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Abstract

Recent works in cyber deception study how to
deter malicious intrusion by generating mul-
tiple fake versions of a critical document to
impose costs on adversaries who need to iden-
tify the correct information. However, existing
approaches are context-agnostic, resulting in
sub-optimal and unvaried outputs. We propose
a novel context-aware model, Fake Document
Infilling (FDI), by converting the problem to
a controllable mask-then-infill procedure. FDI
masks important concepts of varied lengths in
the document, then infills a realistic but fake
alternative considering both the previous and
future contexts. We conduct comprehensive
evaluations on technical documents and news
stories. Results show that FDI outperforms the
baselines in generating highly believable fakes
with moderate modification to protect critical
information and deceive adversaries.

1 Introduction

According to the statement of the U.S. Securities
and Exchange Commission, the scope and severity
of cyber risks have dramatically increased, and con-
stant vigilance is needed to protect against intrusion
(Clayton, 2017). Cyber Deception is a cybersecu-
rity defense practice (Masud et al., 2007; Tu et al.,
2008; Akbar et al., 2022) that aims at protecting
critical documents once intruders penetrate the net-
work system (Yuill et al., 2004; Bowen et al., 2009).
The goal is to deceive attackers by deploying de-
coys such as fake documents and thus increase their
cost to identify critical information.

In this work, we aim at designing a novel fake
document generator that combines Cyber Decep-
tion and Natural Language Generation (NLG) tech-
nologies to generate controllable, diverse, and be-
lievable fakes at scale to protect critical information
and deceive adversaries. Although recent works
in Cyber Deception develop strategies to gener-
ate complicated fake technical documents such as

patents, few consider adopting pretrained contex-
tual features to enhance scalability and generation
quality. For example, FORGE (Chakraborty et al.,
2021) generates fake documents by replacing the
concepts of a technical document with semantically
similar alternatives from an expensive prerequisite
ontology. WE-FORGE (Abdibayev et al., 2021)
eliminates the need for ontologies by using word
embedding distances. However, it identifies po-
tential replacements only for unigrams (especially
nouns) based on unbalanced word embedding clus-
ters in a context-agnostic manner, resulting in sub-
optimal or inadequate alternatives.

Meanwhile, recent studies in NLG have been
driven by pre-trained contextual language models
(LMs), which can generate increasingly realistic
but less-controllable text (Radford et al., 2019; Raf-
fel et al., 2020; Lewis et al., 2019; Yang et al.,
2019). Sub-fields such as controllable text gener-
ation (Keskar et al., 2019; Dathathri et al., 2020),
story generation (Clark et al., 2018; Fan et al.,
2018), and text infilling (Fedus et al., 2018; Don-
ahue et al., 2020) further study how to leverage
LMs to generate content with desired attributes.
However, few methods offer fine-grained control
over concept levels or provide an efficient, control-
lable fake text generation strategy.

We propose a novel context-aware model, Fake
Document Infilling (FDI), by converting fake docu-
ment generation into a controllable mask-then-infill
procedure. Specifically, we select and mask essen-
tial concepts of varied lengths in a document. Then
we infill the masked spans with realistic but fake al-
ternatives based on contextualized knowledge from
an LM. To the best of our knowledge, we are the
first to propose a complete controllable mask-then-
infill model and design a comprehensive evaluation
scheme to study fake text generation.

To briefly demonstrate the motivation for this
work, Table 1 illustrates the difference between
an LM (i.e., GPT-2 finetuned on the target dataset
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A. Original Article Tomographic Image Reconstruction using Training images
We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is
available in the form of training images. We first construct a nonnegative dictionary based on prototype elements from the
training images; this problem is formulated as a regularized non-negative matrix. Incorporating the dictionary as a prior in a
convex reconstruction problem, we then find an approximate solution with a sparse representation in the dictionary...

B. GPT-2: Generation given a prompt ...We describe and examine an algorithm for tomographic image reconstruction
where prior knowledge about the solution is available in the form of training images. Instances were reconstructed from their
images using image and pixel centroids. The concept of image reconstruction provides several advantages over previous
techniques, such as indexing the solution to a representation with integral or submaximal number of cepstrates, ...

C. WEF-Replacing nouns ...We first construct a nonnegative dictionary based on prototype elements from the training
images; this problem is formulated as a regularized non-negative matrix factorization. Incorporating the dictionary as a prior
in a convex reconstruction problem, we then find an approximate solution with a sparse representation in the dictionary...
D. WEF-Generation ...We first construct a nonnegative sparsity based on prototype elements from the encoderdecoder
images; this problem is formulated as a regularized non-negative matrix orthonormal. Incorporating the sparsity as a prior in
a convex reconstruction problem, we then find an approximate strategy with a sparse representation in the sparsity...

E. FDI-Replacing n-grams ...We first construct a nonnegative dictionary based on prototype elements from the training
images; this problem is formulated as a regularized non-negative matrix factorization. Incorporating the dictionary as a prior
in a convex reconstruction problem, we then find an approximate solution with a sparse representation in the dictionary...
F. FDI-Generation ...We first construct a collection of missing patches based on images from the training images; this
problem is formulated as a regularized non-negative matrix factorization. Incorporating the dictionary as a prior in the whole
dictionary, we then find a similar estimate for missing patches in the dictionary...

Table 1: Comparison of strategies and generated samples from different models. We preserve the document’s head
(the headline and the first sentence) and modify only the document’s body. GPT-2 generates a new body given the
document’s head as a prompt. WE-FORGE (WEF) and FDI substitute certain concepts with alternatives.

(Radford et al., 2019)), WE-FORGE (WEF), and
our FDI in generating fake samples of the same
document. We preserve the document’s head (the
headline and the first sentence shown in A) and
modify the document’s body. GPT-2 generates a
new body (shown in red in B) based on the original
head in a left-to-right manner. The output is flu-
ent but less controllable and may gradually go off-
topic. Besides, GPT-2 cannot control text length
and wrapping, hindering its application when fol-
lowing a layout is strictly required.

Both WE-FORGE and FDI adopt the strategy
of replacing specific concepts (shown in blue in
C and E) in the original document with alterna-
tives (shown in red in D and F). However, WE-
FORGE suffers from three major limitations. First,
WE-FORGE needs to train word-embeddings from
scratch for every custom dataset, requiring large
training corpora (Pennington et al., 2014; Mikolov
et al., 2018). Second, its word-embedding-based
clustering of concepts is unbalanced and sensitive
to the initialization and hyper-parameters, resulting
in limited replacements for some given concepts.
Finally, WE-FORGE only replaces nouns and is ag-
nostic to context, limiting the diversity and quality
of the generated text.

In contrast, FDI provides many advantages over
previous methods. First, instead of training word
embeddings from scratch, FDI finetunes a pre-
trained LM to generate human-like text with lim-
ited data. Furthermore, FDI replaces spans of ar-

bitrary lengths, considering the document context
(through the LM) to improve the outputs’ diversity
and coherency. Finally, FDI implements strate-
gies to select (mask) and find alternative concepts
(infill), protecting essential details from original
documents and producing realistic fake samples.

To validate the outperformance of FDI, we de-
sign an innovative set of experiments combining
evaluation methods observed in distinct areas, i.e.,
cyber security and NLG. We collect reviews from
more than 40 volunteers over 1.4k fake documents
on technical and non-technical datasets. Finally,
we compile the reviews to evaluate the model’s
ability to generate natural text and its effectiveness
in protecting the original information and deterring
attackers. Our code is publicly available.1

2 Related Work

Cyber Deception. Cyber Deception aims at de-
ceiving attackers by misguiding them toward in-
accurate information with deployed decoys in the
network systems of enterprises. Early works gener-
ate decoy honey files (Yuill et al., 2004; White and
Thompson, 2006; Bowen et al., 2009; Whitham,
2013) or simple documents with basic NLP meth-
ods (Voris et al., 2012; Wang et al., 2013) to entice
attackers and improve intrusion and exfiltration
detection. Recent works combine advanced NLP
techniques to generate fake technical documents at
scale while enhancing believability. These efforts

1https://github.com/snowood1/FDI
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include substituting words or concepts based on
part-of-speech tagging (Whitham, 2017), prerequi-
site ontologies (Chakraborty et al., 2021), concept
occurrences graphs (Karuna et al., 2021), or word
embeddings (Abdibayev et al., 2021). Neverthe-
less, these methods are context-agnostic, limiting
producing diverse and natural outputs. The only
exception (Ranade et al., 2021) uses vanilla contex-
tualized LMs on short description texts instead of
long technical documents.

Controllable Text Generation. Building costly
conditional LMs for desired attributes, by ei-
ther training from scratch (Zellers et al., 2019;
Keskar et al., 2019) or back-propagating gradients
(Dathathri et al., 2020), are extensively studied.
The attributes are usually pre-defined by a list of
control codes or keywords. Other lightweight al-
ternatives are proposed by using discriminators or
Bayes’ rules to control the attributes of generated
text during the decoding time (Krause et al., 2020;
Yang and Klein, 2021; Liu et al., 2021). A sub-
field called Story Generation focuses on generat-
ing short stories given hints such as title, storyline,
premise, entities, or rare words (Clark et al., 2018;
Fan et al., 2018, 2019; Yao et al., 2019; Goldfarb-
Tarrant et al., 2020; Rashkin et al., 2020; Tan et al.,
2021; Ippolito et al., 2019, 2020b; Das and Verma,
2020). Specifically, Zellers et al. (2019) generate
fake news stories conditioned on metadata from a
list of propaganda websites. Nevertheless, these
fields differ from our task. They mainly focus on
non-technical domains (e.g., news and stories) and
lack fine-grained control over concept levels.

Text Infilling. Text infilling is a generalization of
the cloze task (Taylor, 1953) from single words to
spans of varied lengths. Current works focus on cor-
rectly infilling the incomplete text for applications
in text editing or ancient documents restoration (Fe-
dus et al., 2018; Zhu et al., 2019; Liu et al., 2019;
Zaidi et al., 2019; Donahue et al., 2020; Shen et al.,
2020). However, the controllable mask-then-infill
task addressed in this paper is more complex. It
involves masking relevant concepts (text spans) in
a document and infilling realistic yet misleading
spans to replace such masks.

Adversarial augmentation. This task aims at
generating perturbed augmented samples to im-
prove the robustness of NLP models by heuristic
rules that replace words from WordNet or word
embeddings (Alzantot et al., 2018; Jia et al., 2019;

Ren et al., 2019; Wei and Zou, 2019), contextual-
ized perturbations (Garg and Ramakrishnan, 2020;
Li et al., 2020, 2021), or comprehensive frame-
works (Ribeiro et al., 2020; Morris et al., 2020;
Wu et al., 2021). Again, these random perturba-
tion methods lack precise control over concepts,
hindering their usage for our task.

3 Approach

3.1 Framework

We follow the same convention of fake document
generation proposed in FORGE (Chakraborty et al.,
2021): Given a real document d as input, the model
generates a set D′ of fake documents. Each fake
document d′ ∈ D′ is similar to d to be believable,
yet sufficiently different from d to be inaccurate.
We obtain d′ by replacing certain concepts c of d
with alternatives c′. High-quality d′ is expected to
cost the attacker much time to identify the real d
from the |D′| + 1 documents. Thus, a fake doc-
ument generator needs to ensure believability by
considering at least two aspects: (1) how to select
the set of concepts C to be replaced; and (2) how
to choose replacement concept c′ for every c ∈ C.

We convert the formulation above into the con-
trollable document infilling task. Given a document
d, we first extract and mask text snippets of varied
lengths expressing each important concept c ∈ C.
Then, we use an LM to infill the masked spans with
realistic but inauthentic alternatives c′, considering
the context of these spans. FDI addresses these
sub-tasks by designing (1) a controllable masking
function to select concepts and (2) a decoding strat-
egy to replace the masked spans.

Figure 1 shows the (a) training and (b) infer-
ence procedures of FDI. First, we apply the ran-
dom masking approach to train a robust and flexible
LM to fill various types of masks. Then, we use a
curated strategy to precisely steer text generation
during the inference step. Specifically for infer-
ence, we first use controllable masking to produce
masked examples, protecting essential information
of d. Then, we use the trained LM to replace each
masked concept c ∈ C with a sampled c′. To en-
sure the fakeness of the generated document, we
introduce a penalization factor in the decoding step
to avoid the model predicting the original concept
(i.e., let c′ ̸= c). Finally, we obtain a completed
fake document by infilling the input text with the
predicted alternatives. We detail each component
of FDI in the following subsections.
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Figure 1: The (a) training and (b) inference steps of FDI. Random masking is used to train an LM for general text
infilling. During inference, we mask important text spans and utilize the trained LM to replace such masked spans.
Penalization mechanism is applied to encourage generating fake answers.

3.2 Training
The training step involves finetuning an LM to
text infilling task, utilizing the random masking
approach. Figure 1(a) illustrates three different
training pairs. Each concatenates input x and tar-
get y by a separator token [sep]. x is generated by
a random masking function f(d), which replaces
specific spans C = {c1, ..., cn} in document d
with special (blank) tokens. y = c1[ans]...cn[ans]
refers to the answers to the blanks concatenated
with special tokens [ans]. We finetune LM(θ) to
learn the distribution pθ(y|x) by minimizing the
cross-entropy loss between the target y and the
probability distributions of prediction y′.

We design f(d) to generate various masked ex-
amples with coarse control over the granularities.
Similar to (Donahue et al., 2020), we use more
special tokens instead of a universal blank to spec-
ify three granularities: words, n-grams, and sen-
tences. For example, x in Figure 1(a) becomes
“FDI [masked_word] to fake [masked_ngram].”
(we only show a universal blank “_” in the figure
for simplicity). Next, we traverse the hierarchy of
d to sample each mask type randomly and obtain
a masked token rate of 15% suggested in (Devlin
et al., 2018; Donahue et al., 2020) (details in Ap-
pendix B). Finally, we generate various masked
examples of each d for training data augmentation.

3.3 Inference
The inference process (shown in Figure 1(b)) pro-
duces fake documents through the following steps:
(1) extracting and selecting the appropriate set of
concepts C; and (2) determining the fake replace-
ment c′ for every c ∈ C, through decoding method.

3.3.1 Concepts Extraction and Selection
Concepts extraction and selection are essential
components in fake document generators and vary

in schemas. Therefore, we define the following
settings: First, instead of expensive annotation
(Chakraborty et al., 2021), we followed recent
works to use automatical keywords (e.g., based
on TF-IDF (Abdibayev et al., 2021)) as critical in-
formation for scalable evaluation. We chose RAKE
(Rose et al., 2010) to score n-grams to extract con-
cepts with varying lengths without additional cost.
Second, we only revised the document body with
the head unchanged, as illustrated in Table 1. Com-
pletely altering the head may let intruders skip the
forged document quickly. We expect the fake sam-
ples to alter critical details without changing the
topics. Besides, this setting enables us to com-
pare naive GPT-2 that needs to initiate with a given
prompt and is commonly used in NLG evaluation
(Clark et al., 2021).

Algorithm 1 illustrates the Controllable Mask-
ing procedure for selecting and extracting concepts,
which includes two main parts: (1) Lines 1-6 build
the candidate pool of concepts from document d,
consisting of sets C (words or n-grams) and S
(whole sentences); and (2) Lines 7-17 generate
K masked examples M = {M1, ...,MK} by sam-
pling from the candidate pool. Each masked ex-
ample Mk results in various fake documents dur-
ing the later decoding step. In this way, FDI can
produce diverse examples which vary in masked
locations and replacements of each mask.

In the first part of Algorithm 1, Line 1 splits
document d by stop-words and delimiters to create
the initial set of concepts C. Line 2 computes the
importance score of each concept c ∈ C through
the degree deg(w) and frequency freq(w) in its
word co-occurrence graph of a term w occurring
in c, following (Rose et al., 2010). Next, we filter
the concepts based on the quantile QR(·) of the
importance scores in Line 3. Long concepts often
get higher RAKE scores than short concepts. For
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Algorithm 1: Controllable Masking
Input :document d, stop-words Wst, thresholds

qmin, ts, γ, masking probabilities ps, pc.
Output : list of masked examples M of size K.

1 C ← splitConcepts(d, Wst)
2 RC ← {r(c) :

∑
w∈c deg(w)/freq(w) for c in C }

3 C ← {c if r(c) ≥ QR(C, qmin) for c in C }
4 C ← {c if c /∈ d.head}
5 C ← concatDet (C, d)
6 S← getSents(d, C, ts)
7 M← [∅]
8 for k in range(K) do
9 yk ← {∅}

10 do
11 yk ← yk ∪ {randomSample(S, ps)}
12 yk ← yk ∪ {randomSample(C, pc)}
13 while maskedRate(d, yk) < γ
14 yk ← mergeCloseMasks (yk)
15 xk ← getMaskedInput(d, yk)
16 M← M ∪ (xk, yk)

17 return M

example, in Figure 1 (b), “fake document infilling”
gets a higher score than its member phrases. There-
fore, we empirically set the lower bound qmin to
40%, a trade-off between concepts’ importance and
diversity (in terms of length).

A document’s head (e.g., the title and the first
sentence) often contains topic words and summa-
rizes the content. Thus, we ignore extracting these
phrases to prevent generating entirely off-topic ar-
ticles in Line 4, as discussed in the start of subsub-
section 3.3.1. For instance, we remove the selected
topic concept “tomographic image reconstruction”
from the candidate set in Table 1 A.

RAKE removes masked phrases’ determin-
ers and may result in obvious plural noun er-
rors during infilling. For example, LMs in-
fill “find an approximate solution...” to “find an
similar estimate...” in Table 1 (E). The easiest so-
lution to alleviate such errors is to replace the ex-
tracted span with its determiner as a whole, e.g.,
“find an approximate solution...”. Thus, we concate-
nate extracted spans with their determiners through
function concatDet(·) in Line 5.

Besides candidate concepts C, we can optionally
replace sentences with a high density of key con-
cepts. In practice, replacing a whole sentence gen-
erally produces better results than densely infilling
many blanks in the same sentence. Therefore, in
Line 6, we collect the sentences from d whose per-
centage of tokens belonging to any concept in C is
higher than the threshold ts. Function getSents(·)
returns such dense sentences to form the set S.

Once we obtain the candidate pool of concepts

from d, we sample K masked examples M =
{M1, ...,MK}. Each Mk includes input xk with
special masked tokens, and the answer spans yk (as
shown in subsection 3.2). In Lines 8-13, for each
masked example, we collect yk by sampling the
sets S and C with probabilities ps and pc, respec-
tively. We iteratively sample until we get enough
non-overlapping concepts that reach a threshold of
masked token rate γ.

We also merge short masked spans located
closely within the same sentence into longer spans
to reduce the number of masked spans in M
in Line 14. For example, we merge the two
masked spans in “find an approximate solution
with a sparse representation ...” to one span in Ta-
ble 1 (E). We get the corresponding masked input
xk by replacing spans in yk with special masked
tokens in Line 15. We repeat the above sampling
process to get our collections of (xk, yk) pairs.

3.3.2 Decoding
We design a penalized decoding strategy based on
Top-p% sampling (Holtzman et al., 2019) to gen-
erate natural yet fake texts. The training step mini-
mizes the cross-entropy loss between the answers
and prediction probabilities to retrieve the original
document. However, the inference uses sampling
instead of greedy search to get various outputs that
are unlikely to be identical to the original document.
Furthermore, we discount the scores of the tokens
for the correct answers to encourage fake outputs
during the inference, similar to the mechanism for
discouraging repetition (Keskar et al., 2019).

Specifically, we first get a subset of tokens A
from the correct answers y of each M by filter-
ing out too-short tokens, probably stopwords or in-
significant sub-words such as prefixes. Then, given
the input x, the probability distribution over the
next possible token being word i in the vocabulary
V is the softmax:

p(y = i|x) = exp (zi/(T · I(i ∈ A))∑
j exp (zj/(T · I(j ∈ A))

, (1)

where T is the temperature parameter and zi is each
i’s score. I(·) = δ if true else 1, and δ is the penalty
parameter. A high δ discourages generating correct
answers but also produces errors. Thus, we set
δ = 1.2 in our experiments based on our empirical
observation. Finally, following (Holtzman et al.,
2019), we sample from the most probable tokens
whose cumulative probability comprises the top-
95% of the entire vocabulary.
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One concern of the inference step is to control
the fakeness of the output. Substituting concepts
with similar semantic replacements fails to protect
critical information. Due to its unbalanced and
unvaried candidate pool, WE-FORGE often suffers
from replacing a noun concept with its synonyms,
such as substituting “solution” with “strategy” in
Table 1 C and D.

In contrast, FDI controls fakeness efficiently by
masking various spans from words to sentences,
significantly improving the diversity and thus re-
ducing the chance of getting similar outputs. More-
over, FDI infills fake samples conditioned on the in-
complete context hiding critical information. Even
for the exact phrases that occur in different places,
we do not replace them with an identical replace-
ment. Instead, the LM decodes their plausible re-
placements based on different contexts. This infill-
ing and sampling process favors common, safe, but
lossy answers. For example, the document with
masked concepts in Table 1 E can result in various
outputs with the same structure but distinct details.
Later, the sampled answers like “images” and “the
whole dictionary” in Table 1 F seem natural but
uninformative - they hide the critical information
expressed in the original document. Finally, the
penalty mechanism in Equation 1 also encourages
the model to infill a fake answer.

4 Experiments

4.1 Datasets

Following previous cyber deception works, we con-
ducted experiments on two technical datasets: the
CS (Donahue et al., 2020) and the patent abstracts
dataset (PAT)2. The first consists of abstracts from
computer science papers on arXiv. The latter covers
topics such as Electrical, Chemistry, and Biology.
Additionally, we experimented on a non-technical
dataset by crawling and filtering a subset of news
from the Wall Street Journal (WSJ). Table 2 sum-
marizes three datasets’ statistics, document lengths,
and training sequence lengths we chose.

4.2 Comparison Scheme

We considered various possible competitors dis-
cussed in section 2 as baselines. We first selected
word-embedding-based WE-FORGE, the state-of-
the-art fake document generator for Cyber Decep-
tion. Thus, we ignored other cyber deception and

2https://github.com/chirag-choudhary/
Patent-Summarizer

Dataset Train / dev / test # tokens seq-len

CS 409,555 / 8,547 / 8,498 205± 70 400
PAT 16,000 / 4,000 / 5,743 132± 58 256
WSJ 40,862 /2,270 / 2,270 292± 78 512

Table 2: The datasets used in our experiments.

adversarial augmentation models using word em-
beddings. Instead, we chose EDA (Wei and Zou,
2019) as a typical context-agnostic adversarial aug-
mentation baseline. We also compared GPT-2
small model (which serves as FDI’s base model) to
validate the advantage of the proposed mask-then-
infill strategy. We finetuned it and FDI on each
training set (details in Appendix A). Finally, we
ignored other controllable text generators or con-
textual perturbation models (Li et al., 2021). These
methods are neither computationally efficient or
show a clear advantage over the selected models
on fine-grained control over concepts for this task.

4.3 Evaluation Design

We sampled documents from each test sets with
similar lengths (e.g., 180 to 200 tokens for CS
dataset) and generated their fake versions using 4
models. We combined NLG and Cyber Deception
evaluation methods to design our experiments. We
collected reviews from more than 40 computer sci-
ence students. Our experiments consist of Quiz-1
Detection and Quiz-2 Evaluation.

Quiz-1 We followed a similar human evaluation
schema utilized in cyber deception (Chakraborty
et al., 2021; Abdibayev et al., 2021) and machine-
generated text detection (Liu et al., 2016; Van
Der Lee et al., 2019; Ippolito et al., 2020a; Zellers
et al., 2021; Clark et al., 2021) to evaluate whether
the fake samples can deter hackers. Reviewers were
asked to identify the original document among
three fake copies generated by a single (unknown)
model in each example set (1 true + 3 fake). Each
reviewer analyzed 4h example sets (i.e., 4h×(1+3)
documents) to evaluate all four models h times. Fi-
nally, we computed each model’s average detection
accuracy and evaluation time.

However, Quiz-1 ignores the effects of distinct
generation patterns and amounts of fake content.
For example, a generated sample with minor modi-
fications (e.g., adding or deleting a few stopwords
or replacing synonyms) is less distinguishable. Yet,
it does not protect any original document’s infor-
mation for the cyber deception purpose.
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# of example sets Config # of fake
samplesCS PAT WSJ all

Quiz-1 160 88 136 384 1 true + 3 fake 1152
Quiz-2 32 18 32 82 1 true + 4 fake 328

Table 3: Statistics of experimented evaluation sets

Data Metric EDA WEF GPT FDI

CS Acc ↓ 0.93 0.93 0.65 0.60
Time ↑ 1.53±1.0 2.53±1.5 3.31±0.3 3.53±1.3

PAT Acc ↓ 1.00 0.86 0.77 0.64
Time ↑ 2.91±2.2 4.03±2.5 4.41±2.5 4.17±2.0

WSJ Acc ↓ 0.82 0.82 0.62 0.74
Time ↑ 2.21±1.7 2.45±1.7 3.98±1.3 3.86±1.3

avg. Acc ↓ 0.91 0.88 0.67 0.66
Time ↑ 2.22±1.6 3.00±1.9 3.90±1.5 3.85±1.4

Table 4: Mean accuracy and time taken (in minutes) by
participants to review one example in Quiz-1.

Quiz-2 To overcome Quiz-1’s limitations, we de-
signed Quiz-2 to evaluate fake samples’ quality
and effectiveness. Each question set includes one
known original document and four fake copies gen-
erated by four models in an unknown order. Re-
viewers were asked to evaluate five metrics for the
fake samples based on a 4-point Likert scale: (1)
fluency of the article; (2) coherency of the article;
(3) expert knowledge (expertise) required to iden-
tify the article is fake; (4) fakeness of the article;
and (5) the overall preference in the articles.

The above scores combine standard NLG met-
rics (fluency and coherency) and metrics we design
for cyber deception. Specifically, fakeness indi-
cates the amount and the effectiveness of modifica-
tion applied to the original document to deceive the
adversary and protect certain essential facts. We
define four fakeness categories: 1-inadequate, 2-
marginal, 3-moderate, and 4-excessive. We do
not use overlap-based metrics such as BLEU (Pa-
pineni et al., 2002) as they are inappropriate for
evaluating many realistic infills without word-level
overlap (Donahue et al., 2020). See Appendix C
for more details of our questionnaire.

4.4 Results

Table 3 shows statistics of experimented evaluation
sets. Specifically, we evaluated 384 example sets in
Quiz-1 (96 sets per model and 1,152 fake examples
overall. For Quiz-2, we tested 82 example sets,
including 328 fake samples. These samples come
from the same 30 articles and their 360 fake copies.
In addition, each evaluated set was evaluated by at

Data Metric EDA WEF GPT FDI

CS

Flu ↑ 1.97 2.97 3.06 3.19
Coh ↑ 2.28 2.94 2.84 3.25
Exp ↑ 1.78 2.84 2.81 3.00
Pref ↑ 1.66 2.66 2.56 3.19

PAT

Flu ↑ 1.39 3.22 3.33 3.28
Coh ↑ 1.56 2.72 2.67 3.17
Exp ↑ 1.33 2.72 2.67 3.06
Pref ↑ 1.11 2.72 2.72 3.44

WSJ

Flu ↑ 1.75 2.81 3.28 3.06
Coh ↑ 1.78 2.28 2.63 2.78
Exp ↑ 1.69 1.84 2.72 2.59
Pref ↑ 1.72 2.28 2.88 3.13

avg.

Flu ↑ 1.76 2.96 3.21 3.16
Coh ↑ 1.93 2.63 2.72 3.05
Exp ↑ 1.65 2.43 2.74 2.85
Pref ↑ 1.56 2.52 2.72 3.22

Table 5: Mean scores of fluency, coherency, expertise,
and preference in Quiz-2.

least two students.
Table 4 shows the mean detection accuracy and

the average time taken for participants to review
one example in each scenario in Quiz-1. Compared
with other context-agnostic baselines, GPT-2 and
FDI get lower accuracy and longer time. The re-
sults indicate that examining texts generated by
current LMs requires more effort than a superficial
judgment based on fluency-related quality aspects
(Clark et al., 2021). Although time metrics are rel-
atively similar for these models, FDI’s superiority
varies across domains. It presents lower accuracy
(i.e., better at misleading humans) in CS and PAT
but higher in WSJ.

Table 5 compiles the reviews of Quiz-2 for a
more comprehensive analysis of the generated fake
documents. We illustrate the fakeness metric sep-
arately in Figure 2 due to its particularity (higher
fakeness doesn’t mean superiority). Table 5 shows
that EDA achieves the worst fluency and coherency
due to its random perturbation strategy. GPT-2 gen-
erates the most fluent output with contextual knowl-
edge in the unrestricted left-to-right manner. How-
ever, its output lacks fine-grained control and grad-
ually goes off-topic, thus affecting its coherency.
WE-FORGE and FDI preserve the article’s logi-
cal and consistent relation by replacing specific
snippets. Yet, WE-FORGE results in unstable per-
formance due to its unigram replacement based on
unbalanced word embeddings clusters. In contrast,
FDI combines improved replacement strategies and
contextual features, consistently reporting superior
coherency and fluency.
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Figure 2: Distribution of the samples’ fakeness. Most
of FDI’s samples (61.0%) have moderate fakeness.

The expertise score refers to the level of expert
knowledge required for the reviewer to identify
whether the article is fake or not. Given the low
fluency and coherency, EDA’s fake samples require
lower expertise to be recognized. WE-FORGE
prunes out all words other than nouns because such
terms are unlikely to contribute to the content of a
technical document (Abdibayev et al., 2021). Yet,
this method hinders its outputs’ diversity in a news
story with fewer important nouns such as technical
terms but more essential verbs. As a result, it may
generate easily identifiable fake samples such as re-
placing “President Joe Biden” with “President Joe
Trump”. Therefore, WE-FORGE is competitive
with GPT-2 in CS and PAT but performs poorly in
WSJ. In contrast, GPT-2 avoids the above issues
caused by replacing unigram, which also explains
its superiority in accuracy and expertise score in
WSJ. FDI addresses WE-FORGE’s issue by replac-
ing n-grams respecting both the preceding and the
following context. Thus, its errors related to re-
viewers’ knowledge are more subtle. Although we
focus on technical datasets, these results suggest
that FDI generalizes well in other domains.

The ideal fake samples should have moderate
fakeness, neither too close nor too far away from
the original text. Figure 2 illustrates that 61.0% of
FDI’s generated samples have moderate fakeness,
achieving the best trade-offs. In contrast, EDA is in-
effective in protecting critical information because
57.3% of its samples have marginal or inadequate
fakeness. WE-FORGE applies more effective mod-
ification than EDA. Yet, the near-uniform distribu-
tion of WE-FORGE’s fakeness is consistent with
its unstable performance. GPT-2’s samples tend to
introduce excessive fakeness, substantially diverg-
ing from the original documents.

In the final question of Quiz-2, we asked the
reviewers to rank their favorite fake articles from

Figure 3: The Spearman correlation heatmap for fluency,
coherency, expertise, fakeness, and preference scores.

Fakeness Pref # count

1-Inadequate 1.69 39
2-Marginal 2.20 74
3-Moderate 2.98 110
4-Excessive 2.52 105

Table 6: Mean preference and the number of example
sets for each fakeness type.

score 4 to score 1. Then we calculate each model’s
average results as the preference scores. Table 5
shows that FDI is the overall best model. Based
on the participants’ feedback, various factors in-
fluence their decision-making. For example, some
reviewers like the most fluent samples, while others
prefer those with realistic modification. Therefore,
we analyze the relationships between these metrics
in Figure 3, which illustrates that all the scores
other than fakeness show strong positive correla-
tions. The results are as expected as we prefer
fluent, coherent fake documents that require ex-
pert knowledge to identify. In contrast, we observe
weak positive correlations between fakeness and
the other metrics.

To understand the human preference in fakeness,
Table 6 summarizes the mean preference scores
of the samples of different fakeness types. And it
shows that the reviewers favor the samples with
moderate fakeness. The above observation again
validates a trade-off between the amount of fake
content and the superiority of the fake samples.
It also indicates that fakeness is a relatively inde-
pendent metric from the other evaluation metrics.
Thus, it is necessary to include fakeness in the fu-
ture cyber deception study.

4.5 Parameter Study
Due to the extensive time and efforts associated
with human-driven experiments, we used the same
hyperparameters for all datasets based on evalua-
tion results on small validation sets (details in Ap-

6512



pendix B). A key hyperparameter is max masked
rate γ, as shown in Algorithm 1. Samples with low
γ (e.g.,10%) are likely to be labeled as inadequate
fakeness. In contrast, high γ results in excessive
fakeness and errors because the model needs to fill
in more blanks given less context. As moderate
fakeness is desired in cyber deception work, we set
γ = 20%. Yet, users can specify their preferred
γ in custom datasets. Besides γ, many parame-
ters provide randomness in the samples but do not
significantly affect the human evaluation result.

5 Conclusion and Future Work

We propose a novel fake document generator, FDI,
for network intrusion defense and intellectual prop-
erty protection. FDI relies on a complete mask-
then-infill process with a curated strategy for fake
documents generation. Our experiments explore
“how easily the original documents are identified”
and “how critical information is protected” with
more fake samples and generation patterns. FDI
shows consistent superiority in generating realistic
fake samples while protecting the information and
deceiving the hackers.

While human evaluation remains the gold stan-
dard for evaluating various NLG applications, fu-
ture work can explore automatic detection meth-
ods (Zellers et al., 2019; Gehrmann et al., 2019;
Bakhtin et al., 2019; Schuster et al., 2020) to alle-
viate human efforts. Besides, this work focuses on
technical documents and shows generalization in
news stories. Future work can also extend its appli-
cations to other critical domains, such as political
science (Parolin et al., 2022, 2021; Hu et al., 2022;
Skorupa Parolin et al., 2022; Hu and Khan, 2021).

6 Limitations

Due to the expensive human evaluation, we empiri-
cally selected some configurations on small valida-
tion sets. Besides, we reduced the overlaps between
the reviewers to cover more samples and reduce
the randomness. Although at least two reviewers
evaluated each article set, the overlap was small
to calculate Kappa. We were aware that evalua-
tors might calibrate the metrics differently without
training, a commonly reported issue in NLG tasks
(Ippolito et al., 2020a; Clark et al., 2021). However,
pre-evaluation training on fakeness introduced bias
because the reviewers may judge only based on the
distinct patterns of different models (as shown in
Table 1). Thus, we didn’t intervene in the evalua-

tion. Instead, we extensively analyzed reviewers’
choices in Figures 2, 3, and Table 6. More work
needs to be done by (1) designing simple but un-
biased instructions to help reviewers score more
consistently. (2) More overlapping experiments
between reviewers to calculate Kappa.

Second, FDI is not flawless and suffers from sim-
ilar weaknesses as all LMs. Text infilling models
may generate repetitive text, incomplete words, or
unmatched parenthesis, resulting in a high infilling
failure rate (Shen et al., 2020). Therefore, we de-
signed several heuristic steps in Lines 5, 6, and 14
of Algorithm 1 to simplify the infilling tasks and
reduce errors. We believe a more powerful LM,
such as GPT-3 (Brown et al., 2020), can improve
the performance further. Besides, GPT-2 is orig-
inally pretrained for left-to-right text generation.
Some alternative LMs, such as T-5 (Raffel et al.,
2020) and BART (Lewis et al., 2019), have already
learned elementary text-infilling tasks during the
pretraining. Future work should also explore how
these models perform in our framework.

Finally, we designed a simple penalized decod-
ing strategy based on Top-p% schema to encourage
diverse fake generations. Yet, it also generated er-
rors like other constrained decoding methods. Fu-
ture work should optimize the decoding algorithm
and post-processing methods.

7 Ethical Considerations

We acknowledge that similar mechanisms may be
abused to generate disinformation, such as fake
news (Zellers et al., 2019). Besides, language mod-
els have been shown to encode biases from the
training data (Barberá et al., 2021). Thus, we re-
move controversial and sensitive news samples to
mitigate these issues during our evaluation. With
the rapid evolution of Cyber Deception and NLG
technologies, we believe this work creates more
value than risks on balance.
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A Implementation

We used the implementation of EDA from (Morris
et al., 2020). We set the word swapping rate to 20%.
For WE-FORGE, we learnt word-embeddings per
dataset using Word2Vec (Mikolov et al., 2013).
Based on silhouette scores and empirical obser-
vations on the validation sets, we set k = 100 for
K-means and the number of Concept-Importance-
Bins as 5 for all datasets.

For GPT-2 and FDI, we implemented the models
with Huggingface API (Wolf et al., 2020) and mon-
itored the training with Wandb (Biewald, 2020).
We used Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 2e-5 and a batch size of 16.
We chose proper sequence lengths for each dataset
shown in Table 2. It took 1 to 2 days for these
models to converge on the validation sets using a
V-100 GPU.

B Other hyperparameters of FDI

For random masking in training, we traversed
the document’s hierarchy. We randomly masked
sentences and then words with 5% probability.
We then extended each selected word to a non-
overlapped n-gram with a 50% probability. For
controllable masking in inference, we set quantile
lower bound qmin to 0.4, masking sentence’s prob-
ability ps to 0.7, masking concept’s probability pc
to 0.5, sentence selection threshold ts to 0.7, and
max masked rate γ to 0.2 for all datasets.

C Questionnaire

Table 7 explains our quiz’s instructions and ques-
tions. Figure 4 and Figure 5 show our designed user
interfaces using Google Forms. Figure 6 and Fig-
ure 7 shows one example set of Quiz-1 and Quiz-2
in Google Forms, respectively.

Quiz-1 Assume you are a hacker. Can you distinguish the
true document from the below 4 examples? Please choose
the most likely option Top-1 and the 2nd possible option
Top-2.

Quiz-2 Assume you are a cyber security expert. The ideal
fake documents should be realistic and provide scalable pro-
tective coverage. They are “close enough” to the original to
make the fakes believable, but sufficiently “far enough” to
hide and protect private and confidential information. Now
compared with the true document, would you evaluate the
fakeness of the rest four fake samples? Below are the ques-
tions in details:

Q1. How do you rate the fluency of the article?
4. Overall flawless, with only minor typos.
3. Non-native, with minor but apparent errors.
2. Unnatural/synthetic, the apparent errors affect my reading.
1. Incomprehensible, with a lot of corrupted text.

Q2. How do you rate the coherency of the article? Does it
make sense?
4. Coherent. There is a logical and consistent relation among
the facts presented along the article.
3. Partially coherent, I can’t understand what the author
means in certain places.
2. Somehow confusing, with most parts of the document are
confusing.
1. I have no (or almost no) idea what the author is trying to
say.

Q3. Expert knowledge is required to identify this article is
fake.
4. Agree, non-expert will find it difficult to distinguish if it
is fake.
3. Partially agree, expert knowledge may help and speed up
this process.
2. Somewhat disagree, expert knowledge might not be nec-
essary.
1. Disagree, general audience can easily identify it is fake.

Q4. Is the sample “fake enough”? Does it apply necessary
modifications (e.g., insert, replace and delete) to deceive
the adversary and protect some essential facts? Note: High
scores of fakeness do not mean superiority.
4. Excessive. The article may introduce too many changes,
substantially diverging from the original topic/fact.
3. Moderate. The article introduces important changes,
preserves the coherence, and seems realistic.
2. Marginal. The article introduces changes. However,
considerable modifications do not significantly change facts
presented in the original document.
1. Inadequate. Only insignificant modifications.

Q5. Based on your previous evaluation, how would you rank
the fake documents? A good fake copy should look similar
to the original document. But what’s more important is that
it also protects essential information and misleads hackers.
Please rank your preference. (Top-1 the best to Top-4 the
worst)

Table 7: The instructions and questions in the Quiz.
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Figure 4: Quiz-1’s user interface Figure 5: Quiz-2’s user interface

Figure 6: A Quiz-1’s example set consists of 1 true + 3 fake articles generated by an unknown model.

Figure 7: A Quiz-2’s example set includes 1 known true document + 4 fake samples generated by 4 models in an
unknown order.
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