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Preface: General Chair

On behalf of the organizing committee I am delighted to welcome you to the 45th Annual Meeting of the

Association for Computational Linguistics, in Prague.

Setting up and running the ACL conference involves a lot of work by many people. Some of them are
officially identified as being responsible for various aspects of the conference, while the contributions of
others are less visible. I would like to say a warm thank you to the people named below, with apologies

to anyone I have overlooked.

The Program Chairs, Antal van den Bosch and Annie Zaenen have done a great job in managing the
almost 600 submissions for the main conference and putting together a high quality program. Through
this process Antal has become a ‘grandmaster’ of the START paper management system and has given a
lot of help to other chairs who have had to deal with their own sets of submissions. Many thanks also to
their Area Chairs and the program committee of reviewers, and to Florence Reeder for coordinating the

pre-submission mentoring service. (Antal and Annie reflect on their PC experience overleaf).

Sophia Ananiadou is Chair of the Demo/Poster part of the conference, and has overseen a separate

review process to select a high quality set of presentations.

The Student Research Workshop Chairs, Chris Biemann, Violeta Seretan and Ellen Riloff have assem-
bled an excellent program of papers and posters. I encourage everyone to attend the student workshop to
hear about the exciting work being carried out by researchers just starting out on their careers in compu-

tational linguistics.

Workshops Chair Simone Teufel is overseeing 15 workshops — the most ever at an ACL conference —
chosen (with the help of Beth Ann Hockey, Katja Markert and Dekai Wu) from a total of 27 proposals.
The scale of the workshop program can be gauged by the fact that they received an aggregate total of 470
submissions (without even counting IWPT and EMNLP-CoNLL). Joakim Nivre, as Tutorials Chair, has
assembled a program of 5 attractive and complementary tutorials, selected from 20 proposals with advice

from Walter Daelemans, Robert Dale, Nancy Ide, Diane Litman and Chris Manning.

One of the most demanding yet least noticed organizational roles is that of Publications Chair. Su Jian
has done a fantastic job in producing the hardcopy and electronic record of the conference, supported by
his team—with notable contributions from Upali Kohomban who has cheerfully helped at all stages and

whenever needed, day and night, weekdays and weekends.

Sponsorship is another success story, thanks to the Sponsorship Chairs Martha Palmer, Gabor Proszeky,
Jan Hajic and Jun’ichi Tsujii, who have recruited 12 corporate sponsors. We are very grateful for their

financial support.

Eva Hajicova, the Local Arrangements Chair, assisted by Jan Hajic and Anna Kotesovcova, have put
in an enormous amount of detailed work to make this conference a success, ably supported by the lo-

cal team of Milan Fucik, Jaroslava Hlavacova, Marketa Lopatkova, Jiri Mirovsky, Pavel Pecina,
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Pavel Schlesinger, Juraj Simlovic, Miroslav Spousta, Pavel Stranak, Zlatka Subrova, Jan Votrubec,
Zdenek Zabokrtsky and Daniel Zeman. From the ACL itself, Kathy McCoy, Dragomir Radev,
Priscilla Rasmussen, Mark Steedman and Jun’ichi Tsujii have played strong roles in making deci-

sions and giving advice, and kept everything on track while I was out of action due to ill health last
year.

And finally, many thanks to the authors and presenters in the main conference, workshops and co-located
events... and to all the participants. I hope you enjoy the formally organized aspects of the conference,
take advantage of the opportunity to network with colleagues old and new, and that you also have a chance

to appreciate the history and sights of Prague while you are here.

John Carroll
ACL 2007 General Chair
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Preface: Program Chairs

The number of submissions for this ACL broke a new record: the program committee’s selection of 131
papers was based on 588 submissions (after withdrawals). An updated program design with four parallel
sessions and 25-minute papers allowed an acceptance rate of 22.3%, and an acceptance of all submissions

that were recommended with priority by the area chairs.

First and foremost, we thank all the authors for submitting papers describing their recent work; the sheer
amount of submissions reflects how active our field is. We thank Florence Reeder for provided mentoring
to 17 author teams who felt they needed some writing support. For the selection, we are indebted to the
332 program committee members, who produced one to eleven reviews per reviewer, for a total of close
to 1,800 reviews, and to the ten area chairs on whose shoulders rested most of the work of organizing the
review process. We decided to work without an area chairs meeting: the two program co-chairs met for
two days at Tilburg University, and interacted during that time vigorously with the area chairs by email

and sometimes by phone.

As usual the main program will run for three days: there will be four parallel sessions of main session pre-
sentations, a demo/poster session organized by Sophia Ananiadou, nameMiroslav Spousta and Zdenek
Zabokrtsky, and a Student Research Workshop — thanks to Ellen Riloff, Violeta Seretan and Chris
Biemann for organizing it. Also as usual the conference is flanked by tutorial sessions and workshops;

our thanks go to Joakim Nivre and Simone Teufel for organizing and compiling an excellent package.

The announcements of the ACL Lifetime Award and of the Best Paper Award will provide the customary
suspense. They will take place in plenary sessions. Other plenary sessions will be devoted to the business
meeting and the two invited talks, which this year will be delivered by Tom Mitchell and Barney Pell.
We are grateful for their kind acceptation of our invitation.

We thank John Carroll, General Conference Chair, the Local Arrangements Committee headed by Eva
Hajicova, and the ACL executive, especially Dragomir Radev, for their help and advice, and last year’s
co-chairs, Claire Cardie and Pierre Isabelle, for sharing their experience. Our sincere thanks go to Su

Jian for putting together the proceedings.

Enjoy the conference,

Antal van den Bosch and Annie Zaenen
ACL-2007 Program Chairs
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Guiding Statistical Word Alignment Models With Prior Knowledge

Yonggang Deng and Yuqing Gao
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

{ydeng, yuging}Qus.ibm.com

Abstract

We present a general framework to incor-
porate prior knowledge such as heuristics
or linguistic features in statistical generative
word alignment models. Prior knowledge
plays a role of probabilistic soft constraints
between bilingual word pairs that shall be
used to guide word alignment model train-
ing. We investigate knowledge that can be
derived automatically from entropy princi-
ple and bilingual latent semantic analysis
and show how they can be applied to im-
prove translation performance.

1 Introduction

Statistical word alignment models learn word as-
sociations between parallel sentences from statis-
tics. Most models are trained from corpora in an
unsupervised manner whose success is heavily de-
pendent on the quality and quantity of the training
data. It has been shown that human knowledge,
in the form of a small amount of manually anno-
tated parallel data to be used to seed or guide model
training, can significantly improve word alignment
F-measure and translation performance (Ittycheriah
and Roukos, 2005; Fraser and Marcu, 2006).

As formulated in the competitive linking algo-
rithm (Melamed, 2000), the problem of word align-
ment can be regarded as a process of word link-
age disambiguation, that is, choosing correct asso-
ciations among all competing hypothesis. The more
reasonable constraints are imposed on this process,
the easier the task would become. For instance, the

1

most relaxed IBM Model-1, which assumes that any
source word can be generated by any target word
equally regardless of distance, can be improved by
demanding a Markov process of alignments as in
HMM-based models (Vogel et al., 1996), or imple-
menting a distribution of number of target words
linked to a source word as in IBM fertility-based
models (Brown et al., 1993).

Following the path, we shall put more constraints
on word alignment models and investigate ways of
implementing them in a statistical framework. We
have seen examples showing that names tend to
align to names and function words are likely to be
linked to function words. These observations are
independent of language and can be understood by
common sense. Moreover, there are other linguis-
tically motivated constraints. For instance, words
aligned to each other presumably are semantically
consistent; and likely to be, they are syntactically
agreeable. In these paper, we shall exploit some of
these constraints in building better word alignments
in the application of statistical machine translation.

We propose a simple framework that can inte-
grate prior knowledge into statistical word align-
ment model training. In the framework, prior knowl-
edge serves as probabilistic soft constraints that will
guide word alignment model training. We present
two types of constraints that are derived in an un-
supervised way: one is based on the entropy prin-
ciple, the other comes from bilingual latent seman-
tic analysis. We investigate their impact on word
alignments and show their effectiveness in improv-
ing translation performance.

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 1-8,
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2 Constrained Word Alignment Models

The framework that we propose to incorporate sta-
tistical constraints into word alignment models is
generic. It can be applied to complicated models
such IBM Model-4 (Brown et al., 1993). We shall
take HMM-based word alignment model (Vogel et
al., 1996) as an example and follow the notation of
(Brown et al., 1993). Let e = ¢! represent a source
string and f = f{" a target string. The random vari-
able a = af" specifies the indices of source words
that target words are aligned to.

In an HMM-based word alignment model, source
words are treated as Markov states while target
words are observations that are generated when
jumping to states:

m

- 1Ir
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Notice that a target word f is generated from a
source state e by a simple lookup of the translation
table, a.k.a., t-table t( f|e), as depicted in (A) of Fig-
ure 1. To incorporate prior knowledge or impose
constraints, we introduce two nodes E and F’ repre-
senting the hidden tags of the source word e and the
target word f respectively, and organize the depen-
dency structure as in (B) of Figure 1. Given this gen-
erative procedure, f will also depend on its tag F’,
which is determined probabilistically by the source
tag E/. The dependency from E to F' functions as a
soft constraint showing how the two hidden tags are
agreeable to each other. Mathematically, the condi-
tional distribution follows:

P(f|€) - ZP(fanF|6)
E,F
= > P(Ele)P(F|E)P(fle, F)
E,F
= t(fle)-Con(f,e), (1)
where
Con(f,e) P(F|E)P(F|f)/P(F) (2)

=Y P(E
EF

is the soft weight attached to the t-table entry. It con-
siders all possible hidden tags of e and f and serves
as constraint between the link.
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Figure 1: A simple table lookup (A) vs. a con-
strained procedure (B) of generating a target word

f from a source word e.

We do not change the value of Coon(f,e) during
iterative model training but rather keep it constant as
an indicator of how strong the word pair should be
considered as a candidate. This information is de-
rived before word alignment model training and will
act as soft constraints that need to be respected dur-
ing training and alignments. For a given word pair,
the soft constraint can have different assignment in
different sentence pairs since the word tags can be
context dependent.

To understand why we take the “detour” of gen-
erating a target word rather than directly from a t-
table, consider the hidden tag as binary value in-
dicating being a name or not. Without these con-
straints, t-table entries for names with low frequency
tend to be flat and word alignments can be chosen
randomly without sufficient statistics or strong lexi-
cal preference under maximum likelihood criterion.
If we assume that a name is produced by a name
with a high probability but by a non-name with a
low probability, i.e. P(F = E) >> P(F # E),
proper names with low counts then are encouraged
to link to proper names during training; and conse-
quently, conditional probability mass would be more
focused on correct name translations. On the other
hand, names are discouraged to produce non-names.
This will potentially avoid incorrect word associa-
tions. We are able to apply this type of constraint
since usually there are many monolingual resources
available to build a high performance probabilistic
name tagger. The example suggests that putting rea-
sonable constraints learned from monolingual analy-
sis can alleviate data spareness problem in bilingual
applications.

The weights Con(f,e) are the prior knowledge

that shall be assigned with care but respected dur-
ing training. The baseline is to set all these weights



to 1, which is equivalent to placing no prior knowl-
edge on model training. The introduction of these
weights does not complicate parameter estimation
procedure. Whenever a source word e is hypoth-
esized to generate a target word f, the translation
probability ¢( f|e) should be weighted by Con(f, e).

We point out that the constraints between f and e
through their hidden tags are in probabilities. There
are no hard decisions made before training. A strong
preference between two words can be expressed by
assigning corresponding weights close to 1. This
will affect the final alignment model.

Depending on the hidden tags, there are many re-
alizations of reasonable constraints that can be put
beforehand. They can be semantic classes, syntactic
annotations, or as simple as whether being a function
word or content word. Moreover, the source side and
the target side do not have to share the same set of
tags. The framework is also flexible to support mul-
tiple types of constraints that can be implemented in
parallel or cascaded sequence. Moreover, the con-
straints between words can be dependent on context
within parallel sentences. Next, we will describe
two types of constraints that we proposed. Both of
them are derived from data in an unsupervised way.

2.1 Entropy Principle

It is assumed that generally speaking, a source func-
tion word generates a target function word with a
higher probability than generating a target content
word; similar assumption applies to a source con-
tent word as well. We capture this type of constraint
by defining the hidden tag F and F as binary labels
indicating being a content word or not. Based on
the assumption, we design probabilistic relationship
between the two hidden tags as:

P(E=F)=1-P(E+F)=aq,

where « is a scalar whose value is close to 1, say
0.9. The bigger « is, the tighter constraint we put on
word pairs to be connected requiring the same type
of label.
To determine the probability of a word being
a function word, we apply the entropy principle.
A function word, say “of”,“in” or “have”, appears
more frequently than a content word, say “journal”
or “chemistry”, in a document or sentence. We will
3

approximate the probability of a word as a function
word with the relative uncertainty of its being ob-
served in a sentence.

More specifically, suppose we have N parallel
sentences in the training corpus. For each word w; ',
let c;; be the number of word w; observed in the j-th
sentence pair, and let ¢; be the total number of oc-
currences of w; in the corpus. We define the relative
entropy of word w; as

1 N
o :1ogN;

With the entropy of a word, the likelihood of word
w being tagged as a function word is approximated
with w)) = ¢, and being tagged as a content word
with w©® =1 — ¢,

We ignore the denominator in Equ. (2) and find
the constraint under the entropy principle:

C Ciq
- log -
Ci G

a(e® FO) 4 oM M)y 4
(1 —a)(eM O 4 ¢ )y,

Con(f,e) =

As can be seen, the connection between two
words is simulated with a binary symmetric chan-
nel. An example distribution of the constraint func-
tion is illustrated in Figure 2. A high value of «
encourages connecting word pairs with compara-
ble entropy; When o« = 0.5, Con(f, e) is constant
which corresponds to applying no prior constraint;
When « is close to 0, the function plays opposite
role on word alignment training where a high fre-
quency word is pushed to associate with a low fre-
quency word.

2.2 Bilingual Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a theory and
method for extracting and representing the meaning
of words by statistically analyzing word contextual
usages in a collection of text. It provides a method
by which to calculate the similarity of meaning of
given words and documents. LSA has been success-
fully applied to information retrieval (Deerwester
et al., 1990), statistical langauge modeling (Belle-
garda, 2000) and etc.

'We prefix ‘E_’ to source words and ‘F_’ to target words
to distinguish words that have the same spelling but are from
different languages.



Figure 2: Distribution of the constraint function
based on entropy principle when & = 0.9 on the
left and @ = 0.1 on the right.

We explore LSA techniques in bilingual environ-
ment to derive semantic constraints as prior knowl-
edge for guiding a word alignment model train-
ing. The idea is to find semantic representation of
source words and target words in the so-called low-
dimensional LSA-space, and then to use their sim-
ilarities to quantitatively establish semantic consis-
tencies. We propose two different approaches.

2.2.1 A Simple Bag-of-word Model

One method we investigate is a simple bag-of-
word model as in monolingual LSA. We treat each
sentence pair as a document and do not distin-
guish source words and target words as if they
are terms generated from the same vocabulary. A
sparse matrix W characterizing word-document co-
occurrence is constructed. Following the notation in
section 2.1, the ¢j-th entry of the matrix W is de-
fined as in (Bellegarda, 2000)

VVU = (1 - ewi)cﬂ’
¢
where c; is the total number of words in the j-th
sentence pair. This construction considers the im-
portance of words globally (corpus wide) and locally
(within sentence pairs). Alternative constructions of
the matrix are possible using raw counts or TF-IDF
(Deerwester et al., 1990).

W is a M x N sparse matrix, where M is the
size of vocabulary including both source and target
words. To obtain a compact representation, singular
value decomposition (SVD) is employed (cf. Berry
etal (1993) toyield W ~ W = U x S x V7T
as Figure 3 shows, where, for some order R <
min(M, N) of the decomposition, U is a M x R left
singular matrix with rows u;, ¢ = 1,---, M, S'is a
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Rx R diagonal matrix of singular values s; > sy >
...>8p > 0,and V is N x R a right singular ma-
trix with rows v;, 7 = 1,---,N. For each 7, the
scaled R-vector u;S may be viewed as representing
w;, the ¢-th word in the vocabulary, and similarly the
scaled R-vector v;S as representing d;, j-th docu-
ment in the corpus. Note that the 4;S’s and v;S’s
both belong to IR, the so-called LSA-space. All
target and source words are projected into the same
LSA-space too.

Documents R orthonormal vectors

1+ dn —

Wi ~

Words
S10JJ9A [eWIOUOYUIO

M xN

w U S

M xR

V T
Figure 3: SVD of the Sparse Matrix W.

As Equ. (2) suggested, to induce semantic con-
straints in a straightforward way, one would proceed
as follows: firstly, perform word semantic cluster-
ing with, say, their compact representations in the
LSA-space; secondly, construct cluster generating
dependencies by specifying the conditional distribu-
tion of P(F'|E); and finally, for each word pair, in-
duce the semantic constraint by considering all pos-
sible semantic labeling schemes. We approximate
this long process with simply finding word similar-
ities defined by their cosine distance in the low di-
mension space:

1
Con(f,e) = §(cos(uf5, ueS) + 1) 3)

The linear mapping above is introduced to avoid
negative constraints and to set the maximum con-
straint value as 1.

In building word alignment models, a special
“NULL” word is usually introduced to address tar-
get words that align to no source words. Since this
physically non-existing word is not in the vocabu-
lary of the bilingual LSA, we use the centroid of all
source words as its vector representation in the LSA-
space. The semantic constraints between “NULL”
and any target words can be derived in the same way.
However, this is chosen for mostly computational



convenience, and is not the only way to address the
empty word issue.

2.2.2 Utilizing Word Alignment Statistics

While the simple bag-of-word model puts all
source words and target words as rows in the ma-
trix, another method of deriving semantic constraint
constructs the sparse matrix by taking source words
as rows and target words as columns and uses statis-
tics from word alignment training to form word pair
co-occurrence association.

More specifically, we regard each target word f as
a “document” and each source word e as a “term”.
The number of occurrences of the source word e in
the document f is defined as the expected number
of times that f generates e in the parallel corpus
under the word alignment model. This method re-
quires training the baseline word alignment model
in another direction by taking fs as source words
and es as target words, which is often done for
symmetric alignments, and then dumping out the
soft counts when model converges. We threshold
the minimum word-to-word translation probability
to remove word pairs that have low co-occurrence
counts.

Following the similarity induced semantic con-
straints in section 2.2.1, we need to find the distance
between a term and a document. Let vy be the pro-
jection of the document representing the target word
f and u, the projection of the term representing the
source word e after performing SVD on the sparse
matrix, we calculate the similarity between (f,e)
and then find their semantic constraint to be

Con(f,e) = 1(cos(v Y2 4,817 +1 4

> 9 f y Ue ) + ) “4)

Unlike the method in section 2.2.1, there is no
empty word issue here since we do have statistics
of the “NULL” word as a source word generating e
words and therefore there is a “document” assigned
to it.

3 Experimental Results

We test our framework on the task of large vocab-
ulary translation from dialectical (Iraqi) Arabic ut-
terances into English. The task covers multiple do-
mains including travel, emergency medical diagno-
sis, defense-oriented force protection, security and
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etc. To avoid impacts of speech recognition errors,
we only report experiments from text to text transla-
tion.

The training corpus consists of 390K sentence
pairs, with total 2.43M Arabic words and 3.38M En-
glish words. These sentences are in typical spoken
transcription form, i.e., spelling errors, disfluencies,
such as word or phrase repetition, and ungrammat-
ical utterances are commonly observed. Arabic ut-
terance length ranges from 3 to 70 words with the
average of 6 words.

There are 25K entries in the English vocabulary
and 90K in Arabic side. Data sparseness severely
challenges word alignment model and consequently
automatic phrase translation induction. There are
42K singletons in Arabic vocabulary, and 14K Ara-
bic words with occurrence of twice each in the cor-
pus. Since Arabic is a morphologically rich lan-
guage where affixes are attached to stem words to
indicate gender, tense, case and etc, in order to re-
duce vocabulary size and address out-of-vocabulary
words, we split Arabic words into affix and root ac-
cording to a rule-based segmentation scheme (Xiang
et al., 2006) with the help from the Buckwalter ana-
lyzer (LDC, 2002) output. This reduces the size of
Arabic vocabulary to 52K.

Our test data consists of 1294 sentence pairs.
They are split into two parts: half of them is used as
the development set, on which training parameters
and decoding feature weights are tuned, the other
half is for test.

3.1 Training and Translation Setup

Starting from the collection of parallel training sen-
tences, we train word alignment models in two trans-
lation directions, from English to Iraqi Arabic and
from Iraqi Arabic to English, and derive two sets
of Viterbi alignments. By combining word align-
ments in two directions using heuristics (Och and
Ney, 2003), a single set of static word alignments
is then formed. All phrase pairs which respect to
the word alignment boundary constraint are iden-
tified and pooled to build phrase translation tables
with the Maximum Likelihood criterion. We prune
phrase translation entries by their probabilities. The
maximum number of tokens in Arabic phrases is set
to 5 for all conditions.

Our decoder is a phrase-based multi-stack imple-



mentation of the log-linear model similar to Pharaoh
(Koehn et al., 2003). Like other log-linear model
based decoders, active features in our translation en-
gine include translation models in two directions,
lexicon weights in two directions, language model,
distortion model, and sentence length penalty. These
feature weights are tuned on the dev set to achieve
optimal translation performance using downhill sim-
plex method (Och and Ney, 2002). The language
model is a statistical trigram model estimated with
Modified Kneser-Ney smoothing (Chen and Good-
man, 1996) using all English sentences in the paral-
lel training data.

We measure translation performance by the
BLEU score (Papineni et al., 2002) and Translation
Error Rate (TER) (Snover et al., 2006) with one ref-
erence for each hypothesis. Word alignment mod-
els trained with different constraints are compared
to show their effects on the resulting phrase transla-
tion tables and the final translation performance.

3.2 Translation Results

Our baseline word alignment model is the word-to-
word Hidden Markov Model (Vogel et al., 1996).
Basic models in two translation directions are
trained simultaneously where statistics of two direc-
tions are shared to learn symmetric translation lexi-
con and word alignments with high precision moti-
vated by (Zens et al., 2004) and (Liang et al., 2006).
The baseline translation results (BLEU and TER) on
the dev and test set are presented in the line “HMM”
of Table 1. We also compare with results of IBM
Model-4 word alignments implemented in GIZA++
toolkit (Och and Ney, 2003).

We study and compare two types of constraint and
see how they affect word alignments and translation
output. One is based on the entropy principle as de-
scribed in Section 2.1, where « is set to 0.9; The
other is based on bilingual latent semantic analysis.

For the simple bag-of-word bilingual LSA as de-
scribed in Section 2.2.1, after SVD on the sparse ma-
trix using the toolkit SVDPACK (Berry et al., 1993),
all source and target words are projected into a low-
dimensional (R = 88) LSA-space. Word pair se-
mantic constrains are calculated based on their sim-
ilarity as in Equ. 3 before word alignment training.
Like the baseline, we perform 6 iterations of IBM
Model-1 training and then 4 iteration of HMM train-
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ing. The semantic constraints are used to guide word
alignment model training for each iteration. The
BLEU score and TER with this constraint are shown
in the line “BiLSA-1" of Table 1.

To exploit word alignment statistics in bilingual
LSA as described in Section 2.2.2, we dump out the
statistics of the baseline word alignment model and
use them to construct the sparse matrix. We find
low-dimensional representation (2 = 67) of English
words and Arabic words and use their similarity to
establish semantic constraints as in Equ. 4. The
training procedure is the same as the baseline and
“BiLSA-1”. The translation results with these word
alignments are shown as “BiLSA-2” in Table 1.

As Table 1 shows, when the entropy based con-
straints are applied, BLEU score improves 0.5 point
on the test set. Clearly, when bilingual LSA con-
straints are applied, translation performance can be
improved up to 1.6 BLEU points. We also observe
that TER can drop 2.1 points with the “BiLSA-1"
constraint.

While “BiLSA-1" constraint performs better on
the test set, “BiLSA-2” constraint achieves slightly
higher BLEU score on the dev set. We then
try a simple combination of these two types
of constraints, that is the geometric mean of
Conpirsa-1(f,e)and Conpg;rsa—2(f,e), and find
out that BLEU score can be improved a little bit fur-
ther on both sets as the line “Mix” shows.

We notice that the relatively simpler HMM model
can perform comparable or better than the sophis-
ticated Model-4 when proper constraints are active
in guiding word alignment model training. We also
try to put constraints in Model-4. As the Equation
1 implies, when a word-to-word generative proba-
bility is needed, one should multiply corresponding
lexicon entry in the t-table with the word pair con-
straint. We simply modify the GIZA++ toolkit (Och
and Ney, 2003) by always weighting lexicon proba-
bilities with soft constraints during iterative model
training, and obtain 0.7% TER reduction on both
sets and 0.4% BLEU improvement on the test set.

3.3 Analysis

To understand how prior knowledge encoded as soft
constraints plays a role in guiding word alignment
training, we compare statistics of different word
alignment models. We find that our baseline HMM



Table 1: Translation Results with different word
alignments.

. § BLEU TER
Alignments dev test dev test
Model-4 0.310 0.296 | 0.528 0.530
+Mix 0.306 0.300 | 0.521 0.523
HMM 0.289 0.288 | 0.543 0.542
+Entropy 0.289 0.293 | 0.534 0.536
+BiLSA-1 0.294 0.300 | 0.531 0.521
+BiLSA-2 0.298 0.292 | 0.530 0.528
+Mix 0.302 0.304 | 0.532 0.524

generates 2.6% less number of total word links than
that of Model-4. Part of the reason is that mod-
els of two directions in the baseline are trained si-
multaneously. The requirement of bi-directional ev-
idence places a certain constraint on word align-
ments. When “BiLSA-1" constraints are applied in
the baseline model, 2.7% less number of total word
links are hypothesized, and consequently, less num-
ber of Arabic n-gram translations in the final phrase
translation table are induced. The observation sug-
gests that the constraints improve word alignment
precision and accuracy of phrase translation tables
as well.

gloss (in) (esophagus)  (ownership) (yours)
bAI_ mrM mAl _tk
HMM \ X /
in your esophagus
bAI_ mrM mAl _tk
+BiLSA-1 ‘
in your esophagus
bAI_ mrM mAl _tk
Model-4 ‘
in your esophagus

Figure 4: An example of word alignments under dif-
ferent models

Figure 4 shows example word alignments of a par-
tial sentence pair. The complete English sentence is
“have you ever had like any reflux diseases in your
esophagus”. We notice that the Arabic word “mrM”
(means esophagus) appears only once in the corpus.
Some of the word pair constraints are listed in Ta-
ble 2. The example demos that due to reasonable
constraints placed in word alignment training, the
link to “_tK” is corrected and consequently we have
accurate word translation for the Arabic singleton
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Table 2: Word pair constraint values

Englishe  Arabic f Conpirsa—1(f,e)
esophagus mrM 0.6424
mAl 0.1819
_tk 0.2897
your mrM 0.6319
mAl 0.4930
_tk 0.9672

“mr 77.

4 Related Work

Heuristics based on co-occurrence analysis, such as
point-wise mutual information or Dice coefficients
, have been shown to be indicative for word align-
ments (Zhang and Vogel, 2005; Melamed, 2000).
The framework presented in this paper demonstrates
the possibility of taking heuristics as constraints
guiding statistical generative word alignment model
training. Their effectiveness can be expected espe-
cially when data sparseness is severe.

Discriminative word alignment models, such as
Ittycheriah and Roukos (2005); Moore (2005);
Blunsom and Cohn (2006), have received great
amount of study recently. They have proven that lin-
guistic knowledge is useful in modeling word align-
ments under log-linear distributions as morphologi-
cal, semantic or syntactic features. Our framework
proposes to exploit these features differently by tak-
ing them as soft constraints of translation lexicon un-
der a generative model.

While word alignments can help identifying se-
mantic relations (van der Plas and Tiedemann,
2006), we proceed in the reverse direction. We in-
vestigate the impact of semantic constraints on sta-
tistical word alignment models as prior knowledge.
In (Ma et al., 2004), bilingual semantic maps are
constructed to guide word alignment. The frame-
work we proposed seamlessly integrates derived se-
mantic similarities into a statistical word alignment
model. And we extended monolingual latent seman-
tic analysis in bilingual applications.

Toutanova et al. (2002) augmented bilingual sen-
tence pairs with part-of-speech tags as linguistic
constraints for HMM-based word alignments. The
constraints between tags are automatically learned
in a parallel generative procedure along with lex-



icon. We have introduced hidden tags between a
word pair to specialize their soft constraints, which
serve as prior knowledge that will be used in guiding
word alignment model training. Constraint between
tags are embedded into the word to word generative
process.

5 Conclusions and Future Work

We have presented a simple and effective framework
to incorporate prior knowledge such as heuristics
or linguistic features into statistical generative word
alignment models. Prior knowledge serves as soft
constraints that shall be placed on translation lexi-
con to guide word alignment model training and dis-
ambiguation during Viterbi alignment process. We
studied two types of constraints that can be obtained
automatically from data and showed improved per-
formance (up to 1.6% absolute BLEU increase or
2.1% absolute TER reduction) in translating dialec-
tical Arabic into English. Future work includes im-
plementing the idea in alternative alignment mod-
els and also exploiting prior knowledge derived from
such as manually-aligned data and pre-existing lin-
guistic resources.
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Abstract

We present a global discriminative statistical
word order model for machine translation.
Our model combines syntactic movement
and surface movement information, and is
discriminatively trained to choose among
possible word orders. We show that com-
bining discriminative training with features
to detect these two different kinds of move-
ment phenomena leads to substantial im-
provements in word ordering performance
over strong baselines. Integrating this word
order model in a baseline MT system results
in a 2.4 points improvement in BLEU for
English to Japanese translation.

Introduction

Kristina Toutanova
Microsoft Research
Redmond, WA
kri stout @n crosoft.com

The advantages of modeling how a target lan-
guage syntax tree moves with respect to a source lan-
guage syntax tree are that e can capture the fact
that constituents move as a whole and generally re-
spect the phrasal cohesion constraints (Fox, 2002),
and (i) we can model broad syntactic reordering
phenomena, such as subject-verb-object construc-
tions translating into subject-object-verb ones, as is
generally the case for English and Japanese.

On the other hand, there is also significant amount
of information in the surface strings of the source
and target and their alignment. Many state-of-the-art
SMT systems do not use trees and base the ordering
decisions on surface phrases (Och and Ney, 2004;
Al-Onaizan and Papineni, 2006; Kuhn et al., 2006).
In this paper we develop an order model for machine
translation which makes use of both syntactic and
surface information.

The machine translation task can be viewed as con- The framework for our statistical model is as fol-

sisting of two subtasks: predicting the collection ofows. We assume the existence of a dependency tree
words in a translation, and deciding the order of théor the source sentence, an unordered dependency
predicted words. For some language pairs, such &ge for the target sentence, and a word alignment
English and Japanese, the ordering problem is elsetween the target and source sentences. Figure 1
pecially hard, because the target word order differ&) shows an example of aligned source and target
significantly from the source word order. dependency trees. Our task is to order the target de-
Previous work has shown that it is useful to modependency tree.
target language order in terms of movement of syn- \ne train a statistical model to select the best or-
tactic constituents in constituency trees (Yamadger of the unordered target dependency tree. An im-
and Knight, 2001; Galley et al., 2006) or depenportant advantage of our model is that it is global,
dency trees (Quirk et al., 2005), which are obtainegnd does not decompose the task of ordering a tar-
using a parser trained to determine linguistic conget sentence into a series of local decisions, as in the
stituency. Alternatively, order is modelled in termsrecently proposed order models for Machine Transi-
of movement of automatically induced hierarchication (Al-Onaizan and Papineni, 2006; Xiong et al.,
structure of sentences (Chiang, 2005; Wu, 1997). 2006; Kuhn et al., 2006). Thus we are able to define
"~ * This research was conducted during the author’s interr](-eatures over complete target sentence orders, and
ship at Microsoft Research. avoid the independence assumptions made by these
9
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N e o= < » = On the target sentence words. The dependency tree

al | constaints  are  salisfied ©©® 0 ®06 6 constrains the possible orders of the target sentence
“ [ﬁam] %m ;[;zﬁ‘:[%&lruﬁ{%] L) m only to the ones that are projective with respect to
resigston”condiion"TORIC "all TS PASSIVEPRES N the tree. An order of the sentence is projective with
~ r_r—= ® 6 @ ® o @ respecttothe tree if each word and its descendants
@) (b) form a contiguous subsequence in the ordered sen-

tence. Figure 1(b) shows several orders of the sen-
Figure 1: @) A sentence pair with source depentence which violate this constraiht.
dency tree, projected target dependency tree, andPrevious studies have shown that if both the
word alignments. if) Example orders violating the source and target dependency trees represent lin-
target tree projectivity constraints. guistic constituency, the alignment between subtrees
in the two languages is very complex (Wellington et

models. Our model is discriminatively trained to seal., 2006). Thus such parallel trees would be difficult
lect the best order (according to the BLEU measurdgyr MT systems to construct in translation. In this
(Papineni et al., 2001) of an unordered target depeork only the source dependency trees are linguisti-
dency tree from the space of possible orders. cally motivated and constructed by a parser trained

Since the space of all possible orders of an une determine linguistic structure. The target depen-
ordered dependency tree is factorially large, we traiflency trees are obtained through projection of the
our model on N-best lists of possible orders. Thessource dependency trees, using the word alignment
N-best lists are generated using approximate sear@he use GIZA++ (Och and Ney, 2004)), ensuring
and simpler models, as in the re-ranking approach @ktter parallelism of the source and target structures.
(Collins, 2000).

We first evaluate our model on the task of ordering-1 Obtaining Target Dependency Trees
target sentences, given correct (reference) unordered 1 hrough Projection
target dependency trees. Our results show that co@ur algorithm for obtaining target dependency trees
bining features derived from the source and tamy projection of the source trees via the word align-
get dependency trees, distortion surface order-basetént is the one used in the MT system of (Quirk
features (like the distortion used in Pharaoh (Koehret al., 2005). We describe the algorithm schemat-
2004)) and language model-like features results inigally using the example in Figure 1. Projection
model which significantly outperforms models usingf the dependency tree through alignments is not at
only some of the information sources. all straightforward. One of the reasons of difficulty

We also evaluate the contribution of our modeis that the alignment does not represent an isomor-
to the performance of an MT system. We intephism between the sentences, i.e. it is very often
grate our order model in the MT system, by simplynot a one-to-one and onto mappihdf the align-
re-ordering the target translation sentences outpmient were one-to-one we could define the parent of
by the system. The model resulted in an improvea wordw; in the target to be the target word aligned
ment from 33.6 to 35.4 BLEU points in English-to-to the parent of the source wosdaligned tow;. An

Japanese translation on a computer domain. additional difficulty is that such a definition could re-
sult in a non-projective target dependency tree. The
2 Task Setup projection algorithm of (Quirk et al., 2005) defines

. . heuristics for each of these problems. In case of
The ordering problem in MT can be formulated as .
. ) one-to-many alignments, for example, the case of

the task of ordering a target bag of words, given a LY .
X constraints” aligning to the Japanese words for “re-

source sentence and word alignments between tar-. "~ " ) o .
. striction” and “condition”, the algorithm creates a

get and source words. In this work we also assume

a source dependency tree and an unordered target'For example, in the first order shown, the descendants of

dependency tree are given. Figure 1(a) shows an ée(c_)rd 6 are not contiguous and thus this order violates the con-
. . traint.

ample. We build a model that pl’ed.ICtS an order o 2In an onto mapping, every word on the target side is asso-

the target dependency tree, which induces an ordeated with some word on the source side.
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subtree in the target rooted at the rightmost of thes2 L anguage M odel with Syntactic

words and attaches the other word(s) to it. In case of Constraints: A Pilot Study

non-projectivity, the dependency tree is modified by

re-attaching nodes higher up in the tree. Such a stépthis section we report the results of a pilot study to
is necessary for our example sentence, because #haluate the difficulty of ordering a target sentence if
translations of the words “all” and “constraints” arewe are given a target dependency tree as the one in
not contiguous in the target even though they form Rigure 1, versus if we are just given an unordered
constituent in the source. bag of target language words.

Animportant characteristic of the projection algo- The difference between those two settings is that
rithm is that all of its heuristics use tloerrecttarget When ordering a target dependency tree, many of the
word order Thus the target dependency trees erfrders of the sentence are not allowed, because they

code more information than is present in the sourc&ould be non-projective with respect to the tree.
dependency trees and alignment. Figure 1 (b) shows some orders which violate the

projectivity constraint. If the given target depen-

dency tree is projective with respect to the correct
2.2 Task Setup for Reference SentencesvsMT  word order, constraining the possible orders to the

Output ones consistent with the tree can only help perfor-

mance. In our experiments on reference sentences,
Our model uses input of the same form whemhe target dependency trees are projective by con-
trained/tested on reference sentences and when usg@iction. If, however, the target dependency tree
in machine translation: a source sentence with a dgrovided is not necessar”y projective with respect
pendency tree, an unordered target sentence wid the best word order, the constraint may or may
and unordered target dependency tree, and WOf@t be useful. This could happen in our experiments
alignments. on ordering MT output sentences.

We train our model on reference sentences. In this Thus in this section we aim to evaluate the use-
setting, the given target dependency tree contains theiness of the constraint in both settings: reference
correct bag of target words according to a referencentences with projective dependency trees, and MT
translation, and is projective with respect to the coreutput sentences with possibly non-projective de-
rect word order of the reference by construction. Weendency trees. We also seek to establish a baseline
also evaluate our model in this setting; such an evaler our task. Our methodology is to test a simple
uation is useful because we can isolate the contriband effective order model, which is used by all state
tion of an order model, and develop it independentlpf the art SMT systems — a trigram language model
of an MT system. — in the two settings: ordering an unordered bag of

When translating new sentences it is not possib0rds, and ordering a target dependency tree.
to derive target dependency trees by the projection Our experimental design is as follows. Given an
algorithm described above. In this setting, we usgnordered sentenceand an unordered target de-
target dependency trees constructed by our baselipendency treéree(t), we define two spaces of tar-
MT system (described in detail in 6.1). The systenget sentence orders. These are the unconstrained
constructs dependency trees of the form shown @pace of all permutations, denotedreymutations(t)
Figure 1 for each translation hypothesis. In this casand the space of all orders ofwhich are projec-
the target dependency trees very often do not cofive with respect to the target dependency tree, de-
tain the correct target words and/or are not projectiveoted byTargetProjective(t,tree(t)). For both spaces

with respect to the best possible order. S, we apply a standard trigram target language
model to select a most likely order from the space;
- i.e., we find a target ordeorder*s(t) such that:
3For example, checking which word is the rightmost for the, g er* (t) — P der(t
L iy . ? S = argmar ,rger(t)es TLM(OT 67”( ))
heuristic for one-to-many mappings and checking whether t the operator which findSrder*g(t) is difficult to

constructed tree is projective requires knowledge of the correc ) ' )
word order of the target. implement since the task is NP-hard in both set-

11



Reference Sentences H H H

Space BLEU | Avg Sz The gain in BLEU due to the constraint was not
$ermu;ati9ns ggg 2 as large on MT output sentences, but was still con-

t il . 2% . . . .
= r&’?%ﬁfput Sentences siderable. The reduction in search space size due
Space BLEU | Avg. Size to the constraint is enormous. There are alfit
Permutations 26.3 2° . . .
TargetProjective| 31.7 2% times fewer orders to consider in the space of tar-

Table 1 Perf ¢ atri | q et projective orders, compared to the space of all
able 1. Performance of a tri-gram language mo Faermutations. From these experiments we conclude

on orde_rlng referer_lce and MT output se_nte'n(_:es: Uthat the constraints imposed by a projective target
constrained or subject to target tree projectivity Congenendency tree are extremely informative. We also
straints. conclude that the constraints imposed by the target
tings, even for a bi-gram language model (Eisneflependency trees constructed by our baseline MT
and Tromble, 20063. We implemented left-to-right system are very informative as well, even though
beam A* search for th@ermutations space, and a the trees are not necessarily projective with respect
tree-based bottom up beam A* search for the  to the best order. Thus the projectivity constraint
getProjective space. To give an estimate of the searcith respect to a reasonably good target dependency
error in each case, we computed the number of timege is useful for addressing the search and modeling
the correct order had a better language model scoseoblems for MT ordering.

than the order returned by the search algorithm.

The lower bounds on search error were 4%Her 4 A Global Order Model for Target

mutations and 2% forTargetProjective, computed on Dependency Trees

reference sentences.

We compare the performance in BLEU of orderdn the rest of the paper we present our new word or-
selected from both spaces. We evaluate the perfd}er model and evaluate it on reference sentences and
mance on reference sentences and on MT Outpm machine translation. In line with preViOUS work
sentences. Table 1 shows the results. In additidi NLP tasks such as parsing and recent work on
to BLEU scores, the table shows the median numbd&pachine translation, we develop a discriminative or-
of possible orders per sentence for the two spacesder model. An advantage of such a model is that we

The highest achievable BLEU on reference serf:an easily combine different kinds of features (such
tences is 100, because we are given the correct b@§ Syntax-based and surface-based), and that we can
of words. The highest achievable BLEU on MT out-Optimize the parameters of our model directly for the
put sentences is well below 100 (the BLEU score ofvaluation measures of interest.
the MT output sentences is 33). Table 3 describes Additionally, we develop a globally normalized
the characteristics of the main data-sets used in tfieodel, which avoids the independence assumptions
experiments in this paper; the test sets we use in tilocally normalized conditional modefswe train
present pilot study are the reference test set (Red-global log-linear model with a rich set of syntactic
test) of 1K sentences and the MT test set (MT-tesgnd surface features. Because the space of possible
of 1,000 sentences. orders of an unordered dependency tree is factori-

The results from our experiment show that the ta@lly large, we use simpler models to generate N-best
get tree projectivity constraint is extremely powerfulrders, which we then re-rank with a global model.
on reference sentences, where the tree given is in- _
deed projective. (Recall that in order to obtain thé-1 Generating N-best Orders
target dependency tree in this setting we have usethe simpler models which we use to generate N-best
information from the true order, which explains inorders of the unordered target dependency trees are
part the large performance gain.) the standard trigram language model used in Section

“Even though the dependency tree constrains the space, t%éand another statistical model, which we call a Lo-

number of children of a node is not bounded by a constant. Cal Tree Order Model (LTOM). The LTOM model

SThis is an underestimate of search error, because we dont
know if there was another (non-reference) order which had a ®Those models often assume that current decisions are inde-
better score, but was not found. pendent of future observations.
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o e e Fuer ok since it uses syntactic information from the source, it
this diminates e sk minute delay,, provides an alternative view compared to the trigram
\;:’” language model. The example in Figure 2 shows
Chd KS9] 16 4] [ 0] BB [(F] R 02T that the head word “eliminates” takes a dependent
B e o e P “this” to the left (position—1), and on the Japanese
side, the head word “kaishou” (corresponding to
“eliminates”) takes a dependent “kore” (correspond-
Figure 2: Dependency parse on the source (Englisfig to “this”) to the left (position—2). The trigram
sentence, alignment and projected tree on the targg@hguage model would not capture the position of
(Japanese) sentence. Notice that the projected trgge” with respect to “kaishou”, because the words
is only partial and is used to show the head-relativge farther than three positions away.
movement. We use the language model and the local tree or-
uses syntactic information from the source and tader model to create N-best target dependency tree
get dependency trees, and orders each local treeasflers. In particular, we generate the N-best lists
the target dependency tree independently. It followkom a simple log-linear combination of the two
the order model defined in (Quirk et al., 2005). models:
The model assigns a probability to the position P(o(t)[s,t) o< Pra(o(t)|t)Prron(o(t)]s, t)
of each target node (modifier) relative to its parwhereo(t) denotes an order of the targete used
ent (head), based on information in both the sourcg bottom-up beam A* search to generate N-best or-
and target trees. The probability of an order of thelers. The performance of each of these two models
complete target dependency tree decomposes int@ad their combination, together with the 30-best or-
product over probabilities of positions for each nodecle performance on reference sentences is shown in
in the tree as follows: Table 2. As we can see, the 30-best oracle perfor-
mance of the combined model (98.0) is much higher
P(order(t)|s,t) = H P(pos(n,parent(n))|s,t)  than the 1-best performance (92.6) and thus there is
net a lot of room for improvement.

Here, position is modelled in terms of closenesg2 Model
to the head in the dependency tree. The closest
pre-modifier of a given head has positieri; the
closest post-modifier has a positidn Figure 2

shows an example dependency tree pair annota training data, we hav® candidate target word
with head-relative positions. A small set of feature%rderSOl L 0L '01 . which are the orders gener-

is used to reflectlocal information in the dependency, . 4 t.0m the simpler models. Without loss of gen-

_ttree to randeIZ(pOS(T;’ pare?.lt(rl)).|s’lt?t: () Iexflct:I erality, we define; ; to be the order with the highest
'ems o ndan plqrend(g’ (Icll) eX'C? 'ems o te BLEU score with respect to the correct order.
source nodes aligned toandparent(n), (iif) part- v gofine a set of feature functionfs, oy, spi)

of-speech of the source nodes.aligne(_j _to the no%: describe a target word ordey,, of a given sen-
and its parent, andyv) head-relative position of the tence paisp;. In the log-linear mbdel, a correspond-

source npde ahgryed to the target_ node. ing weights vecton is used to define the distribution
We train a log-linear model which uses these feaéver all possible candidate orders:

tures on a training set of aligned sentences with NF(oy pv5py)
. _ e n’
source and target dependency trees in the form of p(ornlspi, A) = —Z RYACHIET
71,/

Figure 2. The model is a local (non-sequence) clas-—
h "We used the valua = .5, which we selected on a devel-

The log-linear reranking model is defined as fol-
lows. For each sentence pajy; (I = 1,2,...,L) Iin

sifier, because the decision on where to place eac o
opment set to maximize BLEU.

node does not depend on the placement of any othersty ayoid the problem that all orders could have a BLEU
nodes. score of 0 if none of them contains a correct word four-gram,

Since the local tree order model learns to ordet® define sentence-level k-gram BLEU, where k is the highest
order,k < 4, for which there exists a correktgram in at least

whole subtrees of the target dependency tree, agfke of the N-Best orders.
13



We train the parameters by minimizing the neg- E. E. B B B Ep
ative log-likelihood of the training data plus a N -
guadratic regularization term: A

L(X\) = =3 logp(or1|spi, A) + ﬁ Yom )\m2 (a) parallel  (b) crossing  (c) widening

We also explored maximizing expected BLEU as
our objective function, but since it is not convex, the-igure 3: Displacement feature: different alignment
performance was less stable and ultimately slightipatterns of two contiguous words in the target sen-
worse, as compared to the log-likelihood objective tence.

it dio Jur du2

4.3 Features set MT-train in Table 3. The sentences were anno-

: . ++
We design features to capture both the head-relatltated with allgnmenf[ (using GIZA++ (Och and Ney,
04)) and syntactic dependency structures of the
movement and the surface sequence movement 0 ; . . .
. . o ource and target, obtained as described in Section
words in a sentence. We experiment with differen

combinations of features and show their contribu- Japanese POS tags were assigned by an automatic

tion in Table 2 for reference sentences and Table IZOS tagge_zr, Wh'Ch. Is a local classifier not using tag
. . . : . sequence information.
in machine translation. The notations used in the ta-

bles are defined as follows: We used 400K sentence pairs from the complete
Basdine LTOM+LM as described in Section 4.1 S€t to train the first pass models: the language model
was trained on 400K sentences, and the local tree
tence. Examples from Figure 2kore’+“niyori’ | order model was trained on 100K of them. We gen-

“niyori™+*roku” erated N-best target tr(-?e orders for the rest qf 'the
DISP: Displacement feature. For each word posigata (45K sentence pairs), and used it for training

tion in the target sentence, we examine the aligna-nd evaluating the re-ranking model. The re-ranking

ment of the current word and the previous word, anHmdeI was trained on 44K sentence pairs. All mod-

categorize the possible patterns into 3 kinds: (a) paerz—Is were evaluated on the remaining 1,000 sentence

allel, (b) crossing, and (c) widening. Figure 3 show§Jalrs set, which is the set Ref-test in Table 3.

how these three categories are defined. The top part of Table 2 presents the 1-best

Pharaoh DISP: Displacement as used in PharaotP-EY scores (actual performance) and 30-best or-
(Koehn, 2004). For each position in the sentenc@,CIe_BLEU scores qf the flrst-_pass'model's and their
the value of the feature is one less than the differend@J-linéar combination, described in Section 4. We

(absolute value) of the positions of the source wordé" S€€ that the combination of the language model
aligned to the current and the previous target word@nd the local tree order model outperformed either

POSsandPOSt: POS tags on the source and targe[EnOdel by alarge margin. This indicates that combin-
O%ug syntactic (from the LTOM model) and surface-

Word Bigram: Word bigrams of the target sen-

sides. For Japanese, we have a set of 19 POS tags. ) T
. . . . ased (from the language model) information is very
+' means making conjunction of features an

. . : . . effective even at this stage of selecting N-best orders

prev() means using the information associated W|tI? . .

the word from position-1 or re-ranking. According to the 30-best oracle per-
In all explored modéls we include the lo _formance of the combined model LTOM+LM, 98.0

P ' 9"BLEU is the upper bound on performance of our re-

probability of an order according to the Ianguag(-;,;anking approach.

model and the log-probability according to the lo-
The bottom part of the table shows the perfor-

cal tree order model, the two features used by the ,
baseline model. mance of the global log-linear model, when features

in addition to the scores from the two first-pass mod-
5 Evaluation on Reference Sentences els are added to the model. Adding word-bigram
features increased performance by about 0.6 BLEU
Our experiments on ordering reference sentencesints, indicating that training language-model like
use a set of 445K English sentences with their refeatures discriminatively to optimize ordering per-
erence Japanese translations. This is a subset of foemance, is indeed worthwhile. Next we compare
14



First-pass models data set | num sent. English Japanese
avg. len| vocab | avg. len| vocab
Model BLEU MTrain | 500K | 158 | 77K | 187 | 79K
1 best] 30 best MT-test | 1K 175 | - | 209 | -
Lang Model Permutations) 58.8 | 71.2 Ref-test 1K 17.5 - 212 -
Lang Model (fargetProjective) 83.9 | 95.0 . . .
Local Tree Order Model 758 | 873 Table 3: Main data sets used in experiments.
Local Tree Order Model + Lang Model 92.6 98.0
Re-ranking Models target words and/or will not be projective with re-
Features BLEU .
Basoline 9260 spect to the best possible order.
Word Bigram 93.19
Pharaoh DISP 92.94 6.1 BasdineMT System
DISP 93.57 _ _ _
DISP+POSs 94.04 Our baseline SMT system is the system of Quirk et
DISP+POSs+POSt 94.14 . -
DISP+POSs+POSt, prev(DISP)+POSs+POSt 94.34 al. (2005). It translates by first deriving a depen-
DISP+POSs+POSt, prev(DISP)+POSs+POSt, WB  94.50 dency tree for the source sentence and then trans-

Table 2: Performance of the first-pass order mode|§ting the source dependfencybtri'el_to. a targe‘lt dephen—
and 30-best oracle performance, followed by perfoF—lenCy tree, using a set of probabilistic models. The

mance of re-ranking model for different feature setdransiation is based on treelet pairs. A treelet is a
Results are on reference sentences. connected subgraph of the source or target depen-

_ _ dency tree. A treelet translation pair is a pair of
the Pharaoh displacement feature to the d'Splacﬁ/brd-aligned source and target treelets

ment feature we iIIustr.ated in Figure 3. We €aN The paseline SMT model combines this treelet
see that the Pharaoh displacement feature improvgs,q|ation model with other feature functions — a
performance of the baseline by .34 points, wheregg ot |anguage model, a tree order model, lexical

our displacement feature improves performance Ryqioniing features to smooth the translation prob-

nearly 1 BLEU point. Concatenating the DISP feéagyijiias word count feature, and treelet-pairs count

ture with the POS tag of the source word aligned 19, 5y,re. These models are combined as feature func-
the current word improved performance slightly. tions in a (log)linear model for predicting a target
_ The results show that surface movement featureg ytence given a source sentence, in the framework
(i.e. the DISP feature) improve the performanc%roposed by (Och and Ney, 2002). The weights
of a model using syntactic-movement features (i.eof this model are trained to maximize BLEU (Och
the LTOM model). Additionally, adding part-of- and Ney, 2004). The SMT system is trained using
speech information from both languages in combig,o g4 me form of data as our order model: parallel
nation with displacement, and using a higher ordel, ,.ce and target dependency trees as in Figure 2.
on the displacement features was useful. The per- ¢ naricylar interest are the components in the
formance of our best model, which included all iny,556)ine SMT system contributing most to word or-
formation sources, is 94.5 BLEU points, which is jo, jecisions. The SMT system uses the same target
35% improvement over the fist-pass models, relat'vleomguage trigram model and local tree order model,
to the upper bound. as we are using for generating N-best orders for re-
ranking. Thus the baseline system already uses our
first-pass order models and only lacks the additional
We apply our model to machine translation by reinformation provided by our re-ranking order model.
ordering the translation produced by a baseline MT _
system. Our baseline MT system constructs, fd?-2 Dataand Experimental Results
each target translation hypothesis, a target depefhe baseline MT system was trained on the MT-train
dency tree. Thus we can apply our model to MTdataset described in Table 3. The test set for the MT
output in exactly the same way as for reference selexperiment is a 1K sentences set from the same do-
tences, but using much noisier input: a source semain (shown as MT-test in the table). The weights
tence with a dependency tree, word alignment and the linear model used by the baseline SMT system
an unordered target dependency tree as the examplere tuned on a separate development set.
shown in Figure 2. The difference is that the target Table 4 shows the performance of the first-pass
dependency tree will likely not contain the correcimodels in the top part, and the performance of our
15
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R First-pass models - lect from the space of orders projective with respect
T best] 30 best to a target dependency tree. We investigated a com-
Baseline MT System 330 - bination of features modeling surface movement and
Lang Model permutations) 26.3 | 287 .
Lang Model fargetCohesive) 31.7 | 350 syntactic movement phenomena and showed that
Local Tree Order Model 27.2 315 H i
Local Tres Order Modsl + Lang Model 236 | 360 these t\_/vo mfo_rma_tlon_ sources are complementary
Re-ranking Models and their combination is powerful. Our results on or-
;ea“:_res | :;E:G dering MT output and reference sentences were very
aseline . . . . .
word Bigram 34.11 encouraging. We obtained substantial improvement
E'I‘Sa;a"h pIsp o by the simple method of post-processing the 1-best
DISP+POSs 35.28 MT output to re-order the proposed translation. In
DISP+POSs+POSt 35.22 H H H _
DISP+POSSHPOSY, prev(DISP)HPOSSHPOST 5 93 the future, we would like .to explore tighter integra
DISP+POSs+POSt, prev(DISP)+POSs+POSt, WB  35.37 tion of our order model with the SMT system and to

Table 4. Performance of the first pass order mode ojective target dependency trees in translation.
and 30-best oracle performance, followed by perfor-

mance of re-ranking model for different feature setReferences
Results are in MT.

’g{:velop more accurate algorithms for constructing

Y. Al-Onaizan and K. Papineni. 2006. Distortion models for
re-ranking model in the bottom part. The first row statistical machine translation. ACL

of the table shows the performance of the baselir% Chiang. 2005. A hierarchical phrase-based model for statis-
tical machine translation. IACL.

MT system, which is a BLEU score of 33. Our first-m. collins. 2000. Discriminative reranking for natural language
pass and re-ranking models re-order the words of parsing. INCML, pages 175-182.

this 1-best output from the MT system. As for ref-J Eisner and R. W. Tromble. 2006. Local search with very
Lo ' . large-scale neighborhoods for optimal permutations in ma-
erence sentences, the combination of the two first- chine translation. IHLT-NAACL Workshap

pass models outperforms the individual models. Thig. Fox. 2002. Phrasal cohesion and statistical machine transla-
1-best performance of the combination is 33.6 an& tion. InEMNLP.

. . Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe,
the 30-best oracle is 36.0. Thus the best we could \v, wang, and I. Thayer. 2006. Scalable inference and train-

do with our re-ranking model in this setting is 36 ing of context-rich syntactic translation models AGL

inte9 _ i ; . Koehn. 2004. Pharaoh: A beam search decoder for phrase-
BLEU points.” Our best re-ranking model aChleveSP based statistical machine translation modelsAMITA

2.4 BLEU points improvement over the baseline MR, kuhn, D. Yuen, M. Simard, P. Paul, G. Foster, E. Joanis, and
system and 1.8 points improvement over the first- H. Johnson. 2006. Segment choice models: Feature-rich

pass models, as shown in the table. The trends hereg:)%del'rflj‘ﬁﬁ\'lﬁéf'smmon in statistical machine transla-

are similar to the ones observed in our reference ek-J. och and H. Ney. 2002. Discriminative training and max-
periments, with the difference that target POS tags imum entropy models for statistical machine translation. In

. ACL.
W_ere less useful (pgrhaps due to ungrammatical CaB73. 0ch and H. Ney. 2004. The alignment template approach
didates) and the displacement features were moreto statistical machine translatioBomputational Linguistics

useful. We can see that our re-ranking model al- 30(4).

Papineni, S. Roukos, T. Ward, and W. Zhu. 2001. BLEU: a
most reached the upper bound oracle performané%’method for automatic evaluation of machine translation. In

reducing the gap between the first-pass models per-acL
formance (33.6) and the oracle (36.0) by 75%. C. Quirk, A. Menezes, and C. Cherry. 2005. Dependency treelet
translation: Syntactically informed phrasal SMT.AGL
B. Wellington, S. Waxmonsky, and |I. Dan Melamed. 2006.
Empirical lower bounds on the complexity of translational
L equivalence. IPACL-COLING
We have presented a discriminative syntax-based as-wu. 1997. Stochastic inversion transduction grammars and
der model for machine translation, trained to to se- bilingual parsing of parallel corporaComputational Lin-
guistics 23(3):377-403.
®Notice that the combination of our two first-pass modeld?. Xiong, Q. Liu, and S. Lin. 2006. Maximum entropy based
outperforms the baseline MT system by half a point (33.6 ver- Phrase reordering model for statistical machine translation.
sus 33.0). This is perhaps due to the fact that the MT system In ACL
searches through a much larger space (possible word transt&-Yamada and Kevin Knight. 2001. A syntax-based statistical
tions in addition to word orders), and thus could have a higher translation model. IRCL
search error.

7 Conclusions and Future Work
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Tailoring Word Alignments to Syntactic Machine Translation
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Abstract

Extracting tree transducer rules for syntac-
tic MT systems can be hindered by word
alignment errors that violate syntactic corre-
spondences. We propose a novel model for
unsupervised word alignment which explic-
itly takes into account target language con-
stituent structure, while retaining the robust-
ness and efficiency of the HMM alignment
model. Our model’s predictions improve the
yield of a tree transducer extraction system,
without sacrificing alignment quality. We
also discuss the impact of various posterior-
based methods of reconciling bidirectional
alignments.

1 Introduction

Syntactic methods are an increasingly promising ap-
proach to statistical machine translation, being both
algorithmically appealing (Melamed, 2004; Wau,
1997) and empirically successful (Chiang, 2005;
Galley et al., 2006). However, despite recent
progress, almost all syntactic MT systems, indeed
statistical MT systems in general, build upon crude
legacy models of word alignment. This dependence
runs deep; for example, Galley et al. (2006) requires
word alignments to project trees from the target lan-
guage to the source, while Chiang (2005) requires
alignments to induce grammar rules.

Word alignment models have not stood still in re-
cent years. Unsupervised methods have seen sub-
stantial reductions in alignment error (Liang et al.,
2006) as measured by the now much-maligned AER
metric. A host of discriminative methods have been
introduced (Taskar et al., 2005; Moore, 2005; Ayan
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and Dorr, 2006). However, few of these methods
have explicitly addressed the tension between word
alignments and the syntactic processes that employ
them (Cherry and Lin, 2006; Daumé III and Marcu,
2005; Lopez and Resnik, 2005).

We are particularly motivated by systems like the
one described in Galley et al. (2006), which con-
structs translations using tree-to-string transducer
rules. These rules are extracted from a bitext anno-
tated with both English (target side) parses and word
alignments. Rules are extracted from target side
constituents that can be projected onto contiguous
spans of the source sentence via the word alignment.
Constituents that project onto non-contiguous spans
of the source sentence do not yield transducer rules
themselves, and can only be incorporated into larger
transducer rules. Thus, if the word alignment of a
sentence pair does not respect the constituent struc-
ture of the target sentence, then the minimal transla-
tion units must span large tree fragments, which do
not generalize well.

We present and evaluate an unsupervised word
alignment model similar in character and compu-
tation to the HMM model (Ney and Vogel, 1996),
but which incorporates a novel, syntax-aware distor-
tion component which conditions on target language
parse trees. These trees, while automatically gener-
ated and therefore imperfect, are nonetheless (1) a
useful source of structural bias and (2) the same trees
which constrain future stages of processing anyway.
In our model, the trees do not rule out any align-
ments, but rather softly influence the probability of
transitioning between alignment positions. In par-
ticular, transition probabilities condition upon paths
through the target parse tree, allowing the model to
prefer distortions which respect the tree structure.

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 17-24,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



Our model generates word alignments that better
respect the parse trees upon which they are condi-
tioned, without sacrificing alignment quality. Using
the joint training technique of Liang et al. (2006)
to initialize the model parameters, we achieve an
AER superior to the GIZA++ implementation of
IBM model 4 (Och and Ney, 2003) and a reduc-
tion of 56.3% in aligned interior nodes, a measure
of agreement between alignments and parses. As a
result, our alignments yield more rules, which better
match those we would extract had we used manual
alignments.

2 Translation with Tree Transducers

In a tree transducer system, as in phrase-based sys-
tems, the coverage and generality of the transducer
inventory is strongly related to the effectiveness of
the translation model (Galley et al., 2006). We will
demonstrate that this coverage, in turn, is related to
the degree to which initial word alignments respect
syntactic correspondences.

2.1 Rule Extraction

Galley et al. (2004) proposes a method for extracting
tree transducer rules from a parallel corpus. Given a
source language sentence s, a target language parse
tree ¢ of its translation, and a word-level alignment,
their algorithm identifies the constituents in £ which
map onto contiguous substrings of s via the align-
ment. The root nodes of such constituents — denoted
frontier nodes — serve as the roots and leaves of tree
fragments that form minimal transducer rules.

Frontier nodes are distinguished by their compat-
ibility with the word alignment. For a constituent ¢
of ¢, we consider the set of source words s, that are
aligned to c. If none of the source words in the lin-
ear closure s} (the words between the leftmost and
rightmost members of s.) aligns to a target word out-
side of ¢, then the root of c is a frontier node. The
remaining interior nodes do not generate rules, but
can play a secondary role in a translation system.!
The roots of null-aligned constituents are not fron-
tier nodes, but can attach productively to multiple
minimal rules.

'Interior nodes can be used, for instance, in evaluating
syntax-based language models. They also serve to differentiate

transducer rules that have the same frontier nodes but different
internal structure.
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Two transducer rules, t; — s; and {5 — s9,
can be combined to form larger translation units
by composing ¢; and ¢ at a shared frontier node
and appropriately concatenating s; and so. How-
ever, no technique has yet been shown to robustly
extract smaller component rules from a large trans-
ducer rule. Thus, for the purpose of maximizing the
coverage of the extracted translation model, we pre-
fer to extract many small, minimal rules and gen-
erate larger rules via composition. Maximizing the
number of frontier nodes supports this goal, while
inducing many aligned interior nodes hinders it.

2.2 Word Alignment Interactions

We now turn to the interaction between word align-
ments and the transducer extraction algorithm. Con-
sider the example sentence in figure 1A, which
demonstrates how a particular type of alignment er-
ror prevents the extraction of many useful transducer
rules. The mistaken link [la = the] intervenes be-
tween axés and carrier, which both align within an
English adjective phrase, while /a aligns to a distant
subspan of the English parse tree. In this way, the
alignment violates the constituent structure of the
English parse.

While alignment errors are undesirable in gen-
eral, this error is particularly problematic for a
syntax-based translation system. In a phrase-based
system, this link would block extraction of the
phrases [axés sur la carrier = career oriented] and
[les emplois = the jobs] because the error overlaps
with both. However, the intervening phrase [em-
plois sont = jobs are] would still be extracted, at
least capturing the transfer of subject-verb agree-
ment. By contrast, the tree transducer extraction
method fails to extract any of these fragments: the
alignment error causes all non-terminal nodes in
the parse tree to be interior nodes, excluding pre-
terminals and the root. Figure 1B exposes the conse-
quences: a wide array of desired rules are lost during
extraction.

The degree to which a word alignment respects
the constituent structure of a parse tree can be quan-
tified by the frequency of interior nodes, which indi-
cate alignment patterns that cross constituent bound-
aries. To achieve maximum coverage of the trans-
lation model, we hope to infer tree-violating align-
ments only when syntactic structures truly diverge.



(A) S
NP ~ \VP\.

/ \ 7/ '\ Legend
DT NNS AUX A4DJP
Nl\f \\7]3N Bold Frontier node (agrees with alignment)
. o | O{} | Italic Interior node (inconsistent with alignment)
2’ ‘/0 ‘9/‘ %{
G by Uy . (e
Correct proposed word alignment consistent with
e T~ -: I = human annotation.
| €S
| I emplois Proposed word alignment error inconsistent with
| T . | (m] human annotation.
| I, _ ) sont
| i r . I| axeés -— Word alignment constellqtion that rende‘rs th@
I | I : I| | | rootofthe relevant constituent to be an interior
| | sur — = node.
| | |
| I | la
|
—D— -=d | | I| .\ Word alignment constellation that would allow a
I /[ I carriére o )
l_ _====4 D phrase extraction in a phrase-based translation
. system, but which does not correspond to an
English constituent.
(B) (1) (sNP[o] VP[1] .[2]) — [0 [1] [2]
(S (NP (DT[0] NNS[1]) VP[2] .[3]) — (0] (1] [2] [3]
(S (NP (DTI0] (NNS jobs)) VP[2] .[3]) —  [0] emplois [2] [3]
(S (NP (DTJ0] (NNS jobs)) (VP AUX|[1] ADJV]2]) .[3]) —  [0] emplois [1] [2] [3]
(S (NP (DTI0] (NNS jobs)) (VP (AUX are) ADJV[1]) .[2]) — [0] emplois sont [1] [2]
(i) (S (NP (DT[0] NNS[1]) (VP AUX[2] (ADJV NN[3] VBN[4]) .[5]) — 0] [1] [2] [3] [4] [5]
(S (NP (DT[0] (NNS jobs)) (VP AUX][1] (ADJV NN|2] VBN][3]) .[4]) — 0] sont [1] [2] [3] [4]
(S (NP (DT[0] (NNS jobs)) (VP (AUX are) (ADJV NN[1] VBN[2]) .[3]) — [0] emplois sont [1] [2] [3]

Figure 1: In this transducer extraction example, (A) shows a proposed alignment from our test set with
an alignment error that violates the constituent structure of the English sentence. The resulting frontier
nodes are printed in bold; all nodes would be frontier nodes under a correct alignment. (B) shows a small
sample of the rules extracted under the proposed alignment, (ii), and the correct alignment, (i) and (ii). The
single alignment error prevents the extraction of all rules in (i) and many more. This alignment pattern was

observed in our test set and corrected by our model.

3 Unsupervised Word Alignment

To allow for this preference, we present a novel con-
ditional alignment model of a foreign (source) sen-
tence f = {f1,..., f7} given an English (target) sen-
tence e = {ey,...,er} and a target tree structure ¢.
Like the classic IBM models (Brown et al., 1994),
our model will introduce a latent alignment vector

= {ai,...,ay} that specifies the position of an
aligned target word for each source word. Formally,
our model describes p(a,f|e, t), but otherwise bor-
rows heavily from the HMM alignment model of
Ney and Vogel (1996).

The HMM model captures the intuition that the
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alignment vector a will in general progress across
the sentence e in a pattern which is mostly local, per-
haps with a few large jumps. That is, alignments are
locally monotonic more often than not.

Formally, the HMM model factors as:

J
= de(aj\aj_,j)Pé(fﬂ@aj)

j=1

p(a,fle)

where j_ is the position of the last non-null-aligned
source word before position 7, py is a lexical transfer
model, and p, is a local distortion model. As in all
such models, the lexical component py is a collec-
tion of unsmoothed multinomial distributions over



foreign words.

The distortion model pg(aj|a;_, j) is a distribu-
tion over the signed distance a; — a;_, typically
parameterized as a multinomial, Gaussian or expo-
nential distribution. The implementation that serves
as our baseline uses a multinomial distribution with
separate parameters for j = 1, 7 = J and shared
parameters for all 1 < 5 < J. Null alignments have
fixed probability at any position. Inference over a
requires only the standard forward-backward algo-
rithm.

3.1 Syntax-Sensitive Distortion

The broad and robust success of the HMM align-
ment model underscores the utility of its assump-
tions: that word-level translations can be usefully
modeled via first-degree Markov transitions and in-
dependent lexical productions. However, its distor-
tion model considers only string distance, disregard-
ing the constituent structure of the English sentence.

To allow syntax-sensitive distortion, we consider
a new distortion model of the form p4(ajla;_,j,t).
We condition on ¢ via a generative process that tran-
sitions between two English positions by traversing
the unique shortest path p,, 4, through ¢ from
a;_ to a;. We constrain ourselves to this shortest
path using a staged generative process.

Stage 1 (POP(n), STOP(7)): Starting in the leaf
node at a;_, we choose whether to STOP or
PoP from child to parent, conditioning on the
type of the parent node n. Upon choosing
STOP, we transition to stage 2.

Stage 2 (MOVE(n, d)): Again, conditioning on the
type of the parent n of the current node n, we
choose a sibling 7 based on the signed distance
d = ¢i(n) — ¢p(n), where ¢p(n) is the index
of n in the child list of 1. Zero distance moves
are disallowed. After exactly one MOVE, we
transition to stage 3.

Stage 3 (PUSH(n, ¢,,(1))): Given the current node
n, we select one of its children 7, conditioning
on the type of n and the position of the child
¢n(n). We continue to PUSH until reaching a
leaf.

This process is a first-degree Markov walk
through the tree, conditioning on the current node
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S
NP — \Vp\\.

/7 \ -~
DT NNS AUX

| |

The jobs

ADJP
7\
NN~ VBN

| ¢

are career oriented

Stage 1: { Pop(VBN), Pop(ADIJP), Pop(VP), Stop(S) }
Stage 2: { Move(S, -1) }
Stage 3: { Push(NP, 1), Push(DT, 1) }

Figure 2: An example sequence of staged tree tran-
sitions implied by the unique shortest path from the
word oriented (aj_ = 5) to the word the (a; = 1).

and its immediate surroundings at each step. We en-
force the property that p(,, 4, +) be unique by stag-
ing the process and disallowing zero distance moves
in stage 2. Figure 2 gives an example sequence of
tree transitions for a small parse tree.

The parameterization of this distortion model fol-
lows directly from its generative process. Given a
path p(a; a1 Withr = k+m + 3 nodes including
the two leaves, the nearest common ancestor, k£ in-
tervening nodes on the ascent and m on the descent,
we express it as a triple of staged tree transitions that
include k£ POPs, a STOP, a MOVE, and m PUSHes:

{PoP(n2), ..., POP(ng+1), STOP(ng42)}
{MOVE (1442, ¢(ng43) — d(ng11))}
{PUSH (ng+3, ¢(ng44)) , ..., PUSH (ny—_1, 0(n,)) }

Next, we assign probabilities to each tree transi-
tion in each stage. In selecting these distributions,
we aim to maintain the original HMM’s sensitivity
to target word order:

e Selecting POP or STOP is a simple Bernoulli
distribution conditioned upon a node type.

e We model both MOVE and PUSH as multino-
mial distributions over the signed distance in
positions (assuming a starting position of 0 for
PUSH), echoing the parameterization popular
in implementations of the HMM model.

This model reduces to the classic HMM distor-
tion model given minimal English trees of only uni-
formly labeled pre-terminals and a root node. The
classic O-distance distortion would correspond to the
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Figure 3: For this example sentence, the learned dis-
tortion distribution of p,4(aj|a;_, j,t) resembles its
counterpart py(ajla;_, j) of the HMM model but re-
flects the constituent structure of the English tree .
For instance, the short path from relieve to on gives
a high transition likelihood.

STOP probability of the pre-terminal label; all other
distances would correspond to MOVE probabilities
conditioned on the root label, and the probability of
transitioning to the terminal state would correspond
to the POP probability of the root label.

As in a multinomial-distortion implementation of
the classic HMM model, we must sometimes artifi-
cially normalize these distributions in the deficient
case that certain jumps extend beyond the ends of
the local rules. For this reason, MOVE and PUSH
are actually parameterized by three values: a node
type, a signed distance, and a range of options that
dictates a normalization adjustment.

Once each tree transition generates a score, their
product gives the probability of the entire path, and
thereby the cost of the transition between string po-
sitions. Figure 3 shows an example learned distribu-
tion that reflects the structure of the given parse.

With these derivation steps in place, we must ad-
dress a handful of special cases to complete the gen-
erative model. We require that the Markov walk
from leaf to leaf of the English tree must start and
end at the root, using the following assumptions.

1. Given no previous alignment, we forego stages
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1 and 2 and begin with a series of PUSHes from
the root of the tree to the desired leaf.

2. Given no subsequent alignments, we skip
stages 2 and 3 after a series of POPs including
a pop conditioned on the root node.

3. If the first choice in stage 1 is to STOP at the
current leaf, then stage 2 and 3 are unneces-
sary. Hence, a choice to STOP immediately is
a choice to emit another foreign word from the
current English word.

4. We flatten unary transitions from the tree when
computing distortion probabilities.

5. Null alignments are treated just as in the HMM
model, incurring a fixed cost from any position.

This model can be simplified by removing all con-
ditioning on node types. However, we found this
variant to slightly underperform the full model de-
scribed above. Intuitively, types carry information
about cross-linguistic ordering preferences.

3.2 Training Approach

Because our model largely mirrors the genera-
tive process and structure of the original HMM
model, we apply a nearly identical training proce-
dure to fit the parameters to the training data via the
Expectation-Maximization algorithm. Och and Ney
(2003) gives a detailed exposition of the technique.

In the E-step, we employ the forward-backward
algorithm and current parameters to find expected
counts for each potential pair of links in each train-
ing pair. In this familiar dynamic programming ap-
proach, we must compute the distortion probabilities
for each pair of English positions.

The minimal path between two leaves in a tree can
be computed efficiently by first finding the path from
the root to each leaf, then comparing those paths to
find the nearest common ancestor and a path through
it — requiring time linear in the height of the tree.
Computing distortion costs independently for each
pair of words in the sentence imposed a computa-
tional overhead of roughly 50% over the original
HMM model. The bulk of this increase arises from
the fact that distortion probabilities in this model
must be computed for each unique tree, in contrast



to the original HMM which has the same distortion
probabilities for all sentences of a given length.

In the M-step, we re-estimate the parameters of
the model using the expected counts collected dur-
ing the E-step. All of the component distributions
of our lexical and distortion models are multinomi-
als. Thus, upon assuming these expectations as val-
ues for the hidden alignment vectors, we maximize
likelihood of the training data simply by comput-
ing relative frequencies for each component multi-
nomial. For the distortion model, an expected count
c(aj,a;_)is allocated to all tree transitions along the
path p(,; ;1. These allocations are summed and
normalized for each tree transition type to complete
re-estimation. The method of re-estimating the lexi-
cal model remains unchanged.

Initialization of the lexical model affects perfor-
mance dramatically. Using the simple but effective
joint training technique of Liang et al. (2006), we
initialized the model with lexical parameters from a
jointly trained implementation of IBM Model 1.

3.3 Improved Posterior Inference

Liang et al. (2006) shows that thresholding the pos-
terior probabilities of alignments improves AER rel-
ative to computing Viterbi alignments. That is, we
choose a threshold 7 (typically 7 = 0.5), and take

a={(4,7) : plaj = i|f,e) > T}.

Posterior thresholding provides computationally
convenient ways to combine multiple alignments,
and bidirectional combination often corrects for
errors in individual directional alignment models.
Liang et al. (2006) suggests a soft intersection of a
model m with a reverse model r (foreign to English)
that thresholds the product of their posteriors at each
position:

a={(i,7) : pm(a; = ilf,e) - py(a; = j|f,e) > 7} .

These intersected alignments can be quite sparse,
boosting precision at the expense of recall. We
explore a generalized version to this approach by
varying the function ¢ that combines p,, and p,:
a={(4,J) : c(pm,pr) > 7}. If ¢ is the max func-
tion, we recover the (hard) union of the forward and
reverse posterior alignments. If ¢ is the min func-
tion, we recover the (hard) intersection. A novel,
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high performing alternative is the soft union, which
we evaluate in the next section:
_ pm(aj =ilf,e) +p.(a; = jlf, e)

C(pmapr) = 5 .

Syntax-alignment compatibility can be further
promoted with a simple posterior decoding heuristic
we call competitive thresholding. Given a threshold
and a matrix ¢ of combined weights for each pos-
sible link in an alignment, we include a link (i, j)
only if its weight c;; is above-threshold and it is con-
nected to the maximum weighted link in both row ¢
and column j. That is, only the maximum in each
column and row and a contiguous enclosing span of
above-threshold links are included in the alignment.

3.4 Related Work

This proposed model is not the first variant of the
HMM model that incorporates syntax-based distor-
tion. Lopez and Resnik (2005) considers a sim-
pler tree distance distortion model. Daumé III and
Marcu (2005) employs a syntax-aware distortion
model for aligning summaries to documents, but
condition upon the roots of the constituents that are
jumped over during a transition, instead of those that
are visited during a walk through the tree. In the case
of syntactic machine translation, we want to condi-
tion on crossing constituent boundaries, even if no
constituents are skipped in the process.

4 Experimental Results

To understand the behavior of this model, we com-
puted the standard alignment error rate (AER) per-
formance metric.> We also investigated extraction-
specific metrics: the frequency of interior nodes — a
measure of how often the alignments violate the con-
stituent structure of English parses — and a variant of
the CPER metric of Ayan and Dorr (2006).

We evaluated the performance of our model on
both French-English and Chinese-English manually
aligned data sets. For Chinese, we trained on the
FBIS corpus and the LDC bilingual dictionary, then
tested on 491 hand-aligned sentences from the 2002

>The hand-aligned test data has been annotated with both
sure alignments S and possible alignments P, with S C P, ac-
cording to the specifications described in Och and Ney (2003).
With these alignments, we compute AER for a proposed align-

ment A as: (1 — %) x 100%.



French | Precision | Recall | AER
Classic HMM 93.9 93.0 6.5
Syntactic HMM 95.2 91.5 6.4
GIZA++ 96.0 86.1 8.6
Chinese | Precision | Recall | AER
Classic HMM 81.6 78.8 19.8
Syntactic HMM 82.2 76.8 | 20.5
GIZA++* 61.9 82.6 | 29.7

Table 1: Alignment error rates (AER) for 100k train-
ing sentences. The evaluated alignments are a soft
union for French and a hard union for Chinese, both
using competitive thresholding decoding. *From
Ayan and Dorr (2006), grow-diag-final heuristic.

NIST MT evaluation set. For French, we used the
Hansards data from the NAACL 2003 Shared Task.3
We trained on 100k sentences for each language.

4.1 Alignment Error Rate

We compared our model to the original HMM
model, identical in implementation to our syntac-
tic HMM model save the distortion component.
Both models were initialized using the same jointly
trained Model 1 parameters (5 iterations), then
trained independently for 5 iterations. Both models
were then combined with an independently trained
HMM model in the opposite direction: f — e.* Ta-
ble 1 summarizes the results; the two models per-
form similarly. The main benefit of our model is the
effect on rule extraction, discussed below.

We also compared our French results to the pub-
lic baseline GIZA++ using the script published for
the NAACL 2006 Machine Translation Workshop
Shared Task.’ Similarly, we compared our Chi-
nese results to the GIZA++ results in Ayan and
Dorr (2006). Our models substantially outperform
GIZA++, confirming results in Liang et al. (2006).

Table 2 shows the effect on AER of competitive
thresholding and different combination functions.

3Following previous work, we developed our system on the
37 provided validation sentences and the first 100 sentences of
the corpus test set. We used the remainder as a test set.

*Null emission probabilities were fixed to ﬁ, inversely pro-
portional to the length of the English sentence. The decoding
threshold was held fixed at 7 = 0.5.

>Training includes 16 iterations of various IBM models and
a fixed null emission probability of .01. The output of running
GIZA++ in both directions was combined via intersection.
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French | w/o CT | with CT
Hard Intersection (Min) 8.4 8.4
Hard Union (Max) 12.3 7.7
Soft Intersection (Product) 6.9 7.1
Soft Union (Average) 6.7 6.4
Chinese | w/o CT | with CT
Hard Intersection (Min) 27.4 27.4
Hard Union (Max) 25.0 20.5
Soft Intersection (Product) 25.0 25.2
Soft Union (Average) 21.1 21.6

Table 2: Alignment error rates (AER) by decoding
method for the syntactic HMM model. The compet-
itive thresholding heuristic (CT) is particularly help-
ful for the hard union combination method.

The most dramatic effect of competitive threshold-
ing is to improve alignment quality for hard unions.
It also impacts rule extraction substantially.

4.2 Rule Extraction Results

While its competitive AER certainly speaks to the
potential utility of our syntactic distortion model, we
proposed the model for a different purpose: to mini-
mize the particularly troubling alignment errors that
cross constituent boundaries and violate the struc-
ture of English parse trees. We found that while the
HMM and Syntactic models have very similar AER,
they make substantially different errors.

To investigate the differences, we measured the
degree to which each set of alignments violated the
supplied parse trees, by counting the frequency of
interior nodes that are not null aligned. Figure 4
summarizes the results of the experiment for French:
the Syntactic distortion with competitive threshold-
ing reduces tree violations substantially. Interior
node frequency is reduced by 56% overall, with
the most dramatic improvement observed for clausal
constituents. We observed a similar 50% reduction
for the Chinese data.

Additionally, we evaluated our model with the
transducer analog to the consistent phrase error rate
(CPER) metric of Ayan and Dorr (2006). This evalu-
ation computes precision, recall, and F1 of the rules
extracted under a proposed alignment, relative to the
rules extracted under the gold-standard sure align-
ments. Table 3 shows improvements in F1 by using
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Figure 4: The syntactic distortion model with com-
petitive thresholding decreases the frequency of in-
terior nodes for each type and the whole corpus.

the syntactic HMM model and competitive thresh-
olding together. Individually, each of these changes
contributes substantially to this increase. Together,
their benefits are partially, but not fully, additive.

5 Conclusion

In light of the need to reconcile word alignments
with phrase structure trees for syntactic MT, we have
proposed an HMM-like model whose distortion is
sensitive to such trees. Our model substantially re-
duces the number of interior nodes in the aligned
corpus and improves rule extraction while nearly
retaining the speed and alignment accuracy of the
HMM model. While it remains to be seen whether
these improvements impact final translation accu-
racy, it is reasonable to hope that, all else equal,
alignments which better respect syntactic correspon-
dences will be superior for syntactic MT.
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Abstract performance. We will show how such corpora can

o _ ' be used to achieve higher translation quality.
Statistical machine translation systems are  pyq jf jarge amounts of bilingual text are given,
usually trained on large amounts of bilin- ¢ y4ining of the statistical models usually suffers
gual text and monolingual text in the tar- .,y gparse data. The number of possible events,
get language. In this paper we explore the ;o 'nhrase pairs or pairs of subtrees in the two lan-
use of transductive semi-supervised meth- 3465 s too big to reliably estimate a probabil-
ods for the effective use of monolingual data iy gistribution over such pairs. Another problem is
from the source language in order 0 iM-  nat for many language pairs the amount of available
prove translanon. qua!|ty.. We propose sev- bilingual text is very limited. In this work, we will
eral algorithms with this aim, and presentthe  ,yqress this problem and propose a general frame-
strengths and weaknesses of each one. We . 1 solve it. Our hypothesis is that adding infor-
present detailed experimental evaluations on - asion from source language text can also provide
the French—English EuroParl data setand on o rqvements. Unlike adding target language text,
data from the NIST Chinese-English large- 5 hypothesis is a natural semi-supervised learn-
data track. We show a significant improve-  jnq nronlem. To tackle this problem, we propose
ment in translation quality on both tasks. algorithms for transductive semi-supervised learn-
ing. By transductive, we mean that we repeatedly
translate sentences from the development set or test
In statistical machine translation (SMT), translatiorset and use the generated translations to improve the
is modeled as a decision process. The goal is to fifgkrformance of the SMT system. Note that the eval-
the translatiort of source sentence which maxi- yation step is still done just once at the end of our
mizes the posterior probability: learning process. In this paper, we show that such
an approach can lead to better translations despite
the fact that the development and test data are typi-

1 Introduction

argmaxp(t|s) = argmaxp(s|t) - p(t) (1)

This decomposition of the probability yields two dif- cally much smaller in size than typical training data

ferent statistical models which can be trained in" SMT syst.ems. )

dependently of each other: the translation model Transductive learning can be seen as a means to
State-of-the-art SMT systems are trained on largdyStém trained on newswire is used to translate we-

collections of text which consist of bilingual corporaP!0d texts. The proposed method adapts the trained

(to learn the parameters pfs|t)), and of monolin- Models to the style and domain of the new input.

gual target language corpora (foft)). It has been )

shown that adding large amounts of target language

text improves translation quality considerably. How-The SMT system we applied in our experiments is

ever, the availability of monolingual corpora in thePORTAGE. This is a state-of-the-art phrase-based

source language does not help improve the systentimnslation system which has been made available
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to Canadian universities for research and educatidteration and added to the training data. These se-
purposes. We provide a basic description here; forlacted sentence pairs are replaced in each iteration,
detailed description see (Ueffing et al., 2007). and only the original bilingual training datd,, is
The models (or features) which are employed biept fixed throughout the algorithm. The process
the decoder are: (a) one or several phrase table(e),generating sentence pairs, selecting a subset of
which model the translation directigiis| t), (b) one good sentence pairs, and updating the model is con-
or severaln-gram language model(s) trained withtinued until a stopping condition is met. Note that
the SRILM toolkit (Stolcke, 2002); in the experi- we run this algorithm in a transductive setting which
ments reported here, we used 4-gram models on theeans that the set of sentendéss drawn either
NIST data, and a trigram model on EuroParl, (cfrom a development set or the test set that will be
a distortion model which assigns a penalty basedsed eventually to evaluate the SMT system or from
on the number of source words which are skippeddditional data which is relevant to the development
when generating a new target phrase, and (d) a woed test set. In Algorithm 1, changing the definition
penalty. These different models are combined logef Estimate, Scoreand Selectwill give us the dif-
linearly. Their weights are optimized w.r.t. BLEU ferent semi-supervised learning algorithms we will
score using the algorithm described in (Och, 2003¥liscuss in this paper.
This is done on a development corpus which we will Given the probability modej(t | s), consider the
call devl in this paper. The search algorithm impledistribution over all possible valid translation$or
mented in the decoder is a dynamic-programming particular input sentence We can initialize
beam-search algorithm. this probability distribution to the uniform distribu-
After the main decoding step, rescoring with adtion for each sentence in the unlabeled datd'.
ditional models is performed. The system generatddus, this distribution over translations of sentences
a 5,000-best list of alternative translations for eacffom U will have the maximum entropy. Under
source sentence. These lists are rescored with thertain precise conditions, as described in (Abney,
following models: (a) the different models used in2004), we can analyze Algorithm 1 as minimizing
the decoder which are described above, (b) two difhe entropy of the distribution over translationg.of
ferent features based on IBM Model 1 (Brown et al.However, this is true only when the functioksti-
1993), (c) posterior probabilities for words, phrasegnate, ScoreandSelecthave very prescribed defini-
n-grams, and sentence length (Zens and Ney, 200@ns. In this paper, rather than analyze the conver-
Ueffing and Ney, 2007), all calculated over the  gence of Algorithm 1 we run it for a fixed number
best list and using the sentence probabilities whichf iterations and instead focus on finding useful def-
the baseline system assigns to the translation hipitions for Estimate, ScoreandSelectthat can be
potheses. The weights of these additional modeg&xperimentally shown to improve MT performance.
and of the decoder models are again optimized %95 The Estimate Function

maximize BLEU score. This is performed on a sec-
ond deve|0pment corpus, dev2. We consider the fOIIOWing different definitions for

Estimatein Algorithm 1:
Full Re-training (of all translation models): If
Estimate(L,T") estimates the model parameters
based ol U T, then we have a semi-supervised al-
Our transductive learning algorithm, Algorithm 1,gorithm that re-trains a model on the original train-
is inspired by the Yarowsky algorithm (Yarowsky,ing datal plus the sentences decoded in the last it-
1995; Abney, 2004). The algorithm works as fol-eration. The size of. can be controlled bfiltering
lows: First, the translation model is estimated basdtie training data (see Section 3.5).
on the sentence pairs in the bilingual training data Additional Phrase Table: If, on the other hand, a
Then, a set of source language senteridess trans- new phrase translation table is learned Dronly
lated based on the current model. A subset of goahd then added as a new component in the log-linear
translations and their sourcés, is selected in each model, we have an alternative to the full re-training
26
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Algorithm 1 Transductive learning algorithm for statistical machine translation
1: Input training setl of parallel sentence pairs.  // Bilingual training data.

2: Input unlabeled sel of source text. / Monolingual source language data.
3: Input number of iterations?, and size of n-best lisy .

4. T_y:={}. /I Additional bilingual training data.

5 4:=0. /I lteration counter.

6: repeat

7. Training step () := Estimate(L, Tj_).

8  X;:={}. [/l The set of generated translations for this iteration.

9: for sentences € U do

10: Labeling stepDecodes usingz(?) to obtainN' best sentence pairs with their scores
11: X = Xi U{(tn,s 7 (t, |9)N_;}

12:  end for

13:  Scoring step.S; := Scorg X;) /I Assign a score to sentence pdirss) from X.

14:  Selection stepT; := SelectX;, S;) // Choose a subset gbodsentence paird, s) from X.

15:  ¢:=1+ 1.
16: until < > R

of the model on labeled and unlabeled data whiclhhe confidence score of a target sentenhce cal-
can be very expensive i is very large (as on the culated as a log-linear combination of phrase pos-
Chinese—English data set). This additional phragerior probabilities, Levenshtein-based word poste-
table is small and specific to the development orior probabilities, and a target language model score.
test set it is trained on. It overlaps with the origi-The weights of the different scores are optimized
nal phrase tables, but also contains many new phrase.t. classification error rate (CER).
pairs (Ueffing, 2006). The phrase posterior probabilities are determined
Mixture Model: Another alternative foEstimate by summing the sentence probabilities of all trans-
is to create a mixture model of the phrase table prollation hypotheses in th&'-best list which contain
abilities with new phrase table probabilities this phrase pair. The segmentation of the sentence
p(s|t) = A Ly(s|t) + (1 = A) - Tp(s[t)  (2) into phrases is provided by the decoder. This sum
is then normalized by the total probability mass of

whereL,, andT,, are phrase table probabilities eSlhe N-best list. To obtain a score for the whole tar-

mated onl andT’, respectively. In cases where new . L
. : get sentence, the posterior probabilities of all target
phrase pairs are learned fréfj they get added into

the meraed phrase table phrases are multiplied. The word posterior proba-
gedp ' _' bilities are calculated on basis of the Levenshtein
3.3 The Scoring Function alignment between the hypothesis under consider-

In Algorithm 1, theScorefunction assigns a score to ation and all other translations contained in fkie
each translation hypothegisWe used the following best list. For details, see (Ueffing and Ney, 2007).
scoring functions in our experiments: Again, the single values are multiplied to obtain a
Length-normalized Score: Each translated sen- Score for the whole sentence. For NIST, the lan-
tence pair(t,s) is scored according to the modelguage model score is determined using a 5-gram
probabilityp(t | s) normalized by the length| of the model trained on the English Gigaword corpus, and
target sentence: on French—English, we use the trigram model which

o i for the NAACL 2 h k.
Scorgt,s) = p(t|s)T (3) as provided for the NAACL 2006 shared tas
3.4 The Selection Function

Confidence Estimation: The confidence estimation

which we implemented follows the approaches sugFhe Selectfunction in Algorithm 1 is used to create

gested in (Blatz et al., 2003; Ueffing and Ney, 2007)the additional training dat&; which will be used in
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the next iterationi + 1 by Estimate to augment the corpus use sentences

original bilingual training data. We use the follow- EuroParl  phrase table+LM 688K
ing selection functions: trainl00k phrase table 100K
Importance Sampling: For each sentencein the train150k phrase table 150K
set of unlabeled sentencés the Labeling step in dev06 devl 2,000
Algorithm 1 generates alN-best list of translations, testO6 test 3,064
and the subsequent Scoring step assigns a score for Table 1: French—English corpora

each translation in this list. The set of generated

translations for all sentencesihis the event space corpus use sentences
and the scores are used to put a probability distri-non-UN phrase table+LM 3.2M
bution over this space, simply by renormalizing the UN phrase table+LM 5.0M
scores described in Section 3.3. We use importanc&nglish Gigaword LM 11.7M
sampling to seleck translations from this distri- multi-p3 devl 935
bution. Sampling is done with replacement which multi-p4 dev2 919
means that the same translation may be chosen seeval-04 test 1,788
eral times. Thesé&( sampled translations and their eval-06 test 3,940

associated source sentences make up the additional Table 2: NIST Chinese—English corpora
training datar;.

Selection using a Threshold: This method com- _ o
pares the score of each single-best translation toy\é{nch are relevant w.r.t. the test set. This filtering
threshold. The translation is considered reliable arlg aS&d om-gram coverage. For a source sentence
added to the sef} if its score exceeds the thresh-S 1N the training data, its-gram coverage over the
old. Else it is discarded and not used in the addSentences in the test set is computed. The average
tional training data. The threshold is optimized orfVer severak-gram lengths is used as a measure
the development beforehand. Since the scores of tRE r€levance of this training sentence w.r.t. the test
translations change in each iteration, the siz&of COrPUS. Based on this, we select the fopsource
also changes. sentences or sentence pairs.

Keep All: This method does not perform any fil-4 Experimental Results

tering at all. It is simply assumed that all transla-
tions in the sefX; are reliable, and none of them are
discarded. Thus, in each iteration, the result of thé/e ran experiments on two different corpora: one
selection step will b&; = X;. This method was is the French—English translation task from the Eu-
implemented mainly for comparison with other sefoParl corpus, and the other one is Chinese—English
lection methods. translation as performed in the NIST MT evaluation
(www.nist.gov/speech/tests/mt).

For the French—English translation task, we used
In general, having more training data improves théhe EuroParl corpus as distributed for the shared task
quality of the trained models. However, when itin the NAACL 2006 workshop on statistical ma-
comes to the translation of a particular test set, thehine translation. The corpus statistics are shown
question is whetheall of the available training data in Table 1. Furthermore we filtered the EuroParl
are relevant to the translation task or not. Moreovecorpus, as explained in Section 3.5, to create two
working with large amounts of training data requiresmaller bilingual corpora (train100k and train150k
more computational power. So if we can identify @n Table 1). The development set is used to optimize
subset of training data which are relevant to the cuthe model weights in the decoder, and the evaluation
rent task and use only this to re-train the models, wig done on the test set provided for the NAACL 2006
can reduce computational complexity significantly. shared task.

We propose toFilter the training data, either Forthe Chinese—English translation task, we used
bilingual or monolingual text, to identify the partsthe corpora distributed for the large-data track in the
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setting EuroParl NIST independent word error rate) (NieRen et al., 2000).

full re-training w/ filtering * *k Note that BLEU score measures quality, whereas
full re-training *k T MWER and mPER measure translation errors. We
mixture model * T will present 95%-confidence intervals for the base-
new phrase table ff: line system which are calculated using bootstrap re-
keep all *x * sampling. The metrics are calculated w.r.t. one and
imp. sampling norm. s * four English references: the EuroParl data comes
conf. Kok * with one reference, the NIST 2004 evaluation set

threshold norm.  kx * and the NIST section of the 2006 evaluation set
conf. *% * are provided with four references each, whereas the

GALE section of the 2006 evaluation set comes
with one reference only. This results in much lower

BLEU scores and higher error rates for the transla-

2006 NIST evaluation (see Table 2). We used thgons of the GALE set (see Section 4.2). Note that
LDC segmenter for Chinese. The multiple translagese values do not indicate lower translation qual-

tion corpora multi-p3 and mul_ti—p4 were used as deﬁy’ but are simply a result of using only one refer-
velopment corpora. Evaluation was performed ogpce.

the 2004 and 2006 test sets. Note that the train-
ing data consists mainly of written text, whereas thd.2 Results
test sets comprise three and four different genres:
editorials, newswire and political speeches in th uroParl
2004 test set, and broadcast conversations, broad4ye ran our initial experiments on EuroParl to ex-
cast news, newsgroups and newswire in the 20Gfiore the behavior of the transductive learning algo-
test set. Most of these domains have characteristigghm. In all experiments reported in this subsec-
which are different from those of the training datation, the test set was used as unlabeled data. The
e.g., broadcast conversations have characteristicsgflection and scoring was carried out using impor-
spontaneous speech, and the newsgroup data is caahce sampling with normalized scores. In one set
paratively unstructured. of experiments, we used the 100K and 150K train-
Given the particular data sets described above, Targ sentences filtered accordingrtegram coverage
ble 3 shows the various options for thestimate, over the test set. We fully re-trained the phrase ta-
Scoreand Selectfunctions (see Section 3). The ta-bles on these data and 8,000 test sentence pairs sam-
ble provides a quick guide to the experiments weled from 20-best lists in each iteration. The results
present in this paper vs. those we did not attempt du the test set can be seen in Figure 1. The BLEU
to computational infeasibility. We ran experimentsscore increases, although with slight variation, over
corresponding to all entries marked witlfsee Sec- the iterations. In total, it increases from 24.1 to 24.4
tion 4.2). For those markegk the experiments pro- for the 100K filtered corpus, and from 24.5 to 24.8
duced only minimal improvement over the baselinéor 150K, respectively. Moreover, we see that the
and so we do not discuss them in this paper. The eBLEU score of the system using 100K training sen-
tries marked ag were not attempted because theyence pairs and transductive learning is the same as
are not feasible (e.g. full re-training on the NISTthat of the one trained on 150K sentence pairs. So
data). However, these were run on the smaller Ethe information extracted from untranslated test sen-
roParl corpus. tences is equivalent to having an additional 50K sen-
tence pairs.

In a second set of experiments, we used the whole
We evaluated the generated translations usirtguroParl corpus and the sampled sentences for fully
three different evaluation metrics: BLEU score (Pare-training the phrase tables in each iteration. We
pineni et al., 2002), mMWER (multi-reference wordran the algorithm for three iterations and the BLEU
error rate), and mPER (multi-reference positionscore increased from 25.3 to 25.6. Even though this
29
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Figure 1: Translation quality for importance sampling with full re-training on train100k (left) and train150k

(right). EuroParl French—English task.

24.05

is a small increase, it shows that the unlabeled dathe devl corpus, using the phrase table specific to
contains some information which can be explored idevl. Every time a new corpus is to be translated,
transductive learning. an adapted phrase table is created using transductive
In a third experiment, we applied the mixturelearning and used with the weight which has been
model idea as explained in Section 3.2. The initiallyearned on devl. In the first experiment presented
learned phrase table was merged with the learnda Table 4, all of the generated 1-best translations
phrase table in each iteration with a weightof=  were kept and used for training the adapted phrase
0.1. This value for\ was found based on cross val-tables. This method yields slightly higher transla-
idation on a development set. We ran the algorithriion quality than the baseline system. The second
for 20 iterations and BLEU score increased fromapproach we studied is the use of importance sam-
25.3 to 25.7. Since this is very similar to the refling (IS) over 20-best lists, based either on length-
sult obtained with the previous method, but with amormalized sentence scores (norm.) or confidence
additional parametek to optimize, we did not use scores (conf.). As the results in Table 4 show, both
mixture models on NIST. variants outperform the first method, with a consis-
Note that the single improvements achieved hef€nt improvement over the baseline across all test

are slightly below the 95%-significance level. How-corpora and evaluation metrics. The third method
ever, we observe them Consistently in all Settings_ uses a threshold-based selection method. Combined

with confidence estimation as scoring method, this
NIST yields the best results. All improvements over the

Table 4 presents translation results on NIST witRaseline are significant at the 95%-level.
different versions of the scoring and selection meth- Table 5 shows the translation quality achieved on
ods introduced in Section 3. In these experimentshe NIST test sets when additional source language
the unlabeled daté for Algorithm 1 is the develop- data from the Chinese Gigaword corpus compris-
ment or test corpus. For this corplis 5,000-best ing newswire text is used for transductive learning.
lists were generated using the baseline SMT systeffhese Chinese sentences were sorted according to
Since re-training the full phrase tables is not feasiheir n-gram overlap (see Section 3.5) with the de-
ble here, a (small) additional phrase table, specific teelopment corpus, and the top 5,000 Chinese sen-
U, was trained and plugged into the SMT system a®&nces were used. The selection and scoring in Al-
an additional model. The decoder weights thus hagbrithm 1 were performed using confidence estima-
to be optimized again to determine the appropriatiion with a threshold. Again, a new phrase table was
weight for this new phrase table. This was done otrained on these data. As can be seen in Table 5, this
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select score BLEU[%] mMWER[%] mPER[%] system BLEU[%] mWER[%] mPER[%]

eval-04(4 refs.) eval-04(4 refs.)
baseline 31.&0.7 66.8£0.7 41.5+-0.5 baseline 31.80.7 66.8:0.7 41.5t0.5
keep all 33.1 66.0 41.3 add Chin. data 32.8 65.7 40.9
IS norm. 33.5 65.8 40.9 eval-06 GALE (1 ref.)
conf. 33.2 65.6 40.4 baseline 12.F20.5 75.8+0.6 54.6+0.6
thr norm. 33.5 65.9 40.8 add Chin.data 13.1 73.9 53.5
conf. 33.5 65.3 40.8 eval-06 NIST (4 refs.)
eval-06 GALE (1 ref.) baseline 27.20.7 67.2:0.6 44.0£0.5
baseline 12.70.5 75.8:0.6 54.6£0.6 add Chin. data 28.1 65.8 43.2
keep all 12.9 .7 °5.0 Table 5: Translation quality using an additional
IS norm. 13.2 4.7 54.1 . . :
conf. 12.9 74.4 535 phrase table_tralned on_monollngual Chlnese_ news
e norm. 12.7 75 2 542 data. Selection §tep using Fhreshold on confidence
conf. 13.6 73 4 532 scores. NIST Chinese—English.
eval-06 NIST (4 refs.) word alignment. Experiments showed that putting a
baseline 27.20.7 67.2:0.6 44.0£0.5  Jarge weight on the model trained on labeled data
keep all 28.1 66.5 44.2 performs best. Along similar lines, (Fraser and
IS norm. 28.7 66.1 43.6 Marcu, 2006) combine a generative model of word
conf. 28.4 65.8 43.2 alignment with a log-linear discriminative model
thr ~ norm. 28.3 66.1 43.5 trained on a small set of hand aligned sentences. The
conf. 29.3 65.6 43.2 word alignments are used to train a standard phrase-

Table 4: Translation quality using an additionaP@sed SMT system, resulting in increased translation
adapted phrase table trained on the devitest selity .

Different selection and scoring methods. NIST In (Callison-Burch, 2002) co-training is applied

Chinese—English, best results printed in boldface. t© MT. This approach requires several source lan-
guages which are sentence-aligned with each other

system outperforms the baseline system on all teghd all translate into the same target language. One
corpora. The error rates are Significantly reduced irénguage pair creates data for another |anguage pair
all three settings, and BLEU score increases in alind can be naturally used in a (Blum and Mitchell,
cases. A Comparison with Table 4 shows that tranqggg)-stwe Co-training a|go|'ithm_ Experiments on
ductive Iearning on the development set and test COhe EuroParl corpus show a decrease in WER. How-
pora, adapting the system to their domain and stylgyer, the selection algorithm applied there is actually
is more effective in improving the SMT system thansypervised because it takes the reference translation
the use of additional source language data. into account. Moreover, when the algorithm is run
In all experiments on NIST, Algorithm 1 was runjong enough, large amounts of co-trained data in-
for one iteration. We also investigated the use of aacted too much noise and performance degraded.
iterative procedure here, but this did not yield any geff-training for SMT was proposed in (Ueffing,
improvement in translation quality. 2006). An existing SMT system is used to translate
5 Previous Work the development or test corpus. Among the gener-
) ) , _ ated machine translations, the reliable ones are au-
Semi-supervised leaming has been previously apdmatically identified using thresholding on confi-

plied to improve word alignments. In (Ca"ison'dence scores. The work which we presented here
Burch et al., 2004), a generative model for worqjiffers from (Ueffing, 2006) as follows:
alignment is trained using unsupervised learning on ' '

parallel text. In addition, another model is trained on e We investigated different ways of scoring and

a small amount of hand-annotated word alignment  selecting the reliable translations and compared

data. A mixture model provides a probability for our method to this work. In addition to the con-
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To perform translation, state-of-the-art MT sys-
tems use a statistical phrase-based approach (Marcu
and Wong, 2002; Koehn et al., 2003; Och and
Ney, 2004) by treating phrases as the basic units
of translation. In this approach, a phrase can be
any sequence of consecutive words and is not nec-
essarily linguistically meaningful. Capitalizing on
the strength of the phrase-based approach, Chiang

Abstract

Recent research presents conflicting evi-
dence on whether word sense disambigua-
tion (WSD) systems can help to improve the
performance of statistical machine transla-
tion (MT) systems. In this paper, we suc-
cessfully integrate a state-of-the-art WSD

1

system into a state-of-the-art hierarchical
phrase-based MT system, Hiero. We show
for the first time that integrating a WSD sys-

tem improves the performance of a state-of-
the-art statistical MT system on an actual
translation task. Furthermore, the improve-
ment is statistically significant.

Introduction

(2005) introduced dierarchical phrase-based sta-
tistical MT system, Hiero, which achieves signifi-
cantly better translation performance than Pharaoh
(Koehn, 2004a), which is a state-of-the-art phrase-
based statistical MT system.

Recently, some researchers investigated whether

performing WSD will help to improve the perfor-
mance of an MT system. Carpuat and Wu (2005)

Many words have multiple meanings, depending ofttegrated the translation predictions from a Chinese
the context in which they are used. Word sense di$¥SD system (Carpuat et al., 2004) into a Chinese-
ambiguation (WSD) is the task of determining theEnglish word-based statistical MT system using the
correct meaning or sense of a word in context. WSIS! ReWrite decoder (Germann, 2003). Though they
is regarded as an important research problem andagknowledged that directly using English transla-

assumed to be helpful for applications such as mdons as word senses would be ideal, they instead
chine translation (MT) and information retrieval.  Predicted the HowNet sense of a word and then used

In translation, different senses of a wondin a  the English gloss of the HowNet sense as the WSD

source language may have different translations infgodel’s predicted translation. They did not incor-
target language, depending on the particular meaRorate their WSD model or its predictions into their
ing of w in context. Hence, the assumption is thatranslation model; rather, they used the WSD pre-
in resolving sense ambiguity, a WSD system will pdlictions either to constrain the options available to
able to help an MT system to determine the corredfeir decoder, or to postedit the output of their de-
translation for an ambiguous word. To determine théoder. They reported the negative result that WSD
correct sense of a word, WSD systems typically us@ec_reased the performance of MT based on their ex-
awide array of features that are not limited to the loPeriments.
cal context ofw, and some of these features may not In another work (Vickrey et al., 2005), the WSD
be used by state-of-the-art statistical MT systems. problem was recast asveord translationtask. The
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translation choices for a wond were defined as the Then, in Section 3, we describe the Hiero MT sys-
set of words or phrases aligned Wy as gathered tem and introduce the two new features used to inte-
from a word-aligned parallel corpus. The authorgrate the WSD system into Hiero. In Section 4, we
showed that they were able to improve their model’'describe the training data used by the WSD system.
accuracy on two simplified translation tasks: wordn Section 5, we describe how the WSD translations
translation and blank-filling. provided are used by the decoder of the MT system.
Recently, Cabezas and Resnik (2005) experin Section 6 and 7, we present and analyze our ex-
mented with incorporating WSD translations intgperimental results, before concluding in Section 8.
Pharaoh, a state-of-the-art phrase-based MT sys-
tem (Koehn et al., 2003). Their WSD system pro2 Word Sense Disambiguation

vided additional translations to the phrase table cgrior research has shown that using Support Vector

the detoder could weigh he adcitional atermat &12CTNES (SVM) as the earning algortim or WSD
9 chieves good results (Lee and Ng, 2002). For our

translations against its own. However, they could . . .
9 ’ y experiments, we use the SVM implementation of

not automatically tune the weight of this feature mChang and Lin, 2001) as itis able to work on multi-

the same way as the others. They obtained a rela- . .
) . - ... class problems to output the classification probabil-
tively small improvement, and no statistical signifi-

cance test was reported to determine if the improvg—y for each class.
Our implemented WSD classifier uses the knowl-

ment was statistically significant. d f local collocati ts-of h
Note that the experiments in (Carpuat and w£a9¢ sources ot local coliocations, parts-o-speec

) (POS), and surrounding words, following the suc-

2005) did not use a state-of-the-art MT system
. . . . c¢essful approach of (Lee and Ng, 2002). For local
while the experiments in (Vickrey et al., 2005) were .
: collocations, we use 3 features, w1, w_1, and

not done using a full-fledged MT system and the : . .
w41, Wherew_; (w41) is the token immediately to

evaluation was not on how well each source senten(;ﬁ . .
. ._the left (right) of the current ambiguous word oc-
was translated as a whole. The relatively small im-
rrencew. For parts-of-speech, we use 3 features,

provement reported by Cabezas and Resnik (200 ) . R, andP,,, whereP, is the POS ofw, and

ithout a statistical significance test appears to b .
without a stafistica’ signit St appears 1 (P41) is the POS ofv_; (w41). For surround-

inconclusive. Considering the conflicting results rei—n words, we consider all unigrams (single words)
ported by prior work, it is not clear whether a WSD. 9 ’ 9 9

: in the surrounding context @f. These unigrams can
system can help to improve the performance of

- ge in a different sentence from We perform fea-
state-of-the-art statistical MT system. ) . ) .
. . ture selection on surrounding words by including a
In this paper, we successfully integrate a state-

of-the-art WSD system into the state-of-the-art picnigram o_nIy it occurs 3 or more times in some
ense ofv in the training data.

. . .S
erarchical phrase-based MT system, Hiero (Chiang, -
P y ( g To measure the accuracy of our WSD classifier,

2005). The integration is accomplished by introduc- ) .
ing two additional features into the MT model which*'® evaluate it on the test data of SENSEVAL-3 Chi-

nese lexical-sample task. We obtain accuracy that

operate on the existing rules of the grammar, with- ; blv to the best participati N
out introducing competing rules. These features arempares favorably fo the best participating system

treated, both in feature-weight tuning and in decod” the task (Carpuat et al., 2004).
ing, on the same footing as the rest of the mode
allowing it to weigh the WSD model predictions
against other pieces of evidence so as to optimizgiero (Chiang, 2005) is a hierarchical phrase-based
translation accuracy (as measured by BLEU). Thenodel for statistical machine translation, based on
contribution of our work lies in showing for the first weighted synchronous context-free grammar (CFG)
time that integrating a WSD system significantly im{Lewis and Stearns, 1968). A synchronous CFG
proves the performance of a state-of-the-art statisi¢onsists of rewrite rules such as the following:

cal MT system on an actual translation task.

In the next section, we describe our WSD system. X = (y,a) ()
34
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where X is a non-terminal symbal, («) is a string e P,sa(t | s) gives the contextual probability of
of terminal and non-terminal symbols in the source  the WSD classifier choosingas a translation
(target) language, and there is a one-to-one corre- for s, wheret (s) is some substring of terminal
spondence between the non-terminals enda in- symbols ina (). Because this probability only
dicated by co-indexation. Hence,and « always applies to some rules, and we don’t want to pe-
have the same number of non-terminal symbols. For nalize those rules, we must add another feature,

instance, we could have the following grammar rule: . .
e Pty,sq = exp(—|t|), wheret is the translation

X — (& H | Xg, go to Xg every month tp (2) chosen by the WSD system. This feature, with
a negative weight, rewards rules that use trans-

where boxed indices represent the correspondences ;
lations suggested by the WSD module.

between non-terminal symbols.

H_|ero extracts the synlchronous CFG rules auto- Note that we can take the negative logarithm of
matically from a word-aligned parallel corpus. To,

the rule/derivation weights and think of them as

translate a source sentence, the goal is to find '(E%sts rather than probabilities

most probable derivation using the extracted gram-
mar rules. Hiero uses a general log-linear modgj Gathering Training Examples for WSD

(Och and Ney, 2002) where the weight of a deriva-

tion D for a particular source sentence and its trangur experiments were for Chinese to English trans-
lation is lation. Hence, in the context of our work, a syn-

w(D) = H‘bi(D)Ai (3) chronous CFG grammar rule X% (v, ) gathered
i by Hiero consists of a Chinese portigrand a cor-

whereg; is a feature function and; is the weight for  responding English portion, where each portion is
feature¢;. To ensure efficient decoding, thig are @ sequence of words and non-terminal symbols.
subject to certain locality restrictions. Essentially, Our WSD classifier suggests a list of English
they should be defined as products of functions dghrases (where each phrase consists of one or more
fined on isolated synchronous CGF rules; howeveknglish words) with associated contextual probabil-
it is possible to extend the domain of locality ofities as possible translations for each particular Chi-
the features somewhat. Agram language model nese phrase. In general, the Chinese phrase may
adds a dependence an<1) neighboring target-side consist ofk Chinese words, where = 1,2,3, .. ..
words (Wu, 1996; Chiang, 2007), making decodindfiowever, we limitk to 1 or 2 for experiments re-
much more difficult but still polynomial; in this pa- ported in this paper. Future work can explore en-
per, we add features that depend on the neighboritgygingk.
source-sidevords, which does not affect decoding Whenever Hiero is about to extract a grammar
complexity at all because the source string is fixedule where its Chinese portion is a phrase of one or
In principle we could add features that depend ofwo Chinese words with no non-terminal symbols,

arbitrary source-side context. we note the location (sentence and token offset) in
o the Chinese half of the parallel corpus from which
3.1 New Features in Hiero for WSD the Chinese portion of the rule is extracted. The ac-

To incorporate WSD into Hiero, we use the transtual sentence in the corpus containing the Chinese
lations proposed by the WSD system to help Hierphrase, and the one sentence before and the one sen-
obtain a better or more probable derivation duringence after that actual sentence, will serve as the con-
the translation of each source sentence. To achietext for one training example for the Chinese phrase,
this, when a grammar rulR is considered during with the corresponding English phrase of the gram-
decoding, and we recognize that some of the temar rule as its translation. Hence, unlike traditional
minal symbols (words) irx are also chosen by the WSD where the sense classes are tied to a specific
WSD system as translations for some terminal synsense inventory, our “senses” here consist of the En-
bols (words) inv, we compute the following fea- glish phrases extracted as translations for each Chi-
tures: nese phrase. Since the extracted training data may
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be noisy, for each Chinese phrase, we remove Eme need to match the translations suggested by the
glish translations that occur only once. Furthermora/SD system against the English side of the rule. It
we only attempt WSD classification for those Chi-is for these matching rules that the WSD features
nese phrases with at least 10 training examples. will apply.

Using the WSD classifier described in Section 2, The translations proposed by the WSD system
we classified the words in each Chinese source sefray be more than one word long. In order for a
tence to be translated. We first performed WSD oproposed translation to match the rule, we require
all single Chinese words which are either noun, verhwo conditions. First, the proposed translation must
or adjective. Next, we classified the Chinese phrasgg a substring of the English side of the rule. For
consisting of 2 consecutive Chinese words by simplgxample, the proposed translation “every to” would
treating the phrase assingle unit When perform- not match the chunk “every month to”. Second, the
ing classification, we give as output the set of Enmatch must contain at least one aligned Chinese-
glish translations with associated context-dependeBhglish word pair, but we do not make any other
probabilities, which are the probabilities of a Chi-requirements about the alignment of the other Chi-
nese word (phrase) translating into each Englishese or English words.If there are multiple possi-
phrase, depending on the context of the Chinesgle matches, we choose the longest proposed trans-
word (phrase). After WSD, thigh wordc; in every Ilation; in the case of a tie, we choose the proposed
Chinese sentence may have up to 3 sets of assoganslation with the highest score according to the
ated translations provided by the WSD system: a SsgSD model.
of translations fok; as a single word, a second set pefine achunkof a rule to be a maximal sub-

of translations for;_,¢; considered as a single unit, string of terminal symbols on the English side of the
and a third set of translations foyc;;.1 considered yyje. For example, in Rule (2), the chunks would be
as a single unit. “go to” and “every month to”. Whenever we find
a matching WSD translation, we mark the whole
chunk on the English side as consumed.

The following tasks are done for each rule that is Finally, we compute the feature values for the
considered during decoding: rule. The featuré’,s4(t | s) is the sum of the costs

) ) ) _ (according to the WSD model) of all the matched
¢ identify Chinese words to suggest ”a”SIat'on?ranslations, and the featutety,,., is the sum of

5 Incorporating WSD during Decoding

for the lengths of all the matched translations.
e match suggested translations against the En-Figure 1 shows the pseudocode for the rule scor-
glish side of the rule ing algorithm in more detail, particularly with re-
gards to resolving conflicts between overlapping
e compute features for the rule matches. To illustrate the algorithm given in Figure

The WSD i abl di lati 1, consider Rule (2). Hereafter, we will use symbols
c system Is able to predict trans at|0n§o represent the Chinese and English words in the

only for a subset_of _Chme;e W(_)rds or phrase?ule: c1, co, andes will represent the Chinese words
Hence, we must first identify which parts of the‘.%,, “ A" and "%l respectively. Similarlygy, e
Chinese side of the rule have suggested translatioggs 6’4 anéle5 will represent the English wor’o@o’
available. Here, we consider substrings of length ’ev’ery month andto respectively. Hence RL,J|e
to two, and we give priority to longer substrings. (2’) has two chunkse e; andese,es. When the; rule
Next, we want to know, for each Chinese sub:

i idered. whether the WSD : is extracted from the parallel corpus, it has these
string considered, whether the W system Su%’lignments between the words of its Chinese and
ports the Chinese-English translation represented

%gllsh pOftiOﬂ: {01—63,62—64,03—61 ,03—62,63—65},

the rule. If the rule is finally chosen as part of th%hich means that, is aligned toes, ¢ is aligned to
best derivation for translating the Chinese sentence, '

then all Fhe words in the Englls_h side of the rule wil YIn order to check this requirement, we extended Hiero to
appear in the translated English sentence. Henaeake word alignment information available to the decoder.
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Input: ruleR considered during decoding with its own associated r
L. = list of symbols in Chinese portion &
WSDcost =0
i=1
while i < len(L.):
¢; =ith symbol inL.
if ¢; is a Chinese word (i.e., not a non-terminal symbol):
seenChunk # /I seenChunk is a global variable and is passed by reference to matchWSD
if (¢; is not the last symbol i) and ¢;+1 is a terminal symbol): thea; ;1 =(i+1)th symbol inL., elsec;+1 = NULL
if (ci+1!=NULL) and (c;, c;+1) as asingle unithas WSD translations:
WSD. = set of WSD translations foe{, c;+1) as a single unit with context-dependent probabilities
WSDcost = WSDcost + matchWSB( W S D., seenChunk)
WSDcost = WSDcost + matchWS8y.., WS D., seenChunk)
i=i+1
else:
WSD. = set of WSD translations far; with context-dependent probabilities
WSDcost = WSDcost + matchWSB&( WS D., seenChunk)
i=i+1
costr = costr + WSDcost

matchWSD¢, WS D., seenChunk):
/I seenChunk is the set of chunksR®élready examined for possible matching WSD translations
cost=0
ChunkSet = set of chunks Raligned toc
for chunk; in ChunkSet:
if chunk; notin seenChunk:
seenChunk = seenChunk{ chunk; }
Echunk; = set of English words irhunk; aligned toc
Candidatesq =0
for wsdi in WSD,:
if (wsdy, is sub-sequence ehunk;) and sd;, contains at least one word Echunkj)
Candidate,sq = Candidatesq U { wsdy }
wsdpest = best matchingranslation inCandidate.,sq againstchunk;
cost = cost + costByWSDfeatures{d,.:) // costByWSDfeatures sums up the cost of the two WSD features
return cost

Figure 1: WSD translations affecting the cost of a feleonsidered during decoding.

e4, andcs is aligned toey, eo, andes. Although all  for ¢, which is aligned to only one churdgeses.
words are aligned here, in general for a rule, some éfowever, since this chunk has already been exam-
its Chinese or English words may not be associatéded byc; with which it is considered as a phrase, no
with any alignments. further matching is done far,. Next, matchWSDs
invoked fores, which is aligned to both chunks &

The English phrases “go to” and “to” are among the

ing the English phrase “every monthiatchWSD ist of translations proposed by the WSD system for
will first be invoked fore;, which is aligned to only <3’ and they are eventually chosen as the best match-

one chunkeseqes via its alignment withe;. Since Y translations for the chunkge; andeseses, re-

“every month” is a sub-sequence of the chunk anapectlvely.
also contains the words (“every”), it is noted as

a candidate translation. Later, it is determined that
the most number of words any candidate translatioAs mentioned, our experiments were on Chinese to
has is two words. Since among all the 2-word candinglish translation. Similar to (Chiang, 2005), we
date translations, the translation “every month” hasained the Hiero system on the FBIS corpus, used
the highest translation probability as assigned by tiiee NIST MT 2002 evaluation test set as our devel-
WSD classifier, it is chosen as the best matchingpment set to tune the feature weights, and the NIST
translation for the chunkmatchWShDs then invoked MT 2003 evaluation test set as our test data. Using
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System BLEU-4 Individual n-gram precisions
1
Hiero 29.73 74.73| 40.14 | 21.83| 11.93
Hiero+WSD | 30.30 | 74.82| 40.40| 22.45| 12.42

Table 1: BLEU scores

Features
System P (e) | P(y]a) T Pla]y) | Pu(y]a) | Puw(a]y) | Ptypnr Glue Ptyword | Puwsd(t]s) | Ptywsd
Hiero 0.2337 | 0.0882 | 0.1666 | 0.0393 0.1357 | 0.0665 | —0.0582| —0.4806 - -
Hiero+WSD | 0.1937 | 0.0770 | 0.1124 | 0.0487 0.0380 | 0.0988 | —0.0305| —0.1747| 0.1051 | —0.1611

Table 2: Weights for each feature obtained by MERT training. The first eight features are those used by
Hiero in (Chiang, 2005).

the English portion of the FBIS corpus and the Xin6.2 Hiero+WSD Results

hua portion of the Gigaword corpus, we trained a t”(’y_{\/e then added the WSD features of Section 3.1 into

gram language model using the SRI Language Mo liero and reran the experiment. The weights ob-

elling Toolkit (Stolcke, 2002). Following (Chiang, tained by MERT are shown in the raviero+WSD

2905.)' we used th_e version 11a NIST BLEU SCFIpr Table 2. We note that a negative weight is learnt
with its default settings to calculate the BLEU scores . Ptyyeq. This means that in general, the model

(I::ﬂ?ﬁgicﬁ:l”Vigggigiseg Zn case-insensitive prefers grammar rules having chunks that matches

9 i g]: q z i ' h FBISWSD translations. This matches our intuition. Us-
Irst, we per ormed wor alignment on the ing the weights obtained, we translated the test sen-

parallel corpus using GIZA++ (Och and Ney, 2000)tences and obtained a BLEU score 30.3Q as

in_ bOt_h directions. The vyord glignmer_lts of bothshown in the ronHiero+WSDof Table 1. The im-
dlrect|ons are.then C?”?b'”ed |”nto a single set ’C_’grovement of 0.57 is statistically significant@at
alignments using the “diag-and mthod of Koeh .05 using the sign-test as described by Collins et al.
et al. (2003). Based on these alignments, sy 2005), with 374 {-1), 318 (1) and 227 (0). Us-
chronous_CFQ rulgs are thep extracted from the Colﬁg the bootstrap-sampling test described in (Koehn,
pus. While Hlero_ls_ extracting grammar rules, We2004b), the improvement is statistically significant
gathered WSD t,ra'”'”g data by following the procehtp < 0.05. Though the improvement is modest, it is
dure described in section 4. statistically significant and this positive result is im-
portant in view of the negative findings in (Carpuat
and Wu, 2005) that WSD does not help MT. Fur-
Using the MT 2002 test set, we ran the minimumthermore, note that HierdWSD has highen-gram
error rate training (MERT) (Och, 2003) with the precisions than Hiero.

decoder to tune the weights for each feature. The

weights obtained are shown in the rddiero of 7  Apalysis

Table 2. Using these weights, we run Hiero’s de-

coder to perform the actual translation of the MTideally, the WSD system should be suggesting high-
2003 test sentences and obtained a BLEU score @fiality translations which are frequently part of the
29.73, as shown in the roldiero of Table 1. Thisis reference sentences. To determine this, we note the
higher than the score of 28.77 reported in (Chianget of grammar rules used in the best derivation for
2005), perhaps due to differences in word segmenttianslating each test sentence. From the rules of each
tion, etc. Note that comparing with the MT systemdest sentence, we tabulated the set of translations
used in (Carpuat and Wu, 2005) and (Cabezas apgioposed by the WSD system and check whether
Resnik, 2005), the Hiero system we are using repghey are found in the associated reference sentences.
resents a much stronger baseline MT system uponOn the entire set of NIST MT 2003 evaluation test
which the WSD system must improve. sentences, an average of 10.36 translations proposed
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No. of All test sentences +1 from Collins sign-test
words in No. of % match No. of % match
WSD translations| WSD translations used reference| WSD translations used reference
1 7087 77.31 3078 77.68
2 1930 66.11 861 64.92
3 371 43.13 171 48.54
4 124 26.61 52 28.85

Table 3: Number of WSD translations used and proportion that matches against respective reference sen-
tences. WSD translations longer than 4 words are very sparse (less than 10 occurrences) and thus they are
not shown.

by the WSD system were used for each sentence. be unable to obtain more aid and other conces-
When limited to the set of 374 sentences which  sions.

were judged by the Collins sign-test to have better _ . e

translations from HiereWSD than from Hiero, a Here, the Chinese wordsi% (13" are not trans-

higher number (11.14) of proposed translations wefgt€d by Hiero atall. By providing the correct trans-
used on average. Further, for the entire set of tetion of “unable to obtaif for * _ﬁﬁ‘/% B, the
sentences, 73.01% of the proposed translations dfgnslation output of HiereWSD is more complete.
found in the reference sentences. This increased to™ S€cond way in which WSD helps is by correct-
a proportion of 73.22% when limited to the set of9 @ preV|.oust incorrect translation. For (?:Z(ample,
374 sentences. These figures show that having mof@ the Chinese sentence “.... 1 & B & R ]\
and higher-quality proposed translations contributel - ---"» the WSD system helps to correct Hiero's
to the set of 374 sentences being better translatioR§9inal translation by providing the correct transla-
than their respective original translations from Hi-‘t‘Ion Ef “all ethnic groups for the Chinese phrase
ero. Table 3 gives a detailed breakdown of these% JR":
figures according to the number of words in each
proposed translation. For instance, over all the test
sentences, the WSD module gave 7087 translations
of single-word length, and 77.31% of these trans- e Hiero+WSD: and people of
lations match their respective reference sentences. all ethnic groupsacross the country, ...
We note that although the proportion of matching 2-
word translations is slightly lower for the set of 374 We also looked at the set of 318 sentences that
sentences, the proportion increases for translatiol§re judged by the Collins sign-test to be worse
having more words. translations. We found that in some situations,
After the experiments in Section 6 were comHi€ro+WSD has provided extra appropriate English

pleted, we visually inspected the translation outpd"ﬁ’ords’ but those particular words are not used in the

of Hiero and Hiera-WSD to categorize the ways in 'éférence sentences. An interesting example is the
i i YEE. W) =
which integrating WSD contributes to better transifansiation of the Chinese sentend@ i /M i

lations. The first way in which WSD helps is Whenjt% 1o W5 f JLiE s 8 2 80

it enables the integrated Hier&VSD system to out-

put extra appropriate English words. For example,

the translations for the Chinese sentence#i.H

fin [ES TN ] B LE S F £ % e Hiero+WSD: Australian foreign minister said

HAth 125 - ” are as follows. that North Korea bad behavior will be
unable to obtainmore aid

Hiero: ..., and people of all nationalities
across the country, ...

e Hiero: Australian foreign minister said that
North Korea bad behavior will be more aid

e Hiero: ... or other bad behavior”, will be more
aid and other concessions. This is similar to the example mentioned earlier. In
this case however, those extra English words pro-
e Hiero+WSD:...or other bad behavior ", will vided by HieretWSD, though appropriate, do not
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result in moren-gram matches as the reference serp. Chiang. 2005. A hierarchical phrase-based model for sta-
tences used phrases suchwail‘hot gain”, “ will not tistical machine translation. IRroc. of ACLO5 pages 263—
get, etc. Since the BLEU metric is precision based,

the longer sentence translation by HieMYSD gets D. Chiang. 2007. Hierarchical phrase-based translatioo.

a lower BLEU score instead appear in Computational Linguistic83(2).

M. Collins, P. Koehn, and I. Kucerova. 2005. Clause restruc-
8 Conclusion turing for statistical machine translation. Rroc. of ACL0%
pages 531-540.

We have shown that WSD improves the tranSIGU. Germann. 2003. Greedy decoding for statistical machine
tion performance of a state-of-the-art hierarchical translation in almost linear time. Proc. of HLT-NAACLO3
phrase-based statistical MT system and this im- Pages 72-79.

provement is statistically significant. We have als®. koehn, F. J. Och, and D. Marcu. 2003. Statistical phrase-
demonstrated one way to integrate a WSD system based translation. IRroc. of HLT-NAACLO3pages 48-54.

into an MT system without introducing any rulesp, koehn. 2003Noun Phrase TranslationPh.D. thesis, Uni-
that compete against existing rules, and where the versity of Southern California.

feature-weight tuning and decoding place the WSIB koehn. 2004a. Pharaoh: A beam search decoder for phrase-
system on an equal footing with the other model based statistical machine translation models. Pinc. of
components. For future work, an immediate step AMTAO4 pages 115-124.

would be for the WSD classifier to provide trans-. Koehn. 2004b. Statistical significance tests for machine
lations for longer Chinese phrases. Also, different translation evaluation. liProc. of EMNLP04 pages 388—
alternatives could be tried to match the translations

provided by the WSD classifier against the chunk¥ K. Lee and H. T. Ng. 2002. An empirical evaluation of

of rules. Finally, besides our proposed approach of E?S%ﬂ%?gfaﬁgﬁTﬁersrggldolgeé&‘,'\l”fp%'gggélngi{cirdr‘é"_ord sense
integrating WSD into statistical MT via the intro-

duction of two new features, we could explore othef:
alternative ways of integration.

M. Il Lewis and R. E. Stearns. 1968. Syntax-directed trans-
duction. Journal of the ACM15(3):465-488.

D. Marcu and W. Wong. 2002. A phrase-based, joint proba-
bility model for statistical machine translation. Rroc. of
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Abstract

We present a novel approach to the word
sense disambiguation problem which
makes use of corpus-based evidence com-
bined with background knowledge. Em-
ploying an inductive logic programming
algorithm, the approach generates expres-
sive disambiguation rules which exploit
several knowledge sources and can also
model relations between them. The ap-
proach is evaluated in two tasks: identifica-
tion of the correct translation for a set of
highly ambiguous verbs in English-
Portuguese translation and disambiguation
of verbs from the Senseval-3 lexical sam-
ple task. The average accuracy obtained for
the multilingual task outperforms the other
machine learning techniques investigated.
In the monolingual task, the approach per-
forms as well as the state-of-the-art sys-
tems which reported results for the same
set of verbs.

1 Introduction
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to successful language understanding since the ear-
ly 1960's and many techniques have been pro-
posed to solve the problem. Recent approaches
focus on the use of various lexical resources and
corpus-based techniques in order to avoid the sub-
stantial effort required to codify linguistic know-
ledge. These approaches have shown good results;
particularly those using supervised learning (see
Mihalcea et al., 2004 for an overview of state-of-
the-art systems). However, current approaches rely
on limited knowledge representation and modeling
techniques: traditional machine learning algorithms
and attribute-value vectors to represent disambigu-
ation instances. This has made it difficult to exploit
deep knowledge sources in the generation of the
disambiguation models, that is, knowledge that
goes beyond simple features extracted directly
from the corpus, like bags-of-words and colloca-
tions, or provided by shallow natural language
tools like part-of-speech taggers.

In this paper we present a novel approach for
WSD that follows a hybrid strategy, i.e. combines
knowledge and corpus-based evidence, and em-
ploys a first-order formalism to allow the represen-
tation of deep knowledge about disambiguation
examples together with a powerful modeling tech-
nique to induce theories based on the examples and

Word Sense Disambiguation (WSD) is concerneghckground knowledge. This is achieved using
with the identification of the meaning of ambi-inguctive Logic Programming (ILP) (Muggleton,
guous words in context. For example, among thyg1), which has not yet been applied to WSD.
possible senses of the verb “run” are “to move fast g hypothesis is that by using a very expres-
by using one’s feetand “to direct or control”. sjye representation formalism, a range of (shallow
WSD can be useful for many applications, includang deep) knowledge sources and ILP as learning
ing information retrieval, information extractiontechnique, it is possible to generate models that,
and me_lchine translation. Sense_ambiguity has begRen compared to models produced by machine
recognized as one of the most important obstacl%%lming algorithms conventionally applied to
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WSD, are both more accurate for fine-grained disery and knowledge sources.

tinctions, and “interesting”, from a knowledge ac- In the remainder of this paper we first present

quisition point of view (i.e., convey potentiallyrelated approaches to WSD and discuss their limi-

new knowledge that can be easily interpreted kgtions (Section 2). We then describe some basic

humans). concepts on ILP and our application of this tech-
WSD systems have generally been more sunique to WSD (Section 3). Finally, we described

cessful in the disambiguation of nouns than otheur experiments and their results (Section 4).

grammatical categories (Mihalcea et al., 2004). A

common approach to the disambiguation of nour’s Related Work

has been to consider a wide context around the -~
ambiguous word and treat it as a bag of words ¥/SD approaches can be classified as (a) know-

limited set of collocates. However, disambiguatiotfdge-based approaches, which make use of lin-
of verbs generally benefits from more specifiguistic knowledge, manually coded or extracted
knowledge sources, such as the verb's relation @M lexical resources (Agirre and Rigau, 1996;
other items in the sentence (for example, by ank€sk 1986); (b) corpus-based approaches, which
lysing the semantic type of its subject and objectj?@ke use of shallow knowledge automatically ac-
Consequently, we believe that the disambiguatiditired from corpus and statistical or machine
of verbs is task to which ILP is particularly well-I€arning algorithms to induce disambiguation
suited. Therefore, this paper focuses on the disafiodels (Yarowsky, 1995; Schiitze 1998); and (c)
biguation of verbs, which is an interesting tasRYPrid approaches, which mix characteristics from
since much of the previous work on WSD has col€ two other approaches to automatically acquire
centrated on the disambiguation of nouns. disambiguation models from corpus supported by
WSD is usually approached as an independéefftguistic knowledge (Ng and Lee 1996; Stevenson
task, however, it has been argued that differeAf'd Wilks, 2001). _
applications may have specific requirements (Res- Hybrid approaches can combine advantages
nik and Yarowsky, 1997). For example, in machinB0om both strategies, potentially yielding accurate
translation, WSD, ofranslation disambiguatigris and comprehensive systems, particularly when
responsible for identifying the corretanslation deep knowledge is explored. Linguistic knowledge
for an ambiguous source word. There is not alway® ayallable in electronic resources suitable for
a direct relation between the possible senses foPgctical use, such as WordNet (Fellbaum, 1998),
word in a (monolingual) lexicon and its transladictionaries and parsers. However, the use of this
tions to a particular language, so this representdformation has been hampered by the limitations
different task to WSD against a (monolinguale the modeling techniques that have been ex-
lexicon (Hutchins and Somers, 1992). Although ilored so far: using deep sources of domain know-
has been argued that WSD does not yield benl@,d_ge is be_yond the capabilities of s_,uch techniques,
translation quality than a machine translatioWhich are in general based on attribute-value vec-
system alone, it has been recently shown that!@ representations. .
WSD module that is developed following specific Attribute-value vectors consist of a set of
multilingual requirements can significantly im-attributes intended to represent properties of the
prove the performance of a machine translatigf*@mples. Each attribute has a type (its name) and
system (Carpuat et al., 2006). a ;lngle value for a given example. Therefo_re,
This paper focuses on the application of our a@ttrlbute-value vectors have_ the same expressive-
proach to the translation of verbs in English to PoPi€SS as propositional formalisms, that is, they only
tuguese translation, specifically for a set of 18llow the representation of atomic propositions and
mainly light and highly ambiguous verbs. We als§onstants. These are the _represenftatlons used by
experiment with a monolingual task by using th&10St of the machine learning algorithms conven-
verbs from Senseval-3 lexical sample task. wigonally employed to WSD, for example Naive
explore knowledge from 12 syntactic, semantiBayes qnd deC|S|o.n-trees'. Flrst-order logic, a more
and pragmatic sources. In principle, the proposéPressive formalism which is employed by ILP,
approach could also be applied to any lexical dil/lows the representation of variables and n-ary
ambiguation task by customizing the sense repo®tedicates, i.e., relational knowledge.
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In the hybrid approaches that have been e® A hybrid relational approach to WSD
plored so far, deep knowledge, like selectional pre-
ferences, is either pre-processed into a vecttt what follows we provide an introduction to ILP
representation to accommodate machine learnigéd then outline how it is applied to WSD by pre-
algorithms, or used in previous steps to filter otenting the sample corpus and knowledge sources
possible senses e.g. (Stevenson and Wilks, 200¢§ed in our experiments.
This may cause information to be lost and, in addj:
tion, deep knowledge sources cannot interact in the
learning process. As a consequence, the modé@sluctive Logic Programming (Muggleton, 1991)
produced reflect only the shallow knowledge thaémploys techniques from Machine Learning and
is provided to the learning algorithm. Logic Programming to build first-order theories

Another limitation of attribute-value vectors isfrom examples and background knowledge, which
the need for a unique representation for all the eare also represented by first-order clauses. It allows
amples: one attribute is created for every knowthe efficient representation of substantial know-
edge feature and the same structure is used lédge about the problem, which is used during the
characterize all the examples. This usually resulisarning process, and produces disambiguation
in a very sparse representation of the data, givemdels that can make use of this knowledge. The
that values for certain features will not be availablgeneral approach underlying ILP can be outlined
for many examples. The problem of data sparsas follows:
ness increases as more knowledge is exploited andGiven:
this can cause problems for the machine learning - a set of positive and negative examites
algorithms. EfOF

A final disadvantage of attribute-value vectors - a predicate specifying the target relation to
is that equivalent features may have to be boundpd learned
to distinct identifiers. An example of this occurs - knowledgeK of the domain, described ac-

when the syntactic relations between words in @rding to a language,, which specifies which
sentence are represented by attributes for each pggedicates) can be part of the definition pf

sible relation, sentences in which there is more The goal is:to induce a hypothesis (or theory)
than one instantiation for a particular grammatic@ for p, with relation toE and K, which covers

role cannot be easily represented. For example, thest of thee* without covering the', i.e.,K Oh
sentence “John and Anna gave Mary a present"c+ ondK Ohk E- T

contains a coordinate subject and, since each fea-

ture requires a unique identifier, two are required/e use the Aleph ILP system (Srinivasan, 2000),

(subj-verby,, subp-verh;). These will be treated aswhich provides a complete inference engine and

two independent pieces of knowledge by the learsan be customized in various ways. The default

ing algorithm. inference engine induces a theory iteratively using
First-order formalisms allow a generic predicaté¢he following steps:

to be created for every possible syntactic role, re- 1. One instance is randomly selected to be gen-

lating two or more elements. For exampleralized.

has_subject(verb, subjectvhich could then have 2. A more specific clause (the bottom clause) is

two instantiations: has_subject(give, johnxand built using inverse entailment (Muggleton, 1995),

has_subject(give, anna)Since each example isgenerally consisting of the representation of all the

represented independently from the others, the d&@owledge about that example.

sparseness problem is minimized. Therefore, ILP 3. A clause that is more generic than the bottom

seems to provide the most general-purpose framdause is searched for using a given search (e.g.,

work for dealing with such data: it does not suffebest-first) and evaluation strategy (e.g., number of

from the limitations mentioned above since therpositive examples covered).

are explicit provisions made for the inclusion of 4. The best clause is added to the theory and the

background knowledge of any form, and the reprexamples covered by that clause are removed from

sentation language is powerful enough to captutke sample set. Stop if there are more no examples

contextual relationships. in the training set, otherwise return to step 1.
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3.2 Sample data Mxpost (Ratnaparkhi, 1996), respectivelly. Addi-
tionally, proper nouns identified by the tagger were

This approach was evaluated using two scenari Sl . X o
! o . aced by a single identifieproper_nouf and
(1) an English-Portuguese multilingual setting a _rgnouns yreplace?d by ider?tri(figrs_ rep?esenting

dressing 10 very frequent and problematic ver :
selected in a previous study (Specia et. al., 200 ;asses of pronounefative_pronounetc.).

and (2) an English setting consisting of 32 verbsg 3 Knowledge sources

from Senseval-3 lexical sample task (Mihalcea et. ,
al. 2004). We now describe the background knowledge

For the first scenario a corpus containing 5080Urces used by the learning algorithm, having as
sentences for each of the 10 verbs was constructél,8xample sentence (1), in which the word “com-
The text was randomly selected from corpora d¢f9” is the target verb being disambiguated.
different domains and genres, including literary _ _ _ _
fiction, Bible, computer science dissertation ab- (1) “If there is such a thing as reincarnation, |
stracts, operational system user manuals, newspa- Would not mindcoming back as a squirrel”.
pers and European Parliament proceedings. This o
corpus was automatically annotated with the tran§S1. Bag-of-words consisting of 5 words to the
lation of the verb using a tagging system based &ght and left of the verb (excluding stop words),
parallel corpus, statistical information and transigépresented using definitions of the form
tion dictionaries (Specia et al., 2005), followed bj?as_bagsnt, worg:

a manual revision. For each verb, the sense reposi-nas_bagsnt, ming.

tory was defined as the set of all the possible trans- has_bagsnt, noj. ..

lations of that verb in the corpus. 80% of the ] o ) )
corpus was randomly selected and used for traifS2- Frequent bigrams consisting of pairs of adja-
ing, with the remainder retained for testing. The 168Nt words in a sentence (other than the target
verbs, number of possible translations and the p&ferb) which occur more than 10 times in the cor-
centage of sentences for each verb which use tPéS: represented byhas_bigram(snt, woxd
most frequent translation are shown in Table 1. WOrch):

For the monolingual scenario, we use the sense Nas_bigram(snt back, as).
tagged corpus and sense repositories provided for h@s_bigram(snf such, a). ...

verbs in Senseval-3. There are 32 verbs with be- o
tween 40 and 398 examples each. The number fPs- Narrow contextontainings content words to
senses varies between 3 and 10 and the aver&fe right and left of the verb, identified using POS

percentage of examples with the majority (modfds. represented by has_narrovsnt,
frequent) sense is 55%. word_position, worl _
has_narrow(snt 1st_word_left, mind).
Verb |# Translations | Most frequent has_narrow(snt 1st_word_right, back). ...
translation - %
ask 7 53 KS,4. POS tags of 5 words to the right and left of
come 29 36 the verb, represented by has_poésnt,
get 41 13 word_position, pos
give 22 72 has pos(snf 1st_word_left, nn).
go 30 53 has pos(snt 1*' word_right, rb). ...
live 8 66
look 12 41 KSs. 11 collocations of the verb: 1st preposition to
make 21 9 the right, 1st and 2nd words to the left and right,
take 32 25 1st noun, 1st adjective, and 1st verb to the left and
tell 8 66 right. These are represented using definitions of the

Table 1. Verbs and possible senses in our corpuss,rm has collocatiofsnt, type, collocation

, has_collocatiofsnt, 1st_prep_right, bagk
Both corpora were lemmatized and part-of-speech collocatiogsnt, 1st_noun_left, mind..

(POS) tagged using Minipar (Lin, 1993) and
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KSe. Subject and object of the verb obtained usingbtained using a machine translation system that
Minipar and represented byas_re(snt, type, would first translate the non-ambiguous words in

word): the sentence. In our experiments it was extracted
has_rel(snt, subject, i). using a parallel corpus and represented using defi-
has_rel(snt, object, nil). ... nitions of the form has_bag_trn&nt, portu-
guese_worj

KS;. Grammatical relations not including the tar- has_bag_trns(spntcoelho).

get verb also identified using Minipar. The rela- has_bag_trns(sitreincarnacéao). ...

tions (verb-subject, verb-object, verb-modifier,

subject-modifier, and object-modifier) occurringKS;,. Narrow contextonsisting of 5 collocations

more than 10 times in the corpus are representefl the verb in the Portuguese translation, which

by has_related_pair(snt, wogdword,): take into account the positions of the words,

has_related_pair(sptthere, be). ... represented by has_narrow_trnsnt,
word_position, portuguese_wagrd

KSg. The sense with the highest count of overlap- has_narrow_trnésnt, 1st word_right, como

ping words in its dictionary definition and in the has_narrow_trngnt, 2nd_word_right, um ...

sentence containing the target verb (excluding stop

words) (Lesk, 1986), represented byn addition to background knowledge, the system

has_overlappinsentence, translation learns from a set of examples. Since all knowledge
has_overlapping(satvoltar). about them is expressed as background knowledge,

their representation is very simple, containing only

KSq. Selectional restrictions of the verbs definethe sentence identifier and the sense of the verb in

using LDOCE (Procter, 1978). WordNet is usethat sentence, i.sense(snt, sense)

when the restrictions imposed by the verb are not sense(snjvoltar).

part of the description of its arguments, but can be sense(satir). ...

satisfied by synonyms or hyperonyms of those ar-

guments. A hierarchy of feature types is used ®Based on the examples, background knowledge

account for restrictions established by the verb thahd a series of settings specifying the predicate to

are more generic than the features describing te learned (i.e., the heads of the rules), the predi-

arguments in the sentence. This information isates that can be in the conditional part of the

represented by definitions of the formatis- rules, how the arguments can be shared among dif-

fy_restrictior{snt, rest_subject, rest_objgct ferent predicates and several other parameters, the
satisfy_restrictio(snt, [humad, nil). inference engine produces a set of symbolic rules.
satisfy_restrictiofsnt, [animal, humah nil). Figure 1 shows examples of the rules induced for

the verb “to come” in the multilingual task
KS;-KSy can be applied to both multilingual and
monolingual disambiguation tasks. The following
knowledge sources were specifically designed f
multilingual applications:

Rule_1.sense(A, voltar) :-

has_collocation(A, 1st_prep_right, back).
Rule_2.sense(A, chegar) :-
) ) » .| has_rel(A, subj, B), has_bigram(A, today, B),
KSio. Phrasal verbs in the sentence identified usil  has bag_trans(A, hoje).
a list extracted from various dictionaries. (Thi{ Rule_3 sense(A, chegar) :-
information was not used in the monolingual tas| satisfy_restriction(A, [animal, human)], [con};
because phrasal constructions are not conside|] has_expression(A, ‘come at’).
verb senses in Senseval data.) These ¢ Rule_4.sense(A, vir):- .
represented by definiions of the form Safisfy_restriction(A, [animate], nil);

has expressident, verbal expressidn (has_rel(A, subj, B),
has IOexprecs(sion(sln't‘co?ne Ft))ack”)().) (has_pos(A, B, nnp); has_pos(A, B, prp))).

KS,.. Five words to the right and left of the targefigure 1. Examples of rules produced for the verb
verb in the Portuguese translation. This could beome” in the multilingual task
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Models learned with ILP are symbolic and can beith three learning algorithms frequently used for
easily interpreted. Additionally, innovative knowl-WSD, which rely on knowledge represented as
edge about the problem can emerge from the rulafribute-value vectors: C4.5 (decision-trees),
learned by the system. Although some rules simplfaive Bayes and Support Vector Machine (SVM)
test shallow features such as collocates, others p#seorder to represent all knowledge sources in
conditions on sets of knowledge sources, includingftribute-value vectors, kSKS;, KSy and KSg
relational sources, and allow non-instantiated ahad to be pre-processed to be transformed into bi-
guments to be shared amongst them by meansnairy attributes. For example, in the case of selec-
variables. For example, in Figure Rule_1 states tional restrictions (K§, one attribute was created
that the translation of the verb in a sentefcgill for each possible sense of the verb and a true/false
be “voltar” (return) if the first preposition to the value was assigned to it depending on whether the
right of the verb in that sentence is “bacRule_2 arguments of the verb satisfied any restrictions re-
states that the translation of the verb will béerring to that sense. Results for each of these algo-
“chegar” (@rrive) if it has a certain subjedB, rithms are also shown in Table 2.
which occurs frequently with the word “today” as a As we can see in Table 2, the accuracy of the
bigram, and if the partially translated sentence cofl-P approach is considerably better than the most
tains the word “hoje” (the translation of “today”).frequent sense baseline and also outperforms the
Rule_3says that the translation of the verb will bether learning algorithms. This improvement is
“chegar” feach if the subject of the verb has thestatistically significant (paired t-test; p < 0.05). As
features “animal” or “human” and the object hagxpected, accuracy is generally higher for verbs
the feature “concrete”, or if the verb occurs in thavith fewer possible translations.
expression “come atRule_4 states that the trans- The models produced by Aleph for all the verbs
lation of the verb will be “vir” (nove towardlif the are reasonably compact, containing 50 to 96 rules.
subject of the verb has the feature “animate” and those models the various knowledge sources
there is no object, or if the verb has a sublfetttat  appear in different rules and all are used. This
is a proper noumfip) or a personal pronoupr). demonstrates that they are all useful for the disam-
biguation of verbs.
4 Experiments and results

Verb | Majori- | C4.5| Naive | SVM | Aleph

To assess the performance of the approach t ty sense Bayes

model produced for each verb was tested on thask 0.68| 0.68/ 082 0.88 0.9
corresponding set of test cases by applying theome 0.46| 057/ 061 0.68 0.73
rules in a decision-list like approach, i.e., retainingget 0.03| 0.25 0.44 0.47 0.49
the order in which they were produced and backingive 0.72] 071 074 074 074
off to the most frequent sense in the training set {@o 0.49| 061 066 066 0.66
classify cases that were not covered by any of théve 071] 0.72| 064 078 0.8¢
rules. All the knowledge sources were made availlook 048| 0.69] 081 0.83 0.93
able to be used by the inference engine, since prigdake 0.64| 062 060 064 0.68
vious experiments showed that they are all relevan2ke 0.14| 041] 050 051 0.59
(Specia, 2006). In what follows we present the r tell 065| 067 066§ 0.68 082
sults and discuss each task. Average 0.50| 0.59 0.65 0.68 0.74

Table 2. Accuracies obtained by Aleph and other
4.1 Multilingual task learning algorithms in the multilingual task

Table 2 shows the accuracies (in terms of percéfpege results are very positive, particularly if we

tage of corpus instances which were correctly digyngiger the characteristics of the multilingual sce-
ambiguated) obtained by the Aleph model§ario: (1) the verbs addressed are highly ambi-
Results are compared against the accuracy t us; (2) the corpus was automatically tagged and

would be obtained by using the most frequeny, s distinct synonym translations were sometimes
translation in the training set to classify all the ex-

amples of the test set (in the column labeled “M3a-

iorit " E . . The implementations provided by Weka were useckahNe
jority sense”). For comparison, we ran eXpe”meméﬁ/ailable from http://www.cs.waikato.ac.nz/ml/weka/
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used to annotate different examples (these countaasmall number of rules (from 6, for verbs with

different senses for the inference engine); and (8w examples, to 88) and all knowledge sources

certain translations occur very infrequently (just are used across different rules and verbs.

or 2 examples in the whole corpus). It is likely that In general, results from both multilingual and

a less strict evaluation regime, such as one whiahmonolingual tasks demonstrate that the hypothesis

takes account of synonym translations, would rgut forward in Section 1, that ILP’s ability to gen-

sult in higher accuracies. erate expressive rules which combine and integrate
It is worth noticing that we experimented with aa wide range of knowledge sources is beneficial for

few relevant parameters for both Aleph and th&/SD systems, is correct.

other learning algorithms. Values that yielded the

best average predictive accuracy in the training Conclusion

sets were assumed to be optimal and used to eva-

luate the test sets. We have introduced a new hybrid approach to
WSD which uses ILP to combine deep and shallow
4.2 Monolingual task knowledge sources. ILP induces expressive disam-

Table 3 shows the average accuracy obtained Elifuation models which include relations between
Aleph in the monolingual task (Senseval-3 verh owledge sources. It is an interesting approach to

T . L . Isearning which has been considered promising for
with fine-grained sense distinctions and using ths?everal applications in natural language processin
evaluation system provided by Senseval). It alsg bp guage p 9

shows the average accuracy of the most freque?glgjI has been explored for a few of them, namely

sense and accuracies reported on the same se OfS-tagging, grammar acquisition and semantic
verbs by the best systems submitted by the sit arsing (Cussens et al., 1997; Mooney, 1997). This

which participated in this task. Syntalex-3 (Mo? gper has demonstrated that ILP also yields good

hammad and Pedersen, 2004) is based on an %ens_ults for WSD, in particular for the disambigua-
- : ion of verbs.
semble of bagged decision trees with narrow We plan to further evaluate our approach for

context part-of-speech features and blgram8ther sets of words, including other parts-of-speech

CLaCl (Lamjiri et al.,, 2004) uses a Naive Bayef':,o allow further comparisons with other approach-

algorithm with a dynamically adjusted context
. . es. For example, Dang and Palmer (2005) also use
window around the target word. Finally, MC'WSDa rich set of features with a traditional learning al-

(Ciaramita and Johnson, 2004) is a multi-class a’_g%rithm (maximum entropy). Currently, we are

eraged perceptron classifier_using syntactic a aluating the role of the WSD models for the 10
e soneeucy oSl of the mullingual task in an Englsh

; P y r]ﬂ’a&rtuguese statistical machine translation system.
trained on WordNet glosses.

System % Average accuracy References
Majority sense 0.5¢ Eneko Agirre and German Rigau. 1996. Word Sense
Syntalex-3 0.67 Disambiguation using Conceptual Densi®roceed-
CLaC1 0.67 ings of the 15th Conference on Computational Lin-
MC-WSD 0.72 guistics (COLING-96)Copenhagen, pages 16-22.
Aleph 0.72

- - Marine Carpuat, Yihai Shen, Xiaofeng Yu, and Dekai
Table 3. Accuracies obtained by Aleph and other WU. 2006. Toward Integrating Word Sense and Enti-

approaches in the monolingual task ty Disambiguation into Statistical Machine Transla-
_ tion. Proceedings of the Third International

As we can see in Table 3, results are very encour-workshop on Spoken Language Translatiéyoto,

aging: even without being particularly customized pages 37-44.

for this monolingual task, the ILP approach SlgnlfM ssimiliano Ciaramita and Mark Johnson. 2004. Mul-

icantly outperforms the majority sense baseline an ti-component Word Sense Disambiguati®noceed-
performs as well as the state-of-the-art system re-jngs of Senseval-3: 3rd International Workshop on

porting results for the same set of verbs. As with the Evaluation of Systems for the Semantic Analysis
the multilingual task, the models produced contain of Text Barcelona, pages 97-100.
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Abstract

When a word sense disambiguation (WSD)
system is trained on one domain but ap-
plied to a different domain, a drop in ac-
curacy is frequently observed. This high-
lights the importance of domain adaptation
for word sense disambiguation. In this pa-
per, we first show that an active learning ap-
proach can be successfully used to perform
domain adaptation of WSD systems. Then,
by using the predominant sense predicted by
expectation-maximization (EM) and adopt-
ing a count-merging technique, we improve
the effectiveness of the original adaptation
process achieved by the basic active learn-
ing approach.

Introduction

}@comp.nus.edu.sg

contains sentences from two different corpora,
namely Brown Corpus (BC) and Wall Street Jour-
nal (WSJ). They found that training a WSD system
on one part (BC or WSJ) of the DSO corpus, and
applying it to the other, can result in an accuracy
drop of more than 10%, highlighting the need to per-
form domain adaptation of WSD systems to new do-
mains. Escudero et al. (2000) pointed out that one
of the reasons for the drop in accuracy is the dif-
ference in sense priors (i.e., the proportions of the
different senses of a word) between BC and WSJ.
When the authors assumed they knew the sense pri-
ors of each word in BC and WSJ, and adjusted these
two datasets such that the proportions of the differ-
ent senses of each word were the same between BC
and WSJ, accuracy improved by 9%.

In this paper, we explore domain adaptation of
WSD systems, by adding training examples from the
new domain as additional training data to a WSD

In natural language, a word often assumes differegystem. To reduce the effort required to adapt a
meanings, and the task of determining the corre/SD system to a new domain, we employ an ac-
meaning, or sense, of a word in different contextéve learning strategy (Lewis and Gale, 1994) to se-
is known as word sense disambiguation (WSD). Tict examples to annotate from the new domain of
date, the best performing systems in WSD use igterest. To our knowledge, our work is the first to
Corpus-based, Supervised |earning approach. witse active Iearning for domain adaptation for WSD.
this approach, one would need to collect a text co similar work is the recent research by Chen et al.
pus, in which each ambiguous word occurrence @006), where active Iearning was used SUCCESSfU”y
first tagged with its correct sense to serve as trainirf§ reduce the annotation effort for WSD of 5 English
data. verbs usingoarse-grainecekvaluation. In that work,
The reliance of supervised WSD systems on anthe authors only used active learning to reduce the
notated corpus raises the important issue of dannotation effort and did not deal with the porting of
main dependence. To investigate this, Escude®WSD system to a new domain.
et al. (2000) and Martinez and Agirre (2000) con- Domain adaptation is necessary when the train-
ducted experiments using the DSO corpus, whicimg and target domains are different. In this paper,
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we perform domain adaptation for WSD of a set ofts BC and WSJ parts to investigate the domain de-
nouns usingine-grainedevaluation. The contribu- pendence of several WSD algorithms. Following the
tion of our work is not only in showing that active setup of (Escudero et al., 2000), we similarly made
learning can be successfully employed to reduce these of the DSO corpus to perform our experiments
annotation effort required for domain adaptation iron domain adaptation.
afine-grainedWSD setting. More importantly, our  Among the few currently available manually
main focus and contribution is in showing how wesense-annotated corpora for WSD, the SEMCOR
can improve the effectiveness of a basic active leariSC) corpus (Miller et al., 1994) is the most widely
ing approach when it is used for domain adaptatiomused. SEMCOR is a subset of BC which is sense-
In particular, we explore the issue of different sensannotated. Since BC is a balanced corpus, and since
priors across different domains. Using the senggerforming adaptation from a general corpus to a
priors estimated by expectation-maximization (EM)more specific corpus is a natural scenario, we focus
the predominant sense in the new domain is pren adapting a WSD system trained on BC to WSJ in
dicted. Using this predicted predominant sense arttis paper. Henceforth, out-of-domain data will re-
adopting a count-merging technique, ingrovethe fer to BC examples, and in-domain data will refer to
effectiveness of the adaptation process. WSJ examples.

In the next section, we discuss the choice of cor-
pus and nouns used in our experiments. We theh2 Choice of Nouns

introduce active learning for domain adaptation, folThe WordNet Domains resource (Magnini and
lowed by count-merging. Next, we describe an EM¢Cavaglia, 2000) assigns domain labels to synsets in
based algorithm to estimate the sense priors in thgordNet. Since the focus of the WSJ corpus is on
new domain. Performance of domain adaptation ugysiness and financial news, we can make use of
ing active learning and count-merging is then prewordNet Domains to select the set of nouns having
sented. Next, we show that by using the predomyt least one synset labeled with a business or finance
inant sense of the target domain as predicted glated domain label. This is similar to the approach
the EM-based algorithm, we improve the effectivetaken in (Koeling et al., 2005) where they focus on
ness of the adaptation process. Our empirical resuli@termining the predominant sense of words in cor-
show that for the set of nouns which have differenpora drawn from finance versus sports domains.
predominant senses between the training and targgénce, we select the subset of DSO nouns that have
domains, we are able to reduce the annotation effogt |east one synset labeled with any of these domain

by 71%. labels:commerceenterprise moneyfinance bank-
_ _ ing, andeconomy This gives a set of 21 nouns:
2 Experimental Setting book businesscenter community condition field,

. . . N figure, houseinterest land, line, moneyneed num-
In this section, we discuss the motivations for choo gure ¢ i . yneed 5
er, order, part, power, society term use value

ing the particular corpus and the set of nouns to con-
9 P P For each noun, all the BC examples are used as

duct our domain adaptation experiments. . L .
P P out-of-domain training data. One-third of the WSJ

2.1 Choice of Corpus examples for each noun are set aside as evaluation

The DSO corpus (Ng and Lee, 1996) contains !Note however that the coverage of the WordNet Domains

ource is not comprehensive, as about 31% of the synsets are
192,800 annotated examples for 121 nouns and ply labeled with “factotum”, indicating that the synset does

verbs, drawn from BC and WSJ. While the BC isnot belong to a specific domain.
built as a balanced corpus, containing texts in var- 225 nouns have at least one synset labeled with the listed

: : P i omain labels. In our experiments, 4 out of these 25 nouns have
lous categories such as religion, politics, humangn accuracy of more than 90% before adaptation (i.e., training

ties, fiction, etc, the WSJ corpus consists primarilgn just the BC examples) and accuracy improvement s less than
of business and financial news. Exploiting the dif1% after all the available WSJ adaptation examples are added

. s additional training data. To obtain a clearer picture of the
ference in coverage between these two corpora, aptation process, we discard these 4 nouns, leaving a set of
cudero et al. (2000) separated the DSO corpus infa nouns.
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Dataset No.of | MFS | No. of No. of Dt < the set of BC training examples
senses | acc. | training | adaptation D. «— the set of untagged WSJ adaptation examples

BC | WSJ| (%) | examples| examples T < WSD system trained on
21nouns| 6.7 6.8 | 61.1 310 406 repeat
9nouns | 79| 8.6 | 65.8 276 416 Prmin — 00

) foreachd € D4 do
Table 1: The average number of senses in BC and 5~ word sense prediction fatusingl’
WSJ, average MFS accuracy, average number of BC B fonf'd‘iﬂ‘é‘i of prediction
training, and WSJ adaptation examples per noun. ppm?:ﬁ D, dir
end
~end
data, and the rest of the WSJ examples are desig- D4 < Da — dmin
nated as in-domain adaptation data. The @iy  Provide correct sensgfor d.; and add g to Dr
. . . T" — WSD system trained on new:D
nounsin Table 1 shows some information abouty,g
these 21 nouns. For instance, these nouns have an _ _ _
average of 6.7 senses in BC and 6.8 senses in WSJ. Figure 1: Active learning

This is slightly higher than the 5.8 senses per verb in
(Chenetal., 2006), where the experiments were cof}; Figure 1. In each iteration, we train a WSD sys-

ducted using coarse-grained evaluation. ASsUMingy, on the available training data and apply it on the
we have access to an “oracle” which determines “'\RISJ adaptation examples. Among these WSJ ex-
predominant sense, or most frequent sense (MFS)yjes, the example predicted with the lowest con-
of each noun in our WSJ test data perfectly, anfljence is selected and removed from the adaptation

we assign this most frequent sense to each Noun {5 The correct label is then supplied for this ex-
the test data, we will have achieved an accuracy %fmple and it is added to the training data.

61.1% as shown in the colunMi=S accuracyf Ta- Note that in the experiments reported in this pa-

glleolé CF![anIy, we note Ithat Wder;g %v&g]‘]avcfra??, OJer, all the adaptation examples are already pre-
raining examples an adaptaliofh, hstated before the experiments start, since all
examples per noun.

the WSJ adaptation examples come from the DSO

3 Active Learning corpus which have already been sense-annotated.
Hence, the annotation of an example needed during

For our experiments, we use naive Bayes as thgach adaptation iteration is simulated by performing

learning algorithm. The knowledge sources we usg [ookup without any manual annotation.
include parts-of-speech, local collocations, and sur-

rounding words. These knowledge sources were e4- Count-merging
fectively used to build a state-of-the-art WSD pro-
gram in one of our prior work (Lee and Ng, 2002)We also employ a technique known a@sunt-
In performing WSD with a naive Bayes classifiermergingin our domain adaptation study. Count-
the senses assigned to an example with featuregnerging assigns different weights to different ex-
fi,..., f» is chosen so as to maximize: amples to better reflect their relative importance.
Roark and Bacchiani (2003) showed that weighted
count-merging is a special case of maximum a pos-
teriori (MAP) estimation, and successfully used it
for probabilistic context-free grammar domain adap-
In our domain adaptation study, we start with dation (Roark and Bacchiani, 2003) and language
WSD system built using training examples drawnmodel adaptation (Bacchiani and Roark, 2003).
from BC. We then investigate the utility of adding Count-merging can be regarded as scaling of
additional in-domain training data from WSJ. In thecounts obtained from different data sets. We let
baseline approach, the additional WSJ examples afedenote the counts from out-of-domain training
randomly selected. With active learning (Lewis andlata, ¢ denote the counts from in-domain adapta-
Gale, 1994), we usencertainty samplings shown tion data, ancg denote the probability estimate by
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count-merging. We can scale the out-of-domain anprocedure of the EM algorithm. In effect, through
in-domain counts with different factors, or just use anaximizing the likelihood of (3), we obtain the a

single weight parametet: priori probability estimates as a by-product.
- B Let us now define some notations. When we ap-

Bf,ls) = cfjrsi) + pelfs, si) (1) ply a classifier trained on Pon an instancexy,

c(si) + Be(si) drawn from the new data setDwe getpy, (w;|x}),

Similarly, which we define as the probability of instangg
_ being classified as clasg by the classifier trained
Blsi) = C(Sz‘lﬂL 5?(31‘) (2) ©OnDg. Further, let us defin; (w;) as the a pri-
c+pc ori probability of classv; in Dy. This can be esti-

Obtaining an optimum value fgt s not the focus Mated by the class frequency of in Dr. We also

of this work. Instead, we are interested to see if adlefinep®)(w;) andp*) (wifx;,) as estimates of the
signing a higher weight to the in-domain WSJ adag?®V a.prior'i and a posteriori probabil'ities at'sgp
tation examples, as compared to the out-of-domaf?lf theolteratlveAEM procedure. Assur_mng we |q|t|al—
BC examples, will improve the adaptation procesé.zeﬁ( )(wi) = pr(w;), then for each instance, in
Hence, we just use @value of 3 in our experiments Pv @nd each class;, the EM algorithm provides
involving count-merging. the following iterative steps:

. 50 (w;
5 Estimating Sense Priors ) (e pL(”i‘X’“)%L(Eu;))
p (wi,xk) = "~ EOIN) )
In this section, we describe an EM-based algorithm 21 PL(w)xe) 500
that was introduced by Saerens et al. (2002), which N
can be used to estimate the sense priors, or a priori Pt (W) = 1 Zﬁ(s) (wilxk) (5)
probabilities of the different senses in a new dataset. N =

We have recently shown that this algorithm is effecohere Equation (4) represents the expectation E-
tive in estimating the sense priors of a set of nounstep, Equation (5) represents the maximization M-
(Chan and Ng, 2005). step, andN represents the number of instances in
Most of this section is based on (Saerens et alp,;. Note that the probabilitie$;, (w;|x;) and
2002). Assume we have a set of labeled daja DﬁL(wz') in Equation (4) will stay the same through-
with n classes and a set bfindependent instances gyt the iterations for each particular instangg

(x1,...,xy) from a new data set. The likelihood of ang classw;. The new a posteriori probabilities
theseN instances can be defined as: 28 (w;|x) at steps in Equation (4) are simply the
N a posteriori probabilities in the conditions of the la-
L(x1,...,xN) = Hp(xk) beled datapy, (w;|xx), weighted by the ratio of the
k=1 new priorsp®®) (w;) to the old priorpy,(w;). The de-

N [ n nominator in Equation (4) is simply a normalizing
=11 [ZP(Xk,wz')] factor.

k=1 Li=1 The a posteriorp(®) (w;|x;) and a priori proba-

N [ n bilities p*) (w;) are re-estimated sequentially dur-
= H [ZP(XH%)p(W@')] 3) ing each iteratiors for each new instance; and

k=1 Li=1 each classy;, until the convergence of the estimated
Assuming the within-class densitipéx;,|w;), i.e., Probabilitiesp®)(w;), which will be our estimated
the probabilities of observingy, given the class;, Sense priors. This iterative procedure will increase
do not change from the training set. o the new the likelihood of (3) at each step.
data set, we can defin@(xy|w;) = pr(Xk|w;). TO
determine the a priori probability estimatgs.;) of
the new data set that will maximize the likelihood ofFor each adaptation experiment, we start off with a
(3) with respect tgp(w;), we can apply the iterative classifier built from an initial training set consisting
52

6 Experimental Results



6 . of only 57% of adaptation examples. Thec ap-
2 iememsssaiat - proach is even more effective and requires only 42%
AN i . .
- gi@w %#,wﬁ#**“* of adaptation examples. This demonstrates the ef-
et . . . .
70 A&f‘*’w M#******W fectiveness of count-merging in further reducing the
X S I . .
FOR ﬁﬁ annotation effort, when compared to using only ac-
g oop tive learning. To reach the MFS accuracy of 61.1%
g 64 i . . .
< ol é as shown earlier in Table &;crequires just 4% of
2 ot the adaptation examples.
58 f To determine the utility of the out-of-domain BC
56 [ 2 1 examples, we have also conducted three active learn-
! + . . . .
:‘2‘ ' . atyeprior 2 ing runs using only WSJ adaptation examples. Us-
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100 NG 10%, 20%, and 30% of WSJ adaptation exam-
Percentage of adaptation examples added (%) ples to build a classifier, the accuracy of these runs

is lower than the active learniregcurve and paired
Figure 2: Adaptation process for all 21 nouns. t-tests show that the difference is statistically signif-
icant at the level of significance 0.01.

of the BC training examples. Ateach adaptationiters.2 Using Sense Priors Information
ation, WSJ adaptation examples are selecreeiat As mentioned in section 1, research in (Escudero et

a timeand added to the training set. The adaptatiogl. 2000) noted an improvement in accuracy when

process continues until all the adaptation exampl ﬁey adjusted the BC and WSJ datasets such that

are added, _CIaSS|f|cat|on accuracies averaged O%ﬁre proportions of the different senses of each word
3 random trials on the WSJ test examples at eac

) . . ere the same between BC and WSJ. We can simi-
iteration are calculated. Since the number of W

daptati les differs f hof the 21 rly choose BC examples such that the sense priors
adaptation examples diflers for each orthe 21 NOUNg, o g~ training data adhere to the sense priors in

the learning curves we will show in the various flg'tpe WSJ evaluation data. To gauge the effectiveness

ures are plotted in terms of different percentage g f this approach, we first assume that we know the

adaptation examples added, varying from 0 to 10 ue sense priors of each noun in the WSJ evalua-

percentin steps of 1 percent. To obtain these CUNV&Fn data. We then gather BC training examples for

we flrst'calculate for each noun, the W,SD aceuracy 1oun to adhere as much as possible to the sense
when different percentages of adaptation examples

dded. Then f h A | Ia{g[riors in WSJ. Assume sensgis the predominant
are added. 1hen, for each percentage, we calcllalg, <o iy the WSJ evaluation datghas a sense prior
the macro-average WSD accuracy over all the nou

) . . ) % p; in the WSJ data and has BC training exam-
to obtain a single learning curve representing all thSIes Takinan. examoles t ¢ .
nouns. : gn; € ples to represent a sense prior
of p;, we proportionally determine the number of BC
examples to gather for other sengeaccording to
their respective sense priors in WSJ. If there are in-
sufficient training examples in BC for some serse
In Figure 2, the curve represents the adaptationwhatever available examples ofire used.
process of the baseline approach, where additional This approach gives an average of 195 BC train-
WSJ examples are randomly selected during eadfig examples for the 21 nouns. With this new set
adaptation iteration. The adaptation process usirgj training examples, we perform adaptation using
active learning is represented by the cuayevhile active learning and obtain treetruePrior curve in
applying count-merging with active learning is repFigure 2. Thea-truePrior curve shows that by en-
resented by the curve-c. Note that random selec- suring that the sense priors in the BC training data
tion r achieves its highest WSD accuracy afédlr adhere as much as possible to the sense priors in the
the adaptation examples are added. To reach théSJ data, we start off with a higher WSD accuracy.
same accuracy, treeapproach requires the additionHowever, the performance is no different from the
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curve after 35% of adaptation examples are added. s . . .

A possible reason might be that by strictly adhering o BT SReals T S
to the sense priors in the WSJ data, we have removed 7, [ e "
too many BC training examples, from an average of . 78 ;
310 examples per noun as shown in Table 1, to ag o8
average of 195 examples.

WSD Accurac
(2]
o
L

6.3 Using Predominant Sense Information
Research by McCarthy et al. (2004) and Koeling et s, /

(S
N
—

al. (2005) pointed out that a change of predominant 4 atruePrior &

. T . . . 46 a-truePred - - - - - i
sense is often indicative of a change in domain. For 3; L, a— ]
example, the predominant sense of the nioterest 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
in the BC part of the DSO corpus has the meaning Percentage of adaptation examples added (%)

“a sense of concern with and curiosity about some-

one or something”. In the WSJ part of the DSO corFigure 3: Using true predominant sense for the 9
pus, the nourinteresthas a different predominant nouns.

sense with the meaning “a fixed charge for borrow-

ing money”, which is reflective of the business andh . ing thi ftrai
finance focus of the WSJ corpus. the sense priors in WSJ. Using this new set of train-

Instead of restricting the BC training data to ading examples, we perform domain adaptation using

here strictly to the sense priors in WSJ, another aIte?—Ct'Vg Iesrnlng to ob_taln the curlaetrulePr(re]dn Fig-
native is just to ensure that the predominant sense i€ 3- For comparison, we aiso plot the curees

BC is the same as that of WSJ. Out of the 21 noungmda—truePriorfor this set of 9 nouns in Figure 3.

12 nouns have the same predominant sense in b(ﬁﬁsulf[s in Figure 3 show thattruePreds'_[arts off
BC and WSJ. The remaining 9 nouns that have difit @ higher accuracy and performs consistently bet-

ferent predominant senses in the BC and WSJ dafi than theacurve. In contrast, thougartruePrior
are: center field, figure interest line, need order, starts at a high accuracy, its performance is lower

. . - 0 ' -
term value The row9 nounsin Table 1 gives some thana-truePredand a after 50% of adaptation ex

information for this set of 9 nouns. To gauge théamples are added. The approach repre;entea} by
lJiruePredls a compromise between ensuring that the

these nouns by first assuming that we knowttie sense priors in the training data follow as closely

predominant sense in the WSJ data. Assume that tft _possiblle_ the sense pri_or_s in the evaluation data,
WSJ predominant sense of a nous,ignds; hasn; while retaining enough training examples. These re-

examples in the BC data. We then gather BC exan?—uns highlight the importance of striking a balance

ples for a noun to adhere to this WSJ predominarlﬂemleen these two goals.
sense, by gathering only up tg BC examples for  In (McCarthy et al., 2004), a method was pre-
each sense of this noun. This approach gives an azented to determine the predominant sense of a word
erage of 190 BC examples for the 9 nouns. This i @ corpus. However, in (Chan and Ng, 2005),
higher than an average of 83 BC examples for thed¢e showed that in a supervised setting where one
9 nouns if BC examples are selected to follow th&as access to some annotated training data, the EM-
sense priors of WSJ evaluation data as described i@sed method in section 5 estimates the sense priors
the last subsection 6.2. more effectively than the method described in (Mc-
For these 9 nouns, the average KL-divergence b&arthy et al., 2004). Hence, we use the EM-based
tween the sense priors of the original BC data an@lgorithm to estimate the sense priors in the WSJ
WSJ evaluation data is 0.81. This drops to 0.51 afvaluation data for each of the 21 nouns. The sense
ter ensuring that the predominant sense in BC is tHuith the highest estimated sense prior is taken as the
same as that of WSJ, confirming that the sense pridpéedominant sense of the noun.
in the newly gathered BC data more closely follow For the set of 12 nouns where the predominant
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utility of this approach, we conduct experiments o



2 » estPred Hence, employing the predicted predom-

8 e A AW%W# =4 inant sense and count-merging, we further improve
% W e the effectiveness of the active learning-based adap-
ﬁ R g T tation process.

§§ v/ 4 With reference to Figure 4, the WSD accuracies

o [ of ther and a curves before and after adaptation

are 43.7% and 78.4% respectively. Starting from
the mid-point 61.1% accuracy, which represents a
50% accuracy increase from 43.7%, we show in

=3
R
= el
e -
S~

WSD Accuracy (%)
o
i

|

Yy )

§§ ,:'ﬁ Table 2 the percentage of adaptation examples re-

gg ,t',f quired by the various approaches to reach certain

i f Cremes 1 levels of WSD accuracies. For instance, to reach

%gf* ‘Pd —1 the final accuracy of 78.4%, a, a-estPred anda-

430 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 éo és éo és 100 c—estPredequire the addition Of 100%; 510/01 38%;
Percentaye of adapialion examples added () and 29% adaptation examples respectively. The

numbers in brackets give the ratio of adaptation ex-
Figure 4: Using estimated predominant sense for thémples needed kg, a-estPreganda-c-estPredrer-
9 nouns. sus random selection For instance, to reach a
WSD accuracy of 78.4%a-c-estPredneeds only

Accuracy % adaptation examples needed . . :
r a a-esiPred] acestPpred 29% adaptation examples, representing a ratio of

50%:61.1 | 8 | 7(0.88) | 5(0.63) | 4(0.50) 0.29 and an annotation saving of 71%. Note that this

60%: 645 | 10 | 9(0.90) | 7(0.70) | 5(0.50) represents a more effective adaptation process than

70%: 68.0 | 15 | 12(0.80)| 9(0.60) | 6 (0.40) : . _ . :
80%: 715 | 23 | 16 (0.70)| 12 (0.52)| 9(0.39) the basic active learningapproach, which requires

90%: 74.9 | 46 | 24(0.52)| 21(0.46) | 15(0.33) 51% adaptation examples. Hence, besides showing
100%: 78.4] 100 | 51(0.51)| 38(0.38)| 29(0.29) that active learning can be used to reduce the annota-
jon effort required for domain adaptation, we have
urther improved the effectiveness of the adaptation
process by using the predicted predominant sense
of the new domain and adopting the count-merging
sense remains unchanged between BC and WSJ, teehnique.
EM-based algorithm is able to predict that the pre-
dominant sense remains unchangedifbd2 nouns. 7 Related Work
Hence, we will focus on the 9 nouns which have
different predominant senses between BC and W3d applying active learning for domain adapta-
for our remaining adaptation experiments. For thes®on, Zhang et al. (2003) presented work on sen-
9 nouns, the EM-based algorithm correctly predicteence boundary detection using generalized Win-
the WSJ predominant sense for 6 nouns. Hence, thew, while Tur et al. (2004) performed language
algorithm is able to predict the correct predominantnodel adaptation of automatic speech recognition
sense for 18 out of 21 nouns overall, representing aystems. In both papers, out-of-domain and in-
accuracy of 86%. domain data were simply mixed together without
Figure 4 plots the curva-estPredwhich is simi- MAP estimation such as count-merging. For WSD,
lar to a-truePred except that the predominant sensé-ujii et al. (1998) used selective sampling for a
is now estimated by the EM-based algorithm. EmJdapanese language WSD system, Chen et al. (2006)
ploying count-merging witta-estPredproduces the used active learning for 5 verbs using coarse-grained
curvea-c-estPred For comparison, the curvesa, evaluation, and H. T. Dang (2004) employed active
and a-truePredare also plotted. The results showlearning for another set of 5 verbs. However, their
that a-estPredperforms consistently better than work only investigated the use of active learning to
and a-c-estPredin turn performs better tham- reduce the annotation effort necessary for WSD, but
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Table 2: Annotation savings and percentage of ada
tation examples needed to reach various accuraci



did not deal with the porting of a WSD system toR

. Koeling, D. McCarthy, and J. Carroll. 2005. Domain-

a different domain. Escudero et al. (2000) used the specific sense distributions and predominant sense ac-

DSO corpus to highlight the importance of the issue
of domain dependence of WSD systems, but did nat

propose methods such as active learning or count-

merging to address the specific problem of how to
perform domain adaptation for WSD. D

8 Conclusion
B
Domain adaptation is important to ensure the gen-

eral applicability of WSD systems across differenb
domains. In this paper, we have shown that active
learning is effective in reducing the annotation ef-
fort required in porting a WSD system to a new do-

main. Also, we have successfully used an EM-based

quisition. InProc. of Joint HLT-EMNLPO5

K.Lee and H. T. Ng. 2002. An empirical evaluation of
knowledge sources and learning algorithms for word
sense disambiguation. Froc. of EMNLP02

. D. Lewis and W. A. Gale. 1994. A sequential algo-
rithm for training text classifiers. IRroc. of SIGIR94

. Magnini and G. Cavaglia. 2000. Integrating subject
field codes into WordNet. IRroc. of LREC-2000

Martinez and E. Agirre. 2000. One sense per
collocation and genre/topic variations. Rroc. of
EMNLP/VLCO0

McCarthy, R. Koeling, J. Weeds, and J. Carroll. 2004.
Finding predominant word senses in untagged text. In

algorithm to detect a change in predominant sense pyoc. of ACLO4

between the training and new domain. With this
information on the predominant sense of the neW
domain and incorporating count-merging, we have

. A. Miller, M. Chodorow, S. Landes, C. Leacock, and
R. G. Thomas. 1994. Using a semantic concordance
for sense identification. IRroc. of HLT94 Workshop

shown that we are able to improve the effectiveness on Human Language Technology

of the original adaptation process achieved by the
basic active learning approach. H
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Abstract

Human categorization is neither abinary nor
a context-free process. Rather, some con-
cepts are better examples of a category than
others, while the criteria for category mem-
bership may be satisfied to different degrees
by different concepts in different contexts.
In light of these empirical facts, WordNet's
static category structure appears both exces-
sively rigid and unduly fragile for process-
ing real texts. In this paper we describe a
syntagmatic, corpus-based approach to re-
defining WordNet's categories in a func-
tional, gradable and context-sensitive fash-
ion. We describe how the diagnostic prop-
erties for these definitions are automati-
cally acquired from the web, and how the
increased flexibility in categorization that
arises from these redefinitions offers a ro-
bust account of metaphor comprehension
in the mold of Glucksberg's (2001) the-
ory of category-inclusion. Furthermore, we
demonstrate how this competence with figu-
rative categorization can effectively be gov-
erned by automatically-generated ontologi-
cal constraints, also acquired from the web.

1 Introduction

Linguistic variation across contexts is often symp-
tomatic of ontological differences between contexts.
These observable variations can serve as valuable
clues not just to the specific senses of words in con-
text (e.g., see Pustgjovsky, Hanks and Rumshisky,
57
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2004) but to the underlying ontological structure it-
self (see Cimiano, Hotho and Staab, 2005). The
most revealing variations are syntagmatic in nature,
which is to say, they look beyond individual word
formsto larger patterns of contiguous usage (Hanks,
2004). In most contexts, the similarity between
chocolate, say, and a narcotic like heroin will mea-
gerly reflect the simple ontological fact that both are
kinds of substances; certainly, taxonomic measures
of similarity as discussed in Budanitsky and Hirst
(2006) will capture little more than this common-
aity. However, in a context in which the addictive
properties of chocolate are very salient (e.g., an on-
line dieting forum), chocolate is more likely to be
categorized as a drug and thus be considered more
similar to heroin. Look, for instance, at the simi-
lar ways in which these words can be used: one can
be " chocolate-crazed” or ”chocolate-addicted” and
suffer ” chocolate-induced” symptoms (e.g., each of
these uses can be found in the pages of Wikipedia).
In a context that gives rise to these expressions, it is
unsurprising that chocolate should appear altogether
more similar to a harmful narcotic.

In this paper we computationally model this idea
that language use reflects category structure. As
noted by De Leenheer and de Moor (2005), ontolo-
gies are lexical representations of concepts, so we
can expect the effects of context on language use
to closely reflect the effects of context on ontolog-
ical structure. An understanding of the linguistic ef-
fects of context, as expressed through syntagmatic
patterns of word usage, should lead therefore to the
design of more flexible lexical ontologies that natu-
rally adapt to their contexts of use. WordNet (Fell-

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 57-64,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



baum, 1998) is just one such lexical ontology that
can benefit greatly from the added flexibility that
context-sensitivity can bring. Though comprehen-
sivein scale and widely used, WordNet suffers from
an obvious structural rigidity in which concepts are
either entirely within a category or entirely outside
a category: no gradation of category membership
is allowed, and no contextual factors are brought to
bear on criteria for membership. Thus, agun is al-
ways aweapon in WordNet while an axe is never so,
despite the uses (sporting or murderous) to which
each can be put.

In section two we describe a computational
framework for giving WordNet senses a functional,
context-sensitive form. These functional forms si-
multaneously represent i) an intensional definition
for each word sense; ii) a structured query capable
of retrieving instances of the corresponding category
from a context-specific corpus; and iii) a member-
ship function that assigns gradated scores to these
instances based on available syntagmatic evidence.
In section three we describe how the knowledge re-
quired to automate this functional re-definitionis ac-
quired from the web and linked to WordNet. In sec-
tion four we describe how these re-definitions can
produce arobust model of metaphor, before we eval-
uate the descriptive sufficiency of this approach in
section five, comparing it to the knowledge already
available within WordNet. We conclude with some
final remarksin section six.

2 Functional Context-Sensitive Categories

We take a wholly textual view of context and as-
sume that a given context can be implicitly charac-
terized by a representative text corpus. This corpus
can be as large as a text archive or an encyclopedia
(e.g., the complete text of Wikipedia), or as small
as a single document, a sentence or even a single
noun-phrase. For instance, the micro-context " alco-
holic apple-juice” is enough to implicate the cate-
gory Liquor, rather than Juice, as a semantic head,
while "lovable snake” can be enough of a context to
locally categorize Snake as akind of Pet. Thereisa
range of syntagmatic patterns that one can exploit to
glean category insights from atext. For instance, the
"X kills" pattern is enough to categorize X asakind
of Killer, "hunts X” is enough to categorize X as
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akind of Prey, while " X-covered”, " X-dipped” and
"X-frosted” all indicate that X isakind of Covering.
Likewise, "army of X" suggests that a context views
X asakind of Soldier, while”barrage of X" suggests
that X should be seen as akind of Projectile.

We operationalize the collocation-type of adjec-
tive and noun via the function (attr ADJ NOUN),
which returns a number in the range 0...1; this
represents the extent to which ADJ is used to
modify NOUN in the context-defining corpus.
Dice's coefficient (e.g., see Cimiano et al., 2005) is
used to implement this measure. A context-sensitive
category membership function can be defined, asin
that for Fundamentalist in Figure 1.

(define Fundamentalist.O (arg,)
(* (max
(%isa arg, Person.0)
(%isa arg, Group.0))
(min
(max
(attr political arg,)
(attr religious arg,))
(max
(attr extreme arg)
(attr violent arg,)
(attr radical arg,)))))

Figure 1. A functiona re-definition of the cat-
egory Fundamentalist.

The function of Figure 1 takes, as a single ar-
gument arg,, a putative member of the category
Fundamentalist.0 (note how the sense tag, O, is
used to identify a specific WordNet sense of "fun-
damentalist”), and returns a membership score in
the range 0...1 for this term. This score reflects the
syntagmatic evidence for considering arg, to be
political or religious, as well as extreme or violent
or radical. The function (%isa arg, CAT) returns a
value of 1.0 if some sense of arg, is a descendent
of CAT (here Person.0 or Group.0), otherwise O.
This safeguards ontological coherence and ensures
that only kinds of people or groups can ever be
considered as fundamentalists.

The example of Figure 1 is hand-crafted, but a
functional form can be assigned automaticaly to
many of the synsets in WordNet by heuristic means.



For instance, those of Figure 2 are automatically
derived from WordNet's morpho-semantic links:

(define Fraternity.0 (arg,)
(*  (%simarg, Fraternity.0)
(max

(attr fraternal arg,)
(attr brotherly arg,))))

(define Orgasm.O (arg)
(* (%simarg, Orgasm.0)
(max

(attr climactic arg,)
(attr orgasmic arg,))))

Figure 2.  Exploiting the WordNet links be-
tween nouns and their adjectival forms.

The function (%sim arg, CAT) reflects the
perceived similarity between the putative member
argo and a synset CAT in WordNet, using one of
the standard formulations described in Budanitsky
and Hirst (2006). Thus, any kind of group (e.g., a
glee club, aMasonic lodge, or a barbershop quartet)
described in a text as "fraternal” or ”brotherly”
(both occupy the same WordNet synset) can be
considered a Fraternity to the corresponding degree,
tempered by its a priori similarity to a Fraternity;
likewise, any climactic event can be categorized as
an Orgasm to amore or less degree.

Alternately, the function of Figure 3 is automat-
icaly obtained for the lexical concept Espresso by
shallow parsing its WordNet gloss. "strong black
coffee brewed by forcing steam under pressure
through powdered coffee beans’.

(define Espresso.0 (arg,)
(* (Ysimarg, Espresso.0)
(min

(attr strong arg,)
(attr black argy))))

Figure 3. A functional re-definition of the cat-
egory Espresso based on its WordNet gloss.

It follows that any substance (e.g., oil or tea)
described locally as "black” and "strong” with a
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non-zero taxonomic similarity to coffee can be
considered a kind of Espresso.

Combining the contents of WordNet 1.6 and
WordNet 2.1, 27,732 different glosses (shared by
51,035 unique word senses) can be shallow parsed to
yield a definition of the kind shown in Figure 3. Of
these, 4525 glosses yield two or more properties that
can be given functional form via attr. However, one
can question whether these features are sufficient,
and more importantly, whether they are truly diag-
nostic of the categories they are used to define. In
the next section we consider another source of diag-
nostic properties, explicit smiles on the web, before,
in section 5, comparing the quality of these proper-
ties to those available from WordNet.

3 Diagnostic Properties on the Web

We employ the Google search engine as a retrieval
mechanism for acquiring the diagnostic properties
of categories from the web, since the Google API
and its support for the wildcard term * allows this
process to be fully automated. The guiding intu-
ition here is that looking for explicit similes of the
form "X isas P as Y” is the surest way of finding
the most salient properties of a term Y; with other
syntagmatic patterns, such as adjective:noun collo-
cations, one cannot be sure that the adjective is cen-
tral to the noun.

Since we expect that explicit similes will tend to
exploit properties that occupy an exemplary point on
a scale, we first extract alist of antonymous adjec-
tives, such as "hot” or "cold”, from WordNet. For
every adjective ADJ on this list, we send the query
"asADJas*” to Google and scan the first 200 snip-
pets returned to extract different noun values for the
wildcard *. From each set of snippets we can aso
ascertain the relative frequencies of different noun
values for ADJ. The complete set of nouns extracted
in this way is then used to drive a second phase of
the search, in which the query template "as * as a
NOUN” is used to acquire similes that may have
lain beyond the 200-snippet horizon of the original
search, or that may hinge on adjectives not included
on the origina list. Together, both phases collect
a wide-ranging series of core samples (of 200 hits
each) from across the web, yielding a set of 74,704
simile instances (of 42,618 unique types) relating



3769 different adjectives to 9286 different nouns

3.1 Property Filtering

Unfortunately, many of these similes are not suffi-
ciently well-formed to identify salient properties. In
many cases, the noun value forms part of a larger
noun phrase: it may be the modifier of a compound
noun (as in "bread lover”), or the head of complex
noun phrase (such as "gang of thieves’ or "wound
that refuses to heal”). In the former case, the com-
pound is used if it corresponds to a compound term
in WordNet and thus constitutes asingle lexical unit;
if not, or if the latter case, the simile is regected.
Other similes are simply too contextual or under-
specified to function well in anull context, so if one
must read the origina document to make sense of
the simile, it is rejected. More surprisingly, per-
haps, a substantial number of the retrieved simi-
les are ironic, in which the literal meaning of the
simile is contrary to the meaning dictated by com-
mon sense. For instance, "as hairy as a bowling
ball” (found once) is an ironic way of saying "as
hairless as a bowling ball” (also found just once).
Many ironies can only be recognized using world
knowledge, such as” as sober asa Kennedy” and " as
tanned as an Irishman”.

Given the creativity involved in these construc-
tions, one cannot imagine a reliable automatic fil-
ter to safely identify bona-fide similes. For this
reason, the filtering task is performed by a human
judge, who annotated 30,991 of these simile in-
stances (for 12,259 unique adjective/noun pairings)
as non-ironic and meaningful in anull context; these
similes relate a set of 2635 adjectives to a set of
4061 different nouns. In addition, the judge also
annotated 4685 simile instances (of 2798 types) as
ironic; these similes relate a set of 936 adjectives
to a set of 1417 nouns. Perhaps surprisingly, ironic
pairings account for over 13% of al annotated sim-
ile instances and over 20% of all annotated types.

3.2 LinkingtoWordNet Senses

To create functional WordNet definitions from these
adjective:noun pairings, we first need to identify the
WordNet sense of each noun. For instance, ”as stiff
as a zombie” might refer either to a re-animated
corpse or to an alcoholic cocktail (both are senses
of "zombie” in WordNet, and drinks can be " stiff”
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too). Disambiguation is trivial for nouns with just
a single sense in WordNet. For nouns with two or
more fine-grained senses that are all taxonomically
close, such as” gladiator” (two senses: aboxer and a
combatant), we consider each sense to be a suitable
target. In some cases, the WordNet gloss for as par-
ticular sense will literally mention the adjective of
the simile, and so this sense is chosen. In all other
cases, we employ a strategy of mutual disambigua
tion to relate the noun vehiclein each simileto aspe-
cific sense in WordNet. Two similes "as A as NV;”

and"as A as N,” are mutually disambiguating if V;

and N, are synonyms in WordNet, or if some sense
of Ny is ahypernym or hyponym of some sense of
N> in WordNet. For instance, the adjective "scary”

is used to describe both the noun "rattler” and the
noun "rattlesnake” in bona-fide (non-ironic) similes;
since these nouns share a sense, we can assume that
the intended sense of "rattler” is that of a danger-
ous snake rather than a child’s toy. Similarly, the
adjective "brittle” is used to describe both saltines
and crackers, suggesting that it is the bread sense of
"cracker” rather than the hacker, firework or hillbilly
senses (all in WordNet) that is intended.

These heuristics allow us to automatically disam-
biguate 10,378 bona-fide simile types (85%), yield-
ing a mapping of 2124 adjectives to 3778 different
WordNet senses. Likewise, 77% (or 2164) of the
simile types annotated as ironic are disambiguated
automatically. A remarkable stability is observed in
the alignment of noun vehicles to WordNet senses:
100% of the ironic vehicles always denote the same
sense, no matter the adjective involved, while 96%
of bona-fide vehicles always denote the same sense.
This stability suggests two conclusions: the dis-
ambiguation process is consistent and accurate; but
more intriguingly, only one coarse-grained sense of
any word is likely to be sufficiently exemplary of
some property to be useful in asimile.

4 From Similesto Category Functions

As noted in section 3, the filtered web data yields
12,259 bonafide similes describing 4061 target
nouns in terms of 2635 different adjectival prop-
erties.  Word-sense disambiguation alows 3778
synsets in WordNet to be given a functiona re-
definition in terms of 2124 diagnostic properties, as



in the definition of Gladiator in Figure 4:

(define Gladiator.O (arg,)
(* (Yisaarg, Person.0)
(* (%simarg, Gladiator.0)
(combine
(attr strong arg,)
(attr violent arg,)

(attr manly argy)))))

Figure 4. A web-based definition of Gladiator.

Since we cannot ascertain from the web data
which properties are necessary and which are
collectively sufficient, we use the function combine
to aggregate the available evidence. This function
implements a naive probabilistic or, in which each
piece of syntagmatic evidence is naively assumed to
be independent, as follows:

(combineeg e1) =epter(l—e)
(combineeg ey ..e,,) = (combine ey (combinee; ..e,))

Thus, any combatant or competitor (such as a
gportsman) that is described as strong, violent or
manly in a corpus can be categorized as a Gladiator
in that context; the more properties that hold, and
the greater the degree to which they hold, the greater
the membership score that is assigned.

The source of the hard taxonomic constraint
(%isa argy Person.0) is explained in the next sec-
tion. For now, note how the use of %sim in the
functions of Figures 2, 3 and 4 means that these
membership functions readily admit both literal and
metaphoric members. Since the line between lit-
eral and metaphoric uses of a category is often im-
possible to draw, the best one can do is to accept
metaphor as a gradable phenomenon (see Hanks,
2006). The incorporation of taxonomic similarity
via %sim ensures that literal members will tend to
receive higher membership scores, and that the most
tenuous metaphors will receive the lowest member-
ship scores (close to 0.0).

4.1 Constrained Category Inclusion

Simile and metaphor involve quite different con-
ceptual mechanisms. For instance, anything that
is particularly strong or black might meaningfully
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be caled "as black as espresso” or "as strong
as espresso”, yet few such things can meaning-
fully be caled just "espresso”. While simile is a
mechanism for highlighting inter-concept similarity,
metaphor is at heart a mechanism of category inclu-
sion (see Glucksberg, 2001). Asthe espresso exam-
ple demonstrates, category inclusion is more than a
matter of shared properties. humans have strong in-
tuitions about the structure of categories and the ex-
tent to which they can be stretched to include new
members. So while it is sensible to apply the cat-
egory Espresso to other substances, preferably lig-
uids, it seems nonsensical to apply the category to
animals, artifacts, places and so on.

Much as the salient properties of categories can
be acquired form the web (see section 3), so too
can the intuitions governing inclusion amongst cat-
egories. For instance, an attested web-usage of the
phrase "Espresso-like CAT” tells us that sub-types
of CAT are allowabl e targets of categorization by the
category Espresso. Thus, since the query ” espresso-
like substance” returns 3 hits via Google, types of
substance (oil, etc.) can be described as Espresso if
they are contextually strong and black. In contrast,
the query "espresso-like person” returns O hits, so
no instance of person can be described as Espresso,
no matter how black or how strong. While this is
clearly a heuristic approach to a complex cognitive
problem, it does allow us to tap into the tacit knowl-
edge that humans employ in categorization. More
generally, aconcept X can be included in a category
Cif X exhibits salient properties of C and, for some
hypernym H of X in WordNet, we can find an at-
tested use of " C-like H” on the web.

If we can prefetch al possible "C-like H”
from the web, this will alow comprehension to
proceed without having to resort to web analysis
in mid-categorization. While there are too many
possible values of H to make full pre-fetching a
practical reaity, we can generalize the problem
somewhat, by selecting a range of vaues for H
from the middle-layer of WordNet, such as Person,
Substance, Animal, Tool, Plant, Structure, Event,
\ehicle, Idea and Place, and by pre-fetching the
query "C-like H” for al 4061 nouns collected in
section 3, combined with this limited set of H
values. For every noun in our database then, we pre-
compile a vector of possible category inclusions.



For instance, " lattice” yields the following vector:

{structure(1620),
vehicle(1)}

substance(8),  container(1),

where numbers in parentheses indicate the web-
frequency of the corresponding "Lattice-like H”
query. Thus, the category Lattice can be used to
describe (and metaphorically include) other kinds
of structure (like crystals), types of substance (e.g.,
crystalline substances), containers (like honey-
combs) and even vehicles (e.g., those with many
compartments). Likewise, the noun "snake” yields
the following vector of possihilities:

{structure(125),
hicle(17), tool(9) }

animal(122), person(56), ve-

(note, the frequency for "person” includes the
frequency for "man” and "woman”). The category
Snake can also be used to describe and include
structures (like tunnels), other animals (like eels),
people (e.g., the dishonest variety), vehicles (e.g.,
articulated trucks, trains) and tools (e.g., hoses). The
noun "gladiator” yields avector of just one element,
{person(1)}, from which the simple constraint
(Yisa argg Person.0) in Figure 4 is derived. In con-
trast, "snake” isnow given the definition of Figure 5:

(define Shake.O (arg,)
(*  (max

(%isa arg, Structure.0)

(%isa arg, Animal.0)

(%isa arg, Person.0)

(%isa arg, \ehicle.0))

(* (Ysimarg, Shake.0)
(combine

(attr cunning arg,)
(attr slippery arg,)
(attr flexible arg)
(attr limargy)
(attr sinuous arg)
(attr crooked arg)
(attr deadly arg,)
(attr poised arg,)))))

Figure 5. A membership function for Snake
using web-derived category-inclusion constraints.
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Glucksberg (2001) notes that the same category,
used figuratively, can exhibit different qualities in
different metaphors. For instance, Snake might
describe a kind of crooked person in one metaphor,
a poised killer in another metaphor, and a kind of
flexible tool in yet another. The use of combine
in Figure 5 means that a single category definition
can give rise to each of these perspectives in the
appropriate contexts. We therefore do not need a
different category definition for each metaphoric
use of Snake.

To illustrate the high-level workings of category-
inclusion, Table 1 generalizes over the set of 3778
disambiguated nouns from section 3 to estimate the
propensity for one semantic category, like Person, to
include members of another category, like Animal,
in X-like 'Y constructs.

X-likeY| P| A|Sub| T| Sr
(P)erson | .66 | .05 | .03 | .04 | .09
(A)nimal | .36 | .27 | .04 | .05| .15

(Sub)stance | .14 | .03 | .37 | .05| .32
(Mool | .08 | .03 | .07 | .22 | .34
(Str)ucture | .04 | .03 | .03 | .03| .43

Table 1. The Likelihood of a category X accommo-
dating a category Y.

Table 1 reveals that 36% of "ANIMAL-like”
patterns on the web describe a kind of Person,
while only 5% of "PERSON-like’ patterns on the
web describe a kind of Animal. Category inclusion
appears here to be a conservative mechanism, with
like describing like in most cases; thus, types of
Person are most often used to describe other kinds
of Person (comprising 66% of "PERSON-like”
patterns), types of substance to describe other sub-
stances, and so on. The clear exception is Animal,
with "ANIMAL-like” phrases more often used to
describe people (36%) than other kinds of animal
(27%). The anthropomorphic uses of this category
demonstrate the importance of folk-knowledge in
figurative categorization, of the kind one is more
likely to find in real text, and on the web (as in
section 3), rather than in resources like WordNet.



5 Empirical Evaluation

The simile gathering process of section 3, abetted
by Google's practice of ranking pages according to
popularity, should reveal the most frequently-used
comparative nouns, and thus, the most useful cat-
egories to capture in a general-purpose ontology
like WordNet. But the descriptive sufficiency of
these categories is not guaranteed unless the defin-
ing properties ascribed to each can be shown to
be collectively rich enough, and individually salient
enough, to predict how each category is perceived
and applied by alanguage user.

If similes are indeed a good basis for mining
the most salient and diagnostic properties of cate-
gories, we should expect the set of properties for
each category to accurately predict how the cate-
gory is perceived as awhole. For instance, humans
— unlike computers — do not generally adopt a dis-
passionate view of ideas, but rather tend to asso-
ciate certain positive or negative feelings, or affec-
tive values, with particular ideas. Unsavoury activi-
ties, people and substances generally possess anega
tive affect, while pleasant activities and people pos-
sess a positive affect. Whissell (1989) reduces the
notion of affect to a single numeric dimension, to
produce a dictionary of affect that associates a nu-
meric value in the range 1.0 (most unpleasant) to 3.0
(most pleasant) with over 8000 words in a range of
syntactic categories (including adjectives, verbs and
nouns). So to the extent that the adjectival proper-
ties yielded by processing similes paint an accurate
picture of each category / noun-sense, we should be
able to predict the affective rating of each vehicle
via a weighted average of the affective ratings of
the adjectival properties ascribed to these nouns (i.e.,
where the affect rating of each adjective contributes
to the estimated rating of a noun in proportion to
its frequency of co-occurrence with that noun in our
simile data). More specifically, we should expect
that ratings estimated via these simile-derived prop-
erties should correlate well with the independent rat-
ings contained in Whissell’s dictionary.

To determine whether similes do offer the clearest
perspective on a category’s most salient properties,
we calculate and compare this correlation using the
following data sets.
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A. Adjectives derived from annotated bona-fide
(non-ironic) similes only.

B. Adjectives derived from al annotated similes
(both ironic and non-ironic).

C. Adjectives derived from ironic similes only.

D. All adjectives used to modify a given noun in
a large corpus. We use over 2-gigabytes of
text from the online encyclopaedia Wikipedia
as our corpus.

E. The set of 63,935 unique property-of-noun
pairings extracted via shallow-parsing from
WordNet glosses in section 2, e.g., strong and
black for Espresso.

Predictions of affective rating were made from each
of these data sources and then correlated with the
ratings reported in Whissell’s dictionary of affect
using a two-tailed Pearson test (p < 0.01). As ex-
pected, property sets derived from bona-fide simi-
les only (A) yielded the best correlation (+0.514)
while properties derived from ironic similes only
(C) yielded the worst (-0.243); a middling corre-
lation coefficient of 0.347 was found for al simi-
les together, demonstrating the fact that bona-fide
similes outnumber ironic similes by a ratio of 4
to 1. A weaker correlation of 0.15 was found us-
ing the corpus-derived adjectival modifiers for each
noun (D); while this data provides quite large prop-
erty sets for each noun, these properties merely re-
flect potential rather than intrinsic properties of each
noun and so do not reveal what is most diagnostic
about a category. More surprisingly, property sets
derived from WordNet glosses (E) are adso poorly
predictive, yielding a correlation with Whissell’s af -
fect ratings of just 0.278. This suggests that the
properties used to define categories in hand-crafted
resources like WordNet are not always those that ac-
tually reflect how humans think of these categories.

6 Concluding Remarks

Much of what we understand about different cate-
goriesis based on tacit and defeasible knowledge of
the outside world, knowledge that cannot easily be
shoe-horned into the rigid is-a structure of an on-
tology like WordNet. This already-complex picture



is complicated even further by the often metaphoric
relationship between words and the categories they
denote, and by the fact that the metaphor/literal dis-
tinction is not binary but gradable. Furthermore, the
gradability of category membership is clearly influ-
enced by context: in a corpus describing the exploits
of Vikings, an axe will most likely be seen asakind
of weapon, but in a corpus dedicated to forestry, it
will likely describe atool. A resource like WordNet,
inwhichis-alinksarereserved for category relation-
shipsthat are always true, in any context, is going to
be inherently limited when dealing with real text.

We have described an approach that can be seen as
a functional equivalent to the CPA (Corpus Pattern
Analysis) approach of Pustgjovsky et al. (2004), in
which our goal is not that of automated induction of
word senses in context (asit isin CPA) but the au-
tomated induction of flexible, context-sensitive cat-
egory structures. As such, our goal is primarily on-
tological rather than lexicographic, though both ap-
proaches are complementary since each views syn-
tagmatic evidence as the key to understanding the
use of lexical concepts in context. By defining cat-
egory membership in terms of syntagmatic expec-
tations, we establish a functional and gradable ba-
sis for determining whether one lexical concept (or
synset) in WordNet deserves to be seen as a de-
scendant of another in a particular corpus and con-
text. Augmented with ontological constraints de-
rived from the usage of "X-like Y” patterns on the
web, we also show how these membership functions
can implement Glucksberg's (2001) theory of cate-
gory inclusion.

We have focused on just one syntagmatic pattern
here — adjectival modification of nouns — but cate-
gorization can be inferred from awide range of pro-
ductive patterns in text, particularly those concern-
ing verbs and their case-fillers. For instance, verb-
centred similes of the form "to V+inf like ajan N”
and "to be V+past like ajlan N” revea insights into
the diagnostic behaviour of entities (e.g., that preda-
tors hunt, that prey is hunted, that eagles soar and
bombs explode). Taken together, adjective-based
properties and verb-based behaviours can paint an
even more comprehensive picture of each lexica
concept, so that e.g., political agents that kill can
be categorized as assassins, loyal entities that fight
can be categorized as soldiers, and so on. An im-
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portant next step, then, is to mine these behaviours
from the web and incorporate the corresponding
syntagmatic expectations into our category defini-
tions. The symbolic nature of the resulting defini-
tions means these can serve not just as mathematical
membership functions, but as” active glosses’, capa-
ble of recruiting their own members in a particular
context while demonstrating a flexibility with cate-
gorization and agenuine competence with metaphor.
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Linguistic typology aims to distinguish between log-
ically possible languages and actually observed la
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Abstract

A standard form of analysis for linguis-
tic typology is the universal implication.
These implications state facts about the
range of extant languages, such as “if ob-
jects come after verbs, then adjectives come
after nouns.” Such implications are typi-
cally discovered by painstaking hand anal-
ysis over a small sample of languages. We
propose a computational model for assist-
ing at this process. Our model is able to
discover both well-known implications as
well as some novel implications that deserve
further study. Moreover, through a careful
application of hierarchical analysis, we are
able to cope with the well-known sampling
problem: languages are not independent.

Introduction

Lyle Campbell
Department of Linguistics
University of Utah
| canpbel @um ut ah. edu

at all pairs of features (typically several hundred) is
virtually impossible by hand. Moreover, it is insuf-
ficient to simply look at counts. For instance, results
presented in the form “verb precedes object implies
prepositions in 16/19 languages” are honconclusive.
While compelling, this is not enough evidence to de-
cide if this is a statistically well-founded implica-
tion. For one, mayb@9% of languages have prepo-
sitions: then the fact that we've achieved a rate of
84% actually seems really bad. Moreover, if thé
languages are highly related historically or areally
(geographically), and the oth&rare not, then we
may have only learned something about geography.
In this work, we propose a statistical model that
deals cleanly with these difficulties. By building a
computational model, it is possible to apply it to
a very large typological database and search over
many thousands of pairs of features. Our model
hinges on two novel components: a statistical noise
model a hierarchical inference over language fam-

Hi_es. To our knowledge, there is no prior work

guages. A fundamental building block for such arﬁj'reCtly in this area. The closest work is repre-
understanding is thaniversal implication(Green-

berg, 1963). These are short statements that restrit
the space of languages in a concrete way (for i
stance “object-verb ordering implies adjective-nou

sented by the bookPossible and Probable Lan-
agegNewmeyer, 2005) andanguage Classifica-

Adion by NumbergMcMahon and McMahon, 2005),

,?Ut the focus of these books is on automatically dis-

ordering”); Croft (2003), Hawkins (1983) and Songcovering phylogenetic trees for languages based on

(2001) provide excellent introductions to linguistic

Indo-European cognate sets (Dyen et al., 1992).

typology. We present a statistical model for auto2 Data

matically discovering such implications from a largeThe database on which we perform our analysis is
typological database (Haspelmath et al., 2005).
Analyses of universal implications are typicallymath et al., 2005). This database contains infor-
performed by linguists, inspecting an array 38F
100 languages and a few pairs of features. Lookinthe world; Figure 1 depicts the locations of lan-
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the World Atlas of Language Structurd$iaspel-

mation abouR150 languages (sampled from across

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 65-72,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



Numeral Glottalized Number of
Language Classifiers | Rel/N Order | O/V Order | Consonants| Tone Genders
English Absent NRel VO None None Three
Hindi Absent RelN ov None None Two
Mandarin Obligatory RelN VO None Complex None
Russian Absent NRel VO None None Three
Tukang Besi| Absent ? Either Implosives None Three
Zulu Absent NRel VO Ejectives Simple Five+

Table 1: Example database entries for a selection of diverse languadjésatures.

of noise stems from transcription. WALS contains
data about languages documented by field linguists
as early as the 1900s. Much of this older data was
collected before there was significant agreement in
documentation style. Different field linguists of-
ten had different dimensions along which they seg-
mented language features into classes. This leads to
noise in the properties of individual languages.
Another difficulty stems from theampling prob-
lem. This is a well-documented issue (see, eg.,
guages). There ar&39 featuresin this database, (Croft, 2003)) stemming from the fact that any set of
broken down into categories such as “Nominal Catdanguages is not sampled uniformly from the space
gories,” “Simple Clauses,” “Phonology,” “Word Or- of all probable languages. Politically interesting
der,” etc. The database &parse for many lan- languages (eg., Indo-European) and typologically
guage/feature pairs, the feature value is unknown. knusual languages (eg., Dyirbal) are better docu-
fact, only about 6% of all possible language/feature mented than others. Moreover, languages are not in-
pairs are known. A sample of five languages and sitependent: German and Dutch are more similar than
features from the database are shown in Table 1. German and Hindi due to history and geography.
Importantly, the density of samples is not random. The first model, EAT, treats each language as in-
For certain languages (eg., English, Chinese, Rugependent. It is thus susceptible to sampling prob-
sian), nearly all features are known, whereas othéems. For instance, the WALS database contains a
languages (eg., Asturian, Omagua, Frisian) that hav@lf dozen versions of German. TheAT model
fewer than five feature values known. Furthermoresonsiders these versions of German just as statisti-
some features are known for many languages. Thiglly independent as, say, German and Hindi. To
is due to the fact that certain features take less effotope with this problem, we then augment theaF
to identify than others. Identifying, for instance, ifmodel into a HERarchical model that takes advan-
a language has a particular set of phonological feé&age of known hierarchies in linguistic phylogenet-
tures (such as glottalized consonants) requires onigs. The HER model explicitly models the fact that
listening to speakers. Other features, such as detérdividual languages areotindependent and exhibit
mining the order of relative clauses and nouns restrong familial dependencies. In both models, we
quire understanding much more of the language. initially restrict our attention to pairs of features. We
3 Models will describe our models as if all features are binary.
In this section, we propose two models for automat!/e €xpand any multi-valued feature witt values
ically uncovering universal implications from noisy, N0 & binary features in a “one versus rest” manner.
sparse data. First, note that even well attested imp81 The FLAT Model
cations are not always exceptionless. A common eXa the FLAT model, we consider 2 x N matrix of
ample is that verbs preceding objects (“VO”) impliedeature values. Th&’ corresponds to the number of
adjectives following nouns (“NA’). This implication languages, while the corresponds to the two fea-
(VO > NA) has one glaring exception: English.tures currently under consideration (eg., object/verb
This is one particular form of noise. Another sourcerder and noun/adjective order). The order of the
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Figure 1: Map of th&150 languages in the database



two features is importantf; implies fs is logically
different from f> implies f;. Some of the entries in

the matrix will be unknown. We may safely remove

all languages from consideration for whibbthare @ 0 @ @
unknown, but we doaotremove languages for which

only one is unknown. We do so because our model @ ° @

needs to capture the fact thatf§ is alwaystrue, N

thenf; O f is uninteresting. Figure 2: Graphical model for theL&T model.

The statistical model is set up as follows. There is _ _
a single variable (we will denote this variable:”) tion. We assume an underlying noise rate for the en-

corresponding to whether the implication holdstire data set, but that, conditioned on this underlying

Thus,m = 1 means thaff; implies f» andm = 0 rate, there is a language-specific noise level. We be-

means that it does not. Independentgfe specify lieve this to be an appropriate noise model because it
two feature priorsyr; and for f; and f, respec- models the fact that the majority of information for
tively. 7, specifies the prior probability tha will & Single language is from a single source. Thus, if
be true, andr, specifies the prior probability thas there is an error in the database, it is more likely that
will be true. One can then put the model togethePther errors will be for the same languages.

navely as follows. Ifm = 0 (i.e., the implication I order to model this statistically, we assume that
does not hold), then the entire data matrix is genef€re are latent variables,, ande,, for each lan-
ated by choosing values fdfi (resp.,f») indepen- 9uagen. If er,, = 1, then the first feature for lan-
dently according to the prior probability, (resp., 9uagen is wrong. Similarly, ifez,, = 1, then the
7). On the other hand, ifn = 1 (i.e., the impli- S&cond feature for languageis wrong. Given this

cationdoeshold), then the first column of the dataM0del, the probabilities are exactly as in thévea
matrix is generated by choosing values forinde- Model, with the exception that instead of usifig

pendently byr;, but the second column is generated®SP-./2), we use the exclusive-bf; ® e1 (resp.,
differently. In particular, if for a particular language, /2 ® ¢2) s0 that the feature values are flipped when-
we have thaff; is true, then the fact that the implica- 8Ver the noise model suggests an error.

tion holds means that, mustbe true. On the other  The graphical model for thelAT model is shown
hand, if f, is false for a particular language, then wdn Figure 2. Circular nodes denote random variables
may generatef, according to the prior probability and arrows denote conditional dependencies. The

m. Thus, havingn = 1 means that the model is réctangular plate denotes the fact that the elements
significantly more constrained. In equations: contained within it are replicatedl’ times (V is the
) number of languages). In this model, there are four
p(fi|m) ==t (1 —m)' ™" “root” nodes: the implication value:; the two fea-
_J Iz m=fi=1 ture prior probabilitiesr; andw,; and the language-
p(f2 | f1,7r2,m) - { 71_%2(1 _ ﬂ.2)1*f2 otherwise p p ! 2 g g
specific error rate. On all of these nodes we place

The problem with this rize model is that it does Bayesian priors. Since: is a binary random vari-
not take into account the fact that there is “noise@Ple, we place a Bernoulli prior on it. Thes are
in the data. (By noise, we refer either to mis-Bernoulli random variables, so they are given inde-

annotations, or to “strange” languages like English jéndent Beta priors. Finally, the noise rate also

To account for this, we introduce a simple noisdven a Beta prior. For the two Beta parameters gov-
model. There are several options for parameteri£Ming the error rate (i.eq, andb.) we set these by
ing the noise, depending on what independence #32nd so that the mean expected error rat@sand
sumptions we wish to make. One could simply spedl® probability of the error rate being betweei

ify a noise rate for the entire data set. One coul@nd10% is 50% (this number is based on an expert
alternatively specify a language-specific noise rat@P'nion of the noise-rate in the data). For the rest of
Or one could specify a feature'_SpeC'f'C NOISe raté. itphe exclusive-or of: andb, writtena ® b, is true exactly
We opt for a blend between the first and second op¢hen either or b is true but not both.
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the parameters we use uniform priors. A large positiven means that the implication is very

32 The HIER Model likely Fo hold. A large negative value means it is
o - _ _ _ very likely to not hold. The normal distributions

A significant difficulty in working with any large ty- across edges in the tree indicate that we expect the

pological database is that the languages will be sam; y4jyes not to change too much across the tree. At

plednoruniformly. In our case, this means that im-yhe |eaves (i.e., individual languages), the logistic-

plications that seem true in theLkT model may pinomial simply transforms the real-valueds into

pnly be true for, say, Indg-Europegn, and t_he rgmair@he range€0, 1] so as to make an appropriate input to
ing languages are considered noise. While this Map\e pinomial distribution.

be interesting in its own right, we are more interestegf Statistical Inference

in discovering implications that are truly universal. i ) ]
An this section, we describe how we use Markov

We model this using a hierarchical Bayesia , .
g Y chain Monte Carlo methods to perform inference

model. In essence, we take theAF model and . the statistical dels d ived in th :
build a notion of language relatedness into it. id" the staustical models described in the previous

particular, we enforce a hierarchy on theimpli- seitlpr:; g\no‘lfrleUtetN?(IEN(éO(t)B)hp.rOVIde a_lr_1hexli:el-
cation variables. For simplicity, suppose that ou}en introduction 1o echniques. € Key

“hierarchy” of languages is nearly flat. Of the iIdea behind MCMC techniques is to approximate in-

languages, half of them are Indo-European and tri{aactable expectations by drawing random samples

other half are Austronesian. We will use a nearlyrom the probability distribution of interest. The ex-
identical model to the EAT model, but instead of pectation can then be approximated by an empirical

having a singlen variable, we have three: one for SXPECtation over these sample.

IE, one for Austronesian and one for “all languages.” For the RAT model, we use a combination of

. L Gibbs sampling with rejection sampling as a sub-
For a general tree, we assign one implication vari-

able for each node (including the root and leaves Oilétl;r;eétss:eggi!ﬁtigfzgnrﬁgﬂggs'[tipesee::irs:zladsard
The gpal of the mferen.ce 'S to infer the value of theI'he Gibbs step is not available analytically for these.
m variable corresponding to the root of the tree. . . .

All that is left t i the full H del Hence, we use rejection sampling (drawing from the
: at Is e fo specp"y € Uil HER MOdEl gota prior and accepting according to the posterior).
is to specify the probability distribution of the:

random variables. We do this as follows. We The sampling procedure for theikk model is

. . . nly slightly more complicated. Instead of perform-
place a zero mean Gaussian prior with (unknown% y slightly p p

variances? on the rootm. Then, for a non-root thg a simple Gibbs sample fon in Step (4), we

_ ) first sample then values for the internal nodes us-
node, we use a Gaussian with mean equal to the . .
. . . ing simple Gibbs updates. For the leaf nodes, we
m” value of the parent and tied varianeé. In

. use rejection sampling. For this rejection, we draw
our three-node example, this means that the root is ) Ping :

distributed\or(0. %) and each child is distributed PrOPOSa! values from the Gaussian specified by the
N (mro0t, 72) V\;heremroot i< the random variable parentm, and compute acceptance probabilities.

: ) In all cases, we run the outer Gibbs sampler for
corresponding to the root. Finally, the leaves (cor- : : S .
. 1000 iterations and each rejection sampler 26rit-
responding to the languages themselves) are dis-

. . . rations. W m he marginal val for
tributedlogistic-binomial Thus, then random vari- €rations. We compute the marginal values forithe

able corresponding to a leaf (language) is distributég]pllcatlon variables by averaging the sampled val-

. ues after dropping00 “burn-in” iterations.
Bin(s(mpar)), wherempa is them value for the par- PPing ,
ent (internal) node and is the sigmoid function 5 Data Preprocessing and Search
s(x) = [1 + exp(—z)] L. After extracting the raw data from the WALS elec-
The intuition behind this model is that thevalue ~ tronic database (Haspelmath et al., 2605)e per-
at each node in the tree (where a node is either “dp'm & minor amount of preprocessing. Essen-
languages” or a specific language family or an intially, we have manually removed certain feature
_divid_ual_language) Spe_CiﬁeS _the extent to which the 2This is nontrivial—we are currently exploring the possibil-
implication under consideration holds for that nodeity of freely sharing these data.
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values from the database because they are underrepergies on new, plausible implications. In this sec-
resented. For instance, the “Glottalized Consonantsibn, we present the results of our method, together
feature has eight possible values (one for “noneWith both a quantitative and qualitative evaluation.
and seven for different varieties of glottalized conso- N .
. . « . » 6.1 Quantitative Evaluation
nants). We reduce this to simply two values “has” or
“has not.” 313 languages have no glottalized consoln this section, we perform a quantitative evaluation
nants and 39 have some variety of glottalized con-Of the results based opredictive power. That is,
sonant. We have done something similar with ag2ne generally would prefer a system that finds im-
proximately twenty of the features. plications that hold with high probability across the
For the HER model, we obtain the hierarchy in data. The word “generally” is important: this qual-
one of two ways. The first hierarchy we use is thdly is neither necessary nor sufficient for the model
“linguistic hierarchy” specified as part of the WALS to be good. For instance, finding00 implications
data. This hierarchy divides languages into familie§f the formA; > X, 45 5 X, ..., Ajpoo O X' is
and subfamilies. This leads to a tree with the leaveg@mpletely uninteresting i is true in99% of the
at depth four. The root hat8 immediate children Cases. Similarly, suppose that a model can fivfeD
(corresponding to the major families), and there arénplications of the formX > A;,..., X 5 Ajgoo,
a total of 314 internal nodes. The second hierarPut X is only true in five languages. In both of these
chy we use is an areal hierarchy obtained by clu&ases, according to a “predictive power” measure,
tering languages according to their latitude and lorfhese would be ideal systems. But they are both
gitude. For the clustering we first cluster all the lanSOmewhat uninteresting.
guages int® “macro-clusters.” We then cluster each Despite these difficulties with a predictive power-
macro-cluster individually int@5 “micro-clusters.” based evaluation, we feel that it is a good way to un-
These micro-clusters then have the languages at thégrstand the relative merits of our different models.
leaves. This yields a tree with internal nodes. Thus, we compare the following systems:aAf (our
Given the database (which contains approxiProposed flat model), INGHIER (our model using
mately 140 features), performing a raw search eveithe phylogenetic hierarchy), IBTHIER (our model
over all possiblgairs of features would lead to over using the areal hierarchy) andaRbom (a model
19,000 computations. In order to reduce this spacéhat ranks implications—that meet the three qualifi-

to a more manageable number, we filter: cations from the previous section—randomly).
e There must be at lea860 languages for whichothfea- The models are scored as follows. We take the
tures are known. entire WALS data set and “hide” a randoh®%

e There must be at leasp languages for which both fea- of the entries. We then perform full inference and
ture values hold simultaneously. . . ..
e Wheneverf is true, at least half of the languages alsoaSk the inferred model to predlct_ the missing val-
have f» true. ues. The accuracy of the model is the accuracy of
its predictions. To obtain a sense of the quality of
Performing all these filtration steps reduces thehe ranking, we perform this computation on the
number of pairs under consideration3®42. While  top k ranked implications provided by each model;
this remains a computationally expensive procedure, ¢ {2,4,8,...,512,1024}.
we were able to perform all the implication compu- The results of this quantitative evaluation are
tations for thes@442 possible pairs in about a weekshown in Figure 3 (on a log-scale for the x-axis).
on a single modern machine (in Matlab). The two best-performing models are the two hier-
6 Results archical models. The flat model does significantly
The task of discovering universal implications is, atvorse and the random model does terribly. The ver-
its heart, a data-mining task. As such, it is difficulttical lines are a standard deviation ou@0 folds of
to evaluate, since we often do not know the corred¢he experiment (hiding a differend% each time).
answers! If our model only found well-documentedThe difference between the two hierarchical mod-
implications, this would be interesting but uselesgls is typically not statistically significant. At the
from the perspective of aiding linguists focus theitop of the ranking, the model based on phylogenetic
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ing. The results are as follows. ComparingAf

to LINGHIER yield 7 = 0.4144, a very low correla-
tion. Between EAT and DSTHIER, 7 = 0.5213,
also very low. These two are as expected. Fi-
nally, between INGHIER and DSTHIER, we ob-
tainT = 0.5369, a very low correlation, considering
that both perform well predictively.

< i 6.3 Qualitative Analysis

[ = tnarier —e— owtter i Rendom | For the purpose of a qualitative analysis, we re-
produce the toB0 implications discovered by the
LINGHIER model in Table 2 (see the final page).
Figure 3: Results of quantitative (predictive) evaluaEach implication is numbered, then the actual im-
tion. Top curves are the hierarchical models; middiglication is presented. For instance, #7 says that
is the flat model; bottom is the random baseline. any language that has adjectives preceding their
governing nouns also has numerals preceding their

information performs marginally better: at the bot1ouns. We additionally provide an “analysis” of
tom of the ranking, the order flips. Comparing thd"@ny of these discovered implications. Many of
hierarchical models to the flat model, we see thdP€m (€g., #7) are well known in the typological lit-

adequately modeling treepriori similarity between €rature. These are simply numbered according to
languages is quite important. well-known references. For instance our #7 is im-

62 C del C ) plication #18 from Greenberg, reproduced by Song
: ross—.mo € orr.mparlson. (2001). Those that reference Hawkins (eg., #11) are
The results in the previous section support the Coflsased on implications described by Hawkins (1983);
clusion that the two hierarchical models are doing,sse that reference Lehmann are references to the
something significgntly different (and better) tha’brinciples decided by Lehmann (1981) in Ch 4 & 8.
the flat model. This clearly must be the case. The gome of the implications our model discovers
regults, however, dp not say whether the two hieragye gptained by composition of well-known implica-
chies are substantially different. Moreover, are thg,ns For instance, our #3 (namely, QVGenitive-
results that they produce s_ubst:_;mtially different. ThRIoun) can be obtained by combining Greenberg #4
answer to these wo questions is yes.” (OV O Postpositions) and Greenberg #2a (Postpo-
We first address the issue of tree similarity. Weitions 5 Genitive-Noun). It is quite encouraging
consider all pairs of languages which are at distanGfat 14 of our top 21 discovered implications are
0'in the areal tree (i.e., have the same parent). Wge|l.known in the literature (and this, not even con-
then look at the mean tree-distance between thosgjering the tautalogically true implications)! This
languages in the phylogenetic tree. We do this for allirongly suggests that our model is doing something
distances in the areal tree (because of its constrygsasonable and that there is true structure in the data.
tion, there are only threed, 2 and4). The mean |5 addition to many of the known implications
distances in the phylogenetic tree corresponding ¥8und by our model, there are many that are “un-
these three distances in the areal tree aré; 3.5 nown” Space precludes attempting explanations
andd.0, respectively. This means thatlanguages th@ them all, so we focus on a few. Some are easy.
are ‘nearby” in the areal tree are quite often very fagonsider #8 (Strongly suffixing Tense-aspect suf-
apartin the phylogenetic tree. fixes): this is quite plausible—if you have a lan-
To answer the issue of whether the results o Eym— del di | tautalogical imoli
. P n trutn, our modadel aiscovers several tautalogical Implica-
tained by the j[W_O tregs are similar, We_ emploBfions that we have removed by hand before presentation. These
Kendall's 7 statistic. Given two ordered lists, theare examples like “SV@ VO” or “No unusual consonants
T statistic computes how correlated they areis ho glottalized cons_onants.” Itis, of course, good that our model
| between and1. with 1 indicating identical discovers these, since they are obviously true. However, to save
a Way_s o ) g space, we have withheld them from presentation here 3Ute
ordering and) indicated completely reversed order-implication presented here is actually $&rd in our full list.
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guage that tends to have suffixes, it will probably Implicants__Implicand

. - Postposition :
have suffixes for tense/aspect. Similarly, #10 states Adjecti\‘,)e_,\,ounsa Demonstrative-Noun
that languages with verb morphology for questions ™~ Posessive prefixes o oo o
i i . i i i Tense-aspect suffixes ~c Ve voun
lack question particles; again, this can be easily ex-..... "*/>5 e Sfhigaa 1T
plained by an appeal to economy. |~ Plural suffi > Genitve-Noun
Some of the discovered implications require g Adjective-Noun_ \,

more involved explanation. One such example ... ... contve-Noun =7 .
High cons/vowel rati

#20: labial-velars implies no uvulafslt turns out | No front-rounded vowels’ 'NC tones

that labial-velars are most common in Africa just Negative affix_
north of the equator, which is also a place that has ... - Genitive-Noun™ ="

No front-rounded vowel I
very few uvulars (there are a handful of other ex- Labial Ve|ars% Large vowel quality inventory

amples, mostly in Papua New Guinea). While thig Subordinating suffi -

. p. . y P . . ) . . Tense-aspect suffixé Postpositions

implication has not been previously investigated, it 5 casa affixas
Initial subordinator word

makes some sense: if a language has one form pf | Prepositions” " o 00 e R
rare consonant, it is unlikely to have another. Stfong'lﬁ rsa‘ffgmgg Genitive-Noun

As another example, consider #28: Obligator
suffix pronouns implies no possessive affixes. Thisable 3: Top implications discovered by the
means is that in languages (like English) for which_iNngHIER multi-conditional model.
pro-drop is impossible, possession is not marked
morphologically on the head noun (like English,

y . ..~ . into looking at which implications hold, considering
book” appears the same regarless of if it is “his . o
. ) . o only “VO”" languages, or considering only languages
book” or “the book”). This also makes sense: if you . i . . >
with prepositions. It is straightforward to modify

cannot drop pronouns, then one usually will mark . .
PP y our model so that it searches over triples of features,

possession on the pro_noun, not the head noun. Th%%’nditioning on two and predicting the third. Space
you do not need marking on the head noun.

Finally, consider #25: High and mid front VOWE!Isprecludes an in-depth discussion of these results, but

(ie., /ul, etc.) implies large vowel inventor (7 we present the top examples in Table 3 (after remov-

L . , ing th logicall les, which
vowels). This is supported by typological ewdencéngt € tautalogically true examples, which are more

) . numerous in this case, as well as examples that are
that high and mid front vowels are the “last” vowels P

, : . directly obtainable from Table 2). It is encouraging
tobe added to a language’s repertoire. Thus, in ord lat in the top1000 multi-conditional implications

to get them, you must also have many other types of \nd. the most frequently used were “OVIT6
vowels already, leading to a large vowel inventory. . ’

: : : mes) “Postpositions” 157 times) and “Adjective-
Not all examples admit a simple explanation an ! . : R
. . oun” (89 times). This result agrees with intuition.

are worthy of further thought. Some of which (like . )
the ones predicated on “SV”) may just be peculiar/ Discussion
ities of the annotation style: the subject verb ordewe have presented a Bayesian model for discovering
changes frequently between transitive and intransimiversal linguistic implications from a typological
tive usages in many languages, and the annotatidatabase. Our model is able to account for noise in
reflects just one. Some others are bizzarre: why natlinguistically plausible manner. Our hierarchical
having fricatives should mean that you don’t havenodels deal with the sampling issue in a unique way,
tones (#27) is not a priori clear. by using prior knowledge about language families to

6.4 Multi-conditional Implications “group” related languages. Quantitatively, the hier-

Many implications in the literature have multiplearCh'Cal mformatlon_tgrns out to be_qune useful, re-
implicants. For instance, much research has goig@rdless of whetheritis phylogenetically- or areally-
- based. Qualitatively, our model can recover many

“Labial-velars_ and uvulars are rare consonants (order 1Gfe||-known implications as well as many more po-
languages). Labial-velars are joined sounds like /kp/ and /gi/ential implications that can be the object of future

(to English speakers, sounding like chicken noises); uvulars T ) )
sounds are made in the back of the throat, like snoring. linguistic study. We believe that our model is suf-
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# Implicant > Implicand Analysis
1 Postpositions Genitive-Noun Greenberg #2a
2 OV D Postpositions Greenberg #4
3 OV D Genitive-Noun Greenberg #4 + Greenberg #2a
4 Genitive-NourD Postpositions Greenberg #2a (converse)
5 Postpositions OV Greenberg #2b (converse)
6 SV D Genitive-Noun ?2??
7 Adjective-NounD> Numeral-Noun Greenberg #18
8 Strongly suffixingD Tense-aspect suffixes Clear explanation
9 VO D Noun-Relative Clause Lehmann
10 Interrogative verb morph No question particle Appeal to economy
11 Numeral-Nourp Demonstrative-Noun Hawkins XVI (for postpositional languages)
12 Preposition® VO Greenberg #3 (converse)
13 Adjective-NourD Demonstrative-Noun Greenberg #18
14 Noun-AdjectiveD Postpositions Lehmann
15 SV D Postpositions ?2??
16 VO D Prepositions Greenberg #3
17 Initial subordinator word Prepositions Operator-operand principle (Lehmann)
18 Strong prefixingd Prepositions Greenberg #27b
19 Little affixation> Noun-Adjective ?2??
20 Labial-velars> No uvular consonants See text
21 Negative word> No pronominal possessive affixesSee text
22 Strong prefixing> VO Lehmann
23 Subordinating suffixo Strongly suffixing 7?7
24 Final subordinator word Postpositions Operator-operand principle (Lehmann)
25 High and mid front vowels Large vowel inventories See text
26 Plural prefixo Noun-Genitive 7?7
27 No fricativesD No tones 2?7
28 Obligatory subject pronourts No pronominal possessive affixesSee text
29 Demonstrative-Noum Tense-aspect suffixes Operator-operand principle (Lehmann)
30 Prepositions Noun-Relative clause Lehmann, Hawkins

Table 2: Top30 implications discovered by thelhGHIER model.
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Abstract

In this paper, we propose a novel discrim-
inative language model, which can be ap-
plied quite generaly. Compared to the
well known N-gram language models, dis-
criminative language models can achieve
more accurate discrimination because they
can employ overlapping features and non-
local information. However, discriminative
language maodels have been used only for
re-ranking in specific applications because
negative examples are not available. We
propose sampling pseudo-negative examples
taken from probabilistic language models.
However, this approach requires prohibitive
computational cost if we are dealing with
quite a few features and training samples.
We tackle the problem by estimating the la-
tent information in sentences using a semi-
Markov class model, and then extracting
features from them. We also use an on-
line margin-based algorithm with efficient
kernel computation. Experimental results
show that pseudo-negative examples can be
treated as real negative examples and our
model can classify these sentences correctly.

1 Introduction

Language models (LMs) are fundamental tools for
many applications, such as speech recognition, ma-
chine translation and spelling correction. The goal
of LMsisto determine whether a sentence is correct
or incorrect in terms of grammars and pragmatics.
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The most widely used LM is a probabilistic lan-
guage model (PLM), which assigns a probability to
a sentence or a word sequence. In particular, N-
grams with maximum likelihood estimation (NLMs)
are often used. Although NLMs are simple, they are
effective for many applications.

However, NLMs cannot determine correctness
of a sentence independently because the probabil-
ity depends on the length of the sentence and the
global frequencies of each word in it. For exam-
ple, p(S1) < p(S2), where p(S) is the probability
of a sentence S given by an NLM, does not always
mean that S, ismore correct, but instead could occur
when S, is shorter than 51, or if Sy has more com-
mon words than S;. Another problem isthat NLMs
cannot handle overlapping information or non-local
information easily, which is important for more ac-
curate sentence classification. For example, a NLM
could assign a high probability to a sentence even if
it does not have averh.

Discriminative language models (DLMs) have
been proposed to classify sentences directly as cor-
rect or incorrect (Gao et al., 2005; Roark et al.,
2007), and these models can handle both non-local
and overlapping information. However DLMs in
previous studies have been restricted to specific ap-
plications. Therefore the model cannot be used for
other applications. If we had negative examples
available, the models could be trained directly by
discriminating between correct and incorrect sen-
tences.

In this paper, we propose a generic DLM, which
can be used not only for specific applications, but
also more generaly, similar to PLMs. To achieve
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this goal, we need to solve two problems. The first
isthat since we cannot obtain negative examples (in-
correct sentences), we need to generate them. The
second isthe prohibitive computational cost because
the number of features and examplesisvery large. In
previous studies this problem did not arise because
the amount of training data was limited and they did
not use a combination of features, and thus the com-
putational cost was negligible.

To solve the first problem, we propose sampling
incorrect sentences taken from a PLM and then
training amodel to discriminate between correct and
incorrect sentences. We call these examples Pseudo-
Negative because they are not actually negative sen-
tences. We call this method DLM-PN (DLM with
Pseudo-Negative samples).

To deal with the second problem, we employ an
online margin-based learning algorithm with fast
kernel computation. This enables usto employ com-
binations of features, which are important for dis-
crimination between correct and incorrect sentences.
We a so estimate the latent information in sentences
by using a semi-Markov class model to extract fea
tures. Although there are substantially fewer la-
tent features than explicit features such as words or
phrases, latent features contain essential information
for sentence classification.

Experimental results show that these pseudo-
negative samples can be treated as incorrect exam-
ples, and that DLM-PN can learn to correctly dis-
criminate between correct and incorrect sentences
and can therefore classify these sentences correctly.

2 Previouswork

Probabilistic language models (PLMs) estimate the
probability of word strings or sentences. Among
these models, N-gram language models (NLMs) are
widely used. NLMs approximate the probability by
conditioning only on the preceding N — 1 words.
For example, let S denote a sentence of ¢ words,
S = wy,ws,...,w;. Then, by the chain rule of
probability and the approximation, we have

P(S) = -y Wt)

= [I Pwilwi—nsr,...,wir). (1)
i1t

P(wy,wa, ..

The parameters can be estimated using the maxi-
mum likelihood method.
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Since the number of parameters in NLM is still
large, several smoothing methods are used (Chen
and Goodman, 1998) to produce more accurate
probabilities, and to assign nonzero probabilities to
any word string.

However, since the probabilities in NLMs depend
on the length of the sentence, two sentences of dif-
ferent length cannot be compared directly.

Recently, Whole Sentence Maximum Entropy
Models (Rosenfeld et al., 2001) (WSMES) have
been introduced. They assign a probability to
each sentence using a maximum entropy model.
Although WSMEs can encode all features of a
sentence including non-local ones, they are only
sightly superior to NLMs, in that they have the dis-
advantage of being computationally expensive, and
not all relevant features can be included.

A discriminative language model (DLM) assigns
ascore f(S) to asentence S, measuring the correct-
ness of a sentence in terms of grammar and prag-
matics, so that f(S) > 0 implies S is correct and
f(S) < 0 implies S is incorrect. A PLM can be
considered as a special case of a DLM by defining
f using P(S). For example, we can take f(S) =
P(S)/|S| — a, where « is some threshold, and |S]|
isthelength of S.

Given a sentence S, we extract a feature vector
(¢(S)) from it using a pre-defined set of feature
functions {¢;}7,. The form of the function f we
useis

f(8) =w-9(5),

where w is a feature weighting vector.

Since there is no restriction in designing ¢(S),
DLMs can make use of both over-lapping and non-
local information in S. We estimate w using training
samples {(S;,y;)} fori = 1...t, wherey; = 1if S;
iscorrect and y; = —1 if .S; isincorrect.

However, it is hard to obtain incorrect sentences
because only correct sentences are available from
the corpus. This problem was not an issue for previ-
ous studies because they were concerned with spe-
cific applications and therefore were able to obtain
real negative examples easily. For example, Roark
(2007) proposed adiscriminative language model, in
which a model is trained so that a correct sentence
should have higher score than others. The differ-
ence between their approach and ours is that we do
not assume just one application. Moreover, they had

(2)



For i=1,2, ...
Choose a word w; at random
according to the distribution

P(wi|wi_N+1, e ,wi_l)

If w;= "end of a sentence"
Break

End End

Figure 1. Sample procedure for pseudo-negative ex-
amples taken from N-gram language models.

training sets consisting of one correct sentence and
many incorrect sentences, which were very similar
because they were generated by the same input. Our
framework does not assume any such training sets,
and we treat correct or incorrect examples indepen-
dently in training.

3 Discriminative Language Model with
Pseudo-Negative samples

We propose a novel discriminative language model;
a Discriminative Language Model with Pseudo-
Negative samples (DLM-PN). In this model,
pseudo-negative examples, which are al assumed to
be incorrect, are sampled from PLMs.

First a PLM is built using training data and then
examples, which are aimost all negative, are sam-
pled independently from PLMs. DLMs are trained
using correct sentences from a corpus and negative
examples from a Pseudo-Negative generator.

An advantage of sampling is that as many nega-
tive examples can be collected as correct ones, and
adistinction can be clearly made between truly cor-
rect sentences and incorrect sentences, even though
the latter might be correct in alocal sense.

For sampling, any PLMs can be used as long
as the model supports a sentence sampling proce-
dure. In this research we used NLMs with interpo-
lated smoothing because such models support effi-
cient sentence sampling. Figure 1 describes the sam-
pling procedure and figure 2 shows an example of a
pseudo-negative sentence.

Since the focus is on discriminating between cor-
rect sentences from a corpus and incorrect sentences
sampled from the NLM, DLM-PN may not able to
classify incorrect sentences that are not generated
fromthe NLM. However, this does not result in ase-
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We know of no program, and animated
discussions about prospects for trade
barriers or regulations on the rules
of the game as a whole, and elements
of decoration of this peanut-shaped

to priorities tasks across both target
countries

Figure 2. Example of a sentence sampled by PLMs
(Trigram).

Build a probabilistic language model
Probabilistic LM
(e.g. N-gram LM)

J——

‘ Sample sentences

.

Corpus

(Pseudo-) Negative

Positive
l Input training examples

Binary Classifier )

—— —(
test sentences / \

Return positive/negative label or score (margin)

Figure 3: Framework of our classification process.

rious problem, because these sentences, if they exi<t,
can befiltered out by NLMs.

4 Online margin-based learning with fast
kernel computation

The DLM-PN can be trained by using any binary
classification learning methods. However, since the
number of training examples is very large, batch
training has suffered from prohibitively large com-
putational cost in terms of time and memory. There-
fore we make use of an online learning agorithm
proposed by (Crammer et a., 2006), which has a
much smaller computational cost. We follow the
definition in (Crammer et a., 2006).

Theinitiation vector wy isinitialized to 0 and for
each round the algorithm observes a training exam-
plex; := ¢(S;) and predicts its label y; to be either
+1 or —1. After the prediction is made, the true la-
bel y; isrevealed and the algorithm suffers an instan-
taneous hinge-loss [(w; (x;,vi)) = 1 — yi(w; - x;)
which reflects the degree to which its prediction was
wrong. If the prediction was wrong, the parameter



w is updated as

3)
(4)

where ¢ isadack term and C'isa positive parameter
which controls the influence of the slack term on the
objective function. A largevalue of C' will resultina
more aggressive update step. Thishasaclosed form
solution as

o1
Wipl = argmmw§||w —wi||> + C¢

()

where 7; = min{C,W}. As in SVMs, a fi-
nal weight vector can be represented as a kernel-
dependent combination of the stored training exam-
ples.

Wit1 = Wi + T¥iX;

wex =Y 7igi(xiXx) (6)
13

Using this formulation the inner product can be re-

placed with a general Mercer kernel K (x;,x) such

as apolynomial kernel or a Gaussian kernel.

The combination of features, which can capture
correlation information, is important in DLMs. If
the kernel-trick (Taylor and Cristianini, 2004) is ap-
plied to online margin-based learning, a subset of
the observed examples, called the active set, needs
to be stored. However in contrast to the support set
in SVMs, an example is added to the active set every
time the online agorithm makes a prediction mis-
take or when its confidence in a prediction is inad-
equately low. Therefore the active set can increase
in size significantly and thus the total computational
cost becomes proportiona to the square of the num-
ber of training examples. Since the number of train-
ing examples isvery large, the computational cost is
prohibitive even if we apply the kernel trick.

The calculation of the inner product between two
examples can be done by intersection of the acti-
vated features in each example. This is similar to
a merge sort and can be executed in O(M) time
where M is the average number of activated fea
tures in an example. When the number of examples
in the active set is A, the total computational cost is
O(M - A). For fast kernel computation, the Poly-
nomial Kernel Inverted method (PKI)) is proposed
(Kudo and Matsumoto, 2003), which is an exten-
sion of Inverted Index in Information Retrieval. This
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algorithm uses a table h(f;) for each feature item,
which stores examples where a feature f; is fired.
Let B bethe average of |h(f;)| over all feature item.
Then the kernel computation can be performed in
O(M - B) time which is much less than the normal
kernel computation timewhen B < A. We can eas-
ily extend this algorithm into the online setting by
updating h(f;) when an observed example is added
to an active set.

5 Latent features by semi-Markov class
model

Another problem for DLMs is that the number of
features becomes very large, because all possible N-
grams are used as features. In particular, the mem-
ory requirement becomes a serious problem because
quite afew active sets with many features have to be
stored, not only at training time, but also at classi-
fication time. One way to deal with this is to filter
out low-confidence features, but it is difficult to de-
cide which features areimportant in online learning.
For this reason we cluster similar N-grams using a
semi-Markov class model.

The class model wasoriginally proposed by (Mar-
tin et a., 1998). In the class model, determinis-
tic word-to-class mappings are estimated, keeping
the number of classes much smaller than the num-
ber of distinct words. A semi-Markov class model
(SMCM) is an extended version of the class mode,
apart of which was proposed by (Deligne and BIM-
BOT, 1995). In SMCM, a word sequence is par-
titioned into a variable-length sequence of chunks
and then chunks are clustered into classes (Figure 4).
How a chunk is clustered depends on which chunks
are adjacent to it.

The probability of a sentence P(wy, ...
bi-gram class model is calculated by

[T Plwisileisr) Pleigale).

2

,wy),ina

(")

On the other hand, the probabilities in a bi-gram
semi-Markov class model are calculated by

Z HP(Ci|Ci—1) - P(wis),i(i)+1,...u@lci)- (8)

where s varies over al possible partitions of S, #(i)
and u(i) denote the start and end positions respec-
tively of the i-th chunk in partition s,and ¢(i + 1) =



u(i) + 1 for all 7. Note that each word or variable-
length chunk belongs to only one class, in contrast
to a hidden Markov model where each word can be-
long to several classes.

Using atraining corpus, the mapping is estimated
by maximum likelihood estimation. The log like-
lihood of the training corpus (wy,...,w,) in a bi-
gram class model can be calculated as

log [ [ P(wis1]ws) ©)
i
= > log P(wii|eip1) Pleipale)  (10)
F(Cl, 62)
= F(ey,c9)log ————
2 Flen e o e 3

C1,C2

~I—ZF

where F(w), F(c) and F'(c1, co) are frequencies of
aword w, aclass ¢ and a class bi-gram ¢, ¢, in the
training corpus. In (11) only the first term is used,
since the second term does not depend on the class
alocation. The class alocation problem is solved by
an exchange algorithm as follows. First, al words
are assigned to a randomly determined class. Next,
for each word w, we moveit to the class ¢ for which
the log-likelihood is maximized. This procedure is
continued until the log-likelihood converges to alo-
cal maximum. A naive implementation of the clus-
tering algorithm scales quadratically to the number
of classes, since each time aword is moved between
classes, al class bi-gram counts are potentially af-
fected. However, by considering only those counts
that actually change, the algorithm can be made to
scale somewhere between linearly and quadratically
to the number of classes (Martin et a., 1998).

In SMCM, partitions of each sentence are also de-
termined. We used a Viterbi decoding (Deligne and
BIMBOT, 1995) for the partition. We applied the
exchange algorithm and the Viterbi decoding alter-
nately until the log-likelihood converged to the local
maximum.

Since the number of chunks is very large, for ex-
ample, in our experiments we used about 3 million
chunks, the computational cost is till large. We
therefore employed the following two techniques.
The first was to approximate the computation in the
exchange agorithm; the second was to make use of
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Figure 4: Example of assignment in semi-Markov
class model. A sentence is partitioned into variable-
length chunks and each chunk is assigned a unique
class number.

bottom-up clustering to strengthen the convergence.

In each step in the exchange agorithm, the ap-
proximate value of the change of the log-likelihood
was examined, and the exchange algorithm applied
only if the approximate value was larger than a pre-
defined threshold.

The second technique was to reduce memory re-
guirements. Since the matrices used in the exchange
algorithm could become very large, we clustered
chunks into 2 classes and then again we clustered
these two into 2 each, thus obtaining 4 classes. This
procedure was applied recursively until the number
of classes reached a pre-defined number.

6 Experiments

6.1 Experimental Setup

We partitioned a BNC-corpus into model-train,
DLM-train-positive, and DLM-test-positive sets.
The numbers of sentences in model-train, DLM-
train-positive and DLM-test-positive were 4500k,
250k, and 10k respectively. An NLM was built
using model-train and Pseudo-Negative examples
(250k sentences) were sampled from it. We mixed
sentences from DLM-train-positive and the Pseudo-
Negative examples and then shuffled the order of
these sentences to make DLM-train. We also con-
structed DLM-test by mixing DLM-test-positive and
10k new (not aready used) sentences from the
Pseudo-Negative examples. We call the sentences
from DLM-train-positive “positive” examples and
the sentences from the Pseudo-Negative examples
“negative” examples in the following. From these
sentences the ones with less than 5 words were ex-
cluded beforehand because it was difficult to decide
whether these sentences were correct or not (e.g.



| Accuracy (%) Training time (s)
Linear classifier

word tri-gram 51.28 137.1

POS tri-gram 52.64 85.0
SMCM bi-gram (G = 100) 51.79 304.9
SMCM bi-gram (G' = 500) 54.45 422.1

3rd order Polynomial Kernel

word tri-gram 73.65 20143.7

POS tri-gram 66.58 29622.9
SMCM bi-gram (G = 100) 67.11 37181.6
SMCM bi-gram (G' = 500) 74.11 34474.7

Table 1; Performance on the evaluation data.

compound words).

Let G be the number of classesin SMCMs. Two
SMCMSs, one with G = 100 and the other with
G = 500, were constructed from model-train. Each
SMCM contained 2.8 million extracted chunks.

6.2 Experimentson Pseudo-Examples

We examined the property of a sentence being
Pseudo-Negative, in order to justify our framework.
A native English speaker and two non-native En-
glish speaker were asked to assign correct/incorrect
labels to 100 sentences in DLM-train*. The result
for an native English speaker was that all positive
sentences were labeled as correct and all negative
sentences except for one were labeled as incorrect.
On the other hand, the results for non-native English
speakers are 67% and 70%. From this result, we
can say that the sampling method was able to gen-
erate incorrect sentences and if a classifier can dis-
criminate them, the classifier can also discriminate
between correct and incorrect sentences. Note that
it takes an average of 25 seconds for the native En-
glish speaker to assign the label, which suggests that
it isdifficult even for a human to determine the cor-
rectness of a sentence.

We then examined whether it was possible to dis-
criminate between correct and incorrect sentences
using parsing methods, since if so, we could have
used parsing as a classification tool. We exam-
ined 100 sentences using a phrase structure parser
(Charniak and Johnson, 2005) and an HPSG parser

1Since the PLM also made use of the BNC-corpus for posi-
tive examples, we were not able to classify sentences based on
word occurrences
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(Miyao and Tsujii, 2005). All sentences were parsed
correctly except for one positive example. This
result indicates that correct sentences and pseudo-
negative examples cannot be differentiated syntacti-
caly.

6.3 Experimentson DLM-PN

We investigated the performance of classifiers and
the effect of different sets of features.

For N-grams and Part of Speech (POS), we used
tri-gram features. For SMCM, we used bi-gram fea-
tures. We used DLM-train as a training set. In al
experiments, we set C' = 50.0 where C isaparame-
ter in the classification (Section 4). In all kernel ex-
periments, a 3rd order polynomial kernel was used
and values were computed using PKI (the inverted
indexing method). Table 1 shows the accuracy re-
sults with different features, or in the case of the
SMCMs, different numbers of classes. This result
shows that the kernel method isimportant in achiev-
ing high performance. Note that the classifier with
SMCM features performs as well as the one with
word.

Table 2 shows the number of features in each
method. Note that a new feature is added only if the
classifier needsto update its parameters. These num-
bers are therefore smaller than the possible number
of all candidate features. This result and the previ-
ous result indicate that SMCM achieves high perfor-
mance with very few features.

We then examined the effect of PKI. Table 3
shows the results of the classifier with 3rd order
polynomial kernel both with and without PKI. In
this experiment, only 200 K sentences in DLM-train



# of distinct features

word tri-gram 15773230
POS tri-gram 35376
SMCM (G = 100) 9335
SMCM (G = 500) 199745

Table 2: The number of features.

training time (s)  prediction time (ms)
37665.5 370.6
4664.9 47.8

Baseline
+ Index

Table 3: Comparison between classification perfor-
mance with/without index

—o— negative
—&— positive

Number of sentences

Figure 5: Margin distribution using SMCM bi-gram
features.

were used for both experiments because training us-
ing al the training data would have required amuch
longer time than was possible with our experimental
setup.

Figure 5 shows the margin distribution for pos-
itive and negative examples using SMCM bi-gram
features. Although many examples are close to the
border line (margin = 0), positive and negative ex-
amples are distributed on either side of 0. Therefore
higher recall or precision could be achieved by using
a pre-defined margin threshold other than 0.

Finally, we generated learning curves to examine
the effect of the size of training data on performance.
Figure 6 shows the result of the classification task
using SMCM-bi-gram features. The result suggests
that the performance could be further improved by
enlarging the training data set.
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Number of training examples

Figure 6: A learning curve for SMCM (G = 500).
The accuracy is the percentage of sentences in the
evaluation set classified correctly.

7 Discussion

Experimental results on pseudo-negative examples
indicate that combination of features is effective in
a sentence discrimination method. This could be
because negative examples include many unsuitable
combinations of words such as a sentence contain-
ing many nouns. Although in previous PLMs, com-
bination of features has not been discussed except
for the topic-based language model (David M. Ble,
2003; Wang et al., 2005), our result may encourage
the study of the combination of features for language
modeling.

A contrastive estimation method (Smith and Eis-
ner, 2005) issimilar to ours with regard to construct-
ing pseudo-negative examples. They build a neigh-
borhood of input examplesto allow unsupervised es-
timation when, for example, a word is changed or
deleted. A lattice is constructed, and then parame-
ters are estimated efficiently. On the other hand, we
construct independent pseudo-negative examples to
enable training. Although the motivations of these
studies are different, we could combine these two
methods to discriminate sentences finely.

In our experiments, we did not examine the result
of using other sampling methods, For example, it
would be possible to sample sentences from awhole
sentence maximum entropy model (Rosenfeld et al.,
2001) and thisis atopic for future research.



8 Conclusion

In this paper we have presented a novel discrimi-
native language model using pseudo-negative exam-
ples. We aso showed that an online margin-based
learning method enabled us to use half amillion sen-
tences as training data and achieve 74% accuracy in
the task of discrimination between correct and in-
correct sentences. Experimental results indicate that
while pseudo-negative examples can be seen asin-
correct sentences, they are also close to correct sen-
tences in that parsers cannot discriminate between
them.

Our experimental results also showed that com-
bination of features is important for discrimination
between correct and incorrect sentences. This con-
cept has not been discussed in previous probabilistic
language models.

Our next step is to employ our model in machine
translation and speech recognition. One main diffi-
culty concerns how to encode global scores for the
classifier in the local search space, and another is
how to scale up the problem size in terms of the
number of examples and features. We would like to
see more refined online learning methods with ker-
nels (Cheng et al., 2006; Dekel et al., 2005) that we
could apply in these aress.

We are al so interested in applications such as con-
structing an extended version of a spelling correc-
tion tool by identifying incorrect sentences.

Ancther interesting idea is to work with proba-
bilistic language models directly without sampling
and find ways to construct a more accurate discrim-
inative model.
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Abstract

This paper studies the problem of identify-
ing erroneous/correct sentences. The prob-
lem has important applications, e.g., pro-
viding feedback for writers of English as
a Second Language, controlling the quality
of parallel bilingual sentences mined from
the Web, and evaluating machine translation
results. In this paper, we propose a new
approach to detecting erroneous sentences
by integrating pattern discovery with super-
vised learning models. Experimental results
show that our techniques are promising.

1 Introduction

Detecting erroneous/correct sentences has the fol-
lowing applications. First, it can provide feedback
for writers of English as a Second Language (ESL)
as to whether a sentence contains errors. Second, it
can be applied to control the quality of parallel bilin-
gual sentences mined from the Web, which are criti-
cal sources for a wide range of applications, such as
statistical machine translation (Brown et al., 1993)
and cross-lingual information retrieval (Nie et al.,
1999). Third, it can be used to evaluate machine
translation results. As demonstrated in (Corston-
Oliver et al., 2001; Gamon et al., 2005), the better
human reference translations can be distinguished
from machine translations by a classification model,
the worse the machine translation system is.

*Work done while the author was a visiting student at MSRA
TWork done while the author was a visiting student at MSRA
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The previous work on identifying erroneous sen-
tences mainly aims to find errors from the writing of
ESL learners. The common mistakes (Yukio et al.,
2001; Gui and Yang, 2003) made by ESL learners
include spelling, lexical collocation, sentence struc-
ture, tense, agreement, verb formation, wrong Part-
Of-Speech (POS), article usage, etc. The previous
work focuses on grammar errors, including tense,
agreement, verb formation, article usage, etc. How-
ever, little work has been done to detect sentence
structure and lexical collocation errors.

Some methods of detecting erroneous sentences
are based on manual rules. These methods (Hei-
dorn, 2000; Michaud et al., 2000; Bender et al.,
2004) have been shown to be effective in detect-
ing certain kinds of grammatical errors in the writ-
ing of English learners. However, it could be ex-
pensive to write rules manually. Linguistic experts
are needed to write rules of high quality; Also, it
is difficult to produce and maintain a large num-
ber of non-conflicting rules to cover a wide range of
grammatical errors. Moreover, ESL writers of differ-
ent first-language backgrounds and skill levels may
make different errors, and thus different sets of rules
may be required. Worse still, it is hard to write rules
for some grammatical errors, for example, detecting
errors concerning the articles and singular plural us-
age (Nagata et al., 2006).

Instead of asking experts to write hand-crafted
rules, statistical approaches (Chodorow and Lea-
cock, 2000; Izumi et al., 2003; Brockett et al., 2006;
Nagata et al., 2006) build statistical models to iden-
tify sentences containing errors. However, existing

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 81-88,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



statistical approaches focus on some pre-defined er-
rors and the reported results are not attractive. More-
over, these approaches, e.g., (Izumi et al., 2003;
Brockett et al., 2006) usually need errors to be spec-
ified and tagged in the training sentences, which re-
quires expert help to be recruited and is time con-
suming and labor intensive.

Considering the limitations of the previous work,
in this paper we propose a novel approach that is
based on pattern discovery and supervised learn-
ing to successfully identify erroneous/correct sen-
tences. The basic idea of our approach is to build
a machine learning model to automatically classify
each sentence into one of the two classes, “erro-
neous” and “correct.” To build the learning model,
we automatically extract labeled sequential patterns
(LSPs) from both erroneous sentences and correct
sentences, and use them as input features for classi-
fication models. Our main contributions are:

e We mine labeled sequential patterns(LSPS)
from the preprocessed training data to build
leaning models. Note that LSPs are also very
different from N-gram language models that
only consider continuous sequences.

e We also enrich the LSP features with other auto-
matically computed linguistic features, includ-
ing lexical collocation, language model, syn-
tactic score, and function word density. In con-
trast with previous work focusing on (a spe-
cific type of) grammatical errors, our model can
handle a wide range of errors, including gram-
mar, sentence structure, and lexical choice.

e We empirically evaluate our methods on two
datasets consisting of sentences written by
Japanese and Chinese, respectively. Experi-
mental results show that labeled sequential pat-
terns are highly useful for the classification
results, and greatly outperform other features.
Our method outperforms Microsoft Word03
and ALEK (Chodorow and Leacock, 2000)
from Educational Testing Service (ETS) in
some cases. We also apply our learning model
to machine translation (MT) data as a comple-
mentary measure to evaluate MT results.

The rest of this paper is organized as follows.
The next section discusses related work. Section 3
presents the proposed technique. We evaluate our
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proposed technique in Section 4. Section 5 con-
cludes this paper and discusses future work.

2 Related Work

Research on detecting erroneous sentences can be
classified into two categories. The first category
makes use of hand-crafted rules, e.g., template
rules (Heidorn, 2000) and mal-rules in context-free
grammars (Michaud et al., 2000; Bender et al.,
2004). As discussed in Section 1, manual rule based
methods have some shortcomings.

The second category uses statistical techniques
to detect erroneous sentences. An unsupervised
method (Chodorow and Leacock, 2000) is em-
ployed to detect grammatical errors by inferring
negative evidence from TOEFL administrated by
ETS. The method (Izumi et al., 2003) aims to de-
tect omission-type and replacement-type errors and
transformation-based leaning is employed in (Shi
and Zhou, 2005) to learn rules to detect errors for
speech recognition outputs. They also require spec-
ifying error tags that can tell the specific errors
and their corrections in the training corpus. The
phrasal Statistical Machine Translation (SMT) tech-
nique is employed to identify and correct writing er-
rors (Brockett et al., 2006). This method must col-
lect a large number of parallel corpora (pairs of er-
roneous sentences and their corrections) and perfor-
mance depends on SMT techniques that are not yet
mature. The work in (Nagata et al., 2006) focuses
on a type of error, namely mass vs. count nouns.
In contrast to existing statistical methods, our tech-
nique needs neither errors tagged nor parallel cor-
pora, and is not limited to a specific type of gram-
matical error.

There are also studies on automatic essay scoring
at document-level. For example, E-rater (Burstein
et al., 1998), developed by the ETS, and Intelligent
Essay Assessor (Foltz et al., 1999). The evaluation
criteria for documents are different from those for
sentences. A document is evaluated mainly by its or-
ganization, topic, diversity of vocabulary, and gram-
mar while a sentence is done by grammar, sentence
structure, and lexical choice.

Another related work is Machine Translation (MT)
evaluation.  Classification models are employed
in (Corston-Oliver et al., 2001; Gamon et al., 2005)



to evaluate the well-formedness of machine transla-
tion outputs. The writers of ESL and MT normally
make different mistakes: in general, ESL writers can
write overall grammatically correct sentences with
some local mistakes while MT outputs normally pro-
duce locally well-formed phrases with overall gram-
matically wrong sentences. Hence, the manual fea-
tures designed for MT evaluation are not applicable
to detect erroneous sentences from ESL learners.

LSPs differ from the traditional sequential pat-
terns, e.g., (Agrawal and Srikant, 1995; Pei et al.,
2001) in that LSPs are attached with class labels and
we prefer those with discriminating ability to build
classification model. In our other work (Sun et al.,
2007), labeled sequential patterns, together with la-
beled tree patterns, are used to build pattern-based
classifier to detect erroneous sentences. The clas-
sification method in (Sun et al., 2007) is different
from those used in this paper. Moreover, instead of
labeled sequential patterns, in (Sun et al., 2007) the
most significant & labeled sequential patterns with
constraints for each training sentence are mined to
build classifiers. Another related work is (Jindal and
Liu, 2006), where sequential patterns with labels are
used to identify comparative sentences.

3 Proposed Technique

This section first gives our problem statement and
then presents our proposed technique to build learn-
ing models.

3.1 Problem Statement

In this paper we study the problem of identifying
erroneous/correct sentences. A set of training data
containing correct and erroneous sentences is given.
Unlike some previous work, our technique requires
neither that the erroneous sentences are tagged with
detailed errors, nor that the training data consist of
parallel pairs of sentences (an error sentence and its
correction). The erroneous sentence contains a wide
range of errors on grammar, sentence structure, and
lexical choice. We do not consider spelling errors in
this paper.

We address the problem by building classifica-
tion models. The main challenge is to automatically
extract representative features for both correct and
erroneous sentences to build effective classification
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models. We illustrate the challenge with an exam-
ple. Consider an erroneous sentence, “If Maggie will
go to supermarket, she will buy a bag for you.” It is
difficult for previous methods using statistical tech-
niques to capture such an error. For example, N-
gram language model is considered to be effective
in writing evaluation (Burstein et al., 1998; Corston-
Oliver et al., 2001). However, it becomes very ex-
pensive if N > 3 and N-grams only consider contin-
uous sequence of words, which is unable to detect
the above error “if...will...will”.

We propose labeled sequential patterns to effec-
tively characterize the features of correct and er-
roneous sentences (Section 3.2), and design some
complementary features ( Section 3.3).

3.2 Mining Labeled Sequential Patterns ( LSP )

Labeled Sequential Patterns (LSP). A labeled se-
quential pattern, p, is in the form of Lus — ¢, where
LHS is a sequence and c is a class label. Let I be a
set of items and L be a set of class labels. Let D be a
sequence database in which each tuple is composed
of a list of items in [ and a class label in L. We say
that a sequence s1 =< ay, ..., @y, > is contained in
a sequence s =< by, ..., by, > if there exist integers
21, ...0im such that 1 < 47 < 49 < ... < 4y, < n and
aj = b;; forall j € 1,...,m. Similarly, we say that
a LSP p; is contained by po if the sequence p;.LHS
is contained by ps2.LHS and pi.c = py.c. Note that
it is not required that s; appears continuously in ss.
We will further refine the definition of “contain” by
imposing some constraints (to be explained soon).
A LSP p is attached with two measures, support and
confidence. The support of p, denoted by sup(p),
is the percentage of tuples in database D that con-
tain the LSP p. The probability of the LSP p being
true is referred to as “the confidence of p ”, denoted
by conf(p), and is computed as %. The
support is to measure the generality of the pattern p
and minimum confidence is a statement of predictive
ability of p.

Example 1: Consider a sequence database contain-
ing three tuples t; = (< a,d,e, f >, E), t2 = (<
a, f,e,f > FE)and t3 = (< d,a,f >,C). One
example LSP p; = < a,e, f >— FE, which is con-
tained in tuples ¢; and to. Its support is 66.7% and
its confidence is 100%. As another example, LSP po



=< a, f >— E with support 66.7% and confidence
66.7%. p; is a better indication of class F than ps.
a
Generating Sequence Database. We generate the
database by applying Part-Of-Speech (POS) tagger
to tag each training sentence while keeping func-
tion words' and time words?. After the process-
ing, each sentence together with its label becomes
a database tuple. The function words and POS tags
play important roles in both grammars and sentence
structures. In addition, the time words are key
clues in detecting errors of tense usage. The com-
bination of them allows us to capture representative
features for correct/erroneous sentences by mining
LSPs. Some example LSPs include “<a, NNS> —
Error”(singular determiner preceding plural noun),
and “<yesterday, is> — Error”. Note that the con-
fidences of these LSPs are not necessary 100%.
First, we use MXPOST-Maximum Entropy Part of
Speech Tagger Toolkit? for POS tags. The MXPOST
tagger can provide fine-grained tag information. For
example, noun can be tagged with “NN”(singular
noun) and “NNS”(plural noun); verb can be tagged
with “VB”, ”VBG”, ”VBN”, ”VBP”, "VBD” and
”VBZ”. Second, the function words and time words
that we use form a key word list. If a word in a
training sentence is not contained in the key word
list, then the word will be replaced by its POS. The
processed sentence consists of POS and the words of
key word list. For example, after the processing, the
sentence “In the past, John was kind to his sister” is
converted into “In the past, NNP was JJ to his NN”,
where the words “in”, “the”, “was”, “to” and “his”
are function words, the word “past” is time word,
and “NNP”, “JJ”, and “NN” are POS tags.

Mining LSPs. The length of the discovered LSPs
is flexible and they can be composed of contiguous
or distant words/tags. Existing frequent sequential
pattern mining algorithms (e.g. (Pei et al., 2001))
use minimum support threshold to mine frequent se-
quential patterns whose support is larger than the
threshold. These algorithms are not sufficient for our
problem of mining LSPs. In order to ensure that all
our discovered LSPs are discriminating and are capa-

"http://www.marlodge.supanet.com/museum/funcword.html
2http://www.wjh.harvard.edu/%7Einquirer/Time%40.html
3http://www.cogsci.ed.ac.uk/~jamesc/taggers/MXPOST.html
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ble of predicting correct or erroneous sentences, we
impose another constraint minimum confidence. Re-
call that the higher the confidence of a pattern is, the
better it can distinguish between correct sentences
and erroneous sentences. In our experiments, we
empirically set minimum support at 0.1% and mini-
mum confidence at 75%.

Mining LSPs is nontrivial since its search space
is exponential, althought there have been a host of
algorithms for mining frequent sequential patterns.
We adapt the frequent sequence mining algorithm
in (Pei et al., 2001) for mining LSPs with constraints.

Converting LSPs to Features. Each discovered LSP
forms a binary feature as the input for classification
model. If a sentence includes a LSP, the correspond-
ing feature is set at 1.

The LSPs can characterize the correct/erroneous
sentence structure and grammar. We give some ex-
amples of the discovered LSPs. (1) LSPs for erro-
neous sentences. For example, “<this, NNS>"(e.g.
contained in “this books is stolen.”), “<past,
is>"(e.g. contained in “in the past, John is kind to
his sister.”), “<one, of, NN>"(e.g. contained in “it is
one of important working language”, “<although,
but>"(e.g. contained in “although he likes it, but
he can’t buy it.”), and “<only, if, I, am>"(e.g. con-
tained in “only if my teacher has given permission,
I am allowed to enter this room”). (2) LSPs for cor-
rect sentences. For instance, “<would, VB>"(e.g.
contained in “he would buy it””), and “<VBD,
yeserday>"(e.g. contained in “I bought this book
yesterday.”).

3.3 Other Linguistic Features

We use some linguistic features that can be com-
puted automatically as complementary features.

Lexical Collocation (LC) Lexical collocation er-
ror (Yukio et al., 2001; Gui and Yang, 2003) is com-
mon in the writing of ESL learners, such as “strong
tea” but not “powerful tea.” Our LSP features can-
not capture all LCs since we replace some words
with POS tags in mining LSPs. We collect five types
of collocations: verb-object, adjective-noun, verb-
adverb, subject-verb, and preposition-object from a
general English corpus*. Correct LCs are collected

“The general English corpus consists of about 4.4 million
native sentences.



by extracting collocations of high frequency from
the general English corpus. Erroneous LC candi-
dates are generated by replacing the word in correct
collocations with its confusion words, obtained from
WordNet, including synonyms and words with sim-
ilar spelling or pronunciation. Experts are consulted
to see if a candidate is a true erroneous collocation.
We compute three statistical features for each sen-
tence below. (1) The first feature is computed by
m
>~ p(co;)/n, where m is the number of CLs, n is
;hé number of collocations in each sentence, and
probability p(co;) of each CL co; is calculated us-
ing the method (Lii and Zhou, 2004). (2) The sec-
ond feature is computed by the ratio of the number
of unknown collocations (neither correct LCs nor er-
roneous LCs) to the number of collocations in each
sentence. (3) The last feature is computed by the ra-
tio of the number of erroneous LCs to the number of
collocations in each sentence.

Perplexity from Language Model (PLM) Perplex-
ity measures are extracted from a trigram language
model trained on a general English corpus using
the SRILM-SRI Language Modeling Toolkit (Stolcke,
2002). We calculate two values for each sentence:
lexicalized trigram perplexity and part of speech
(POS) trigram perplexity. The erroneous sentences
would have higher perplexity.

Syntactic Score (SC) Some erroneous sentences of-
ten contain words and concepts that are locally cor-
rect but cannot form coherent sentences (Liu and
Gildea, 2005). To measure the coherence of sen-
tences, we use a statistical parser Toolkit (Collins,
1997) to assign each sentence a parser’s score that
is the related log probability of parsing. We assume
that erroneous sentences with undesirable sentence
structures are more likely to receive lower scores.

Function Word Density (FWD) We consider the
density of function words (Corston-Oliver et al.,
2001), i.e. the ratio of function words to content
words. This is inspired by the work (Corston-Oliver
et al., 2001) showing that function word density can
be effective in distinguishing between human refer-
ences and machine outputs. In this paper, we calcu-
late the densities of seven kinds of function words >

Sincluding determiners/quantifiers, all pronouns, different

pronoun types: Wh, 1°¢, 2" and 3"¢ person pronouns, prepo-
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[ Dataset | Type | Source | Number |
the Japan Times newspaper | 7
IC ) and Model English Essay 6,85
HEL (Hiroshima English
) Learners” Corpus) and JLE | 17301
(Japanese Learners of En-
glish Corpus)
cc (+) | the 21st Century newspaper 3,200
CLEC (Chinese Learner Er-
() | ror Corpus) 3,199

Table 1: Corpora ((+): correct; (-): erroneous)

respectively as 7 features.

4 Experimental Evaluation

We evaluated the performance of our techniques
with support vector machine (SVM) and Naive
Bayesian (NB) classification models. We also com-
pared the effectiveness of various features. In ad-
dition, we compared our technique with two other
methods of checking errors, Microsoft Word03 and
ALEK method (Chodorow and Leacock, 2000). Fi-
nally, we also applied our technique to evaluate the
Machine Translation outputs.

4.1 Experimental Setup

Classification Models. We used two classification
models, SVM® and NB classification model.

Data. We collected two datasets from different do-
mains, Japanese Corpus (JC) and Chinese Corpus
(CC). Table 1 gives the details of our corpora. In
the learner’s corpora, all of the sentences are erro-
neous. Note that our data does not consist of parallel
pairs of sentences (one error sentence and its correc-
tion). The erroneous sentences includes grammar,
sentence structure and lexical choice errors, but not
spelling errors.

For each sentence, we generated five kinds of fea-
tures as presented in Section 3. For a non-binary
feature X, its value z is normalized by z-score,
z—mean(X)

Vvar(X)
pirical mean of X and var(X) is the variance of X.
Thus each sentence is represented by a vector.
Metrics We calculated the precision, recall,
and F-score for correct and erroneous sentences,
respectively, and also report the overall accuracy.

norm(x) = , where mean(x) is the em-

sitions and adverbs, auxiliary verbs, and conjunctions.
Shttp://svmlight joachims.org/




All the experimental results are obtained thorough
10-fold cross-validation.

4.2 Experimental Results

The Effectiveness of Various Features. The exper-
iment is to evaluate the contribution of each feature
to the classification. The results of SVM are given in
Table 2. We can see that the performance of labeled
sequential patterns (LSP) feature consistently out-
performs those of all the other individual features. It
also performs better even if we use all the other fea-
tures together. This is because other features only
provide some relatively abstract and simple linguis-
tic information, whereas the discovered LS Ps char-
acterize significant linguistic features as discussed
before. We also found that the results of NB are a
little worse than those of SVM. However, all the fea-
tures perform consistently on the two classification
models and we can observe the same trend. Due to
space limitation, we do not give results of NB.

In addition, the discovered LSPs themselves are
intuitive and meaningful since they are intuitive fea-
tures that can distinguish correct sentences from er-
roneous sentences. We discovered 6309 LSPs in
JC data and 3742 LSPs in CC data. Some exam-
ple LSPs discovered from erroneous sentences are
<a, NNS> (support:0.39%, confidence:85.71%),
<to, VBD> (support:0.11%, confidence:84.21%),
and <the, more, the, JJ> (support:0.19%, confi-
dence:0.93%) ’; Similarly, we also give some exam-
ple LSPs mined from correct sentences: <NN, VBZ>
(support:2.29%, confidence:75.23%), and <have,
VBN, since> (support:0.11%, confidence:85.71%)
8 However, other features are abstract and it is hard
to derive some intuitive knowledge from the opaque
statistical values of these features.

As shown in Table 2, our technique achieves
the highest accuracy, e.g. 81.75% on the Japanese
dataset, when we use all the features. However, we
also notice that the improvement is not very signif-
icant compared with using LSP feature individually
(e.g. 79.63% on the Japanese dataset). The similar
results are observed when we combined the features
PILM, SC, FWD, and LC. This could be explained

"a + plural noun; to + past tense format; the more + the +
base form of adjective

$singular or mass noun + the 3" person singular present
format; have + past participle format + since
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by two reasons: (1) A sentence may contain sev-
eral kinds of errors. A sentence detected to be er-
roneous by one feature may also be detected by an-
other feature; and (2) Various features give conflict-
ing results. The two aspects suggest the directions
of our future efforts to improve the performance of
our models.

Comparing with Other Methods. It is difficult
to find benchmark methods to compare with our
technique because, as discussed in Section 2, exist-
ing methods often require error tagged corpora or
parallel corpora, or focus on a specific type of er-
rors. In this paper, we compare our technique with
the grammar checker of Microsoft Word03 and the
ALEK (Chodorow and Leacock, 2000) method used
by ETS. ALEK is used to detect inappropriate usage
of specific vocabulary words. Note that we do not
consider spelling errors. Due to space limitation, we
only report the precision, recall, F-score
for erroneous sentences, and the overall accuracy.

As can be seen from Table 3, our method out-
performs the other two methods in terms of over-
all accuracy, F-score, and recall, while the three
methods achieve comparable precision. We realize
that the grammar checker of Word is a general tool
and the performance of ALEK (Chodorow and Lea-
cock, 2000) can be improved if larger training data is
used. We found that Word and ALEK usually cannot
find sentence structure and lexical collocation errors,
e.g., “The more you listen to English, the easy it be-
comes.” contains the discovered LSP <the, more, the,
JJ> — Error.

Cross-domain Results. To study the performance
of our method on cross-domain data from writers
of the same first-language background, we collected
two datasets from Japanese writers, one is composed
of 694 parallel sentences (+:347, -:347), and the
other 1,671 non-parallel sentences (+:795, -:876).
The two datasets are used as test data while we use
JC dataset for training. Note that the test sentences
come from different domains from the JC data. The
results are given in the first two rows of Table 4. This
experiment shows that our leaning model trained for
one domain can be effectively applied to indepen-
dent data in the other domains from the writes of the
same first-language background, no matter whether
the test data is parallel or not. We also noticed that



[ Dataset | Feature [ A [OF JTOR [P [®HF [HR [ HP ]
LSP 79.63 | 80.65 | 85.56 | 76.29 | 78.49 | 73.79 | 83.85
LC 69.55 | 71.72 | 77.87 | 66.47 | 67.02 | 61.36 | 73.82
PLM 61.60 | 5546 | 50.81 | 64.91 | 62 70.28 | 58.43
JC SC 53.66 | 57.29 | 68.40 | 56.12 | 34.18 | 39.04 | 32.22
FWD 68.01 | 72.82 | 86.37 | 62.95 | 61.14 | 4994 | 78.82
LC+PLM + SC+ FWD 71.64 | 73.52 | 79.38 | 68.46 | 69.48 | 64.03 | 75.94
LSP+LC+PLM+ SC+FWD | 81.75 | 81.60 | 81.46 | 81.74 | 81.90 | 82.04 | 81.76
LSP 78.19 | 76.40 | 70.64 | 83.20 | 79.71 | 85.72 | 74.50
LC 63.82 | 62.36 | 60.12 | 64.77 | 65.17 | 67.49 | 63.01
PLM 5546 | 64.41 | 80.72 | 53.61 | 40.41 | 30.22 | 61.30
cC SC 50.52 | 62.58 | 87.31 | 50.64 | 13.75 | 1433 | 13.22
FWD 61.36 | 60.80 | 60.70 | 60.90 | 61.90 | 61.99 | 61.80
LC+PLM + SC+ FWD 67.69 | 67.62 | 67.51 | 67.77 | 67.74 | 67.87 | 67.64
LSP+LC+PLM+ SC+ FWD | 7981 | 7833 | 72.76 | 84.84 | 81.10 | 86.92 | 76.02

Table 2: The Experimental Results (A: overall accuracy; (-): erroneous sentences; (+): correct sentences; F:

F-score; R: recall; P: precision)

[ Dataset [ Model [ A [ OF [ (R [ (P | [ Dataset [A [OF TOR [P ]
Ours 81.39 | 81.25 | 81.24 | 81.28 JC(Train)+nonparallel(Test) 72.49 | 68.55 | 57.51 | 84.84
JC Word 58.87 | 33.67 | 21.03 | 84.73 JC(Train)+parallel(Test) 71.33 | 69.53 | 6542 | 74.18
ALEK [ 54.69 | 2033 | 11.67 | 78.95 | Fjc+CC 79.98 | 79.72 | 79.24 | 80.23
Ours 79.14 | 77.81 | 73.17 | 83.09 JC(Train)+ CC(Test) 55.62 | 41.71 | 31.32 | 62.40
CcC Word 58.47 | 32.02 | 19.81 | 84.22 CC(Train)+ JC(Test) 57.57 | 23.64 | 16.94 | 39.11
ALEK | 55.21 | 22.83 | 13.42 | 76.36

Table 3: The Comparison Results

LSPs play dominating role in achieving the results.
Due to space limitation, no details are reported.

To further see the performance of our method
on data written by writers with different first-
language backgrounds, we conducted two experi-
ments. (1) We merge the JC dataset and CC dataset.
The 10-fold cross-validation results on the merged
dataset are given in the third row of Table 4. The
results demonstrate that our models work well when
the training data and test data contain sentences from
different first-language backgrounds. (2) We use the
JC dataset (resp. CC dataset) for training while the
CC dataset (resp. JC dataset) is used as test data. As
shown in the fourth (resp. fifth) row of Table 4, the
results are worse than their corresponding results of
Word given in Table 3. The reason is that the mis-
takes made by Japanese and Chinese are different,
thus the learning model trained on one data does not
work well on the other data. Note that our method is
not designed to work in this scenario.

Application to Machine Translation Evaluation.
Our learning models could be used to evaluate the
MT results as an complementary measure. This is
based on the assumption that if the MT results can
be accurately distinguished from human references
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Table 4: The Cross-domain Results of our Method

by our technique, the MT results are not natural and
may contain errors as well.

The experiment was conducted using 10-fold
cross validation on two LDC data, low-ranked and
high-ranked data’. The results using SVM as classi-
fication model are given in Table 5. As expected, the
classification accuracy on low-ranked data is higher
than that on high-ranked data since low-ranked MT
results are more different from human references
than high-ranked MT results. We also found that
LSPs are the most effective features. In addition, our
discovered LSPs could indicate the common errors
made by the MT systems and provide some sugges-
tions for improving machine translation results.

As a summary, the mined LSPs are indeed effec-
tive for the classification models and our proposed
technique is effective.

5 Conclusions and Future Work

This paper proposed a new approach to identifying
erroneous/correct sentences. Empirical evaluating
using diverse data demonstrated the effectiveness of

°0One LDC data contains 14,604 low ranked (score 1-3) ma-
chine translations and the corresponding human references; the
other LDC data contains 808 high ranked (score 3-5) machine
translations and the corresponding human references



[ Data [ Feature [ A [ (-)F [ ()R [ (-)P [ (+)F [ (+)R [ (+)P ]
Low-ranked data (1-3 score) | LSP 84.20 | 83.95 | 82.19 | 85.82 | 84.44 | 86.25 | 82.73
LSP+LC+PLM+SC+FWD | 86.60 | 86.84 | 88.96 | 84.83 | 86.35 | 84.27 | 88.56
High-ranked data (3-5 score) | LSP 71.74 | 73.01 | 79.56 | 67.59 | 70.23 | 64.47 | 77.40
LSP+LC+PLM+SC+FWD | 7287 | 73.68 | 68.95 | 69.20 | 71.92 | 67.22 | 77.60

Table 5: The Results on Machine Translation Data

our techniques. Moreover, we proposed to mine
LSPs as the input of classification models from a set
of data containing correct and erroneous sentences.
The LSPs were shown to be much more effective than
the other linguistic features although the other fea-
tures were also beneficial.

We will investigate the following problems in the
future: (1) to make use of the discovered LSPs to pro-
vide detailed feedback for ESL learners, e.g. the er-
rors in a sentence and suggested corrections; (2) to
integrate the features effectively to achieve better re-
sults; (3) to further investigate the application of our
techniques for MT evaluation.
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Abstract

Speech recognition in many morphologi-
cally rich languages suffers from a very high
out-of-vocabulary (OOV) ratio. Earlier work
has shown that vocabulary decomposition
methods can practically solve this problem
for a subset of these languages. This pa-
per compares various vocabulary decompo-
sition approaches to open vocabulary speech
recognition, using Estonian speech recogni-
tion as a benchmark. Comparisons are per-
formed utilizing large models of 60000 lex-
ical items and smaller vocabularies of 5000
items. A large vocabulary model based on
a manually constructed morphological tag-
ger is shown to give the lowest word er-
ror rate, while the unsupervised morphol-
ogy discovery method Morfessor Baseline
gives marginally weaker results. Only the
Morfessor-based approach is shown to ade-
guately scale to smaller vocabulary sizes.

I ntroduction

1.1 OOQV problem

Open vocabulary speech recognition refers to awombining words, but also by combining sub-word
tomatic speech recognition (ASR) of continuoustems called morphs to make up the words them-
speech, or “speech-to-text” of spoken languageselves. These morphs in turn correspond to abstract
where the recognizer is expected to recognize argrammatical items called morphemes, and morphs
word spoken in that language. This capability is a resf the same morpheme are called allomorphs of that
cent development in ASR, and is required or benefmorpheme. The study of these facets of language
cial in many of the current applications of ASR techis aptly called morphology, and has been largely ne-
nology. Moreover, large vocabulary speech recognglected in modern ASR technology. This is due to

&9

tion is not possible in most languages of the world
without first developing the tools needed for open
vocabulary speech recognition. This is due to a fun-
damental obstacle in current ASR called the out-of-
vocabulary (OQV) problem.

The OQV problem refers to the existence of words
encountered that a speech recognizer is unable to
recognize, as they are not covered in the vocabu-
lary. The OQV problem is caused by three inter-
twined issues. Firstly, the language model training
data and the test data always come from different
samplings of the language, and the mismatch be-
tween test and training data introduces some OQV
words, the amount depending on the difference be-
tween the data sets. Secondly, ASR systems always
use finite and preferably small sized vocabularies,
since the speed of decoding rapidly slows down as
the vocabulary size is increased. Vocabulary sizes
depend on the application domain, sizes larger than
60000 being very rare. As some of the words en-
countered in the training data are left out of the vo-
cabulary, there will be OOV words during recogni-
tion. The third and final issue is the fundamental
one; languages form novel sentences not only by

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 89-95,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



ASR having been developed primarily for Englishof models in ASR of languages with higher indexes
where the OOV problem is not as severe as in othef fusion.

languages of the world. _
1.3 Approachesfor solving the OOV problem

12 Relevance of morphology for ASR The traditional method for reducing OOV would be

Morphologies in natural languages are charactete simply increase the vocabulary size so that the rate
ized typologically using two parameters, called inof OOV words becomes sulfficiently low. Naturally
dexes of synthesis and fusion. Index of synthesihis method fails when the words are derived, com-
has been loosely defined as the ratio of morphs ppounded or inflected forms of rarer words. While
word forms in the language(Comrie, 1989), whilethis approach might still be practical in languages
index of fusion refers to the ratio of morphs per morwith a low index of synthesis such as English, it
pheme. High frequency of verb paradigms such dails with most languages in the world. For exam-
“hear, hear + d, hear + d” would result in a high synple, in English with language models (LM) of 60k
thesis, low fusion language, whereas high frequenayords trained from the Gigaword Corpus V.2(Graff
of paradigms such as “sing, sang, sung” would reet al., 2005), and testing on a very similar Voice
sult in almost the opposite. Counting distinct itenof America -portion of TDT4 speech corpora(Kong
types and not instances of the types, the first exand Graff, 2005), this gives a OQV rate of 1.5%.
ample would have 2 word forms, 2 morphs and 2 should be noted that every OOV causes roughly
morphemes, the second 3 word forms, 3 morphs arao errors in recognition, and vocabulary decompo-
1 morpheme. Although in the first example, theresition approaches such as the ones evaluated here
are 3 word instances of the 2 word forms, the latgive some benefits to word error rate (WER) even
ter word form being an ambiguous one referring tan recognizing languages such as English(Bisani and
two distinct grammatical constructions. It shouldNey, 2005).
also be noted that the first morph of the first ex- Four different approaches to lexical unit selec-
ample has 2 pronunciations. Pronunciational boundion are evaluated in this work, all of which have
aries do not always follow morphological ones, andbeen presented previously. These are hence called
a morph may and will have several pronunciationsword”, “hybrid”, “morph” and “grammar”. The
that depend on context, if the language in questioword approach is the default approach to lexical
has significant orthographic irregularity. item selection, and is provided here as a baseline for
As can be seen, both types of morphological conthe alternative approaches. The alternatives tested
plexity increase the amount of distinct word formshere are all based on decomposing the in-vocabulary
resulting in an increase in the OQV rate of any fiwords, OOV words, or both, in LM training data into
nite sized vocabulary for that language. In pracsequences of sub-word fragments. During recogni-
tice, the OQV increase caused by synthesis is mudion the decoder can then construct the OOV words
larger, as languages can have thousands of diffeencountered as combinations of these fragments.
ent word forms per word that are caused by addWord boundaries are marked in LMs with tokens so
tion of processes of word formation followed by in-that the words can be reconstructed from the sub-
flections. Thus the OOV problem in ASR has beemvord fragments after decoding simply by removing
most pronounced in languages with much synthesispaces between fragments, and changing the word
regardless of the amount of fusion. The morphemdsoundaries tokens to spaces. As splitting to sub-
based modeling approaches evaluated in this workord items makes the span of LM histories shorter,
are primarily intended for fixing the problem causedigher order n-grams must be used to correct this.
by synthesis, and should work less well or even ad/arigrams(Siivola and Pellom, 2005) are used in
versely when attempted with low synthesis, high futhis work, and to make LMs trained with each ap-
sion languages. It should be noted that models basptbach comparable, the varigrams have been grown
on finite state transducers have been shown to be &@d-roughly sizes of 5 million counts. It should be
equate for describing fusion as well(Koskennieminoted that the names for the approaches here are
1983), and further work should evaluate these typesomewhat arbitrary, as from a theoretical perspec-
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tive both morph- and grammar-based approaches tianguage, usually pruned to about 100 000 words,
to model the grammatical morph set of a languagéhat it proceeds to recursively split to smaller items,
difference being that “morph” does this with an un-using gains in MDL to optimize the item set. The
supervised data-driven machine learning algorithmesulting set of morphs models the morph set well in
whereas “grammar” does this using segmentationanguages of high synthesis, but as it does not take
from a manually constructed rule-based morphologusion into account any manner, it should not work

ical tagger. in languages of high fusion. It neither preserves in-
_ formation about pronunciations, and as these do not
2 Modeling approaches follow morph boundaries, the approach is unsuitable
21 Word approach in its ba§|c form to languages of high orthographic
irregularity.

The first approach evaluated in this work is the tra-
ditional word based LM, where items are simply the2.4 Grammar approach

most frequent words in the language model traininghe final approach applies a manually constructed
data. OOV words are simply treated as unknowgle-based morphological tagger(Alumae, 2006).
words in language model training. This has beefrhis approach is expected to give the best results,
the default approach to selection of lexical items iys the tagger should give the ideal segmentation
speech recognition for several decades, and as it h@®ng the grammatical morphs that the unsupervised
been sufficient in English ASR, there has been limand Janguage-independent morph approach tries to
ited interest in any alternatives. find. To make this approach more comparable to
the morph models, OOV morphs are modeled as
sequences of graphemes similar to the hybrid ap-
The second approach is a recent refinement of tipgoach. Small changes to the original approach
traditional word-based approach. This is similar tqvere also made to make the model comparable to
what was introduced as “flat hybrid model”(Bisanithe other models presented here, such as using the
and Ney, 2005), and it tries to model OOV-wordsagger segmentations as such and not using pseudo-
as sequences of words and fragments. “Hybridiorphemes, as well as not tagging the items in any
refers to the LM histories being composed of hymanner. This approach suffers from the same handi-
brids of words and fragments, while “flat” refers tocaps as the morph approach, as well as from some
the model being composed of one n-gram model iradditional ones: morphological analyzers are not
stead of several models for the different item typeseadily available for most languages, they must be
The models tested in this work differ in that sincetailored by linguists for new datasets, and it is an
Estonian has a very regular phonemic orthographgpen problem as to how pronunciation dictionaries
grapheme sequences can be directly used instesitbuld be written for grammatical morphs in lan-

of more complex pronunciation modeling. Subseguages with significant orthographic irregularity.
guently the fragments used are just one grapheme in
length. 2.5 Text segmentation and language modeling

2.2 Hybrid approach

For training the LMs, a subset of 43 mil-
lion words from the Estonian Segakorpus was
The morph-based approach has shown superior nesed(Segakorpus, 2005), preprocessed with a mor-
sults to word-based models in languages of higphological analyzer(Aluméae, 2006). After selecting
synthesis and low fusion, including Estonian. Thighe item types, segmenting the training corpora and
approach, called “Morfessor Baseline” is describedeneration of a pronunciation dictionary, LMs were
in detail in (Creutz et al., 2007). An unsupervisedrained for each lexical item type. Table 1 shows
machine learning algorithm is used to discover théhe text format for LM training data after segmen-
morph set of the language in question, using minitation with each model. As can be seen, the word-
mum description length (MDL) as an optimizationbased approach doesn't use word boundary tokens.
criterion. The algorithm is given a word list of the To keep the LMs comparable between each model-
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model text segmentation of different Iengths,

word 5k voodis reeglina loeme

word 60k voodis reeglina loeme 3 Experimental setup

hybrld 5k vood I.S<W> reegl.lna<w> loeme 31 Evaluation st

hybrid 60k voodis<w> reeglina<w> loeme

morph 5k voodi s<w> re e g lina<w> loe me Acoustic models for Estonian ASR were trained on

morph 60k voodi s<w> reegli na<w> loe me the Estonian Speechdat-like corpus(Meister et al.,
grammar 5k | voodi s<w> reegli na<w> loe me 2002). This consists of spoken newspaper sentences
grammar 60k| voodi s<w> reegli na<w> loe me and shorter utterances, read over a tEIEphone by

1332 different speakers. The data therefore was
Table 1. Sample segmented texts for each modelduite clearly articulated, but suffered from 8kHz
sample rate, different microphones, channel noises
and occasional background noises. On top of this
ing approach, growing varigram models(Siivola anghe speakers were selected to give a very broad cov-
Pellom, 2005) were used with no limits as to the orerage of different dialectal varieties of Estonian and
der of n-grams, but limiting the number of counts tavere of different age groups. For these reasons, in
4.8 and 5 million counts. In some models this growspite of consisting of relatively common word forms
ing method resulted in the inclusion of very frequentrom newspaper sentences, the database can be con-
long item sequences to the varigram, up to a 28jdered challenging for ASR.
gram. Models of both 5000 and 60000 lexical items Held-out sentences were from the same corpus
were trained in order to test if and how the modelysed as development and evaluation set. 8 different
ing approaches would scale to smaller and therefogntences from 50 speakers each were used for eval-
much faster vocabularies. Distribution of counts imation, while sentences from 15 speakers were used
n-gram orders can be seen in figure 1. for development. LM scaling factor was optimized
for each model separately on the development set.
On total over 200 hours of data from the database
was used for acoustic model training, of which less
than half was speech.

3000000

2750000

2500000

2250000

2000000

3.2 Decoding
Eword | The acoustic models were Hidden Markov Models

=|::rzf\ (HMM) with Gaussian Mixture Models (GMM)
Wo=m= for state modeling based on 39-dimensional
MFCC+P+D+DD features, with windowed cepstral
mean subtraction (CMS) of 1.25 second window.
Maximum likelihood linear transformation (MLLT)
was used during training. State-tied cross-word
Tor  2gr  3gr 4gr Sgr >5gr triphones and 3 left-to-right states were used, state
durations were modeled using gamma distributions.
Figure 1. Number of counts included for each nOn total 3103 tied states and 16 Gaussians per state
gram order in the 60k varigram models. were used.
Decoding was done with the decoder developed
The performance of the statistical language modat TKK(Pylkkénen, 2005), which is based on a one-
els is often evaluated by perplexity or cross-entropyass Viterbi beam search with token passing on a
However, we decided to only report the real ASRexical prefix tree. The lexical prefix tree included a
performance, because perplexity does not suit wetkoss-word network for modeling triphone contexts,
to the comparison of models that use different lexand the nodes in the prefix tree were tied at the tri-
ica, have different OOV rates and have lexical unitphone state level. Bigram look-ahead models were
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used in speeding up decoding, in addition to prunin both large and small vocabulary conditions. The
ing with global beam, history, histogram and wordwo morphology-driven approaches gave similar and
end pruning. Due to the properties of the decodeatlearly superior results. Only the morph approach
and varigram models, very high order n-grams couldeems to scale down well to smaller vocabulary
be used without significant degradation in decodingizes, as the WER for the grammar approach in-
speed. creased rapidly as size of the vocabulary was de-
As the decoder was run with only one pass, adagreased.
tation was not used in this work. In preliminary
experiments simple adaptation with just constrained
maximum likelihood linear regression (CMLLR)
was shown to give as much as 20 % relative word
error rate reductions (RWERR) with this dataset.
Adaptation was not used, since it interacts with thd 2Ple 2. Word error rates for the models (WER %).
model types, as well as with the WER from the first
round of decoding, providing larger RWERR for the Table 2 shows the WER for the large (60000) and
better models. With high WER models, adaptatiogmall (5000) vocabulary sizes and different mod-
matrices are less accurate, and it is also probable ttfthg approaches. Table 3 shows the correspond-
the decomposition methods yield more accurate m#d letter error rates (LER). LERs are more compa-
trices, as they produce results where fewer HMMEable across some languages than WERs, as WER
states are misrecognized. These issues should be @@Pends more on factors such as length, morpho-
vestigated in future research. logical complexity, and OOV of the words. How-
After decoding, the results were post-processegVer, for within-language and between-model com-
by removing words that seemed to be sequences R#11S0ns, the RWERR should still be a valid met-
junk fragments: consonant-only sequences and fi¢: @nd is also usable in languages that do not use a
phoneme words. This treatment should give verhonemic writing system. The RWERRs of differ-
significant improvements with noisy data, but in pre€Nt novel methods seems to be comparable between
liminary experiments it was noted that the use ofifferentlanguages as well. Both WER and LER are
sentence boundaries resulted in almost 10% RWNIh considering the task. However, standard meth-
ERR weaker results for the approaches using fra@ds such as adaptation were not used, as the inten-
ments, as that almost negates the gains achievign was only to study the RWERR of the different
from this post-processing. Since sentence boun@PProaches.
ary forcing is done prior to junk removal, it seems
to work erroneously when it is forced to operate on
noisy data. Sentence boundaries were nevertheless
used, as in the same experiments the word-base
models gained significantly from their use, most
likely because they cannot use the fragment itemsable 3. Letter error rates for the models (LER %).
for detection of acoustic junk, as the models with
fragments can.

size | word hybrid morph grammar
60000| 53.1 47.1 39.4 38.7
5000 | 82.0 63.0 43.5 47.6

size | word hybrid morph grammar
| 60000 17.8 15.8 12.4 12.3
" 5000 | 35.5 20.8 144 15.4

5 Discussion

4 Results Four different approaches to lexical item selection
for large and open vocabulary ASR in Estonian
Results of the experiments were consistent with eawere evaluated. It was shown that the three ap-
lier findings(Hirsimaki et al., 2006; Kurimo et al., proaches utilizing vocabulary decomposition give
2006). Traditional word based LMs showed thesubstantial improvements over the traditional word
worst performance, with all of the recently proposedbased approach, and make large vocabulary ASR
alternatives giving better results. Hybrid LMs con-technology possible for languages similar to Esto-
sistently outperformed traditional word-based LMsian, where the traditional approach fails due to very
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high OOV rates. These include memetic relativeachieved with word-based varigrams and a WER of
Finnish and Turkish, among other languages th&t9.0% with morphs-based ones. This used the same
have morphologies of high fusion, low synthesis andvaluation set as this work, but had slightly different

low orthographic irregularity. LMs and different acoustic modelling which is the
main reason for the higher WER levels. In summary,
51 Performance of the approaches morpheme-based approaches seem to consistently

The morpheme-based approaches outperformed thetperform the traditional word based one in Esto-
word- and hybrid-based approaches clearly. The r@ian ASR, regardless of the specifics of the recogni-
sults for “hybrid” are in in the range suggested bytion system, test set and models.
earlier work(Bisani and Ney, 2005). One possi- In (Hirsimaki et al., 2006) a corresponding com-
ble explanation for the discrepancy between the hyarison of unsupervised and grammar-based morphs
brid and morpheme-based approaches would be thahs presented in Finnish, and the grammar-based
the morpheme-based approaches capture items thaddel gave a significantly higher WER in one of the
make sense in n-gram modeling, as morphs are itertesks. This result is interesting, and may stem from a
that the system of language naturally operates onumber of factors, among them the different decoder
These items would then be of more use when tryand acoustic models, 4-grams versus varigrams, as
ing to predict unseen data(Creutz et al., 2007). Awell as differences in post-processing. Most likely
modeling pronunciations is much more straightforthe difference is due to lack of coverage for domain-
ward in Estonian, the morpheme-based approachspecific words in the Finnish tagger, as it has a 4.2%
do not suffer from erroneous pronunciations, resuli©OV rate on the training data. On top of this the
ing in clearly superior performance. OOV words are modeled simply as grapheme se-
As for the superiority of the “grammar” over the quences, instead of modeling only OOV morphs in
unsupervised “morph”, the difference is marginal irthat manner, as is done in this work.
terms of RWERR. The grammatical tagger was tai- )
lored by hand for that particular language, whereas3 ©OPen problemsin vocabulary
Morfessor method is meant to be unsupervised and ~ decomposition
language independent. There are further argumems stated in the introduction, modeling languages
that would suggest that the unsupervised approaet¥ith high indexes of fusion such as Arabic will re-
is one that should be followed; only “morph” scaledquire more complex vocabulary decomposition ap-
well to smaller vocabulary sizes, the usual practiceroaches. This is verified by recent empirical re-
of pruning the word list to produce smaller morphsults, where gains obtained from simple morpholog-
sets gives better results than here and most impdcal decomposition seem to be marginal(Kirchhoff
tantly, it is questionable if “grammar” can be takeret al., 2006; Creutz et al., 2007). These languages
to languages with high indexes of fusion and orthowould possibly need novel LM inference algorithms
graphic irregularity, as the models have to take thessnd decoder architectures. Current research seems

into account as well. to be heading in this direction, with weighted finite
_ . state transducers becoming standard representations
5.2 Comparison to previousresults for the vocabulary instead of the lexical prefix tree.

There are few previous results published on Estonian Another issue in vocabulary decomposition is or-
open vocabulary ASR. In (Alumae, 2006) a WER othographic irregularity, as the items resulting from
44.5% was obtained with word-based trigrams andecomposition do not necessarily have unambigu-
a WER of 37.2% with items similar to ones fromous pronunciations. As most modern recognizers
“grammar” using the same speech corpus as in thisse the Viterbi approximation with vocabularies of
work. Compared to the present work, the WERbne pronunciation per item, this is problematic. One
for the morpheme-based models was measured wigblution to this is expanding the different items with
compound words split in both hypothesis and reftags according to pronunciation, shifting the prob-
erence texts, making the task slightly easier thalem to language modeling(Creutz et al., 2007). For
here. In (Kurimo et al., 2006) a WER of 57.6% wasexample, English plural “s” would expand to “s#1”
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with pronunciation “/s/”, and “s#2” with pronunci- Maximilian Bisani, Hermann Ney. 2005. Open Vocab-
ation “/z/", and so on. In this case the vocabulary ulary Speech Recognition with Flat Hybrid Models.
size increases by the amount of different pronunci- INTERSPEECH-200525-728.

ations added. The new items will have pronunciadanne Pylkkénen. 2005. An Efficient One-pass Decoder
tions that depend on their language model context, for Finnish Large Vocabulary Continuous Speech

. . - : Recognition. Proceedings of The 2nd Baltic Con-
enabling the prediction of pronunciations with lan- ference on Human Language Technologk7—172.

guage model probabilities. The only downside to H|1°2005. Tallinn, Estonia.

this is complicating the search for optimal vocabu-
P g b Vesa Siivola, Bryan L. Pellom. 2005. Growing an n-

!ary decomposn'lor_], as the items shoul_d make sens€s am Language ModeINTERSPEECH-2008.309—
in both pronunciational and morphological terms. 1312.

One can consider the originally presented hybri?_i)avid Graff, Junbo Kong, Ke Chen and Kazuak

approach as an approach to vocabulary decompo-pmaeda.  2005. LDC Gigaword Corpora: En-
sition that tries to keep the pronunciations of the glish Gigaword Second Edition. IhDC link:

items as good as possible, whereas the morph ap-http://www.ldc.upenn.edu/Catalog/index.jsp

proach tries to find items that make sense in termfinbo Kong and David Graff. 2005. TDT4 Multilin-
of morphology. This is obviously due to the meth- gual Broadcast News Speech Corpus. LDXC link:
ods having been developed on very different types http://www.ldc.upenn.edu/Catalog/index.jsp

of languages. The morph approach was develop&kgakorpus. 2005. Segakorpus - Mixed Corpus of Esto-
for the needs of Finnish speech recognition, which nian. Tartu Universityhttp://test.cl.ut.ee/korpused/

is a high ?yf‘theSiSv moderate fusion and very low OEinar Meister, Jiirgen Lasn and Lya Meister 2002. Esto-
thographic irregularity language, whereas the hybrid nian SpeechDat: a project in progressPhoceedings

approach in (Bisani and Ney, 2005) was developed of the Fonetiikan Paivat - Phonetics Symposium 2002
for English, which has low synthesis, moderate fu- N Finland, 21-26.
sion, and very high orthographic irregularity. A uni-Katrin Kirchhoff, Dimitra Vergyri, Jeff Bilmes, Kevin

versal approach to vocabulary decomposition would Duh and Andreas Stolcke ~ 2006.  Morphology-

have to take all of these factors into account. based language modeling for conversational Arabic
speech recognition.Computer Speech & Language

20(4):589-608.

Ar(]:knowll]edgemenltj lik hank | Alum Mathias Creutz, Teemu Hirsimaki, Mikko Kurimo, Antti
The authors would like to thank Dr. Tanel Alumae Puurula, Janne Pylkkénen, Vesa Siivola, Matti Var-

from Tallinn University of Technology for help in  jokallio, Ebru Arisoy, Murat Saraclar and Andreas
performing experiments with Estonian speech and Stolcke 2007. Analysis of Morph-Based Speech
text databases. This work was supported by the Recognition and the Modeling of Out-of-Vocabulary

. . . . Words Across Languages To appearProceedings
Academy of Finland in the projectNew adaptive of Human Language Technologies: The Annual Con-

and learning methods in speech recognition ference of the North American Chapter of the Asso-
ciation for Computational LinguisticsSNAACL-HLT
2007, Rochester, NY, USA

References Mikko Kurimo, Antti Puurula, Ebru Arisoy, Vesa Siivola,
] ] ] Teemu Hirsimaki, Janne Pylkkbnen, Tanel Alumae
Bernard Comrie. 1972Language Universals and Lin-  and Murat Saraclar 2006. Unlimited vocabulary
guistic Typology Second Edition. Athenaeum Press gpeech recognition for agglutinative languagesHin
Ltd, Gateshead, UK. man Language Technology, Conference of the North
American Chapter of the Association for Computa-
Kimmo Koskenniemi.  1983. Two-level Morphol- tional Linguistics HLT-NAACL 2006. New York,
ogy: a General Computational Model for Word-Form  USA
Recognition and ProductionUniversity of Helsinki,

Helsinki, Finland. Teemu Hirsiméaki, Mathias Creutz, Vesa Siivola, Mikko

Kurimo, Sami Virpioja and Janne Pylkkdnen 2006.
Unlimited vocabulary speech recognition with morph

Tanel Alumae. 2006. Methods for Estonian Large Vo- |54quage models applied to FinnisBomputer Speech
cabulary Speech RecognitiorPhD Thesis. Tallinn & L%ng%age20(4):5g%—541. P P

University of Technology. Tallinn, Estonia.
95



Phonological Constraints and Morphological Preprocessing for
Grapheme-to-Phoneme Conversion

Vera Demberg
School of Informatics
University of Edinburgh
Edinburgh, EH8 9LW, GB
v.demberg @sms.ed.ac.uk

Abstract

Grapheme-to-phoneme conversion (g2p) is a
core component of any text-to-speech sys-
tem. We show that adding simple syllab-
ification and stress assignment constraints,
namely ‘one nucleus per syllable’ and ‘one
main stress per word’, to a joint n-gram
model for g2p conversion leads to a dramatic
improvement in conversion accuracy.

Secondly, we assessed morphological pre-
processing for g2p conversion. While mor-
phological information has been incorpo-
rated in some past systems, its contribution
has never been quantitatively assessed for
German. We compare the relevance of mor-
phological preprocessing with respect to the
morphological segmentation method, train-
ing set size, the g2p conversion algorithm,
and two languages, English and German.

1 Introduction

Grapheme-to-Phoneme conversion (g2p) is the task
of converting a word from its spelling (e.g. “Stern-
anisol”, Engl: star-anise oil) to its pronunciation
(/'ftern?aniis?@:l/). Speech synthesis modules with
a g2p component are used in text-to-speech (TTS)
systems and can be be applied in spoken dialogue
systems or speech-to-speech translation systems.

1.1 Syllabification and Stress in g2p conversion

In order to correctly synthesize a word, it is not only

necessary to convert the letters into phonemes, but

also to syllabify the word and to assign word stress.
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The problems of word phonemization, syllabifica-
tion and word stress assignment are inter-dependent.
Information about the position of a syllable bound-
ary helps grapheme-to-phoneme conversion. (Marc-
hand and Damper, 2005) report a word error rate
(WER) reduction of approx. 5 percentage points for
English when the letter string is augmented with syl-
labification information. The same holds vice-versa:
we found that WER was reduced by 50% when run-
ning our syllabifier on phonemes instead of letters
(see Table 4). Finally, word stress is usually defined
on syllables; in languages where word stress is as-
sumed! to partly depend on syllable weight (such as
German or Dutch), it is important to know where ex-
actly the syllable boundaries are in order to correctly
calculate syllable weight. For German, (Miiller,
2001) show that information about stress assignment
and the position of a syllable within a word improve
g2p conversion.

1.2 Morphological Preprocessing

It has been argued that using morphological in-
formation is important for languages where mor-
phology has an important influence on pronuncia-
tion, syllabification and word stress such as Ger-
man, Dutch, Swedish or, to a smaller extent, also
English (Sproat, 1996; Mé&bius, 2001; Pounder and
Kommenda, 1986; Black et al., 1998; Taylor, 2005).
Unfortunately, these papers do not quantify the con-
tribution of morphological preprocessing in the task.

Important questions when considering the inte-
gration of a morphological component into a speech

'This issue is controversial among linguists; for an overview
see (Jessen, 1998).
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synthesis system are 1) How large are the im-
provements to be gained from morphological pre-
processing? 2) Must the morphological system be
perfect or can performance improvements also be
reached with relatively simple morphological com-
ponents? and 3) How much does the benefit to
be expected from explicit morphological informa-
tion depend on the g2p algorithm? To determine
these factors, we compared morphological segmen-
tations based on manual morphological annotation
from CELEX to two rule-based systems and several
unsupervised data-based approaches. We also anal-
ysed the role of explicit morphological preprocess-
ing on data sets of different sizes and compared its
relevance with respect to a decision tree and a joint
n-gram model for g2p conversion.

The paper is structured as follows: We introduce
the g2p conversion model we used in section 2 and
explain how we implemented the phonological con-
straints in section 3. Section 4 is concerned with
the relation between morphology, word pronuncia-
tion, syllabification and word stress in German, and
presents different sources for morphological seg-
mentation. In section 5, we evaluate the contribution
of each of the components and compare our meth-
ods to state-of-the-art systems. Section 6 summa-
rizes our results.

2 Methods

We used a joint n-gram model for the grapheme-
to-phoneme conversion task. Models of this type
have previously been shown to yield very good g2p
conversion results (Bisani and Ney, 2002; Galescu
and Allen, 2001; Chen, 2003). Models that do not
use joint letter-phoneme states, and therefore are not
conditional on the preceding letters, but only on the
actual letter and the preceding phonemes, achieved
inferior results. Examples of such approaches using
Hidden Markov Models are (Rentzepopoulos and
Kokkinakis, 1991) (who applied the HMM to the
related task of phoneme-to-grapheme conversion),
(Taylor, 2005) and (Minker, 1996).

The g2p task is formulated as searching for the
most probable sequence of phonemes given the or-
thographic form of a word. One can think of it as a
tagging problem where each letter is tagged with a
(possibly empty) phoneme-sequence p. In our par-
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ticular implementation, the model is defined as a
higher-order Hidden Markov Model, where the hid-
den states are a letter—phoneme-sequence pair (I; p),
and the observed symbols are the letters /. The out-
put probability of a hidden state is then equal to one,
since all hidden states that do not contain the ob-
served letter are pruned directly.

The model for grapheme-to-phoneme conver-
sion uses the Viterbi algorithm to efficiently com-
pute the most probable sequence p} of phonemes
P1, D2, ..., Dn, for a given letter sequence (7. The
probability of a letter—phon-seq pair depends on the
k preceding letter—phon-seq pairs. Dummy states ‘#’
are appended at both ends of each word to indicate
the word boundary and to ensure that all conditional
probabilities are well-defined.

n+1
Pt = argmax [ [ P({Lp); | (9)i2)
boi=1

In an integrated model where g2p conversion, syl-
labification and word stress assignment are all per-
formed at the same time, a state additionally con-
tains a syllable boundary flag b and a stress flag a,
yielding (I; p; b; a),.

As an alternative architecture, we also designed a
modular system that comprises one component for
syllabification and one for word stress assignment.
The model for syllabification computes the most
probable sequence lS’f of syllable boundary-tags 131,
32, ey Bn for a given letﬁr sequence [7'.

n

by = argmax [ P((1:0); | (1:0);5)
boi=1

The stress assignment model works on syllables.
It computes the most probable sequence a' of word
accent-tags ai,as, ..., G, for a given syllable se-

n
quence syl7. il

af = argmax [ [ P((syl; a); | (syl; a)i=y)
i e
2.1 Smoothing

Because of major data sparseness problems, smooth-
ing is an important issue, in particular for the stress
model which is based on syllable—stress-tag pairs.
Performance varied by up to 20% in function of the
smoothing algorithm chosen. Best results were ob-
tained when using a variant of Modified Kneser-Ney
Smoothing2 (Chen and Goodman, 1996).

2For a formal definition, see(Demberg, 2006).



2.2 Pruning

In the g2p-model, each letter can on average map
onto one of 12 alternative phoneme-sequences.
When working with 5-grams?, there are about 12° =
250,000 state sequences. To improve time and space
efficiency, we implemented a simple pruning strat-
egy that only considers the ¢ best states at any mo-
ment in time. With a threshold of ¢ = 15, about 120
words are processed per minute on a 1.5GHz ma-
chine. Conversion quality is only marginally worse
than when the whole search space is calculated.

Running time for English is faster, because the av-
erage number of candidate phonemes for each let-
ter is lower. We measured running time (including
training and the actual g2p conversion in 10-fold
cross validation) for a Perl implementation of our
algorithm on the English NetTalk corpus (20,008
words) on an Intel Pentium 4, 3.0 GHz machine.
Running time was less than 1h for each of the fol-
lowing three test conditions: cl) g2p conversion
only, c2) syllabification first, then g2p conversion,
¢3) simultaneous g2p conversion and syllabification,
given perfect syllable boundary input, c4) simulta-
neous g2p conversion and syllabification when cor-
rect syllabification is not available beforehand. This
is much faster than the times for Pronunciation by
Analogy (PbA) (Marchand and Damper, 2005) on
the same corpus. Marchand and Damper reported a
processing time of several hours for c4), two days
for c2) and several days for c3).

2.3 Alignment

Our current implementation of the joint n-gram
model is not integrated with an automatic alignment
procedure. We therefore first aligned letters and
phonemes in a separate, semi-automatic step. Each
letter was aligned with zero to two phonemes and,
in the integrated model, zero or one syllable bound-
aries and stress markers.

3 Integration of Phonological Constraints

When analysing the results from the model that does
g2p conversion, syllabification and stress assign-

3There is a trade-off between long context windows which
capture the context accurately and data sparseness issues. The
optimal value k for the context window size depends on the
source language (existence of multiletter graphemes, complex-
ity of syllables etc.).
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ment in a single step, we found that a large propor-
tion of the errors was due to the violation of basic
phonological constraints.

Some syllables had no syllable nucleus, while
others contained several vowels. The reason for the
errors is that German syllables can be very long and
therefore sparse, often causing the model to back-
off to smaller contexts. If the context is too small to
cover the syllable, the model cannot decide whether
the current syllable contains a nucleus.

In stress assignment, this problem is even worse:
the context window rarely covers the whole word.
The algorithm does not know whether it already as-
signed a word stress outside the context window.
This leads to a high error rate with 15-20% of in-
correctly stressed words. Thereof, 37% have more
than one main stress, about 27% are not assigned any
stress and 36% are stressed in the wrong position.
This means that we can hope to reduce the errors by
almost 2/3 by using phonological constraints.

Word stress assignment is a difficult problem in
German because the underlying processes involve
some deeper morphological knowledge which is not
available to the simple model. In complex words,
stress mainly depends on morphological structure
(i.e. on the compositionality of compounds and
on the stressing status of affixes). Word stress in
simplex words is assumed to depend on the sylla-
ble position within the word stem and on syllable
weight. The current language-independent approach
does not model these processes, but only captures
some of its statistics.

Simple constraints can help to overcome the prob-
lem of lacking context by explicitly requiring that
every syllable must have exactly one syllable nu-
cleus and that every word must have exactly one syl-
lable receiving primary stress.

3.1 Implementation

Our goal is to find the most probable syllabified
and stressed phonemization of a word that does not
violate the constraints. We tried two different ap-
proaches to enforce the constraints.

In the first variant (v1), we modified the proba-
bility model to enforce the constraints. Each state
now corresponds to a sequence of 4-tuples consist-
ing of a letter [, a phoneme sequence p, a syllable
boundary tag b, an accent tag a (as before) plus two



new flags A and N which indicate whether an ac-
cent/nucleus precedes or not. The A and N flags of
the new state are a function of its accent and syllable
boundary tag and the A and N flag of the preceding
state. They split each state into four new states. The
new transition probabilities are defined as:

P({l;p; by a); | {I;p; b;a)' "), A, N)

The probability is 0 if the transition violates a con-
straint, e.g., when the A flag is set and a; indicates
another accent.

A positive side effect of the syllable flag is that it
stores separate phonemization probabilities for con-
sonants in the syllable onset vs. consonants in the
coda. The flag in the onset is 0 since the nucleus has
not yet been encountered, whereas it is set to 1 in the
coda. In German, this can e.g. help in for syllable-
final devoicing of voiced stops and fricatives.

The increase in the number of states aggravates
sparse-data problems. Therefore, we implemented
another variant (v2) which uses the same set of states
(with A and N flags), but with the transition proba-
bilities of the original model, which did not enforce
the constraints. Instead, we modified the Viterbi al-
gorithm to eliminate the invalid transitions: For ex-
ample, a transition from a state with the A flag set
to a state where a; introduces a second stress, is al-
ways ignored. On small data sets, better results were
achieved with v2 (see Table 5).

4 Morphological Preprocessing

In German, information about morphological
boundaries is needed to correctly insert glottal stops
[?] in complex words, to determine irregular pro-
nunciation of affixes (v is pronounced [v] in ver-
tikal but [f] in ver+ticker+n, and the suffix syllable
heit is not stressed although superheavy and word
final) and to disambiguate letters (e.g. e is always
pronounced /o/ when occurring in inflectional suf-
fixes). Vowel length and quality has been argued
to also depend on morphological structure (Pounder
and Kommenda, 1986). Furthermore, morphologi-
cal boundaries overrun default syllabification rules,
such as the maximum onset principle.

Applying default syllabification to the word
“Sternanisol” would result in a syllabification into
Ster—-na-ni-sdl (and subsequent phonemiza-
tion to something like /[ternamizg@:l/) instead of
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Stern-a-nis-61 (/[tern?aniis?g:l/). Syllabifi-
cation in turn affects phonemization since voiced
fricatives and stops are devoiced in syllable-final po-
sition. Morphological information also helps for
graphemic parsing of words such as “Roschen”
(Engl: little rose) where the morphological bound-
ary between Ros and chen causes the string sch to
be transcribed to /s¢/ instead of /f/. Similar ambigui-
ties can arise for all other sounds that are represented
by several letters in orthography (e.g. doubled con-
sonants, diphtongs, ie, ph, th), and is also valid for
English. Finally, morphological information is also
crucial to determine word stress in morphologically
complex words.

4.1 Methods for Morphological Segmentation

Good segmentation performance on arbitrary words
is hard to achieve. We compared several approaches
with different amounts of built-in knowledge. The
morphological information is encoded in the let-
ter string, where different digits represent different
kinds of morphological boundaries (prefixes, stems,
derivational and inflectional suffixes).

Manual Annotation from CELEX

To determine the upper bound of what can be
achieved when exploiting perfect morphological in-
formation, we extracted morphological boundaries
and boundary types from the CELEX database.

The manual annotation is not perfect as it con-
tains some errors and many cases where words are
not decomposed entirely. The words tagged [F] for
“lexicalized inflection”, e.g. gedrdingt (past partici-
ple of dringen, Engl: push) were decomposed semi-
automatically for the purpose of this evaluation. As
expected, annotating words with CELEX morpho-
logical segmentation yielded the best g2p conver-
sion results. Manual annotation is only available for
a small number of words. Therefore, only automati-
cally annotated morphological information can scale
up to real applications.

Rule-based Systems

The traditional approach is to use large morpheme
lexica and a set of rules that segment words into af-
fixes and stems. Drawbacks of using such a system
are the high development costs, limited coverage



and problems with ambiguity resolution between al-
ternative analyses of a word.

The two rule-based systems we evaluated, the
ETI* morphological system and SMOR? (Schmid et
al., 2004), are both high-quality systems with large
lexica that have been developed over several years.
Their performance results can help to estimate what
can realistically be expected from an automatic seg-
mentation system. Both of the rule-based systems
achieved an F-score of approx. 80% morphological
boundaries correct with respect to CELEX manual
annotation.

Unsupervised Morphological Systems

Most attractive among automatic systems are
methods that use unsupervised learning, because
these require neither an expert linguist to build large
rule-sets and lexica nor large manually annotated
word lists, but only large amounts of tokenized
text, which can be acquired e.g. from the internet.
Unsupervised methods are in principle® language-
independent, and can therefore easily be applied to
other languages.

We compared four different state-of-the-art unsu-
pervised systems for morphological decomposition
(cf. (Demberg, 2006; Demberg, 2007)). The algo-
rithms were trained on a German newspaper cor-
pus (taz), containing about 240 million words. The
same algorithms have previously been shown to help
a speech recognition task (Kurimo et al., 2006).

5 Experimental Evaluations

5.1 Training Set and Test Set Design

The German corpus used in these experiments is
CELEX (German Linguistic User Guide, 1995).
CELEX contains a phonemic representation of each

*Eloquent Technology, Inc. (ETI) TTS system.
http://www.mindspring.com/~ssshp/ssshp_cd/
ss_elog.htm

5The lexicon used by SMOR, IMSLEX, contains morpho-
logically complex entries, which leads to high precision and low
recall. The results reported here refer to a version of SMOR,
where the lexicon entries were decomposed using a rather naive
high-recall segmentation method. SMOR itself does not disam-
biguate morphological analyses of a word. Our version used
transition weights learnt from CELEX morphological annota-
tion. For more details refer to (Demberg, 2006).

®Most systems make some assumptions about the underly-
ing morphological system, for instance that morphology is a
concatenative process, that stems have a certain minimal length
or that prefixing and suffixing are the most relevant phenomena.
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word, syllable boundaries and word stress infor-
mation. Furthermore, it contains manually verified
morphological boundaries.

Our training set contains approx. 240,000 words
and the test set consists of 12,326 words. The test
set is designed such that word stems in training and
test sets are disjoint, i.e. the inflections of a certain
stem are either all in the training set or all in the test
set. Stem overlap between training and test set only
occurs in compounds and derivations. If a simple
random splitting (90% for training set, 10% for test
set) is used on inflected corpora, results are much
better: Word error rates (WER) are about 60% lower
when the set of stems in training and test set are not
disjoint. The same effect can also be observed for
the syllabification task (see Table 4).

5.2 Results for the Joint n-gram Model

The joint n-gram model is language-independent.
An aligned corpus with words and their pronuncia-
tions is needed, but no further adaptation is required.

Table 1 shows the performance of our model in
comparison to alternative approaches on the German
and English versions of the CELEX corpus, the En-
glish NetTalk corpus, the English Teacher’s Word
Book (TWB) corpus, the English beep corpus and
the French Brulex corpus. The joint n-gram model
performs significantly better than the decision tree
(essentially based on (Lucassen and Mercer, 1984)),
and achieves scores comparable to the Pronuncia-
tion by Analogy (PbA) algorithm (Marchand and
Damper, 2005). For the Nettalk data, we also com-
pared the influence of syllable boundary annotation
from a) automatically learnt and b) manually anno-
tated syllabification information on phoneme accu-
racy. Automatic syllabification for our model in-
tegrated phonological constraints (as described in
section 3.1), and therefore led to an improvement
in phoneme accuracy, while the word error rate in-
creased for the PbA approach, which does not incor-
porate such constraints.

(Chen, 2003) also used a joint n-gram model.
The two approaches differ in that Chen uses small
chunks ({( : [0..1]) : (p : |0..1])) pairs only) and it-
eratively optimizes letter-phoneme alignment during
training. Chen smoothes higher-order Markov Mod-
els with Gaussian Priors and implements additional
language modelling such as consonant doubling.



corpus size jntn-gr PbA  Chen dec.tree
G- CELEX 230k 7.5% 15.0%
E - Nettalk 20k 35.4% 34.65% 34.6%

a) auto.syll 353% 352%

b) man.syll 29.4% 28.3%
E-TWB 18k 28.5% 28.2%
E - beep 200k 14.3% 13.3%
E-CELEX 100k 23.7% 31.7%

F - Brulex 27k 10.9%

Table 1: Word error rates for different g2p conver-
sion algorithms. Constraints were only used in the
E-Nettalk auto. syll condition.

5.3 Benefit of Integrating Constraints

The accuracy improvements achieved by integrat-
ing the constraints (see Table 2) are highly statis-
tically significant. The numbers for conditions “G-
syllab.+stress+g2p” and “E-syllab.+g2p” in Table 2
differ from the numbers for “G-CELEX” and “E-
Nettalk” in Table 1 because phoneme conversion
errors, syllabification errors and stress assignment
errors are all counted towards word error rates re-
ported in Table 2.

Word error rate in the combined g2p-syllable-
stress model was reduced from 21.5% to 13.7%. For
the separate tasks, we observed similar effects: The
word error rate for inserting syllable boundaries was
reduced from 3.48% to 3.1% on letters and from
1.84% to 1.53% on phonemes. Most significantly,
word error rate was decreased from 30.9% to 9.9%
for word stress assignment on graphemes.

We also found similarly important improvements
when applying the syllabification constraint to En-
glish grapheme-to-phoneme conversion and syllabi-
fication. This suggests that our findings are not spe-
cific to German but that this kind of general con-
straints can be beneficial for a range of languages.

no constr.  constraint(s)
G - syllab.+stress+g2p 21.5% 13.7%
G - syllab. on letters 3.5% 3.1%
G - syllab. on phonemes 1.84% 1.53%
G - stress assignm. on letters 30.9% 9.9%
E - syllab.+g2p 40.5% 37.5%
E - syllab. on phonemes 12.7% 8.8%

Table 2: Improving performance on g2p conver-
sion, syllabification and stress assignment through
the introduction of constraints. The table shows
word error rates for German CELEX (G) and En-
glish NetTalk (E).
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5.4 Modularity

Modularity is an advantage if the individual compo-
nents are more specialized to their task (e.g. by ap-
plying a particular level of description of the prob-
lem, or by incorporating some additional source of
knowledge).In a modular system, one component
can easily be substituted by another — for example,
if a better way of doing stress assignment in German
was found. On the other hand, keeping everything in
one module for strongly inter-dependent tasks (such
as determining word stress and phonemization) al-
lows us to simultaneously optimize for the best com-
bination of phonemes and stress.

Best results were obtained from the joint n-gram
model that does syllabification, stress assignment
and g2p conversion all in a single step and inte-
grates phonological constraints for syllabification
and word stress (WER = 14.4% using method v1,
WER = 13.7% using method v2). If the modular ar-
chitecture is chosen, best results are obtained when
g2p conversion is done before syllabification and
stress assignment (15.2% WER), whereas doing syl-
labification and stress assignment first and then g2p
conversion leads to a WER of 16.6%. We can con-
clude from this finding that an integrated approach is
superior to a pipeline architecture for strongly inter-
dependent tasks such as these.

5.5 The Contribution of Morphological
Preprocessing

A statistically significant (according to a two-tailed
t-test) improvement in g2p conversion accuracy
(from 13.7% WER to 13.2% WER) was obtained
with the manually annotated morphological bound-
aries from CELEX. The segmentation from both of
the rule-based systems (ETI and SMOR) also re-
sulted in an accuracy increase with respect to the
baseline (13.6% WER), which is not annotated with
morphological boundaries.

Among the unsupervised systems, best results’ on
the g2p task with morphological annotation were ob-
tained with the RePortS system (Keshava and Pitler,
2006). But none of the segmentations led to an er-
ror reduction when compared to a baseline that used
no morphological information (see Table 3). Word
error rate even increased when the quality of the

7For all results refer to (Demberg, 2006).



Precis. Recall F-Meas. WER
RePortS (unsuperv.) 71.1% 50.7% 59.2% 15.1%
no morphology 13.7%
SMOR (rule-based) 87.1% 80.4% 83.6%
ETI (rule-based) 754% 84.1% 79.5% 13.6%
CELEX (manual) 100% 100% 100% 13.2%

Table 3: Systems evaluation on German CELEX
manual annotation and on the g2p task using a joint
n-gram model. WERs refer to implementation v2.

morphological segmentation was too low (the unsu-
pervised algorithms achieved 52%-62% F-measure
with respect to CELEX manual annotation).

Table 4 shows that high-quality morphological
information can also significantly improve perfor-
mance on a syllabification task for German. We used
the syllabifier described in (Schmid et al., 2005),
which works similar to the joint n-gram model used
for g2p conversion. Just as for g2p conversion, we
found a significant accuracy improvement when us-
ing the manually annotated data, a smaller improve-
ment for using data from the rule-based morpholog-
ical system, and no improvement when using seg-
mentations from an unsupervised algorithm. Syllab-
ification works best when performed on phonemes,
because syllables are phonological units and there-
fore can be determined most easily in terms of
phonological entities such as phonemes.

Whether morphological segmentation is worth the
effort depends on many factors such as training set
size, the g2p algorithm and the language considered.

disj. stems  random
RePortS (unsupervised morph.) 4.95%
no morphology 3.10% 0.72%
ETI (rule-based morph.) 2.63%
CELEX (manual annot.) 1.91% 0.53%
on phonemes 1.53% 0.18%

Table 4: Word error rates (WER) for syllabification
with a joint n-gram model for two different training
and test set designs (see Section 5.1).

Morphology for Data Sparseness Reduction

Probably the most important aspect of morpho-
logical segmentation information is that it can help
to resolve data sparseness issues. Because of the ad-
ditional knowledge given to the system through the
morphological information, similarly-behaving let-
ter sequences can be grouped more effectively.

Therefore, we hypothesized that morphological
information is most beneficial in situations where
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the training corpus is rather small. Our findings con-
firm this expectation, as the relative error reduction
through morphological annotation for a training cor-
pus of 9,600 words is 6.67%, while it is only 3.65%
for a 240,000-word training corpus.

In our implementation, the stress flags and sylla-
ble flags we use to enforce the phonological con-
straints increase data sparseness. We found v2 (the
implementation that uses the states without stress
and syllable flags and enforces the constraints by
eliminating invalid transitions, cf. section 3.1) to
outperform the integrated version, v1, and more sig-
nificantly in the case of more severe data sparseness.
The only condition when we found vl to perform
better than v2 was with a large data set and addi-
tional data sparseness reduction through morpholog-
ical annotation, as in section 4 (see Table 5).

WER: designs vl v2

data set size 240k 9.6k 240k 9.6k
no morph. 144% 323% 13.7% 25.5%
CELEX 12.5% 29% 13.2% 23.8%

Table 5: The interactions of constraints in training
and different levels of data sparseness.

g2p Conversion Algorithms

The benefit of using morphological preprocessing
is also affected by the algorithm that is used for g2p
conversion. Therefore, we also evaluated the relative
improvement of morphological annotation when us-
ing a decision tree for g2p conversion.

Decision trees were one of the first data-based ap-
proaches to g2p and are still widely used (Kienappel
and Kneser, 2001; Black et al., 1998). The tree’s
efficiency and ability for generalization largely de-
pends on pruning and the choice of possible ques-
tions. In our implementation, the decision tree can
ask about letters within a context window of five
back and five ahead, about five phonemes back and
groups of letters (e.g. consonants vs. vowels).

Both the decision tree and the joint n-gram model
convert graphemes to phonemes, insert syllable
boundaries and assign word stress in a single step
(marked as “WER-ss” in Table 6. The imple-
mentation of the joint n-gram model incorporates
the phonological constraints described in section 3
(“WER-ss+”). Our main finding is that the joint
n-gram model profits less from morphological an-
notation. Without the constraints, the performance



difference is smaller: the joint n-gram model then
achieves a word error rate of 21.5% on the no-
morphology-condition.

In very recent work, (Demberg, 2007) developed
an unsupervised algorithm (f-meas: 68%; an exten-
sion of RePortS) whose segmentations improve g2p
when using a the decision tree (PER: 3.45%).

decision tree joint n-gram

PER WER-ss PER  WER-ss™
RePortS 3.83% 28.3% 15.1%
nomorph. 3.63% 26.59%  2.52% 13.7%
ETI 28% 21.13% 2.53% 13.6%
CELEX 2.64% 21.64%  2.36% 13.2%

Table 6: The effect of morphological preprocessing
on phoneme error rates (PER) and word error rates
(WER) in grapheme-to-phoneme conversion.

Morphology for other Languages

We also investigated the effect of morphological
information on g2p conversion and syllabification
in English, using manually annotated morphological
boundaries from CELEX and the automatic unsuper-
vised RePortS system which achieves an F-score of
about 77% for English. The cases where morpho-
logical information affects word pronunciation are
relatively few in comparison to German, therefore
the overall effect is rather weak and we did not even
find improvements with perfect boundaries.

6 Conclusions

Our results confirm that the integration of phonolog-
ical constraints ‘one nucleus per syllable’ and ‘one
main stress per word’ can significantly boost ac-
curacy for g2p conversion in German and English.
We implemented the constraints using a joint n-
gram model for g2p conversion, which is language-
independent and well-suited to the g2p task.

We systematically evaluated the benefit to be
gained from morphological preprocessing on g2p
conversion and syllabification. We found that mor-
phological segmentations from rule-based systems
led to some improvement. But the magnitude of
the accuracy improvement strongly depends on the
g2p algorithm and on training set size. State-of-
the-art unsupervised morphological systems do not
yet yield sufficiently good segmentations to help the
task, if a good conversion algorithm is used: Low
quality segmentation even led to higher error rates.
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Abstract (more specifically the consonant) inventories of
the world’'s languages. For this purpose, we
In this paper, we put forward an information  present an information theoretic definition of redun-
theoretic definition of theedundancythat is dancy, which is calculated based on the seteaf
observed across the sound inventories of the  tured (Trubetzkoy, 1931) that are used to express
world’s languages. Through rigorous statis-  the consonants. An interesting observation is that
tical analysis, we find that this redundancy  this quantitative feature-based measure of redun-
is an invariant property of the consonantin-  dancy isalmostan invariance over the consonant
ventories. The statistical analysis further un-  inventories of the world’s languages. The observa-
folds that the vowel inventories do not ex-  tion is important since it can shed enough light on
hibit any such property, which in turn points  the organization of the consonant inventories, which
to the fact that the organizing principles of  unlike the vowel inventories, lack a complete and
the vowel and the consonant inventories are  holistic explanation. The invariance of our measure

quite different in nature. implies that every inventory tries to be similar in
_ terms of the measure, which leads us to argue that
1 Introduction redundancy plays a very important role in shaping

Redundancyis a strikingly common phenomenonthe st_ructure_of the consonant inveqtories. In or_dgr
that is observed across many natural systems. Tﬁ%valldate th,'s argument.we Qetermlne the possibil-
redundancy is present mainly to reduce the rislly of ob_servmg such an invariance if the consongnt
of the complete loss of information that might ocInventories had evolved by random chance. We find

cur due to accidental errors (Krakauer and PIotkirf,hat the redundancy observed across the randomly

2002). Moreover, redundancy is found in every IeVe(‘i;enerated inventories is substantially different from

of granularity of a system. For instance, in biOIOgi_thelr real counterparts, which leads us to conclude

cal systems we find redundancy in the codons (Lesmat the invariance is not just “by-chance” and the

2002), in the genes (Woollard, 2005) and as well ineasure that we define, indeed, largely governs the

the proteins (Gatlin, 1974). A linguistic system iSorganizing principles of the consonant inventories.

also not an exception. There is for example, a num=—_—_—— o

. . . In phonology, features are the elements, which distin-
ber of words with the same meaning (synonyms) iguish one phoneme from another. The features that distinguish
almost every language of the world. Similarly, thehe consonants can be broadly categorized into three different

: ; sses namely th@anner of articulationthe place of articu-
basic unit of language, the human speech sounds §ﬁon andphonation Manner of articulation specifies how the

the phonemes, is also expected to exhibit some s@dw of air takes place in the vocal tract during articulation of
of a redundancy in the information that it encodes. @ consonant, whereas place of articulation specifies the active

In thi K tt tt th ticall speech organ and also the place where it acts. Phonation de-
n this work, we attempt 1o mathematically Cap-ggripes the activity regarding the vibration of the vocal cords

ture the redundancy observed across the souddring the articulation of a consonant.
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Interestingly, this redundancy, when measured faral phoneme in a noisy environmeegse of artic-
the vowel inventories, does not exhibit any similaulation (Lindblom and Maddieson, 1988; de Boer,
invariance. This immediately reveals that the prin2000), which requires that the sound systems of
ciples that govern the formation of these two typeall languages are formed of certain universal (and
of inventories are quite different in nature. Suchhighly frequent) sounds, ar@hse of learnabilityde
an observation is significant since whether or ndBoer, 2000), which is necessary for a speaker to
these principles are similar/different for the two in-learn the sounds of a language with minimum ef-
ventories had been a question giving rise to perefert. In fact, the organization of the vowel inven-
nial debate among the past researchers (Trubébries (especially those with a smaller size) across
zkoy, 1969/1939; Lindblom and Maddieson, 1988languages has been satisfactorily explained in terms
Boersma, 1998; Clements, 2004). A possible reaf the single principle of maximal perceptual con-
son for the observed dichotomy in the behavior ofrast (Jakobson, 1941; Liljencrants and Lindblom,
the vowel and consonant inventories with respect th972; de Boer, 2000).
redundancy can be as follows: while the organiza- On the other hand, in spite of several at-
tion of the vowel inventories is known to be gov-tempts (Lindblom and Maddieson, 1988; Boersma,
erned by a single force - thmaximal perceptual 1998; Clements, 2004) the organization of the con-
contrast (Jakobson, 1941; Liliencrants and Lind-sonant inventories lacks a satisfactory explanation.
blom, 1972; de Boer, 2000)), consonant inventoHowever, one of the earliest observations about the
ries are shaped by a complex interplay of severalbnsonant inventories has been that consonants tend
forces (Mukherjee et al., 2006). The invariance ofo occur in pairs that exhibit strong correlation in
redundancy, perhaps, reflects some sort of an equérms of their features (Trubetzkoy, 1931). In or-
librium that arises from the interaction of these dider to explain these trend$gature economyas
vergent forces. proposed as the organizing principle of the con-

The rest of the paper is structured as follows. lisonant inventories (Martinet, 1955). According to
section 2 we briefly discuss the earlier works in conthis principle, languages tend to maximize the com-
nection to the sound inventories and then systemdiinatorial possibilities of a few distinctive features
ically build up the quantitative definition of redun-to generate a large number of consonants. Stated
dancy from the linguistic theories that are alreadglifferently, a given consonant will have a higher
available in the literature. Section 3 details out thé&han expected chance of occurrence in inventories in
data source necessary for the experiments, describeiich all of its features have distinctively occurred
the baseline for the experiments, reports the expgh other consonants. The idea is illustrated, with an
iments performed, and presents the results obtainedample, through Table 1. Various attempts have
each time comparing the same with the baseline réeen made in the past to explain the aforementioned
sults. Finally we conclude in section 4 by summatrends through linguistic insights (Boersma, 1998;
rizing our contributions, pointing out some of theClements, 2004) mainly establishing their statistical
implications of the current work and indicating thesignificance. On the contrary, there has been very

possible future directions. little work pertaining to the quantification of feature
economy except in (Clements, 2004), where the au-
2 Formulation of Redundancy thor defineseconomy indexwhich is the ratio of the

size of an inventory to the number of features that
Linguistic research has documented a wide range oharacterizes the inventory. However, this definition
regularities across the sound systems of the world#oes not take into account the complexity that is in-
languages. It has been postulated earlier by fungelved in communicating the information about the
tional phonologists that such regularities are the comaventory in terms of its constituent features.
sequences of certain general principles likexi- Inspired by the aforementioned studies and
mal perceptual contragt.iliencrants and Lindblom, the concepts of information theory (Shannon and
1972), which is desirable between the phonemes @¥eaver, 1949) we try to quantitatively capture the
a language for proper perception of each individamount of redundancy found across the consonant
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plosive voiced voiceless I={bl, /dl, Igl} N=3

qem,al ldl It F = {voiced, dental, bilabial, velar, plosive
bilabial ol 7 ! plosivel
ilabia D
F voiced | dental | bilabial velar plosive

Table 1: The table shows four plosives. If alanguage | 1 0 1 0 1
has in its consonant inventory any three of the four - ” 1 " - "
phonemes listed in this table, then there is a higher
than average chance that it will also have the fourth | "¢ | * 4 a ! 1
phoneme of the table in its inventory. piE el R 1

ql/N 0 0.67 067 067 0
inventories in terms of their constituent features. Let F. =275

us assume that we want to communicate the infor-

mation about an inventory of siZé over a transmis-

sion channel. Ideally, one should requicg N bits . .

to do the same (where the logarithm is with respeé:'gu.re 1 The process of computirigz for a hypo-
to base 2). However, since every natural system }Eetlcal inventory.
to some extent redundant and languages are no ex-

ceptions, the number of bits actually used to encode i i
the information is more thatvog N. If we assume in terms of a ratio. The process of computing the

that the features are boolean in nature, then we cé{ﬁlue of RR for a hypothetical consonant inventory

compute the number of bits used by a language {5 'ustrated in Figure 1. _
encode the information about its inventory by mea- [N the following section, we present the experi-
suring theentropyas follows. For an inventory of Mental setup and also report the experiments which
size N let there bey; consonants for which a partic- W€ perform based on the above definition of redun_—
ular featuref (where is assumed to be boolean indancy. We subsequently show that redundancy ratio
nature) is present ang other consonants for which IS invariant across the consonant inventories whereas

the same is absent. Thus the probability that a patt}.;ne same is not true in the case of the vowel invento-
ticular consonant chosen uniformly at random fromi€S-

this inventory has the featurgis % and the prob- _

ability that the consonant lacks the featytes % 3 Experiments and Results

(=1—1]’V—f). If F'is the set of all features present in
the consonants forming the inventory, thiemture

RR = F./log(N) = 1.74

In this section we discuss the data source necessary

entropyF; can be expressed as for the experiments, describe the baseline for the
experiments, report the experiments performed, and

Fp=Y (—PLog L 910e 97y (1)  presentthe results obtained each time comparing the

feF N N N N same with the baseline results.

Fy, is therefore the measure of the minimum numbeé
. : . . . .1 Data Source
of bits that is required to communicate the informa-
tion about the entire inventory through the transmisMany typological studies (Ladefoged and Mad-
sion channel. The lower the value BY; the better dieson, 1996; Lindblom and Maddieson, 1988)
it is in terms of the information transmission over-of segmental inventories have been carried out in
head. In order to capture the redundancy involved ipast on the UCLA Phonological Segment Inven-
the encoding we define the temedundancy ratias tory Database (UPSID) (Maddieson, 1984). UPSID

follows, gathers phonological systems of languages from all
_ I'p (2) over the world, sampling more or less uniformly all
log N the linguistic families. In this work we have used

which expresses the excess number of bits that PSID comprising of 317 languages and 541 con-
used by the constituent consonants of the inventogonants found across them, for our experiments.
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3.2 Redundancy Ratio across the Consonant
Inventories
Line-fit of the distribution of RR.
In this section we measure the redundancy ratio (de- Ve To0801 + QONTRS AT
scribed earlier) of the consonant inventories of the
languages recorded in UPSID. Figure 2 shows the
scatter-plot of the redundancy ratidR of each of
the consonant inventories (y-axis) versus the inven-
tory size (x-axis). The plot immediately reveals that
the measure (i.eRR) is almost invariant across the
consonant inventories with respect to the inventory s 1 1 n &) s 4
size. In fact, we can fit the scatter-plot with a straight eentery e

line _(by means of least square rgg.ression), which ‘?:?gure 2: The scatter-plot of the redundancy ratio
depicted in Figure 2, has a negligible slope £ - RR of each of the consonant inventories (y-axis)

fact that RR | . ant v of th Sersus the inventory size (x-axis). The straight line-
act thatftft Is an Invariant property of the ConSO-g ;¢ 4154 depicted by the bold line in the figure.

nant inventories with regard to their size. It is im-
portant to mention here that in this experiment we
report the redundancy ratio of all the inventories of

ndeed the null hypothesis can be rejected with a

size less than or equal to 40. We neglect the inveQ/—ery high probability. We proceed as follows.

tories of the size greater than 40 since they are ex-
tremely rare (less than 0.5% of the languages of U321 Construction of Random Inventories
SID), and therefore, cannot provide us with statis- Wi | i del h
tically meaningful estimates. The same convention € employ tW.O iferent modets to gengrate the
has been followed in all the subsequent experimentrs?ndom |_nventor_|es. In the first model the invento-
Nevertheless, we have also computed the values les are filled uniformly at random from the pool of

RR for larger inventories, whereby we have foun th41t tc;]onjpr:a_lgt? In fﬂtf second mode][ ;\:e assume
that for an inventory size 60 the results are sim- at the distribution of the occurrence ot the conso-

ilar to those reported here. It is interesting to noté1ants over languages is knownpnon. Note that .
in both of these cases, the size of the random in-

that the largest of the consonant inventories Ga (size tories | i | ; © Th it
=173) has arRR = 1.9, which is lower than all the ventories Is Sa’T‘e fr’ls '.S reat coun er_par - [NeTesulls
: . show that the distribution ok ks obtained from the
other inventories. . .
i i ) ] ~second model has a closer match with the real in-
The aforementioned claim that RR is an invariy,eniories than that of the first model. This indicates
ant across consonant inventories can be validated

\ _ tHat the occurrence frequency to some extent gov-
performing a standard test of hypothesis. For thig s the jaw of organization of the consonant inven-

purpose, we randomly construct language inVem(l’()ries. The detail of each of the models follow.
ries, as discussed later, and formulate a null hypoth-
esis based on them. Model | — Purely Random Model:  In this model
Null Hypothesis: The invariance in the distribution we assume that the distribution of the consonant in-
of RRs observed across the real consonant inventoentory size is knowma priori_ For each |anguage
ries is also prevalent across the randomly generatggentory L let the size recorded in UPSID be de-
inventories. noted bys;. Let there be 317 bins corresponding to
Having formulated the null hypothesis we noweach consonant inventofy. A bin corresponding to
systematically attempt to reject the same with a vergn inventoryL is packed withs;, consonants chosen
high probability. For this purpose we first construcuniformly at random (without repetition) from the
random inventories and then perform a two samplgool of 541 available consonants. Thus the conso-
t-test (Cohen, 1995) comparing tit&Rs of the real nant inventories of the 317 languages corresponding
and the random inventories. The results show th&b the bins are generated. The method is summarized
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Scatter plot of RR measured across the
317 consonant inventories of UPSID

Redundancy Ratio (RR)




in Algorithm 1 Parameters Real Inv. Random Inv.
’ Mean 2.51177 3.59331
SDV 0.209531 0.475072
Parameters Values
for 1 =1to 317do 7 1215
o DF 66
for size = 1 tosy, do » < 9.289617
Choose a consonaauniformly at _ _
random (without repetition) from the Table 2: The results of thietest comparing the dis-
pool of 541 available consonants: tribution of RRs for the real and the random invento-

ries (obtained through Model I). SDV: standard devi-
ation, t: t-value of the test, DF: degrees of freedom,
p: residual uncertainty.

Pack the consonantin the bin
corresponding to the inventody,

end
end
Algorithm 1 : Algorithm to construct random in- tories and in each case show that the null hypothesis
ventories using Model | can be rejected with a significantly high probability.

Results from Model I:  Figure 3 illustrates, for all
Model Il — Occurrence Frequency based Random the inventories obtained from 100 different simula-

Model: For each consonaatlet the frequency of tion runs of Algorithm 1, the average redundancy
occurrence in UPSID be denoted iy Let there be ratio exhibited by the inventories of a particular size
317 bins each corresponding to a language in URY-axis), versus the inventory size (x-axis). The
SID. f. bins are then chosen uniformly at randonf€rm “redundancy ratio exhibited by the inventories
and the consonartis packed into these bins. ThusOf a particular size” actually means the following.
the consonant inventories of the 317 languages cds€t there ben consonant inventories of a particu-

responding to the bins are generated. The entire id& inventory-sizek. The average redundancy ra-
is summarized in Algorithm 2. tio of the inventories of sizé is therefore given by
LS~ | RR; whereRR; signifies the redundancy ra-
tio of thes*" inventory of sizek. In Figure 3 we also
for each consonantdo present the same curve for the real consonant inven-
fori=1to f.do tories appearing in UPSID. In these curves we fur-
ther depict the error bars spanning the entire range of
values starting from the minimurRR to the max-
imum RR for a given inventory size. The curves
show that in case of real inventories the error bars
span a very small range as compared to that of the
randomly constructed ones. Moreover, the slopes of
into this bin earlier; the curves are also significantly different. In order
end to test whether this difference is significant, we per-
end form at-test comparing the distribution of the val-
Algorithm 2: Algorithm to constructrandomin-  yes of RR that gives rise to such curves for the real
ventories using Model || and the random inventories. The results of the test
are noted in Table 2. These statistics clearly shows
. that the distribution ofR Rs for the real and the ran-
322 Results Obtained from the Random dom inventories are significantly different in nature.

Models Stated differently, we can reject the null hypothesis
In this section we enumerate the results obtaingglith (100 - 9.29e-15)% confidence.

by computing theRRs of the randomly generated

inventories using Model | and Model Il respectively.Results from Model Il:  Figure 4 illustrates, for

We compare the results with those of the real inverall the inventories obtained from 100 different simu-
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Choose one of the 317 bins,
corresponding to the languages in
UPSID, uniformly at random;

Pack the consonantinto the bin so
chosen if it has not been already pack
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Curve for the randomly generated

6 Curve for the randomly generated Inventories using Model I

inventories using Model I 5

N . Curve for the inventories of UPSID
Curve for the inventories of UPSID

Average Redundancy Ratio
@ & @
—_—y

Average Redundancy Ratio

THHHHHH
‘Hf ,;({\Wf\.y{\— 2

Inventory Size Inventory Size

Figure 3: Curves showing the average redundandyigure 4: Curves showing the average redundancy
ratio exhibited by the real as well as the random inratio exhibited by the real as well as the random in-
ventories (obtained through Model 1) of a particulaiventories (obtained through Model 1) of a particular
size (y-axis), versus the inventory size (x-axis).  Size (y-axis), versus the inventory size (x-axis).

Parameters Real Inv. Random Inv.
lation runs of Algorithm 2, the average redundancy Mean 2.51177 2.76679
ratio exhibited by the inventories of a particular size SDV 0.209531 | 0.228017
. . . . . Parameters Values
(y-axis), versus the inventory size (x-axis). The flg_- 7 4583
ure shows the same curve for the real consonant in- DF 60
ventories also. For each of the curve, the error bars P < 2.552e-05

span the entire range of values starting from the Mifrapje 3: The results of thietest comparing the dis-
imum /2R to the maximuni R for a given inventory  intion of RRs for the real and the random inven-
size. Itis quite evident from the figure that the errogyjeg (obtained through Model I1).,

bars for the curve representing the real inventories

are smaller than those of the random ones. The na-

ture of the two curves are also different though théhe vowel inventories appearing in UPSID. Figure 5
difference is not as pronounced as in case of Model$hows the scatter plot of the redundancy ratio of each
This is indicative of the fact that it is not only the oc-of the vowel inventories (y-axis) versus the inven-
currence frequency that governs the organization &dry size (x-axis). The plot clearly indicates that the
the consonant inventories and there is a more cormeasure (i.e.RR) is not invariant across the vowel
plex phenomenon that results in such an invariamaventories and in fact, the straight line that fits the
property. In fact, in this case also, théest statistics distribution has a slope of —0.14, which is around 10
comparing the distribution oR Rs for the real and times higher than that of the consonant inventories.
the random inventories, reported in Table 3, allows Figure 6 illustrates the average redundancy ratio
us to reject the null hypothesis with (100—2.55e—-3)%xhibited by the vowel and the consonant inventories

confidence. of a particular size (y-axis), versus the inventory size
_ _ . (x-axis). The error bars indicating the variability of
3.3 Comparison with Vowel Inventories RR among the inventories of a fixed size also span a

Until now we have been looking into the organizamuch larger range for the vowel inventories than for
tional aspects of the consonant inventories. In thige consonant inventories.
section we show that this organization is largely dif- The significance of the difference in the nature of
ferent from that of the vowel inventories in the senséhe distribution ofR Rs for the vowel and the conso-
that there is no such invariance observed across thant inventories can be again estimated by perform-
vowel inventories unlike that of consonants. Foing at-test. The null hypothesis in this case is as
this reason we start by computing tii&Rs of all follows.
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S ‘ ‘ ‘ ‘ Parameters | Consonant Inv.|  Vowel Inv.
Mean 251177 2.98797
* Line-fit of the distribution of RR. SDV 0209531 0726547
5 ’ . The equation of the line is given by Parameters Values
B : y =4.549517 + -0.13839965"x
2 t 3.612
2 DF 54
£, » < 0.000683
£ Scatter plot of RR .measure_d
s R s s Table 4: The results of thietest comparing the dis-
e / tribution of RRs for the consonant and the vowel
inventories.
2
5 10 15 20 25 30 . X .
Inventory Size 4 Conclusions, Discussion and Future
Work

Figure 5. The scatter-plot of the redundancy ratio
RR of each of the vowel inventories (y-axis) versudn this paper we have mathematically captured the
the inventory size (x-axis). The straight line-fit isredundancy observed across the sound inventories of
depicted by the bold line in the figure. the world’s languages. We started by systematically
defining the term redundancy ratio and measuring
the value of the same for the inventories. Some of
our important findings are,
s ' " ' ' ' " 1. Redundancy ratio is an invariant property of the
consonant inventories with respect to the inventory
size.
2. A more complex phenomenon than merely the
occurrence frequency results in such an invariance.
L ‘ Curee orthe comsonant inventores 3. Unlike the consonant inventories, the vowel in-
) l ventories are not indicative of such an invariance.
'
{

Curve for the vowel inventories

Average Redundancy Ratio

Until now we have concentrated on establishing
the invariance of the redundancy ratio across the
consonant inventories rather than reasoning why it
could have emerged. One possible way to answer
this question is to look for the error correcting ca-

bility of the encoding scheme that nature had em-
ﬁ;yed for characterization of the consonants. Ide-
glly, if redundancy has to be invariant, then this ca-
pability should be almost constant. As a proof of
concept we randomly select a consonant from in-
ventories of different size and compute its hamming
distance from the rest of the consonants in the inven-
tory. Figure 7 shows for a randomly chosen conso-
Null Hypothesis: The nature of the distribution of nantc from an inventory of size 10, 15, 20 and 30
RRs for the vowel and the consonant inventories igespectively, the number of the consonants at a par-
same. ticular hamming distance from(y-axis) versus the

hamming distance (x-axis). The curve clearly indi-

We can now perform thetest to verify whether cates that majority of the consonants are at a ham-
we can reject the above hypothesis. Table 4 presemtsng distance of 4 from, which in turn implies that
the results of the test. The statistics immediatelthe encoding scheme has almost a fixed error cor-
confirms that the null hypothesis can be rejecterecting capability of 1 bit. This can be the precise
with 99.932% confidence. reason behind the invariance of the redundancy ra-
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Figure 6: Curves showing the average redundan
ratio exhibited by the vowel as well as the consona
inventories of a particular size (y-axis), versus th
inventory size (x-axis).



5 Inv Size 10 Inv Size 15 Inv Size 20 Inv Size 30

Figure 7: Histograms showing the the number of consonants at a particular hamming distance (y-axis), from
a randomly chosen consonamntwersus the hamming distance (x-axis).

tio. Initial studies into the vowel inventories showR. Jakobson. 1941 .Kindersprache, aphasie und all-
that for a randomly chosen vowel, its hamming dis- 9emeine lautgesetz&ppsala, Reprinted iSelected
tance from the other vowels in the same inventory WWritings I Mouton The Hague, 1962, 328-401.
varies with the inventory size. In other words, the erp. C. Krakauer and J. B. Plotkin. 2002. Redundancy,
ror correcting capability of a vowel inventory seems antiredundancy, and the robustness of genoRiEA.S
to be dependent on the size of the inventory. 99(3), 1405-1409.
We believe that these results are significant as wedl, M. Lesk. 2002. Introduction to bioinformaticsOx-
as insightful. Nevertheless, one should be aware of ford University Press, New York.
the fact that the formulation aRE heavily banks E Ladefoged and I. Maddieson. 199&ounds of the
on the set of features that are used to represent theyorid's languagesOxford: Blackwell.
phonemes. Unfortunately, there is no consensus on _ S
the set of representative features, even though thekd-lliencrants and B. Lindblom. 1972. Numerical simu-
. . . . lation of vowel quality systems: the role of perceptual
are numerous suggestions available in the literature. contrastLanguage 48, 839—862.
However, the basic concept &R and the process of
analysis presented here is independent of the choiBe Lindblom and |. Maddieson. 1988. Phonetic uni-
of the feature set. In the current study we have used \,\l/ﬁ;lsdalgz'ifg nsonant systentsinguage, Speech, and
the binary features provided in UPSID, which could ’ '
be very well replaced by other representations, irl- Maddieson. 1984Patterns of soundsCambridge Uni-
cluding multi-valued feature systems: we look for- Versity Press, Cambridge.
ward to do the same as a part of our future work. A Martinet ~ 1955. Economie des changements
phoretiques Berne: A. Francke.
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Abstract

In this paper we investigate named entity
transliteration based on a phonetic scoring
method. The phonetic method is computed
using phonetic features and carefully
designed pseudo features. The proposed
method is tested with four languages —
Arabic, Chinese, Hindi and Korean — and
one source language — English, using
comparable corpora. The proposed method
is developed from the phonetic method
originally proposed in Tao et al. (2006). In
contrast to the phonetic method in Tao et al.
(2006) constructed on the basis of pure
linguistic knowledge, the method in this
study is trained using the Winnow machine
learning algorithm. There 1is salient
improvement in Hindi and Arabic
compared to the previous study. Moreover,
we demonstrate that the method can also
achieve comparable results, when it is
trained on language data different from the
target language. The method can be applied
both with minimal data, and without target
language data for various languages.

1 Introduction.

In this paper, we develop a multi-lingual
transliteration system for named entities. Named
entity transliteration is the process of producing,
for a name in a source language, a set of one or

more transliteration candidates in a target language.

The correct transliteration of named entities is
crucial, since they are frequent and important key
words in information retrieval. In addition,

112

requests in retrieving relevant documents in
multiple languages require the development of the
multi-lingual system.

The system is constructed using paired
comparable texts. The comparable texts are about
the same or related topics, but are not, in general,
translations of each other. Using this data, the
transliteration method aims to find transliteration
correspondences in the paired languages. For
example, if there were an English and Arabic
newspaper on the same day, each of the
newspapers would contain articles about the same
important international events. From these
comparable articles across the paired languages,
the same named entities are expected to be found.
Thus, from the named entities in an English
newspaper, the method would find transliteration
correspondences in comparable texts in other
languages.

The multi-lingual transliteration system entails
solving several problems which are very
challenging. First, it should show stable
performance for many unrelated languages. The
transliteration will be influenced by the difference
in the phonological systems of the language pairs,
and the process of transliteration differs according
to the languages involved. For example, in Arabic
texts, short vowels are rarely written while long
vowels are written. When transliterating English
names, the vowels are disappeared or written as
long vowels. For example London is transliterated
as Indn o>, and both vowels are not represented
in the transliteration. However, Washington is
often transliterated as wSnjTwn ;ehi /s, and
the final vowel is realized with long vowel.
Transliterations in Chinese are very different from
the original English pronunciation due to the

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 112-119,
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limited syllable structure and phoneme inventory
of Chinese. For example, Chinese does not allow
consonant clusters or coda consonants except [n,],

and this results in deletion, substitution of
consonants or insertion of vowels. Thus while a
syllable initial /d/ may surface as in Baghdad
[C4%3X ba-ge-da, note that the syllable final /d/ is
not represented. Multi-lingual transliteration
system should solve these language dependent
characteristics.

One of the most important concerns in a
multilingual  transliteration  system is its
applicability given a small amount of training data,
or even no training data: for arbitrary language
pairs, one cannot in general assume resources such
as name dictionaries. Indeed, for some rarely
spoken languages, it is practically impossible to
find enough training data. Therefore, the proposed
method aims to obtain comparable performance
with little training data.

2  Previous Work

Previous work — e.g. (Knight and Graehl, 1998;
Meng et al., 2001; Al-Onaizan and Knight, 2002;
Gao et al., 2004) — has mostly assumed that one
has a training lexicon of transliteration pairs, from
which one can learn a model, often a source-
channel or MaxEnt-based model.

Comparable corpora have been studied
extensively in the literature, but transliteration in
the context of comparable corpora has not been
well addressed. In our work, we adopt the method
proposed in (Tao et al., 2006) and apply it to the
problem of transliteration.

Measuring phonetic similarity between words
has been studied for a long time. In many studies,
two strings are aligned using a string alignment
algorithm, and an edit distance (the sum of the cost
for each edit operation), is used as the phonetic
distance between them. The resulting distance
depends on the costs of the edit operation. There
are several approaches that use distinctive features
to determine the costs of the edit operation. Gildea
and Jurafsky (1996) counted the number of
features whose values are different, and used them
as a substitution cost. However, this approach has a
crucial limitation: the cost does not consider the
importance of the features. Nerbonne and Heeringa
(1997) assigned a weight for each feature based on
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entropy and information gain, but the results were
even less accurate than the method without weight.

3 Phonetic transliteration method

In this paper, the phonetic transliteration is
performed using the following steps:

1) Generation of the pronunciation for
English words and target words:

a. Pronunciations for English words are obtained
using the Festival text-to-speech system (Taylor et
al., 1998).

b. Target words are automatically converted into
their phonemic level transcriptions by various
language-dependent means. In the case of
Mandarin Chinese, this is based on the standard
Pinyin transliteration system. Arabic words are
converted based on orthography, and the resulting
transcriptions are reasonably correct except for the
fact that short vowels were not represented.
Similarly, the pronunciation of Hindi and Korean
can be well-approximated based on the standard
orthographic representation. All pronunciations are
based on the WorldBet transliteration system
(Hieronymus, 1995), an ascii-only version of the
IPA.

2) Training a linear classifier using the
Winnow algorithm:

A linear classifier is trained using the training
data which is composed of transliteration pairs and
non-transliteration pairs. Transliteration pairs are
extracted from the transliteration dictionary, while
non-transliteration pairs are composed of an
English named entity and a random word from the
target language newspaper.

a. For all the training data, the pairs of
pronunciations are aligned using standard string
alignment algorithm based on Kruskal (1999). The
substitution/insertion/deletion cost for the string
alignment algorithm is based on the baseline cost
from (Tao et al, 2006).

b. All phonemes in the pronunciations are
decomposed into their features. The features used
in this study will be explained in detail in part 3.1.

c. For every phoneme pair (p;, py) in the aligned
pronunciations, a feature x; has a ‘“+1” value or a ‘-
1° value:

x;= [+1 when p; and p, have the same
values for feature x;
—1 otherwise



d. A linear classifier is trained using the
Winnow algorithm from the SNoW toolkit
(Carlson et al., 1999).

3) Scoring English-target word pair:

a. For a given English word, the score between it
and a target word is computed using the linear
classifier.

b. The score ranges from 0 to any positive
number, and the candidate with the highest score is
selected as the transliteration of the given English
name.

3.1 Feature set

Halle and Clements (1983)’s distinctive features
are used in order to model the substitution/
insertion/deletion costs for the string-alignment
algorithm and linear classifier. A distinctive
feature is a feature that describes the phonetic
characteristics of phonetic segments.

However, distinctive features alone are not
enough to model the frequent sound change
patterns that occur when words are adapted across
languages. For example, stop and fricative
consonants such as /p, t, k, b, d, g, s, z/ are
frequently deleted when they appear in the coda
position. This tendency is extremely salient when
the target languages do not allow coda consonants
or consonant clusters. For example, since Chinese
only allows /n, 1)/ in coda position, stop consonants

in the coda position are frequently lost; Stanford is
transliterated as sitanfu, with the final /d/ lost.
Since traditional distinctive features do not
consider the position in the syllable, this pattern
cannot be captured by distinctive features alone.
To capture these sound change patterns, additional
features such as “deletion of stop/fricative

consonant in the coda position” must be considered.

Based on the pronunciation error data of learners
of English as a second language as reported in
(Swan and Smith, 2002), we propose the use of
what we will term pseudofeatures. The pseudo
features in this study are same as in Tao et al.
(2006). Swan & Smith (2002)’s study covers 25
languages including Asian languages such as Thai,
Korean, Chinese and Japanese, FEuropean
languages such as German, Italian, French and
Polish, and Middle East languages such as Arabic
and Farsi. The substitution/insertion/deletion errors
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of phonemes were collected from this data. The
following types of errors frequently occur in
second language learners’ speech production.

(1) Substitution: If the learner’s first language
does not have a particular phoneme found in
English, it is substituted by the most similar
phoneme in their first language.

(2) Insertion: If the learner’s first language does
not have a particular consonant cluster in English,
a vowel is inserted.

(3) Deletion: If the learner’s first language does
not have a particular consonant cluster in English,
one consonant in the consonant cluster is deleted.

The same substitution/deletion/insertion patterns
in a second language learner’s errors also appear in
the transliteration of foreign names. The deletion
of the stop consonant which appears in English-
Chinese transliterations occurs frequently in the
English pronunciation spoken by Chinese speakers.
Therefore, the error patterns in second language
learners’ can be used in transliteration.

Based on (1) ~ (3), 21 pseudo features were
designed. All features have binary values. Using
these 21 pseudo features and 20 distinctive features,
a linear classifier is trained. Some examples of
pseudo features are presented in Table 1.

Pseudo- .
Feature Description Example
Substitution
Consonant- | of consonant
coda feature in
coda position
Substitution Substitution
Sonorant- of sonorant between [n] and
coda feature in [g] in coda
coda position | position in Arabic
Substitution Substitution
Labial-coda of lablgl betwegn [m] and
feature in [n] in coda
coda position | position in Chinese
 excention Substitution | Spanish/Catalan
J P of [j] and [d3] | and Festival error
W-excention Substitution | Chinese/Farsi and
p of [v] and [w] Festival error

Table 1. Examples of pseudo features




3.2 Scoring the English-target word pair

A linear classifier is trained using the Winnow
algorithm from the SNoW toolkit.

The Winnow algorithm is one of the update
rules for linear classifier. A linear classifier is an
algorithm to find a linear function that best
separates the data. For the set of features X and set
of weights W, the linear classifier is defined as [1]
(Mitchell, T., 1997)

X = %%, X}
W = {W,V\é, ...Wn} [1]
fX) =[1if w, + WX + WX, +.. +wx >0

-1 otherwise

The linear function assigns label +1 when the
paired target language word is the transliteration of
given English word, while it assigns label —1 when
it is not a transliteration of given English word.

The score of an English word and target word
pair is computed using equation [2] which is part
of the definition of f(x) in equation [1].

W, +Zn:vvixi [2]

The output of equation [2] is termed the target
node activation. If this value is high, class 1 is
more activated, and the pair is more likely to be a
transliteration pair. To illustrate, let us assume
there are two candidates in target language (t; and
ty) for an English word e. If the score of (e, t;) is
higher than the score of (e, t,), the pair (e, t;) has
stronger activation than (e, t;). It means that t
scores higher as the transliteration of e than t,.
Therefore, the candidate with the highest score (in
this case t|) is selected as the transliteration of the
given English name.

4  Experiment and Results

The linear function was trained for each
language, separately. 500 transliteration pairs were
randomly selected from each transliteration
dictionary, and used as positive examples in the
training procedure. This is quite small compared to
previous approaches such as Knight and Graehl
(1998) or Gao et al. (2004). In addition, 1500
words were randomly selected from the newspaper
in the target languages, and paired with English
words in the positive examples. A total of 750,000
pairs (500 English words x 1500 target words) were
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generated, and used as negative examples in the
training procedure.

Table 2 presents the source of training data for
each language.

T li i
rans 1t§rat10n Target word
pair
. New Mexico State | Xinhua Arabic
Arabic . . :
University newswire
) ) Xinh
. Behavior Design nhua
Chinese ) Chinese
Corporation .
newswire
.. Naidunia Hindi | Naidunia Hindi
Hindi . .
newswire newswire
the National Chosun
Korean Institute of the Korean
Korean language newspaper

Table 2. Sources of the training data

The phonetic transliteration method was
evaluated using comparable corpora, consisting of
newspaper articles in English and the target
languages—Arabic, Chinese, Hindi, and Korean—
from the same day, or almost the same day. Using
comparable corpora, the named-entities for persons
and locations were extracted from the English text;
in this paper, the English named-entities were
extracted using the named-entity recognizer
described in Li et al. (2004), based on the SNoW
machine learning toolkit (Carlson et al., 1999).

The transliteration task was performed using the
following steps:

1) English text was tagged using the named-
entity recognizer. The 200 most frequent named
entities were extracted from seven days’ worth of
the English newswire text. Among pronunciations
of words generated by the Festival text-to speech
system, 3% contained errors representing
monophthongs instead of diphthongs or vice versa.
1.5% of all cases misrepresented single consonant,
and 6% showed errors in the vowels. Overall,
10.5% of the tokens contained pronunciation errors
which could trigger errors in transliteration.

2) To generate the Arabic and Hindi candidates,
all words from the same seven days were extracted.
In the case of Korean corpus, the collection of
newspapers was from every five days, unlike the
other three language corpora which were collected
every day; therefore, candidates of Korean were



generated from one month of newspapers, since
seven days of newspaper articles did not show a
sufficient number of transliteration candidates.
This caused the total number of candidates to be
much bigger than for the other languages.

The words were stemmed all possible ways
using simple hand-developed affix lists: for
example, given a Hindi word clc2c3, if both c3
and c2c3 are in the suffix and ending list, then this
single word generated three possible candidates: c1,
clc2, and clc2c3.

3) Segmenting Chinese sentences requires a
dictionary or supervised segmenter. Since the goal
is to use minimal knowledge or data from the
target language, using supervised methods is
inappropriate for our approach. Therefore, Chinese
sentences were not segmented. Using the 495
characters that are frequently wused for
transliterating foreign names (Sproat et al., 1996),
a sequence of three of more characters from the list
was taken as a possible candidate for Chinese.

4) For the given 200 English named entities and
target language candidate lists, all the possible
pairings of English and target-language name were
considered as possible transliteration pairs.

The number of candidates for each target
language is presented in Table 3.

Language The number of candidates
Arabic 12,466
Chinese 6,291
Hindi 10,169
Korean 42757

Table 3. Number of candidates for each target
language.

5) Node activation scores were calculated for
each pair in the test data, and the candidates were
ranked by their score. The candidate with the
highest node activation score was selected as the
transliteration of the given English name.

Some examples of English words and the top
three ranking candidates among all of the potential
target-language candidates were given in Tables 4,
5. Starred entries are correct.
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English Rank Candidate
Word . Romanizati
Script
on
*1 i =+ ??qff] a-la-fa-te
Arafat PEFEPIE | la-fa-di-ao
3 ¥ ;»’gﬁJ la-wei-qi

Table 4. Examples of the top-3 candidates in the
transliteration of English — Chinese

English Candidate
d Rank
Wor . Romanizati
Script
on
*1 H = be-thu-nam
o) W g = be-thu-nam-
Vietnam 0 chug
3 E‘i‘oi 94_ pyo-jun-¢e-
wa
*] e2EYY o-su-thu-
] o} ley-il-li-a
[e)
Australia 2 x=of us-tol-la
erEry | oSt
3 g o} o] A] ley-il-li-a-
ey-se

Table 5. Examples of the top-3 candidates in the
transliteration of English-Korean

To evaluate the proposed transliteration methods
quantitatively, the Mean Reciprocal Rank (MRR),
a measure commonly used in information retrieval
when there is precisely one correct answer (Kandor
and Vorhees, 2000) was measured, following Tao
and Zhai (2005).

Since the evaluation data obtained from the
comparable corpus was small, the systems were
evaluated using both held-out data from the
transliteration dictionary and comparable corpus.

First, the results of the held-out data will be
presented. For a given English name and target
language candidates, all possible combinations
were generated. Table 6 presents the size of held-
out data, and Table 7 presents MRR of the held-out
data.




Number | Number of | Number of
of English | Candidates | total pairs
named in target | used in the
entities language | evaluation
Arabic 500 1,500 750,000
Chinese 500 1,500 750,000
Hindi 100 1,500 150,000
Korean 100 1,500 150,000
Table 6. Size of the test data
Winnow
Baseline Total distinctive
feature
feature
only
Arabic 0.66 0.74 0.70
Chinese 0.74 0.74 0.72
Hindi 0.87 0.91 0.91
Korean 0.82 0.85 0.82

Table 7. MRRs of the phonetic transliteration

The baseline was computed using the phonetic
transliteration method proposed in Tao et al.
(2006). In contrast to the method in this study, the
baseline system is purely based on linguistic
knowledge. In the baseline system, the edit
distance, which was the result of the string
alignment algorithm, was used as the score of an
English-target word pair. The performance of the
edit distance was dependent on insertion/deletion/
substitution costs. These costs were determined
based on the distinctive features and pseudo
features, based on the pure linguistic knowledge
without training data. As illustrated in Table 7, the
phonetic transliteration method using features
worked adequately for multilingual data, as
phonetic features are universal, unlike the
phonemes which are composed of them. Adopting
phonetic features as the units for transliteration
yielded the baseline performance.

In order to evaluate the effectiveness of pseudo
features, the method was trained using two
different feature sets: a total feature set and a
distinctive feature-only set. For Arabic, Chinese
and Korean, the MRR of the total feature set was
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higher than the MRR of the distinctive feature-only
set. The improvement of the total set was 4% for
Arabic, 2.6% for Chinese, 2.4% for Korean. There
was no improvement of the total set in Hindi. In
general, the pseudo features improved the accuracy
of the transliteration.

For all languages, the MRR of the Winnow
algorithm with the total feature set was higher than
the baseline. There was 7% improvement for
Arabic, 0.7% improvement for Chinese, 4%
improvement for Hindi and 3% improvement for
Korean.

We turn now to the results on comparable
corpora. We attempted to create a complete set of
answers for the 200 English names in our test set,
but part of the English names did not seem to have
any standard transliteration in the target language
according to the native speaker’s judgment.
Accordingly, we removed these names from the
evaluation set. Thus, the resulting list was less than
200 English names, as shown in the second column
of Table 8; (Table 8 All). Furthermore, some
correct transliterations were not found in our
candidate list for the target languages, since the
answer never occurred in the target news articles;
(Table 8 Missing). Thus this results in a smaller
number of candidates to evaluate. This smaller
number is given in the fourth column of Table §;
(Table 8 Core).

Language | # All | #Missing | #Core
Arabic 192 121 71
Chinese 186 92 94
Hindi 144 83 61
Korean 195 114 81

Table 8. Number of evaluated English Name

MRRs were computed on the two sets
represented by the count in column 2, and the
smaller set represented by the count in column 4.
We termed the former MRR “AlIMRR” and the
latter “CoreMRR”. In Table 9, “CoreMRR” and
“AlIMRR” of the method were presented.



Baseline Winnow
All- | Core | All- | Core
MRR | MRR | MRR | MRR
Arabic 0.20 | 0.53 | 0.22 | 0.61
Chinese | 0.25 | 049 | 0.25 | 0.50
Hindi 0.30 | 0.69 | 036 | 0.86
Korean | 0.30 | 0.71 | 0.29 | 0.69

test data
Arabic Ce};‘en Hindi K:nre
| Arabic | 061 |0.50 [ 0.86 [ 0.63
trli‘llg Chinese | 0.59 | 0.50 | 0.80 | 0.66
data | Hindi | 059 | 054 ] 086 | 067
Korean 0.56 0.51 | 0.76 | 0.69

Table 9. MRRs of the phonetic transliteration

In both methods, CoreMRRs were higher than
0.49 for all languages. That is, if the answer is in
the target language texts, then the method finds the
correct answer within the top 2 words.

As with the previously discussed results, there
were salient improvements in Arabic and Hindi
when using the Winnow algorithm. The MRRs of
the Winnow algorithm except Korean were higher
than the baseline. There was 7% improvement for
Arabic and 17% improvement for Hindi in
CoreMRR. In contrast to the 3% improvement in
held-out data, there was a 2% decrease in Korean:
the MRRs of Korean from the Winnow algorithm
were lower than baseline, possibly because of the
limited size of the evaluation data. Similar to the
results of held-out data, the improvement in
Chinese was small (1%).

The MRRs of Hindi and the MRRs of Korean
were higher than the MRRs of Arabic and Chinese.
The lower MRRs of Arabic and Chinese may result
from the phonological structures of the languages.
In general, transliteration of English word into
Arabic and Chinese is much more irregular than
the transliteration into Hindi and Korean in terms
of phonetics.

To test the applicability to languages for which
training data is not available, we also investigated
the use of models trained on language pairs
different from the target language pair. Thus, for
each test language pair, we evaluated the
performance of models trained on each of the other
language pairs. For example, three models were
trained using Chinese, Hindi, and Korean, and they
were tested with Arabic data. The CoreMRRs of
this experiment were presented in Table 10. Note
that the diagonal in this Table represents the
within-language-pair training and testing scenario
that we reported on above.
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Table 10. MRRs for the phonetic transliteration 2

For Arabic, Hindi, and Korean, MRRs were
indeed the highest when the methods were trained
using data from the same language, as indicated by
the boldface MRR scores on the diagonal. In
general, however, the MRRs were not saliently
lower across the board when using different
language data than using same-language data in
training and testing. For all languages, MRRs for
the cross-language case were best when the
methods were trained using Hindi. The differences
between MRRs of the method trained from Hindi
and MRRs of the method by homogeneous
language data were 2% for Arabic and Korean. In
the case of Chinese, MRRs of the method trained
by Hindi was actually better than MRRs obtained
by Chinese training data. Hindi has a large
phoneme inventory compared to Korean, Arabic,
and Chinese, so the relationship between English
phonemes and Hindi phonemes is relatively regular,
and only small number of language specific
transliteration rules exist. That is, the language
specific influences from Hindi are smaller than
those from other languages. This characteristic of
Hindi may result in the high MRRs for other
languages. What these results imply is that named
entity transliteration could be performed without
training data for the target language with phonetic
feature as a unit. This approach is especially
valuable for languages for which training data is
minimal or lacking.

5 Conclusion

In this paper, a phonetic method for multilingual
transliteration was proposed. The method was
based on string alignment, and linear classifiers
trained using the Winnow algorithm. In order to
learn both language-universal and language-
specific transliteration characteristics, distinctive




features and pseudo features were used in training.
The method can be trained using a small amount of
training data, and the performance decreases only
by a small degree when it is trained with a
language different from the test data. Therefore,
this  method is extremely useful for
underrepresented languages for which training data
is difficult to find.
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Abstract

Words of foreign origin are referred to as
borrowed words or loanwords. A loanword
is usually imported to Chinese by phonetic
transliteration if a translation is not easily
available. Semantic transliteration is seen
as a good tradition in introducing foreign
words to Chinese. Not only does it preserve
how a word sounds in the source language,
it also carries forward the word’s original
semantic attributes. This paper attempts to
automate the semantic transliteration
process for the first time. We conduct an
inquiry into the feasibility of semantic
transliteration and propose a probabilistic
model for transliterating personal names in
Latin script into Chinese. The results show
that semantic transliteration substantially
and consistently improves accuracy over
phonetic  transliteration in all the
experiments.

1 Introduction

The study of Chinese transliteration dates back to
the seventh century when Buddhist scriptures were
translated into Chinese. The earliest bit of Chinese
translation theory related to transliteration may be
the principle of “Names should follow their
bearers, while things should follow Chinese.” In
other words, names should be transliterated, while
things should be translated according to their
meanings. The same theory still holds today.
Transliteration has been practiced in several
ways, including phonetic transliteration and
phonetic-semantic transliteration. By phonetic
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transliteration, we mean rewriting a foreign word
in native grapheme such that its original
pronunciation is preserved. For example, London
becomes &% /Lun-Dun/* which does not carry
any clear connotations. Phonetic transliteration
represents the common practice in transliteration.
Phonetic-semantic transliteration, hereafter
referred to as semantic transliteration for short, is
an advanced translation technique that is
considered as a recommended translation practice
for centuries. It translates a foreign word by
preserving both its original pronunciation and
meaning. For example, Xu Guanggqi? translated
geo- in geometry into Chinese as JL{7 /Ji-He/,
which carries the pronunciation of geo- and
expresses the meaning of “a science concerned
with measuring the earth”.

Many of the loanwords exist in today’s Chinese
through semantic transliteration, which has been
well received (Hu and Xu, 2003; Hu, 2004) by the
people because of many advantages. Here we just
name a few. (1) It brings in not only the sound, but
also the meaning that fills in the semantic blank
left by phonetic transliteration. This also reminds
people that it is a loanword and avoids misleading;
(2) It provides etymological clues that make it easy
to trace back to the root of the words. For example,
a transliterated Japanese name will maintain its
Japanese identity in its Chinese appearance; (3) It
evokes desirable associations, for example, an
English girl’s name is transliterated with Chinese
characters that have clear feminine association,
thus maintaining the gender identity.

! Hereafter, Chinese characters are also denoted in Pinyin ro-
manization system, for ease of reference.

2 Xu Quangqi (1562—1633) translated The Original Manu-
script of Geometry to Chinese jointly with Matteo Ricci.
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Unfortunately, most of the reported work in the
area of machine transliteration has not ventured
into semantic transliteration yet. The Latin-scripted
personal names are always assumed to
homogeneously follow the English phonic rules in
automatic transliteration (Li et al., 2004).
Therefore, the same transliteration model is
applied to all the names indiscriminatively. This
assumption  degrades the performance of
transliteration because each language has its own
phonic rule and the Chinese characters to be
adopted depend on the following semantic
attributes of a foreign name.

(1) Language of origin: An English word is not
necessarily of pure English origin. In English news
reports about Asian happenings, an English
personal name may have been originated from
Chinese, Japanese or Korean. The language origin
affects the phonic rules and the characters to be
used in transliteration®. For example, a Japanese
name Matsumoto should be transliterated as #A74
/Song-Ben/, instead of /% 54T /Ma-Ci-Mo-Tuo/
as if it were an English name.

(2) Gender association: A given name typically
implies a clear gender association in both the
source and target languages. For example, the
Chinese transliterations of Alice and Alexandra
are JZ NN 22 IAi-Li-Si/ and V. JJj 111K /Ya-Li-Shan-
Da/ respectively, showing clear feminine and
masculine characteristics. Transliterating Alice as
B B W JAI-Li-Si/ is phonetically correct, but
semantically inadequate due to an improper gender
association.

(3) Surname and given name: The Chinese name
system is the original pattern of names in Eastern
Asia such as China, Korea and Vietnam, in which
a limited number of characters* are used for
surnames while those for given names are less
restrictive. Even for English names, the character
set for given name transliterations are different
from that for surnames.

Here are two examples of semantic
transliteration for personal names. George Bush

% In the literature (Knight and Graehl,1998; Qu et al., 2003),
translating romanized Japanese or Chinese names to Chinese
characters is also known as back-transliteration. For simplic-
ity, we consider all conversions from Latin-scripted words to
Chinese as transliteration in this paper.

* The 19 most common surnames cover 55.6% percent of the
Chinese population (Ning and Ning 1995).
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and Yamamoto Akiko are transliterated into 771
it and 1 A W E F that arouse to the
following associations: 77 ¥i /Qiao-zhi/ - male
given name, English origin; i {+ /Bu-Shi/ -
surname, English origin; 1l A /Shan-Ben/ -
surname, Japanese origin; Y. = 1 /Ya-Xi-Zi/ -
female given name, Japanese origin.

In Section 2, we summarize the related work. In
Section 3, we discuss the linguistic feasibility of
semantic transliteration for personal names.
Section 4 formulates a probabilistic model for
semantic transliteration.  Section 5 reports the
experiments. Finally, we conclude in Section 6.

2 Related Work

In general, computational studies of transliteration
fall into two categories: transliteration modeling
and extraction of transliteration pairs. In
transliteration modeling, transliteration rules are
trained from a large, bilingual transliteration
lexicon (Lin and Chen, 2002; Oh and Choi, 2005),
with the objective of translating unknown words
on the fly in an open, general domain. In the
extraction of transliterations, data-driven methods
are adopted to extract actual transliteration pairs
from a corpus, in an effort to construct a large, up-
to-date transliteration lexicon (Kuo et al., 2006;
Sproat et al., 2006).

Phonetic transliteration can be considered as an
extension to the traditional grapheme-to-phoneme
(G2P) conversion (Galescu and Allen, 2001),
which has been a much-researched topic in the
field of speech processing. If we view the
grapheme and phoneme as two symbolic
representations of the same word in two different
languages, then G2P is a transliteration task by
itself. Although G2P and phonetic transliteration
are common in many ways, transliteration has its
unique challenges, especially as far as E-C
transliteration is concerned. E-C transliteration is
the conversion between English graphemes,
phonetically associated English letters, and
Chinese graphemes, characters which represent
ideas or meanings. As a Chinese transliteration can
arouse to certain connotations, the choice of
Chinese characters becomes a topic of interest (Xu
et al., 2006).

Semantic transliteration can be seen as a subtask
of statistical machine translation (SMT) with



monotonic word ordering. By treating a
letter/character as a word and a group of
letters/characters as a phrase or token unit in SMT,
one can easily apply the traditional SMT models,
such as the IBM generative model (Brown et al.,
1993) or the phrase-based translation model (Crego
et al., 2005) to transliteration. In transliteration, we
face similar issues as in SMT, such as lexical
mapping and alignment. However, transliteration is
also different from general SMT in many ways.
Unlike SMT where we aim at optimizing the
semantic transfer, semantic transliteration needs to
maintain the phonetic equivalence as well.

In computational linguistic literature, much
effort has been devoted to phonetic transliteration,
such as English-Arabic, English-Chinese (Li et al.,
2004), English-Japanese (Knight and Graehl,
1998) and English-Korean. In G2P studies, Font
Llitjos and Black (2001) showed how knowledge
of language of origin may improve conversion
accuracy. Unfortunately semantic transliteration,
which is considered as a good tradition in
translation practice (Hu and Xu, 2003; Hu, 2004),
has not been adequately addressed computationally
in the literature. Some recent work (Li et al., 2006;
Xu et al., 2006) has attempted to introduce
preference into a probabilistic framework for
selection of Chinese characters in phonetic
transliteration. However, there is neither analytical
result nor semantic-motivated transliteration
solution being reported.

3 Feasibility of Semantic Transliteration

A Latin-scripted personal name is written in letters,
which represent the pronunciations closely,
whereas each Chinese character represents not only
the syllables, but also the semantic associations.
Thus, character rendering is a vital issue in trans-
literation. Good transliteration adequately projects
semantic association while an inappropriate one
may lead to undesirable interpretation.

Is semantic transliteration possible? Let’s first
conduct an inquiry into the feasibility of semantic
transliteration on 3 bilingual name corpora, which
are summarizied in Table 1 and will be used in
experiments. E-C corpus is an augmented version
of Xinhua English to Chinese dictionary —for
English names (Xinhua, 1992). J-C corpus is a
romanized Japanese to Chinese dictionary for
Japanese names. The C-C corpus is a Chinese
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Pinyin to character dictionary for Chinese names.
The entries are classified into surname, male and
female given name categories. The E-C corpus also
contains some entries without gender/surname
labels, referred to as unclassified.

E-C J-C° c-c°
Surname (S) 12,490 | 36,352 | 569,403
Given name (M) | 3,201 | 35,767 | 345,044
Given name (F) 4275 | 11,817 | 122,772
Unclassified 22,562 | - -
All 42,528 | 83,936 | 1,972,851

Table 1: Number of entries in 3 corpora

Phonetic transliteration has not been a problem
as Chinese has over 400 unique syllables that are
enough to approximately transcribe all syllables in
other languages. Different Chinese characters may
render into the same syllable and form a range of
homonyms. Among the homonyms, those arousing
positive meanings can be used for personal names.
As discussed elsewhere (Sproat et al., 1996), out of
several thousand common Chinese characters, a
subset of a few hundred characters tends to be used
overwhelmingly for transliterating English names
to Chinese, e.g. only 731 Chinese characters are
adopted in the E-C corpus. Although the character
sets are shared across languages and genders, the
statistics in Table 2 show that each semantic
attribute is associated with some unique characters.
In the C-C corpus, out of the total of 4,507
characters, only 776 of them are for surnames. It is
interesting to find that female given names are
represented by a smaller set of characters than that
for male across 3 corpora.

EC | JC | cC All
S | 327 | 2129 | 776 | 2,612 (19.2%)
M | 504 | 1.399 | 4340 | 4.995 (20.0%)
F | 479 | 1178 | 1318 | 2.192 (26.3%)

731 | 2533 | 4,507 )
ALY (aa.000) | (a6.2%) | (30.00) | >77° (53:6%)

Table 2: Chinese character usage in 3 corpora. The
numbers in brackets indicate the percentage of
characters that are shared by at least 2 corpora.

Note that the overlap of Chinese characters
usage across genders is higher than that across
languages. For instance, there is a 44.2% overlap

° http://www.cjk.org
6 http://technology.chtsai.org/namelist



across gender for the transcribed English names;
but only 19.2% overlap across languages for the
surnames.

In summary, the semantic attributes of personal
names are characterized by the choice of characters,
and therefore their n-gram statistics as well. If the
attributes are known in advance, then the semantic
transliteration is absolutely feasible. We may
obtain the semantic attributes from the context
through trigger words. For instance, from “Mr
Tony Blair”, we realize “Tony” is a male given
name while “Blair’ is a surname; from *“Japanese
Prime Minister Koizumi”, we resolve that
“Koizumi”” is a Japanese surname. In the case
where contextual trigger words are not available,
we study detecting the semantic attributes from the
personal names themselves in the next section.

4  Formulation of Transliteration Model

Let S and T denote the name written in the source
and target writing systems respectively. Within a
probabilistic framework, a transliteration system
produces the optimum target name, T°, which
yields the highest posterior probability given the
source name, S, i.e.

T  =argmaxP(T |S) 1)

TeTs
where Ty is the set of all possible transliterations

for the source name, S. The alignment between S
and T is assumed implicit in the above formulation.
In a standard phonetic transliteration system,
P(T | S), the posterior probability of the hypothe-

sized transliteration, T, given the source name, S, is
directly modeled without considering any form of
semantic information. On the other hand, semantic
transliteration described in this paper incorporates
language of origin and gender information to cap-
ture the semantic structure. To do so, P(T |S) is

rewritten as

PrTIs) =  2PMLEIS) @)
_ LELZC;EI;’(F|S,L,G)P(L,G|S) )

where P(T |S,L,G) is the transliteration probabil-

ity from source S to target T, given the language of
origin (L) and gender (G) labels. £ and G denote

the sets of languages and genders respectively.
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P(L,G|S) is the probability of the language and
the gender given the source, S.

Given the alignment between S and T, the
transliteration probability given L and G may be
written as

P(T|S,L,G)

|
[]PaIm™s) 4)
i=1

Q

|
H P(ti |ti_1,Si_1,Si) (5)
i=1

where s; and t; are the i" token of S and T respec-
tively and | is the total number of tokens in both S
and T. S}‘ and Tjk represent the sequence of tokens

(5§8j:2--»5¢) @nd (tj.t,q,....t ) respectively. Eq.

(4) is in fact the n-gram likelihood of the token pair
(t;,s;) sequence and Eq. (5) approximates this
probability using a bigram language model. This
model is conceptually similar to the joint source-
channel model (Li et al., 2004) where the target to-
ken t; depends on not only its source token s; but

also the history t; ; and s;_,. Each character in the

target name forms a token. To obtain the source
tokens, the source and target names in the training
data are aligned using the EM algorithm. This
yields a set of possible source tokens and a map-
ping between the source and target tokens. During
testing, each source name is first segmented into
all possible token sequences given the token set.
These source token sequences are mapped to the
target sequences to yield an N-best list of translit-
eration candidates. Each candidate is scored using
an n-gram language model given by Eqgs. (4) or (5).

As in Eq. (3), the transliteration also greatly
depends on the prior knowledge, P(L,G|S) .

When no prior knowledge is available, a uniform
probability distribution is assumed. By expressing
P(L,G|S) in the following form,
P(L.G|S)=P(G|L,S)P(L[S) (6)
prior knowledge about language and gender may
be incorporated. For example, if the language of S
is known as Lg, we have
L=Lg

1
P(L|s>={0 L o
S

Similarly, if the gender information for S is known
as Gg, then,



PGILS) =1 =G 8
70 G =Gy ®)
Note that personal names have clear semantic
associations. In the case where the semantic
attribute information is not available, we propose
learning semantic information from the names
themselves. Using Bayes’ theorem, we have

P(S|L,G)P(L,G)
P(L,G|S) = 9
(L.GIS) P(S) )
P(S|L,G) can be modeled using an n-gram lan-

guage model for the letter sequence of all the
Latin-scripted names in the training set. The prior
probability, P(L,G), is typically uniform. P(S)
does not depend on L and G, thus can be omitted.

Incorporating P(L,G|S) into Eq. (3) can be
viewed as performing a soft decision of the
language and gender semantic attributes. By
contrast, hard decision may also be performed
based on maximum likelihood approach:

Ls= argmax P(S|L)

(10)
_ Ler
Gs =argmaxP(S|L,G) (11)
Geg

where [5 and 65 are the detected language and
gender of S respectively. Therefore, for hard deci-
sion, P(L,G|S) is obtained by replacing Lg and

G in Eq. (7) and (8) with Ls and Gg respec-
tively. Although hard decision eliminates the need
to compute the likelihood scores for all possible
pairs of L and G, the decision errors made in the
early stage will propagate to the transliteration
stage. This is potentially bad if a poor detector is
used (see Table 9 in Section 5.3).

If we are unable to model the prior knowledge
of semantic attributes P(L,G|S) , then a more

general model will be used for P(T|S,L,G) by

dropping the dependency on the information that is
not available. For example, Eq. (3) is reduced

tOZLELPU|S,L)P(L|S) if the gender information

is missing. Note that when both language and
gender are unknown, the system simplifies to the
baseline phonetic transliteration system.

5 Experiments

This section presents experiments on database of 3
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language origins (Japanese, Chinese and English)
and gender information (surname’, male and fe-
male). In the experiments of determining the lan-
guage origin, we used the full data set for the 3 lan-
guages as in shown in Table 1. The training and test
data for semantic transliteration are the subset of
Table 1 comprising those with surnames, male and
female given names labels. In this paper, J, C and
E stand for Japanese, Chinese and English; S, M
and F represent Surname, Male and Female given
names, respectively.

L Data # unigue entries
set S M F All
3 Train | 21.7k | 5.6k | 1.7k | 27.1k
Test 2.6k | 518 276 | 2.9k
c Train | 283 | 29.6k | 9.2k | 31.5k
Test 283 | 2.9k | 1.2k | 3.1k
E Train | 125k | 2.8k | 3.8k | 18.5k
Test 1.4k | 367 429 | 2.1k

Table 3: Number of unique entries in training and
test sets, categorized by semantic attributes

Table 3 summarizes the number of unique® name
entries used in training and testing. The test sets
were randomly chosen such that the amount of test
data is approximately 10-20% of the whole corpus.
There were no overlapping entries between the
training and test data. Note that the Chinese sur-
names are typically single characters in a small set;
we assume there is no unseen surname in the test
set. All the Chinese surname entries are used for
both training and testing.

5.1 Language of Origin

For each language of origin, a 4-gram language
model was trained for the letter sequence of the
source names, with a 1-letter shift.

Japanese | Chinese | English All

96.46 96.44 89.90 94.81
Table 4: Language detection accuracies (%) using
a 4-gram language model for the letter sequence of
the source name in Latin script.

" In this paper, surnames are treated as a special class of gen-
der. Unlike given names, they do not have any gender associa-
tion. Therefore, they fall into a third category which is neither
male nor female.

8 By contrast, Table 1 shows the total number of name exam-
ples available. For each unique entry, there may be multiple
examples.



Table 4 shows the language detection accuracies
for all the 3 languages using Eq. (10). The overall
detection accuracy is 94.81%. The corresponding
Equal Error Rate (EER)’is 4.52%. The detection
results may be used directly to infer the semantic
information for transliteration. Alternatively, the
language model likelihood scores may be
incorporated into the Bayesian framework to
improve the transliteration performance, as
described in Section 4.

5.2 Gender Association

Similarly, gender detection’® was performed by
training a 4-gram language model for the letter se-
guence of the source names for each language and
gender pair.

Language Male Female All
Japanese 90.54 80.43 87.03
Chinese 64.34 71.66 66.52
English 75.20 72.26 73.62

Table 5: Gender detection accuracies (%) using a
4-gram language model for the letter sequence of
the source name in Latin script.

Table 5 summarizes the gender detection accura-
cies using Eq. (11) assuming language of origin is
known, Gs=argmaxP(S|L=L,,G) . The overall
Geg

detection accuracies are 87.03%, 66.52% and
73.62% for Japanese, Chinese and English respec-
tively. The corresponding EER are 13.1%, 21.8%
and 19.3% respectively. Note that gender detection
is generally harder than language detection. This is
because the tokens (syllables) are shared very
much across gender categories, while they are
quite different from one language to another.

5.3 Semantic Transliteration

The performance was measured using the Mean
Reciprocal Rank (MRR) metric (Kantor and Voor-
hees, 2000), a measure that is commonly used in
information retrieval, assuming there is precisely
one correct answer. Each transliteration system
generated at most 50-best hypotheses for each

° EER is defined as the error of false acceptance and false re-
jection when they are equal.

19'In most writing systems, the ordering of surname and
given name is known. Therefore, gender detection is
only performed for male and female classes.
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word when computing MRR. The word and char-
acter accuracies of the top best hypotheses are also
reported.

We used the phonetic transliteration system as
the baseline to study the effects of semantic
transliteration. The phonetic transliteration system
was trained by pooling all the available training
data from all the languages and genders to estimate
a language model for the source-target token pairs.
Table 6 compares the MRR performance of the
baseline system wusing unigram and bigram
language models for the source-target token pairs.

J C E All
Unigram | 0.5109 | 0.4869 | 0.2598 | 0.4443
Bigram | 0.5412 | 0.5261 | 0.3395 | 0.4895

Table 6: MRR performance of phonetic translit-
eration for 3 corpora using unigram and bigram
language models.

The MRR performance for Japanese and Chinese
is in the range of 0.48-0.55. However, due to the
small amount of training and test data, the MRR
performance of the English name transliteration is
slightly poor (approximately 0.26-0.34). In general,
a bigram language model gave an overall relative
improvement of 10.2% over a unigram model.

LG [set| J C E
S | 05366 | 07426 | 0.4009

« | « /M| 05992 | 05184 | 0.2875
F | 04750 | 0.4945 | 0.1779

All | 05412 | 05261 | 0.3395

S | 06500 | 07971 | 0.7178

o | M [ 06733 | 05245 | 0.4978

F | 05956 | 05191 | 0.4115

L, All | 0.6491 | 05404 | 0.6228
S | 06822 | 09969 | 0.7382

, LM | 07267 | 0.6466 | 0.4319

F_| 0.5856 | 0.7844 | 0.4340

All | 0.6811 | 07075 | 0.6294

S | 06541 | 06733 | 0.7129

ol o[ M 06974 | 05362 | 0.4821
F | 05743 | 0.6574 | 0.4138

All [ 0.6477 | 05764 | 0.6168

Table 7: The effect of language and gender in-
formation on the overall MRR performance of
transliteration (L=Language, G=Gender,
x=unknown, v'=known, O=soft decision).

Next, the scenarios with perfect language and/or
gender information were considered. This com-



parison is summarized in Table 7. All the MRR re-
sults are based on transliteration systems using bi-
gram language models. The table clearly shows
that having perfect knowledge, denoted by “v, of
language and gender helps improve the MRR per-
formance; detecting semantic attributes using soft
decision, denoted by “O~, has a clear win over the
baseline, denoted by “x”, where semantic informa-
tion is not used. The results strongly recommend
the use of semantic transliteration for personal
names in practice.

Next let’s look into the effects of automatic
language and gender detection on the performance.

J C E All
x 0.5412 | 0.5261 | 0.3395 | 0.4895
& 0.6292 | 0.5290 | 0.5780 | 0.5734
®) 0.6162 | 0.5301 | 0.6088 | 0.5765
v 0.6491 | 0.5404 | 0.6228 | 0.5952

Table 8: The effect of language detection
schemes on MRR using bigram language models
and unknown gender information (hereafter,
x=unknown, v'=known, <>=hard decision, O=soft
decision).

Table 8 compares the MRR performance of the
semantic transliteration systems with different
prior information, using bigram language models.
Soft decision refers to the incorporation of the lan-
guage model scores into the transliteration process
to improve the prior knowledge in Bayesian infer-
ence. Overall, both hard and soft decision methods
gave similar MRR performance of approximately
0.5750, which was about 17.5% relatively im-
provement compared to the phonetic transliteration
system with 0.4895 MRR. The hard decision
scheme owes its surprisingly good performance to
the high detection accuracies (see Table 4).

S M F All
x 0.6825 | 0.5422 | 0.5062 | 0.5952
& 0.7216 | 0.4674 | 0.5162 | 0.5855
®) 0.7216 | 0.5473 | 0.5878 | 0.6267
v 0.7216 | 0.6368 | 0.6786 | 0.6812

Table 9: The effect of gender detection schemes
on MRR using bigram language
models with perfect language information.

Similarly, the effect of various gender detection
methods used to obtain the prior information is
shown in Table 9. The language information was
assumed known a-priori. Due to the poorer
detection accuracy for the Chinese male given
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names (see Table 5), hard decision of gender had
led to deterioration in MRR performance of the
male names compared to the case where no prior
information was assumed. Soft decision of gender
yielded further gains of 17.1% and 13.9% relative
improvements for male and female given names
respectively, over the hard decision method.

Overall Accuracy (%)
L | G| MRR Word Character
X | x | 0.4895 36.87 58.39
v 1% | 0.5952 46.92 65.18
v ] 0.6812 58.16 70.76
<& | <] 0.5824 47.09 66.84
O |1 O]0.6122 49.38 69.21

Table 10: Overall transliteration performance
using bigram language model with various lan-
guage and gender information.

Finally, Table 10 compares the performance of
various semantic transliteration systems using bi-
gram language models. The baseline phonetic
transliteration system yielded 36.87% and 58.39%
accuracies at word and character levels respec-
tively; and 0.4895 MRR. It can be conjectured
from the results that semantic transliteration is sub-
stantially superior to phonetic transliteration. In
particular, knowing the language information im-
proved the overall MRR performance to 0.5952;
and with additional gender information, the best
performance of 0.6812 was obtained. Furthermore,
both hard and soft decision of semantic informa-
tion improved the performance, with the latter be-
ing substantially better. Both the word and charac-
ter accuracies improvements were consistent and
have similar trend to that observed for MRR.

The performance of the semantic transliteration
using soft decisions (last row of Table 10)
achieved 25.1%, 33.9%, 18.5% relative improve-
ment in MRR, word and character accuracies
respectively over that of the phonetic
transliteration (first row of Table 10). In addition,
soft decision also presented 5.1%, 4.9% and 3.5%
relative improvement over hard decision in MRR,
word and character accuracies respectively.

5.4  Discussions

It was found that the performance of the baseline
phonetic transliteration may be greatly improved
by incorporating semantic information such as the
language of origin and gender. Furthermore, it was
found that the soft decision of language and gender



outperforms the hard decision approach. The soft
decision method incorporates the semantic scores
P(L,G | S) with transliteration scores P(T | S,L,G),

involving all possible semantic specific models in
the decoding process.

In this paper, there are 9 such models (3
languages x 3 genders). The hard decision relies on
Egs. (10) and (11) to decide language and gender,
which only involves one semantic specific model
in the decoding. Neither soft nor hard decision
requires any prior information about the names. It
provides substantial performance improvement
over phonetic transliteration at a reasonable
computational cost. If the prior semantic
information is known, e.g. via trigger words, then
semantic transliteration attains its best performance.

6 Conclusion

Transliteration is a difficult, artistic human en-
deavor, as rich as any other creative pursuit. Re-
search on automatic transliteration has reported
promising results for regular transliteration, where
transliterations follow certain rules. The generative
model works well as it is designed to capture regu-
larities in terms of rules or patterns. This paper ex-
tends the research by showing that semantic trans-
literation of personal names is feasible and pro-
vides substantial performance gains over phonetic
transliteration. This paper has presented a success-
ful attempt towards semantic transliteration using
personal name transliteration as a case study. It
formulates a mathematical framework that incor-
porates explicit semantic information (prior
knowledge), or implicit one (through soft or hard
decision) into the transliteration model. Extending
the framework to machine transliteration of named
entities in general is a topic for further research.
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Abstract In this paper, we explore an approach in which
words are represented as a collection of morpholog-

We present a novel method for predicting in- ical entities, and use this information to aid in MT

flected word forms for generating morpho-
logically rich languages in machine trans-
lation. We utilize a rich set of syntactic
and morphological knowledge sources from
both source and target sentences in a prob-

for morphologically rich languages. Our goal is two-
fold: first, to allow generalization over morphology
to alleviate the data sparsity problem in morphology
generation. Second, to model syntactic coherence in

the form of morphological agreement in the target
language to improve the generation of morphologi-
cally rich languages. So far, this problem has been
addressed in a very limited manner in MT, most typ-
ically by using a target language model.

abilistic model, and evaluate their contribu-

tion in generating Russian and Arabic sen-
tences. Our results show that the proposed
model substantially outperforms the com-

monly used baseline of a trigram target lan-

guage model; in particular, the use of mor-

phological and syntactic features leads to
large gains in prediction accuracy. We also

show that the proposed method is effective
with a relatively small amount of data.

In the framework suggested in this paper, we train
a model that predicts the inflected forms of a se-
guence of word stems in a target sentence, given
the corresponding source sentence. We use word
and word alignment information, as well as lexi-
cal resources that provide morphological informa-
tion about the words on both the source and target

Machine Translation (MT) quality has improvedSideS- Qiyen asentence pair, we also obtain syntactic
substantially in recent years due to applying dat@nalysis information for both the source and trans-
intensive statistical techniques. However, state-ofated sentences. We generate the inflected forms of
the-art approaches are essentially lexical, considé_’t"—ords m_the target senter_lce using all of the available
ing every surface word or phrase in both the sourdgformation, using a log-linear model that learns the
sentence and the corresponding translation as an [§lévant mapping functions.
dependent entity. A shortcoming of this word-based As a case study, we focus on the English-Russian
approach is that it is sensitive to data sparsity. This Bnd English-Arabic language pairs. Unlike English,
an issue of importance as aligned corpora are an eéRussian and Arabic have very rich systems of mor-
pensive resource, which is not abundantly availablghology, each with distinct characteristics. Trans-
for many language pairs. This is particularly probiating from a morphology-poor to a morphology-
lematic for morphologically rich languages, whereich language is especially challenging since de-
word stems are realized in many different surfactailed morphological information needs to be de-
forms, which exacerbates the sparsity problem.  coded from a language that does not encode this in-
* This research was conducted during the author’s interrf—ormation or does so only implicitly (Koehn, 2005).
ship at Microsoft Research. We believe that these language pairs are represen-
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tative in this respect and therefore demonstrate thbe morphological generation of these languages a
generality of our approach. non-trivial task.

There are several contributions of this work. First, Morphologically complex languages also tend to
we propose a general approach that shows promidesplay a rich system of agreements. In Russian, for
in addressing the challenges of MT into morphologexample, adjectives agree with head nouns in num-
ically rich languages. We show that the use of botber, gender and case, and verbs agree with the sub-
syntactic and morphological information improvegect noun in person and number (past tense verbs
translation quality. We also show the utility of agree in gender and number). Arabic has a similarly
source language information in predicting the wordich system of agreement, with unique characteris-
forms of the target language. Finally, we achievéics. For example, in addition to agreement involv-
these results with limited morphological resourcedg person, number and gender, it also requires a de-
and training data, suggesting that the approach igrminer for each word in a definite noun phrase with
generally useful for resource-scarce language pairadjectival modifiers; in a noun compound, a deter-

miner is attached to the last noun in the chain. Also,
2 Russian and Arabic Morphology non-human subject plural nouns require the verb to
be inflected in a singular feminine form. Generating

Table 1 despnbesdthe rS,orpTOIOQ'C_ar: fﬁa_tures 'eléhese morphologically complex languages is there-
vantto Russgn and Arabic, along with t e'rposs'bl‘?ore more difficult than generating English in terms
values. The rightmost column in the table refers tQs capturing the agreement phenomena

the morphological features that are shared by Rus-

sian and Arabic, including person, number, gendes Related Work

and tense. While these features are fairly generic

(they are also present in English), note that Rusthe use of morphological features in language mod-
sian includes an additional gender (neuter) and Ar&lling has been explored in the past for morphology-
bic has a distinct number notion for two (dual). Afich languages. For example, (Duh and Kirchhoff,
central dimension of Russian morphology is casé004) showed that factored language models, which
marking, realized as suffixation on nouns and nonfonsider morphological features and use an opti-
inal modifierd. The Russian case feature includegnized backoff policy, yield lower perplexity.

six possible values, representing the notions of sub- In the area of MT, there has been a large body
ject, direct object, location, etc. In Arabic, like otherof work attempting to modify thénputto a transla-
Semitic languages, word surface forms may includéon system in order to improve the generated align-
proclitics and enclitics (or prefixes and suffixes aghents for particular language pairs. For example,
we refer to them in this paper), concatenated to irit has been shown (Lee, 2004) that determiner seg-
flected stems. For nouns, prefixes include conjunénentation and deletion in Arabic sentences in an
tions (va “and”, fa: “and, so”), prepositionshf:  Arabic-to-English translation system improves sen-
“by, with”, ka: “like, such as”|li: “for, to”) and ade- tence alignment, thus leading to improved over-
terminer, and suffixes include possessive pronoungl! translation quality. Another work (Koehn and
Verbal prefixes include conjunction and negationknight, 2003) showed improvements by splitting
and suffixes include object pronouns. Both object¢ompounds in German. (Nieen and Ney, 2004)
and possessi\/e pronouns are Captured by an indiéaamonstrated that a similar level of alignment qual-
tor function for its presence or absence, as well d&/ can be achieved with smaller corpora applying
by the features that indicate their person, numbéRorpho-syntactic source restructuring, using hierar-
and gender. As can be observed from the table, Gical lexicon models, in translating from German
large number of surface inflected forms can be gerato English. (Popow and Ney, 2004) experimented

erated by the combination of these features, makirg/ccessfully with translating from inflectional lan-
- guages into English making use of POS tags, word
"Case marking also exists in Arabic. However, in many instems and suffixes in the source language. More re-
stances, it is realized by diacritics which are ignored in standard .
orthography. In our experiments, we include case marking iﬁently’ (Goldwater and McClosky, 2005) achieved
Arabic only when it is reflected in the orthography. improvements in Czech-English MT, optimizing a
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Features Russian Arabic Both

POS (11 categories) (18 categories)

Person 1,2,3

Number dual sing(ular), pl(ural)

Gender neut(er) masc(uline), fem(inine)

Tense gerund present, past, future, imperative

Mood subjunctive, jussive

Case dat(ive), prep(ositional), nom(inative), acc(usative), gen(itive)
instr(umental)

Negation yes, no

Determiner yes, no

Conjunction wa, fa, none

Preposition bi, ka, li, none

ObjectPronoun yes, no

Pers/Numb/Gend of pronoun, none
Same as ObjectPronoun

Table 1: Morphological features used for Russian and Arabic

PossessivePronoun

set of possible source transformations, incorporakexical operations relevant for the task.
ing morphology. In general, this line of work fo-
cused on translating from morphologically rich lan
guages into English; there has been limited researdfiorphological analysis can be performed by ap-
in MT in the opposite direction. Koehn (2005) in-plying language specific rules. These may include
cludes a survey of statistical MT systems in both dia full-scale morphological analysis with contextual
rections for the Europarl corpus, and points out thdisambiguation, or, when such resources are not
challenges of this task. A recent work (El-Kahloutavailable, simple heuristic rules, such as regarding
and Oflazer, 2006) experimented with English-tothe last few characters of a word as its morphogical
Turkish translation with limited success, suggestinguffix. In this work, we assume that lexicohg and
that inflection generation given morphological feadr are available for the source and translation lan-
tures may give positive results. guages, respectively. Such lexicons can be created
In the current work, we suggest a probabilistiananually, or automatically from data. Given a lexi-
framework for morphology generation performed ason L and a surface word, we define the following
post-processing It can therefore be considered agperations:
complementary to the techniques described above.
Our approach is general in that it is not specific to

4.1 Morphology Analysis and Generation

e Stemming let S, = {s',...,s'} be the set of
possible morphological stems (lemmas)wof

a particular language pair, and is novel in that it al-
lows modelling of agreement on the target side. The
framework suggested here is most closely related to e
(Suzuki and Toutanova, 2006), which uses a proba-
bilistic model to generate Japanese case markers for
English-to-Japanese MT. This work can be viewed
as a generalization of (Suzuki and Toutanova, 2006) *
in that our model generates inflected forms of words,
and is not limited to generating a small, closed set of
case markers. In addition, the morphology genera-
tion problem is more challenging in that it requires
handling of complex agreement phenomena along

according talL.?

Inflection- let I, = {i',...,i™} be the set of
surface form words that have the same stem as
w. Thatis,i € I, iff S;N Sy # 0.

Morphological analysis let A,, = {a', ..., a"}

be the set of possible morphological analyses
for w. Amorphological analysis is a vector of
categorical values, where the dimensions and
possible values for each dimension in the vector
representation space are definedlby

multiple morphological dimensions. 4.2 The Task

We assume that we are given aligned sentence pairs,
where a sentence pair includes a source and a tar-
In this SeCt'_Om We_ def'n_e the tas_k Qf of morphologi- 2Multiple stems are possible due to ambiguity in morpho-
cal generation as inflection prediction, as well as thiegical analysis.
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N —l probabilities are conditioned on the previdugre-
PET  NN+sg  PREP  NN+pl AUXV+sg VERB+pastpart dictions. The model implemented here is of second

the allocation of h leted .. ) o
o |ooTRl © | Tootoes] s | comproe order: at any decision pointwe condition the prob-
ability distribution over labels on the previous two

NN+sg+nom+neut NN+sg+gen+pl+masc VERB+perf+pass+part+neut+sg

pacnpeeneHie pecypeos saepieHo predictionsy; 1 andy; 5 in addition to the given
raspredelenie resursov zaversheno (StatiC) Word context from bOth the source and tar-
] T get sentences. That is, the probability of a predicted

inflection sequence is defined as follows:
n

Figure 1: Aligned English-Russian sentence pair

, . . . ylz)= 1, Y—2,%¢), Y € 1
with syntactic and morphological annotation (| 7) Hp(yt Y1 Y2, 2) 0 € I

t=1

wherez; denotes the given context at position
get sentence, and lexicoris; and Ly that support andl; is the set of inflections corresponding $e,
the operations described in the section above. L&0om which the model should chooge
a sentenceuy, ...wy, ...w, be the output of a MT  The features we constructed pair up predicates on
system in the target language. This sentence cémecontext( z,y,—1,y:—2) and thetarget label(y,).
be converted into the corresponding stem set s#? the suggested framework, it is straightforward to
quencesSs, ...S, ...S,, applying the stemming op- encode the morphological properties of a word, in
eration. Then the task is, for every stem sgtin  addition to its surface inflected form. For example,
the output sentence, to predict an inflectiprirom  for a particular inflected word formp; and its con-
its inflection setl;. The predicted inflections should text, the derived paired features may include:
both reflect the meaning conveyed by the source sen-
tence, and comply with the agreement rules of the ¢x = {
target language’

Figure 1 shows an example of an aligned English- ¢ | it Gendefy,) —*Fem” andGendety,_.) —*Fem”
Russian sentence pair: on the source (English) side = { 0 otherwise
POS tags and word dependency structure are indi-

Ca.ltEd by solid arcs. The allg_nm_ents between EnStH is used as a context feature for predicting the
g“Sh_ and Russian words are indicated by the dc_’Eérget wordy;. The second feature captures the gen-
t(_?\d I|r_1es_. The depen_dency Sf”“‘?t”fe on the Russ%gr agreement with the previous word. This is possi-
side, mo_llcated by solid arcs, '_S given by af[reelet |VrlE)Ie because our model is of second order. Thus, we
system in our case (see Section 6.1), projected o)\ jarive context features describing the morpho-
the word dependency structure of English and Worﬁl)gical properties of the two previous predictichs.

ahgnm(;a_nt I|nformat|on. No_te that;he Rléss'andseglilote that our model is not a simple multi-class clas-
tence displays agreement in number and gender ﬁfier, because our features are shared across mul-

_tween the subject noure(spredeleniﬁanq the pred- tiple target labels. For example, the gender fea-
!c_ate (zaversh_enp ”Qt_e also thatesurspws 'NGEN" " ture above applies to many different inflected forms.
itive case, as it modifies the noun on its left. Therefore, it is a structured prediction model, where
the structure is defined by the morphological proper-
ties of the target predictions, in addition to the word
5.1 A Probabilistic Model sequence decomposition.

1 if surface wordy; isy’ ands’ € Sy11
0 otherwise

In the first example, a given neighboring stem set

5 Models for Inflection Prediction

Our learning framework uses a Maximum Entrop¥ 5 Feature Categories
Markov model (McCallum et al., 2000). The model

decomposes the overall probability of a predictea-he information available for estimating the distri-

inflection sequence into a product of local probaPution overy; can be split into several categories,

bilities for individual word predictions. The local  “Note that while we decompose the prediction task left-to-
B right, an appealing alternative is to define a top-down decompo-

3That is, assuming that the stem sequence that is output kition, traversing the dependency tree of the sentence. However,
the MT system is correct. this requires syntactic analysis of sufficient quality.
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corresponding to feature source. The first ma-Feature categories Instantiations

. R . . Monolingual lexical
jor distinction is monolingual versus bilingual fea- \y, 4 stem St 1,5t-2,50,5041

tures:monolingualfeatures refer only to the context Predicted word Yt, Y1, Yt—2

(and predicted label) in the target language, while?ﬂogcggggal morpsologicalG der, Tensef (ye_s). (ves).F(ge)
- . . . : , Person, Number, Gender, Tensef (y:—2),f(yi—1),f (yt
bilingual features have access to information in the yeq Det, prep, Conj, ObjPron, PossPron

source sentences, obtained by traversing the wor@iionolingual syntactic

alignment links from target words to a (set of) source Parent stem SHEAD(t)
ds, as shown in Figure 1 Bilingual lexical
words, g9 : Aligned word setAl Al Alp—1, Aliya

Both monolingual and bilingual features can be Bilingual morph & syntactic

i ; _ f : POS, Person, Number, Gender, Tensef (Al:), f(Ali—1),
further split mtq three. classesexical, morpholog Neg, Det, Prep, Conj, ObjPron, PossPronf (Alrs), f(Alysan)
ical andsyntactic Lexicalfeatures refer to surface comp

word forms, as well as their stems. Since our model
is of second order, our monolingual lexical fea-Table 2: The feature set suggested for English-
tures include the features of a standard word trigralRussian and English-Arabic pairs

language model. Furthermore, since our model is

discriminative (predicting word forms given theiris assigned a separate featusgingual lexicalfea-
stems), the monolingual lexical model can use stenigres can refer to words alignedgpas all as words

in addition to predicted words for the left and cur-aligned to its immediate neighbots_; andy;.1.
rent position, as well as stems from thght con-  Bilingual morphological and syntactifeatures re-
text. Morphologicalfeatures are those that refer tofer to the features of the source language, which
the features given in Table 1. Morphological infor-are expected to be useful for predicting morphol-
mation is used in describing the target label as wefigy in the target language. For example, the bilin-
as its context, and is intended to capture morph@ual Det (determiner) feature is computed accord-
logical generalizations. Finallygyntacticfeatures ing to the source dependency tree: if a child of a
can make use of syntactic analyses of the sourt¥ord aligned tow; is a determiner, then the fea-
and target sentences. Such analyses may be derifgte value is assigned its surface word form (such
for the target language, using the pre-stemmed se@s @ or the). The bilingual Prep feature is com-
tence. Without loss of generality, we will use hereéduted similarly, by checking the parent chain of the
a dependency parsing paradigm. Given a syntactf¢ord aligned tow; for the existence of a preposi-
analysis, one can construct syntactic features; for eon. This feature is hoped to be useful for predict-
ample, the stem of thearentword of y,. Syntactic ing Arabic inflected forms with a prepositional pre-
features are expected to be useful in capturing agrelé, as well as for predicting case marking in Rus-

ment phenomena. sian. The bilinguaObjPron andPossProrfeatures
represent any object pronoun of the word aligned to
5.3 Features wy and a preceding possessive pronoun, respectively.

Table 2 gives the full set of suggested features foTrhese features are expected to map to the object and

Russian and Arabic, detailed by type. Foonolin- possessive pronoun features in Arabic. Finally, the

. . bilingual Compoundeature checks whether a word
gual lexicalfeatures, we consider the stems of thea ears as part of a noun comoound in the Enalish
predicted word and its immediately adjacent words P P P 9

in addition to traditional word bigram and trigralmSOurce. f this is the case, the feature is assigned the

. . value of “head” or “dependent”. This feature is rel-
features. Fomonolingual morphologicaleatures, - " . .
. . . evant for predicting a genitive case in Russian and
we consider the morphological attributes of the twg, .. . . .
: . . definiteness in Arabic.
previously predicted words and the current predic-
tion; for monolingual syntactieatures, we use the
stem of the parent node.
The bilingual features include the set of worddn order to evaluate the effectiveness of the sug-
aligned to the focus word at positiaghwhere they gested approach, we performeeference experi-
are treated as bag-of-words, i.e., each aligned wordents that is, using the aligned sentence pairs of
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Data Eng-Rus Eng-Ara Source Stems  Avg(I]) Avg((S])
9.4

Avg. sentlen  Eng Rus Eng Ara Rus. Lexicon 79,309 }
Training M 470K Lexiconn Train 13,929 3.8 1.6
1406 1290 1285 11.90 Ara. Lexiconn Train 12,670 7.0 1.7
Development 1,000 1,000 . .
13.73 1291 13.48 12.90 Table 4: Lexicon statistics
Test 1,000 1,000 _ _ _ _
13.61 12.84 849 7.50 For Arabic, as a full-size Arabic lexicon was not
Table 3: Data set statistics: corpus size and averag¥?ilable to us, we used the Buckwalter morpholog-
sentence length (in words) ical analyzer (Buckwalter, 2004) to derive a lexicon.

To acquire thestemmingndinflectionoperators, we
submit all words in our training data to the Buckwal-
referencetranslations rather than the output of ang, analyzer. Note that Arabic displays a high level
MT system as input. This allows us to evaluate of ambiguity, each word corresponding to many pos-
our method with a reduced noise level, as the wordgp|e segmentations and morphological analyses; we
and word order are perfect in reference translationggnsidered all of the different stems returned by the
These experiments thus constitute a preliminary stef),ckwalter analyzer in creating a word’s stem set.
for tackling the real task of inflecting words in MT. The lexicon created in this manner contains 12,670
6.1 Data distinct stems and 89,360 inflected forms.
For the generation ofiord featureswe only con-

We used a corpus of approximately 1 million alignedjger one dominant analysis for any surface word
sentence pairs for English-Russian, and 0.5 milliog,, simplicity. In case of ambiguity, we considered
pairs for English-Arabic. Both corpora are from ay\y the first (arbitrary) analysis for Russian. For
technical (software manual) domain, which we beArabic, we apply the following heuristic: use the
lieve is somewhat restricted along some morphQy st frequent analysis estimated from the gold stan-
logical dimensions, such as tense and person. Wgd |abels in the Arabic Treebank (Maamouri et al.,
useel 1,000 sentence pairs eech for development a@@OS); if a word does not appear in the treebank, we
testing for both language pairs. The details of thepose the first analysis returned by the Buckwal-
datasets used are given in Table 3. _ ter analyzer. Ideally, the best word analysis should

The sentence pairs were word-aligned usinge provided as a result of contextual disambiguation
GIZA++ (Och and Ney, 2000) and submitted t0 ge g (Habash and Rambow, 2005)); we leave this
treelet-based MT system (Quirk et al., 2005), whicky, future work.
uses the word dependency structure of the source
language and projects word dependency structure o3 Baseline

he target lan reating the structure shown i . .
t e target language, creating the structure sho ,&'s a baseline, we pick a morphological inflectign
Figure 1 above.

at random froml;. This random baseline serves as
6.2 Lexicon an indicator for the difficulty of the problem. An-

. _ . other more competitive baseline we implemented
Table 4 gives some relevant statistics of the lexicons .
. . . IS a word trigram language model (LM). The LMs
we used. For Russian, a general-domain lexicon was . . .
. o were trained using the CMU language modelling
available to us, consisting of about 80,000 lemmas _, . .
. - oolkit (Clarkson and Rosenfeld, 1997) with default

(stems) and 9.4 inflected forms per sterhimiting

the lexicon to word types that are seen in the trains—emngs on the training data described in Table 3.

ing set reduces its size substantially to about 14,000, Experiments
stems, and an average of 3.8 inflections per stem.

We will use this latter “domain-adapted” lexicon in!n the experiments, our primary goal is to evaluate
our experiments. the effectiveness of the proposed model using all
— ‘ ~ features available to us. Additionally, we are inter-
o inthis casey. should equalu:, according to the task def- gted in knowing the contribution of each informa-
®The averages reported in Table 4 are by type and do n&ilon source, namely of morpho-syntactic and bilin-
consider word frequencies in the data. gual features. Therefore, we study the performance
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of models including the full feature schemata as well Model Eng-Rus  Eng-Ara

. Random 31.7 16.3
as models that are restricted to feature subsets ac- LM 77.6 31.7
cording to the feature types as described in Section Monolingual Word ~ 85.1 69.6
5.2. The models are as followslonolingual-Word Eﬂ'gﬂ%ﬁﬁg\ﬁrgu 8877-11 7711-2
including LM-like and stem n-gram features only; Bilingual All 915 73.3

Bilingual-Word which also includes bilingual lex-
ical features: Monolingual-All which has access
to all the information available in the target lan-
guage, including morphological and syntactic feasue of incomplete coverage of the lexicon. When
tures; and finallyBilingual-All, which includes all we encounter these words in the true MT scenario,
feature types from Table 2. we will make no predictions about them, and simply
For each model and language, we perform featuteave them unmodified. In our current experiments,
selection in the following manner. The features arégn Russian, 68.2% of all word tokens were in Cyril-
represented as featutemplates such asPos=x’, lic, of which 93.8% were included in our lexicon.
which generate a set of binary features corresponth Arabic, 85.5% of all word tokens were in Arabic
ing to different instantiations of the template, as ircharacters, of which 99.1% were in our lexicon.
"POS=NOUN". In addition to individual features, con-  The results in Table 5 show that the suggested
junctions of up to three features are also considerefodels outperform the language model substantially
for selection (e.g.;POS=NOUN& Number=plural”). for both languages. In particular, the contribution of
Every conjunction of feature templates considerefoth bilingual and non-lexical features is notewor-
contains at least one predicate on the prediction thy: adding non-lexical features consistently leads
and up to two predicates on the context. The feature 1.5% to 2% absolute gain in both monolingual
selection algorithm performs a greedy forward stepand bilingual settings in both language pairs. We
wise feature selection on the feature templates so @btain a particularly large gain in the Russian bilin-
to maximize development set accuracy. The algqual case, in which the absolute gain is more than
rithm is similar to the one described in (Toutanova4%, translating to 34% error rate reduction. Adding
2006). After this process, we performed some marilingual features has a similar effect of gaining
ual inspection of the selected templates, and finallybout 2% (and 4% for Russian non-lexical) in ac-
obtained 11 and 36 templates for thnolingual- curacy over monolingual models. The overall accu-
All and Bilingual-All settings for Russian, respec-racy is lower in Arabic than in Russian, reflecting
tively. These templates generated 7.9 million anghe inherent difficulty of the task, as indicated by the
9.3 million binary feature instantiations in the fi-random baseline (31.7 in Russian vs. 16.3 in Ara-
nal model, respectively. The corresponding numbic).
bers for Arabic were 27 feature templates (0.7 mil- |n order to evaluate the effectiveness of the model
lion binary instantiations) and 39 feature templatef, alleviating the data sparsity problem in morpho-
(2.3 million binary instantiations) foonolingual- |ogical generation, we trained inflection prediction
All andBilingual-All, respectively. models on various subsets of the training data de-
scribed in Table 3, and tested their accuracy. The
results are given in Figure 2. We can see that with as

Table 5 shows the accuracy of predicting word forméWw as 5,000 training sentences pairs, the model ob-
for the baseline and proposed models. We report at&ins much better accuracy than the language model,
curacy 0n|y on words that appear in our |exicons\Nh|Ch is trained on data that is larger by a feW orders
Thus, punctuation, English words occurring in théf magnitude. We also note that the learning curve
target sentence, and words with unknown lemmas—-———— , , o ,

. For Arabic, the inflection ambiguity was extremely high:
are excluded from the evaluation. The reported agsere were on average 39 inflected forms per stem set in our

curacy measure therefore abstracts away from the igevelopment corpus (per token), as opposed to 7 in Russian.
I We therefore limited the evaluation of Arabic to those stems that

"Overall, this feature set approximates the information thatave up to 30 inflected forms, resulting in 17 inflected forms per
is available to a state-of-the-art statistical MT system. stem set on average in the development data.
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e RUS brwerd the MT system improved the BLEU score by 1.7.
e Aenbiaord The most obvious next step of our research, there-
/.’V/‘ fore, is to further pursue the integration of the pro-
I posed model to the end-to-end MT scenario.

I There are multiple paths for obtaining further im-
provements over the results presented here. These
include refinement in feature design, word analysis
“““““““““ . disambiguation, morphological and syntactic anal-
ysis on the source English side (e.g., assigning se-
mantic role tags), to name a few. Another area of
investigation is capturing longer-distance agreement
phenomena, which can be done by implementing a
global statistical model, or by using features from
becomes less steep as we use more training daggpendency trees more effectively.

suggest'lng.that the models are successfully Ieam"llgeferences

generalizations.

We have also manually examined some repré’_im Buckwalter. 2004. Buckwalter arabic morphological ana-
lyzer version 2.0.

sentative cases where the proposed model failed #@jiip Clarkson and Roni Rosenfeld. 1997. Statistical language
make a correct prediction. In both Russian and Ara- modelling using the CMU cambridge toolkit. Eurospeech

; ; ; Kevin Duh and Kathrin Kirchhoff. 2004. Automatic learning of
bic, a very common pattern was a mistake in preK language model structure. GOLING.

dicting the gender (as well as number and person jknur Durgar El-Kahlout and Kemal Oflazer. 2006. Initial ex-
Arabic) of pronouns. This may be attributed to the plorations in English to Turkish statistical machine transla-

; : tion. InNAACL workshop on statistical machine translation
fact that the CorreCt_ Ch0|ce_ of _the pronqun regu"egharon Goldwater and David McClosky. 2005. Improving sta-
coreference resolution, which is not available in our tstical MT through morphological analysis. EMNLP.

model. A more thorough analysis of the results wilNizar Habash and Owen Rambow. 2005. Arabic tokenization,

; ; part-of-speech tagging and morphological disambiguation in
be helpful to bring further improvements. one fell swoop. IMCL
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. Philipp Koehn and Kevin Knight. 2003. Empirical methods for
8 Conclusions and Future Work compound splitting. IFEEACL

o Philipp Koehn. 2005. Europarl: A parallel corpus for statistical
We presented a probabilistic framework for mor- machine translation. IMT Summit

phological generation given aligned sentence pair¥oung-Suk Lee. 2004. Morphological analysis for statistical
incorporating morpho-syntactic information from machine translation. IAILT-NAACL
p g p y Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Hubert

both the source and target sentences. The re-Jin. 2005. Arabic Treebank: Part 1 v 3.0Linguistic Data
sults, using reference translations, show that the pro- onsortium.

d del hi bstantiallv bett Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira.
posed models achieve substantally betier accuracy,ogp.  Maximum entropy markov models for information

than language models, even with a relatively small extraction and segmentation. IGML.
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Abstract

We present the design and evaluation of a
translator’s amenuensis that uses compa-
rable corpora to propose and rank non-
literal solutions to the translation of expres-
sions from the general lexicon. Using dis-
tributional similarity and bilingual diction-
aries, the method outperforms established
techniques for extracting translation
equivalents from parallel corpora. The in-
terface to the system is available at:
http://corpus.leeds.ac.uk/assist/v05/

1 Introduction

This paper describes a system designed to assist
humans in translating expressions that do not nec-
essarily have a literal or compositional equivalent
in the target language (TL). In the spirit of (Kay,
1997), it is intended as a translator's amenuensis
"under the tight control of a human translator ... to

help increase his productivity and not to supplant him".

One area where human translators particularly
appreciate assistance is in the translation of expres-
sions from the general lexicon. Unlike equivalent
technical terms, which generally share the same
part-of-speech (POS) across languages and are in
the ideal case univocal, the contextually appropri-
ate equivalents of general language expressions are
often indirect and open to variation. While the
transfer module in RBMT may acceptably under-
generate through a many-to-one mapping between
source and target expressions, human translators,
even in non-literary fields, value legitimate varia-
tion. Thus the French expression i/ faillit échouer
(lit.: he faltered to fail) may be variously rendered
as he almost/nearly/all but failed; he was on the
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verge/brink of failing/failure; failure loomed. All
of these translations are indirect in that they in-
volve lexical shifts or POS transformations.

Finding such translations is a hard task that can
benefit from automated assistance. 'Mining' such
indirect equivalents is difficult, precisely because
of the structural mismatch, but also because of the
paucity of suitable aligned corpora. The approach
adopted here includes the use of comparable cor-
pora in source and target languages, which are
relatively easy to create. The challenge is to gener-
ate a list of usable solutions and to rank them such
that the best are at the top.

Thus the present system is unlike SMT (Och and
Ney, 2003), where lexical selection is effected by a
translation model based on aligned, parallel cor-
pora, but the novel techniques it has developed are
exploitable in the SMT paradigm. It also differs
from now traditional uses of comparable corpora
for detecting translation equivalents (Rapp, 1999)
or extracting terminology (Grefenstette, 2002),
which allows a one-to-one correspondence irre-
spective of the context. Our system addresses diffi-
culties in expressions in the general lexicon, whose
translation is context-dependent.

The structure of the paper is as follows. In Sec-
tion 2 we present the method we use for mining
translation equivalents. In Section 3 we present the
results of an objective evaluation of the quality of
suggestions produced by the system by comparing
our output against a parallel corpus. Finally, in
Section 4 we present a subjective evaluation focus-
ing on the integration of the system into the work-
flow of human translators.

2 Methodology

The software acts as a decision support system for
translators. It integrates different technologies for
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extracting indirect translation equivalents from
large comparable corpora. In the following subsec-
tions we give the user perspective on the system
and describe the methodology underlying each of
its sub-tasks.

2.1  User perspective

Unlike traditional dictionaries, the system is a
dynamic translation resource in that it can success-
fully find translation equivalents for units which
have not been stored in advance, even for idiosyn-
cratic multiword expressions which almost cer-
tainly will not figure in a dictionary. While our
system can rectify gaps and omissions in static
lexicographical resources, its major advantage is
that it is able to cope with an open set of transla-
tion problems, searching for translation equivalents
in comparable corpora in runtime. This makes it
more than just an extended dictionary.

Contextual descriptors

From the user perspective the system extracts indi-
rect translation equivalents as sets of contextual
descriptors — content words that are lexically cen-
tral in a given sentence, phrase or construction.
The choice of these descriptors may determine the
general syntactic perspective of the sentence and
the use of supporting lexical items. Many transla-
tion problems arise from the fact that the mapping
between such descriptors is not straightforward.
The system is designed to find possible indirect
mappings between sets of descriptors and to verify
the acceptability of the mapping into the TL. For
example, in the following Russian sentence, the
bolded contextual descriptors require indirect
translation into English.
Hemu nocewarom nioxo ompemonmupo-
6anHble WKOJIbL, 8 KOMOPLIX Hedocmaem
camo2o HeodxX00UMO020
(Children attend badly repaired schools, in
which [it] is missing the most necessary)
Combining direct translation equivalents of
these words (e.g., translations found in the Oxford
Russian Dictionary — ORD) may produce a non-
natural English sentence, like the literal translation
given above. In such cases human translators usu-
ally apply structural and lexical transformations,
for instance changing the descriptors’ POS and/or
replacing them with near-synonyms which fit to-
gether in the context of a TL sentence (Munday,
2001: 57-58). Thus, a structural transformation of
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naoxo ompemonmupoganuvie (badly repaired) may
give in poor repair while a lexical transformation
of neoocmaem camoeo Heobxooumozo ([it] is missing
the most necessary) gives lacking basic essentials.

Our system models such transformations of the
descriptors and checks the consistency of the re-
sulting sets in the TL.

Using the system

Human translators submit queries in the form of
one or more SL descriptors which in their opinion
may require indirect translation. When the transla-
tors use the system for translating into their native
language, the returned descriptors are usually suf-
ficient for them to produce a correct TL construc-
tion or phrase around them (even though the de-
scriptors do not always form a naturally sounding
expression). When the translators work into a non-
native language, they often find it useful to gener-
ate concordances for the returned descriptors to
verify their usage within TL constructions.

For example, for the sentence above translators
may submit two queries: mI0X0 OmMpPeMOHM-
uposanuvie (badly repaired) and wuedocmaem
Heobxooumozo (missing necessary). For the first
query the system returns a list of descriptor pairs
(with information on their frequency in the English
corpus) ranked by distributional proximity to the
original query, which we explain in Section 2.2. At
the top of the list come:

bad repair = 30 (11.005)
bad maintenance = 16 (5.301)
bad restoration = 2 (5.079)
poor repair = 60 (5.020)...

Underlined hyperlinks lead translators to actual
contexts in the English corpus, e.g., poor repair
generates a concordance containing a desirable TL
construction which is a structural transformation of

the SL query:
insucha poor state of repair
bridge inas  poor  astate of repair as the highways
building in ~ poor  repair.
dwellings are in ~ poor  repair;

Similarly, the result of the second query may
give the translators an idea about possible lexical
transformation:

missing need = 14 (5.035)
important missing = 8 (2.930)
missing vital = 8 (2.322)
lack necessary = 204 (1.982)
essential lack = 86 (0.908)



The concordance for the last pair of descriptors
contains the phrase they lack the three essentials,
which illustrates the transformation. The resulting
translation may be the following:

Children attend schools that are in poor re-

pair and lacking basic essentials

Thus our system supports translators in making
decisions about indirect translation equivalents in a
number of ways: it suggests possible structural and
lexical transformations for contextual descriptors;
it verifies which translation variants co-occur in
the TL corpus; and it illustrates the use of the
transformed TL lexical descriptors in actual con-
texts.

2.2 Generating translation equivalents

We have generalised the method used in our previ-
ous study (Sharoff et al., 2006) for extracting
equivalents for continuous multiword expressions
(MWEs). Essentially, the method expands the
search space for each word and its dictionary trans-
lations with entries from automatically computed
thesauri, and then checks which combinations are
possible in target corpora. These potential transla-
tion equivalents are then ranked by their similarity
to the original query and presented to the user. The
range of retrievable equivalents is now extended
from a relatively limited range of two-word con-
structions which mirror POS categories in SL and
TL to a much wider set of co-occurring lexical
content items, which may appear in a different or-
der, at some distance from each other, and belong
to different POS categories.

The method works best for expressions from the
general lexicon, which do not have established
equivalents, but not yet for terminology. It relies
on a high-quality bilingual dictionary (en-ru ~30k,
ru-en ~50K words, combining ORD and the core
part of Multitran) and large comparable corpora
(~200M En, ~70M Ru) of news texts.

For each of the SL query terms ¢ the system
generates its dictionary translation Tr(q) and its
similarity class S(g) — a set of words with a similar
distribution in a monolingual corpus. Similarity is
measured as the cosine between collocation vec-
tors, whose dimensionality is reduced by SVD us-
ing the implementation by Rapp (2004). The de-
scriptor and each word in the similarity class are
then translated into the TL using ORD or the Mul-
titran dictionary, resulting in {Tr(q)v Tr(S(q))}.
On the TL side we also generate similarity classes,
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but only for dictionary translations of query terms
Tr(g) (not for Tr(S(g)), which can make output too
noisy). We refer to the resulting set of TL words as
a translation class T.

T = {Tr(g) U Tr(S(q)) US(Tr(a)}

Translation classes approximate lexical and
structural transformations which can potentially be
applied to each of the query terms. Automatically
computed similarity classes do not require re-
sources like WordNet, and they are much more
suitable for modelling translation transformations,
since they often contain a wider range of words of
different POS which share the same context, e.g.,
the similarity class of the word lack contains words
such as absence, insufficient, inadequate, lost,
shortage, failure, paucity, poor, weakness, inabil-
ity, need. This clearly goes beyond the range of
traditional thesauri.

For multiword queries, the system performs a
consistency check on possible combinations of
words from different translation classes. In particu-
lar, it computes the Cartesian product for pairs of
translation classes 7; and 7> to generate the set P
of word pairs, where each word (w; and w,) comes
from a different translation class:

P=T,xT,={w, w) |w; €Ty and w; € T}

Then the system checks whether each word pair
from the set P exists in the database D of discon-
tinuous content word bi-grams which actually co-
occur in the TL corpus:

P=PND

The database contains the set of all bi-grams that
occur in the corpus with a frequency > 4 within a
window of 5 words (over 9M bigrams for each
language). The bi-grams in D and in P are sorted
alphabetically, so their order in the query is not
important.

Larger N-grams (N > 2) in queries are split into
combinations of bi-grams, which we found to be
an optimal solution to the problem of the scarcity
of higher order N-grams in the corpus. Thus, for
the query gain significant importance the system
generates P,I(significant importance), P,2(gain impor-
tance)s P ’3(gain significant) and ComPUteS P’ as:

P’ ={w,wyws)| (w,wy) € P’y & (w;, ws) € P,

& (WZ,W3) Epyg},
which allows the system to find an indirect equiva-
lent nomyuums eecomoe smauenue (lit.: receive
weighty meaning).



Even though P’ on average contains about 2% -
4% of the theoretically possible number of bi-
grams present in P, the returned number of poten-
tial translation equivalents may still be large and
contain much noise. Typically there are several
hundred elements in P’, of which only a few are
really useful for translation. To make the system
usable in practice, i.e., to get useful solutions to
appear close to the top (preferably on the first
screen of the output), we developed methods of
ranking and filtering the returned TL contextual
descriptor pairs, which we present in the following
sections.

2.3 Hypothesis ranking

The system ranks the returned list of contextual
descriptors by their distributional proximity to the
original query, i.e. it uses scores cos(v,, V) gener-
ated for words in similarity classes — the cosine of
the angle between the collocation vector for a word
and the collocation vector for the query or diction-
ary translation of the query. Thus, words whose
equivalents show similar usage in a comparable
corpus receive the highest scores. These scores are
computed for each individual word in the output,
so there are several ways to combine them to
weight words in translation classes and word com-
binations in the returned list of descriptors.

We established experimentally that the best way
to combine similarity scores is to multiply weights
W(T) computed for each word within its translation
class T. The weight W(P’s,;.2) for each pair of
contextual descriptors (w;, wy)e P’ is computed as:

WP’ wiwz) = W(Tur) * W(Tw);

Computing W(T,,), however, is not straightfor-
ward either, since some words in similarity classes
of different translation equivalents for the query
term may be the same, or different words from the
similarity class of the original query may have the
same translation. Therefore, a word w within a
translation class may have come by several routes
simultaneously, and may have done that several
times. For each word w in T there is a possibility
that it arrived in T either because it is in 7r(g) or
occurs n times in 77(S(g)) or k times in S(Tr(q)).

We found that the number of occurrences » and
k of each word w in each subset gives valuable in-
formation for ranking translation candidates. In our
experiments we computed the weight W(T) as the
sum of similarity scores which w receives in each
of the subsets. We also discovered that ranking
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improves if for each query term we compute in
addition a larger (and potentially noisy) space of
candidates that includes TL similarity classes of
translations of the SL similarity class S(7r(S(q))).
These candidates do not appear in the system out-
put, but they play an important role in ranking the
displayed candidates. The improvement may be
due to the fact that this space is much larger, and
may better support relevant candidates since there
is a greater chance that appropriate indirect equiva-
lents are found several times within SL and TL
similarity classes. The best ranking results were
achieved when the original W(7T) scores were mul-
tiplied by 2 and added to the scores for the newly
introduced similarity space S(7r(S(q))):

W(T(W)): ZX(] lfWETI"(q))+

2x3(cos(vg, virw) | {w | we Tr(S(q) }) +

255 os (Vi vi) | (W | we S(Tr(g) }) +

S (€0S(Vyy Vi) XC0S (Vg i) |
{w|weS(Tr(S()) })

For example, the system gives the following
ranking for the indirect translation equivalents of
the Russian phrase gecomoe 3nauenue (lit.: weighty
meaning) — figures in brackets represent W(P’)
scores for each pair of TL descriptors:

1. significant importance = 7 (3.610)
2. significant value = 128 (3.211)
3. measurable value = 6 (2.657) ..
8. dramatic importance = 2 (2.028)
9. important significant = 70 (2.014)
10. convincing importance = 6 (1.843)

The Russian similarity class for secomwiii
(weighty, ponderous) contains: ybeoumenvhbiil
(convincing) (0.469), suauumeii  (significant)
(0.461), owymumsiti (notable) (0.452) opama-
muynoii  (dramatic) (0.371). The equivalent of
significant is not at the top of the similarity class of
the Russian query, but it appears at the top of the
final ranking of pairs in P’, because this hypothesis
is supported by elements of the set formed by
S(Tr(S(g))); it appears in similarity classes for no-
table (0.353) and dramatic (0.315), which contrib-
uted these values to the W(T) score of significant:
W(T(significant)) =

2 x (Tr(snaummeni)=significant (0.461))

+ (Tr(omymment)=notable (0.452)
X S(notable)=significant (0.353))
+ (Tr(mpamaTuuneni)=dramatic (0.371)
X S(dramatic)= significant (0.315))

The word dramatic itself is not usable as a

translation equivalent in this case, but its similarity



class contains the support for relevant candidates,
so it can be viewed as useful noise. On the other
hand, the word convincing does not receive such
support from the hypothesis space, even though its
Russian equivalent is ranked higher in the SL simi-
larity class.

2.4 Semantic filtering

Ranking of translation candidates can be further
improved when translators use an option to filter
the returned list by certain lexical criteria, e.g., to
display only those examples that contain a certain
lexical item, or to require one of the items to be a
dictionary translation of the query term. However,
lexical filtering is often too restrictive: in many
cases translators need to see a number of related
words from the same semantic field or subject do-
main, without knowing the lexical items in ad-
vance. In this section we present the semantic fil-
ter, which is based on Russian and English seman-
tic taggers which use the same semantic field tax-
onomy for both languages.

The semantic filter displays only those items
which have specified semantic field tags or tag
combinations; it can be applied to one or both
words in each translation hypothesis in P’. The
default setting for the semantic filter is the re-
quirement for both words in the resulting TL can-
didates to contain any of the semantic field tags
from a SL query term.

In the next section we present evaluation results
for this default setting (which is applied when the
user clicks the Semantic Filter button), but human
translators have further options — to filter by tags
of individual words, to use semantic classes from
SL or TL terms, etc.

For example, applying the default semantic filter
for the output of the query nioxo ompemon-
mupoganusie (badly repaired) removes the high-

lighted items from the list:

1. bad repair = 30 (11.005)
[2- good repair = 154 (8.884) ]
3. bad rebuild = 6 (5.920)
[4. bad maintenance = 16 (5.301) ]
5 =2

. bad restoration (5.079)
6. poor repair = 60 (5.026)
[7- good rebuild = 38 “@.779) 1]
8. bad construction = 14 (4.779)

Items 2 and 7 are generated by the system be-
cause good, well and bad are in the same similar-
ity cluster for many words (they often share the
same collocations). The semantic filter removes
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examples with good and well on the grounds that
they do not have any of the tags which come from
the word nroxo (badly): in particular, instead of
tag A5- (Evaluation: Negative) they have tag A5+
(Evaluation: Positive). Item 4 is removed on the
grounds that the words ompemonmuposannviii
(repaired) and maintenance do not have any tags
in common — they appear ontologically too far
apart from the point of view of the semantic tagger.

The core of the system’s multilingual semantic
tagging is a knowledge base in which single words
and MWEs are mapped to their potential semantic
field categories. Often a lexical item is mapped to
multiple semantic categories, reflecting its poten-
tial multiple senses. In such cases, the tags are ar-
ranged by the order of likelihood of meanings,
with the most prominent first.

3  Objective evaluation

In the objective evaluation we tested the perform-
ance of our system on a selection of indirect trans-
lation problems, extracted from a parallel corpus
consisting mostly of articles from English and
Russian newspapers (118,497 words in the R-E
direction, 589,055 words in the E-R direction). It
has been aligned on the sentence level by JAPA
(Langlais et al., 1998), and further on the word
level by GIZA++ (Och and Ney, 2003).

3.1 Comparative performance

The intuition behind the objective evaluation
experiment is that the capacity of our tool to find
indirect translation equivalents in comparable cor-
pora can be compared with the results of automatic
alignment of parallel texts used in translation mod-
els in SMT: one of the major advantages of the
SMT paradigm is its ability to reuse indirect
equivalents found in parallel corpora (equivalents
that may never come up in hand-crafted dictionar-
ies). Thus, automatically generated GIZA++ dic-
tionaries with word alignment contain many exam-
ples of indirect translation equivalents.

We use these dictionaries to simulate the genera-
tor of translation classes 7, which we recombine to
construct their Cartesian product P, similarly to the
procedure we use to generate the output of our sys-
tem. However, the two approaches generate indi-
rect translation equivalence hypotheses on the ba-
sis of radically different material: the GIZA dic-
tionary uses evidence from parallel corpora of ex-



isting human translations, while our system re-
combines translation candidates on the basis of
their distributional similarity in monolingual com-
parable corpora. Therefore we took GIZA as a
baseline.

Translation problems for the objective evalua-
tion experiment were manually extracted from two
parallel corpora: a section of about 10,000 words
of a corpus of English and Russian newspapers,
which we also used to train GIZA, and a section of
the same length from a corpus of interviews pub-
lished on the Euronews.net website.

We selected expressions which represented
cases of lexical transformations (as illustrated in
Section 0), containing at least two content words
both in the SL and TL. These expressions were
converted into pairs of contextual descriptors —
e.g., recent success, reflect success — and submit-
ted to the system and to the GIZA dictionary. We
compared the ability of our system and of GIZA to
find indirect translation equivalents which matched
the equivalents used by human translators. The
output from both systems was checked to see
whether it contained the contextual descriptors
used by human translators. We submitted 388 pairs
of descriptors extracted from the newspaper trans-
lation corpus and 174 pairs extracted from the Eu-
ronews interview corpus. Half of these pairs were
Russian, and the other half English.

We computed recall figures for 2-word combi-
nations of contextual descriptors and single de-
scriptors within those combinations. We also show
the recall of translation variants provided by the
ORD on this data set. For example, for the query
Hedocmaem Heobxooumozo ([it] is missing neces-
sary [things]) human translators give the solution
lacking essentials; the lemmatised descriptors are
lack and essential. ORD returns direct translation
equivalents missing and necessary. The GIZA dic-
tionary in addition contains several translation
equivalents for the second term (with alignment
probabilities) including: necessary ~0.332, need
~0.226, essential ~0.023. Our system returns both
descriptors used in human translation as a pair —
lack essential (ranked 41 without filtering and 22
with the default semantic filter). Thus, for a 2-word
combination of the descriptors only the output of
our system matched the human solution, which we
counted as one hit for the system and no hits for
ORD or GIZA. For 1-word descriptors we counted
2 hits for our system (both words in the human
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solution are matched), and 1 hit for GIZA - it
matches the word essential ~0.023 (which also il-
lustrates its ability to find indirect translation
equivalents).

2w descriptors 1w descriptors
news | interv news | interv
ORD 6.7% 4.6% | 32.9% | 29.3%
GIZA++ 13.9% 3.4% | 35.6% | 29.0%
Our system 21.9% | 19.5% | 55.8% | 49.4%

Table 1 Conservative estimate of recall

It can be seen from Table 1 that for the newspa-
per corpus on which it was trained, GIZA covers a
wider set of indirect translation variants than ORD.
But our recall is even better both for 2-word and 1-
word descriptors.

However, note that GIZA’s ability to retrieve
from the newspaper corpus certain indirect transla-
tion equivalents may be due to the fact that it has
previously seen them frequently enough to gener-
ate a correct alignment and the corresponding dic-
tionary entry.

The Euronews interview corpus was not used for
training GIZA. It represents spoken language and
is expected to contain more ‘radical’ transforma-
tions. The small decline in ORD figures here can
be attributed to the fact that there is a difference in
genre between written and spoken texts and conse-
quently between transformation types in them.
However, the performance of GIZA drops radi-
cally on unseen text and becomes approximately
the same as the ORD.

This shows that indirect translation equivalents
in the parallel corpus used for training GIZA are
too sparse to be learnt one by one and successfully
applied to unseen data, since solutions which fit
one context do not necessarily suit others.

The performance of our system stays at about
the same level for this new type of text; the decline
in its performance is comparable to the decline in
ORD figures, and can again be explained by the
differences in genre.

3.2 Evaluation of hypothesis ranking

As we mentioned, correct ranking of translation
candidates improves the usability of the system.
Again, the objective evaluation experiment gives
only a conservative estimate of ranking, because
there may be many more useful indirect solutions
further up the list in the output of the system which
are legitimate variants of the solutions found in the




parallel corpus. Therefore, evaluation figures
should be interpreted in a comparative rather then
an absolute sense.

We use ranking by frequency as a baseline for
comparing the ranking described in Section 2.3 —
by distributional similarity between a candidate
and the original query.

Table 2 shows the average rank of human solu-
tions found in parallel corpora and the recall of
these solutions for the top 300 examples. Since
there are no substantial differences between the
figures for the newspaper texts and for the inter-
views, we report the results jointly for 556 transla-
tion problems in both selections (lower rank fig-
ures are better).

| Recall | Average rank

2-word descriptors

frequency (baseline) 16.7% rank=93.7

distributional similarity | 19.5% rank=44.4

sim. + semantic filter 14.4% rank=26.7
1-word descriptors

frequency (baseline) 48.2% rank=42.7

distributional similarity | 52.8% rank=21.6

sim. + semantic filter 44.1% rank=11.3

Table 2 Ranking: frequency, similarity and filter

It can be seen from the table that ranking by
similarity yields almost a twofold improvement for
the average rank figures compared to the baseline.
There is also a small improvement in recall, since
there are more relevant examples that appear
within the top 300 entries.

The semantic filter once again gives an almost
twofold improvement in ranking, since it removes
many noisy items. The average is now within the
top 30 items, which means that there is a high
chance that a translation solution will be displayed
on the first screen. The price for improved ranking
is decline in recall, since it may remove some rele-
vant lexical transformations if they appear to be
ontologically too far apart. But the decline is
smaller: about 26.2% for 2-word descriptors and
16.5% for 1-word descriptors. The semantic filter
is an optional tool, which can be used to great ef-
fect on noisy output: its improvement of ranking
outweighs the decline in recall.

Note that the distribution of ranks is not normal,
so in Figure 1 we present frequency polygons for
rank groups of 30 (which is the number of items
that fit on a single screen, i.e., the number of items
in the first group (r030) shows solutions that will
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be displayed on the first screen). The majority of
solutions ranked by similarity appear high in the
list (in fact, on the first two or three screens).
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Figure 1 Frequency polygons for ranks

4 Subjective evaluation

The objective evaluation reported above uses a
single reference translation and is correspondingly
conservative in estimating the coverage of the sys-
tem. However, many expressions studied have
more than one fluent translation. For instance, in
poor repair is not the only equivalent for the Rus-
sian expression nioxo ompemoHmupoganuwie. It is
also possible to translate it as unsatisfactory condi-
tion, bad state of repair, badly in need of repair,
and so on. The objective evaluation shows that the
system has been able to find the suggestion used
by a particular translator for the problem studied. It
does not tell us whether the system has found some
other translations suitable for the context. Such
legitimate translation variation implies that the per-
formance of a system should be studied on the ba-
sis of multiple reference translations, though typi-
cally just two reference translations are used (Pap-
ineni, et al, 2001). This might be enough for the
purposes of a fully automatic MT tool, but in the
context of a translator's amanuensis which deals
with expressions difficult for human translators, it
is reasonable to work with a larger range of ac-
ceptable target expressions.

With this in mind we evaluated the performance
of the tool with a panel of 12 professional transla-
tors. Problematic expressions were highlighted and
the translators were asked to find suitable sugges-
tions produced by the tool for these expressions
and rank their usability on a scale from 1 to 5 (not
acceptable to fully idiomatic, so 1 means that no
usable translation was found at all).

Sentences themselves were selected from prob-
lems discussed on professional translation forums
proz.com and forum.lingvo.ru. Given the range of
corpora used in the system (reference and newspa-



per corpora), the examples were filtered to address
expressions used in newspapers.

The goal of the subjective evaluation experiment
was to establish the usefulness of the system for
translators beyond the conservative estimate given
by the objective evaluation. The intuition behind
the experiment is that if there are several admissi-
ble translations for the SL contextual descriptors,
and system output matches any of these solutions,
then the system has generated something useful.
Therefore, we computed recall on sets of human
solutions rather than on individual solutions. We
matched 210 different human solutions to 36 trans-
lation problems. To compute more realistic recall
figures, we counted cases when the system output
matches any of the human solutions in the set.
Table 3 compares the conservative estimate of the
objective evaluation and the more realistic estimate
on a single data set.

2w default 2w with sem filt

Conservative 32.4%; r=53.68 21.9%; r=34.67

Realistic 75.0%; r=7.48 61.1%; r=3.95

Table 3 Recall and rank for 2-word descriptors

Since the data set is different, the figures for the
conservative estimate are higher than those for the
objective evaluation data set. However, the table
shows the there is a gap between the conservative
estimate and the realistic coverage of the transla-
tion problems by the system, and that real coverage
of indirect translation equivalents is potentially
much higher.

Table 4 shows averages (and standard deviation
o) of the usability scores divided in four groups: (1)
solutions that are found both by our system and the
ORD:; (2) solutions found only by our system; (3)
solutions found only by ORD (4) solutions found
by neither:

system (+) system (<)
ORD (+) 4.03 (0.42) | 3.62 (0.89)
ORD (-) 4.25(0.79) | 3.15(1.15)

Table 4 Human scores and o for system output

It can be seen from the table that human users find
the system most useful for those problems where
the solution does not match any of the direct dic-
tionary equivalents, but is generated by the system.

5 Conclusions

We have presented a method of finding indirect
translation equivalents in comparable corpora, and
integrated it into a system which assists translators
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in indirect lexical transfer. The method outper-
forms established methods of extracting indirect
translation equivalents from parallel corpora.

We can interpret these results as an indication
that our method, rather than learning individual
indirect transformations, models the entire family
of transformations entailed by indirect lexical
transfer. In other words it learns a translation strat-
egy which is based on the distributional similarity
of words in a monolingual corpus, and applies this
strategy to novel, previously unseen examples.

The coverage of the tool and additional filtering
techniques make it useful for professional transla-
tors in automating the search for non-trivial, indi-
rect translation equivalents, especially equivalents
for multiword expressions.
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Forest Rescoring: Faster Decoding with Integrated L anguage M odels *
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Abstract programming (Wu, 1996; Och and Ney, 2004). In

practice, one must prune the search space aggres-
Efficient decoding has been a fundamental sively to reduce it to a reasonable size.
problem in machine translation, especially A much simpler alternative method to incorporate
with an integrated language model which e | M isrescoring we first decode without the LM
is essential for achieving good translation (henceforth-LM decoding to produce a-best list
quality. We develop faster approaches for  f candidate translations, and then rerankittgest
this problem based oh-best parsing algo- list using the LM. This method runs much faster in
rithms and demonstrate their effectiveness pnractice but often produces a considerable number
on both phrase-based and syntax-based MT ¢ search errors since the true best translation (taking
systems. In both cases, our methods achieve | \ into account) is often outside of tHebest list.
significant speed improvements, often by Cube pruningChiang, 2007) is a compromise be-
more than a factor of ten, over the conven-  yeen rescoring and full-integration: it rescores
tional beam-search method at the same lev- g ptransiations at each node of the forest, rather than
els of search error and translation accuracy. only at the root node as in pure rescoring. By adapt-
ing the k-best parsing Algorithm 2 of Huang and
Chiang (2005), it achieves significant speed-up over
Recent efforts in statistical machine translatioriull-integration on Chiang’s Hiero system.
(MT) have seen promising improvements in out- We push the idea behind this method further and
put quality, especially the phrase-based models (O¢hake the following contributions in this paper:

and Ney, 2004) and syntax-based models (Chiang, _ _ _
2005: Galley et al., 2006). However, efficient de- © Ve generalize cube pruning and adapt it to two
systems very different from Hiero: a phrase-

based system similar to Pharaoh (Koehn, 2004)
and a tree-to-string system (Huang et al., 2006).

1 Introduction

coding under these paradigms, especially with inte-
grated language models (LMs), remains a difficult
problem. Part of the complexity arises from the ex-

pressive power of the translation model: for exam- ¢ \ve also devise a faster variant of cube pruning,
ple, a phrase- or word-based model with full reorder-  5j1edcube growingwhich uses a lazy version
ing has exponential complexity (Knight, 1999). The of k-best parsing (Huang and Chiang, 2005)
language model also, if fully integrated into the de- 15t tries to reducé to the minimum needed
coder, introduces an expensive overhead for main- o+ a5ch node to obtain the desired number of

taining target-language boundary words for dynamic hypotheses at the root.

* The authors would like to thank Dan Gildea, Jonathan ) . .
Graehl, Mark Johnson, Kevin Knight, Daniel Marcu, Bob Cube pruning and cube growing are collectively
Moore and Hao Zhang. L. H. was partlally supported byca”ed forest rescoringsince they both approxi_

NSF ITR grants 11S-0428020 while visiting USC/ISI and EIA- tel th ked f t of derivati f
0205456 at UPenn. D. C. was partially supported under thghately rescore the packed forest or derivations irom

GALE/DARPA program, contract HR0011-06-C-0022. —LM decoding. In practice they run an order of
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magnitude faster than full-integration with beamwhich is needed for distortion costs), and where
search, at the same level of search errors and trarmsid w + ¢ are the weights of the two hypotheses,

lation accuracy as measured by BLEU. respectively, withe being the cost of the phrase-pair.
o Similarly, the decoding problem with SCFGs can
2 Preliminaries also be cast as a deductive (parsing) system (Shieber

We establish in this section a unified frameworl€t &l-» 1995). Basically, we parse the input string us-
for translation with an integrated-gram language N9 the source projection of the SCFG while build-
model in both phrase-based systems and syntad the correqundlng subtranslations in parallel. A
based systems based on synchronous context-fla@ssible deduction of the above example is notated:
grammars (SCFGs). An SCFG (Lewis and Stearns,  (PPi3) : (w1,t1)  (VP3g) : (wo,t2)
1968) is a context-free rewriting system for generat- (VP16) : (w1 +wa + , taty) 2)
Ing string pairs. Each rulel — a, 3 rewrites a pair where the subscripts denote indices in the input sen-
of nonterminals in both languages, whereand 5 . . .

tence just as in CKY parsingy;, wy are the scores

are the source and target side components, and theg, the two antecedent items, andand, are the

is a one-to-one correspondence between the nonter- . . .
. : . corresponding subtranslations. The resulting trans-
minal occurrences ix and the nonterminal occur-

) ) lation tot; is the inverted concatenation as specified
rences in. For example, the following rule by the target-side of the SCFG rule with the addi-
VP — PPL yp @), yp(®) pp) tional costc’ being the cost of this rule.

These two deductive systems represent the search
captures the swapping of VP and PP between Ch§pace of decoding without a language model. When
nese (source) and English (target). one is instantiated for a particular input string, it de-
fines a set of derivations, calledaest represented
in a compact structure that has a structure of a graph
We will use the following example from Chinese tojn the phrase-based case, or more generallyper-
English for both systems described in this section: graphin both cases. Accordingly we call items like
(eeeee) and(VP; ) nodesn the forest, and instan-
tiated deductions like

2.1 Trandation as Deduction

yu  Shalong juxing le huitan
with Sharon hold [pas] meeting
(eseee) — (__eee) with Sharon

(VP1g) — (VPsg) (PP 3)

A typical phrase-based decoder generates partigh, 4| hyperedgeghat connect one or more an-

target-language outputs in left-to-right order in th?ecedent nodes to a consequent node.
form of hypothesegKoehn, 2004). Each hypothesis

has acoverage vectocapturing the source-language2.2 Adding a L anguage M odel

words translated so far, and can be extended intog integrate with a bigram language model, we can
longer hypothesis by a phrase-pair translating an Ujyse the dynamic-programming algorithms of Och
covered segment. and Ney (2004) and Wu (1996) for phrase-based
This process can be formalized as a dedugngd SCFG-based systems, respectively, which we
tive system. For example, the following deducmay think of as doing a finer-grained version of the
tion step grows a hypothesis by the phrase-paffequctions above. Each nodein the forest will
(yu Stalong with Sharoi: be split into a set of augmented items, which we
(__eee) : (w, *held a talk’) call +LM items For phrase-based decodingi-aM

. X , , item has the formv “) wherea is the last word
(eosee) : (w +c,"held atalk with Sharon)” (1) ¢ e hypothesis. Thus #LM version of Deduc-

‘held a meeting with Sharon’

where ae in the coverage vector indicates the sourcgOn (1) might be:

word at this position is “covered” (for simplicity (__eee ®¥) : (w,“held a talk")

we omit here the ending position of the last phrase (eeeee S"a0 : (3 “held a talk with Sharony
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Figure 1: Cube pruning along one hyperedge. (a): the numbers inithdegrote the score of the resulting
+LM item, including the combination cost; (b)-(d): the best-first enumeratighefop three items. Notice
that the items popped in (b) and (c) are out of order due to the non-macidgaf the combination cost.

where the score of the resultingtM item 3 CubePruning

w' = w + ¢ — log Py, (with | talk) Cube pruning (Chiang, 2007) reduces the search
now includes aombination costiue to the bigrams space significantly based on the observation that
formed when applying the phrase-pair. when the above method is combined with beam

Similarly, a +LM item in SCFG-based models search, only a small fraction of the possibiéM
has the form(v*®), wherea andb are boundary items at a node will escape being pruned, and more-
wordsof the hypothesis string, ands a placeholder over we can select with reasonable accuracy those
symbol for an elided part of that string, indicatingtop-* items without computing all possible items
that a possible translation of the part of the inpufirst. In a nutshell, cube pruning works on th& M
spanned by starts witha and ends wittb. An ex- forest, keeping at mogt +-LM items at each node,
ample+LM version of Deduction (2) is: and uses thé&-best parsing Algorithm 2 of Huang
(PP« Sharony. (4, ) (P heldxtalk). (0 40 and tha_ng (2005) to sp_eed up the computation.
' i Sharo : For simplicity of presentation, we will use concrete
(VP15 0: (w,tat1) SCFG-based examples, but the method applies to the
wherew = w; +ws + ¢ —log Py, (with | talk) with  general hypergraph framework in Section 2.
a similar combination cost formed in combining ad- Consider Figure 1(a). Here = 3 and we use
jacent boundary words of antecedents. This scheni®(v) to denote the to@-+LM items (in sorted or-
can be easily extended to work with a genetal der) of nodev. Suppose we have comput& u)
gram model (Chiang, 2007). The experiments in thiand D(ug) for the two antecedent nodes =
paper use trigram models. (VP36) anduy = (PP 3) respectively. Then for
The conventional full-integration approach trathe consequent node = (VP;s) we just need
verses the forest bottom-up and explores all poge derive the top-3 from the 9 combinations of
sible +LM deductions along each hyperedge(D;(u1), D;j(u2)) with 4,5 € [1,3]. Since the an-
The theoretical running time of this algorithmtecedent items are sorted, it is very likely that the
is O(|F||T|(™=Y) for phrase-based models, andbest consequent items in this grid lie towards the
O(|F||T|*™=1) for binary-branching SCFG-basedupper-left corner. This situation is very similarke
models, wheréF| is the size of the forest, anjd’| best parsing and we can adapt the Algorithm 2 of
is the number of possible target-side words. EveHuang and Chiang (2005) here to explore this grid
if we assume a constant number of translations fan a best-first order.
each word in the input, with a trigram model, this Suppose that the combination costs are negligible,
still amounts ta?(n'!) for SCFG-based models andand therefore the weight of a consequent item is just
O(2"n?) for phrase-based models. the product of the weights of the antecedent items.
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1: function CUB_E(F) 1>th_e input is a forest’ method ‘ k—best\ +LM rescoring . .

2: for v € F in (bottom-up) topological ordeto -

3 KBEST(v) rescoring Alg. 3 | only at the root node

4:  return Dy (TOP) cube pruning| Alg. 2 | on-the-fly at each node
5: procedure KBEST(v) cube growing| Alg. 3 | on-the-fly at each node
6: cand — {{e,1) | e € IN(v)} » for each incoming

7: HEAPIFY d > a priority queue of candidates .

8  buf — 0 (cand) prioriy d Table 1: Comparison of the three methods.
9: while |cand| > 0 and|buf| < k do

10: item «— POP-MIN(cand)

1L appendtern to buf hyperedges in the-LM forest. In Hiero, these hy-
12: RusHSuCc(item, cand) peredges are processed as a single unit which we

13: sortbuf to D(v) . .
14: procedure PUSHSUCC((e, ), cand) call a hyperedge bundleThe different target sides

15:  eisv — ur...up then constitute a third dimension of the grid, form-
16: foriin1...|e| do ing a cube of possible combinations (Chiang, 2007).
ig ff “‘_3(3;) ‘bz il then Now consider that there are many hyperedges that
19: PUSH({e, ), cand) derive v, and we are only interested the teg.M
items ofv over all incoming hyperedges. Following
Figure 2: Pseudocode for cube pruning. Algorithm 2, we initialize the priority queueand

with the upper-left corner item from each hyper-

edge, and proceed as above. See Figure 2 for the
Then we know thatDy(v) = (Di(u1), Di(u2)),  pseudocode for cube pruning. We use the notation
the upper-left corner of the grid. Moreover, We<e,j> to identify the derivation ofy via the hyper-
know thatDs(v) is the better of D1 (u1), D2(u2))  edgee and thej;th best subderivation of antecedent
and (Da(u1), D1(uz)), the two neighbors of the (1 < i < [j]). Also, we let1 stand for a vec-
upper-left corner. We continue in this way (see Figdzor whose elements are dll andb’ for the vector

ure 1(b)—(d)), enumerating the consequent ittMgqse members are 4l except for theith whose
best-first while keeping track of a relatively smally5)¢ js1 (the dimensionality of either should be ev-
number of candidates (shaded cells in Figure 1(B)yent from the context). The heart of the algorithm
cand in Figure 2) for the next-best item. is lines 10-12. Lines 10-11 move the best deriva-

However, when we take into account the combigio (¢, 5) from cand to buf, and then line 12 pushes
nation costs, this grid is no longer monotonic in 9enyg syccessor(e, j + b') | i € 1... |e|} into cand.
eral, and the above algorithm will not always enu-

merate items in best-first order. We can see this i Cube Growing

the first iteration in Figure 1(b), where an item with

score 2.5 has been enumerated even though theréMghough much faster than full-integration, cube

an item with score 2.4 still to come. Thus we riskPruning still computes a fixed amount-e£.M items

making more search errors than the full-integratiodt €ach node, many of which will not be useful for

method, but in practice the loss is much less signiffTiving at the 1-best hypothesis at the root. It would

icant than the speedup. Because of this disorderinge more efficient to compute as feul M items at

we do not put the enumerated items directly int&ach node as are needed to obtain the 1-best hypoth-

D(v); instead, we collect items in a buffeb(f in esis at the root. This new method, callade grow-

Figure 2) and re-sort the buffer infd(v) after ithas NG, iS & lazy version of cube pruning just as Algo-

accumulated items? rithm 3 of Huang and Chiang (2005), is a lazy ver-
In general the grammar may have multiple rule§ion of Algorithm 2 (see Table 1).

that share the same source side but have different/nstead of traversing the forest bottom-up, cube

target sides, which we have treated here as separ§f@Wwing Visits nodes recursively in depth-first or-
der from the root node (Figure 4). First we call

1_No§ice that different combinations might have the same et Azy JTHBEST(TOP, 1), which uses the same al-
sulting item, in which case we only keep the one with the better ith b . to find the 1-bestM
score (sometimes calldd/pothesis recombinatian MT liter- gorithm as cube pruning to fin e 1-bes

ature), so the number of itemsID(v) might be less thak. item of the root node using the bestM items of
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1.0 40 7.0 1.0 40 7.0 1: procedure LAzY JTHBEST(v, j)
2 if cand[v] is undefinedhen
1.0 2151 81 2583 3 cand[v] — 0
111225282 24 4: FIRE(e, 1, cand) foreach e € IN (v)
5: buf[v] — @
3.5/4.6|7.6/10.6 6:  while [D(v)| < j and |buf[v]| + |D(v)| < k and

(a) h-values (b) true costs 7: |cand[1;}t|e;0<—d?30P-M IN(cand|v])
8: PusH(item, buf [v])
Figure 3: Example of cube growing along one hyper-9: PusHSucc(item, cand[v])
edge. (a): thé(x) scores for the grid in Figure 1(a), 77 Z’E‘,;“U’"ﬁ@ﬁ;ﬁ%g){'b;’fui;;md[””

assumingh compo (€) = 0.1 for this hyperedge; (b) 12:  Enum(buf[v], D(v), +o0)
cube growing prevents early ranking of the top-lefi3: procedure FIRE(e, j, cand)

cell (2.5) as the best item in this grid. 14: elsv—ur... g
15:  foriinl...|e|do
16: LAZY JTHBEST(us, ji)

the antecedent nodes. However, in this case the bqgt RJS'H|(<6(1;>)L;2) enreurn

+LM items of the antecedent nodes are not KNnoWnyg. - ocedure PusHsucc((e, j), cand)

because we have not visited them yet. SO we reo:  FRRre(e,j + b’, cand) foreach iin 1. .. |e|

cursively invokeLAzy JTHBEST on the antecedent 21: procedure ENUM(buf, D, bound)

nodes to obtain them as needed. Each invocation §  While |buf| > 0:and MiN(buf) < bound do

. . . . append BP-MIN(buf) to D

LAzYJTHBEST(v, j) will recursively call itself on

the antecedents afuntil it is confident that thgth

best+LM item for nodev has been found.
Consider again the case of one hyperedgBe-

cause of the nonmonotonicity caused by combinample,min{2.2,5.1} = 2.2 is a lower bound on

tion costs, the first-LM item ({e, 1)) popped from the cost of any item in the future for the hyperedge

cand is not guaranteed to be the best of all combinae. Indeed, ifcand contains items from multiple hy-

tions along this hyperedge (for example, the top-lefeeredges for a single consequent node, this is still a

cell of 2.5 in Figure 1 is not the best in the grid). Sovalid lower bound. More formally:

we cannot simply enumerate items just as they com€xmma 1. For each node in the forest, the term

off of cand.? Instead, we need to store up popped

items in a bufferbuf, just as in cube pruning, and bound = min h(z) (3)

enumerate an item only when we are confident that it € cand(v]

will never b.e surpassed in the_future. In otherwqrdsl,s a lower bound on the true cost of any future item
we would like to have an estimate of the best ite

- That is yet to be explored far.
not explored yet (analogous to the heuristic func-

tion in A* search). If we can establish a lower boundproof. For any itemz that is not explored yet, the
hcombo(€) ON the combination cost of anyLM de-  true coste(z) > h(x), by the definition ofh. And
duction via hyperedge, then we can form a mono- there exists an item € cand[v] along the same hy-
tonic grid (see Figure 3(a)) of lower bounds on thgeredge such that(z) > h(y), due to the mono-
grid of combinations, by usinB.oms. (¢) in place of  tonicity of 4 within the grid along one hyperedge.
the true combination cost for eaghLM item z in We also haveh(y) > bound by the definition of

Figure 4: Pseudocode of cube growing.

the grid; call this lower bound(x). bound. Thereforec(z) > bound. O
Now suppose that the gray-shaded cells in Fig- _ _
ure 3(a) are the members ofind. Then the min-  Now we can safely pop the best item frdraf if

imum of h(z) over the items incand, in this ex- itstrue cosMIN(buf) is better tharbound and pass
it up to the consequent node (lines 21-23); but other-

?If we did, then the out-of-order enumeration-BEM items  \yise, we have to wait for more items to accumulate
at an antecedent node would cause an entire row or column in buf t t tential h f
the grid to be disordered at the consequent node, potential'lp uf to prevent a potential search error, for exam-

leading to a multiplication of search errors. ple, in the case of Figure 3(b), where the top-left cell
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Figure 6: A hyperedge bundle represents-alM

(b) - deductions that derives an item in the current bin
. from the same coverage vector (see Figure 5). The
1 2 3 4 5 phrases on the top denote the target-sides of appli-

cable phrase-pairs sharing the same source-side.
Figure 5: (a) Pharaoh expands the hypotheses in the
current bin (#2) into longer ones. (b) In Cubit, hy- _
potheses in previous bins are fed via hyperedge bun-L Phrase-based Decoding
dles (solid arrows) into a priority queue (shaded trivwe implementedCubit, a Python clone of the
angle), which empties into the current bin (#5).  Pharaoh decoder (Koehn, 2064and adapted cube
pruning to it as follows. As in Pharaoh, each bin
1 contains hypotheses (i.erLM items) coveringi
(2.5) is worse than the currebtund of 2.2. The up- words on the source-side. But at each bin (see Fig-
date ofbound in each iteration (line 10) can be effi- ure 5), all+LM items from previous bins are first
ciently implemented by using another heap with theartitioned into—LM items; then the hyperedges
same contents asind but prioritized byh instead. leading from those-LM items are further grouped
In practice this is a negligible overhead on top ofnto hyperedge bundles (Figure 6), which are placed
cube pruning. into the priority queue of the current bin.

We now turn to the problem of estimating the Our data preparation follows Huang et al. (2006):
heuristic functionh .- In practice, computing the training dataisa paraIIeI corpus of 28.3M words
true lower bounds of the combination costs is to®n the English side, and a trigram language model is
slow and would compromise the speed up gainei@@ined on the Chinese side. We use the same test set
from cube growing. So we instead use a much sin@s (Huang et al., 2006), which is a 140-sentence sub-
pler method that just calculates the minimum comset of the NIST 2003 test set with 9-36 words on the

bination cost of each hyperedge in the togeriva- English side. The weights for the log-linear model
tions of the root node in-LM decoding. This is are tuned on a separate development set. We set the
just an approximation of the true lower bound, anglecoder phrase-table limit to 100 as suggested in
bad estimates can lead to search errors. However, tfeoehn, 2004) and the distortion limit to 4.

hope is that by choosing the right valueipthese es-  Figure 7(a) compares cube pruning against full-
timates will be accurate enough to affect the seardhtegration in terms of search quality vs. search ef-
quality only slightly, which is analogous to “almostficiency, under various pruning settings (threshold
admissible” heuristics in A* search (Soricut, 2006).beam set to 0.0001, stack size varying from 1 to
200). Search quality is measured by average model
cost per sentence (lower is better), and search effi-
ciency is measured by the average number of hy-
potheses generated (smaller is faster). At each level

5 Experiments

We test our methods on two large-scale English-to—; _ _ "
In our tests, Cubit always obtains a BLEU score within

Chinese tran5|atio_n systems: a phrase-based SYSt@HbA. of Pharaoh’s (Figure 7(b)). Source code available at
and our tree-to-string system (Huang et al., 2006). http://www.cis.upenn.edu/ ~ lhuang3/cubit/
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Figure 7: Cube pruning vs. full-integration (with beam search) on ghbased decoding.

of search quality, the speed-up is always better thaterivation trees remain context-free and the search
a factor of 10. The speed-up at the lowest searclspace is still a hypergraph, where we can adapt the
error level is a factor of 32. Figure 7(b) makes anethods presented in Sections 3 and 4.
similar comparison but measures search quality by The data set is same as in Section 5.1, except that
BLEU, which shows an even larger relative speed-upe also parsed the English-side using a variant of
for a given BLEU score, because translations witthe Collins (1997) parser, and then extracted 24.7M
very different model costs might have similar BLEUtree-to-string rules using the algorithm of (Galley et
scores. It also shows that our full-integration impleal., 2006). Since our tree-to-string rules may have
mentation in Cubit faithfully reproduces Pharaoh’snany variables, we first binarize each hyperedge in
performance. Fixing the stack size to 100 and vanthe forest on the target projection (Huang, 2007).
ing the threshold yielded a similar result. All the three+LM decoding methods to be com-

. . pared below take these binarized forests as input. For
52 Treeto-string Decoding cube growing, we use a non-duplicatédest method
In tree-to-string (also callesyntax-directefidecod- (Huang et al., 2006) to get 100-best unique transla-
ing (Huang et al., 2006; Liu et al., 2006), the sourcéions according te-LM to estimate the lower-bound
string is first parsed into a tree, which is then reheuristics' This preprocessing step takes on aver-
cursively converted into a target string according tage 0.12 seconds per sentence, which is negligible
transfer rules in a synchronous grammar (Galley &4 comparison to the-LM decoding time.
al., 2006). For instance, the following rule translates Figure 8(a) compares cube growing and cube

an English passive construction into Chinese: pruning against full-integration under various beam
VP settings in the same fashion of Figure 7(a). At the
— lowest level of search error, the relative speed-up
VBD VP-C — beizs 1 from cube growing and cube pruning compared with
! = full-integration is by a factor of 9.8 and 4.1, respec-
was  zi:VBN PP tively. Figure 8(b) is a similar comparison in terms
— .
IN 29:NP-C of BLEU scores and shows an even bigger advanFage
| of cube growing and cube pruning over the baseline.
by “If a hyperedge is not represented at all in the 100-bést!

Our tree-to-string system performs slightly betderivations at the root node, we use the 1-belsM derivation

ter than the state-of-the-art phrase-based systedijhis hyperedge instead. Here, rules that share the same source
... _side but have different target sides are treated as separate hy-

Pharaoh on the above data set. Although d'ﬁerﬁeredges, not collected into hyperedge bundles, since grouping

ent from the SCFG-based systems in Section 2, it&comes difficult after binarization.
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Figure 8: Cube growing vs. cube pruning vs. full-integration (with beaarch) on tree-to-string decoding.

6 Conclusionsand Future Work Liang Huang and David Chiang. 2005. Bettebest parsing.
In Proc. IWPT

We have presented a novel extension of cube prun- o . ,
. lledcub . dsh h both b Liang Huang, Kevin Knight, and Aravind Joshi. 2006. Sta-
Ing calleacube growingand shown how both can be tistical syntax-directed translation with extended domain of

seen as generébrest rescoringechniques applica-  locality. In Proc. AMTA

ble to both phrase-based and syntax-based deCOd"I]gng Huang. 2007. Binarization, synchronous binarization,

We evaluated these methods on large-scale transla-and target-side binarization. Proc. NAACL Workshop on

tion tasks and observed considerable speed improve-Syntax and Structure in Statistical Translation

ments, often by more than a factor of ten. We plas. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimiza-

to |nvest|gate hOW to adapt Cube grow|ng to phrase_ tlon by S|mu|ated annealln@ClenC6220(4598)671—680

based and hierarchical phrase-based systems.  Kevin Knight. 1999. Decoding complexity in word-
These forest rescoring algorithms have potential replacement translation modelBomputational Linguistics

o . . ; 25(4):607-615.
applications to other computationally intensive tasks

involving combinations of different models, for Philipp Koehn. 2004. Pharaoh: a beam search decoder for
le. head-lexicalized . colli 1997)- phrase-based statistical machine translation models. In
example, head-lexicalized parsing (Collins, )} Proc. AMTA pages 115-124.

joint parsing and semantic role labeling (Sutton ang M. Lewis and R E. St 1068, Svntaxdirected transd
. . . . . VI, Lewlis an . E. Stearns. . Sdyntax-airected transauc-
McCallum, 2005); or tagging and parsing with non- " .’ ™y ACM 15:465-488.

local features. Thus we envision forest rescoring as

. . - . . Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-string
being of general applicability for reducing compli- alignment template for statistical machine translation. In

cated search spaces, as an alternative to simulatedbroc. COLING-ACI, pages 609-616.

anneallng methods (Klrkpaka etal, 1983)' Franz Joseph Och and Hermann Ney. 2004. The alignment

template approach to statistical machine translatiGom-
putational Linguistics30:417-449.
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Abstract

Machine translation of a source language
sentence involves selecting appropriate tar-
get language words and ordering the se-
lected words to form a well-formed tar-
get language sentence. Most of the pre-
vious work on statistical machine transla-
tion relies on lpcal) associations of target
words/phrases with source words/phrases
for lexical selection. In contrast, in this pa-
per, we present a novel approach to lexical
selection where the target words are associ-
ated with the entire source sentengkbal)
without the need to compute local associa-
tions. Further, we present a technique for
reconstructing the target language sentence
from the selected words. We compare the re-
sults of this approach against those obtained
from a finite-state based statistical machine
translation system which relies on local lex-
ical associations.

Introduction

}@research.att.com

local associations. The phrasal associations compile
some amount ofi¢cal) lexical reordering of the tar-
get words —those permitted by the size of the phrase.
Most of the state-of-the-art machine translation sys-
tems use phrase-level associations in conjunction
with a target language model to produce sentences.
There is relatively little emphasis oglobal) lexical
reordering other than the local reorderings permit-
ted within the phrasal alignments. A few exceptions
are the hierarchical (possibly syntax-based) trans-
duction models (Wu, 1997; Alshawi et al., 1998;
Yamada and Knight, 2001; Chiang, 2005) and the
string transduction models (Kanthak et al., 2005).

In this paper, we present an alternate approach to
lexical selection and lexical reordering. For lexical
selection, in contrast to the local approaches of as-
sociating target to source words, we associate tar-
get words to the entire source sentence. The intu-
ition is that there may be lexico-syntactic features of
the source sentence (not necessarily a single source
word) that might trigger the presence of a target
word in the target sentence. Furthermore, it might be
difficult to exactly associate a target word to a source

1
c\)q/ord in many situations — (a) when the translations

Machine translation can be viewed as consisting e not exact but paraphrases (b) when the target lan-
two subproblems: (a) lexical selection, where appro- parap J

priate target language lexical items are chosen fGHage does not have one lexical item to express the

each source language lexical item and (b) lexical r _ar;;(; d(;;)ncvsgrt dt[]oat rlmsrai)épa:ﬁsﬁader?é gttsecr)#r?st;vgéc_l'
ordering, where the chosen target language lexic 9 P 9 P

items are rearranged to produce a meaningful targngi}:: iiovr\?oer do_]; ;C;S;i;gl;?gr?tgs while alleviating the

language string. Most of the previous work on statis-
tical machine translation, as exemplified in (Brown As a consequence of this global lexical selection
et al., 1993), employs word-alignment algorithmapproach, we no longer have a tight association be-
(such as GIZA++ (Och and Ney, 2003)) that protween source and target language words. The re-
vides local associations between source and targmilt of lexical selection is simply a bag of words in
words. The source-to-target word alignments arthe target language and the sentence has to be recon-
sometimes augmented with target-to-source worgtructed using this bag of words. The words in the
alignments in order to improve precision. Furtherbag, however, might be enhanced with rich syntactic
the word-level alignments are extended to phraséformation that could aid in reconstructing the tar-
level alignments in order to increase the extent ajet sentence. This approach to lexical selection and
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Figure 2: Decoding phases for our system Figure 4: Bilanguage strings resulting from align-

ments shown in Figure 3.

sentence reconstruction has the potential to circum- ) )
vent limitations of word-alignment based method€-2 Bilanguage Representation
for translation between languages with significantlfrrom the alignment information (see Figure 3), we
different word order (e.g. English-Japanese). construct a bilanguage representation of each sen-
In this paper, we present the details of trainingence in the bilingual corpus. The bilanguage string
a global lexical selection model using classificaconsists of source-target symbol pair sequences as
tion technigues and sentence reconstruction modhown in Equation 3. Note that the tokens of a bilan-
els using permutation automata. We also presentgaiage could be either ordered according to the word
stochastic finite-state transducer (SFST) as an exaworder of the source language or ordered according to
ple of an approach that relies on local associatiortee word order of the target language.
and use it to compare and contrast our approach.

Bl = ol v] ... bl (3)
2 SFST Training and Decoding b = (siiisi f(si) if flsii1) =e
In this section, we describe each of the components = (85, f(si-1); f(83)) if sic1=¢

of our SFST system shown in Figure 1. The SFST
approach described here is similar to the one de-
scribed in (Bangalore and Riccardi, 2000) which hasFigure 4 shows an example alignment and the
subsequently been adopted by (Banchs et al., 2005purce-word-ordered bilanguage strings correspond-
_ ing to the alignment shown in Figure 3.
2.1 Word Alignment We also construct a bilanguage using the align-
The first stage in the process of training a lexical sement functiong similar to the bilanguage using the
lection model is obtaining an alignment functiof) ( alignment functionf as shown in Equation 3.
that given a pair of sources(s,...s,) and target  Thus, the bilanguage corpus obtained by combin-
(tit2 ... t) language sentences, maps source lainrg the two alignment functions iB = By U B,,.
gﬂggsqﬁggdczgf)zgiﬁirxf Eé?ésvfarget language WOé% Bilingual Phrases and Local Reordering
= N — . N While word-to-word translation only approximates
vidj(J(si) = 1; V /(si) =€) @) the lexical selection process, phrase-to-phrase map-

For the work reported in this paper, we have Useﬂin ; ;
S g can greatly improve the translation of colloca-
the GIZA++ tool (Och and Ney, 2003) which im-jiqns recurrent strings, etc. Using phrases also al-

plements a string-alignment algorithm. ~ GIZA++,\ s \vords within the phrase to be reordered into the
alignment however is asymmetric in that the wor

. . . - UrTtorrect target language order, thus partially solving
mappings are different depending on the directiofyg reordering problem. Additionally, SFSTs can

of alignment — source-to-target or target-to-Sourcg,y e advantage of phrasal correlations to improve the
Hence in addition to the functiong as shown in computation of the probabilit? (W, Wr).

Equation 1 we train another alignment functipn The bilanguage representation could result in
ViTi(g(t;) = s Vg(t;) =e) (2) some source language phrases to be mapped to

= (s4, f(si)) otherwise
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(empty target phrase). In addition to these phrases, 5 CR
we compute subsequences of a given lergth the . ;
bilanguage string and for each subsequence we r > ) .< 3
order the target words of the subsequence to be in G@/ CQ/
the same order as they are in the target language sen- ) . .
tence corresponding to that bilanguage string. Thg‘gure 5: Locally constraint permutation automaton
results in a retokenization of the bilanguage into to!OF & sentence with 4 words and window size of 2.
kens of source-target phrase pairs. 2.7 Global Reordering

2.4 SFST Model Local reordering as described in Section 2.3 is re-

From the bilanguage corpus, we train anz-gram stricted by the window siz& and accounts only for
language model using standard tools (Goffin et a/different word order within phrases. As permuting
2005). The resulting language model is represent&Pn-linear automata is too complex, we apply global
as a weighted finite-state automatofi ¥ 7' — reordering by permuting the words of the best trans-
[0,1]). The symbols on the arcs of this automatof2tion and weighting the result by an n-gram lan-
(si_t;) are interpreted as having the source and targ8@9e model (see also Figure 2):

symbols ;:t;), making it into a weighted finite-state T* = BestPath(perm(T") o LMy) (6)
transducer§ — T x [0, 1]) that provides a weighted _ o _
string-to-string transduction frori into 7" : Even the size of the minimal permutation automa-

ton of a linear automaton grows exponentially with
the length of the input sequence. While decoding by
25 Decoding cpmpositi.on simpl;_/ resembles the principle of mem-

_ _ oization (i.e. here: all state hypotheses of a whole
Since we represent the translation model as gentence are kept in memory), it is necessary to ei-
weighted finite-state transducef(ansFST), the ther use heuristic forward pruning or constrain per-
decoding process of translating a new source inpytations to be within a local window of adjustable
put (sentence or weighted latticé&)) amounts to  sjze (also see (Kanthak et al., 2005)). We have cho-
a transducer compositior)(and selection of the sen to constrain permutations here. Figure 5 shows
best probability path§est Path) resulting from the  the resulting minimal permutation automaton for an
composition and projecting the target sequens. ( jnput sequence of 4 words and a window size of 2.

T* = m1(BestPath(Iy o TransFST))  (4) Decoding ASR output in combination with global
reordering uses-best lists or extracts them from lat-

However, we have noticed that on the developtices first. Each entry of the-best list is decoded
ment corpus, the decoded target sentence is typicaigparately and the best target sentence is picked
shorter than the intended target sentence. This mi&em the union of the: intermediate results.
match may be due to the incorrect estimation of the o .
back-off events and their probabilities in the train3 Discriminant Models for Lexical
ing phase of the transducer. In order to alleviate Selection

this mismatch, we introduce a negative word iNS€frpe apnroach from the previous section is a genera-
tion penalty model as a mechanism to produce moRe model for statistical machine translation relying
words in the target sentence. on local associations between source and target sen-
26 Word Insertion Model tences. Now, we present our approach fgiebal

. . _ lexical selection model based on discriminatively
Th? word Insertion model is also e_nc_oded 8S fained classification techniques. Discriminant mod-
weighted finite-state automaton and is included '@Iing techniques have become the dominant method

the decoding sequence as shown in Equation 5. TRe yasqlving ambiguity in speech and other NLP
word insertion FST has one state dnd ;- | number ooy s “qutperforming generative models. Discrimi-

of arcs each weighted with aweight representing na+ive training has been used mainly for translation
the word insertion cost. On composition as showp, ,4el combination (Och and Ney, 2002) and with
in Equation 5, the word insertion model penalizes Ofyg exception of (Wellington et al., 2006; Tillmann
rewards paths which have more words depending Qg zhang, 2006), has not been used to directly train
whether) is positive or negative value. parameters of a translation model. We expect dis-
T* = m(BestPath(IsoTransFSToWIP)) (5) criminatively trained global lexical selection models

*
T = argmax P(s;,ti]si—1,ti-1...8i—n-1,ti—n-1)
T
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to outperform generatively trained local lexical sediffering language pairs, the alignment algorithms
lection models as well as provide a framework fosuch as GIZA++ perform poorly.
incorporating rich morpho-syntactic information. These observations prompted us to formulate the
Statistical machine translation can be formulatetéxical choice problenwithout the need for word
as a search for the best target sequence that maaiignment information. We require a sentence
mizesP(T'|S), whereS is the source sentence andaligned corpus as before, but we treat the target sen-
T is the target sentence. Ideallf(7|S) should tence as a bag-of-words or BOW assigned to the
be estimated directly to maximize the conditionakource sentence. The goal is, given a source sen-
likelihood on the training data (discriminant model)tence, to estimate the probability that we find a given
However,T' corresponds to a sequence with a exword in the target sentence. This is why, instead of
ponentially large combination of possible labelsproducing a target sentence, what we initially obtain
and traditional classification approaches cannot he a target bag of words. Each word in the target vo-
used directly. Although Conditional Random Fieldscabulary is detected independently, so we have here
(CRF) (Lafferty et al., 2001) train an exponentiala very simple use of binary static classifiers. Train-
model at the sequence level, in translation tasks sugtg sentence pairs are considered as positive exam-
as ours the computational requirements of trainingles when the word appears in the target, and neg-
such models are prohibitively expensive. ative otherwise. Thus, the number of training ex-
We investigate two approaches to approximatingmples equals the number of sentence pairs, in con-
the string level global classification problem, usindrast to the sequential lexical choice model which
different independence assumptions. A comparisdras one training example for each token in the bilin-
of the two approaches is summarized in Table 1. gual training corpus. The classifier is trained with
gram featuresBOgrams(S)) from the source sen-
3.1 Sequential Lexical Choice Model tence. During decoding the words with conditional

In the first approach, we formulate a sequential IgRrobability greater than a threshdldre considered
cal classification problem as shown in Equations 7S the result of lexical choice decoding.

This' approach is similar to _the SFST approach in BOW}. = {t|P(t|BOgrams(S)) > 0} (8)

that it relies on local associations between the sourceF . h d ¢ ds i
and target words(phrases). We can use a conditional ©f 'econstructing the proper order of words in
model (instead of a joint model as before) and th'€ target sentence we consider all permutations of
parameters are determined using discriminant traitfiords in BOWr. and weight them by a target lan-

ina which all for rich ditioni . guage model. 'This step is similar to the one de-
g ows for richer conditioning context scribed in Section 2.7. The BOW approach can also

P(T|S) = HN P(t:|®(S, 7)) @) be maodified to allow for length adjustments of tar-
i=1 ’ get sentences, if we add optional deletions in the fi-

where®(S, i) is a set of features extracted from thenal step of permutation decoding. The paraméter
source stringS (shortened a® in the rest of the and an additional word deletion penalty can then be

section). used to adjust the length of translated outputs. In
Section 6, we discuss several issues regarding this
3.2 Bag-of-Words Lexical Choice Model model.

The sequential lexical choice model described iﬁ
the previous section treats the selection of a lexical
choice for a source word in the local lexical contexThis section addresses the choice of the classifi-
as a classification task. The data for training sucbation technique, and argues that one technique
models is derived from word alignments obtainedhat yields excellent performance while scaling well
by e.g. GIZA++. The decoded target lexical itemss binary maximum entropy (Maxentyith L1-
have to be further reordered, but for closely relatecegularization
languages the reordering could be incorporated into ) ] o
correctly ordered target phrases as discussed prefil Multiclass vs. Binary Classification
ously. The Sequential and BOW models represent two dif-
For pairs of languages with radically differentferent classification problems. In the sequential
word order (e.g. English-Japanese), there needsnmdel, we have anulticlassproblem where each
be a global reordering of words similar to the caselasst; is exclusive, therefore, all the classifier out-
in the SFST-based translation system. Also, for sugbuts P(¢;|®) must be jointly optimized such that

Choosing the classifier
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Table 1: A comparison of the sequential and bag-of-words lexical choice models

Sequential Lexical Model Bag-of-Words Lexical Model

Output target Target word for each source position Target word given a source sentence

Input features BOgram(S,i —d,i + d) : bag ofn-grams BOgram(S,0,]S5]): bag ofn-grams
in source sentence in the interfal- d,¢ + d] | in source sentence

Probabilities P(t;|BOgram(S,i —d,i + d)) P(BOW (T)[BOgram(S,0,]57))
Independence assumption between the labels

Number of classes One per target word or phrase

Training samples | One per source token One per sentence

Preprocessing Source/Targetvord alignment Source/Targesentencalignment

>, P(t;/®) = 1. This can be problematic: with also called Maxent as it finds the distribution
one classifier per word in the vocabulary, even allo-  with maximum entropyhat properly estimates
cating the memory during training may exceed the the average of each feature over the training
memory capacity of current computers. data (Berger et al., 1996).
In the BOW model, each class can be detected ] ]
independently, and two different classes can be d# previous studies, we found that the best accuracy
tected at the same time. This is known as the 1-vés achieved with non-linear (or kernel) SVMs, at the
other scheme. The key advantage over the multicla¥Pense of a high test time complexity, which is un-
scheme is that not all classifiers have to reside icceptable for machine translation. Linear SVMs
memory at the same time during training which aland regularized Maxent yield similar performance.
lows for parallelization. Fortunately for the sequen!n theory, Maxent training, which scales linearly
tial model, we can decompose a multiclass classif¥ith the number of examples, is faster than SVM
cation problem into separate 1-vs-other problems. i@ining, which scales quadratically with the num-
theory, one has to make an additional independenb€" of examples. In our first experiments with lexi-
assumption and the problem statement becomes d#@! choice models, we observed that Maxent slightly
string with components; (¢) where probability of SVMs, some classes of words were over-detected.
each component is estimated independently: This suggests that, as theory predicts, SVMs do not
properly approximate the posterior probability. We
1 therefore chose to use Maxent as the best probability

POb;i(t)|®) =1— P(b;(t)|®) = ——F———
(b; (1)|®) (b; (1)|®) 1+e A=2)®  approximator.

In practice, despite the approximation, the 1-vsp 3 | 1 ys. L2 regularization

other scheme has been shown to perform as well as .. : . . .

the multiclass scheme (Rifkin and Klautau, 2004)!raditionally, Maxent is regularized by imposing a

As a consequence, we use the same type of binagpussian prior on each weight: this L2 regulariza-

classifier for the sequential and the BOW models. Uon finds the solution with the smallest possible
The excellent results recently obtained with thd/€ights. However, on tasks like machine translation

SEARN algorithm (Daume et al., 2007) also sugWith @ very large number of input features, a Lapla-

gest that binary classifiers, when properly traine§ian L1 regularization that also attempts to maxi-

and combined, seem to be capable of matching mo ze the number of zero weights is highl_y desirable.
complexstructuredoutput approaches. A new L1l-regularized Maxent algorithms was
proposed for density estimation (Dudik et al., 2004)

4.2 Geometric vs. Probabilistic Interpretation ~ and we adapted it to classification. We found this al-
%orithm to converge faster than the current state-of-
the-art in Maxent training, which is L2-regularized
L-BFGS (Malouf, 2002’*). Moreover, the number of
e Geometric approaches maximize the width ofrained parameters is considerably smaller.

a separation margin between the classes. The ,

most popular method is the Support Vector Ma®  Data and Experiments

chine (SVM) (Vapnik, 1998). We have performed experiments on the IWSLT06

e Probabilistic approaches maximize the con&hinese-English training and development sets from

ditional likelihood of the output class given iye ysed the implementation available  at
the input features. This logistic regression isttp://homepages.inf.ed.ac.uk/s0450736/maxeolkit.html

We separate the most popular classification tec
nigues into two broad categories:
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Table 2: Statistics of training and development data from 2005/20886i(st of multiple translations only).

Training (2005) Dev 2005 Dev 2006
Chinese| English | Chinese[ English | Chinese| English

Sentences 46,311 506 489
Running Words| 351,060 376,615| 3,826 3,897 5214 T 6,362
Vocabulary 11,178 | 11,232 931 898 1,136 | 1,134
Singletons 4,348 4,866 600 538 619 574
OOVs [%] - - 0.6 0.3 0.9 1.0
ASR WER [%] - - - - 25.2 -
Perplexity - - 33 - 86
# References - - 16

2005 and 2006. The data are traveler task ex-he reason is that the sequential Maxent model re-
pressions such as seeking directions, expressiondlies on the word alignment, which, if erroneous, re-
restaurants and travel reservations. Table 2 presestdts in incorrect predictions by the sequential Max-
some statistics on the data sets. It must be notest model. The BOW model does not rely on the
that while the 2005 development set matches th&ord-level alignment and can be interpreted as a dis-
training data closely, the 2006 development set hasiminatively trained model of dictionary lookup for
been collected separately and shows slightly diffea target word in the context of a source sentence.
ent statistics for average sentence length, vocabulary
size and out-of-vocabulary words. Also the 200%
[

development set contains no punctuation marks ifP!e 3: Results (mBLEU) scores for the three dif-

[ i i i dels on the transcriptions for development
Chinese, but the corresponding English translatiod§'®"t MO
have punctuation marks. We also evaluated ot 2005 and 2006 and ASR 1-best for development

models on the Chinese speech recognition outpﬁ?t 2006.

. . Dev 2005 Dev 2006
and we report results using 1-best with a word er- Text T Text | ASR 1-best
ror rate of 25.2%. FST 51.8 | 195 16.5

i i i Seq. Maxent 535 19.4 16.3
For the experiments, we tokenized _the Chinese e o e
sentences into character strings and trained the mod-
els discussed in the previous sections. Also, we - .
trained a punctuation prediction model using Max: 0’82 ('jg?/gitegégt tshe? ﬁ:;iéﬁéi?:g dcijfc;g?emnﬁngotru?
ent framework on the Chinese character strings i% P y

order to insert punctuation marks into the 2006 dégag;?q t?héheeggfmgﬁgne %??Ee MDaizntton:gcljselrsngr_e
velopment data set. The resulting character strin ’ P

with punctuation marks is used as input to the trang; t very different from t_he .FST model,_ Indicating
lation decoder. For the 2005 development set, pun 1€ lack of good generalization across different gen-

tuation insertion was not needed since the Chine$&S: However, we believe that the Maxent frame-

sentences already had the true punctuation markswork allows for incorporation of linguistic features
In Table 3 we present the results of the three ClitI_hat could potentially help in generalization across

; . enres. For translation of ASR 1-best, we see a sys-
ferent translation models — FST, Seq'uentlal .Maxe'?ématic degradation of about 3% in mBLEU scor)(/a
and B_OW Maxent. There are a few interesting Ob'ompared to translating the transcription.
servations that can be made based on these resu S order to compensate for the mismatch between
First, on the 2005 development set, the sequennme 2005 and 2006 data sets, we computed a 10-fold
Maxent model outperforms the FST model, evel3verage mMBLEU score by including 90% of the 2006

though the two models were trained starting fro - o - o
the same GIZA++ alignment. The difference, how"_&levelopment set into the training set and using 10%

ever. is due to the fact that Maxent models can co of the 2006 development set for testing, each time.

L . e average mBLEU score across these 10 runs in-
with increased lexical contektand the parameters creased to 22.8.

of the model are discriminatively trained. The more - :
surprising result is that the BOW Maxent model sig- In Figure 6 we show the improvement of mBLEU

. : cores with the increase in permutation window size.
nificantly outperforms the sequential Maxent mode@ve had to limit to a permutation window size of 10

2We use 6 words to the left and right of a source word fordue to memory limitations, even though the curve
sequential Maxent, but only 2 preceding source and target word@S Not plateaued. We anticipate using pruning tech-

for FST approach. niques we can increase the window size further.
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T model. Information about the grammatical role of a
] word in the source sentence is completely lost. The
language model might fortuitously recover this in-
formation if the sentence with the correct grammat-
] ical role for the word happens to be the maximum
] likelihood sentence in the permutation automaton.
We are currently working toward incorporating
syntactic information on the target words so as to be
] able to recover some of the grammatical role infor-
mation lost in the classification process. In prelimi-

L L L L L L
6 65 7 75 8 85 9 95 10

_ pemiaton o e _ nary experiments, we have associated the target lex-
Figure 6: Improvement in mBLEU score with thejcal items with supertag information (Bangalore and
increase in size of the permutation window Joshi, 1999). Supertags are labels that provide linear

. . ordering constraints as well as grammatical relation
5.1 United Nations and Hansard Corpora information. Although associating supertags to tar-
In order to test the scalability of the global lexicalget words increases the class set for the classifier, we
selection approach, we also performed lexical sérave noticed that the degradation in the F-score is
lection experiments on the United Nations (Arabicon the order of 3% across different corpora. The su-
English) corpus and the Hansard (French-Englisthertag information can then be exploited in the sen-
corpus using the SFST model and the BOW Maxengénce construction process. The use of supertags in
model. We used 1,000,000 training sentence paiffhrase-based SMT system has been shown to im-
and tested on 994 test sentences for the UN corpysrove results (Hassan et al., 2006).
For the Hansard corpus we used the same training A |ess obvious loss is the number of times a word
and test Sp“t asin (Zens and Ney, 2004) 1.4 ml”lor&)r Concept appears in the target senten&elnc-
training sentence pairs and 5432 test sentences. Tthﬂ'] words like "the” and "of” can appear many
vocabulary sizes for the two corpora are mentionegimes in an English sentence. In the model dis-
in Table 4. Also in Table 4, are the results in terms Oéussed in this paper, we index each occurrence of the
F-measure between the words in the reference sefinction word with a counter. In order to improve
tence and the decoded sentences. We can see thattmg method’ we are Currenﬂy exp|oring a technique
BOW model outperforms the SFST model on bothyhere the function words serve as attributes (e.g.
corpora significantly. This is due to a systematigjefiniteness, tense, case) on the contentful lexical
10% relative improvement for open class words, agems, thus enriching the lexical item with morpho-
they benefit from a much wider context. BOW persyntactic information.
formance on close class words is higher for the UN" A third issue concerning the BOW model is the
corpus but lower for the Hansard corpus. problem ofsynonyms- target words which translate
the same source word. Suppose that in the training
Table 4: Lexical Selection results (F-measure) Ofata, target words and¢, are, with equal probabil-
the Arabic-English UN Corpus and the Frenchity, translations of the same source word. Then, in
English Hansard Corpus. In parenthesis are khe presence of this source word, the probability to
measures for open and closed class lexical items. detect the corresponding target word, which we as-

Corpus < VocabulTary . SFST BOW sume is 0.8, will be, because of discriminant learn-
ource arge . . )
UN [ 252571 53,005 646 695 ing, split equally betweem, andts, that is 0.4 and
(60.5/69.1) | (66.2/72.6) 0.4. Because of this synonym problem, the BOW
Hansard| 100,270] 78,333 574 60.8 thresholdd has to be set lower than 0.5, which is
(50.6/67.7)| (56.5/634)|  pserved experimentally. However, if we set the

threshold to 0.3, both;, andt, will be detected in

the target sentence, and we found this to be a major
The BOW approach is promising as it performs reasource of undesirable insertions.
sonably well despite considerable losses in the trans-The BOW approach is different from the pars-
fer of information between source and target laning based approaches (Melamed, 2004; Zhang and
guage. The first and most obvious loss is about wor@ildea, 2005; Cowan et al., 2006) where the transla-
position. The only information we currently use totion model tightly couples the syntactic and lexical
restore the target word position is the target languagieems of the two languages. The decoupling of the

6 Discussion
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two steps in our model has the potential for genem. Dudik, S. Phillips, and R.E. Schapire. 2004. Perfor-
ating paraphrased sentences not necessarily isomormance Guarantees for Regularized Maximum Entropy Den-

phic to the structure of the source sentence. sity_Estimation. InProceedings of COLT'QBanff, Canada.
Springer Verlag.
7 Conclusions V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tur, A. Ljolje,
. . . L. . S. Parthasarathy, M. Rahim, G. Riccardi, and M. Saraclar.
We view machine translation as consisting of lexi- 2005, The AT&T WATSON Speech Recognizer. io-

cal selection and lexical reordering steps. These two ceedings of ICASSIPhiladelphia, PA.

steps need not necessarily be sequential and could,be,...... M Heame. K. Sima’an. and A Way. 2006. Syntac-

tightly integrated. We have presented the weighte tic phrase-based statistical machine translatiorPrbteed-
finite-state transducer model of machine translation ings of IEEE/ACL first International Workshop on Spoken

where lexical choice and a limited amount of lexical Language Technology (SLAruba, December.

reordering are tightly integrated into a single transs_ kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney. 2005.
duction. We have also presented a novel approachNovel reordering approaches in phrase-based statistical ma-
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2005 and 2006 IWSLT development sets and shown _ _ _
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Abstract

Dependency-based representations of natu-
ral language syntax require a fine balance
between structural flexibility and computa-
tional complexity. In previous work, several
constraints have been proposed to identify
classes of dependency structures that are well-
balanced in this sense; the best-known but
also most restrictive of these is projectivity.
Most constraints are formulated on fully spec-
ified structures, which makes them hard to in-
tegrate into models where structures are com-
posed from lexical information. In this paper,
we show how two empirically relevant relax-
ations of projectivity can be lexicalized, and
how combining the resulting lexicons with a
regular means of syntactic composition gives
rise to a hierarchy of mildly context-sensitive
dependency languages.

1 Introduction

Syntactic representations based on word-to-word de-
pendencies have a long tradition in descriptive lin-
guistics. Lately, they have also been used in many
computational tasks, such as relation extraction (Cu-
lotta and Sorensen, 2004), parsing (McDonald et al.,
2005), and machine translation (Quirk et al., 2005).
Especially in recent work on parsing, there is a par-
ticular interest in non-projective dependency struc-
tures, in which a word and its dependents may be
spread out over a discontinuous region of the sen-
tence. These structures naturally arise in the syntactic
analysis of languages with flexible word order, such

160

Mathias Mohl
Programming Systems Lab
Saarland University
Saarbriicken, Germany
mmohl@ps.uni-sb.de

as Czech (Vesela et al., 2004). Unfortunately, most
formal results on non-projectivity are discouraging:
While grammar-driven dependency parsers that are
restricted to projective structures can be as efficient
as parsers for lexicalized context-free grammar (Eis-
ner and Satta, 1999), parsing is prohibitively expen-
sive when unrestricted forms of non-projectivity are
permitted (Neuhaus and Broker, 1997). Data-driven
dependency parsing with non-projective structures is
quadratic when all attachment decisions are assumed
to be independent of one another (McDonald et al.,
2005), but becomes intractable when this assumption
is abandoned (McDonald and Pereira, 2006).

In search of a balance between structural flexibility
and computational complexity, several authors have
proposed constraints to identify classes of non-projec-
tive dependency structures that are computationally
well-behaved (Bodirsky et al., 2005; Nivre, 2006).
In this paper, we focus on two of these proposals:
the gap-degree restriction, which puts a bound on
the number of discontinuities in the region of a sen-
tence covered by a word and its dependents, and the
well-nestedness condition, which constrains the ar-
rangement of dependency subtrees. Both constraints
have been shown to be in very good fit with data from
dependency treebanks (Kuhlmann and Nivre, 2006).
However, like all other such proposals, they are for-
mulated on fully specified structures, which makes it
hard to integrate them into a generative model, where
dependency structures are composed from elemen-
tary units of lexicalized information. Consequently,
little is known about the generative capacity and com-
putational complexity of languages over restricted
non-projective dependency structures.

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 160-167,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



Contents of the paper In this paper, we show how
the gap-degree restriction and the well-nestedness
condition can be captured in dependency lexicons,
and how combining such lexicons with a regular
means of syntactic composition gives rise to an infi-
nite hierarchy of mildly context-sensitive languages.

The technical key to these results is a procedure
to encode arbitrary, even non-projective dependency
structures into trees (terms) over a signature of local
order-annotations. The constructors of these trees
can be read as lexical entries, and both the gap-de-
gree restriction and the well-nestedness condition
can be couched as syntactic properties of these en-
tries. Sets of gap-restricted dependency structures
can be described using regular tree grammars. This
gives rise to a notion of regular dependency lan-
guages, and allows us to establish a formal relation
between the structural constraints and mildly con-
text-sensitive grammar formalisms (Joshi, 1985): We
show that regular dependency languages correspond
to the sets of derivations of lexicalized Linear Con-
text-Free Rewriting Systems (LCFRS) (Vijay-Shanker
etal., 1987), and that the gap-degree measure is the
structural correspondent of the concept of ‘fan-out’
in this formalism (Satta, 1992). We also show that
adding the well-nestedness condition corresponds
to the restriction of LCFRs to Coupled Context-Free
Grammars (Hotz and Pitsch, 1996), and that regu-
lar sets of well-nested structures with a gap-degree
of at most 1 are exactly the class of sets of deriva-
tions of Lexicalized Tree Adjoining Grammar (LTAG).
This result generalizes previous work on the relation
between LTAG and dependency representations (Ram-
bow and Joshi, 1997; Bodirsky et al., 2005).

Structure of the paper The remainder of this pa-
per is structured as follows. Section 2 contains some
basic notions related to trees and dependency struc-
tures. In Section 3 we present the encoding of depen-
dency structures as order-annotated trees, and show
how this encoding allows us to give a lexicalized re-
formulation of both the gap-degree restriction and the
well-nestedness condition. Section 4 introduces the
notion of regular dependency languages. In Section 5
we show how different combinations of restrictions
on non-projectivity in these languages correspond
to different mildly context-sensitive grammar for-
malisms. Section 6 concludes the paper.
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2 Preliminaries

Throughout the paper, we write [1] for the set of all
positive natural numbers up to and including n. The
set of all strings over a set A is denoted by A*, the
empty string is denoted by ¢, and the concatenation
of two strings x and y is denoted either by xy, or,
where this is ambiguous, by x - y.

2.1 Trees

In this paper, we regard trees as terms. We expect the
reader to be familiar with the basic concepts related
to this framework, and only introduce our particular
notation. Let X' be a set of labels. The set of (finite,
unranked) frees over X' is defined recursively by the
equation Ty := {o(x) | 0 € X, x € Ty, }. The set
of nodes of atree t € Ty is defined as

N (t1+-1n)) = e} Uliu | i € [n],u € N(t;)}.

For two nodes u, v € N(t), we say that u governs v,
and write u <] v, if v can be written as v = ux, for
some sequence x € N*. Note that the governance
relation is both reflexive and transitive. The converse
of government is called dependency, sou < v can
also be read as ‘v depends on u’. The yield of a
node u € N(t), |u], is the set of all dependents of u
int: lu] :={ve Nt |u v} Wealso use the
notations #(u) for the label at the node u of ¢, and
t /u for the subtree of ¢ rooted at u. A tree language
over X is a subset of T';.

2.2 Dependency structures

For the purposes of this paper, a dependency structure
over X is a pair d = (¢, x), where ¢t € Ty is a tree,
and x is a list of the nodes in . We write Dy to
refer to the set of all dependency structures over X.
Independently of the governance relation in d, the
list x defines a total order on the nodes in ¢; we
write 4 < v to denote that u precedes v in this order.
Note that, like governance, the precedence relation is
both reflexive and transitive. A dependency language
over X is a subset of D x.

ExampPLE. The left half of Figure 1 shows how we
visualize dependency structures: circles represent
nodes, arrows represent the relation of (immediate)
governance, the left-to-right order of the nodes repre-
sents their order in the precedence relation, and the
dotted lines indicate the labelling. O
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Figure 1: A projective dependency structure

3 Lexicalizing the precedence relation

In this section, we show how the precedence relation
of dependency structures can be encoded as, and
decoded from, a collection of node-specific order
annotations. Under the assumption that the nodes of
a dependency structure correspond to lexemic units,
this result demonstrates how word-order information
can be captured in a dependency lexicon.

3.1 Projective structures

Lexicalizing the precedence relation of a dependency
structure is particularly easy if the structure under
consideration meets the condition of projectivity. A
dependency structure is projective, if each of its
yields forms an interval with respect to the prece-
dence order (Kuhlmann and Nivre, 2006).

In a projective structure, the interval that corre-
sponds to a yield |u | decomposes into the singleton
interval [u, u], and the collection of the intervals that
correspond to the yields of the immediate dependents
of u. To reconstruct the global precedence relation,
it suffices to annotate each node u with the relative
precedences among the constituent parts of its yield.
We represent this ‘local’” order as a string over the
alphabet Ng, where the symbol O represents the sin-
gleton interval [u, u], and a symbol i # O represents
the interval that corresponds to the yield of the ith
direct dependent of u. An order-annotated tree is a
tree labelled with pairs (o, w), where o is the label
proper, and w is a local order annotation. In what
follows, we will use the functional notations o (u)
and w(u) to refer to the label and order annotation
of u, respectively.

ExampLE. Figure 1 shows a projective dependency
structure together with its representation as an order-
annotated tree. 0

162

We now present procedures for encoding projec-
tive dependency structures into order-annotated trees,
and for reversing this encoding.

Encoding The representation of a projective depen-
dency structure (¢, x) as an order-annotated tree can
be computed in a single left-to-right sweep over x.
Starting with a copy of the tree ¢ in which every
node is annotated with the empty string, for each new
node u in x, we update the order annotation of u
through the assignment w(u) := w(u)-0. Ifu = vi
for some i € N (that is, if u is an inner node), we
also update the order annotation of the parent v of u
through the assignment w(v) := w(v) - i.

Decoding To decode an order-annotated tree ¢, we
first linearize the nodes of ¢ into a sequence x, and
then remove all order annotations. Linearization pro-
ceeds in a way that is very close to a pre-order traver-
sal of the tree, except that the relative position of
the root node of a subtree is explicitly specified in
the order annotation. Specifically, to linearize an or-
der-annotated tree, we look into the local order w(u)
annotated at the root node of the tree, and concatenate
the linearizations of its constituent parts. A symbol i
in w(u) represents either the singleton interval [u, u]
(i = 0), or the interval corresponding to some direct
dependent ui of u (i # 0), in which case we pro-
ceed recursively. Formally, the linearization of u is
captured by the following three equations:

lin(u) = lin'(u, w(u))
lin'(u, iy ---ip) = lin"(u,iy)---lin" (u, iy)
lin”(u,i) = ifi = 0 then u else lin(ui)

Both encoding and decoding can be done in time
linear in the number of nodes of the dependency
structure or order-annotated tree.

3.2 Non-projective structures

It is straightforward to see that our representation of
dependency structures is insufficient if the structures
under consideration are non-projective. To witness,
consider the structure shown in Figure 2. Encoding
this structure using the procedure presented above
yields the same order-annotated tree as the one shown
in Figure 1, which demonstrates that the encoding is
not reversible.
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Figure 2: A non-projective dependency structure

Blocks In a non-projective dependency structure,
the yield of a node may be spread out over more than
one interval; we will refer to these intervals as blocks.
Two nodes v, w belong to the same block of a node u,
if all nodes between v and w are governed by u.

ExamPLE. Consider the nodes b, ¢, d in the struc-
tures depicted in Figures 1 and 2. In Figure 1, these
nodes belong to the same block of ». In Figure 2,
the three nodes are spread out over two blocks of b
(marked by the boxes): ¢ and d are separated by a
node (e) not governed by b. 0

Blocks have a recursive structure that is closely re-
lated to the recursive structure of yields: the blocks of
anode u can be decomposed into the singleton [u, u],
and the blocks of the direct dependents of u. Just as
a projective dependency structure can be represented
by annotating each yield with an order on its con-
stituents, an unrestricted structure can be represented
by annotating each block.

Extended order annotations To represent orders
on blocks, we extend our annotation scheme as fol-
lows. First, instead of a single string, an annotation
w(u) now is a tuple of strings, where the kth com-
ponent specifies the order among the constituents of
the kth block of u. Second, instead of one, the an-
notation may now contain multiple occurrences of
the same dependent; the kth occurrence of i in w(u)
represents the kth block of the node ui.

We write w(u) to refer to the kth component of
the order annotation of u. We also use the notation
(i#k), to refer to the kth occurrence of i in w(u),
and omit the subscript when the node u is implicit.

ExAMPLE. In the annotated tree shown in Figure 2,
w(b)1 = (0#1)(1#1), and w(b), = (1#2). O
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Encoding To encode a dependency structure (z, x)
as an extended order-annotated tree, we do a post-
order traversal of ¢ as follows. For a given node u, let
us represent a constituent of a block of u as a triple
i :[v7,vr], where i denotes the node that contributes
the constituent, and v; and v, denote the constituent’s
leftmost and rightmost elements. At each node u, we
have access to the singleton block O : [u, u], and the
constituent blocks of the immediate dependents of u.
We say that two blocks i : [v7, vr], j @ [wy, wy] can
be merged, if the node v, immediately precedes the
node w;. The result of the merger is a new block ij :
[v;, wy] that represents the information that the two
merged constituents belong to the same block of u.
By exhaustive merging, we obtain the constituent
structure of all blocks of u. From this structure, we
can read off the order annotation w(u).

ExaMpLE. The yield of the node b in Figure 2 de-
composes into 0 : [b,b], 1 : [c,c], and 1 : [d,d].
Since b and c are adjacent, the first two of these con-
stituents can be merged into a new block 01 : [, c];
the third constituent remains unchanged. This gives
rise to the order annotation (01, 1) for b. O

When using a global data-structure to keep track
of the constituent blocks, the encoding procedure can
be implemented to run in time linear in the number
of blocks in the dependency structure. In particular,
for projective dependency structures, it still runs in
time linear in the number of nodes.

Decoding To linearize the kth block of a node u,
we look into the kth component of the order anno-
tated at u, and concatenate the linearizations of its
constituent parts. Each occurrence (i#k) in a com-
ponent of w(u) represents either the node u itself
(i = 0), or the kth block of some direct dependent ui
of u (i # 0),in which case we proceed recursively:

lin(u, k) =
lin/ iy i) =
lin” (u, (i#k)y) =

lin" (u, w(u)g)
lin” (u,iy)---lin" (u, i)
if i = 0 then u else lin(ui, k)

The root node of a dependency structure has only
one block. Therefore, to linearize a tree ¢, we only
need to linearize the first block of the tree’s root node:
lin(¢) = lin(g, 1).



Consistent order annotations Every dependency
structure over X can be encoded as a tree over the set
Y x §2, where 2 is the set of all order annotations.
The converse of this statement does not hold: to be
interpretable as a dependency structure, tree structure
and order annotation in an order-annotated tree must
be consistent, in the following sense.

ProPERTY C1: Every annotation w(u) in a tree ¢
contains all and only the symbols in the collection
{0y U {i | ui € N(t)},i.e., one symbol for u, and
one symbol for every direct dependent of u.

ProPERTY C2: The number of occurrences of a
symbol i # 0 in w(u) is identical to the number of
components in the annotation of the node ui. Further-
more, the number of components in the annotation
of the root node is 1.

With this notion of consistency, we can prove the
following technical result about the relation between
dependency structures and annotated trees. We write
75 (s) for the tree obtained from a tree s € Ty«
by re-labelling every node u with o (u).

ProposiTION 1. For every dependency structure
(z, x) over X, there exists a tree s over X' X §2 such
that wx(s) = t and lin(s) = x. Conversely, for
every consistently order-annotated tree s € Ty x g,
there exists a uniquely determined dependency struc-
ture (¢, x) with these properties. O

3.3 Local versions of structural constraints

The encoding of dependency structures as order-an-
notated trees allows us to reformulate two constraints
on non-projectivity originally defined on fully speci-
fied dependency structures (Bodirsky et al., 2005) in
terms of syntactic properties of the order annotations
that they induce:

Gap-degree The gap-degree of a dependency
structure is the maximum over the number of dis-
continuities in any yield of that structure.

ExampPLE. The structure depicted in Figure 2 has
gap-degree 1: the yield of b has one discontinuity,
marked by the node e, and this is the maximal number
of discontinuities in any yield of the structure.

Since a discontinuity in a yield is delimited by two
blocks, and since the number of blocks of a node u
equals the number of components in the order anno-
tation of u, the following result is obvious:
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ProposITION 2. A dependency structure has gap-de-
gree k if and only if the maximal number of compo-
nents among the annotations w(u) is k + 1. O

In particular, a dependency structure is projective iff
all of its annotations consist of just one component.

Well-nestedness The well-nestedness condition
constrains the arrangement of subtrees in a depen-
dency structure. Two subtrees ¢ /u1,t/uy interleave,
if there are nodes vll, v! € t/uy and vlz, v2 € t/uy
such that v 11 < vl2 < v} < v2. A dependency struc-
ture is well-nested, if no two of its disjoint subtrees

interleave. We can prove the following result:

ProposiTION 3. A dependency structure is well-
nested if and only if no annotation w(u) contains
a substring i -+-j---i---j,fori, j € N. O

ExampLE. The dependency structure in Figure 1 is
well-nested, the structure depicted in Figure 2 is not:
the subtrees rooted at the nodes » and e interleave.
To see this, notice that b < e < d < f. Also notice
that w(a) contains the substring 1212. O

4 Regular dependency languages

The encoding of dependency structures as order-an-
notated trees gives rise to an encoding of dependency
languages as tree languages. More specifically, de-
pendency languages over a set X' can be encoded
as tree languages over the set X' x §2, where £2 is
the set of all order annotations. Via this encoding,
we can study dependency languages using the tools
and results of the well-developed formal theory of
tree languages. In this section, we discuss depen-
dency languages that can be encoded as regular tree
languages.

4.1 Regular tree grammars

The class of regular tree languages, REGT for short,
is a very natural class with many characterizations
(Gécseg and Steinby, 1997): it is generated by regular
tree grammars, recognized by finite tree automata,
and expressible in monadic second-order logic. Here
we use the characterization in terms of grammars.
Regular tree grammars are natural candidates for the
formalization of dependency lexicons, as each rule
in such a grammar can be seen as the specification of
a word and the syntactic categories or grammatical
functions of its immediate dependents.



Formally, a (normalized) regular tree grammar is
a construct G = (Ng, Xg, S, Pg), in which Ng
and X are finite sets of non-terminal and termi-
nal symbols, respectively, Sg € Ng is a dedicated
start symbol, and Pg is a finite set of productions
of the foom A — o(A1---A,), where 0 € Xg,
A € Ng,and A; € Ng, forevery i € [n]. The (di-
rect) derivation relation associated to G is the binary
relation = ¢ on the set T's;un,; defined as follows:

t/u=4A4A (A—s) € Pg
t =g tu 5]

I e TEGUNG

Informally, each step in a derivation replaces a non-
terminal-labelled leaf by the right-hand side of a
matching production. The tree language generated
by G is the set of all terminal trees that can eventu-
ally be derived from the trivial tree formed by its start
symbol: L(G) ={t €Ty, |Sc =51}

4.2 Regular dependency grammars

We call a dependency language regular, if its encod-
ing as a set of trees over X' x §2 forms a regular tree
language, and write REGD for the class of all regular
dependency languages. For every regular dependency
language L, there is a regular tree grammar with ter-
minal alphabet X' x §2 that generates the encoding
of L. Similar to the situation with individual struc-
tures, the converse of this statement does not hold:
the consistency properties mentioned above impose
corresponding syntactic restrictions on the rules of
grammars G that generate the encoding of L.

ProPERTY C1’: The w-component of every pro-
duction A — (o, w)(A; --- A,) in G contains all and
only symbols in the set {0} U {i | i € [n] }.

PrROPERTY C2’: For every non-terminal X € Ng,
there is a uniquely determined integer dy such that
for every production A — (o, w)(A1---Ap) in G,
dy; gives the number of occurrences of 7 in w, dg4
gives the number of components in w, and ds; = 1.

It turns out that these properties are in fact sufficient
to characterize the class of regular tree grammars that
generate encodings of dependency languages. In but
slight abuse of terminology, we will refer to such
grammars as regular dependency grammars.

ExampLE. Figure 3 shows a regular tree grammar
that generates a set of non-projective dependency
structures with string language {a"b" |n > 1}.
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S — (a,(01))(B) | (a.(0121))(A, B)
A = (a.(0.1))(B) | {a.(01,21))(A, B)
B — (b.(0))

Figure 3: A grammar for a language in REGD(1)

S Structural constraints and formal power

In this section, we present our results on the genera-
tive capacity of regular dependency languages, link-
ing them to a large class of mildly context-sensitive
grammar formalisms.

5.1 Gap-restricted dependency languages

A dependency language L is called gap-restricted, if
there is a constant ¢;, > 0 such that no structure in L
has a gap-degree higher than cz.. It is plain to see that
every regular dependency language is gap-restricted:
the gap-degree of a structure is directly reflected in
the number of components of its order annotations,
and every regular dependency grammar makes use of
only a finite number of these annotations. We write
REGD(k) to refer to the class of regular dependency
languages with a gap-degree bounded by k.

Linear Context-Free Rewriting Systems Gap-re-
stricted dependency languages are closely related
to Linear Context-Free Rewriting Systems (LCFRS)
(Vijay-Shanker et al., 1987), a class of formal sys-
tems that generalizes several mildly context-sensitive
grammar formalisms. An LCFRS consists of a regular
tree grammar G and an interpretation of the terminal
symbols of this grammar as linear, non-erasing func-
tions into tuples of strings. By these functions, each
tree in L(G) can be evaluated to a string.

ExampPLE. Here is an example for a function:
1.2 1 1 .12
Sxpox1) {x2)) = (axy, xyx7)

This function states that in order to compute the pair
of strings that corresponds to a tree whose root node
is labelled with the symbol f, one first has to com-
pute the pair of strings corresponding to the first child



of the root node ({x{, x?)) and the single string cor-
responding to the second child ({x1)), and then con-
catenate the individual components in the specified
order, preceded by the terminal symbol a. O

We call a function lexicalized, if it contributes ex-
actly one terminal symbol. In an LCFRs in which all
functions are lexicalized, there is a one-to-one cor-
respondence between the nodes in an evaluated tree
and the positions in the string that the tree evaluates
to. Therefore, tree and string implicitly form a depen-
dency structure, and we can speak of the dependency
language generated by a lexicalized LCFRS.

Equivalence We can prove that every regular de-
pendency grammar can be transformed into a lexi-
calized LCFRs that generates the same dependency
language, and vice versa. The basic insight in this
proof is that every order annotation in a regular de-
pendency grammar can be interpreted as a compact
description of a function in the corresponding LCFRS.
The number of components in the order-annotation,
and hence, the gap-degree of the resulting depen-
dency language, corresponds to the fan-out of the
function: the highest number of components among
the arguments of the function (Satta, 1992).! A tech-
nical difficulty is caused by the fact that LCFRS can
swap components: f({x},x?)) = (ax?,x]). This
commutativity needs to be compiled out during the
translation into a regular dependency grammar.

We write LLCFRL(k) for the class of all depen-
dency languages generated by lexicalized LCFRS with
a fan-out of at most k.

ProrosiTioN 4. REGD(k) = LLCFRL(k + 1) [

In particular, the class REGD(0) of regular depen-
dency languages over projective structures is exactly
the class of dependency languages generated by lexi-
calized context-free grammars.

ExaMpLE. The gap-degree of the language generated
by the grammar in Figure 3 is bounded by 1. The
rules for the non-terminal A can be translated into
the following functions of an equivalent LCFRS:

fiao.n((x1) = (a,x])
f(a’(oml))((x},xf),(x;)) = (ax%,x;xf)
The fan-out of these functions is 2. 0

"More precisely, gap-degree = fan-out — 1.
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5.2 Well-nested dependency languages

The absence of the substring i -+- j --+i --- j in the
order annotations of well-nested dependency struc-
tures corresponds to a restriction to ‘well-bracketed’
compositions of sub-structures. This restriction is
central to the formalism of Coupled-Context-Free
Grammar (ccrG) (Hotz and Pitsch, 1996).

It is straightforward to see that every CCFG can
be translated into an equivalent LCFRS. We can also
prove that every LCFRS obtained from a regular depen-
dency grammar with well-nested order annotations
can be translated back into an equivalent cCFG. We
write REGD,,,,(k) for the well-nested subclass of
REGD(k), and LCCFL(k) for the class of all depen-
dency languages generated by lexicalized ccrGs with
a fan-out of at most k.

ProrosiTiON 5. REGD,,,,(k) = LCCFL(k + 1)

As a special case, Coupled-Context-Free Grammars
with fan-out 2 are equivalent to Tree Adjoining Gram-
mars (TAGS) (Hotz and Pitsch, 1996). This enables
us to generalize a previous result on the class of de-
pendency structures generated by lexicalized TAGS
(Bodirsky et al., 2005) to the class of generated de-
pendency languages, LTAL.

ProposiTion 6. REGD,,,,(1) = LTAL O

6 Conclusion

In this paper, we have presented a lexicalized refor-
mulation of two structural constraints on non-pro-
jective dependency representations, and shown that
combining dependency lexicons that satisfy these
constraints with a regular means of syntactic com-
position yields classes of mildly context-sensitive
dependency languages. Our results make a signif-
icant contribution to a better understanding of the
relation between the phenomenon of non-projectivity
and notions of formal power.

The close link between restricted forms of non-
projective dependency languages and mildly context-
sensitive grammar formalisms provides a promising
starting point for future work. On the practical side,
it should allow us to benefit from the experience
in building parsers for mildly context-sensitive for-
malisms when addressing the task of efficient non-
projective dependency parsing, at least in the frame-



work of grammar-driven parsing. This may even-
tually lead to a better trade-off between structural
flexibility and computational efficiency than that ob-
tained with current systems. On a more theoretical
level, our results provide a basis for comparing a va-
riety of formally rather distinct grammar formalisms
with respect to the sets of dependency structures that
they can generate. Such a comparison may be empir-
ically more adequate than one based on traditional
notions of generative capacity (Kallmeyer, 2006).
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Abstract

This paper shows how to use the Unfold-
Fold transformation to transform Projective
Bilexical Dependency Grammars (PBDGSs)
into ambiguity-preserving weakly equiva-
lent Context-Free Grammars (CFGs). These
CFGs can be parsed 0(n?) time using a
CKY algorithm with appropriate indexing,
rather than theO(n®) time required by a
naive encoding. Informally, using the CKY
algorithm with such a CFG mimics the steps
of the Eisner-Satté&)(n?) PBDG parsing al-
gorithm. This transformation makes all of
the techniques developed for CFGs available
to PBDGs. We demonstrate this by describ-
ing a maximum posterior parse decoder for
PBDGs.

Introduction

Brown University
Providence, RI
Mar k_Johnson@r own. edu

step, the Unfold-Fold transformation, to transform a
PBDG into an equivalent CFG that can be parsed in
O(n?3) time using a version of the CKY algorithm
with suitable indexing (Younger, 1967), and extend
this transformation so that it captures second-order
PBDG dependencies as well. The transformations
are ambiguity-preserving, i.e., there is a one-to-
one mapping between dependency parses and CFG
parses, so it is possible to map the CFG parses back
to the PBDG parses they correspond to.

The PBDG to CFG reductions make techniques
developed for CFGs available to PBDGs as well. For
example, incremental CFG parsing algorithms can
be used with the CFGs produced by this transform,
as can the Inside-Outside estimation algorithm (Lari
and Young, 1990) and more exotic methods such as
estimating adjoined hidden states (Matsuzaki et al.,
2005; Petrov et al., 2006). As an example appli-
cation, we describe a maximum posterior parse de-
coder for PBDGs in Section 8.

Projective Bilexical Dependency Grammars (PB-

DGs) have attracted attention recently for two rea- The Unfold-Fold transformation is a calculus for
sons. First, because they capture bilexical head-ttransforming functional and logic programs into
head dependencies they are capable of producieguivalent but (hopefully) faster programs (Burstall

extremely high-quality parses: state-of-the-art disand Darlington, 1977).

We use it here to trans-

criminatively trained PBDG parsers rival the accuform CFGs encoding dependency grammars into
racy of the very best statistical parsers available tawther CFGs that are more efficiently parsable. Since
day (McDonald, 2006). Second, Eisner-Saita>)
PBDG parsing algorithms are extremely fast (Eisnegrams (Pereira and Shieber, 1987) and the Unfold-
1996; Eisner and Satta, 1999; Eisner, 2000).
This paper investigates the relationship betweegrams (Sato, 1992; Pettorossi and Proeitti, 1992), it
Context-Free Grammar (CFG) parsing and the Eidellows that its application to CFGs is provably cor-

ner/Satta PBDG parsing algorithms, including theirect as well. The Unfold-Fold transformation is used

CFGs can be expressed as Horn-clause logic pro-

Fold transformation is provably correct for such pro-

extension to second-order PBDG parsing (McDorhkere to derive the CFG schemata presented in sec-
ald, 2006; McDonald and Pereira, 2006). Specifiions 5-7. A system that uses these schemata (such
cally, we show how to use an off-line preprocessings the one described in section 8) can implement
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these schemata directly, so the Unfold-Fold trans- m

formation plays a theoretical role in this work, justi- 0 Sandy gavethe dog a bone
fying the resulting CFG schemata.
The closest related work we are aware of o
is McAllester (1999), which also describes a refigure 1: A projective dependency parse for the sen-
duction of PBDGs to efficiently-parsable CFGdence “Sam gave the dog a bone”.
and directly inspired this work. However, the

CFGs produced by McAllester’s transformation in- 5 dependency parsé is projectiveiff whenever

clude epsilon-productions so they require a specigfhere s a path from to v then there is also a path
ized CFG parsing algorithm, while the CFGs progqm 4, t every word between andv in w* as well.

d_uced by the t_ransformations described here h?“ﬁgure 1 depicts a projective dependency parse for
binary productions so they can be parsed Withe sentence “Sam gave the dog a bone”.

standard CFG parsing algorithms.  Further, our a prgiective dependency grammar defines a set of
approach extends to second-order PBDG parsingrqiactive dependency parses. Phojective Bilexi-

while McAllester pnly discu_sses first-order PBDGs 4, Dependency Gramm4PBDG) consists of two
Th_e rest of this paper is structured as follows,g|ations™ and "™, both defined ovefS U {0}) x

Section 2 defines pr_OJectNe plependency_graphs aRd A PBDG generates a projective dependency

grammars and Section 3 reviews the “na'Ve"_e”COdﬁarseG iff w>v for all right dependencieu, v)

ing of PBDGs as CFGs with a@(n®) parse time, iy ¢ and 4 for all left dependenciesu, v) in

v_vheren is the length of th_e string to be parsed_. Secy. The language generated by a PBDG is the set
tion 4 introduces the spI|4t—head CFG encoding ofyf strings that have projective dependency parses
PBDGs, which has a®(n") parse time and SerVes%enerated by the grammar. The following depen-

as the input to the Unfold-Fold transform. Section ency grammar generates the dependency parse in
uses the Unfold-Fold transform to obtain a WeaklyFigure 1.

equivalent CFG encoding of PBDGs which can be

parsed inO(n?) time, and presents timing results 0 gave  Sandy gave
showing that the transformation does speed parsing. gave “dog the ~dog
Sections 6 and 7 apply Unfold-Fold in slightly more gave “bone & bone

complex ways to obtain CFG encodings of PBDGs
that also make second-order dependencies availableThis paper does not consider stochastic depen-
in O(n?) time parsable CFGs. Section 8 applies @ency grammars directly, but see Section 8 for an
PBDG to CFG transform to obtain a maximum posapplication involving them. However, it is straight-
terior decoding parser for PBDGs. forward to associate weights with dependencies, and
since the dependencies are preserved by the transfor-
2 Projective bilexical dependency parses  mations, obtain a weighted CFG. Standard methods
and grammars for converting weighted CFGs to equivalent PCFGs
can be used if required (Chi, 1999). Alternatively,
one can transform a corpus of dependency parses
into a corpus of the corresponding CFG parses, and
estimate CFG production probabilities directly from
Othat corpus.

Let X2 be a finite set ofterminals (e.g., words),
and let 0 be theoot terminal not in . If w =
(wi,...,wy,) € X*, letw* = (0,wy,...,w,), i.e.,
w* is obtained by prefixingy with 0. A dependency
parseG for w is a tree whose root is labeled 0 an
whose other vertices are labeled with each of the
terminals inw. If G contains an arc from to v then
we say thaw is adependenbf u, and if G contains  There is a well-known method for encoding a PBDG
a path fromu to v then we say that is adescendant as a CFG in which each terminale Y. is associated

of u. If v is dependent of that also precedesin  with a corresponding nonterminal Xhat expands
w* then we say that is aleft dependentdf « (right to« and all ofu’s descendants. The nonterminals of
dependent and left and right descendants are defintk naive encoding CFG consist of the start symbol
similarly). S and symbols X for each terminaku € ¥, and
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the productions of the CFG are the instances of the

following schemata: X v
S - X, where 0y Xsa‘ndy X oo
Xu — U Sandy /X% Xy one
X, — X X  wherev* u « y x/\
X, — X, X, whereu v gave dog 2 bone
. ) . gave X X a bone
The dependency annotations associated with each the fos
production specify how to interpret a local tree gen- the  dog
erated by that production, and permit us to map a ?
CFG parse to the corresponding dependency parse. X o
For example, the top-most local tree in Figure 2 was
generated by the production S X, and indi- X save &&
cate that in this parse 0’ gave. X X jos X -
Given a terminal vocabulary of size the CFG — ‘ ‘
containsO(m?) productions, so it is impractical to  Xsynay Xewe  Xipe  Xgog @ bONE
enumerate all possible productions for even modestSandy gave the dog
vocabularies. Instead productions relevant to a par-
ticular sentence are generated on the fly. Figure 2: Two parses using the naive CFG encod-

The naive encoding CFG in general requireg,g that both correspond to the dependency parse of
O(n) parsing time with a conventional CKY pars-Figure 1.

ing algorithm, since tracking the head annotations
andv multiplies the standar®(n3) CFG parse time _ o
requirements by an additional factor proportional to The split-head CFG for a PBDG is given by the

the O(n?) productions expanding X following schemata:
An additional problem with the naive encoding

is that the resulting CFG in general exhibits spuri- S — X, where 0" ~u

ous ambiguities, i.e., a single dependency parse may X, — L, ,R whereueX

correspond to more than one CFG parse, as shown L, — w

in Figure 2. Informally, this is because the CFG per- L, — X, L, wherev u

mits left and the right dependencies to be arbitrarily LR

intermingled. LR — R X whereu v

4 Split-head encoding of PBDGs The dependency parse shown in Figure 1 corre-

sponds to the split-head CFG parse shown in Fig-

e 3. Each X expands 0w e cateores
g 9] énduR. L, consists ofy; and all ofu’s left descen-

This section presents a method we call the “split- ] i ]
nts, while R consists ofu,. and all ofu’s right

head encoding”, which removes the ambiguities anf

u . - - -
serves as starting point for the grammar transfornfi€Scendants. The spurious ambiguity present in the
described below. naive encoding does not arise in the split-head en-

The split-head encoding represents each word coding because the left and right dependents of a
in the input stringw by two unique terminalsy head are assembled independently and cannot inter-

andu, in the CFG parse. A splitthead CFG's ter-Tndle. N _
As can be seen by examining the split-head

minal vocabulary isY = {uju, : u € X}, ) =P
where ¥ is the set of terminals of the PBDG. A Schemata, theightmostdescendant of L is either
PBDG parse with yields = (uq, ..., u,) is trans- L, OF u;, which guarantees that the rightmost termi-
formed to a split-head CFG parse with yield = nal dominated by L is alwaysu,; similarly theleft-
(W11, ULy oy Up gy Un ), SO[W'| = 2]w). mostterminal dominated byR is alwaysu,. Thus
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X ave
L ave ave
xSandy gave ave bone
/\
LSandy SandyR gavoR /X@g\ I_bonc boncR
Sahdy Sar‘1d¥ gave ga‘ve L R X/\
T //QQK dog et S ane
X L, L R bong bone
e og a a T
— | | |
t‘he thf‘sR doq dogr al ar
the the

Figure 3: The split-head parse corresponding to the depegpdgaph depicted in Figure 1. Notice that
is always the rightmost descendant ofandu, is always the leftmost descendant &, which means that
these indices are redundant given the constituent spans.

these subscript indices are redundant given the striig A O(n?) split-head grammar
positions of the constituents, which means we do n
need to track the indexin L and R but can parse

with just the two categories L and R, and determin

<%Ihe split-head encoding described in the previous
section require®(n?*) parsing time because the in-

. . , . dexwv on X is not redundant. We can obtain an
the index from the constituent’s span when required. v

. : 3 )
It is straight-forward to extend the split-head CFGIe quglr;’:]lleGIEt ?rr:rr]rsl;g?rrmt::atﬂ?glg Ii(:—?]lg;?nr a)rr?rigr Us-
to encode the additional state information requirec§1g y 9 b g

by the head automata of Eisner and Satta (199?3 1g Unfold-Fold. We describe the transformation on

s . . ; the transformation of R is symmetric.

this corresponds to splitting the non-terminals L ~« L .o . .
S . Lo We begin with the definition of L in the split-

and R. For simplicity we work with PBDGs in this head grammar above (“separatesuthe right-hand
paper, but all of the Unfold-Fold transformations de- ides of productions)
scribed below extend to split-head grammars with P '
the additional state structure required by head au- L — w | X L wherev u
tomata. “ v

Implementation note_: it is possible to_di_rectlyoljr first transformation step is to unfold Xn L ,
parse the “undoubled” input string by modifying j.e_, replace X by its expansion, producing the fol-
both the CKY algorithm and the CFGs describeqy,ying definition for L, (ignore the underlining for

in this paper. Modify L and R so they both ul- now).

timately expand to the same termingland special-

case the implementation of production %> L R L, — w | L, R L, wherev* " u

and all productions derived from it to permit land

,Rto overlap by the terminal. This removes the offending Xn L _, but the result-

The split-head formulation explains what initially ing definition of L contains ternary productions and
seem unusual properties of existing PBDG algoso still incursO(n*) parse time. To address this we
rithms. For example, one of the standard “sanitgefine new nonterminaLgiVIy for eachz,y € X
checks” for the Inside-Outside algorithm—that the
outside probability of each terminal is equal to the xMy - R Ly
sentence’s inside probability—fails for these algo-
rithms. In fact, the outside probability of each ter-and fold the underlined children in linto M :
minal isdoublethe sentence’s inside probability be-
cause these algorithms implicitly collapse the two xIVIy - _R Ly wherez,y € ¥
terminalsuy; andw, into a single terminal:. L, — w | L, M wherev" u
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5 —

L
ave ave
g M
andy Sand gave gave _ bone bone
/\
San(‘iy gave ave R L bone
/\
Sandy Sand¥ gavcM dog 4o R La ﬁb%
/—\
gav‘e Ldog d‘R b‘one
_—
gave gave L. M, a a bong bone
/\
theR Ldog

the the, dogr dog
Figure 4: TheO(n?) split-head parse corresponding to the dependency grapiyafe-L.

The O(n?) split-head grammar is obtained by un-schemata described so far. The production schemata
folding the occurence of Xin the S production and were hard-coded for speed, and the implementation
dropping the X schema as Xno longer appears on trick described in section 4 was used to avoid dou-
the rlght hand side of any production. The resultingling the terminal string. We obtained dependency

O(n?) split-head grammar schemata are as followsveights from our existing discriminatively-trained
PBDG parser (not cited to preserve anonymity). We

S - L, R where 0 u compared the parsers’ running times on section 24
L — of the Penn Treebank. Because all three CFGs im-
|_u —~ L M wherev*u plement the same dependency grammar their Viterbi
R u: v parses have the same dependency accuracy, namely
‘R =~ M R whereu v 0.8918. We precompute the dependency weights,
M — RL  wherer,ycy so the times include just the dynamic programming
v v computation on a 3.6GHz Pentium 4.
As before, the dependency annotations on the pro- CFG schemata  sentences parsed / second
duction schemata permit us to map CFG parses to NaiveO(n’) CFG 45.4
the corresponding dependency parse. This grammar O(n*) CFG 406.2
requiresO(n?) parsing time to parse because the in- O(n?) CFG 3580.0

dices are redundant given the constituent’s string po- 3
sitions for the reasons described in section 4. Spect  An O(n?) adjacent-head grammar

ically, the rightmost terminal of Lis alwaysu;, the  his section shows how to further transform the

leftmost terminal of R is alwaysu, and the left-  (n3) grammar described above into a form that

most and rightmost terminals oM _arev; andu,  encodes second-order dependencies between ad-

respectively. jacent dependent heads in much the way that a
The O(n3) split-head grammar is closely relatedMarkov PCFG does (McDonald, 2006; McDonald

to theO(n?®) PBDG parsing algorithm given by Eis- and Pereira, 2006). We provide a derivation for the

ner and Satta (1999). Specifically, the steps involved constituents; there is a parallel derivation fé.

in parsing with this grammar using the CKY algo- ‘e begin by unfolding X in the definition of L

rithm are essentially the same as those performeglthe split-head grammar producing as before:
by the Eisner/Satta algorithm. The primary differ-

ence is that the Eisner/Satta algorithm involves two L, - w|L, RL,
separate categories that are collapsed into the single
category M here. Now introduce a new nontermlnaM which is a

To confirm their relative performance we imple-specialized version of M requmng thatls a left-
mented stochastic CKY parsers for the three CF@ependent of;, and fold the underlined constituents
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L ve a ER
‘* ************* :F};&Lr—\
/\ : aveMbone : boneR
L R |
LSandy Sand gave ,’:_/g/a_\;c,_dog\ ‘/dmgh/lbo&l\
R gave gave L. R L
Sdm‘iy q T /d\()k . do /ane\L
Sandy Sandy L M dog L, ﬁw
th?R doq dog ‘ a‘R bonq bone
thel ther S a

Figure 5: TheO(n?) adjacent-head parse corresponding to the dependency gir&igure 1. The boxed
local tree indicateoneis the dependent afivefollowing the dependerdog, i.e., give ~ dog ~ bone .

intovMZ. of each constituent, so they need not be computed
. . or stored and the CFG can be parsedim?) time.
M, — RL, wherev™ "u The steps involved in CKY parsing with this gram-
L, — w|L, M’ wherev " u mar correspond closely to those of the McDonald

) o . _ (2006) second-order PBDG parsing algorithm.
Now unfold L in the definition of M ', producing:

L. VEs

L
M LoOvov o u

v u

- Ruw | RL, M
. . . . 7 An O(n?®) dependent-head grammar
Note that in the first production expandlgylz, v (n®) dep 9
is theclosestleft dependent ofi, and in the second
productionv andv’ areadjacentleft-dependents of
U. UMz has a ternary production, so we introduc

xMy as before to fold the underlined constituent%

This section shows a different application of Unfold-
old can capture head-to-head-to-head dependen-
ies, i.e., “vertical” second-order dependencies,

Into. rather than the “horizontal” ones captured by the
xMy - R Ly wherez,y € 2 transformation described in the previous section.
MY Ru Y MY oS o Because we expect these vertical dependencies to
v v voov v

be less important linguistically than the horizontal
The resulting grammar schema is as below, andanes, we only sketch the transformation here.

sample parse is given in Figure 5. L . ) ) .
pie P g 9 The derivation differs from the one in Section 6 in

S - L, R where 0y that the dependenR, rather than the head |is un-
L, — w  whasnoleftdependents folded inthe initial definition of M. . This results in
LE - L, M/ visu’s last left dep. a grammar that tracks vertical, rather than horizon-
Mo —  Ruy visu's closest left dep.  tal, second-order dependencies. Since left-hand and
MY — M, MY A right-hand derivations are assembled separately in a
"R o w0 uhasno right dependents split-head grammar, the grammar in fact only tracks
“R . K/IR R vis s last right dep zig-zag type dependencies (e.g., where a grandpar-
Ur v o o ent has a right dependent, which in turn has a left
M™ — wu,L v iswu’s closest right dep.
u'y m e dependent).
Moo= M, M T T
xMy - R '-y wherez, y € 3. The resulting grammar is given below, and a sam-

ple parse using this grammar is shown in Figure 6.
As before, the indices on the nonterminals are réBecause the subscripts are redundant they can be
dundant, as the heads are always located at an edgaitted and the resulting CFG can be parsed in
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L R
ave ;jg\ﬂq’\
L ! R
Lsa‘ndy Swl\&/e : /gﬂ% : bone
Sandy Sandy L ! M M |
gpve L ewe s 0 ropene
ach L‘a Lb‘onc
R
emeMay doeR 3 a bong bone
L
gaveMthe theMdog
/\
gav‘eR Lt‘he Ld‘og
gave gave the dog dog,

Figure 6: Then? dependent-head parse corresponding to the dependendy afr&igure 1. The boxed
local @ei@dicates thad is a left-dependent obone which is in turn a right-dependent gfave i.e.,

gave a < bone .

O(n?) time using the CKY algorithm.

s - L, R where 0 v
Lu — U
L}f — L, M’ wherev"u
Mo — oL wherev
M- MY M wherev w
uR — Uy
LR — M'R  whereu v
MY~ Ry whereu v
MY = M MY whereu w
mMy - R Ly wherez,y € ¥

8 Maximum posterior decoding

u

u

each of the dependencies in the parse. Such a de-
coder might plausibly produce parses that score bet-
ter on the dependency accuracy metric than Viterbi
parses.

MPD is straightforward given the PBDG to CFG
reductions described in this paper. Specifically, we
use the Inside-Outside algorithm to compute the
posterior probability of the CFG constituents corre-
sponding to each PBDG dependency, and then use
the Viterbi algorithm to find the parse tree that max-
imizes the sum of these posterior probabilities.

We implemented MPD for first-order PBDGs
using dependency weights from our existing
discriminatively-trained PBDG parser (not cited to
preserve anonymity). These weights are estimated

As noted in the introduction, one consequence of thgy an online procedure as in McDonald (2006), and
PBDG to CFG reductions presented in this paper @&re not intended to define a probability distribution.
that CFG parsing and estimation techniques are now an attempt to heuristically correct for this, in this
available for PBDGs as well. As an example apexperiment we useekp(aw, ) as the weight of the
plication, this section describes Maximum Posteriodependency between headnd dependent, where

Decoding (MPD) for PBDGs.

wy,, 1S the weight provided by the discriminatively-

Goodman (1996) observed that the Viterbi parsttained model and is an adjustable scaling parame-
is in general not the optimal parse for evaluatiorier tuned to optimize MPD accuracy on development
metrics such as f-score that are based on the numistata.
of correct constituents in a parse. He showed that Unfortunately we found no significant differ-
MPD improves f-score modestly relative to Viterbience between the accuracy of the MPD and Viterbi

decoding for PCFGs.

parses. Optimizing MPD on the development data

Since dependency parse accuracy is just the pr¢section 24 of the PTB) set the scale factor=
portion of dependencies in the parse that are corre€t21 and produced MPD parses with an accuracy
Goodman’s observation should hold for PBDG parsef 0.8921, which is approximately the same as the
ing as well. MPD for PBDGs selects the parse thatiterbi accuracy of 0.8918. On the blind test data
maximizes the sum of the marginal probabilities ofsection 23) the two accuracies are essentially iden-



tical (0.8997). of the 16th International Conference on Computational Lin-
There are several possible explanations for the guistics pages 340-345, Copenhagen. Center for Sprogte-
. knologi.
failure of MPD to produce more accurate parses than
Viterbi decoding. Perhaps MPD requires weightgason Eisner. 2000. Bilexical grammars and their cubie-tim
; ili ictrib it _ parsing algorithms. In Harry Bunt and Anton Nijholt, edi-
that define a pr.obablllty dIS-trIbutlon (?'g". a. Ma}x tors,Advances in Probabilistic and Other Parsing Technolo-
Ent _model)_. It is also possm_le that discriminative  gieq pages 29-62. Kluwer Academic Publishers.
training adjusts the weights in a way that ensures

; ; ; ; Joshua T. Goodman. 1996. Parsing algorithms and metrics. In
that the Viterbi parse is close to the maximum pOS] Proceedings of the 34th Annual Meeting of the Association

terio_r parse. ThiS_WaS_ thf'—’ case in ogr_exp_eriment, for Computational Linguisticspages 177-183, Santa Cruz,
and if this is true with discriminative training in gen-  Ca.

eral, then maX|mu_m pps_tenpr decodmg will not haqu Lari and S.J. Young. 1990. The estimation of Stochastic
much to offer to discriminative parsing. Context-Free Grammars using the Inside-Outside algorithm

Computer Speech and Languagé35-56).

9 Conclusion , , N
Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2005.

f | . h b of the 43rd Annual Meeting of the Association for Com-
orm to_trans ate_ PBDGs into CFGs that Cfa'n_ e putational Linguistics (ACL'05)pages 75—-82, Ann Arbor,
parsed inO(n?) time. A key component of this is  Michigan, June. Association for Computational Linguistic
.the spht-he_a_d ConStrUCtlo.n’ where each woid the David McAllester. 1999. A reformulation of Eisner and Sata’
input is split into two terminals; andu,. of the CFG cubic time parser for split head automata grammars. Avail-
parse. We also showed how to systematically trans- able from http://ttic.uchicago.edu/"dmcallester/.
form the split-head CFG I_nto grammar_s which traCIT?yan McDonald and Fernando Pereira. 2006. Online learn-
second-order dependencies. We provided one gram-ing of approximate dependency parsing algorithms11th
mar which captures horizontal second-order depen- Conference of the European Chapter of the Association for
dencies (McDonald, 2006), and another which cap- Computational Linguisticgpages 81-88, Trento, Italy.
tures vertical second-order head-to-head-to-head dgyan McDonald. 2006Discriminative Training and Spanning
pendencies. Tree Algorithms for Dependency Parsirgh.D. thesis, Uni-
The grammars described here just scratch the sur-Versity of Pennyslvania, Philadelphia, PA.
face of what is possible with Unfold-Fold. Notice Femando Pereiraand Stuart M. Shieber. 198log and Nat-
that both of the second-order grammars have more Urlel Léfmguag_e AgalyS;S%erger for the Study of Language
nonterminals than the first-order grammar. If one js 29 nformation, Stanford, CA.
prepared to increase the number of nonterminals stélav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein.
further, it may be possible to track additional infor- 2006. Lea{“g‘g accgfate: C}?T]Paﬁv afl‘d 'ntefPretalee ”?e a
. . . N notation. InProceedings of the 21st International Confer-
matl??n abOUt_ConStltue_mS (although if we mSISt_On ence on Computational Linguistics and 44th Annual Meet-
O(n?) parse time we will be unable to track the in- ing of the Association for Computational Linguistipgages
teraction of more than three heads at once). 433-440, Sydney, Australia, July. Association for Computa
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Abstract

We show that the problems of parsing and sur-
face realization for grammar formalisms with
“context-free” derivations, coupled with Mon-
tague semantics (under a certain restriction) can
be reduced in a uniform way to Datalog query
evaluation. As well as giving a polynomial-
time algorithm for computing all derivation trees
(in the form of a shared forest) from an in-
put string or input logical form, this reduction
has the following complexity-theoretic conse-
quences for all such formalisms: (i) the de-
cision problem of recognizing grammaticality
(surface realizability) of an input string (logical
form) is in LOGCFL; and (ii) the search prob-
lem of finding one logical form (surface string)
from an input string (logical form) is in func-
tional LOGCFL. Moreover, the generalized sup-
plementary magic-sets rewriting of the Datalog
program resulting from the reduction yields ef-
ficient Earley-style algorithms for both parsing
and generation.

1 Introduction

The representation of context-free grammars (aug-
mented with features) in terms of definite clause pro-
grams is well-known. In the case of a bare-bone
CFG, the corresponding program is in the function-
free subset of logic programming, known as Dat-
alog. For example, determining whether a string
John found a unicorn belongs to the language of the
CFG in Figure 1 is equivalent to deciding whether
the Datalog program in Figure 2 together with the
database in (1) can derive the query “?— S(0,4).”

(1) John(0, 1). found(1,2). a(2,3). unicorn(3,4).
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S —- NP VP V — found
VP — V NP V — caught
V — V Conj V Conj — and
NP — Det N Det — a
NP — John N — unicorn

Figure 1: A CFG.

S, j) == NP, k), VP(K, j).

VPG, j) = V(i, k), NP(K, ).

V(, j) := V(@, k), Conj(k, 1), V(l, j).
NP(, j) :— Deti, k), N(K, j).
NP(, j) :— John(i, j).

V(i, j) :— found(i, j).
V(i, j) :— caught(i, j).
Conj(i, j) :— andd, j).
Det(i, j) :— a(, j).
N(, j) := unicorn(i, j).

Figure 2: The Datalog representation of a CFG.

By naive (or seminaive) bottom-up evaluation
(see, e.g., Ullman, 1988), the answer to such a query
can be computed in polynomial time in the size of
the database for any Datalog program. By recording
rule instances rather than derived facts, a packed rep-
resentation of the complete set of Datalog derivation
trees for a given query can also be obtained in poly-
nomial time by the same technique. Since a Data-
log derivation tree uniquely determines a grammar
derivation tree, this gives a reduction of context-free
recognition and parsing to query evaluation in Data-
log.

In this paper, we show that a similar reduction
to Datalog is possible for more powerful grammar
formalisms with “context-free” derivations, such as
(multi-component) tree-adjoining grammars (Joshi
and Schabes, 1997; Weir, 1988), IO macro gram-
mar s (Fisher, 1968), and (parallel) multiple context-
free grammars (Seki et al., 1991). For instance, the
TAG in Figure 3 is represented by the Datalog pro-
gram in Figure 4. Moreover, the method of reduc-

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 176-183,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



S
|
A a A d
| T
€ b A, ¢

Figure 3: A TAG with one initial tree (left) and one
auxiliary tree (right)

S(p1, P3) :—= API1, P3, P2, P2)-

A(P1, Pss P4, Ps) == A(P2, P7, P3, Ps), a(P1, P2), b(P3, Pa),
c(ps, Ps)> A(P7, Ps)-

A(P1, P2, P> P2)-

Figure 4: The Datalog representation of a TAG.

tion extends to the problem of tactical generation
(surface realization) for these grammar formalisms
coupled with Montague semantics (under a certain
restriction). Our method essentially relies on the en-
coding of different formalisms in terms of abstract
categorial grammars (de Groote, 2001).

The reduction to Datalog makes it possible to ap-
ply to parsing and generation sophisticated evalu-
ation techniques for Datalog queries; in particular,
an application of generalized supplementary magic-
sets rewriting (Beeri and Ramakrishnan, 1991) au-
tomatically yields Earley-style algorithms for both
parsing and generation. The reduction can also
be used to obtain a tight upper bound, namely
LOGCFL, on the computational complexity of the
problem of recognition, both for grammaticality of
input strings and for surface realizability of input
logical forms.

With regard to parsing and recognition of in-
put strings, polynomial-time algorithms and the
LOGCFL upper bound on the computational com-
plexity are already known for the grammar for-
malisms covered by our results (Engelfriet, 1986);
nevertheless, we believe that our reduction to Data-
log offers valuable insights. Concerning generation,
our results seem to be entirely new.!

2 Context-free grammarson A-terms

Consider an augmentation of the grammar in Fig-
ure 1 with Montague semantics, where the left-hand

"We only consider exact generation, not taking into account
the problem of logical form equivalence, which will most likely
render the problem of generation computationally intractable
(Moore, 2002).
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S(XiX2) — NP(X;) VP(Xy)

VP(/lX.Xz(/ly.leX)) — V(X)) NP(Xp)
V(AYX X (X1yX)(X3y%)) — V(X)) Conj(X2) V(X3)
NP(X; %) — Det(X;) N(X)

NP(Au.uJohn®) — John

V(find®~®"!Y - found

V(catch®~®Y) — caught

Conj(A**"Y) — and

Det(Auv. A€Vt 0y A uy)(wy)) — a
N(unicorn®>Y% — unicorn

Figure 5: A context-free grammar with Montague
semantics.

S
/\
NP VP
|
John V NP

N

found Det N

a unicorn

Figure 6: A derivation tree.

side of each rule is annotated with a A-term that tells
how the meaning of the left-hand side is composed
from the meanings of the right-hand side nontermi-
nals, represented by upper-case variables X, Xo, ...
(Figure 5).2

The meaning of a sentence is computed from its
derivation tree. For example, John found a unicorn
has the derivation tree in Figure 6, and the grammar
rules assign its root node the A-term

(Au.u John)(AX.(Auv.A(2y.A(uy)(Vy))) unicorn (2y.find y X)),
which S-reduces to the A-term
(2) 3AAy.A(unicorn y)(find y John))

encoding the first-order logic formula representing
the meaning of the sentence (i.e., its logical form).
Thus, computing the logical form(s) of a sentence
involves parsing and A-term normalization. To find a
sentence expressing a given logical form, it suffices

2We follow standard notational conventions in typed A-
calculus. Thus, an application M; M, M5 (written without paren-
theses) associates to the left, AX.Ay.M is abbreviated to Axy.M,
and @« — 8 — vy stands for @« — (8 — y). We refer the reader
to Hindley, 1997 or Sgrensen and Urzyczyn, 2006 for standard
notions used in simply typed A-calculus.



S(X1X2) = NP(Xl),VP(Xz).

VP(/lX.Xz(/ly.leX)) = V(X1),NP(Xy).

V(XX (X1yX)(X3yX)) 1= V(X1), Conj(Xp), V(X3).
NP(X; X5) :— Det(X;), N(Xa).

NP(Au.uJohn®).

V(find®e™Y),

V(catch®e™Y),

Conj(AY,

Det(Auv. 3=ty AR uy) (vy))).
N(unicorn®™Y).

Figure 7: A CFLG.

to find a derivation tree whose root node is associ-
ated with a A-term that S-reduces to the given log-
ical form; the desired sentence can simply be read
off from the derivation tree. At the heart of both
tasks is the computation of the derivation tree(s) that
yield the input. In the case of generation, this may be
viewed as parsing the input A-term with a “context-
free” grammar that generates a set of A-terms (in
normal form) (Figure 7), which is obtained from the
original CFG with Montague semantics by stripping
off terminal symbols. Determining whether a given
logical form is surface realizable with the original
grammar is equivalent to recognition with the result-
ing context-free A-term grammar (CFLG).

In a CFLG such as in Figure 7, constants appear-
ing in the A-terms have preassigned types indicated
by superscripts. There is a mapping ¢ from nonter-
minals to their types (c ={S—> t,NP — (e—>1t) —
t,VP > e—t,V 5 e—e—t, Conj > t—t—t,Det —
(e—>t)—(e—t)—t,N — e—t}). A rule that has Aon
the left-hand side and By, ..., By as right-hand side
nonterminals has its left-hand side annotated with a
well-formed A-term M that has type o(A) under the
type environment X; : 0(By), ..., Xn:0(Bp) (in sym-
bols, X; : 0(By), ..., Xn: 0(Bn) F M : o (A)).

What we have called a context-free A-term gram-
mar is nothing but an alternative notation for an ab-
stract categorial grammar (de Groote, 2001) whose
abstract vocabulary is second-order, with the restric-
tion to linear A-terms removed.? In the linear case,
Salvati (2005) has shown the recognition/parsing
complexity to be PTIME, and exhibited an algorithm
similar to Earley parsing for TAGs. Second-order

3A A-term is a Al-termif each occurrence of A binds at least
one occurrence of a variable. A Al-term is linear if no subterm
contains more than one free occurrence of the same variable.

178

S(y.Xi(A2.2)y) := AX)).
A(XY.a%~ (X (22D (X(c02))(d~%y))) := AX)).
A(AXY.XY).

Figure 8: The CFLG encoding a TAG.

linear ACGs are known to be expressive enough to
encode well-known mildly context-sensitive gram-
mar formalisms in a straightforward way, includ-
ing TAGs and multiple context-free grammars (de
Groote, 2002; de Groote and Pogodalla, 2004).

For example, the linear CFLG in Figure 8 is an
encoding of the TAG in Figure 3, where o7(S) = 0—0
and o(A) = (0 > 0) = 0 — 0 (see de Groote, 2002
for details of this encoding). In encoding a string-
generating grammar, a CFLG uses 0 as the type of
string position and 0 — 0 as the type of string. Each
terminal symbol is represented by a constant of type
0— 0, and a string @, . . . &, is encoded by the A-term
Aza~%(...(a~%2)...), which has type 0 — 0.

A string-generating grammar coupled with Mon-
tague semantics may be represented by a Syn-
chronous CFLG, a pair of CFLGs with matching
rule sets (de Groote 2001). The transduction be-
tween strings and logical forms in either direction
consists of parsing the input A-term with the source-
side grammar and normalizing the A-term(s) con-
structed in accordance with the target-side grammar
from the derivation tree(s) output by parsing.

3 Reduction to Datalog

We show that under a weaker condition than linear-
ity, a CFLG can be represented by a Datalog pro-
gram, obtaining a tight upper bound (LOGCFL) on
the recognition complexity. Due to space limitation,
our presentation here is kept at an informal level;
formal definitions and rigorous proof of correctness
will appear elsewhere.

We use the grammar in Figure 7 as an example,
which is represented by the Datalog program in Fig-
ure 9. Note that all A-terms in this grammar are al-
most linear in the sense that they are Al -terms where
any variable occurring free more than once in any
subterm must have an atomic type. Our construction
is guaranteed to be correct only when this condition
is met.

Each Datalog rule is obtained from the corre-
sponding grammar rule in the following way. Let



S(p1) := NP(p1, P2, P3), VP(P2, P3)-
VP(P1, P4) :— V(P2, P4, P3), NP(Py, P2, P3)-
V(p1, P> P3) :—

V(p2, P4, P3), Conj(p1, Ps, P2), V(Ps, P4, P3)-
NP(p1, P4, Ps) :— Det(pi, Pa, Ps, P2, P3), N(P2, P3).
NP(p1, p1, p2) :— John(py).

V(p1, P, P2) :— find(py, ps, P2).

V(p1, 3, P2) :— catch(py, p3, P2).

Conj(pi, P3, P2) :— A(P1, P3, P2)-

Det(p1, Pss P4> P35 P4) == A(P1, P2, P4), A(P2, Ps, P3)-
N(p1, p2) :— unicorn(py, p2).

Figure 9: The Datalog representation of a CFLG.

M be the A-term annotating the left-hand side of the
grammar rule. We first obtain a principal (i.e., most
general) typing of M. In the case of the second rule,
this is
Xiip3—=ps— P2, X (3= P2) > prik
AXXo(AY.X1YX) 1 ps — Pi1-

We then remove — and parentheses from the types
in the principal typing and write the resulting se-
quences of atomic types in reverse.” We obtain the
Datalog rule by replacing X; and M in the grammar
rule with the sequence coming from the type paired
with X; and M, respectively. Note that atomic types
in the principal typing become variables in the Data-
log rule. When there are constants in the A-term M,
they are treated like free variables. In the case of the
second-to-last rule, the principal typing is

A:(pr—>pP)—PLAPB3>Ps—> P2t

AUv. (Y. A(uy)(VY)) : (P4 — P3) — (P4 — Ps) — Pi.

If the same constant occurs more than once, distinct
occurrences are treated as distinct free variables.

The construction of the database representing the
input A-term is similar, but slightly more complex.
A simple case is the A-term (2), where each constant
occurs just once. We compute its principal typing,
treating constants as free variables.®

4:4-2)>1,A:355>52,
unicorn:4 — 3, find:4—6—5,John:6
F A(Ay.A(unicorn y)(find y John)) : 1.

“To be precise, we must first convert M to its 7-long form
relative to the type assigned to it by the grammar. For example,
X; X, in the first rule is converted to X;(AX.X;X).

>The reason for reversing the sequences of atomic types is
to reconcile the A-term encoding of strings with the convention
of listing string positions from left to right in databases like (1).

®We assume that the input A-term is in n-long normal form.
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We then obtain the corresponding database (3) and
query (4) from the antecedent and succedent of this
judgment, respectively. Note that here we are using
1,2,3,... as atomic types, which become database
constants.

(3) 3A(1,2,4). A2,5,3). unicorn(3,4).
find(5,6,4). John(6).

4) 2-S(1).

When the input A-term contains more than one oc-
currence of the same constant, it is not always cor-
rect to simply treat them as distinct free variables,
unlike in the case of A-terms annotating grammar
rules. Consider the A-term (5) (John found and
caught a unicorn):

(5) 3Ay.A(unicorn y)(A(find y John)(catch y John))).

Here, the two occurrences of John must be treated
as the same variable. The principal typing is (6) and
the resulting database is (7).

6) 3:4-2)>1,A:3-55->2,
unicorn:4 —3, A, :6 58— 35,
find:4—-7—6,John:7,catch:4—->7—8
F A(Ay.Ar(unicorny)
(A2(find y John)(catch y John))) : 1.

(7) A(1,2,4). AQR,5,3). A(5,8,6). unicron(3, 4).
find(6,7,4). John(7). catch(8,7,4).

It is not correct to identify the two occurrences of
A in this example. The rule is to identify distinct
occurrences of the same constant just in case they
occur in the same position within a-equivalent sub-
terms of an atomic type. This is a necessary con-
dition for those occurrences to originate as one and
the same occurrence in the non-normal A-term at the
root of the derivation tree. (As a preprocessing step,
it is also necessary to check that distinct occurrences
of a bound variable satisfy the same condition, so
that the given A-term is S-equal to some almost lin-
ear A-term.”)

"Note that the way we obtain a database from an input
A-term generalizes the standard database representation of a
string: from the A-term encoding Aza™~°(...(ay7°2)...) of a
string &, . . . &,, we obtain the database {a,(0, 1), ..., a,(n—1,n)}.



4 Correctness of thereduction

We sketch some key points in the proof of cor-
rectness of our reduction. The A-term N obtained
from the input A-term by replacing occurrences of
constants by free variables in the manner described
above is the normal form of some almost linear A-
term N’. The leftmost reduction from an almost lin-
ear A-term to its normal form must be non-deleting
and almost non-duplicating in the sense that when
a B-redex (AX.P)Q is contracted, Q is not deleted,
and moreover it is not duplicated unless the type
of X is atomic. We can show that the Subject Ex-
pansion Theorem holds for such B-reduction, so the
principal typing of N is also the principal typing of
N’. By a slight generalization of a result by Aoto
(1999), this typing I' + N’ : @ must be negatively
non-duplicated in the sense that each atomic type
has at most one negative occurrence in it. By Aoto
and Ono’s (1994) generalization of the Coherence
Theorem (see Mints, 2000), it follows that every A-
term P such that I” + P : a for some I C I" must be
Bn-equal to N’ (and consequently to N).

Given the one-one correspondence between the
grammar rules and the Datalog rules, a Data-
log derivation tree uniquely determines a grammar
derivation tree (see Figure 10 as an example). This
relation is not one-one, because a Datalog deriva-
tion tree contains database constants from the input
database. This extra information determines a typ-
ing of the A-term P at the root of the grammar deriva-
tion tree (with occurrences of constants in the A-term
corresponding to distinct facts in the database re-
garded as distinct free variables):

John:6,find:4—-6—-53:4->52)—>1,
A:3—>5—2 unicorn:4 —3+

(Au.u John)

(AX.(Auv.3(Ay.A(uy)(vy))) unicorn (Ay.find y x)) : 1.

The antecedent of this typing must be a subset of the
antecedent of the principal typing of the A-term N
from which the input database was obtained. By the
property mentioned at the end of the preceding para-
graph, it follows that the grammar derivation tree is
a derivation tree for the input A-term.

Conversely, consider the A-term P (with distinct
occurrences of constants regarded as distinct free
variables) at the root of a grammar derivation tree
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for the input A-term. We can show that there is a
substitution 6 which maps the free variables of P
to the free variables of the A-term N used to build
the input database such that 8 sends the normal form
of P to N. Since P is an almost linear A-term, the
leftmost reduction from P6 to N is non-deleting and
almost non-duplicating. By the Subject Expansion
Theorem, the principal typing of N is also the prin-
cipal typing of P#, and this together with the gram-
mar derivation tree determines a Datalog derivation
tree.

5 Complexity-theoretic consequences

Let us call a rule A(M) :— Bi(X)),...,Bn(Xp) in a
CFLG an e-ruleif n = 0 and M does not contain any
constants. We can eliminate e-rules from an almost
linear CFLG by the same method that Kanazawa and
Yoshinaka (2005) used for linear grammars, noting
that for any I' and «, there are only finitely many
almost linear A-terms M such that ' + M : . If a
grammar has no e-rule, any derivation tree for the
input A-term N that has a A-term P at its root node
corresponds to a Datalog derivation tree whose num-
ber of leaves is equal to the number of occurrences
of constants in P, which cannot exceed the number
of occurrences of constants in N.

A Datalog program P is said to have the poly-
nomial fringe property relative to a class D of
databases if there is a polynomial p(n) such that for
every database D in D of n facts and every query q
such that PUD derives @, there is a derivation tree for
g whose fringe (i.e., sequence of leaves) is of length
at most p(n). For such P and D, it is known that
{(D,q) | D e D,PuU D derives q} is in the complex-
ity class LOGCFL (Ullman and Van Gelder, 1988;
Kanellakis, 1988).

We state without proof that the database-query
pair (D, g) representing an input A-term N can be
computed in logspace. By padding D with extra use-
less facts so that the size of D becomes equal to the
number of occurrences of constants in N, we obtain
a logspace reduction from the set of A-terms gener-
ated by an almost linear CFLG to a set of the form
{(D,q) | D e D,PUD r q}, where P has the poly-
nomial fringe property relative to 9. This shows
that the problem of recognition for an almost linear
CFLG is in LOGCFL.



S(1)

NP(1,1,6) VP(1,6)
John(6) V(5,6,4) NP(1,5,4)
find(5,6,4) Det(1,5,4,3,4) N3, 4)
a(1,2,4)  A(2,5,3) unicorn(3,4)

NP(Au.u John)

S((Au.u John)(AX.(Auv.3(Ay.A(uy)(vy))) unicorn (Ay.find y x)))

VP(AX.(Auv.3(1y.A(uy)(vy))) unicorn (2y.find y X)))
v(dind)  NP((luv.3(y.A(uy)(W))) unicorn)

Det(Auv.3(1y.A(uy)(vy)))  N(unicorn)

Figure 10: A Datalog derivation tree (left) and the corresponding grammar derivation tree (right)

By the main result of Gottlob et al. (2002), the re-
lated search problem of finding one derivation tree
for the input A-term is in functional LOGCFL, i.e.,
the class of functions that can be computed by a
logspace-bounded Turing machine with a LOGCFL
oracle. In the case of a synchronous almost linear
CFLG, the derivation tree found from the source A-
term can be used to compute a target A-term. Thus,
to the extent that transduction back and forth be-
tween strings and logical forms can be expressed by
a synchronous almost linear CFLG, the search prob-
lem of finding one logical form of an input sentence
and that of finding one surface realization of an input
logical form are both in functional LOGCFL.® As a
consequence, there are efficient parallel algorithms
for these problems.

6 Regular setsof treesasinput

Almost linear CFLGs can represent a substan-
tial fragment of a Montague semantics for En-
glish and such “linear” grammar formalisms as
(multi-component) tree-adjoining grammars (both
as string grammars and as tree grammars) and mul-
tiple context-free grammars. However, 10 macro
grammars and parallel multiple context-free gram-
mars cannot be directly represented because repre-
senting string copying requires multiple occurrences
of a variable of type 0 — 0. This problem can be
solved by switching from strings to trees. We con-
vert the input string into the regular set of binary
trees whose yield equals the input string (using C

81f the target-side grammar is not linear, the normal form of
the target A-term cannot be explicitly computed because its size
may be exponential in the size of the source A-term. Neverthe-
less, a typing that serves to uniquely identify the target A-term
can be computed from the derivation tree in logspace. Also, if
the target-side grammar is linear and string-generating, the tar-
get string can be explicitly computed from the derivation tree in
logspace (Salvati, 2007).
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as the sole symbol of rank 2), and turn the gram-
mar into a tree grammar, replacing all instances of
string concatenation in the grammar with the tree
operation ty,t, — c(t;,ty). This way, a string gram-
mar is turned into a tree grammar that generates a
set of trees whose image under the yield function is
the language of the string grammar. (In the case of
an IO macro grammar, the result is an 1O context-
free tree grammar (Engelfriet, 1977).) String copy-
ing becomes tree copying, and the resulting gram-
mar can be represented by an almost linear CFLG
and hence by a Datalog program. The regular set
of all binary trees that yield the input string is repre-
sented by a database that is constructed from a deter-
ministic bottom-up finite tree automaton recogniz-
ing it. Determinism is important for ensuring cor-
rectness of this reduction. Since the database can
be computed from the input string in logspace, the
complexity-theoretic consequences of the last sec-
tion carry over here.

7 Magic setsand Earley-style algorithms

Magic-sets rewriting of a Datalog program allows
bottom-up evaluation to avoid deriving useless facts
by mimicking top-down evaluation of the original
program. The result of the generalized supplemen-
tary magic-sets rewriting of Beeri and Ramakrish-
nan (1991) applied to the Datalog program repre-
senting a CFG essentially coincides with the deduc-
tion system (Shieber et al., 1995) or uninstantiated
parsing system (Sikkel, 1997) for Earley parsing.
By applying the same rewriting method to Datalog
programs representing almost linear CFLGs, we can
obtain efficient parsing and generation algorithms
for various grammar formalisms with context-free
derivations.

We illustrate this approach with the program
in Figure 4, following the presentation of Ullman



(1989a; 1989b). We assume the query to take the
form “?7— S0, X).”, so that the input database can be
processed incrementally. The program is first made
safe by eliminating the possibility of deriving non-
ground atoms:

Spi
Alpi
AP

L P3) == AP1, P3, P2, P2)-

, Ps, P4, Ps) == A(Pz2, P7, P3, Po)s a(P1, P2), b(P3, Pa), c(Ps, Pe), d(P7, Ps)-
» Ps, P4, Ps) :— a(Pi, P2), b(P2, P4), c(Ps. Po), d(Pe, Ps)-

The subgoal rectification removes duplicate argu-
ments from subgoals, creating new predicates as
needed:

Spi
AP
A(pi
B(pi
B(p:

We
the

, P3) := B(P1, P3, P2)-

> Ps. P15 Ps) := A(P2. P7, P3s Pe)s a(Pr, P2), b(P3, Pa), c(Ps, Po), A(P7, Ps)-
, Ps, P4, Ps) :— a(pr, P2), b(P2, P4), €(Ps, Po), d(Pe, Ps)-

, Pss P4) == A(P2, P7, P3, Pe)s a(P1, P2), b(P3, Pa), €(P4, Pe), d(P7, Ps)-

, Ps, Pa) :— a(pi, P2), b(P2, P4), (P4, Po), d(Po, Ps)-

then attach to predicates adornments indicating
free/bound status of arguments in top-down eval-

uation, reordering subgoals so that as many argu-
ments as possible are marked as bound:

S(p1, ps) == BY(py, ps, p2).
BY(py. ps. a) == @™ (pr. p2). A%y, p7. P, Pe). BO(P3, Pa). <(pa, o).

d®(ps, ps).

BY(py. ps. Pa) == @ (pr. p2). b (P2, pa). < (pa. pe). 4 (e, Ps)-
AT (py, ps, pa. ps) :— % (pr, p2), A% (s, pr, p3. P6), BP(Ps, Pa), <P2(ps, Pe),

d™(ps, ps).

AT (py, ps, pa. s) :— af(pr, p2), BOI(pa, Pa), <¥(ps. Po)., d(pe, Ps)-

The generalized supplementary magic-sets rewriting
finally gives the following rule set:

r:
I:
r3:
lgq:
I5:
le:
r7:
rg:
lg:
lNo:
rp:
lo:
rs:
lNag:
ls:
lNe:
r7:
rg:
lNo:
I
I
Iy

mB(py) := m-S(py).

S(p1. p3) := MB(p1), B(p1, p3, P2).

sup, 1 (P1, P2) == MB(p1), a(p1, P2).

SUP,»(P1s P75 P3»> P6) :— SUP, 1 (P15 P2), A(P2, P7, P3s Po)-
Sup, 3(P1, P7, Pes Pa) 1= SUP,»(P1, P7, P35 Pe), b(P3, Pa).
SUp, 4(P1. P7, P4) 1= SUP, 3(P1, P7, Pos Pa), (P4, Po)-
B(p1, Ps, P1) 1= SUP, 4(P1, P75 Pa), d(P7, Ps)-

sup; 1 (P1, P2) := M.B(p1), a(pi, P2).

SUP3 »(P1, Pa) 1= SUP3 1 (P15 P2), b(P2, Pa).

Sup;3 3(P1, P4, Pe) :— SUP3 2(P1, Pa), €(Pa, Po)-

B(p1, Ps, P4) :— sUP5 5(P1, P4, Po), d(Ps, Ps)-

M_A(P2) :— sup, 1 (P1, P2)-

M_A(P2) := SUp4 1 (P, P2)-

sup, (P15 P2) := MA(P1), a(pi1, P2).

SUP4 2 (P1s P75 P3> P6) :— SUPy 1 (P15 P2), A(P2, P7. P3s Po)-
Sup4 3(P1, P7, Pes Pa) 1= SUP42(P1, P7, P3, Pe), b(P3, Pa).
SUP4 4(P1, P7, Pas Ps) 1= SUP4 3(P1, P7, Ps, P4), €(Ps, Pe)-
A(P1, Pss P4, Ps) 1= SUP4 4(P1, P7. Pas Ps), A(P7, Ps)-
Sups 1 (P1, P2) :— MA(P;), a(pr, P2).

SUPs »(P1, P4) 1= SUPs (P15 P2), b(P2, Pa).

SUpPs 3(P1» P4, Ps, Pe) :— SUPs»(P1, P4), €(Ps, Po)-

A(P1, Pss P4, Ps) 1= SUPs 3(P1, P4 Pss Pe)> A(Pos Ps)-
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The following version of chart parsing adds con-

trol structure to this deduction system:

1. () Initialize the chart to the empty set, the
agenda to the singleton {m_S0)}, and n to 0.

2. Repeat the following steps:

(a) Repeat the following steps until the
agenda is exhausted:

i. Remove a fact from the agenda, called
the trigger.

Add the trigger to the chart.

Generate all facts that are immediate
consequences of the trigger together
with all facts in the chart, and add to
the agenda those generated facts that
are neither already in the chart nor in
the agenda.

il.
1il.

(b) (scan) Remove the next fact from the in-
put database and add it to the agenda, in-
crementing N. If there is no more fact in
the input database, go to step 3.

3. If SO0, n) is in the chart, accept; otherwise re-
ject.

The following is the trace of the algorithm on in-

put string aabbccdd:

_ e
W= o

P® N R W=

m.S0) INIT 14. c4,5) SCAN
m_B(0) r,1 15. sups3(1,3,4,5) ry1,12,14
a0, 1) SCAN 16. c(6,5) SCAN

sup, ;(0,1) r3,2,3 17. sups3(1,3,5,6) ry1,12,16
sup;(0,1) rg,2,3 18. d(6,7) SCAN
m_A(1) ro,4 19. A(1,7,3,5) r2,17,18
a(l,2) SCAN 20. sup,,(0,7,3,5) r4,4,19
sup, (1,2) r14,6,7 21. sup,5(0,7,5,4) rs, 13,20
sups (1,2) r19,6,7 22. sup,4(0,7,4) re, 14,21
mM_A2) rs;,8 23. d(7,8) SCAN
b(2,3) SCAN 24. B(0,8,4) r7,22,23
SUps,(1,3) ro0,9,11 25. §0,8) r,2,24
b(3,4) SCAN

Note that unlike existing Earley-style parsing al-

gorithms for TAGs, the present algorithm is an in-
stantiation of a general schema that applies to pars-

in

g with more powerful grammar formalisms as well

as to generation with Montague semantics.

8

Conclusion

Our reduction to Datalog brings sophisticated tech-

ni

ques for Datalog query evaluation to the problems



of parsing and generation, and establishes a tight
bound on the computational complexity of recogni-
tion for a wide range of grammars. In particular, it
shows that the use of higher-order A-terms for se-
mantic representation need not be avoided for the
purpose of achieving computational tractability.
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Optimizing Grammar s for Minimum Dependency L ength
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Abstract and Smith (2005)) and thus learn to favor parses with
shorter dependencies.
We examine the problem of choosing word In this paper we attempt to measure the extent to

order for a set of dependency trees so as which basic English word order chooses to minimize
to minimize total dependency length. We  dependency length, as compared to average depen-
present an algorithm for computing the op-  dency lengths under other possible grammars. We
timal layout of a single tree as well as a first present a linear-time algorithm for finding the
numerical method for optimizing a gram-  ordering of a single dependency tree with shortest
mar of orderings over a set of dependency total dependency length. Then, given that word or-
types. A grammar generated by minimizing  der must also be determined by grammatical rela-
dependency length in unordered trees from tjons, we turn to the problem of specifying a gram-
the Penn Treebank is found to agree surpris-  mar in terms of constraints over such relations. We
ingly well with English word order, suggest-  wish to find the set of ordering constraints on depen-
ing that dependency length minimizationhas  dency types that minimizes a corpus’s total depen-

influenced the evolution of English. dency length. Even assuming that dependency trees
) must be projective, this problem is NP-compléte,
1 Introduction but we find that numerical optimization techniques

\9_rk well in practice. We reorder unordered depen-

Dependency approaches to language assumethaté/ ; tracted f q h
ery word in a sentence is the dependent of one oth prcy trees extracted irom corpora and compare the

word (except for one word, which is the global hea(gesults to English in terms of both the resulting de-

of the sentence), so that the words of a sentence foﬁnder}cy_ler;gthdand thetstrlrlgs rt}hat arﬁ_ phrodduced.
an acyclic directed graph. An important principle of € optimized order constraints show a nigh degree

language, supported by a wide range of evidence, % similarity to English, suggesting that dependency

that there is preference for dependencies to be shoI _ngth minimization has influenced the word order

This has been offered as an explanation for numef-'0!¢€S of basic English grammar.

ous psycholinguistic phenomena, such as the greatgr The pependency Length Principle

processing difficulty of object relative clauses ver-

sus subject relative clauses (Gibson, 1998). Depehlis idea that dependency length minimization may
dency length minimization is also a factor in ambiQ€ @ general principle in language has been dis-
guity resolution: listeners prefer the interpretatiorfussed by many authors. One example concerns the

with shorter dependencies. Statistical parsers make ‘English has crossing (non-projective) dependencies, but

use of features that capture dependency length (etgy are believed to be very infrequent. McDonald et al. (2005)
port that even in Czech, commonly viewed as a hon-projective

an adjacency fe_ature in Collins (1999), more eXP”Cifanguage, fewer than 2% of dependencies violate the projectiv-
length features in McDonald et al. (2005) and Eisnéity constraint.
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well-known principle that languages tend to be pre- |
dominantly “head-first” (in which the head of each
dependency is on the left) or “head-last” (where itvg™ ! w4 ws wi we W W s
'S on the right). Fraz_ler (1985) _suggests that th'f—‘igure 1. Separating a dependency link into two
might serve the function of keeping heads and de-.
pendents close together. In a situation where eaa%eces ata subtree boundary.
word has exactly one dependent, it can be seen that
a “head-first” arrangement achieves minimal deperstrongly: While almost all phrasal dependents are
dency length, as each link has a length of one.  right-branching (prepositional phrases, objects of
We will call a head-first dependency ‘“right- prepositions and verbs, relative clauses, etc.), some
branching” and a head-last dependency “lefti-word categories are left-branching, notably deter-
branching”; a language in which most or all de-miners, noun modifiers, adverbs (sometimes), and
pendencies have the same branching direction isaatributive adjectives.
“same-branching” language. This linguistic evidence strongly suggests that
Another example of dependency length minifanguages have been shaped by principles of de-
mization concerns situations where a head has mLﬁendency length minimization. One might won-
tiple dependents. In such cases, dependency lengfr how close natural languages are to being op-
will be minimized if the shorter dependent is placedimal in this regard. To address this question, we
closer to the head. Hawkins (1994) has shown thaitract unordered dependency graphs from English
this principle is reflected in grammatical rules acrosand consider different algorithms, which we call De-
many languages. It is also reflected in situations gendency Linearization Algorithms (DLAs), for or-
choice; for example, in cases where a verb is foldering the words; our goal is to find the algorithm
lowed by a prepositional phrase and a direct objeghat is optimal with regard to dependency length
NP, the direct object NP will usually be placed firstminimization. We begin with an “unlabeled” DLA,
(closer to the verb) but if it is longer than the PP, ityhich simply minimizes dependency length without
is often placed second. requiring consistent ordering of syntactic relations.
While one might suppose that a “sameive then consider the more realistic case of a “la-
branching” language is optimal for dependencypeled” DLA, which is required to have syntactically
length minimization, this is not in fact the case. Ifconsistent ordering.
a word has several dependents, placing them all once we find the optimal DLA, two questions can
on the same side causes them to get in the way g asked. First, how close is dependency length in
each other, so that a more 'balanced” configuratiognglish to that of this optimal DLA? Secondly, how

— with some dependents on each side — has lowgjmilar is the optimal DLA to English in terms of the
total dependency length. It is particularly desirablgyctual rules that arise?

for one or more one-word dependent phrases to be

“opposite-branching” (in relation to the prevailing3 The Optimal Unlabeled DLA

branching direction of the language); opposite-

branching of a long phrase tends to cause a lorfginding linear arrangements of graphs that minimize

dependency from the head of the phrase to thHetal edge length is a classic problem, NP-complete

external head. for general graphs but with an(n!-%) algorithm for
Exactly this pattern has been observed by Drydrees (Chung, 1984). However, the traditional prob-

(1992) in natural languages. Dryer argues thatem description does not take into account the pro-

while most languages have a predominant branckectivity constraint of dependency grammar. This

ing direction, phrasal (multi-word) dependents tendonstraint simplifies the problem; in this section we

to adhere to this prevailing direction much moreshow that a simple linear-time algorithm is guaran-

consistently than one-word dependents, which fréeed to find an optimal result.

qguently branch opposite to the prevailing direction A natural strategy would be to apply dynamic pro-

of the language. English reflects this pattern quitgramming over the tree structure, observing that to-
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tal dependency length of a linearization can be brdse computed from the bottom up using just one dy-
ken into the sum of links below any nodein the namic programming state for each node in the tree.
tree, and the sum of links outside the node, by which We now go on to show that, in computing the or-
we mean all links not connected to dependents of tréering of thed; children of a given node, not ad};!
node. These two quantities interact only through thpossibilities need be considered. In fact, one can
position ofw relative to the rest of its descendantssimply order the children by adding them in increas-
meaning that we can use this position as our dying order of size, going from the head outwards,
namic programming state, compute the optimal layand alternating between adding to the left and right
out of each subtree given each position of the heagtiges of the constituent.

within the subtree, and combine subtrees bottom-up The first part of this proof is the observation that,
to compute the optimal linearization for the entireas we progress from the head outward, to either the
sentence. left or the right, the head’s child subtrees must be

This can be further improved by observing thaplaced in increasing order of size. If any two ad-

the total length of the outside links depends on th@cent children appear with the smaller one further
position of w only because it affects the length offrom the head, we can swap the positions of these
the link connectingy to its parent. All other outside two children, reducing the total dependency length
links either cross above all words under and de- of the tree. No links crossing over the two chil-
pend only on the total size af’s subtree, or are en- dren will change in length, and no links within ei-
tirely on one side ofv’s subtree. The link fromw to  ther child will change. Thus only the length of the
its parent is divided into two pieces, whose lengthBnks from the two children will change, and as the
add up to the total length of the link, by slicing thelink connecting the outside child now crosses over a
link where it crosses the boundary framis subtree shorter intermediate constituent, the total length will
to the rest of the sentence. In the example in Figdecrease.
ure 1, the dependency fromy to wg has total length ~ Next, we show that the two longest children must
five, and is divided in to two components of lengthappear on opposite sides of the head in the optimal
2.5 at the boundary ofi;'s subtree. The length of linearization. To see this, consider the case where
the piece ovew’s subtree depends an's position both child: (the longest child) and child— 1 (the
within that subtree, while the other piece does naecond longest child) appear on the same side of the
depend on the internal layout afs subtree. Thus head. From the previous result, we know that 1
the total dependency length for the entire senten@nd: must be the outermost children on their side.
can be divided into: If there are no children on the other side of the head,
the tree can be improved by moving eithiesr i —

1. the length of all links withinw’s subtree plus 1 to the other side. If there is a child on the other
the length of the first piece af’s link to its side of the head, it must be smaller than botnd
parent, i.e. the piece that is above descendants- 1, and the tree can be improved by swapping the
of w. position of the child from the other side and child

1 — 1.
2. the length of the remaining pieceofs link to Given that the two largest children are outermost
its parent plus the length of all links outside and on opposite sides of the head, we observe that
the sum of the two links connecting these children
where the second quantity can be optimized into the head does not depend on the arrangement of
dependently of the internal layout af’'s subtree. the firsti — 2 children. Any rearrangement that de-
While the link fromw to its parent may point either creases the length of the link to the left of the head
to the right or left, the optimal layout far’s subtree must increase the length of the link to the right of
given thatw attaches to its left must be the mirrorthe head by the same amount. Thus, the optimal lay-
image of the optimal layout given thatattaches to out of all children can be found by placing the two
its right. Thus, only one case need be consideretjrgest children outermost and on opposite sides, the
and the optimal layout for the entire sentence canext two largest children next outermost and on op-
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DLA | Length
Optimal | 33.7
Random | 76.1
Observed 47.9

Figure 2. Placing dependents on alternating sides

from inside outin order of increasing length. Table 1: Dependency lengths for unlabeled DLAs.

posite sides, and so on until only one or zero chil- . . .
) achievable given the unordered dependencies and
dren are left. If there are an odd number of children . )
. . . ... the length we would find given a random order-
the side of the final (smallest) child makes no differ - .
. ing, and are much closer to the minimum. This al-

ence, because the other children are evenly balance

on the two sides so the last child will have the :~7amrﬁt:"ady suggests tha? minimizing dependency Ier_lgth
.Nas been a factor in the development of English.

dependency-lengthening effect whichever side it |I§|owever the optimal “language” to which English
° Our pairwise approach implies that there ar's being compared has little connection to linguis-
P P P Sic reality. Essentially, this model represents a free

many optimal linearization!*/2) in fact, but one _ - )

. ) . : word-order language: Head-modifier relations are
simple and optimal approach is to alternate sides Btiented without regard to the grammatical relation
in Figure 2, putting the smallest child next to th 9 g

head, the next smallest next to the head on the o etween the two words. In fact, however, word order
' i English is relatively rigid, and a more realistic ex-

gszlfosé?]e’ the next outside the first on the first S'd%eriment would be to find the optimal algorithm that

So far we have not considered the piece of the IinLeflects consistent syntactic word order rules. We
P call this a “labeled” DLA, as opposed to the “unla-

from the head to its parent that is over the head’ "

: eled” DLA presented above.
subtree. The argument above can be generalized by
considering this I|n_k as a spec!al child, Ionger thary L abeled DLAS
the longest real child. By making the special child
the longest child, we will be guaranteed that it willln this section, we consider linearization algorithms
be placed on the outside, as is necessary for a projgbat assume fixed word order for a given grammat-
tive tree. As before, the special child and the longestal relation, but choose the order such as to mini-
real child must be placed outermost and on oppanize dependency length over a large number of sen-
site sides, the next two longest children immediatel{ences. We represent grammatical relations simply
within the first two, and so on. by using the syntactic categories of the highest con-

Using the algorithm from the previous section, itstituent headed by (maximal projection of) the two
is possible to efficiently compute the optimal dewords in the dependency relation. Due to sparse
pendency length from English sentences. We takdata concerns, we removed all function tags such as
sentences from the Wall Street Journal section afMP (temporal), LOC (locative), and CLR (closely
the Penn Treebank, extract the dependency trees uglated) from the treebank. We made an exception
ing the head-word rules of Collins (1999), considefor the SBJ (subject) tag, as we thought it important
them to be unordered dependency trees, and lite distinguish a verb’s subject and object for the pur-
earize them to minimize dependency length. Auposes of choosing word order. Looking at a head and
tomatically extracting dependencies from the Treeits set of dependents, the complete ordering of all de-
bank can lead to some errors, in particular withpendents can be modeled as a context-free grammar
complex compound nouns. Fortunately, compoundile over a nonterminal alphabet of maximal projec-
nouns tend to occur at the leaves of the tree, and thien categories. A fixed word-order language will
head rules are reliable for the vast majority of struchave only one rule for each set of nonterminals ap-
tures. pearing in the right-hand side.

Results in Table 1 show that observed depen- Searching over all such DLAs would be exponen-
dency lengths in English are between the minimurtially expensive, but a simple approximation of the
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Dep. len. / If we model a DLA as a set of context-free gram-
DLA % correct order mar rules over dependency types, specifying a fixed
random 76.1/40.5 ordering for any set of dependency types attaching
extracted from optimal 61.6/55.4 to a given head, the space of DLAs is enormous, and
weights from English 50.9/82.2 the problem of finding the optimal DLA is a diffi-
optimized weights 42.5/64.9 cult one. One way to break the problem down is

to model the DLA as a set of weights for each type
Table 2: Results for different methods of lineariz-of dependency relation. Under this model the word
ing unordered trees from section 0 of the Wall Streedrder is determined by placing all dependents of a
Journal corpus. Each result is given as average deord in order of increasing weight from left to right.
pendency length in words, followed by the percentThis reduces the number of parameters of the model
age of heads (with at least one dependent) having all T', if there areT dependency types, from”* if
dependents correctly ordered. a word may have up t& dependents. It also al-
lows us to naturally capture statements such as “a
optimal labeled DLA can found using the following noun phrase_conssts of a determiner, then (possi-
procedure: b_Iy) some adjectlve_s_, the head no”un, and then (pos-
sibly) some prepositional phrases”, by, for example,
1. Compute the optimal layout of all sentences ig€tting the weight for NP.DT to -2, NP-JJ to -
the corpus using the unlabeled DLA. 1, and N_I%PP to 1. We e}ssume the head_ltself
has a weight of zero, meaning negatively weighted
2. For each combination of a head type and a sépendents appear to the head's left, and positively
of child types, count the occurrences of eachveighted dependents to the head's right.
ordering. 411 A DLA Extracted from English
3. Take the most frequent ordering for each set as As a test of whether this model is adequate to
the order in the new DLA. represent English word order, we extracted weights
for the Wall Street Journal corpus, used them to re-
In the first step we used the alternating procedurgrder the same set of sentences, and tested how often
from the previous section, with a modification forwords with at least one dependent were assigned the
the fixed word-order scenario. In order to make:orrect order. We extracted the Weights by assign-
the order of a subtree independent of the directiomg, for each dependency relation in the corpus, an
in which it attaches to its parent, dependents weli@teger according to its position relative to the head,
placed in order of length on alternating sides of thej for the first dependent to the left, -2 for the sec-
head from the inside out, always Starting with th)nd to the |eft’ and so on. We averaged these num-
shortest dependent immediately to the left of thgers across all occurrences of each dependency type.
head. The dependency types consisted of the syntactic cat-
Results in Table 2 (first two lines) show that aegories of the maximal projections of the two words
DLA using rules extracted from the optimal layoutin the dependency relation.
matches English significantly better than a random Reconstructing the word order of each sentence
DLA, indicating that dependency length can be useflom this weighted DLA, we find that 82% of all
as a general principle to predict word order. words with at least one dependent have all depen-
. dents ordered correctly (third line of Table 2). This
4.1 AnOptimized L abeled DLA is significantly higher than the heuristic discussed in
While the DLA presented above is a good deal bethe previous section, and probably as good as can be
ter than random (in terms of minimizing dependencgxpected from such a simple model, particularly in
length), there is no reason to suppose that it is optiight of the fact that there is some choice in the word
mal. In this section we address the issue of findingrder for most sentences (among adjuncts for exam-
the optimal labeled DLA. ple) and that this model does not take the lengths of
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the individual constituents into account at all. Test Data
We now wish to find the set of weights that min- ~_Training Data| ~ WSJ Swhd
imize the dependency length of the corpus. While ~ WSJ 42.5/64.9 12.5/63.6
the size of the search space is still too large to search ~ Swhd 43.9/59.8 12.2/58.7
exhaustively, numerical optimization techniques can
be applied to find an approximate solution. Table 3: Domain effects on dependency length min-
imization: each result is formatted as in Table 2.

4.1.2 NP-Completeness

DI_TAh(fa problt:n} .Of fltntdlng the (t))ptln;um Vgefhﬁgas the dependency being optimized. We build a ta-
Iortase odmpu frees fﬁn eljl ownf;_) d? ble of interacting dependencies as a preprocessing
complete by reducing from the probiem otincing a tep on the data, and then when optimizing a weight,

glraphs m|rl1)||mum Ffe:zdbacl;sgrzc Sith one Of[ tthethzionsider the sequence of values between consecu-
classic problems of Karp ( )- € Input 1o &, interacting weights. When computing the total

Feedback Arc Set problem is a directed graph, fog d d | :
th at ht val
which we wish to find an ordering of vertices such orpus dependency Ihgth at a new weight vaue, we

that th llest ber of ed it f lat tcan further speed up computation by reordering only

aI. € sn{\_a s rlﬁm e(; ore gg_s poin |_ron*t1 ateThose sentences in which a dependency type is used,
earlier vertices In Ine ordering. "iven an instance y building an index of where dependency types oc-
this problem, we can create a set of dependency tre

Gr as another preprocessing step.
such that each feedback arc in the original grapﬁl ) o p. P g ) P
causes total dependency length to increase by one, NS Optimization process is not guaranteed to
if we identify each dependency type with a Verte)Ilnd the global maximum (for this reason we call

in the original problem, and choose weights for thdn€ ”resulting DLA “optimized” rather than “opti-
dependency types according to the vertex ofder. mal”). The procedure is guaranteed to converge sim-
ply from the fact that there are a finite number of

413 Local Search objective function values, and the objective function

Our search procedure is to optimize one weight arPUSt increase at each step at which weights are ad-

atime, holding all others fixed, and iterating througHUSted' _ L .

the set of weights to be set. The objective function e ran this optimization procedure on section 2
describing the total dependency length of the corpy§rough 21 of the Wall Street Journal portion of the
is piecewise constant, as the dependency length wiiENN Treebank, initializing all weights to random
not change until one weight crosses another, cay8YMbers between zero and one. This initialization
ing two dependents to reverse order, at which poidf@kes all phrases head-initial to begin with, and has
the total length will discontinuously jump. Non- the 'effect of imposing a dlr'ecjuon.al bias on the re-
differentiability implies that methods based on graSulting grammar. When optimization converges, we
dient ascent will not apply. This setting is reminis-CPt&in a set of weights which achieves an average
cent of the problem of optimizing feature weightsd€pendency length of 40.4 on the training data, and
for reranking of candidate machine translation out#2-5 on held-out data from section 0 (fourth line
puts, and we employ an optimization technique Sime_ Table 2). While the procedure is unsupervised
ilar to that used by Och (2003) for machine transWith respect to the English word order (other than
lation. Because the objective function only change€ head-initial bias), itis supervised with respect to
at points where one weight crosses another’s valug€Pendency length minimization; for this reason we
the set of segments of weight values with differentePortall subsequent results on held-out data. While
values of the objective function can be exhaustivel{2dom initializations lead to an initial average de-
enumerated. In fact, the only significant points ar@&ndency length varying from 60 to 73 with an aver-
the values of other weights for dependency type9€ Of 66 over ten runs, all runs were within5 of

which occur in the corpus attached to the same he &€ another upon convergence. When the order of
words’ dependents was compared to the real word

2\We omit details due to space. order on held-out data, we find that 64.9% of words
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Training Sents| Dep. len. / % correct order Label Interpretation Weight
100 13.70/54.38 S—NP verb - object NP 0.037
500 12.81/57.75 S—NP-SBJ verb - subject NP -0.022
1000 12.59/58.01 S—PP verb - PP 0.193
5000 12.34/55.33 NP—DT object noun - determiner -0.070
10000 12.27/55.92 NP-SB3-DT subject noun - determiner  -0.052
50000 12.17/58.73 NP—PP obj noun - PP 0.625
NP-SB3-PP subj noun - PP 0.254
NP—SBAR obj noun - rel. clause 0.858
Table 4. Average dependency length and rule accu- \p_spj.sBAR qubject noun - rel. clause  -0.110
racy as a function of training data size, on Switch- NP—JJ obj noun - adjective 0.198
board data. NP-SB3-JJ subj noun - adjective -0.052

_ Table 5: Sample weights from optimized DLA. Neg-
with at least one dependent have the correct Order-atively weighted dependents appear to the left of

4.2 Domain Variation their head.

Written and spoken language differ significantly inyg1q_o,t test data slowly decreases with more data,
their structure, and one of the most striking d|ffer—the percentage of correctly ordered dependents is

ences is the much greater average sentence lengills'\yell-pehaved. It turns out that even 100 sen-
of formal written language. The Wall Street Journa{ences are enough to learmn a DLA that is nearly as

is not representative of typical language use. Larg,qq a5 one derived from a much larger dataset.
guage was not written until relatively recently in its

development, and the Wall Street Journal in particu4.4 Comparing the Optimized DLA to English

lar represents a formal style with much longer senpe haye seen that the optimized DLA matches En-
tences than are used in conversational speech. T&ﬁ‘sh text much better than a random DLA and that

change in the lengths of sentences and their cofj-5chieves only a slightly lower dependency length
stituents could make the optimized DLA in terms 0,5 gnglish. It is also of interest to compare the

dependency length very different for the two genresyytimized DLA to English in more detail. First
~ Inorder to test this effect, we performed experye examine the DLA's tendency towards “opposite-
iments using both the Wall Street Journal (W”ttenbranching 1-word phrases”. English reflects this

and Switchboard (conversational speech) portions %frinciple to a striking degree: on the WSJ test set,

the Penn Treebank, and compared results with difrg 4 percent of left-branching phrases are 1-word,

ferent training and test data. For Switchboard, Weompared to only 19.4 percent of right-branching
used the first 50,000 sentences of sections 2 and 3[5”1*?'rases. The optimized DLA also reflects this pat-
the training data, and all of section 4 as the test datgp, though somewhat less strongly: 75.5 percent of
We find relatively little difference in dependency|eft_branchmg phrases are 1-word, versus 36.7 per-
length as we vary training data between written angent of right-branching phrases.
spoken English, as shown in Table 3. For the ac- \\e can also compare the optimized DLA to En-
curacy of the resulting word order, however, traing|ish with regard to specific rules. As explained ear-
ing on Wall Street Journal outperforms Switchboargier, the optimal DLAS rules are expressed in the
even when testing on Switchboard, perhaps becaugm of weights assigned to each relation, with pos-
the longer sentences in WSJ provide more informative weights indicating right-branching placement.
tion for the optimization procedure to work with.  Taple 5 shows some important rules. The middle
column shows the syntactic situation in which the
relation normally occurs. We see, first of all, that
How many sentences are necessary to learn a gooldject NPs are to the right of the verb and subject
set of dependency weights? Table 4 shows resuldPs are to the left, just like in English. PPs are also
for Switchboard as we increase the number of serthe right of verbs; the fact that the weight is greater
tences provided as input to the weight optimizatiothan for NPs indicates that they are placed further to
procedure. While the average dependency length ahe right, as they normally are in English. Turning
190
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to the internal structure of noun phrases, we see thfie-grained choices than English. For example, the
determiners are to the left of both object and subsptimized DLA treats NP and NP-SBJ as different;
ject nouns; PPs are to the right of both object anthis allows it to have different syntactic rules for the
subject nouns. We also find some differences wittwo cases — a possibility that it sometimes exploits,
English, however. Clause modifiers of nouns (thesas seen above. No doubt this partly explains why the
are mostly relative clauses) are to the right of objeaiptimized DLA achieves lower dependency length
nouns, as in English, but to the left of subject nounghan English.

adjectives are to the left of subject nouns, as in En; .
glish, but to the right of object nouns. Of courseACknOWIeOIgmentS This work was supported by

these differences partly arise from the fact that Wi SF grants 115-0546554 and 11S-0325646.
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Generalizing Semantic Role Annotations
Across Syntactically Similar Verbs

Andrew S. Gordon
Institute for Creative Technologies
University of Southern California
Marina del Rey, CA 90292 USA
gordon@ict.usc.edu

Abstract

Large corpora of parsed sentences with
semantic role labels (e.g. PropBank) pro-
vide training data for use in the creation
of high-performance automatic semantic
role labeling systems. Despite the size of
these corpora, individual verbs (or role-
sets) often have only a handful of in-
stances in these corpora, and only a
fraction of English verbs have even a sin-
gle annotation. In this paper, we describe
an approach for dealing with this sparse
data problem, enabling accurate semantic
role labeling for novel verbs (rolesets)
with only a single training example. Our
approach involves the identification of
syntactically similar verbs found in Prop-
Bank, the alignment of arguments in their
corresponding rolesets, and the use of
their corresponding annotations in Prop-
Bank as surrogate training data.

1 Generalizing Semantic Role Annotations

A recent release of the PropBank (Palmer et al.,
2005) corpus of semantic role annotations of Tree-
bank parses contained 112,917 labeled instances of
4,250 rolesets corresponding to 3,257 verbs, as
illustrated by this example for the verb buy.

[argo Chuck] [puyo1 bought] [ae1 @ car] [ag from
Jerry] [ares for $1000].
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Annotations similar to these have been used to cre-
ate automated semantic role labeling systems
(Pradhan et al., 2005; Moschitti et al., 2006) for
use in natural language processing applications that
require only shallow semantic parsing. As with all
machine-learning approaches, the performance of
these systems is heavily dependent on the avail-
ability of adequate amounts of training data. How-
ever, the number of annotated instances in
PropBank varies greatly from verb to verb; there
are 617 annotations for the want roleset, only 7 for
desire, and 0 for any sense of the verb yearn. Do
we need to keep annotating larger and larger cor-
pora in order to generate accurate semantic label-
ing systems for verbs like yearn?

A better approach may be to generalize the data
that exists already to handle novel verbs. It is rea-
sonable to suppose that there must be a number of
verbs within the PropBank corpus that behave
nearly exactly like yearn in the way that they relate
to their constituent arguments. Rather than annotat-
ing new sentences that contain the verb yearn, we
could simply find these similar verbs and use their
annotations as surrogate training data.

This paper describes an approach to generalizing
semantic role annotations across different verbs,
involving two distinct steps. The first step is to
order all of the verbs with semantic role annota-
tions according to their syntactic similarity to the
target verb, followed by the second step of aligning
argument labels between different rolesets. To
evaluate this approach we developed a simple
automated semantic role labeling algorithm based
on the frequency of parse-tree paths, and then
compared its performance when using real and sur-
rogate training data from PropBank.
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2 Parse Tree Paths

A key concept in understanding our approach to
both automated semantic role annotation and gen-
eralization is the notion of a parse tree path. Parse
tree paths were used for semantic role labeling by
Gildea and Jurafsky (2002) as descriptive features
of the syntactic relationship between predicates
and their arguments in the parse tree of a sentence.
Predicates are typically assumed to be specific tar-
get words (verbs), and arguments are assumed to
be spans of words in the sentence that are domi-
nated by nodes in the parse tree. A parse tree path
can be described as a sequence of transitions up
from the target word then down to the node that
dominates the argument span (e.g. Figure 1).

He ate

some pancakes

Figure 1: An example parse tree path from the
predicate ate to the argument NP He, represented
as TVB{VP{S|NP

Parse tree paths are particularly interesting for
automated semantic role labeling because they
generalize well across syntactically similar sen-
tences. For example, the parse tree path in Figure 1
would still correctly identify the “eater” argument
in the given sentence if the personal pronoun “he”
were swapped with a markedly different noun
phrase, e.g. “the attendees of the annual holiday
breakfast.”

3 A Simple Semantic Role Labeler

To explore issues surrounding the generalization of
semantic role annotations across verbs, we began
by authoring a simple automated semantic role la-
beling algorithm that assigns labels according to
the frequency of the parse tree paths seen in train-
ing data. To construct a labeler for a specific role-
set, training data consisting of parsed sentences
with role-labeled parse tree constituents are ana-
lyzed to identify all of the parse tree paths between
predicates and arguments, which are then tabulated
and sorted by frequency. For example, Table 1 lists
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the 10 most frequent pairs of arguments and parse
tree paths for the want.01 roleset in a recent release
of PropBank.

Count  Argument Parse tree path
189 ARGO TVBP1VP1S|NP
159 ARG1 TtVBP1VP(S
125 ARGO TVBZ1VP1S|NP
110 ARG1 TVBZ1VP|S
102 ARGO TVB1VP1VP1S|NP
98 ARG1 TVB1VP|S
96 ARGO tVBD1VP1S|NP
79 ARGM  tVB{VP1VP|RB
76 ARG1 tVBD1VP|S
43 ARG1 TVBP1VP NP

Table 1. Top 10 most frequent parse tree paths for
arguments of the PropBank want.01 roleset, based
on 617 annotations

To automatically assign role labels to an unla-
beled parse tree, each entry in the table is consid-
ered in order of highest frequency. Beginning from
the target word in the sentence (e.g. wants) a check
is made to determine if the entry includes a possi-
ble parse tree path in the parse tree of the sentence.
If so, then the constituent is assigned the role label
of the entry, and all subsequent entries in the table
that have the same argument label or lead to sub-
constituents of the labeled node are invalidated.
Only subsequent entries that assign core arguments
of the roleset (e.g. ARGO, ARG1) are invalidated,
allowing for multiple assignments of non-core la-
bels (e.g. ARGM) to a test sentence. In cases
where the path leads to more than one node in a
sentence, the leftmost path is selected. This process
then continues down the list of valid table entries,
assigning additional labels to unlabeled parse tree
constituents, until the end of the table is reached.

This approach also offers a simple means of
dealing with multiple-constituent arguments,
which occasionally appear in PropBank data. In
these cases, the data is listed as unique entries in
the frequency table, where each of the parse tree
paths to the multiple constituents are listed as a set.
The labeling algorithm will assign the argument of
the entry only if all parse tree paths in the set are
present in the sentence.

The expected performance of this approach to
semantic role labeling was evaluated using the
PropBank data wusing a leave-one-out cross-
validation experimental design. Precision and re-
call scores were calculated for each of the 3,086



rolesets with at least two annotations. Figure 2
graphs the average precision, recall, and F-score
for rolesets according to the number of training
examples of the roleset in the PropBank corpus.
An additional curve in Figure 2 plots the percent-
age of these PropBank rolesets that have the given
amount of training data or more. For example, F-
scores above 0.7 are first reached with 62 training
examples, but only 8% of PropBank rolesets have
this much training data available.

Precision Recall F-score ------- % of rolesets

Number of training examples

Figure 2. Performance of our semantic role label-
ing approach on PropBank rolesets

4 Identifying Syntactically Similar Verbs

A key part of generalizing semantic role annota-
tions is to calculate the syntactic similarity be-
tween verbs. The expectation here is that verbs that
appear in syntactically similar contexts are going
to behave similarly in the way that they relate to
their arguments. In this section we describe a fully
automated approach to calculating the syntactic
similarity between verbs.

Our approach is strictly empirical; the similarity
of verbs is determined by examining the syntactic
contexts in which they appear in a large text cor-
pus. Our approach is analogous to previous work
in extracting collocations from large text corpora
using syntactic information (Lin, 1998). In our
work, we utilized the GigaWord corpus of English
newswire text (Linguistic Data Consortium, 2003),
consisting of nearly 12 gigabytes of textual data.
To prepare this corpus for analysis, we extracted
the body text from each of the 4.1 million entries
in the corpus and applied a maximum-entropy al-
gorithm to identify sentence boundaries (Reynar
and Ratnaparkhi, 1997).
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Next we executed a four-step analysis process
for each of the 3,257 verbs in the PropBank cor-
pus. In the first step, we identified each of the sen-
tences in the prepared GigaWord corpus that
contained any inflection of the given verb. To
automatically identify all verb inflections, we util-
ized the English DELA electronic dictionary
(Courtois, 2004), which contained all but 21 of the
PropBank verbs (for which we provided the inflec-
tions ourselves), with old-English verb inflections
removed. We extracted GigaWord sentences con-
taining these inflections by using the GNU grep
program and a template regular expression for each
inflection list. The results of these searches were
collected in 3,257 files (one for each verb). The
largest of these files was for inflections of the verb
say (15.9 million sentences), and the smallest was
for the verb namedrop (4 sentences).

The second step was to automatically generate
syntactic parse trees for the GigaWord sentences
found for each verb. It was our original intention to
parse all of the found sentences, but we found that
the slow speed of contemporary syntactic parsers
made this impractical. Instead, we focused our ef-
forts on the first 100 sentences found for each of
the 3,257 verbs with 100 or fewer tokens: a total of
324,461 sentences (average of 99.6 per verb). For
this task we utilized the August 2005 release of the
Charniak parser with the default speed/accuracy
settings (Charniak, 2000), which required roughly
360 hours of processor time on a 2.5 GHz
PowerPC GS.

The third step was to characterize the syntactic
context of the verbs based on where they appeared
within the parse trees. For this purpose, we utilized
parse tree paths as a means of converting tree
structures into a flat, feature-vector representation.
For each sentence, we identified all possible parse
tree paths that begin from the verb inflection and
terminate at a constituent that does not include the
verb inflection. For example, the syntactic context
of the verb in Figure 1 can be described by the fol-
lowing five parse tree paths:

1. 1VBTVP{S|NP

2. 1tVB1VP1S|NP|PRP
3. TVB1VP|NP

4. TVB1VP|NP|DT

5. TVBTVP|NP|NN

Possible parse tree paths were identified for
every parsed sentence for a given verb, and the
frequencies of each unique path were tabulated



into a feature vector representation. Parse tree
paths where the first node was not a Treebank part-
of-speech tag for a verb were discarded, effectively
filtering the non-verb homonyms of the set of in-
flections. The resulting feature vectors were nor-
malized by dividing the values of each feature by
the number of verb instances used to generate the
parse tree paths; the value of each feature indicates
the proportion of observed inflections in which the
parse tree path is possible. As a representative ex-
ample, 95 verb forms of abandon were found in
the first 100 GigaWord sentences containing any
inflection of this verb. For this verb, 4,472 possible
parse tree paths were tabulated into 3,145 unique
features, 2501 of which occurred only once.

The fourth step was to compute the distance be-
tween a given verb and each of the 3,257 feature
vector representations describing the syntactic con-
text of PropBank verbs. We computed and com-
pared the performance of a wide variety of possible
vector-based distance metrics, including Euclidean,
Manhattan, and Chi-square (with un-normalized
frequency counts), but found that the ubiquitous
cosine measure was least sensitive to variations in
sample size between verbs. To facilitate a com-
parative performance evaluation (section 6), pair-
wise cosine distance measures were calculated
between each pair of PropBank verbs and sorted
into individual files, producing 3,257 lists of 3,257
verbs ordered by similarity.

Table 2 lists the 25 most syntactically similar
pairs of verbs among all PropBank verbs. There
are a number of notable observations in this list.
First is the extremely high similarity between bind
and bound. This is partly due to the fact that they
share an inflection (bound is the irregular past
tense form of bind), so the first 100 instances of
GigaWord sentences for each verb overlap signifi-
cantly, resulting in overlapping feature vector rep-
resentations. Although this problem appears to be
restricted to this one pair of verbs, it could be
avoided in the future by using the part-of-speech
tag in the parse tree to help distinguish between
verb lemmas.

A second observation of Table 2 is that several
verbs appear multiple times in this list, yielding
sets of verbs that all have high syntactic similarity.
Three of these sets account for 19 of the verbs in
this list:

1. plunge, tumble, dive, jump, fall, fell, dip

2. assail, chide, lambaste
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3. buffet, embroil, lock, superimpose, whip-

saw, pluck, whisk, mar, ensconce

The appearance of these sets suggests that our
method of computing syntactic similarity could be
used to identify distinct clusters of verbs that be-
have in very similar ways. In future work, it would
be particularly interesting to compare empirically-
derived verb clusters to verb classes derived from
theoretical considerations (Levin, 1993), and to the
automated verb classification techniques that use
these classes (Joanis and Stevenson, 2003).

A third observation of Table 2 is that the verb
pairs with the highest syntactic similarity are often
synonyms, e.g. the cluster of assail, chide, and
lambaste. As a striking example, the 14 most syn-
tactically similar verbs to believe (in order) are
think, guess, hope, feel, wonder, theorize, fear,
reckon, contend, suppose, understand, know,
doubt, and suggest — all mental action verbs. This
observation further supports the distributional hy-
pothesis of word similarity and corresponding
technologies for identifying synonyms by similar-
ity of lexical-syntactic context (Lin, 1998).

Verb pairs (instances) Cosine
bind (83) bound (95) 0.950
plunge (94) tumble (87) 0.888
dive (36) plunge (94) 0.867
dive (36) tumble (87) 0.866
jump (79) tumble (87) 0.865
fall (84) fell (102) 0.859
intersperse (99) perch (81) 0.859
assail (100) chide (98) 0.859
dip (81) fell (102) 0.858
buffet (72) embroil (100) 0.856
embroil (100) lock (73) 0.856
embroil (100) superimpose (100)  0.856
fell (102) jump (79) 0.855
fell (102) tumble (87) 0.855
embroil (100) whipsaw (63) 0.850
pluck (100) whisk (99) 0.849
acquit (100) hospitalize (99) 0.849
disincline (70) obligate (94) 0.848
jump (79) plunge (94) 0.848
dive (36) jump (79) 0.847
assail (100) lambaste (100) 0.847
festoon (98) strew (100) 0.846
mar (78) whipsaw (63) 0.846
pluck (100) whipsaw (63) 0.846
ensconce (101) whipsaw (63) 0.845

Table 2. Top 25 most syntactically similar pairs of
the 3257 verbs in PropBank. Each verb is listed
with the number of inflection instances used to
calculate the cosine measurement.



S Aligning Arguments Across Rolesets

The second key aspect of our approach to general-
izing annotations is to make mappings between the
argument roles of the novel target verb and the
roles used for a given roleset in the PropBank cor-
pus. For example, if we’d like to apply the training
data for a roleset of the verb desire in PropBank to
a novel roleset for the verb yearn, we need to know
that the desirer corresponds to the yearner, the de-
sired to the yearned-for, etc. In this section, we
describe an approach to argument alignment that
involves the application of the semantic role label-
ing approach described in section 3 to a single
training example for the target verb.

To simplify the process of aligning argument la-
bels across rolesets, we make a number of assump-
tions. First, we only consider cases where two
rolesets have exactly the same number of argu-
ments. The version of the PropBank corpus that we
used in this research contained 4250 rolesets, each
with 6 or fewer roles (typically two or three). Ac-
cordingly, when attempting to apply PropBank
data to a novel roleset with a given argument count
(e.g. two), we only consider the subset of Prop-
Bank data that labels rolesets with exactly the same
count.

Second, our approach requires at least one fully-
annotated training example for the target roleset. A
fully-annotated sentence is one that contains a la-
beled constituent in its parse tree for each role in
the roleset. As an illustration, the example sentence
in section 1 (for the roleset buy.0l) would not be
considered a fully-annotated training example, as
only four of the five arguments of the PropBank
buy.01 roleset are present in the sentence (it is
missing a benefactor, as in “Chuck bought his
mother a car from Jerry for $1000”).

In both of these simplifying requirements, we
ignore role labels that may be assigned to a sen-
tence but that are not defined as part of the roleset,
specifically the ARGM labels used in PropBank to
label standard proposition modifiers (e.g. location,
time, manner).

Our approach begins with a list of verbs ordered
by their calculated syntactic similarity to the target
verb, as described in section 4 of this paper. We
subsequently apply two steps that transform this
list into an ordered set of rolesets that can be
aligned with the roles used in one or more fully-
annotated training examples of the target verb. In
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describing these two steps, we use instigate as an
example target verb. Instigate already appears in
the PropBank corpus as a two-argument roleset,
but it has only a single training example:

[argo The Mahatma, or "great souled one,"]
[instigatc.01 1nstigated] [aro1 several campaigns of
passive  resistance  against the  British
government in India].

The syntactic similarity of instigate to all Prop-
Bank verbs was calculated in the manner described
in the previous section. This resulting list of 3,180
entries begins with the following fourteen verbs:
orchestrate, misrepresent, summarize, wreak, rub,
chase, refuse, embezzle, harass, spew, thrash, un-
earth, snub, and erect.

The first step is to replace each of the verbs in
the ordered list with corresponding rolesets from
PropBank that have the same number of roles as
the target verb. As an example, our target roleset
for the verb instigate has two arguments, so each
verb in the ordered list is replaced with the set of
corresponding rolesets that also have two argu-
ments, or removed if no two-argument rolesets
exist for the verb in the PropBank corpus. The or-
dered list of verbs for instigate is transformed into
an ordered list of 2,115 rolesets with two argu-
ments, beginning with the following five entries:
orchestrate.01, chase.01, unearth.01, snub.01, and
erect.01.

The second step is to identify the alignments be-
tween the arguments of the target roleset and each
of the rolesets in the ordered list. Beginning with
the first roleset on the list (e.g. orchestrate.01), we
build a semantic role labeler (as described in sec-
tion 3) using its available training annotations from
the PropPank corpus. We then apply this labeler to
the single, fully-annotated example sentence for
the target verb, treating it as if it were a test exam-
ple of the same roleset. We then check to see if any
of the core (numbered) role labels overlap with the
annotations that are provided. In cases where an
annotated constituent of the target test sentence is
assigned a label from the source roleset, then the
roleset mappings are noted along with the entry in
the ordered list. If no mappings are found, the role-
set is removed from the ordered list.

For example, the roleset for orchestrate.01 con-
tains two arguments (ARG0 and ARGI) that corre-
spond to the “conductor, manager” and the “things



being coordinated or managed”. This roleset is
used for only three sentence annotations in the
PropBank corpus. Using these annotations as train-
ing data, we build a semantic role labeler for this
roleset and apply it to the annotated sentence for
instigate.01, treating it as if it were a test sentence
for the roleset orchestrate.0l. The labeler assigns
the orchestrate.0l label ARGI to the same con-
stituent labeled ARG in the test sentence, but fails
to assign a label to the other argument constituent
in the test sentence. Therefore, a single mapping is
recorded in the ordered list of rolesets, namely that
ARG]I of orchestrate.0] can be mapped to ARGI
of instigate.01.

After all of the rolesets are considered, we are
left with a filtered list of rolesets with their argu-
ment mappings, ordered by their syntactic similar-
ity to the target verb. For the roleset instigate.01,
this list consists of 789 entries, beginning with the
following 5 mappings.

1. orchestrate.01, 1:1
. chase.01,0:0, 1:1
. unearth.01, 0:0, 1:1
.snub.01, 1:1
.erect.01,0:0,1:1

Given this list, arbitrary amounts of PropBank
annotations can be used as surrogate training data
for the instigate.01 roleset, beginning at the top of
the list. To utilize surrogate training data in our
semantic role labeling approach (Section 3), we
combine parse tree path information for a selected
portion of surrogate training data into a single list
sorted by frequency, and apply these files to test
sentences as normal.

Although we use an existing PropBank roleset
(instigate.01) as an example in this section, this
approach will work for any novel roleset where
one fully-annotated training example is available.
For example, arbitrary amounts of surrogate Prop-
Bank data can be found for the novel verb yearn by
1) searching for sentences with the verb yearn in
the GigaWord corpus, 2) calculating the syntactic
similarity between yearn and all PropBank verbs
as described in Section 4, 3) aligning the argu-
ments in a single fully-annotated example of yearn
with ProbBank rolesets with the same number of
arguments using the method described in this sec-
tion, and 4) selecting arbitrary amounts of Prop-
Bank annotations to use as surrogate training data,
starting from the top of the resulting list.

D W
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6 Evaluation

We conducted a large-scale evaluation to deter-
mine the performance of our semantic role labeling
algorithm when using variable amounts of surro-
gate training data, and compared these results to
the performance that could be obtained using vari-
ous amounts of real training data (as described in
section 3). Our hypothesis was that learning-curves
for surrogate-trained labelers would be somewhat
less steep, but that the availability of large-amounts
of surrogate training data would more than make
up for the gap.

To test this hypothesis, we conducted an evalua-
tion using the PropBank corpus as our testing data
as well as our source for surrogate training data. As
described in section 5, our approach requires the
availability of at least one fully-annotated sentence
for a given roleset. Only 28.5% of the PropBank
annotations assign labels for each of the numbered
arguments in their given roleset, and only 2,858 of
the 4,250 rolesets used in PropBank annotations
(66.5%) have at least one fully-annotated sentence.
Of these, 2,807 rolesets were for verbs that ap-
peared at least once in our analysis of the Giga-
Word corpus (Section 4). Accordingly, we
evaluated our approach using the annotations for
this set of 2,807 rolesets as test data. For each of
these rolesets, various amounts of surrogate train-
ing data were gathered from all 4,250 rolesets rep-
resented in PropBank, leaving out the data for
whichever roleset was being tested.

For each of the target 2,807 rolesets, we gener-
ated a list of semantic role mappings ordered by
syntactic similarity, using the methods described in
sections 4 and 5. In aligning arguments, only a sin-
gle training example from the target roleset was
used, namely the first annotation within the Prop-
Bank corpus where all of the rolesets arguments
were assigned. Our approach failed to identify any
argument mappings for 41 of the target rolesets,
leaving them without any surrogate training data to
utilize. Of the remaining 2,766 rolesets, the num-
ber of mapped rolesets for a given target ranged
from 1,041 to 1 (mean = 608, stdev =297).

For each of the 2,766 target rolesets with aligna-
ble roles, we gathered increasingly larger amounts
of surrogate training data by descending the or-
dered list of mappings translating the PropBank
data for each entry according to its argument map-
pings. Then each of these incrementally larger sets



of training data was then used to build a semantic
role labeler as described in section 3. The perform-
ance of each of the resulting labelers was then
evaluated by applying it to all of the test data
available for target roleset in PropBank, using the
same scoring methods described in section 3. The
performance scores for each labeler were recorded
along with the total number of surrogate training
examples used to build the labeler.

Figure 3 presents the performance result of our
semantic role labeling approach using various
amounts of surrogate training data. Along with
precision, recall, and F-score data, Figure 3 also
graphs the percentage of PropBank rolesets for
which a given amount of training data had been
identified using our approach, of the 2,858 rolesets
with at least one fully-annotated training example.
For instance, with 120 surrogate annotations our
system achieves an F-score above 0.5, and we
identified this much surrogate training data for
96% of PropBank rolesets with at least one fully-
annotated sentence. This represents 64% of all
PropBank rolesets that are used for annotation.
Beyond 120 surrogate training examples, F-scores
remain around 0.6 before slowly declining after
around 700 examples.

Precision Recall

0.1

0 20 40 60 80 100 120

Number of training examples

Figure 3. Performance of our semantic role label-
ing approach on PropBank rolesets using various
amounts of surrogate training data

Several interesting comparisons can be made be-
tween the results presented in Figure 3 and those in
Figure 2, where actual PropBank training data is
used instead of surrogate training data. First, the
precision obtained with surrogate training data is
roughly 10% lower than with real data. Second, the
recall performance of surrogate data performs
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similar to real data at first, but is consistently 10%
lower than with real data after the first 50 training
examples. Accordingly, F-scores for surrogate
training data are 10% lower overall.

Even though the performance obtained using
surrogate training data is less than with actual data,
there is abundant amounts of it available for most
PropBank rolesets. Comparing the “% of rolesets”
plots in Figures 2 and 3, the real value of surrogate
training data is apparent. Figure 2 suggests that
over 20 real training examples are needed to
achieve F-scores that are consistently above 0.5,
but that less than 20% of PropBank rolesets have
this much data available. In contrast, 64% of all
PropBank rolesets can achieve this F-score per-
formance with the use of surrogate training data.
This percentage increases to 96% if every Prop-
Bank roleset is given at least one fully annotated
sentence, where all of its numbered arguments are
assigned to constituents.

In addition to supplementing the real training
data available for existing PropBank rolesets, these
results predict the labeling performance that can be
obtained by applying this technique to a novel
roleset with one fully-annotated training example,
e.g. for the verb yearn. Using the first 120 surro-
gate training examples and our simple semantic
role labeling approach, we would expect F-scores
that are above 0.5, and that using the first 700
would yield F-scores around 0.6.

7 Discussion

The overall performance of our semantic role la-
beling approach is not competitive with leading
contemporary systems, which typically employ
support vector machine learning algorithms with
syntactic features (Pradhan et al., 2005) or syntac-
tic tree kernels (Moschitti et al., 2006). However,
our work highlights a number of characteristics of
the semantic role labeling task that will be helpful
in improving performance in future systems. Parse
tree paths features can be used to achieve high pre-
cision in semantic role labeling, but much of this
precision may be specific to individual verbs. By
generalizing parse tree path features only across
syntactically similar verbs, we have shown that the
drop in precision can be limited to roughly 10%.
The approach that we describe in this paper is
not dependent on the use of PropBank rolesets; any
large corpus of semantic role annotations could be



generalized in this manner. In particular, our ap-
proach would be applicable to corpora with frame-
specific role labels, e.g. FrameNet (Baker et al.,
1998). Likewise, our approach to generalizing
parse tree path feature across syntactically similar
verbs may improve the performance of automated
semantic role labeling systems based on FrameNet
data. Our work suggests that feature generalization
based on verb-similarity may compliment ap-
proaches to generalization based on role-similarity
(Gildea and Jurafsky, 2002; Baldewein et al.,
2004).

There are a number of improvements that could
be made to the approach described in this paper.
Enhancements to the simple semantic role labeling
algorithm would improve the alignment of argu-
ments across rolesets, which would help align role-
sets with greater syntactic similarity, as well as
improve the performance obtained using the surro-
gate training data in assigning semantic roles.

This research raises many questions about the
relationship between syntactic context and verb
semantics. An important area for future research
will be to explore the correlation between our dis-
tance metric for syntactic similarity and various
quantitative measures of semantic similarity
(Pedersen, et al., 2004). Particularly interesting
would be to explore whether different senses of a
given verb exhibited markedly different profiles of
syntactic context. A strong syntactic/semantic cor-
relation would suggest that further gains in the use
of surrogate annotation data could be gained if syn-
tactic similarity was computed between rolesets
rather than their verbs. However, this would first
require accurate word-sense disambiguation both
for the test sentences as well as for the parsed cor-
pora used to calculate parse tree path frequencies.
Alternatively, parse tree path profiles associated
with rolesets may be useful for word sense disam-
biguation, where the probability of a sense is com-
puted as the likelihood that an ambiguous verb's
parse tree paths are sampled from the distributions
associated with each verb sense. These topics will
be the focus of our future work in this area.
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Abstract

Convolution tree kernel has shown promis-
ing results in semantic role classification.
However, it only carries out hard matching,
which may lead to over-fitting and less ac-
curate similarity measure. To remove the
constraint, this paper proposes a grammar-
driven convolution tree kernel for semantic
role classification by introducing more lin-
guistic knowledge into the standard tree
kernel. The proposed grammar-driven tree
kernel displays two advantages over the pre-
vious one: 1) grammar-driven approximate
substructure matching and 2) grammar-
driven approximate tree node matching. The
two improvements enable the grammar-
driven tree kernel explore more linguistically
motivated structure features than the previ-
ous one. Experiments on the CoNLL-2005
SRL shared task show that the grammar-
driven tree kernel significantly outperforms
the previous non-grammar-driven one in
SRL. Moreover, we present a composite
kernel to integrate feature-based and tree
kernel-based methods. Experimental results
show that the composite kernel outperforms
the previously best-reported methods.

1 Introduction

Given a sentence, the task of Semantic Role Label-
ing (SRL) consists of analyzing the logical forms
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expressed by some target verbs or nouns and some
constituents of the sentence. In particular, for each
predicate (target verb or noun) all the constituents in
the sentence which fill semantic arguments (roles)
of the predicate have to be recognized. Typical se-
mantic roles include Agent, Patient, Instrument, etc.
and also adjuncts such as Locative, Temporal,
Manner, and Cause, etc. Generally, semantic role
identification and classification are regarded as two
key steps in semantic role labeling. Semantic role
identification involves classifying each syntactic
element in a sentence into either a semantic argu-
ment or a non-argument while semantic role classi-
fication involves classifying each semantic argument
identified into a specific semantic role. This paper
focuses on semantic role classification task with the
assumption that the semantic arguments have been
identified correctly.

Both feature-based and kernel-based learning
methods have been studied for semantic role classi-
fication (Carreras and Marquez, 2004; Carreras and
Marquez, 2005). In feature-based methods, a flat
feature vector is used to represent a predicate-
argument structure while, in kernel-based methods,
a kernel function is used to measure directly the
similarity between two predicate-argument struc-
tures. As we know, kernel methods are more effec-
tive in capturing structured features. Moschitti
(2004) and Che et al. (2006) used a convolution
tree kernel (Collins and Duffy, 2001) for semantic
role classification. The convolution tree kernel
takes sub-tree as its feature and counts the number
of common sub-trees as the similarity between two
predicate-arguments. This kernel has shown very

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 200-207,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



promising results in SRL. However, as a general
learning algorithm, the tree kernel only carries out
hard matching between any two sub-trees without
considering any linguistic knowledge in kernel de-
sign. This makes the kernel fail to handle similar
phrase structures (e.g., “buy a car” vs. “buy a red
car”’) and near-synonymic grammar tags (e.g., the
POS variations between “high/J] degree/NN”" and
“higher/JJR degree/NN”)% To some degree, it may
lead to over-fitting and compromise performance.

This paper reports our preliminary study in ad-
dressing the above issue by introducing more lin-
guistic knowledge into the convolution tree kernel.
To our knowledge, this is the first attempt in this
research direction. In detail, we propose a gram-
mar-driven convolution tree kernel for semantic
role classification that can carry out more linguisti-
cally motivated substructure matching. Experimental
results show that the proposed method significantly
outperforms the standard convolution tree kernel on
the data set of the CoNLL-2005 SRL shared task.

The remainder of the paper is organized as fol-
lows: Section 2 reviews the previous work and Sec-
tion 3 discusses our grammar-driven convolution
tree kernel. Section 4 shows the experimental re-
sults. We conclude our work in Section 5.

2 Previous Work

Feature-based Methods for SRL: most features
used in prior SRL research are generally extended
from Gildea and Jurafsky (2002), who used a linear
interpolation method and extracted basic flat fea-
tures from a parse tree to identify and classify the
constituents in the FrameNet (Baker et al., 1998).
Here, the basic features include Phrase Type, Parse
Tree Path, and Position. Most of the following work
focused on feature engineering (Xue and Palmer,
2004; Jiang et al., 2005) and machine learning
models (Nielsen and Pradhan, 2004; Pradhan et al.,
2005a). Some other work paid much attention to the
robust SRL (Pradhan et al., 2005b) and post infer-
ence (Punyakanok et al., 2004). These feature-
based methods are considered as the state of the art
methods for SRL. However, as we know, the stan-
dard flat features are less effective in modeling the

! Please refer to http://www.cis.upenn.edu/~treebank/ for the
detailed definitions of the grammar tags used in the paper.

% Some rewrite rules in English grammar are generalizations of
others: for example, “NP-> DET JJ NN” is a specialized ver-
sion of “NP-> DET NN”. The same applies to POS. The stan-
dard convolution tree kernel is unable to capture the two cases.
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syntactic structured information. For example, in
SRL, the Parse Tree Path feature is sensitive to
small changes of the syntactic structures. Thus, a
predicate argument pair will have two different
Path features even if their paths differ only for one
node. This may result in data sparseness and model
generalization problems.

Kernel-based Methods for SRL: as an alternative,
kernel methods are more effective in modeling
structured objects. This is because a kernel can
measure the similarity between two structured ob-
jects using the original representation of the objects
instead of explicitly enumerating their features.
Many kernels have been proposed and applied to
the NLP study. In particular, Haussler (1999) pro-
posed the well-known convolution kernels for a
discrete structure. In the context of it, more and
more kernels for restricted syntaxes or specific do-
mains (Collins and Duffy, 2001; Lodhi et al., 2002;
Zelenko et al., 2003; Zhang et al., 2006) are pro-
posed and explored in the NLP domain.

Of special interest here, Moschitti (2004) proposed
Predicate Argument Feature (PAF) kernel for SRL
under the framework of convolution tree kernel. He
selected portions of syntactic parse trees as predicate-
argument feature spaces, which include salient sub-
structures of predicate-arguments, to define convo-
lution kernels for the task of semantic role classifi-
cation. Under the same framework, Che et al. (2006)
proposed a hybrid convolution tree kernel, which
consists of two individual convolution kernels: a Path
kernel and a Constituent Structure kernel. Che et al.
(2006) showed that their method outperformed PAF
on the CONLL-2005 SRL dataset.

The above two kernels are special instances of
convolution tree kernel for SRL. As discussed in
Section 1, convolution tree kernel only carries out
hard matching, so it fails to handle similar phrase
structures and near-synonymic grammar tags. This
paper presents a grammar-driven convolution tree
kernel to solve the two problems

3 Grammar-driven Convolution Tree
Kernel

3.1 Convolution Tree Kernel

In convolution tree kernel (Collins and Duffy,
2001), a parse tree 7' is represented by a vector of
integer counts of each sub-tree type (regardless of
its ancestors): ¢(T)=( ..., # subtree(T), ...), where



# subtree/T) is the occurrence number of the i™
sub-tree type (subtree;) in T. Since the number of
different sub-trees is exponential with the parse tree
size, it is computationally infeasible to directly use
the feature vector @(T") . To solve this computa-

tional issue, Collins and Duffy (2001) proposed the
following parse tree kernel to calculate the dot
product between the above high dimensional vec-
tors implicitly.

K(T,,T,) =< (1)), o(1,) >
= Z,— ((z e, 1 subtree, (n, )) '(ane N, Isubtree, (n, )))
= aneNl znze/vz A(nl > n2)

where N, and N, are the sets of nodes in trees 7 and
T, respectively, and /_, . (n) is a function that is
1 iff the subtree; occurs with root at node n and zero
otherwise, and A(n,n,) is the number of the com-

mon subtrees rooted at n; and n,, 1.e.,

A(nl H n2) = Zi Isubtreel- (nl) ) Isubtree, (nZ)
A(n,,n,) can be further computed efficiently by the

following recursive rules:
Rule 1: if the productions (CFG rules) at n, and

n, are different, A(n,n,)=0;

Rule 2: else if both n, and n, are pre-terminals
(POS tags), A(n,,n,)=1xA1;

Rule 3: else,

ne(ny) . .
A(ny,n,) = AHFI (1+A(ch(n,, j),ch(n,, j))),
where nc(n,)is the child number of n,, ch(ny) is

the /™ child of node # and A (0<A<1) is the decay
factor in order to make the kernel value less vari-
able with respect to the subtree sizes. In addition,
the recursive Rule 3 holds because given two
nodes with the same children, one can construct
common sub-trees using these children and com-
mon sub-trees of further offspring. The time com-

plexity for computing this kernel isO(| N, || N, |) .

3.2 Grammar-driven Convolution Tree
Kernel

This Subsection introduces the two improvements
and defines our grammar-driven tree kernel.

Improvement 1: Grammar-driven approximate
matching between substructures. The conven-
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tional tree kernel requires exact matching between
two contiguous phrase structures. This constraint
may be too strict. For example, the two phrase
structures “NP->DT JJ NN” (NP>a red car) and
“NP->DT NN” (NP->a car) are not identical, thus
they contribute nothing to the conventional kernel
although they should share the same semantic role
given a predicate. In this paper, we propose a
grammar-driven approximate matching mechanism
to capture the similarity between such kinds of
quasi-structures for SRL.

First, we construct reduced rule set by defining
optional nodes, for example, “NP->DT [JJ] NP” or
“VP-> VB [ADVP] PP”, where [*] denotes op-
tional nodes. For convenience, we call “NP-> DT
JJ NP” the original rule and “NP->DT [JJ] NP” the
reduced rule. Here, we define two grammar-driven
criteria to select optional nodes:

1) The reduced rules must be grammatical. It
means that the reduced rule should be a valid rule
in the original rule set. For example, “NP->DT []J]
NP” is valid only when “NP->DT NP” is a valid
rule in the original rule set while “NP->DT [JJ
NP]” may not be valid since “NP->DT” is not a
valid rule in the original rule set.

2) A valid reduced rule must keep the head
child of its corresponding original rule and has at
least two children. This can make the reduced rules
retain the underlying semantic meaning of their
corresponding original rules.

Given the reduced rule set, we can then formu-
late the approximate substructure matching mecha-
nism as follows:

M(rn)=Y, ((TLTHXA™ ) )
where 7; is a production rule, representing a sub-tree
of depth one’, and 7", is the i" variation of the sub-
tree 7; by removing one ore more optional nodes®,

and likewise for 7, and 7. I,(e,®)is a function

that is 1 iff the two sub-trees are identical and zero
otherwise. A (0<A,<1) is a small penalty to penal-

> Eq.(1) is defined over sub-structure of depth one. The ap-
proximate matching between structures of depth more than one
can be achieved easily through the matching of sub-structures
of depth one in the recursively-defined convolution kernel. We
will discuss this issue when defining our kernel.

* To make sure that the new kernel is a proper kernel, we have
to consider all the possible variations of the original sub-trees.
Training program converges only when using a proper kernel.



ize optional nodes and the two parameters a, and

b/ stand for the numbers of occurrence of removed

optional nodes in subtrees Tri1 and T/Z , respectively.
M (n,r,) returns the similarity (ie., the kernel

value) between the two sub-trees 7, and7, by sum-

ming up the similarities between all possible varia-
tions of the sub-trees 7 and 7, .

Under the new approximate matching mecha-
nism, two structures are matchable (but with a small

penalty A4, ) if the two structures are identical after

removing one or more optional nodes. In this case,
the above example phrase structures “NP->a red
car” and “NP->a car” are matchable with a pen-

alty 4, in our new kernel. It means that one co-

occurrence of the two structures contributes ﬂq to

our proposed kernel while it contributes zero to the
traditional one. Therefore, by this improvement, our
method would be able to explore more linguistically
appropriate features than the previous one (which is

formulated as /,.(7;,7,) ).

Improvement 2: Grammar-driven tree nodes ap-
proximate matching. The conventional tree kernel
needs an exact matching between two (termi-
nal/non-terminal) nodes. But, some similar POSs
may represent similar roles, such as NN (dog) and
NNS (dogs). In order to capture this phenomenon,
we allow approximate matching between node fea-
tures. The following illustrates some equivalent
node feature sets:

e JJ,JR, 1S

e VB, VBD, VBG, VBN, VBP, VBZ

[ ]

where POSs in the same line can match each other
with a small penalty 0< A, <I. We call this case

node feature mutation. This improvement further
generalizes the conventional tree kernel to get bet-
ter coverage. The approximate node matching can
be formulated as:

ML) =2, AL %) @
where f,is a node feature, f;' is the i" mutation
of f,and a,is 0 iff f;'and f;are identical and 1 oth-

erwise, and likewise for f,. I (e,)is a function

that is 1 iff the two features are identical and zero
otherwise. Eq. (2) sums over all combinations of
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feature mutations as the node feature similarity.
The same as Eq. (1), the reason for taking all the
possibilities into account in Eq. (2) is to make sure
that the new kernel is a proper kernel.

The above two improvements are grammar-
driven, i.e., the two improvements retain the under-
lying linguistic grammar constraints and keep se-
mantic meanings of original rules.

The Grammar-driven Kernel Definition: Given
the two improvements discussed above, we can de-
fine the new kernel by beginning with the feature
vector representation of a parse tree 7 as follows:

¢,(T) = (# subtree/(T), ..., # subtree,(T))

where # subtree,(T) is the occurrence number of the
i™ sub-tree type (subtree;) in T. Please note that,
different from the previous tree kernel, here we
loosen the condition for the occurrence of a subtree
by allowing both original and reduced rules (Im-
provement 1) and node feature mutations (Im-
provement 2). In other words, we modify the crite-
ria by which a subtree is said to occur. For example,
one occurrence of the rule “NP->DT JJ NP” shall
contribute 1 times to the feature “NP->DT JJ NP”

and/?1 times to the feature “NP->DT NP” in the

new kernel while it only contributes 1 times to the
feature “NP->DT JJ NP” in the previous one. Now
we can define the new grammar-driven kernel

K, (T,,T,) as follows:

K1, 1) =< g (1), §(T;)>
=2 (X, Lo )y L 1)) )
=2 e D, Nmom)

where N, and N, are the sets of nodes in trees 77 and
T», respectively. I/, (n) is a function that is

AL« A iff the subtree; occurs with root at node 7

and zero otherwise, where a and b are the numbers
of removed optional nodes and mutated node fea-
tures, respectively. A’(n,n,) is the number of the

common subtrees rooted at n; and n,, i.e. ,
A,(nl 4 n2) = Zi [:ubtree, (nl ) ’ ]s,'uhtreei (nZ) (4)

Please note that the value of A’(n,,n,)is no longer

an integer as that in the conventional one since op-
tional nodes and node feature mutations are consid-

ered in the new kernel. A’(n,,n,) can be further
computed by the following recursive rules:



Rule A: if n, and n, are pre-terminals, then:
A'(nymy) = AXM (S, /) (5)
where f, and f, are features of nodes 1, and 7, re-
spectively, and M (f,, f,) is defined at Eq. (2).
Rule B: else if both n, and n, are the same non-

terminals, then generate all variations of the subtrees
of depth one rooted by n, and n, (denoted by T |

and T, respectively) by removing different optional

nodes, then:
A,(’/ll’nZ) = lxzi’j(lT(T;:l’T;fZ)xz’ll /

<1 U+ A (ch(n, i, k), ch(ny, j, k)

where

(6)

J Tnﬁ and Tn’2 stand for the i and /™ variations in
sub-tree set 7, and 7, , respectively.

e /,(e®,®)is a function that is 1 iff the two sub-
trees are identical and zero otherwise.

e a and bj stand for the number of removed op-
tional nodes in subtrees 7', and T, , respectively.

o nc(n,,i) returns the child number of 7, in its i
subtree variation Tn"l.

e ch(n,,i,k) is the k" child of noden, in its "
variation subtree 7", and likewise for ch(n,, j, k).

e Finally, the same as the previous tree kernel,
A(0<A<1) is the decay factor (see the discussion
in Subsection 3.1).

Rule C: else A'(n,,n,)=0

Rule A accounts for Improvement 2 while Rule
B accounts for Improvement 1. In Rule B, Eq. (6)
is able to carry out multi-layer sub-tree approxi-
mate matching due to the introduction of the recur-
sive part while Eq. (1) is only effective for sub-
trees of depth one. Moreover, we note that Eq. (4)
is a convolution kernel according to the definition
and the proof given in Haussler (1999), and Eqs (5)
and (6) reformulate Eq. (4) so that it can be com-
puted efficiently, in this way, our kernel defined by
Eq (3) is also a valid convolution kernel. Finally,
let us study the computational issue of the new
convolution tree kernel. Clearly, computing Eq. (6)
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requires exponential time in its worst case. How-
ever, in practice, it may only need O(| N, || N, |).

This is because there are only 9.9% rules (647 out
of the total 6,534 rules in the parse trees) have op-
tional nodes and most of them have only one op-
tional node. In fact, the actual running time is even
much less and is close to linear in the size of the

trees since A’(n,n,)=0 holds for many node

pairs (Collins and Duffy, 2001). In theory, we can
also design an efficient algorithm to compute Eq.
(6) using a dynamic programming algorithm (Mo-
schitti, 2006). We just leave it for our future work.

3.3 Comparison with previous work

In above discussion, we show that the conventional
convolution tree kernel is a special case of the
grammar-driven tree kernel. From kernel function
viewpoint, our kernel can carry out not only exact
matching (as previous one described by Rules 2
and 3 in Subsection 3.1) but also approximate
matching (Egs. (5) and (6) in Subsection 3.2). From
feature exploration viewpoint, although they ex-
plore the same sub-structure feature space (defined
recursively by the phrase parse rules), their feature
values are different since our kernel captures the
structure features in a more linguistically appropri-
ate way by considering more linguistic knowledge
in our kernel design.

Moschitti (2006) proposes a partial tree (PT)
kernel which can carry out partial matching be-
tween sub-trees. The PT kernel generates a much
larger feature space than both the conventional and
the grammar-driven kernels. In this point, one can
say that the grammar-driven tree kernel is a spe-
cialization of the PT kernel. However, the impor-
tant difference between them is that the PT kernel
is not grammar-driven, thus many non-
linguistically motivated structures are matched in
the PT kernel. This may potentially compromise
the performance since some of the over-generated
features may possibly be noisy due to the lack of
linguistic interpretation and constraint.

Kashima and Koyanagi (2003) proposed a con-
volution kernel over labeled order trees by general-
izing the standard convolution tree kernel. The la-
beled order tree kernel is much more flexible than
the PT kernel and can explore much larger sub-tree
features than the PT kernel. However, the same as
the PT kernel, the labeled order tree kernel is not
grammar-driven. Thus, it may face the same issues



(such as over-generated features) as the PT kernel
when used in NLP applications.

Shen el al. (2003) proposed a lexicalized tree
kernel to utilize LTAG-based features in parse
reranking. Their methods need to obtain a LTAG
derivation tree for each parse tree before kernel
calculation. In contrast, we use the notion of op-
tional arguments to define our grammar-driven tree
kernel and use the empirical set of CFG rules to de-
termine which arguments are optional.

4 Experiments

4.1 Experimental Setting

Data: We use the CoNLL-2005 SRL shared task
data (Carreras and Marquez, 2005) as our experi-
mental corpus. The data consists of sections of the
Wall Street Journal part of the Penn TreeBank
(Marcus et al., 1993), with information on predi-
cate-argument structures extracted from the Prop-
Bank corpus (Palmer et al., 2005). As defined by
the shared task, we use sections 02-21 for training,
section 24 for development and section 23 for test.
There are 35 roles in the data including 7 Core
(AO0-AS5, AA), 14 Adjunct (AM-) and 14 Reference
(R-) arguments. Table 1 lists counts of sentences
and arguments in the three data sets.

Training Development Test
Sentences 39,832 1,346 2,416
Arguments 239,858 8,346 14,077

Table 1: Counts on the data set

We assume that the semantic role identification
has been done correctly. In this way, we can focus
on the classification task and evaluate it more accu-
rately. We evaluate the performance with Accu-
racy. SVM (Vapnik, 1998) is selected as our classi-
fier and the one vs. others strategy is adopted and
the one with the largest margin is selected as the
final answer. In our implementation, we use the bi-
nary SVMLight (Joachims, 1998) and modify the
Tree Kernel Tools (Moschitti, 2004) to a grammar-
driven one.

Kernel Setup: We use the Constituent, Predicate,
and Predicate-Constituent related features, which
are reported to get the best-reported performance
(Pradhan et al., 2005a), as the baseline features. We
use Che et al. (2006)’s hybrid convolution tree ker-
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nel (the best-reported method for kernel-based
SRL) as our baseline kernel. It is defined as
Kpia =OK 0 + (1=K (0<6<1) (for the de-

tailed definitions of K path and K

cs

path

please refer to

Che et al. (2006)). Here, we use our grammar-
driven tree kernel to compute K, and K, and we

call it grammar-driven hybrid tree kernel while Che
et al. (2006)’s is non-grammar-driven hybrid convo-
lution tree kernel.

We use a greedy strategy to fine-tune parameters.
Evaluation on the development set shows that our
kernel yields the best performance when A (decay

factor of tree kernel), 4 and A4, (two penalty factors

for the grammar-driven kernel), € (hybrid kernel
parameter) and € (a SVM training parameter to
balance training error and margin) are set to 0.4,
0.6, 0.3, 0.6 and 2.4, respectively. For other parame-
ters, we use default setting. In the CoNLL 2005
benchmark data, we get 647 rules with optional
nodes out of the total 6,534 grammar rules and de-
fine three equivalent node feature sets as below:

e JJ,JR,IIS

e RB, RBR,RBS

e NN, NNS, NNP, NNPS, NAC, NX

Here, the verb feature set “VB, VBD, VBG, VBN,

VBP, VBZ” is removed since the voice information
is very indicative to the arguments of ARGO
(Agent, operator) and ARG1 (Thing operated).

Methods Accuracy (%)
Baseline: Non-grammar-driven 85.21
+Approximate Node Matching 86.27
+Approximate Substructure 87.12
Matching
Ours: Grammar-driven Substruc- 87.96
ture and Node Matching
Feature-based method with poly- 89.92

nomial kernel (d = 2)

Table 2: Performance comparison

4.2 Experimental Results

Table 2 compares the performances of different
methods on the test set. First, we can see that the
new grammar-driven hybrid convolution tree kernel

significantly outperforms (Xz test with p=0.05) the



non-grammar one with an absolute improvement of
2.75 (87.96-85.21) percentage, representing a rela-
tive error rate reduction of 18.6% (2.75/(100-85.21))
. It suggests that 1) the linguistically motivated
structure features are very useful for semantic role
classification and 2) the grammar-driven kernel is
much more effective in capturing such kinds of fea-
tures due to the consideration of linguistic knowl-
edge. Moreover, Table 2 shows that 1) both the
grammar-driven approximate node matching and the
grammar-driven approximate substructure matching
are very useful in m