connect the different 
forms and inflections of the same lemma. 

                                                 
7  See Niyogi (2006) for why batch learning is a 
reasonable approximation in this context. 

3.3 Definition of grammar  

A grammar is defined as a probability distribution 
over linguistic events. This gives rise to natural 
formulations of learning and production as 
statistical processes: learning is estimating a 
probability distribution from existing data, and 
production is sampling from a probability 
distribution.  The grammar can be factored into 
modular components: 

 
p(C, I, F) = p(C) · p(I | C) · p(F | C, I) 
 
In this paper we focus on the probability 

distribution of concept-inflection pairs.  In other 
words, we focus on the relative frequency of 
inflectional property sets (IPS) on a lemma-by-
lemma basis, represented by the middle term above. 

Accordingly, we made the simplest possible 
assumptions for the first and last terms. To 
calculate the probability of a concept, children use 
the sample frequency (e.g., if they hear 10 tokens 
of the concept ‘eat’, and 1,000 tokens total, then 
p(‘eat’) = 10/1000 = .01). Learning of forms is 
perfect. That is, learners always produce the 
correct form for every concept-inflection pair. 

3.4 Learning model 

Although production in the real world is governed 
by semantics, we treat it here as a statistical 
process, much like rolling a six-sided die which 
may or may not be fair. When producing a Russian 
non-past verb, there are six possible combinations 
of inflectional properties (3 persons * 2 numbers).  
In our model, word learning involves estimating 
the probability distribution over the frequencies of 
the six forms on a lemma-by-lemma basis. A 
hypothetical example that introduces our variables: 
 
 

jest’ 1sg 2sg 3sg 1pl 2pl 3pl SUM 
D 15 5 45 5 5 25 100 
d 0.15 0.05 0.45 0.05 0.05 0.25 1 

Table 2. Hypothetical probability distribution 
 
The first row indicates the concept and the 
inflections. The second row (D) indicates the 
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hypothetical number of tokens of jest’ ‘eat’ that the 
learner heard for each inflection (bolding indicates 
a six-vector).  We use |D| to indicate the sum of 
this row (=100), which is the concept frequency.  
The third row (d) indicates the sample probability 
of that inflection, which is simply the second row 
divided by |D|.   

The learner’s goal is to estimate the distribution 
that generated this data. We assume the 
multinomial distribution, whose parameter is 
simply the vector of probabilities of each IPS. For 
each concept, the learner’s task is to estimate the 
probability of each IPS, represented by h in the 
equations below.  We begin with Bayes’ rule: 

 
p(h | D) ∝ p(h) · multinom(D | h) 
 

The prior distribution constitutes the analogical 
pressure on the lemma. It is generated from the 
“expected” behavior, h0, which is an average of the 
known behavior from a random sample of other 
lemmas. The parameter κ determines the number 
of lemmas that are sampled for this purpose – it 
represents how many existing words affect a new 
word. To model the effect of morphophonological 
similarity (mpSim), in one variant of the model we 
weight this average by the similarity of the stem-
final consonant.8  For example, this has the effect 
that existing dental stems have more of an effect 
on dental stems.  In this case, we define 
 

h0 = Σc’ in sample d c’ · mpSim(c, c’)/Σ mpSim(c, c’) 
 
We use a featural definition of similarity, so that if 
the stem-final consonants differ by 0, 1, 2, or 3 or 
more phonological features, the resulting similarity 
is 1, 2/3, 1/3, or 0, respectively. 

The prior distribution should assign higher 
probability to hypotheses that are “closer” to this 
expected behavior h0. Since the hypothesis is itself 
a probability distribution, the natural measure to 
use is the KL divergence. We used an 
exponentially distributed prior with parameter β: 

 
p(h) ∝ exp(-β· h0 || h) 

 

                                                 
8  In Russian, the stem-final consonant is important for 
morphological behavior generally. Any successful Russian 
learner would have to extract the generalization, completely 
apart from the issues posed by gaps. 

As will be shown shortly, β has a natural 
interpretation as the relative strength of the prior 
with respect to the observed data. 

The learner calculates their final grammar by 
taking the mode of the posterior distribution 
(MAP). It can be shown that this value is given by 

 
arg max p(h | D) = (β· h0 + |D|· d)/(β+|D|) 
 
Thus, the output of this learning rule is a 

probability vector h that represents the estimated 
probability of each of the six possible IPS’s for 
that concept. As can be seen from the equation 
above, this probability vector is an average of the 
expected behavior h0 and the observed data d, 
weighted by β and the amount of observed data |D|, 
respectively. 

Our approach entails that from the perspective 
of a language learner, gaps are not qualitatively 
distinct from productive forms.  Instead, 1sg non-
past gaps represent one extreme of a range of 
probabilities that the first person singular will be 
produced.  In this sense, “gaps” represent an 
artificial boundary which we place on a gradient 
structure for the purpose of evaluating our model.  

The contrast between our learning model and the 
account of gaps presented in Albright (2003) 
merits emphasis at this point.  Generally speaking, 
learning a word involves at least two tasks:  
learning how to generate the appropriate 
phonological form for a given concept and 
inflectional property set, and learning the 
probability that a concept and inflectional property 
set will be produced at all.  Albright’s model 
focuses on the former aspect; our model focuses on 
the latter. In short, our account of gaps lies in the 
likelihood of a concept-IPS pair being expressed, 
not in the likelihood of a form being expressed. 

3.5 Production model 

We model language production as sampling from 
the probability distribution that is the output of the 
learning rule. 

3.6 Seeding the model 

The input to the first generation was sampled from 
the verbs identified in the corpus search (see 2.2). 
Each input set contained 1,000,000 tokens, which 
was the average amount of input for agents in all 
succeeding generations.  This made the first 
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generation’s input as similar as possible to the 
input of all succeeding generations. 

3.7 Parameter space in the three scenarios 

In our model we manipulate two parameters – the 
strength of the analogical force on a target concept 
during the learning process (β), and the number of 
concepts which create the analogical force (κ), 
taken randomly from known concepts.   

As discussed above, we model three scenarios.  
In the first scenario, there is no grammar learning, 
so there is only one condition (β = 0).  For the 
second and third scenarios, we run the model with 
four values for β, ranging from weak to strong 
analogical force (0.05, 0.25, 1.25, 6.25), and two 
values for κ, representing influence from a small or 
large set of other words (30, 300). 

4 Evaluating the output of the model 

We evaluate the output of our model against the 
following question: How well do gaps persist?   

We count as gaps any forms meeting the criteria 
outlined in 2.2 above, tabulating the number of 
gaps which exist for only one generation, for two 
total generations, etc.  We define τ as the expected 
number of generations (out of 10) that a given 
concept meets the gap criteria.  Thus, τ represents a 
gap’s “life expectancy” (see Figure 1). 

We found that this distribution is exponential – 
there are few gaps that exist for all ten generations, 
and lots of gaps that exist for only one, so we 
calculated τ with a log linear regression.  Each 
value reported is an average over 10 runs.   

As discussed above, our goal was to discover 
whether the model can exhibit the same qualitative 
behavior as the historical development of Russian 
gaps.  Persistence across a handful of generations 
(so far) and spread to a limited number of similar 
forms should be reflected by a non-negligible τ.  

5 Results 

In this section we present the results of our model 
under the scenarios and parameter settings above. 

Remember that in the first scenario there is no 
grammar learning. This run of the model represents 
the baseline condition – completely word-specific 
knowledge.  Sampling results in random walks on 
form frequencies, so once a word form disappears 
it never returns to the sample.  Word-specific 
learning is thus sufficient for the perseverance of 

existing paradigmatic gaps and the creation of new 
ones.  With no analogical pressure, gaps are 
robustly attested (τ = 6.32).  However, the new 
gaps are not restricted to the 1sg, and under this 
scenario, learners are unable to generalize to a 
novel pairing of lexeme + IPS.   

The second scenario presents a more 
complicated picture.  As shown in Table 3, as 
analogical pressure (β) increases, gap life 
expectancy (τ) decreases.  In other words, high 
analogical pressure quickly eliminates atypical 
frequency distributions, such as those exhibited by 
gaps. The runs with low values of β are particularly 
interesting because they represent an approximate 
balance between elimination of gaps as a general 
behavior, and the short-term persistence and even 
spread of gaps due to sampling artifacts and the 
influence of existing gaps. Thus, although the limit 
behavior is for gaps to disappear, this scenario 
retains the ability to explain persistence of gaps 
due to word-specific learning when there is weak 
analogical force. 

At the same time, the facts of Russian differ 
from the behavior of the model in that the Russian 
gaps spread to morphophonologically similar 
forms, not random ones.  The third version of our 
model weights the analogical strength of different 
concepts based upon morphophonological 
similarity to the target.   

 

κ β τ 
(random) 

τ  
(phono.) 

-- 0 6.32 
 

30 0.05 4.95 5.77 
30 0.25 3.46 5.28 
30 1.25 1.91 3.07 
30 6.25 2.59 1.87 

 
300 0.05 4.97 5.99 
300 0.25 3.72 5.14 
300 1.25 1.90 3.10 
300 6.25 2.62 1.84 

Table 3. Life expectancy of gaps, as a function of 
the strength of random analogical forces 

 
Under these conditions we get two interesting 
results, presented in Table 3 above.  First, gaps 
persist slightly better overall in scenario 3 than in 

 6

941



scenario 2 for all levels of κ and β. 9  Compare the 
τ values for random analogical force (scenario 2) 
with the τ values for morphophonologically 
weighted analogical force (scenario 3). 

Second, strength of analogical force matters. 
When there is weak analogical pressure, weighting 
for morphophonological similarity has little effect 
on the persistence and spread of gaps.  However, 
when there is relatively strong analogical pressure, 
morphophonological similarity helps atypical 
frequency distributions to persist, as shown in 
Figure 1.  This results from the fact that there is a 
prototypicality effect for gaps.  Since dental stems 
are more likely to be gaps, incorporating sensitivity 
to stem shape causes the analogical pressure on 
target dental stems to be relatively stronger from 
words that are gaps. Correspondingly, the 
analogical pressure on non-dental stems is 
relatively stronger from words that are not gaps.  
The prototypical stem shape for a gap is thereby 
perpetuated and gaps spread to new dental stems. 
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Figure 1. Gap life expectancy (β=0.05, κ=30) 
  

                                                 
9 The apparent increase in gap half-life when β=6.25 is 
an artifact of the regression model. There were a few 
well-entrenched gaps whose high lemma frequency 
enables them to resist even high levels of analogical 
pressure over 10 generations.  These data points skewed 
the regression, as shown by a much lower R2 (0.5 vs. 
0.85 or higher for all the other conditions).  

6 Discussion 

In conclusion, our model has in many respects 
succeeded in getting gaps to perpetuate and spread.  
With word-specific learning alone, well-
entrenched gaps can be maintained across multiple 
generations.  More significantly, weak analogical 
pressure, especially if weighted for morpho-
phonological similarity, results in the perseverance 
and short-term growth of gaps.   This is essentially 
the historical pattern of the Russian verbal gaps.  

These results highlight several issues regarding 
both the nature of paradigmatic gaps and the 
structure of inflectional systems generally. 

We claim that it is not necessary to posit an 
irreconcilable conflict in the generation of inflected 
forms in order to account for gaps.  Remember that 
in our model, agents face no conflict in terms of 
which form to produce – there is only one 
possibility.  Yet the gaps persist in part because of 
analogical pressure from existing gaps.  Albright 
(2003) himself is agnostic on the issue of whether 
form-based competition is necessary for the 
existence and persistence of gaps, but Hudson 
(2000), among others, claims that gaps could not 
exist in the absence of it.  We have presented 
evidence that this claim is unfounded. 

But why would someone assume that grammar 
competition is necessary?  Hudson’s claim arises 
from a confusion of two issues.  Discussing the 
English paradigmatic gap amn’t, Hudson states 
that “a simple application of [the usage-based 
learning] principle would be to say that the gap 
exists simply because nobody says amn’t...  But 
this explanation is too simple... There are many 
inflected words that may never have been uttered, 
but which we can nevertheless imagine ourselves 
using, given the need; we generate them by 
generalization” (Hudson 2000:300).  By his logic, 
there must therefore be some source of grammar 
conflict which prevents speakers from generalizing.   

However, there is a substantial difference 
between having no information about a word, and 
having information about the non-usage of a word.  
We do not dispute learners’ ability to generalize.  
We only claim that information of non-usage is 
sufficient to block such generalizations.  When 
confronted with a new word, speakers will happily 
generalize a word form, but this is not the same 
task that they perform when faced with gaps. 
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The perseverance of gaps in the absence of 
form-based competition shows that a different, 
non-form level of representation is at issue.  
Generating inflectional morphology involves at 
least two different types of knowledge: knowledge 
about the appropriate word form to express a given 
concept and IPS on the one hand, and knowledge 
of how often that concept and IPS is expressed on 
the other. The emergence of paradigmatic gaps 
may be closely tied to the first type of knowledge, 
but the Russian gaps, at least, persist because of 
the second type of knowledge.  We therefore 
propose that morphology may be defective at the 
morphosyntactic level. 

This returns us to the question that we began this 
paper with –  how paradigmatic gaps can persist in 
light of the overwhelming productivity of 
inflectional morphology.  Our model suggests that 
the apparent contradiction is, at least in some cases, 
illusory.  Productivity refers to the likelihood of a 
given inflectional pattern applying to a given 
combination of stem and IPS.  Our account is 
based in the likelihood of the stem and inflectional 
property set being expressed at all, regardless of 
the form.  In short, the Russian paradigmatic gaps 
represent an issue which is orthogonal to 
productivity.  The two issues are easily confused, 
however.  An unusual frequency distribution can 
make it appear that there is in fact a problem at the 
level of form, even when there may not be. 

Finally, our simulations raise the question of 
whether the 1sg non-past gaps in Russian will 
persist in the language in the long term. In our 
model, analogical forces delay convergence to the 
mean, but the limit behavior is that all gaps 
disappear.  Although there is evidence in Russian 
that words can develop new gaps, we do not know 
with any great accuracy whether the set of gaps is 
currently expanding, contracting, or approximately 
stable.  Our model predicts that in the long run, the 
gaps will disappear under general analogical 
pressure.  However, another possibility is that our 
model includes only enough factors (e.g., 
morphophonological similarity) to approximate the 
short-term influences on the Russian gaps and that 
we would need more factors, such as semantics, to 
successfully model their long-term development.  
This remains an open question. 

 

References 
Albright, Adam. 2003. A quantitative study of Spanish 

paradigm gaps. In West Coast Conference on Formal 
Linguistics 22 proceedings, eds. Gina Garding and 
Mimu Tsujimura. Somerville, MA: Cascadilla Press, 
1-14. 

Albright, Adam, and Bruce Hayes. 2002. Modeling 
English past tense intuitions with minimal 
generalization. In Proceedings of the Sixth Meeting of 
the Association for Computational Linguistics 
Special Interest Group in Computational Phonology 
in Philadelphia, July 2002, ed. Michael Maxwell. 
Cambridge, MA: Association for Computational 
Linguistics, 58-69. 

Baerman, Matthew. 2007. The diachrony of 
defectiveness. Paper presented at 43rd Annual 
Meeting of the Chicago Linguistic Society in 
Chicago, IL, May 3-5, 2007. 

Baerman, Matthew, and Greville Corbett. 2006. Three 
types of defective paradigms. Paper presented at The 
Annual Meeting of the Linguistic Society of America 
in Albuquerque, NM, January 5-8, 2006. 

Hudson, Richard. 2000. *I amn’t. Language 76 (2):297-
323. 

Manning, Christopher. 2003. Probabilistic syntax. In 
Probabilistic linguistics, eds. Rens Bod, Jennifer Hay 
and Stephanie Jannedy. Cambridge, MA: MIT Press, 
289-341. 

Niyogi, Partha. 2006. The computational nature of 
language learning and evolution. Cambridge, MA: 
MIT Press. 

Sims, Andrea. 2006. Minding the gaps: Inflectional 
defectiveness in paradigmatic morphology. Ph.D. 
thesis: Linguistics Department, The Ohio State 
University. 

Švedova, Julja. 1982. Grammatika sovremennogo 
russkogo literaturnogo jayzka. Moscow: Nauka. 

Zaliznjak, A.A., ed. 1977. Grammatičeskij slovar' 
russkogo jazyka: Slovoizmenenie. Moskva: Russkij 
jazyk. 

Zuraw, Kie. 2003. Probability in language change. In 
Probabilistic linguistics, eds. Rens Bod, Jennifer Hay 
and Stephanie Jannedy. Cambridge, MA: MIT Press, 
139-176. 

 

 8

943



Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 944–951,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Substring-Based Transliteration

Tarek Sherif and Grzegorz Kondrak
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

{tarek,kondrak}@cs.ualberta.ca

Abstract

Transliteration is the task of converting a
word from one alphabetic script to another.
We present a novel, substring-based ap-
proach to transliteration, inspired by phrase-
based models of machine translation. We in-
vestigate two implementations of substring-
based transliteration: a dynamic program-
ming algorithm, and a finite-state transducer.
We show that our substring-based transducer
not only outperforms a state-of-the-art letter-
based approach by a significant margin, but
is also orders of magnitude faster.

1 Introduction

A significant proportion of out-of-vocabulary words
in machine translation models or cross language in-
formation retrieval systems are named entities. If
the languages are written in different scripts, these
names must be transliterated. Transliteration is the
task of converting a word from one writing script to
another, usually based on the phonetics of the orig-
inal word. If the target language contains all the
phonemes used in the source language, the translit-
eration is straightforward. For example, the Arabic
transliteration ofAmanda is �Y 	K AÓ
�, which is essen-
tially pronounced in the same way. However, if
some of the sounds are missing in the target lan-
guage, they are generally mapped to the most pho-
netically similar letter. For example, the sound [p]
in the namePaul, does not exist in Arabic, and the
phonotactic constraints of Arabic disallow the sound
[A] in this context, so the word is transliterated asÈñK., pronounced [bul].

The information loss inherent in the process of
transliteration makes back-transliteration, which is
the restoration of a previously transliterated word,
a particularly difficult task. Any phonetically rea-
sonable forward transliteration is essentially correct,
although occasionally there is a standard translitera-
tion (e.g.Omar Sharif ). In the original script, how-
ever, there is usually only a single correct form. For
example, bothNaguib Mahfouz and Najib Mahfuz
are reasonable transliterations of	 ñ 	® m× I. J
 m.� 	', but
Tsharlz Dykens is certainly not acceptable if one is
referring to the author ofOliver Twist.

In a statistical approach to machine translitera-
tion, given a foreign wordF , we are interested in
finding the English word̂E that maximizesP (E|F ).
Using Bayes’ rule, and keeping in mind thatF is
constant, we can formulate the task as follows:

Ê = arg max
E

P (F |E)P (E)

P (F )

= arg max
E

P (F |E)P (E)

This is known as the noisy channel approach to
machine transliteration, which splits the task into
two parts. The language model provides an esti-
mate of the probabilityP (E) of an English word,
while the transliteration model provides an estimate
of the probabilityP (F |E) of a foreign word being a
transliteration of an English word. The probabilities
assigned by the transliteration and language mod-
els counterbalance each other. For example, sim-
ply concatenating the most common mapping for
each letter in the Arabic stringÉ¾K
 AÓ, produces the
string maykl, which is barely pronounceable. In or-
der to generate the correctMichael, a model needs
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to know the relatively rare letter relationshipsch/¼
and ae/ǫ, and to balance their unlikelihood against
the probability of the correct transliteration being an
actual English name.

The search for the optimal English transliteration
Ê for a given foreign nameF is referred to as de-
coding. An efficient approach to decoding is dy-
namic programming, in which solutions to subprob-
lems are maintained in a table and used to build up
the global solution in a bottom-up approach. Dy-
namic programming approaches are optimal as long
as the dynamic programming invariant assumption
holds. This assumption states that if the optimal path
through a graph happens to go through stateq, then
this optimal path must include the best path up to and
includingq. Thus, once an optimal path to stateq is
found, all other paths toq can be eliminated from
the search. The validity of this assumption depends
on the state space used to define the model. Typ-
ically, for problems related to word comparison, a
dynamic programming approach will define states as
positions in the source and target words. As will be
shown later, however, not all models can be repre-
sented with such a state space.

The phrase-based approach developed for statis-
tical machine translation (Koehn et al., 2003) is
designed to overcome the restrictions on many-to-
many mappings in word-based translation models.
This approach is based on learning correspondences
between phrases, rather than words. Phrases are
generated on the basis of a word-to-word alignment,
with the constraint that no words within the phrase
pair are linked to words outside the phrase pair.

In this paper, we propose to apply phrase-based
translation methods to the task of machine translit-
eration, in an approach we refer to as substring-
based transliteration. We consider two implemen-
tations of these models. The first is an adaptation
of the monotone search algorithm outlined in (Zens
and Ney, 2004).The second encodes the substring-
based transliteration model as a transducer. The re-
sults of experiments on Arabic-to-English transliter-
ation show that the substring-based transducer out-
performs a state-of-the-art letter-based transducer,
while at the same time being orders of magnitude
smaller and faster.

The remainder of the paper is organized as fol-
lows. Section 2 discusses previous approaches

to machine transliteration. Section 3 presents the
letter-based transducer approach to Arabic-English
transliteration proposed in (Al-Onaizan and Knight,
2002), which we use as the main point of com-
parison for our substring-based models. Section 4
presents our substring-based approaches to translit-
eration. In Section 5, we outline the experiments
used to evaluate the models and present their results.
Finally, Section 6 contains our overall impressions
and conclusions.

2 Previous Work

Arababi et al. (1994) propose to model forward
transliteration through a combination of neural net
and expert systems. Their main task was to vow-
elize the Arabic names as a preprocessing step for
transliteration. Their method is Arabic-specific and
requires that the Arabic names have a regular pattern
of vowelization.

Knight and Graehl (1998) model the translitera-
tion of Japanese syllabickatakana script into En-
glish with a sequence of finite-state transducers.
After performing a conversion of the English and
katakana sequences to their phonetic representa-
tions, the correspondences between the English and
Japanese phonemes are learned with the expectation
maximization (EM) algorithm. Stalls and Knight
(1998) adapt this approach to Arabic, with the mod-
ification that the English phonemes are mapped di-
rectly to Arabic letters. Al-Onaizan and Knight
(2002) find that a model mapping directly from En-
glish to Arabic letters outperforms the phoneme-to-
letter model.

AbdulJaleel and Larkey (2003) model forward
transliteration from Arabic to English by treating
the words as sentences and using a statistical word
alignment model to align the letters. They select
common English n-grams based on cases when the
alignment links an Arabic letter to several English
letters, and consider these n-grams as single letters
for the purpose of training. The English translitera-
tions are produced using probabilities, learned from
the training data, for the mappings between Arabic
letters and English letters/n-grams.

Li et al. (2004) propose a letter-to-letter n-gram
transliteration model for Chinese-English transliter-
ation in an attempt to allow for the encoding of more
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contextual information. The model isolates individ-
ual mapping operations between training pairs, and
then learns n-gram probabilities for sequences of
these mapping operations. Ekbal et al. (2006) adapt
this model to the transliteration of names from Ben-
gali to English.

3 Letter-based Transliteration

The main point of comparison for the evaluation
of our substring-based models of transliteration is
the letter-based transducer proposed by (Al-Onaizan
and Knight, 2002). Their model is a composition
of a transliteration transducer and a language trans-
ducer. Mappings in the transliteration transducer are
defined between 1-3 English letters and 0-2 Arabic
letters, and their probabilities are learned by EM.
The transliteration transducer is split into three states
to allow mapping probabilities to be learned sepa-
rately for letters at the beginning, middle and end of
a word. Unlike the transducers proposed in (Stalls
and Knight, 1998) and (Knight and Graehl, 1998)
no attempt is made to model the pronunciation of
words. Although names are generally transliterated
based on how they sound, not how they look, the
letter-phoneme conversion itself is problematic as it
is not a trivial task. Many transliterated words are
proper names, whose pronunciation rules may vary
depending on the language of origin (Li et al., 2004).
For example,ch is generally pronounced as either
[Ù] or [k] in English names, but as [S] in French
names.

The language model is implemented as a finite
state acceptor using a combination of word unigram
and letter trigram probabilities. Essentially, the word
unigram model acts as a probabilistic lookup table,
allowing for words seen in the training data to be
produced with high accuracy, while the letter trigram
probabilities are used model words not seen in the
training data.

4 Substring-based Transliteration

Our substring-based transliteration approach is an
adaptation of phrase-based models of machine trans-
lation to the domain of transliteration. In particular,
our methods are inspired by the monotone search
algorithm proposed in (Zens and Ney, 2004). We
introduce two models of substring-based translitera-

tion: the Viterbi substring decoder and the substring-
based transducer. Table 1 presents a comparison of
the substring-based models to the letter-based model
discussed in Section 3.

4.1 The Monotone Search Algorithm

Zens and Ney (2004) propose a linear-time decoding
algorithm for phrase-based machine translation. The
algorithm requires that the translation of phrases be
sequential, disallowing any phrase reordering in the
translation.

Starting from a word-based alignment for each
pair of sentences, the training for the algorithm ac-
cepts all contiguous bilingual phrase pairs (up to a
predetermined maximum length) whose words are
only aligned with each other (Koehn et al., 2003).
The probabilitiesP (f̃ |ẽ) for each foreign phrasẽf
and English phrasẽe are calculated on the basis
of counts gleaned from a bitext. Since the count-
ing process is much simpler than trying to learn the
phrases with EM, the maximum phrase length can be
made arbitrarily long with minimal jumps in com-
plexity. This allows the model to actually encode
contextual information into the translation model in-
stead of leaving it completely to the language model.
There are no null (ǫ) phrases so the model does not
handle insertions or deletions explicitly. They can be
handled implicitly, however, by including inserted or
deleted words as members of a larger phrase.

Decoding in the monotone search algorithm is
performed with a Viterbi dynamic programming ap-
proach. For a foreign sentence of lengthJ and a
phrase length maximum ofM , a table is filled with a
row j for each position in the input foreign sentence,
representing a translation sequence ending at that
foreign word, and each columne represents possi-
ble final English words for that translation sequence.
Each entry in the tableQ is filled according to the
following recursion:

Q(0, $) = 1

Q(j, e) = max
e′,ẽ,f̃

P (f̃ |ẽ)P (ẽ|e′)Q(j′, e′)

Q(J + 1, $) = max
e′

Q(J, e′)P ($|e′)

wheref̃ is a foreign phrase beginning atj′ +1, end-
ing at j and consisting of up toM words. The ‘$’
symbol is the sentence boundary marker.
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Letter Transducer Viterbi Substring Substring Transducer
Model Type Transducer Dynamic Programming Transducer
Transliteration Model Letter Substring Substring
Language Model Word/Letter Substring/Letter Word/Letter
Null Symbols Yes No No
Alignments All Most Probable Most Probable

Table 1: Comparison of statistical transliteration models.

In the above recursion, the language model is
represented asP (ẽ|e′), the probability of the En-
glish phrase given the previous English word. Be-
cause of data sparseness issues in the context of
word phrases, the actual implementation approxi-
mates this probability using word n-grams.

4.2 Viterbi Substring Decoder

We propose to adapt the monotone search algorithm
to the domain of transliteration by substituting let-
ters and substrings for the words and phrases of the
original model. There are, in fact, strong indica-
tions that the monotone search algorithm is better
suited to transliteration than it is to translation. Un-
like machine translation, where the constraint on re-
ordering required by monotone search is frequently
violated, transliteration is an inherently sequential
process. Also, the sparsity issue in training the lan-
guage model is much less pronounced, allowing us
to modelP (ẽ|e′) directly.

In order to train the model, we extract the one-
to-one Viterbi alignment of a training pair from a
stochastic transducer based on the model outlined
in (Ristad and Yianilos, 1998). Substrings are then
generated by iteratively appending adjacent links or
unlinked letters to the one-to-one links of the align-
ment. For example, assuming a maximum substring
length of 2, the<r, P> link in the alignment pre-
sented in Figure 1 would participate in the following
substring pairs:<r, P>, <ur, P>, and<ra, �P>.

The fact that the Viterbi substring decoder em-
ploys a dynamic programming search through the
source/target letter state space described in Section 1
renders the use of a word unigram language model
impossible. This is due to the fact that alternate
paths to a given source/target letter pair are being
eliminated as the search proceeds. For example,
suppose the Viterbi substring decoder were given the

Figure 1: A one-to-one alignment ofMourad andX�QÓ. For clarity the Arabic name is written left to
right.

Arabic string Õç'
Q», and there are two valid English
names in the language model,Karim (the correct
transliteration of the input) andKristine (the Arabic
transliteration of which would be	á�
�J�Q»). The op-
timal path up to the second letter might go through
<¼,k>, <P,r>. At this point, it is transliterating into
the nameKristine, but as soon as it hits the third let-
ter (ø
 ), it is clear that this is the incorrect choice.
In order to recover from the error, the search would
have to backtrack to the beginning and return to state
<P,r> from a different path, but this is an impos-
sibility since all other paths to that state have been
eliminated from the search.

4.3 Substring-based Transducer

The major advantage the letter-based transducer pre-
sented in Section 3 has over the Viterbi substring de-
coder is its word unigram language model, which
allows it to reproduce words seen in the training
data with high accuracy. On the other hand, the
Viterbi substring decoder is able to encode con-
textual information in the transliteration model be-
cause of its ability to consider larger many-to-many
mappings. In a novel approach presented here, we
propose a substring-based transducer that draws on
both advantages. The substring transliteration model
learned for the Viterbi substring decoder is encoded
as a transducer, thus allowing it to use a word uni-
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gram language model. Our model, which we refer
to as the substring-based transducer, has several ad-
vantages over the previously presented models.

• The substring-based transducer can be com-
posed with a word unigram language model, al-
lowing it to transliterate names seen in training
for the language model with greater accuracy.

• Longer many-to-many mappings enable the
transducer to encode contextual information
into the transliteration model. Compared to the
letter-based transducer, it allows for the gener-
ation of longer well-formed substrings (or po-
tentially even entire words).

• The letter-based transducer considers all possi-
ble alignments of the training examples, mean-
ing that many low-probability mappings are en-
coded into the model. This issue is even more
pronounced in cases where the desired translit-
eration is not in the word unigram model, and
it is guided by the weaker letter trigram model.
The substring-based transducer can eliminate
many of these low-probability mappings be-
cause of its commitment to a single high-
probability one-to-one alignment during train-
ing.

• A major computational advantage this model
has over the letter-based transducer is the fact
that null characters (ǫ) are not encoded explic-
itly. Since the Arabic input to the letter-based
transducer could contain an arbitrary number
of nulls, the potential number of output strings
from the transliteration transducer is infinite.
Thus, the composition with the language trans-
ducer must be done in such a way that there
is a valid path for all of the strings output by
the transliteration transducer that have a pos-
itive probability in the language model. This
leads to prohibitively large transducers. On the
other hand, the substring-based transducer han-
dles nulls implicitly (e.g. the mappingke:¼ im-
plicitly representse:ǫ after ak), so the trans-
ducer itself is not required to deal with them.

5 Experiments

In this section, we describe the evaluation of our
models on the task of Arabic-to-English transliter-
ation.

5.1 Data

For our experiments, we required bilingual name
pairs for testing and development data, as well as
for the training of the transliteration models. To train
the language models, we simply needed a list of En-
glish names. Bilingual data was extracted from the
Arabic-English Parallel News part 1 (approx. 2.5M
words) and the Arabic Treebank Part 1-10k word
English Translation. Both bitexts contain Arabic
news articles and their English translations. The En-
glish name list for the language model training was
extracted from the English-Arabic Treebank v1.0
(approx. 52k words)1. The language model training
set consisted of all words labeled as proper names
in this corpus along with all the English names in
the transliteration training set. Any names in any of
the data sets that consisted of multiple words (e.g.
first name/last name pairs) were split and consid-
ered individually. Training data for the translitera-
tion model consisted of 2844 English-Arabic pairs.
The language model was trained on a separate set
of 10991 (4494 unique) English names. The final
test set of 300 English-Arabic transliteration pairs
contained no overlap with the set that was used to
induce the transliteration models.

5.2 Evaluation Methodology

For each of the 300 transliteration pairs in the test
set, the name written in Arabic served as input to the
models, while its English counterpart was consid-
ered a gold standard transliteration for the purpose
of evaluation. Two separate tests were performed on
the test set. In the first, the 300 English words in
the test set were added to the training data for the
language models (theseen test), while in the sec-
ond, all English words in the test set were removed
from the language model’s training data (theunseen
test). Both tests were run on the same set of words
to ensure that variations in performance forseen and
unseen words were solely due to whether or not they
appear in the language model (and not, for exam-
ple, their language of origin). Theseen test is sim-
ilar to tests run in (Knight and Graehl, 1998) and
(Stalls and Knight, 1998) where the models could
not produce any words not included in the language

1All corpora are distributed by the Linguistic Data Consor-
tium. Despite the name, the English-Arabic Treebank v1.0 con-
tains only English data.
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model training data. The models were evaluated on
theseen test set in terms of exact matches to the gold
standard. Because the task of generating transliter-
ations for theunseen test set is much more difficult,
exact match accuracy will not provide a meaningful
metric for comparison. Thus, a softer measure of
performance was required to indicate how close the
generated transliterations are to the gold standard.
We used Levenshtein distance: the number of inser-
tions, deletions and substitutions required to convert
one string into another. We present the results sep-
arately for names of Arabic origin and for those of
non-Arabic origin.

We also performed a third test on words that ap-
pear in both the transliteration and language model
training data. This test was not indicative of the
overall strength of the models but was meant to give
a sense of how much each model depends on its lan-
guage model versus its transliteration model.

5.3 Setup

Five approaches were evaluated on the Arabic-
English transliteration task.

• Baseline: As a baseline for our experiments,
we used a simple deterministic mapping algo-
rithm which maps Arabic letters to the most
likely letter or sequence of letters in English.

• Letter-based Transducer: Mapping proba-
bilities were learned by running the forward-
backward algorithm until convergence. The
language model is a combination of word un-
igram and letter trigram models and selects a
word unigram or letter trigram modeling of the
English word depending on whichever one as-
signs the highest probability. The letter-based
transducer was implemented in Carmel2.

• Viterbi Substring Decoder: We experimented
with maximum substring lengths between 3
and 10 on the development set, and found that
a maximum length of 6 was optimal.

• Substring-based Transducer: The substring-
based transducer was also implemented in
Carmel. We found that this model worked best
with a maximum substring length of 4.

2Carmel is a finite-state transducer package written by
Jonathan Graehl. It is available at http://www.isi.edu/licensed-
sw/carmel/.

Method Arabic Non-Arabic All
Baseline 1.9 2.1 2.0
Letter trans. 45.9 64.3 54.7
Viterbi substring 15.9 30.1 22.7
Substring trans. 59.9 81.1 70.0

Human 33.1 40.6 36.7

Table 2: Exact match accuracy percentage on the
seen test set for various methods.

Method Arabic Non-Arabic All
Baseline 2.32 2.80 2.55
Letter trans. 2.46 2.63 2.54
Viterbi substring 1.90 2.13 2.01
Substring trans. 1.92 2.41 2.16

Human 1.24 1.42 1.33

Table 3: Average Levenshtein distance on theun-
seen test set for various methods.

• Human: For the purpose of comparison, we
allowed an independent human subject (fluent
in Arabic, but a native speaker of English) to
perform the same task. The subject was asked
to transliterate the Arabic words in the test set
without any additional context. No additional
resources or collaboration were allowed.

5.4 Results on the Test Set

Table 2 presents the word accuracy performance of
each transliterator when the test set is available to the
language models. Table 3 shows the average Leven-
shtein distance results when the test set is unavail-
able to the language models. Exact match perfor-
mance by the automated approaches on theunseen
set did not exceed 10.3% (achieved by the Viterbi
substring decoder). Results on theseen test sug-
gest that non-Arabic words (back transliterations)
are easier to transliterate exactly, while results for
the unseen test suggest that errors on Arabic words
(forward transliterations) tend to be closer to the
gold standard.

Overall, our substring-based transducer clearly
outperforms the letter-based transducer. Its per-
formance is better in both tests, but its advantage
is particularly pronounced on words it has seen in
the training data for the language model (the task
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Arabic LBT SBT Correct
1 	àAÒ�J« Uthman Uthman Othman

2
	¬Qå�� � Asharf Asharf Ashraf

3 �Iª 	̄P Rafeet Arafat Refaat

4
�éÓA�� Istamaday Asuma Usama

5 	àAÖß
� Erdman Aliman Iman

6 ����ðð Wortch Watch Watch

7 	QÊJ
Ó Mellis Mills Mills

8 ø
 P�Q�
 	̄ February Firari Ferrari

Table 4: A sample of the errors made by the letter-
based (LBT) and segment-based (SBT) transducers.

for which the letter-based transducer was originally
designed). Since both transducers use exactly the
same language model, the fact that the substring-
based transducer outperforms the letter-based trans-
ducer indicates that it learns a stronger translitera-
tion model.

The Viterbi substring decoder seems to struggle
when it comes to recreating words seen the language
training data, as evidenced by its weak performance
on theseen test. Obviously, its substring/letter bi-
gram language model is no match for the word un-
igram model used by the transducers on this task.
On the other hand, its stronger performance on the
unseen test set suggests that its language model is
stronger than the letter trigram used by the transduc-
ers when it comes to generating completely novel
words.

A sample of the errors made by the letter- and
substring-based transducers is presented in Table 4.
In general, when both models err, the substring-
based transducer tends toward more phonetically
reasonable choices. The most common type of er-
ror is simply correct alternate English spellings of
an Arabic name (error 1). Error 2 is an example of
a learned mapping being misplaced (the deleteda).
Error 3 indicates that the letter-based transducer is
able to avoid these misplaced mappings at the be-
ginning or end of a word because of its three-state
transliteration transducer (i.e. it learns not to allow
vowel deletions at the beginning of a word). Errors
4 and 5 are cases where the letter-based transducer
produced particularly awkward transliterations. Er-
rors 6 and 7 are names that actually appear in the
word unigram model but were missed by the letter-
based transducer, while error 8 is an example of the

Method Exact match Avg Lev.
Letter transducer 81.2 0.46
Viterbi substring 83.2 0.24
Substring transducer 94.4 0.09

Table 5: Results for testing on the transliteration
training set.

letter-based transducer incorrectly choosing a name
from the word unigram model. As discussed in Sec-
tion 4.3, this is likely due to mappings learned from
low-probability alignments.

5.5 Results on the Training Set

The substring-based approaches encode a great deal
of contextual information into the transliteration
model. In order to assess how much the perfor-
mance of each approach depends on its language
model versus its transliteration model, we tested the
three statistical models on the set of 2844 names
seen in both the transliteration and language model
training. The results of this experiment are pre-
sented in Table 5. The Viterbi substring decoder re-
ceives the biggest boost, outperforming the letter-
based transducer, which indicates that its strength
lies mainly in its transliteration modeling as opposed
to its language modeling. The substring-based trans-
ducer, however, still outperforms it by a large mar-
gin, achieving near-perfect results. Most of the re-
maining errors can be attributed to names with alter-
nate correct spellings in English.

The results also suggest that the substring-based
transducer practically subsumes a naive “lookup ta-
ble” approach. Although the accuracy achieved is
less than 100%, the substring-based transducer has
the great advantage of being able to handle noise in
the input. In other words, if the spelling of an input
word does not match an Arabic word from the train-
ing data, a lookup table will generate nothing, while
the substring-based transducer could still search for
the correct transliteration.

5.6 Computational Considerations

Another point of comparison between the models
is complexity. The letter-based transducer encodes
56144 mappings while the substring-based trans-
ducer encodes 13948, but as shown in Table 6, once
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Method Size (states/arcs)
Letter transducer 86309/547184
Substring transducer 759/2131

Table 6: Transducer sizes for composition with the
word ù
 ÒÊg (Helmy).

Method Time
Letter transducer 5h52min
Viterbi substring 3 sec
Substring transducer 11 sec

Table 7: Running times for the 300 word test set.

the transducers are fully composed, the difference
becomes even more pronounced. As discussed in
Section 4.3, the reason for the size explosion fac-
tor in the letter-based transducer is the possibility of
null characters in the input word.

The running times for the statistical approaches
on the 300 word test set are presented in Table 7.
The huge computational advantage of the substring-
based approach makes it a much more attractive op-
tion for any real-world application. Tests were per-
formed on an AMD Athlon 64 3500+ machine with
2GB of memory running Red Hat Enterprise Linux
release 4.

6 Conclusion

In this paper, we presented a new substring-based
approach to modeling transliteration inspired by
phrase-based models of machine translation. We
tested both dynamic programming and finite-state
transducer implementations, the latter of which en-
abled us to use a word unigram language model to
improve the accuracy of generated transliterations.
The results of evaluation on the task of Arabic-
English transliteration indicate that the substring-
based approach not only improves performance over
a state-of-the-art letter-based model, but also leads
to major gains in efficiency. Since no language-
specific information was encoded directly into the
models, they can also be used for transliteration be-
tween other language pairs.

In the future, we plan to consider more com-
plex language models in order to improve the re-
sults on unseen words, which should certainly be

feasible for the substring-based transducer because
of its efficient memory usage. Another feature of the
substring-based transducer that we have not yet ex-
plored is its ability to easily produce ann-best list of
transliterations. We plan to investigate whether us-
ing methods like discriminative reranking (Och and
Ney, 2002) on such ann-best list could improve per-
formance.
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Abstract
This paper presents pipeline iteration, an ap-
proach that uses output from later stages
of a pipeline to constrain earlier stages of
the same pipeline. We demonstrate sig-
nificant improvements in a state-of-the-art
PCFG parsing pipeline using base-phrase
constraints, derived either from later stages
of the parsing pipeline or from a finite-
state shallow parser. The best performance
is achieved by reranking the union of un-
constrained parses and relatively heavily-
constrained parses.

1 Introduction
A “pipeline” system consists of a sequence of pro-
cessing stages such that the output from one stage
provides the input to the next. Each stage in such a
pipeline identifies a subset of the possible solutions,
and later stages are constrained to find solutions
within that subset. For example, a part-of-speech
tagger could constrain a “base phrase” chunker (Rat-
naparkhi, 1999), or the n-best output of a parser
could constrain a reranker (Charniak and Johnson,
2005). A pipeline is typically used to reduce search
complexity for rich models used in later stages, usu-
ally at the risk that the best solutions may be pruned
in early stages.

Pipeline systems are ubiquitous in natural lan-
guage processing, used not only in parsing (Rat-
naparkhi, 1999; Charniak, 2000), but also machine
translation (Och and Ney, 2003) and speech recogni-
tion (Fiscus, 1997; Goel et al., 2000), among others.
Despite the widespread use of pipelines, they have
been understudied, with very little work on gen-
eral techniques for designing and improving pipeline
systems (although cf. Finkel et al. (2006)). This pa-
per presents one such general technique, here ap-
plied to stochastic parsing, whereby output from

later stages of a pipeline is used to constrain earlier
stages of the same pipeline. To our knowledge, this
is the first time such a pipeline architecture has been
proposed.

It may seem surprising that later stages of a
pipeline, already constrained to be consistent with
the output of earlier stages, can profitably inform
the earlier stages in a second pass. However, the
richer models used in later stages of a pipeline pro-
vide a better distribution over the subset of possible
solutions produced by the early stages, effectively
resolving some of the ambiguities that account for
much of the original variation. If an earlier stage is
then constrained in a second pass not to vary with re-
spect to these resolved ambiguities, it will be forced
to find other variations, which may include better so-
lutions than were originally provided.

To give a rough illustration, consider the Venn di-
agram in Fig. 1(i). Set A represents the original sub-
set of possible solutions passed along by the earlier
stage, and the dark shaded region represents high-
probability solutions according to later stages. If
some constraints are then extracted from these high-
probability solutions, defining a subset of solutions
(S) that rule out some of A, the early stage will be
forced to produce a different set (B). Constraints
derived from later stages of the pipeline focus the
search in an area believed to contain high-quality
candidates.

Another scenario is to use a different model al-
together to constrain the pipeline. In this scenario,

(i) (ii)
A


B


S

A


B


S


Figure 1: Two Venn diagrams, representing (i) constraints
derived from later stages of an iterated pipelined system; and
(ii) constraints derived from a different model.
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represented in Fig. 1(ii), the other model constrains
the early stage to be consistent with some subset of
solutions (S), which may be largely or completely
disjoint from the original set A. Again, a different set
(B) results, which may include better results than A.
Whereas when iterating we are guaranteed that the
new subset S will overlap at least partially with the
original subset A, that is not the case when making
use of constraints from a separately trained model.

In this paper, we investigate pipeline iteration
within the context of the Charniak and Johnson
(2005) parsing pipeline, by constraining parses to
be consistent with a base-phrase tree. We derive
these base-phrase constraints from three sources: the
reranking stage of the parsing pipeline; a finite-state
shallow parser (Hollingshead et al., 2005); and a
combination of the output from these two sources.
We compare the relative performance of these three
sources and find the best performance improvements
using constraints derived from a weighted combina-
tion of shallow parser output and reranker output.

The Charniak parsing pipeline has been exten-
sively studied over the past decade, with a num-
ber of papers focused on improving early stages of
the pipeline (Charniak et al., 1998; Caraballo and
Charniak, 1998; Blaheta and Charniak, 1999; Hall
and Johnson, 2004; Charniak et al., 2006) as well
as many focused on optimizing final parse accuracy
(Charniak, 2000; Charniak and Johnson, 2005; Mc-
Closky et al., 2006). This focus on optimization has
made system improvements very difficult to achieve;
yet our relatively simple architecture yields statisti-
cally significant improvements, making pipeline it-
eration a promising approach for other tasks.

2 Approach
Our approach uses the Charniak state-of-the-art
parsing pipeline. The well-known Charniak (2000)
coarse-to-fine parser is a two-stage parsing pipeline,
in which the first stage uses a vanilla PCFG to pop-
ulate a chart of parse constituents. The second
stage, constrained to only those items in the first-
stage chart, uses a refined grammar to generate an
n-best list of parse candidates. Charniak and John-
son (2005) extended this pipeline with a discrimina-
tive maximum entropy model to rerank the n-best
parse candidates, deriving a significant benefit from
the richer model employed by the reranker.

For our experiments, we modified the parser1 to
1ftp://ftp.cs.brown.edu/pub/nlparser/

Base Shallow
Parser Phrases Phrases
Charniak parser-best 91.9 94.4

reranker-best 92.8 94.8
Finite-state shallow parser 91.7 94.3

Table 1: F-scores on WSJ section 24 of output from two
parsers on the similar tasks of base-phrase parsing and shallow-
phrase parsing. For evaluation, base and shallow phrases are
extracted from the Charniak/Johnson full-parse output.

allow us to optionally provide base-phrase trees to
constrain the first stage of parsing.

2.1 Base Phrases
Following Ratnaparkhi (1999), we define a base
phrase as any parse node with only preterminal chil-
dren. Unlike the shallow phrases defined for the
CoNLL-2000 Shared Task (Tjong Kim Sang and
Buchholz, 2000), base phrases correspond directly
to constituents that appear in full parses, and hence
can provide a straightforward constraint on edges
within a chart parser. In contrast, shallow phrases
collapse certain non-constituents—such as auxiliary
chains—into a single phrase, and hence are not di-
rectly applicable as constraints on a chart parser.

We have two methods for deriving base-phrase
annotations for a string. First, we trained a finite-
state shallow parser on base phrases extracted from
the Penn Wall St. Journal (WSJ) Treebank (Marcus
et al., 1993). The treebank trees are pre-processed
identically to the procedure for training the Charniak
parser, e.g., empty nodes and function tags are re-
moved. The shallow parser is trained using the per-
ceptron algorithm, with a feature set nearly identical
to that from Sha and Pereira (2003), and achieves
comparable performance to that paper. See Holling-
shead et al. (2005) for more details. Second, base
phrases can be extracted from the full-parse output
of the Charniak and Johnson (2005) reranker, via a
simple script to extract nodes with only preterminal
children.

Table 1 shows these systems’ bracketing accu-
racy on both the base-phrase and shallow parsing
tasks for WSJ section 24; each system was trained
on WSJ sections 02-21. From this table we can
see that base phrases are substantially more difficult
than shallow phrases to annotate. Output from the
finite-state shallow parser is roughly as accurate as
output extracted from the Charniak parser-best trees,
though a fair amount below output extracted from
the reranker-best trees.

In addition to using base phrase constraints from
these two sources independently, we also looked at
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combining the predictions of both to obtain more re-
liable constraints. We next present a method of com-
bining output from multiple parsers based on com-
bined precision and recall optimization.

2.2 Combining Parser n-best Lists

In order to select high-likelihood constraints for the
pipeline, we may want to extract annotations with
high levels of agreement (“consensus hypotheses”)
between candidates. In addition, we may want to
favor precision over recall to avoid erroneous con-
straints within the pipeline as much as possible.
Here we discuss how a technique presented in Good-
man’s thesis (1998) can be applied to do this.

We will first present this within a general chart
parsing approach, then move to how we use it for n-
best lists. Let T be the set of trees for a particular
input, and let a parse T ∈ T be considered as a set
of labeled spans. Then, for all labeled spans X ∈ T ,
we can calculate the posterior probability γ(X) as
follows:

γ(X) =
∑
T∈T

P(T )JX ∈ T K∑
T ′∈T P(T ′)

(1)

where JX ∈ T K =
{

1 if X ∈ T
0 otherwise.

Goodman (1996; 1998) presents a method for us-
ing the posterior probability of constituents to maxi-
mize the expected labeled recall of binary branching
trees, as follows:

T̂ = argmax
T∈T

∑
X∈T

γ(X) (2)

Essentially, find the tree with the maximum sum of
the posterior probabilities of its constituents. This
is done by computing the posterior probabilities
of constituents in a chart, typically via the Inside-
Outside algorithm (Baker, 1979; Lari and Young,
1990), followed by a final CYK-like pass to find the
tree maximizing the sum.

For non-binary branching trees, where precision
and recall may differ, Goodman (1998, Ch.3) pro-
poses the following combined metric for balancing
precision and recall:

T̂ = argmax
T∈T

∑
X∈T

(γ(X)− λ) (3)

where λ ranges from 0 to 1. Setting λ=0 is equiv-
alent to Eq. 2 and thus optimizes recall, and setting
λ=1 optimizes precision; Appendix 5 at the end of

this paper presents brief derivations of these met-
rics.2 Thus, λ functions as a mixing factor to balance
recall and precision.

This approach also gives us a straightforward way
to combine n-best outputs of multiple systems. To
do this, we construct a chart of the constituents in the
trees from the n-best lists, and allow any combina-
tion of constituents that results in a tree – even one
with no internal structure. In such a way, we can
produce trees that only include a small number of
high-certainty constituents, and leave the remainder
of the string unconstrained, even if such trees were
not candidates in the original n-best lists.

For simplicity, we will here discuss the combina-
tion of two n-best lists, though it generalizes in the
obvious way to an arbitrary number of lists. Let T
be the union of the two n-best lists. For all trees
T ∈ T , let P1(T ) be the probability of T in the first
n-best list, and P2(T ) the probability of T in the sec-
ond n-best list. Then, we define P(T ) as follows:

P(T ) = α
P1(T )∑

T ′∈T P1(T ′)
+

P2(T )∑
T ′∈T P2(T ′)

(4)

where the parameter α dictates the relative weight of
P1 versus P2 in the combination.3

For this paper, we combined two n-best lists of
base-phrase trees. Although there is no hierarchi-
cal structure in base-phrase annotations, they can be
represented as flat trees, as shown in Fig. 2(a). We
constructed a chart from the two lists being com-
bined, using Eq. 4 to define P(T ) in Eq. 1. We wish
to consider every possible combination of the base
phrases, so for the final CYK-like pass to find the
argmax tree, we included rules for attaching each
preterminal directly to the root of the tree, in addi-
tion to rules permitting any combination of hypoth-
esized base phrases.

Consider the trees in Fig. 2. Figure 2(a) is a
shallow parse with three NP base phrases; Figure
2(b) is the same parse where the ROOT produc-
tion has been binarized for the final CYK-like pass,
which requires binary productions. If we include
productions of the form ‘ROOT → X ROOT’ and
‘ROOT → X Y’ for all non-terminals X and Y (in-
cluding POS tags), then any tree-structured com-
bination of base phrases hypothesized in either n-

2Our notation differs slightly from that in Goodman (1998),
though the approaches are formally equivalent.

3Note that P1 and P2 are normalized in eq. 4, and thus are
not required to be true probabilities. In turn, P is normalized
when used in eq. 1, such that the posterior probability γ is a
true probability. Hence P need not be normalized in eq. 4.
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Figure 2: Base-phrase trees (a) as produced for an n-best list and (b) after root-binarization for n-best list combination. Full-parse
tree (c) consistent with constraining base-phrase tree (a).
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Figure 3: The tradeoff between recall and precision using a
range of λ values (Eq. 3) to select high-probability annotations
from an n-best list. Results are shown on 50-best lists of base-
phrase parses from two parsers, and on the combination of the
two lists.
best list is allowed, including the one with no base
phrases at all. Note that, for the purpose of finding
the argmax tree in Eq. 3, we only sum the posterior
probabilities of base-phrase constituents, and not the
ROOT symbol or POS tags.

Figure 3 shows the results of performing this com-
bined precision/recall optimization on three separate
n-best lists: the 50-best list of base-phrase trees ex-
tracted from the full-parse output of the Charniak
and Johnson (2005) reranker; the 50-best list output
by the Hollingshead et al. (2005) finite-state shallow
parser; and the weighted combination of the two lists
at various values of λ in Eq. 3. For the combination,
we set α=2 in Eq. 4, with the Charniak and Johnson
(2005) reranker providing P1, effectively giving the
reranker twice the weight of the shallow parser in
determining the posteriors. The shallow parser has
perceptron scores as weights, and the distribution of
these scores after a softmax normalization was too
peaked to be of utility, so we used the normalized
reciprocal rank of each candidate as P2 in Eq. 4.

We point out several details in these results.
First, using this method does not result in an F-
measure improvement over the Viterbi-best base-
phrase parses (shown as solid symbols in the graph)

for either the reranker or shallow parser. Also, us-
ing this model effects a greater improvement in pre-
cision than in recall, which is unsurprising with
these non-hierarchical annotations; unlike full pars-
ing (where long sequences of unary productions can
improve recall arbitrarily), in base-phrase parsing,
any given span can have only one non-terminal. Fi-
nally, we see that the combination of the two n-best
lists improves over either list in isolation.

3 Experimental Setup
For our experiments we constructed a simple parsing
pipeline, shown in Fig. 4. At the core of the pipeline
is the Charniak and Johnson (2005) coarse-to-fine
parser and MaxEnt reranker, described in Sec. 2.
The parser constitutes the first and second stages of
our pipeline, and the reranker the final stage. Fol-
lowing Charniak and Johnson (2005), we set the
parser to output 50-best parses for all experiments
described here. We constrain only the first stage of
the parser: during chart construction, we disallow
any constituents that conflict with the constraints, as
described in detail in the next section.
3.1 Parser Constraints
We use base phrases, as defined in Sec. 2.1, to con-
strain the first stage of our parsing pipeline. Under
these constraints, full parses must be consistent with
the base-phrase tree provided as input to the parser,
i.e., any valid parse must contain all of the base-
phrase constituents in the constraining tree. The
full-parse tree in Fig. 2(c), for example, is consis-
tent with the base-phrase tree in Fig. 2(a).

Implementing these constraints in a parser is
straightforward, one of the advantages of using base
phrases as constraints. Since the internal structure
of base phrases is, by definition, limited to preter-
minal children, we can constrain the entire parse by
constraining the parents of the appropriate pretermi-
nal nodes. For any preterminal that occurs within
the span of a constraining base phrase, the only
valid parent is a node matching both the span (start
and end points) and the label of the provided base
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Figure 4: The iterated parsing pipeline. In the first iteration,
the coarse parser may be either unconstrained, or constrained
by base phrases from the shallow parser (A1). In the second
iteration, base phrase constraints may be extracted either from
reranker output (A2) or from a weighted combination of shal-
low parser output and reranker output (A3). Multiple sets of
n-best parses, as output by the coarse-to-fine parser under dif-
ferent constraint conditions, may be joined in a set union (C).

phrase. All other proposed parent-nodes are re-
jected. In such a way, for any parse to cover the
entire string, it would have to be consistent with the
constraining base-phrase tree.

Words that fall outside of any base-phrase con-
straint are unconstrained in how they attach within
the parse; hence, a base-phrase tree with few words
covered by base-phrase constraints will result in a
larger search space than one with many words cov-
ered by base phrases. We also put no restrictions on
the preterminal labels, even within the base phrases.
We normalized for punctuation. If the parser fails to
find a valid parse with the constraints, then we lift
the constraints and allow any parse constituent orig-
inally proposed by the first-stage parser.

3.2 Experimental Conditions
Our experiments will demonstrate the effects of con-
straining the Charniak parser under several differ-
ent conditions. The baseline system places no con-
straints on the parser. The remaining experimen-
tal conditions each consider one of three possible
sources of the base phrase constraints: (1) the base
phrases output by the finite-state shallow parser;
(2) the base phrases extracted from output of the
reranker; and (3) a combination of the output from
the shallow parser and the reranker, which is pro-
duced using the techniques outlined in Sec. 2.2.
Constraints are enforced as described in Sec. 3.1.

Unconstrained For our baseline system, we
run the Charniak and Johnson (2005) parser and
reranker with default parameters. The parser is pro-
vided with treebank-tokenized text and, as men-
tioned previously, outputs 50-best parse candidates
to the reranker.

FS-constrained The FS-constrained condition
provides a comparison point of non-iterated con-
straints. Under this condition, the one-best base-

System LR LP F
Finite-state shallow parser 91.3 92.0 91.7
Charniak reranker-best 92.2 93.3 92.8
Combination (λ=0.5) 92.2 94.1 93.2
Combination (λ=0.9) 81.0 97.4 88.4

Table 2: Labeled recall (LR), precision (LP), and F-scores
on WSJ section 24 of base-phrase trees produced by the three
possible sources of constraints.

phrase tree output by the finite-state shallow parser
is input as a constraint to the Charniak parser. We
run the parser and reranker as before, under con-
straints from the shallow parser. The accuracy of
the constraints used under this condition is shown in
the first row of Table 2. Note that this condition is
not an instance of pipeline iteration, but is included
to show the performance levels that can be achieved
without iteration.

Reranker-constrained We will use the
reranker-constrained condition to examine the ef-
fects of pipeline iteration, with no input from other
models outside the pipeline. We take the reranker-
best full-parse output under the condition of uncon-
strained search, and extract the corresponding base-
phrase tree. We run the parser and reranker as be-
fore, now with constraints from the reranker. The
accuracy of the constraints used under this condition
is shown in the second row of Table 2.

Combo-constrained The combo-constrained
conditions are designed to compare the effects of
generating constraints with different combination
parameterizations, i.e., different λ parameters in Eq.
3. For this experimental condition, we extract base-
phrase trees from the n-best full-parse trees output
by the reranker. We combine this list with the n-best
list output by the finite-state shallow parser, exactly
as described in Sec. 2.2, again with the reranker pro-
viding P1 and α=2 in Eq. 4. We examined a range
of operating points from λ=0.4 to λ=0.9, and re-
port two points here (λ=0.5 and λ=0.9), which rep-
resent the highest overall accuracy and the highest
precision, respectively, as shown in Table 2.

Constrained and Unconstrained Union When
iterating this pipeline, the original n-best list of full
parses output from the unconstrained parser is avail-
able at no additional cost, and our final set of ex-
perimental conditions investigate taking the union
of constrained and unconstrained n-best lists. The
imposed constraints can result in candidate sets that
are largely (or completely) disjoint from the uncon-
strained sets, and it may be that the unconstrained
set is in many cases superior to the constrained set.
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Constraints Parser-best Reranker-best Oracle-best # Candidates
Baseline (Unconstrained, 50-best) 88.92 90.24 95.95 47.9
FS-constrained 88.44 89.50 94.10 46.2
Reranker-constrained 89.60 90.46 95.07 46.9

Combo-constrained (λ=0.5) 89.81 90.74 95.41 46.3
Combo-constrained (λ=0.9) 89.34 90.43 95.91 47.5

Table 3: Full-parse F-scores on WSJ section 24. The unconstrained search (first row) provides a baseline comparison for the
effects of constraining the search space. The last four rows demonstrate the effect of various constraint conditions.

Even our high-precision constraints did not reach
100% precision, attesting to the fact that there was
some error in all constrained conditions. By con-
structing the union of the two n-best lists, we can
take advantage of the new constrained candidate set
without running the risk that the constraints have re-
sulted in a worse n-best list. Note that the parser
probabilities are produced from the same model in
both passes, and are hence directly comparable.

The output of the second pass of the pipeline
could be used to constrain a third pass, for multiple
pipeline iterations. However, we found that further
iterations provided no additional improvements.
3.3 Data
Unless stated otherwise, all reported results will be
F-scores on WSJ section 24 of the Penn WSJ Tree-
bank, which was our development set. Training data
was WSJ sections 02-21, with section 00 as held-
out data. Crossfold validation (20-fold with 2,000
sentences per fold) was used to train the reranker
for every condition. Evaluation was performed us-
ing evalb under standard parameterizations. WSJ
section 23 was used only for final testing.

4 Results & Discussion
We evaluate the one-best parse candidates before
and after reranking (parser-best and reranker-best,
respectively). We additionally provide the best-
possible F-score in the n-best list (oracle-best) and
the number of unique candidates in the list.

Table 3 presents trials showing the effect of con-
straining the parser under various conditions. Con-
straining the parser to the base phrases produced
by the finite-state shallow parser (FS-constrained)
hurts performance by half a point. Constraining the
parser to the base phrases produced by the reranker,
however, provides a 0.7 percent improvement in the
parser-best accuracy, and a 0.2 percent improvement
after reranking. Combining the two base-phrase n-
best lists to derive the constraints provides further
improvements when λ=0.5, to a total improvement
of 0.9 and 0.5 percent over parser-best and reranker-
best accuracy, respectively. Performance degrades

at λ=0.9 relative to λ=0.5, indicating that, even at
a lower precision, more constraints are beneficial.

The oracle rate decreases under all of the con-
strained conditions as compared to the baseline,
demonstrating that the parser was prevented from
finding some of the best solutions that were orig-
inally found. However, the improvement in F-
score shows that the constraints assisted the parser
in achieving high-quality solutions despite this de-
graded oracle accuracy of the lists.

Table 4 shows the results when taking the union
of the constrained and unconstrained lists prior to
reranking. Several interesting points can be noted
in this table. First, despite the fact that the FS-
constrained condition hurts performance in Table
3, the union provides a 0.5 percent improvement
over the baseline in the parser-best performance.
This indicates that, in some cases, the Charniak
parser is scoring parses in the constrained set higher
than in the unconstrained set, which is evidence of
search errors in the unconstrained condition. One
can see from the number of candidates that the FS-
constrained condition provides the set of candidates
most disjoint from the original unconstrained parser,
leading to the largest number of candidates in the
union. Surprisingly, even though this set provided
the highest parser-best F-score of all of the union
sets, it did not lead to significant overall improve-
ments after reranking.

In all other conditions, taking the union de-
creases the parser-best accuracy when compared to
the corresponding constrained output, but improves
the reranker-best accuracy in all but the combo-
constrained λ=0.9 condition. One explanation for
the lower performance at λ=0.9 versus λ=0.5 is
seen in the number of candidates, about 7.5 fewer
than in the λ=0.5 condition. There are fewer con-
straints in the high-precision condition, so the re-
sulting n-best lists do not diverge as much from the
original lists, leading to less diversity in their union.

The gains in performance should not be attributed
to increasing the number of candidates nor to allow-
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Constraints Parser-best Reranker-best Oracle-best # Candidates
Baseline (Unconstrained, 50-best) 88.92 90.24 95.95 47.9
Unconstrained ∪ FS-constrained 89.39 90.27 96.61 74.9
Unconstrained ∪ Reranker-constrained 89.23 90.59 96.48 70.3

Unconstrained ∪ Combo (λ=0.5) 89.28 90.78 96.53 69.7
Unconstrained ∪ Combo (λ=0.9) 89.03 90.44 96.40 62.1

Unconstrained (100-best) 88.82 90.13 96.38 95.2
Unconstrained (50-best, beam×2) 89.01 90.45 96.13 48.1

Table 4: Full-parse F-scores on WSJ section 24 after taking the set union of unconstrained and constrained parser output under
the 4 different constraint conditions. Also, F-score for 100-best parses, and 50-best parses with an increased beam threshold, output
by the Charniak parser under the unconstrained condition.

Constraints F-score
Baseline (Unconstrained, 50-best) 91.06
Unconstrained ∪ Combo (λ=0.5) 91.48

Table 5: Full-parse F-scores on WSJ section 23 for our best-
performing system on WSJ section 24. The 0.4 percent F-score
improvement is significant at p < 0.001.
ing the parser more time to generate the parses. The
penultimate row in Table 4 shows the results with
100-best lists output in the unconstrained condition,
which does not improve upon the 50-best perfor-
mance, despite an improved oracle F-score. Since
the second iteration through the parsing pipeline
clearly increases the overall processing time by a
factor of two, we also compare against output ob-
tained by doubling the coarse-parser’s beam thresh-
old. The last row in Table 4 shows that the increased
threshold yields an insignificant improvement over
the baseline, despite a very large processing burden.

We applied our best-performing model (Uncon-
strained ∪ Combo, λ=0.5) to the test set, WSJ sec-
tion 23, for comparison against the baseline system.
Table 5 shows a 0.4 percent F-score improvement
over the baseline for that section, which is statisti-
cally significant at p < 0.001, using the stratified
shuffling test (Yeh, 2000).

5 Conclusion & Future Work
In summary, we have demonstrated that pipeline it-
eration can be useful in improving system perfor-
mance, by constraining early stages of the pipeline
with output derived from later stages. While the
current work made use of a particular kind of
constraint—base phrases—many others could be ex-
tracted as well. Preliminary results extending the
work presented in this paper show parser accuracy
improvements from pipeline iteration when using
constraints based on an unlabeled partial bracketing
of the string. Higher-level phrase segmentations or
fully specified trees over portions of the string might
also prove to be effective constraints. The tech-
niques shown here are by no means limited to pars-

ing pipelines, and could easily be applied to other
tasks making use of pipeline architectures.
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Appendix A Combined Precision/Recall
Decoding
Recall that T is the set of trees for a particular input,
and each T ∈ T is considered as a set of labeled
spans. For all labeled spans X ∈ T , we can calcu-
late the posterior probability γ(X) as follows:

γ(X) =
∑
T∈T

P(T )JX ∈ T K∑
T ′∈T P(T ′)

where JX ∈ T K =
{

1 if X ∈ T
0 otherwise.

If τ is the reference tree, the labeled precision
(LP) and labeled recall (LR) of a T relative to τ are
defined as

LP =
|T ∩ τ |
|T |

LR =
|T ∩ τ |
|τ |

where |T | denotes the size of the set T .
A metric very close to LR is |T ∩ τ |, the number

of nodes in common between the tree and the ref-
erence tree. To maximize the expected value (E) of

this metric, we want to find the tree T̂ as follows:

T̂ = argmax
T∈T

E
[
|T

⋂
τ |

]
= argmax

T∈T

∑
T ′∈T

P(T ′)
[
|T

⋂
T ′|

]∑
T ′′∈T P(T ′′)

= argmax
T∈T

∑
T ′∈T

P(T ′)
∑

X∈T
JX ∈ T ′K∑

T ′′∈T P(T ′′)

= argmax
T∈T

∑
X∈T

∑
T ′∈T

P(T ′)JX ∈ T ′K∑
T ′′∈T P(T ′′)

= argmax
T∈T

∑
X∈T

γ(X) (5)

This exactly maximizes the expected LR in the
case of binary branching trees, and is closely re-
lated to LR for non-binary branching trees. Simi-
lar to maximizing the expected number of match-
ing nodes, we can minimize the expected number of
non-matching nodes, for a metric related to LP:

T̂ = argmin
T∈T

E
[
|T | − |T

⋂
τ |

]
= argmax

T∈T
E

[
|T

⋂
τ | − |T |

]
= argmax

T∈T

∑
T ′∈T

P(T ′)
[
|T

⋂
T ′| − |T |

]∑
T ′′∈T P(T ′′)

= argmax
T∈T

∑
T ′∈T

P(T ′)
∑

X∈T
(JX ∈ T ′K− 1)∑

T ′′∈T P(T ′′)

= argmax
T∈T

∑
X∈T

∑
T ′∈T

P(T ′)(JX ∈ T ′K− 1)∑
T ′′∈T P(T ′′)

= argmax
T∈T

∑
X∈T

(γ(X)− 1) (6)

Finally, we can combine these two metrics in a
linear combination. Let λ be a mixing factor from 0
to 1. Then we can optimize the weighted sum:

T̂ = argmax
T∈T

E
[
(1− λ)|T

⋂
τ |+ λ(|T

⋂
τ | − |T |)

]
= argmax

T∈T
(1− λ)E

[
|T

⋂
τ |

]
+ λE

[
|T

⋂
τ | − |T |

]
= argmax

T∈T

[
(1− λ)

∑
X∈T

γ(X)

]
+

[
λ

∑
X∈T

(γ(X)− 1)

]
= argmax

T∈T

∑
X∈T

(γ(X)− λ) (7)

The result is a combined metric for balancing preci-
sion and recall. Note that, if λ=0, Eq. 7 is the same
as Eq. 5 and thus maximizes the LR metric; and if
λ=1, Eq. 7 is the same as Eq. 6 and thus maximizes
the LP metric.
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Abstract

This paper presents the first empirical results

to our knowledge on learning synchronous

grammars that generate logical forms. Using

statistical machine translation techniques, a

semantic parser based on a synchronous

context-free grammar augmented with λ-

operators is learned given a set of training

sentences and their correct logical forms.

The resulting parser is shown to be the best-

performing system so far in a database query

domain.

1 Introduction

Originally developed as a theory of compiling pro-

gramming languages (Aho and Ullman, 1972), syn-

chronous grammars have seen a surge of interest re-

cently in the statistical machine translation (SMT)

community as a way of formalizing syntax-based

translation models between natural languages (NL).

In generating multiple parse trees in a single deriva-

tion, synchronous grammars are ideal for model-

ing syntax-based translation because they describe

not only the hierarchical structures of a sentence

and its translation, but also the exact correspon-

dence between their sub-parts. Among the gram-

mar formalisms successfully put into use in syntax-

based SMT are synchronous context-free gram-

mars (SCFG) (Wu, 1997) and synchronous tree-

substitution grammars (STSG) (Yamada and Knight,

2001). Both formalisms have led to SMT sys-

tems whose performance is state-of-the-art (Chiang,

2005; Galley et al., 2006).

Synchronous grammars have also been used in

other NLP tasks, most notably semantic parsing,

which is the construction of a complete, formal

meaning representation (MR) of an NL sentence. In

our previous work (Wong and Mooney, 2006), se-

mantic parsing is cast as a machine translation task,

where an SCFG is used to model the translation

of an NL into a formal meaning-representation lan-

guage (MRL). Our algorithm, WASP, uses statistical

models developed for syntax-based SMT for lexical

learning and parse disambiguation. The result is a

robust semantic parser that gives good performance

in various domains. More recently, we show that

our SCFG-based parser can be inverted to produce a

state-of-the-art NL generator, where a formal MRL

is translated into an NL (Wong and Mooney, 2007).

Currently, the use of learned synchronous gram-

mars in semantic parsing and NL generation is lim-

ited to simple MRLs that are free of logical vari-

ables. This is because grammar formalisms such as

SCFG do not have a principled mechanism for han-

dling logical variables. This is unfortunate because

most existing work on computational semantics is

based on predicate logic, where logical variables

play an important role (Blackburn and Bos, 2005).

For some domains, this problem can be avoided by

transforming a logical language into a variable-free,

functional language (e.g. the GEOQUERY functional

query language in Wong and Mooney (2006)). How-

ever, development of such a functional language is

non-trivial, and as we will see, logical languages can

be more appropriate for certain domains.

On the other hand, most existing methods for

mapping NL sentences to logical forms involve sub-

stantial hand-written components that are difficult

to maintain (Joshi and Vijay-Shanker, 2001; Bayer

et al., 2004; Bos, 2005). Zettlemoyer and Collins

(2005) present a statistical method that is consider-
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ably more robust, but it still relies on hand-written

rules for lexical acquisition, which can create a per-

formance bottleneck.

In this work, we show that methods developed for

SMT can be brought to bear on tasks where logical

forms are involved, such as semantic parsing. In par-

ticular, we extend the WASP semantic parsing algo-

rithm by adding variable-binding λ-operators to the

underlying SCFG. The resulting synchronous gram-

mar generates logical forms using λ-calculus (Mon-

tague, 1970). A semantic parser is learned given a

set of sentences and their correct logical forms us-

ing SMT methods. The new algorithm is called λ-

WASP, and is shown to be the best-performing sys-

tem so far in the GEOQUERY domain.

2 Test Domain

In this work, we mainly consider the GEOQUERY

domain, where a query language based on Prolog is

used to query a database on U.S. geography (Zelle

and Mooney, 1996). The query language consists

of logical forms augmented with meta-predicates

for concepts such as smallest and count. Figure 1

shows two sample logical forms and their English

glosses. Throughout this paper, we use the notation

x1, x2, . . . for logical variables.

Although Prolog logical forms are the main focus

of this paper, our algorithm makes minimal assump-

tions about the target MRL. The only restriction on

the MRL is that it be defined by an unambiguous

context-free grammar (CFG) that divides a logical

form into subformulas (and terms into subterms).

Figure 2(a) shows a sample parse tree of a logical

form, where each CFG production corresponds to a

subformula.

3 The Semantic Parsing Algorithm

Our work is based on the WASP semantic parsing al-

gorithm (Wong and Mooney, 2006), which translates

NL sentences into MRs using an SCFG. In WASP,

each SCFG production has the following form:

A → 〈α, β〉 (1)

where α is an NL phrase and β is the MR translation

of α. Both α and β are strings of terminal and non-

terminal symbols. Each non-terminal in α appears

in β exactly once. We use indices to show the cor-

respondence between non-terminals in α and β. All

derivations start with a pair of co-indexed start sym-

bols, 〈S
1
, S

1
〉. Each step of a derivation involves

the rewriting of a pair of co-indexed non-terminals

by the same SCFG production. The yield of a deriva-

tion is a pair of terminal strings, 〈e, f〉, where e is

an NL sentence and f is the MR translation of e.

For convenience, we call an SCFG production a rule

throughout this paper.

While WASP works well for target MRLs that

are free of logical variables such as CLANG (Wong

and Mooney, 2006), it cannot easily handle various

kinds of logical forms used in computational seman-

tics, such as predicate logic. The problem is that

WASP lacks a principled mechanism for handling

logical variables. In this work, we extend the WASP

algorithm by adding a variable-binding mechanism

based on λ-calculus, which allows for compositional

semantics for logical forms.

This work is based on an extended version of

SCFG, which we call λ-SCFG, where each rule has

the following form:

A → 〈α, λx1 . . . λxk.β〉 (2)

where α is an NL phrase and β is the MR trans-

lation of α. Unlike (1), β is a string of termi-

nals, non-terminals, and logical variables. The

variable-binding operator λ binds occurrences of

the logical variables x1, . . . , xk in β, which makes

λx1 . . . λxk.β a λ-function of arity k. When ap-

plied to a list of arguments, (xi1 , . . . , xik), the λ-

function gives βσ, where σ is a substitution oper-

ator, {x1/xi1 , . . . , xk/xik}, that replaces all bound

occurrences of xj in β with xij . If any of the ar-

guments xij appear in β as a free variable (i.e. not

bound by any λ), then those free variables in β must

be renamed before function application takes place.

Each non-terminal Aj in β is followed by a list

of arguments, xj = (xj1 , . . . , xjkj
). During pars-

ing, Aj must be rewritten by a λ-function fj of ar-

ity kj . Like SCFG, a derivation starts with a pair

of co-indexed start symbols and ends when all non-

terminals have been rewritten. To compute the yield

of a derivation, each fj is applied to its correspond-

ing arguments xj to obtain an MR string free of λ-

operators with logical variables properly named.
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(a) answer(x1,smallest(x2,(state(x1),area(x1,x2))))

What is the smallest state by area?

(b) answer(x1,count(x2,(city(x2),major(x2),loc(x2,x3),next to(x3,x4),state(x3),

equal(x4,stateid(texas)))))

How many major cities are in states bordering Texas?

Figure 1: Sample logical forms in the GEOQUERY domain and their English glosses.

(a)
smallest(x2,(FORM,FORM))

QUERY

answer(x1,FORM)

area(x1,x2)state(x1)

(b)
λx1.smallest(x2,(FORM(x1),FORM(x1, x2)))

QUERY

answer(x1,FORM(x1))

λx1.state(x1) λx1.λx2.area(x1,x2)

Figure 2: Parse trees of the logical form in Figure 1(a).

As a concrete example, Figure 2(b) shows an

MR parse tree that corresponds to the English

parse, [What is the [smallest [state] [by area]]],

based on the λ-SCFG rules in Figure 3. To

compute the yield of this MR parse tree, we start

from the leaf nodes: apply λx1.state(x1) to

the argument (x1), and λx1.λx2.area(x1,x2)

to the arguments (x1, x2). This results in two

MR strings: state(x1) and area(x1,x2).

Substituting these MR strings for the FORM non-

terminals in the parent node gives the λ-function

λx1.smallest(x2,(state(x1),area(x1,x2))).

Applying this λ-function to (x1) gives the MR

string smallest(x2,(state(x1),area(x1,x2))).

Substituting this MR string for the FORM non-

terminal in the grandparent node in turn gives the

logical form in Figure 1(a). This is the yield of the

MR parse tree, since the root node of the parse tree

is reached.

3.1 Lexical Acquisition

Given a set of training sentences paired with their

correct logical forms, {〈ei, fi〉}, the main learning

task is to find a λ-SCFG, G, that covers the train-

ing data. Like most existing work on syntax-based

SMT (Chiang, 2005; Galley et al., 2006), we con-

struct G using rules extracted from word alignments.

We use the K = 5 most probable word alignments

for the training set given by GIZA++ (Och and Ney,

2003), with variable names ignored to reduce spar-

sity. Rules are then extracted from each word align-

ment as follows.

To ground our discussion, we use the word align-

ment in Figure 4 as an example. To represent

the logical form in Figure 4, we use its linearized

parse—a list of MRL productions that generate the

logical form, in top-down, left-most order (cf. Fig-

ure 2(a)). Since the MRL grammar is unambiguous,

every logical form has a unique linearized parse. We

assume the alignment to be n-to-1, where each word

is linked to at most one MRL production.

Rules are extracted in a bottom-up manner, start-

ing with MRL productions at the leaves of the

MR parse tree, e.g. FORM → state(x1) in Fig-

ure 2(a). Given an MRL production, A → β, a

rule A → 〈α, λxi1 . . . λxik .β〉 is extracted such that:

(1) α is the NL phrase linked to the MRL produc-

tion; (2) xi1 , . . . , xik are the logical variables that

appear in β and outside the current leaf node in the

MR parse tree. If xi1 , . . . , xik were not bound by

λ, they would become free variables in β, subject to

renaming during function application (and therefore,

invisible to the rest of the logical form). For exam-

ple, since x1 is an argument of the state predicate

as well as answer and area, x1 must be bound

(cf. the corresponding tree node in Figure 2(b)). The

rule extracted for the state predicate is shown in

Figure 3.

The case for the internal nodes of the MR parse

tree is similar. Given an MRL production, A → β,

where β contains non-terminals A1, . . . , An, a rule

A → 〈α, λxi1 . . . λxik .β′〉 is extracted such that: (1)

α is the NL phrase linked to the MRL production,

with non-terminals A1, . . . , An showing the posi-

tions of the argument strings; (2) β′ is β with each

non-terminal Aj replaced with Aj(xj1 , . . . , xjkj
),

where xj1 , . . . , xjkj
are the bound variables in the

λ-function used to rewrite Aj ; (3) xi1 , . . . , xik are

the logical variables that appear in β′ and outside

the current MR sub-parse. For example, see the rule
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FORM → 〈state , λx1.state(x1)〉
FORM → 〈by area , λx1.λx2.area(x1,x2)〉
FORM → 〈smallest FORM

1
FORM

2
, λx1.smallest(x2,(FORM

1
(x1),FORM

2
(x1, x2)))〉

QUERY → 〈what is (1) FORM
1

, answer(x1,FORM
1
(x1))〉

Figure 3: λ-SCFG rules for parsing the English sentence in Figure 1(a).

smallest
the

is
what

state
by

area

QUERY → answer(x1,FORM)
FORM → smallest(x2,(FORM,FORM))
FORM → state(x1)
FORM → area(x1,x2)

Figure 4: Word alignment for the sentence pair in Figure 1(a).

extracted for the smallest predicate in Figure 3,

where x2 is an argument of smallest, but it does

not appear outside the formula smallest(...),

so x2 need not be bound by λ. On the other

hand, x1 appears in β′, and it appears outside

smallest(...) (as an argument of answer),

so x1 must be bound.

Rule extraction continues in this manner until the

root of the MR parse tree is reached. Figure 3 shows

all the rules extracted from Figure 4.1

3.2 Probabilistic Semantic Parsing Model

Since the learned λ-SCFG can be ambiguous, a

probabilistic model is needed for parse disambigua-

tion. We use the maximum-entropy model proposed

in Wong and Mooney (2006), which defines a condi-

tional probability distribution over derivations given

an observed NL sentence. The output MR is the

yield of the most probable derivation according to

this model.

Parameter estimation involves maximizing the

conditional log-likelihood of the training set. For

each rule, r, there is a feature that returns the num-

ber of times r is used in a derivation. More features

will be introduced in Section 5.

4 Promoting NL/MRL Isomorphism

We have described the λ-WASP algorithm which

generates logical forms based on λ-calculus. While

reasonably effective, it can be improved in several

ways. In this section, we focus on improving lexical

acquisition.

1For details regarding non-isomorphic NL/MR parse trees,
removal of bad links from alignments, and extraction of word
gaps (e.g. the token (1) in the last rule of Figure 3), see Wong
and Mooney (2006).

To see why the current lexical acquisition algo-

rithm can be problematic, consider the word align-

ment in Figure 5 (for the sentence pair in Fig-

ure 1(b)). No rules can be extracted for the state

predicate, because the shortest NL substring that

covers the word states and the argument string

Texas, i.e. states bordering Texas, contains the word

bordering, which is linked to an MRL production

outside the MR sub-parse rooted at state. Rule

extraction is forbidden in this case because it would

destroy the link between bordering and next to.

In other words, the NL and MR parse trees are not

isomorphic.

This problem can be ameliorated by transforming

the logical form of each training sentence so that

the NL and MR parse trees are maximally isomor-

phic. This is possible because some of the opera-

tors used in the logical forms, notably the conjunc-

tion operator (,), are both associative (a,(b,c)

= (a,b),c = a,b,c) and commutative (a,b =
b,a). Hence, conjuncts can be reordered and re-

grouped without changing the meaning of a conjunc-

tion. For example, rule extraction would be pos-

sible if the positions of the next to and state

conjuncts were switched. We present a method for

regrouping conjuncts to promote isomorphism be-

tween NL and MR parse trees.2 Given a conjunc-

tion, it does the following: (See Figure 6 for the

pseudocode, and Figure 5 for an illustration.)

Step 1. Identify the MRL productions that corre-

spond to the conjuncts and the meta-predicate that

takes the conjunction as an argument (count in

Figure 5), and figure them as vertices in an undi-

2This method also applies to any operators that are associa-
tive and commutative, e.g. disjunction. For concreteness, how-
ever, we use conjunction as an example.
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QUERY → answer(x1,FORM)
how

many
major
cities

are
in

states
bordering

texas

FORM → count(x2,(CONJ),x1)
CONJ → city(x2),CONJ

CONJ → major(x2),CONJ

CONJ → loc(x2,x3),CONJ

CONJ → next to(x3,x4),CONJ

CONJ → state(x3),FORM

FORM → equal(x4,stateid(texas))

O
ri

g
in

al
M

R
p
ar

se

x2

x3

x4

how many

cities

in

states

bordering

texas

major

QUERY

answer(x1,FORM)

count(x2,(CONJ),x1)

major(x2),CONJ

city(x2),CONJ

loc(x2,x3),CONJ

state(x3),CONJ

next to(x3,x4),FORM

equal(x4,stateid(texas))

QUERY

answer(x1,FORM)

count(x2,(CONJ),x1)

major(x2),CONJ

city(x2),CONJ

loc(x2,x3),CONJ

equal(x4,stateid(texas))

next to(x3,x4),CONJ

state(x3),FORM

(s
h
o
w

n
a
b
o
ve

a
s

th
ic

k
ed

g
es

)

S
te

p
5
.

F
in

d
M

S
T

Step 4. Assign edge weights

Step 6.

Construct MR parse

F
o
rm

g
rap

h

S
tep

s
1
–
3
.

Figure 5: Transforming the logical form in Figure 1(b). The step numbers correspond to those in Figure 6.

Input: A conjunction, c, of n conjuncts; MRL productions, p1, . . . , pn, that correspond to each conjunct; an MRL production,
p0, that corresponds to the meta-predicate taking c as an argument; an NL sentence, e; a word alignment, a.

Let v(p) be the set of logical variables that appear in p. Create an undirected graph, Γ, with vertices V = {pi|i = 0, . . . , n}1

and edges E = {(pi, pj)|i < j,v(pi) ∩ v(pj) 6= ∅}.
Let e(p) be the set of words in e to which p is linked according to a. Let span(pi, pj) be the shortest substring of e that2

includes e(pi) ∪ e(pj). Subtract {(pi, pj)|i 6= 0, span(pi, pj) ∩ e(p0) 6= ∅} from E.
Add edges (p0, pi) to E if pi is not already connected to p0.3

For each edge (pi, pj) in E, set edge weight to the minimum word distance between e(pi) and e(pj).4

Find a minimum spanning tree, T , for Γ using Kruskal’s algorithm.5

Using p0 as the root, construct a conjunction c
′ based on T , and then replace c with c

′.6

Figure 6: Algorithm for regrouping conjuncts to promote isomorphism between NL and MR parse trees.

rected graph, Γ. An edge (pi, pj) is in Γ if and only

if pi and pj contain occurrences of the same logical

variables. Each edge in Γ indicates a possible edge

in the transformed MR parse tree. Intuitively, two

concepts are closely related if they involve the same

logical variables, and therefore, should be placed

close together in the MR parse tree. By keeping oc-

currences of a logical variable in close proximity in

the MR parse tree, we also avoid unnecessary vari-

able bindings in the extracted rules.

Step 2. Remove edges from Γ whose inclusion in

the MR parse tree would prevent the NL and MR

parse trees from being isomorphic.

Step 3. Add edges to Γ to make sure that a spanning

tree for Γ exists.

Steps 4–6. Assign edge weights based on word dis-

tance, find a minimum spanning tree, T , for Γ, then

regroup the conjuncts based on T . The choice of T
reflects the intuition that words that occur close to-

gether in a sentence tend to be semantically related.

This procedure is repeated for all conjunctions

that appear in a logical form. Rules are then ex-

tracted from the same input alignment used to re-

group conjuncts. Of course, the regrouping of con-

juncts requires a good alignment to begin with, and

that requires a reasonable ordering of conjuncts in

the training data, since the alignment model is sen-

sitive to word order. This suggests an iterative algo-

rithm in which a better grouping of conjuncts leads

to a better alignment model, which guides further re-

grouping until convergence. We did not pursue this,

as it is not needed in our experiments so far.
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(a) answer(x1,largest(x2,(state(x1),major(x1),river(x1),traverse(x1,x2))))

What is the entity that is a state and also a major river, that traverses something that is the largest?

(b) answer(x1,smallest(x2,(highest(x1,(point(x1),loc(x1,x3),state(x3))),density(x1,x2))))

Among the highest points of all states, which one has the lowest population density?

(c) answer(x1,equal(x1,stateid(alaska)))

Alaska?

(d) answer(x1,largest(x2,(largest(x1,(state(x1),next to(x1,x3),state(x3))),population(x1,x2))))

Among the largest state that borders some other state, which is the one with the largest population?

Figure 7: Typical errors made by the λ-WASP parser, along with their English interpretations, before any

language modeling for the target MRL was done.

5 Modeling the Target MRL

In this section, we propose two methods for model-

ing the target MRL. This is motivated by the fact that

many of the errors made by the λ-WASP parser can

be detected by inspecting the MR translations alone.

Figure 7 shows some typical errors, which can be

classified into two broad categories:

1. Type mismatch errors. For example, a state can-

not possibly be a river (Figure 7(a)). Also it is

awkward to talk about the population density of a

state’s highest point (Figure 7(b)).

2. Errors that do not involve type mismatch. For ex-

ample, a query can be overly trivial (Figure 7(c)),

or involve aggregate functions on a known single-

ton (Figure 7(d)).

The first type of errors can be fixed by type check-

ing. Each m-place predicate is associated with a list

of m-tuples showing all valid combinations of entity

types that the m arguments can refer to:

point( ): {(POINT)}
density( , ):

{(COUNTRY, NUM), (STATE, NUM), (CITY, NUM)}

These m-tuples of entity types are given as do-

main knowledge. The parser maintains a set of

possible entity types for each logical variable in-

troduced in a partial derivation (except those that

are no longer visible). If there is a logical vari-

able that cannot refer to any types of entities

(i.e. the set of entity types is empty), then the par-

tial derivation is considered invalid. For exam-

ple, based on the tuples shown above, point(x1)

and density(x1, ) cannot be both true, because

{POINT} ∩ {COUNTRY, STATE, CITY} = ∅. The

use of type checking is to exploit the fact that peo-

ple tend not to ask questions that obviously have no

valid answers (Grice, 1975). It is also similar to

Schuler’s (2003) use of model-theoretic interpreta-

tions to guide syntactic parsing.

Errors that do not involve type mismatch are

handled by adding new features to the maximum-

entropy model (Section 3.2). We only consider fea-

tures that are based on the MR translations, and

therefore, these features can be seen as an implicit

language model of the target MRL (Papineni et al.,

1997). Of the many features that we have tried,

one feature set stands out as being the most effec-

tive, the two-level rules in Collins and Koo (2005),

which give the number of times a given rule is used

to expand a non-terminal in a given parent rule.

We use only the MRL part of the rules. For ex-

ample, a negative weight for the combination of

QUERY → answer(x1,FORM(x1)) and FORM

→ λx1.equal(x1, ) would discourage any parse

that yields Figure 7(c). The two-level rules features,

along with the features described in Section 3.2, are

used in the final version of λ-WASP.

6 Experiments

We evaluated the λ-WASP algorithm in the GEO-

QUERY domain. The larger GEOQUERY corpus con-

sists of 880 English questions gathered from various

sources (Wong and Mooney, 2006). The questions

were manually translated into Prolog logical forms.

The average length of a sentence is 7.57 words.

We performed a single run of 10-fold cross

validation, and measured the performance of the

learned parsers using precision (percentage of trans-

lations that were correct), recall (percentage of test

sentences that were correctly translated), and F-

measure (harmonic mean of precision and recall).

A translation is considered correct if it retrieves the

same answer as the correct logical form.

Figure 8 shows the learning curves for the λ-
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Figure 8: Learning curves for various parsing algorithms on the larger GEOQUERY corpus.

(%) λ-WASP WASP SCISSOR Z&C

Precision 91.95 87.19 92.08 96.25

Recall 86.59 74.77 72.27 79.29

F-measure 89.19 80.50 80.98 86.95

Table 1: Performance of various parsing algorithms on the larger GEOQUERY corpus.

WASP algorithm compared to: (1) the original

WASP algorithm which uses a functional query lan-

guage (FunQL); (2) SCISSOR (Ge and Mooney,

2005), a fully-supervised, combined syntactic-

semantic parsing algorithm which also uses FunQL;

and (3) Zettlemoyer and Collins (2005) (Z&C), a

CCG-based algorithm which uses Prolog logical

forms. Table 1 summarizes the results at the end

of the learning curves (792 training examples for λ-

WASP, WASP and SCISSOR, 600 for Z&C).

A few observations can be made. First, algorithms

that use Prolog logical forms as the target MRL gen-

erally show better recall than those using FunQL. In

particular, λ-WASP has the best recall by far. One

reason is that it allows lexical items to be combined

in ways not allowed by FunQL or the hand-written

templates in Z&C, e.g. [smallest [state] [by area]]

in Figure 3. Second, Z&C has the best precision, al-

though their results are based on 280 test examples

only, whereas our results are based on 10-fold cross

validation. Third, λ-WASP has the best F-measure.

To see the relative importance of each component

of the λ-WASP algorithm, we performed two abla-

tion studies. First, we compared the performance

of λ-WASP with and without conjunct regrouping

(Section 4). Second, we compared the performance

of λ-WASP with and without language modeling for

the MRL (Section 5). Table 2 shows the results.

It is found that conjunct regrouping improves recall

(p < 0.01 based on the paired t-test), and the use of

two-level rules in the maximum-entropy model im-

proves precision and recall (p < 0.05). Type check-

ing also significantly improves precision and recall.

A major advantage of λ-WASP over SCISSOR and

Z&C is that it does not require any prior knowl-

edge of the NL syntax. Figure 9 shows the perfor-

mance of λ-WASP on the multilingual GEOQUERY

data set. The 250-example data set is a subset of the

larger GEOQUERY corpus. All English questions in

this data set were manually translated into Spanish,

Japanese and Turkish, while the corresponding Pro-

log queries remain unchanged. Figure 9 shows that

λ-WASP performed comparably for all NLs. In con-

trast, SCISSOR cannot be used directly on the non-

English data, because syntactic annotations are only

available in English. Z&C cannot be used directly

either, because it requires NL-specific templates for

building CCG grammars.

7 Conclusions

We have presented λ-WASP, a semantic parsing al-

gorithm based on a λ-SCFG that generates logical

forms using λ-calculus. A semantic parser is learned

given a set of training sentences and their correct

logical forms using standard SMT techniques. The

result is a robust semantic parser for predicate logic,

and it is the best-performing system so far in the

GEOQUERY domain.

This work shows that it is possible to use standard

SMT methods in tasks where logical forms are in-

volved. For example, it should be straightforward

to adapt λ-WASP to the NL generation task—all

one needs is a decoder that can handle input logical

forms. Other tasks that can potentially benefit from
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(%) Precision Recall

λ-WASP 91.95 86.59

w/o conj. regrouping 90.73 83.07

(%) Precision Recall

λ-WASP 91.95 86.59

w/o two-level rules 88.46 84.32

and w/o type checking 65.45 63.18

Table 2: Performance of λ-WASP with certain components of the algorithm removed.
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Figure 9: Learning curves for λ-WASP on the multilingual GEOQUERY data set.

this include question answering and interlingual MT.

In future work, we plan to further generalize the

synchronous parsing framework to allow different

combinations of grammar formalisms. For exam-

ple, to handle long-distance dependencies that occur

in open-domain text, CCG and TAG would be more

appropriate than CFG. Certain applications may re-

quire different meaning representations, e.g. frame

semantics.
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Abstract

Previous studies in data-driven dependency
parsing have shown that tree transformations
can improve parsing accuracy for specific
parsers and data sets. We investigate to
what extent this can be generalized across
languages/treebanks and parsers, focusing
on pseudo-projective parsing, as a way of
capturing non-projective dependencies, and
transformations used to facilitate parsing of
coordinate structures and verb groups. The
results indicate that the beneficial effect of
pseudo-projective parsing is independent of
parsing strategy but sensitive to language or
treebank specific properties. By contrast, the
construction specific transformations appear
to be more sensitive to parsing strategy but
have a constant positive effect over several
languages.

1 Introduction

Treebank parsers are trained on syntactically anno-
tated sentences and a major part of their success can
be attributed to extensive manipulations of the train-
ing data as well as the output of the parser, usually
in the form of various tree transformations. This
can be seen in state-of-the-art constituency-based
parsers such as Collins (1999), Charniak (2000), and
Petrov et al. (2006), and the effects of different trans-
formations have been studied by Johnson (1998),
Klein and Manning (2003), and Bikel (2004). Corre-
sponding manipulations in the form of tree transfor-
mations for dependency-based parsers have recently

gained more interest (Nivre and Nilsson, 2005; Hall
and Novák, 2005; McDonald and Pereira, 2006;
Nilsson et al., 2006) but are still less studied, partly
because constituency-based parsing has dominated
the field for a long time, and partly because depen-
dency structures have less structure to manipulate
than constituent structures.

Most of the studies in this tradition focus on a par-
ticular parsing model and a particular data set, which
means that it is difficult to say whether the effect
of a given transformation is dependent on a partic-
ular parsing strategy or on properties of a particu-
lar language or treebank, or both. The aim of this
study is to further investigate some tree transforma-
tion techniques previously proposed for data-driven
dependency parsing, with the specific aim of trying
to generalize results across languages/treebanks and
parsers. More precisely, we want to establish, first
of all, whether the transformation as such makes
specific assumptions about the language, treebank
or parser and, secondly, whether the improved pars-
ing accuracy that is due to a given transformation is
constant across different languages, treebanks, and
parsers.

The three types of syntactic phenomena that will
be studied here are non-projectivity, coordination
and verb groups, which in different ways pose prob-
lems for dependency parsers. We will focus on tree
transformations that combine preprocessing with
post-processing, and where the parser is treated as
a black box, such as the pseudo-projective parsing
technique proposed by Nivre and Nilsson (2005)
and the tree transformations investigated in Nils-
son et al. (2006). To study the influence of lan-
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guage and treebank specific properties we will use
data from Arabic, Czech, Dutch, and Slovene, taken
from the CoNLL-X shared task on multilingual de-
pendency parsing (Buchholz and Marsi, 2006). To
study the influence of parsing methodology, we will
compare two different parsers: MaltParser (Nivre et
al., 2004) and MSTParser (McDonald et al., 2005).
Note that, while it is possible in principle to distin-
guish between syntactic properties of a language as
such and properties of a particular syntactic annota-
tion of the language in question, it will be impossi-
ble to tease these apart in the experiments reported
here, since this would require having not only mul-
tiple languages but also multiple treebanks for each
language. In the following, we will therefore speak
about the properties of treebanks (rather than lan-
guages), but it should be understood that these prop-
erties in general depend both on properties of the
language and of the particular syntactic annotation
adopted in the treebank.

The rest of the paper is structured as follows. Sec-
tion 2 surveys tree transformations used in depen-
dency parsing and discusses dependencies between
transformations, on the one hand, and treebanks and
parsers, on the other. Section 3 introduces the four
treebanks used in this study, and section 4 briefly
describes the two parsers. Experimental results are
presented in section 5 and conclusions in section 6.

2 Background

2.1 Non-projectivity

The tree transformations that have attracted most in-
terest in the literature on dependency parsing are
those concerned with recovering non-projectivity.
The definition of non-projectivity can be found in
Kahane et al. (1998). Informally, an arc is projec-
tive if all tokens it covers are descendants of the arc’s
head token, and a dependency tree is projective if all
its arcs are projective.1

The full potential of dependency parsing can only
be realized if non-projectivity is allowed, which
pose a problem for projective dependency parsers.
Direct non-projective parsing can be performed with
good accuracy, e.g., using the Chu-Liu-Edmonds al-

1If dependency arcs are drawn above the linearly ordered
sequence of tokens, preceded by a special root node, then a non-
projective dependency tree always has crossing arcs.

gorithm, as proposed by McDonald et al. (2005). On
the other hand, non-projective parsers tend, among
other things, to be slower. In order to maintain the
benefits of projective parsing, tree transformations
techniques to recover non-projectivity while using a
projective parser have been proposed in several stud-
ies, some described below.

In discussing the recovery of empty categories in
data-driven constituency parsing, Campbell (2004)
distinguishes between approaches based on pure
post-processing and approaches based on a combi-
nation of preprocessing and post-processing. The
same division can be made for the recovery of non-
projective dependencies in data-driven dependency
parsing.

Pure Post-processing
Hall and Novák (2005) propose a corrective model-
ing approach. The motivation is that the parsers of
Collins et al. (1999) and Charniak (2000) adapted
to Czech are not able to create the non-projective
arcs present in the treebank, which is unsatisfac-
tory. They therefore aim to correct erroneous arcs in
the parser’s output (specifically all those arcs which
should be non-projective) by training a classifier that
predicts the most probable head of a token in the
neighborhood of the head assigned by the parser.

Another example is the second-order approximate
spanning tree parser developed by McDonald and
Pereira (2006). It starts by producing the highest
scoring projective dependency tree using Eisner’s al-
gorithm. In the second phase, tree transformations
are performed, replacing lower scoring projective
arcs with higher scoring non-projective ones.

Preprocessing with Post-processing
The training data can also be preprocessed to facili-
tate the recovery of non-projective arcs in the output
of a projective parser. The pseudo-projective trans-
formation proposed by Nivre and Nilsson (2005) is
such an approach, which is compatible with differ-
ent parser engines.

First, the training data is projectivized by making
non-projective arcs projective using a lifting oper-
ation. This is combined with an augmentation of
the dependency labels of projectivized arcs (and/or
surrounding arcs) with information that probably re-
veals their correct non-projective positions. The out-
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Figure 1: Dependency structure for coordination

put of the parser, trained on the projectivized data,
is then deprojectivized by a heuristic search using
the added information in the dependency labels. The
only assumption made about the parser is therefore
that it can learn to derive labeled dependency struc-
tures with augmented dependency labels.

2.2 Coordination and Verb Groups

The second type of transformation concerns linguis-
tic phenomena that are not impossible for a projec-
tive parser to process but which may be difficult to
learn, given a certain choice of dependency analy-
sis. This study is concerned with two such phe-
nomena, coordination and verb groups, for which
tree transformations have been shown to improve
parsing accuracy for MaltParser on Czech (Nils-
son et al., 2006). The general conclusion of this
study is that coordination and verb groups in the
Prague Dependency Treebank (PDT), based on the-
ories of the Prague school (PS), are annotated in a
way that is difficult for the parser to learn. By trans-
forming coordination and verb groups in the train-
ing data to an annotation similar to that advocated
by Mel’čuk (1988) and then performing an inverse
transformation on the parser output, parsing accu-
racy can therefore be improved. This is again an
instance of the black-box idea.

Schematically, coordination is annotated in the
Prague school as depicted in PS in figure 1, where
the conjuncts are dependents of the conjunction. In
Mel’čuk style (MS), on the other hand, conjuncts
and conjunction(s) form a chain going from left to
right. A third way of treating coordination, not dis-
cussed by Nilsson et al. (2006), is used by the parser
of Collins (1999), which internally represents coor-
dination as a direct relation between the conjuncts.
This is illustrated in CS in figure 1, where the con-
junction depends on one of the conjuncts, in this
case on the rightmost one.

Nilsson et al. (2006) also show that the annotation

of verb groups is not well-suited for parsing PDT
using MaltParser, and that transforming the depen-
dency structure for verb groups has a positive impact
on parsing accuracy. In PDT, auxiliary verbs are de-
pendents of the main verb, whereas it according to
Mel’čuk is the (finite) auxiliary verb that is the head
of the main verb. Again, the parsing experiments in
this study show that verb groups are more difficult
to parse in PS than in MS.

2.3 Transformations, Parsers, and Treebanks
Pseudo-projective parsing and transformations for
coordination and verb groups are instances of the
same general methodology:

1. Apply a tree transformation to the training data.

2. Train a parser on the transformed data.

3. Parse new sentences.

4. Apply an inverse transformation to the output
of the parser.

In this scheme, the parser is treated as a black
box. All that is assumed is that it is a data-driven
parser designed for (projective) labeled dependency
structures. In this sense, the tree transformations
are independent of parsing methodology. Whether
the beneficial effect of a transformation, if any, is
also independent of parsing methodology is another
question, which will be addressed in the experimen-
tal part of this paper.

The pseudo-projective transformation is indepen-
dent not only of parsing methodology but also of
treebank (and language) specific properties, as long
as the target representation is a (potentially non-
projective) labeled dependency structure. By con-
trast, the coordination and verb group transforma-
tions presuppose not only that the language in ques-
tion contains these constructions but also that the
treebank adopts a PS annotation. In this sense, they
are more limited in their applicability than pseudo-
projective parsing. Again, it is a different question
whether the transformations have a positive effect
for all treebanks (languages) to which they can be
applied.

3 Treebanks

The experiments are mostly conducted using tree-
bank data from the CoNLL shared task 2006. This
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Slovene Arabic Dutch Czech
SDT PADT Alpino PDT

# T 29 54 195 1249
# S 1.5 1.5 13.3 72.7

%-NPS 22.2 11.2 36.4 23.2
%-NPA 1.8 0.4 5.4 1.9

%-C 9.3 8.5 4.0 8.5
%-A 8.8 - - 1.3

Table 1: Overview of the data sets (ordered by size),
where # S * 1000 = number of sentences, # T * 1000
= number of tokens, %-NPS = percentage of non-
projective sentences, %-NPA = percentage of non-
projective arcs, %-C = percentage of conjuncts, %-A
= percentage of auxiliary verbs.

subsection summarizes some of the important char-
acteristics of these data sets, with an overview in ta-
ble 1. Any details concerning the conversion from
the original formats of the various treebanks to the
CoNLL format, a pure dependency based format, are
found in documentation referred to in Buchholz and
Marsi (2006).

PDT (Hajič et al., 2001) is the largest manually
annotated treebank, and as already mentioned, it
adopts PS for coordination and verb groups. As
the last four rows reveal, PDT contains a quite high
proportion of non-projectivity, since almost every
fourth dependency graph contains at least one non-
projective arc. The table also shows that coordina-
tion is more common than verb groups in PDT. Only
1.3% of the tokens in the training data are identified
as auxiliary verbs, whereas 8.5% of the tokens are
identified as conjuncts.

Both Slovene Dependency Treebank (Džeroski et
al., 2006) (SDT) and Prague Arabic Dependency
Treebank (Hajič et al., 2004) (PADT) annotate co-
ordination and verb groups as in PDT, since they too
are influenced by the theories of the Prague school.
The proportions of non-projectivity and conjuncts in
SDT are in fact quite similar to the proportions in
PDT. The big difference is the proportion of auxil-
iary verbs, with many more auxiliary verbs in SDT
than in PDT. It is therefore plausible that the trans-
formations for verb groups will have a larger impact
on parser accuracy in SDT.

Arabic is not a Slavic languages such as Czech

and Slovene, and the annotation in PADT is there-
fore more dissimilar to PDT than SDT is. One such
example is that Arabic does not have auxiliary verbs.
Table 1 thus does not give figures verb groups. The
amount of coordination is on the other hand compa-
rable to both PDT and SDT. The table also reveals
that the amount of non-projective arcs is about 25%
of that in PDT and SDT, although the amount of
non-projective sentences is still as large as 50% of
that in PDT and SDT.

Alpino (van der Beek et al., 2002) in the CoNLL
format, the second largest treebank in this study,
is not as closely tied to the theories of the Prague
school as the others, but still treats coordination in
a way similar to PS. The table shows that coor-
dination is less frequent in the CoNLL version of
Alpino than in the three other treebanks. The other
characteristic of Alpino is the high share of non-
projectivity, where more than every third sentence
is non-projective. Finally, the lack of information
about the share of auxiliary verbs is not due to the
non-existence of such verbs in Dutch but to the fact
that Alpino adopts an MS annotation of verb groups
(i.e., treating main verbs as dependents of auxiliary
verbs), which means that the verb group transforma-
tion of Nilsson et al. (2006) is not applicable.

4 Parsers

The parsers used in the experiments are Malt-
Parser (Nivre et al., 2004) and MSTParser (Mc-
Donald et al., 2005). These parsers are based on
very different parsing strategies, which makes them
suitable in order to test the parser independence
of different transformations. MaltParser adopts a
greedy, deterministic parsing strategy, deriving a la-
beled dependency structure in a single left-to-right
pass over the input and uses support vector ma-
chines to predict the next parsing action. MST-
Parser instead extracts a maximum spanning tree
from a dense weighted graph containing all possi-
ble dependency arcs between tokens (with Eisner’s
algorithm for projective dependency structures or
the Chu-Liu-Edmonds algorithm for non-projective
structures), using a global discriminative model and
online learning to assign weights to individual arcs.2

2The experiments in this paper are based on the first-order
factorization described in McDonald et al. (2005)
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5 Experiments

The experiments reported in section 5.1–5.2 below
are based on the training sets from the CoNLL-X
shared task, except where noted. The results re-
ported are obtained by a ten-fold cross-validation
(with a pseudo-randomized split) for all treebanks
except PDT, where 80% of the data was used for
training and 20% for development testing (again
with a pseudo-randomized split). In section 5.3, we
give results for the final evaluation on the CoNLL-
X test sets using all three transformations together
with MaltParser.

Parsing accuracy is primarily measured by the un-
labeled attachment score (ASU ), i.e., the propor-
tion of tokens that are assigned the correct head, as
computed by the official CoNLL-X evaluation script
with default settings (thus excluding all punctuation
tokens). In section 5.3 we also include the labeled
attachment score (ASL) (where a token must have
both the correct head and the correct dependency la-
bel to be counted as correct), which was the official
evaluation metric in the CoNLL-X shared task.

5.1 Comparing Treebanks

We start by examining the effect of transformations
on data from different treebanks (languages), using
a single parser: MaltParser.

Non-projectivity
The question in focus here is whether the effect of
the pseudo-projective transformation for MaltParser
varies with the treebank. Table 2 presents the un-
labeled attachment score results (ASU ), compar-
ing the pseudo-projective parsing technique (P-Proj)
with two baselines, obtained by training the strictly
projective parser on the original (non-projective)
training data (N-Proj) and on projectivized train-
ing data with no augmentation of dependency labels
(Proj).

The first thing to note is that pseudo-projective
parsing gives a significant improvement for PDT,
as previously reported by Nivre and Nilsson (2005),
but also for Alpino, where the improvement is even
larger, presumably because of the higher proportion
of non-projective dependencies in the Dutch tree-
bank. By contrast, there is no significant improve-
ment for either SDT or PADT, and even a small drop

N-Proj Proj P-Proj
SDT 77.27 76.63∗∗ 77.11

PADT 76.96 77.07∗ 77.07∗
Alpino 82.75 83.28∗∗ 87.08∗∗

PDT 83.41 83.32∗∗ 84.42∗∗

Table 2: ASU for pseudo-projective parsing with
MaltParser. McNemar’s test: ∗ = p < .05 and
∗∗ = p < 0.01 compared to N-Proj.

1 2 3 >3
SDT 88.4 9.1 1.7 0.84

PADT 66.5 14.4 5.2 13.9
Alpino 84.6 13.8 1.5 0.07

PDT 93.8 5.6 0.5 0.1

Table 3: The number of lifts for non-projective arcs.

in the accuracy figures for SDT. Finally, in contrast
to the results reported by Nivre and Nilsson (2005),
simply projectivizing the training data (without us-
ing an inverse transformation) is not beneficial at all,
except possibly for Alpino.

But why does not pseudo-projective parsing im-
prove accuracy for SDT and PADT? One possi-
ble factor is the complexity of the non-projective
constructions, which can be measured by counting
the number of lifts that are required to make non-
projective arcs projective. The more deeply nested
a non-projective arc is, the more difficult it is to re-
cover because of parsing errors as well as search er-
rors in the inverse transformation. The figures in ta-
ble 3 shed some interesting light on this factor.

For example, whereas 93.8% of all arcs in PDT
require only one lift before they become projec-
tive (88.4% and 84.6% for SDT and Alpino, respec-
tively), the corresponding figure for PADT is as low
as 66.5%. PADT also has a high proportion of very
deeply nested non-projective arcs (>3) in compari-
son to the other treebanks, making the inverse trans-
formation for PADT more problematic than for the
other treebanks. The absence of a positive effect for
PADT is therefore understandable given the deeply
nested non-projective constructions in PADT.

However, one question that still remains is why
SDT and PDT, which are so similar in terms of both
nesting depth and amount of non-projectivity, be-
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Figure 2: Learning curves for Alpino measured as
error reduction for ASU .

have differently with respect to pseudo-projective
parsing. Another factor that may be important here
is the amount of training data available. As shown
in table 1, PDT is more than 40 times larger than
SDT. To investigate the influence of training set
size, a learning curve experiment has been per-
formed. Alpino is a suitable data set for this due
to its relatively large amount of both data and non-
projectivity.

Figure 2 shows the learning curve for pseudo-
projective parsing (P-Proj), compared to using only
projectivized training data (Proj), measured as error
reduction in relation to the original non-projective
training data (N-Proj). The experiment was per-
formed by incrementally adding cross-validation
folds 1–8 to the training set, using folds 9–0 as static
test data.

One can note that the error reduction for Proj is
unaffected by the amount of data. While the error
reduction varies slightly, it turns out that the error
reduction is virtually the same for 10% of the train-
ing data as for 80%. That is, there is no correla-
tion if information concerning the lifts are not added
to the labels. However, with a pseudo-projective
transformation, which actively tries to recover non-
projectivity, the learning curve clearly indicates that
the amount of data matters. Alpino, with 36% non-
projective sentences, starts at about 17% and has a
climbing curve up to almost 25%.

Although this experiment shows that there is a
correlation between the amount of data and the accu-
racy for pseudo-projective parsing, it does probably
not tell the whole story. If it did, one would expect
that the error reduction for the pseudo-projective
transformation would be much closer to Proj when

None Coord VG
SDT 77.27 79.33∗∗ 77.92∗∗

PADT 76.96 79.05∗∗ -
Alpino 82.75 83.38∗∗ -

PDT 83.41 85.51∗∗ 83.58∗∗

Table 4: ASU for coordination and verb group trans-
formations with MaltParser (None = N-Proj). Mc-
Nemar’s test: ∗∗ = p < .01 compared to None.

the amount of data is low (to the left in the fig-
ure) than they apparently are. Of course, the dif-
ference is likely to diminish with even less data, but
it should be noted that 10% of Alpino has about half
the size of PADT, for which the positive impact of
pseudo-projective parsing is absent. The absence
of increased accuracy for SDT can partially be ex-
plained by the higher share of non-projective arcs in
Alpino (3 times more).

Coordination and Verb Groups

The corresponding parsing results using MaltParser
with transformations for coordination and verb
groups are shown in table 4. For SDT, PADT and
PDT, the annotation of coordination has been trans-
formed from PS to MS, as described in Nilsson et
al. (2006). For Alpino, the transformation is from
PS to CS (cf. section 2.2), which was found to give
slightly better performance in preliminary experi-
ments. The baseline with no transformation (None)
is the same as N-Proj in table 2.

As the figures indicate, transforming coordination
is beneficial not only for PDT, as reported by Nilsson
et al. (2006), but also for SDT, PADT, and Alpino. It
is interesting to note that SDT, PADT and PDT, with
comparable amounts of conjuncts, have compara-
ble increases in accuracy (about 2 percentage points
each), despite the large differences in training set
size. It is therefore not surprising that Alpino, with
a much smaller amount of conjuncts, has a lower in-
crease in accuracy. Taken together, these results in-
dicate that the frequency of the construction is more
important than the size of the training set for this
type of transformation.

The same generalization over treebanks holds for
verb groups too. The last column in table 4 shows
that the expected increase in accuracy for PDT is ac-
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Algorithm N-Proj Proj P-Proj
Eisner 81.79 83.23 86.45

CLE 86.39

Table 5: Pseudo-projective parsing results (ASU ) for
Alpino with MSTParser.

companied by a even higher increase for SDT. This
can probably be attributed to the higher frequency of
auxiliary verbs in SDT.

5.2 Comparing Parsers

The main question in this section is to what extent
the positive effect of different tree transformations
is dependent on parsing strategy, since all previ-
ous experiments have been performed with a single
parser (MaltParser). For comparison we have per-
formed two experiments with MSTParser, version
0.1, which is based on a very different parsing meth-
dology (cf. section 4). Due to some technical dif-
ficulties (notably the very high memory consump-
tion when using MSTParser for labeled dependency
parsing), we have not been able to replicate the ex-
periments from the preceding section exactly. The
results presented below must therefore be regarded
as a preliminary exploration of the dependencies be-
tween tree transformations and parsing strategy.

Table 5 presents ASU results for MSTParser in
combination with pseudo-projective parsing applied
to the Alpino treebank of Dutch.3 The first row
contains the result for Eisner’s algorithm using no
transformation (N-Proj), projectivized training data
(Proj), and pseudo-projective parsing (P-Proj). The
figures show a pattern very similar to that for Malt-
Parser, with a boost in accuracy for Proj compared
to N-Proj, and with a significantly higher accuracy
for P-Proj over Proj. It is also worth noting that the
error reduction between N-Proj and P-Proj is actu-
ally higher for MSTParser here than for MaltParser
in table 2.

The second row contains the result for the Chu-
Liu-Edmonds algorithm (CLE), which constructs
non-projective structures directly and therefore does

3The figures are not completely comparable to the previ-
ously presented Dutch results for MaltParser, since MaltParser’s
feature model has access to all the information in the CoNLL
data format, whereas MSTParser in this experiment only could
handle word forms and part-of-speech tags.

Trans. None Coord VG
ASU 84.5 83.5 84.5

Table 6: Coordination and verb group transforma-
tions for PDT with the CLE algorithm.

Dev Eval Niv McD
SDT ASU 80.40 82.01 78.72 83.17

ASL 71.06 72.44 70.30 73.44
PADT ASU 78.97 78.56 77.52 79.34

ASL 67.63 67.58 66.71 66.91
Alpino ASU 87.63 82.85 81.35 83.57

ASL 84.02 79.73 78.59 79.19
PDT ASU 85.72 85.98 84.80 87.30

ASL 78.56 78.80 78.42 80.18

Table 7: Evaluation on CoNLL-X test data; Malt-
Parser with all transformations (Dev = development,
Eval = CoNLL test set, Niv = Nivre et al. (2006),
McD = McDonald et al. (2006))

not require the pseudo-projective transformation.
A comparison between Eisner’s algorithm with
pseudo-projective transformation and CLE reveals
that pseudo-projective parsing is at least as accurate
as non-projective parsing for ASU . (The small dif-
ference is not statistically significant.)

By contrast, no positive effect could be detected
for the coordination and verb group transformations
togther with MSTParser. The figures in table 6 are
not based on CoNLL data, but instead on the evalu-
ation test set of the original PDT 1.0, which enables
a direct comparison to McDonald et. al. (2005) (the
None column). We see that there is even a negative
effect for the coordination transformation. These re-
sults clearly indicate that the effect of these transfor-
mations is at least partly dependent on parsing strat-
egy, in contrast to what was found for the pseudo-
projective parsing technique.

5.3 Combining Transformations

In order to assess the combined effect of all three
transformations in relation to the state of the art,
we performed a final evaluation using MaltParser on
the dedicated test sets from the CoNLL-X shared
task. Table 7 gives the results for both develop-
ment (cross-validation for SDT, PADT, and Alpino;
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development set for PDT) and final test, compared
to the two top performing systems in the shared
task, MSTParser with approximate second-order
non-projective parsing (McDonald et al., 2006) and
MaltParser with pseudo-projective parsing (but no
coordination or verb group transformations) (Nivre
et al., 2006). Looking at the labeled attachment
score (ASL), the official scoring metric of the
CoNLL-X shared task, we see that the combined ef-
fect of the three transformations boosts the perfor-
mance of MaltParser for all treebanks and in two
cases out of four outperforms MSTParser (which
was the top scoring system for all four treebanks).

6 Conclusion

In this paper, we have examined the generality
of tree transformations for data-driven dependency
parsing. The results indicate that the pseudo-
projective parsing technique has a positive effect
on parsing accuracy that is independent of parsing
methodology but sensitive to the amount of training
data as well as to the complexity of non-projective
constructions. By contrast, the construction-specific
transformations targeting coordination and verb
groups appear to have a more language-independent
effect (for languages to which they are applicable)
but do not help for all parsers. More research is
needed in order to know exactly what the dependen-
cies are between parsing strategy and tree transfor-
mations. Regardless of this, however, it is safe to
conclude that pre-processing and post-processing is
important not only in constituency-based parsing, as
previously shown in a number of studies, but also for
inductive dependency parsing.
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Abstract

This paper explores methods for generating
subjectivity analysis resources in a new lan-
guage by leveraging on the tools and re-
sources available in English. Given a bridge
between English and the selected target lan-
guage (e.g., a bilingual dictionary or a par-
allel corpus), the methods can be used to
rapidly create tools for subjectivity analysis
in the new language.

1 Introduction

There is growing interest in the automatic extraction
of opinions, emotions, and sentiments in text (sub-
jectivity), to provide tools and support for various
natural language processing applications. Most of
the research to date has focused on English, which
is mainly explained by the availability of resources
for subjectivity analysis, such as lexicons and man-
ually labeled corpora.

In this paper, we investigate methods to auto-
matically generate resources for subjectivity analy-
sis for a new target language by leveraging on the
resources and tools available for English, which in
many cases took years of work to complete. Specif-
ically, through experiments with cross-lingual pro-
jection of subjectivity, we seek answers to the fol-
lowing questions.

First, can we derive a subjectivity lexicon for a
new language using an existing English subjectivity
lexicon and a bilingual dictionary? Second, can we
derive subjectivity-annotated corpora in a new lan-
guage using existing subjectivity analysis tools for
English and a parallel corpus? Finally, third, can we

build tools for subjectivity analysis for a new target
language by relying on these automatically gener-
ated resources?

We focus our experiments on Romanian, selected
as a representative of the large number of languages
that have only limited text processing resources de-
veloped to date. Note that, although we work with
Romanian, the methods described are applicable to
any other language, as in these experiments we (pur-
posely) do not use any language-specific knowledge
of the target language. Given a bridge between En-
glish and the selected target language (e.g., a bilin-
gual dictionary or a parallel corpus), the methods
can be applied to other languages as well.

After providing motivations, we present two ap-
proaches to developing sentence-level subjectivity
classifiers for a new target language. The first uses a
subjectivity lexicon translated from an English one.
The second uses an English subjectivity classifier
and a parallel corpus to create target-language train-
ing data for developing a statistical classifier.

2 Motivation

Automatic subjectivity analysis methods have been
used in a wide variety of text processing applica-
tions, such as tracking sentiment timelines in on-
line forums and news (Lloyd et al., 2005; Balog
et al., 2006), review classification (Turney, 2002;
Pang et al., 2002), mining opinions from product
reviews (Hu and Liu, 2004), automatic expressive
text-to-speech synthesis (Alm et al., 2005), text se-
mantic analysis (Wiebe and Mihalcea, 2006; Esuli
and Sebastiani, 2006), and question answering (Yu
and Hatzivassiloglou, 2003).
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While much recent work in subjectivity analysis
focuses onsentiment(a type of subjectivity, namely
positive and negative emotions, evaluations, and
judgments), we opt to focus on recognizing subjec-
tivity in general, for two reasons.

First, even when sentiment is the desired focus,
researchers in sentiment analysis have shown that
a two-stage approach is often beneficial, in which
subjective instances are distinguished from objec-
tive ones, and then the subjective instances are fur-
ther classified according to polarity (Yu and Hatzi-
vassiloglou, 2003; Pang and Lee, 2004; Wilson et
al., 2005; Kim and Hovy, 2006). In fact, the prob-
lem of distinguishing subjective versus objective in-
stances has often proved to be more difficult than
subsequent polarity classification, so improvements
in subjectivity classification promise to positively
impact sentiment classification. This is reported in
studies of manual annotation of phrases (Takamura
et al., 2006), recognizing contextual polarity of ex-
pressions (Wilson et al., 2005), and sentiment tag-
ging of words and word senses (Andreevskaia and
Bergler, 2006; Esuli and Sebastiani, 2006).

Second, an NLP application may seek a wide
range of types of subjectivity attributed to a per-
son, such as their motivations, thoughts, and specu-
lations, in addition to their positive and negative sen-
timents. For instance, the opinion tracking system
Lydia (Lloyd et al., 2005) gives separate ratings for
subjectivity and sentiment. These can be detected
with subjectivity analysis but not by a method fo-
cused only on sentiment.

There is world-wide interest in text analysis appli-
cations. While work on subjectivity analysis in other
languages is growing (e.g., Japanese data are used in
(Takamura et al., 2006; Kanayama and Nasukawa,
2006), Chinese data are used in (Hu et al., 2005),
and German data are used in (Kim and Hovy, 2006)),
much of the work in subjectivity analysis has been
applied to English data. Creating corpora and lexical
resources for a new language is very time consum-
ing. In general, we would like to leverage resources
already developed for one language to more rapidly
create subjectivity analysis tools for a new one. This
motivates our exploration and use of cross-lingual
lexicon translations and annotation projections.

Most if not all work on subjectivity analysis has
been carried out in a monolingual framework. We

are not aware of multi-lingual work in subjectivity
analysis such as that proposed here, in which subjec-
tivity analysis resources developed for one language
are used to support developing resources in another.

3 A Lexicon-Based Approach

Many subjectivity and sentiment analysis tools rely
on manually or semi-automatically constructed lex-
icons (Yu and Hatzivassiloglou, 2003; Riloff and
Wiebe, 2003; Kim and Hovy, 2006). Given the suc-
cess of such techniques, the first approach we take
to generating a target-language subjectivity classi-
fier is to create a subjectivity lexicon by translating
an existing source language lexicon, and then build
a classifier that relies on the resulting lexicon.

Below, we describe the translation process and
discuss the results of an annotation study to assess
the quality of the translated lexicon. We then de-
scribe and evaluate a lexicon-based target-language
classifier.

3.1 Translating a Subjectivity Lexicon

The subjectivity lexicon we use is from Opinion-
Finder (Wiebe and Riloff, 2005), an English sub-
jectivity analysis system which, among other things,
classifies sentences as subjective or objective. The
lexicon was compiled from manually developed re-
sources augmented with entries learned from cor-
pora. It contains 6,856 unique entries, out of which
990 are multi-word expressions. The entries in the
lexicon have been labeled for part of speech, and for
reliability – those that appear most often in subjec-
tive contexts arestrongclues of subjectivity, while
those that appear less often, but still more often than
expected by chance, are labeledweak.

To perform the translation, we use two bilingual
dictionaries. The first is an authoritative English-
Romanian dictionary, consisting of 41,500 entries,1

which we use as the main translation resource for the
lexicon translation. The second dictionary, drawn
from the Universal Dictionary download site (UDP,
2007) consists of 4,500 entries written largely by
Web volunteer contributors, and thus is not error
free. We use this dictionary only for those entries
that do not appear in the main dictionary.

1Unique English entries, each with multiple Romanian
translations.
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There were several challenges encountered in the
translation process. First, although the English sub-
jectivity lexicon contains inflected words, we must
use the lemmatized form in order to be able to trans-
late the entries using the bilingual dictionary. How-
ever, words may lose their subjective meaning once
lemmatized. For instance, the inflected form of
memoriesbecomesmemory. Once translated into
Romanian (asmemorie), its main meaning is ob-
jective, referring to the power of retaining informa-
tion as inIron supplements may improve a woman’s
memory.

Second, neither the lexicon nor the bilingual dic-
tionary provides information on the sense of the in-
dividual entries, and therefore the translation has to
rely on the most probable sense in the target lan-
guage. Fortunately, the bilingual dictionary lists the
translations in reverse order of their usage frequen-
cies. Nonetheless, the ambiguity of the words and
the translations still seems to represent an impor-
tant source of error. Moreover, the lexicon some-
times includes identical entries expressed through
different parts of speech, e.g.,grudgehas two sepa-
rate entries, for its noun and verb roles, respectively.
On the other hand, the bilingual dictionary does not
make this distinction, and therefore we have again
to rely on the “most frequent” heuristic captured by
the translation order in the bilingual dictionary.

Finally, the lexicon includes a significant number
(990) of multi-word expressions that pose transla-
tion difficulties, sometimes because their meaning
is idiomatic, and sometimes because the multi-word
expression is not listed in the bilingual dictionary
and the translation of the entire phrase is difficult
to reconstruct from the translations of the individual
words. To address this problem, when a translation
is not found in the dictionary, we create one using
a word-by-word approach. These translations are
then validated by enforcing that they occur at least
three times on the Web, using counts collected from
the AltaVista search engine. The multi-word expres-
sions that are not validated in this process are dis-
carded, reducing the number of expressions from an
initial set of 990 to a final set of 264.

The final subjectivity lexicon in Romanian con-
tains 4,983 entries. Table 1 shows examples of en-
tries in the Romanian lexicon, together with their
corresponding original English form. The table

Romanian English attributes
ı̂nfrumuseţa beautifying strong, verb
notabil notable weak, adj
plin de regret full of regrets strong, adj
sclav slaves weak, noun

Table 1: Examples of entries in the Romanian sub-
jectivity lexicon

also shows the reliability of the expression (weakor
strong) and the part of speech – attributes that are
provided in the English subjectivity lexicon.

Manual Evaluation.
We want to assess the quality of the translated lexi-
con, and compare it to the quality of the original En-
glish lexicon. The English subjectivity lexicon was
evaluated in (Wiebe and Riloff, 2005) against a cor-
pus of English-language news articles manually an-
notated for subjectivity (theMPQAcorpus (Wiebe et
al., 2005)). According to this evaluation, 85% of the
instances of the clues marked asstrongand 71.5% of
the clues marked asweakare in subjective sentences
in the MPQA corpus.

Since there is no comparable Romanian corpus,
an alternate way to judge the subjectivity of a Ro-
manian lexicon entry is needed.

Two native speakers of Romanian annotated the
subjectivity of 150 randomly selected entries. Each
annotator independently read approximately 100 ex-
amples of each drawn from the Web, including a
large number from news sources. The subjectivity
of a word was consequently judged in the contexts
where it most frequently appears, accounting for its
most frequent meanings on the Web.

The tagset used for the annotations consists of
S(ubjective), O(bjective), andB(oth). A W(rong)la-
bel is also used to indicate a wrong translation. Table
2 shows the contingency table for the two annota-
tors’ judgments on this data.

S O B W Total
S 53 6 9 0 68
O 1 27 1 0 29
B 5 3 18 0 26
W 0 0 0 27 27
Total 59 36 28 27 150

Table 2: Agreement on 150 entries in the Romanian
lexicon

Without counting the wrong translations, the
agreement is measured at 0.80, with a Kappaκ =
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0.70, which indicates consistent agreement. After
the disagreements were reconciled through discus-
sions, the final set of 123 correctly translated entries
does include 49.6% (61) subjective entries, but fully
23.6% (29) were found in the study to have primar-
ily objective uses (the other 26.8% are mixed).

Thus, this study suggests that the Romanian sub-
jectivity clues derived through translation are less re-
liable than the original set of English clues. In sev-
eral cases, the subjectivity is lost in the translation,
mainly due to word ambiguity in either the source
or target language, or both. For instance, the word
fragile correctly translates into Romanian asfragil,
yet this word is frequently used to refer to breakable
objects, and it loses its subjective meaning ofdel-
icate. Other words, such asone-sided, completely
lose subjectivity once translated, as it becomes in
Romaniancu o singura latur̆a, meaningwith only
one side(as of objects).

Interestingly, the reliability of clues in the English
lexicon seems to help preserve subjectivity. Out of
the 77 entries marked asstrong, 11 were judged to be
objective in Romanian (14.3%), compared to 14 ob-
jective Romanian entries obtained from the 36weak
English clues (39.0%).

3.2 Rule-based Subjectivity Classifier Using a
Subjectivity Lexicon

Starting with the Romanian lexicon, we developed
a lexical classifier similar to the one introduced by
(Riloff and Wiebe, 2003). At the core of this method
is a high-precision subjectivity and objectivity clas-
sifier that can label large amounts of raw text using
only a subjectivity lexicon. Their method is further
improved with a bootstrapping process that learns
extraction patterns. In our experiments, however, we
apply only the rule-based classification step, since
the extraction step cannot be implemented without
tools for syntactic parsing and information extrac-
tion not available in Romanian.

The classifier relies on three main heuristics to la-
bel subjective and objective sentences: (1) if two
or more strong subjective expressions occur in the
same sentence, the sentence is labeledSubjective;
(2) if no strong subjective expressions occur in a
sentence, and at most two weak subjective expres-
sions occur in the previous, current, and next sen-
tence combined, then the sentence is labeledObjec-

tive; (3) otherwise, if none of the previous rules ap-
ply, the sentence is labeledUnknown.

The quality of the classifier was evaluated on a
Romanian gold-standard corpus annotated for sub-
jectivity. Two native Romanian speakers (Ro1 and
Ro2) manually annotated the subjectivity of the sen-
tences of five randomly selected documents (504
sentences) from the Romanian side of an English-
Romanian parallel corpus, according to the anno-
tation scheme in (Wiebe et al., 2005). Agreement
between annotators was measured, and then their
differences were adjudicated. The baseline on this
data set is 54.16%, which can be obtained by as-
signing a defaultSubjectivelabel to all sentences.
(More information about the corpus and annotations
are given in Section 4 below, where agreement be-
tween English and Romanian aligned sentences is
also assessed.)

As mentioned earlier, due to the lexicon projec-
tion process that is performed via a bilingual dictio-
nary, the entries in our Romanian subjectivity lex-
icon are in a lemmatized form. Consequently, we
also lemmatize the gold-standard corpus, to allow
for the identification of matches with the lexicon.
For this purpose, we use the Romanian lemmatizer
developed by Ion and Tufiş (Ion, 2007), which has
an estimated accuracy of 98%.2

Table 3 shows the results of the rule-based classi-
fier. We show the precision, recall, and F-measure
independently measured for the subjective, objec-
tive, and all sentences. We also evaluated a vari-
ation of the rule-based classifier that labels a sen-
tence as objective if there are at most three weak ex-
pressions in the previous, current, and next sentence
combined, which raises the recall of the objective
classifier. Our attempts to increase the recall of the
subjective classifier all resulted in significant loss in
precision, and thus we kept the original heuristic.

In its original English implementation, this sys-
tem was proposed as being high-precision but low
coverage. Evaluated on the MPQA corpus, it has
subjective precision of 90.4, subjective recall of
34.2, objective precision of 82.4, and objective re-
call of 30.7; overall, precision is 86.7 and recall is
32.6 (Wiebe and Riloff, 2005). We see a similar be-
havior on Romanian for subjective sentences. The
subjective precision is good, albeit at the cost of low

2Dan Tufiş, personal communication.
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Measure Subjective Objective All
subj = at least two strong; obj = at most two weak
Precision 80.00 56.50 62.59
Recall 20.51 48.91 33.53
F-measure 32.64 52.52 43.66
subj = at least two strong; obj = at most three weak
Precision 80.00 56.85 61.94
Recall 20.51 61.03 39.08
F-measure 32.64 58.86 47.93

Table 3: Evaluation of the rule-based classifier

recall, and thus the classifier could be used to har-
vest subjective sentences from unlabeled Romanian
data (e.g., for a subsequent bootstrapping process).
The system is not very effective for objective classi-
fication, however. Recall that the objective classifier
relies on the weak subjectivity clues, for which the
transfer of subjectivity in the translation process was
particularly low.

4 A Corpus-Based Approach

Given the low number of subjective entries found in
the automatically generated lexicon and the subse-
quent low recall of the lexical classifier, we decided
to also explore a second, corpus-based approach.
This approach builds a subjectivity-annotated cor-
pus for the target language through projection, and
then trains a statistical classifier on the resulting
corpus (numerous statistical classifiers have been
trained for subjectivity or sentiment classification,
e.g., (Pang et al., 2002; Yu and Hatzivassiloglou,
2003)). The hypothesis is that we can eliminate
some of the ambiguities (and consequent loss of sub-
jectivity) observed during the lexicon translation by
accounting for the context of the ambiguous words,
which is possible in a corpus-based approach. Ad-
ditionally, we also hope to improve the recall of the
classifier, by addressing those cases not covered by
the lexicon-based approach.

In the experiments reported in this section, we
use a parallel corpus consisting of 107 documents
from the SemCor corpus (Miller et al., 1993) and
their manual translations into Romanian.3 The cor-
pus consists of roughly 11,000 sentences, with ap-
proximately 250,000 tokens on each side. It is a bal-
anced corpus covering a number of topics in sports,
politics, fashion, education, and others.

3The translation was carried out by a Romanian native
speaker, student in a department of “Foreign Languages and
Translations” in Romania.

Below, we begin with a manual annotation study
to assess the quality of annotation and preservation
of subjectivity in translation. We then describe the
automatic construction of a target-language training
set, and evaluate a classifier trained on that data.

Annotation Study.
We start by performing an agreement study meant
to determine the extent to which subjectivity is pre-
served by the cross-lingual projections. In the study,
three annotators – one native English speaker (En)
and two native Romanian speakers (Ro1 andRo2) –
first trained on 3 randomly selected documents (331
sentences). They then independently annotated the
subjectivity of the sentences of two randomly se-
lected documents from the parallel corpus, account-
ing for 173 aligned sentence pairs. The annotators
had access exclusively to the version of the sen-
tences in their language, to avoid any bias that could
be introduced by seeing the translation in the other
language.

Note that the Romanian annotations (after all dif-
ferences between the Romanian annotators were ad-
judicated) of all 331 + 173 sentences make up the
gold standard corpus used in the experiments re-
ported in Sections 3.2 and 4.1.

Before presenting the results of the annotation
study, we give some examples. The following are
English subjective sentences and their Romanian
translations (the subjective elements are shown in
bold).

[en] The desire togive Broglio as many starts as
possible.
[ro] Dorinţa de a-i da lui Broglio ĉat mai multe
starturi posibile.

[en] Supposehe did lie beside Lenin,would it be
permanent ?
[ro] Să presupunemcă ar fi aşezat alături de Lenin,
oare va fi pentru totdeauna?

The following are examples of objective parallel
sentences.

[en]The Pirates have a 9-6 record this year and the
Redbirds are 7-9.
[ro] Piraţii au un palmares de 9 la 6 anul acesta si
Păs̆arile Roşii au 7 la 9.

[en] One of the obstacles to the easy control of a
2-year old child is a lack of verbal communication.
[ro] Unul dintre obstacolelêın controlarea unui
copil de 2 ani este lipsa comunicării verbale.
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The annotators were trained using the MPQA
annotation guidelines (Wiebe et al., 2005). The
tagset consists ofS(ubjective), O(bjective) and
U(ncertain). For theU tags, a class was also given;
OU means, for instance, that the annotator is uncer-
tain but she is leaning towardO. Table 4 shows the
pairwise agreement figures and the Kappa (κ) calcu-
lated for the three annotators. The table also shows
the agreement when the borderline uncertain cases
are removed.

all sentences Uncertain removed
pair agree κ agree κ (%) removed
Ro1 & Ro2 0.83 0.67 0.89 0.77 23
En& Ro1 0.77 0.54 0.86 0.73 26
En& Ro2 0.78 0.55 0.91 0.82 20

Table 4: Agreement on the data set of 173 sentences.
Annotations performed by three annotators: one na-
tive English speaker (En) and two native Romanian
speakers (Ro1 andRo2)

When all the sentences are included, the agree-
ment between the two Romanian annotators is mea-
sured at 0.83 (κ = 0.67). If we remove the border-
line cases where at least one annotator’s tag isUn-
certain, the agreement rises to 0.89 withκ = 0.77.
These figures are somewhat lower than the agree-
ment observed during previous subjectivity anno-
tation studies conducted on English (Wiebe et al.,
2005) (the annotators were more extensively trained
in those studies), but they nonetheless indicate con-
sistent agreement.

Interestingly, when the agreement is conducted
cross-lingually between an English and a Romanian
annotator, the agreement figures, although some-
what lower, are comparable. In fact, once the
Uncertain tags are removed, the monolingual and
cross-lingual agreement andκ values become al-
most equal, which suggests that in most cases the
sentence-level subjectivity is preserved.

The disagreements were reconciled first between
the labels assigned by the two Romanian annotators,
followed by a reconciliation between the resulting
Romanian “gold-standard” labels and the labels as-
signed by the English annotator. In most cases, the
disagreement across the two languages was found
to be due to a difference of opinion about the sen-
tence subjectivity, similar to the differences encoun-
tered in monolingual annotations. However, there

are cases where the differences are due to the sub-
jectivity being lost in the translation. Sometimes,
this is due to several possible interpretations for the
translated sentence. For instance, the following sen-
tence:

[en] Theyhonored the battling Billikens last night.
[ro] Ei i-au celebrat pe Billikens seara trecută.

is marked asSubjectivein English (in context, the
English annotator interpretedhonoredas referring
to praises of the Billikens). However, the Romanian
translation ofhonoredis celebratwhich, while cor-
rect as a translation, has the more frequent interpre-
tation ofhaving a party.The two Romanian annota-
tors chose this interpretation, which correspondingly
lead them to mark the sentence asObjective.

In other cases, in particular when the subjectivity
is due to figures of speech such as irony, the trans-
lation sometimes misses the ironic aspects. For in-
stance, the translation ofeggheadwas not perceived
as ironic by the Romanian annotators, and conse-
quently the following sentence labeledSubjectivein
English is annotated asObjectivein Romanian.

[en] I have lived for many years in a Connecti-
cut commuting town with a high percentage of [...]
business executives ofeggheadtastes.
[ro] Am trăit mulţi aniı̂ntr-un oraş din apropiere de
Connecticut ce avea o mare proporţie de [...] oa-
meni de afaceri cu gusturi intelectuale.

4.1 Translating a Subjectivity-Annotated
Corpus and Creating a Machine Learning
Subjectivity Classifier

To further validate the corpus-based projection of
subjectivity, we developed a subjectivity classifier
trained on Romanian subjectivity-annotated corpora
obtained via cross-lingual projections.

Ideally, one would generate an annotated Roma-
nian corpus by translating English documents man-
ually annotated for subjectivity such as the MPQA
corpus. Unfortunately, the manual translation of this
corpus would be prohibitively expensive, both time-
wise and financially. The other alternative – auto-
matic machine translation – has not yet reached a
level that would enable the generation of a high-
quality translated corpus. We therefore decided to
use a different approach where we automatically
annotate the English side of an existing English-
Romanian corpus, and subsequently project the an-
notations onto the Romanian side of the parallel cor-
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Precision Recall F-measure
high-precision 86.7 32.6 47.4
high-coverage 79.4 70.6 74.7

Table 5: Precision, recall, and F-measure for the
two OpinionFinder classifiers, as measured on the
MPQA corpus.

pus across the sentence-level alignments available in
the corpus.

For the automatic subjectivity annotations, we
generated two sets of the English-side annotations,
one using the high-precision classifier and one using
the high-coverage classifier available in the Opinion-
Finder tool. The high-precision classifier in Opin-
ionFinder uses the clues of the subjectivity lexicon
to harvest subjective and objective sentences from
a large amount of unannotated text; this data is then
used to automatically identify a set of extraction pat-
terns, which are then used iteratively to identify a
larger set of subjective and objective sentences.

In addition, in OpinionFinder, the high-precision
classifier is used to produce an English labeled data
set for training, which is used to generate its Naive
Bayes high-coverage subjectivity classifier. Table
5 shows the performance of the two classifiers on
the MPQA corpus as reported in (Wiebe and Riloff,
2005). Note that 55% of the sentences in the MPQA
corpus are subjective – which represents the baseline
for this data set.

The two OpinionFinder classifiers are used to la-
bel the training corpus. After removing the 504 test
sentences, we are left with 10,628 sentences that
are automatically annotated for subjectivity. Table
6 shows the number of subjective and objective sen-
tences obtained with each classifier.

Classifier Subjective Objective All
high-precision 1,629 2,334 3,963
high-coverage 5,050 5,578 10,628

Table 6: Subjective and objective training sentences
automatically annotated with OpinionFinder.

Next, the OpinionFinder annotations are pro-
jected onto the Romanian training sentences, which
are then used to develop a probabilistic classifier for
the automatic labeling of subjectivity in Romanian
sentences.

Similar to, e.g., (Pang et al., 2002), we use a

Naive Bayes algorithm trained on word features co-
occurring with the subjective and the objective clas-
sifications. We assume word independence, and we
use a 0.3 cut-off for feature selection. While re-
cent work has also considered more complex syn-
tactic features, we are not able to generate such fea-
tures for Romanian as they require tools currently
not available for this language.

We create two classifiers, one trained on each
data set. The quality of the classifiers is evaluated
on the 504-sentence Romanian gold-standard corpus
described above. Recall that the baseline on this data
set is 54.16%, the percentage of sentences in the cor-
pus that are subjective. Table 7 shows the results.

Subjective Objective All
projection source: OF high-precision classifier
Precision 65.02 69.62 64.48
Recall 82.41 47.61 64.48
F-measure 72.68 56.54 64.68
projection source: OF high-coverage classifier
Precision 66.66 70.17 67.85
Recall 81.31 52.17 67.85
F-measure 72.68 56.54 67.85

Table 7: Evaluation of the machine learning classi-
fier using training data obtained via projections from
data automatically labeled by OpinionFinder (OF).

Our best classifier has an F-measure of 67.85,
and is obtained by training on projections from
the high-coverage OpinionFinder annotations. Al-
though smaller than the 74.70 F-measure obtained
by the English high-coverage classifier (see Ta-
ble 5), the result appears remarkable given that no
language-specific Romanian information was used.

The overall results obtained with the machine
learning approach are considerably higher than
those obtained from the rule-based classifier (except
for the precision of the subjective sentences). This
is most likely due to the lexicon translation process,
which as mentioned in the agreement study in Sec-
tion 3.1, leads to ambiguity and loss of subjectivity.
Instead, the corpus-based translations seem to better
account for the ambiguity of the words, and the sub-
jectivity is generally preserved in the sentence trans-
lations.

5 Conclusions

In this paper, we described two approaches to gener-
ating resources for subjectivity annotations for a new
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language, by leveraging on resources and tools avail-
able for English. The first approach builds a target
language subjectivity lexicon by translating an exist-
ing English lexicon using a bilingual dictionary. The
second generates a subjectivity-annotated corpus in
a target language by projecting annotations from an
automatically annotated English corpus.

These resources were validated in two ways.
First, we carried out annotation studies measuring
the extent to which subjectivity is preserved across
languages in each of the two resources. These stud-
ies show that only a relatively small fraction of the
entries in the lexicon preserve their subjectivity in
the translation, mainly due to the ambiguity in both
the source and the target languages. This is con-
sistent with observations made in previous work
that subjectivity is a property associated not with
words, but with wordmeanings(Wiebe and Mihal-
cea, 2006). In contrast, the sentence-level subjectiv-
ity was found to be more reliably preserved across
languages, with cross-lingual inter-annotator agree-
ments comparable to the monolingual ones.

Second, we validated the two automatically gen-
erated subjectivity resources by using them to build
a tool for subjectivity analysis in the target language.
Specifically, we developed two classifiers: a rule-
based classifier that relies on the subjectivity lexi-
con described in Section 3.1, and a machine learn-
ing classifier trained on the subjectivity-annotated
corpus described in Section 4.1. While the highest
precision for the subjective classification is obtained
with the rule-based classifier, the overall best result
of 67.85 F-measure is due to the machine learning
approach. This result is consistent with the anno-
tation studies, showing that the corpus projections
preserve subjectivity more reliably than the lexicon
translations.

Finally, neither one of the classifiers relies on
language-specific information, but rather on knowl-
edge obtained through projections from English. A
similar method can therefore be used to derive tools
for subjectivity analysis in other languages.
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Abstract

Text is not unadulterated fact. A text can
make you laugh or cry but can it also make
you short sell your stocks in company A and
buy up options in company B? Research in
the domain of finance strongly suggests that
it can. Studies have shown that both the
informational and affective aspects of news
text affect the markets in profound ways, im-
pacting on volumes of trades, stock prices,
volatility and even future firm earnings. This
paper aims to explore a computable metric
of positive or negative polarity in financial
news text which is consistent with human
judgments and can be used in a quantita-
tive analysis of news sentiment impact on fi-
nancial markets. Results from a preliminary
evaluation are presented and discussed.

1 Introduction

Research in sentiment analysis has emerged to ad-
dress the research questions: what is affect in text?
what features of text serve to convey it? how can
these features be detected and measured automati-
cally. Sentence and phrase level sentiment analy-
sis involves a systematic examination of texts, such
as blogs, reviews and news reports, for positive,
negative or neutral emotions (Wilson et al., 2005;
Grefenstette et al., 2004). The term “sentiment
analysis” is used rather differently in financial eco-
nomics where it refers to the derivation of market
confidence indicators from proxies such as stock
prices and trading volumes. There is a tradition

going back to the Nobel Sveriges–Riksbank Laure-
ates Herbert Simon (1978 Prize) and Daniel Kah-
neman (2002 Prize), that shows that investors and
traders in such markets can behave irrationally and
that this bounded rationality is inspired by what the
traders and investors hear from others about the con-
ditions that may or may not prevail in the markets.
Robert Engle (2003 Prize) has given a mathematical
description of the asymmetric and affective impact
of news on prices: positive news is typically related
to large changes in prices but only for a short time;
conversely the effect of negative news on prices and
volumes of trading is longer lasting. The emergent
domain of sociology of finance examines financial
markets as social constructs and how communica-
tions, such as e-mails and news reports, may be
loaded with sentiment which could distort market
trading (MacKenzie, 2003).

It would appear that news affects the markets
in profound ways, impacting on volumes of trade,
stock returns, volatility of prices and even future
firm earnings. In the domain of news impact analy-
sis in finance, in recent years the focus has expanded
from informational to affective content of text in an
effort to explain the relationship between text and
the markets. All text, be it news, blogs, accounting
reports or poetry, has a non-factual dimension con-
veying opinion, invoking emotion, providing a nu-
anced perspective of the factual content of the text.
With the increase of computational power and lex-
ical and corpus resources it seems computationally
feasible to detect some of the affective content of
text automatically. The motivation for the work re-
ported here is to identify a metric for sentiment po-
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larity which reliably replicates human evaluations
and which is readily derivable from free text. This
research is being carried out in the context of a study
of the impact of news and its attendant biases on
financial markets, formalizing earlier multi-lingual,
corpus-based empirical work that analysed change
in sentiment and volume of news in large financial
news corpora (Ahmad et al., 2006). A systematic
analysis of the impact of news bias or polarity on
market variables requires a numeric value for senti-
ment intensity, as well as a binary tag for sentiment
polarity, to identify trends in the sentiment indica-
tor as well as turning points. In this approach, the
contribution to an overall sentiment polarity and in-
tensity metric of individual lexical items which are
“affective” by definition is determined by their con-
nectivity and position within a representation of the
text as a whole based on the principles of lexical co-
hesion. The contribution of each element is there-
fore not purely additive but rather is mitigated by its
relevance and position relative to other elements.

Section 2 sets out related work in the sentiment
analysis domain both in computational linguistics
and in finance where these techniques have been
applied with some success. Section 3 outlines the
cohesion-based algorithm for sentiment polarity de-
tection, the resources used and the benefits of using
the graph-based text representation approach. This
approach was evaluated relative to a small corpus of
gold standard sentiment judgments. The derivation
of the gold standard and details of the evaluation are
outlined in section 4. The results are presented and
discussed in section 5 and section 6 concludes with
a look at future challenges for this research.

2 Related Work

2.1 Cognitive Theories of Emotion

In order to understand how emotion can be realised
in text, we must first have a notion of what emo-
tion is and how people experience it. Current cogni-
tive theories of what constitutes emotion are divided
between two primary approaches: categorical and
dimensional. The Darwinian categorical approach
posits a finite set of basic emotions which are expe-
rienced universally across cultures, (e.g. anger, fear,
sadness, surprise (Ekman and Friesen, 1971)). The
second approach delineates emotions according to

multiple dimensions rather than into discrete cate-
gories. The two primary dimensions in this account
are a good–bad axis, the dimension of valence or
evaluation, and a strong-weak axis, the dimension
of activation or intensity (Osgood et al., 1957). The
work reported here aims to conflate the evaluation
and activation dimensions into one metric with the
size of the value indicating strength of activation and
its sign, polarity on the evaluation axis.

2.2 Sentiment Analysis

Sentiment analysis in computational linguistics has
focused on examining what textual features (lexi-
cal, syntactic, punctuation, etc) contribute to affec-
tive content of text and how these features can be
detected automatically to derive a sentiment metric
for a word, sentence or whole text. Wiebe and col-
leagues have largely focused on identifying subjec-
tivity in texts, i.e. identifying those texts which are
affectively neutral and those which are not. This
work has been grounded in a strong human evalu-
ative component. The subjectivity identification re-
search has moved from initial work using syntactic
class, punctuation and sentence position features for
subjectivity classifiers to later work using more lex-
ical features like gradation of adjectives or word fre-
quency (Wiebe et al., 1999; Wiebe et al., 2005). Oth-
ers, such as Turney (2002), Pang and Vaithyanathan
(2002), have examined the positive or negative po-
larity, rather than presence or absence, of affective
content in text. Kim and Hovy (2004), among oth-
ers, have combined the two tasks, identifying sub-
jective text and detecting its sentiment polarity. The
indicators of affective content have been drawn from
lexical sources, corpora and the world wide web and
combined in a variety of ways, including factor anal-
ysis and machine learning techniques, to determine
when a text contains affective content and what is
the polarity of that content.

2.3 Sentiment and News Impact Analysis

Niederhoffer (1971), academic and hedge fund man-
ager, analysed 20 years of New York Times head-
lines classified into 19 semantic categories and on a
good-bad rating scale to evaluate how the markets
reacted to good and bed news: he found that mar-
kets do react to news with a tendency to overreact
to bad news. Somewhat prophetically, he suggests
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that news should be analysed by computers to intro-
duce more objectivity in the analysis. Engle and Ng
(1993) proposed the news impact curve as a model
for how news impacts on volatility in the market
with bad news introducing more volatility than good
news. They used the market variable, stock returns,
as a proxy for news, an unexpected drop in returns
for bad news and an unexpected rise for good news.
Indeed, much early work used such market variables
or readily quantifiable aspects of news as a proxy for
the news itself: e.g. news arrival, type, provenance
and volumes (Cutler et al., 1989; Mitchell and Mul-
herin, 1994). More recent studies have proceeded
in a spirit of computer-aided objectivity which en-
tails determining linguistic features to be used to
automatically categorise text into positive or nega-
tive news. Davis et al (2006) investigate the effects
of optimistic or pessimistic language used in finan-
cial press releases on future firm performance. They
conclude that a) readers form expectations regard-
ing the habitual bias of writers and b) react more
strongly to reports which violate these expectations,
strongly suggesting that readers, and by extension
the markets, form expectations about and react to not
only content but also affective aspects of text. Tet-
lock (2007) also investigates how a pessimism fac-
tor, automatically generated from news text through
term classification and principal components analy-
sis, may forecast market activity, in particular stock
returns. He finds that high negativity in news pre-
dicts lower returns up to 4 weeks around story re-
lease. The studies establish a relationship between
affective bias in text and market activity that market
players and regulators may have to address.

3 Approach

3.1 Cohesion-based Text Representation

The approach employed here builds on a cohesion-
based text representation algorithm used in a news
story comparison application described in (Devitt,
2004). The algorithm builds a graph representa-
tion of text from part-of-speech tagged text without
disambiguation using WordNet (Fellbaum, 1998) as
a real world knowledge source to reduce informa-
tion loss in the transition from text to text-based
structure. The representation is designed within the
theoretical framework of lexical cohesion (Halliday

and Hasan, 1976). Aspects of the cohesive struc-
ture of a text are captured in a graph representation
which combines information derived from the text
and WordNet semantic content. The graph structure
is composed of nodes representing concepts in or de-
rived from the text connected by relations between
these concepts in WordNet, such as antonymy or hy-
pernymy, or derived from the text, such as adjacency
in the text. In addition, the approach provides the
facility to manipulate or control how the WordNet
semantic content information is interpreted through
the use of topological features of the knowledge
base. In order to evaluate the relative contribution
of WordNet concepts to the information content of a
text as a whole, a node specificity metric was derived
based on an empirical analysis of the distribution of
topological features of WordNet such as inheritance,
hierarchy depth, clustering coefficients and node de-
gree and how these features map onto human judg-
ments of concept specificity or informativity. This
metric addresses the issue of the uneven population
of most knowledge bases so that the local idiosyn-
cratic characteristics of WordNet can be mitigated
by some of its global features.

3.2 Sentiment Polarity Overlay

By exploiting existing lexical resources for senti-
ment analysis, an explicit affective dimension can
be overlaid on this basic text model. Our approach
to polarity measurement, like others, relies on a lex-
icon of tagged positive and negative sentiment terms
which are used to quantify positive/negative senti-
ment. In this first iteration of the work, SentiWN
(Esuli and Sebastiani, 2006) was used as it provides
a readily interpretable positive and negative polarity
value for a set of “affective” terms which conflates
Osgood’s (1957) evaluative and activation dimen-
sions. Furthermore, it is based on WordNet 2.0 and
can therefore be integrated into the existing text rep-
resentation algorithm, where some nodes in the co-
hesion graph carry a SentiWN sentiment value and
others do not. The contribution of individual polar-
ity nodes to the polarity metric of the text as a whole
is then determined with respect to the textual infor-
mation and WN semantic and topological features
encoded in the underlying graph representation of
the text. Three polarity metrics were implemented
to evaluate the effectiveness of exploiting different
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aspects of the cohesion-based graph structure.
Basic Cohesion Metricis based solely on frequency
of sentiment-bearing nodes inor derived from the
source text, i.e. the sum of polarity values for all
nodes in the graph.
Relation Type Metric modifies the basic metric
with respect to the types of WordNet relations in the
text-derived graph. For each node in the graph, its
sentiment value is the product of its polarity value
and a relation weight for each relation this node en-
ters into in the graph structure. Unlike most lexical
chaining algorithms, not all WordNet relations are
treated as equal. In this sentiment overlay, the rela-
tions which are deemed most relevant are those that
potentially denote a relation of the affective dimen-
sion, like antonymy, and those which constitute key
organising principles of the database, such as hy-
pernymy. Potentially affect-effecting relations have
the strongest weighting while more amorphous rela-
tions, such as “also see”, have the lowest.
Node Specificity Metric modifies the basic metric
with respect to a measure of node specificity calcu-
lated on the basis of topographical features of Word-
Net. The intuition behind this measure is that highly
specific nodes or concepts may carry more informa-
tional and, by extension, affective content than less
specific ones. We have noted the difficulty of using
a knowledge base whose internal structure is not ho-
mogeneous and whose idiosyncrasies are not quanti-
fied. The specificity measure aims to factor out pop-
ulation sparseness or density in WordNet by evaluat-
ing the contribution of each node relative to its depth
in the hierarchy, its connectivity (branchingFactor)
and its siblings:

Spc =
(depth+ln(siblings)−ln(branchingFactor))

NormalizingFactor
(1)

The three metrics are further specialised according
to the following two boolean flags:
InText: the metric is calculated based on 1) only
those nodes representing terms in the source text, or
2) all nodes in the graph representation derived from
the text. In this way, the metrics can be calculated
using information derived from the graph represen-
tation, such as node specificity, without potentially
noisy contributions from nodes not in the source text
but related to them, via relations such as hypernymy.
Modifiers: the metric is calculated using all open

class parts of speech or modifiers alone. On a cur-
sory inspection of SentiWN, it seems that modifiers
have more reliable values than nouns or verbs. This
option was included to test for possible adverse ef-
fects of the lexicon.
In total for each metric there are four outcomes com-
bining inText true/false andmodifiers true/false.

4 Evaluation

The goal of this research is to examine the relation-
ship between financial markets and financial news,
in particular the polarity of financial news. The do-
main of finance provides data and methods for solid
quantitative analysis of the impact of sentiment po-
larity in news. However, in order to engage with
this long tradition of analysis of the instruments and
related variables of the financial markets, the quan-
titative measure of polarity must be not only easy
to compute, it must be consistent with human judg-
ments of polarity in this domain. This evaluation is
a first step on the path to establishing reliability for
a sentiment measure of news. Unfortunately, the fo-
cus on news, as opposed to other text types, has its
difficulties. Much of the work in sentiment analy-
sis in the computational linguistics domain has fo-
cused either on short segments, such as sentences
(Wilson et al., 2005), or on longer documents with
an explicit polarity orientation like movie or prod-
uct reviews (Turney, 2002). Not all news items may
express overt sentiment. Therefore, in order to test
our hypothesis, we selected a news topic which was
considered a priori to have emotive content.

4.1 Corpus

Markets react strongest to information about firms
to which they have an emotional attachment (Mac-
Gregor et al., 2000). Furthermore, takeovers and
mergers are usually seen as highly emotive contexts.
To combine these two emotion-enhancing factors,
a corpus of news texts was compiled on the topic
of the aggressive takeover bid of a low-cost airline
(Ryanair) for the Irish flag-carrier airline (Aer Lin-
gus). Both airlines have a strong (positive and nega-
tive) emotional attachment for many in Ireland. Fur-
thermore, both airlines are highly visible within the
country and have vocal supporters and detractors
in the public arena. The corpus is drawn from the
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national media and international news wire sources
and spans 4 months in 2006 from the flotation of
the flag carrier on the stock exchange in Septem-
ber 2006, through the “surprise” take-over bid an-
nouncement by Ryanair, to the withdrawal of the bid
by Ryanair in December 2006.1

4.2 Gold Standard

A set of 30 texts selected from the corpus was anno-
tated by 3 people on a 7-point scale fromvery pos-
itive to very negative. Given that a takeover bid has
two players, the respondents were asked also to rate
the semantic orientation of the texts with respect to
the two players, Ryanair and Aer Lingus. Respon-
dents were all native English speakers, 2 female and
1 male. To ensure emotional engagement in the task,
they were first asked to rate their personal attitude to
the two airlines. The ratings in all three cases were
on the extreme ends of the 7 point scale, with very
positive attitudes towards the flag carrier and very
negative attitudes towards the low-cost airline. Re-
spondent attitudes may impact on their text evalu-
ations but, given the high agreement of attitudes in
this study, this impact should at least be consistent
across the individuals in the study. A larger study
should control explicitly for this variable.

As the respondents gave ratings on a ranked scale,
inter-respondent reliability was determined using
Krippendorf’s alpha, a modification of the Kappa
coefficient for ordinal data (Krippendorff, 1980). On
the general ranking scale, there was little agreement
(kappa = 0.1685), corroborating feedback from re-
spondents on the difficulty of providing a general
rating for text polarity distinct from a rating with re-
spect to one of the two companies. However, there
was an acceptable degree of agreement (Grove et al.,
1981) on the Ryanair and Aer Lingus polarity rat-
ings,kappa = 0.5795 andkappa = 0.5589 respec-
tively. Results report correlations with these ratings
which are consistent and, from the financial market
perspective, potentially more interesting.2

1A correlation analysis of human sentiment ratings with
Ryanair and Aer Lingus stock prices for the last quarter of 2006
was conducted. The findings suggest that stock prices were cor-
related with ratings with respect to Aer Lingus, suggestingthat,
during this takeover period, investors may have been influenced
by sentiment expressed in news towards Aer Lingus. However,
the timeseries is too short to ensure statistical significance.

2Results in this paper are reported with respect to the

4.3 Performance Metrics

The performance of the polarity algorithm was eval-
uated relative to a corpus of human-annotated news
texts, focusing on two separate dimensions of polar-
ity:

1. Polarity direction: the task of assigning a bi-
nary positive/negative value to a text

2. Polarity intensity: the task of assigning a value
to indicate the strength of the negative/positive
polarity in a text.

Performance on the former is reported using stan-
dard recall and precision metrics. The latter is re-
ported as a correlation with average human ratings.

4.4 Baseline

For the metrics in section 3, the baseline for compar-
ison sums the SentiWN polarity rating for only those
lexical items present in the text, not exploiting any
aspect of the graph representation of the text. This
baseline corresponds to the Basic Cohesion Metric,
with inText = true (only lexical items in the text)
andmodifiers = false (all parts of speech).

5 Results and Discussion

5.1 Binary Polarity Assignment

The baseline results for positive ratings, negative rat-
ings and overall accuracy for the task of assigning a
polarity tag are reported in table 1. The results show

Type Precision Recall FScore
Positive 0.381 0.7273 0.5
Negative 0.667 0.3158 0.4286
Overall 0.4667 0.4667 0.4667

Table 1: Baseline results

that the baseline tends towards the positive end of
the rating spectrum, with high recall for positive rat-
ings but low precision. Conversely, negative ratings
have high precision but low recall. Figures 1 to 3
illustrate the performance for positive, negative and
overall ratings of all metric–inText–Modifier combi-
nations, enumerated in table 2, relative to this base-
line, the horizontal. Those metrics which surpass
this line are deemed to outperform the baseline.

Ryanair ratings as they had the highest inter-rater agreement.
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1 Cohesion 5 Relation 9 NodeSpec
2 CohesionTxt 6 RelationTxt 10 NodeSpecTxt
3 CohesionMod 7 RelationMod 11 NodeSpecMod
4 CohesionTxtMod 8 RelationTxtMod 12 NodeSpecTxtMod

Table 2: Metric types in Figures 1-3

Figure 1: F Score for Positive Ratings

All metrics have a bias towards positive ratings
with attendant high positive recall values and im-
proved f-score for positive polarity assignments.
The Basic Cohesion Metric marginally outperforms
the baseline overall indicating that exploiting the
graph structure gives some added benefit. For the
Relations and Specificity metrics, system perfor-
mance greatly improves on the baseline for the
modifiers = true options, whereas, when all parts
of speech are included (modifier = false), perfor-
mance drops significantly. This sensitivity to inclu-
sion of all word classes could suggest that modifiers
are better indicators of text polarity than other word
classes or that the metrics used are not appropriate
to non-modifier parts of speech. The former hypoth-
esis is not supported by the literature while the latter
is not supported by prior successful application of
these metrics in a text comparison task. In order to
investigate the source of this sensitivity, we intend to
examine the distribution of relation types and node
specificity values for sentiment-bearing terms to de-
termine how best to tailor these metrics to the senti-
ment identification task.

A further hypothesis is that the basic polarity val-
ues for non-modifiers are less reliable than for ad-
jectives and adverbs. On a cursory inspection of po-
larity values of nouns and adjectives in SentiWN, it
would appear that adjectives are somewhat more re-
liably labelled than nouns. For example, crime and

Figure 2: F Score for Negative Ratings

some of its hyponyms are labelled as neutral (e.g.
forgery) or even positive (e.g. assault) whereas crim-
inal is labelled as negative. This illustrates a key
weakness in a lexical approach such as this: over-
reliance on lexical resources. No lexical resource is
infallible. It is therefore vital to spread the associ-
ated risk by using more than one knowledge source,
e.g. multiple sentiment lexica or using corpus data.

Figure 3: F Score for All Ratings

5.2 Polarity Intensity Values

The results on the polarity intensity task parallel the
results on polarity tag assignment. Table 3 sets out
the correlation coefficients for the metrics with re-
spect to the average human rating. Again, the best
performers are the relation type and node specificity
metrics using only modifiers, significant to the 0.05
level. Yet the correlation coefficients overall are not
very high. This would suggest that perhaps the re-
lationship between the human ranking scale and the
automatic one is not strictly linear. Although the hu-
man ratings map approximately onto the automati-
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cally derived scale, there does not seem to be a clear
one to one mapping. The section that follows discuss
this and some of the other issues which this evalua-
tion process has brought to light.

Metric inText Modifier Correlation

Basic Cohesion No No 0.47**

Yes No 0.42*

No Yes 0.47**

Yes Yes 0.47**

Relation Type No No -0.1**

Yes No -0.13*

No Yes 0.5**

Yes Yes 0.38*

Node Specificity No No 0.00

Yes No -0.03

No Yes 0.48**

Yes Yes 0.38*

Table 3: Correlation Coefficients for human ratings.
**. Significant at the 0.01 level. *. Significant at the 0.05 level.

5.3 Issues

The Rating Scale and Thresholding

Overall the algorithm tends towards the positive end
of the spectrum in direct contrast to human raters
with 55-70% of all ratings being negative. Further-
more, the correlation of human to algorithm ratings
is significant but not strongly directional. It would
appear that there are more positive lexical items in
text, hence the algorithm’s positive bias. Yet much
of this positivity is not having a strong impact on
readers, hence the negative bias observed in these
evaluators. This raises questions about the scale of
human polarity judgments: are people more sensi-
tive to negativity in text? is there a positive baseline
in text that people find unremarkable and ignore?
To investigate this issue, we will conduct a compar-
ative corpus analysis of the distribution of positive
and negative lexical items in text and their perceived
strengths in text. The results of this analysis should
help to locate sentiment turning points or thresholds
and establish an elastic sentiment scale which allows
for baseline but disregarded positivity in text.

The Impact of the Lexicon

The algorithm described here is lexicon-based, fully
reliant on available lexical resources. However, we

have noted that an over-reliance on lexica has its
disadvantages, as any hand-coded or corpus-derived
lexicon will have some degree of error or inconsis-
tency. In order to address this issue, it is neces-
sary to spread the risk associated with a single lex-
ical resource by drawing on multiple sources, as in
(Kim and Hovy, 2005). The SentiWN lexicon used
in this implementation is derived from a seed word
set supplemented WordNet relations and as such it
has not been psychologically validated. For this rea-
son, it has good coverage but some inconsistency.
Whissel’s Dictionary of Affect (1989) on the other
hand is based entirely on human ratings of terms.
It’s coverage may be narrower but accuracy might
be more reliable. This dictionary also has the advan-
tage of separating out Osgood’s (1957) evaluative
and activation dimensions as well as an “imaging”
rating for each term to allow a multi-dimensional
analysis of affective content. The WN Affect lexi-
con (Valitutti et al., 2004) again provides somewhat
different rating types where terms are classified in
terms of denoting or evoking different physical or
mental affective reactions. Together, these resources
could offer not only more accurate base polarity val-
ues but also more nuanced metrics that may better
correspond to human notions of affect in text.

The Gold Standard

Sentiment rating evaluation is not a straight-forward
task. Wiebe et al (2005) note many of the difficul-
ties associated human sentiment ratings of text. As
noted above, it can be even more difficult when eval-
uating news where the text is intended to appear im-
partial. The attitude of the evaluator can be all im-
portant: their attitude to the individuals or organi-
sations in the text, their professional viewpoint as a
market player or an ordinary punter, their attitude to
uncertainty and risk which can be a key factor in the
world of finance. In order to address these issues for
the domain of news impact in financial markets, the
expertise of market professionals must be elicited to
determine what they look for in text and what view-
point they adopt when reading financial news. In
econometric analysis, stock price or trading volume
data constitute an alternative gold standard, repre-
senting a proxy for human reaction to news. For eco-
nomic significance, the data must span a time period
of several years and compilation of a text and stock
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price corpus for a large scale analysis is underway.

6 Conclusions and Future Work

This paper presents a lexical cohesion based met-
ric of sentiment intensity and polarity in text and
an evaluation of this metric relative to human judg-
ments of polarity in financial news. We are con-
ducting further research on how best to capture a
psychologically plausible measure of affective con-
tent of text by exploiting available resources and a
broader evaluation of the measure relative to human
judgments and existing metrics. This research is ex-
pected to contribute to sentiment analysis in finance.
Given a reliable metric of sentiment in text, what
is the impact of changes in this value on market
variables? This involves a sociolinguistic dimension
to determine what publications or texts best charac-
terise or are most read and have the greatest influ-
ence in this domain and the economic dimension of
correlation with economic indicators.
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Abstract
We investigate automatic classification
of speculative language (‘hedging’), in
biomedical text using weakly supervised
machine learning. Our contributions include
a precise description of the task with anno-
tation guidelines, analysis and discussion,
a probabilistic weakly supervised learning
model, and experimental evaluation of the
methods presented. We show that hedge
classification is feasible using weakly
supervised ML, and point toward avenues
for future research.

1 Introduction

The automatic processing of scientific papers using
NLP and machine learning (ML) techniques is an
increasingly important aspect of technical informat-
ics. In the quest for a deeper machine-driven ‘under-
standing’ of the mass of scientific literature, a fre-
quently occuring linguistic phenomenon that must
be accounted for is the use of hedging to denote
propositions of a speculative nature. Consider the
following:

1. Our results prove that XfK89 inhibits Felin-9.
2. Our results suggest that XfK89 might inhibit Felin-9.

The second example contains a hedge, signaled
by the use of suggest and might, which renders
the proposition inhibit(XfK89→Felin-9) speculative.
Such analysis would be useful in various applica-
tions; for instance, consider a system designed to
identify and extract interactions between genetic en-
tities in the biomedical domain. Case 1 above pro-
vides clear textual evidence of such an interaction

and justifies extraction of inhibit(XfK89→Felin-9),
whereas case 2 provides only weak evidence for
such an interaction.

Hedging occurs across the entire spectrum of sci-
entific literature, though it is particularly common in
the experimental natural sciences. In this study we
consider the problem of learning to automatically
classify sentences containing instances of hedging,
given only a very limited amount of annotator-
labelled ‘seed’ data. This falls within the weakly su-
pervised ML framework, for which a range of tech-
niques have been previously explored. The contri-
butions of our work are as follows:

1. We provide a clear description of the prob-
lem of hedge classification and offer an im-
proved and expanded set of annotation guide-
lines, which as we demonstrate experimentally
are sufficient to induce a high level of agree-
ment between independent annotators.

2. We discuss the specificities of hedge classifica-
tion as a weakly supervised ML task.

3. We derive a probabilistic weakly supervised
learning model and use it to motivate our ap-
proach.

4. We analyze our learning model experimentally
and report promising results for the task on a
new publicly-available dataset.1

2 Related Work

2.1 Hedge Classification

While there is a certain amount of literature within
the linguistics community on the use of hedging in

1available from www.cl.cam.ac.uk/∼bwm23/
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scientific text, eg. (Hyland, 1994), there is little of
direct relevance to the task of classifying speculative
language from an NLP/ML perspective.

The most clearly relevant study is Light et al.
(2004) where the focus is on introducing the prob-
lem, exploring annotation issues and outlining po-
tential applications rather than on the specificities
of the ML approach, though they do present some
results using a manually crafted substring match-
ing classifier and a supervised SVM on a collection
of Medline abstracts. We will draw on this work
throughout our presentation of the task.

Hedging is sometimes classed under the umbrella
concept of subjectivity, which covers a variety of lin-
guistic phenomena used to express differing forms
of authorial opinion (Wiebe et al., 2004). Riloff et al.
(2003) explore bootstrapping techniques to identify
subjective nouns and subsequently classify subjec-
tive vs. objective sentences in newswire text. Their
work bears some relation to ours; however, our do-
mains of interest differ (newswire vs. scientific text)
and they do not address the problem of hedge clas-
sification directly.

2.2 Weakly Supervised Learning
Recent years have witnessed a significant growth
of research into weakly supervised ML techniques
for NLP applications. Different approaches are of-
ten characterised as either multi- or single-view,
where the former generate multiple redundant (or
semi-redundant) ‘views’ of a data sample and per-
form mutual bootstrapping. This idea was for-
malised by Blum and Mitchell (1998) in their
presentation of co-training. Co-training has also
been used for named entity recognition (NER)
(Collins and Singer, 1999), coreference resolution
(Ng and Cardie, 2003), text categorization (Nigam
and Ghani, 2000) and improving gene name data
(Wellner, 2005).

Conversely, single-view learning models operate
without an explicit partition of the feature space.
Perhaps the most well known of such approaches
is expectation maximization (EM), used by Nigam
et al. (2000) for text categorization and by Ng and
Cardie (2003) in combination with a meta-level fea-
ture selection procedure. Self-training is an alterna-
tive single-view algorithm in which a labelled pool
is incrementally enlarged with unlabelled samples

for which the learner is most confident. Early work
by Yarowsky (1995) falls within this framework.
Banko and Brill (2001) use ‘bagging’ and agree-
ment to measure confidence on unlabelled samples,
and more recently McClosky et al. (2006) use self-
training for improving parse reranking.

Other relevant recent work includes (Zhang,
2004), in which random feature projection and a
committee of SVM classifiers is used in a hybrid
co/self-training strategy for weakly supervised re-
lation classification and (Chen et al., 2006) where
a graph based algorithm called label propagation is
employed to perform weakly supervised relation ex-
traction.

3 The Hedge Classification Task

Given a collection of sentences, S, the task is to
label each sentence as either speculative or non-
speculative (spec or nspec henceforth). Specifically,
S is to be partitioned into two disjoint sets, one rep-
resenting sentences that contain some form of hedg-
ing, and the other representing those that do not.

To further elucidate the nature of the task and im-
prove annotation consistency, we have developed a
new set of guidelines, building on the work of Light
et al. (2004). As noted by Light et al., speculative
assertions are to be identified on the basis of judge-
ments about the author’s intended meaning, rather
than on the presence of certain designated hedge
terms.

We begin with the hedge definition given by
Light et al. (item 1) and introduce a set of further
guidelines to help elucidate various ‘grey areas’ and
tighten the task specification. These were developed
after initial annotation by the authors, and through
discussion with colleagues. Further examples are
given in online Appendix A2.
The following are considered hedge instances:

1. An assertion relating to a result that does not
necessarily follow from work presented, but
could be extrapolated from it (Light et al.).

2. Relay of hedge made in previous work.
Dl and Ser have been proposed to act redundantly in the
sensory bristle lineage.

3. Statement of knowledge paucity.

2available from www.cl.cam.ac.uk/∼bwm23/

993



How endocytosis of Dl leads to the activation of N re-
mains to be elucidated.

4. Speculative question.
A second important question is whether the roX genes
have the same, overlapping or complementing functions.

5. Statement of speculative hypothesis.
To test whether the reported sea urchin sequences repre-
sent a true RAG1-like match, we repeated the BLASTP
search against all GenBank proteins.

6. Anaphoric hedge reference.

This hypothesis is supported by our finding that both pu-

pariation rate and survival are affected by EL9.

The following are not considered hedge instances:

1. Indication of experimentally observed non-
universal behaviour.
proteins with single BIR domains can also have functions
in cell cycle regulation and cytokinesis.

2. Confident assertion based on external work.
Two distinct E3 ubiquitin ligases have been shown to reg-
ulate Dl signaling in Drosophila melanogaster.

3. Statement of existence of proposed alterna-
tives.
Different models have been proposed to explain how en-
docytosis of the ligand, which removes the ligand from the
cell surface, results in N receptor activation.

4. Experimentally-supported confirmation of pre-
vious speculation.
Here we show that the hemocytes are the main regulator
of adenosine in the Drosophila larva, as was speculated
previously for mammals.

5. Negation of previous hedge.
Although the adgf-a mutation leads to larval or pupal
death, we have shown that this is not due to the adenosine
or deoxyadenosine simply blocking cellular proliferation
or survival, as the experiments in vitro would suggest.

4 Data

We used an archive of 5579 full-text papers from the
functional genomics literature relating to Drosophila
melanogaster (the fruit fly). The papers were con-
verted to XML and linguistically processed using
the RASP toolkit3. We annotated six of the pa-
pers to form a test set with a total of 380 spec sen-
tences and 1157 nspec sentences, and randomly se-
lected 300,000 sentences from the remaining papers
as training data for the weakly supervised learner. To
ensure selection of complete sentences rather than

3www.informatics.susx.ac.uk/research/nlp/rasp

Frel
1 κ

Original 0.8293 0.9336
Corrected 0.9652 0.9848

Table 1: Agreement Scores

headings, captions etc., unlabelled samples were
chosen under the constraints that they must be at
least 10 words in length and contain a main verb.

5 Annotation and Agreement

Two separate annotators were commissioned to la-
bel the sentences in the test set, firstly one of the
authors and secondly a domain expert with no prior
input into the guideline development process. The
two annotators labelled the data independently us-
ing the guidelines outlined in section 3. Relative
F1 (Frel

1 ) and Cohen’s Kappa (κ) were then used to
quantify the level of agreement. For brevity we refer
the reader to (Artstein and Poesio, 2005) and (Hripc-
sak and Rothschild, 2004) for formulation and dis-
cussion of κ and Frel

1 respectively.
The two metrics are based on different assump-

tions about the nature of the annotation task. Frel
1

is founded on the premise that the task is to recog-
nise and label spec sentences from within a back-
ground population, and does not explicitly model
agreement on nspec instances. It ranges from 0 (no
agreement) to 1 (no disagreement). Conversely, κ
gives explicit credit for agreement on both spec and
nspec instances. The observed agreement is then
corrected for ‘chance agreement’, yielding a metric
that ranges between −1 and 1. Given our defini-
tion of hedge classification and assessing the manner
in which the annotation was carried out, we suggest
that the founding assumption of Frel

1 fits the nature
of the task better than that of κ.

Following initial agreement calculation, the in-
stances of disagreement were examined. It turned
out that the large majority of cases of disagreement
were due to negligence on behalf of one or other of
the annotators (i.e. cases of clear hedging that were
missed), and that the cases of genuine disagreement
were actually quite rare. New labelings were then
created with the negligent disagreements corrected,
resulting in significantly higher agreement scores.
Values for the original and negligence-corrected la-
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belings are reported in Table 1.
Annotator conferral violates the fundamental as-

sumption of annotator independence, and so the lat-
ter agreement scores do not represent the true level
of agreement; however, it is reasonable to conclude
that the actual agreement is approximately lower
bounded by the initial values and upper bounded by
the latter values. In fact even the lower bound is
well within the range usually accepted as represent-
ing ‘good’ agreement, and thus we are confident in
accepting human labeling as a gold-standard for the
hedge classification task. For our experiments, we
use the labeling of the genetics expert, corrected for
negligent instances.

6 Discussion

In this study we use single terms as features, based
on the intuition that many hedge cues are single
terms (suggest, likely etc.) and due to the success
of ‘bag of words’ representations in many classifica-
tion tasks to date. Investigating more complex sam-
ple representation strategies is an avenue for future
research.

There are a number of factors that make our for-
mulation of hedge classification both interesting and
challenging from a weakly supervised learning per-
spective. Firstly, due to the relative sparsity of hedge
cues, most samples contain large numbers of irrele-
vant features. This is in contrast to much previous
work on weakly supervised learning, where for in-
stance in the case of text categorization (Blum and
Mitchell, 1998; Nigam et al., 2000) almost all con-
tent terms are to some degree relevant, and irrel-
evant terms can often be filtered out (e.g. stop-
word removal). In the same vein, for the case of
entity/relation extraction and classification (Collins
and Singer, 1999; Zhang, 2004; Chen et al., 2006)
the context of the entity or entities in consideration
provides a highly relevant feature space.

Another interesting factor in our formulation of
hedge classification is that the nspec class is defined
on the basis of the absence of hedge cues, render-
ing it hard to model directly. This characteristic
is also problematic in terms of selecting a reliable
set of nspec seed sentences, as by definition at the
beginning of the learning cycle the learner has lit-
tle knowledge about what a hedge looks like. This

problem is addressed in section 10.3.
In this study we develop a learning model based

around the concept of iteratively predicting labels
for unlabelled training samples, the basic paradigm
for both co-training and self-training. However we
generalise by framing the task in terms of the acqui-
sition of labelled training data, from which a super-
vised classifier can subsequently be learned.

7 A Probabilistic Model for Training Data
Acquisition

In this section, we derive a simple probabilistic
model for acquiring training data for a given learn-
ing task, and use it to motivate our approach to
weakly supervised hedge classification.

Given:

• sample space X
• set of target concept classes Y = {y1 . . . yN}
• target function Y : X → Y
• set of seed samples for each class S1 . . .SN

where Si ⊂ X and ∀x ∈ Si[Y (x)=yi]
• set of unlabelled samples U = {x1 . . .xK}

Aim: Infer a set of training samples Ti for each con-
cept class yi such that ∀x ∈ Ti[Y (x) = yi]

Now, it follows that ∀x∈Ti[Y (x)=yi] is satisfied
in the case that ∀x∈Ti[P (yi|x)=1], which leads to
a model in which Ti is initialised to Si and then iter-
atively augmented with the unlabelled sample(s) for
which the posterior probability of class membership
is maximal. Formally:

At each iteration:

Ti ← xj(∈ U)
where j = arg max

j
[P (yi|xj)] (1)

Expansion with Bayes’ Rule yields:

arg max
j

[P (yi|xj)]

= arg max
j

[
P (xj |yi) · P (yi)

P (xj)

]
(2)

An interesting observation is the importance of
the sample prior P (xj) in the denominator, of-
ten ignored for classification purposes because of
its invariance to class. We can expand further by
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marginalising over the classes in the denominator in
expression 2, yielding:

arg max
j

[
P (xj |yi) · P (yi)∑N
n=1 P (yn)P (xj |yn)

]
(3)

so we are left with the class priors and class-
conditional likelihoods, which can usually be esti-
mated directly from the data, at least under limited
dependence assumptions. The class priors can be
estimated based on the relative distribution sizes de-
rived from the current training sets:

P (yi) =
|Ti|∑
k |Tk|

(4)

where |S| is the number of samples in training set S.
If we assume feature independence, which as we

will see for our task is not as gross an approximation
as it may at first seem, we can simplify the class-
conditional likelihood in the well known manner:

P (xj |yi) =
∏
k

P (xjk|yi) (5)

and then estimate the likelihood for each feature:

P (xk|yi) =
αP (yi) + f(xk, Ti)

αP (yi) + |Ti|
(6)

where f(x,S) is the number of samples in training
set S in which feature x is present, and α is a uni-
versal smoothing constant, scaled by the class prior.
This scaling is motivated by the principle that with-
out knowledge of the true distribution of a partic-
ular feature it makes sense to include knowledge
of the class distribution in the smoothing mecha-
nism. Smoothing is particularly important in the
early stages of the learning process when the amount
of training data is severely limited resulting in unre-
liable frequency estimates.

8 Hedge Classification

We will now consider how to apply this learning
model to the hedge classification task. As discussed
earlier, the speculative/non-speculative distinction
hinges on the presence or absence of a few hedge
cues within the sentence. Working on this premise,
all features are ranked according to their probability
of ‘hedge cue-ness’:

P (spec|xk) =
P (xk|spec) · P (spec)∑N

n=1 P (yn)P (xk|yn)
(7)

which can be computed directly using (4) and (6).
The m most probable features are then selected from
each sentence to compute (5) and the rest are ig-
nored. This has the dual benefit of removing irrele-
vant features and also reducing dependence between
features, as the selected features will often be non-
local and thus not too tightly correlated.

Note that this idea differs from traditional feature
selection in two important ways:

1. Only features indicative of the spec class are
retained, or to put it another way, nspec class
membership is inferred from the absence of
strong spec features.

2. Feature selection in this context is not a prepro-
cessing step; i.e. there is no re-estimation after
selection. This has the potentially detrimental
side effect of skewing the posterior estimates
in favour of the spec class, but is admissible
for the purposes of ranking and classification
by posterior thresholding (see next section).

9 Classification

The weakly supervised learner returns a labelled
data set for each class, from which a classifier can
be trained. We can easily derive a classifier using
the estimates from our learning model by:

xj → spec if P (spec|xj) > σ (8)

where σ is an arbitrary threshold used to control the
precision/recall balance. For comparison purposes,
we also use Joachims’ SVMlight (Joachims, 1999).

10 Experimental Evaluation

10.1 Method

To examine the practical efficacy of the learning and
classification models we have presented, we use the
following experimental method:

1. Generate seed training data: Sspec and Snspec

2. Initialise: Tspec←Sspec and Tnspec←Snspec

3. Iterate:
• Order U by P (spec|xj) (expression 3)
• Tspec ← most probable batch
• Tnspec ← least probable batch
• Train classifier using Tspec and Tnspec
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Rank α = 0 α = 1 α = 5 α = 100 α = 500
1 interactswith suggest suggest suggest suggest
2 TAFb likely likely likely likely
3 sexta may may may may
4 CRYs might might These These
5 DsRed seems seems results results
6 Cell-Nonautonomous suggests Taken might that
7 arva probably suggests observations be
8 inter-homologue suggesting probably Taken data
9 Mohanty possibly Together findings it
10 meld suggested suggesting Our Our
11 aDNA Taken possibly seems observations
12 Deer unlikely suggested together role
13 Borel Together findings Together most
14 substripe physiology observations role these
15 Failing modulated Given that together

Table 2: Features ranked by P (spec|xk) for varying α

• Compute spec recall/precision BEP
(break-even point) on the test data

The batch size for each iteration is set to 0.001∗ |U|.
After each learning iteration, we compute the preci-
sion/recall BEP for the spec class using both clas-
sifiers trained on the current labelled data. We use
BEP because it helps to mitigate against misleading
results due to discrepancies in classification thresh-
old placement. Disadvantageously, BEP does not
measure a classifier’s performance across the whole
of the recall/precision spectrum (as can be obtained,
for instance, from receiver-operating characteristic
(ROC) curves), but for our purposes it provides a
clear, abstracted overview of a classifier’s accuracy
given a particular training set.

10.2 Parameter Setting

The training and classification models we have pre-
sented require the setting of two parameters: the
smoothing parameter α and the number of features
per sample m. Analysis of the effect of varying α
on feature ranking reveals that when α = 0, low fre-
quency terms with spurious class correlation dom-
inate and as α increases, high frequency terms be-
come increasingly dominant, eventually smoothing
away genuine low-to-mid frequency correlations.
This effect is illustrated in Table 2, and from this
analysis we chose α = 5 as an appropriate level of
smoothing. We use m=5 based on the intuition that
five is a rough upper bound on the number of hedge
cue features likely to occur in any one sentence.

We use the linear kernel for SVMlight with the

default setting for the regularization parameter C.
We construct binary valued, L2-normalised (unit
length) input vectors to represent each sentence,
as this resulted in better performance than using
frequency-based weights and concords with our
presence/absence feature estimates.

10.3 Seed Generation

The learning model we have presented requires a
set of seeds for each class. To generate seeds for
the spec class, we extracted all sentences from U
containing either (or both) of the terms suggest or
likely, as these are very good (though not perfect)
hedge cues, yielding 6423 spec seeds. Generating
seeds for nspec is much more difficult, as integrity
requires the absence of hedge cues, and this cannot
be done automatically. Thus, we used the following
procedure to obtain a set of nspec seeds:

1. Create initial Snspec by sampling randomly
from U .

2. Manually remove more ‘obvious’ speculative
sentences using pattern matching

3. Iterate:

• Order Snspec by P (spec|xj) using esti-
mates from Sspec and current Snspec

• Examine most probable sentences and re-
move speculative instances

We started with 8830 sentences and after a couple of
hours work reduced this down to a (still potentially
noisy) nspec seed set of 7541 sentences.
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Figure 1: Learning curves

10.4 Baselines
As a baseline classifier we use the substring match-
ing technique of (Light et al., 2004), which labels
a sentence as spec if it contains one or more of the
following: suggest, potential, likely, may, at least,
in part, possibl, further investigation, unlikely, pu-
tative, insights, point toward, promise and propose.

To provide a comparison for our learning model,
we implement a more traditional self-training pro-
cedure in which at each iteration a committee of five
SVMs is trained on randomly generated overlapping
subsets of the training data and their cumulative con-
fidence is used to select items for augmenting the
labelled training data. For similar work see (Banko
and Brill, 2001; Zhang, 2004).

10.5 Results
Figure 1 plots accuracy as a function of the train-
ing iteration. After 150 iterations, all of the weakly
supervised learning models are significantly more
accurate than the baseline according to a binomial
sign test (p < 0.01), though there is clearly still
much room for improvement. The baseline classi-
fier achieves a BEP of 0.60 while both classifiers
using our learning model reach approximately 0.76
BEP with little to tell between them. Interestingly,
the combination of the SVM committee-based learn-
ing model with our classifier (denoted by ‘SVM
(Prob)’), performs competitively with both of the ap-
proaches that use our probabilistic learning model

and significantly better than the SVM committee-
based learning model with an SVM classifier, ‘SVM
(SVM)’, according to a binomial sign test (p<0.01)
after 150 iterations. These results suggest that per-
formance may be enhanced when the learning and
classification tasks are carried out by different mod-
els. This is an interesting possibility, which we in-
tend to explore further.

An important issue in incremental learning sce-
narios is identification of the optimum stopping
point. Various methods have been investigated to ad-
dress this problem, such as ‘counter-training’ (Yan-
garber, 2003) and committee agreement (Zhang,
2004); how such ideas can be adapted for this task is
one of many avenues for future research.

10.6 Error Analysis

Some errors are due to the variety of hedge forms.
For example, the learning models were unsuccess-
ful in identifying assertive statements of knowledge
paucity, eg: There is no clear evidence for cy-
tochrome c release during apoptosis in C elegans
or Drosophila. Whether it is possible to learn such
examples without additional seed information is an
open question. This example also highlights the po-
tential benefit of an enriched sample representation,
in this case one which accounts for the negation of
the phrase ‘clear evidence’ which otherwise might
suggest a strongly non-speculative assertion.

In many cases hedge classification is challenging
even for a human annotator. For instance, distin-
guishing between a speculative assertion and one
relating to a pattern of observed non-universal be-
haviour is often difficult. The following example
was chosen by the learner as a spec sentence on the
150th training iteration: Each component consists of
a set of subcomponents that can be localized within
a larger distributed neural system. The sentence
does not, in fact, contain a hedge but rather a state-
ment of observed non-universal behaviour. How-
ever, an almost identical variant with ‘could’ instead
of ‘can’ would be a strong speculative candidate.
This highlights the similarity between many hedge
and non-hedge instances, which makes such cases
hard to learn in a weakly supervised manner.
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11 Conclusions and Future Work

We have shown that weakly supervised ML is ap-
plicable to the problem of hedge classification and
that a reasonable level of accuracy can be achieved.
The work presented here has application in the wider
academic community; in fact a key motivation in
this study is to incorporate hedge classification into
an interactive system for aiding curators in the con-
struction and population of gene databases. We have
presented our initial results on the task using a sim-
ple probabilistic model in the hope that this will
encourage others to investigate alternative learning
models and pursue new techniques for improving ac-
curacy. Our next aim is to explore possibilities of
introducing linguistically-motivated knowledge into
the sample representation to help the learner identify
key hedge-related sentential components, and also to
consider hedge classification at the granularity of as-
sertions rather than text sentences.
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Abstract

We present a novel approach to automati-
cally annotate images using associated text.
We detect and classify all entities (persons
and objects) in the text after which we de-
termine the salience (the importance of an
entity in a text) and visualness (the extent to
which an entity can be perceived visually)
of these entities. We combine these mea-
sures to compute the probability that an en-
tity is present in the image. The suitability
of our approach was successfully tested on
100 image-text pairs of Yahoo! News.

1 Introduction

Our society deals with a growing bulk of un-
structured information such as text, images and
video, a situation witnessed in many domains (news,
biomedical information, intelligence information,
business documents, etc.). This growth comes along
with the demand for more effective tools to search
and summarize this information. Moreover, there is
the need to mine information from texts and images
when they contribute to decision making by gov-
ernments, businesses and other institutions. The
capability to accurately recognize content in these
sources would largely contribute to improved index-
ing, classification, filtering, mining and interroga-
tion.

Algorithms and techniques for the disclosure of
information from the different media have been de-
veloped for every medium independently during the
last decennium, but only recently the interplay be-
tween these different media has become a topic of

interest. One of the possible applications is to help
analysis in one medium by employing information
from another medium. In this paper we study text
that is associated with an image, such as for instance
image captions, video transcripts or surrounding text
in a web page. We develop techniques that extract
information from these texts to help with the diffi-
cult task of accurate object recognition in images.
Although images and associated texts never contain
precisely the same information, in many situations
the associated text offers valuable information that
helps to interpret the image.

The central objective of the CLASS project1 is to
develop advanced learning methods that allow ima-
ges, video and associated text to be automatically
analyzed and structured. In this paper we test the
feasibility of automatically annotating images by us-
ing textual information in near-parallel image-text
pairs, in which most of the content of the image
corresponds to content of the text and vice versa.
We will focus on entities such as persons and ob-
jects. We will hereby take into account the text’s dis-
course structure and semantics, which allow a more
fine-grained identification of what content might be
present in the image, and will enrich our model with
world knowledge that is not present in the text.

We will first discuss the corpus on which we ap-
ply and test our techniques in section 2, after which
we outline what techniques we have developed: we
start with a baseline system to annotate images with
person names (section 3) and improve this by com-
puting the importance of the persons in the text (sec-
tion 4). We will then extend the model to include all

1http://class.inrialpes.fr/
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Hiram Myers, of Edmond, Okla., walks across the

fence, attempting to deliver what he called a ’people’s

indictment’ of Halliburton CEO David Lesar, outside the

site of the annual Halliburton shareholders meeting in

Duncan, Okla., leading to his arrest, Wednesday, May 17,

2006.

Figure 1: Image-text pair with entity “Hiram Myers”
appearing both in the text and in the image.

types of objects (section 5) and improve it by defin-
ing and computing thevisualness measure (section
6). Finally we will combine these different tech-
niques in one probabilistic model in section 7.

2 The parallel corpus

We have created a parallel corpus consisting of 1700
image-text pairs, retrieved from the Yahoo! News
website2. Every image has an accompanying text
which describes the content of the image. This text
will in general discuss one or more persons in the
image, possibly one or more other objects, the loca-
tion and the event for which the picture was taken.
An example of an image-text pair is given in fig. 1.
Not all persons or objects who are pictured in the
images are necessarily described in the texts. The
inverse is also true, i.e. content mentioned in the
text may not be present in the image.

We have randomly selected 100 text-pairs from
the corpus, and one annotator has labeled every
image-text pair with the entities (i.e. persons and

2http://news.yahoo.com/

other objects) that appear both in the image and in
the text. For example, the image-text pair shown in
fig. 1 is annotated with one entity, ”Hiram Myers”,
since this is the only entity that appears both in the
text and in the image. On average these texts contain
15.04 entities, of which 2.58 appear in the image.

To build the appearance model of the text, we
have combined different tools. We will evaluate
every tool separately on 100 image-text pairs. This
way we have a detailed view on the nature of the
errors in the final model.

3 Automatically annotating person names

Given a text that is associated with an image, we
want to compute a probabilisticappearance model,
i.e. a collection of entities that are visible in the
image. We will start with a model that holds the
names of the persons that appear in the image, such
as was done by (Satoh et al., 1999; Berg et al., 2004),
and extend this model in section 5 to include all
other objects.

3.1 Named Entity Recognition

A logical first step to detect person names is Named
Entity Recognition (NER). We use the OpenNLP
package3, which detects noun phrase chunks in the
sentences that represent persons, locations, organi-
zations and dates. To improve the recognition of
person names, we use a dictionary of names, which
we have extracted from the Wikipedia4 website. We
have manually evaluated performance of NER on
our test corpus and found that performance was sa-
tisfying: we obtained a precision of 93.37% and a re-
call of 97.69%. Precision is the percentage of iden-
tified person names by the system that corresponds
to correct person names, and recall is the percentage
of person names in the text that have been correctly
identified by the system.

The texts contain a small number of noun phrase
coreferents that are in the form of pronouns, we have
resolved these using the LingPipe5 package.

3.2 Baseline system

We want to annotate an image using the associated
text. We try to find the names of persons which are

3http://opennlp.sourceforge.net/
4http://en.wikipedia.org/
5http://www.alias-i.com/lingpipe/
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both described in the textand visible in the image,
and we want to do so by relyingonly on an analysis
of the text. In some cases, such as the following
example, the text states explicitly whether a person
is (not) visible in the image:

President Bush [...] with Danish Prime
Minister Anders Fogh Rasmussen, not
pictured, at Camp David [...].

Developing a system that could extract this informa-
tion is not trivial, and even if we could do so, only a
very small percentage of the texts in our corpus con-
tain this kind of information. In the next section we
will look into a method that is applicable to a wide
range of (descriptive) texts and that does not rely on
specific information within the text.

To evaluate the performance of this system, we
will compare it with a simple baseline system. The
baseline system assumes that all persons in the text
are visible in the image, which results in a precision
of 71.27% and a recall of 95.56%. The (low) preci-
sion can be explained by the fact that the texts often
discuss people which are not present in the image.

4 Detection of the salience of a person

Not all persons discussed in a text are equally im-
portant. We would like to discover what persons
are in the focus of a text and what persons are only
mentioned briefly, because we presume that more
important persons in the text have a larger proba-
bility of appearing in the image than less important
persons. Because of the short lengths of the docu-
ments in our corpus, an analysis of lexical cohesion
between terms in the text will not be sufficient for
distinguishing between important and less important
entities. We define a measure,salience, which is a
number between0 and1 that represents the impor-
tance of an entity in a text. We present here a method
for computing this score based on an in depth ana-
lysis of the discourse of the text and of the syntactic
structure of the individual sentences.

4.1 Discourse segmentation

The discourse segmentation module, which we de-
veloped in earlier research, hierarchically and se-
quentially segments the discourse in different topics
and subtopics resulting in a table of contents of a

text (Moens, 2006). The table shows the main en-
tities and the related subtopic entities in a tree-like
structure that also indicates the segments (by means
of character pointers) to which an entity applies. The
algorithm detects patterns of thematic progression in
texts and can thus recognize the main topic of a sen-
tence (i.e., about whom or what the sentence speaks)
and the hierarchical and sequential relationships be-
tween individual topics. A mixture model, taking
into account different discourse features, is trained
with the Expectation Maximization algorithm on an
annotated DUC-2003 corpus. We use the resulting
discourse segmentation to define the salience of in-
dividual entities that are recognized as topics of a
sentence. We compute for each noun entityer in the
discourse its salience (Sal1) in the discourse tree,
which is proportional with the depth of the entity in
the discourse tree -hereby assuming that deeper in
this tree more detailed topics of a text are described-
and normalize this value to be between zero and one.
When an entity occurs in different subtrees, its max-
imum score is chosen.

4.2 Refinement with sentence parse
information

Because not all entities of the text are captured in the
discourse tree, we implement an additional refine-
ment of the computation of the salience of an entity
which is inspired by (Moens et al., 2006). The seg-
mentation module already determines the main topic
of a sentence. Since the syntactic structure is often
indicative of the information distribution in a sen-
tence, we can determine the relative importance of
the other entities in a sentence by relying on the re-
lationships between entities as signaled by the parse
tree. When determining the salience of an entity, we
take into account the level of the entity mention in
the parse tree (Sal2), and the number of children for
the entity in this structure (Sal3), where the normal-
ized score is respectively inversely proportional with
the depth of the parse tree where the entity occurs,
and proportional with the number of children.

We combine the three salience values (Sal1,
Sal2 and Sal3) by using a linear weighting. We
have experimentally determined reasonable coeffi-
cients for these three values, which are respectively
0.8, 0.1 and0.1. Eventually, we could learn these
coefficients from a training corpus (e.g., with the
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Precision Recall F-measure
NER 71.27% 95.56% 81.65%

NER+DYN 97.66% 92.59% 95.06%

Table 1: Comparison of methods to predict what per-
sons described in the text will appear in the image,
using Named Entity Recognition (NER), and the
salience measure with dynamic cut-off (DYN).

Expectation Maximization algorithm).

We do not separately evaluate our technology
for salience detection as this technology was
already extensively evaluated in the past (Moens,
2006).

4.3 Evaluating the improved system

The salience measure defines a ranking of all the
persons in a text. We will use this ranking to improve
our baseline system. We assume that it is possible
to automatically determine the number of faces that
are recognized in the image, which gives us an indi-
cation of a suitable cut-off value. This approach is
reasonable since face detection (determine whether a
face is present in the image) is significant easier than
face recognition (determine which person is present
in the image). In the improved model we assume
that persons which are ranked higher than, or equal
to, the cut-off value appear in the image. For ex-
ample, if 4 faces appear in the image, we assume
that only the 4 persons of which the names in the
text have been assigned the highest salience appear
in the image. We see from table 1 that the precision
(97.66%) has improved drastically, while the recall
remained high (92.59%). This confirms the hypoth-
esis that determining the focus of a text helps in de-
termining the persons that appear in the image.

5 Automatically annotating persons and
objects

After having developed a reasonable successful sys-
tem to detect what persons will appear in the image,
we turn to a more difficult case : Detecting persons
and all other objects that are described in the text.

5.1 Entity detection

We will first detect what words in the text refer to an
entity. For this, we perform part-of-speech tagging
(i.e., detecting the syntactic word class such as noun,
verb, etc.). We take that every noun in the text rep-
resents an entity. We have used LTPOS (Mikheev,
1997), which performed the task almost errorless
(precision of98.144% and recall of97.36% on the
nouns in the test corpus). Person names which were
segmented using the NER package are also marked
as entities.

5.2 Baseline system

We want to detect the objects and the names of per-
sons which are both visible in the image and de-
scribed in the text. We start with a simple baseline
system, in which we assume that every entity in the
text appears in the image. As can be expected, this
results in a high recall (91.08%), and a very low pre-
cision (15.62%). We see that the problem here is
far more difficult compared to detecting only per-
son names. This can be explained by the fact that
many entities (such as for exampleAugust, idea and
history) will never (or only indirectly) appear in an
image. In the next section we will try to determine
what types of entities are more likely to appear in
the image.

6 Detection of the visualness of an entity

The assumption that every entity in the text appears
in the image is rather crude. We will enrich our
model with external world knowledge to find enti-
ties which are not likely to appear in an image. We
define a measure calledvisualness, which is defined
as the extent to which an entity can be perceived vi-
sually.

6.1 Entity classification

After we have performed entity detection, we want
to classify every entity according to a certain seman-
tic database. We use the WordNet (Fellbaum, 1998)
database, which organizes English nouns, verbs, ad-
jectives and adverbs in synsets. A synset is a col-
lection of words that have a close meaning and that
represent an underlying concept. An example of
such a synset is “person, individual, someone, some-
body, mortal, soul”. All these words refer to a hu-
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man being. In order to correctly assign a noun in
a text to its synset, i.e., to disambiguate the sense
of this word, we use an efficient Word Sense Dis-
ambiguation (WSD) system that was developed by
the authors and which is described in (Deschacht
and Moens, 2006). Proper names are labeled by
the Named Entity Recognizer, which recognizes per-
sons, locations and organizations. These labels in
turn allow us to assign the corresponding WordNet
synset.

The combination of the WSD system and the
NER package achieved a75.97% accuracy in classi-
fying the entities. Apart from errors that resulted
from erroneous entity detection (32.32%), errors
were mainly due to the WSD system (60.56%) and
in a smaller amount to the NER package (8.12%).

6.2 WordNet similarity

We determine the visualness for every synset us-
ing a method that was inspired by Kamps and Marx
(2002). Kamps and Marx use a distance measure
defined on the adjectives of the WordNet database
together with two seed adjectives to determine the
emotive or affective meaning of any given adjective.
They compute the relative distance of the adjective
to the seed synsets “good” and “bad” and use this
distance to define a measure of affective meaning.

We take a similar approach to determine the visu-
alness of a given synset. We first define a similarity
measure between synsets in the WordNet database.
Then we select a set of seed synsets, i.e. synsets
with a predefined visualness, and use the similarity
of a given synset to the seed synsets to determine the
visualness.

6.3 Distance measure

The WordNet database defines different relations be-
tween its synsets. An important relation for nouns is
the hypernym/hyponym relation. A noun X is a hy-
pernym of a noun Y if Y is a subtype or instance of
X. For example, “bird” is a hypernym of “penguin”
(and “penguin” is a hyponym of “bird”). A synset
in WordNet can have one or more hypernyms. This
relation organizes the synsets in a hierarchical tree
(Hayes, 1999).

The similarity measure defined by Lin (1998) uses
the hypernym/hyponym relation to compute a se-
mantic similarity between two WordNet synsetsS1

andS2. First it finds the most specific (lowest in the
tree) synsetSp that is a parent of bothS1 andS2.
Then it computes the similarity ofS1 andS2 as

sim(S1, S2) =
2logP (Sp)

logP (S1) + logP (S2)

Here the probabilityP (Si) is the probability of
labeling any word in a text with synsetSi or with
one of the descendants ofSi in the WordNet hier-
archy. We estimate these probabilities by counting
the number of occurrences of a synset in the Sem-
cor corpus (Fellbaum, 1998; Landes et al., 1998),
where all noun chunks are labeled with their Word-
Net synset. The probabilityP (Si) is computed as

P (Si) =
C(Si)∑N

n=1
C(Sn)

+
∑K

k=1
P (Sk)

whereC(Si) is the number of occurrences ofSi,
N is the total number of synsets in WordNet and
K is the number of children ofSi. The Word-
Net::Similarity package (Pedersen et al., 2004) im-
plements this distance measure and was used by the
authors.

6.4 Seed synsets

We have manually selected 25 seed synsets in Word-
Net, where we tried to cover the wide range of topics
we were likely to encounter in the test corpus. We
have set the visualness of these seed synsets to either
1 (visual) or 0 (not visual). We determine the visu-
alness of all other synsets using these seed synsets.
A synset that is close to a visual seed synset gets a
high visualness and vice versa. We choose a linear
weighting:

vis(s) =
∑

i

vis(si)
sim(s, si)

C(s)

wherevis(s) returns a number between0 and1 de-
noting the visualness of a synsets, si are the seed
synsets,sim(s, t) returns a number between0 and1
denoting the similarity between synsetss andt and
C(s) is constant given a synsets:

C(s) =
∑

i

sim(s, si)
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6.5 Evaluation of the visualness computation

To determine the visualness, we first assign the cor-
rect WordNet synset to every entity, after which we
compute a visualness score for these synsets. Since
these scores are floating point numbers, they are
hard to evaluate manually. During evaluation, we
make the simplifying assumption that all entities
with a visualness below a certain threshold are not
visual, and all entities above this threshold are vi-
sual. We choose this threshold to be0.5. This re-
sults in an accuracy of79.56%. Errors are mainly
caused by erroneous entity detection and classifica-
tion (63.10%) but also because of an incorrect as-
signment of the visualness (36.90%) by the method
described above.

7 Creating an appearance model using
salience and visualness

In the previous section we have created a method to
calculate a visualness score for every entity, because
we stated that removing the entities which can never
be perceived visually will improve the performance
of our baseline system. An experiment proves that
this is exactly the case. If we assume that only the
entities that have a visualness above a0.5 thresh-
old are visible and will appear in the image, we get
a precision of48.81% and a recall of87.98%. We
see from table 2 that this is already a significant im-
provement over the baseline system.

In section 4 we have seen that the salience mea-
sure helps in determining what persons are visible in
the image. We have used the fact that face detection
in images is relatively easily and can thus supply a
cut-off value for the ranked person names. In the
present state-of-the-art, we are not able to exploit a
similar fact when detecting all types of entities. We
will thus use the salience measure in a different way.
We compute the salience of every entity, and we
assume that only the entities with a salience score
above a threshold of0.5 will appear in the image.
We see that this method drastically improves preci-
sion to66.03%, but also lowers recall until54.26%.

We now create a last model where we combine
both the visualness and the salience measures. We
want to calculate the probability of the occurrence of
an entityeim in the image, given a textt, P (eim|t).
We assume that this probability is proportional with

Precision Recall F-measure
Ent 15.62% 91.08% 26.66%

Ent+Vis 48.81% 87.98% 62.78%
Ent+Sal 66.03% 54.26% 59.56%

Ent+Vis+Sal 70.56% 67.82% 69.39%

Table 2: Comparison of methods to predict the en-
tities that appear in the image, using entity detec-
tion (Ent), and the visualness (Vis) and salience (Sal)
measures.

the degree of visualness and salience ofeim in t. In
our framework,P (eim|t) is computed as the product
of the salience of the entityeim and its visualness
score, as we assume both scores to be independent.

Again, for evaluation sake, we choose a threshold
of 0.4 to transform this continuous ranking into a
binary classification. This results in a precision of
70.56% and a recall of67.82%. This model is the
best of the 4 models for entity annotation which have
been evaluated.

8 Related Research

Using text that accompanies the image for annotat-
ing images and for training image recognition is not
new. The earliest work (only on person names) is
by Satoh (1999) and this research can be considered
as the closest to our work. The authors make a dis-
tinction between proper names, common nouns and
other words, and detect entities based on a thesaurus
list of persons, social groups and other words, thus
exploiting already simple semantics. Also a rudi-
mentary approach to discourse analysis is followed
by taking into account the position of words in a
text. The results were not satisfactory: 752 words
were extracted from video as candidates for being in
the accompanying images, but only 94 were correct
where 658 were false positives. Mori et al. (2000)
learn textual descriptions of images from surround-
ing texts. These authors filter nouns and adjectives
from the surrounding texts when they occur above
a certain frequency and obtain a maximum hit rate
of top 3 words that is situated between 30% and
40%. Other approaches consider both the textual
and image features when building a content model
of the image. For instance, some content is selected
from the text (such as person names) and from the
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image (such as faces) and both contribute in describ-
ing the content of a document. This approach was
followed by Barnard (2003).

Westerveld (2000) combines image features and
words from collateral text into one semantic space.
This author uses Latent Semantic Indexing for rep-
resenting the image/text pair content. Ayache et al.
(2005) classify video data into different topical con-
cepts. The results of these approaches are often dis-
appointing. The methods here represent the text as a
bag of words possibly augmented with atf (term fre-
quency) xidf (inverse document frequency) weight
of the words (Amir et al., 2005). In exceptional
cases, the hierarchical XML structure of a text doc-
ument (which was manually annotated) is taken into
account (Westerveld et al., 2005). The most inter-
esting work here to mention is the work of Berg
et al. (2004) who also process the nearly parallel
image-text pairs found in the Yahoo! news corpus.
They link faces in the image with names in the text
(recognized with named entity recognition), but do
not consider other objects. They consider pairs of
person names (text) and faces (image) and use clus-
tering with the Expectation Maximization algorithm
to find all faces belonging to a certain person. In
their model they consider the probability that an en-
tity is pictured given the textual context (i.e., the
part-of-speech tags immediately prior and after the
name, the location of the name in the text and the
distance to particular symbols such as “(R)”), which
is learned with a probabilistic classifier in each step
of the EM iteration. They obtained an accuracy of
84% on person face recognition.

In the CLASS project we work together with
groups specialized in image recognition. In future
work we will combine face and object recognition
with text analysis techniques. We expect the recog-
nition and disambiguation of faces to improve if
many image-text pairs that treat the same person are
used. On the other hand our approach is also valu-
able when there are few image-text pairs that picture
a certain person or object. The approach of Berg
et al. could be augmented with the typical features
that we use, namely salience and visualness. In De-
schacht et al. (2007) we have evaluated the ranking
of persons and objects by the method we have de-
scribed here and we have shown that this ranking
correlates with the importance of persons and ob-

jects in the picture.
None of the above state-of-the-art approaches

consider salience and visualness as discriminating
factors in the entity recognition, although these as-
pects could advance the state-of-the-art.

9 Conclusion

Our society in the 21st century produces gigantic
amounts of data, which are a mixture of different
media. Our repositories contain texts interwoven
with images, audio and video and we need auto-
mated ways to automatically index these data and
to automatically find interrelationships between the
various media contents. This is not an easy task.
However, if we succeed in recognizing and aligning
content in near-parallel image-text pairs, we might
be able to use this acquired knowledge in index-
ing comparable image-text pairs (e.g., in video) by
aligning content in these media.

In the experiment described above, we analyze
the discourse and semantics of texts of near-parallel
image-text pairs in order to compute the probability
that an entity mentioned in the text is also present in
the accompanying image. First, we have developed
an approach for computing the salience of each en-
tity mentioned in the text. Secondly, we have used
the WordNet classification in order to detect the vi-
sualness of an entity, which is translated into a vi-
sualness probability. The combined salience and vi-
sualness provide a score that signals the probability
that the entity is present in the accompanying image.

We extensively evaluated all the different modules
of our system, pinpointing weak points that could be
improved and exposing the potential of our work in
cross-media exploitation of content.

We were able to detect the persons in the text
that are also present in the image with a (evenly
weighted) F-measure of more than 95%, and in addi-
tion were able to detect the entities that are present
in the image with a F-measure of more than 69%.
These results have been obtained by relying only on
an analysis of the text and were substantially better
than the baseline approach. Even if we can not re-
solve all ambiguity, keeping the most confident hy-
potheses generated by our textual hypotheses will
greatly assist in analyzing images.

In the future we hope to extrinsically evaluate
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the proposed technologies, e.g., by testing whether
the recognized content in the text, improves image
recognition, retrieval of multimedia sources, mining
of these sources, and cross-media retrieval. In addi-
tion, we will investigate how we can build more re-
fined appearance models that incorporate attributes
and actions of entities.
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Abstract 

We present a user requirements study for 

Question Answering on meeting records 

that assesses the difficulty of users ques-

tions in terms of what type of knowledge is 

required in order to provide the correct an-

swer. We grounded our work on the em-

pirical analysis of elicited user queries. We 

found that the majority of elicited queries 

(around 60%) pertain to argumentative 

processes and outcomes. Our analysis also 

suggests that standard keyword-based In-

formation Retrieval can only deal success-

fully with less than 20% of the queries, and 

that it must be complemented with other 

types of metadata and inference. 

1 Introduction 

Meeting records constitute a particularly important 

and rich source of information. Meetings are a 

frequent and sustained activity, in which multi-

party dialogues take place that are goal-oriented 

and where participants perform a series of actions, 

usually aimed at reaching a common goal: they 

exchange information, raise issues, express 

opinions, make suggestions, propose solutions, 

provide arguments (pro or con), negotiate 

alternatives, and make decisions. As outcomes of 

the meeting, agreements on future action items are 

reached, tasks are assigned, conflicts are solved, 

etc. Meeting outcomes have a direct impact on the 

efficiency of organization and team performance, 

and the stored and indexed meeting records serve 

as reference for further processing (Post et al., 

2004). They can also be used in future meetings in 

order to facilitate the decision-making process by 

accessing relevant information from previous 

meetings (Cremers et al., 2005), or in order to 

make the discussion more focused (Conklin, 2006).  

Meetings constitute a substantial and important 

source of information that improves corporate or-

ganization and performance (Corrall, 1998; Ro-

mano and Nunamaker, 2001). Novel multimedia 

techniques have been dedicated to meeting record-

ing, structuring and content analysis according to 

the metadata schema, and finally, to accessing the 

analyzed content via browsing, querying or filter-

ing (Cremers et al., 2005; Tucker and Whittaker, 

2004). 

This paper focuses on debate meetings (Cugini 

et al., 1997) because of their particular richness in 

information concerning the decision-making proc-

ess. We consider that the meeting content can be 

organized on three levels: (i) factual level (what 

happens: events, timeline, actions, dynamics); (ii) 

thematic level (what is said: topics discussed and 

details); (iii) argumentative level (which/how com-

mon goals are reached).  

The information on the first two levels is ex-

plicit information that can be usually retrieved di-

rectly by searching the meeting records with ap-

propriate IR techniques (i.e., TF-IDF). The third 

level, on the contrary, contains more abstract and 

tacit information pertaining to how the explicit in-

formation contributes to the rationale of the meet-

ing, and it is not present as such in raw meeting 

data: whether or not the meeting goal was reached, 

what issues were debated, what proposals were 

made, what alternatives were discussed, what ar-

guments were brought, what decisions were made, 

what task were assigned, etc.  

The motivating scenario is the following: A user 
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needs information about a past meeting, either in 

quality of a participant who wants to recollect a 

discussion (since the memories of co-participants 

are often inconsistent, cf. Banerjee et al., 2005), or 

as a non-participant who missed that meeting. 

Instead of consulting the entire meeting-related 

information, which is usually heterogeneous and 

scaterred (audio-video recordings, notes, minutes, 

e-mails, handouts, etc.), the user asks natural 

language questions to a query engine which 

retrieves relevant information from the meeting 

records. 

In this paper we assess the users' interest in 

retrieving argumentative information from 

meetings and what kind of knowledge is required 

for answering users' queries. Section 2 reviews 

previous user requirements studies for the meeting 

domain. Section 3 describes our user requirements 

study based on the analysis of elicited user queries, 

presents its main findings, and discusses the 

implications of these findings for the design of 

meeting retrieval systems. Section 4 concludes the 

paper and outlines some directions for future work. 

2 Argumentative Information in Meeting 

Information Retrieval 

Depending on the meeting browser type
1
, different 

levels of meeting content become accessible for 

information retrieval. Audio and video browsers 

deal with factual and thematic information, while 

artifact browsers might also touch on deliberative 

information, as long as it is present, for instance, in 

the meeting minutes. In contrast, derived-data 

browsers aim to account for the argumentative in-

formation which is not explicitly present in the 

meeting content, but can be inferred from it. If 

minutes are likely to contain only the most salient 

deliberative facts, the derived-data browsers are 

much more useful, in that they offer access to the 

full meeting record, and thus to relevant details 

about the deliberative information sought. 

2.1 Importance of Argumentative Structure  

As shown by Rosemberg and Silince (1999), track-

ing argumentative information from meeting dis-

                                                
1
 (Tucker and Whittaker, 2004) identifies 4 types of meeting 

browsers: audio browsers, video browsers, artifacts browsers 

(that exploit meeting minutes or other meeting-related docu-

ments), and browsers that work with derived data (such as 

discourse and temporal structure information). 

cussions is of central importance for building pro-

ject memories since, in addition to the "strictly fac-

tual, technical information", these memories must 

also store relevant information about deci-

sion-making processes. In a business context, the 

information derived from meetings is useful for 

future business processes, as it can explain phe-

nomena and past decisions and can support future 

actions by mining and assessment (Pallotta et al., 

2004). The argumentative structure of meeting dis-

cussions, possibly visualized in form of argumen-

tation diagrams or maps, can be helpful in meeting 

browsing. To our knowledge, there are at least 

three meeting browsers that have adopted argu-

mentative structure: ARCHIVUS (Lisowska et al., 

2004b), ViCoDe (Marchand-Maillet and Bruno, 

2005), and the Twente-AMI JFerret browser 

(Rienks and Verbree, 2006).  

2.2 Query Elicitation Studies  

The users' interest in argumentation dimension of 

meetings has been highlighted by a series of recent 

studies that attempted to elicit the potential user 

questions about meetings (Lisowska et al., 2004a; 

Benerjee at al., 2005; Cremers et al., 2005). 

The study of Lisowska et al. (2004a), part of the 

IM2 research project
2
, was performed in a simu-

lated environment in which users were asked to 

imagine themselves in a particular role from a se-

ries of scenarios. The participants were both IM2 

members and non-IM2 members and produced 

about 300 retrospective queries on recorded meet-

ings. Although this study has been criticized by 

Post et al. (2004), Cremers et al. (2005), and Ban-

erjee et al. (2005) for being biased, artificial, ob-

trusive, and not conforming to strong HCI method-

ologies for survey research, it shed light on poten-

tial queries and classified them in two broad cate-

gories, that seem to correspond to our argumenta-

tive/non-argumentative distinction (Lisowska et 

al., 2004a: 994): 

• “elements related to the interaction among par-

ticipants: acceptance/rejection, agree-

ment/disagreement; proposal, argumentation 

(for and against); assertions, statements; deci-

sions; discussions, debates; reactions; ques-

tions; solutions”; 

                                                
2
 http://www.im2.ch 
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•  “concepts from the meeting domains: dates, 

times; documents; meeting index: current, pre-

vious, sets; participants; presentations, talks; 

projects; tasks, responsibilities; topics”.  

Unfortunately, the study does not provide precise 

information on the relative proportions of queries 

for the classification proposed, but simply suggests 

that overall more queries belong to the second 

category, while queries requiring understanding of 

the dialogue structure still comprise a sizeable 

proportion. 

The survey conducted by Banerjee et al. (2005) 

concerned instead real, non-simulated interviews 

of busy professionals about actual situations, re-

lated either to meetings in which they previously 

participated, or to meetings they missed. More than 

half of the information sought by interviewees 

concerned, in both cases, the argumentative dimen-

sion of meetings. 

For non-missed meetings, 15 out of the 26 in-

stances (i.e., 57.7%) concerned argumentative as-

pects: what the decision was regarding a topic (7); 

what task someone was assigned (4); who made a 

particular decision (2); what was the participants' 

reaction to a particular topic (1); what the future 

plan is (1). The other instances (42.3%) relate to 

the thematic dimension, i.e., specifics of the dis-

cussion on a topic (11).  

As for missed meetings, the argumentative in-

stances were equally represented (18/36): decisions 

on a topic (7); what task was assigned to inter-

viewee (4); whether a particular decision was made 

(3); what decisions were made (2); reasons for a 

decision (1); reactions to a topic (1). The thematic 

questions concern topics discussed, announce-

ments made, and background of participants.  

The study also showed that the recovery of in-

formation from meeting recordings is significantly 

faster when discourse annotations are available, 

such as the distinction between discussion, presen-

tation, and briefing. 

Another unobtrusive user requirements study 

was performed by Cremers et al. (2005) in a "semi-

natural setting" related to the design of a meeting 

browser. The top 5 search interests highlighted by 

the 60 survey participants were: decisions made, 

participants/speakers, topics, agenda items, and 

arguments for decision. Of these, the ones shown 

in italics are argumentative. In fact, the authors 

acknowledge the necessity to include some "func-

tional" categories as innovative search options. 

Interestingly, from the user interface evaluation 

presented in their paper, one can indirectly infer 

how salient the argumentative information is per-

ceived by users: the icons that the authors intended 

for emotions, i.e., for a emotion-based search facil-

ity, were actually interpreted by users as referring 

to people’s opinion: What is person X's opinion? – 

positive, negative, neutral. 

3 User Requirements Analysis 

The existing query elicitation experiments reported 

in Section 2 highlighted a series of question types 

that users typically would like to ask about meet-

ings. It also revealed that the information sought 

can be classified into two broad categories: argu-

mentative information (about the argumentative 

process and the outcome of debate meetings), and 

non-argumentative information (factual, i.e., about 

the meeting as a physical event, or thematic, i.e., 

about what has been said in terms of topics). 

The study we present in this section is aimed at 

assessing how difficult it is to answer the questions 

that users typically ask about a meeting. Our goal 

is to provide insights into:  

• how many queries can be answered using stan-

dard IR techniques on meeting artefacts only 

(e.g., minutes, written agenda, invitations); 

• how many queries can be answered with IR on 

meeting recordings; 

• what kind of additional information and infer-

ence is needed when IR does not apply or it is 

insufficient (e.g., information about the par-

ticipants and the meeting dynamics, external 

information about the meeting’s context such 

as the relation to a project, semantic interpreta-

tion of question terms and references, compu-

tation of durations, aggregation of results, etc). 

Assessing the level of difficulty of a query based 

on the two above-mentioned categories might not 

provide insightful results, because these would be 

too general, thus less interpretable. Also, the com-

plex queries requiring mixed information would 

escape observation because assigned to a too gen-

eral class. We therefore considered it necessary to 

perform a separate analysis of each query instance, 

as this provides not only detailed, but also trace-

able information. 
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3.1 Data: Collecting User Queries 

Our analysis is based on a heterogeneous collec-

tion of queries for meeting data. In general, an un-

biased queries dataset is difficult to obtain, and the 

quality of a dataset can vary if the sample is made 

of too homogenous subjects (e.g., people belong-

ing to the same group as members of the same pro-

ject). In order to cope with this problem, our strat-

egy was to use three different datasets collected in 

different settings:  

• First, we considered the IM2 dataset collected 

by Lisowska et al. (2004a), the only set of user 

queries on meetings available to date. It com-

prises 270 questions (shortly described in Sec-

tion 2) annotated with a label showing whether 

or not the query was produced by an IM2-

member. These queries are introspective and 

not related to any particular recorded meeting. 

• Second, we cross-validated this dataset with a 

large corpus of 294 natural language state-

ments about existing meetings records. This 

dataset, called the BET observations (Wellner 

et al., 2005), was collected by subjects who 

were asked to watch several meeting record-

ings and to report what the meeting partici-

pants appeared to consider interesting. We use 

it as a ‘validation’ set for the IM2 queries: an 

IM2 query is considered as ‘realistic’ or ‘em-

pirically grounded’ if there is a BET observa-

tion that represents a possible answer to the 

query. For instance, the query Why was the 

proposal made by X not accepted? matches the 

BET observation Denis eliminated Silence of 

the Lambs as it was too violent. 

• Finally, we collected a new set of ‘real’ queries 

by conducting a survey of user requirements 

on meeting querying in a natural business set-

ting. The survey involved 3 top managers from 

a company and produced 35 queries. We called 

this dataset Manager Survey Set (MS-Set). 

The queries from the IM2-set (270 queries) and the 

MS-Set (35 queries) were analyzed by two differ-

ent teams of two judges. Each team discussed each 

query, and classified it along the two main dimen-

sions we are interested in: 

• query type: the type of meeting content to 

which the query pertains; 

• query difficulty: the type of information re-

quired to provide the answer. 

3.2 Query Type Analysis 

Each query was assigned exactly one of the follow-

ing four possible categories (the one perceived as 

the most salient): 

1. factual: the query pertains to the factual meet-

ing content; 

2. thematic: the query pertains to the thematic 

meeting content; 

3. process: the query pertains to the argumenta-

tive meeting content, more precisely to the ar-

gumentative process; 

4. outcome: the query pertains to the argumenta-

tive meeting content, more precisely to the 

outcome of the argumentative process. 

IM2-set 
(size:270) 

MS-Set  
(size: 35) Category 

Team1 Team2 Team1 Team2 

Factual 24.8% 20.0% 20.0% 

Thematic 18.5% 
45.6% 

20.0% 11.4% 

Process 30.0% 32.6% 22.9% 28.6% 

Outcome 26.7% 21.8% 37.1% 40.0% 

Process+ Outcome 56.7% 54.4% 60.0% 68.6% 

Table 1. Query classification according to the 

meeting content type. 

Results from this classification task for both query 

sets are reported in Table 1. In both sets, the 

information most sought was argumentative: about 

55% of the IM2-set queries are argumentative 

(process or outcome). This invalidates the initial 

estimation of Lisowska et al. (2004a:994) that the 

non-argumentative queries prevail, and confirms 

the figures obtained in (Banerjee et al., 2005), ac-

cording to which 57.7% of the queries are argu-

mentative. In our real managers survey, we ob-

tained even higher percentages for the argumenta-

tive queries (60% or 68.6%, depending on the an-

notation team). The argumentative queries are fol-

lowed by factual and thematic ones in both query 

sets, with a slight advantage for factual queries. 

The inter-annotator agreement for this first clas-

sification is reported in Table 2. The proportion of 

queries on which annotators agree in classifying 

them as argumentative is significantly high. We 

only report here the agreement results for the indi-

vidual argumentative categories (Process, Out-

come) and both (Process & Outcome). There were 

213 queries (in IM2-set) and 30 queries (in MS-
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set) that were consistently annotated by the two 

teams on both categories. Within this set, a high 

percentage of queries were argumentative, that is, 

they were annotated as either Process or Outcome 

(label AA in the table). 

IM2-set (size: 270) MS-set (size: 35) 
Category 

ratio kappa ratio kappa 

Process 84.8% 82.9% 88.6% 87.8% 

Outcome 90.7% 89.6% 91.4% 90.9% 

Process & 

Outcome 
78.9% 76.2% 85.7% 84.8% 

AA 
117/213 = 

54.9% 
 

19/30 = 
63.3% 

 

Table 2. Inter-annotator agreement for query-type 

classification. 

Furthermore, we provided a re-assessment of the 

proportion of argumentative queries with respect to 

query origin for the IM2-set (IM2 members vs. 

non-IM2 members): non-IM2 members issued 

30.8% of agreed argumentative queries, a propor-

tion that, while smaller compared to that of IM2 

members (69.2%), is still non-negligible. This con-

trasts with the opinion expressed in (Lisowska et 

al., 2004a) that argumentative queries are almost 

exclusively produced by IM2 members.  

Among the 90 agreed IM2 queries that were 

cross-validated with the BET-observation set, 

28.9% were argumentative. We also noted that the 

ratio of BET statements that contain argumentative 

information is quite high (66.9%). 

3.3 Query Difficulty Analysis 

In order to assess the difficulty in answering a 

query, we used the following categories that the 

annotators could assign to each query, according to 

the type of information and techniques they judged 

necessary for answering it: 

1. Role of IR: states the role of standard
3
 Informa-

tion Retrieval (in combination with Topic Ex-

traction
4
) techniques in answering the query. 

Possible values:  

a. Irrelevant (IR techniques are not appli-

cable). Example: What decisions have 

been made? 

                                                
3
 By standard IR we mean techniques based on bag-of-word 

search and TF-IDF indexing. 
4
 Topic extraction techniques are based on topic shift detec-

tion (Galley et al., 2003) and keyword extraction (van der Plas 

et al., 2004). 

b. successful (IR techniques are sufficient). 

Example: Was the budget approved? 

c. insufficient (IR techniques are necessary, 

but not sufficient alone since they re-

quire additional inference and informa-

tion, such as argumentative, cross-

meeting, external corporate/project 

knowledge). Example: Who rejected the 

proposal made by X on issue Y? 

2. Artefacts: information such as agenda, min-

utes of previous meetings, e-mails, invita-

tions and other documents related and avail-

able before the meeting. Example: Who was 

invited to the meeting? 

3. Recordings: the meeting recordings (audio, 

visual, transcription). This is almost always 

true, except for queries where Artefacts or 

Metadata are sufficient, such as What was 

the agenda?, Who was invited to the meet-

ing?). 

4. Metadata: context knowledge kept in static 

metadata (e.g., speakers, place, time). Ex-

ample: Who were the participants at the 

meeting? 

5. Dialogue Acts & Adjacency Pairs: Example: 

What was John’s response to my comment 

on the last meeting? 

6. Argumentation: metadata (annotations) 

about the argumentative structure of the 

meeting content. Example: Did everybody 

agree on the decisions, or were there differ-

ences of opinion? 

7.  Semantics: semantic interpretation of terms 

in the query and reference resolution, in-

cluding deictics (e.g., for how long, usually, 

systematically, criticisms; this, about me, I). 

Example: What decisions got made easily? 

The term requiring semantic interpretation is 

underlined.  

8. Inference: inference (deriving information 

that is implicit), calculation, and aggregation 

(e.g., for ‘command’ queries asking for lists 

of things – participants, issues, proposals). 

Example: What would be required from me? 

1012



9. Multiple meetings: availability of multiple 

meeting records. Example: Who usually at-

tends the project meetings?  

10. External: related knowledge, not explicitly 

present in the meeting records (e.g., infor-

mation about the corporation or the projects 

related to the meeting). Example: Did some-

body talk about me or about my work? 

Results of annotation reported on the two query 

sets are synthesized in Table 3: IR is sufficient for 

answering 14.4% of the IM2 queries, and 20% of 

the MS-set queries. In 50% and 25.7% of the cases, 

respectively, it simply cannot be applied (irrele-

vant). Finally, IR alone is not enough in 35.6% of 

the queries from the IM2-set, and in 54.3% of the 

MS-set; it has to be complemented with other 

techniques.  

IM2-set MS-set 
IR is: all  

queries 
AA 

all  

queries 
AA 

Sufficient 
39/270 = 

14.4% 
1/117 = 

0.8% 
7/35 = 
20.0% 

1/19 = 
5.3% 

Irrelevant 
135/270 = 

50.0%  
55/117 = 

47.0% 
9/35 = 
25.7% 

3/19 = 
15.8% 

Insufficient 
96/270 = 

35.6% 
61/117 = 

52.1% 
19/35 = 
54.3% 

15/19 = 
78.9% 

Table 3. The role of IR (and topic extraction) in 

answering users’ queries. 

If we consider agreed argumentative queries 

(Section 3.2), IR is effective in an extremely low 

percentage of cases (0.8% for IM2-set and 5.3% 

for MS-Set). IR is insufficient in most of the cases 

(52.1% and 78.9%) and inapplicable in the rest of 

the cases (47% and 15.8%). Only one argumenta-

tive query from each set was judged as being an-

swerable with IR alone: What were the decisions to 

be made (open questions) regarding the topic t1? 

When is the NEXT MEETING planned? (e.g. to 

follow up on action items). 

Table 4 shows the number of queries in each set 

that require argumentative information in order to 

be answered, distributed according to the query 

types. As expected, no argumentation information 

is necessary for answering factual queries, but 

some thematic queries do need it, such as What 

was decided about topic T? (24% in the IM2-set 

and 42.9% in the M.S.-set).  

Overall, the majority of queries in both sets re-

quire argumentation information in order to be an-

swered (56.3% from IM2 queries, and 65.7% from 

MS queries). 

IM2-set, Annotation 1 MS-set, Annotation 1 
Category 

total 
Req. 
arg. 

Ratio Total 
Req. 
arg. 

Ratio 

Factual 67 0 0% 7 0 0% 

Thematic 50 12 24.0% 7 3 42.9% 

Process 81 73 90.1% 8 7 87.5% 

Outcome 72 67 93.1% 13 13 100% 

All 270 152 56.3% 35 23 65.7% 

Table 4. Queries requiring argumentative informa-

tion. 

We finally looked at what kind of information is 

needed in those cases where IR is perceived as in-

sufficient or irrelevant. Table 5 lists the most fre-

quent combinations of information types required 

for the IM2-set and the MS-set. 

3.4 Summary of Findings 

The analysis of the annotations obtained for the 

305 queries (35 from the Manager Survey set, and 

270 from the IM2-set) revealed that: 

• The information most sought by users from 

meetings is argumentative (i.e., pertains to the 

argumentative process and its outcome). It 

constitutes more than half of the total queries, 

while factual and thematic information are 

similar in proportions (Table 1); 

• There was no significant difference in this re-

spect between the IM2-set and the MS-set 

(Table 1); 

• The decision as to whether a query is argumen-

tative or not is easy to draw, as suggested by 

the high inter-annotator agreement shown in 

Table 2; 

• Standard IR and topic extraction techniques 

are perceived as insufficient in answering most 

of the queries. Only less than 20% of the 

whole query set can be answered with IR, and 

almost no argumentative question (Table 3). 

• Argumentative information is needed in an-

swering the majority of the queries (Table 4); 

• When IR alone fails, the information types that 

are needed most are (in addition to recordings): 

Argumentation, Semantics, Inference, and 

Metadata (Table 5); see Section 3.3 for their 

description. 
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IR alone fails IM2-set 

Information types IR insufficient             96 cases   35.6% IR irrelevant         135 cases    50% 

Artefacts         x     

Recordings x x x x x x x x x x x   

Meta-data   x  x   x  x  x x 

Dlg acts & Adj. pairs              

Argumentation x x x x x x x x x  x   

Semantics x x x x x   x x x x x  

Inference x  x x   x x x x x x  

Multiple meetings    x        x  

External              

                  Cases 15 11 9 8 7 5 4 14 9 8 8 7 5 

                  Ratio (%) 15.6 11.5 9.4 8.3 7.3 5.2 4.2 10.4 6.7 5.9 5.9 5.2 3.7 

 
IR alone fails MS-set 

Information types IR insufficient     19 cases   54.3% IR irrelevant   9 cases   54.3% 

Artefacts     x x 

Recordings x x x x   

Meta-data     x x 

Dlg acts & Adj. pairs       

Argumentation x x x x   

Semantics x  x x x  

Inference x x  x x  

Multiple meetings       

External    x   

                  Cases 6 4 2 2 2 2 

                  Ratio (%) 31.6 21 10.5 10.5 22.2 22.2 

Table 5. Some of the most frequent combinations of information required for answering the queries in the 

IM2-Set and in the MS-set when IR alone fails. 

3.5 Discussion 

Searching relevant information through the re-

corded meeting dialogues poses important prob-

lems when using standard IR indexing techniques 

(Baeza-Yates and Ribeiro-Nieto, 2000), because 

users ask different types of queries for which a 

single retrieval strategy (e.g., keywords-based) is 

insufficient. This is the case when looking at an-

swers that require some sort of entailment, such as 

inferring that a proposal has been rejected when a 

meeting participant says Are you kidding?.  

Spoken-language information retrieval (Vinci-

arelli, 2004) and automatic dialogue-act extraction 

techniques (Stolke et al., 2000; Clark and Popescu-

Belis, 2004; Ang et al., 2005) have been applied to 

meeting recordings and produced good results un-

der the assumption that the user is interested in 

retrieving either topic-based or dialog act-based 

information. But this assumption is partially in-

validated by our user query elicitation analysis, 

which showed that such information is only sought 

in a relatively small fraction of the users’ queries. 

A particular problem for these approaches is that 

the topic looked for is usually not a query itself 

(Was topic T mentioned?), but just a parameter in 

more structured questions (What was decided 

about T?). Moreover, the relevant participants’ 

contributions (dialog acts) need to be retrieved in 

combination, not in isolation (The reactions to the 

proposal made by X). 

4 Conclusion and Future Work 

While most of the research community has ne-

glected the importance of argumentative queries in 

meeting information retrieval, we provided evi-

dence that this type of queries is actually very 

common. We quantified the proportion of queries 

involving the argumentative dimension of the 

meeting content by performing an in-depth analy-

sis of queries collected in two different elicitation 

surveys. The analysis of the annotations obtained 

for the 305 queries (270 from the IM2-set, 35 from 

MS-set) was aimed at providing insights into dif-

ferent matters: what type of information is typi-

cally sought by users from meetings; how difficult 

it is, and what kind of information and techniques 

are needed in order to answer user queries.  

This work represents an initial step towards a 

better understanding of user queries on the meeting 

domain. It could provide useful intuitions about 
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how to perform the automatic classification of an-

swer types and, more importantly, the automatic 

extraction of argumentative features and their rela-

tions with other components of the query (e.g., 

topic, named entities, events). 

In the future, we intend to better ground our first 

empirical findings by i) running the queries against 

a real IR system with indexed meeting transcripts 

and evaluate the quality of the obtained answers; 

ii) ask judges to manually rank the difficulty of 

each query, and iii) compare the two rankings. We 

would also like to see how frequent argumentative 

queries are in other domains (such as TV talk 

shows or political debates) in order to generalize 

our results. 
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Abstract

Automatic segmentation is important for
making multimedia archives comprehensi-
ble, and for developing downstream infor-
mation retrieval and extraction modules. In
this study, we explore approaches that can
segment multiparty conversational speech
by integrating various knowledge sources
(e.g., words, audio and video recordings,
speaker intention and context). In particu-
lar, we evaluate the performance of a Max-
imum Entropy approach, and examine the
effectiveness of multimodal features on the
task of dialogue segmentation. We also pro-
vide a quantitative account of the effect of
using ASR transcription as opposed to hu-
man transcripts.

1 Introduction

Recent advances in multimedia technologies have
led to huge archives of audio-video recordings of
multiparty conversations in a wide range of areas
including clinical use, online video sharing ser-
vices, and meeting capture and analysis. While it
is straightforward to replay such recordings, find-
ing information from the often lengthy archives is a
more challenging task. Annotating implicit seman-
tics to enhance browsing and searching of recorded
conversational speech has therefore posed new chal-
lenges to the field of multimedia information re-
trieval.

One critical problem is how to divide unstructured
conversational speech into a number of locally co-
herent segments. The problem is important for two

reasons: First, empirical analysis has shown that an-
notating transcripts with semantic information (e.g.,
topics) enables users to browse and find information
from multimedia archives more efficiently (Baner-
jee et al., 2005). Second, because the automatically
generated segments make up for the lack of explicit
orthographic cues (e.g., story and paragraph breaks)
in conversational speech, dialogue segmentation
is useful in many spoken language understanding
tasks, including anaphora resolution (Grosz and Sid-
ner, 1986), information retrieval (e.g., as input for
the TREC Spoken Document Retrieval (SDR) task),
and summarization (Zechner and Waibel, 2000).

This study therefore aims to explore whether a
Maximum Entropy (MaxEnt) classifier can inte-
grate multiple knowledge sources for segmenting
recorded speech. In this paper, we first evaluate the
effectiveness of features that have been proposed in
previous work, with a focus on features that can be
extracted automatically. Second, we examine other
knowledge sources that have not been studied sys-
tematically in previous work, but which we expect
to be good predictors of dialogue segments. In ad-
dition, as our ultimate goal is to develop an infor-
mation retrieval module that can be operated in a
fully automatic fashion, we also investigate the im-
pact of automatic speech recognition (ASR) errors
on the task of dialogue segmentation.

2 Previous Work

In previous work, the problem of automatic dia-
logue segmentation is often considered as similar to
the problem of topic segmentation. Therefore, re-
search has adopted techniques previously developed
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to segment topics in text (Kozima, 1993; Hearst,
1997; Reynar, 1998) and in read speech (e.g., broad-
cast news) (Ponte and Croft, 1997; Allan et al.,
1998). For example, lexical cohesion-based algo-
rithms, such as LCSEG (Galley et al., 2003), or its
word frequency-based predecessor TextTile (Hearst,
1997) capture topic shifts by modeling the similarity
of word repetition in adjacent windows.

However, recent work has shown that LCSEG is
less successful in identifying “agenda-based conver-
sation segments” (e.g., presentation, group discus-
sion) that are typically signalled by differences in
group activity (Hsueh and Moore, 2006). This is
not surprising since LCSEG considers only lexical
cohesion. Previous work has shown that training a
segmentation model with features that are extracted
from knowledge sources other than words, such as
speaker interaction (e.g., overlap rate, pause, and
speaker change) (Galley et al., 2003), or partici-
pant behaviors, e.g., note taking cues (Banerjee and
Rudnicky, 2006), can outperform LCSEG on similar
tasks.

In many other fields of research, a variety of fea-
tures have been identified as indicative of segment
boundaries in different types of recorded speech.
For example, Brown et al. (1980) have shown that
a discourse segment often starts with relatively high
pitched sounds and ends with sounds of pitch within
a more compressed range. Passonneau and Lit-
man (1993) identified that topic shifts often occur
after a pause of relatively long duration. Other
prosodic cues (e.g., pitch contour, energy) have been
studied for their correlation with story segments in
read speech (Tur et al., 2001; Levow, 2004; Chris-
tensen et al., 2005) and with theory-based discourse
segments in spontaneous speech (e.g., direction-
given monologue) (Hirschberg and Nakatani, 1996).
In addition, head and hand/forearm movements are
used to detect group-action based segments (Mc-
Cowan et al., 2005; Al-Hames et al., 2005).

However, many other features that we expect to
signal segment boundaries have not been studied
systematically. For instance, speaker intention (i.e.,
dialogue act types) and conversational context (e.g.,
speaker role). In addition, although these features
are expected to be complementary to one another,
few of the previous studies have looked at the ques-
tion how to use conditional approaches to model the

correlation among features.

3 Methodology

3.1 Meeting Corpus

This study aims to explore approaches that can in-
tegrate multimodal information to discover implicit
semantics from conversation archives. As our goal
is to identify multimodal cues of segmentation in
face-to-face conversation, we use the AMI meeting
corpus (Carletta et al., 2006), which includes audio-
video recordings, to test our approach. In particu-
lar, we are using 50 scenario-based meetings from
the AMI corpus, in which participants are assigned
to different roles and given specific tasks related to
designing a remote control. On average, AMI meet-
ings last 26 minutes, with over 4,700 words tran-
spired. This corpus includes annotation for dialogue
segmentation and topic labels. In the annotation pro-
cess, annotators were given the freedom to subdi-
vide a segment into subsegments to indicate when
the group was discussing a subtopic. Annotators
were also given a set of segment descriptions to be
used as labels. Annotators were instructed to add a
new label only if they could not find a match in the
standard set. The set of segment descriptions can
be divided to three categories: activity-based (e.g.,
presentation, discussion), issue-based (e.g., budget,
usability), and functional segments (e.g., chitchat,
opening, closing).

3.2 Preprocessing

The first step is to break a recorded meeting into
minimal units, which can vary from sentence chunks
to blocks of sentences. In this study, we use spurts,
that is, consecutive speech with no pause longer than
0.5 seconds, as minimal units.

Then, to examine the difference between the set
of features that are characteristic of segmentation at
both coarse and fine levels of granularity, this study
characterizes a dialogue as a sequence of segments
that may be further divided into sub-segments. We
take the theory-free dialogue segmentation annota-
tions in the corpus and flatten the sub-segment struc-
ture and consider only two levels of segmentation:
top-level segments and all sub-level segments.1 We

1We take the spurts which the annotators choose as the be-
ginning of a segment as the topic boundaries. On average,
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observed that annotators tended to annotate activity-
based segments only at the top level, whereas they
often included sub-topics when segmenting issue-
based segments. For example, a top-level interface
specialist presentation segment can be divided into
agenda/equipment issues, user requirements, exist-
ing products, and look and usability sub-level seg-
ments.

3.3 Intercoder Agreement

To measure intercoder agreement, we employ three
different metrics: the kappa coefficient, PK, and
WD. Kappa values measure how well a pair of an-
notators agree on where the segments break. PK is
the probability that two spurts drawn randomly from
a document are incorrectly identified as belonging
to the same segment. WindowDiff (WD) calculates
the error rate by moving a sliding window across the
transcript counting the number of times the hypoth-
esized and reference segment boundaries are differ-
ent. While not uncontroversial, the use of these met-
rics is widespread. Table 1 shows the intercoder
agreement of the top-level and sub-level segmenta-
tion respectively.

It is unclear whether the kappa values shown here
indicate reliable intercoder agreement.2 But given
the low disagreement rate among codings in terms
of the PK and WD scores, we will argue for the reli-
ability of the annotation procedure used in this study.
Also, to our knowledge the reported degree of agree-
ment is the best in the field of meeting dialogue seg-
mentation.3

Intercoder Kappa PK WD
TOP 0.66 0.11 0.17
SUB 0.59 0.23 0.28

Table 1: Intercoder agreement of annotations at the
top-level (TOP) and sub-level (SUB) segments.

the annotators marked 8.7 top-level segments and 14.6 sub-
segments per meeting.

2In computational linguistics, kappa values over 0.67
point to reliable intercoder agreement. But Di Eugenio and
Glass (2004) have found that this interpretation does not hold
true for all tasks.

3For example, Gruenstein et al.(2005) report kappa
(PK/WD) of 0.41(0.28/0.34) for determining the top-level and
0.45(0.27/0.35) for the sub-level segments in the ICSI meeting
corpus.

3.4 Feature Extraction

As reported in Section 2, there is a wide range of
features that are potentially characteristic of segment
boundaries, and we expect to find some of them use-
ful for automatic recognition of segment boundaries.
The features we explore can be divided into the fol-
lowing five classes:

Conversational Features: We follow Galley et
al. (2003) and extracted a set of conversational fea-
tures, including the amount of overlapping speech,
the amount of silence between speaker segments,
speaker activity change, the number of cue words,
and the predictions of LCSEG (i.e., the lexical co-
hesion statistics, the estimated posterior probability,
the predicted class).

Lexical Features: We compile the list of words
that occur more than once in the spurts that have
been marked as a top-level or sub-segment boundary
in the training set. Each spurt is then represented as
a vector space of unigrams from this list.

Prosodic Features: We use the direct modelling
approach proposed in Shriberg and Stolcke (2001)
and include maximum F0 and energy of the spurt,
mean F0 and energy of the spurt, pitch contour (i.e.,
slope) and energy at multiple points (e.g., the first
and last 100 and 200 ms, the first and last quarter,
the first and second half) of a spurt. We also include
rate of speech, in-spurt silence, preceding and sub-
sequent pauses, and duration. The rate of speech is
calculated as both the number of words and the num-
ber of syllables spoken per second.

Motion Features: We measure the magnitude
of relevant movements in the meeting room using
methods that detect movements directly from video
recordings in frames of 40 ms. Of special interest are
the frontal shots as recorded by the close up cameras,
the hand movements as recorded by the overview
cameras, and shots of the areas of the room where
presentations are made. We then average the magni-
tude of movements over the frames within a spurt as
its feature value.

Contextual Features: These include dialogue act
type4 and speaker role (e.g., project manager, mar-

4In the annotations, each dialogue act is classified as one
of 15 types, including acts about information exchange (e.g.,
Inform), acts about possible actions (e.g., Suggest), acts whose
primary purpose is to smooth the social functioning (e.g., Be-
positive), acts that are commenting on previous discussion (e.g.,
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keting expert). As each spurt may consist of multiple
dialogue acts, we represent each spurt as a vector of
dialogue act types, wherein a component is 1 or 0
depending on whether the type occurs in the spurt.

3.5 Multimodal Integration Using Maximum
Entropy Models

Previous work has used MaxEnt models for sentence
and topic segmentation and shown that conditional
approaches can yield competitive results on these
tasks (Christensen et al., 2005; Hsueh and Moore,
2006). In this study, we also use a MaxEnt clas-
sifier5 for dialogue segmentation under the typical
supervised learning scheme, that is, to train the clas-
sifier to maximize the conditional likelihood over
the training data and then to use the trained model
to predict whether an unseen spurt in the test set
is a segment boundary or not. Because continuous
features have to be discretized for MaxEnt, we ap-
plied a histogram binning approach, which divides
the value range into N intervals that contain an equal
number of counts as specified in the histogram, to
discretize the data.

4 Experimental Results

4.1 Probabilistic Models

The first question we want to address is whether
the different types of characteristic multimodal fea-
tures can be integrated, using the conditional Max-
Ent model, to automatically detect segment bound-
aries. In this study, we use a set of 50 meet-
ings, which consists of 17,977 spurts. Among these
spurts, only 1.7% and 3.3% are top-level and sub-
segment boundaries. For our experiments we use
10-fold cross validation. The baseline is the re-
sult obtained by using LCSEG, an unsupervised ap-
proach exploiting only lexical cohesion statistics.

Table 2 shows the results obtained by using the
same set of conversational (CONV) features used
in previous work (Galley et al., 2003; Hsueh and
Moore, 2006), and results obtained by using all the
available features (ALL). The evaluation metrics PK
and WD are conventional measures of error rates in
segmentation (see Section 3.3). In Row 2, we see

Elicit-Assessment), and acts that allow complete segmentation
(e.g., Stall).

5The parameters of the MaxEnt classifier are optimized us-
ing Limited-Memory Variable Metrics.

TOP SUB
Error Rate PK WD PK WD

BASELINE(LCSEG) 0.40 0.49 0.40 0.47
MAXENT(CONV) 0.34 0.34 0.37 0.37
MAXENT(ALL) 0.30 0.33 0.34 0.36

Table 2: Compare the result of MaxEnt models
trained with only conversational features (CONV)
and with all available features (ALL).

that using a MaxEnt classifier trained on the conver-
sational features (CONV) alone improves over the
LCSEG baseline by 15.3% for top-level segments
and 6.8% for sub-level segements. Row 3 shows
that combining additional knowledge sources, in-
cluding lexical features (LX1) and the non-verbal
features, prosody (PROS), motion (MOT), and con-
text (CTXT), yields a further improvement (of 8.8%
for top-level segmentation and 5.4% for sub-level
segmentation) over the model trained on conversa-
tional features.

4.2 Feature Effects

The second question we want to address is which
knowledge sources (and combinations) are good
predictors for segment boundaries. In this round of
experiments, we evaluate the performance of differ-
ent feature combinations. Table 3 further illustrates
the impact of each feature class on the error rate
metrics (PK/WD). In addition, as the PK and WD
score do not reflect the magnitude of over- or under-
prediction, we also report on the average number of
hypothesized segment boundaries (Hyp). The num-
ber of reference segments in the annotations is 8.7 at
the top-level and 14.6 at the sub-level.

Rows 2-6 in Table 3 show the results of models
trained with each individual feature class. We per-
formed a one-way ANOVA to examine the effect
of different feature classes. The ANOVA suggests
a reliable effect of feature class (F (5, 54) = 36.1;
p < .001). We performed post-hoc tests (Tukey
HSD) to test for significant differences. Analysis
shows that the model that is trained with lexical
features alone (LX1) performs significantly worse
than the LCSEG baseline (p < .001). This is
due to the fact that cue words, such as okay and
now, learned from the training data to signal seg-
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TOP SUB
Hyp PK WD Hyp PK WD

BASELINE 17.6 0.40 0.49 17.6 0.40 0.47
(LCSEG)

LX1 61.2 0.53 0.72 65.1 0.49 0.66
CONV 3.1 0.34 0.34 2.9 0.37 0.37
PROS 2.3 0.35 0.35 2.5 0.37 0.37
MOT 96.2 0.36 0.40 96.2 0.38 0.41
CTXT 2.6 0.34 0.34 2.2 0.37 0.37
ALL 7.7 0.29 0.33 7.6 0.35 0.38

Table 3: Effects of individual feature classes and
their combination on detecting segment boundaries.

ment boundaries, are often used for non-discourse
purposes, such as making a semantic contribution to
an utterance.6 Thus, we hypothesize that these am-
biguous cue words have led the LX1 model to over-
predict. Row 7 further shows that when all avail-
able features (including LX1) are used, the com-
bined model (ALL) yields performance that is sig-
nificantly better than that obtained with individual
feature classes (F (5, 54) = 32.2; p < .001).

TOP SUB
Hyp PK WD Hyp PK WD

ALL 7.7 0.29 0.33 7.6 0.35 0.38
ALL-LX1 3.9 0.35 0.35 3.5 0.37 0.38

ALL-CONV 6.6 0.30 0.34 6.8 0.35 0.37
ALL-PROS 5.6 0.29 0.31 7.4 0.33 0.35

ALL-MOTION 7.5 0.30 0.35 7.3 0.35 0.37
ALL-CTXT 7.2 0.29 0.33 6.7 0.36 0.38

Table 4: Performance change of taking out each
individual feature class from the ALL model.

Table 4 illustrates the error rate change (i.e., in-
creased or decreased PK and WD score)7 that is
incurred by leaving out one feature class from the
ALL model. Results show that CONV, PROS, MO-
TION and CTXT can be taken out from the ALL
model individually without increasing the error rate
significantly.8 Morevoer, the combined models al-

6Hirschberg and Litman (1987) have proposed to discrimi-
nate the different uses intonationally.

7Note that the increase in error rate indicates performance
degradation, and vice versa.

8Sign tests were used to test for significant differences be-
tween means in each fold of cross validation.

ways perform better than the LX1 model (p < .01),
cf. Table 3.

This suggests that the non-lexical feature classes
are complementary to LX1, and thus it is essential
to incorporate some, but not necessarily all, of the
non-lexical classes into the model.

TOP SUB
Hyp PK WD Hyp PK WD

LX1 61.2 0.53 0.72 65.1 0.49 0.66
MOT 96.2 0.36 0.40 96.2 0.38 0.41

LX1+CONV 5.3 0.27 0.30 6.9 0.32 0.35
LX1+PROS 6.2 0.30 0.33 7.3 0.36 0.38
LX1+MOT 20.2 0.39 0.49 24.8 0.39 0.47
LX1+CTXT 6.3 0.28 0.31 7.2 0.33 0.35
MOT+PROS 62.0 0.34 0.34 62.1 0.37 0.37
MOT+CTXT 2.7 0.33 0.33 2.3 0.37 0.37

Table 5: Effects of combining complementary fea-
tures on detecting segment boundaries.

Table 5 further illustrates the performance of dif-
ferent feature combinations on detecting segment
boundaries. By subtracting the PK or WD score in
Row 1, the LX1 model, from that in Rows 3-6, we
can tell how essential each of the non-lexical classes
is to be combined with LX1 into one model. Results
show that CONV is the most essential, followed by
CTXT, PROS and MOT. The advantage of incorpo-
rating the non-lexical feature classes is also shown
in the noticeably reduced number of overpredictions
as compared to that of the LX1 model.

To analyze whether there is a significant interac-
tion between feature classes, we performed another
round of ANOVA tests to examine the effect of LX1
and each of the non-lexical feature classes on de-
tecting segment boundaries. This analysis shows
that there is a significant interaction effect on de-
tecting both top-level and sub-level segment bound-
aries (p < .01), suggesting that the performance of
LX1 is significantly improved when combined with
any non-lexical feature class. Also, among the non-
lexical feature classes, combining prosodic features
significantly improves the performance of the model
in which the motion features are combined to detect
top-level segment boundaries (p < .05).
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4.3 Degradation Using ASR

The third question we want to address here is
whether using the output of ASR will cause sig-
nificant degradation to the performance of the seg-
mentation approaches. The ASR transcripts used in
this experiment are obtained using standard technol-
ogy including HMM based acoustic modeling and
N-gram based language models (Hain et al., 2005).
The average word error rates (WER) are 39.1%. We
also applied a word alignment algorithm to ensure
that the number of words in the ASR transcripts is
the same as that in the human-produced transcripts.
In this way we can compare the PK and WD metrics
obtained on the ASR outputs directly with that on
the human transcripts.

In this study, we again use a set of 50 meetings
and 10-fold cross validation. We compare the per-
formance of the reference models, which are trained
on human transcripts and tested on human tran-
scripts, with that of the ASR models, which are
trained on ASR transcripts and tested on ASR tran-
scripts. Table 6 shows that despite the word recogni-
tion errors, none of the LCSEG, the MaxEnt models
trained with conversational features, and the Max-
Ent models trained with all available features per-
form significantly worse on ASR transcripts than on
reference transcripts. One possible explanation for
this, which we have observed in our corpus, is that
the ASR system is likely to mis-recognize different
occurences of words in the same way, and thus the
lexical cohesion statistic, which captures the similar-
ity of word repetition between two adjacency win-
dows, is also likely to remain unchanged. In addi-
tion, when the models are trained with other features
that are not affected by the recognition errors, such
as pause and overlap, the negative impacts of recog-
nition errors are further reduced to an insignificant
level.

5 Discussion

The results in Section 4 show the benefits of includ-
ing additional knowledge sources for recognizing
segment boundaries. The next question to be ad-
dressed is what features in these sources are most
useful for recognition. To provide a qualitative ac-
count of the segmentation cues, we performed an
analysis to determine whether each proposed feature

TOP SUB
Error Rate PK WD PK WD
LCSEG(REF) 0.45 0.57 0.42 0.47
LCSEG(ASR) 0.45 0.58 0.40 0.47
MAXENT-CONV(REF) 0.34 0.34 0.37 0.37
MAXENT-CONV(ASR) 0.34 0.33 0.38 0.38
MAXENT-ALL(REF) 0.30 0.33 0.34 0.36
MAXENT-ALL(ASR) 0.31 0.34 0.34 0.37

Table 6: Effects of word recognition errors on de-
tecting segments boundaries.

discriminates the class of segment boundaries. Pre-
vious work has identified statistical measures (e.g.,
Log Likelihood ratio) that are useful for determin-
ing the statistical association strength (relevance) of
the occurrence of an n-gram feature to target class
(Hsueh and Moore, 2006). Here we extend that
study to calculate the LogLikelihood relevance of all
of the features used in the experiments, and use the
statistics to rank the features.

Our analysis shows that people do speak and be-
have differently near segment boundaries. Some
of the identified segmentation cues match previous
findings. For example, a segment is likely to start
with higher pitched sounds (Brown et al., 1980; Ay-
ers, 1994) and a lower rate of speech (Lehiste, 1980).
Also, interlocutors pause longer than usual to make
sure that everyone is ready to move on to a new dis-
cussion (Brown et al., 1980; Passonneau and Lit-
man, 1993) and use some conventional expressions
(e.g., now, okay, let’s, um, so).

Our analysis also identified segmentation cues
that have not been mentioned in previous research.
For example, interlocutors do not move around a lot
when a new discussion is brought up; interlocutors
mention agenda items (e.g., presentation, meeting)
or content words more often when initiating a new
discussion. Also, from the analysis of current di-
alogue act types and their immediate contexts, we
also observe that at segment boundaries interlocu-
tors do the following more often than usual: start
speaking before they are ready (Stall), give infor-
mation (Inform), elicit an assessment of what has
been said so far (Elicit-assessment), or act to smooth
social functioning and make the group happier (Be-
positive).

1021



6 Conclusions and Future Work

This study explores the use of features from mul-
tiple knowledge sources (i.e., words, prosody, mo-
tion, interaction cues, speaker intention and role) for
developing an automatic segmentation component
in spontaneous, multiparty conversational speech.
In particular, we addressed the following questions:
(1) Can a MaxEnt classifier integrate the potentially
characteristic multimodal features for automatic di-
alogue segmentation? (2) What are the most dis-
criminative knowledge sources for detecting seg-
ment boundaries? (3) Does the use of ASR tran-
scription significantly degrade the performance of a
segmentation model?

First of all, our results show that a well perform-
ing MaxEnt model can be trained with available
knowledge sources. Our results improve on previous
work, which uses only conversational features, by
8.8% for top-level segmentation and 5.4% for sub-
level segmentation. Analysis of the effectiveness of
the various features shows that lexical features (i.e.,
cue words) are the most essential feature class to
be combined into the segmentation model. How-
ever, lexical features must be combined with other
features, in particular, conversational features (i.e.,
lexical cohesion, overlap, pause, speaker change), to
train well performing models.

In addition, many of the non-lexical feature
classes, including those that have been identified as
indicative of segment boundaries in previous work
(e.g., prosody) and those that we hypothesized as
good predictors of segment boundaries (e.g., mo-
tion, context), are not beneficial for recognizing
boundaries when used in isolation. However, these
non-lexical features are useful when combined with
lexical features, as the presence of the non-lexical
features can balance the tendency of models trained
with lexical cues alone to overpredict.

Experiments also show that it is possible to seg-
ment conversational speech directly on the ASR out-
puts. These results encouragingly show that we
can segment conversational speech using features
extracted from different knowledge sources, and in
turn, facilitate the development of a fully automatic
segmentation component for multimedia archives.

With the segmentation models developed and dis-
criminative knowledge sources identified, a remain-

ing question is whether it is possible to automat-
ically select the discriminative features for recog-
nition. This is particularly important for prosodic
features, because the direct modelling approach we
adopted resulted in a large number of features. We
expect that by applying feature selection methods
we can further improve the performance of auto-
matic segmentation models. In the field of machine
learning and pattern analysis, many methods and se-
lection criteria have been proposed. Our next step
will be to examine the effectiveness of these meth-
ods for the task of automatic segmentation. Also, we
will further explore how to choose the best perform-
ing ensemble of knowledge sources so as to facili-
tate automatic selection of knowledge sources to be
included.
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Abstract 

Psychiatric document retrieval attempts to 
help people to efficiently and effectively 
locate the consultation documents relevant 
to their depressive problems. Individuals 
can understand how to alleviate their symp-
toms according to recommendations in the 
relevant documents. This work proposes 
the use of high-level topic information ex-
tracted from consultation documents to im-
prove the precision of retrieval results. The 
topic information adopted herein includes 
negative life events, depressive symptoms 
and semantic relations between symptoms, 
which are beneficial for better understand-
ing of users' queries. Experimental results 
show that the proposed approach achieves 
higher precision than the word-based re-
trieval models, namely the vector space 
model (VSM) and Okapi model, adopting 
word-level information alone. 

1 Introduction 

Individuals may suffer from negative or stressful 
life events, such as death of a family member, ar-
gument with a spouse and loss of a job. Such 
events play an important role in triggering depres-
sive symptoms, such as depressed moods, suicide 
attempts and anxiety. Individuals under these cir-
cumstances can consult health professionals using 
message boards and other services. Health profes-
sionals respond with suggestions as soon as possi-
ble. However, the response time is generally sev-
eral days, depending on both the processing time 
required by health professionals and the number of 

problems to be processed. Such a long response 
time is unacceptable, especially for patients suffer-
ing from psychiatric emergencies such as suicide 
attempts. A potential solution considers the prob-
lems that have been processed and the correspond-
ing suggestions, called consultation documents, as 
the psychiatry web resources. These resources gen-
erally contain thousands of consultation documents 
(problem-response pairs), making them a useful 
information resource for mental health care and 
prevention. By referring to the relevant documents, 
individuals can become aware that they are not 
alone because many people have suffered from the 
same or similar problems. Additionally, they can 
understand how to alleviate their symptoms ac-
cording to recommendations. However, browsing 
and searching all consultation documents to iden-
tify the relevant documents is time consuming and 
tends to become overwhelming. Individuals need 
to be able to retrieve the relevant consultation 
documents efficiently and effectively. Therefore, 
this work presents a novel mechanism to automati-
cally retrieve the relevant consultation documents 
with respect to users' problems. 

Traditional information retrieval systems repre-
sent queries and documents using a bag-of-words 
approach. Retrieval models, such as the vector 
space model (VSM) (Baeza-Yates and Ribeiro-
Neto, 1999) and Okapi model (Robertson et al., 
1995; Robertson et al., 1996; Okabe et al., 2005), 
are then adopted to estimate the relevance between 
queries and documents. The VSM represents each 
query and document as a vector of words, and 
adopts the cosine measure to estimate their rele-
vance. The Okapi model, which has been used on 
the Text REtrieval Conference (TREC) collections, 
developed a family of word-weighting functions 
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for relevance estimation. These functions consider 
word frequencies and document lengths for word 
weighting. Both the VSM and Okapi models esti-
mate the relevance by matching the words in a 
query with the words in a document. Additionally, 
query words can further be expanded by the con-
cept hierarchy within general-purpose ontologies 
such as WordNet (Fellbaum, 1998), or automati-
cally constructed ontologies (Yeh et al., 2004). 

However, such word-based approaches only 
consider the word-level information in queries and 
documents, ignoring the high-level topic informa-
tion that can help improve understanding of users' 
queries. Consider the example consultation docu-
ment in Figure 1. A consultation document com-
prises two parts: the query part and recommenda-
tion part. The query part is a natural language text, 
containing rich topic information related to users' 
depressive problems. The topic information in-
cludes negative life events, depressive symptoms, 
and semantic relations between symptoms. As in-
dicated in Figure 1, the subject suffered from a 
love-related event, and several depressive symp-
toms, such as <Depressed>, <Suicide>, <Insom-
nia> and <Anxiety>. Moreover, there is a cause-
effect relation holding between <Depressed> and 
<Suicide>, and a temporal relation holding be-
tween <Depressed> and <Insomnia>. Different 
topics may lead to different suggestions decided by 
experts. Therefore, an ideal retrieval system for 

consultation documents should consider such topic 
information so as to improve the retrieval precision. 

Natural language processing (NLP) techniques 
can be used to extract more precise information 
from natural language texts (Wu et al., 2005a; Wu 
et al., 2005b; Wu et al., 2006; Yu et al., 2007). 
This work adopts the methodology presented in 
(Wu et al. 2005a) to extract depressive symptoms 
and their relations, and adopts the pattern-based 
method presented in (Yu et al., 2007) to extract 
negative life events from both queries and consul-
tation documents. This work also proposes a re-
trieval model to calculate the similarity between a 
query and a document by combining the similari-
ties of the extracted topic information. 

The rest of this work is organized as follows. 
Section 2 briefly describes the extraction of topic 
information. Section 3 presents the retrieval model. 
Section 4 summarizes the experimental results. 
Conclusions are finally drawn in Section 5. 

2 Framework of Consultation Document 
Retrieval 

Figure 2 shows the framework of consultation 
document retrieval. The retrieval process begins 
with receiving a user’s query about his depressive 
problems in natural language. The example query 
is shown in Figure 1. The topic information is then 
extracted from the query, as shown in the center of 
Figure 2. The extracted topic information is repre-

Consultation DocumentQuery:

It's normal to feel this way when going through these kinds of struggles, but over 
time your emotions should level out. Suicide doesn't solve anything; think about 
how it would affect your family........ There are a few things you can try to help 
you get to sleep at night, like drinking warm milk, listening to relaxing music....... 

Recommendation:

After that, it took me a long time to fall asleep at night.  

<Depressed>

<Suicide>

<Insomnia>

<Anxiety>

cause-effect temporal

I broke up with my boyfriend.

I often felt like crying and felt pain every day. 

So, I tried to kill myself several times. 

In recent months, I often lose my temper for no reason.

 

Figure 1.  Example of a consultation document. The bold arrowed lines denote cause-effect relations; ar-
rowed lines denote temporal relations; dashed lines denote temporal boundaries, and angle brackets de-
note depressive symptoms 
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sented by the sets of negative life events, depres-
sive symptoms, and semantic relations. Each ele-
ment in the event set and symptom set denotes an 
individual event and symptom, respectively, while 
each element in the relation set denotes a symptom 
chain to retain the order of symptoms. Similarly, 
the query parts of consultation documents are rep-
resented in the same manner. The relevance esti-
mation then calculates the similarity between the 
input query and the query part of each consultation 
document by combining the similarities of the sets 
of events, symptoms, and relations within them. 
Finally, a list of consultation documents ranked in 
the descending order of similarities is returned to 
the user. 

In the following, the extraction of topic informa-
tion is described briefly. The detailed process is 
described in (Wu et al. 2005a) for symptom and 
relation identification, and in (Yu et al., 2007) for 
event identification. 

1) Symptom identification: A total of 17 symp-
toms are defined based on the Hamilton De-
pression Rating Scale (HDRS) (Hamilton, 
1960). The identification of symptoms is sen-
tence-based. For each sentence, its structure is 
first analyzed by a probabilistic context free 
grammar (PCFG), built from the Sinica Tree-
bank corpus developed by Academia Sinica, 
Taiwan (http://treebank.sinica.edu.tw), to gen-
erate a set of dependencies between word to-
kens. Each dependency has the format (modi-
fier, head, relmodifier,head). For instance, the de-
pendency (matters, worry about, goal) means 
that "matters" is the goal to the head of the sen-

tence "worry about". Each sentence can then 
be associated with a symptom based on the 
probabilities that dependencies occur in all 
symptoms, which are obtained from a set of 
training sentences. 

2) Relation Identification: The semantic rela-
tions of interest include cause-effect and tem-
poral relations. After the symptoms are ob-
tained, the relations holding between symp-
toms (sentences) are identified by a set of dis-
course markers. For instance, the discourse 
markers "because" and "therefore" may signal 
cause-effect relations, and "before" and "after" 
may signal temporal relations. 

3) Negative life event identification: A total of 5 
types of events, namely <Family>, <Love>, 
<School>, <Work> and <Social> are defined 
based on Pagano et al’s (2004) research. The 
identification of events is a pattern-based ap-
proach. A pattern denotes a semantically plau-
sible combination of words, such as <parents, 
divorce> and <exam, fail>. First, a set of pat-
terns is acquired from psychiatry web corpora 
by using an evolutionary inference algorithm. 
The event of each sentence is then identified 
by using an SVM classifier with the acquired 
patterns as features. 

3 Retrieval Model 

The similarity between a query and a document, 
( , )Sim q d , is calculated by combining the similari-

ties of the sets of events, symptoms and relations 
within them, as shown in (1). 

Consultation
Documents

Ranking

Relevance
Estimation

Query
(Figure 1)

Topic Information

Symptom 
Identification

Negative Life Event
Identification

Relation
Identification

D S A

D S Cause-Effect

D I A
Temporal

I

S I A

<Love>

Topic Analysis

 

Figure 2.  Framework of consultation document retrieval. The rectangle denotes a negative life event re-
lated to love relation. Each circle denotes a symptom. D: Depressed, S: Suicide, I: Insomnia, A: Anxiety. 
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( , )
( , ) ( , ) (1 ) ( , ),Evn Sym Rel

Sim q d
Sim q d Sim q d Sim q dα β α β

=
+ + − −

  (1) 

where ( , )EvnSim q d , ( , )SymSim q d  and ( , )RelSim q d , 
denote the similarities of the sets of events, symp-
toms and relations, respectively, between a query 
and a document, and α  and β denote the combi-
nation factors. 

3.1 Similarity of events and symptoms 

The similarities of the sets of events and symptoms 
are calculated in the same method. The similarity 
of the event set (or symptom set) is calculated by 
comparing the events (or symptoms) in a query 
with those in a document. Additionally, only the 
events (or symptoms) with the same type are 
considered. The events (or symptoms) with 
different types are considered as irrelevant, i.e., no 
similarity. For instance, the event <Love> is 
considered as irrelevant to <Work>. The similarity 
of the event set is calculated by 

( , )
1 ( , ) cos( , ) .,

( )

Evn

q d q d
q d e q d

Sim q d

Type e e e e const
N Evn Evn ∈ ∩

= +
∪ ∑  (2) 

where qEvn  and dEvn  denote the event set in a 
query and a document, respectively; qe  and de  
denote the events; ( )q dN Evn Evn∪  denotes the 

cardinality of the union of qEvn  and dEvn  as a 
normalization factor, and ( , )q dType e e  denotes an 
identity function to check whether two events have 
the same type, defined as 

1     ( ) ( )
( , ) .

0    otherwise
q d

q d

Type e Type e
Type e e

=⎧⎪= ⎨
⎪⎩

  (3) 

The cos( , )q de e  denotes the cosine angle between 
two vectors of words representing qe  and de , as 
shown below. 

( ) ( )
1
2 2

1 1

cos( , ) ,q d

q d

T i i
e ei

q d
T Ti i

e ei i

w w
e e

w w

=

= =

=
∑

∑ ∑
  (4) 

where w denotes a word in a vector, and T denotes 
the dimensionality of vectors. Accordingly, when 
two events have the same type, their similarity is 
given as cos( , )q de e  plus a constant, const.. Addi-
tionally, cos( , )q de e  and const. can be considered 

as the word-level and topic-level similarities, re-
spectively. The optimal setting of const. is deter-
mined empirically. 

3.2 Similarity of relations 

When calculating the similarity of relations, only 
the relations with the same type are considered. 
That is, the cause-effect (or temporal) relations in a 
query are only compared with the cause-effect (or 
temporal) relations in a document. Therefore, the 
similarity of relation sets can be calculated as 

,

1( , ) ( , ) ( , ),
q d

Rel q d q d
r r

Sim q d Type r r Sim r r
Z

= ∑  (5) 

( ) ( ) ( ) ( ),C q C d T q T dZ N r N r N r N r= +   (6) 

where qr and dr denote the relations in a query and 
a document, respectively; Z denotes the normaliza-
tion factor for the number of relations; ( , )q dType e e  
denotes an identity function similar to (3), and 

( )CN i   and ( )TN i  denote the numbers of cause-
effect and temporal relations. 

Both cause-effect and temporal relations are rep-
resented by symptom chains. Hence, the similarity 
of relations is measured by the similarity of symp-
tom chains. The main characteristic of a symptom 
chain is that it retains the cause-effect or temporal 
order of the symptoms within it. Therefore, the 
order of the symptoms must be considered when 
calculating the similarity of two symptom chains. 
Accordingly, a sequence kernel function (Lodhi et 
al., 2002; Cancedda et al., 2003) is adopted to cal-
culate the similarity of two symptom chains. A 
sequence kernel compares two sequences of sym-
bols (e.g., characters, words) based on the subse-
quences within them, but not individual symbols. 
Thereby, the order of the symptoms can be incor-
porated into the comparison process. 

The sequence kernel calculates the similarity of 
two symptom chains by comparing their sub-
symptom chains at different lengths. An increasing 
number of common sub-symptom chains indicates 
a greater similarity between two symptom chains. 
For instance, both the two symptom chains 

1 2 3 4s s s s  and 3 2 1s s s  contain the same symptoms 1s , 

2s  and 3s , but in different orders. To calculate the 
similarity between these two symptom chains, the 
sequence kernel first calculates their similarities at 
length 2 and 3, and then averages the similarities at 
the two lengths. To calculate the similarity at 
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length 2, the sequence kernel compares their sub-
symptom chains of length 2, i.e., 

1 2 1 3 1 4 2 3 2 4 3 4{ , , , , , }s s s s s s s s s s s s  and 3 2 3 1 2 1{ , , }s s s s s s . 
Similarly, their similarity at length 3 is calculated 
by comparing their sub-symptom chains of length 
3, i.e., 1 2 3 1 2 4 1 3 4 2 3 4{ ,  ,  ,  }s s s s s s s s s s s s  and 3 2 1{ }s s s . 
Obviously, no similarity exists between 1 2 3 4s s s s  
and 3 2 1s s s , since no sub-symptom chains are 
matched at both lengths. In this example, the sub-
symptom chains of length 1, i.e., individual symp-
toms, do not have to be compared because they 
contain no information about the order of symp-
toms. Additionally, the sub-symptom chains of 
length 4 do not have to be compared, because the 
two symptom chains share no sub-symptom chains 
at this length. Hence, for any two symptom chains, 
the length of the sub-symptom chains to be com-
pared ranges from two to the minimum length of 
the two symptom chains. The similarity of two 
symptom chains can be formally denoted as 

1 2

1 2

1 2

2

( , ) ( , )

                ( , )

1                ( , ),
1

N N
q d q d

N N
q d

N
N N

n q d
n

Sim r r Sim sc sc

K sc sc

K sc sc
N =

≡

=

=
− ∑

  (7) 

where 1N
qsc  and 2N

dsc  denote the symptom chains 
corresponding to qr  and dr , respectively; 1N  and 

2N  denote the length of 1N
qsc  and 2N

dsc , respec-
tively; (  ,   )K i i  denotes the sequence kernel for 
calculating the similarity between two symptom 
chains; (  ,   )nK i i  denotes the sequence kernel for 
calculating the similarity between two symptom 
chains at length n, and N is the minimum length of 
the two symptom chains, i.e., 1 2min( , )N N N= . 
The sequence kernel 1 2( , )N N

n i jK sc sc  is defined as 
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where 1 2( , )N N
n i jK sc sc  is the normalized inner 

product of vectors 1( )N
n iscΦ  and 2( )N

n jscΦ ; ( )nΦ i  

denotes a mapping that transforms a given symp-
tom chain into a vector of the sub-symptom chains 
of length n; ( )uφ i  denotes an element of the vector, 
representing the weight of a sub-symptom chain u , 
and nSC  denotes the set of all possible sub-
symptom chains of length n. The weight of a sub-
symptom chain, i.e., ( )uφ i , is defined as 

1

1

1

1       is a contiguous sub-symptom chain of 

    is a non-contiguous sub-symptom chain
( )  

        with  skipped symptoms

0       does not appear in ,

N
i

N
u i

N
i

u sc

u
sc

u sc

θλ
φ

θ

⎧
⎪
⎪= ⎨
⎪
⎪
⎩

(9) 

where [0,1]λ∈  denotes a decay factor that is 
adopted to penalize the non-contiguous sub-
symptom chains occurred in a symptom chain 
based on the skipped symptoms. For instance, 

1 2 2 31 2 3 1 2 3( ) ( ) 1s s s ss s s s s sφ φ= =  since 1 2s s  and 2 3s s  
are considered as contiguous in 1 2 3s s s , and 

1 3

1
1 2 3( )s s s s sφ λ=  since 1 3s s  is a non-contiguous 

sub-symptom chain with one skipped symptom. 
The decay factor is adopted because a contiguous 
sub-symptom chain is preferable to a non-
contiguous chain when comparing two symptom 
chains. The setting of the decay factor is domain 
dependent. If 1λ = , then no penalty is applied for 
skipping symptoms, and the cause-effect and tem-
poral relations are transitive. The optimal setting of 

Figure 3.  Illustrative example of relevance com-
putation using the sequence kernel function. 
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λ  is determined empirically. Figure 3 presents an 
example to summarize the computation of the 
similarity between two symptom chains. 

4 Experimental Results 

4.1 Experiment setup 

1) Corpus: The consultation documents were 
collected from the mental health website of the 
John Tung Foundation (http://www.jtf.org.tw) 
and the PsychPark (http://www.psychpark.org), 
a virtual psychiatric clinic, maintained by a 
group of volunteer professionals of Taiwan 
Association of Mental Health Informatics (Bai 
et al. 2001). Both of the web sites provide 
various kinds of free psychiatric services and 
update the consultation documents periodically. 
For privacy consideration, all personal infor-
mation has been removed. A total of 3,650 
consultation documents were collected for 
evaluating the retrieval model, of which 20 
documents were randomly selected as the test 
query set, 100 documents were randomly se-
lected as the tuning set to obtain the optimal 
parameter settings of involved retrieval models, 
and the remaining 3,530 documents were the 
reference set to be retrieved. Table 1 shows the 
average number of events, symptoms and rela-
tions in the test query set. 

2) Baselines: The proposed method, denoted as 
Topic, was compared to two word-based re-
trieval models: the VSM and Okapi BM25 
models. The VSM was implemented in terms 
of the standard TF-IDF weight. The Okapi 
BM25 model is defined as 

(1) 31
2

3

( 1)( 1) | | ,
t Q

k qtfk tf avdl dlw k Q
K tf k qtf avdl dl∈

++ −
+

+ + +∑  (10) 

where t denotes a word in a query Q; qtf and tf 
denote the word frequencies occurring in a 
query and a document, respectively, and  (1)w  

denotes the Robertson-Sparck Jones weight of 
t (without relevance feedback), defined as 

(1) 0.5log ,
0.5

N nw
n
− +

=
+

            (11) 

where N denotes the total number of docu-
ments, and n denotes the number of documents 
containing t. In (10), K is defined as 

1((1 ) / ),K k b b dl avdl= − + ⋅             (12) 

where dl and avdl denote the length and aver-
age length of a document, respectively. The 
default values of 1k , 2k , 3k  and b are describe 
in (Robertson et al., 1996), where 1k  ranges 
from 1.0 to 2.0; 2k  is set to 0; 3k  is set to 8, 
and b ranges from 0.6 to 0.75. Additionally, 
BM25 can be considered as BM15 and BM11 
when b is set to 1 and 0, respectively. 

3) Evaluation metric: To evaluate the retrieval 
models, a multi-level relevance criterion was 
adopted. The relevance criterion was divided 
into four levels, as described below. 

 Level 0: No topics are matched between a 
query and a document. 

 Level 1: At least one topic is partially 
matched between a query and a document. 

 Level 2: All of the three topics are partially 
matched between a query and a document. 

 Level 3: All of the three topics are partially 
matched, and at least one topic is exactly 
matched between a query and a document. 

To deal with the multi-level relevance, the dis-
counted cumulative gain (DCG) (Jarvelin and 
Kekalainen, 2000) was adopted as the evalua-
tion metric, defined as 

[1],                                   1     [ ]
[ 1] [ ]/ log , otherwisec

G if i
DCG i

DCG i G i i

=⎧⎪= ⎨
− +⎪⎩

(13) 

where i denotes the i-th document in the re-
trieved list; G[i] denotes the gain value, i.e., 
relevance levels, of the i-th document, and c 
denotes the parameter to penalize a retrieved 
document in a lower rank. That is, the DCG 
simultaneously considers the relevance levels, 
and the ranks in the retrieved list to measure 
the retrieval precision. For instance, let 
<3,2,3,0,0> denotes the retrieved list of five 
documents with their relevance levels. If no 
penalization is used, then the DCG values for 

Topic Avg. Number
Negative Life Event 1.45 
Depressive Symptom 4.40 

Semantic Relation 3.35 

Table 1. Characteristics of the test query set. 
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the retrieved list are <3,5,8,8,8>, and thus 
DCG[5]=8. Conversely, if c=2, then the docu-
ments retrieved at ranks lower than two are pe-
nalized. Hence, the DCG values for the re-
trieved list are <3,5,6.89,6.89,6.89>, and 
DCG[5]=6.89. 

The relevance judgment was performed by 
three experienced physicians. First, the pooling 
method (Voorhees, 2000) was adopted to gen-
erate the candidate relevant documents for 
each test query by taking the top 50 ranked 
documents retrieved by each of the involved 
retrieval models, namely the VSM, BM25 and 
Topic. Two physicians then judged each can-
didate document based on the multilevel rele-
vance criterion. Finally, the documents with 
disagreements between the two physicians 
were judged by the third physician. Table 2 
shows the average number of relevant docu-
ments for the test query set. 

4) Optimal parameter setting: The parameter 
settings of BM25 and Topic were evaluated us-
ing the tuning set. The optimal setting of 
BM25 were k1 =1 and b=0.6. The other two pa-
rameters were set to the default values, i.e., 

2 0k =  and 3 8k = . For the Topic model, the 
parameters required to be evaluated include the 
combination factors, α  and β , described in 

(1); the constant const. described in (2), and 
the decay factor, λ , described in (9). The op-
timal settings were 0.3α = ; 0.5β = ; 
const.=0.6 and 0.8λ = . 

4.2 Retrieval results 

The results are divided into two groups: the preci-
sion and efficiency. The retrieval precision was 
measured by DCG values. Additionally, a paired, 
two-tailed t-test was used to determine whether the 
performance difference was statistically significant. 
The retrieval efficiency was measure by the query 
processing time, i.e., the time for processing all the 
queries in the test query set. 

Table 3 shows the comparative results of re-
trieval precision. The two variants of BM25, 
namely BM11 and BM15, are also considered in 
comparison. For the word-based retrieval models, 
both BM25 and BM11 outperformed the VSM, and 
BM15 performed worst. The Topic model 
achieved higher DCG values than both the BM-
series models and VSM. The reasons are three-fold. 
First, a negative life event and a symptom can each 
be expressed by different words with the same or 
similar meaning. Therefore, the word-based mod-
els often failed to retrieve the relevant documents 
when different words were used in the input query. 
Second, a word may relate to different events and 
symptoms. For instance, the term "worry about" is 

Relevance Level Avg. Number
Level 1 18.50 
Level 2 9.15 
Level 3 2.20 

Table 2. Average number of relevant documents 
for the test query set. 

 DCG(5) DCG(10) DCG(20) DCG(50) DCG(100) 

Topic 4.7516*
 6.9298 7.6040*

 8.3606*
 9.3974*

 

BM25 4.4624 6.7023 7.1156 7.8129 8.6597 

BM11 3.8877 4.9328 5.9589 6.9703 7.7057 

VSM 2.3454 3.3195 4.4609 5.8179 6.6945 

BM15 2.1362 2.6120 3.4487 4.5452 5.7020 

Table 3. DCG values of different retrieval models.  * Topic vs BM25 significantly different (p<0.05) 

Retrieval Model Avg. Time (seconds)
Topic 17.13 
VSM 0.68 
BM25 0.48 

Table 4. Average query processing time of differ-
ent retrieval models. 
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a good indicator for both the symptoms <Anxiety> 
and <Hypochondriasis>. This may result in ambi-
guity for the word-based models. Third, the word-
based models cannot capture semantic relations 
between symptoms. The Topic model incorporates 
not only the word-level information, but also more 
useful topic information about depressive problems, 
thus improving the retrieval results. 

The query processing time was measured using 
a personal computer with Windows XP operating 
system, a 2.4GHz Pentium IV processor and 
512MB RAM. Table 4 shows the results. The topic 
model required more processing time than both 
VSM and BM25, since identification of topics in-
volves more detailed analysis, such as semantic 
parsing of sentences and symptom chain construc-
tion. This finding indicates that although the topic 
information can improve the retrieval precision, 
incorporating such high-precision features reduces 
the retrieval efficiency. 

5 Conclusion 

This work has presented the use of topic informa-
tion for retrieving psychiatric consultation docu-
ments. The topic information can provide more 
precise information about users' depressive prob-
lems, thus improving the retrieval precision. The 
proposed framework can also be applied to differ-
ent domains as long as the domain-specific topic 
information is identified. Future work will focus on 
more detailed experiments, including the contribu-
tion of each topic to retrieval precision, the effect 
of using different methods to combine topic infor-
mation, and the evaluation on real users. 
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Abstract

We present a study aimed at investigating
the use of semantic information in a novel
NLP application, Electronic Career Guid-
ance (ECG), in German. ECG is formu-
lated as an information retrieval (IR) task,
whereby textual descriptions of professions
(documents) are ranked for their relevance
to natural language descriptions of a per-
son’s professional interests (the topic). We
compare the performance of two semantic
IR models: (IR-1) utilizing semantic relat-
edness (SR) measures based on either word-
net or Wikipedia and a set of heuristics,
and (IR-2) measuring the similarity between
the topic and documents based on Explicit
Semantic Analysis (ESA) (Gabrilovich and
Markovitch, 2007). We evaluate the perfor-
mance of SR measures intrinsically on the
tasks of (T-1) computing SR, and (T-2) solv-
ing Reader’s Digest Word Power (RDWP)
questions.

1 Electronic Career Guidance

Career guidance is important both for the person in-
volved and for the state. Not well informed deci-
sions may cause people to drop the training program
they are enrolled in, yielding loss of time and finan-
cial investments. However, there is a mismatch bet-
ween what people know about existing professions
and the variety of professions, which exist in real-
ity. Some studies report that school leavers typi-
cally choose the professions known to them, such

as policeman, nurse, etc. Many other professions,
which can possibly match the interests of the person
very well, are not chosen, as their titles are unknown
and people seeking career advice do not know about
their existence, e.g. electronics installer, or chem-
ical laboratory worker. However, people are very
good at describing their professional interests in nat-
ural language. That is why they are even asked to
write a short essay prior to an appointment with a
career guidance expert.

Electronic career guidance is, thus, a supplement
to career guidance by human experts, helping young
people to decide which profession to choose. The
goal is to automatically compute a ranked list of pro-
fessions according to the user’s interests. A current
system employed by the German Federal Labour
Office (GFLO) in their automatic career guidance
front-end1 is based on vocational trainings, manu-
ally annotated using a tagset of 41 keywords. The
user must select appropriate keywords according to
her interests. In reply, the system consults a knowl-
edge base with professions manually annotated with
the keywords by career guidance experts. There-
after, it outputs a list of the best matching profes-
sions to the user. This approach has two significant
disadvantages. Firstly, the knowledge base has to
be maintained and steadily updated, as the number
of professions and keywords associated with them
is continuously changing. Secondly, the user has to
describe her interests in a very restricted way.

At the same time, GFLO maintains an extensive
database with textual descriptions of professions,

1http://www.interesse-beruf.de/

1032



called BERUFEnet.2 Therefore, we cast the prob-
lem of ECG as an IR task, trying to remove the
disadvantages of conventional ECG outlined above
by letting the user describe her interests in a short
natural language essay, called a professional profile.

Example essay translated to English
I would like to work with animals, to treat and look
after them, but I cannot stand the sight of blood and
take too much pity on them. On the other hand, I like
to work on the computer, can program in C, Python and
VB and so I could consider software development as an
appropriate profession. I cannot imagine working in a
kindergarden, as a social worker or as a teacher, as I
am not very good at asserting myself.

Textual descriptions of professions are ranked
given such an essay by using NLP and IR tech-
niques. As essays and descriptions of professions
display a mismatch between the vocabularies of top-
ics and documents and there is lack of contextual in-
formation, due to the documents being fairly short
as compared to standard IR scenarios, lexical se-
mantic information should be especially beneficial
to an IR system. For example, the profile can con-
tain words about some objects or activities related to
the profession, but not directly mentioned in the de-
scription, e.g. oven, cakes in the profile and pastries,
baker, or confectioner in the document. Therefore,
we propose to utilize semantic relatedness as a rank-
ing function instead of conventional IR techniques,
as will be substantiated below.

2 System Architecture

Integrating lexical semantic knowledge in ECG re-
quires the existence of knowledge bases encoding
domain and lexical knowledge. In this paper, we in-
vestigate the utility of two knowledge bases: (i) a
German wordnet, GermaNet (Kunze, 2004), and (ii)
the German portion of Wikipedia.3 A large body of
research exists on using wordnets in NLP applica-
tions and in particular in IR (Moldovan and Mihal-
cea, 2000). The knowledge in wordnets has been
typically utilized by expanding queries with related
terms (Vorhees, 1994; Smeaton et al., 1994), con-
cept indexing (Gonzalo et al., 1998), or similarity
measures as ranking functions (Smeaton et al., 1994;
Müller and Gurevych, 2006). Recently, Wikipedia

2http://infobub.arbeitsagentur.de/
berufe/

3http://de.wikipedia.org/

has been discovered as a promising lexical seman-
tic resource and successfully used in such different
NLP tasks as question answering (Ahn et al., 2004),
named entity disambiguation (Bunescu and Pasca,
2006), and information retrieval (Katz et al., 2005).
Further research (Zesch et al., 2007b) indicates that
German wordnet and Wikipedia show different per-
formance depending on the task at hand.

Departing from this, we first compare two seman-
tic relatedness (SR) measures based on the informa-
tion either in the German wordnet (Lin, 1998) called
LIN, or in Wikipedia (Gabrilovich and Markovitch,
2007) called Explicit Semantic Analysis, or ESA.
We evaluate their performance intrinsically on the
tasks of (T-1) computing semantic relatedness, and
(T-2) solving Reader’s Digest Word Power (RDWP)
questions and make conclusions about the ability of
the measures to model certain aspects of semantic
relatedness and their coverage. Furthermore, we fol-
low the approach by Müller and Gurevych (2006),
who proposed to utilize the LIN measure and a set
of heuristics as an IR model (IR-1).

Additionally, we utilize the ESA measure in a
semantic information retrieval model, as this mea-
sure is significantly better at vocabulary cover-
age and at modelling cross part-of-speech relations
(Gabrilovich and Markovitch, 2007). We compare
the performance of ESA and LIN measures in a task-
based IR evaluation and analyze their strengths and
limitations. Finally, we apply ESA to directly com-
pute text similarities between topics and documents
(IR-2) and compare the performance of two seman-
tic IR models and a baseline Extended Boolean (EB)
model (Salton et al., 1983) with query expansion.4

To summarize, the contributions of this paper are
three-fold: (i) we present a novel system, utilizing
NLP and IR techniques to perform Electronic Career
Guidance, (ii) we study the properties and intrinsi-
cally evaluate two SR measures based on GermaNet
and Wikipedia for the tasks of computing seman-
tic relatedness and solving Reader’s Digest Word
Power Game questions, and (iii) we investigate the
performance of two semantic IR models in a task
based evaluation.

4We also ran experiments with Okapi BM25 model as im-
plemented in the Terrier framework, but the results were worse
than those with the EB model. Therefore, we limit our discus-
sion to the latter.
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3 Computing Semantic Relatedness

3.1 SR Measures

GermaNet based measures GermaNet is a Ger-
man wordnet, which adopted the major properties
and database technology from Princeton’s Word-
Net (Fellbaum, 1998). However, GermaNet dis-
plays some structural differences and content ori-
ented modifications. Its designers relied mainly on
linguistic evidence, such as corpus frequency, rather
than psycholinguistic motivations. Also, GermaNet
employs artificial, i.e. non-lexicalized concepts, and
adjectives are structured hierarchically as opposed
to WordNet. Currently, GermaNet includes about
40000 synsets with more than 60000 word senses
modelling nouns, verbs and adjectives.

We use the semantic relatedness measure by Lin
(1998) (referred to as LIN), as it consistently is
among the best performing wordnet based measures
(Gurevych and Niederlich, 2005; Budanitsky and
Hirst, 2006). Lin defined semantic similarity using a
formula derived from information theory. This mea-
sure is sometimes called a universal semantic sim-
ilarity measure as it is supposed to be application,
domain, and resource independent. Lin is computed
as:

simc1,c2 =
2 × log p(LCS(c1, c2))
log p(c1) + log p(c2)

where c1 and c2 are concepts (word senses) corre-
sponding to w1 and w2, log p(c) is the information
content, and LCS(c1, c2) is the lowest common sub-
sumer of the two concepts. The probability p is com-
puted as the relative frequency of words (represent-
ing that concept) in the taz5 corpus.

Wikipedia based measures Wikipedia is a free
online encyclopedia that is constructed in a col-
laborative effort of voluntary contributors and still
grows exponentially. During this process, Wikipedia
has probably become the largest collection of freely
available knowledge. Wikipedia shares many of
its properties with other well known lexical seman-
tic resources (like dictionaries, thesauri, semantic
wordnets or conventional encyclopedias) (Zesch et
al., 2007a). As Wikipedia also models relatedness
between concepts, it is better suited for computing

5http://www.taz.de

semantic relatedness than GermaNet (Zesch et al.,
2007b).

In very recent work, Gabrilovich and Markovitch
(2007) introduce a SR measure called Explicit Se-
mantic Analysis (ESA). The ESA measure repre-
sents the meaning of a term as a high-dimensional
concept vector. The concept vector is derived from
Wikipedia articles, as each article focuses on a cer-
tain topic, and can thus be viewed as expressing a
concept. The dimension of the concept vector is the
number of Wikipedia articles. Each element of the
vector is associated with a certain Wikipedia article
(or concept). If the term can be found in this article,
the term’s tfidf score (Salton and McGill, 1983) in
this article is assigned to the vector element. Oth-
erwise, 0 is assigned. As a result, a term’s con-
cept vector represents the importance of the term for
each concept. Semantic relatedness of two terms can
then be easily computed as the cosine of their corre-
sponding concept vectors. If we want to measure
the semantic relatedness of texts instead of terms,
we can also use ESA concept vectors. A text is rep-
resented as the average concept vector of its terms’
concept vectors. Then, the relatedness of two texts
is computed as the cosine of their average concept
vectors.

As ESA uses all textual information in Wikipedia,
the measure shows excellent coverage. Therefore,
we select it as the second measure for integration
into our IR system.

3.2 Datasets

Semantic relatedness datasets for German em-
ployed in our study are presented in Table 1.
Gurevych (2005) conducted experiments with two
datasets: i) a German translation of the English
dataset by Rubenstein and Goodenough (1965)
(Gur65), and ii) a larger dataset containing 350
word pairs (Gur350). Zesch and Gurevych (2006)
created a third dataset from domain-specific corpora
using a semi-automatic process (ZG222). Gur65 is
rather small and contains only noun-noun pairs con-
nected by either synonymy or hypernymy. Gur350
contains nouns, verbs and adjectives that are con-
nected by classical and non-classical relations (Mor-
ris and Hirst, 2004). However, word pairs for
this dataset are biased towards strong classical rela-
tions, as they were manually selected from a corpus.
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CORRELATION r
DATASET YEAR LANGUAGE # PAIRS POS SCORES # SUBJECTS INTER INTRA

Gur65 2005 German 65 N discrete {0,1,2,3,4} 24 .810 -
Gur350 2006 German 350 N, V, A discrete {0,1,2,3,4} 8 .690 -
ZG222 2006 German 222 N, V, A discrete {0,1,2,3,4} 21 .490 .647

Table 1: Comparison of datasets used for evaluating semantic relatedness in German.

ZG222 does not have this bias.
Following the work by Jarmasz and Szpakow-

icz (2003) and Turney (2006), we created a sec-
ond dataset containing multiple choice questions.
We collected 1072 multiple-choice word analogy
questions from the German Reader’s Digest Word
Power Game (RDWP) from January 2001 to De-
cember 2005 (Wallace and Wallace, 2005). We dis-
carded 44 questions that had more than one correct
answer, and 20 questions that used a phrase instead
of a single term as query. The resulting 1008 ques-
tions form our evaluation dataset. An example ques-
tion is given below:

Muffin (muffin)

a) Kleingebäck (small cake)

b) Spenglerwerkzeug (plumbing tool)

c) Miesepeter (killjoy)

d) Wildschaf (moufflon)

The task is to find the correct choice - ‘a)’ in this
case.

This dataset is significantly larger than any of the
previous datasets employed in this type of evalua-
tion. Also, it is not restricted to synonym questions,
as in the work by Jarmasz and Szpakowicz (2003),
but also includes hypernymy/hyponymy, and few
non-classical relations.

3.3 Analysis of Results
Table 2 gives the results of evaluation on the task
of correlating the results of an SR measure with hu-
man judgments using Pearson correlation. The Ger-
maNet based LIN measure outperforms ESA on the
Gur65 dataset. On the other datasets, ESA is better
than LIN. This is clearly due to the fact, that Gur65
contains only noun-noun word pairs connected by
classical semantic relations, while the other datasets
also contain cross part-of-speech pairs connected by
non-classical relations. The Wikipedia based ESA
measure can better capture such relations. Addition-
ally, Table 3 shows that ESA also covers almost all

GUR65 GUR350 ZG222
# covered word pairs 53 116 55
Upper bound 0.80 0.64 0.44
GermaNet Lin 0.73 0.50 0.08
Wikipedia ESA 0.56 0.52 0.32

Table 2: Pearson correlation r of human judgments
with SR measures on word pairs covered by Ger-
maNet and Wikipedia.

COVERED PAIRS
DATASET # PAIRS LIN ESA
Gur65 65 60 65
Gur350 350 208 333
ZG222 222 88 205

Table 3: Number of covered word pairs based on Lin
or ESA measure on different datasets.

word pairs in each dataset, while GermaNet is much
lower for Gur350 and ZG222. ESA performs even
better on the Reader’s Digest task (see Table 4). It
shows high coverage and near human performance
regarding the relative number of correctly solved
questions.6 Given the high performance and cover-
age of the Wikipedia based ESA measure, we expect
it to yield better IR results than LIN.

4 Information Retrieval

4.1 IR Models
Preprocessing For creating the search index for
IR models, we apply first tokenization and then re-
move stop words. We use a general German stop

6Values for human performance are for one subject. Thus,
they only indicate the approximate difficulty of the task. We
plan to use this dataset with a much larger group of subjects.

#ANSWERED #CORRECT RATIO

Human 1008 874 0.87
GermaNet Lin 298 153 0.51
Wikipedia ESA 789 572 0.72

Table 4: Evaluation results on multiple-choice word
analogy questions.
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word list extended with highly frequent domain spe-
cific terms. Before adding the remaining words to
the index, they are lemmatized. We finally split
compounds into their constituents, and add both,
constituents and compounds, to the index.

EB model Lucene7 is an open source text search
library based on an EB model. After matching the
preprocessed queries against the index, the docu-
ment collection is divided into a set of relevant and
irrelevant documents. The set of relevant documents
is, then, ranked according to the formula given in the
following equation:

rEB(d, q) =
nq∑
i=1

tf(tq, d)·idf(tq)·lengthNorm(d)

where nq is the number of terms in the query,
tf(tq, d) is the term frequency factor for term tq
in document d, idf(tq) is the inverse document fre-
quency of the term, and lengthNorm(d) is a nor-
malization value of document d, given the number
of terms within the document. We added a simple
query expansion algorithm using (i) synonyms, and
(ii) hyponyms, extracted from GermaNet.

IR based on SR For the (IR-1) model, we uti-
lize two SR measures and a set of heuristics: (i)
the Lin measure based on GermaNet (LIN), and (ii)
the ESA measure based on Wikipedia (ESA-Word).
This algorithm was applied to the German IR bench-
mark with positive results by Müller and Gurevych
(2006). The algorithm computes a SR score for each
query and document term pair. Scores above a pre-
defined threshold are summed up and weighted by
different factors, which boost or lower the scores for
documents, depending on how many query terms are
contained exactly or contribute a high enough SR
score. In order to integrate the strengths of tradi-
tional IR models, the inverse document frequency
idf is considered, which measures the general im-
portance of a term for predicting the content of a
document. The final formula of the model is as fol-
lows:

rSR(d, q) =
∑nd

i=1

∑nq

j=1 idf(tq,j) · s(td,i, tq,j)
(1 + nnsm) · (1 + nnr)

7http://lucene.apache.org

where nd is the number of tokens in the document,
nq the number of tokens in the query, td,i the i-th
document token, tq,j the j-th query token, s(td,i, tq,j)
the SR score for the respective document and query
term, nnsm the number of query terms not exactly
contained in the document, nnr the number of query
tokens, which do not contribute a SR score above the
threshold.

For the (IR-2) model, we apply the ESA method
for directly comparing the query with documents, as
described in Section 3.1.

4.2 Data

The corpus employed in our experiments was built
based on a real-life IR scenario in the domain of
ECG, as described in Section 1. The document col-
lection is extracted from BERUFEnet,8 a database
created by the GFLO. It contains textual descrip-
tions of about 1,800 vocational trainings, and 4,000
descriptions of professions. We restrict the collec-
tion to a subset of BERUFEnet documents, consist-
ing of 529 descriptions of vocational trainings, due
to the process necessary to obtain relevance judg-
ments, as described below. The documents contain
not only details of professions, but also a lot of infor-
mation concerning the training and administrative
issues. We only use those portions of the descrip-
tions, which characterize the profession itself.

We collected real natural language topics by ask-
ing 30 human subjects to write an essay about their
professional interests. The topics contain 130 words,
on average. Making relevance judgments for ECG
requires domain expertise. Therefore, we applied an
automatic method, which uses the knowledge base
employed by the GFLO, described in Section 1. To
obtain relevance judgments, we first annotate each
essay with relevant keywords from the tagset of 41
and retrieve a ranked list of professions, which were
assigned one or more keywords by domain experts.
To map the ranked list to a set of relevant and ir-
relevant professions, we use a threshold of 3, as
suggested by career guidance experts. This setting
yields on average 93 relevant documents per topic.
The quality of the automatically created gold stan-
dard depends on the quality of the applied knowl-
edge base. As the knowledge base was created by

8http://berufenet.arbeitsamt.de/
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domain experts and is at the core of the electronic ca-
reer guidance system of the GFLO, we assume that
the quality is adequate to ensure a reliable evalua-
tion.

4.3 Analysis of Results
In Table 5, we summarize the results of the ex-
periments applying different IR models on the
BERUFEnet data. We build queries from natural
language essays by (QT-1) extracting nouns, verbs,
and adjectives, (QT-2) using only nouns, and (QT-
3) manually assigning suitable keywords from the
tagset with 41 keywords to each topic. We report the
results with two different thresholds (.85 and .98) for
the Lin model, and with three different thresholds
(.11, .13 and .24) for the ESA-Word models. The
evaluation metrics used are mean average precision
(MAP), precision after ten documents (P10), the
number of relevant returned documents (#RRD). We
compute the absolute value of Spearman’s rank cor-
relation coefficient (SRCC) by comparing the rele-
vance ranking of our system with the relevance rank-
ing of the knowledge base employed by the GFLO.

Using query expansion for the EB model de-
creases the retrieval performance for most configu-
rations. The SR based models outperform the EB
model in all configurations and evaluation metrics,
except for P10 on the keyword based queries. The
Lin model is always outperformed by at least one of
the ESA models, except for (QT-3). (IR-2) performs
best on longer queries using nouns, verbs, adjectives
or just nouns.

Comparing the number of relevant retrieved doc-
uments, we observe that the IR models based on SR
are able to return more relevant documents than the
EB model. This supports the claim that semantic
knowledge is especially helpful for the vocabulary
mismatch problem, which cannot be addressed by
conventional IR models. E.g., only SR-based mod-
els can find the job information technician for a pro-
file which contains the sentence My interests and
skills are in the field of languages and IT. The job
could only be judged as relevant, as the semantic
relation between IT in the profile and information
technology in the professional description could be
found.

In our analysis of the BERUFEnet results ob-
tained on (QT-1), we noticed that many errors were

due to the topics expressed in free natural language
essays. Some subjects deviated from the given task
to describe their professional interests and described
facts that are rather irrelevant to the task of ECG,
e.g. It is important to speak different languages in
the growing European Union. If all content words
are extracted to build a query, a lot of noise is intro-
duced.

Therefore, we conducted further experiments
with (QT-2) and (QT-3): building the query using
only nouns, and using manually assigned keywords
based on the tagset of 41 keywords. For example,
the following query is built for the professional pro-
file given in Section 1.
Keywords assigned:

care for/nurse/educate/teach; use/program computer;

office; outside: outside facilities/natural

environment; animals/plants

IR results obtained on (QT-2) and (QT-3) show
that the performance is better for nouns, and sig-
nificantly better for the queries built of keywords.
This suggests that in order to achieve high IR perfor-
mance for the task of Electronic Career Guidance,
it is necessary to preprocess the topics by perform-
ing information extraction to remove the noise from
free text essays. As a result of the preprocessing,
natural language essays should be mapped to a set
of keywords relevant for describing a person’s in-
terests. Our results suggest that the word-based se-
mantic relatedness IR model (IR-1) performs signif-
icantly better in this setting.

5 Conclusions

We presented a system for Electronic Career Guid-
ance utilizing NLP and IR techniques. Given a nat-
ural language professional profile, relevant profes-
sions are computed based on the information about
semantic relatedness. We intrinsically evaluated and
analyzed the properties of two semantic relatedness
measures utilizing the lexical semantic information
in a German wordnet and Wikipedia on the tasks of
estimating semantic relatedness scores and answer-
ing multiple-choice questions. Furthermore, we ap-
plied these measures to an IR task, whereby they
were used either in combination with a set of heuris-
tics or the Wikipedia based measure was used to di-
rectly compute semantic relatedness of topics and
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MODEL
(QT-1) NOUNS, VERBS, ADJ. (QT-2) NOUNS (QT-3) KEYWORDS

MAP P10 #RRD SRCC MAP P10 #RRD SRCC MAP P10 #RRD SRCC
EB .39 .58 2581 .306 .38 .58 2297 .335 .54 .76 2755 .497

EB+SYN .37 .56 2589 .288 .38 .57 2310 .331 .54 .73 2768 .530
EB+HYPO .34 .47 2702 .275 .38 .56 2328 .327 .47 .65 2782 .399

Lin .85 .41 .56 2787 .338 .40 .59 2770 .320 .59 .73 2787 .578
Lin .98 .41 .61 2753 .326 .42 .59 2677 .341 .58 .74 2783 .563

ESA-Word .11 .39 .56 2787 .309 .44 .63 2787 .355 .60 .77 2787 .535
ESA-Word .13 .38 .59 2787 .282 .43 .62 2787 .338 .62 .76 2787 .550
ESA-Word .24 .40 .60 2787 .259 .43 .60 2699 .306 .54 .73 2772 .482

ESA-Text .47 .62 2787 .368 .55 .71 2787 .462 .56 .74 2787 .489

Table 5: Information Retrieval performance on the BERUFEnet dataset.

documents. We experimented with three different
query types, which were built from the topics by:
(QT-1) extracting nouns, verbs, adjectives, (QT-2)
extracting only nouns, or (QT-3) manually assign-
ing several keywords to each topic from a tagset of
41 keywords.

In an intrinsic evaluation of LIN and ESA mea-
sures on the task of computing semantic relatedness,
we found that ESA captures the information about
semantic relatedness and non-classical semantic re-
lations considerably better than LIN, which operates
on an is-a hierarchy and, thus, better captures the in-
formation about semantic similarity. On the task of
solving RDWP questions, the ESA measure signif-
icantly outperformed the LIN measure in terms of
correctness. On both tasks, the coverage of ESA is
much better. Despite this, the performance of LIN
and ESA as part of an IR model is only slightly
different. ESA performs better for all lengths of
queries, but the differences are not as significant as
in the intrinsic evaluation. This indicates that the
information provided by both measures, based on
different knowledge bases, might be complementary
for the IR task.

When ESA is applied to directly compute seman-
tic relatedness between topics and documents, it out-
performs IR-1 and the baseline EB model by a large
margin for QT-1 and QT-2 queries. For QT-3, i.e.,
the shortest type of query, it performs worse than
IR-1 utilizing ESA and a set of heuristics. Also,
the performance of the baseline EB model is very
strong in this experimental setting. This result in-
dicates that IR-2 utilizing conventional information
retrieval techniques and semantic information from
Wikipedia is better suited for longer queries provid-
ing enough context. For shorter queries, soft match-

ing techniques utilizing semantic relatedness tend to
be beneficial.

It should be born in mind, that the construction
of QT-3 queries involved a manual step of assigning
the keywords to a given essay. In this experimen-
tal setting, all models show the best performance.
This indicates that professional profiles contain a lot
of noise, so that more sophisticated NLP analysis
of topics is required. This will be improved in our
future work, whereby the system will incorporate
an information extraction component for automat-
ically mapping the professional profile to a set of
keywords. We will also integrate a component for
analyzing the sentiment structure of the profiles. We
believe that the findings from our work on apply-
ing IR techniques to the task of Electronic Career
Guidance generalize to similar application domains,
where topics and documents display similar proper-
ties (with respect to their length, free-text structure
and mismatch of vocabularies) and domain and lex-
ical knowledge is required to achieve high levels of
performance.
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Abstract

We present a general framework for
automatically extracting social networks
and biographical facts from conversational
speech. Our approach relies on fusing
the output produced by multiple informa-
tion extraction modules, including entity
recognition and detection, relation detec-
tion, and event detection modules. We
describe the specific features and algo-
rithmic refinements effective for conver-
sational speech. These cumulatively in-
crease the performance of social network
extraction from 0.06 to 0.30 for the devel-
opment set, and from 0.06 to 0.28 for the
test set, as measured by f-measure on the
ties within a network. The same frame-
work can be applied to other genres of text
— we have built an automatic biography
generation system for general domain text
using the same approach.

1 Introduction

A social network represents social relationships
between individuals or organizations. It consists
of nodes and ties. Nodes are individual actors
within the networks, generally a person or an or-
ganization. Ties are the relationships between the
nodes. Social network analysis has become a key
technique in many disciplines, including modern
sociology and information science.

In this paper, we present our system for au-
tomatically extracting social networks and bio-
graphical facts from conversational speech tran-
scripts by integrating the output of different IE
modules. The IE modules are the building blocks;
the fusing module depicts the ways of assembling

these building blocks. The final output depends on
which fundamental IE modules are used and how
their results are integrated.

The contributions of this work are two fold. We
propose a general framework for extracting social
networks and biographies from text that applies to
conversational speech as well as other genres, in-
cluding general newswire stories. Secondly, we
present specific methods that proved effective for
us for improving the performance of IE systems on
conversational speech transcripts. These improve-
ments include feature engineering and algorithmic
revisions that led to a nearly five-fold performance
increase for both development and test sets.

In the next section, we present our framework
for extracting social networks and other biograph-
ical facts from text. In Section 3, we discuss the
refinements we made to our IE modules in order
to reliably extract information from conversational
speech transcripts. In Section 4, we describe the
experiments, evaluation metrics, and the results of
social network and biography extraction. In Sec-
tion 5, we show the results of applying the frame-
work to other genres of text. Finally, we discuss
related work and conclude with lessons learned
and future work.

2 The General Framework

For extraction of social networks and biographi-
cal facts, our approach relies on three standard IE
modules — entity detection and recognition, rela-
tion detection, and event detection — and a fusion
module that integrates the output from the three IE
systems.

2.1 Entity, Relation, and Event Detection

We use the term entity to refer to a person, an or-
ganization, or other real world entities, as adopted
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in the Automatic Content Extraction (ACE) Work-
shops (ACE, 2005). A mention is a reference to
a real world entity. It can be named (e.g. “John
Lennon”), nominal (e.g. “mother”), or pronomi-
nal (e.g. “she”).

Entity detection is generally accomplished in
two steps: first, a mention detection module iden-
tifies all the mentions of interest; second, a co-
reference module merges mentions that refer to the
same entity into a single co-reference chain.

A relation detection system identifies (typi-
cally) binary relationships between pairs of men-
tions. For instance, for the sentence “I’m in New
York”, the following relation exists: locatedAt (I,
New York).

An event detection system identifies events of
interest and the arguments of the event. For ex-
ample, from the sentence “John married Eva in
1940”, the system should identify the marriage
event, the people who got married and the time
of the event.

The latest ACE evaluations involve all of the
above tasks. However, as shown in the next sec-
tion, our focus is quite different from ACE —
we are particularly interested in improving perfor-
mance for conversational speech and building on
top of ACE tasks to produce social networks and
biographies.

2.2 Fusion Module

The fusion module merges the output from IE
modules to extract social networks and biographi-
cal facts. For example, if a relation detection sys-
tem has identified the relation motherOf (mother,
my) from the input sentence “my mother is a
cook”, and if an entity recognition module has
generated entities referenced by the mentions {my,
Josh, me, I, I, ......} and {mother, she, her, her,
Rosa......}, then by replacing my and mother with
the named mentions within the same co-reference
chains, the fusion module produces the follow-
ing nodes and ties in a social network: motherOf
(Rosa, Josh).

We generate the nodes of social networks by se-
lecting all the PERSON entities produced by the
entity recognition system. Typically, we only in-
clude entities that contain at least one named men-
tion. To identify ties between nodes, we retrieve
all relations that indicate social relationships be-
tween a pair of nodes in the network.

We extract biographical profiles by selecting the

events (extracted by the event extraction module)
and corresponding relations (extracted by the rela-
tion extraction module) that involve a given indi-
vidual as an argument. When multiple documents
are used, then we employ a cross-document co-
reference system.

3 Improving Performance for
Conversational Speech Transcripts

Extracting information from conversational
speech transcripts is uniquely challenging. In this
section, we describe the data collection used in
our experiments, and explain specific techniques
we used to improve IE performance on this data.

3.1 Conversational Speech Collection

We use a corpus of videotaped, digitized oral in-
terviews with Holocaust survivors in our experi-
ments. This data was collected by the USC Shoah
Foundation Institute (formerly known as the Vi-
sual History Foundation), and has been used in
many research activities under the Multilingual
Access to Large Spoken Archives (MALACH)
project (Gustman et al., 2002; Oard et al., 2004).
The collection contains oral interviews in 32 lan-
guages from 52,000 survivors, liberators, rescuers
and witnesses of the Holocaust.

This data is very challenging. Besides the usual
characteristics of conversational speech, such as
speaker turns and speech repairs, the interview
transcripts contain a large percentage of ungram-
matical, incoherent, or even incomprehensible
clauses (a sample interview segment is shown in
Figure 1). In addition, each interview covers many
people and places over a long time period, which
makes it even more difficult to extract social net-
works and biographical facts.

speaker2 in on that ninth of Novem-
ber nineteen hundred thirty eight I was
with my parents at home we heard
not through the we heard even through
the windows the crashing of glass the
crashing of and and they are our can’t

Figure 1: Sample interview segment.

3.2 The Importance of Co-reference
Resolution

Our initial attempts at social network extraction
for the above data set resulted in a very poor score
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of 0.06 f-measure for finding the relations within
a network (as shown in Table 3 as baseline perfor-
mance).

An error analysis indicated poor co-reference
resolution to be the chief culprit for the low per-
formance. For instance, suppose we have two
clauses: “his mother’s name is Mary” and “his
brother Mark went to the army”. Further sup-
pose that “his” in the first clause refers to a
person named “John” and “his” in the second
clause refers to a person named “Tim”. If the
co-reference system works perfectly, the system
should find a social network involving four peo-
ple: {John, Tim, Mary, Mark}, and the ties: moth-
erOf (Mary, John), and brotherOf (Mark, Tim).
However, if the co-reference system mistakenly
links “John” to “his” in the second clause and links
“Tim” to “his” in the first clause, then we will still
have a network with four people, but the ties will
be: motherOf (Mary, Tim), and brotherOf (Mark,
John), which are completely wrong. This example
shows that co-reference errors involving mentions
that are relation arguments can lead to very bad
performance in social network extraction.

Our existing co-reference module is a state-of-
the-art system that produces very competitive re-
sults compared to other existing systems (Luo et
al., 2004). It traverses the document from left to
right and uses a mention-synchronous approach to
decide whether a mention should be merged with
an existing entity or start a new entity.

However, our existing system has shortcomings
for this data: the system lacks features for han-
dling conversational speech, and the system of-
ten makes mistakes in pronoun resolution. Re-
solving pronominal references is very important
for extracting social networks from conversational
speech, as illustrated in the previous example.

3.3 Improving Co-reference for
Conversational Speech

We developed a new co-reference resolution sys-
tem for conversational speech transcripts. Simi-
lar to many previous works on co-reference (Ng,
2005), we cast the problem as a classification task
and solve it in two steps: (1) train a classifier to
determine whether two mentions are co-referent or
not, and (2) use a clustering algorithm to partition
the mentions into clusters, based on the pairwise
predictions.

We added many features to our model specifi-

cally designed for conversational speech, and sig-
nificantly improved the agglomerative clustering
used for co-reference, including integrating rela-
tions as constraints, and designing better cluster
linkage methods and clustering stopping criteria.

3.3.1 Adding Features for Conversational
Speech

We added many features to our model specifi-
cally designed for conversational speech:

Speaker role identification. In manual tran-
scripts, the speaker turns are given and each
speaker is labeled differently (e.g. “speaker1”,
“speaker2”), but the identity of the speaker is not
given. An interview typically involves 2 or more
speakers and it is useful to identify the roles of
each speaker (e.g. interviewer, interviewee, etc.).
For instance, ”you” spoken by the interviewer is
likely to be linked with ”I” spoken by the inter-
viewee, but ”you” spoken by the third person in
the interview is more likely to be referring to the
interviewer than to the interviewee.

We developed a program to identify the speaker
roles. The program classifies the speakers into
three categories: interviewer, interviewee, and
others. The algorithm relies on three indicators
— number of turns by each speaker, difference in
number of words spoken by each speaker, and the
ratio of first-person pronouns such as “I”, “me”,
and “we” vs. second-person pronouns such as
“you” and “your”. This speaker role identifica-
tion program works very well when we checked
the results on the development and test set — the
interviewers and survivors in all the documents in
the development set were correctly identified.

Speaker turns. Using the results from the
speaker role identification program, we enrich cer-
tain features with speaker turn information. For
example, without this information, the system can-
not distinguish “I” spoken by an interviewer from
“I” spoken by an interviewee.

Spelling features for speech transcripts. We
add additional spelling features so that mentions
such as “Cyla C Y L A Lewin” and “Cyla Lewin”
are considered as exact matches. Names with
spelled-out letters occur frequently in our data col-
lection.

Name Patterns. We add some features that
capture frequent syntactic structures that speakers
use to express names, such as “her name is Irene”,
“my cousin Mark”, and “interviewer Ellen”.

Pronoun features. To improve the perfor-
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mance on pronouns, we add features such as the
speaker turns of the pronouns, whether the two
pronouns agree in person and number, whether
there exist other mentions between them, etc.

Other miscellaneous features. We also in-
clude other features such as gender, token dis-
tance, sentence distance, and mention distance.

We trained a maximum-entropy classifier using
these features. For each pair of mentions, the clas-
sifier outputs the probability that the two mentions
are co-referent.

We also modified existing features to make
them more applicable to conversational speech.
For instance, we added pronoun-distance features
taking into account the presence of other pronom-
inal references in between (if so, the types of the
pronouns), other mentions in between, etc.

3.3.2 Improving Agglomerative Clustering

We use an agglomerative clustering approach
for partitioning mentions into entities. This is a
bottom-up approach which joins the closest pair
of clusters (i.e., entities) first. Initially, each men-
tion is placed into its own cluster. If we have N
mentions to cluster, we start with N clusters.

The intuition behind choosing the agglomera-
tive method is to merge the most confident pairs
first, and use the properties of existing clusters to
constrain future clustering. This seems to be espe-
cially important for our data collection, since con-
versational speech tends to have a lot of repetitions
or local structures that indicate co-reference. In
such cases, it is beneficial to merge these closely
related mentions first.

Cluster linkage method. In agglomerative
clustering, each cycle merges two clusters into a
single cluster, thus reducing the number of clus-
ters by one. We need to decide upon a method of
measuring the distance between two clusters.

At each cycle, the two mentions with the high-
est co-referent probability are linked first. This re-
sults in the merging of the two clusters that contain
these two mentions.

We improve upon this method by imposing min-
imal distance criteria between clusters. Two clus-
ters C1 and C2 can be combined only if the dis-
tance between all the mentions from C1 and all
the mentions from C2 is above the minimal dis-
tance threshold. For instance, suppose C1 =
{he, father}, and C2 = {he, brother}, and “he”
from C1 and “he” from C2 has the highest linkage
probability. The standard single linkage method

will combine these two clusters, despite the fact
that “father” and “brother” are very unlikely to
be linked. Imposing minimal distance criteria
can solve this problem and prevent the linkage of
clusters which contain very dissimilar mentions.
In practice, we used multiple minimal distance
thresholds, such as minimal distance between two
named mentions and minimal distance between
two nominal mentions.

We chose not to use complete or average link-
age methods. In our data collection, the narrations
contain a lot of pronouns and the focus tends to
be very local. Whereas the similarity model may
be reasonably good at predicting the distance be-
tween two pronouns that are close to each other, it
is not good at predicting the distance between pro-
nouns that are furthur apart. Therefore, it seems
more reasonable to use single linkage method with
modifications than complete or average linkage
methods.

Using relations to constrain clustering. An-
other novelty of our co-reference system is the
use of relations for constraining co-reference. The
idea is that two clusters should not be merged if
such merging will introduce contradictory rela-
tions. For instance, if we know that person entity
A is the mother of person entity B, and person en-
tity C is the sister of B, then A and C should not
be linked since the resulting entity will be both the
mother and the sister of B.

We construct co-existent relation sets from the
training data. For any two pairs of entities, we col-
lect all the types of relations that exist between
them. These types of relations are labeled as
co-existent. For instance, “motherOf” and “par-
entOf” can co-exist, but “motherOf” and “sis-
terOf” cannot. By using these relation constraints,
the system refrains from generating contradictory
relations in social networks.

Speed improvement. Suppose the number of
mentions is N , the time complexity of simple link-
age method is O(N2). With the minimal dis-
tance criteria, the complexity is O(N3). However,
N can be dramatically reduced for conversational
transcripts by first linking all the first-person pro-
nouns by each speaker.

4 Experiments

In this section, we describe the experimental setup
and present sample outputs and evaluation results.
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Train Dev Test
Words 198k 73k 255k
Mentions 43k 16k 56k
Relations 7K 3k 8k

Table 2: Experimental Data Sets.

4.1 Data Annotation

The data used in our experiments consist of partial
or complete English interviews of Holocaust sur-
vivors. The input to our system is transcripts of
interviews.

We manually annotated manual transcripts with
entities, relations, and event categories, specifi-
cally designed for this task and the results of care-
ful data analysis. The annotation was performed
by a single annotator over a few months. The an-
notation categories for entities, events, and rela-
tions are shown in Table 1. Please note that the
event and relation definitions are slightly different
than the definitions in ACE.

4.2 Training and Test Sets

We divided the data into training, development,
and test data sets. Table 2 shows the size of each
data set. The training set includes transcripts of
partial interviews. The development set consists
of 5 complete interviews, and the test set con-
sists of 15 complete interviews. The reason that
the training set contains only partial interviews is
due to the high cost of transcription and annota-
tion. Since those partial interviews had already
been transcribed for speech recognition purpose,
we decided to reuse them in our annotation. In ad-
dition, we transcribed and annotated 20 complete
interviews (each interview is about 2 hours) for
building the development and test sets, in order
to give a more accurate assessment of extraction
performance.

4.3 Implementation

We developed the initial entity detection, rela-
tion detection, and event detection systems using
the same techniques as our submission systems to
ACE (Florian et al., 2004). Our submission sys-
tems use statistical approaches, and have ranked
in the top tier in ACE evaluations. We easily built
the models for our application by retraining exist-
ing systems with our training set.

The entity detection task is accomplished in two
steps: mention detection and co-reference resolu-
tion. The mention detection is formulated as a la-

Figure 2: Social network extracted by the system.

beling problem, and a maximum-entropy classifier
is trained to identify all the mentions.

Similarly, relation detection is also cast as a
classification problem — for each pair of men-
tions, the system decides which type of relation
exists between them. It uses a maximum-entropy
classifier and various lexical, contextual, and syn-
tactic features for such predications.

Event detection is accomplished in two steps:
first, identifying the event anchor words using an
approach similar to mention detection; then, iden-
tifying event arguments using an approach similar
to relation detection.

The co-reference resolution system for conver-
sational speech and the fusion module were devel-
oped anew.

4.4 The Output

The system aims to extract the following types of
information:

• The social network of the survivor.

• Important biographical facts about each per-
son in the social network.

• Track the movements of the survivor and
other individuals in the social network.

Figure 2 shows a sample social network ex-
tracted by the system (only partial of the network
is shown). Figure 3 shows sample biographical
facts and movement summaries extracted by the
system. In general, we focus more on higher pre-
cision than recall.

4.5 Evaluation

In this paper, we focus only on the evaluation
of social network extraction. We first describe
the metrics for social network evaluation and then
present the results of the system.

1044



Entity (12) Event (8) Relation (34)
Social Rels (12) Event Args (8) Bio Facts (14)

AGE CUSTODY aidgiverOf affectedBy bornAt
COUNTRY DEATH auntOf agentOf bornOn

DATE HIDING cousinOf participantIn citizenOf
DATEREF LIBERATION fatherOf timeOf diedAt

DURATION MARRIAGE friendOf travelArranger diedOn
GHETTOORCAMP MIGRATION grandparentOf travelFrom employeeOf

OCCUPATION SURVIVAL motherOf travelPerson hasProperty
ORGANIZATION VIOLENCE otherRelativeOf travelTo locatedAt

OTHERLOC parentOf managerOf
PEOPLE siblingOf memberOf
PERSON spouseOf near

SALUTATION uncleOf partOf
partOfMany

resideIn

Table 1: Annotation Categories for Entities, Events, and Relations.

Sidonia Lax:
date of birth: June the eighth nineteen twenty
seven

Movements:
Moved To: Auschwitz
Moved To: United States
... ...

Figure 3: Biographical facts and movement sum-
maries extracted by the system.

To compare two social networks, we first need
to match the nodes and ties between the networks.
Two nodes (i.e., entities) are matched if they have
the same canonical name. Two ties (i.e., edges or
relations) are matched if these three criteria are
met: they contain the same type of relations, the
arguments of the relation are the same, and the or-
der of the arguments are the same if the relation is
unsymmetrical.

We define the the following measurements for
social network evaluation: the precision for nodes
(or ties) is the ratio of common nodes (or ties) in
the two networks to the total number of nodes (or
ties) in the system output, the recall for nodes (or
ties) is the ratio of common nodes (or ties) in the
two networks to the total number of nodes/ties in
the reference output, and the f-measure for nodes
(or ties) is the harmonic mean of precision and re-
call for nodes (or ties). The f-measure for ties in-
dicates the overall performance of social network
extraction.

F-mea Dev Test
Baseline New Baseline New

Nodes 0.59 0.64 0.62 0.66
Ties 0.06 0.30 0.06 0.28

Table 3: Performance of social network extraction.

Table 3 shows the results of social network ex-
traction. The new co-reference approach improves
the performance for f-measure on ties by five-fold
on development set and by nearly five-fold for test
set.

We also tested the system using automatic tran-
scripts by our speech recognition system. Not sur-
prisingly, the result is much worse: the nodes f-
measure is 0.11 for the test set, and the system
did not find any relations. A few factors are ac-
countable for this low performance: (1) Speech
recognition is very challenging for this data set,
since the testimonies contained elderly, emotional,
accented speech. Given that the speech recogni-
tion system fails to recognize most of the person
names, extraction of social networks is difficult.
(2) The extraction systems perform worse on au-
tomatic transcripts, due to the quality of the auto-
matic transcript, and the discrepancy between the
training and test data. (3) Our measurements are
very strict, and no partial credit is given to partially
correct entities or relations.

We decided not to present the evaluation results
of the individual components since the perfor-
mance of individual components are not at all in-
dicative of the overall performance. For instance,
a single pronoun co-reference error might slighlty

1045



change the co-reference score, but can introduce a
serious error in the social network, as shown in the
example in Section 3.2.

5 Biography Generation from General
Domain Text

We have applied the same framework to biogra-
phy generation from general news articles. This
general system also contains three fundamental IE
systems and a fusion module, similar to the work
presented in the paper. The difference is that the IE
systems are trained on general news text using dif-
ferent categories of entities, relations, and events.

A sample biography output extracted from
TDT5 English documents is shown in Figure 4.
The numbers in brackets indicate the corpus count
of the facts.

Saddam Hussein:
Basic Information:
citizenship: Iraq [203]
occupation: president [4412], leader [1792],
dictator [664],...
relative: odai [89], qusay [65], uday [65],...

Life Events:
places been to: bagdad [403], iraq [270],
palaces [149]...
Organizations associated with: manager of
baath party [1000], ...
Custody Events: Saddam was arrested [52],
Communication Events: Saddam said [3587]
... ...

Figure 4: Sample biography output.

6 Related Work

While there has been previous work on extracting
social networks from emails and the web (Culotta
et al., 2004), we believe this is the first paper to
present a full-fledged system for extracting social
networks from conversational speech transcripts.

Similarly, most of the work on co-reference res-
olution has not focused on conversational speech.
(Ji et al., 2005) uses semantic relations to refine
co-reference decisions, but in a approach different
from ours.

7 Conclusions and Future Work

We have described a novel approach for extracting
social networks, biographical facts, and movement

summaries from transcripts of oral interviews with
Holocaust survivors. We have improved the per-
formance of social network extraction five-fold,
compared to a baseline system that already uses
state-of-the-art technology. In particular, we im-
proved the performance of co-reference resolution
for conversational speech, by feature engineering
and improving the clustering algorithm.

Although our application data consists of con-
versational speech transcripts in this paper, the
same extraction approach can be applied to
general-domain text as well. Extracting general,
rich social networks is very important in many ap-
plications, since it provides the knowledge of who
is connected to whom and how they are connected.

There are many interesting issues involved in
biography generation from a large data collection,
such as how to resolve contradictions. The counts
from the corpus certainly help to filter out false
information which would otherwise be difficult to
filter. But better technology at detecting and re-
solving contradictions will definitely be beneficial.
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