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Abstract

We present Twin Answer Sentences Attack
(TASA), an adversarial attack method for ques-
tion answering (QA) models that produces
fluent and grammatical adversarial contexts
while maintaining gold answers. Despite phe-
nomenal progress on general adversarial at-
tacks, few works have investigated the vulner-
ability and attack specifically for QA models.
In this work, we first explore the biases in the
existing models and discover that they mainly
rely on keyword matching between the ques-
tion and context, and ignore the relevant con-
textual relations for answer prediction. Based
on two biases above, TASA attacks the target
model in two folds: (1) lowering the model’s
confidence on the gold answer with a per-
turbed answer sentence; (2) misguiding the
model towards a wrong answer with a distract-
ing answer sentence. Equipped with designed
beam search and filtering methods, TASA can
generate more effective attacks than existing
textual attack methods while sustaining the
quality of contexts, in extensive experiments
on five QA datasets and human evaluations.

1 Introduction

Question Answering (QA) is the cornerstone of
various NLP tasks. In extractive QA (the most
common setting), given a question and an associ-
ated context, a QA model needs to comprehend
on the context and predict the answer (Rajpurkar
et al., 2016). While most works keep improving the
answer correctness on benchmarks (Devlin et al.,
2019; Yu et al., 2018), few studies investigate the
robustness of QA models, e.g., is the performance
achieved by sound contextual comprehension or
via shortcuts like keyword matching? Although
adversarial attacks attract growing interests in com-
puter vision (Goodfellow et al., 2014; Zhao et al.,
2018) and recently in NLP (Ren et al., 2019; Li

∗Work was done when Yu Cao was an intern at JD Ex-
plore Academy.

et al., 2021), most of them study general tasks with-
out taking into account the properties of QA. The
vulnerability and biases of models can lead to catas-
trophic failures outside the benchmark datasets. An
effective way to study them is through adversarial
attacks specifically designed for QA tasks.

Generating adversarial textual examples is chal-
lenging due to the discrete syntactic restriction, es-
pecially on QA, where the additional relationship
between question and context should be further
considered. Existing works such as AddSent and
Human-in-the-loop (Jia and Liang, 2017; Wallace
et al., 2019b) heavily rely on human annotators to
create effective adversarial QA examples, which
are costly and hard to scale. A few studies (Gan
and Ng, 2019; Wang et al., 2020; Wallace et al.,
2019a) can generate adversarial samples automat-
ically. But they only perturb either the context or
the question separately, and thus ignore the consis-
tency between them. Moreover, the major pitfalls
of QA models’ detailed comprehension process are
not fully investigated, confining producing more
powerful adversarial attacks.

In this paper, we develop an adversarial attack
specifically targeting two biases of mainstream QA
models discussed in §2: (1) making prediction via
keywords matching in the answer sentence of con-
texts; and (2) ignorance of the entities shared be-
tween the question and context. Our method, Twin
Answer Sentences Attack (TASA), automatically
produces black-box adversarial attacks (Papernot
et al., 2017) perturbing a context without hurting its
fluency or changing the gold answer. TASA firstly
allocates the answer sentence in the context that is
decisive for answering (Chen and Durrett, 2019)
and then modify it into two sentences targeting the
two biases above: one sentence preserves the gold
answer and the meaning but replaces the keywords
that are shared with the question with their syn-
onyms; while the other leaves the keywords and
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Context c : … On 17 May 1899, Tesla moved to 

Colorado Springs …very thick and noisy. He 

investigated atmospheric electricity, observing 

lightning signals via his receivers. He stated that… 

Question q : What kind of electricity 

was Tesla investigating?

Answer a : atmospheric

Answer sentence: Tesla investigated atmospheric 

electricity, observing lightning signals via his receivers.

Perturbed answer sentence (PAS): Tesla looked into 

atmospheric electrical energy, observing lightning signals 

via his receivers.

Distracting answer sentence (DAS): Charlie investigated 

static electricity, observing noticeable phenomenon via 

his receivers.

Answer sentence: Tesla investigated atmospheric 

electricity, observing lightning signals via his receivers.

Adversarial Context c' : …very thick and noisy. Tesla looked into atmospheric electrical energy, observing lightning signals 

via his receivers. He stated that… Charlie investigated static electricity, observing noticeable phenomenon via his receivers.

(2) Perturb the answer 
sentence

(1)Remove 
coreferences

Edit entities, nouns 

investigatedelectricity

investigated

electricity

Charlie

?

atmospheric

static

(3) Add a distracting 
answer sentence

Edit keywords 

Figure 1: An example of TASA generating adversarial context C ′. Underlined parts indicate keywords. Orange
indicates gold answer or pseudo answer. Other colors indicate tokens for perturbation, distracting, or coreferences.

the syntactic structure intact but changes the enti-
ties (subjects/objects) associated with the answer.
Thereby, the former is a perturbed answer sentence
(PAS) lowering the focus of the model on the gold
answer, while the latter generates a distracting an-
swer sentence (DAS) as Jia and Liang (2017) to
further misguide the model towards a wrong an-
swer with respect to irrelevant entities. Thus, the
adversarial context can substantially distort the QA
model without changing the answer for humans. To
address the challenge of efficiency and textual flu-
ency, we further propose beam search and filtering
techniques empowered by pretrained models.

In experiments, we evaluate TASA and other
adversarial attack baselines on attacking three pop-
ular contextualized QA models, BERT (Devlin
et al., 2019), SpanBERT (Joshi et al., 2020), and
BiDAF (Seo et al., 2017), on five extractive QA
datasets, i.e., SQuAD 1.1, NewsQA, NaturalQues-
tions, HotpotQA, and TriviaQA. Experimental re-
sults and human evaluations consistently show that
TASA achieves better attack capability than other
baselines and meanwhile preserves the textual qual-
ity and gold answers identifiable by humans.

Our contributions are three-fold:
• We propose a novel adversarial attack method

“TASA” specifically designed to fool extractive QA
models while retain the gold answers for humans.

• We study the biases and vulnerability of QA
models that motivate TASA, and demonstrate that
those models mainly rely on keyword matching,
while may ignore the contextual relation.

• Experiments on five QA benchmark datasets
and three types of victim models demonstrate that
TASA outperforms existing baselines on attack per-
formance, as well as the comparable capability to
preserve textual quality and answers.

We release our code at https://github.com/
caoyu-noob/TASA

2 Predicting Bias in Question Answering

Recent works show that state-of-the-art natural lan-
guage inference models often overly rely on certain
keywords as shortcuts for prediction (Wallace et al.,
2019a; Sinha et al., 2021). In the empirical study
of this section, we illustrate that current QA mod-
els consistently exhibit such bias on the sensitive
words without leveraging the contextual relation-
ship for predicting answers.

We analyze two mainstream QA models
with contextualized comprehension capabilities,
BERT (Devlin et al., 2019) and BiDAF (Seo
et al., 2017), trained on the original training set of
SQuAD1.1 (Rajpurkar et al., 2016) and tested on
samples modified from its validation set. We define
the sentence in the context that contains the gold
answer as the answer sentence, which is the key
for predicting answers (Chen and Durrett, 2019).
We first compare the performance of models on
the original sample with only answer sentence as
the context (“Only answer sent.”). Besides, to in-
vestigate the bias on sensitive words, we further
examine models on samples with various types of
sensitive words in the answer sentence being (1)
either removed (“Remove”) or (2) only retained
(“Only”). There are three types of sensitive words
to be considered:
(1) Entities. The same named entities shared be-
tween the answer sentence and the question.
(2) Lexical words (lexical.). with lexical mean-
ings (excluding all named entities) shared between
the answer sentence and question. They cover the
words with POS tags of NOUN, VERB, ADJ, etc.
(3) Function words (func.). Words that do not
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Answer sentence: The annual NFL Experience was held at the 
Moscone Center located in San Francisco.

The annual NFL Experience was held at 
the located in San Francisco.

Remove entities

Only entities Moscone Center San Francisco.

Remove lexical.

Only lexical.

The annual NFL Experience held at the 
Moscone Center in San Francisco.

Was located San Francisco.

Remove func.

Only func.

The annual NFL Experience was held at 
Moscone Center located San Francisco.

The in San Francisco.

Question: In what city is the Moscone Center located?

Figure 2: The illustration of removing or only retaining
(Only) different types of sensitive words, the answer is
underlined and kept.

Model BERT BiDAF

EM F1 EM F1

Original 80.91 88.23 65.72 75.97
Only answer sent. +2.79 +2.87 +3.27 +4.37

Remove entities -5.39 -4.17 -4.84 -6.27
Only entities -23.42 -15.90 -26.75 -18.03

Remove lexical. -18.62 -16.71 -24.43 -24.46
Only lexical. -5.27 -1.81 +0.86 +4.28
Only lexical. (shuffle) +4.07 +2.94 +10.68 +10.46

Remove func. -5.20 -3.18 -5.42 -3.55
Only func. -24.08 -22.34 -22.24 -22.72

Table 1: EM and F1 scores of BERT and BiDAF mod-
els on different modified samples compared to results
on the original samples. Shuffle means the best results
among texts whose tokens are random-ordered.

have lexical meaning but are shared between the
answer sentence and the question. They include
words with POS tags of DET, ADP, PRON, etc.

When modifying the answer sentence, we only
remove or retain these three types of sensitive
words, except the gold answer words, and also
keep the rest context intact. As shown in Figure 2,
the modified texts are unreadable and difficult to
infer their true meaning from the human perspec-
tive. In addition, we follow UNLI (Sinha et al.,
2021) to Shuffle tokens in the answer sentence for
Only lexical. conditions, verifying the possibility of
models to achieve even better performance, given
the texts are totally ungrammatical but contain sen-
sitive words.

Table 1 compares the evaluation results on differ-
ent modifications. Given the answer-sentence-only
context, the performance of both BERT and
BiDAF are improved, indicating that they mainly
rely on the answer sentence and almost ignore
the rest of the context. While removing entities
or function words causes a slight difference in

metrics, removing lexical words leads to a larger
performance drop. In addition, both models
perform surprisingly satisfactory when keeping
only lexical words in answer sentences, compared
to the 30% ∼ 60% drop when keeping other words.
Moreover, shuffling tokens under the lexical-only
conditions even possibly benefit the model despite
the answer sentence being merely discrete tokens
and hard to read. This suggests that both models
can answer questions solely relying on the shared
lexical words (not contextual), i.e., keywords in the
answer sentence, regardless of the word order and
other contextual information like entities.

Inspired by this observation, we question that
whether we can utilize the discovered pitfall to
design an efficient adversarial attack method
specifically for QA? Can we lower the model’s
attention on the gold answers and then misguide it
to incorrect answers by manipulating the existing
sensitive keywords in the context and adding some
new misleading ones? The answer is affirmative:
we show that the predictions can be shifted to
crafted wrong answers in §4.4.

3 Methodology

We propose an adversarial attack method for extrac-
tive QA models, Twin Answer Sentences Attack
(TASA), which automatically produces black-box
attacks solely based on the final output of the vic-
tim QA model F (·). Given a typical QA sample
composed of a context c, a question q, and an
answer a (i.e., a positional span in c), we study
how to perturb the context c as c′ that can de-
ceive F (·) towards producing an incorrect answer
F (c′, q) 6= a, while c′ retains the correct answer
a that can be identified by humans. We keep the
question q intact to ensure the answer a valid, as
editing the short q with simple syntactic structure
easily alters its meaning.

TASA can be summarized as three main steps:
(1) Remove coreferences in the context to facilitate
the following edits; (2) Perturb the answer sentence
by replacing keywords (overlapped sensitive lexical
words in §2) with synonyms to produce a perturbed
answer sentence (PAS), lowering the model’s focus
on the gold answer; (3) Add a distracting answer
sentence (DAS) that keeps the keywords intact but
changes the associated subjects/objects to misguide
the model for producing a wrong answer, which can
be proven in Table 5. How these the three steps are
applied is illustrated in Figure 1. And Algorithm 1
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gives the complete procedure of TASA.

3.1 Remove Coreferences

Coreference relations across sentences commonly
exist in texts (Hobbs, 1979) and also bring extra
challenges to adversarial attacks during making
substitutions on target words. For example, in a
sentence “His patented AC induction motor were
licensed”, “His” refers to “Nikola Tesla’s” accord-
ing to the whole context. However, given the single
sentence, it is hard to precisely allocate candidates
for substitution “his” as it is a pronoun. Instead, we
remove the coreference by replacing such pronouns
with the entity names they refer to, e.g., specific
persons or locations, so we can edit them directly
without considering a complicated coreference.

3.2 Perturb the Answer Sentence

According to the former analysis, the answer
sentence is the most important part of context
c for QA tasks, and QA models usually predict
answers according to keyword matching (Chen
and Durrett, 2019). Hence, we first study how
to obtain a perturbed answer sentence (PAS) by
only perturbing those sensitive keywords instead
of changing the whole context. Given the gold
answer a, we first allocate the answer sentence sa
in c. In TASA, we use the text matching to search
for sa that contains text a.
Determine the keywords to perturb. As dis-
cussed in §2, QA models normally rely on key-
words to make predictions. Hence, we directly per-
turb those keywords rather than randomly-selected
tokens as previous works (Ren et al., 2019; Jin
et al., 2020) to produce more effective attacks. We
adopt three criteria to select words of sa into the
keyword set X : (1) they are not included in the
answer span a so the gold answer will retain; and
(2) each of them shares the same lemma with a
token in the question q; and (3) each keyword’s
POS tag belongs to a POS tag set for lexical words,
e.g., NOUN, ADJ, etc.
Rank keywords by importance. Following pre-
vious works (Jin et al., 2020), we rank keywords
in X according to their importance scores in the
descending order. Given the original context c and
answer a, the importance score Ii of xi ∈ X is

Ii = pF (a|c, q)− pF (a|mask(c, xi), q), (1)

where pF (a|·) denotes the probability of the origi-
nal span position of gold answer a predicted by the

victim model F , mask(c, xi) means c is modified
by replacing a token xi with a special mask sym-
bol, e.g., given c = ..xi−1xixi+1.., mask(c, xi) =
..xi−1 < mask > xi+1... Finally, we obtain a set
X of keywords ranked by their importance.
Generate perturbed answer sentence (PAS).
Following the order in X , we edit each keyword
xi ∈ X one after another. Specifically, we replace
xi with its synonym rj from a synonym set and
transform the inflection of rj as the same as xi,
e.g., we change “Tesla investigated...” to “Tesla
looked into...” where “investigated” is a keyword
and “look into” is one of its synonyms.

Thereby, multiple PASs are obtained during edit-
ing each keyword if more than one synonym exists.
We retain the top few of them via beam search and
filtering strategy (as elaborated in §3.4) to promote
the effectiveness as well as efficiency, resulting in
a set of PASs P , which will be the initial texts
of the next perturbation turn. While PASs do not
change the meaning of texts as they replace words
with their synonyms, they will distract the model,
which relies on keyword matching, away from PAS
containing the answer.

3.3 Add a Distracting Answer Sentence

To further deceive the model, we also add a distract-
ing answer sentence (DAS) at the end of the context.
In particular, DAS is modified from the answer sen-
tence sa as well: it changes the subjects/objects and
the answer, but keeps the keywords intact which
can draw models’ attention. Collaborating with
PAS, DAS misguides models to predict incorrect
answers regarding wrong subjects/objects due to
the pitfall studied in §2, which will be verified in Ta-
ble 5. Our method differs from previous works (Jia
and Liang, 2017; Wallace et al., 2019a) as our dis-
tractors are added automatically and suits more
general conditions.
Determine the tokens to edit. Similar to PAS,
the first step of generating DAS is to select a set
Y of tokens from the sa as the candidates of sub-
jects/objects that will be edited. In TASA, each
selected token y ∈ Y needs to meet all the follow-
ing criteria: (1) y /∈ X so the original keywords are
preserved; (2) y /∈ a (as we will process the answer
tokens separately); (3) y is a named entity or its
POS tag is NOUN. The goal of (3) is to extract
and change the subjects/objects of sa to produce
a pseudo answer sentence that contains incorrect
answers. We do not use a syntactic parser to locate
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the subjects/objects, as we find it less accurate and
effective than POS tags empirically.
Generate distracting answer sentence (DAS).
Similar to PAS, we edit each yi ∈ Y to obtain
a DAS. Specifically, we replace each yi with a
token/phrase of the same entity/noun type, e.g.,
“Tesla investigated...” can be modified to “Charlie
investigated...” since both “Tesla” and “Charlie”
are persons. In principle, (1) if yi is a named entity,
we randomly sample N different entities with the
same NER tag from the whole corpus as the can-
didates to replace yi; (2) otherwise, we randomly
sample N nouns with the same hypernym as yi
from the corpus for substitution. Hence, multiple
DASs can be generated, and we also use the beam
search strategy to only choose the top few of them,
resulting in a set of DASs D.
Change the answer in DAS. Since the main pur-
pose of DAS is to misguide the model to predict a
wrong answer, we entirely replace the text span of
the original answer in DAS with a pseudo answer,
which helps to remove the ambiguity of the answer
from humans’ perspective. Specifically, we replace
every lexical token of a in DAS with one of pseudo
answer token candidates that share the same NER
tags or POS tags, which are randomly sampled
from the whole corpus. Likewise, this procedure
results in multiple results and thus a beam search is
also necessary for the efficiency and attack success
purpose as well.

Algorithm 1 TASA
Definition: Beam size M , importance score Ii given in Eq. 1,

effect score En given in Eq. 2, threshold TE for En

Input: QA sample (c, q, a), victim model F (·)
Output: An adversarial context c′ to fool F (·)
1: Remove coreferences in c;
2: Extract answer sentence sa from c;
3: X ← keywords in sa and rank them by Ii;
4: Initialize the PAS set: P ← {sa}
5: for 1 ≤ i ≤ |X | do
6: P ← perturb xi for each item in P;
7: P ←M items in P with the highest En;
8: if TE ≤ minimum En in P then break;
9: end if

10: end for
11: P ← filter P based on answerable and quality in §3.4;
12: Initialize the DAS set: D ← {(sj , cj)}, each DAS sj =

sa, paired with context cj modified by each PAS in P;
13: Y ← a set of tokens in sa to be edited for DAS;
14: for 1 ≤ i ≤ |Y| do
15: D ← edit yi for each DAS sj in D;
16: D ←M items in D with the highest En;
17: end for
18: D ← edit answer tokens for each DAS sj in D;
19: (sb, cb)← The item in D with the highest En;
20: c′ ← append DAS sb to the end of context cb;
21: return c′;

3.4 Beam Search and Filtering
Beam search. When editing each word in generat-
ing the PAS and DAS, there usually exist multiple
replacement candidates, resulting in multiple per-
turbed sentences. In order to obtain the one that
has the greatest potential leading to a successful
attack, and to improve the attack’s efficiency, we
apply a beam search strategy defined based on the
effect score En for each perturbed sentence sn.

En = pF (a|c, q)− pF (a|edit(c, sn), q), (2)

where edit denotes that the original context c is
modified by sn: (1) if sn is a PAS, it replaces the
original answer sentence sa in c; (2) if sn is a DAS,
it is appended to the end of c. These edited texts
will be ranked by En in the descending order, and
only the top M (M is beam size) are retained for
the next edit step. Beam search will stop if (1)
no additional edit is needed for the current sam-
ple, or (2) the minimum effect score among the
result is higher than a threshold TE that can ensure
sufficient performance drop.

TASA runs beam search for PAS to obtain a PAS
set P , then obtain a DAS set D sequentially, and
finally generate the adversarial context c′. Note
that we obtain a DAS based on a series of contexts
that are already perturbed by P . So each item in D
is a pair of a DAS sj and a corresponding perturbed
context cj , and the initial D contains all possible
contexts edited by each PAS in P .
Filtering by textual quality. To ensure high tex-
tual quality and answer preservation of the gener-
ated adversarial contexts, TASA applies a filtering
procedure on the M (beam size) PASs achieved
after the final beam search for generating PAS. We
skip it for DASs as they have no effect on the gold
answer. In particular, we firstly use a model to jus-
tify whether the question q is still answerable given
the perturbed context edit(c, sn). Such a model
can be a large-scale pretrain model fine-tuned on
both answerable and unanswerable samples (refer
to Appendix A.2 for details). Only those contexts
classified as answerable will remain. In addition,
we further constrain the remained contexts’ textual
quality in terms of semantic similarity and fluency:

Un = USE(sn, sa)− PPL(sn)/PPL(sa), (3)

where USE denotes the USE similarity (Cer et al.,
2018) between two sentences and PPL denotes the
perplexity computed by a GPT2 model (Radford
et al., 2019). Only sn fulfilling Un ≥ TU (TU as a
threshold) are retained for the next step.
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4 Experiments

We evaluate TASA on extractive QA tasks. We
begin by details of setup (§4.1), then introduce the
main results in §4.2, followed by ablation studies
in §4.3 and additional analysis in §4.4 to better
illustrate each module in our method.

4.1 Setup
Datasets. We evaluate the QA adversarial at-
tacks generated by TASA using 5 extractive QA
datasets: SQuAD 1.1 (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), Natural Questions
(NQ) (Kwiatkowski et al., 2019), HotpotQA (Yang
et al., 2018), and TriviaQA (Joshi et al., 2017). We
use the settings from MRQA (Fisch et al., 2019)
for the latter four datasets, more details are given
in Appendix A.4. We report results on their dev
sets, as not all their test sets are publicly available.

Victim models. We attack three QA models, i.e.,
BERT (Devlin et al., 2019), SpanBERT (Joshi et al.,
2020), and BiDAF (Seo et al., 2017), in our experi-
ments. The former two are on the top of pretrained
BERTbase and SpanBERTlarge respectively. Both of
them benefit from huge corpora, where SpanBERT
can also be regarded as one of the SOTA models
for general extractive QA tasks. The latter BiDAF
is an end2end model based on LSTM and bidirec-
tional attention specially designed for extractive
QA (Related results are provided in Appendix B.1
as it is not a SOTA model). All models output the
start and end positions of the answer span in the
context as the prediction.

Implementation. Given a dataset, we firstly train
each kind of models on its training set to get a
model achieving satisfactory performance on the
dev set. The trained model is then used as a victim
model F (·) and we perform an adversarial attack
using all samples from the whole dev set. We use
a beam size M = 5 for TASA. The synonym set
used for PAS is obtained by unionizing two sources,
i.e., (1) WordNet synonym dictionary (Fellbaum,
2010) and (2) PPDB 2.0 dataset containing token-
level paraphrase pairs (Mrkšic et al., 2016). More
details about TASA can be found in Appendix A.2.

Baselines. We consider the following 2 strong
baselines1 besides the original dev set (Original).

• TextFooler (Jin et al., 2020): A general token-
level attack method using synonyms derived from

1We run the codes provided by the original papers to get
results. We use the black-box and targeted config for T3.

counter-fitting word embeddings. We directly ap-
ply it to the context c to make perturbations and use
the model’s prediction Fa(·) on the gold answer to
determine whether to stop attacking.

• T3 (Wang et al., 2020): A tree-autoencoder-
based method to obtain perturbed sentences for at-
tacking. It can be directly applied to QA by adding
a distracting sentence to the context.
Both of them and our TASA are black-box attack
methods without using the internal parameters of
victim models. We also include human-annotated
AddSent adversarial data (Jia and Liang, 2017) for
SQuAD 1.1, as they share the same contexts.

Evaluation metrics. Following the former
works (Rajpurkar et al., 2016; Wang et al., 2020; Li
et al., 2021), we evaluate attack methods using the
following metrics: 1) EM, the exact match ratio of
predicted answers; 2) F1, the F1 score between the
predicted answers and the gold answers. Lower EM
and F1 mean better attack effectiveness; 3) Gram-
mar error (GErr), the context grammatical error
numbers given by LanguageTool2 following Zang
et al. (2020), we use the average value per 100 to-
kens due to various context lengths among datasets;
4) PPL, the average perplexity of all adversarial
contexts given by a small sized GPT2 model (Rad-
ford et al., 2019) to measure their fluency (Kann
et al., 2018). Lower values of GErr and PPL indi-
cate better textual quality.

4.2 Main Results
The main experimental results on BERT and Span-
BERT are summarized in Table 2. TASA achieves
the overall best performance among all methods.
In particular, it shows the best capability to deceive
models than others on 3 datasets and the compara-
ble best results on NewsQA and TriviaQA, where
it causes more drops on EM and F1 metrics com-
pared to baselines. It means the combination of
PAS and DAS is more efficient than solely editing
tokens or adding distracting text. Noticeably, all
methods have fair attack effect for datasets with
longer contexts, e.g., NewsQA and TriviaQA, be-
cause limited numbers of token-level perturbations
or adding a single sentence causes fewer impacts
on long texts. Besides, SpanBERT is more robust
with slight accuracy declines due to its larger scale
and superior pre-training strategy.

In terms of textual quality, TASA achieves the
overall lowest PPL and comparable low values

2https://languagetool.org/
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Victim model BERT-base SpanBERT-large

Dataset method EM↓ F1↓ GErr↓ PPL↓ Num EM↓ F1↓ GErr↓ PPL↓ Num

SQuAD
1.1

Original 80.91 88.23 2.39 33.25 10,570 88.25 94.00 2.39 33.25 10,570
AddSent* 57.78 64.58 2.47 33.98 3,560 73.88 79.77 2.47 33.98 3,560
TextFooler 67.18 78.18 2.95 44.84 7,919 80.00 88.08 3.03 44.57 7,746
T3 71.63 78.86 3.48 44.45 9,622 76.76 82.13 3.66 42.30 9,761
OURS 40.06 50.87 2.98 41.15 9,559 54.18 65.50 3.09 40.31 9,580

NewsQA

Original 51.57 65.57 1.98 22.50 4,212 58.78 73.81 1.98 22.50 4,212
TextFooler 43.31 58.34 2.14 24.33 3,727 52.13 68.25 2.16 24.80 3,685
T3 39.54 53.49 2.33 22.86 3,865 51.29 66.40 2.23 22.89 3,875
OURS 39.62 53.46 2.16 22.86 2,860 49.96 64.93 2.18 22.77 2,872

NQ

Original 67.39 79.28 20.48 49.74 12,836 71.74 83.12 20.48 49.74 12,836
TextFooler 48.31 63.08 20.46 49.02 7,158 55.47 69.49 20.37 45.67 7,252
T3 60.06 71.20 20.93 60.90 10,439 57.92 70.03 20.78 63.21 10,446
OURS 43.23 55.32 20.42 44.30 8,809 51.08 64.84 20.40 15.24 8,829

HotpotQA

Original 56.89 75.70 3.73 17.01 5,901 63.29 81.60 3.73 17.01 5,901
TextFooler 33.59 47.76 4.01 20.52 5,397 60.49 78.94 4.04 20.96 5,369
T3 30.45 42.08 4.81 21.17 5,669 53.89 70.55 4.80 20.96 5,583
OURS 27.01 39.10 3.99 17.29 5,345 44.18 60.50 3.99 17.24 5,355

TriviaQA

Original 58.61 65.42 3.74 24.42 7,785 67.51 74.38 3.74 24.42 7,785
TextFooler 52.51 57.39 4.30 25.85 7,307 63.62 69.95 3.81 25.78 7,358
T3 51.85 56.06 4.06 24.49 7,543 64.12 69.62 4.07 24.50 7,549
OURS 51.50 54.23 3.81 24.69 7,092 63.86 69.97 3.85 24.65 7,103

Table 2: Main results on 5 QA datasets. The best results are in bold. Num is the sample number of a dataset or
generated adversarial samples from the whole dataset by a method. ↓ means that the lower value is the better. *:
samples are annotated by humans.

on GErr. TextFooler usually has the lowest GErr
values, as it makes pure token-level perturbation
that generates fewer sentence-level unnatural er-
rors. While T3 always generates sentence-level
distractors that are meaningless without a complete
syntactic structure, resulting in worse performance
on GErr and PPL. TASA fulfills trade-off attacks on
both token and sentence levels, avoiding significant
textual quality loss.

It is also worth mentioning that TASA is better
than AddSent at fooling models. Despite having a
better textual quality by adding human-annotated
distracting texts, samples in AddSent does not per-
turb the influential part of the original context, lim-
iting its effects on making attacks.

Human evaluation. We randomly sample 150 sets
of adversarial samples, each containing 3 samples
generated by TextFooler, T3, and TASA originated
respectively from the same sample in SQuAD 1.1,
using BERT as the victim model. Each set is eval-
uated in two aspects: (1) Answer preservation,
whether the gold answer of a sample remains un-
changed; (2) Textual quality, ranking the quality
(1 ∼ 3) of the context based on the fluency and
grammaticality. Totally 63 non-expert annotators
are involved, and related results are summarized
in Table 3. Although TASA is weaker than T3 in

Methods TextFooler T3 TASA

Answer preservation 79.9±4.5 85.9±3.3 79.1±4.7
Avg. quality rank 1.52±0.06 2.64±0.07 1.83±0.06

Table 3: Human evaluation results on SQuAD 1.1 (an-
swer preservations are in percentage). ± indicates the
confidence intervals with a 95% confidence level.

answer preservation as T3 always retains the origi-
nal part of the context, it is equivalent to Textfooler
and both of them have a significantly better tex-
tual quality than T3 due to the reason we have
concluded before. Such a comparable sample qual-
ity is sufficient to verify the superiority of TASA,
considering its much stronger capability to deceive
models (Refer to Appendix C for qualitative adver-
sarial samples by TASA).

4.3 Ablation Studies
We verify the effectiveness of each key module in
TASA by: 1) w/o remove coref.: without remov-
ing coreferences; 2) w/o PAS: without applying
perturbed answer sentence; 3) w/o DAS: without
adding distracting answer sentence. The upper part
of Table 4 proves their contributions. It can be
found that remove coref. slightly benefits the quan-
tity of suitable attack samples, while both PAS and
DAS make vital contributions to successful attacks
and feasible numbers of adversarial samples.
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Figure 3: The EM, F1 and quantities of adversarial samples using different beam size on three victim models.

Modules EM↓ F1↓ GErr↓ PPL↓ Num

TASA 40.06 50.87 2.98 41.15 9,559

w/o remove coref. 39.95 50.39 2.96 41.13 9,374
w/o PAS 59.63 70.91 2.73 35.89 8,709
w/o DAS 54.13 67.68 3.03 53.39 5,646

w/o importance 41.44 52.32 3.01 41.94 9,564
w/o quality 38.70 49.18 3.36 44.46 9,654
Only use WordNet 43.19 54.12 3.00 41.15 9,262
Only use PPDB 45.08 56.35 2.91 37.19 9,482

w/o edit answer 57.63 68.91 2.86 37.00 9,559
Only NEs 40.79 51.88 3.10 42.95 8,822
Only nouns 43.95 55.45 3.34 45.46 7,426

Table 4: Results of TASA ablation studies on SQuAD
1.1 dataset using BERT as the victim model.

We then do ablations on PAS, including: 1) w/o
importance: without ranking keywords and edit
them randomly; 2) w/o quality: without filtering
perturbed texts using quality index Un; 3) Only
use WordNet as the synonym source; and 4) Only
use PPDB as the synonym source. Based on the
middle part of Table 4, w/o importance slightly
lower the overall performance. Despite w/o quality
can promote the attack success rate, it introduces
extra textual quality degeneration. Besides, more
synonym sources mean a larger search space, so
we introduce both WordNet and PPDB into TASA.

Ablations on DAS are finally conducted, 1) w/o
pseudo answer: do not change answers in DASs;
2) Only NE and 3) Only nouns: only edit named en-
tities/nouns. Related results are given in the lower
Table 4. The obvious change on w/o pseudo an-
swer illustrates that changing the original answer
in DASs is crucial for attacking, also proving DAS
can shift models’ focus from the original answer
sentence as they can still derive the gold answer
from DASs. Moreover, involving various editing
types, including both NE and nouns, benefit the
attack effectiveness and generated sample quantity.

4.4 More Analysis

Effect of beam size. We vary the beam size during
generating PASs and DASs to investigate its influ-

Datasets SQuAD 1.1 NewsQA NQ Hotpot Trivia

BERT 39.19 20.95 36.22 36.15 24.78
SpanBERT 33.20 20.92 32.14 38.09 27.71

Table 5: F1 score of predicted answers and pseudo an-
swers, on adversarial samples from TASA with DASs.

ence. Figure 3 reports the cahnges of EM, F1, and
quantities of adversarial samples. Clearly, a larger
beam size leads to better performance and more
diverse adversarial samples. Naturally, the larger
the beam size also means the slower speed. Thus,
we use M = 5 for a trading off of performance
and efficiency, as we see limited performance gains
from beam sizes larger than 5.

Shift to the pseudo answers. Since DAS aims to
misguide the attention of models from the original
answer sentences to them, we expect QA models
to output the pseudo answers contained in DASs.
Table 5 shows the F1 scores between the predicted
answers and the pseudo answers on all adversarial
samples that include DAS from 5 datasets. The
results demonstrate that there are high overlaps
between incorrect predictions by victim models
and pseudo answers, as these values are close to
the performance drops caused by adversarial sam-
ples, confirming that DASs can draw attention from
models to make incorrect predictions.

Adversarial training. To verify the effective-
ness of TASA in improving the robustness of
QA models, we randomly replace training data in
SQuAD 1.1 with corresponding adversarial sam-
ples generated by TASA in varied ratios, and then
use the new training data to fine-tune a BERT
model. The performance on the original dev set, the
adversarial dev set generated by TASA, and sam-
ples from AddSent, is shown in Figure 4, where
different mixing ratios are used, Noticeably, with
a suitable mixture ratio, adversarial samples from
TASA can make models more robust under adver-
sarial attacks without significant performance loss
on the original data. Interestingly, this defense ca-
pability can also be transferable to other adversarial
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Figure 4: The performance of BERT model fine-tuned on the original SQuAD data mixed with adversarial
samples from TASA in different ratios, evaluated on the original dev samples, adversarial samples from TASA
and AddSent. We expect a slight influence on original ones, while promotions on the latter two kinds of samples.

data, e.g. AddSent. Such results verify the poten-
tial of TASA to enhance the current QA models.

5 Related Work

Question answering. Extractive QA is the most
common QA task, where the answer is a text
span in the supporting context. There are various
datasets, e.g., SQuAD, NewsQA, and NaturalQues-
tions (Rajpurkar et al., 2016, 2018; Trischler et al.,
2017; Kwiatkowski et al., 2019), motivating more
works on QA models, such as end2end models
like BiDAF, R-Net, QANet and so on (Seo et al.,
2017; Wang et al., 2017; Yu et al., 2018). Pre-
trained models are widely applied recently, such
as BERT, RoBerta, and SpanBert (Devlin et al.,
2019; Liu et al., 2019; Joshi et al., 2020). They
realize remarkable promotions benefited from huge
corpora, meanwhile they can also be used as back-
bones to solve more complex QA tasks (Cao et al.,
2019; Huang et al., 2021). Nevertheless, there are
more concerns (Sinha et al., 2021; Ettinger, 2020;
Wallace et al., 2019a) whether models can really
capture contextual information rather than using
token-level knowledge simply.

Textual adversarial attack. Textual adversarial
attack has been widely investigated in general tasks
like text classification and natural language infer-
ence (NLI). Some works use character-level mis-
spelled tokens to attack models, but are easy to
be defended (Liang et al., 2018; Ebrahimi et al.,
2018; Li et al., 2019; Pruthi et al., 2019). More
studies use more sophisticated toke-level perturba-
tions (Ren et al., 2019; Alzantot et al., 2018; Zang
et al., 2020; Li et al., 2021) or phrase/sentence-level
editing (Iyyer et al., 2018; Chen et al., 2021; Lei
et al., 2022) to produce adversarial texts, with some
filtering strategies to guarantee the text meaning
and quality. However, none of them shows their
effectiveness on QA tasks.

There are some efforts on attacking QA models.

AddSent (Jia and Liang, 2017) contains adversar-
ial samples with distracting sentences added by
human annotators. Wallace et al. employ human
testers to interact with models and realize dynamic
attacks. Despite showing their effectiveness, these
approaches are not extensible and limited in scale.
There are also automatic methods. T3 (Wang et al.,
2020) utilizes a Tree LSTM to obtain a distract-
ing sentence based on the skeleton of the ques-
tion. Universal Trigger (Wallace et al., 2019a) find
input-agnostic texts that deceive models for a spe-
cific question type via gradient-guided search. Our
TASA differs from them as it bridges contexts and
questions to attack more efficiently and suits more
general conditions.

6 Conclusion

We present TASA, an automatic adversarial attack
method for QA models. It generates twin answer
sentences, perturbed answer sentence (PAS), and
distracting answer sentence (DAS), to construct a
new adversarial context in a QA sample. It can
deceive models and misguide them to an incorrect
answer based on their pitfalls that overly rely on
matching sensitive keywords during predicting an-
swers. In experiments, TASA achieves remarkable
attack performance on five datasets and three vic-
tim models with satisfactory sample quality. Our
additional analysis also proves that it is possible to
get more robust QA models via TASA in the future.
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A Implementation Details

A.1 Training Victim Models

BERT We use the huggingface-transformers3 to
implement the model and the bert-base-uncased
version of BERT model4 to initialize the model
weights. It contains 12 layers with a hidden size of
768. A linear layer is added to predict the start and
end positions of the answer span.

During fine-tuning BERT on different QA
datasets, we set the maximum input sequence
length as 384, using an Adam optimizer whose
initial learning rate is 6.25e−5 with the batch size
32. The epoch number is 3 and the final model
after all epochs will be saved as the victim model.
SpanBERT We also use the huggingfance-
transformers to implement the model, along with
spanbert-large-cased version5 to initialize the
weights. It contains 24 layers with a hidden size
of 1024. A linear layer is added to predict the start
and end positions of the answer span.

During finetuning, we set the maximum input
sequence length as 512, using an Adam optimizer
whose initial learning is rate 2e−5 with the batch
size 32. The epoch number is 3 and the final model
after all epochs will be saved as the victim model.
BiDAF We use the model implementation pro-
vided by AllenNLP6. The 6B 100d version of
GLoVe (Pennington et al., 2014) is used to ini-
tialize the token embedding layer of BiDAF.

During training, we set the maximum input con-
text length as 800, using an Adam optimizer with
an initial learning rate 1e-3 and batch size 40 to
train BiDAF for 20 epochs. All other settings are
in default. We will save the model with the best
performance on the dev set as the victim model.

A.2 TASA

Remove coreferences. We use NeuralCoref7 com-
bined with SpaCy8 to find out the coreferences in
contexts.
Perturbation on answer sentences. To select the
answer sentence sa, we use the answer span po-
sition given by each label in datasets, where the
sentence containing this span is regarded as sa. If
the answer spans are not unique, we use the answer

3https://github.com/huggingface/transformers
4https://huggingface.co/bert-base-uncased
5https://huggingface.co/SpanBERT/spanbert-large-cased
6https://github.com/allenai/allennlp
7https://github.com/huggingface/neuralcoref
8https://spacy.io

span that is chosen most times by annotators or
the first span in the context. The lemmas and POS
tags of different are obtained via SpaCy. The POS
tag set used to get keywords is {"VERB", "NOUN",
"ADJ", "ADV"}. When perturbing a token with its
synonyms, we use pyinflect9 to recover the lemmas
of replacements into the same inflections of the
original token.
Adding distracting answer sentences. We con-
struct a NER dictionary and a word dictionary (ex-
cept named entities) for each target dataset by pars-
ing all contexts in both the train and dev sets via
SpaCy. During generating DAS or changing an-
swers in DAS, we randomly sample named entities
with the same NER tag or words with the same
POS tag from the dictionaries we built before. Each
time, we sample N = 20 from them and ensure
there is no overlap with the original entity/token
we want to replace. Pyinflect is also used during
replacement.
Beam Search. During beam search, we apply an
early-stop strategy on the filtered results after each
time of a search. We also restrict the maximum
perturbation number to 5 for both PAS and DAS.
If one of the following 3 criteria is satisfied: 1)
the minimum effect score En among them satis-
fies min(En) ≥ TE , where TE is a threshold and
TE = 0.2; 2) all possible token/entities have been
replaced, the beam search will stop, and the final
M sentences will proceed to the next step.
Quality filtering. During filtering, we use the offi-
cial USE model10 to get USE similarity and a small
size GPT2 model11 to get the PPL.
Model to determine whether a question is
answerable for modified context. We use a
RoBertabase model fine-tuned on the original
SQuAD 2.0 dataset12 as the answerable judg-
ment model for SQuAD 1.1, because these two
datasets share the same corpus and model trained
on SQuAD 2.0 has the capability to predict whether
a question is answerable. If the model outputs the
highest answer possibility on the special “<s>” to-
ken at the beginning of the input, then the current
sample is regarded as unanswerable.

For the rest four datasets, we use other Roberta
models fine-tuned on our newly constructed train-
ing sets. More specially, each set includes the
original samples whose label is answerable and

9https://spacy.io/universe/project/pyinflect/
10https://tfhub.dev/google/universal-sentence-encoder/4
11https://huggingface.co/gpt2
12https://huggingface.co/deepset/roberta-base-squad2
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Datasets Has EM Has F1 No EM EM F1

SQuAD 2.0* 77.94 84.03 81.80 79.87 82.91
NewsQA 52.68 65.64 98.43 75.56 82.04
NQ 67.72 79.26 99.21 83.46 89.24
HotpotQA 59.43 77.31 99.83 79.63 88.57
TriviaQA 48.45 53.10 99.88 74.17 76.49

Table 6: The performance of our RoBerta models to de-
termine whether a question is answerable on our newly
constructed dataset containing answerable and unan-
swerable samples. “Has” means samples has an an-
swer, “No” means samples without an answer. *: we
directly use the SQuAD 2,0 dataset to train the model
for SQuAD 1.1 as they share the same corpus.

Hyperparameters Value

effect score threshold TE 0.2
quality score threshold TU -2
beam search size M 5
random sampling size for DAS N 20

Table 7: Values of hyperparameters used in TASA.

negative samples (unanswerable samples) whose
quantity is the same as answerable samples. Here,
each negative sample has a question obtained by
randomly sampling from the whole dataset that
does not belong to the given context. We follow
the same training pattern as SQuAD 2.0 to fine-
tune RoBerta models, where the model needs to
have the capability of both answering answerable
samples and output "unanswerable" label for unan-
swerable samples. We list the performance of all
these models used in our experiments in Table 6.
Our constructed data are less challenging for mod-
els because the questions of negative samples are
randomly sampled from the whole corpus, which
may be quite different from the context and easy to
be distinguished.

We list all hyperparameter values used by TASA
method in Table 7, which are obtained by em-
pirical tuning based on the trade-off between at-
tack effectiveness and textual quality. We conduct
all our experiments on a single NVIDIA V100
GPU. We also publish our code anonymously at
https://anonymous.4open.science/r/TASA/.

The possible limitations of our method:
TASA is only appliable to extractive QA tasks, and
the question or answer is not perturbed to achieve
a better deception on models ,which we leave for
the future work.

A.3 Baselines

We run the official code provided by the authors
of original baseline papers to derive the relevant

Datasets |Q| |C| Train size Dev size

SQuAD 1.1 11 137 87,599 10,570
NewsQA 8 599 74,160 4,212
Natural Questions (NQ) 9 153 104,071 12,836
HotpotQA 22 232 72,928 5,901
TriviaQA 16 784 61,688 7,785

Table 8: The statistics of 5 datasets used in our exper-
iments. |C| is the average length of context, |Q| is the
average length of questions, both in token level.

results in our experiments. We have tried our best
to reproduce the results reported in papers, but their
configurations are quite different from ours.
TextFooler Since this method is not designed for
QA tasks, we made some modifications to it. 1)
We only use the context as the targeted attack text
and mask tokens within it to get their importance
scores; 2) in order to avoid changing the answer,
we do not involve answer tokens as the perturbation
targets; 3) we also use the prediction possibility on
the gold answer to get the evaluation on each time
attack and determine when to stop the attack. We
implement our attack based on the official code and
keep other settings as the default.
T3 We apply its official code directly as it al-
ready contains the function to attack QA dataset
in SQuAD format. To make a fair comparison, we
use its black-box configuration without accessing
the internal parameters of models. Besides, we use
its target configuration, which aims to specially
misguide the model predictions to the pseudo an-
swer in the distracting sentence and shows a better
performance.

A.4 Datasets
We provide some statistics about 5 datasets we used
in Table 8. We use the official release version of
SQuAD 1.1, while the MRQA version 13 for other
4 datasets, where we transform them into the same
format as SQuAD 1.1 for the convenience of our
experiments.

B Additional Results

B.1 Using BiDAF as the Victim Model
We also include BiDAF as one kind of victim
model in our experiments, as it is a representative
End2end RNN-based model. The related results
are not provided in the main part due to the page
limitation and its current fair performance com-
pared to SOTA models. The attack results on five
dataset same as §4 are shown in Table 9. Similarly,

13https://github.com/mrqa/MRQA-Shared-Task-2019

11987

https://anonymous.4open.science/r/TASA/


Dataset method EM↓ F1↓ GErr↓ PPL↓ Num

SQuAD
1.1

Original 65.72 75.97 2.39 33.25 10,570
AddSent* 40.87 49.19 2.47 33.98 3,560
TextFooler 42.65 56.96 2.56 37.95 7,228
T3 52.74 61.69 4.44 44.20 9,681
OURS 37.96 49.44 2.89 41.08 9,606

News
QA

Original 43.99 57.64 1.98 22.50 4,212
TextFooler 32.03 46.69 2.11 23.92 3,662
T3 39.21 51.89 2.56 22.99 3,775
OURS 33.76 47.23 2.19 22.83 2,903

NQ

Original 56.77 68.83 20.48 49.74 12,836
TextFooler 39.65 53.91 20.50 47.31 7,111
T3 41.98 52.27 20.72 65.61 10,460
OURS 37.86 49.56 20.58 43.25 8,955

Hotpot
QA

Original 46.38 63.88 3.73 17.01 5,901
TextFooler 36.75 55.40 3.87 18.49 4,974
T3 41.38 58.41 5.16 20.78 5,186
OURS 34.12 49.15 4.00 15.31 5,050

Trivia
QA

Original 45.19 52.85 3.74 24.42 7,785
TextFooler 38.05 45.25 3.82 25.63 7,227
T3 43.22 50.07 4.20 25.50 7,434
OURS 40.21 46.47 3.87 24.72 7,110

Table 9: Attack results on 5 QA datasets using BiDAF
as the victim model. The best results are bold. Num is
the sample number of a dataset or generated from the
whole dataset by a method. ↓ represents that the lower
the better. *: annotated by humans.

our TASA achieves the best attack effectiveness in
3 datasets among 5 according to the declining scale
of EM and F1, while remaining comparable in the
other 2 datasets. In addition, TASA also achieves
the overall lower PPL among all conditions and a
close performance to TextFooler in terms of gram-
mar error. These observations again demonstrate
the superiority of our method. Moreover, it is no-
ticeable that BiDAF is less vulnerable than BERT
as the performance degeneration is slighter, espe-
cially on datasets with long contexts, e.g., NewsQA
and TriviaQA.

B.2 Shift to Pseudo Answers

Since PASs aim to attract models’ focus from origi-
nal answer sentences and misguide models to make
predictions on pseudo answers. We have conducted
related experiments in §4.4 to prove their validity.
Here, we provide more results about this experi-
ment, including not only the F1 scores between
predictions by 3 models on TASA adversarial sam-
ples and the pseudo answers contained in the corre-
sponding PASs, but also F1 scores between pseudo
answers and the models’ predictions on the origi-
nal samples, making a further comparison to elim-
inate the possible influence of the existing predic-
tion overlap. Results are given in Table 10. Obvi-

Datasets SQuAD 1.1 NewsQA NQ Hotpot Trivia

BERT 39.19 20.95 36.22 36.15 24.78
BERT(Ori) 15.08 14.40 21.21 20.38 20.30

SpanBERT 33.20 20.92 32.14 38.09 27.71
SpanBERT(Ori) 16.06 16.54 22.49 21.71 23.54

BiDAF 26.34 16.69 29.43 27.80 20.08
BiDAF(Ori) 12.68 12.80 18.51 16.76 16.42

Table 10: F1 score between predicted answers on
TASA adversarial samples with DASs and pseudo an-
swers from corresponding DASs, or between predicted
answers on the original samples and pseudo answers
(Ori), using 3 victim models on 5 datasets.
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Figure 5: The per sample time to generate adversar-
ial samples (in second) and average query number to
victim models of TextFooler, T3 and TASA, using all
kinds of victim models on SQuAD 1.1 dataset.

ously, all models under all conditions tend to pre-
dict answers that have more overlaps with pseudo
answers given TASA adversarial samples, prov-
ing the misguiding effect of DASs. Besides, the F1
score difference between predictions on TASA sam-
ples and the original samples will be reduced on
datasets where the attack capability of TASA is con-
sistently weaker, such as NewsQA and TriviaQA.
This proves that the efficiency of DASs drawing
models’ attention affects the attack performance
remarkably when combined with PAS.

B.3 Analysis of Computational Complexity
We illustrate the per sample attack time and query
number to the victim models of our TASA and
two baselines, TextFooler and T3, on SQuAD 1.1
dataset and all 3 types of models, in Figure 5. Note
that T3 has a constant query number to victim mod-
els, so it is not involved in this part. All results
are obtained on a single NVIDIA V100 GPU. It
can be seen that our TASA is the fastest attack
method compared to other baselines, and it also
makes fewer queries to the victim model before ob-
taining an adversarial sample. Although T3 has a
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Dataset source BERT SpanBERT BiDAF

ratio / % EM F1 ratio /‘% EM F1 ratio / % EM F1

SQuAD 1.1
PAS+DAS 50.2 22.75 32.98 53.2 41.67 53.31 54.4 26.47 36.46
PAS 8.9 51.06 63.48 10.2 63.90 78.29 9.3 37.46 50.08
DAS 40.9 58.86 70.03 36.6 70.36 81.12 36.3 55.28 68.69

NewsQA
PAS+DAS 40.8 32.42 45.77 42.7 43.47 59.25 44.0 25.84 39.38
PAS 19.9 34.23 47.80 20.7 44.67 60.67 21.1 26.49 40.89
DAS 39.3 50.01 64.52 36.6 62.85 75.29 34.9 40.95 53.78

NQ
PAS+DAS 54.1 33.09 45.27 54.5 44.12 58.50 54.9 30.29 42.25
PAS 19.5 47.55 62.97 19.9 53.21 69.24 19.9 41.24 55.81
DAS 26.4 60.80 70.25 25.6 64.26 74.94 25.2 51.72 60.59

HotpotQA
PAS+DAS 61.1 21.60 32.63 63.5 38.55 54.86 60.8 29.91 44.85
PAS 14.8 33.10 46.91 14.9 51.52 68.81 14.9 34.65 50.73
DAS 24.1 39.53 52.78 21.6 56.55 72.53 24.3 44.34 59.02

TriviaQA
PAS+DAS 62.9 48.07 51.73 63.3 60.68 66.59 63.5 37.10 43.13
PAS 13.2 51.86 54.42 13.3 63.16 69.37 12.3 40.61 47.29
DAS 23.9 60.01 64.72 23.4 71.41 77.31 24.2 48.70 55.65

Table 11: The ratio and performance of QA models on different compositions of adversarial samples generated by
TASA, on all 5 datasets and 3 victim models. PAS+DAS: both PAS and DAS are applicable in the current sample;
PAS: only PAS is applicable in the current sample; DAS: only DAS is applicable in the current sample.

constant query number to the victim model, its com-
plexity depends on the scale of the target model’s
embedding.

B.4 The Composition of Samples Generated
by TASA

Although we design twin sentences, PAS and DAS,
to attack QA models, it is possible that not both
of them are applicable for a sample. E.g., only
PAS is applicable if there is no proper named en-
tity or noun that can be edited in the answer sen-
tence excluding keywords and the gold answer;
or only DAS is applicable for a sample where no
overlapped keyword is found between the answer
sentence and question. A sample where only PAS
or DAS is applied will also be put into the final ad-
versarial sample set, along with samples that both
PAS and DAS (PAS+DAS) are involved. In order
to study the compositions of different adversarial
sample sources, as well as the performance of vic-
tim models on each part, we provide the ratios of
each type of samples generated by TASA on dif-
ferent datasets along with the performance of QA
models on them in Table 11.

It can be found that PAS+DAS compose the ma-
jority of adversarial samples on nearly all datasets,
while the quantities samples that only contain DAS
are generally larger than samples with only PAS.
When comes to the performance of QA models on
each part, it can be found that PAS+DAS has the
best attack effectiveness among all types of sam-
ples, because they not only deceive models using

perturbed keywords but also utilize distracting an-
swer sentences to misguide models to make wrong
predictions on the included pseudo answers. On
the other hand, only using PAS or DAS can lower
the attack effectiveness. The reason is that a sin-
gle attack source may not sufficiently fool models,
proving the necessity of combining the two folds
of pitfall we discussed in §2 into the adversarial
attack on the QA task. Moreover, the attack differ-
ence between PAS+DAS and PAS will be narrowed
on datasets having longer contexts like NewsQA
and TriviaQA, where EM and F1 values on these
two types of samples are more close. The rela-
tively weak attack ability on such datasets should
be the main cause. Besides, longer input sequences
will lower the attention weights of models on each
token, merely adding PAS also results in less in-
fluence because their ratio on the whole input be-
comes smaller.

C Qualitative Samples

We provide some samples generated by TextFooler,
T3 and TASA along with corresponding model
predictions in Table 12, Table 13. We also provide
the instruction screenshot for human evaluation in
Figure 6 and Figure 7.
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Figure 6: Screenshot of instructions for human evalua-
tion (part1).

Figure 7: Screenshot of instructions for human evalua-
tion (part2).
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Original context Long-term active memory is acquired following infection by activation of B and T cells.
Active immunity can also be generated artificially, through vaccination. The principle behind vacci-
nation (also called immunization) is to introduce an antigen from a pathogen in order to stimulate
the immune system and develop specific immunity against that particular pathogen without causing
disease associated with that organism. This deliberate induction of an immune response is successful
because it exploits the natural specificity of the immune system, as well as its inducibility. With
infectious disease remaining one of the leading causes of death in the human population, vaccination
represents the most effective manipulation of the immune system mankind has developed.

Question By what process can active immunity be generated in an artificial manner?
Answer vaccination
TextFooler context Long-term active memory is obtaining following infection by activation of B and T cells.

Active immunity can also constitute generated mannually, through vaccination. The principle be-
hind vaccination (also called immunization) is to introduce an antigen from a pathogen in order
to stimulate the immune system and develop specific immunity against that particular pathogen
without causing disease associated with that organism. This deliberate induction of an immune
response is successful because it exploits the natural specificity of the immune system, as well as
its inducibility. With infectious disease remaining one of the leading causes of death in the human
population, vaccination represents the most effective manipulation of the immune system mankind
has developed.

Model prediction vaccination
T3 context Long-term active memory is acquired following infection by activation of B and T cells.

Active immunity can also be generated artificially, through vaccination. The principle behind vacci-
nation (also called immunization) is to introduce an antigen from a pathogen in order to stimulate
the immune system and develop specific immunity against that particular pathogen without causing
disease associated with that organism. This deliberate induction of an immune response is successful
because it exploits the natural specificity of the immune system, as well as its inducibility. With
infectious disease remaining one of the leading causes of death in the human population, vaccination
represents the most effective manipulation of the immune system mankind has developed. Active
immunity generated immunization.

Model prediction vaccination
TASA context Long-term active memory is acquired following infection by activation of B and T cells.

Alive immunity can also be produced artificially, through vaccination. The principle behind immu-
nization (also called immunization) is to introduce an antigen from a pathogen in rank to stimulate
the immune system and arise precise resistance against that particular pathogen without causing
disease associated with that organism. Thpersonify deliberate induction of an immune response
personify successful because it utilises the natural specificity of the immune system of rule, as well as
its inducibility. With infectious disease remaining one of the leading causes of death in the human
population, vaccination represents the most effective manipulation of the immune system mankind
has developed. Active irradiation can also be generated artificially, through sword - cut.

Model prediction sword - cut

Original context In 1873, Tesla returned to his birthtown, Smiljan. Shortly after he arrived, Tesla contracted cholera;
he was bedridden for nine months and was near death multiple times. Tesla’s father, in a moment
of despair, promised to send him to the best engineering school if he recovered from the illness (his
father had originally wanted him to enter the priesthood).

Question What did Tesla’s father originally want him to do?
Answer enter the priesthood
TextFooler context In 1873, Tesla returns to his birthtown, Smiljan. Shortly after he arrived, Tesla contracted cholera;

he was crippled for nine months and was near death multiple times. Tesla’s dads, in a tiempo of angst,
pledging to transmits him to the advisable engineers schooling if he recaptured from the malady (his
father had originally wanted him to enter the priesthood).

Model prediction enter the priesthood
T3 context In 1873, Tesla returned to his birthtown, Smiljan. Shortly after he arrived, Tesla contracted cholera;

he was bedridden for nine months and was near death multiple times. Tesla’s father, in a moment
of despair, promised to send him to the best engineering school if he recovered from the illness (his
father had originally wanted him to enter the priesthood). Our our father our want father to us
entering of ordained.

Model prediction enter the priesthood
TASA context In 1873, Tesla delivered to his birthtown, Smiljan. Shortly after he arrived, Tesla contracted Asiatic

cholera; he was bedridden for nine months and was near death multiple times. Tesla’s dad, in a
moment of despair, promised to send him to the best engineering school if he recovered from the
illness (his dad had in the beginning required him to enter the priesthood). The Bureau of Near
Eastern Affairs’s father, in a moment of despair, promised to send him to the best engineering school
if he recovered from the illness (his father had originally wanted him to sadden the businessman).

Model prediction sadden the businessman

Table 12: Adversarial contexts generated by TextFooler, T3, and TASA, compared to the original context on
SQuAD 1.1 using BERT as victim model, along with predicted answers by the model. Gold answer, perturbed
tokens (i.e. perturbations on answer sentence for TASA), added distracting sentences (i.e. DAS for TASA), and
wrong answers are in different colors. Underlined sentences indicate the answer sentences.
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Original context The Daily Mail newspaper reported in 2012 that the UK government’s benefits agency was checking
claimants’ "Sky TV bills to establish if a woman in receipt of benefits as a single mother is wrongly
claiming to be living alone" – as, it claimed, subscription to sports channels would betray a man’s
presence in the household. In December, the UK’s parliament heard a claim that a subscription to
BSkyB was ‘often damaging’ , along with alcohol, tobacco and gambling. Conservative MP Alec
Shelbrooke was proposing the payments of benefits and tax credits on a "Welfare Cash Card", in the
style of the Supplemental Nutrition Assistance Program, that could be used to buy only "essentials".

Question what did the UK parliment hear that a subscription to BSkyB was?
Answer often damaging
TextFooler context The Daily Mail newspapers reported in 2012 that the UK government’s benefits agency was checking

claimants’ "Sky TV bills to establish if a woman in receipt of benefits as a unaccompanied mamma
is disproportionately arguing to are residing alone" –, it asserted, syndication to sporting pipelines
would betraying a husband’s betrothal in the habitation. In December, the UK’s assemblage heard
a requisitions that a subscriber to BSkyB was ‘often damaging’, along with liquor, tobacco and
gambling. Conservative MP Alec Shelbrooke was proposing the repaying of benefits and tax credits
on a "Welfare Cash Card", in the styling of the Supplemental Nutrition Assistance Program, that
could be used to buy only "essentials".

Model prediction damaging
T3 context The Daily Mail newspaper reported in 2012 that the UK government’s benefits agency was checking

claimants’ "Sky TV bills to establish if a woman in receipt of benefits as a single mother is wrongly
claiming to be living alone" – as, it claimed, subscription to sports channels would betray a man’s
presence in the household. In December, the UK’s parliament heard a claim that a subscription to
BSkyB was ‘often damaging’, along with alcohol, tobacco and gambling. Conservative MP Alec
Shelbrooke was proposing the payments of benefits and tax credits on a "Welfare Cash Card", in the
style of the Supplemental Nutrition Assistance Program, that could be used to buy only "essentials".
The world it contained to the available than [unk] available sometimes damaged.

Model prediction often damaging
TASA context The Daily Mail newspaper reported in 2012 that the UK government’s profits agency was checking

claimants’ "Sky tv set throwaways to establish if a woman in receipt of profits as a single mother
is wrongly claiming to be living alone" – as, it claimed, subscription to gambols epithelial ducts
would betray a man’s presence in the household. In December, the UK’s parliament noticed a
claim that a subscription to BSkyB was ‘often damaging’, along with alcohol, tobacco and gambling.
Conservative MP Alec Shelbrooke was popping the questioning the requitals of dos goods and tax
credits on a "Welfare Cash Card", in the style of the Supplemental Nutrition Assistance Program, that
could be used to buy only "essentials". In December, the Bhinmal’s parliament heard a claim that a
subscription to BSkyB was ‘meticulously ionateing’, along with alcohol, tobacco and gambling.

Model prediction meticulously ionateing

Original context On May 21, 2013, NFL owners at their spring meetings in Boston voted and awarded the game to
Levi’s Stadium. The $1.2 billion stadium opened in 2014. It is the first Super Bowl held in the San
Francisco Bay Area since Super Bowl XIX in 1985, and the first in California since Super Bowl
XXXVII took place in San Diego in 2003.

Question When did Levi’s stadium open to the public?
Answer 2014
TextFooler context On May 21, 2013, NFL owners at their spring meetings in Boston voted and awarded the game to

Levi’s Stadium. The $1.2 trillion stadium opened in 2014. It is the first Super Bowl held in the San
Francisco Bay Area since Super Bowl XIX in 1985, and the first in California since Super Bowl
XXXVII took place in San Diego in 2003.

Model prediction May 21, 2013
T3 context On May 21, 2013, NFL owners at their spring meetings in Boston voted and awarded the game to

Levi’s Stadium. The $1.2 billion stadium opened in 2014. It is the first Super Bowl held in the San
Francisco Bay Area since Super Bowl XIX in 1985, and the first in California since Super Bowl
XXXVII took place in San Diego in 2003. By by got to to these and 2012.

Model prediction 2014
TASA context On May 21, 2013, NFL possessors at their spring runs across in Boston balloted and awarded the

game to Levi’s Stadium. The $1.2 billion stadium opened in 2014. It is the first Super Bowl held in
the San Francisco Bay Area since Super Bowl XIX in 1985, and the first in California since Super
Bowl XXXVII took place in San Diego in 2003. The $1.2 billion door opened in 2 June 2013.

Model prediction May 21, 2013

Table 13: Adversarial contexts generated by TextFooler, T3, and TASA, compared to the original context on
SQuAD 1.1 using BERT as victim model, along with predicted answers by the model. Gold answer, perturbed
tokens (i.e. perturbations on answer sentence for TASA), added distracting sentences (i.e. DAS for TASA), and
wrong answers are in different colors. Underlined sentences indicate the answer sentences.
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