
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6345–6350
December 7-11, 2022 ©2022 Association for Computational Linguistics

Entity-level Interaction via Heterogeneous Graph
for Multimodal Named Entity Recognition

Gang Zhao, Guanting Dong, Yidong Shi, Haolong Yan, Weiran Xu and Si Li∗
School of Artificial Intelligence, Beijing University of Posts and Telecommunications, China
{zhaogang, dongguanting, yidongshi, haolongy, xuweiran, lisi}@bupt.edu.cn

Abstract

Multimodal Named Entity Recognition
(MNER) faces two specific challenges: 1) How
to capture useful entity-related visual infor-
mation; 2) How to alleviate the interference
of visual noise. Previous works have gained
progress by improving interacting mechanisms
or seeking for better visual features. However,
existing methods neglect the integrity of
entity semantics and conduct cross-modal
interaction at token-level, which cuts apart
the semantics of entities and makes non-entity
tokens easily interfered with by irrelevant
visual noise. Thus in this paper, we propose
an end-to-end heterogeneous Graph-based
Entity-level Interacting model (GEI) for
MNER. GEI first utilizes a span detection
subtask to obtain entity representations, which
serve as the bridge between two modalities.
Then, the heterogeneous graph interacting
network interacts entity with object nodes
to capture entity-related visual information,
and fuses it into only entity-associated
tokens to rid non-entity tokens of the visual
noise. Experiments on two widely used
datasets demonstrate the effectiveness of
our method. Our code will be available at
https://github.com/GangZhao98/GEI.

1 Introduction

Multimodal Named Entity Recognition (MNER)
aims at combining both textual and visual contents
to detect and classify named entities from multi-
modal social media posts (e.g., tweets). Different
from traditional NER (Torisawa et al., 2007; Lam-
ple et al., 2016; Ma and Hovy, 2016) that focuses
on formal single-modal texts, MNER confronts two
specific challenges: 1) How to capture useful entity-
related visual information; 2) How to alleviate the
interference of visual noise. As shown in Figure 1,
the MISC entity "Oscars" appearing in the tweet
may be wrongly recognized as PER, since it can
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Figure 1: An example from the public social media
MNER dataset Twitter-2015, and the difference between
previous and proposed cross-modal interacting methods.

refer to both a person name and the movie award.
But the trophies in image can help figure out that
the "Oscars" actually indicates the latter. Effec-
tively capturing entity-related information from the
image is essential and challenging. Though helpful,
incorporating images may also interfere the non-
entity tokens that have no corresponding visual
information, and makes them easily misidentified
as entities. Effectively alleviating the interference
brought by images is also a critical challenge.

Recent works on MNER have gained progress
by either improving cross-modal interacting mecha-
nisms (Zhang et al., 2018; Lu et al., 2018; Yu et al.,
2020), or seeking for better visual features (Wu
et al., 2020; Chen et al., 2020; Zhang et al., 2021).
However, existing methods neglect the integrity
of entity semantics and directly interact all textual
tokens with visual features, which we regard as
token-level interaction. Though straightforward,
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token-level interaction fails to use integral entity
semantics to capture related visual information, and
makes non-entity tokens easily interfered with by
visual noise.

Thus in this paper, we propose an end-to-end het-
erogeneous Graph-based Entity-level Interacting
model (GEI) for MNER. As shown in Figure 1, the
key insight of entity-level interaction is obtaining
entity representations to query related visual infor-
mation from object features, which has several ben-
efits: 1) Entity representations carry integral entity
semantics, which can capture entity-related infor-
mation effectively. 2) Interacting visual features
with only entity representations instead of all token
representations can protect non-entity tokens from
the interference brought by images. In detail, GEI
first introduces a span detection subtask to obtain
entity representations, which serve as the bridge
between two modalities. Then, a multimodal het-
erogeneous graph is constructed with token, entity
and object nodes, whose semantic relationships are
modeled by four kinds of edges. After that, GEI
interacts entity nodes with object nodes to capture
related visual information, and fuses it to token
nodes that are connected with entity nodes. Finally,
a CRF layer is employed to decode named entities
from object-aware token representations.

Overall, our contributions are as follows:
1) We propose a novel end-to-end model GEI for

MNER. GEI interacts entity representations with
visual objects to capture useful entity-related visual
information, and excludes non-entity tokens from
the interaction to rid them of the visual noise.

2) We conduct experiments on two widely used
datasets Twitter-2015 (Zhang et al., 2018) and
Twitter-2017 (Lu et al., 2018). The results show
that GEI tackles MNER challenges effectively and
demonstrate the effectiveness of our GEI.

2 Methodology

Figure 2 shows the architecture of GEI, which
contains the following components: Entity Rep-
resentation Extractor (ERE), Object Feature En-
coder (OFE), Heterogeneous Graph Interacting
Network (HGIN), CRF Decoding modules.

2.1 Entity Representation Extractor

Given an input sentence X = {xi}|X|
i=1, where

xi is the ith token and |X| is the max sequence
length, we employ BERT pre-trained by Devlin
et al. (2018) as our text encoder, and obtain con-

textualized token embeddings C = {ci}|X|
i=1. Then,

we use a Transformer (Vaswani et al., 2017) to gain
hidden representation of each token T = {ti}|X|

i=1:

T = Transformer-1(C) ∈ R|X|×768 (1)
After that, we project token representations to the
multimodal space via a linear transformation: T̃ =

WtT
⊤ + bt, where T̃ = {t̃i}|X|

i=1 ∈ R|X|×dm and
dm is dimension of the multimodal space.

We introduce a span detection subtask to con-
struct entity representations, which are used to cap-
ture entity-related visual information and serve as
the bridge between two modalities in HGIN. Firstly,
we feed C to another Transformer layer to obtain
specific hidden representations of the subtask:

T ′ = Transformer-2(C) ∈ RN×768 (2)
Then, we use a CRF (Lafferty et al., 2001) layer
to recognize possible entity spans {(si, ei)}|E|

i=1,
where |E| is the entity number, si and ei are start
and end indexes of the ith entity. The span detec-
tion loss Lsd is as follows:

Lsd = −
∑

i

logP (z|X) (3)

P (z|X) =

|X|∏
i=1

φi(zi−1, zi,X))

∑
z′∈Z

|X|∏
i=1

φi(z
′
i−1, z

′
i,X)

(4)

where φi(zi−1, zi,X) and φi(z
′
i−1, z

′
i,X) are po-

tential functions. Finally, we obtain representation
of each entity through maxpooling its constituent
token representations: En = Max({t̃i}eni=sn

).

2.2 Object Feature Encoder

We propose OFE module to encode the input im-
age to visual features. Considering that visual ob-
jects have similar semantic granularity with enti-
ties, we acquire object representations as our im-
age features. Given an input image I , we first
use the object detection algorithm DETR (Carion
et al., 2020) to detect bounding boxes of visual
objects O = {oi}|O|

i=1, where |O| is the number
of detected objects. Then, we concatenate I and
O, feed them to the 152-layer ResNet (He et al.,
2016) and take the output from the last pooling
layer V = {vi}|O|+1

i=1 as the visual features:

V = ResNet([I;O]) ∈ R(|O|+1)×2048 (5)
After that, we project visual features to the mul-
timodal space via a multi-layer perceptron with
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ReLU activation function:
Ṽ = ReLU(WvV

⊤ + bv) ∈ R(|O|+1)×dm (6)

2.3 Heterogeneous Graph Interacting
Network

We design HGIN module to capture entity-related
visual information via entity-level interaction, and
fuse it to entity-associated token representations.

Graph Construction. As shown in Figure 2,
the multimodal heterogeneous graph G contains
three kinds of nodes: textual token nodes NTi = t̃i,
entity nodes NEi = Ei, and visual object nodes
NVi = ṽi. We introduce following kinds of edges
for G: 1) Entiy-Object Edge: NEi and NVj are
fully connected to capture the entity-related visual
information. 2) Entity-Token Edge: NEi is con-
nected with associated token nodes {NTj}eij=si

to
enhance them with entity-related visual informa-
tion. 3) Intra-modal Edge: To capture intra-modal
interactions, all token nodes {NTi}

|X|
i=1 are fully

connected with each other, so do object nodes.
Cross-modal Interaction. Firstly, we employ

multi-head self-attention on the intra-modal edge
to exploit contexts of the same modality:

D(l)
m = MultiHead(H(l)

m ,H(l)
m ,H(l)

m ) (7)

where m ∈ {T, V }, H(l)
m = {H(l)

mi} and H
(l)
mi is

the hidden feature of node Nmi at the lth layer.
Then, we interact entity nodes with object nodes
via a gated cross-attention module:

R
(l)
E = MultiHead(H

(l)
E ,D

(l)
V ,D

(l)
V ) (8)

α
(l)
E = Sigmoid(W (l)

e1 R
(l)
E +W (l)

e2 H
(l)
E ) (9)

M
(l)
E = α

(l)
E ·R(l)

E + (1−α
(l)
E ) ·H(l)

E (10)

where M (l)
E are object-aware entity representations

Similarly, we obtain entity-aware object representa-
tions M (l)

V . After that, we fuse visual information
from M

(l)
E to its associated token nodes:

α
(l)
Ti

= Sigmoid(WT
(l)
1 M

(l)
Ej

+WT
(l)
2 D

(l)
Ti
) (11)

M
(l)
Ti

= α
(l)
Ti

·M (l)
Ej

+ (1− α
(l)
Ti
) ·D(l)

Ti
(12)

where D
(l)
Ti

is the constituent token node of M (l)
Ej

.

Finally, we feed M
(l)
m ,m ∈ {T, V } to feed-

forward neural networks to obtain H
(l+1)
m , and then

update H
(l+1)
E : H(l+1)

Ei
= Max({H(l+1)

Tj
}
ei

j=si
).

After fusing entity-related visual information
into corresponding token representations, we ap-
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Figure 2: The overall architecture of GEI.

ply a CRF layer to conduct sequence labeling and
obtain the entity recognition loss Lmner:

Lmner = −
∑

i

logP (y|X) (13)

P (y|X) =

|X|∏
i=1

φi(yi−1, yi,X))

∑
y′∈Y

|X|∏
i=1

φi(y
′
i−1, y

′
i,X)

(14)

where φi(yi−1, yi,X) and φi(y
′
i−1, y

′
i,X) are po-

tential functions. When training, we sum the loss
mentioned above as the final loss: L = λ1Lsd +
λ2Lmner, where λ1 and λ2 are hyperparameters.

3 Experiments

3.1 Experimental Setup

Datasets. We evaluate our method on two pub-
lic MNER datasets Twitter-2015 (Zhang et al.,
2018) and Twitter-2017 (Lu et al., 2018). The
datasets contain four different types of entities: Per-
son, Location, Organization, Misc.

Baselines and Metrics. For a thorough compari-
son, we compare our approach with two groups
of baseline models. Firstly, the representative
text-based NER approaches: 1) CNN-BiLSTM-
CRF (Ma and Hovy, 2016), which is a classi-
cal text-based neural network for NER with both
the word-level and character-level information. 2)
HBiLSTM-CRF (Lample et al., 2016), which is
an improvement of CNN-BiLSTM-CRF, replacing
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Visual Feature Model Twitter-2015 Twitter-2017
Pre. Rec. F1 Pre. Rec. F1

-

CNN-BiLSTM-CRF 66.24 68.09 67.15 80.00 78.76 79.37
HBiLSTM-CRF 70.32 68.05 69.17 82.69 78.16 80.37
BERT 68.30 74.61 71.32 82.19 83.72 82.95
BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44

Image Region
VG 73.96 67.90 70.80 83.41 80.38 81.87
ACoA 72.75 68.74 70.69 84.16 80.24 82.15
UMT 71.67 75.23 73.41 85.28 85.34 85.31

Visual Object
OCSGA 74.71 71.21 72.92 - - -
Object-AGBAN 74.13 72.39 73.25 - - -
UMGF∗ 72.43 74.09 73.25 85.33 84.32 84.82

Image Caption Captions 68.52 74.61 71.49 86.16 87.49 86.82
GEI† 73.39 75.51 74.43 87.50 86.01 86.75

Ours -Entity-level interaction 72.49 75.11 73.78 87.09 85.42 86.25
(Visual Object) -Span Detection 71.67 74.00 72.87 83.12 85.27 84.18

+Image Region 72.64 75.40 73.99 86.42 85.27 85.84

Table 1: Performance comparison on the two MNER datasets. Result marked by * is conducted via the released
code of Zhang et al. (2021). The boldface and underlined numbers are the best two results in each column. † refers
to significant with p-values < 0.05 when comparing unimodal baselines.

the bottom CNN layer with LSTM to build the hi-
erarchical structure. 3) BERT (Devlin et al., 2018),
which is a competitive baseline for NER with multi-
layer bidirectional Transformer encoder and fol-
lowed by stacking a softmax layer for entity pre-
diction. 4) BERT-CRF, a variant of BERT, which
replaces the softmax layer with a CRF layer. Sec-
ondly, several competitive multimodal approaches
for MNER: 5) VG (Lu et al., 2018), which utilizes
a visual attention and a gate mechanism to expoit
implicit information from a whole image to guide
word representation learning based on HBiLSTM-
CRF. 6) ACoA (Zhang et al., 2018), which designs
an adaptive co-attention network to learn word-
aware visual representations and vision-aware word
representations based on CNN-BiLSTM-CRF. 7)
UMT (Yu et al., 2020), which extends Transformer
to multi-modal version and incorporates the aux-
iliary entity span detection module. 8) Object-
AGBAN (Zheng et al., 2020), which proposes an
adversarial bilinear attention network to capture the
correlations of visual objects and textual entities. 9)
OCSGA (Wu et al., 2020), which combines dense
co-attention network (self-attention and guide at-
tention) to model the correlations between visual
objects and textual entities. 10) UMGF (Zhang
et al., 2021) , which proposes a unified multimodal
graph fusion approach for MNER and achieves cur-
rent SOTA on Twitter-2015. 11) Captions (Chen
et al., 2020), which uses image captions as visual
features and achieves current SOTA on Twitter-
2017. Following previous works, we take Micro

F1-score as the evaluation metric.
Implementation Details. We use the Adam

(Kingma and Ba, 2014) optimizer with a learning
rate 3e-05. We set the batch size to 16. The number
of gnn layer is set to 6, the λ1 and λ2 are set to
0.5 and the dropout rate is set to 0.4. The head
number of multi-head attention is set to 8. For
all experiments, we train and test our model on a
Tesla-V100 GPU. We take the average F1 scores of
three experiments as our final result. To alleviate
the error propagation caused by the gap between
training and predicting, we take the scheduled sam-
pling strategy (Bengio et al., 2015). Specifically,
when training, GEI gradually switches the span
detection results from golden label to the model
predictions on its own. From epoch 2 to epoch 6,
GEI linearly increases the proportion of predicted
span detection results from 0% to 90%.

3.2 Results and Analysis

Table 1 shows the main results of GEI compared
with the baseline models on both Twitter-2015
and Twitter-2017. Results show that our proposed
framework GEI significantly outperforms UMGF
by 1.93% and 1.18% on Twitter-2017 and Twitter-
2015, respectively. Further, comparing with Cap-
tions, GEI also surpasses 2.94% F1-scores on
Twitter-2015 and has a competitive performance
on Twitter-2017. Besides, GEI outperforms all
baseline models that also use visual objects, which
suggests that conducting cross-modal interaction
at entity-level can effectively exploit useful visual
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information from object features.

Ablation Study. To further investigate the ef-
fectiveness of entity-level interaction, we conduct
ablation experiments on 3 variants: 1) -Entity-level
Interaction, removing entity nodes from the multi-
modal graph and directly interacting object nodes
with entity-associated token nodes. 2) -Span Detec-
tion, further removing the span detection subtask
and interacting all token nodes with object nodes.
3) +Image Region, replacing visual object features
with fixed region features following Yu et al. (2020).
From Table 1, we can observe that: 1) Employing
entity representations that carry integral entity se-
mantics to capture entity-related visual information
is important and contributes +0.65% / +0.50% F1-
score. 2) Excluding non-entity tokens from the
cross-modal interaction to alleviate the visual inter-
ference is essential and improves the performance
significantly. 3) Compared with fixed image re-
gions, employing visual objects that have similar
semantic granularity with entities is preferable and
enhances +0.44% / +0.91% F1-score.

Case Study. Figure 3 shows two representa-
tive examples which intuitively demonstrate the
effectiveness of our method. 1) For the left exam-
ple, UMT and UMGF misidentify the PER entity
"Leonardo" as MISC, while GEI extracts both en-
tities correctly. It shows that our proposed GEI
captures the entity-related visual information effec-
tively via entity-level interaction (i.e., "Leonardo"
and people appearing in the image). 2) For the right
example, both UMT and UMGF suffer from the
interference brought by the image and mislabel non-
entity token "HURRY" as a PER entity. However,
due to excluding non-entity tokens from the cross-
modal interaction, our GEI rids the "HURRY"
of the visual noise and makes the prediction cor-
rectly. This noticeable phenomenon indicates that
our framework alleviates the interference brought
by images via entity-level interaction.

Visualization of Entity-level Interaction. To
gain an insight into the interaction between entities
and visual objects, we visualize the cross-modal
attention weights between entity nodes and visual
object nodes for the example appearing in Figure
1. As shown in Figure 4, it is obvious that two
PER entities "Attenborough" and "Ben Kingsley"
have greater weights with two person objects than
other visual objects during cross-modal interaction.
The same phenomenon exists between the MISC
entity "Oscars" and two trophy objects. These find-

Baby boy is gonna be [Leonardo
PER]1 for [Halloween MISC]2

UMT 1-MISC × 2-MISC ✓

GEI 1-PER   ✓ 2-MISC ✓
UMGF 1-MISC × 2-MISC ✓

[HURRY O]1 GET ONE BEFORE 
THEYRE SENT TO [AFRICA LOC]2

1-PER × 2-LOC ✓

1-O     ✓ 2-LOC ✓
1-PER × 2-LOC ✓

Figure 3: Case study of our proposed GEI, previous
SOTA methods UMT and UMGF. The bottom three
rows are predicted entities of different approaches.

16%
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13%
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Attenborough

Ben  
Kingsley
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Person Trophy Person Tie Trophy Tie Original

Figure 4: Visualization of cross-modal interaction atten-
tion between entity representations and visual objects.

ings confirm that our framework can effectively
capture entity-related visual information through
entity-level cross-modal interaction.

4 Conclusion

In this paper, we propose an heterogeneous Graph-
based Entity-level Interacting model (GEI) for
MNER. GEI interacts entity representations with
visual objects to capture useful entity-related vi-
sual information, and excludes non-entity tokens
from the interaction to rid them of the visual noise.
Experiments on two public MNER datasets demon-
strate the effectiveness of our method.

Limitations

MNER methods have gained impressive progress
on multimodal social media NER by incorporating
complementary visual features. Though helpful in
many cases, incorporating images may also bring
diverse interference to the task. In this paper, we
focus on the interference suffered by non-entity
tokens, and alleviate it by excluding non-entity
tokens from the cross-modal interaction process.
However, existing methods (including our GEI) are
still confronted with inevitable interference when
the image is irrelevant with the text or contains
ironic meaning. How to effectively alleviate such
kind of interference remains to be studied in future.

6349



Acknowledgements

We sincerely thank all anonymous reviewers for
their valuable comments and suggestions. This
work was supported by National Natural Science
Foundation of China (61702047).

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam

Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances
in neural information processing systems, 28.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer
vision, pages 213–229. Springer.

Shuguang Chen, Gustavo Aguilar, Leonardo Neves, and
Thamar Solorio. 2020. Can images help recognize
entities? a study of the role of images for multimodal
ner. arXiv preprint arXiv:2010.12712.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang,
and Heng Ji. 2018. Visual attention model for name
tagging in multimodal social media. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1990–1999.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Kentaro Torisawa et al. 2007. Exploiting wikipedia
as external knowledge for named entity recognition.

In Proceedings of the 2007 joint conference on em-
pirical methods in natural language processing and
computational natural language learning (EMNLP-
CoNLL), pages 698–707.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Zhiwei Wu, Changmeng Zheng, Yi Cai, Junying Chen,
Ho-fung Leung, and Qing Li. 2020. Multimodal rep-
resentation with embedded visual guiding objects for
named entity recognition in social media posts. In
Proceedings of the 28th ACM International Confer-
ence on Multimedia, pages 1038–1046.

Jianfei Yu, Jing Jiang, Li Yang, and Rui Xia. 2020.
Improving multimodal named entity recognition via
entity span detection with unified multimodal trans-
former. Association for Computational Linguistics.

Dong Zhang, Suzhong Wei, Shoushan Li, Hanqian Wu,
Qiaoming Zhu, and Guodong Zhou. 2021. Multi-
modal graph fusion for named entity recognition
with targeted visual guidance. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 14347–14355.

Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang.
2018. Adaptive co-attention network for named en-
tity recognition in tweets. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Changmeng Zheng, Zhiwei Wu, Tao Wang, Yi Cai, and
Qing Li. 2020. Object-aware multimodal named
entity recognition in social media posts with adver-
sarial learning. IEEE Transactions on Multimedia,
23:2520–2532.

6350


