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Abstract

N -gram language models (LM) have been
largely superseded by neural LMs as the latter
exhibits better performance. However, we find
that n-gram models can achieve satisfactory
performance on a large proportion of testing
cases, indicating they have already captured
abundant knowledge of the language with rel-
atively low computational cost. With this ob-
servation, we propose to learn a neural LM that
fits the residual between an n-gram LM and
the real-data distribution. The combination of
n-gram and neural LMs not only allows the neu-
ral part to focus on the deeper understanding of
language but also provides a flexible way to cus-
tomize an LM by switching the underlying n-
gram model without changing the neural model.
Experimental results on three typical language
tasks (i.e., language modeling, machine trans-
lation, and summarization) demonstrate that
our approach attains additional performance
gains over popular standalone neural models
consistently. We also show that our approach al-
lows for effective domain adaptation by simply
switching to a domain-specific n-gram model,
without any extra training. Our code is released
at https://github.com/ghrua/NgramRes.

1 Introduction

N -gram language model (LM) was widely adopted
in a broad range of natural language processing
(NLP) applications, such as input method (Chen
et al., 2019), statistical machine translation (Brown
et al., 1990), and audio speech recognition (Bahl
et al., 1983). However, with the development of
deep learning, neural LMs have gradually taken the
place of n-gram LMs and became the new standard
in recent literature (Merity et al., 2017; Vaswani
et al., 2017; Radford et al., 2019). One critical
reason is the superior performance of neural LMs,
e.g., the GPT-2 model (Radford et al., 2019) can
generate text near the human level, outperforming
n-gram LMs by large margins.
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Figure 1: Sentence-level perplexity (PPL) of 5-gram LM
and GPT-2 LM on the validation dataset of wikitext-103.
We sort sentences in the validation dataset according to
their 5-gram PPL scores, and collect them into 5 bins
with an equal number of sentences. The reported PPL
score of each bin is the average over the sentences in it,
and the y-axis uses a logarithmic scale. Details of the
dataset and LMs are shown in section 5.1.

Despite that neural LMs have surpassed n-gram
models at the macro level, we find that n-gram
LMs are still attractive: they are able to achieve
satisfactory performance on a large proportion of
testing cases at a much lower cost than neural LMs.
As observed in Figure 1, our preliminary experi-
ments show that the performance of 5-gram LM
is close to the GPT-2 model trained from scratch
on 3 out of 5 bins ( 1, 2, and 5). Moreover, the
performance of 5-gram on the first bin is slightly
better than GPT-2. Because training a neural LM
is much more expensive, spending effort on learn-
ing the knowledge that can be cheaply captured by
n-gram seems a waste.

Inspired by the above observation, we propose to
learn a neural LM that focuses on the information
gap that has not been captured by an n-gram model:
F := G −Q, where G and Q are the real-data dis-
tribution and the n-gram prediction distribution
respectively, which is in a similar spirit to resid-
ual learning (He et al., 2016). More concretely,
we combine the logits (the unnormalized probabil-
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ity scores before softmax layer) of a neural model
and those derived from an n-gram model. The joint
neuro-symbolic system at least brings two appeal-
ing characteristics. First, since the neural model
stands on the shoulders of the shallow n-gram LM,
it can concentrate on deeper understanding. Sec-
ond, the underlying n-gram LM can be purpose-
fully switched without changing the neural model,
which offers great flexibility in tackling scenarios
such as domain adaptation. That is, we can adapt
the model to a specific domain by changing the
underlying n-gram LM in a plug-and-play man-
ner, without changing any parameters of the neural
model.

We conduct extensive experiments to evaluate
the proposed approach. Experiments on the stan-
dard benchmarks of three typical language tasks,
including language modeling, machine translation,
and summarization, show that our approach can
improve the performance of recent state-of-the-
art neural models consistently and considerably.
For example, our approach outperforms popular
baseline models by at least 0.7 PPL scores on the
wikitext-103 dataset for language modeling, 0.65
BLEU scores on average on IWSLT datasets for
machine translation, and 0.36 ROUGE-L scores
on the CNN/DailyMail dataset for summarization.
Moreover, on the language modeling task, when
switching the underlying n-gram LM to a particular
domain-specific one (e.g., IT, Koran, Law, Medi-
cal, and Subtitles) in a plug-and-play manner, our
model can reduce the PPL by 5.4 points on aver-
age without any domain-specific training of the
neural part. Remarkably, the performance of our
approach is even close to fine-tuning the whole
model on domain-specific corpora.

Our contributions are three-fold:

• We propose a residual learning approach for
two heterogeneous structures, i.e., n-gram and
neural LMs, which forces the neural LM to
approximate the information gap that has not
been captured by n-gram LM.

• Our approach is able to improve the perfor-
mance of recent state-of-the-art neural mod-
els consistently and considerably on language
modeling, machine translation, and summa-
rization.

• Experiments on domain adaptation demon-
strate that our approach can effectively and
cheaply adapt the model to a specific domain

by changing the used n-gram LM in a plug-
and-play manner, without changing any pa-
rameters of the neural model.

2 Related Work

Language Model The n-gram language model
(LM) has been widely used in lots of applications
of natural language processing (NLP) since a long
time ago (Jurafsky, 2000). The emergence of ad-
vanced smoothing technologies makes the n-gram
model able to provide a better estimation of hu-
man languages (Kneser and Ney, 1995; Chen and
Goodman, 1996; Heafield et al., 2013). In statis-
tical machine translation (Brown et al., 1990) and
automatic speech recognition (Bahl et al., 1983),
the decoder-side n-gram model is critical to esti-
mate the quality of generated candidates. In recent
literature on input methods, the n-gram LM is still
the most popular choice for providing word sug-
gestions (Huang et al., 2015; Chen et al., 2019),
because of its low cost and low latency.

However, with the development of deep neural
networks, the macro-level performance of neural
LM has surpassed that of n-gram LM by a large
margin. Comparing with the n-gram LM, one
big advantage of the neural LM basing on recur-
rent neural network (Hochreiter and Schmidhuber,
1997; Chung et al., 2014) and attention neural net-
work (Vaswani et al., 2017; Radford et al., 2019) is
their ability to modeling long-distance dependen-
cies (Grave et al., 2017). The success of neural
LM can also be observed in the big improvement
achieved in lots of downstream tasks, e.g., text gen-
eration (Holtzman et al., 2020; Welleck et al., 2020;
Su et al., 2022; Xu et al., 2022; Li et al., 2022; Cai
et al., 2022), machine translation (Bahdanau et al.,
2015; Luong and Manning, 2015; Vaswani et al.,
2017; Cai et al., 2021) and summarization (Li et al.,
2017; See et al., 2017; Bi et al., 2020).

Although neural LM has outperformed n-gram
LM at the macro level, we find that n-gram LM can
achieve satisfactory performance on a large portion
of testing cases. Since the training cost of neural
LM is much more expensive and the model capacity
is fixed, we hypothesize that it is not necessary to
train the neural LM to learn the knowledge that can
be captured by n-gram LM at a much lower cost.
Therefore, we propose a residual learning method
to let the neural LM learn the gap of knowledge
that has not been captured by n-gram LM.
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Residual Learning Residual learning is a useful
technique for lots of neural networks in computer
vision (CV) and natural language processing (NLP).
He et al. (2016) propose deep residual learning to
alleviate the training difficulties of deep models,
which has been the backbone of lots of tasks in
CV. In NLP, Wang and Tian (2016) and Prakash
et al. (2016) use the residual learning technique to
train deep recurrent neural networks for text gener-
ation. Different from previous works that conduct
residual learning over different layers, Werlen et al.
(2018) propose to aggregate the information of his-
torical predictions using residual learning. In He
et al. (2021), they use the residual learning to prop-
agate attention scores across different layers of the
Transformer-based model.

Most of these works conduct residual learning
over homogeneous model structures, e.g., stacked
identical layers of the same model. In our work,
we use residual learning to combine the neural and
symbolic models, i.e., learn a neural LM that ap-
proximates the information that has not been cap-
tured by the n-gram model.

3 Background

Models that estimate the probabilities of sequences
of words are called language models (LM) (Juraf-
sky, 2000). Let x = {x1, x2, ..., xL} be a sequence
of words with length L. The probability of P (x)
can be formalized according to the chain rule of
probability:

P (x) = P (x1)P (x2|x1) . . . P (xL|xL−1
1 )

=
L∏

k=1

P (xk|xk−1
1 ), (1)

where xk−1
1 is called the prefix or context of xk. In

this section we will briefly introduce two kinds of
language models, the n-gram and neural language
models, to compute the probability in Eq. (1).

3.1 N -gram Language Model

Among lots of variants of n-gram LMs, the n-gram
LM with modified Kneser-Ney smoothing is widely
adopted in lots of related tasks, because of its low
perplexity and efficiency (Kneser and Ney, 1995;
Chen and Goodman, 1996; Heafield et al., 2013).
Like most n-gram LMs, the Kneser-Ney approxi-
mates the entire context xk−1

1 in Eq. (1) by the last

n− 1 words in the context:

P (xk|xk−1
1 ) ≈ PNG(xk|xk−1

k−n+1). (2)

In Kneser-Ney algorithm, the estimation of
PNG(xk|xk−1

k−n+1) is defined according to a recur-
sive equation:

PNG(xk|xk−1
k−n+1) = U(xk|xk−1

k−n+1)+

b(xk−1
k−n+1)PNG(xk|xk−1

k−n+2),

(3)

U(xk|xk−1
k−n+1) =

c(xk
k−n+1)− d

∑
w c(xk−1

k−n+1w)
,

where w indicates a word appears after xk−1
k−n+1,

b(·) is the backoff value for lower-order estimation,
c(·) is the adjusted counts, d is the discounts for
smoothing (Jurafsky, 2000; Heafield et al., 2013)1.
According to Eq. (3), Kneser-Ney allows us to
assign probabilities for unseen n-grams (e.g., 5-
grams), using the lower-order information (e.g., 4-,
3-, or even uni-grams).

3.2 Neural Language Model

An neural LM typically estimates the probability
of xk based on the whole context xk−1

1 . The pa-
rameter θ of a neural LM is optimized through the
following MLE loss:

LNU =
∑

x∈D

L∑

k=1

logPNU (xk|xk−1
1 ; θ) (4)

where D is the training dataset. The probability of
PNU (xk|·) is computed by:

PNU (xk|xk−1
1 ; θ) = softmax(ϕ(hk))[xk], (5)

where hk is the hidden vector output by the last
layer of an neural LM, e.g., the GPT-2 model (Rad-
ford et al., 2019) or LSTM model (Grave et al.,
2017). The [xk] is defined as taking the component
regarding to xk in a vector, i.e., the probabilistic
distribution got from softmax in this equation. The
ϕ(·) is a linear layer that transforms the hidden vec-
tor hk to a vector in the vocabulary space, which is
also called the logits.

1More details about adjusting counts and computing the
backoff values and discounts are shown in Jurafsky (2000)
and Heafield et al. (2013).
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4 Methodology

4.1 Motivation
The main idea of our work is to use the neural
LM to approximate a residual function. Given the
context xk−1

1 in the language modeling task, let us
consider G(xk−1

1 ) as the golden-truth distribution
of the next word, and

Q(xk−1
1 ) = PNG(X|xk−1

k−n+1) (6)

as the prediction distribution of the n-gram LM,
where X is the random variable and the proba-
bility PNG(X = xk|xk−1

k−n+1) is calculated ac-
cording to Eq. (3). Since the n-gram distribu-
tion Q(xk−1

1 ) has captured abundant information
of the language as we discussed in the introduc-
tion, one interesting question is: can we use a
neural LM to approximate the residual function
F(xk−1

1 ) := G(xk−1
1 )−Q(xk−1

1 )? This is similar
to the residual learning in He et al. (2016). If it is
possible, we can release the burden of neural LMs
on learning the information that has been captured
by n-gram LMs, e.g., short-distance dependencies,
and provide a flexible way to customize an LM by
switching the underlying n-gram model without
changing the neural model.

4.2 Learning Objective
Ideally, to train a neural LM that approximates
the residual function, one way is to re-define the
PNU (xk|·) in Eq. (5) as follows:

PNU (xk|xk−1
1 ; θ) = F(xk−1

1 )[xk]+

PNG(xk|xk−1
k−n+1),

where F(·) is parameterized by the neural model
θ, and PNG(xk|·) is defined in Eq. (3). Then we
can optimize the MLE loss in Eq. (4) based on
the new PNU (xk|·), which is equivalent to approx-
imate real-data distribution G by F + Q. How-
ever, directly optimizing this objective may have
some problems. If F(·) is unbounded, PNU de-
fined in this equation may not be guaranteed as a
valid probabilistic distribution. In contrast, if F(·)
is bounded as a valid distribution, this objective
would become the ensemble of a neural LM and
n-gram LM. Since n-gram is a weaker model, the
ensemble of them is more likely to achieve worse
performance than the vanilla neural LM, as shown
in the experimental results of section 5.1.

To address these issues, we propose to define
residual approximation at the logits level. In the

language modeling task, we can map the proba-
bilistic distribution back to its logits and conduct
residual learning as follows:

F ′(xk−1
1 ) : = softmax−1

(
G(xk−1

1 )
)
−

softmax−1
(
Q(xk−1

1 )
)

(7)

softmax−1(p) = logp+ C, (8)

where F ′(·) is the residual function at the log-
its level, softmax−1(p) is the reverse function of
softmax that maps the probabilistic distribution p
to its logits, and C is a constant. One reason that we
conduct residual learning at the logits level is that
logits are highly correlated to the final distribution.
Moreover, since the value of logits is in the real
number space, training the neural LM becomes
more tractable by making sure that its logits are
close to F ′(xk−1

1 ). Therefore, the final PNU (xk|·)
defined in our work is:

PNU (xk|xk−1
1 ; θ) = softmax

(
F ′(xk−1

1 ) + α×

softmax−1
(
Q(xk−1

1 )
))

[xk]

(9)

where α is a hyper-parameter to control the smooth-
ness of the logits of the n-gram distribution
Q(xk−1

1 ), and F ′(·) is approximated by the log-
its ϕ(hk) of a neural LM. We can use the definition
in Eq. (9) to optimize the MLE loss in Eq. (4).

4.3 Relation to Re-weighting
To better understand our approach, we can dive into
the details of Eq. (9). For simplicity, let us omit
the condition xk−1

1 in this section:

PNU (xk|·) = softmax
(
ϕ(hk) + α×

(
logPNG(X|·) + C

))
[xk]

(10)

=

(
eC

)α(
elogPNG(xk|·)

)α
eϕ(hk)[xk]

Z
,

(11)

We apply the Eq. (6) and (8) to get the explicit form
of logits of the n-gram LM in Eq.(10), and the def-
inition of ϕ(hk) is the same as that in Eq. (5). In
Eq. (11), we expand the softmax function, where
Z is the normalization term. The numerator of Eq.
(11) has three terms. The first term (eC)α is a con-
stant for all the logit values, which does not affect
the distribution. The middle term (elogPNG(xk|·))α
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actually equals to PNG(xk|·)α, which makes it be
like the weight of the the logits of neural LM, i.e.,
the last term eϕ(hk)[xk] in Eq. (11). When compar-
ing with the vanilla neural LM, the golden-truth
words are not equally important in the learning pro-
cess of our approach. For golden-truth words that
are well estimated by the n-gram LM, our approach
would get high probabilities after softmax, leading
to a small loss value for the neural module. As
a result, the neural model can spend more effort
on difficult cases, such as predictions relying on
long-distance dependencies, which are hard to be
estimated by the n-gram LM.

4.4 Discussion

In this section, we propose a method to conduct
residual learning between the neural and symbolic
models, i.e., neural LM and n-gram LM. One of
our expectations about the joint neuro-symbolic
system is its better understanding of language. To
evaluate this hypothesis, we can test our approach
on standard language tasks, such as language mod-
eling, machine translation, and summarization. The
other expectation is the plug-and-lay property of
our approach. For instance, if the testing data come
from different domains, we can change the Q in Eq.
(9) by simply switching the used n-gram model.

5 Experiments

In our work, we consider three kinds of natural
language generation tasks: language modeling, ma-
chine translation, and summarization. For the lan-
guage modeling task, we first evaluate the perfor-
mance of our approach on the standard setting of
the language modeling task. Then we turn to a
domain adaptation setting.

5.1 Language Modeling

Setup We use the wikitext-103 benchmark2 to
evaluate the performance of our approach in the
standard setting. The training set contains around
101M tokens. Following Merity et al. (2017), to-
kens with a frequency lower than 3 have been
replaced by the special token <unk> in the train-
ing datasets, and the number of remaining unique
words is around 260k. For wikitext-103, we
will train models at both word and subword lev-
els. The subword-level data is preprocessed using

2Dataset provided by fairseq: https://s3.
amazonaws.com/research.metamind.io/wikitext/
wikitext-103-v1.zip

subword-nmt3 (Sennrich et al., 2016), where the
number of merge operation is set to 32k.

We use fairseq4 (Ott et al., 2019) as the code
base of our neural modules. We implement our
approach on two popular neural language mod-
els, GPT-2 base (Radford et al., 2019) and Adap-
tive Input (ADP) (Baevski and Auli, 2019). For
the ADP model, we follow the original hyper-
parameters and use the code released by Baevski
and Auli (2019) in fairseq5 to train the model on
word-level data. Since the vocabulary size of the
word-level data is too large, we train the GPT-2
base model on the subword-level data. For those
neural models, we mostly use their default hyper-
parameters reported in their paper (Baevski and
Auli, 2019; Radford et al., 2019) and train those
models from random initialization. Regarding to
the n-gram model, we use the KenLM6 (Heafield,
2011) to train n-gram models on both the word-
level and subword-level data of wikitext-103. The
n is set to 5 in our work. To make the perplexities
of different models comparable, we report all the
perplexity scores at the word level. For subword-
level data, the word-level probability is the product
of its subword tokens, following Baevski and Auli
(2019).

When training our approach NGRAMRES, we
will hybrid the KENLM-5GRAM model and the
neural model, i.e., GPT-2 and ADP, using the
residual learning method discussed in section 4.
The hyper-parameter α in Eq. (9) is tuned accord-
ing to the performance on the validation dataset.

Results As shown in Table 2, we evaluate our ap-
proach on the wikitext-103 benchmark. Although
the macro performance of KENLM-5GRAM (Line
6) on the test set is poor, it is still able to promote
the performance of our approach. When comparing
our approach (Line 8 and 11) with the vanilla neural
models (Line 7 and 9), our approach steadily out-
performs ADP-FAIRSEQ7 and GPT-2 by 0.7 and
0.9 PPL scores, respectively. According to these
results, NGRAMRES is able to improve the model
performance without changing the architecture and
the number of parameters.

3https://github.com/rsennrich/subword-nmt
4https://github.com/facebookresearch/fairseq
5https://github.com/facebookresearch/fairseq/

blob/main/examples/language_model/README.
adaptive_inputs.md

6https://github.com/kpu/kenlm
7This is the result by running the officially released code

of ADP
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# IT Koran Law Medical Subtitles AVG.
1 #SENT 222,927 17,982 467,309 248,099 500,000 –
2 #WORD 2,585,965 4,512,266 15,348,052 4,512,266 5,125,239 –

3 KENLM-5GRAM 95.89 35.51 15.74 24.00 101.99 54.63
4 GPT-2 66.49 35.34 9.93 15.18 77.34 40.86
5 + FINETUNE 53.69 26.77 9.43 12.96 69.33 34.44
6 + NGRAMRES 54.29 28.08 8.93 13.29 71.80 35.28

Table 1: Test perplexity of five domains. Results in lines 1-2 are the statistical information of each domain. Results
in lines 3-6 are the perplexity scores of different approaches when testing on the five domains. The GPT-2 and
NGRAMRES (Line 4 and 6) approaches only train unified models for five domains, while the FINETUNE method
(Line 5) trains a domain-specific model for each domain.

# Model #Param PPL
1 (Grave et al., 2017) - LSTM – 40.8
2 (Dauphin et al., 2017) - GCNN-8 229M 37.2
3 (Merity et al., 2018) - QRNN 151M 33.0
4 (Rae et al., 2018) - HEBBIAN + CACHE – 29.2
5 (Baevski and Auli, 2019) - ADP 247M 18.7
6 KENLM-5GRAM – 116.4
7 ADP-FAIRSEQ 247M 18.9
8 + NGRAMRES 247M 18.2
9 GPT-2 (BPE) 185M 22.2
10 + PROB-INTER 185M 60.2
11 + NGRAMRES 185M 21.3

Table 2: Test perplexity on wikitext-103. Results in
lines 1-5 are reported in previous works, and results
in lines 6-11 are run by us. The NGRAMRES is our
approach discussed in section 4.

Moreover, we also compare our method with
a straightforward baseline PROB-INTER, as dis-
cussed in section 4. The PROB-INTER baseline
directly interpolates the probabilistic distribution
of KENLM-5GRAM and GPT-2. The performance
of PROB-INTER is better than the KENLM-5GRAM

but worse than the vanilla GPT-2, making it like
the ensemble of the two models, as we discussed
in the section 4.

5.2 Language Modeling: Multi-Domain
In this setting, we will evaluate the performance
of adapting our approach to a specific domain by
changing the used n-gram model.

Setup In the multi-domain setting, we use the
English side of a bilingual dataset with 5 domains
(Aharoni and Goldberg, 2020), i.e., IT, Koran, Law,
Medical, and Subtitles. The statistical informa-
tion of this dataset is shown in Table 1. we apply
subword-nmt on the joint training data of five do-
mains, and the number of the merge operation is
also 32k.

Following the standard setting of the language

modeling task, we use GPT-2 base (Radford et al.,
2019) as the neural model. We train and select
GPT-2 model on the mixed data from five domains,
and report the word-level perplexity on the test
data of each domain independently. The GPT-2
+ FINETUNE method will adapt the parameters of
GPT-2 model on the corresponding domain before
testing. For our approach NGRAMRES, we train a
5-gram LM for each specific domain and switch the
used 5-gram model to the corresponding domain
during training and testing. It is worth noting that
the neural parameters of NGRAMRES are fixed
when testing.

Results The experimental results are shown in
Table 1. For GPT-2 and NGRAMRES (Line 4 and
6), we train unified neural models on mixed data
of five domains and evaluate their performances on
the test data of five domains one by one. Results
show that our approach can outperform the vanilla
neural model GPT-2 by a large margin. Since
the NGRAMRES approach stores a lot of domain-
specific information in the 5-gram LM, we hypoth-
esize that the neural module is able to learn use-
ful and complementary knowledge during training,
leading to the performance gain.

In the line of + FINETUNE, we also report the
results of fine-tuning the GPT-2 model on each test-
ing domain. It surprised us that the performances
of our approach are very close to those of the FINE-
TUNE method. The NGRAMRES even outperforms
FINETUNE slightly on the Law domain. Moreover,
compared with the FINETUNE, one advantage of
our approach is its low cost of adapting our model
to the testing domain, since we only need to replace
the used 5-gram model in a plug-and-play manner.
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Model En ⇒ Fr En ⇒ Es En ⇒ Vi En ⇒ De AVG.

TRANSFORMER 39.96 36.99 28.55 27.79 33.32
+ NGRAMRES 40.27 37.27 29.60 28.05 33.79
+ NGRAMRES-ANNEAL 40.49 37.07 29.92 28.41 33.97

Table 3: BLEU scores on IWSLT. The TRANSFORMER model is the baseline, and NGRAMRES and NGRAMRES-
ANNEAL are two variants of our approach. Comparing with NGRAMRES, the NGRAMRES-ANNEAL decreases the
value of α in Eq. (9) linearly in the first 10k steps of model training.

Model ROUGE-1 ROUGE-2 ROUGE-L

Pointer-generator + Coverage (See et al., 2017) 39.53 17.28 36.38
Mask Attention Network (Fan et al., 2021) 40.98 18.29 37.88
BertSum (Liu and Lapata, 2019) 42.13 19.60 39.18
UniLM (Dong et al., 2019) 43.08 20.43 40.34
UniLM V2 (Bao et al., 2020) 43.16 20.42 40.14
ERNIE-GEN-large (Xiao et al., 2021) 44.02 21.17 41.26
PEGASUS (Zhang et al., 2020) 44.17 21.47 41.11
ProphetNet (Qi et al., 2020) 44.20 21.17 41.30
PALM (Bi et al., 2020) 44.30 21.12 41.14

BART-LARGE (Lewis et al., 2020) 44.11 21.21 40.83
+ NGRAMRES 44.41 21.36 41.19

Table 4: ROUGE scores on the test set of CNN/DailyMail dataset.

5.3 Machine Translation

Next, we evaluate our approach on a popular
sequence-to-sequence task, namely, machine trans-
lation. Note that we only integrate our approach
into the decoder side of the encoder-decoder model.

Setup We conduct the experiments of machine
translation on IWSLT14 (En ⇒ Fr, Es, De) and
IWSLT15 (En ⇒ Vi). The IWSLT14 datasets8 of
three language pairs are preprocessed following the
script provided by fairseq9, where the evaluation
data is sampled from the whole dataset and the
test data is the concatenation of dev2011, tst2012,
tst2012. There is no overlap between train, valida-
tion, and test sets. For IWSLT15, we use the train,
evaluation, and test data preprocessed and released
by Stanford10 (Luong and Manning, 2015). The
results are reported using tokenized SacreBLEU11

(Post, 2018).
We use fairseq as our code base. We use the

8https://wit3.fbk.eu/2014-01
9https://github.com/facebookresearch/fairseq/

blob/main/examples/translation/prepare-iwslt14.
sh

10https://nlp.stanford.edu/projects/nmt/
11https://github.com/mjpost/sacrebleu

Transformer model as our architecture12 for all the
translation models. The Transformer model has
6 encoder layers and 6 decoder layers. Since the
IWSLT datasets are small, the hidden size of FFN
sublayers is set to 1024, the number of attention
heads is set to 4, the dropout rate is set to 0.3, and
the weight decay rate is set to 0.001. We set other
hyper-parameters according to the default setting
of Vaswani et al. (2017). All the translation models
are trained for 30 epochs from random initializa-
tion.

The implementation details of the n-gram model
and our approach are similar to that in the language
modeling task. For the translation task, we only
use the target data, i.e., the X side of En⇒X data,
to train the KENLM-5GRAM LM.

Results The results of machine translation are
shown in Table 3. We implement two vari-
ants of our approaches, namely, NGRAMRES and
NGRAMRES-ANNEAL. The system of NGRAM-
RES only uses the 5-gram information on the de-
coder side, as we discussed in section 4. The dif-
ference between NGRAMRES and NGRAMRES-

12The used architecture code in fairseq is
transformer_iwslt_de_en
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ANNEAL system is that the latter decreases the
value of α linearly after each update . The alpha
value becomes zero after 10k steps.

We find that both the two variants of our ap-
proaches outperform the TRANSFORMER model.
The NGRAMRES-ANNEAL achieves the best re-
sults on each language pair, which means that the
n-gram model is more critical for the beginning
phase and may hurt the translation performance af-
ter that phase. According to Voita et al. (2021), the
training of neural machine translation (NMT) sys-
tems undergoes three stages: target-side language
modeling, learning the word-by-word translation,
and learning to reorder. Therefore, we hypothesize
that the use of the n-gram model in the whole train-
ing procedure may over-emphasize the importance
of target-side language modeling in NMT, having
a negative impact on the next two stages.

5.4 Abstractive Summarization
Lastly, we evaluate our approach on another popu-
lar sequence-to-sequence task, namely, abstractive
summarization. Like machine translation, our ap-
proach is applied to the decoder side of the encoder-
decoder model.

Setup For the abstractive summarization task, we
preprocess the CNN/DailyMail dataset following
the script provided by fairseq13. The evaluation
metrics of the summarization task are ROUGE
scores, i.e., ROUGE-1, ROUGE-2, and ROUGE-L
(Lin, 2004)14.

We follow the setting of previous works and fine-
tune the pre-trained BART-LARGE model (Lewis
et al., 2020) on the CNN/DailyMail dataset for 20k
updates. We train the KENLM-5GRAM LM on the
joint data of its source and summarization text.

Results The summarization task is also a
sequence-to-sequence task, where the source text
and summarization are in the same language and
share similar semantics. As shown in Table 4, in
this task, our approach is still able to improve the
performance of the strong baseline model BART-
LARGE, without any change in the model architec-
ture.

Different from the machine translation task, we
find that using a fixed α value achieves better per-
formance than annealing it. The reason may be that
the target-side language modeling plays a more

13https://github.com/facebookresearch/fairseq/
blob/main/examples/bart/README.summarization.md

14https://github.com/pltrdy/files2rouge

important role in the summarization task because
summarization is more like monolingual text gen-
eration in a constrained context.

6 Conclusion and Future Work

This work aims to learn a neural LM that approx-
imates the information that has not been captured
by n-gram LM. To achieve this goal, we propose
a residual learning approach to force the two neu-
ral and symbolic models, i.e., the neural LM and
n-gram LM, to learn complementary information.
We conduct extensive experiments to evaluate the
performance of the proposed approach. In our ex-
periments, we find that our neuro-symbolic system
can not only improve the performance of recent
state-of-the-art neural models consistently and con-
siderable on three typical language tasks (including
language modeling, machine translation, and sum-
marization) but also exhibits a good plug-and-play
property on the multi-domain language modeling
task.

The n-gram LM has lots of attractive proper-
ties that we have not explored in this work. First,
the n-gram model has good interpretability. The
behavior of n-gram LM is easier to understand
than the weights of neurons from the perspective
of humans. In the future, we want to leverage the
property of the n-gram model to better understand
the decision-making process of the neural LM. Sec-
ond, controlling the system predictions through the
n-gram model may have a big potential. As ob-
served in our multi-domain experiments, we are
able to customize an LM by switching the under-
lying n-gram model without changing the neural
part. It is also interesting to explore how to control
the model output at a fine-grained level using the
n-gram LM.

Limitations

We believe there are two limitations in our ap-
proach. First, since the estimation of the prediction
distribution of n-gram models relies on CPU, the
estimation speed by n-gram models may be slow
when using a big batch size (>> 8192∗8). Second,
the performance gain of our current approach on
high-resource datasets is not big. For instance, we
also evaluate the performance of TRANSFORMER

+ NGRAMRES on WMT14 En-De (Vaswani et al.,
2017), but the improvement is only 0.15 BLEU
score. These limitations urge us to propose more
efficient and effective approaches in future works.
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