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Abstract

The recent literature in text classification is bi-
ased towards short text sequences (e.g., sen-
tences or paragraphs). In real-world applica-
tions, multi-page multi-paragraph documents
are common and they cannot be efficiently en-
coded by vanilla Transformer-based models.
We compare different Transformer-based Long
Document Classification (TrLDC) approaches
that aim to mitigate the computational over-
head of vanilla transformers to encode much
longer text, namely sparse attention and hierar-
chical encoding methods. We examine several
aspects of sparse attention (e.g., size of local
attention window, use of global attention) and
hierarchical (e.g., document splitting strategy)
transformers on four document classification
datasets covering different domains. We ob-
serve a clear benefit from being able to process
longer text, and, based on our results, we derive
practical advice of applying Transformer-based
models on long document classification tasks.1

1 Introduction

Natural language processing has been revolu-
tionised by the large scale self-supervised pre-
training of language encoders (Devlin et al., 2019;
Liu et al., 2019), which are fine-tuned in order to
solve a wide variety of downstream classification
tasks. However, the recent literature in text classi-
fication mostly focuses on short sequences, such
as sentences or paragraphs (Sun et al., 2019; Ad-
hikari et al., 2019; Mosbach et al., 2021), which
are sometimes misleadingly named as documents.2

The transition from short-to-long document clas-
sification is non-trivial. One challenge is that
BERT and most of its variants are pre-trained on

∗This work was partially done when Dai was at the Uni-
versity of Copenhagen.

1Code is available at https://github.com/
coastalcph/trldc

2For example, many biomedical datasets use ‘documents’
from the PubMed collection of biomedical literature, but these
documents actually consist of titles and abstracts.
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Figure 1: The effectiveness of Longformer, a long-
document Transformer, on the MIMIC-III development
set. There is a clear benefit from being able to process
longer text.

sequences containing up-to 512 tokens, which is
not a long document. A common practice is to
truncate actually long documents to the first 512
tokens, which allows the immediate application
of these pre-trained models (Adhikari et al., 2019;
Chalkidis et al., 2020). We believe that this is an
insufficient approach for long document classifica-
tion because truncating the text may omit important
information, leading to poor classification perfor-
mance (Figure 1). Another challenge comes from
the computational overhead of vanilla Transformer:
in the multi-head self-attention operation (Vaswani
et al., 2017), each token in a sequence of n tokens
attends to all other tokens. This results in a func-
tion that has O(n2) time and memory complexity,
which makes it challenging to efficiently process
long documents.

In response to the second challenge, long-
document Transformers have emerged to deal with
long sequences (Beltagy et al., 2020; Zaheer et al.,
2020). However, they experiment and report re-
sults on non-ideal long document classification
datasets, i.e., documents on the IMDB dataset are
not really long – fewer than 15% of examples are
longer than 512 tokens; while the Hyperpartisan
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dataset only has very few (645 in total) documents.
On datasets with longer documents, such as the
MIMIC-III dataset (Johnson et al., 2016) with an
average length of 2,000 words, it has been shown
that multiple variants of BERT perform worse than
a CNN or RNN-based model (Chalkidis et al.,
2020; Vu et al., 2020; Dong et al., 2021; Ji et al.,
2021a; Gao et al., 2021; Pascual et al., 2021). We
believe there is a need to understand the perfor-
mance of Transformer-based models on classifying
documents that are actually long.

In this work, we aim to transfer the success of
the pre-train–fine-tune paradigm to long document
classification. Our main contributions are:

• We compare different long document classifi-
cation approaches based on transformer archi-
tecture: namely, sparse attention, and hierar-
chical methods. Our results show that process-
ing more tokens can bring drastic improve-
ments comparing to processing up-to 512 to-
kens.

• We conduct careful analyses to understand the
impact of several design options on both the
effectiveness and efficiency of different ap-
proaches. Our results show that some design
choices (e.g., size of local attention window in
sparse attention method) can be adjusted to im-
prove the efficiency without sacrificing the ef-
fectiveness, whereas some choices (e.g., docu-
ment splitting strategy in hierarchical method)
vastly affect effectiveness.

• Last but not least, our results show that, con-
trary to previous claims, Transformer-based
models can outperform former state-of-the-art
CNN based models on MIMIC-III dataset .

2 Problem Formulation and Datasets

We divide the document classification model into
two components: (1) a document encoder, which
builds a vector representation of a given document;
and, (2) a classifier that predicts a single or multi-
ple labels given the encoded vector. In this work,
we mainly focus on the first component: we use
Transformer-based encoders to build a document
representation, and then take the encoded docu-
ment representation as the input to a classifier. For
the second component, we use a TANH activated
hidden layer, followed by the output layer. Output
probabilities are obtained by applying a SIGMOID
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Figure 2: The distribution of document lengths. A log-
10 scale is used for the X axis.

(multi-label) or SOFTMAX (multi-class) function
to output logits.3

We mainly conduct our experiments on the
MIMIC-III dataset (Johnson et al., 2016), where re-
searchers still fail to transfer “the Magic of BERT”
to medical code assignment tasks (Ji et al., 2021a;
Pascual et al., 2021).

MIMIC-III contains Intensive Care Unit (ICU)
discharge summaries, each of which is anno-
tated with multiple labels—diagnoses and pro-
cedures—using the ICD-9 (The International
Classification of Diseases, Ninth Revision) hi-
erarchy. Following Mullenbach et al. (2018),
we conduct experiments using the top 50 fre-
quent labels.4

To address the generalisation concern, we also
use three datasets from other domains: EC-
tHR (Chalkidis et al., 2022) sourced from legal
cases, Hyperpartisan (Kiesel et al., 2019) and 20
News (Joachims, 1997), both from news articles.

ECtHR contains legal cases from The European
Court of Human Rights’ public database.
The court hears allegations that a state has
breached human rights provisions of the Euro-
pean Convention of Human Rights, and each
case is mapped to one or more articles of the
convention that were allegedly violated.5

Hyperpartisan contains news articles which are
3Long document classification datasets are usually anno-

tated using a large number of labels. Studies that have focused
on the second component investigate methods of utilising label
hierarchy (Chalkidis et al., 2020; Vu et al., 2020), pre-training
label embeddings (Dong et al., 2021), to name but a few.

4Details about dataset split and labels can be found at
https://github.com/jamesmullenbach/caml-mimic

5https://huggingface.co/datasets/ecthr_cases
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Figure 3: A comparison of three types of attention op-
erations. The example sequence contains 7 tokens; we
set local attention window size as 2, and only the first
token using global attention. Note that these curves are
bi-directional that tokens can attend to each other.

manually labelled as hyperpartisan (taking an
extreme left or right standpoint) or not.6

20 News contains newsgroups posts which are cat-
egorised into 20 topics.7

We note that documents in MIMIC-III and ECtHR
are much longer than those in Hyperpartisan and
20 News (Table 5 in Appendix and Figure 2).

3 Approaches

In the era of Transformer-based models, we iden-
tify two representative approaches of processing
long documents in the literature that either acts as
an inexpensive drop-in replacement for the vanilla
self-attention (i.e., sparse attention) or builds a task-
specific architecture (i.e., hierarchical Transform-
ers).

3.1 Sparse-Attention Transformers
Vanilla transformer relies on the multi-head self-
attention mechanism, which scales poorly with the
length of the input sequence, requiring quadratic
computation time and memory to store all scores
that are used to compute the gradients during
back-propagation (Qiu et al., 2020). Several
Transformer-based models (Kitaev et al., 2020; Tay
et al., 2020; Choromanski et al., 2021) have been
proposed exploring efficient alternatives that can
be used to process long sequences.

Longformer of Beltagy et al. (2020) consists
of local (window-based) attention and global at-
tention that reduces the computational complexity
of the model and thus can be deployed to process
up to 4096 tokens. Local attention is computed

6https://pan.webis.de/semeval19/semeval19-web/; we use
the split provided by Beltagy et al. (2020).

7http://qwone.com/~jason/20Newsgroups/
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Figure 4: A high-level illustration of hierarchical Trans-
formers. A shared pre-trained RoBERTa is used to en-
code each segment, and a two layer transformer blocks
is used to capture the interaction between different seg-
ments. Finally, contextual segment representations are
aggregated into a document representation.

in-between a window of neighbour (consecutive)
tokens. Global attention relies on the idea of global
tokens that are able to attend and be attended by any
other token in the sequence (Figure 3). BigBird
of Zaheer et al. (2020) is another sparse-attention
based Transformer that uses a combination of a
local, global and random attention, i.e., all tokens
also attend a number of random tokens on top of
those in the same neighbourhood. Both models are
warm-started from the public RoBERTa checkpoint
and are further pre-trained on masked language
modelling. They have been reported to outperform
RoBERTa on a range of tasks that require mod-
elling long sequences.

We choose Longformer (Beltagy et al., 2020) in
this study and refer readers to Xiong et al. (2021)
for a systematic comparison of recent proposed
efficient attention variants.

3.2 Hierarchical Transformers
Instead of modifying multi-head self-attention
mechanism to efficiently model long sequences,
hierarchical Transformers build on top of vanilla
transformer architecture.

A document, D = {t0, t1, · · · , t|D|}, is first split
into segments, each of which should have less than
512 tokens. These segments can be independently
encoded using any pre-trained Transformer-based
encoders (e.g., RoBERTa in Figure 4). We sum
the contextual representation of the first token from
each segment up with segment position embed-
dings as the segment representation (i.e., ni in
Figure 4). Then the segment encoder—two trans-
former blocks (Zhang et al., 2019)—are used to
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capture the interaction between segments and out-
put a list of contextual segment representations (i.e.,
si in Figure 4), which are finally aggregated into
a document representation. By default, the aggre-
gator is the max-pooling operation unless other
specified.

4 Experimental Setup

Backbone Models We mainly consider two mod-
els in our experiments: Longformer-base (Beltagy
et al., 2020), and RoBERTa-base (Liu et al., 2019)
which is used in hierarchical Transformers.

Evaluation metrics For the MIMIC-III (mul-
tilabel) dataset, we follow previous work (Mul-
lenbach et al., 2018; Cao et al., 2020) and use
micro-averaged AUC (Area Under the receiver
operating characteristic Curve), macro-averaged
AUC, micro-averaged F1, macro-averaged F1 and
Precision@5—the proportion of the ground truth
labels in the top-5 predicted labels—as the metrics.
We report micro and macro averaged F1 for the
ECtHR (multilabel) dataset, and accuracy for both
Hyperpartisan (binary) and 20 News (multiclass)
datasets.

5 Experiments

We conduct a series of controlled experiments to
understand the impact of design choices in differ-
ent TrLDC models. Bringing these optimal choices
all together, we compare TrLDC against the state
of the art, as well as baselines that only process up-
to 512 tokens. Finally, based on our investigation,
we derive practical advice of applying transformer-
based models to long document classification re-
garding both effectiveness and efficiency.

Task-adaptive pre-training is a promising first
step. Domain-adaptive pre-training (DAPT) – the
continued pre-training a language model on a large
corpus of domain-specific text – is known to im-
prove downstream task performance (Gururangan
et al., 2020; Kær Jørgensen et al., 2021). How-
ever, task-adaptive pre-training (TAPT) – contin-
ues unsupervised pre-training on the task’s data –
is comparatively less studied, mainly because most
of the benchmarking corpora are small and thus the
benefit of TAPT seems less obvious than DAPT.

We believe document classification datasets, due
to their relatively large size, can benefit from
TAPT. On both MIMIC-III and ECtHR, we con-
tinue to pre-train Longformer and RoBERTa us-
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Figure 5: Task-adaptive pre-training (right side in each
plot) can improve the effectiveness (measured on the de-
velopment sets) of pre-trained models by a large margin
on MIMIC-III, but small on ECtHR. ∆: the difference
between mean values of compared experiments.

ing the masked language modelling pre-training
objective (details about pre-training can be found
at Appendix 9.3). We find that task-adaptive pre-
trained models substantially improve performance
on MIMIC-III (Figure 5 (a) and (b)), but there are
smaller improvements on ECtHR (Figure 5 (c) and
(d)). We suspect this difference is because legal
cases (i.e., ECtHR) are publicly available and have
been covered in pre-training data used for training
Longformer and RoBERTa, whereas clinical notes
(i.e., MIMIC-III) are not (Dodge et al., 2021). See
Appendix 9.5 for a short analysis on this matter.

We also compare our TAPT-RoBERTa against
publicly available domain-specific RoBERTa,
trained from scratch on biomedical articles and clin-
ical notes. Results (Figure 8 in Appendix) show
that TAPT-RoBERTa outperforms domain-specific
base model, but underperforms the larger model.

5.1 Longformer

Small local attention windows are effective and
efficient. Beltagy et al. (2020) observe that many
tasks do not require reasoning over the entire con-
text. For example, they find that the distance be-
tween any two mentions in a coreference resolution
dataset (i.e., OntoNotes) is small, and it is possible
to achieve competitive performance by processing
small segments containing these mentions.

Inspired by this observation, we investigate the
impact of local context size on document classifi-
cation, regarding both effectiveness and efficiency.
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Size Micro F1
Speed

Train Test

32 67.9 ± 0.3 9.9 (2.9x) 45.6 (2.8x)
64 68.1 ± 0.1 8.8 (2.6x) 41.4 (2.5x)
128 68.3 ± 0.3 7.4 (2.1x) 34.1 (2.1x)
256 68.4 ± 0.3 5.5 (1.6x) 25.4 (1.6x)
512 68.5 ± 0.3 3.5 (1.0x) 16.3 (1.0x)

Table 1: The impact of local attention window size in
Longformer on MIMIC-III development set. Speed is
measured using ‘processed samples per second’, and
numbers in parenthesis are the relative speedup.
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Figure 6: The effect of applying global attention on
more tokens, which are evenly chosen based on their
positions. In the baseline model (first column), only the
[CLS] token uses global attention.

We hypothesise that long document classification,
which is usually paired with a large label space, can
be performed by models that only attend over short
sequences instead of the entire document (Gao
et al., 2021). In this experiment, we vary the local
attention window around each token.

Table 1 shows that even using a small window
size, the micro F1 score on MIMIC-III develop-
ment set is still close to using a larger window size.
We observe the same pattern on ECtHR and 20
News (See Table 11 in the Appendix). A major ad-
vantage of using smaller local attention windows is
the faster computation for training and evaluation.

Considering a small number of tokens for global
attention improves the stability of the train-
ing process. Longformer relies heavily on the
[CLS] token, which is the only token with global
attention—attending to all other tokens and all
other tokens attending to it. We investigate whether
allowing more tokens to use global attention can
improve model performance, and if yes, how to
choose which tokens to use global attention.

Figure 6 shows that adding more tokens using
global attention does not improve F1 score, while a
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Figure 7: The effect of varying the segment length and
whether allowing segments to overlap in the hierarchical
Transformers. ∆: improvement due to overlap.

small number of additional global attention tokens
can make the training more stable.

Equally distributing global tokens across the
sequence is better than content-based attribu-
tion. We consider two approaches to choose ad-
ditional tokens that use global attention: position
based or content based. In the position-based ap-
proach, we distribute n additional tokens at equal
distances. For example, if n = 4 and the sequence
length is 4096, there are global attention on tokens
at position 0, 1024, 2048 and 3072. In the content-
based approach, we identify informative tokens,
using TF-IDF (Term Frequency–Inverse Document
Frequency) within each document, and we apply
global attention on the top-K informative tokens,
together with the [CLS] token. Results show that
the position based approach is more effective than
content based (see Table 13 in the Appendix).

5.2 Hierarchical Transformers

The optimal segment length is dataset depen-
dent. Ji et al. (2021a) and Gao et al. (2021) re-
ported negative results with a hierarchical Trans-
former with a segment length of 512 tokens on the
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MIMIC-III dataset. Their methods involved split-
ting a document into equally sized segments, which
were processed using a shared BERT encoder. In-
stead of splitting the documents into such large
segments, we investigate the impact of segment
length and preventing context fragmentation.

Figure 7 (left side in each violin plot) shows
that there is no optimal segment length across
both MIMIC-III and ECtHR. Small segment length
works well on MIMIC-III, and using segment
length greater than 128 starts to decrease the per-
formance. In contrast, the ECtHR dataset benefits
from a model with larger segment lengths. The
optimal performing segment length on 20 News
and Hyperpartisan are 256 and 128, respectively
(See Table 14 in the Appendix).

Splitting documents into overlapping seg-
ments can alleviate the context fragmentation
problem. Splitting a long document into smaller
segments may result in the problem of context frag-
mentation, where a model lacks the information it
needs to make a prediction (Dai et al., 2019; Ding
et al., 2021). Although, the hierarchical model uses
a second-order transformer to fuse and contextu-
alise information across segments, we investigate
a simple way to alleviate context fragmentation by
allowing segments to overlap when we split a doc-
ument into segments. That it, except for the first
segment, the first 1

4n tokens in each segment are
taken from the previous segment, where n is the
segment length. Figure 7 (right side in each vio-
lin plot) show that this simple strategy can easily
improve the effectiveness of the model.

Splitting based on document structure.
Chalkidis et al. (2022) argue that we should follow
the structure of a document when splitting it into
segments (Tang et al., 2015; Yang et al., 2016).
They propose a hierarchical Transformer for
the ECtHR dataset that splits a document at the
paragraph level, reading up to 64 paragraphs of
128 token each (8192 tokens in total).

We investigate whether splitting based on doc-
ument structure is better than splitting a long doc-
ument into segments of same length. Similar to
their model, we consider each paragraph as a seg-
ment and all segments are then truncated or padded
to the same segment length. We follow Chalkidis
et al. (2022) and use segment length (l) of 128 on
ECtHR, and tune l ∈{32, 64, 128} on MIMIC-III.8

8Note that since we need to pad short segments, therefore,

Results show that splitting by the paragraph-
level document structure does not improve per-
formance on the ECtHR dataset. On MIMIC-III,
splitting based on document structure substantially
underperforms evenly splitting the document (Fig-
ure 9 in the Appendix) .

5.3 Label-wise Attention Network
Recall from Section 3 that our models form a sin-
gle document vector which is used for the final
prediction. That is, in Longformer, we use the
hidden states of the [CLS] token; in hierarchical
models, we use the max pooling operation to ag-
gregate a list of contextual segment representations
into a document vector. The Label-Wise Atten-
tion Network (LWAN) (Mullenbach et al., 2018;
Xiao et al., 2019; Chalkidis et al., 2020) is an al-
ternative that allows the model to learn distinct
document representations for each label. Given a
sequence of hidden representations (e.g., contex-
tual token representations in Longformer or contex-
tual segment representations in hierarchical models:
S = [s0, s1, · · · , sm]), LWAN can allow each la-
bel to learn to attend to different positions via:

aℓ = SoftMax(S⊤uℓ) (1)

vℓ =
m∑

i=1

aℓ,isi (2)

ŷℓ = σ(β⊤
ℓ vℓ) (3)

where uℓ and βℓ are vector parameters for label ℓ.
Results show that adding a LWAN improves per-

formance on MIMIC-III (Micro F1 score of 1.1
with Longformer; 1.8 with hierarchical models),
where on average each document is assigned 6 la-
bels out of 50 available labels (classes). There is
a smaller improvement on ECtHR (0.4 with Long-
former; 0.1 with hierarchical models), where the
average number of labels per document is 1.5 out
of 10 labels (classes) in total (Table 16 in the Ap-
pendix).

5.4 Comparison with State of the art
We compare TrLDC models against recently pub-
lished results on MIMIC-III, as well as baseline
models that process up to 512 tokens. In addition
to the common practice of truncating long docu-
ments (i.e., using the first 512 tokens), we consider
two alternatives that either randomly choose 512

a larger maximum sequence length is required to preserve the
same information as in evenly splitting.
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Macro AUC Micro AUC Macro F1 Micro F1 P@5

CAML (Mullenbach et al., 2018) C 88.4 91.6 57.6 63.3 61.8
PubMedBERT (Ji et al., 2021a) T 88.6 90.8 63.3 68.1 64.4
GatedCNN-NCI (Ji et al., 2021b) C 91.5 93.8 62.9 68.6 65.3
LAAT (Vu et al., 2020) R 92.5 94.6 66.6 71.5 67.5
MSMN (Yuan et al., 2022) R 92.8 94.7 68.3 72.5 68.0

Baselines processing up to 512 tokens

First T 83.0 ± 0.1 86.0 ± 0.1 47.0 ± 0.4 56.1 ± 0.2 55.4 ± 0.2

Random T 82.5 ± 0.2 85.4 ± 0.1 42.7 ± 0.4 51.1 ± 0.2 52.3 ± 0.2

Informative T 82.7 ± 0.1 85.8 ± 0.1 46.4 ± 0.5 55.2 ± 0.3 54.8 ± 0.2

Long document models

Longformer (4096 + LWAN) T 90.0 ± 0.1 92.6 ± 0.2 60.7 ± 0.6 68.2 ± 0.2 64.8 ± 0.2

Hierarchical (4096 + LWAN) T 91.1 ± 0.1 93.6 ± 0.0 62.9 ± 0.1 69.5 ± 0.1 65.7 ± 0.2

Hierarchical (4096 + LWAN + L*) T 91.7 ± 0.1 94.1 ± 0.0 65.2 ± 0.2 71.0 ± 0.1 66.2 ± 0.1

Hierarchical (8192 + LWAN) T 91.4 ± 0.0 93.7 ± 0.1 63.8 ± 0.3 70.1 ± 0.1 65.9 ± 0.1

Hierarchical (8192 + LWAN + L*) T 91.9 ± 0.2 94.1 ± 0.2 65.5 ± 0.7 71.1 ± 0.4 66.4 ± 0.3

Table 2: Comparison of TrLDC against state-of-the-art on the MIMIC-III test set. C: CNN-based models; R:
RNN-based models; and T: Transformer-based models. Models marked with an asterisk (*) is domain-specific
RoBERTa-Large (Lewis et al., 2020), whereas Longformer and other RoBERTa models are task-adaptive pre-trained
base versions.

.
ECtHR 20 News Hyper

First (512) 73.5 ± 0.2 86.1 ± 0.3 92.9 ± 3.2

Random (512) 79.0 ± 0.6 85.3 ± 0.4 88.9 ± 2.5

Informative (512) 72.4 ± 0.2 86.2 ± 0.3 91.7 ± 3.2

Longformer (4096) 81.0 ± 0.5 86.3 ± 0.5 97.9 ± 0.7

Hierarchical (4096) 81.1 ± 0.2 86.3 ± 0.2 95.4 ± 1.3

Table 3: Comparison of TrLDC against baselines pro-
cessing up to 512 tokens. We report Micro F1 on EC-
tHR, Accuracy on 20 News and Hyperpartisan datasets.

.

tokens from the document as input or take as input
the most informative 512 tokens, identified using
TF-IDF scores.

Results in Table 2 and 3 show that there is a
clear benefit from being able to process longer text.
Both the Longformer and hierarchical Transform-
ers outperform baselines that process up to 512
tokens with a large margin on MIMIC-III and EC-
tHR, whereas relatively small improvements on 20
News and Hyperpartisan. It is also worthy noting
that, among these baselines, there is no single best
strategy to choose which 512 tokens to process. Us-
ing the first 512 tokens works well on MIMIC-III
and Hyperpartisan datasets, but it performs much
worse than 512 random tokens on ECtHR.

Finally, Longformer, which can process up to
4096 tokens, achieves competitive results with the
best performing CNN-based model (Ji et al., 2021b)
on MIMIC-III. By processing longer text and us-
ing the RoBERTa-Large model, the hierarchical
models further improve the performance, leading
to comparable results of RNN-based models (Vu
et al., 2020; Yuan et al., 2022). We hypothesise
that further improvements can be observed when
TrLDC models are enhanced with better hierarchy-
aware classifier as in Vu et al. (2020) or code syn-
onyms are used for training as in Yuan et al. (2022).

5.5 Comparison in terms of of GPU memory
consumption

GPU memory becomes a big constraint when
Transformer-based models are trained on long text.
Table 4 shows a comparison between Longformer
and Hierarchical models regarding the number of
parameters and their GPU consumption. We use
batch size of 2 in these experiments, and measure
the impact of attention window size and segment
length on the memory footprint. We find that Hi-
erarchical models require less GPU memory than
Longformer in general, and it is possible to set
smaller local window size in Longformer or seg-
ment length in hierarchical models to fit the model
using smaller GPU memory. Recall that small local
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Longformer Hierarchical
Size (148.6M) (139.0M)

Maximum sequence length: 1024

64 4.8G 3.6G
128 5.0G 3.8G
256 5.5G 4.1G
512 6.6G 4.7G

Maximum sequence length: 4096

64 11.8G 7.8G
128 12.8G 8.4G
256 14.9G 9.6G
512 19.4G 12.2G

Table 4: A comparison between Longformer and Hier-
archical models regarding their GPU memory consump-
tion. The number of parameters are listed in the table
header. Size refers to the local attention window size
in Longformer and the segment length in hierarchical
method, respectively.

attention windows are effective in Longformer, and
the optimal segment length in hierarchical models
is dataset dependent.

6 Practical Advice

We compile several questions that practitioners may
ask regarding long document classification and pro-
vide answers based on our results:

Q1 When should I start to consider using long
document classification models?

A We suggest using TrLDC models if you work
with datasets consisting of long documents (e.g.,
2K tokens on average). We notice that on 20 News
dataset, the gap between baselines that process 512
tokens and long document models is negligible.9

Q2 Which model should I choose? Longformer
or hierarchical Transformers?

A We suggest Longformer as the starting point
if you do not plan on extensively tuning hyperpa-
rameters. We find the default config of Longformer
is robust, although it is possible to set a moderate
size (64-128) of local attention window to improve

9Although Hyperpartisan is a widely used benchmark for
long document models, we do not recommend drawing practi-
cal conclusions based on our results because we observe high
variance when we run experiments using different GPUs or
CUDA versions. We attribute this may to the small size (65)
of its test set and the subjectivity of the task.

efficiency without sacrificing effectiveness, and a
small number of additional global attention tokens
to make the training more stable. On the other hand,
hierarchical Transformers may benefit from care-
ful hyperparameter tuning (e.g., document splitting
strategy, using LWAN). We suggest splitting a doc-
ument into small non-structure-derived segments
(e.g., 128 tokens) which overlap as a starting point
when employing hierarchical Transformers.

We also note that the publicly available Long-
former models can process sequences up-to 4096
tokens, whereas hierarchical Transformers can be
easily extended to process much longer sequence.

7 Related Work

Long document classification Document length
was not a point of controversy in the pre-neural era
of NLP, where documents are encoded with Bag-
of-Word representations, e.g., TF-IDF scores. The
issue arised with the introduction of deep neural
networks. Tang et al. (2015) use CNN and BiL-
STM based hierarchical networks in a bottom-up
fashion, i.e., first encode sentences into vectors,
then combine those vectors in a single document
vector. Similarly, Yang et al. (2016) incorporate
the attention mechanism when constructing the sen-
tence and document representation. Hierarchical
variants of BERT have also been explored for docu-
ment classification (Mulyar et al., 2019; Chalkidis
et al., 2022), abstractive summarization (Zhang
et al., 2019), semantic matching (Yang et al., 2020).
Both Zhang et al., and Yang et al. also propose
specialised pre-training tasks to explicitly capture
sentence relations within a document. A very re-
cent work by Park et al. (2022) shows that TrLDC
do not perform consistently well across datasets
that consist of 700 tokens on average.

Methods of modifying transformer architecture
for long documents can be categorised into two
approaches: recurrent Transformers and sparse
attention Transformers. The recurrent approach
processes segments moving from left-to-right (Dai
et al., 2019). To capture bidirectional context,
Ding et al. (2021) propose a retrospective mecha-
nism in which segments from a document are fed
twice as input. Sparse attention Transformers have
been explored to reduce the complexity of self-
attention, via using dilated sliding window (Child
et al., 2019), and locality-sensitive hashing atten-
tion (Kitaev et al., 2020). Recently, the combi-
nation of local (window) and global attention are
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proposed by Beltagy et al. (2020) and Zaheer et al.
(2020), which we have detailed in Section 3.

ICD Coding The task of assigning most rele-
vant ICD codes to a document, e.g., radiology re-
port (Pestian et al., 2007), death certificate (Koop-
man et al., 2015) or discharge summary (Johnson
et al., 2016), as a whole, has a long history of
development (Farkas and Szarvas, 2008). Most
existing methods simplified this task as a text
classification problem and built classifiers using
CNNs (Karimi et al., 2017) or LSTMs (Xie et al.,
2018). Since the number of unique ICD codes is
very large, methods are proposed to exploit relation
between codes based on label co-occurrence (Dong
et al., 2021), label count (Du et al., 2019), knowl-
edge graph (Xie et al., 2019; Cao et al., 2020; Lu
et al., 2020), code’s textual descriptions (Mullen-
bach et al., 2018; Rios and Kavuluru, 2018). More
recently, Ji et al. (2021a); Gao et al. (2021) inves-
tigate various methods of applying BERT on ICD
coding. Different from our work, they mainly focus
on comparing domain-specific BERT models that
are pre-trained on various types of corpora. Ji et al.
show that PubMedBERT—pre-trained from scratch
on PubMed abstracts—outperforms other variants
pre-trained on clinical notes or health-related posts;
Gao et al. show that BlueBERT—pre-trained on
PubMed and clinical notes—performs best. How-
ever, both report that Transformers-based models
perform worse than CNN-based ones.

8 Conclusions

Transformers have previously been criticised for
being incapable of long document classification. In
this paper, we carefully study the role of different
components of Transformer-based long document
classification models. By conducting experiments
on MIMIC-III and other three datasets (i.e., ECtHR,
20 News and Hyperpartisan), we observe clear im-
provements in performance when a model is able
to process more text. Firstly, Longformer, a sparse
attention model, which can process up to 4096 to-
kens, achieves competitive results with CNN-based
models on MIMIC-III; its performance is relatively
robust; a moderate size of local attention window
(e.g., 128) and a small number (e.g., 16) of evenly
chosen tokens with global attention can improve
the efficiency and stability without sacrificing its
effectiveness. Secondly, hierarchical Transform-
ers outperform all CNN-based models by a large
margin; the key design choice is how to split a

document into segments which can be encoded by
pre-trained models; although the best performing
segment length is dataset dependent, we find split-
ting a document into small overlapping segments
(e.g., 128 tokens) is an effective strategy. Taken
together, these experiments rebut the criticisms of
Transformers for long document classification.
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9 Appendix

9.1 Limitations

Long document classification datasets are usually
annotated using a large number of labels. For ex-
ample, the complete MIMIC-III dataset contains
8, 692 unique labels. As we mentioned in Section
2, we focus on building document representation
and leave the challenge of learning with a large
target label set for future work. Therefore, in this
paper, we follow previous work (Mullenbach et al.,
2018; Chalkidis et al., 2022) and consider a subset
of frequent labels in MIMIC-III and ECtHR.

9.2 Dataset statistics

Table 5 shows the descriptive statistics of four
datasets we use.

Train Dev Test

MIMIC-III
Documents 8,066 1,573 1,729

Unique labels 50 50 50
Avg. tokens 2,260 2,693 2,737

ECtHR
Documents 8,866 973 986

Unique labels 10 10 10
Avg. tokens 2,140 2,345 2,532

Hyperpartisan
Documents 516 64 65

Unique labels 2 2 2
Avg. tokens 741 707 845

20 News
Documents 10,183 1,131 7,532

Unique labels 20 20 20
Avg. tokens 613 627 551

Table 5: Statistics of the datasets. The number of tokens
is calculated using RoBERTa tokenizer.

9.3 Details of task-adaptive pre-training

Hyperparameters and training time for task-
adaptive pre-training can be found in Table 6.

9.4 Details of classification experiments

Preprocessing We mainly follow Mullenbach
et al. (2018) to preprocess the MIMIC-III dataset.
That is, we lowercase the text, remove all punctua-
tion marks and tokenize text by white spaces. The
only change we make is that we normalise numeric
(e.g., convert ‘2021‘ to ‘0000‘) instead of deleting

Longformer RoBERTa

Max sequence 4096 128
Batch size 8 128

Learning rate 5e-5 5e-5
Training epochs 6 15

Training time ≈ 130 ≈ 40
(GPU-hours)

Table 6: Hyperparameters and training time (measured
on MIMIC-III dataset) for task-adaptive pre-training
Longformer and RoBERTa. Batch size = batch size per
GPU × num. GPUs × gradient accumulation steps.

numeric-only tokens in Mullenbach et al. (2018).
We did not apply additional preprocessing to EC-
tHR and 20 News. We follow Beltagy et al. (2020)
to preprocess the Hyperpartisan dataset.10

Training We fine-tune the multilabel classifica-
tion model using a binary cross entropy loss. That
is, given an training example whose ground truth
and predicted probability for the i-th label are yi
(0 or 1) and ŷi, we calculate its loss, over the C
unique classification labels, as:

L =

C∑

i=1

−yi log(ŷi)− (1− yi) log(1− ŷi).

For the multiclass and binary classification tasks,
we fine-tune using the cross entropy loss, where ŷg
is the predicted probability for the gold label:

L = − log(ŷg),

We use the same effective batch size (16), learn-
ing rate (2e-5), maximum number of training
epochs (30) with early stop patience (5) in all ex-
periments. We also follow Longformer (Beltagy
et al., 2020) and set the maximum sequence length
as 4096 in most of the experiments unless other
specified. We fine-tune all classification models on
Quadro RTX 6000 (24 GB GPU memory) or Tesla
V100 (32 GB GPU memory). If one batch of data
is too large to fit into the GPU memory, we use
gradient accumulation so that the effective batch
sizes (batch size per GPU × gradient accumulation
steps) are still the same.

We repeat all experiments five times with dif-
ferent random seeds. The model which is most
effective on the development set, measured using
the micro F1 score (multilabel) or accuracy (multi-
class and binary), is used for the final evaluation.

10https://github.com/allenai/longformer
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9.5 A comparison between clinical notes and
legal cases

Although we usually use the term domain to indi-
cate that texts talk about a narrow set of related
concepts (e.g., clinical concepts or legal concepts),
text can vary along different dimensions (Ramponi
and Plank, 2020).

In addition to the statistics difference between
MIMIC-III and ECtHR, which we show in Table 5,
there is another difference worthy considering: clin-
ical notes are private as they contain protected
health information. Even those clinical notes after
de-identification are usually not publicly available
(e.g., downloadable using web crawler). In contrast,
legal cases have generally been allowed and encour-
aged to share with the public, and thus become a
large portion of crawled pre-training data (Dodge
et al., 2021). Dodge et al. find that legal docu-
ments, especially U.S. case law, are a significant
part of the C4 corpus, a cleansed version of Com-
monCrawl used to pre-train RoBERTa models. The
ECtHR proceedings are also publicly available via
HUDOC, the court’s database.

We suspect task-adaptive pre-training is more
useful on MIMIC-III than on ECtHR (Figure 5)
may relate to this difference. Therefore, we evalu-
ate the vanilla RoBERTa on MIMIC-III and ECtHR
regarding tokenization and language modelling. A
comparison of the fragmentation ratio using the
tokenizer and perplexity using the language model
can be found in Table 7.

MIMIC-III ECtHR

Fragmentation ratio 1.233 1.118
Perplexity 1.351 1.079

Table 7: Evaluating vanilla RoBERTa on MIMIC-III
and ECtHR. Lower fragmentation ratio and perplexity
indicate that the test data have a higher similarity with
the RoBERTa pre-training data.

9.6 A comparison between TAPT and public
available RoBERTa by (Lewis et al., 2020)

We compare our TAPT-RoBERTa against publicly
available domain-specific RoBERTa (Lewis et al.,
2020), which are trained from scratch on biomedi-
cal articles and clinical notes, in hierarchical mod-
els. In these experiments, we split long documents
into overlapping segments of 64 tokens. Results in
Figure 8 show that TAPT-RoBERTa outperforms

domain-specific base model, but underperforms the
larger model.

9.7 Results on ECtHR test set
Results in Table 8 show that our results are higher
than the ones reported in (Chalkidis et al., 2022).
Chalkidis et al. compare different BERT variants
including domain-specific models, whereas we use
task-adaptive pre-trained models. Regarding hier-
archical method, we split a document into overlap-
ping segments, each of which has 512 tokens. We
use the default setting for Longformer as in Beltagy
et al. (2020).

Macro F1 Micro F1

RoBERTa 68.9 77.3
CaseLaw-BERT 70.3 78.8

BigBird 70.9 78.8
DeBERTa 71.0 78.8

Longformer 71.7 79.4
BERT 73.4 79.7

Legal-BERT 74.7 80.4

Longformer (4096) 76.0 ± 1.4 80.7 ± 0.3

Hierarchical (4096) 76.6 ± 0.7 81.0 ± 0.3

Table 8: Comparison of our results against the results
reported in (Chalkidis et al., 2022) on the ECtHR test
set. Results are sorted by Micro F1.

9.8 A comparison between evenly splitting
and splitting based on document structure

Figure 9 shows that splitting by the paragraph level
document structure does not improve performance
on the ECtHR dataset. On MIMIC-III, splitting

4096 6144
Maximum sequence length
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Figure 8: A comparison of task-adaptive pre-trained
RoBERTa against public available domain-specific
RoBERTa. Both Base and Large RoBERTa models are
trained from scratch on biomedical articles and clinical
notes (Lewis et al., 2020).
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Figure 9: A comparison between evenly splitting and
splitting based on document structure.

based on document structure substantially under-
performs evenly splitting the document.

9.9 Detailed results on the development sets
For the sake of brevity, we use only micro F1 score
in most of our illustrations, and we detail results of
other metrics in this section.
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AUC F1

Max sequence length Macro Micro Macro Micro P@5

512 81.4 ± 0.1 85.1 ± 0.2 39.2 ± 0.9 52.2 ± 0.3 53.3 ± 0.3

1024 83.6 ± 0.2 87.3 ± 0.3 43.2 ± 0.6 56.3 ± 0.5 56.5 ± 0.2

2048 86.5 ± 0.2 89.8 ± 0.1 48.2 ± 1.1 60.5 ± 0.4 59.4 ± 0.3

4096 88.4 ± 0.1 91.5 ± 0.1 53.1 ± 0.5 64.0 ± 0.3 62.0 ± 0.4

Table 9: Detailed results of Figure 1: the effectiveness of Longformer on the MIMIC-III development set.

AUC F1

Macro Micro Macro Micro P@5

Longformer on MIMIC-III

Vanilla 88.4 ± 0.1 91.5 ± 0.1 53.1 ± 0.5 64.0 ± 0.3 62.0 ± 0.4

TAPT 90.3 ± 0.2 92.7 ± 0.1 60.8 ± 0.4 68.5 ± 0.3 64.8 ± 0.3

RoBERTa on MIMIC-III

Vanilla 81.6 ± 0.2 85.0 ± 0.3 43.2 ± 1.7 53.9 ± 0.4 54.0 ± 0.2

TAPT 82.3 ± 0.4 85.5 ± 0.3 48.8 ± 0.4 56.7 ± 0.2 55.3 ± 0.2

Longformer on ECtHR

Vanilla — — 77.4 ± 2.3 81.3 ± 0.3 —
TAPT — — 78.5 ± 2.2 82.1 ± 0.6 —

RoBERTa on ECtHR

Vanilla — — 72.2 ± 1.5 74.8 ± 0.4 —
TAPT — — 72.7 ± 0.7 75.1 ± 0.4 —

Table 10: Detailed results of Figure 5: the impact of task-adaptive pre-training. Note that we use maximum sequence
length 512 for RoBERTa and 4096 for Longformer in these experiments.
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AUC F1

Size Macro Micro Macro Micro P@5 Accuracy

MIMIC-III

32 89.8 ± 0.1 92.3 ± 0.1 59.6 ± 0.6 67.9 ± 0.3 64.2 ± 0.3 —
64 90.0 ± 0.1 92.5 ± 0.1 60.3 ± 0.3 68.1 ± 0.1 64.5 ± 0.1 —

128 90.1 ± 0.1 92.6 ± 0.1 60.5 ± 0.7 68.3 ± 0.3 64.7 ± 0.3 —
256 90.2 ± 0.0 92.6 ± 0.1 60.7 ± 0.6 68.4 ± 0.3 64.6 ± 0.2 —
512 90.3 ± 0.2 92.7 ± 0.1 60.8 ± 0.4 68.5 ± 0.3 64.8 ± 0.3 —

ECtHR

32 — — 78.2 ± 1.2 81.2 ± 0.3 — —
64 — — 78.6 ± 1.7 81.4 ± 0.1 — —

128 — — 79.9 ± 1.6 82.1 ± 0.5 — —
256 — — 78.5 ± 2.1 81.8 ± 0.4 — —
512 — — 78.5 ± 2.2 82.1 ± 0.6 — —

Hyperpartisan

32 — — – – — 83.9 ± 0.7

64 — — – – — 83.3 ± 1.9

128 — — – – — 83.9 ± 0.7

256 — — – – — 88.0 ± 0.7

512 — — – – — 85.9 ± 2.2

20 News

32 — — – – — 92.8 ± 0.6

64 — — – – — 94.0 ± 0.5

128 — — – – — 93.8 ± 0.3

256 — — – – — 93.5 ± 0.1

512 — — – – — 94.0 ± 0.1

Table 11: The impact of local attention window size in Longformer, measured on the development sets.

AUC F1

# tokens Macro Micro Macro Micro P@5

MIMIC-III

1 90.1 ± 0.2 92.6 ± 0.1 60.5 ± 0.9 68.2 ± 0.3 64.7 ± 0.3

8 90.0 ± 0.1 92.5 ± 0.1 60.5 ± 0.7 68.2 ± 0.3 64.6 ± 0.2

16 90.0 ± 0.2 92.5 ± 0.1 60.0 ± 0.2 68.1 ± 0.2 64.3 ± 0.3

32 90.0 ± 0.2 92.4 ± 0.1 60.1 ± 0.5 67.9 ± 0.1 64.4 ± 0.2

64 89.9 ± 0.2 92.4 ± 0.1 59.9 ± 1.0 67.9 ± 0.4 64.4 ± 0.3

ECtHR

1 — — 78.5 ± 1.8 80.8 ± 0.4 —
8 — — 77.2 ± 2.0 80.8 ± 0.4 —

16 — — 77.7 ± 0.4 80.7 ± 0.3 —
32 — — 78.2 ± 1.4 80.6 ± 0.4 —
64 — — 77.7 ± 2.3 80.7 ± 0.5 —

Table 12: Detailed results of Figure 6: the effect of applying global attention on more tokens, which are evenly
chosen based on their positions.
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AUC F1

# tokens Macro Micro Macro Micro P@5

MIMIC-III

1 90.1 ± 0.2 92.6 ± 0.1 60.5 ± 0.9 68.2 ± 0.3 64.7 ± 0.3

8 89.7 ± 0.2 92.0 ± 0.1 61.0 ± 1.3 66.9 ± 0.4 64.0 ± 0.4

16 89.4 ± 0.2 91.9 ± 0.1 60.1 ± 1.2 66.5 ± 0.3 63.9 ± 0.5

32 89.4 ± 0.4 91.9 ± 0.2 60.3 ± 1.6 66.4 ± 0.6 63.7 ± 0.7

64 89.1 ± 0.4 91.7 ± 0.2 59.4 ± 2.0 66.2 ± 0.7 63.4 ± 0.7

ECtHR

1 — — 78.5 ± 1.8 80.8 ± 0.4 —
8 — — 79.2 ± 0.3 80.9 ± 0.2 —

16 — — 77.6 ± 1.2 80.4 ± 0.4 —
32 — — 77.1 ± 0.7 80.0 ± 0.2 —
64 — — 76.6 ± 1.1 79.9 ± 0.5 —

Table 13: The effect of applying global attention on more informative tokens, which are identified based on TF-IDF.
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AUC F1

Size Macro Micro Macro Micro P@5 Accuracy

Disjoint segments on MIMIC-III

64 89.4 ± 0.1 92.0 ± 0.1 60.8 ± 1.1 67.9 ± 0.3 63.5 ± 0.3 —
128 89.5 ± 0.1 92.1 ± 0.1 61.2 ± 0.6 68.0 ± 0.3 63.5 ± 0.3 —
256 89.6 ± 0.1 92.1 ± 0.1 61.0 ± 0.4 67.6 ± 0.2 63.6 ± 0.2 —
512 89.2 ± 0.2 91.8 ± 0.2 59.4 ± 0.5 66.7 ± 0.3 63.4 ± 0.4 —

Overlapping segments on MIMIC-III

64 89.7 ± 0.1 92.3 ± 0.1 62.3 ± 0.2 68.7 ± 0.1 64.1 ± 0.1 —
128 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2 —
256 89.5 ± 0.1 92.1 ± 0.1 61.4 ± 0.3 68.1 ± 0.2 63.8 ± 0.1 —
512 89.4 ± 0.1 92.0 ± 0.0 60.3 ± 0.3 67.2 ± 0.2 63.6 ± 0.3 —

Disjoint segments on ECtHR

64 — — 76.6 ± 1.2 79.7 ± 0.2 — —
128 — — 77.6 ± 2.3 80.8 ± 0.4 — —
256 — — 77.7 ± 1.4 81.2 ± 0.4 — —
512 — — 78.3 ± 1.3 81.7 ± 0.3 — —

Overlapping segments on ECtHR

64 — — 76.9 ± 1.7 80.5 ± 0.5 — —
128 — — 77.5 ± 1.7 81.2 ± 0.5 — —
256 — — 78.1 ± 1.4 81.5 ± 0.2 — —
512 — — 78.4 ± 1.5 81.4 ± 0.4 — —

Disjoint segments on Hyperpartisan

64 — — — — — 88.8 ± 1.8

128 — — — — — 89.1 ± 1.4

256 — — — — — 87.8 ± 1.8

512 — — — — — 86.2 ± 1.8

Overlapping segments on Hyperpartisan

64 — — — — — 87.5 ± 1.4

128 — — — — — 88.4 ± 1.2

256 — — — — — 88.1 ± 2.1

512 — — — — — 88.4 ± 0.8

Disjoint segments on 20 News

64 — — — — — 93.3 ± 0.2

128 — — — — — 93.5 ± 0.3

256 — — — — — 94.4 ± 0.4

512 — — — — — 94.0 ± 0.3

Overlapping segments on 20 News

64 — — — — — 93.8 ± 0.4

128 — — — — — 93.4 ± 0.3

256 — — — — — 94.5 ± 0.2

512 — — — — — 93.9 ± 0.3

Table 14: The effect of varying the segment length and whether allowing segments to overlap in the hierarchical
transformers.

7229



AUC F1

Macro Micro Macro Micro P@5

MIMIC-III

E (4096) 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2

S (4096) 87.2 ± 0.2 90.1 ± 0.2 55.2 ± 0.4 62.9 ± 0.2 59.9 ± 0.2

S (6144) 88.2 ± 0.2 91.0 ± 0.2 57.8 ± 0.3 65.4 ± 0.3 61.7 ± 0.3

S (8192) 88.5 ± 0.3 91.2 ± 0.2 58.8 ± 0.2 66.0 ± 0.4 62.4 ± 0.1

ECtHR

E (4096) — — 77.5 ± 1.7 81.2 ± 0.5 —
S (4096) — — 75.3 ± 1.3 80.1 ± 0.4 —
S (6144) — — 77.1 ± 1.8 80.5 ± 0.5 —
S (8192) — — 77.7 ± 1.9 81.3 ± 0.5 —

Table 15: Detailed results of Figure 9: a comparison between evenly splitting and splitting based on document
structure. E: evenly splitting; S: splitting based on document structure.

AUC F1

Macro Micro Macro Micro P@5

MIMIC-III

Longformer 90.0 ± 0.2 92.5 ± 0.1 60.0 ± 0.2 68.1 ± 0.2 64.3 ± 0.3

+ LWAN 90.5 ± 0.2 92.9 ± 0.2 62.2 ± 0.7 69.2 ± 0.3 65.1 ± 0.1

Hierarchical 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2

+ LWAN 91.4 ± 0.1 93.7 ± 0.1 64.2 ± 0.4 70.3 ± 0.1 65.3 ± 0.1

ECtHR

Longformer — — 77.7 ± 0.4 80.7 ± 0.3 —
+ LWAN — — 79.5 ± 0.8 81.1 ± 0.3 —

Hierarchical — — 77.5 ± 1.7 81.2 ± 0.5 —
+ LWAN — — 79.7 ± 0.9 81.3 ± 0.3 —

Table 16: The effect of label-wise attention network.
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