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Abstract

Phrase similarity is a key component of many
NLP applications. Current phrase similarity
methods focus on embedding the phrase itself
and use the phrase context only during train-
ing of the pretrained model. To better lever-
age the information in the context, we propose
McPhraSy (Multi-context Phrase Similarity),
a novel algorithm for estimating the similarity
of phrases based on multiple contexts. At in-
ference time, McPhraSy represents each phrase
by considering multiple contexts in which it
appears and computes the similarity of two
phrases by aggregating the pairwise similari-
ties between the contexts of the phrases. In-
corporating context during inference enables
McPhraSy to outperform current state-of-the-
art models on two phrase similarity datasets
by up to 13.3%. Finally, we also present a new
downstream task that relies on phrase similarity
– keyphrase clustering – and create a new bench-
mark for it in the product reviews domain. We
show that McPhraSy surpasses all other base-
lines for this task.

1 Introduction

Estimating similarity between phrases is an impor-
tant intermediate component for many NLP tasks
like question answering (Seo et al., 2018) and ma-
chine translation (Ramisch et al., 2013).

As opposed to previous work (e.g., Pennington
et al., 2014; Li et al., 2022; Wang et al., 2021) that
use the phrase context only during training, we pro-
pose McPhraSy – Multi-context Phrase Similarity
– a novel method for estimating phrase similarity
that leverages multiple contexts during inference
to improve accuracy. McPhraSy produces a set of
representations for a phrase, based on sentences
in which it appears. To measure similarity of two
phrases, they are compared according to their sets
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of representations with an innovative technique. In-
deed our approach achieves the new state-of-the-art
results on two phrase-similarity benchmarks: Tur-
ney (Turney, 2012) and PPDB-filtered (Wang et al.,
2021) datasets.

In this work we focus on relatively short phrases
(noun phrases of 2-3 words) that represent common
use cases for output of many NLP applications (e.g.
question answering, named entity recognition and
relation extraction). Furthermore, we choose to
use a relatively strict interpretation of similarity
between phrases, and we aim to assign high simi-
larity scores to phrases that describe very similar
concepts, and not just related ones. For example,
“charging cable” and “electronic device” are con-
sidered related but not similar. Even phrases with
lexical overlap such as “craft project” and “craft
room” would not be considered similar. On the
other hand, phrase pairs such as “quick delivery”
and “super fast shipping” are considered similar.

To explore the aforementioned setting in more
depth, we introduce a practical use-case of phrase
similarity – keyphrase clustering in the domain of
product reviews. This task is useful both as an inter-
mediate step for other tasks (e.g. aspect based sum-
marization) and as a downstream task (e.g. given a
product keyphrase, retrieve the reviews that men-
tion phrases similar to it).

We curate a dataset for this newly introduced
keyphrase clustering task with careful collection
of phrases and manual annotation of clusters. We
then demonstrate that McPhraSy achieves impres-
sive results on this task compared to all baselines.

The main contributions of this work can be
summarized as follows: (1) We demonstrate that
existing phrase similarity methods lack informa-
tion found in phrase contexts at inference time.
We overcome this shortcoming by proposing a
novel method for phrase similarity estimation. Our
method not only leverages the context at inference
time, but also takes into account multiple contexts
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per phrase to make the results more robust; (2)
We propose a new downstream task – keyphrase
clustering – which relies on phrase-based simi-
larity, and curate an evaluation dataset in the do-
main of product reviews; (3) We demonstrate that
our proposed method outperforms all other base-
lines on both phrase similarity benchmarks and the
keyphrase clustering task.1

2 Related Work

Representation of text spans. Producing word-
level representations has been extensively explored
(Brown et al., 1992; Bengio et al., 2000; Turian
et al., 2010; Collobert et al., 2011; Mikolov et al.,
2013b; Pennington et al., 2014; Peters et al., 2018;
Devlin et al., 2019), mainly using the surroundings
of the word as a signal for its meaning.

Representing text spans larger than one word
can be achieved by non-trivial combinations of
word representations (e.g., Yu and Dredze, 2015;
Wieting et al., 2016; Arora et al., 2017; Chang
et al., 2021). However, these approaches use the
phrase context only during the pretraining stage
and are consequently less effective for capturing
the compositional meaning of the span (Yu and
Ettinger, 2020).

Phrase-level embeddings assist in tasks such as
paraphrase detection, question-answering (QA),
and topic modeling, and are often generated in com-
pliance with the task objective. Wang et al. (2021)
fine-tune BERT (Devlin et al., 2019) with synthet-
ically generated paraphrases to detect lexically-
differing text similarities. Lee et al. (2021) opti-
mize SpanBERT (Joshi et al., 2020) for QA to link
a question to a phrasal answer within a passage.
Li et al. (2022) and Zhou and Wakabayashi (2022)
apply contrastive learning over LUKE (Yamada
et al., 2020) or a combination of Sentence-BERT
(Reimers and Gurevych, 2019) and Phrase-BERT
(Wang et al., 2021), for the use of clustering to-
gether topically related phrases within a corpus.
These methods for rendering phrase representa-
tions leverage a single sentence-level context of
the phrase, only while training. In contrast, our
approach takes advantage of many contexts at in-
ference time in order to capture the meaning of the
phrase.

Phrase clustering. Grouping related phrases to-
gether is useful for various tasks, and previous work

1The dataset and code will be available online.

has thus assessed phrase clustering on task-specific
data. SanJuan and Ibekwe-SanJuan (2006) clus-
ter tens of thousands of out-of-context scientific
phrases to a predetermined number of categories.
Kuhn et al. (2010) cluster source and target lan-
guage n-grams to assist in the sentence translation
task, evaluating the clustering only extrinsically
through translation quality. Lin and Wu (2009) ap-
ply phrase clustering for named entity recognition
and query classification and evaluate correspond-
ingly on relevant datasets. Zhou and Wakabayashi
(2022) manually evaluate grouped phrases to as-
sess topic-relatedness, and Li et al. (2022) carry
out coarse-grained phrase classification on respec-
tive datasets. To the best of our knowledge, we
introduce the first phrase clustering dataset (§4),
which contains a variable number of clusters in
each phrase grouping. This novel dataset allows
explicit evaluation with clustering metrics.

3 The McPhraSy Method

While most existing phrase embedding methods,
such as averaged GloVe (Pennington et al., 2014)
word embeddings and Phrase-BERT (Wang et al.,
2021), rely solely on the phrase to create a rep-
resentation in inference time, our approach relies
on multiple contexts in which the given phrase ap-
pears. For example, given the phrase “brunette
hair”, previous methods only consider the stan-
dalone phrase, while McPhraSy places it in mul-
tiple contexts (masked sentences) such as, “This
is a great shampoo for [MASK].” or “I always
wanted to have [MASK], and thanks to this hair
dye I’m now a brunette!”. The context of a word
(or phrase) is known to be highly indicative of its
meaning (Firth, 1957). We hypothesize that current
models do not succeed in learning the full meaning
from the context of phrases during training. By
using contexts directly at inference time, we hope
to improve phrase representations.

Given two phrases, McPhraSy retrieves contexts
for both phrases, extracts the vector representation
of each context (§3.1) assisted by a trained model
(§3.2), and applies a similarity function between
the two sets of representations (§3.3).

3.1 Representing a Phrase

Given a phrase p, we start by searching for p in
an unlabeled corpus of raw text and retrieve m
sentences in which it appears. Each sentence is
masked at the position of p using a single [MASK]
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Figure 1: The process for producing the phrase representations with McPhraSy. SpanBERT and Phrase-BERT
vectors are concatenated and fed into the McPhraSy embedder to create the final representations.

token and is passed to SpanBERT to get the rep-
resentation at the mask position. The set of (up
to m) corresponding outputs is used as the ini-
tial representation of p. Each such vector (of di-
mension dsbert = 768) is concatenated with the
Phrase-BERT embeddings of the phrase (of dimen-
sion dpbert = 768), and is then given as input to
the McPhraSy embedder, a multi-layer perceptron
(MLP) trained to output the final phrase representa-
tion (of dimension dMcPhraSy = 768). This process,
depicted in Figure 1, results in a set of representa-
tions for phrase p.

3.2 Training a Dedicated Model for Phrase
Representation

The McPhraSy embedder is a 2-layer MLP that
receives an initial representation of a phrase, and
produces a finetuned representation for the phrase.
As illustrated in Figure 2, this model is trained
using triplet-loss, a commonly used loss function
for learning representations based on similarities.
In our case, it requires representing three phrases:
(a) an anchor phrase pa, using a random context
cpa ; (b) a positive example p+, which is the same
phrase pa but in a different context cp+ ; and (c) a
negative example p− of a different (random) phrase,
with context cp− . For example, if pa = “hair color”,
then cpa = “this hair color is very bright", cp+ =
“this hair color ruined my hair!”, and cp− = “this
battery lasts for three hours”.

The loss function is defined as:

triplet-loss(pa, p+, p−) =

max(d(e(cpa), e(cp+))−d(e(cpa), e(cp−))+α, 0)
(1)

where d(·, ·) is a distance metric (e.g., l2 or co-
sine distance), α is a margin hyper-parameter, that
encourages preference of positive over negative in-
stances, and e(·) is the embedding function. The
minimization of Equation 1 requires the embedding

function e to assign close embeddings for pa and
p+, and more distant ones for pa and p−.

To generate training triplets (pa, p+, p−), we use
hard sampling (Hermans et al., 2017), which aims
to find the contexts for p+ and p− that are the clos-
est to a context of pa, in order to challenge the
learned function with more difficult classifications
(see Appendix A for additional technical details).

The underlying models that generate the initial
representations (in our case, SpanBERT and Phrase-
BERT models) are kept frozen during training.

While we show that using McPhraSy with pre-
trained SpanBERT model as the sole initial repre-
sentation can already surpass current state-of-the-
art on some similarity tasks (§5.2.2), we empiri-
cally find that integrating the phrase representation
(like with Phrase-BERT) is beneficial for keyphrase
clustering (§5.3.2). McPhraSy harnesses the advan-
tages of both the contextual meaning of the phrase
from SpanBERT, as well as the generic meaning
of the phrase on its own from Phrase-BERT. In-
corporating Phrase-BERT is not a trivial operation
since phrase pa is the same as p+ but different
from p−. A simple concatenation of Phrase-BERT
embeddings to the context representation would
make it trivial for the model to differentiate be-
tween the positive and negative examples, making
the training redundant. Instead, when training the
McPhraSy encoder, we mask the Phrase-BERT em-
bedding (with zeros) for pa, essentially integrating
Phrase-BERT only for p+ and p− (see Figure 2).

3.3 Estimating Similarity

We next wish to use the aforementioned multi-
context-based representations in order to determine
the similarity between two phrases pa and pb.

A naive approach would be to average the
multiple-context representations of pa and pb re-
spectively, and compute the cosine similarity be-
tween the two averaged vectors. However, we
propose an enhanced method for phrase similar-
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Figure 2: The process for training the McPhraSy embedder. Plus (+) and anchor (a) correspond to the samples that
share a common masked phrase, while minus (−) corresponds to a sample with a different masked phrase. In this
process, the McPhraSy-embedder is trained using the triplet loss.

ity based on context analysis of the two phrases,
which achieves improved accuracy over the afore-
mentioned averaging approach, as shown in Sec-
tion 5.2. This method is based on the intuition
that the more contexts are similar across the two
phrases, the more the phrases themselves are simi-
lar in meaning.

Let cp ∈ Cp be a context of phrase p and e(cp)
the representation of cp (extracted as described in
Section 3.1), and let

dp
′

cp = min
cp′∈Cp′

dist(e(cp), e(cp′))

dpcp = min
c̄p∈Cp\{cp}

dist(e(cp), e(c̄p))

i.e., the distance from cp to the closest context of
phrase p′ ̸= p, and to a different context of p, re-
spectively. Function dist(·, ·) measures distance
between vectors (we use cosine distance through-
out the paper). Then, given two phrases p and p′,
we define the difference function δ(cp, p

′) as:

δ(cp, p
′) = dp

′
cp − dpcp

i.e., the difference between the distances from cp
to the two close contexts, of p and p′.

Now, let Dp,p′ be the random variable that rep-
resents all differences δ(cp, p

′) and δ(cp′ , p) for
random context cp ∼ Cp and cp′ ∼ Cp′ .

The more p and p′ are similar, the more concen-
tration of probability will amass near 0, since the
close context representations between the phrases
will yield small differences. To assess this distance
in a quantitative way, we define the cumulative dis-
tribution function (CDF) of Dp,p′ to be fp,p′ , where

fp,p′(x) = P
(
Dp,p′ < x

)

is the probability that a difference between close
contexts is less than x (for dist(·, ·) being cosine
distance, −2 ≤ x ≤ 2).

Finally, using fp,p′ we define the similarity of p
and p′ to be:

McPhraSy-sim(p, p′) =
∫ 2

−2
fp,p′(x) dx

The intuition behind this similarity is that similar
phrases likely have close context representations,
while dissimilar phrases have a higher chance of
having distant representations.

To estimate fp,p′ , we sample Dp,p′ by activating
δ on each of the available contexts. Based on these
samples, we calculate the empirical distribution of
Dp,p′ by generating the histogram of differences,
and the empirical CDF of Dp,p′ by summation over
this histogram. Empirically we find that x predomi-
nantly falls between 0 and 1, and therefore compute
the integral in that range.2

Note that the step for extracting and preparing
the phrase representations can be relatively compu-
tationally expensive, however, the similarity esti-
mation step is quick. Therefore, to use McPhraSy,
one can prepare the representations offline in a
one-time preprocessing step,3 and then evaluate
similarities efficiently upon request.

4 Phrase-Based Clustering

In addition to standard phrase similarity bench-
marks, the ability to compare the likeness of
phrases can be extrinsically evaluated by means of
phrase clustering. Joining and separating phrases
within a set adds a level of complexity that requires
a more fine-grained ability to measure phrase simi-
larity, as a bad estimation for a single phrase pair
may result in very different allocations to clusters.

2Empirically, McPhraSy-sim values are in [0, 0.25].
3In addition, contexts for each phrase can be made easily

retrievable by using inverted indexes over the corpus.
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Dataset Stats w/ Sing. w/o Sing.
# groups 106 106
phrases per group 25 25
avg. # clusters per group 16.95 3.52
avg. cluster size 1.47 3.17
avg. # overlapping clusters 2.54 0.90

Table 1: Statistics on our clustering dataset, shown when
including or excluding singleton (Sing.) clusters. The
last row shows the number of clusters that contain words
from a separate cluster within the same group, portray-
ing the lexical overlap between clusters in a group.

Moreover, the phrase clustering task serves practi-
cal applications such as identification of reoccur-
ring elements within documents or product reviews
for use of information extraction or summarization.
While there exist datasets that cluster noun phrases
to predetermined cluster categories, like types of
named entities (e.g., Tjong Kim Sang and De Meul-
der, 2003; Derczynski et al., 2017), to the best of
our knowledge, we are the first to establish a phrase
clustering dataset without fixed classes.

4.1 Curating a Dataset

Our phrase clustering dataset is based on the Ama-
zon Review Dataset released by Ni et al. (2019).
It consists of 106 groups of 25 noun phrases each,
spanning 5 different categories,4 and each group
comprises clusters of similar phrases. Full statis-
tics are available in Table 1. A cluster either
contains phrases equivalent in meaning (e.g., “as-
sorted colors” and “variety of colors”) or phrases
that describe the same of a kind (e.g., “business
cards”, “place cards”, and “time cards”). Prece-
dence is given for clustering equivalent phrases
before phrases that are the same of a kind.

To create the dataset we first collect groups of
noun phrases and then annotate clusters within each
group.

Collecting groups of phrases. A group consti-
tutes a seed phrase and 24 related phrases and is
created as follows.

First, for each product in a category, we extract
the top 30 most frequent noun phrases of 2-3 words
from all the available reviews of the product. Then,
to extract the top 2000 most frequent phrases of
a category, we aggregate the phrase counts from
products in that category. Some undesired phrases

4We use categories “Arts Crafts and Sewing”, “Automo-
tive”, “Grocery and Gourmet Food”, “Office Products” and
“Patio Lawn and Garden”.

are then filtered out with basic lexical heuristics
(see Appendix B.1 for details).

Next, for each category, we select the most fre-
quent phrase as the seed phrase. We form a group
around the seed phrase by selecting, from the fre-
quent phrases in the category, the 24 phrases that
are most similar to it according to cosine similarity
of their word2vec (Mikolov et al., 2013a) repre-
sentations (average of the words in the phrase).5

Applying word2vec similarity yields many lexi-
cally similar phrases within a group that are not
necessarily similar in meaning, thus providing a
challenging case for clustering. Then, we continue
iteratively to the next most frequent seed phrase
in the category and keep the new group only if
its intersection with each of the previous groups
does not include more than half of the phrases. We
prepared 106 such groups of 25 phrases over all
categories.

Forming clusters within groups. To cluster each
of the phrase groups, we first experimented with
various crowdsourcing tasks, which yielded overly
noisy results (see Appendix B.2 for more details).
We therefore turned to internal manual annotation,
in which three authors of this paper participated.
First, six groups were annotated by all three an-
notators, resulting in average clustering agreement
scores of 0.93 V-measure, 0.57 Adjusted Rand, and
0.62 Adjusted Mutual Information (see §5.3.1 for
metric explanations), after which differences were
reconciled. The high agreement and reconciliation
process permitted a single annotation for the rest of
the groups. To that end, the 100 remaining groups
were divided amongst the three annotators. Given
a group of phrases, the annotator first clustered to-
gether phrases that are equivalent in meaning, and
then from the remaining phrases clustered those
that are the same of a kind.

Additional technical details on the dataset cre-
ation process are available in Appendix B.

4.2 Qualitative Examination
In addition to the distinction of cluster types (equiv-
alent meanings versus same of a kind), many
phrases within a group lexically overlap, but may or
may not be clustered together, thus further challeng-
ing a clustering algorithm to distinguish between
such cases. Moreover, each group contains many
singleton clusters, i.e., when a cluster consists of
one phrase only, again contributing to the difficulty

5Using spaCy (Honnibal et al., 2020).
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of deciding on what phrases to cluster together. As
apparent in the last row of Table 1, a cluster shares
(non stop-) words with an average of 2.5 other clus-
ters, including singleton clusters.

Indeed, we find plenty of examples that demon-
strate the challenges posed. For instance, the
phrases “hot chocolate”, “hot tea” and “hot coffee”
are clustered together, but not with “hot cereal”,
“hot sauce”, or even “hot water”. There are also
cases of non-lexically overlapping phrases in a clus-
ter, such as “quilt shop” and “fabric store”, with a
lexical overlap in a different cluster, such as one
containing “jewelry store”.

We also find situations where context is essential
for deciding whether phrases should be clustered.
For example, “backing plate”, “pressure plate” and
“skid plate” might seem similar-kinded, however,
they are unrelated kinds of plates with different
functions. Automotive context is required to appre-
hend the meanings.

Another phenomenon is when phrases would
be clustered differently in different groups due to
the precedence of cluster types. For example, “fit
right”, “fit well”, “fit properly”, “decent fit” and
“fit as described” will cluster separately from “does
not fit”, “terrible fit” and “poor fit”, since phrases
in each separate cluster are equivalent in meaning.
However if only “decent fit” and “poor fit” were in
a group, they might cluster together because they
are the same of a kind.

5 Experiments

We first evaluate McPhraSy on phrase similarity
benchmarks, and then continue to examine its util-
ity for clustering on our new phrase-based cluster-
ing dataset.

5.1 Training McPhraSy

Our training data consists of 27, 723 phrases with
their contexts, sampled from Wikipedia using the
Spike platform (Shlain et al., 2020). Overall we
sample 24, 361, 780 sentences for training the 2-
layer MLP and use a maximum of 300 contexts per
phrase (more details in Appendix A.2). Freezing
the underlying SpanBERT and Phrase-BERT mod-
els has two benefits: (a) it allows using a relatively
large batch size of 300 sentences; (b) freezing lower
layers of the model has a regularization effect on
the overall model.

5.2 Phrase Similarity

5.2.1 Experimental Setup
Datasets. We adopt the PPDB-filtered dataset
developed by Wang et al. (2021) that was devised
for pairwise phrase similarity assessment. This
data is based on the PPDB 2.0 dataset (Pavlick
et al., 2015), with filtration heuristics proposed by
Yu and Ettinger (2020). The PPDB-filtered dataset
contains 19, 416 phrase pairs, marked as similar
or non-similar, with an average phrase-length of
about 2.5 words. The phrase pairs are controlled
for lexical similarity by assuring that positive (sim-
ilar) and negative (non-similar) pairs have an iden-
tical amount of word overlap. Moreover, phrase
pairs are controlled for word biases so that certain
words do not overlap considerably more in a par-
ticular class. Figure 3 shows an example of similar
and dissimilar phrases from PPDB-filtered, with a
visualization of the dimension-reduced McPhraSy
representations (using PCA; Abdi and Williams,
2010). We used the same dataset split as Wang
et al. (2021).

The Turney dataset (Turney, 2012) consists of
2, 180 groups, where each group is built of a bi-
gram and five unigrams. The accompanying task
is to select the unigram that is closest in meaning
to the respective bigram. For example, given the
bigram “bass fiddle”, and the candidates: “con-
trabass”, “pitch”, “violin”, “speedway”, “snood”
the model should return “contrabass”. Both PPDB
and Turney datasets use accuracy as the evaluation
metric.

Baselines. We evaluate McPhraSy against other
methods of phrase or text similarity. Most methods
produce representations for the phrases and use
cosine similarity to estimate the similarity between
them. For phrase representation, we use GloVe
(Pennington et al., 2014) and BERT (Devlin et al.,
2019) embeddings of the words in a phrase, as well
as SpanBERT6 (Joshi et al., 2020), Phrase-BERT
(Wang et al., 2021), Sentence-BERT (Reimers and
Gurevych, 2019) and joint-Sentence-BERT-based
(Zhou and Wakabayashi, 2022) (denoted joint-SB)
representations.

5.2.2 Results
We examine four different variations of McPhraSy.
McPhraSy is the full model. McPhraSy Span-
BERT+emb uses the complete model but does

6SpanBERT used similar in fashion to (Wang et al., 2021).
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(a) Dissimilar phrases (b) Similar phrases

Figure 3: A 2-dimensional version, reduced with PCA, of the McPhraSy representations of similar phrases (3b) and
dissimilar phrases (3a) from the PPDB-filtered dataset.

Method Turney PPDB-filt
GloVe 37.8 44.2
BERT 42.6 60.1
SpanBERT 38.7 57.3
Sentence-BERT 51.8 64.2
Phrase-BERT 57.2 68.0
joint-SB 58.0 -
McPhraSy+emb average 70.7∗ 68.5
McPhraSy SpanBERT only 70.3∗ 68.5
McPhraSy SpanBERT+emb 71.3∗ 68.7∗
McPhraSy 67.7∗ 68.6∗

Table 2: The accuracy (in %) of each method on
phrase similarity datasets. PPDB-filt requires a binary
choice, and Turney requires a choice from five options.
McPhraSy outperforms all baselines. A ∗ signifies sig-
nificant improvement over the previous state of the art,
with p < 0.05.

not use Phrase-BERT information during inference
(Phrase-BERT embeddings are replaced with ze-
ros). McPhraSy+emb average uses the McPhraSy
SpanBERT+emb model, but with averaging of vec-
tors instead of using the McPhraSy similarity func-
tion (§3.3), i.e., representations of a phrase are av-
eraged and compared to another phrase’s average
with cosine similarity. McPhraSy SpanBERT only
uses the McPhraSy similarity on SpanBERT rep-
resentations only (without the trained embedding
model, nor the Phrase-BERT representations).

Table 2 presents the results of the different
phrase similarity methods on the two benchmarks.
We report the overall percent of accurate predic-
tions, where Turney has 5 alternative choices per
instance, and PPDB-filtered requires a binary pre-
diction. McPhraSy significantly improves over the
baselines on both datasets (with p < 0.05). While
all four versions of McPhraSy surpass current state-
of-the-art models by a large margin on Turney, the

Figure 4: The accuracy on PPDB-filtered as a function
of the number of contexts used by McPhraSy to repre-
sent phrases (at inference time).

most substantial improvement of 13.3 points is
achieved by McPhraSy SpanBERT+emb.

We find that the McPhraSy SpanBERT-only ver-
sion surpasses the current state-of-the-art model
(joint-SB) by a large margin (12.7 points). Adding
the extra embedding model contributes substan-
tially, but surprisingly, concatenating the Phrase-
BERT embeddings reduces performance compared
to the McPhraSy SpanBERT+emb model. We
attribute this behavior to the nature of the Tur-
ney dataset which emphasizes semantic similar-
ity without much lexical overlap. McPhraSy Span-
BERT only doesn’t use any lexical information, and
adding lexical information (using Phrase-BERT)
degrades the model accuracy on Turney.

Number of contexts. We assess the effect of the
number of contexts (m) on the overall accuracy of
McPhraSy on the PPDB-filtered dataset. As Figure
4 indicates, most of the improvement is accredited
to the first 100 contexts, with a slight increase until
300. Adding contexts beyond 300 seems to have a
marginal effect.
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5.3 Phrase Clustering
We now turn to evaluate some of the phrase simi-
larity methods as the underlying functions for the
clustering task.

5.3.1 Experimental Setup
Baselines. We employ the Agglomerative Clus-
tering method with complete linkage,7 and pro-
vide it with the pairwise phrase similarity matrix
based on the different similarity functions. We
compare the use of McPhraSy to GloVe or Phrase-
BERT with cosine similarity, and to character-level
Edit-distance.8 In addition, we provide the clus-
tering algorithm with a pre-specified number of
clusters to form, denoted k. Specifically, we set
k ∈ {10, 15, 20, gold}, where gold is the actual
number of clusters in the respective group being
clustered. The alternative k values were chosen
based on the average number of clusters in the
groups (~17).

Clustering metrics. Standard metrics for measur-
ing clustering quality include V-measure (Rosen-
berg and Hirschberg, 2007), Adjusted Rand (Hu-
bert and Arabie, 1985) and Adjusted Mutual In-
formation (Nguyen et al., 2010). These metrics
enable the comparison of two cluster assignments.
Furthermore, since they are symmetric measures,
they can be used for measuring agreement of two
cluster assignments, as we did during the dataset
annotation process (§4.1).

The V-measure is the harmonic mean of homo-
geneity and completeness. Homogeneity is satis-
fied if each predicted cluster contains only data
points that are members of a single gold clus-
ter. Completeness is satisfied if the members of
any given gold cluster are elements of the same
predicted cluster. The Rand Index considers the
amount of data point pairs that are correctly or in-
correctly clustered, and Adjusted Rand adjusts the
value for chance (where a score of 0 reflects the
quality of a random solution, and positive or nega-
tive scores are better or worse than that). Similarly,
Adjusted Mutual Information adjusts the Mutual
Information score.

5.3.2 Results
Table 3 presents the scores of the clusterings using
the different similarity methods, and with different

7Using scikit-learn (Pedregosa et al., 2011).
8We apply edit-distance to examine whether simple lexical

similarity heuristics can achieve decent clustering of the highly
lexically overlapping phrases in a group.

k-parameter values. McPhraSy achieves the high-
est scores across the board, and significantly so in
several cases. We find that Edit-distance and GloVe
achieve impressive scores, though still lower than
Phrase-BERT and McPhraSy.

While McPhraSy variants excel in both similar-
ity and clustering tasks, surprisingly, incorporat-
ing Phrase-BERT during inference harmed perfor-
mance on both similarity datasets, but improved
results in the clustering task. We attribute this be-
havior to the different nature of the phrases in both
tasks. In the similarity datasets, special care was
taken to reduce lexical similarity between com-
pared phrases. However, in our dataset we do not
aim to reduce such similarities. We presume that
real world tasks might also require lexical simi-
larity to perform well. This is also highlighted
by the poor performance of McPhraSy SpanBERT
only, which underperforms (at times even below
the naive Edit-distance baseline), likely because it
does not have direct access to the phrase.

6 Conclusion

In this work we address the task of phrase simi-
larity and propose to add context information to
the phrase representation during inference. This
is done by extracting representations of different
contexts per phrase and aggregating their pairwise
similarity with a novel method. We show that
McPhraSy surpasses previous SOTA methods for
standard phrase similarity benchmarks.

Additionally, we present a new task of phrase-
based clustering that relies on high quality phrase
similarity estimation. We collect a new dataset
for this task in the domain of product reviews and
annotate 106 groups with 2650 phrases for cluster
assignment. We show that McPhraSy improves over
all baselines, thanks to its innovative mechanism
that integrates phrase contexts with existing phrase
representation models.

Finally, since contexts are considered at infer-
ence time, we expect McPhraSy to work smoothly
across domains, especially when texts in the new
domain are relatively scarce. We leave such experi-
ments for future work.

7 Limitations

While our model outperforms strong competing
methods, it requires a complementary corpus with
a substantial amount of sentences containing the
phrases in question. We believe that in real world
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k = 10 15 20 gold
Sim. Function V AR AMI V AR AMI V AR AMI V AR AMI
Edit distance 0.78 0.27 0.33 0.84 0.27 0.32 0.87 0.16 0.20 0.87 0.28 0.32
GloVe 0.79 0.30 0.36 0.85 0.29 0.35 0.88 0.25 0.30 0.88 0.36 0.41
Phrase-BERT 0.81∗ 0.33 0.39∗ 0.87 0.36 0.42 0.89 0.29 0.36 0.88 0.42 0.48

McPhraSy SpanBERT only 0.76 0.21 0.27 0.84 0.26 0.32 0.88 0.23 0.28 0.88 0.31 0.35
McPhraSy SpanBERT+emb 0.76 0.22 0.29 0.84 0.26 0.31 0.88 0.23 0.29 0.86 0.36 0.33
McPhraSy 0.81∗ 0.34∗ 0.39∗ 0.89∗ 0.37 0.43 0.90 0.28 0.37 0.89 0.45∗ 0.50∗

Table 3: The V-measure, Adjusted Rand, and Adjusted Mutual Information scores on our noun phrase clusters
dataset at different k values (number of clusters), for different similarity function alternatives. When k = gold, k
is the actual number of clusters in the respective group. Agglomerative Clustering is employed as the clustering
algorithm. Bold values are the highest in their measure, and a ∗ signifies significant improvement over the next best
value, with p < 0.05.

applications, where the phrases originate from a
corpus anyways, this limitation is somewhat miti-
gated. In addition, our model requires more com-
pute resources than methods that apply GloVe or
Phrase-BERT. However, making such models more
efficient is an active research area.

Our new clustering dataset is relatively small
scale, consisting of 106 groups of 25 phrases each.
The challenge in collecting this data lies in the an-
notation process. As mentioned, crowdsourcing
such a task yielded noisy results that were not suit-
able for high quality evaluation purposes.

In addition, we use word2vec as part of the data
creation (for grouping together phrases). This may
inject a certain bias to the dataset in favor of meth-
ods that make use of similar-in-nature word embed-
dings such as GloVe.
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A Details on Training a Dedicated Model
for Phrase Representation

A.1 Triplet Loss

For training with the triplet loss, the anchor, posi-
tive and negative sentences are first extracted. For
the anchor phrase, 100 sentences containing it
are extracted from the corpus. The two furthest
sentences, according to the embedding function
used, are taken as the anchor and positive contexts.
Then 300 random sentences that do not contain the
phrase are extracted. The sentence closest to one
of the two positive sentences are used as the nega-
tive context (with the phrase in that sentence as the
negative phrase), and the closer positive sentence
is the anchor sentence. The embedding function is
the McPhraSy embedder, which is also trained and
improved at the same time.

A.2 Hyperparameters and Optimization

We train the McPhraSy embedding model with
Adam optimizer and a learning rate of 7e-4. We
set m = 300 for the number of contexts used (as
examined in §5.2.2).

B Dataset Preparation Details

B.1 Collection of Phrase Groups

Phrase extraction. Noun phrases were extracted
from reviews using the part-of-speech regular ex-
pression ‘KT: {(<JJ>* <NN.*>+ <IN>)? <JJ>*
<NN.*>+}’ of two to three words, and then low-
ercased for consistency. To save processing time,
only the first 200 characters in each review were
considered (an initial sampled process showed that
this did not substantially change phrase frequen-
cies).

Phrases were filtered out if they contained punc-
tuation, personal pronouns (i, we, you, he, she, it,
they, me, us, you, her, him, it, them, mine, ours,
yours, hers, his, theirs, my, our, your, her, his, their,
myself, yourself, herself, himself, itself, ourselves,
yourselves, themselves, all, another, any, anybody,
anyone, anything, both, each, either, everybody,
everyone, everything, few, many, most, neither, no-
body, none, no, one, nothing, one, other, others, sev-
eral, some, somebody, someone, something, such),
overly sentimental words (great, excellent, worst,
best, good, nice, beautiful, bad, favorite, awesome,
amazing, wonderful, quality, perfect, other, more,
less, low, high, cute, pretty, adorable, ugly), or

some substrings that render uninformative phrases
(lot of, lots of, couple of, bit of).

Phrase grouping. Phrase grouping around a seed
phrase was conducted with SpaCy similarity. If a
phrase had a similarity above 0.99, it was not taken
into the group.

B.2 Initial Crowdsourcing Annotation
Experiment

To cluster phrases within each of the groups, we
first ran experimental crowdsourcing tasks, which
we eventually dismissed. In the first task, a worker
was shown a phrase from a group and the 24 other
phrases in a separate list. The worker was to mark
the phrase in the list that was most similar in mean-
ing to the main phrase (or None). This task was
conducted five times for each of the phrases in
group (hence a pair of phrases in a group could be
marked similar up to 10 times). Then, pairs that
were marked together more than twice were used
in the next annotation step.

In the second crowdsourcing task, a pair of
phrases from a group was shown (those collected
in the first step) with the 23 remaining phrases in
a separate list. Here, a worker was to mark all
the phrases that were similar to the pair (or None
or Pair is not similar). The breakdown to two
stages was performed to: (1) cut down on natural
crowdsourcing noise due to unreliable annotations,
and (2) to minimize the differences caused by sub-
jective understanding of phrases. By presenting
two phrases, workers would have a stronger anchor
around which to find other similar phrases.

Even with this process, the final clusters formed
were quite different, and it was unclear how to as-
semble the final clusters in an automatic manner,
since our goal was to form a high quality dataset.
The manual expert annotation labor required to ag-
gregate the final clusters was not worth the crowd-
sourcing effort. After some attempts with a few
groups, we resorted to internal expert annotation
for clustering, as described in §4.1.

B.3 Expert Annotation

Annotation time. Each group took an average of
about 4.5 minutes to annotate, with time differences
depending on the complexity of the group.

Agreement. On the 6 groups clustered by all
three annotators, the average pairwise inter-
annotator agreement scores were:
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B C
V AR AMI V AR AMI

A 0.92 0.55 0.62 0.92 0.54 0.59

B - 0.94 0.57 0.65

B.4 Group Clustering Example
Table 4 presents an example of a group clustering.

C Ethical Considerations

Datasets. The phrase similarity datasets (Turney
and PPDB) were obtained in accordance to their
license and terms of use.

Crowdsourcing. For the initial crowdsourcing
experiments, we used the Appen9 website, and em-
ployed workers from English speaking countries.
We set a wage of $9/hour, according to a rate calcu-
lated by some internal testing of the tasks. Workers
were given a qualification test before the assign-
ments, consisting of example assignments from the
actual task.

Compute. For all training and testing processes,
we used a single NVIDIA 1080TI GPU. Training
the McPhraSy embedding model takes about 1 hour.
To cut down on processing time of each training
experiment, we preprocessed all SpanBERT and
Phrase-BERT representations once since they are
frozen during training of our model (which took
about 5 hours for the whole training set). Inferring
one similarity for a pair of phrases is very quick,
however computing the clusters of a group can
accumulate to several minutes worth of pairwise
similarities. We therefore kept a cache of simi-
larities during our inference-time experiments for
clustering, which significantly sped up the cluster-
ing procedure.

9https://appen.com/

different sizes
variety of sizes
various sizes
multiple sizes

variety of projects
different projects
variety of ways
different ways
sturdy material
durable material

soft material
strong material
thin material

heavy material
variety of colors
assorted colors
color variety

different colours
different color
different brand
kinds of things

variety pack
different designs

make sure
different fabrics

Table 4: A group of phrases, clustered to cases of equiv-
alent meaning or same of a kind (the fourth cluster from
the top). A cluster with one phrase is called a singleton
cluster.

3550

https://appen.com/

