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Abstract
Entity alignment (EA) aims to identify equiva-
lent entities from different Knowledge Graphs
(KGs), which is a fundamental task for integrat-
ing KGs. Throughout its development, Graph
Convolutional Network (GCN) has become one
of the mainstream methods for EA. The key
idea that GCN works in EA is that entities with
similar neighbor structures are highly likely
to be aligned. However, the noisy neighbors
of entities transfer invalid information, drown
out equivalent information, lead to inaccurate
entity embeddings, and finally reduce the per-
formance of EA. In this paper, we propose a
lightweight framework with no training param-
eters for both supervised and unsupervised EA.
Based on the Sinkhorn algorithm, we design
a reliability measure for pseudo equivalent en-
tities and propose Adaptive Graph Convolu-
tional Network to deal with neighbor noises
in GCN. During the training, the network dy-
namically updates the adaptive weights of rela-
tion triples to weaken the propagation of noises.
Extensive experiments on benchmark datasets
demonstrate that our framework outperforms
the state-of-the-art methods in both supervised
and unsupervised settings.

1 Introduction

In recent years, Knowledge Graph (KG), an effec-
tive structure for organizing and storing data, has
received growing attention. It has been widely ap-
plied to many knowledge-driven applications such
as Search Engine (Yang et al., 2019), Question
Answering (Han et al., 2020), and Recommenda-
tion (Sha et al., 2021). Due to the limitations of data
sources and construction methods, it is difficult for
a KG graph to achieve perfect knowledge coverage,
which affects the performance of knowledge-driven
applications. To solve this problem, knowledge fu-
sion came into being. By capturing the differences
and complementarities of multiple KGs, knowl-
edge fusion makes up for the lack of knowledge
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Figure 1: An example of the EA task. In this figure,
ellipses indicate entities, directed arrows indicate rela-
tions between entities, entities with the same mark are
equivalent entities, and dashed lines indicate seed align-
ments in the supervised setting.

and ensures knowledge redundancy, improving the
completeness of KGs.

Entity alignment (EA), which aims to find equiv-
alent entities from different KGs, is a fundamental
task in knowledge fusion. Figure 1 shows an exam-
ple of the EA task. There is a partial French KG
and a partial English KG. In the supervised EA set-
ting, the equivalent entity pair (Ville_de_séquoia,
Redwood_City) is already known as a seed align-
ment. The task is to find other equivalent entity
pairs from two KGs, e.g., (Comté_de_San_Mateo,
San_Mateo_County). In the unsupervised EA set-
ting, there are no available seed alignments.

Most recently, neural methods have become the
dominant approach for EA. They encode entities
from two KGs into a unified vector space and then
make alignments via measuring the similarity be-
tween entity embeddings. Existing neural meth-
ods can be divided into two main categories: (1)
TransE-based. With the assumption that the re-
lation is the translation from the head entity to
the tail entity in a relation triple, TransE (Bordes
et al., 2013) embeds all relations and entities into
a unified vector space for a KG. TransE-based EA
methods learn entity embeddings through semantic
information. They use seed alignments to construct
cross-KG relation triples that connect two graphs
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and then adopt translation-based KG embedding
models on both single-KG and cross-KG relation
triples. (2) GCN-based. Graph convolutional net-
work (GCN) (Kipf and Welling, 2017) generates
node-level embeddings through aggregating infor-
mation from the neighboring nodes. GCN-based
EA methods learn entity embeddings by informa-
tion diffusion in KGs. They perform the respective
graph convolution operations on two KGs and then
use seed alignments to align two embedding spaces
via margin loss (Wang et al., 2018) or cross-entropy
loss (Fey et al., 2020).

TransE and GCN work in EA due to a priori
knowledge that there may be multiple pairs of
equivalent entities between the respective neigh-
bors of a pair of equivalent entities. Equivalent
entities have equivalence transfer to their neigh-
boring entities, respectively. Furthermore, for enti-
ties from different KGs, the more pairs of equiva-
lent entities contained between their neighbors, the
higher the probability that the two entities are equiv-
alent. However, there still is a critical challenge
for EA ignored by most studies. Since equivalent
entities may also have non-contributing neighbors,
GCN brings additional noises during the message
passing process. These noises drown out equiv-
alent information, lead to inaccurate entity em-
beddings, and finally reduce the performance of
EA. We call this phenomenon the neighbor noise
problem and these non-contributing connections
noisy edges. As an example in figure 1, while
entity Ville_de_séquoia, Le_Parc_Menlo, and
Comté_de_Santa_Clara contribute to alignment
(Comté_de_San_Mateo, San_Mateo_County), en-
tity Californie and Amérique bring noises to makes
the judgment of equivalence more difficult.

To further confirm the effect of noisy edges on
EA performance, we conduct an exploratory ex-
periment with the ground truth alignments. Fig-
ure 2 reports the performance of several clas-
sic EA methods under different edge settings on
dataset DBP15KZH-EN (Sun et al., 2017), where
MTransE (Chen et al., 2017) belongs to TransE-
based methods and GCN-Align (Wang et al., 2018),
MRAEA (Mao et al., 2020a), RREA (Mao et al.,
2020b), and RAGA (Zhu et al., 2021a) belong to
GCN-based methods. After removing all the noisy
edges, the performance of both TransE-based and
GCN-based methods significantly improves.

However, in real scenarios, we cannot gain the
ground truth alignments in advance. In this paper,

Figure 2: The Hits@1 alignment results under different
edge settings.

the core idea for dealing with the neighbor noise
problem is to reduce the effect of potential noisy
edges in KGs. We adopt the Sinkhorn algorithm to
design a reliability measure for pseudo equivalent
entities. By integrating the reliability measure into
GCN, we propose Adaptive Graph Convolutional
Network for Entity Alignment, namely AGEA1.
During the training, it automatically adjusts the
weights of relation triples in KGs to weaken the
propagation of noisy edges. We summarize the
main contributions of this paper as follows:

• We design a measure for pseudo equivalent en-
tities via the Sinkhorn algorithm and propose
an adaptive edge weight calculation module
to address the neighbor noise problem.

• To leverage the adaptive edge weights, we
put forward a lightweight framework with no
training parameters in both supervised and
unsupervised EA tasks.

• Experimental results on five cross-lingual
EA datasets demonstrate that our framework
achieves state-of-the-art with high efficiency
and interpretability.

2 Problem Definition

A KG is formalized as KG = (E ,R, T ) where
E ,R, T are the sets of entities, relations, and rela-
tion triples, respectively. A relation triple (h, r, t)
consists of a head entity h ∈ E , a relation r ∈ R,
and a tail entity t ∈ E .

Given two KGs, namely KG1 = (E1,R1, T1)
and KG2 = (E2,R2, T2), we define the task of su-
pervised EA as discovering equivalent entities from
different KGs based on a set of seed alignments
A = {(ei, ej)|ei ∈ E1, ej ∈ E2, ei ↔ ej}, where
↔ represents equivalence. And the task of unsu-
pervised EA is defined as the same target without
seed alignments A.

1Our code is publicly available at https://github.com/
zhurboo/AGEA.

6012

https://github.com/zhurboo/AGEA
https://github.com/zhurboo/AGEA


3 Related Work

3.1 Supervised Entity Alignment
TransE-based methods adopt translation-based KG
embedding models such as TransE to learn en-
tity embeddings. These methods represent enti-
ties by estimating the plausibility of relation triples
using a scoring function. MTransE (Chen et al.,
2017) encodes entities and relations of each KG
in separated embedding space and provides transi-
tions to align the embedding spaces. JAPE (Sun
et al., 2017) jointly embeds the structures of two
KGs into a unified vector space and further re-
fines it by leveraging attribute correlations in KGs.
TransEdge (Sun et al., 2019) contextualizes rela-
tion representations in terms of specific head-tail
entity pairs. BootEA (Sun et al., 2018) expands
seed alignments in a bootstrapping way to learning
alignment-oriented KG embeddings. While these
methods take advantage of relation semantics, they
cannot preserve the global structure information.

GCN-based methods learn entity embeddings by
recursively aggregating neighbor features. Since
it focuses more on global information than seman-
tic information, it is necessary to design structures
incorporating relation semantics into entity embed-
dings. GCN-Align (Wang et al., 2018) is the first
attempt to learn entity embeddings by encoding
information from their neighborhoods via GCN.
MRAEA (Mao et al., 2020a), RREA (Mao et al.,
2020b), and RAGA (Zhu et al., 2021a) incorporate
relation semantics into entity representations based
on Graph Attention Networks (Velickovic et al.,
2018). To explicitly leverage relation informa-
tion, RDGCN (Wu et al., 2019a) and HGCN (Wu
et al., 2019b) approximate relation semantics based
on adjacent entity representations. DGMC (Fey
et al., 2020) employs synchronous message pass-
ing networks to iteratively re-rank the soft corre-
spondences. SoTead (Luo et al., 2022) considers
a global optimal entity matching by solving the
optimal transport problem.

To our best knowledge, there are three ways
relevant to dealing with the neighbor noise prob-
lem. (1) Pair-based. GMM (Xu et al., 2019) and
EPEA (Wang et al., 2020) generate pair-wise entity
embeddings, which avoids the neighbor noise prob-
lem to some extent. (2) Weight-based. NMN (Wu
et al., 2020) employs a graph sampling strategy for
identifying the most informative neighbors during
the training. In such methods, the edge weights and
entity embeddings of KGs affect each other, which

requires efficient model architectures. (3) Align-
based. RNM (Zhu et al., 2021b) utilizes neigh-
borhood matching to enhance the entity alignment
after the training, and the accuracy of its alignments
is influenced by neighbor entities. Our framework
AGEA belongs to Weight-based methods. It calcu-
lates adaptive edge weights during the training with
pseudo equivalent entities. Apart from entity em-
beddings, no additional network parameters need
to be trained.

Furthermore, there is much additional infor-
mation that can be leveraged to improve the
performance of EA, such as entity names (Wu
et al., 2019b; Zhu et al., 2021b), entity descrip-
tions (Liu et al., 2021b; Zeng et al., 2020), attribute
triples (Sun et al., 2017; Tang et al., 2020), im-
ages (Liu et al., 2021a), and text corpora (Chen
et al., 2021) . Since entity names are commonly
used in the EA task, we only employ entity names
to get the initial entity embeddings in this paper.

3.2 Unsupervised Entity Alignment

Neural EA methods are superior but are primarily
based on supervised learning. These supervised
methods depend on seed alignments, which re-
quire massive manual and may not be available
in practice. To solve the above problem, some un-
supervised EA methods were proposed. EVA (Liu
et al., 2021a) combines visual knowledge with
graph structure information and provides an en-
tirely unsupervised solution by leveraging the vi-
sual similarity of entities to create initial seed align-
ments. SoTead (Luo et al., 2022) adopts entity
name textual embeddings to obtain pseudo align-
ments. Nevertheless, these methods obtain pseudo
alignments for training by simple use of additional
information of KGs. SEU (Mao et al., 2021) as-
sumes that both entities of two KGs are isomor-
phic, transform the EA problem into an assignment
problem, and make alignments with the Sinkhorn
algorithm. SelfKG (Liu et al., 2021b) takes ad-
vantage of uni-space learning, relative similarity
metric, and self-negative sampling, and performs a
self-supervised EA. In our framework AGEA, we
define the reliabilities of pseudo alignments via the
Sinkhorn algorithm. On the basis that SEU per-
forms training-free alignments, we incorporate the
Sinkhorn algorithm into the training process.
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Figure 3: Overall network architecture of AGEA.

4 The Proposed Approach

For high efficiency and alleviation of overfitting,
our framework AGEA contains a lightweight net-
work with no training parameters except input en-
tity embeddings. Figure 3 depicts the overall net-
work architecture of AGEA. The input consists
of relation triples of two KGs, seed alignments
between two KGs, and initial entity embeddings.
First, for entities in each KG, we adopt a basic
single-KG encoder, including a weighted GCN and
a relation enhancement module to obtain entity em-
beddings. Then, a entity similarity matrix is con-
structed by cosine similarity. For every NA epoch,
we update adaptive weights of relation triples by
calculating adaptive edge weights. During the train-
ing, we adopt the cross-entropy function to calcu-
late both the supervised and unsupervised loss, and
the embeddings of input entities are updated via
the backpropagation algorithm.

4.1 Basic Single-KG Encoder

Weighted GCN. We utilize an L-layer weighted
GCN to encode entities in each KG with structure
information explicitly. The input of the l-th GCN
layer is X(l) =

{
x
(l)
1 ,x

(l)
2 , · · · ,x(l)

n

}
, where n is

the number of entities and x
(l)
i is the input vec-

tor of entity ei for the l-th layer. Unlike node
classification tasks, EA pays more attention to the
equivalence information brought by neighbor en-
tities. In AGEA, edge weights (weights of rela-
tion triples) are already responsible for filtering
non-equivalence information. Thus, we use the
weight normalization matrix instead of the lapla-
cian normalization matrix to utilize the equivalence
information from neighbor entities. Since EA is a

task that is bound to overfit, we remove the train-
able weight matrix in the vanilla GCN to alleviate
overfitting. Furthermore, we put the entities on the
hypersphere of their vector space to adapt their dis-
tances to cosine similarity. The output of the l-th
layer is obtained by convolution computation:

X(l+1) = Norm
(
ReLU

(
W̄−1ĀX(l)

))
, (1)

where Ā = A+ I , A is the adjacency matrix of the
corresponding KG, I is an identity matrix, W̄ is the
diagonal adjacent edge weight summation matrix
of entities, and Norm means L2 normalization. It
is worth noting that GCN considers bidirectional
edges of relation triples. Before training, all edge
weights are set to 1. The final output of GCN is
the concatenation of the input embeddings and the
output of each GCN layer:

XGCN =
[
X(0)∥X(1)∥ . . . ∥X(L)

]
. (2)

Relation Enhancement. The weighted GCN
only considers the adjacency of entities, ignoring
the relation types between entities. Following (Wu
et al., 2019b), we incorporate relation types into
entity representations to take full advantage of the
structure information KGs. Specifically, we con-
struct relation-aware entity embeddings but elim-
inate trainable network parameters. For each re-
lation r, its representation r is calculated by the
average input embeddings of all head entities and
tail entities of r. Then, the relation-aware entity
embeddings XR are calculated by the average rep-
resentations of corresponding neighbor relations.
Finally, the output of relation enhancement mod-
ule X̃ is obtained by concatenating of XGCN and
normalized XR:

X̃ =
[
XGCN∥Norm

(
XR

)]
. (3)
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Figure 4: The calculation of adaptive edge weight wik from ei to ek in KG1.

4.2 Adaptive Edge Weight Calculation

After the basic single-KG encoder, we obtain en-
tity embeddings X̃ . Then a similarity matrix S
for entities between two KGs could be constructed
by cosine similarity. Before calculating adaptive
edge weights, we first introduce a reliability mea-
sure for pseudo equivalent entities, which is used
by the adaptive edge weights calculation and the
unsupervised Loss. Inspired by (Mao et al., 2021),
we apply the Sinkhorn algorithm (Cuturi, 2013) to
S to generate a doubly stochastic matrix S̄:

S̄(0) = exp(TS),

S̄(m) = Normc

(
Normr

(
S̄(m−1)

))
,

S̄ = lim
m→∞

S(m),

(4)

where T is a temperature coefficient, Normc and
Normr mean L1 normalization with columns and
rows, respectively. In practice, a certain num-
ber of operation rounds can approach S̄. The
time complexity of the Sinkhorn algorithm is
O(NSn

2), where NS is the number of iterations.
The Sinkhorn algorithm comprehensively consid-
ers the alignment problem in both directions, and
the sum of the elements in each column and row of
S̄ is 1. In SEU (Mao et al., 2021), authors apply S̄
directly to making alignment. However, we regard
S̄ij as the global similarity between entity ei from
KG1 and entity ej from KG2.

For each entity ei in KG1, we take the entity
corresponding to the maximum value of S̄i: as its
pseudo equivalent entity. Besides, we define the re-
liability of this pair of pseudo equivalent entities as
the maximum value minus the second largest value
of S̄i:, denoted as c(S̄i:). Similarly, for each entity
ej in KG2, the reliability of the corresponding pair
of pseudo equivalent entities is c(S̄:j).

To weaken the propagation of neighbor noises,
we leverage the reliabilities of two adjacent entities

with their respective pseudo equivalent entities for
adaptive edge weights. Figure 4 illustrates an ex-
ample of the adaptive edge weight calculation. For
entity ei in KG1, we first identity its pseudo equiv-
alent entity ej in KG2. Then a neighbor stochastic
matrix S̄Nij is constructed by extracting the row
and column elements corresponding to neighbors
of ei and ej from the doubly stochastic matrix S̄.
For the edge from ei to ek, we define the ei’s weight
wi as the reliability c

(
S̄i:

)
and ek’s weight wk as

the reliability c
(
S̄
Nij

k:

)
. Finally, the corresponding

adaptive edge weight wik is calculated as follows:

wik = max (wi, λ) ·max (wk, λ) , (5)

where λ is an hyperparameter that controls the min-
imum value of entity weights. In general, the adap-
tive edge weight wik and wki between entity ei and
ej are asymmetric. We take the maximum value
of wik and wki as the weight of the bidirectional
edge. The time complexity of calculating whole
adaptive edge weights is O(n2d), where d is the
average degree of entities.

4.3 Training and Alignment
Supervised Loss. In the supervised setting, seed
alignments A are provided. We adopt the multi-
class cross entropy loss function. For each align-
ment (ei, ej) in A, we regard ej as the positive
class and the entities corresponding to the largest k
elements other than ej in Si: as the set of negative
classes N k

i . Then we use the values from S as
input logits and the supervised loss L is defined as:

L = − 1

|A|
∑

(ei,ej)∈A
log

exp (Sij)∑
ej′∈N k

i ∪{ej} · exp
(
Sij′

) .

(6)

Unsupervised Loss. In the unsupervised setting,
no seed alignments are available. We use the relia-
bility calculated by each entity in KG1 to generate
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a set of pseudo alignments A′. Specially, for each
entity ei, if c

(
S̄i:

)
> µ holds, then ei and its corre-

sponding pseudo equivalent entity form a pseudo
alignment. We replace A in Eq. 6 with A′ to calcu-
late the unsupervised loss.

Alignment. After the training, on the hyper-
sphere of entity vector space, entities with sim-
ilar neighbors are pulled closer, otherwise they
are pushed away. Thus, a final similarity matrix
for entities between two KGs could be obtained.
Like SEU, we then apply the Sinkhorn algorithm
to make alighments.

5 Experimental Setup

5.1 Datasets
We evaluate the proposed framework on two sets
of frequently utilized datasets, including five pairs
of KGs: (1) DBP15K (Sun et al., 2017). It contains
three pairs of cross-lingual KGs: ZH-EN (Chinese
to English), JA-EN (Japanese to English), and FR-
EN (French to English). Each dataset includes
15,000 alignment entity pairs. (2) SRPRS (Guo
et al., 2019). The datasets in it are sparser, which
means their degree distributions are closer to the
real world. We choose two pairs of cross-lingual
KGs (EN-FR and EN-DE) for evaluation. Also,
each dataset includes 15,000 alignment entity pairs.
Table 1 show the statistics of datasets.

Table 1: Statistics data of datasets.

Dataset #Entities #Relations #Rel Triples #Alignments

DBP15KZH-EN
Chinese 19,388 1,701 70,414 15,000English 19,572 1,323 95,142

DBP15KJA-EN
Japanese 19,814 1,299 77,214 15,000English 19,780 1,153 93,484

DBP15KFR-EN
French 19,661 903 105,998 15,000English 19,993 1,208 93,484

SRPRSEN-FR
English 15,000 221 36,508 15,000French 15,000 177 33,532

SRPRSEN-DE
English 15,000 222 38,363 15,000German 15,000 120 37,377

5.2 Evaluation Metrics
Following (Wang et al., 2020), we use H@k
(Hits@K) and MRR (Mean Reciprocal Rank) to
measure the performance of EA. In the supervised
setting, most previous works use 30% of the align-
ments as training data and 70% for testing, report-
ing the best results on testing data. For both normal-
ity and fair comparison, we take 5% of the testing
data for validating and also report the results in all
70% testing data. It is worth noting that our evalu-
ation method will lead to lower results compared

with the evaluation method in most previous works.
In the unsupervised setting, we randomly take out
5% of the alignments for validating and report the
alignment results in all data. All reported results
of our approach are the mean of ten experiment
results of different random seeds.

5.3 Compared Methods

To comprehensively evaluate our framework, we
compare both supervised EA methods and unsu-
pervised baselines. For a fair comparison, we try
to avoid comparing with the methods that require
additional information besides entity names. The
compared supervised baselines include TransE-
based methods: MTransE (Chen et al., 2017),
JAPE (Sun et al., 2017), BootEA (Sun et al.,
2018), and TransEdge (Sun et al., 2019); GCN-
based metheds: GCN-Align (Wang et al., 2018),
MRAEA (Mao et al., 2020a), HGCN (Wu et al.,
2019b), DGMC (Fey et al., 2020), NMN (Wu et al.,
2020), RAGA (Zhu et al., 2021a), RNM (Zhu
et al., 2021b), EPEA (Wang et al., 2020), and
SoTead (Luo et al., 2022). And all unsupervised
baselines are GCN-based, including EVA (Liu
et al., 2021a), SEU (Mao et al., 2021), SelfKG (Liu
et al., 2021b), and SoTead (Luo et al., 2022).

In the above methods, BootEA, TransEdge, and
MRAEA adopt iteration or bootstrapping strate-
gies to perform semi-supervised EA. JAPE, EPEA,
EVA, and SelfKG adopt attribute triples, char-level
entity names, entity images, and entity descriptions,
respectively. These strategies and additional infor-
mation are not leveraged in our framework. Be-
sides, we add a naive method NameE which only
adopts our initial entity embeddings and cosine
similarly.

5.4 Implementation Details

Following (Wu et al., 2019b), we translate non-
English entity names to English and construct
the initial entity embeddings2. by pre-trained
Glove (Pennington et al., 2014). We utilize Pytorch
to implement our framework AGEA. Moreover, we
apply multi-processing to speed up the computa-
tion of adaptive edge weights and the neighbor-
aware alignment. The experiments are conducted
on a workstation with an Intel(R) Xeon(R) CPU
E5-2699 v3 @ 2.30GHz, 128 GB memory, and an
NVIDIA GeForce RTX 2080Ti GPU.

2We adopt the exact initial entity names as (Mao
et al., 2021) and use glove.6B.300d.txt from https://nlp.
stanford.edu/projects/glove.
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During the training, the number of negative
classes for each alignment k is 20, and the num-
ber of interval epochs to calculate adaptive edge
weights NA is 15. When calculating adaptive edge
weights, the temperature of the Sinkhorn algorithm
T is 50, the number of iterations for the Sinkhorn
algorithm NS is 10, and the minimum of entity
weight λ is 0.2. In the unsupervised setting, the
threshold of constructing pseudo seed alignments
µ is 0.5.

6 Experiment Results

6.1 Main Results

Table 2 shows the overall results of all methods.
Almost all comparable results are taken from their
original papers. Some missing results come from
a survey paper (Zhao et al., 2022). Since SEU
provides alignment results that only use the same
entity name information as us, we take these results
from its ablation study.

Comparisons with Supervised Methods. Over-
all, GCN-based methods perform better than
TransE-based models because they capture global
information and widely use entity names and pre-
trained language models to construct initial entity
embeddings. In all baselines, RAGA, EPEA, and
SoTead achieve the best results on some datasets,
respectively. Compared with the above state-of-
the-art methods, our framework AGEA achieves
significant improvement on all datasets. Compared
with NameE, AGEA effectively fuses the initial
entity embeddings and the structure information
of KGs through training and the neighbor-aware
alignment, and finally improves H@1 results by
15.8%-33.6%.

Comparisons with Unsupervised Methods.
Compared with the strongest baseline SoTead on
DBP15K, AGEA improves H@1 results by 1.4%-
5.3%. Surprisingly, even compared to most super-
vised methods, our model still has an advantage,
which demonstrates the effectiveness of our relia-
bility measure and unsupervised loss. It is worth
noting that SEU is a training-free method. Both
SEU and AGEA leverage the Sinkhorn algorithm
to achieve satisfactory results, revealing the superi-
ority of the Sinkhorn algorithm.

Comparisons of Entities with Different Degrees.
As shown in Figure 5, we conducted additional
experiments to explore the performance of entities

(a) DBP15KZH-EN (b) SRPRSEN-FR

Figure 5: H@1 results of entities with different degrees.

Figure 6: Overall time cost.

with different degrees. From the perspective of
the dataset, compared with DBP15KZH-EN, a large
number of low-degree entities on SRPRSEN-FR lead
to the poor propagation of information and make
the task harder. From the perspective of the model,
although classic neural methods outperform naive
NameE overall, they perform much worse on low-
degree entities than high-degree entities. However,
our framework AGEA performs even better on low-
degree entities than high-degree entities. This is
because adaptive edge weights make low-degree
entities’ backpropagation gradients purer.

6.2 Time Efficiency
For the comprehensiveness of our evaluation, we
run the source codes provided by the original
papers and obtain the average running times on
DBP15K and SRPRS, respectively. Figure 6 re-
ported the average times of available methods,
which include both training and testing times. It
can be seen that the training-free method SEU is
the fastest baseline, with a running time of approxi-
mately 16s on DBP15K and 10s on SRPRS. Thanks
to the lightweight network and multi-process accel-
eration, our model achieves almost minimal time
in training-based models. It takes about 120s on
DBP15K and 100s on SRPRS.

6.3 Ablation Study
We conduct an extensive ablation study on for su-
pervised AGEA. As shown in Table 3, we imple-
ment multiple variants of AGEA. In the table, Ada,
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Table 2: Overall results. Methods marked with ∗ adopt iterative or bootstrapping strategies. Methods marked with †

use entity names and pre-trained Glove to get the initial entity embeddings. Methods marked with ‡ use additional
information that not utilized in our framework AGEA. The best (second) results in supervised or unsupervised
settings are marked in bold (underline).

Method DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN SRPRSEN-FR SRPRSEN-DE

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

Supervised

MTransE 30.8 61.4 0.364 27.9 57.5 0.349 24.4 55.6 0.335 25.1 55.1 0.350 31.2 58.6 0.400
JAPE‡ 41.2 74.5 0.490 36.3 68.5 0.476 32.4 66.7 0.430 25.6 55.1 0.350 32.0 59.9 0.410

BootEA∗ 62.9 84.7 0.703 62.2 85.4 0.701 65.3 87.4 0.731 36.5 64.9 0.460 50.3 73.2 0.580
TransEdge∗ 73.5 91.9 0.801 71.9 93.2 0.795 71.0 94.1 0.796 40.0 67.5 0.490 55.6 75.3 0.630
GCN-Align 41.2 74.5 0.549 36.3 68.5 0.476 32.4 66.7 0.430 15.5 34.5 0.220 25.3 46.4 0.330
MRAEA∗ 75.7 93.0 0.827 75.8 93.4 0.826 78.0 94.8 0.849 46.0 76.8 0.559 59.4 81.5 0.664
NameE† 60.7 72.6 0.653 67.0 78.2 0.714 83.2 90.4 0.859 65.6 73.3 0.686 75.4 84.0 0.783
HGCN† 72.0 85.7 0.760 76.6 89.7 0.810 93.3 96.0 0.910 67.0 77.0 0.710 76.3 86.3 0.801
DGMC† 80.1 87.4 - 84.8 89.7 - 93.3 96.0 - - - - - - -
NMN† 73.3 86.9 - 78.5 91.2 - 90.2 96.7 - - - - - - -
RAGA† 79.8 93.0 0.847 83.1 95.0 0.875 91.4 98.3 0.949 78.4 89.8 0.815 87.2 94.4 0.902
RNM† 84.0 91.9 0.870 87.2 94.4 0.899 93.8 98.1 0.954 - - - - - -

EPEA†‡ 88.5 95.3 0.911 92.4 96.9 0.942 95.5 98.6 0.967 - - - - - -
SoTead† 91.5 - - 94.1 - - 98.4 - - - - - - -
AGEA† 94.3 98.6 0.959 96.2 99.4 0.975 99.0 99.9 0.993 87.6 95.1 0.902 95.2 98.6 0.964

Unsupervised

EVA‡ 73.1 90.9 0.792 73.7 89.0 0.791 75.2 89.5 0.804 - - - - - -
NameE† 59.2 71.3 0.635 65.4 77.2 0.697 82.2 90.0 0.850 64.5 72.7 0.675 74.3 83.2 0.775

SEU† 81.6 92.3 0.854 86.5 95.2 0.896 95.3 98.9 0.967 81.2 90.2 0.843 90.2 95.1 0.920
SelfKG†‡ 82.9 91.9 - 89.0 95.3 - 95.7 99.2 - - - - - - -
SoTead† 87.7 - - 91.5 - - 97.5 - - - - - - - -
AGEA† 93.0 97.2 0.946 94.8 97.8 0.959 98.9 99.6 0.992 87.0 93.8 0.887 94.2 98.5 0.957

Sink, and Train indicate whether to apply the adap-
tive edge weight calculation, the Sinkhorn algo-
rithm for making alignments, and the training pro-
cess, respectively. And NameE only adopts intial
entity embedding and cosine similarity. Overall,
all modules contribute, where the Sinkhorn algo-
rithm and the training process are the basis and
contribute the most. Without training, compared
with NameE, our framework improves H@1 re-
sults by 12.6%-23.4%. Combining only the trained
weighted-GCN and the Sinkhorn algorithm, a H@1
result of 93.6% can be achieved on DBP15KZH-EN,
which is even better than the performance of the
best baseline SoTead in Table 2. Moreover, re-
gardless of whether the Sinkhorn algorithm is used
or not, after adding the adaptive edge weight cal-
culation, there is a certain accuracy improvement.
It indicates the effectiveness of the adaptive edge
weight calculation module.

6.4 Hyperparameter Analyses
Figure 7 shows the hyperparameter analyses.

Proportion of Seed Alighments. More seed
alignments provide more information to bridge dif-
ferent KGs. The accuracy of supervised AGEA
steadily improves as the proportion of seed align-
ments increases.

Table 3: H@1 results of different variants.

Method ZH-EN JA-EN FR-EN EN-FR EN-DE

AGEA 94.3 96.2 99.0 87.6 95.2
w/o Ada 93.6 95.6 98.6 86.5 94.7
w/o Sink 88.2 90.1 96.3 81.7 91.2
w/o Ada+Sink 84.1 86.6 94.0 79.4 90.1
w/o Train 84.4 88.5 95.8 83.6 91.6
w/o Train+Sink 72.5 78.2 89.0 70.1 81.1
NameE 60.7 67.0 83.2 65.6 75.4

Number of Negative Classes k. The number of
negative classes k balances equivalent and differ-
ence information of entity pairs. A small k leads to
insufficient difference information, while a large k
drowns out equivalent information. As k increases,
the performance of supervised AGEA rises slowly
on DBP15K and fluctuates slightly on SRPRS.

Minimum Value of Entity Weights λ. When
calculating adaptive edge weights, the minimum
value of entity weights λ implies a correction to
the reliability for pseudo equivalent entities, which
affects the weights of entities and edges in turn.
When λ equals 1, all edge weights are 1. Con-
versely, its value of 0 means that a large number of
edge weights are approximately equal to 0, causing
insufficient utilization of structure information. To
make a trade-off, AGEA performs best in the case
of λ is about 0.2.
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(a) Seed alighments (b) Negative classes k

(c) Minimum value λ (d) Threshold µ

Figure 7: Hyperparameter analyses.

Threshold µ. The threshold µ controls the accu-
racy of the pseudo alignments in unsupervised EA.
When µ is small, too few pseudo alignments are
constructed, resulting in insufficient training. On
the contrary, if µ is big, the accuracy of the pseudo
alignments will drop, leading to inaccurate entity
embeddings. In our practice, it is appropriate for µ
to take 0.5.

6.5 Case Study
We present a case that visualizes the adaptive
edge weights after training in Figure 8. The
legends are the same as in Figure 1. We
marked the weight values on the edge and
used transparency of edges to show the strength
of the weights. It can be seen that for the
equivalent entity pair (Comté_de_San_Mateo,
San_Mateo_County), their corresponding edge
weights of the neighborhood equivalent en-
tity pairs (Ville_de_séquoia, Redwood_City),
(Le_Parc_Menlo, Menlo_Park), and (Comté_
de_Santa_Clara, Santa_Clara_County) are large.
Furthermore, since (Ville_de_ séquoia, Red-
wood_City) is a seed alignment, their correspond-
ing edge weights are slightly larger than the other
two equivalent entity pairs. The above phenom-
ena reveal the feasibility of our adaptive edge
weight calculation module in addressing the neigh-
bor noise problem.

7 Conclusion

In this work, we deal with the neighbor noise
problem in the EA task. A lightweight and effi-
cient framework AGEA has been proposed, which
mainly consists of an adaptive edge weight calcu-

Figure 8: Visualization of adaptive edge weights.

lation module. Besides, the Sinkhorn algorithm is
incorporated into our GCN-based EA framework
and shows satisfactory performance. Experiments
on five datasets indicate that AGEA outperforms
the state-of-the-art methods in both supervised and
unsupervised settings with high efficiency and in-
terpretability.

Limitations

In our framework AGEA, the adaptive edge weight
calculation module, unsupervised loss, and final
alignment are all based on the Sinkhorn algorithm.
However, the premise that the Sinkhorn algorithm
works in the EA task is that EA can be transformed
into an assignment problem (Mao et al., 2021),
which requires that for each entity there always
exists a counterpart in the other KG. Our frame-
work performs well on ideal datasets DBP15K and
SRPRS, but may defeat to datasets where the two
KGs have little overlap. This limitation is ignored
by most previous works and leads to the new re-
search area called entity alignment with dangling
cases (Luo et al., 2022).
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