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Abstract

Recently, prompt tuning (PT) has gained in-
creasing attention as a parameter-efficient way
of tuning pre-trained language models (PLMs).
Despite extensively reducing the number of tun-
able parameters and achieving satisfying per-
formance, PT is training-inefficient due to its
slow convergence. To improve PT’s training
efficiency, we first make some novel observa-
tions about the prompt transferability of “par-
tial PLMs”, which are defined by compressing
a PLM in depth or width. We observe that
the soft prompts learned by different partial
PLMs of various sizes are similar in the param-
eter space, implying that these soft prompts
could potentially be transferred among par-
tial PLMs. Inspired by these observations,
we propose Fast Prompt Tuning (FPT), which
starts by conducting PT using a small-scale par-
tial PLM, and then progressively expands its
depth and width until the full-model size. Af-
ter each expansion, we recycle the previously
learned soft prompts as initialization for the en-
larged partial PLM and then proceed PT. We
demonstrate the feasibility of FPT on 5 tasks
and show that FPT could save over 30% train-
ing computations while achieving comparable
performance. The codes are publicly avail-
able at https://github.com/thunlp/
FastPromptTuning.

1 Introduction

The emergence of pre-trained language models
(PLMs) has broken the glass ceiling for vari-
ous NLP tasks (Han et al., 2021). Versatile se-
mantic and syntactic knowledge acquired during
pre-training could be leveraged when PLMs are
adapted towards a specific downstream task to
boost performance. The de facto strategy for such
an adaptation is full-parameter fine-tuning, which
is computationally expensive and profligate since it
requires tuning and storing all the parameters in the
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Figure 1: Average performance growth of T5LARGE on 5
investigated tasks in this paper comparing fine-tuning
and PT. The convergence speed of PT is much slower
than fine-tuning in terms of training steps.

PLM for each downstream task. To remedy this,
several delta tuning (Ding et al., 2022) (also known
as parameter-efficient tuning) algorithms are pro-
posed in place of the vanilla fine-tuning (Houlsby
et al., 2019; Li and Liang, 2021; Hu et al., 2022;
Ben Zaken et al., 2022), among which prompt tun-
ing (PT) (Lester et al., 2021) has gained increas-
ing attention recently. PT prepends a few virtual
tokens to the input text, these tokens are tuned
during training while all the other PLM param-
eters remain frozen. Despite its simple form, PT
has been demonstrated to achieve remarkable per-
formance in various NLP tasks. Especially when
the scale of the PLM becomes extremely huge,
PT could achieve comparable performance to fine-
tuning (Lester et al., 2021). Despite extensively
reducing the number of tunable parameters and
achieving satisfying performance, PT is criticized
to be training-inefficient due to the slow conver-
gence (Su et al., 2022) as illustrated in Figure 1,
and such incompetence would limit the practical
application of PT. Hence in this paper, we explore
how to improve PT’s training efficiency.

Our motivation is based on novel observations
about the prompt transferability among “partial
PLMs”. Here a partial PLM is defined by com-
pressing a PLM in depth or width, which is im-
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Figure 2: The framework of Fast Prompt Tuning (FPT).
The top part (a,b) shows two methods to construct a
partial PLM. The bottom part (c) shows FPT’s training
process, we conduct PT on a partial PLM, progressively
expand its size and transfer the trained prompts.

plemented by dropping several layers or masking
part of the connections in the feed-forward network
(FFN) in each Transformer (Vaswani et al., 2017)
layer. We observe that the soft prompts of the same
task learned by different partial PLMs of various
sizes tend to be close in the parameter space, im-
plying that these soft prompts could potentially be
transferred among different partial PLMs.

Inspired by the above observations, we propose
Fast Prompt Tuning (FPT), which starts by conduct-
ing PT using a small-scale partial PLM to obtain
the corresponding soft prompts. After that, we
progressively expand the partial PLM’s depth and
width until the full-model size by rehabilitating the
dropped layers and masked neurons. After each
expansion, we recycle the previously learned soft
prompts as initialization for the enlarged PLM and
then proceed PT. Since the partial PLM requires
fewer computations for each step, keeping the total
training steps unchanged, we could reduce the over-
all computations consumed, and in the meantime,
achieve comparable PT performance. In experi-
ments, we demonstrate the feasibility of FPT on
5 NLP tasks. The experimental results show that
FPT could save around 30% training computations
and achieve satisfying downstream performance.

2 Prompt Tuning on a Partial PLM

2.1 Prompt Tuning

For a given input sequence X = {x1, x2, ..., xn}
and its target label Y , PT first converts X into a
matrix X ∈ Rn×d, where d is the hidden size. Af-
ter that, PT prepends l tunable soft prompt tokens
P ∈ Rl×d before X, creating a new input matrix
[P;X] ∈ R(l+n)×d, which is then processed by

the PLM. The training objective is to maximize
P(Y|[P;X]), where only P is optimized during
training and the parameters of PLM are frozen. Al-
though PT is applied to the entire PLM by default,
in this section, we investigate how the performance
would become if we conduct PT on a partial PLM,
i.e., only part of the parameters in the PLM partici-
pate in the computation.

2.2 Partial PLM Construction
Using partial parameters in a PLM is typically ap-
plied to reduce the inference computation for fine-
tuning, such as early exit (Teerapittayanon et al.,
2016; Xin et al., 2020) and model pruning (Chen
et al., 2020; Sun et al., 2020; Fan et al., 2020),
which assume that the features produced by a part
of a PLM may already suffice to classify some
input examples. In this paper, we investigate its
application in reducing the training computation
of PT, and propose to construct partial PLMs by
shrinking the original PLM in both depth and width,
as illustrated in Figure 2 (a, b). Details are listed in
appendix B.

Layer Dropping. Based on previous findings
(Clark et al., 2019; Jawahar et al., 2019) that adja-
cent layers in PLMs generally have similar func-
tionalities, we hypothesize that removing part of
these layers may not significantly hurt the overall
performance, and we propose to drop a PLM’s lay-
ers uniformly to construct a partial PLM consisting
of fewer layers than the original PLM. After that,
we directly build connections among the remaining
layers keeping the original order, which is found
empirically to work well although such connections
do not exist during pre-training.

FFN Reduction. Jaszczur et al. (2021) and
Zhang et al. (2022) indicate that only part of the
neurons in the FFN layers will be activated for a
given input. Such a sparse activation phenomenon
inspires us to reduce the computation in FFN by
shrinking the width of the FFN layer. Specifi-
cally, the FFN layer consists of two fully connected
networks with a nonlinear activation function σ,
and it processes an input representation x ∈ Rd

as: FFN(x) = σ(xW1 + b1)W2 + b2, where
W1 ∈ Rd×d′ and W2 ∈ Rd′×d are the weight ma-
trices, b1 ∈ Rd′ and b2 ∈ Rd are the bias terms.
We abandon a portion of W1 / W2’s columns /
rows (i.e., reducing d′) by masking the neurons that
are seldom activated. In practice, before training,
we feed a few downstream examples prepended
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Enc./Dec. FFN MNLI QQP SQUAD2.0 RECORD XSUM Avg. ∆ FLOPs Wall
Layer Dimension (Acc) (Acc) (EM) (EM) (ROUGE-L) Clock

PT 24 / 24 2,816 86.07 87.26 76.09 81.46 26.65 71.51 - 100% 100%

LD
6 / 6 2,816 60.34 78.29 48.14 24.75 17.40 45.78 -25.73 30% 35%

12 / 12 2,816 63.90 80.64 52.87 39.09 19.69 51.24 -20.27 54% 56%
18 / 18 2,816 81.41 86.05 63.97 59.87 22.51 62.76 -8.75 77% 77%

FR
24 / 24 704 78.18 85.19 66.68 62.90 22.46 63.08 -8.43 58% 72%
24 / 24 1,408 82.62 86.45 72.65 74.59 24.61 68.19 -3.32 72% 81%
24 / 24 2,112 84.93 86.77 74.73 79.52 26.12 70.41 -1.10 86% 91%

CR
6 / 6 704 62.53 78.38 48.62 23.99 16.49 46.00 -25.51 20% 28%

12 / 12 1,408 64.09 78.91 50.90 29.50 18.88 48.45 -23.06 40% 47%
18 / 18 2,112 80.63 86.32 63.42 58.97 22.18 62.30 -9.21 66% 71%

Table 1: Average results for partial PLM PT on T5LARGE with layer dropping (LD), FFN Reduction (FR), and
compound reduction (CR). ∆ denotes the performance degeneration compared with vanilla PT of each setting. The
“FLOPs” and “Wall Clock” columns are both relative values compared with PT and are averaged over 5 tasks.

by randomly initialized soft prompts into the full-
size PLM and record the neuron activation of each
dimension of d′.

Compound Reduction. Since the above meth-
ods are compatible with each other, we try to com-
bine them to form a partial PLM smaller than the
original PLM in both depth and width.

2.3 Observations

To explore PT’s performance on a partial PLM,
we conduct experiments on T5LARGE (Raffel et al.,
2020). We choose 5 representative NLP datasets
in English, covering the tasks of natural lan-
guage inference (MNLI (Williams et al., 2018)),
paraphrase (QQP (link)), reading comprehen-
sion (SQUAD2.0 (Rajpurkar et al., 2018) and
RECORD (Zhang et al., 2018)), and summariza-
tion (XSUM (Narayan et al., 2018)). For both layer
dropping and FFN reduction, we evaluate the per-
formance when we reduce the number of Trans-
former layers or FFN intermediate dimension to
{1
4 ,

1
2 ,

3
4}. We train all models using the same steps

and the details are described in appendix B.

Overall Performance. The overall results are
shown in Table 1. We observe that for each method,
despite abandoning a large portion of param-
eters, a partial PLM reserves most of the PT
performance of the full-size PLM. As expected,
the performance becomes better when more param-
eters are retained. In addition, we find that the
performance drop is less sensitive to FFN reduc-
tion than layer dropping. Specifically, there is only
1.10% performance drop on average when 25%
neurons are masked. These results indicate that
the resulting partial PLM still retains most of the
functionalities of the original PLM.

MNLI
QQP
SQuAD2.0
ReCoRD
XSum

Figure 3: Visualization of 5 investigated tasks’ soft
prompts of different partial PLMs. A marker with a
larger size means the performance of the corresponding
soft prompts on the partial PLM is better.

Prompt Embedding Visualization. Taking a
step further, we visualize the learned prompt
embeddings of different partial PLMs using t-
SNE (van der Maaten and Hinton, 2008) in Fig-
ure 3, and describe the details in appendix C. We
observe that for the same task, the soft prompts
obtained by different partial PLMs tend to form
a compact cluster in the parameter space. This
phenomenon implies that the soft prompts corre-
sponding to the same task (1) have a great potential
of transferring among different partial PLMs, and
(2) could serve as a better initialization that leads
to faster convergence. Apart from the visualiza-
tion, we further report the cosine similarity of the
learned prompts in appendix D to verify the above
phenomenon from another aspect.

3 Fast Prompt Tuning

In this section, we propose Fast Prompt Tuning
(FPT), which aims at accelerating PT via pro-
gressive training (Gong et al., 2019). Progres-
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Method MNLI QQP SQUAD2.0 RECORD XSUM Avg. FLOPs Wall Improve↑(Acc) (Acc) (EM) (EM) (ROUGE-L) Clock

T5LARGE

PT 86.07 87.26 76.09 81.46 26.65 71.51 100% 100% -
FPTLD 85.72 86.51 75.89 80.23 26.27 70.92 72% 74% 0.11
FPTFR 86.49 87.11 76.26 81.07 26.55 71.50 83% 89% 0.49
FPTCR 85.13 86.40 75.63 81.00 26.21 70.87 65% 70% 0.38

T5XL

PT 89.00 88.20 81.08 88.48 30.53 75.46 100% 100% -
FPTLD 88.99 88.09 82.18 88.06 30.52 75.57 86% 86% 0.78
FPTFR 88.84 88.21 81.74 88.46 30.52 75.55 84% 87% 0.76
FPTCR 89.18 87.34 80.88 87.82 30.43 75.13 74% 76% 0.48

Table 2: Performance of the vanilla PT and three variants of our method. FPTLD, FPTFR, and FPTCR refer to
constructing partial PLMs by layer dropping, FFN reduction, and compound reduction. The column “Improve↑”
denotes the performance improvement of each FPT∗ method over PT when PT uses the same FLOPs as FPT∗.

sive training is typically leveraged for improv-
ing pre-training efficiency (Chen et al., 2022; Qin
et al., 2022), instead, we focus on its application in
PLM’s downstream adaptation.

3.1 Methodology

Formally speaking, as visualized in Figure 2 (c), we
split the original PT training process into N stages.
We start with a small-size partial PLM M1 and
then progressively rehabilitate its depth and width
until the full-size model MN, creating a series of
partial PLMs {Mi}N−1

i=1 with growing sizes. The
architectures of the partial PLMs are constructed
using the same method in § 2.2.

During each training stage i, we conduct PT
on a partial PLM Mi and obtain the learned soft
prompts Pi. Based on the observation that Mi

retains a large portion of functionalities of the full-
size PLM MN, we conjecture that Mi could serve
as a perfect substitute for MN and learn how to
deal with the downstream task. In addition, con-
sidering that the soft prompts learned by differ-
ent partial PLMs are close in the parameter space,
we could transfer the knowledge learned by Mi

to Mi+1 through recycling Pi. Specifically, af-
ter each model expansion, we directly use Pi as
initialization for training Mi+1 in the next stage.
Since for each partial PLM, fewer parameters par-
ticipate in both the forward and backward process,
the computations could be reduced. Keeping the
total number of training steps the same, FPT could
accelerate training compared with vanilla PT.

3.2 Experiments and Analyses

We follow most of the experimental settings in § 2
and also describe the training details in appendix B.
We report FLOPs and training wall clock for the
vanilla PT and FPT to compare training efficiency.

We evaluate both T5LARGE and T5XL (a larger T5
model) on each task and train for 30k and 15k steps,
respectively. We test FPT’s performance when we
progressively expand the model’s depth, width, and
both of them. Unless otherwise specified, for most
of FPT’s methods, we split the training process into
4 stages. Each of the first three stages takes 20%
steps, while the last stage takes 40% steps.

Results. We list the results in Table 2, from
which we observe that (1) on average, all three vari-
ants of FPT achieve comparable performance with
PT and utilize fewer computations (e.g., FPTCR
saves around 30% FLOPs). On several tasks (e.g.,
MNLI and SQUAD2.0), FPT even exceeds PT’s
performance; (2) combining both layer dropping
and FFN reduction (i.e., FPTCR) is more training-
efficient. However, we also observe that saving
more computations generally leads to poorer per-
formance. Among all three variants of FPT, FPTFR
strikes the best balance between performance and
training efficiency; (3) moreover, we compare both
PT and FPT’s performance when PT consumes the
same computations as each variant of FPT. As re-
flected in the column “Improve↑”, controlling the
training computations the same, our FPT outper-
forms PT, and the improvement is more significant
for T5XL than T5LARGE, showing that FPT has a
great potential to apply to large-scale PLMs. (4)
except for using FLOPs as a theoretical analysis
of computation resources, we also compare wall
clock training time among different FPT methods
and vanilla PT. The wall clock time can be also
saved at most 30% with our FPTCR method. Be-
sides, the gap between relative FLOPs and relative
wall clock time shrinks with the model’s size in-
creasing for each FPT method.

We also verify the effectiveness of our partial
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model construction designs in appendix E, and
show in appendix F that the performance of FPT is
not sensitive to the duration of each training stage.
We leave the explorations on other tasks and the
effect of training budgets as future work.

4 Conclusion

In this work, towards improving PT’s training ef-
ficiency, we first make several insightful observa-
tions by conducting PT on partial PLMs, and then
propose FPT based on the observations. The results
on 5 datasets demonstrate the feasibility of FPT in
saving the training computations. Being the first
attempt towards accelerating PT, we encourage fu-
ture work to design more sophisticated algorithms
to further improve PT’s training efficiency.
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Limitations

For the current FPT method, there exist two main
limitations:

(1) FPT requires choosing a proper hyper-
parameter of the progressive training steps (i.e. du-
ration of each training stage). For each experiment,
we have to pre-define the duration of each stage em-
pirically. Although in appendix F, we have shown
that within a reasonable range, the duration of each
training stage is not that important.

(2) FPT can not be directly applied to other delta
tuning methods (e.g., adapter and prefix-tuning).
Since prompt tuning only adds trainable parameters
in the embedding layer, when partial model’s size
increases, the trained soft prompt can be directly
transferred to a larger partial model without any
modification. But for other popular delta tuning
methods, when the layer of partial model increases,
we have to add newly initialized parameters.
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Appendices

A Related Work

Prompt Tuning. PLMs have achieved excellent
performance on many NLP tasks relying on their
powerful natural language understanding and gen-
eration capabilities (Devlin et al., 2019; Liu et al.,
2019). However, with the emergence of large-
scale PLMs like T5 (Raffel et al., 2020) and GPT-
3 (Brown et al., 2020), tuning all the parameters
of a PLM (i.e., full-parameter fine-tuning), which
requires huge storage and memory costs, is not flex-
ible for real-world applications on massive down-
stream tasks. Therefore, parameter-efficient delta
tuning methods (Ding et al., 2022; Houlsby et al.,
2019; Hu et al., 2022; Ben Zaken et al., 2022; He
et al., 2022) attract more and more attention, among
which prompt tuning (PT) (Lester et al., 2021) is
a simple and effective one. By prepending a few
trainable embeddings before the input sequence,
PT can achieve comparable performance to full-
parameter fine-tuning. With the size of PLM get-
ting larger, the performance of PT gets closer to
vanilla fine-tuning (Lester et al., 2021), showing
great potential to utilize extremely large PLMs in
future. Besides, PT is also shown to have excel-
lent cross-task transferability (Su et al., 2022; Vu
et al., 2022), and thus gains more and more atten-
tion in exploring the relation among tasks (Qin
et al., 2021). However, due to the slow conver-
gence shown in Figure 1, PT’s training efficiency
becomes a serious drawback and may limit its prac-
tical application.

Progressive Training. Considering that pre-
training usually requires tremendous computational
resources, researchers propose progressive train-
ing to improve training efficiency (Gong et al.,
2019; Zhang and He, 2020). Progressive training
starts training using a shallow model, and gradu-
ally grows the depth of the model along the training
process by replicating existing layers (parameter re-
cycling). In this way, the pre-training efficiency can
be improved a lot. To further improve training effi-
ciency, later works propose to progressively grow
PLMs in both depth and width (Gu et al., 2021),
and design better initialization methods to inherit
the functionality of existing models (Chen et al.,
2022). Instead of leveraging progressive training
during the process of pre-training, we apply it to
PLM’s downstream adaptation, with a focus on PT.
Furthermore, conventional progressive training du-

plicates existing parameters to grow a PLM’s size
until the full-model’s size. Instead, we have already
obtained a full-size PLM, and propose to construct
partial models with growing sizes by dropping /
masking existing parameters.

B Implementation Details

Our implementation is based on PyTorch (Paszke
et al., 2019) and transformers (Wolf et al., 2020).
The experiments are conducted with 8 NVIDIA
32GB V100 GPUs, and each experiment requires
fewer than 10 hours to finish.

Partial PLM Construction. As mentioned in
§ 2.2, we design three methods to construct par-
tial PLMs. Specifically, for layer dropping, we
select layers uniformly. For example, to select 3
layers out of a 24-layer PLM, we will select layer
{1, 12, 24} to construct the partial PLM. For FFN
reduction, to estimate the activation of each neu-
ron (dimension) in FFN layer l, we first randomly
sample 1, 000 examples to form a small dataset D.
We prepend each example X (without the label) in
D with randomly initialized soft prompts and feed
it into the full-size PLM to obtain the input repre-
sentation xl of FFN layer. After that, we obtain the
activation score of each neuron using the follow-
ing equation S =

∑
X∈D

∑|X |
i=1

∣∣σ(xl
iW

l
1 + bl1)

∣∣,
where W l

1, b
l
1 are the parameters in FFN layer l,

and |X | denotes the sequence length. The neurons
(dimensions) with smaller activation score (i.e., sel-
dom activated) will be masked. Note that the T5
model is composed of both an encoder and a de-
coder, due to the difference in the input length and
output length on various tasks, the computation
overload of the encoder and decoder may vary a
lot. Therefore, for the tasks (MNLI and QQP) that
have a lighter computation overload on the decoder
(i.e., small output length), shrinking the decoder
model size has little impact on saving the computa-
tional costs, hence we retain the whole decoder un-
der this setting; for other three tasks (SQUAD2.0,
RECORD and XSUM), the output length on de-
coder is much longer and we conduct partial PLM
construction on both the encoder and decoder. We
calculate FLOPs for each experiment using the pt-
flops tool 1, and report the average FLOPs of 5
tasks in Table 1 and Table 2.

1https://github.com/sovrasov/
flops-counter.pytorch
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Partial PLMs Layer Dropping FFN Reduction Compound Reduction Training Steps
Lenc/Ldec d′ Lenc/Ldec d′ Lenc/Ldec d′

T5LARGE

M1 6 / 6 2,816 24 / 24 704 6 / 6 704 6,000
M2 12 / 12 2,816 24 / 24 1,408 12 / 12 1,408 6,000
M3 18 / 18 2,816 24 / 24 2,112 18 / 18 2,112 6,000
M4 24 / 24 2,816 24 / 24 2,816 24 / 24 2,816 12,000

T5XL

M1 18 / 18 5,120 24 / 24 1,280 18 / 18 1,280 3,000
M2 18 / 18 5,120 24 / 24 2,560 18 / 18 2,560 3,000
M3 18 / 18 5,120 24 / 24 3,840 18 / 18 3,840 3,000
M4 24 / 24 5,120 24 / 24 5,120 24 / 24 5,120 6,000

Table 3: Architecture details of the partial PLMs on the three construction methods for both T5LARGE and T5XL.
Lenc and Ldec denote the number of layers of the encoder and decoder of the partial model Mi, respectively. We
also list the training steps for each stage in the last column.

Partial PLM Prompt Tuning. We use T5LARGE
for our experiments of partial PLM PT. Following
Lester et al. (2021), we leverage the LM-adapted
version of T5 checkpoints, which are additionally
trained for 100k steps. The adapted version of
T5 has been demonstrated to achieve stable and
better PT performance. For the implementation of
PT, we set the prompt length to 20 and randomly
initialize the soft prompts. The optimizer is chosen
as Adafactor (Shazeer and Stern, 2018) and the
learning rate is set to 0.3. We choose a batch size of
32 and greedy decoding to generate the predictions.
The training steps are set to 30k to ensure that PT
will not get stuck in a local optimum. We run all the
experiments 3 times with different random seeds
and report the average results.

Fast Prompt Tuning. For the implementations
of FPT, we train T5LARGE / T5XL with a total step of
30k / 15k. The number of training steps of T5XL is
chosen smaller than T5LARGE since we find empiri-
cally that T5XL converges faster than T5LARGE. As
mentioned in § 3.2, unless otherwise specified, we
split the whole training process into 4 stages. Each
of the first three stages takes 20% of the training
steps, while the last stage (full-model PT) takes
40% training stages. Except for layer dropping
on T5XL, we find that a partial PLM, with fewer
than 12 layers in either the encoder or decoder,
achieves poor PT performance. Therefore, we only
use two training stages where the first stage takes
60% training steps and the second stage takes 40%
training steps. More detailed settings about the
partial model construction are shown in Table 3.
The experiments with T5LARGE are run three times
with different random seeds and the average re-
sults are reported while experiments with T5XL are
conducted once due to their huge computation con-

sumption.

C Prompt Embedding Visualization

In Figure 3, we visualize the soft prompts of differ-
ent partial PLMs and tasks in Table 1. The embed-
ding used for visualization is derived by averaging
soft prompt along the token length dimension. As
described in § 2.3, we run each experiment three
times with different random seeds to get stable re-
sults. Therefore, we plot 30 points (3 runs × (9
partial PLM + 1 full-size PLM)) for each task in
Figure 3. And the size of the marker in the fig-
ure denotes the performance of the soft prompts
on corresponding partial PLMs. Larger size indi-
cates better performance. We can observe that soft
prompts with better performance will be easier to
form a compact cluster.

D Prompt Embedding Similarity

To further gain insights on the transferability of the
soft prompts learned by T5LARGE’s different partial
PLMs defined in Table 3, in addition to the visual-
ization conducted in § 2.3, we calculate the average
cosine similarity of the soft prompts corresponding
to different tasks in Table 4. Specifically, for differ-
ent partial PLMs M1,M2, ...,MN−1 and the full-
size PLM MN, we conduct PT with each model
Mi on the task Tj and obtain the corresponding
soft prompts Pj

i ∈ Rl×d. Then we average Pj
i

along the token length dimension and get a vector
P

j
i ∈ Rd. After that, we calculate S(T P

j , T F
k ) (av-

erage cosine similarity between (1) task j’s partial
PLMs’ prompts and (2) task k’s full-size PLM’s
prompts) using the following metric:

S(T P
j , T F

k ) =
1

N − 1

N−1∑

i=1

P
j
i ·P

k
N

∥Pj
i∥∥P

k
N∥

(1)
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T P
T F

MNLI QQP SQUAD2.0 RECORD XSUM

MNLI 0.249 0.131 0.175 0.109 0.139
QQP 0.145 0.177 0.135 0.103 0.126
SQUAD2.0 0.202 0.143 0.286 0.190 0.202
RECORD 0.167 0.119 0.219 0.224 0.195
XSUM 0.164 0.128 0.237 0.188 0.301

Table 4: Average prompt similarity (S(T P
j , T F

k )) among different tasks. The highest score in each row is high-
lighted.

Selection Method Performance Relative FLOPs

Layer Dropping

Uniform 70.92 72%Last 69.91

FFN Reduction

Activation 71.50 84%Random 66.80

Table 5: Average performance on 5 investigated tasks
using different strategies of layer dropping and FFN
reduction on T5LARGE.

From the results in Table 4, we observe that the
highest similarity is achieved when j = k, showing
that the prompts of the partial PLMs are closer
to the same task’s prompts of the full-size model.
This phenomenon is aligned with the observation
in Figure 3, implying that on the same task, the
soft prompts learned by partial PLMs could be
potentially transferred to the full-size PLM.

E Effect of Partial Model Construction
Designs for FPT

We construct a partial PLM by dropping a few lay-
ers or masking some neurons. As mentioned in
§ 2.2, for layer dropping, we retain the layers uni-
formly; for FFN reduction, we mask the neurons
that are less likely to be activated. How to select the
retained parameters is essential to the performance
of FPT. To demonstrate this, in Table 5, we experi-
ment FPT with another strategy for layer dropping
and FFN reduction, respectively.

For layer dropping, we compare our strategy of
dropping layers uniformly (denoted as Uniform)
with dropping the last few layers (denoted as Last).
For both methods, we retain the same number of
layers. For example, in order to select 3 layers
from a 24-layer PLM, the Uniform strategy will
retain the layer {1, 12, 24}, and the Last strategy
will retain the layer {1, 2, 3}. From Table 5, we can
derive that the Uniform strategy is slightly better

than the Last strategy. We hypothesize the rea-
son is that the overall functionalities of a PLM are
uniformly distributed among different layers, and
adjacent layers tend to have similar functionalities.
Therefore, retaining layers uniformly tends to re-
serve more functionalities than only retaining the
first few layers.

For FFN reduction, we compare our strategy
of masking neurons based on the activation score
(denoted as Activation) with randomly masking
neurons (denoted as Random). For the Activation
strategy, we feed 1000 samples prepended by ran-
domly initialized soft prompts into the PLM, and
then record the activation score of neurons along
each dimension. The results in Table 5 show that
the Activation strategy significantly outperforms
the Random strategy, demonstrating the effective-
ness of our method. Randomly masking neurons
may abandon those highly activated (most informa-
tive) ones, which hinders PT’s convergence. We
also find empirically the activation score of each
neuron in FFN layer may vary a lot across dif-
ferent tasks, which means different neurons may
respond differently to the input. This phenomenon
also implies that there may exist some “functional
partitions” in the FFN layers of PLMs.

F Effect of Duration for Each Training
Stage

To show the effects of the duration of each training
stage, following Gong et al. (2019), we conduct
experiments on MNLI using T5LARGE with three
proposed variants of FPT, and evaluate the effects
of training duration for the last two stages.

Specifically, for layer dropping of FPT, we con-
duct PT on the 18-layer partial PLM for 15k steps,
and save the learned soft prompts every 3k steps
to get 15/3 = 5 sets of soft prompts. Then using
each of these 5 soft prompts as the initialization,
we conduct PT with the full-size PLM for 3k steps.
We report the validation performance and compare

6886



2 4 6 8
FLOPs (×107)

65

70

75

80

A
cc

ur
ac

y 
(%

)
Layer Dropping

LD
LD+expansion
PT

2 4 6 8
FLOPs (×107)

65

70

75

80

A
cc

ur
ac

y 
(%

)

FFN Reduction

FR
FR+expansion
PT

2 4 6 8
FLOPs (×107)

65

70

75

80

A
cc

ur
ac

y 
(%

)

Compound Reduction

CR
CR+expansion
PT

Figure 4: The validation performance on MNLI with different training duration for the last two stages. We conduct
this ablation study for each of the three variants of FPT. We compare our FPT with different expanding time (red
line) with vanilla PT (blue line) and PT without model expansion (yellow line). Each red dot is connected with a
yellow dot by a dashed line, indicating it is initialized by the yellow dot and optimized by conducting PT on full-size
PLM.

FPT with vanilla PT. For FFN reduction and com-
pound reduction of FPT, we conduct similar ex-
periments except that we start from a partial PLM
using different construction methods.

The results are shown in Figure 4, from which
we can see that expanding the partial PLM’s size
and then conducting PT (i.e., the red line) performs
better than only conducting PT on the partial PLM
(i.e., the yellow line). In addition, comparing our
FPT (i.e., the red line) with vanilla PT (i.e., the
blue line), there is a specific threshold s′ of train-
ing steps, if we expand the partial PLM before s′,
the training efficiency can be improved compared
with vanilla PT; however, after s′, expanding the
partial PLM and continuing PT on it does not bring
consistent improvement over vanilla PT. In general,
expanding the partial PLM between 3k steps and
12k steps works well for all three variants of FPT,
indicating that within a reasonably broad range,
the performance improvement of FPT is not sensi-
tive to the duration of each training stage. We aim
to explore how to decide the optimal duration for
each training stage in future to make our FPT more
practical.
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