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Abstract

Being able to rank the similarity of short text
segments is an interesting bonus feature of
neural machine translation. Translation-based
similarity measures include direct and pivot
translation probability, as well as translation
cross-likelihood, which has not been studied
so far. We analyze these measures in the
common framework of multilingual NMT, re-
leasing the NMTSCORE library. Compared
to baselines such as sentence embeddings,
translation-based measures prove competitive
in paraphrase identification and are more ro-
bust against adversarial or multilingual input,
especially if proper normalization is applied.
When used for reference-based evaluation of
data-to-text generation in 2 tasks and 17 lan-
guages, translation-based measures show a rel-
atively high correlation to human judgments.

1 Introduction

Measures of paraphrastic similarity aim to quan-
tify the degree to which text segments mean the
same thing. Such measures can be used to identify
paraphrases, and also to automatically evaluate text
generation by estimating the similarity of model
outputs to human-written references.

Neural machine translation (NMT) enables
several similarity measures as a by-product of
learning to estimate the probability of transla-
tions (Mallinson et al., 2017; Junczys-Dowmunt,
2018; Thompson and Post, 2020). These measures
are promising given that they naturally leverage
parallel corpora and might pay more attention to
details such as word order or named entities than
sentence embeddings do. For example, Zhang et al.
(2019) have demonstrated that it is difficult to spot
the mismatch between “Flights from New York to
Florida” and “Flights from Florida to New York”
purely based on pooled representations, and they
have released a challenge set of such paraphrase
adversaries called PAWS.

Direct Translation
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Pivot Translation
Probability

Hello!
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Translation
Cross-likelihood
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Figure 1: Three text similarity measures are analyzed
in this paper. Each measure uses a specific translation
probability (thick arrow) to estimate the similarity of
sentence A to B. Some measures require a transla-
tion B′ into an intermediate language (thin arrow).

In this paper, we consider three distinct sub-
types of translation-based similarity, as visualized
in Figure 1. First of all, a straightforward ap-
proach is to estimate the direct translation prob-
ability of sentence A when translating from sen-
tence B (Junczys-Dowmunt, 2018; Thompson and
Post, 2020). Secondly, pivot translation probabil-
ity is an estimate of how probable it is to arrive at
sentence A when pivoting through an intermedi-
ary language (Mallinson et al., 2017). Finally, we
propose to estimate translation cross-likelihood:
the likelihood that a translation of B into some
language could also be a translation of A.

We release the NMTSCORE library, using many-
to-many multilingual NMT to implement these
measures.1 All three measures are competitive in
paraphrase identification across 9 languages, com-
pared to other general-purpose similarity measures,
and especially on adversarial examples. We find,
however, that normalizing the measures with recon-
struction probability is important. They also work
well cross-lingually, where pivot translation proba-
bility performs best while cross-likelihood has the
advantage of not requiring an explicit specification
of the input’s languages.

With respect to reference-based evaluation, we

1https://github.com/ZurichNLP/nmtscore
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show that NMTSCORE is a competitive evaluation
metric for data-to-text, according to human judg-
ments from the WebNLG Challenge (Ferreira et al.,
2020) and from a multilingual AMR-to-text eval-
uation (Fan and Gardent, 2020). Taken together,
multilingual NMT offers a relatively precise and
often complementary perspective on paraphrastic
similarity, with little correlation to other metrics.

In summary, we make the following main contri-
butions:

• We redefine translation-based similarity mea-
sures in a common multilingual framework,
proposing reconstruction normalization and a
novel translation cross-likelihood measure.

• We compile a multilingual paraphrase identifi-
cation benchmark, showing that NMTSCORE

outperforms other general-purpose measures.

• We demonstrate that NMTSCORE provides
effective metrics for reference-based evalua-
tion of data-to-text generation.

2 Translation-based Similarity Measures

The similarity of two sentences A and B can be
measured in several ways by using a multilingual
translation model θ. Such a model accepts multiple
source languages and can translate into multiple
target languages. Usually only the target language
needs to be specified, e.g. with a target language
token, and thus we use θ` to denote a model that is
conditioned on a target language `.

2.1 Direct Translation Probability

Cross-lingual If A and B are in two different
languages a and b, the model can directly estimate
the translation probability of A given B:

Pdirect(A|B) = pθa(A|B)

This probability is sometimes called the transla-
tional equivalence of A and B. In practice, there
are different ways how such a probability can be
calculated from the token-level probabilities pre-
dicted by the model. For this and the follow-
ing measures, we follow previous work (Junczys-
Dowmunt, 2018; Thompson and Post, 2020) and
normalize by sequence length:

pθa(A|B) :=
[ |A|∏

i=0

pθa(A
i|B,A<i)

] 1
|A|

Monolingual Since θ is a multilingual model, A
and B may also be in the same language (Thomp-
son and Post, 2020). This is because multilin-
gual NMT enables zero-shot translation (Johnson
et al., 2017), which includes any monolingual di-
rection ` → `. Thompson and Post (2020) argue
that monolingual translation can be seen as (non-
diverse) paraphrasing, and they have demonstrated
that paraphrasing probability is a useful metric for
reference-based MT evaluation (called Prism).

2.2 Pivot Translation Probability

Paraphrastic similarity can also be estimated via
translation to a pivot language (Bannard and
Callison-Burch, 2005; Mallinson et al., 2017).
Pivot translation requires two translation directions,
θpivot and θa. First, a translation B′ ∼ pθpivot(·|B)
is generated and then used to calculate the proba-
bility of translating B′ into A:

Ppivot(A|B) = pθa(A|B′)

Such an approach is typically used for monolingual
sentences (round-trip translation), but we argue
thatA andB can also be in two different languages.
Furthermore, the pivot language may be identical to
the language of A or B, considering the zero-shot
paraphrasing capability of multilingual NMT.

2.3 Translation Cross-likelihood

As an alternative measure we propose translation
cross-likelihood, which requires only one transla-
tion direction θtgt, where tgt is any target language
supported by the NMT model. We generate a trans-
lation B′ ∼ pθtgt(·|B) and then estimate the likeli-
hood that B′ could have been generated from A:

Cross-likelihood(A|B) = pθtgt(B
′|A)

In other words, this similarity reflects the surprisal
of a translation model that is conditioned on sen-
tence A but exposed to a translation of sentence B.

Like with pivot translation, A and B may be a
monolingual or a cross-lingual pair, and the tar-
get language may or may not be identical to the
language of A and B.

2.4 From Probability to Similarity Measure

Normalization Similarity measures typically as-
sign maximum similarity to indiscernible inputs.
We propose to ensure this by applying the follow-
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ing normalizations to translation-based measures:

NMTSCORE-direct(A|B) =
pθa(A|B)

pθa(A|A)

NMTSCORE-pivot(A|B) =
pθa(A|B′)
pθa(A|A′)

NMTSCORE-cross(A|B) =
pθtgt(B

′|A)
pθtgt(B

′|B)

The two formulas for NMTSCORE-direct and
NMTSCORE-pivot can be seen as a form of re-
construction normalization, given that pθa(A|A)
is the probability that the sentence remains iden-
tical when zero-shot paraphrasing is performed.
Likewise, pθa(A|A′) is the pivot reconstruction
probability of A given its pivot translation A′ ∼
pθpivot(·|A). The latter measure has also been used
by Mallinson et al. (2017) for normalization.

Symmetrization Translation probabilities are di-
rected measures, however the order of A and B is
often arbitrary, such as in paraphrase identification.
We thus follow previous work (Junczys-Dowmunt,
2018; Thompson and Post, 2020) and average the
directed measures for both directions:

sim(A,B) =
1

2
sim(A|B) +

1

2
sim(B|A)

3 Baseline Measures

3.1 Surface Similarity Measures
Some well-known text similarity measures, espe-
cially for reference-based evaluation, rely on sur-
face similarity. We choose CHRF (Popović, 2015)
and sentence-level BLEU (Papineni et al., 2002) as
surface-similarity baselines. CHRF is a character-
based metric that calculates precision and recall of
character n-grams. BLEU calculates the precision
of word n-grams with a brevity penalty.

3.2 Embedding-based Similarity Measures
Another family of similarity measures uses the co-
sine similarity of text embeddings. Such embed-
dings are typically learned on the token level, and
thus need to be aggregated in some way. In this
paper, we consider two embedding baselines:

Similarity of aggregate token embeddings A
typical approach is to average the token embed-
dings before calculating cosine similarity. How-
ever, hidden states of self-supervised Transformer
language models may not be directly useful when

averaged; Reimers and Gurevych (2019) fine-tune
them using a sentence pair classification objective,
calling their approach Sentence-BERT.

Aggregation of token similarities An alterna-
tive is to aggregate the similarities between the
individual tokens of the two sentences (Mihalcea
et al., 2006). Typically, a precision is calculated
as the average maximum cosine similarity of all
tokens in A to all tokens in B, and a recall is cal-
culated with A and B switched. It has been shown
that when aggregated in this way, hidden states of
self-supervised language models are useful for text
similarity even without any fine-tuning (Mathur
et al., 2019; Zhang et al., 2020). This measure is
called BERTSCORE by Zhang et al. (2020).

4 Paraphrase Identification

In this section we compare the similarity measures
using paraphrase identification test sets in multi-
ple languages. The test sets contain pairs of sen-
tences that have been annotated with whether the
sentences are paraphrases or not, yielding a binary
classification problem. For datasets with a valida-
tion split, we determine thresholds that optimally
separate the validation set for each measure; we
then apply the thresholds to the test set to compute
the accuracy of the measures. If there is no valida-
tion set, we report the Area Under the Curve (AUC)
on the test set.

4.1 Experimental Setup

Translation model We use the same multilin-
gual NMT model for all three translation-based
measures. Specifically, we use a 745M-parameter
Transformer model (Prism) that was trained
by Thompson and Post (2020) using Fairseq (Ott
et al., 2019).2 The model supports 39 languages
and is not English-centric. We found no indication
that its training data overlap with the datasets used
in the experiments.

Intermediary language We use English as the
pivot language for pivot translation and as the target
language for estimating cross-likelihood. English
has the largest share of training data in the models
we use.

Surface Similarity baselines We compute
sentence-level CHRF and sentence-level BLEU
using the SacreBLEU library (Post, 2018). We

2https://github.com/thompsonb/prism
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Individual datasets PAWS-X dataset Macro-
Language EN RU FI SV DE ES FR JA ZH average
Metric Acc. AUC AUC AUC Acc. Acc. Acc. Acc. Acc. Avg.

Surface similarity baselines

CHRF 69.9 78.4 58.9 66.8 58.3 57.2 58.5 56.2 59.3 57.9 66.4
SENTBLEU 64.2 70.1 63.6 62.2 61.3 59.9 61.2 55.4 59.0 59.4 63.9

Embedding baselines

Sentence-BERT 71.2 83.5 68.7 73.0 58.2 58.2 59.5 55.5 58.1 57.9 70.9
BERTSCORE-F1 72.6 79.7 66.6 65.9 59.8 60.2 60.5 56.7 59.5 59.4 68.8

Translation-based measures

NMTSCORE-direct 72.6 84.1 72.4 70.6 73.9 73.5 75.7 66.4 68.9 71.7 74.3
NMTSCORE-pivot 72.1 84.9 70.3 70.9 77.4 76.2 76.9 68.4 70.8 74.0 74.4
NMTSCORE-cross 71.7 86.6 71.2 72.4 76.6 75.1 75.6 65.8 70.5 72.7 74.9

Table 1: Comparison of general-purpose text similarity measures on paraphrase identification in 9 languages.
While the embedding baselines build on XLM-RoBERTa (Conneau et al., 2020), the translation-based measures
use probability estimates of a multilingual NMT system (Prism, Thompson and Post, 2020). We report AUC if
there is no validation set for a language. Results within the top significance cluster are printed in bold.

use the recommended tokenization for BLEU,
tokenizing Japanese text using MeCab and splitting
Chinese characters individually. When applying
CHRF and BLEU to paraphrase identification, we
calculate the similarity in both directions and take
the average.

Embedding baselines We use pre-trained em-
beddings from XLM-RoBERTa, which is a mul-
tilingual masked language model pre-trained on
CommonCrawl (Conneau et al., 2020). We use
the large version (550M parameters) to compute
BERTSCORE, specifically the 17th layer as rec-
ommended by the BERTSCORE reference imple-
mentation3. For Sentence-BERT, we use a ver-
sion of size ‘base’ (270M parameters) that Reimers
and Gurevych (2020) have finetuned by distilling
the sentence embeddings of an English RoBERTa
model. The latter has in turn been fine-tuned on
50M English paraphrase pairs, which do not over-
lap with our test sets. The distillation was per-
formed using parallel sentences for 50 languages.

4.2 Datasets

We use the following datasets for our experiments
(statistics are reported in Appendix D):

English MRPC (Dolan and Brockett, 2005), a
corpus of sentence pairs automatically extracted
from news, and annotated with binary labels.

3https://github.com/Tiiiger/bert_score

We exclude samples where a re-annotation effort
by Kovatchev et al. (2018) has found inconsistent
labeling.

Russian ParaPhraser (Pivovarova et al., 2018),
a corpus of news headlines annotated on a three-
class ordinal scale. We follow the original setup
and create binary labels by merging precise and
near paraphrases into a single class.

Finnish and Swedish The Finnish Paraphrase
Corpus (Kanerva et al., 2021), a dataset of man-
ually selected subtitle lines and news headlines,
annotated on a four-class ordinal scale. A small
test set in Swedish is likewise available. We create
binary labels by categorizing all pairs with a label
of 4 as positive, and all below as negative.

PAWS-X We also include PAWS-X (Yang et al.,
2019), a challenge set of sentence pairs with high
word overlap in a total of 7 languages. The
dataset is based on English sentences extracted
from Wikipedia that have been paired with automat-
ically created derivative sentences, and annotated
with binary labels (Zhang et al., 2019). Test sets
in other languages have been created by manually
translating the English sentences. We report results
for German, Spanish, French, Japanese, Chinese
and an average over these languages. We do not re-
port results for English, since a part of the positive
examples in the original English dataset have been
created with automatic round-trip translation. The
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Sentence A Sentence B 

Flights 

from 

New York 

to Florida.

Flights from Florida to New York.

↑

Flights from NYC to Florida.

Flights to Florida from NYC.

Flights to Florida from New York.

Sentence-BERT

↑

↑

↑

↑

↑ ↑
↑

↑

Figure 2: An adversarial example originally used by Zhang et al. (2019), judged by three similarity metrics:
Sentence-BERT cosine similarity, rescaled BERTSCORE-F1 and NMTSCORE-cross. The arrows indicate whether
a paraphrase pair is assigned a higher or lower similarity than the pair in the first row, which is a non-paraphrase.

other languages are better suited for our analysis,
because the manual translation process has broken
the direct link between the original sentence and its
round-trip translation. We also do not report results
for Korean, since the Prism translation model we
use for our main experiments has not been trained
in that language.

4.3 Statistical Analysis
For all comparisons between the translation-based
and baseline measures we broadly follow the
methodology of the WMT Metrics Task (Freitag
et al., 2021). We perform paired bootstrap resam-
pling (Koehn, 2004) with 1000 repetitions to assess
the statistical significance of a difference between
two measures at α = 0.05. For each dataset, we
determine the top significance cluster, which is
printed in bold. This cluster contains the top mea-
sures that are not significantly outperformed by any
other measure. We also perform significance tests
for average metrics over multiple datasets by com-
bining the ith bootstrap sample of every dataset into
the ith bootstrap sample of the full benchmark. Our
analysis was implemented using the SacreROUGE
framework (Deutsch and Roth, 2020).

4.4 Monolingual Results
The results of monolingual paraphrase identifica-
tion are shown in Table 1. In the final column we
report the macro-average over all datasets, i.e., the
average of EN accuracy, RU AUC, FI AUC, SV AUC

and average PAWS-X accuracy.
Overall, the translation-based measures perform

better than the baselines that use surface similar-
ity or embeddings. They excel on the adversarial
PAWS-X dataset, with an improvement of 10–15
points over the baselines. On the other datasets
the accuracy of the translation-based measures is
comparable to the embedding baselines.

It should be noted that the embedding baselines
and the translation-based measures are not perfectly
comparable, since multilingual models with differ-
ent hyperparameters and pretraining languages are
used. The three translation-based measures are
perfectly comparable, since they rely on the same
NMT model. Translation cross-likelihood has a
slightly higher accuracy than direct or pivot trans-
lation probability in monolingual paraphrase detec-
tion. Appendix A7 shows that this finding can be
reproduced with an alternative multilingual NMT
system in two different sizes (M2M-100; Fan et al.,
2021).

4.5 Qualitative Analysis
A qualitative comparison suggests that translation-
based measures are superior in distinguishing num-
bers, named entities and enumerations, but that
embeddings can better capture the similarity of
sentences with similar meaning but very different
phrasing (Appendices F and G).

Figure 2 illustrates this observation on the exam-
ple of the adversarial pair mentioned in the intro-
duction. Both Sentence-BERT and BERTSCORE

assign a higher score to the non-paraphrase with a
high word overlap, and a lower score to paraphrases
with a difference in word order or entity naming.
NMTSCORE accurately outputs a higher score for
the two paraphrases than for the non-paraphrase but
still fails on a fourth sentence pair that combines
both phenomena.

4.6 Cross-lingual Results
As discussed in Section 2, all three translation-
based measures can be applied to both monolingual
and cross-lingual sentence pairs. The same holds
for the baseline measures, even though this use case
has been less prominent in previous work. We rear-
range the PAWS-X dataset to create a cross-lingual
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EN EN EN EN EN DE DE DE DE ES ES ES FR FR JA
+ + + + + + + + + + + + + + + Avg.

DE ES FR JA ZH ES FR JA ZH FR JA ZH JA ZH ZH

Surface similarity baselines

CHRF 54.9 54.9 54.3 54.6 54.8 54.9 54.5 54.5 54.6 54.7 54.6 54.8 54.5 54.7 54.7 54.7
SENTBLEU 56.4 56.2 56.3 54.6 54.7 56.0 56.2 54.5 54.5 56.1 54.6 54.7 54.5 54.6 54.7 55.2

Embedding baselines

Sentence-BERT 53.9 54.7 54.8 54.6 54.7 55.5 56.0 54.5 54.5 56.2 54.6 54.6 54.5 54.6 54.7 54.8
BERTSCORE-F1 57.4 57.5 57.0 55.1 54.8 57.2 57.3 54.6 54.5 57.6 54.7 54.9 54.6 54.6 55.0 55.8

Translation-based measures

NMTSCORE-direct 76.4 76.4 76.1 68.6 68.8 73.3 74.5 66.0 66.9 74.3 66.7 66.8 66.8 67.4 64.4 70.2
NMTSCORE-pivot 77.4 76.9 77.3 68.9 70.7 75.0 76.0 67.0 69.5 75.5 67.6 69.5 67.5 69.9 66.5 71.7
NMTSCORE-cross 76.0 75.9 75.9 65.2 66.0 74.5 75.2 64.8 65.8 74.2 64.6 66.2 64.4 65.7 65.3 69.3

Table 2: Comparison of text similarity measures on cross-lingual paraphrase identification using the PAWS-X
dataset. Results within the top significance cluster are printed in bold.

CHRF SENTBLEU SBERT BERTSC. NMTSC.-dir. NMTSC.-pivot

SENTBLEU 0.56±.01
Sentence-BERT 0.42±.01 0.35±.01
BERTSCORE 0.52±.01 0.45±.01 0.46±.01
NMTSCORE-direct 0.49±.01 0.45±.01 0.52±.01 0.54±.01
NMTSCORE-pivot 0.44±.01 0.40±.01 0.50±.01 0.47±.01 0.77±.01
NMTSCORE-cross 0.47±.01 0.41±.01 0.52±.01 0.52±.01 0.74±.01 0.75±.01

Table 3: Sample-level Kendall correlation between the measures analyzed in this paper, averaged across the
5 datasets in our paraphrase identification benchmark. We report confidence intervals with bootstrap resampling.

version of the benchmark that covers 15 language
pairs. This is possible because the non-English ver-
sions of PAWS-X are translations from the English
version. For example, we can create a cross-lingual
sentence pair by pairing the English version of sen-
tence A with the German version of sentence B.

Note that even though this process makes use of
translation, simply reversing the translation process
is not sufficient for a similarity measure to solve
the resulting task, unlike with retrieval tasks that
are constructed from parallel data. As such, the
cross-lingual PAWS-X tasks are at least as hard as
the original monolingual PAWS-X tasks.

Results are reported in Table 2. Compared to
monolingual PAWS-X, all measures perform worse
by up to 4 points on average. Overall, pivot transla-
tion probability is the most accurate similarity mea-
sure for cross-lingual paraphrase identification. It
should be noted, however, that both direct and pivot
translation probability require the input languages
to be specified, while translation cross-likelihood
(like Sentence-BERT and BERTSCORE) allows
them to remain unspecified.

4.7 Correlation to Alternative Measures

Calculating the pairwise correlation between the
measures allows us to learn about similarities be-
tween the measures. Table 3 visualizes the av-
erage Kendall correlations on the monolingual
paraphrase identification datasets. The translation-
based measures form a cluster with a high mutual
correlation, but still seem to behave differently to
some degree, especially cross-likelihood.

4.8 Effect of Normalization

Table 4 presents an ablation study for the normal-
izations that we applied to the similarity measures
(Section 2.4). Overall, reconstruction normaliza-
tion leads to a clear improvement. On the English
dataset, normalization does not have a positive
effect on pivot translation probability and cross-
likelihood. However, since we also use English as
an intermediary language for these measures, we
do not think that this special case should affect our
conclusions regarding the ablation study.
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Individual datasets PAWS-X dataset Macro-
Language EN RU FI SV DE ES FR JA ZH average
Metric Acc. AUC AUC AUC Acc. Acc. Acc. Acc. Acc. Avg.

NMTSCORE-direct 72.6 84.1 72.4 70.6 73.9 73.5 75.7 66.4 68.9 71.7 74.3
– no normalization† 72.3 83.3 65.8 67.8 71.8 72.8 73.1 62.0 67.1 69.3 71.7

NMTSCORE-pivot 72.1 84.9 70.3 70.9 77.4 76.2 76.9 68.4 70.8 74.0 74.4
– no normalization 73.0 81.3 64.4 66.5 70.2 71.4 70.9 61.5 63.5 67.5 70.5

NMTSCORE-cross 71.7 86.6 71.2 72.4 76.6 75.1 75.6 65.8 70.5 72.7 74.9
– no normalization 71.9 86.1 70.6 71.5 75.2 74.3 75.5 65.0 69.3 71.8 74.4

Table 4: Ablation study for the reconstruction normalizations proposed in Section 2.4. The measure marked with
(†) corresponds to the Prism measure (Thompson and Post, 2020). Underlined results are results that are signifi-
cantly better than the other variant; in most cases reconstruction normalization leads to a significant improvement.

5 Evaluation of Data-to-Text Generation

We now turn to a different application of sentence
similarity, namely the reference-based evaluation
of data-to-text generation. While the good perfor-
mance of the translation-based measures on para-
phrase identification is encouraging, this setting
poses slightly different requirements on text simi-
larity metrics. Specifically, it is not necessary that
the similarities of paraphrases and non-paraphrases
are completely separable, but only that multiple
hypotheses are correctly ranked with respect to a
shared reference. Moreover, it is relevant in which
direction the measure is calculated. Below we sep-
arately evaluate both directions: sim(hyp|ref) and
sim(ref|hyp), as well as their average.

5.1 RDF-to-text

The WebNLG 2020 challenge (Ferreira et al., 2020)
includes a task that requires generating natural lan-
guage sentences from RDF triple sets. Human
annotators have rated system output in English and
Russian using five criteria: data coverage, rele-
vance, correctness, text structure, and fluency. In
this paper we average the first three criteria to cal-
culate an overall judgment of adequacy for each
submitted sample (averaging first across annotators,
then across individual criteria).

Since the dataset contains multiple references
per RDF triple set (statistics are reported in Ta-
ble A5), we need to aggregate the scores computed
by the automated metrics. We follow previous
work and select the maximum score across the ref-
erences.

Figure 3 shows the Kendall correlation between
the similarity measures and the human judgments.

We report correlation on the level of the individ-
ual samples (also called global correlation). Since
such meta-evaluations of metrics are known to have
high statistical uncertainty, we follow Deutsch et al.
(2021) and estimate confidence intervals using a
Boot-Both technique. As we did before, we per-
form pairwise hypothesis tests and visualize the top
significance cluster for each language.

Overall, direct translation probability has the
highest correlation to human judgments of ade-
quacy, indicating that translation-based measures
are a competitive evaluation metric for RDF-to-text
generation.

5.2 AMR-to-text

While the WebNLG dataset contains the output
of various systems, it only encompasses two lan-
guages. We thus complement our analysis with
data collected by Fan and Gardent (2020) to evalu-
ate a single multilingual AMR-to-text system in 15
additional European languages. This dataset con-
tains 50 sentences per language, with ratings by
up to 10 native speakers along the criteria mor-
phology, word order, semantic accuracy, and good
paraphrases. The languages are listed in Table A6.

Here, we focus on semantic accuracy. We cal-
culate the Kendall correlation between each met-
ric and the average human rating individually per
language, and then report the average across all
languages. Figure 4 visualizes the confidence inter-
vals, showing that the translation-based measures
are more reliable in judging semantic accuracy than
the baseline measures.
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English Russian

Figure 3: Sample-level Kendall correlation of text similarity measures to human judgments of WebNLG 2020
RDF-to-text submissions. A black tick denotes the correlation coefficient, and error bars denote 95% confidence
intervals. Measures in the top significance cluster are printed in bold.

0.0 0.2 0.4 0.6 0.8 1.0
Average Kendall correlation

CHRF
SENTBLEU
Sentence-BERT
BERTSCORE F1
– precision only
– recall only
NMTSC.-direct
– hyp|ref only
– ref|hyp only
NMTSC.-pivot
– hyp|ref only
– ref|hyp only
NMTSC.-cross
– hyp|ref only
– ref|hyp only

Multilingual

Figure 4: Sample-level Kendall correlation of text sim-
ilarity measures to human judgments of AMR–to-text
output (Fan and Gardent, 2020), averaged across 15 lan-
guages. A black tick denotes the average correlation,
and error bars denote 95% confidence intervals. Mea-
sures in the top significance cluster are printed in bold.

6 Related Work

Various strategies have been suggested to leverage
translation for paraphrastic similarity. Most related
to translation cross-likelihood is perhaps the work
of Barzilay and McKeown (2001), who extracted
multiple translations from a bilingual parallel cor-
pus assuming that sentences that are aligned to the
same counterpart in the other language have sim-
ilar meaning. In this paper, we revisit this idea
in the context of NMT. A different approach was
pursued by Bannard and Callison-Burch (2005),

who applied phrase-based statistical MT to esti-
mate round-trip translation probability. This cor-
responds to the NMT approach of Mallinson et al.
(2017), who also explore the use of multiple trans-
lation variants (multi-pivoting) or multiple pivot
languages (multilingual pivoting). In a variation of
this approach, Wieting et al. (2017) and Wieting
and Gimpel (2018) used round-trip translation to
generate training data for a paraphrastic sentence
embedding model.

Multilingual MT allows to avoid pivoting by us-
ing zero-shot paraphrasing. This has been exploited
for model analysis (Tiedemann and Scherrer, 2019)
and reference-based evaluation (Thompson and
Post, 2020). Agrawal et al. (2021) investigate al-
ternative techniques to estimate direct translation
probability for quality estimation. In the context of
parallel corpus filtering (Junczys-Dowmunt, 2018),
Chen et al. (2020) propose trie-constrained decod-
ing to improve the efficiency of pairwise compar-
isons. Future work could apply their method to the
other translation-based measures.

Similarity of NMT representations An alterna-
tive line of research has used representations of
NMT encoders to compare sentences, ever since
it has been demonstrated that such representations
can be informative (Cho et al., 2014; Sutskever
et al., 2014). While bilingual NMT has not been
found to be particularly useful for unsupervised
similarity (Hill et al., 2016; Cífka and Bojar, 2018),
multilingual NMT representations have proven
more successful (Schwenk and Douze 2017; John-
son et al. 2017; among others). However, rep-
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resentation learning approaches that use parallel
training data without an explicit translation objec-
tive are highly competitive (Wieting et al., 2019;
Conneau et al., 2020; Hu et al., 2021), raising the
question whether translation is indeed necessary
for embedding-based similarity measures.

7 Conclusion

Our analysis highlights theoretical and empirical
properties of translation-based text similarity mea-
sures in a multilingual setting. Direct translation
probability is the most straightforward measure (an
empirical comparison of inference times is found
in Appendix A). However, it treats inputs as target
sequences, and we show that accuracy on para-
phrase identification can be clearly improved by
normalizing with reconstruction probability.

Pivot translation probability is advantageous es-
pecially when performing cross-lingual compar-
isons. Finally, translation cross-likelihood has the
advantage that it achieves symmetry with a single
translation direction, and that the input languages
need not be specified. The latter property also has
interesting consequences for reference-based eval-
uation: The metric is expected to ignore whether
the generated text matches the language of the ref-
erence. This can be seen as a rigorous disentangle-
ment of adequacy from fluency.

In comparison to baseline measures, translation-
based measures are generally slower but show high
accuracy on multilingual paraphrase identification,
comparatively good reliability on reference-based
evaluation of data-to-text generation, and little cor-
relation to alternative measures. Our findings thus
show the usefulness of NMT translation probabili-
ties for similarity tasks that require high attention
to detail.

Limitations

The experiments in this paper are performed on
mid- and high-resource languages. MT on low-
resource languages might not yet be good enough
for translation-based similarity measures to be use-
ful. Still, our analysis extends to more languages
than previous work, including languages that have
little relatedness to English. Another limitation of
translation-based text similarity measures is that
the maximum sequence length supported by NMT
models is often relatively short. In Appendix D
we report the average character count of the text
sequences used in this paper.
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A Inference Time

Similarity measure ms per pair

CHRF 0.6
SENTBLEU 0.4
Sentence-BERT 30.7
BERTSCORE-F1 4.5

NMTSCORE-direct 22.4
– without normalization 12.3

NMTSCORE-pivot 147.8
– without normalization 75.2

NMTSCORE-cross 75.0
– without normalization 75.0

Table A1: Inference time of the measures analyzed in this paper, averaged across the sentence pairs in the MRPC
validation set. We measure the average time needed to compute a measure on a sentence pair in the MRPC
validation set on a RTX 2080 Ti GPU. We use a batch size of 32 and compute the measures in both directions
whenever this is required to make the measure symmetrical.

B Description of Models

Name N dmodel dffn h Param. Vocab. Lang. License URL

paraphrase-xlm-r-
multilingual-v1

12 768 3072 12 278M 250k 50 Apache 2.0

XLM-Roberta-large
(up to layer 17)

17 1024 4096 16 472M 250k 100 MIT

Prism 16 1280 12288 20 745M 64k 39 MIT
m2m100_418M 24 1024 4096 16 484M 128k 100 MIT
m2m100_1.2B 48 1024 8192 16 1239M 128k 100 MIT

Table A2: Hyperparameters of the Transformer models used in this paper, as well as number of parameters, vocab-
ulary size and number of supported languages.

C Metric Version Signatures

CHRF: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.0.0

SENTBLEU: nrefs:1|case:mixed|eff:yes|tok:13a|smooth:exp|version:2.0.0

– JA: nrefs:1|case:mixed|eff:yes|tok:ja-mecab-0.996-IPA|smooth:exp|version:2.0.0

– ZH: nrefs:1|case:mixed|eff:yes|tok:zh|smooth:exp|version:2.0.0

BERTSCORE: xlm-roberta-large_L17_no-idf_version=0.3.11(hug_trans=4.17.0)

NMTSCORE:
NMTScore-direct|model:prism|normalized|both-directions|v0.2.0|hf4.17.0

NMTScore-pivot|pivot-lang:en|model:prism|normalized|both-directions|v0.2.0|hf4.17.0

NMTScore-cross|tgt-lang:en|model:prism|normalized|both-directions|v0.2.0|hf4.17.0
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D Dataset Statistics

Split Positive pairs Negative pairs Avg. chars License Domains URL

EN Validation 239 128 109 unspecified news
Test 1002 566 107

RU Test 1152 772 60 MIT License news

FI Test 15368 5574 73 CC-BY-SA 4.0 subtitles, news

SV Test 783 298 45 CC-BY-SA 4.0 subtitles

DE Validation 831 1101 119 public domain wikipedia
Test 895 1073 121

ES Validation 847 1115 117
Test 907 1092 118

FR Validation 860 1132 120
Test 903 1083 121

JA Validation 854 1126 58
Test 883 1063 60

ZH Validation 853 1131 43
Test 894 1081 44

Table A3: Dataset statistics for our multilingual paraphrase identification benchmark.

Validation Test
Positive pairs Negative pairs Positive pairs Negative pairs

EN+DE 1662 2202 1790 2146
EN+ES 1694 2230 1814 2184
EN+FR 1720 2264 1806 2166
EN+JA 1708 2252 1766 2126
EN+ZH 1706 2262 1788 2162
DE+ES 1640 2168 1790 2146
DE+FR 1658 2194 1788 2132
DE+JA 1646 2184 1748 2094
DE+ZH 1648 2190 1772 2126
ES+FR 1688 2220 1806 2166
ES+JA 1678 2208 1766 2124
ES+ZH 1674 2218 1788 2160
FR+JA 1702 2242 1764 2114
FR+ZH 1702 2252 1784 2142
JA+ZH 1688 2240 1744 2104

Table A4: Dataset statistics for the cross-lingual PAWS-X benchmark.
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Language Documents Systems Samples Avg. references Avg. reference characters

EN 178 16 2848 2.9 132
RU 110 7 770 2.5 123

Table A5: Statistics for the WebNLG 2020 RDF-to-text dataset of human judgments.

Language DA EL ES FI IT NL PT SV BG CS ET HU LV PL RO

Samples 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
Avg. ref. chars 56 61 60 56 62 61 59 52 130 129 42 138 129 151 130

Table A6: Statistics for the multilingual AMR–to-text dataset of human judgments.

E Other NMT Models

Individual datasets PAWS-X dataset Macro-
Language EN RU FI SV DE ES FR JA ZH average
Metric Acc. AUC AUC AUC Acc. Acc. Acc. Acc. Acc. Avg.

m2m100_418M

NMTSCORE-direct 72.0 83.2 71.1 71.1 71.1 69.0 72.3 61.9 65.4 67.9 73.1
NMTSCORE-pivot 72.4 84.2 68.2 70.3 73.2 72.0 72.2 64.0 67.9 69.9 73.0
NMTSCORE-cross 72.1 85.1 69.7 71.5 71.6 72.6 72.2 63.1 66.7 69.2 73.5

m2m100_1.2B

NMTSCORE-direct 72.9 84.0 71.4 71.2 73.0 70.2 72.4 62.4 66.4 68.9 73.7
NMTSCORE-pivot 74.1 84.5 69.1 69.6 75.1 73.0 73.3 65.8 70.2 71.5 73.8
NMTSCORE-cross 72.8 85.0 70.0 71.0 74.1 73.0 73.3 66.2 69.5 71.2 74.0

Table A7: Comparison of translation-based text similarity measures when using two other multilingual NMT
models (M2M-100; Fan et al., 2021). Overall, the accuracy of all three measures is slightly lower compared to the
Prism NMT model but still competitive compared to the embedding baselines.

EN EN EN EN EN DE DE DE DE ES ES ES FR FR JA
+ + + + + + + + + + + + + + + Avg.

DE ES FR JA ZH ES FR JA ZH FR JA ZH JA ZH ZH

m2m100_418M

NMTSCORE-direct 72.5 70.9 72.2 63.3 65.0 67.9 69.0 61.0 63.1 68.4 60.6 62.0 61.4 63.2 60.6 65.4
NMTSCORE-pivot 73.8 73.1 73.6 63.9 65.4 71.9 70.5 63.0 63.8 70.1 62.8 64.3 62.7 63.5 62.0 67.0
NMTSCORE-cross 72.8 72.3 72.2 61.9 62.3 69.7 69.0 60.2 63.2 69.8 61.5 61.5 60.5 61.7 61.9 65.4

m2m100_1.2B

NMTSCORE-direct 75.0 72.4 73.0 64.8 67.0 71.4 71.7 62.7 65.1 69.8 61.5 63.4 62.7 65.1 62.6 67.2
NMTSCORE-pivot 75.9 74.0 74.4 66.4 67.5 72.3 72.4 64.4 66.5 70.9 63.4 65.6 64.1 64.9 63.4 68.4
NMTSCORE-cross 74.8 74.1 73.8 63.0 63.6 70.9 70.5 61.4 63.5 71.3 61.6 62.5 61.8 63.8 63.3 66.7

Table A8: Comparison of translation-based text similarity measures on the cross-lingual PAWS-X dataset, using
two other multilingual NMT models (M2M-100; Fan et al., 2021). Again, the average accuracy is lower compared
to the Prism NMT model that we used for the main experiments, but superior to the baselines.
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F MRPC Examples

Sentence Pair Gold SBERT NMTSCORE

The Dow Jones Industrial Average fell 0.7 per cent to 9,547.43
while the S&P 500 was 0.8 per cent weaker at 1,025.79.

0 0.93 0.21

The Dow Jones industrial average fell 44 points, or 0.46 per-
cent, to 9,568.

So far, they have searched Pennsylvania, Ohio, Michigan, Illi-
nois and Indiana, authorities in those state said.

0 0.81 0.08

So far, authorities also have searched areas in Pennsylvania,
Ohio, Indiana, and Michigan.

MEN who drink tea, particularly green tea, can greatly reduce
their risk of prostate cancer, a landmark WA study has found.

1 0.91 0.14

DRINKING green tea can dramatically reduce the risk of men
contracting prostate cancer, a study by Australian researchers
has discovered.

Bashir felt he was being tried by opinion not on the facts,
Mahendradatta told Reuters.

1 0.87 0.18

Bashir also felt he was being tried by opinion rather than facts
of law, he added.

Table A9: MRPC examples with a high disagreement between Sentence-BERT cosine similarity and
NMTSCORE-cross.

Sentence Pair Gold BERTSCORE NMTSCORE

Batters faced: Sheets 28, Vizcaino 2, DeJean 4, Clement 26,
Alfonseca 4, Guthrie 2, Farnsworth 4.

0 0.50 0.07

Batters faced: Franklin 25, Kieschnick 7, Foster 2, Leskanic 3,
DeJean 4, Prior 28, Alfonseca 2, Guthrie 2, Cruz 7, Remlinger
6.

But the technology-laced Nasdaq Composite Index was up 5.91
points, or 0.35 percent, at 1,674.35.

0 0.45 0.07

The broader Standard & Poor’s 500 Index .SPX was off 1.07
points, or 0.11 percent, at 1,010.59.

They also found shortness was associated with a family history
of hearing loss.

1 0.46 0.09

Shortness was found twice as often in those with hearing loss.

Kollar-Kotelly has scheduled another antitrust settlement com-
pliance hearing for January.

1 0.41 0.08

The judge scheduled another oversight hearing for late Jan-
uary.

Table A10: MRPC examples with a high disagreement between rescaled BERTSCORE-F1 and
NMTSCORE-cross.
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G Cross-lingual PAWS-X Examples

Sentence Pair Gold SBERT NMTSCORE

EN: Write once , run anywhere 0 0.76 0.21

FR: Écrivez n’importe où, une fois exécuté

EN: Worcester is a town and county city of Worcestershire in
England .

0 0.93 0.37

DE: Worcestershire ist eine Stadt und Kreisstadt von Worcester,
England.

EN: The Jiul de Vest River is a tributary of the Jidanul River in
Romania .

0 0.78 0.30

DE: Der Jidanul ist ein Nebenfluss des Jiul de Vest, Rumänien.

EN: The Cugir River is a tributary of the Ghis, ag River in
Romania .

1 0.89 0.48

DE: Der Fluss Cugir ist ein Nebenfluss des Ghiaag in
Rumänien.

EN: Film stars Lily Rabe , Timothée Chalamet , Lili Reinhart ,
Anthony Quintal , Oscar Nunez and Rob Huebel .

1 0.80 0.49

FR: Le film met en vedette Oscar Nunez, Rob Huebel, Timothée
Chalamet, Lily Rabe, Anthony Quintal et Lili Reinhart.

Table A11: Cross-lingual PAWS-X examples with a high disagreement between Sentence-BERT cosine similarity
and NMTSCORE-pivot.
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