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Abstract
Metaphor Detection aims to identify the
metaphorical meaning of words in the sentence.
Most existing work is discriminant models,
which use the contextual semantic information
extracted by transformers for classifications di-
rectly. Due to insufficient training data and
corresponding paraphrases, recent methods fo-
cus on how to get external resources and utilize
them to introduce more knowledge. Currently,
contextual modeling and external data are two
key issues in the field. In this paper, we pro-
pose An Auto-Augmented Structure-aware gen-
erative model (AAAS) for metaphor detection,
which transforms the classification task into a
keywords-extraction task. Specifically, we pro-
pose the task of structure information extraction
to allow the model to use the ’structural lan-
guage’ to describe the whole sentence. Further-
more, without any other external resources, we
design a simple but effective auto-augmented
method to expand the limited datasets. Exper-
imental results show that AAAS obtains com-
petitive results compared with state-of-the-art
methods.

1 Introduction

Metaphors, representing abstract meanings of
words rather than their basic meanings, are ubiqui-
tous in our daily life (Lakoff and Johnson, 1980).
For instance, in the sentence "The boxer’s job is
to bounce people who want to enter the club.", the
verb bounce means "forcing somebody to leave",
which is quite different from its basic meaning
"moving up and down". As an abstract way of
describing something by referring to something
else, this language phenomenon draws extensive
scholarly attention in linguistics. Hence, how to
identify the metaphors has become a heated topic
in NLP, with an aim to improve our understanding
of natural language.

This challenging task requires sufficient data
and ingenious designs based on linguistic knowl-
edge. For years, linguisticians tended to use two

Figure 1: The comparison diagram of existing methods
and our method.

metaphor identification procedures: Metaphor Iden-
tification Procedure (MIP) (Crisp et al., 2007) and
Selectional Preference Violation (SPV) (Wilks,
2007). MIP identifies metaphorical words based on
whether their contextual meanings are contrasted
with their basic meanings. SPV identifies metaphor-
ical words if the target word is distinctive in the
context. Based on these two procedures, most ex-
isting methods tend to encode the whole sentence
and extract the corresponding hidden state of the
target word, which is then used as the contextual
meaning for classifications (Gao et al., 2018). To
get a better representation, various word embed-
dings (e.g., ELMO embedding (Liu et al., 2018))
and attention mechanisms are introduced into the
input and structure of the model (Mao et al., 2019).
However, due to the limited capacity of traditional
encoders (e.g., Bi-LSTM, DNN), these methods
cannot model the sophisticated meanings of target
words in different contexts.

With the rapid development of transform-
ers (Vaswani et al., 2017), many methods started to
use various pre-trained language models to get bet-
ter contextual representations. For example, Deep-
Met (Su et al., 2020) uses transformers to encode
the global context and the local text context, respec-
tively. At the same time, incorporating more lin-
guistic knowledge while designing the model also
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attracts scholarly attention. MelBERT (Choi et al.,
2021), for instance, combines MIP and SPV with
RoBERTa (Liu et al., 2019), a typical example of
integrating linguistic knowledge with pre-trained
models. Based on the concept that a metaphor
is a conceptual mapping between the source do-
main and the target domain (Stowe et al., 2021),
MrBERT (Song et al., 2021) extracts the subject
and the object of the metaphor through the syntax
parser to construct a contextual relation representa-
tion.

Moreover, owing to the similarity between
metaphor detection, aspect-based sentiment anal-
ysis (Pontiki et al., 2016), and word sense disam-
biguation (Miller et al., 1994), some studies adopt
multi-task learning to further improve the models’
sensitivity to metaphorical words (Le et al., 2020;
Stowe et al., 2021). Nevertheless, these methods
rely on large amounts of data for fine-tuning. How-
ever, labeled data for metaphor detection is scarce
due to labor-intensive and time-consuming label-
ing. Consequently, most of them have to employ
transfer learning for better results.

Various external resources are mined to intro-
duce extra knowledge to cope with the issue of
insufficient data. CATE (Lin et al., 2021) down-
loads the corpora from Wikipedia and then gen-
erates pseudo-labels for training. MDGI (Wan
et al., 2021) takes advantage of dictionary defini-
tions to create the list of glosses, which facilitates
the model’s understanding of targets. In terms of
the experimental results, these methods solve the
issue of insufficient labeled data to a certain extent.
However, external resources are still hard to access,
and the whole training stage is time consuming.

To sum up, previous models are over-reliant on
external resources and tools, but data is hard to
obtain, and the training process takes too much
time. Meanwhile, all of the existing methods are
discriminant. Nearly all of them concatenate or add
up the representation of contextual words directly
and then input the result into the classifier, which
may lose some essential connections between them.
Even though some early methods are based on
seq2seq models (Mao et al., 2019), they regard
metaphor detection as a word-level classification
(sequence labeling task) and ignore the linguistic
structure.

The problems mentioned above motivated us to
propose An Auto-Augmented Structure-aware gen-
erative model (AAAS) for metaphor detection. Just

as Figure 1 shows, almost all of the existing dis-
criminant methods directly concatenate or sum up
the contextual relation representation, which may
lead to a loss of structural information. Given that,
we adopted the generative approach, which models
the structural information more accurately. Specif-
ically, in the process of decoding, the decoder of
the generative model took sequential relationships
and interrelationships in contextual structure into
consideration. In order to adapt the training process
for application scenarios of the generative model,
we designed a special keywords-extraction task
for training. Considering that we can identify a
metaphor by its subjects and objects in most cir-
cumstances, the task requires that the model sum-
marizes the original sentence with structural terms.
In other words, the model needs to describe the
critical semantics of the whole sentence with sub-
ject, target, object, and classification results. As
a result, the model itself can extract the structural
information from the sentence, which makes it inde-
pendent of external tools such as the syntax parser.
In addition, we designed a simple but effective
auto-augmented method based on the masked lan-
guage model. The method can expand the dataset
without any external resource, which fundamen-
tally solves the problem of insufficient labeled data.
To achieve a better performance, we added some
structural rules to the expansion stage. In a word,
we enhanced the model’s capabilities so that it can
extract structural information and expand datasets
independently. Just as our title says, "It’s better to
teach a man to fish than give him a fish."

In summary, the contributions of this paper are
as follows: (1) Through a detailed analysis of
the existing methods, we point out the problems
in metaphor detection. (2) We propose an auto-
augmented structure-aware generative model. To
the best of our knowledge, it is the first time to ap-
ply the generative approach to metaphor detection
and free the model from external resources. (3) We
conduct experiments on several typical datasets for
metaphor detection. Extensive analytical experi-
ments show the effectiveness of both the generative
model and the auto-augmented method in improv-
ing prediction performance, even compared with
those relying on large-scale external resources.

2 Related Work

The work related to our method can be categorized
into three types: Adopting multi-task learning, min-
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ing the structural information, and introducing ex-
ternal resources.

Adopting multi-task learning Metaphor de-
tection is quite similar to aspect-based sentiment
analysis and word sense disambiguation, because
they all require the model to classify data accord-
ing to the target word and sentence. Through multi-
task learning, the knowledge learned from auxiliary
tasks (e.g., ABSA, WSD, and so on) can promote
the training stage of the major task (MD) (Le et al.,
2020; Stowe et al., 2021). Nevertheless, there are
still some differences between these tasks. For
example, metaphor words are usually identified
according to the context, including their subjects
and objects, whereas sentiment polarities are de-
termined solely based on adjectives with strong
emotions. Therefore, these similar tasks are not
the most appropriate auxiliary tasks for metaphor
detection.

Mining the structural information The study
of metaphor generation (Stowe et al., 2021) indi-
cates that a metaphor word is deemed to be a map-
ping between its source domain and target domain,
which are closely related to the fixed group of the
target word and its context (Lakoff and Johnson,
1980; Lakoff, 1993; Reddy, 1979). As a result, the
linguistic structure is of great significance in identi-
fying the metaphor word in a sentence. The contex-
tual representations become more distinguishable
based on subjects and objects extracted by the syn-
tax parser (Chen and Manning, 2014). Then they
are concatenated or added up to get a local or global
representation for classifications (Song et al., 2021).
This approach has two main drawbacks: (1) The
syntax parser is prone to error, especially for long
sentences. The wrong subjects and objects would
hinder the prediction process. (2) The concatenated
or summed contextual representations may lose se-
quential relationships and interrelationships.

Introducing external resources The current
research focuses more on the external resources
such as external corpora (Lin et al., 2021), external
dictionaries (Wan et al., 2021), and so on. The
other two types of methods also depend on the extra
large-scale dataset for fine-tuning. However, most
of the external resources are hard to collect, and the
pre-processing process is extremely complicated.
Worse still, the training stage takes too much time
because of massive data.

3 Proposed Method

Metaphor detection requires determining whether
the target in the sentence is a metaphor word.
Given a sentence S consisting of n words S =
{w1, w2, ..., wn} and the target wi chosen from it,
the task asks the model to predict a binary label
y ∈ {Metaphor, Literal}. In this section, we pro-
pose An Auto-Augmented Structure-aware genera-
tive model (AAAS) for metaphor detection. Firstly,
we design an auto-augmented mechanism based on
BERT (Devlin et al., 2018) to improve the model’s
performance when available data is limited. As for
the main architecture of the model, we use a typical
generative model, BART (Lewis et al., 2019), as
our backbone, while the other generative models
can also accommodate our architecture. Particu-
larly, we design a decoder containing the pointer
network (Vinyals et al., 2015) and the decoder of
BART because the specially designed keywords-
extraction task needs the words from the original
sentence to construct the structural information.

3.1 Auto-augmented mechanism based on
masked language model

The basic assumption of our design is based on the
following principle (Actually, it is an imperfection
of the BERT): For a mask word in the sentence, the
most probable prediction given by BERT is usually
a non-metaphor word (More detailed discussions
are shown in Appendix A). The occurrence of this
phenomenon could be attributable to the insuffi-
cient metaphor corpora in the pre-training stage
of BERT. Our auto-augmented approach can cope
with the defect.

Our method is illustrated in Figure 2. For
a metaphorical sentence "The boxer’s job is to
bounce people who want to enter the club", if the
target word "bounce" is masked, predicted, and re-
placed - "The boxer’s job is to kill people who want
to enter the club", the label will change into "Lit-
eral". However, if the other words are masked, pre-
dicted, and replaced, the labels will not be changed
even though the semantics are slightly strange. If
the original sentence is literal, the new sentences
will always be literal no matter which word we
mask because BERT can not predict a metaphor
word. In this way, j words are randomly selected
from each sentence and predicted, and then the
top-k probable predictions are chosen to generate
new sentences. j and k can be adjusted for specific
datasets. In particular, to keep the structural infor-
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Figure 2: The diagram of our auto-augmented structure-aware generative model. After being expanded by the
auto-augmented mechanism, the sentence is encoded by the encoder, which interacts with the decoder output to
predict the next index of structural terms step by step. After extracting the subject, the target, and the object, the
current decoder hidden state is multiplied with the embedding of "M" (Metaphor) and "L" (Literal) for a final
classification.

mation, we avoid masking the subjects and objects
of sentences.

In experiments, we observed that the smaller
dataset needs larger values for j and k because they
determine the size of expanded data. However, it is
not to say that larger is better because the larger val-
ues can also result in more semantically incorrect
sentences, so the expanded data may contain more
noise. Whether to use the auto-augmented method
and how to set (j, k) for it needs to be confirmed
by Algorithm 1.

3.2 Structure-aware generative model

Our model consists of an encoder and a decoder
with the pointer Network. As shown in Figure 2,
given a sentence S, we first add the "<s>" and
"</s>" to the beginning and end of the sentence
because our encoder is based on BART. Special
attention should be paid to the fact that the indexes
corresponding to the words are not their positions.
We set 0 for "<s>", 1 for "<pad>", 2 for "</s>", 3
for "M" (Metaphor), and 4 for "L" (Literal). There-
fore, the indexes of words in the sentence are equal
to their positions plus 5. To obtain the representa-
tion of the whole sentence, we get its embedding
X = {x1, x2, ..., xn} and encode it by Equation 1:

X = EmbedEncoder(S)

H = Encoder(X)
(1)

For the decoder part, the computing process is quite
different from the encoder. As Equation 2 indicates,
at the time step t, we get the current representation
H

′
t = {h′

1, h
′
2, ..., h

′
t} determined by the current

sentence S
′
i≤t = {w′

1, w
′
2, ..., w

′
t} and encoder hid-

den states H , which is then multiplied with the en-
coder hidden states H according to the mechanism
of the pointer network. The purpose of applying
the pointer network is to get the probability distri-
butions for the words from the original sentence
because we need them to construct the structural
representation.

X
′
i≤t = EmbedDecoder(S

′
i≤t), t ∈ [1, 7]

H
′
t = Decoder(X

′
i≤t, H), t ∈ [1, 7]

P = Softmax(HH
′
t), t ∈ [1, 6]

(2)

3.3 Special keywords-extraction task
We design a particular keywords-extraction task
to adapt the training process for the generative
model. The task requires the model to summa-
rize the whole sentence with the structural terms.
Specifically, the model needs to find the subject,
the target, and the object in sequence and determine
whether the target is a metaphor word.

During the training stage, we design a seq2seq
loss function. After getting the probability distribu-
tions P̂ = {p̂1, p̂2, ..., p̂7} for a batch of sentences,
the loss function is calculated as follows:

Losstotal = Lossclassify + γLossextract (3)
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where γ is a hyperparameter that controls the
strength of extracting structural information. Since
extracting structural information is the auxiliary
task but not the main task, γ is chosen from the
range [0, 1]. The Lossclassify is the cross-entropy
of ground-truth labels Ŷ and the probability results
p7:

Lossclassify = CrossEntropy(Ŷ , p7) (4)

And the Lossextract consists of the losses of ex-
tracting subjects, targets, and objects:

Losssubject = CrossEntropy(startsubject, p1)

+CrossEntropy(endsubject, p2)

Losstarget = CrossEntropy(starttarget, p3)

+CrossEntropy(endtarget, p4)

Lossobject = CrossEntropy(startobject, p5)

+CrossEntropy(endobject, p6)
(5)

The CrossEntropy mentioned above is:

CrossEntropy(P,Q) =
1

M

∑M

m=1
Pm logQm

(6)
where M is the number of samples, Pm and Qm

are the ground-truth labels and predicted output for
the m-th sample respectively.

The structural information in our train sets is
extracted by the syntax parser (Chen and Man-
ning, 2014), similar to MrBERT (Song et al., 2021).
More parsing rules are introduced for more accu-
rate results, but some noise still remains in the
parsing output, which will interfere with the final
classification. That is one of the reasons why we
do not use parsing results directly while inferring.
Moreover, there are some sentences without sub-
jects or objects. A special token "<null>" is ap-
pended to the sentence, and the model is asked to
predict its index when that exceptional case occurs.

The above part of Figure 2 indicates an example
of the inference stage. The length of the expected
output sequence (the structural representation) is
fixed as 7, including the start index and end index
of the subject, target, and object, and a final clas-
sification result. At the beginning of the inference
phase, we input the beginning of sequence token
"<s>" and the decoder output "6" - the start index
of the subject (startsubject). The word "boxer"
is then generated according to the index and ap-
pended to the inputs. Next, we input "<s> boxer"
to predict the end index of the subject (endsubject).

Similarly, we get "<s> boxer boxer" and predict
the start index of the target. In this way, all the
indexes of the structural words are extracted, and
the current hidden state turns out to be H

′
7. How-

ever, the decoder hidden state H
′
7 is not multiplied

with H this time. Instead, we multiply it with the
vectors of "M" (Metaphor) and "L" (Literal) in
EmbedDecoder. Therefore, the decoder can only
predict the label from {Metaphor, Literal} be-
cause of the restriction. Finally, we add "</s>"
to the end of the sequence to finish the inference
stage.

3.4 Searching for best settings

In experiments, we find that the decoder input’s
content and order impact the results. For the exam-
ple in Figure 2, we can input only a token - "<s>",
but we can also input "<s> boxer boxer", which
means we can offer more ancillary information
while inferring. Taken to an extreme, we can input
"<s> boxer boxer bounce bounce people people"
and make the model classify the data directly. On
the other hand, order is also vital for prediction.
The classification result of "subject-target-object-
label" can be quite different from "target-subject-
object-label". Figure 2 only indicates one scenario
and the detailed results will be discussed in Sec-
tion 4.4. Apart from that, our auto-augmented
mechanism needs j and k to expand datasets, and
their values are also supposed to be appropriate.
Therefore, how to choose the best pattern (content
and order), j, and k is crucial for the results.

As Algorithm 1 shows, we confirm the best set-
tings through Dval. It’s worth noting that template
is determined earlier than jbest and kbest, due to the
finite number of possible permutations of the struc-
tural words.

4 Experiments

Compared with existing models, we tried AAAS on
several metaphor detection tasks. Experimental re-
sults demonstrate that AAAS consistently achieves
strong performance on all datasets, which outper-
forms all of the state-of-the-art baselines methods
in terms of accuracy and F1-score. In this sec-
tion, we attempt to answer the following questions:
RQ1: Does AAAS perform better than existing
methods? RQ2: Is AAAS still excellent while
removing its auto-augmented mechanism? RQ3:
How do the pattern, j, k, and γ affect the results?
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Algorithm 1: Searching algorithm
Input: train set Dtrain, validation set Dval,

pre-trained generative model
f(·; θ; pattern), auto-augmented
method g(·; j, k), maximum
tolerance J , and maximum sampling
number K.

foreach pattern do
Train the model on Dtrain and update θ

using Adam.
Get F1-score on Dval.

end
Get the best pattern template for highest

F1-score.
for j = 0, 1, ..., J do

for k = 1, ...,K do
Expand Dtrain to get
Dexpand

train = g(Dtrain; j, k).
Train the model f(·; θ; template)

on Dexpand
train and update θ using

Adam.
Get F1-score on Dval.

end
end
Get the best values jbest and kbest of j and k

for highest F1-score.
return template, jbest, kbest

4.1 Experimental settings

4.1.1 Datasets and preprocessing

To evaluate the effectiveness of our model, we con-
duct experiments on three widely-used datasets:
(1) MOH-X (Mohammad et al., 2016) is a small
dataset, and only a single target verb is annotated in
each sentence. (2) TroFi (Birke and Sarkar, 2006)
is also a verb metaphor detection dataset, includ-
ing sentences from the 1987-89 Wall Street Journal
Corpus Release 1. (3) VUA (Steen et al., 2010) is
a large dataset divided into a train set, a validation
set, and a test set. It is used by the NAACL-2018
Metaphor Shared Task and consists of two main
tracks: VERB and All_POS metaphor detection.

The details of the three datasets are listed in Ta-
ble 1. According to the common search algorithms
of generative method, we adopt the beam search
with a beam width of 4. We select the best pattern,
j, and k for each dataset by Algorithm 1 and their
influences are discussed in Section 4.4. More de-
tailed settings are shown in Appendix B. The code
will be made publicly available.

Dataset Targets Metaphors Sentences Avglen
MOH-X 647 48.7% 647 8.0

Trofi 3737 43.5% 3737 28.3
VUA_VERBtrain 15,516 27.9% 7,479 20.2
VUA_VERBval 1,724 26.9% 1,541 25.0
VUA_VERBtest 5,873 30.0% 2,694 18.6

VUA_All_POStrain 116,622 11.2% 6,323 18.4
VUA_All_POStrain 38,628 11.6% 1,550 24.9
VUA_All_POStrain 50,175 12.4% 2,694 18.6

Table 1: Detailed dataset statistics.

4.1.2 Baselines
We compare our models with current strong base-
lines, including:

RNN_CLS, RNN_SEQ_ELMo and
RNN_SEQ_BERT (Gao et al., 2018): Use
various embedding (e.g., Glove embedding (Pen-
nington et al., 2014), ELMo embedding, and
BERT embedding) and their combinations to
get better contextual representation. RNN_HG
and RNN_MHCA (Mao et al., 2019): Both of
them adopt sequence labeling. According to
MIP and SPV, they concatenate the embedding
and hidden states and utilize multi-head atten-
tion to capture better contextual information.
MUL_GCN (Le et al., 2020): Introduce word
sense disambiguation as an auxiliary task and use
GCN (Heidari et al., 2022) to capture structural
contexts. BERT+MWE_GCN (Rohanian et al.,
2020): Get targets’ syntactic dependencies by an
attention-based GCN to further capture multiword
expressions. DeepMet (Su et al., 2020): Encode
global and local context by RoBERTa (Liu et al.,
2019) and combine them. MelBERT (Choi et al.,
2021): Use RoBERTa as the backbone to get
contextual and literal meaning while incorporating
both MIP and SPV. MrBERT (Song et al.,
2021): Extract the structures of sentences by the
syntax parser and concatenate their contextual
representations. CATE (Lin et al., 2021): Trained
on external dataset downloaded from Wikipedia,
CATE uses contrastive learning to enhance the
model’s self-training to get better pseudo-labels.

4.2 RQ1: Performances compared with
existing methods

Table 2 shows the experimental results of AAAS
compared with others on three benchmarks. The
overall results indicate the effectiveness of our
AAAS. We can find that the performance of AAAS
is excellent on all datasets, which exceeds existing
models in terms of accuracy and F1-score, espe-
cially on the small dataset - MOH-X.
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Models MOH-X(10-fold) Trofi(10-fold) VUA_VERB VUA_All_POS
Acc P R F1 Acc P R F1 Acc P R F1 Acc P R F1

RNN_CLS 78.5 75.3 84.3 79.1 73.7 68.7 74.6 72.0 69.1 53.4 65.6 58.9 - - - -
RNN_SEQ_ELMo 77.2 79.1 73.5 75.6 74.6 70.7 71.6 71.1 81.4 68.2 71.3 69.7 93.1 71.6 73.6 72.6
RNN_SEQ_BERT 78.1 75.1 81.8 78.2 73.4 70.3 67.1 68.7 80.7 66.7 71.5 69.0 92.9 71.5 71.9 71.7
RNN_HG 79.7 79.7 79.8 79.8 74.9 67.4 77.8 72.2 82.1 69.3 72.3 70.8 93.6 71.8 76.3 74.0
RNN_MHCA 79.8 77.5 83.1 80.0 75.2 68.6 76.8 72.4 81.8 66.3 75.2 70.5 93.8 73.0 75.7 74.3
MUL_GCN 79.9 79.7 80.5 79.6 76.4 73.1 73.6 73.2 83.2 72.5 70.9 71.7 93.8 74.8 75.5 75.1
BERT+MWE_GCN 80.5 80.0 80.4 80.2 73.5 73.8 71.8 72.8 - - - - - - - -
DeepMet - - - - - - - - - 79.5 70.8 74.9 - 82.0 71.3 76.3
MelBERT - - - - - - - - - 78.7 72.9 75.7 - 80.1 76.9 78.5
MrBERT 84.9 84.1 85.6 84.2 76.7 73.9 72.1 72.9 86.4 80.8 71.5 75.9 94.7 82.7 72.5 77.2
CATE 85.2 85.7 84.6 84.7 77.7 74.4 74.8 74.5 85.8 78.1 73.2 75.6 94.8 79.3 78.8 79.0
AAAS 87.5 89.5 85.2 87.0 77.7 72.5 77.5 74.8 86.4 81.6 71.1 76.0 95.2 81.6 77.4 79.4

Table 2: Experimental results on three metaphor detection benchmarks. The best result is in bold.

It is noteworthy that almost all the transformer-
based models (e.g., MUL_GCN, MelBERT, Mr-
BERT, and CATE) proposed recently needed exter-
nal datasets for fine-tuning, transferring learning,
or multi-task learning. However, AAAS does not
rely on any other extra resources and still achieves
excellent results. Compared with large-scale exter-
nal corpora, our auto-augmented mechanism can
generate smaller-scale but high-quality data, saving
a lot of training time and fundamentally solving the
problem of insufficient data.

4.3 RQ2: Is AAAS still excellent while
removing its auto-augmented mechanism?

Models
MOH-X(10-fold)

Acc P R F1
RNN_CLS 78.5 75.3 84.3 79.1
RNN_SEQ_ELMo 77.2 79.1 73.5 75.6
RNN_SEQ_BERT 78.1 75.1 81.8 78.2
RNN_HG 79.7 79.7 79.8 79.8
RNN_MHCA 79.8 77.5 83.1 80.0
MrBERT 84.92∗ 84.13∗ 85.62∗ 84.23∗

CATE 85.21∗ 85.71∗ 84.63∗ 84.72∗

AAAS w/o AA 84.23∗ 84.62∗ 87.11∗ 85.61∗

Models
Trofi(10-fold)

Acc P R F1
RNN_CLS 73.7 68.7 74.6 72.0
RNN_SEQ_ELMo 74.6 70.7 71.6 71.1
RNN_SEQ_BERT 73.4 70.3 67.1 68.7
RNN_HG 74.9 67.4 77.81∗ 72.2
RNN_MHCA 75.2 68.6 76.82∗ 72.4
MrBERT 76.72∗ 73.92∗ 72.1 72.93∗

CATE 77.71∗ 74.41∗ 74.8 74.51∗

AAAS w/o AA 76.13∗ 71.23∗ 76.43∗ 73.52∗

Table 3: Experimental results after removing the auto-
augmented mechanism. The best results is in red, the
second is in orange, and the third is in blue.

In order to verify the effectiveness of the gen-

erative method, we remove the auto-augmented
approach and train our model only on the original
datasets. The results are reported in Table 3. Even
without the auto-augmented method and expanded
datasets, our structural-aware generative model can
obtain superior or competitive results compared
with previous models dependent on large-scale
datasets, proving our generative method’s valid-
ity. Specifically, in the case of insufficient data,
the structure-aware generative architecture gets a
better contextual representation than existing dis-
criminant models.

However, compared with complete AAAS,
the results do decrease significantly. The phe-
nomenon demonstrates our auto-augmented mech-
anism helps improve the performance of the model,
especially on the small dataset - MOH-X. Expan-
sion based on the auto-augmented approach gener-
ates better data much less costly than those relying
on external resources and tools. The expanded
dataset is similar to the original one in that the auto-
augmented method generates new sentences based
on the original ones, but the external datasets intro-
duced by previous methods and original ones do
not belong to the same schema at all, which may
be a reason why our auto-augmented mechanism
performs better than other extension methods.

4.4 RQ3: How do the pattern, j, k, and γ
affect the results?

As explained in Section 3.4, the pattern we choose
substantially impacts the final results. Therefore,
we design Algorithm 1 to obtain the best one. As
shown in Table 4, for MOH-X, the content of
the decoder input does little to influence the fi-
nal results. The results of S∗ − T − O − L and
S∗ − T ∗ − O − L are even the same, which indi-
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cates that our structure-aware generative model can
extract structural information through training, so
good results can be obtained with or without aux-
iliary input. However, for Trofi, T ∗ − S −O − L
shows the greatest accuracy while the patterns
with the subject or the object have poorer per-
formance. We guess this is because the syntax
parser performs badly in long sentences, so the
structural information generated contains some
noise, which affects the final classification. By
the way, we have also tried other patterns like
S∗−S∗−T ∗−T ∗−O∗−O∗−L, but the pattern
is more time-costing (requires twice as much time
as the short patterns need) and not obviously better
than other patterns. Hence, we don’t choose long
patterns like it.

Pattern
MOH-X(10-fold)

Acc P R F1
S − T −O − L 84.88 87.80 82.14 84.37
S∗ − T −O − L 85.23 88.60 81.54 84.54
S∗ − T ∗ −O − L 85.23 88.60 81.54 84.54
S∗ − T ∗ −O∗ − L 85.23 88.44 81.84 84.58
T − S −O − L 85.05 85.49 84.91 85.07
T ∗ − S −O − L 85.05 84.36 87.08 85.41
T ∗ − S∗ −O − L 85.06 84.59 86.75 85.37
T ∗ − S∗ −O∗ − L 84.22 84.63 87.08 85.55

Pattern
Trofi(10-fold)

Acc P R F1
S − T −O − L 75.83 71.68 73.80 72.21
S∗ − T −O − L 75.02 70.47 75.21 72.56
S∗ − T ∗ −O − L 74.72 69.61 76.09 72.57
S∗ − T ∗ −O∗ − L 76.10 71.18 76.41 73.50
T − S −O − L 75.32 69.15 78.72 73.50
T ∗ − S −O − L 76.18 72.79 72.31 72.48
T ∗ − S∗ −O − L 75.34 69.16 78.79 73.53
T ∗ − S∗ −O∗ − L 74.39 68.23 79.22 73.15

Pattern
MOH-X(10-fold)

Acc P R F1
S∗−S∗−T ∗−T ∗−
O∗ −O∗ − L

85.56 86.24 84.97 85.44

Table 4: Experimental results of different patterns.
We remove the auto-augmented mechanism and keep
two decimals here to observe the results more clearly.
Here we show two orders and four patterns with vary-
ing numbers of input elements for each order (e.g.,
S∗−T ∗−O−L means the order of inferring is "subject-
target-object-label" and we input the subject and target
before predicting). The best accuracy is in bold.

For j and k, the values we choose determine
the size of the expanded dataset. As explained in
Section 3.1, it is not to suggest that larger is better

because larger values can result in more semanti-
cally incorrect sentences. The influence of j and k
is shown in Figure 3. Since we use Algorithm 1 to
select better settings, the F1 score of AAAS with-
out the auto-augmented mechanism is the lower
bound (the black dashed line). For different values
of k, the performances reach the peaks at different
values of j, and then decrease due to the injection
of too much noise. Overall, the larger k fits the
smaller j better. We speculate that it is because
there is a limit to how much noise the model can
accommodate. The performance will be improved
if the auto-augmented method expands the data
within this limit. Beyond this limit, it will play a
limited role.

As for γ, its value controls the strength of ex-
tracting structural information. From Figure 3 we
can find that, with the increase of γ, the F1 score
first rises to the peak when γ is 0.01 and then de-
clines with fluctuations. The phenomenon indicates
that the keywords-extraction task can help improve
the model’s performance. Still, it will be less ef-
fective if we focus too much on it and ignore the
main task (Metaphor Identification). More detailed
discussions are shown in Appendix C.

Figure 3: The chart of the fluctuations of F1 when we
change the values of j, k, and γ on MOH-X(10-fold).
We use T ∗ − S∗ −O∗ −L and T ∗ − S −O−L as the
pattern for the two experiments here, respectively. And
we remove the auto-augmented mechanism for the one
of F1-γ.

5 Conclusion

This paper summarizes existing metaphor detec-
tion methods, indicating that almost all of them are
discriminant models and rely on external corpora
and tools. We propose a structure-aware generative
model with an auto-augmented mechanism to solve
the problems. We conduct massive experiments on
several metaphor detection datasets and achieve
remarkable performance. The experimental re-
sults demonstrate the effectiveness of the gener-
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ative method for capturing sequential relationships
and interrelationships and the auto-augmented ap-
proach for solving the problem of insufficient data.
We expect our work will direct more scholarly at-
tention to generative models for metaphor detection
and data auto-augmentation methods elaborately
designed for insufficient labeled data.

Limitations

In this work, we first propose a cost-free solution
to the problem of insufficient labeled data. We
then propose a generative model to capture bet-
ter sequential relationships and interrelationships.
The auto-augmented method solves the problem of
labor-intensive and time-consuming labeling. And
the structure-aware model avoids the loss of struc-
tural information. However, searching for the pat-
tern, j, and k takes too much time. Additionally,
the training of the generative model requires a lot
of GPU resources. Overall, AAAS needs a lot of
computing resources to obtain better results.
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A Discussions about the Design of the
Auto-augmented Mechanism

As explained in Section 3.1, for a mask word in
the sentence, the most probable prediction given by
BERT is usually a non-metaphor word. In this way,
for a metaphorical sentence (Labeled as "M"), if the
target word (metaphor) is masked, predicted, and
replaced, the label will change into "L" (Literal).
On the contrary, if the other words (e.g., articles,
prepositions, adjectives, possessive pronouns, and
so on) are masked, predicted, and replaced, the
labels will change. As for a literal sentence (La-
beled as "L"), the label is not supposed to change
no matter which word we mask because BERT can
not predict a metaphor word. Some examples are
shown in Table 5. The above four examples can
prove our assumption.

It is noteworthy that we avoid masking the sub-
jects and objects of sentences to keep the struc-
tural information because the process of replacing
them is not controllable. For example, there is a
metaphorical sentence - "She drowned in the trou-
ble.". If the object ("trouble") is masked, a new
object ("water") will be predicted, which makes
the metaphorical sentence literal. Similar errors
can also happen in literal sentences. For the literal
sentence - "I can not digest the milk.", if "milk" is
masked, "information" will be predicted, and the
label is supposed to change into "M". However,
masking subjects and objects does not necessarily
result in a change in labels (e.g., labels will not
change if we turn "She" into "I", "He", "We", and
any other pronouns). Whether the labels should
be changed is hard to decide because we do not
anticipate all scenarios. As a result, we skip this
for subjects and objects to ensure accuracy of ex-
pansion.

Nevertheless, sentences generated by the auto-
augmented approach are not entirely appropriate.
There can be a few strange semantics and wrong
combinations of phrases, but these minor mistakes
do not affect the understanding of sentence mean-
ings and the identification of metaphors at all.

B Detailed Settings

The detailed settings of experiments are shown in
Table 6. We set γ as 0.01 and conducted experi-
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Original Sentences & Labels Masked Sentences Generated Sentences & Labels

Fire had devoured our home. & M
Fire had [MASK] our home. Fire had destroyed our home. & L

Fire had devoured [MASK] home. Fire had devoured her home. & M

He absorbed the knowledge or beliefs of his tribe. & M
He [MASK] the knowledge or beliefs of his tribe. He has the knowledge or beliefs of his tribe. & L

He absorbed the knowledge [MASK] beliefs of his tribe. He absorbed the knowledge and beliefs of his tribe. & M
He absorbed the knowledge or [MASK] of his tribe. He absorbed the knowledge or wisdom of his tribe. & M

The rain water drains into this big vat. & L
The rain water [MASK] into this big vat. The rain water went into this big vat. & L

The [MASK] water drains into this big vat. The hot water drains into this big vat. & L
The rain water drains into this [MASK] vat. The rain water drains into this large vat. & L

The truck dumped the garbage in the street. & L
The truck [MASK] the garbage in the street. The truck and the garbage in the street. & L

[MASK] truck dumped the garbage in the street. A truck dumped the garbage in the street. & L
The truck dumped the garbage in the [MASK]. The truck dumped the garbage in the ditch. & L

She drowned in the trouble. & M
She [MASK] in the trouble. She was in the trouble. & L

[MASK] drowned in the trouble. I drowned in the trouble. & M
She drowned in the [MASK]. She drowned in the water. & L

I can not digest the milk. & L
I can not [MASK] the milk. I can not drink the milk. & L

I can [MASK] digest the milk. I can hardly digest the milk. & L
I can not digest the [MASK]. I can not digest the information. & M

Table 5: Experimental results of the auto-augmented mechanism.

Dataset γ LRmax LRmax Warmup_Steps Total_Steps Batch_Size Device
MOH-X(10-fold) 0.01 1e-4 1e-6 50 500 64 GeForce RTX 3090

Trofi(10-fold) 0.01 1e-4 1e-7 50 1000 50 GeForce RTX 3090
VUA_VERB 0.01 2e-6 1e-7 600 1000 32 GeForce RTX 3090

VUA_All_POS 0.01 2e-6 1e-6 800 1000 50 GeForce RTX 3090

Table 6: Detailed experimental settings.

ments on GeForce RTX 3090 for all datasets. Al-
most all the sentences in Trofi consist of several
clauses, which are much longer than MOH-X. By
analyzing datasets, we find the meanings of targets
are usually decided by the clause where they are lo-
cated. Considering that, we split the long sentences
in Trofi by commas and only reserve the clauses
containing targets, which helps remove unwanted
information and reduce the demands for large GPU
resources. As for MOH-X, we skip this because
most of its sentences are short enough.

C More Discussions about the
Keywords-extraction Task

Models MOH-X(10-fold)
Acc P R F1

T ∗ − L 83.58 85.06 81.47 82.71

Table 7: Experimental results of T ∗ − L (vanilla
BART’s performance). That is the most basic pattern
for Metaphor Identification.

As we explained in Section 1, some existing
methods adopt multi-task learning, but there are
still some differences between these auxiliary tasks
and Metaphor Identification. For instance, for
Aspect-Based Sentiment Analysis, the classifica-
tion results are solely based on adjectives with
strong emotions. Therefore, the key to dealing

Figure 4: The chart of the fluctuations of F1 when we
change the value γ in the range [0, 0.01] on MOH-X(10-
fold).

with the task is to find the adjectives correspond-
ing to the given aspect term. However, things are
different for Metaphor Identification. It is impossi-
ble to determine whether the target is a metaphor
word by only one word. Given that, we propose the
keywords-extraction task, which allows the model
to extract the subjects, targets, and objects, because
we can identify a metaphor by its subjects and ob-
jects in most circumstances. Extensive experiments
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show that our keywords-extraction task is more ef-
fective than other existing auxiliary tasks.

In Section 4.4, we talked about the fluctuations
of F1 when we change the values of γ in the range
[0, 1], finding that the keywords-extraction task
can help improve the model’s performance, and
it works best when γ is 0.01. To verify this value
further, we narrow the range to [0, 0.01], as shown
in Figure 4, and come to the same conclusion as
the previous one.

To prove the effectiveness of the auxiliary task
more fully, we design a pattern - T ∗ − L, which
is the most basic input for Metaphor Identification.
According to Table 4 and Table 7, we can conclude
that the extraction process of structural terms im-
proves the classification accuracy significantly.

D Experiments Based on the Smaller
Backbone

Most of the previous methods use BERT-base and
BERT-large as baselines. We have tried to replace
BERT-base with BERT-large while reproducing
them but could not always get better results. We
guess larger BERT may not behave better. Consid-
ering that, we compare our model with their best
results they published.

In experiments, we use BART-large as our back-
bone. Actually, the size of BART and BERT are
similar at the same level. For example, BART-large
consists of a 12-layer encoder and a 12-layer de-
coder while BERT-large has 24 layers. We also
conduct experiments based on BART-base and the
results are still competitive compared with the pre-
vious works. To conclude, larger BERT is not suit-
able for all methods, but larger BART is suitable for
our generative method. Our structure-aware model
based on BART-base is still effective enough.

Datasets
S∗ − T ∗ −O∗ − L

Acc P R F1
MOH-X(10-fold) 85.5 85.4 84.0 84.5
w/o AA 84.2 85.8 81.8 83.6
Trofi(10-fold) 76.5 71.4 76.6 73.9
w/o AA 74.9 69.7 77.4 73.0

Table 8: Experimental results based on BART-base.
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