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Abstract

Deidentification seeks to anonymize textual
data prior to distribution. Automatic deidentifi-
cation primarily uses supervised named entity
recognition from human-labeled data points.
We propose an unsupervised deidentification
method that masks words that leak personally-
identifying information. The approach utilizes
a specially trained reidentification model to
identify individuals from redacted personal doc-
uments. Motivated by K-anonymity based pri-
vacy, we generate redactions that ensure a mini-
mum reidentification rank for the correct profile
of the document. To evaluate this approach, we
consider the task of deidentifying Wikipedia
Biographies, and evaluate using an adversarial
reidentification metric. Compared to a set of un-
supervised baselines, our approach deidentifies
documents more completely while removing
fewer words. Qualitatively, we see that the ap-
proach eliminates many identifying aspects that
would fall outside of the common named entity
based approach. 1

1 Introduction

In domains such as law, medicine, and government,
it can be difficult to release textual data because
it contains sensitive personal information (John-
son et al., 2016; Jana and Biemann, 2021; Pilán
et al., 2022). Privacy laws and regulations vary
by domain and impact the requirements for dei-
dentification. Most prior work on automatic dei-
dentification (Neamatullah et al., 2008; Meystre
et al., 2010; Sánchez et al., 2014; Liu et al., 2017;
Norgeot et al., 2020; Sberbank and Emelyanov,
2021) deidentifies data to the requirements of the
HIPAA Safe Harbor method (Centers for Medicare
& Medicaid Services, 1996). Annotations for these
systems are based on a list of 18 identifiers like age,

1Our code and deidentified datasets are available on
Github.

phone number, and zip code. These systems treat
deidentification as a named entity recognition prob-
lem within this space. Upon the removal of these
pre-defined entities, text is no longer considered
sensitive.

However, one of the 18 categories defined by
HIPAA Safe Harbor includes “any unique identi-
fying number, characteristic, or code [that could
be used to reidentify an individual]”. Prior work
ignores this nebulous 18th category. One reason
the category is ill-defined is due to the existence of
quasi-identifiers, pieces of personally identifiable
information (PII) that do not fall under any sin-
gle category and therefore are difficult to identify
and label in the general case (Phillips and Knop-
pers, 2016). Even data that has all of the categories
from Safe Harbor removed may still be reidentified
through quasi-identifiers (Angiuli et al., 2015). Su-
pervised approaches cannot naturally detect quasi-
identifiers, since these words are not inherently
labeled as PII (Uzuner et al., 2007).

In this work, we propose an unsupervised dei-
dentification method that targets the more general
definition of PII. Instead of relying on specific rule
lists of named entities, we directly remove words
that could lead to reidentification. Motivated by
the goal of K-anonymity (Lison et al., 2021), our
approach utilizes a learned probabilistic reidentifi-
cation model to predict the true identity of a given
text. We perform combinatorial inference in this
model to find a set of words that, when masked,
achieve K-anonymity. The system does not require
any annotations of specific PII, but instead learns
from a dataset of aligned descriptive text and pro-
file information. Using this information, we can
train an identification process using a dense en-
coder model.

Experiments test the ability of the system to dei-
dentify documents from a large-scale database. We
use a dataset of Wikipedia Biographies aligned
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Tommy Jönsson

97%

Tommy Jönsson (born March 4, 1976)  is a former Swedish football 
player, who played as defender and retired in 2010.

Tommy  (born March 4, 1976)  is a former Swedish football 
player, who played as defender and retired in 2010.

<mask>

<mask> <mask>  (born March 4, 1976)  is a former Swedish football 
player, who played as defender and retired in 2010.

<mask> <mask>  (born March 4, 1976)  is a former <mask> football 
player, who played as defender and retired in 2010.

<mask> <mask>  (born March 4, 1976)  is a former <mask> football 
player, who played as defender and retired in <mask>.

<mask> <mask>  (born March 4, <mask>)  is a former <mask> 
football player, who played as defender and retired in <mask>.
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Tommy Jönsson 
41%

Tommy Jönsson 
38%

Vincent Cobos

34%

PMLM – TAPAS

Neural reidentification model

Tommy Jönsson

100%

Figure 1: Method overview. A document (x, top-left) paired with a profile (ŷ, top-right) is given to the system. A
trained neural reidentification model (p(y|x, z), blue circle) produces a distribution over all possible profiles based
on densely encoded representations. At each stage of inference, masks are added to the source document, changing
the relative rank of the reidentification model. The method is run until k-anonymity of the reidentification model is
achieved. Note that in this example, it is not necessary to remove all information, such as the month and day of
birth, since the player is already deidentified.

with info-boxes (Lebret et al., 2016). The system
is fit on a subset of the data and then asked to
deidentify unseen individuals. Results show that
even when all words from the profile are masked,
the system is able to reidentify 32% of individuals.
When we use our system to deidentify documents,
it is able to fully anonymize them while retain-
ing over 50% of words. When we compare our
deidentification method to a set of unsupervised
baselines, our method deidentifies documents more
completely while removing fewer words. We qual-
itatively and quantitatively analyze the redactions
produced by our system, including examples of
successfully redacted quasi-identifiers.

2 Related Work

Automated deidentification. There is much
prior work on deidentifying text datasets, both
with rule-based systems (Neamatullah et al., 2008;
Meystre et al., 2010; Sánchez et al., 2014; Nor-
geot et al., 2020; Sberbank and Emelyanov, 2021)
and deep learning methods (Liu et al., 2017; Yue
and Zhou, 2020; Johnson et al., 2020). Each of
these methods is supervised, relies on datasets with
human-labeled PII, and focuses on removing some

subset of the 18 identifying categories from HIPAA
Safe Harbor. Other approaches include generat-
ing entire new fake datasets using Generative Ad-
versarial Networks (GANs) (Chin-Cheong et al.,
2019). Friedrich et al. (2019) train an LSTM on
an EMR-based NLP task using adversarial loss to
prevent the model from learning to reconstruct the
input. Finally, differential privacy is a technique
for ensuring provably private distributions (Dwork
et al., 2006). It has mostly been used for training
anonymized models on data containing PII, but re-
quires access to the un-anonymized datasets for
training (Li et al., 2021). Our deidentification ap-
proach does not provide the formal guarantees of
differential privacy, but aims to provide a practi-
cal solution for anonymizing datasets in real-world
scenarios.

Deidentification by reidentification. The
NeurIPS 2020 Hide-and-Seek Privacy Chal-
lenge benchmarked both deidentification and
reidentification techniques for clinical time series
data (Jordon et al., 2021). In computer vision,
researchers have proposed learning to mask faces
in images to preserve the privacy of individuals
using reidentification (Hukkelås et al., 2019;
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Maximov et al., 2020; Gupta et al., 2021). In
NLP, some work has been done on evaluating the
reidentification risk of deidentified text (Scaiano
et al., 2016). El Emam et al. (2009) proposes a
method for deidentification of tabular datasets
based on the concept of K-anonymity. Gardner
and Xiong (2009) deidentify unstructured text by
performing named entity extraction and redacting
entities until k-anonymity. Mansour et al. (2021)
propose an algorithm for deidentification of tabular
datasets by quantifying reidentification risk using a
metric related to K-anonymity. In our work, we
train a reidentification model in an adversarial
setting and use the model to deidentify documents
directly.

Learning in the presence of masks. Various
works have shown how to improve NLP models by
masking some of the input during training. Chen
and Ji (2020) show that learning in the presence of
masks can improve classifier interpretability and
accuracy. Li et al. (2016) train a model to search for
the minimum subset of words required that, when
removed, change the output of a classifier. They
apply their method to neural network interpretabil-
ity, and use reinforcement learning. Liao et al.
(2020) pre-train a BERT-style language model to
do masked-word prediction by sampling a masking
ratio from U(0, 1) and masking that many words.
While their method was originally proposed for text
generation, we apply the same masking approach
to train language models for redaction.

3 Motivating Experiment:
Quasi-Identifiers

In order to study the problem of deidentifying
personal information from documents, we set up
a model dataset utilizing personal profiles from
Wikipedia. We use the Wikibio dataset (Lebret
et al., 2016). Each entry in the dataset contains a
document, the introductory text of the Wikipedia
article, and a profile, the infobox of key-value pairs
containing personal information. We train on the
training dataset of 582, 659 documents and profiles.
During test time, we evaluate only test documents,
but consider all 728, 321 profiles from the concate-
nation of the train, validation, and test sets. This
dataset represents a natural baseline by providing
a range of factual profile information for a large
collection of individuals, making it challenging to
deidentify. In addition, it provides an openly avail-
able collection for comparing models.

DeID
None Named entity Lexical

ReID (0%) (24%) (28%)

IR ReID 74.9 4.3 0.0
NN ReID 99.6 79.7 31.9

Table 1: Percentage of documents reidentified (ReID)
for different deidentification methods. Percentage of
words masked in parentheses.

Is it difficult to deidentify individuals in this
dataset? Wikipedia presents no domain challenges,
and so finding entities is trivial. In addition many
of the terms in the documents overlap directly with
the terms in the profile table. Simple techniques
should provide robust deidentification.

We test this with two deidentification techniques:
(1) Named entity removes all words in documents
that are tagged as named entities. (2) Lexical re-
moves all words in the document that also overlap
with the profile. To reidentify, we use an informa-
tion retrieval model (BM25) and a dense neural
network approach (described in Section 5).

Table 1 shows the results. While IR-based ReID
is able to reidentify most of the original documents,
without named entities or lexical matches, docu-
ments appear to be no longer reidentifiable. How-
ever, our model is able to reidentify 80% of doc-
uments, even with all entities removed. With all
lexical matches with the profile removed (32% of
total words), NN ReID is still able to reidentify a
non-trivial number of documents.

This experiment indicates that even in the Wik-
iBio domain, there are a significant number of
pseudo-identifiers that allow the system to iden-
tify documents even when almost all known match-
ing information is removed. In this work we study
methods for discovering and quantifying these iden-
tifiers.

4 Deidentification by Inference

An overview of our data and system is shown in
Figure 1. Given a document x1 . . . xN , we consider
the problem of uniquely identifying the correspond-
ing person y from a set of possible options Y . The
system works in the presence of redactions defined
by a latent binary mask z1 . . . zN on each position,
where setting zn = 1 masks word xn.

We define a reidentification model as a model of
p(y | x, z) that gives a probability to each profile in

4779



Algorithm 1 Greedy Deidentification

x, ŷ ← input document and person
zj ← 0 for all j
for i = 1 to N do

j∗ ← argminj p(y = ŷ | x, z−j , zj = 1)
zj∗ ← 1
if ŷ ̸∈ K argmaxy p(y | x, z) then

return z

Y for a masked document. During deidentification,
we assume that we have access to the true identity
ŷ of the document that we would like to hide.

Our objective is to find the minimally sized mask
that ensures that ŷ is not in the top-K predictions
of the identification model:

min
z1...zN

|z|

s.t. ŷ ̸∈ K argmax
y

p(y | x, z).

This objective is motivated by the concept of K-
Anonymity (Samarati and Sweeney, 1998). A
dataset has K-anonymity if each person ŷ in the
dataset is indistinguishable from at least K other
people in Y .

The K-anonymity objective is combinatorial,
and is intractable to solve with a non-trivial rei-
dentification model. We instead approximate it
with search. Specifically we use a simple greedy
deidentification technique shown in Algorithm 1.

5 Reidentification Model

The core of this redaction system is a model of rei-
dentification, p(y | x, z). Defining this model faces
two challenges: a) to facilitate informed search in
the presence of masks and b) to correctly identify
a person from 100,000s of choices.

As we do not have access to supervised masks,
we define the probability of unmasked identifica-
tion as marginalizing over all possible masks:

p(y | x) = Ez∼p(z | x)p(y | x, z; θ)

where p(z | x) is the mask prior and p(y | x, z; θ)
is the reidentification model.

To assign a prior over masks p(z | x), we opt
for a simple setting that avoids building in addi-
tional information and fits well with deidentifica-
tion search. One possibility would be to follow
BERT-style masking and mask words at a fixed
ratio of 15% (Devlin et al., 2019). However, Liao

et al. (2020) argue that while successful for clas-
sification, fixed-ratio masking works poorly for
generation-style objectives. Following this advice,
we use the following algorithm to construct masks
of varying size:

• Sample the number of masks l ∼ Uni(0, N).

• Sample l masked words zm by uniformly sam-
pling indices m from {1, . . . ,M} without re-
placement.

For the reidentification model, p(y|x, z; θ), we
follow the dense retrieval literature and use an
embedding-based model (Karpukhin et al., 2020).
Specifically we use an (asymmetric) bi-encoder
model on documents and profiles. The document
encoder f computes an embedding of the masked
document, and the profile encoder g(y) produces
an embedding of the profile table corresponding to
person y. We score the match by computing the
joint encoding f(x, z)⊤g(y) using the dot product
between the vectors outputted by two neural net-
works. Define the matrix of profile embeddings
as G = [g(y1); ...; g(y|Y|)]. The reidentification
probability is defined as

p(y = i | x, z) = softmax(f(x, z)⊤G)i.

During training we utilize label smoothing on the
distribution, which has also been shown to be use-
ful when training for inference in an argmax set-
ting (Müller et al., 2019).

To train the model we optimize a lower bound
on the identification log-likelihood:

log p(y|x) ≥ Ez∼p(z|x)[log p(y|x, z)]

Specifically we sample a word dropout mask z for
each element x from the prior, and then mask words
during reidentification training.

Note that for training we compute the full distri-
bution and do not use a contrastive approximation.
In order to learn the parameters of g we utilize coor-
dinate ascent. Specifically we fix G and optimize
the parameters of f . We then switch and optimize
the profile encoder g on odd-numbered epochs to
predict documents in X (with no masking), and
then recompute G.

6 Experimental Setup

Models We call our main deidentification model
NN DeID. We consider several different parame-
terization variants of the dual encoder. For the
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Privacy Utility
Method Ensemble ReID % Masked Info. Loss (%)

(No redaction) 99.6 0.0 0.0
Lexical redaction 31.9 32.1 20.8
Named entity redaction 79.7 27.3 27.3

< 25% Reidentifiable
IDF 24.2 58.5 66.3
IDF (Table-Aware) 21.2 29.6 29.0
NN DeID 22.8 24.2 20.2

< 5% Reidentifiable
IDF 3.8 71.4 78.6
IDF (Table-Aware) 5.0 67.3 70.4
NN DeID 4.4 35.9 29.5

< 1% Reidentifiable
IDF 0.0 82.2 81.1
IDF (Table-Aware) 0.1 74.7 80.2
NN DeID 0.0 43.5 40.0

Table 2: Statistics comparing sets of 1000 documents redacted using different methods at various levels of
identifiability. Reidentification rate measures the rate at at least one model in our neural-network ensemble can
retrieve the correct profile for a redacted document. Information loss is measured as the percentage change in the
size of the text when compressed.

document encoder (f(x, z)), we consider two dif-
ferent pretrained language models: RoBERTa-base
version (Liu et al., 2019) (125M parameters) and
PMLM (Liao et al., 2020) (125M parameters), a
pretrained encoder specifically designed to sup-
port masking-style inference. For the table encoder
(g(z)), we consider: RoBERTa-base (Liu et al.,
2019) (125M parameters) with a simple linearized
version of the profile, and TAPAS base (Herzig
et al., 2020) (111 million parameters), a model de-
signed to handle table input. We randomly compute
masks online during training, so documents take a
new randomly-redacted form on each epoch. All
models are implemented in Hugging Face trans-
formers library (Wolf et al., 2020). Each model is
trained for sixty epochs, about two days on a single
NVIDIA RTX A6000 GPU. More training details
are available in A.

We experiment with all combinations for reiden-
tification models, specified by document-profile
encoders, RoBERTa-RoBERTa (RR), RoBERTa-
TAPAS (RT), PMLM-RoBERTa (PR), PMLM-
TAPAS (PT). The PT model is the default for NN
DeID.

Baselines We consider several unsupervised
redaction baselines based on lexical matches with

the table and word frequencies. Lexical removes all
overlapping words that appear in the profile from
the document. IDF (Table-Aware) masks all over-
lapping words that appear in the profile from the
document, then masks in order of descending In-
verse Document Frequency (IDF) (rarest word first)
until a fixed threshold. We compute IDF based on
the full corpus of documents and profiles from the
train, validation, and test sets. Named entity re-
moves all named entities from the document.2

Metrics A major challenge is how to evaluate
text privacy in the presence of a strong reidentifica-
tion models. As shown in Section 3, information
retrieval metrics work well for lightly redacted doc-
uments, but fail under heavy masking. We ran
preliminary experiments with human subjects, but
found that even at seemingly low levels of masking,
documents were nearly impossible for humans to
reidentify.

Inspired by work on adversarial privacy such
as the NeurIPS Hide-and-Seek challenge (Jordon

2We identify named entities using the
dslim/bert-base-NER-uncased model avail-
able from Hugging Face. Named entities identified are
personal names (PER), organization names (OR), location
names (LOC), and miscellaneous names (MISC) (Tjong
Kim Sang and De Meulder, 2003).
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Figure 2: Pareto curves comparing deidentification ap-
proaches on privacy versus words masked. Lexical and
Named Entity baselines are fixed values. NN DeID
is computed with different K-anonymity values. IDF
(table-aware) and IDF remove until a fixed IDF cutoff
threshold.

et al., 2021), we adapt a metric that utilizes an
ensemble of reidentification modelsR as a bench-
mark. A masked document, x, z, is considered
reidentified if any of the models can correctly se-
lect its profile, i.e. ŷ = argmaxy pr(y | x, z) for
any model r ∈ R. In order to diversify the ensem-
ble we utilize different pretrained neural models
as discussed above. We observe that each model
can reidentify others with high accuracy indicating
diversity features (more discussion in Section 8.3).
We also include a word-matching based IR model
in the ensemble, but find that it is not competitive at
reidentification. Explicitly, the ensemble consists
of the three variant parameterizations (RR, PR, RT)
as well as the IR matching model.

As a metric of utility, we compute the average
percentage of words masked, as well as the in-
formation loss percentage, computed as the ratio
between the size of the original and redacted texts
when compressed. For each method and baseline
we sweep over mask sizes to compute a curve of
reidentifiability and utility.

Inference We generate redactions from the rei-
dentification models using greedy search to find the
word to mask that causes the maximum decrease
in the correct prediction. We use search implemen-
tations from the TextAttack library (Morris et al.,
2020). Search takes in a stopping parameter K
which indicates the rank cutoff of ŷ to stop search,
ŷ ̸∈ K argmaxy p(y|x, z). We run with different
values of K to sweep over levels of privacy, and

Masked
Model 0% 30%

Baseline 52.9 10.6
+ Word dropout 55.4 20.5

Dropout by IDF-weighting 48.6 20.2
+ Label smoothing (α = 0.1) 56.3 10.8
+ Bigger emb. (768→ 3072) 61.8 22.2
+ Table encoder optimization 98.1 14.0

+ Combined 96.4 38.3

Table 3: Ablation study. Effect of different factors on
model ReID accuracy across data with different redac-
tion strategies. Experiments are on RT parameterization
and use 1/10 training data and number of profiles.

generate redactions with different masking rates.
We ignore stopwords to speed up the search since
they will rarely be identifiers.

7 Results

Table 2 presents results comparing unsupervised
deidentification techniques on privacy and utility
under the ensemble reidentification metric. As
noted above, we see that neither Lexical nor Named
Entity redaction provide sufficient privacy. NN
DeID can provide better privacy while masking
fewer words. Both NN DeID and IDF based
approaches can reach stronger levels of privacy
(< 5% reidentifiability), but at these levels IDF
masks most of the remaining words. At full dei-
dentification under the ensemble, NN DeID masks
less than half of the words. When we consider an
information loss measure of utility, NN DeID also
performs much better than IDF-based deidentifica-
tion.

Figure 2 expands on these results by showing the
Pareto curves for privacy and utility across meth-
ods. Curves are obtained by varying the K value
used in NN DeID and the threshold for IDF based
deidentification. Curves show that in addition to
achieving better utility at very low rates of identifi-
ablity, the method also achieves better utility than
lexical matching, and a steeper privacy curve even
at lower levels of redaction.

Model ablations Table 3 shows an ablation study
of the components added to the model to improve
accuracy. An alternative approach to this task is to
finetune a pretrained model directly for the reiden-
tification task (baseline). However, we found that
out-of-the-box this model was neither effective as a
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Figure 3: Rank comparison of the true document (ŷ)
in two different parameterized models of p(y | x, z)
(RT and PT). Mask z comes from a deidentification
(K = 8) on the PT model. While correlated, the two
parameterizations produce very different rankings.

pure reidentification model nor as a model to guide
search. We ablate each component added to NN
DeID independently utilizing 1/10th of the training
data and profiles, and compare both on the origi-
nal documents and on documents with 30% of the
words masked. Word dropout with the proposed
sampling rate improves model accuracy particu-
larly in the high mask regime. Interestingly weight-
ing word dropout frequency using IDF hurts model
accuracy in the full regime, and is not included in
the final model. Increasing the dual encoder em-
bedding sizes from 768 to 3072 and adding label
smoothing both increase model accuracy. Finally,
using coordinate ascent to optimize the profile en-
coder in addition to the document encoder has by
far the largest impact on model accuracy. The com-
bination of these approaches gives a deidentifica-
tion model that is accurate across levels of masking.

8 Analysis

8.1 Quasi-Identifiers in Redacted Examples

Table 4 shows examples of redacted documents.
While the most common redacted entities in deiden-
tified examples are names, dates, and locations, we
find notable examples of redacted quasi-identifiers:

• Determiners. Determiners can provide useful
information in context. In the first example,
the system removes “American” before mu-
sician, but also the word “an” which, in this

Figure 4: Percentage of words by part-of-speech tags
that are masked by the IDF model and NN ReID model
at K = 8 (similar masking level).

context, signals the next word may be “Amer-
ican”. This example is also interesting in that
it preserves the word “Collective”, leading the
model to predict a musician Avey Tare from
the band “Animal Collective”.

• Gender markers. The model often redacts
words marking gender in order to anonymize
documents. In the second example, for the
document on Madoko Hisagae, the model re-
moves both the word “She” and “women’s”.
This redaction leads to the prediction of Hi-
roki Ichigatani as the predicted match, a male
Olympic fencer.

• Locations. The pretrained model seems to
be able to identify relative locations even if
they are not represented directly in the pro-
file. In the third example, the profile indicates
that Tim Tolkien is an English sculptor. The
word “English” is masked immediately, but
the location “Cradley Heath, West Midlands”
is a quasi-identifier as to the country. Upon
redacting this term, the model switches its pre-
diction to Nesbert Mukomberanwa, a sculptor
from Zimbabwe.

8.2 Redacted Word Types
The IDF (table-aware) model relies on overlapping
words and rare words to redact content, whereas
the NN DeID model can in theory remove any iden-
tifying word. Figure 4 compares the part-of-speech
tags of the masked words between the two mod-
els at the same redaction level. We see that while
similar, the NN DeID model masks fewer nouns,
proper nouns and numbers, and more adjectives
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Model prediction: Dean Roland (99%) Model prediction: Avey Tare (48%)
Dean Roland (born October 10, 1972) is an American musician. He is best
known for being the rhythm guitarist of the band Collective Soul, an alternative
rock band fronted by his older brother Ed. He is also part of the rock duo
Magnets & Ghosts alongside Ryan Potesta.

mask¿ mask¿ (born mask¿ mask¿, mask¿) is mask¿ mask¿ musician. He is best
known for being the mask¿ mask¿ of the mask¿ Collective mask¿, an mask¿ mask¿
mask¿ fronted by his mask¿ mask¿ mask¿. He is also part of the mask¿ duo
Magnets & Ghosts alongside mask¿ mask¿.

Model prediction: Madoko Hisagae (100%) Model prediction: Hiroki Ichigatani (5%)
Madoka Hisagae (born 11 January 1979) is a Japanese fencer. She competed in
the women’s individual sabre events at the 2006 and 2008 Summer Olympics.

mask¿ mask¿ (born 11 January mask¿) is a mask¿ fencer. mask¿ competed in the
mask¿ individual sabre events at the 2006 and 2008 Summer Olympics.

Model prediction: Tim Tolkien (100%) Model prediction: Nesbert Mukomberanwa (6%)
Tim Tolkien (born September 1962 ) is an English sculptor who has designed
several monumental sculptures, including the award - winning Sentinel. He has a
wood carving and metal sculpture business at Cradley Heath, West Midlands.

mask¿ mask¿ (born mask¿ mask¿ ) is an mask¿ sculptor who has designed several
monumental sculptures, including mask¿ award - winning mask¿ . he has a wood
carving and metal mask¿ business at mask¿ Heath, West mask¿ .

Model prediction: Lee Harding (writer) (97%) Model prediction: Alan Burridge (writer) (9%)
Lee John Harding (born 19 February 1937) is an Australian freelance
photographer, who became a writer of science fiction novels and short stories.

mask¿ mask¿ mask¿ (born 19 mask¿ mask¿) is an mask¿ freelance mask¿, who
became a writer of mask¿ fiction novels and short stories.

Model prediction: Begziin Yavuukhulan (100%) Model prediction: Tarzi Afshar ( 25%)
Begziin Yavuukhulan (1929 - 1982) was a Mongolian poet of the communist
era that wrote in Mongolian and Russian.

mask¿ mask¿(1929 - mask¿) was a mask¿ poet of the mask¿ era that wrote in mask¿
and Russian.

Model prediction: Bob Whiting (91%) Model prediction: Bob McDonald (9%)
Robert “Bob” Whiting (6 January 1883 – 1917) was an English footballer who
played in the football league for Chelsea. Whiting died in France whilst fighting
in World War I. He is commemorated at the Arras Memorial.

Robert “Bob” mask¿ (mask¿ mask¿ mask¿ – mask¿) was an English footballer who
played in the football league for mask¿. mask¿ died in France whilst fighting in
World War mask¿. He is commemorated at the Arras Memorial.

Model prediction: Ronald Jonker (99%) Model prediction: Peter McDermott (94%)
Ronald Jonker (born 14 December 1944) is a former Australian cyclist. He
competed in the individual road race at the 1968 Summer Olympics.

mask¿ mask¿ (born mask¿ December 1944) is a former Australian cyclist. He
competed in the individual road race at the 1968 Summer Olympics.

Model prediction: Brad Turner (93%) Model prediction: Andrew Dosunmu (10%)
Brad Turner is a Canadian film director, television director, and photographer. mask¿ mask¿ is a Canadian film director, television director, and photographer.

Model prediction: Julie Roginsky (93%) Model prediction: Ann Curry (11%)
Julie Roginsky (born April 25, 1973) is a Democratic Party strategist and televi-
sion personality. She is a contributor with the Fox news channel and a co-host of
The Five. (. . . )

mask¿ mask¿ (born mask¿ 25, mask¿) is a Democratic Party mask¿ and television
personality. She is a contributor with the Fox news channel and a co-host of The
Five. (. . . )

Table 4: Example redactions from the system.

and pronouns. These word classes are less likely to
fit the IDF or table-matching criterion.

8.3 Model Diversity

The ensemble used for deidentification contains
three separate pretrained encoder variants. One po-
tential issue is that the model used to deidentify the
text may be overly correlated with the ensemble
models used for evaluation. However, we find that
each model is quite strong on reidentifying redac-
tions made by other models. For example, the RR
model can reidentify NN DeID (PT, K=1) with a
surprisingly high 60.5% accuracy. In general we
find the model rankings are quite different.

Figure 3 demonstrates this phenomenon. In this
figure, examples are deidentified to K = 8 with a
PT parameterization, and we plot a rank-rank joint
histogram with an RT parameterization. While
there is some correlation in the rankings, the two
models produce very different rankings, with RT
even fully reidentifying some points.

8.4 Reidentification at high levels of masking

Table 5 shows examples of documents where our
reidentification ensemble can correctly identify the

individual even at extremely high levels of masking.
Examples are randomly generated with a minimum
of 95% of words masked. Because we permit punc-
tuation in redacted examples, and we mask but do
not erase words, models are able to exploit word
counting and punctuation-specific features to iden-
tify individuals under very high masking rates.

9 Conclusion

We propose an unsupervised method for text dei-
dentification that focuses on deidentifying pseudo-
identifiers. The method first learns to reidentify
from text utilizing a prior masking models. We then
utilize search to find a mask to ensure K-anonymity
in this model. This approach outperforms masking
based on named entities and matching with tabu-
lar data, both of which fail to fully anonynize the
document. Using an ensemble of reidentification
models as a metric, we show that our approach can
reach high levels of privacy with moderate levels
of redaction. In future work we plan to utilize this
approach in conjugation with downstream tasks
in order to further demonstrate the utility of the
redacted data. We also plan to compare and evalu-
ate with domain-specific approaches for distribut-
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Model prediction: J.G. Blackman (99%) Model prediction: J.G. Blackman (28%)
J. G. Blackman was a West Indian cricket umpire. He stood in one test match, West
Indies vs. England, in 1935 .

mask¿. mask¿. mask¿ mask¿ mask¿ mask¿ mask¿ mask¿ mask¿. mask¿ mask¿
mask¿ mask¿ mask¿ mask¿ , mask¿ mask¿ mask¿. England, mask¿ mask¿.

Model prediction: Nadezhda Shitikova (99%) Model prediction: Nadezhda Shitikova (11%)
Nadezhda Shitikova ( ; 15 September 1923 – 1995 ) was a Soviet fencer. She
competed in the women’s individual foil event at the 1952 and 1956 Summer
Olympics.

mask¿ mask¿ ( ; mask¿ mask¿ mask¿ – mask¿ ) mask¿ mask¿ Soviet mask¿. mask¿
mask¿ mask¿ mask¿ mask¿’mask¿ mask¿ foil mask¿ mask¿ mask¿ mask¿ mask¿
mask¿ mask¿ mask¿.

Model prediction: Begziin Yavuukhulan (98%) Model prediction: Begziin Yavuukhulan (9%)
Begziin Yavuukhulan ( , 1929-1982) was a Mongolian poet of the communist era
that wrote in Mongolian and Russian.

mask¿ mask¿ ( , 1929-1982) mask¿ mask¿ mask¿ mask¿ mask¿ mask¿ mask¿
mask¿ mask¿ mask¿ mask¿ mask¿ mask¿ mask¿.

Model prediction: Sally Raguib (100%) Model prediction: Sally Raguib (31%)
Sally Raguib (born 8 September 1996) is a Djiboutian Judoka. She competed in
the women’s 57 kg event at the 2012 Summer Olympics.

mask¿ mask¿ (mask¿ 8 mask¿ 1996) mask¿ mask¿ mask¿ mask¿. mask¿ mask¿
mask¿ mask¿ mask¿’mask¿ mask¿ mask¿ mask¿ mask¿ mask¿ mask¿ mask¿
mask¿.

Table 5: Examples of redactions where our neural ensemble can correctly reidentify the individual at extremely high
levels of document masking, even though the documents were never seen during training.

ing redacted models through manual and automatic
redaction.

10 Limitations

Issues with Wikipedia. Many Wikipedia bio-
graphical articles within a given category follow a
similar syntactic template, so it is possible that a
model could learn to partially reidentify a person
by looking at superficial features of the article struc-
ture. In the future, documents could be paraphrased
during training to prevent the model from learning
such syntactic idiosyncrasies. Additionally, since
RoBERTa and TAPAS’s pre-training data both in-
clude Wikipedia articles (Liu et al., 2019; Herzig
et al., 2020) it is possible that the models can “cheat”
on the test set by recalling data that they memo-
rized during their pre-training. We hypothesize that
cheating is unlikely to be happening for two rea-
sons. First, articles in Wikibio make up a small
percentage of the models’ training data, so very
little of their information is probably stored in the
pre-trained weights of the models. Second, the
models’ performance on the test set before training
is very low (0% test accuracy). Finally, Wikibio
contains articles about a very small and biased sub-
set of humanity (Yuan et al., 2021).

Need for a profile. Although the method we pro-
pose does not require any labeled data, it requires
a different new data source in the form of profiles.
This means that the information deidentified is lim-
ited to what can be captured in the profile. Thus,
the work of adapting this to a new domain shifts
from collecting human-labeled PII annotations to
collecting as much personal information as possi-
ble into profiles. This is much easier in domains
like medicine where a great deal of personal infor-

mation is known about each patient, but collecting
such profiles may not be possible in every scenario.

Number of words as a quasi-identifier This
work focuses on redacting data by replacing words
with masks. One unaddressed issue in this work is
the fact that even when masked, the presence of a
word can still leak information. Consider the fol-
lowing example: “Jack Leswick (January 1, 1910 –
August 4, 1934) was a Canadian ice hockey centre
for the <mask> <mask> <mask>.”. Leswick’s
team, the Chicago Black Hawks, is one of 11 of 32
National Hockey League teams with three words in
their name. An adversary can eliminate the possibil-
ity that Leswick played for any of the 20 two-name
teams. Future work can consider the possibility of
deleting words entirely or joining multiple masked
words into a single mask token to provide addi-
tional privacy.

Hiding in the crowd. K-anonymity exists when
an individual cannot be distinguished from K − 1
other individuals in the dataset. This means that for
a given individual, all anonymity guarantees in our
setting are with respect to the other individuals in
the dataset. Therefore, the same document could be
deidentified differently depending on which other
profiles there are in the dataset, even without any
changes to the document itself.

11 Ethical Considerations

This paper targets deidentification, a technique
which has been used to democratize access to sen-
sitive data in business, law, and healthcare. How-
ever, this paper also discusses the topic of reiden-
tification, and raises issues about how models that
identify individuals from seemingly-anonymized
data may be used in a negative manner. Reiden-
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tification models may be used as part of linkage
attacks, where individuals can be pinpointed even
from seemingly anonymized data. Additionally, the
world knowledge of today’s large language models
may be well-suited for this type of linkage attack.
We observed this behavior empirically, when our
models were uncannily able to reidentify individ-
uals within a dataset of 720, 000 identities, even
from documents that appeared to have no remain-
ing personal information.

We plan to release our models for deidentifying
documents from Wikibio to the general public. We
are open to hearing from users how our technology
impacts both their lives and the lives of others, pos-
itively or negatively. If we receive any reports of
misuse of our technology, we will mitigate accord-
ingly.
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A Training details

We train all models using the Adam optimizer with
an initial learning rate of 5 ∗ 10−5 or 1 ∗ 10−4.
We clip gradients to a maximum norm of 5.0. We
decrease the learning rate by a factor of 0.5 when-
ever performance on a set of held-out redacted val-
idation examples decreases. We train on the full
dataset for a duration of 60 epochs, but stop early
if the learning rate does not increase for 5 epochs.
We implement training using the PyTorch lightning
library (Falcon et al., 2019). We use PMLM-a,
the version of PMLM with absolute positional em-
beddings (Liao et al., 2020). All encoders have a

maximum sequence length set to 128 throughout
all experiments. We truncate tables by dropping
columns until the encoded table fits the maximum
sequence length.

We use linear learning rate scheduling. For mod-
els with the RoBERTa document encoder, we decay
the learning rate from a starting point of 1e− 5 to
1e− 6 over the epochs. For models with PMLM as
the document encoder, we start the learning rate at
5e− 5. This is because we found empirically the
PMLM tended to converge better when started at a
lower learning rate. For the first two epochs (one
for each encoder), we employ linear warmup, and
increase the learning rate from 0 to its true initial
value. We find that training the profile encoder is
not useful after a handful of epochs, as the pro-
file encoder starts to overfit, and our compute is
better spent training the document encoder, which
learns much more slowly since its inputs are 50%.
redacted on average. Thus, after the first 10 epochs
(5 of which are spent training the profile encoder),
we only train the document encoder.

B Search methods ablation

Our deidentification method redacts words by
greedily selecting the word that minimizes the per-
formance with respect to a reidentification model.
We also tested using beam search to select words
to redact, and found that it did not improve perfor-
mance. At k = 1, beam search with beam width
4 masked 14.96% of words at 78.1% reidentifica-
tion rate, while greedy masks 15.46% at a 78.9%
reidentification rate, while being 3.39 times faster.
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