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Abstract

Chinese Grammatical Error Correction (CGEC)
aims to generate a correct sentence from an
erroneous sequence, where different kinds of
errors are mixed. This paper divides the CGEC
task into two steps, namely spelling error cor-
rection and grammatical error correction. Spe-
cially, we propose a novel zero-shot approach
for spelling error correction, which is simple
but effective, obtaining a high precision to
avoid error accumulation of the pipeline struc-
ture. To handle grammatical error correction,
we design part-of-speech (POS) features and
semantic class features to enhance the neu-
ral network model, and propose an auxiliary
task to predict the POS sequence of the target
sentence. Our proposed framework achieves
a 42.11 F0.5 score on CGEC dataset with-
out using any synthetic data or data augmen-
tation methods, which outperforms the previ-
ous state-of-the-art by a wide margin of 1.30
points. Moreover, our model produces mean-
ingful POS representations that capture differ-
ent POS words and convey reasonable POS
transition rules.

1 Introduction

Grammatical error correction (GEC) takes erro-
neous sequences as input and generates correct
sentences. In recent years, English GEC task has
attracted wide attention from researchers. By em-
ploying pre-trained models (Kaneko et al., 2020;
Katsumata and Komachi, 2020) or incorporat-
ing synthetic data (Grundkiewicz et al., 2019;
Lichtarge et al., 2019), the sequence-to-sequence
models achieve remarkable performance on En-
glish GEC task. Besides, several sequence labeling
approaches are proposed to cast text generation as
token-level edit prediction (Malmi et al., 2019;
Awasthi et al., 2019; Omelianchuk et al., 2020).

Chinese grammatical error correction (CGEC)
is less addressed. Previous works adopt ensem-
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Figure 1: An example of erroneous-correct sentence
pair. Black colour: correct tokens. Orange: erroneous
tokens. Red: correct tokens with wrong POS tags.

ble methods by combining seq2seq networks with
heuristic rules (Zhou et al., 2018; Fu et al., 2018) or
sequence editing approaches (Hinson et al., 2020;
Zhang et al., 2022). Different from English, Chi-
nese language utilizes function words instead of
affixes to represent forms and tenses, making it
hard to design detailed Chinese-specific edit la-
bels. The simple label strategy (for example, Keep,
Delete, Append_X) has been proved not competi-
tive with the seq2seq model on CGEC task (Chen
et al., 2020; Zhang et al., 2022).

Generally, the errors occurring in Chinese texts
can be divided to spelling errors and grammar er-
rors. For example in Figure 1, "主" is a spelling
error which should be subtitued to "注". While "和
(and)" relates to grammatical error which should be
deteled. According to our statistics on HSK data1,
which is collected from the writing section of Chi-
nese proficiency exam, the proportion of spelling
errors is about 18.58%. Unfortunately, most of
previous works mix two kinds of errors and adopt
the same model to handle them. Moreover, as the
basic elements for sentence understanding and pro-
cessing, spelling errors will influence the usage of
high-level features in the CGEC task. Although
amounts of linguistic features have been investi-
gated to improve many natural language processing
tasks, deep syntactic and semantic knowledge is
rarely explored in CGEC.

1http://hsk.blcu.edu.cn/Login
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Therefore, we propose a new framework for
CGEC with two steps: Spelling error correction
and semantic-enriched Grammatical error correc-
tion (SG-GEC). We propose a novel zero-shot
method for Chinese spelling error correction, by
taking advantage of the pre-trained BERT and Chi-
nese phonetic information, which is straightfor-
ward but achieves a satisfying precision. Further,
we introduce semantic knowledge into the seq2seq
model to correct grammatical errors. We carefully
analyze the reliability and utility of part-of-speech
(POS) in erroneous-correct paired sentences, and
design an effective method to integrate POS and
semantic representations into the neural network
model. Moreover, we introduce an auxiliary task
of POS sequence prediction, where a Conditional
Random Field (CRF) layer is added to ensure the
valid of generated POS sequences and stimulate
the model to learn grammar-level corrections.

We conduct extensive experiments on CGEC
NLPCC dataset (Zhao et al., 2018). Experimental
results show that our proposed zero-shot spelling
error correction module achieves a 60.25 precision,
which lays a good foundation for further leverag-
ing word-level features. With the pre-trained BART
for initialization, our model achieves a new state-
of-the-art result of 42.11 F0.5 score, which outper-
forms all previous approaches including pre-trained
models and ensemble methods. We also evaluate
model performance on CGED-2020 test dataset
(Rao et al., 2020) and obtain satisfying results.

To sum, our contributions are as follows:

• We present a new framework for CGEC,
which first conducts a preliminary spelling er-
ror correction and then performs grammatical
error correction with semantic features.

• We propose a novel zero-shot Chinese
spelling error correction method, which is
straightforward and achieves a high precision.

• We effectively inject semantic knowledge to
CGEC at both encoder and decoder, by incor-
porating POS and semantic class features into
the input embeddings, and introducing an aux-
iliary task of POS sequence generation in the
decoding phase.

• Our proposed model obtains a new state-of-
the-art result on CGEC task, outperforming
previous works by a wide margin without us-
ing any data augmentation method.

2 Observation and Intuition

Various types of linguistic features have been ex-
ploited in NLP, which bring improvement on dif-
ferent tasks. However, it remains an open issue
to introduce linguistic features to GEC. Different
from other NLP tasks, the GEC task takes erro-
neous sentences as input, based on which the extra
features might bring noise to the GEC model that
harms the performance.

2.1 Part-of-Speech and Grammar Errors
Part-of-speech represents the syntactic function of
a word in contexts, which is closely connected
with grammar. To bring POS features to the GEC
task, the reliability and sensitivity of POS tags to
grammar errors should be carefully examined. We
conduct such analysis on NLPCC dataset, using
Jieba2 as the POS tagger.

According to our statistics, 88.2% of erro-
neous sentences have different POS sequences
with their paired correct sentences, demonstrating
that POS feature is sensitive to grammatical er-
rors. An example is given in Figure 1. We count
LCS (Longest Common Sub-sequence) between
erroneous-correct sentence pairs. We divide tokens
in the erroneous sentence into two types: Corr-
token which appears in LCS and Err-token which
does not appear in LCS. Consequently, 98.1% Corr-
tokens have correct POS tags, proving that the POS
tagger could provide precise feature for the cor-
rect part of erroneous sentences. As for those
1.9% Corr-tokens which have wrong POS tags
(red colour in Figure 1), we calculate the average
distance between them and the nearest Err-token
(orange color) and the result is 2.38 tokens. In
contrast, the average distance between Corr-tokens
with correct POS tags and the nearest Err-token is
8.59 tokens. This suggests that Corr-tokens with
wrong POS tags are next to the erroneous part of
sentences.

All these statistical results demonstrate that the
POS feature is sensitive to the erroneous part mean-
while is robust for the correct part of sentences.

2.2 Semantic Class and Grammar Errors
Word semantic class is a kind of context-free fea-
ture, which tells which class each word belongs to
according to a semantic dictionary. The dictionary
is organized in a tree structure, consisting of differ-
ent levels of semantic classes. For example, top-3

2https://github.com/fxsjy/jieba
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Figure 2: Overview of our new framework for CGEC, which is composed of Spelling Error Correction (left part)
and Grammatical Error Correction (right part). M refers to the [MASK] symbol in the BERT model.

level semantic class of soup is entity, water and
boiled water. By introducing semantic class knowl-
edge, the model could learn the correlation between
different semantic classes, and thus correct some
semantic collocation errors, such as "冬阴功对外
国人的喜爱 (Seafood soup enjoys foreigners.)" .
In this example, a kind of food is incorrectly used
as the subject which performs the action "enjoy" .

We leverage HIT-CIR Tongyici Cilin (Ex-
tended) 3 to provide semantic class knowledge.

3 Zero-shot Spelling Error Correction

We present a new framework for CGEC as shown
in Figure 2, which consists of Spelling Error
Correction (SEC) and Grammatical Error Correc-
tion (GEC). Firstly, we propose a smart zero-shot
method for SEC.

Formally, the input erroneous sentence is repre-
sented as X = (x1, x2, ...xn), and the target cor-
rect sentence is denoted as Y = (y1, y2, ...ym),
where n,m mean the length of sentence. We use
X̃ = (x̃1, x̃2, ..., x̃n) to represent the output of the
zero-shot spelling error correction module:

X̃ = SEC(X) (1)

Specially, if a token xi in X has a relatively
high probability of being written incorrectly, it
will be substituted with a [MASK] token. Then,
the pre-trained BERT model (Devlin et al., 2019)
is employed to generate top-3 candidate tokens
V = (v1, v2, v3) with high probability. Among
the candidates, we select the token that most likely
appears in the [MASK] position:

3http://ir.hit.edu.cn/demo/ltp/
Sharing_Plan.htm

x̃i =

{
xi, vj /∈ SimSet(xi)

vj , vj ∈ SimSet(xi)
(2)

If there exists more than one token belonging to
SimSet(xi), we choose the token with the highest
score generated by BERT. According to the pre-
vious study, over 80% spelling errors in Chinese
are related to phonological similarity (Liu et al.,
2010). So, we set SimSet(xi) to be the collection
of homophones of xi.

Figure 2 gives an example in the left part. In
the given sentence,金(golden) is suspected to be
written incorrectly and substituted with [MASK].
The top three tokens with the highest score gener-
ated by BERT are: 去(last),今(this) and每(every).
Among them,今/jin shares the same PINYIN with
金/jin. So we replace 金 with 今 in the original
sentence.

A problem in SEC is how to decide whether a to-
ken xi is likely to be written incorrectly. Intuitively,
the punctuation and commonly used Chinese char-
acters, whose occurrences in the training dataset
are over kc, are less likely to be written incorrectly.
We directly keep these tokens unchanged to im-
prove the precision of SEC module and reduce the
computational expense. To find out the appropri-
ate threshold value kc, we conduct experiments on
the test set of SIGHAN-2015 (Tseng et al., 2015a),
which is designed specially for Chinese spelling
error correction and contains 1100 examples col-
lected from Chinese language learners.

As shown in Figure 3, the precision score on
SIGHAN test dataset has peaked at 66.1 when
kc = 80, 000 and gradually declines after kc >
120, 000. In order to restrain error accumulation
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Figure 3: Result of zero-shot spelling correction module
evaluated on SIGHAN test dataset.

of the pipeline structure, we hope our SEC mod-
ule to be high in precision. Accordingly, we set
kc = 80, 000 in our experiment.

4 Integrating Semantics for Grammatical
Error Correction

We adopt the Transformer encoder-decoder archi-
tecture for grammatical error correction. To project
semantic knowledge to CGEC, at the encoder we in-
corporate the semantic knowledge representations,
and at the decoding we design the POS sequence
generation as an auxiliary task.

We add the semantic knowledge embedding
Esemantics to the original word embedding to serve
as the input of encoder:

Hsrc = Encoder(Eword + Esemantics) (3)

In the decoding phase, we take the hidden state
of timestep t to predict the tth token in the target
sentence:

Htgt
t = Decoder(Htgt

≤t−1, H
src) (4)

P v
t (w) = softmax(Linear(Htgt

t )) (5)

where P v
t (w) is the generation probability of each

token.

4.1 Injecting Semantic Features
The semantic knowledge is composed of POS and
semantic classes. Please note that, in this stage,
the input sequence is X̃ , where the spelling error
correction has been conducted.

We leverages a POS tagger to obtain the POS
tag X̃p = (x̃p1, x̃

p
2, ...x̃

p
n) for each token in X̃ . The

embedding of POS tag sequence is computed as:

Ep
i = Embp(x̃pi ), E

p
i ∈ Rdp (6)

As shown in Table 1, there are different levels
of semantic classes to specify a word. We use
X̃c,l = (x̃c,l1 , x̃c,l2 , ...x̃c,ln ) to represent the lth level
class feature for each token. The high level se-
mantic class brings precise information. If only
the high level class feature is extracted, the model
will treat words as individual groups and ignore
their relations in low levels. Therefore, the seman-
tic representation of token xi is calculated as the
concatenation of embeddings of the first k-th levels:

Ec
i = Ec,1

i ⊕ Ec,2
i · · · ⊕ Ec,k

i , Ec
i ∈ Rdc×k (7)

Ec,l
i = Embc,1(x̃c,li ), Ec,l

i ∈ Rdc (8)

Considering that POS could be regarded as a
kind of rough semantic knowledge and be located at
the lowest level of semantic class, we concatenate
the POS embedding and semantic class embedding
to obtain the semantic representation:

Esemantics
i = Ep

i ⊕ Ec
i (9)

To make the dimension of semantic embedding
equal to that of word embedding dE , the dimension
of POS embedding dp and that of semantic class
embedding dc are set to:

dp = dc =
dE

k + 1
(10)

4.2 Predicting POS Sequence
As described in Section 2.1, the wrong POS tags are
usually close to the erroneous parts of sentences,
which indicates that token-level error correction
shares the same target with POS-level error correc-
tion. Moreover, POS-level errors are more general,
since various types of token-level errors might be
mapped to the same on POS-level. Inspired by this
observation, we design a sub-task to predict the
error-free POS sequence.

At timestep t, the generation probability of each
token’s POS tag is computed utilizing the linear
function and softmax:

P pos
t (w) = softmax(Linear(Htgt

t )) (11)

The cross entropy loss is commonly used to
stimulate the model to generate a target sequence.
However, besides being close to the golden cor-
rect POS sequence, the generated POS sequence
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itself should be well-formed. To model the depen-
dencies among neighboring POS tags, we adopt
Conditional Random Fields (CRF) (Lafferty et al.,
2001), under which the likelihood of target POS
sequence Y p = (yp1 , y

p
2 , ..., y

p
m) is computed as:

P pos
crf (Y

p|X) =

1

Z(X)
exp

( m∑

t=1

s(ypt ) +

m∑

t=2

t(ypt−1, y
p
t )
)

(12)
where s(ypt ) = P pos

t (w), which represents the gen-
eration probability of ypt .

The value t(ypt−1, y
p
t ) = Mypt−1,y

p
t

denotes the
transition score from POS tag ypt−1 to ypt , which
can be learnt as parameters during the end-to-end
training procedure. The Viterbi algorithm (Forney,
1973; Lafferty et al., 2001) is utilized to calculate
the normalizing factor Z(X).

4.3 Training Objective
As shown in Figure 2, our model is trained to gen-
erate the target sentence and POS sequence simul-
taneously, and thus the final loss is computed as:

Loss = Lce + LCRF (13)

Lce = −log
m∑

j=1

P v(yj) (14)

LCRF = −logP pos
crf (Y

p|X) (15)

5 Experimental Setup

5.1 Dataset and Evaluation Metric
We conduct experiments on the dataset of NLPCC-
2018 shared task (Zhao et al., 2018) which con-
tains 1.12 million training samples collected from
the language learning platform Lang-8 4 and 2000
human annotated samples for test. We randomly
selected 5,000 instances from training data as the
development set. Besides, we changed the format
of CGED-2020 test dataset (Rao et al., 2020) to
suit our task, and manually corrected 283 word-
order errors in CGED-2020 to obtain error-free
sentences (Please refer to Appendix A). We evalu-
ate our model on CGED-2020 (1457 samples) as a
supplement.

For NLPCC-2018 test dataset, we segment
model outputs by the official PKUNLP tool, and

4https://lang-8.com/

adopt the official MaxMatch (M2) (Dahlmeier and
Ng, 2012) scorer to calculate precision, recall and
F0.5 score. For CGED-2020 test dataset, we ap-
ply the simple char-based evaluation using ChER-
RANT 5 to avoid the influence brought by different
word segmentation tools.

5.2 Training Details

Our model is implemented using Fairseq. We av-
erage parameters of the last 5 checkpoints. We
use BART-base-chinese6 to initialize our model.
We use BERT tokenizer for word tokenization and
replace some [unused] tokens with Chinese punctu-
ation. Please refer to Appendix B for more param-
eter settings.

5.3 Comparing Methods

We compare our model with YouDao (Fu et al.,
2018), AliGM (Zhou et al., 2018) and BLCU (Ren
et al., 2018) , which are the three top systems in
the NLPCC-2018 challenge.

Also, the following previous works are referred
as baseline models:

ESD-ESC uses a pipeline structure to firstly de-
tect the erroneous spans and then generate the cor-
rect text for annotated spans (Chen et al., 2020).

HRG proposes a heterogeneous approach com-
posed of a LM-based spelling checker, a NMT-base
model and a sequence editing model (Hinson et al.,
2020).

MaskGEC adds random noises to source sen-
tences dynamically in the training process (Zhao
and Wang, 2020).

S2A model combines the output of seq2seq
framework and token-level action sequence pre-
diction module (Li et al., 2022).

More recently, (Zhang et al., 2022) enhance the
text editing model GECToR (Omelianchuk et al.,
2020) by using Struct-BERT as its encoder. They
also ensemble GECToR with fine-tuned BART
model (denotes as 3×Seq2Edit + 3×Seq2Seq) uti-
lizing edit-wise vote mechanism.

Besides, we finetune BART (Lewis et al., 2020)
on training dataset and apply MaskGEC as data
augmentation method to provide a strong baseline.

5https://github.com/HillZhang1999/
MuCGEC/tree/main/scorers/ChERRANT

6https://huggingface.co/fnlp/
bart-base-chinese
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Model NLPCC-2018 CGED-2020
P R F0.5 P R F0.5

AliGM▲ (Zhou et al., 2018) 41.00 13.75 29.36 - - -
YouDao▲ (Fu et al., 2018) 35.24 18.64 29.91 - - -
BLCU▲ (Ren et al., 2018) 47.63 12.56 30.57 - - -
ESD-ESC (Chen et al., 2020) 37.30 14.50 28.40 - - -
S2A model (Li et al., 2022) 36.57 18.25 30.46 - - -
HRG▲ (Hinson et al., 2020) 36.79 27.82 34.56 - - -
MaskGEC (Zhao and Wang, 2020) 44.36 22.18 36.97 - - -

Transformer 38.43 12.95 27.58 31.69 11.43 23.39
SG-GEC (Transformer) 44.52 18.28 34.59 32.37 12.04 24.20

BERT-fuse (Kaneko et al., 2020) 42.01 20.24 34.57 31.50 14.99 25.81
GECToR (Zhang et al., 2022) 39.83 23.01 34.75 - - -
GECToR (Our implement) 38.76 23.19 34.17 33.33 19.46 29.17
3×Seq2Edit + 3×Seq2Seq▲ (Zhang et al., 2022) 55.58 19.78 40.81 - - -
BART 46.21 25.14 39.58 38.89 20.13 32.78
BART + MaskGEC 48.79 24.03 40.45 40.72 18.63 32.91
SG-GEC (BART init) 50.56 25.24 42.11 40.97 20.05 33.90

Table 1: Performance comparison on the NLPCC-2018 test dataset (Zhao et al., 2018) and CGED-2020 test
dataset (Rao et al., 2020). ▲ refers to ensemble model.

6 Results and Analysis

6.1 Overall Performance
Table 1 reports the main evaluation results of our
proposed model on NLPCC-2018 and CGED test
datasets, comparing with previous researches.

Our proposed SG-GEC model obtains a new
state-of-the-art result with a 42.11 F0.5 score,
which outperforms the previous best single / en-
semble model by 5.14 / 1.30 points. Meanwhile,
our SG-GEC model surpasses GECToR, which
achieves SOTA result on English GEC task. Com-
paring with the base BART fine-tuned method, our
strategy brings a performance gain of 2.53 points.
What’s more, our SG-GEC model achieves a signif-
icant better result in precision among singe mod-
els, which is vital for some real-world applications.
Without using pre-trained language models, our
method outperforms the baseline Transformer by a
large margin of 7.01 F0.5 points.

Meanwhile, when being initialized by the pre-
trained BART, our proposed framework obviously
surpasses MaskGEC. It demonstrates that our SG-
GEC model brings additional semantic knowledge
which is more beneficial to the strong BART model
than simple data augmentation methods.

Our model consistently outperforms all other
models when evaluated on CGED-2020 test dataset,
which proves the generality of our model.

6.2 Ablation Study
We conduct ablation study on NLPCC dataset to
evaluate the effect of each module, as shown in

Model P R F0.5 Imp.

SG-GEC (BART init) 50.56 25.24 42.11 -
- SEC 49.70 22.30 39.90 - 2.21
- POS emb 48.85 25.95 41.52 - 0.59
- Semantic Class emb 48.73 25.92 41.44 - 0.67
- POS predict & CRF 49.50 25.02 41.40 - 0.71
- CRF 50.03 25.21 41.80 - 0.31

Table 2: Ablation study of our model on NLPCC
dataset. - CRF refers to substitute crf loss with cross
entropy loss.

Table 2. All the modules bring improvement in
model performance. Specially, removing spelling
error correction (SEC) results in a sharp decrease
of 2.21 F0.5 score, for the reason that it not only
corrects spelling errors but also offers more reli-
able POS and semantic class features. Setting em-
bedding of POS / semantic class features to zero
leads a decrease of 0.59 / 0.67 F0.5 score, which
demonstrates that POS and semantic class features
bring valid information for grammar error detec-
tion. Replacing CRF loss with cross entropy loss
leads to a decrease of 0.31 point. Without the sub-
task of POS generation, the model performance
drops from 42.11 to 41.40. It illustrates that pre-
dicting POS with CRF layer helps the model to
learn grammar-level correction which further im-
proves the performance.

6.3 Effect of Spelling Error Correction

In our framework, zero-shot spelling error correc-
tion (SEC) is a vital step. We conduct further exper-
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Model Num. P R F0.5

SEC 192 60.25 5.18 19.27

BART 120 46.21 25.14 39.58
BART + SEC 210 47.70 25.80 40.78

BART + SemF 113 48.11 23.24 39.63
BART + SemF + SEC 210 49.50 25.02 41.40

B-sec 153 25.63 7.63 17.41
BART + B-sec 174 38.98 25.48 35.21
BART + SemF + B-sec 176 39.07 24.33 34.85

Table 3: Effect of spelling error correction. Num. refers
to the number of corrected spelling error tokens. SEC
refers to zero-shot spelling error correction module. B-
sec is a BERT model finetuned on the spelling error
correction dataset SIGHAN15 and HybirdSet. + SemF
denotes integrating semantic features.

iments to illustrate the effect of this module, and
list the results in Table 3.

Our proposed SEC module greatly improves the
number of corrected spelling errors, with 90 more
tokens over BART and 97 more tokens over the
semantic-enriched BART. During the pre-training
process of BART model, input tokens are substi-
tuted to [MASK] symbols and new tokens are gen-
erated without special constraints. Meanwhile, our
SEC module intentionally masks misspelled tokens
and takes phonetic similarity as constraints when
generating new tokens, therefore corrects more
spelling errors and achieves high precision score.

If semantic feature embeddings are directly
added on BART without utilizing the SEC module,
the number of corrected spelling errors will drop
from 120 to 113. Because spelling errors influ-
ence word segmentation and thus lead to erroneous
POS and semantic class features at the position of
misspelled tokens. In contrast, our high precision
SEC lays a solid foundation for the further seman-
tic information injection. After applying the SEC
module, BART + SEC + SemF (semantic features)
obtains larger improvement in model performance.

We also compare our zero-shot SEC module
with a BERT model finetuned on the spelling er-
ror correction dataset SIGHAN-2015 (Tseng et al.,
2015a). Our SEC module strictly focuses on cor-
recting spelling errors and achieves a high preci-
sion. However, beside spelling errors, the finetuned
BERT model automatically corrects other types of
errors, leading to a high recall but low precision
score. As the first step of pipeline structure, the
low precision brings huge noise to the subsequent
module and thus damages the final performance.

6.4 Analysis on POS representations

The part-of-speech feature is closely connected
with grammar. In our model, we inject POS em-
bedding in encoder and predict the correct POS
sequence in decoder, which enable our model to
learn a better POS representation.

To investigate the POS representations, we cal-
culate the nearest neighbours to each POS tag by
computing the cosine distance between embedding
vectors, and list the results in Table 4. For each
POS tag, most of their nearest tokens have the cor-
responding part-of-speech. It demonstrates that our
POS embedding could capture general features of
tokens sharing the same part-of-speech, which ben-
efits our model and shows potential for other NLP
applications.

POS Tag Top-3 nearest tokens

noun 栈 storehouse 障 obstacle 浆 liquid
verb 想 think 离 leave 做 do
adjective 脆 crisp 傻 foolish 幸 lucky
adverb 再 again 也 also 永 always
pronoun 我 I 他 he 飞 fly
preposition 对 for/towards 把 prep. 为 for

Table 4: Top-3 nearest tokens to POS tags.

In our model, CRF is essential to capture neigh-
boring POS dependencies of target sequences. We
visualize the POS transition matrix that the CRF
layer has learnt in Figure 4. Interestingly, sev-
eral grammar rules could be found. For exam-
ple, preposition is usually followed by noun,
pronoun or spacename, but it has a low prob-
ability of transiting to punctuation (the end of a
sentence). Adjective usually occurs before noun
but seldom connects with preposition. This POS
knowledge enables our model to generate grammat-
ical sentences.

6.5 Case Study

Table 5 provides an example output of our SG-
GEC model comparing with BART. Our SEC mod-
ule firstly corrects the spelling error in this sen-
tence. Benefiting by this, seq2seq model corrects
the grammatical error subsequently. However, the
BART model fails to correct both spelling and
grammatical errors in this sentences. More cases
are listed in Appendix F.

We list two cases in Table 6 to show the effect of
our semantic class feature. When object and verb
are mismatched (Case 1) or verb is missing (Csed
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Figure 4: POS transition matrix in the CRF layer.
Darker colour refers to higher transition probability.

Type Sample

SRC 由于羊驼毛的价格比羊羔毛低廉且更具
优的保暖性...

TGT 由于羊驼毛的价格比羊羔毛低廉且更
具有(delete-的)保暖性...

BART 由于羊驼毛的价格比羊羔毛低廉且更具
优的保暖性...

SEC 由于羊驼毛的价格比羊羔毛低廉且更
具有的保暖性...

SG-GEC 由于羊驼毛的价格比羊羔毛低廉且更
具有(delete-的)保暖性...

Translation Because paco wool is cheaper and warmer
than lamb wool...

Table 5: Case study of our model. Red / blue color
refers to correction of spelling / grammatical error.

2), our model could correct these errors benefited
from information provided by semantic class fea-
ture. When meeting rarely used words, for exam-
ple罪魁祸首(chief culprit), semantic class feature
might provide extra information learning from ex-
amples which contain主犯(principal criminal) or
要犯(important crimial) and help model to replace
verb 了解(know about) with了结(kill).

7 Related Work

7.1 Grammatical Error Correction

Seq2seq generation model and edit label predic-
tion model are two mainstream models for GEC
task. Benefiting by the rapid gains in hardware and
high quality dataset, Transformer-based seq2seq
models (Junczys-Dowmunt et al., 2018; Katsumata
and Komachi, 2020; Kaneko et al., 2020) outper-
form traditional CNN and RNN-based model struc-
tures (Xie et al., 2016; Yuan and Briscoe, 2016;
Chollampatt and Ng, 2018). Copy mechanism and
subtask is also introduced to seq2seq model (Zhao

et al., 2019). LaserTagger (Malmi et al., 2019)
treats the GEC task as text edit task and predicts
Keep, Delete and Append_# for each token in er-
roneous sentences to represent different edit op-
eration. PIE (Awasthi et al., 2019) and GECToR
(Omelianchuk et al., 2020) manually design de-
tailed English-specific labels, regarding case and
tense. Synthetic data is generated to enhance model
performance (Ge et al., 2018; Grundkiewicz et al.,
2019; Lichtarge et al., 2019). Besides two main-
stream model structure, ESD-ESC (Chen et al.,
2020) firstly detects erroneous spans and gener-
ates correct contents only for annotated spans. TtT
model (Li and Shi, 2021) directly predicts each to-
kens in correct sentences given erroneous sentence.

CGEC task is less addressed. Release of
NLPCC-2018 dataset (Zhao et al., 2018) attracts
much attention from participated teams, where top
3 systems are AliGM (Zhou et al., 2018), YouDao
(Fu et al., 2018) and BLCU (Ren et al., 2018).
HRG combines spelling checker, NMT-base model
and sequence editing model (Hinson et al., 2020).
However, spelling checker in HRG is based on
language model which could not make full use of
context. Zhao and Wang proposed data augmenta-
tion method MaskGEC, which adds random noise
to input sentence dynamically in training process.
S2A model combines seq2seq and sequence edit-
ing model by combining prediction probability of
words and edit labels (Li et al., 2022). Zhang et al.
ensembles seq2seq model and sequence editing
model by edit-wise vote mechanism and achieves
the state-of-the-art on NLPCC-2018 dataset.

7.2 Chinese Spelling Error Correction

Chinese spelling error correction is firstly tackled
with CRF or HMM models (Tseng et al., 2015b;
Zhang et al., 2015). In recent neural network mod-
els, phonological and graphic knowledge is intro-
duced to help detecting and correcting Chinese
spelling errors (Hong et al., 2019; Huang et al.,
2021; Cheng et al., 2020). The pre-trained BERT
model is also utilized to generate candidate sen-
tences (Hong et al., 2019; Zhang et al., 2020).

Different from these models, we locate possibly
misspelled tokens based on rule instead of neural
network. We directly choose the homophone of
masked token from candidates generated by BERT.
Knowledge is utilized more explicitly in our mod-
ule. More importantly, our method is zero-shot,
without using any labeled data.
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Type Sample

keyword 罪魁祸首-chief culprit
group words 主犯-principal criminal要犯-important criminal正凶-principal murderer
SRC 我就在此了解(know about)了你这罪魁祸手(chief culprit)，平平风气！
TGT 我就在此了结(kill)了你这罪魁祸首(chief culprit)，平平风气！
BART 我就在此了解(know about)了你这罪魁祸手(chief culprit)，平平风气！
SG-GEC 我就在此了结(kill)了你这罪魁祸首(chief culprit)，平平风气！
Translation I’m going to kill you chief culprit right here to improve social climate.

keyword 年级-grade
group words 班级-class高年级-senior year
SRC 时间过的很快，我已经变成(become)了三年级(the third grade)。
TGT 时间过得很快，我已经变成(become)了三年级的学生(third-grade student)。
BART 时间过的很快，我已经变成(become)了三年级(the third grade)。
SG-GEC 时间过的很快，我已经上(is in)三年级(the third grade)了。
Translation Time passed quickly, I have become a third-grade student.

keyword 意思-meaning
group words 意义-significance含义-implication
SRC 背完生词之后，再读课文，那么更容易生词的用法和意思(meaning)。
TGT 背完生词之后，再读课文，那么更容易记住(remember)生词的用法和意思(meaning)。
BART 背完生词之后，再读课文，那么生词的用法和意思(meaning)就更容易了。
SG-GEC 背完生词之后，再读课文，会更容易理解(understand)生词的用法和意思(meaning)。
Translation Reading the passage after reciting the new words makes it easier to remember the usage and the meaning

of the new words。

Table 6: Case study of our model. Group words refer to words which share the same semantic class with the
keyword. Blue / red color refers to verb / object. Green color refers to modification of verb or object.

8 Conclusion

In this paper, we divide CGEC into two consec-
utive tasks: spelling error correction and gram-
matical error correction. We propose a zero-shot
spelling error correction method, utilizing the pre-
trained BERT model and taking advantage of Chi-
nese phonological knowledge. It achieves a high
precision score to avoid error accumulation in the
pipeline structure. Based on the careful analysis on
real data, we inject proper semantic features into
the encoder. And at the same time, we generate cor-
rect POS sequence as a sub-task to help generate
correct sentences, where CRF is applied to guaran-
tee the validness of the generated POS sequence.
Initialized by the pre-trained BART model, our pro-
posed framework achieves a new state-of-the-art
result on CGEC task, outperforming the previous
best result by a large margin.

Limitation

Our zero-shot spelling error correction module is
specifically designed for Chinese language. Mean-
while, the POS tagger and vocabulary of seman-
tic class we used in SG-GEC model cannot be di-
rectly applied to other languages. To some degree,
it makes SG-GEC model as a language-specific
model. We try to find matched resources in English

language and conduct experiments on English GEC
dataset. The result is reported in Appendix E. It
demonstrates that introducing semantic features af-
ter spelling check and employing sub-task of POS
correction with CRF layer, which is the main idea
of our work, could benefit GEC task of other lan-
guages.
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A Annotation of CGED-2020 Dataset

There exist 283 word-order errors in CGED-2020
test dataset. We first correct other three types of
errors in the sentences according to the golden an-
swer and mark the start and end points of word-
order errors. Two annotators are asked to correct
the error by adjusting the order of the tokens be-
tween start and end point. For 87% of erroneous
sentences, correction results of two annotators are
consistent with each other. For the other 13% sen-
tences, a third annotator is asked to select the better
one from two different corrected sentences.

B Hyperparameters

The detailed hyperparameter settings are listed in
Table 7.

C Effect of Semantic Features

We investigate the effect of each single feature as
well as different approaches for feature combina-
tion, and the results are shown in Table 8. Both
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Hyper-parameters Value

pretrained model bart-base-chinese
dropout 0.1
learning rate 3e-5
optimizer Adam(β1=0.9, β2=0.999, ϵ=1e-8)
lr scheduler polynomial decay
warmup updates 500
total number updates 20000
max tokens 4096
update-freq 2
max epochs 10
loss function cross entropy
beam size 12

Num. of parameters 117 millions
device two NVIDIA RTX 2080 GPUs
runtime 4.5 hours

Table 7: Hyper-parameter settings in our model.

POS and semantic class bring helpful knowledge
for GEC task. The Level-3 semantic class fea-
ture outperforms other single features, which pro-
vides more detailed classification information of
semantic knowledge. Compared with accumulat-
ing, concatenating all features obtains a slightly
better result.

Model Num. P R F0.5 Imp.

BART + SEC - 47.70 25.80 40.78
+ POS 44 49.17 25.07 41.24 + 0.46
+ Class Lv.1 18 48.78 25.44 41.22 + 0.44
+ Class Lv.2 101 48.91 25.50 41.32 + 0.54
+ Class Lv.3 1431 49.50 24.91 41.34 + 0.56

+ accum. All - 49.01 25.50 41.38 + 0.60
+ concat. All - 49.50 25.02 41.40 + 0.62

Table 8: Effect of different semantic features. Class
Lv.k refers to the k-th level semantic class. accum. All /
concat. All denotes the final semantic representation is
obtained by accumulating / concatenating all features’
embeddings. Num. refers to number of different values
of a specific feature.

D Effect of Semantic Sequence Prediction

To evaluate the effect of our proposed multitask
learning framework, we exploit different semantic
sequences as targets of generation, and the results
are shown in Table 9. Employing POS sequence
generation as a sub-task outperforms other auxil-
iary tasks of semantic class sequence generation,
which brings a further performance gain over the
strong model of BART+SEC+SemF. POS sequence
is more generalized and convey much more syn-
tactic information. By learning to generate correct
POS sequence, model could learn grammar-level

Model P R F0.5 Imp.

BART+SEC+SemF 49.50 25.02 41.40
+ POS pred 50.56 25.24 42.11 + 0.71

w/o CRF 50.03 25.21 41.80 + 0.40
+ Class Lv.1 pred 49.57 24.70 41.41 + 0.01

w/o CRF 49.57 24.70 41.26 - 0.14
+ Class Lv.2 pred 49.20 24.85 41.19 - 0.21

w/o CRF 50.29 23.11 40.71 - 0.69

Table 9: Effect of different types of sequence generation
as a sub-task. POS pred / Class Lv.k pred refers to
employ a sub-task to predict POS / k-th level semantic
class sequence. w/o CRF represents the standard cross
entropy loss is applied without using CRF.

correction instead of token-level correction. Pre-
dicting semantic class sequence does no benefit the
performance of model. Firstly, semantic class is a
context-free feature based on words, which means
predicting sequence semantic class roughly equals
to predicting sequence of token. What’s more, there
are about 15% words in target sentences having no
semantic class in the lexicon, which will influence
the training process.

E Experiment on English GEC dataset

For English GEC task, following Bryant et al.
(2019), we use Lang-8 Corpus of Learner English
(Mizumoto et al., 2011), FCE (Yannakoudakis
et al., 2011), NUCLE (Dahlmeier et al., 2013) and
W&I+LOCNESS (Bryant et al., 2019) as training
data, CoNLL-2013 test set as dev set and evaluate
on CoNLL-2014 (Ng et al., 2014) test set.

In Chinese language, token might be incorrectly
written as its homophone. Meanwhile, in English
language, spelling mistakes usually caused by miss-
ing or mis-writing letters. Our phonological knowl-
edge based zero shot-spelling error correction mod-
ule could not be directly applied to English lan-
guage. Spelling errors in English language cause
out-of-vocabulary words, which makes it easier to
be detected and corrected compared with Chinese.
Therefore, we simply utilize a spelling checker7

based on dictionary and edit distance to substitue
zero-shot SEC module in SG-GEC.

We use NLTK8 as POS tagger. For semantic
class knowledge, we could not find exactly matched
resources in English language. We design two al-
ternative solutions:

7https://github.com/barrust/
pyspellchecker

8https://www.nltk.org/
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• zero-class-feature We set the embedding of
semantic class features to zero during both
training and inference process.

• Wordnet-class-feature We use WordNet9 to
get the semantic class features of a word by
recursively searching the hypernym of this
word. Number of values in 1rt / 2nd / 3rd
level semantic class is 148 / 685 / 9852.

We use BART-base10 to initialize our model.

Model P R F0.5

spelling checker 56.07 2.94 12.14

BART 70.10 40.16 61.00
BART + spelling checker 69.72 41.27 61.27

SG-GEC (BART init)
zero-class-feature 68.80 43.96 61.82
Wordnet-class-feature 69.01 44.07 62.00

Table 10: Experiment on English GEC dataset.

Table 10 demonstrates that spell checker brings
little benefit to BART-finetuned model on English
GEC task. One reason is that spelling error in
English causes out-of-vocabulary words, which is
easily to detect. As shown in Table 11, misspelled
out-of-vocabulary words are usually divided into
BPE level in BART model.

Correct Misspelled Tokenized

potential potetial pot ##et ##ial
responsibility resposiblity resp ##os ##ibl ##ity
hundreds hundrends h ##und ##rend ##s

Table 11: Examples of misspelled words in English
GEC dataset.

By introducing POS feature and sub-task of
POS correction with CRF layer while setting em-
bedding of semantic class features to zero, our
model achieves 61.82 F0.5 score, which outper-
forms BART model. Semantic class features pro-
vided by Wordnet also slightly improve the perfor-
mance of the model. Wordnet focuses on modeling
relations between words instead of classification of
words. The same level semantic class feature of two
different words might be different in scale. For ex-
ample, root hypernym of "people" is "entity.n.01"
while root hypernym of "get" is "get.v.01", which
might brings influence to the model.

9https://wordnet.princeton.edu/
10https://huggingface.co/facebook/

bart-base

Experimental result on English GEC dataset
demonstrates that our proposed SG-GEC model
could also benefit GEC task of other languages.

F More Case Studies

We list five more cases in Table 12 to demon-
strate effectiveness of our pipeline structure. BART
model might easily miss grammatical error (Case
1, Case 2) or spelling error (Case 3, Case 4) be-
cause of mixing spelling error and grammatical
error correction together. It might be misguided by
erroneous token (Case 5).
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Type Sample

SRC 我认为空气污染是跟我们的生活密切的问题，所以一定要最优先解决，优其
是像北京那样的大城市。

TGT 我认为空气污染是跟我们的生活密切相关的问题，所以一定要最优先解
决，尤其是像北京那样的大城市。

BART 我认为空气污染是跟我们的生活密切的问题，所以一定要最优先解决，尤其
是像北京那样的大城市。

SEC 我认为空气污染是跟我们的生活密切的问题，所以一定要最优先解决，尤其
是像北京那样的大城市。

SG-GEC 我认为空气污染是跟我们的生活密切相关的问题，所以一定要最优先解
决，尤其是像北京那样的大城市。

Translation I think air pollution is the problem that are closely related to our lives. Therefor it
should be solved as a matter of top priority, especially for metropolis like Beijing.

SRC 人为了生存不管是干静的空气，污染的空气都要呼吸。
TGT 人为了生存不管是干净的空气，还是污染的空气都要呼吸。
BART 人为了生存不管是干静的空气，还是污染的空气都要呼吸。
SEC 人为了生存不管是干净的空气，污染的空气都要呼吸。
SG-GEC 人为了生存不管是干净的空气，还是污染的空气都要呼吸。
Translation In order to survive, human need to breathe air no matter it is fresh or polluted.

SRC 学校里的草场上还有一点的人来运动。
TGT 学校里的操场上还有一些人在运动。
BART 学校里的草场上还有一些人来运动。
SEC 学校里的操场上还有一点的人来运动。
SG-GEC 学校里的操场上还有一些人来运动。
Translation In the school playground, there are some people coming for doing exercise.

SRC 几个仙女来蟠桃圆摘桃时，告诉了孙悟空王母要做蟠桃盛会。
TGT 几个仙女来蟠桃园摘桃时，告诉了孙悟空王母要办蟠桃盛会。
BART 几个仙女来蟠桃圆摘桃时，告诉了孙悟空王母要举办蟠桃盛会。
SEC 几个仙女来蟠桃园摘桃时，告诉了孙悟空王母要做蟠桃盛会。
SG-GEC 几个仙女来蟠桃园摘桃时，告诉了孙悟空王母要举办蟠桃盛会。
Translation When fairies coming to peach orchard to pick peaches, they told Monkey King that

the Queen Mother would hold the Peach Banquet.

SRC 这些地方征明中国灿烂的文化和历史。
TGT 这些地方证明了中国灿烂的文化和历史。
BART 这些地方象征着中国灿烂的文化和历史。
SEC 这些地方证明中国灿烂的文化和历史。
SG-GEC 这些地方证明了中国灿烂的文化和历史。
Translation These places prove that China have splendid culture and history.

Table 12: Case study of our model. Red / blue color refers to correction of spelling / grammatical error.
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