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Abstract
In this paper, we seek to measure how much
information a component in a neural network
could extract from the representations fed
into it. Our work stands in contrast to prior
probing work, most of which investigates how
much information a model’s representations
contain. This shift in perspective leads us
to propose a new principle for probing, the
architectural bottleneck principle: In order
to estimate how much information a given
component could extract, a probe should look
exactly like the component. Relying on this
principle, we estimate how much syntactic
information is available to transformers
through our attentional probe, a probe that
exactly resembles a transformer’s self-attention
head. Experimentally, we find that, in three
models (BERT, ALBERT, and RoBERTa), a
sentence’s syntax tree is mostly extractable by
our probe, suggesting these models have access
to syntactic information while composing
their contextual representations. Whether this
information is actually used by these models,
however, remains an open question.

https://github.com/rycolab/
attentional-probe

1 Introduction

The surprising performance of pretrained language
models on diverse natural language processing
tasks has sparked interest in their analysis. Probing
is one of the most prevalent methods employed to
engage in such an analysis. In a typical probing
study (Alain and Bengio, 2016; Belinkov et al.,
2017; Adi et al., 2017, inter alia), the weights
of the model under consideration are first frozen.
A probe is then trained on top of the model’s
contextual representations in an attempt to predict
one of the input sentence’s properties, e.g., its
syntactic parse. Unfortunately, best practices on
how to design such probes remain contested.

On one side of the debate, some argue for
simplicity, suggesting that simple probes are to be

∗Equal contribution.

preferred so that we can distinguish probing from
simply learning an NLP task (Hewitt and Liang,
2019). On the other side of the debate, some
argue we need complex probes in order to extract
all relevant information from the representations
(Saphra and Lopez, 2019; Pimentel et al., 2020b).
Bridging the gap, some have also called for a
compromise, advocating that all probes on the
complexity–accuracy Pareto curve should be
considered (Pimentel et al., 2020a).

In this paper, we propose the architectural
bottleneck principle (ABP) as a guideline for
constructing useful probes. Under the ABP, a
probe’s architecture should mirror a component
of the model being probed. Previous work has
mostly focused on how much information is
contained in a set of representations. However, if
we care about whether the information is in fact
used by the model, we should instead ask how
much information the model in question could
use.1 Under this perspective, the probed model’s
architecture acts as a natural bottleneck to how
much information the model could use—and
should thus also act as a constraint when probing.2

As a concrete example, we posit that a trans-
former’s attention head serves as a bottleneck to
its use of syntactic information, as these are the
only components in a transformer with access
to multiple tokens at once. Following the ABP,
we thus propose the attentional probe, which
looks exactly like an attention head. This probe
allows us to answer one specific question: How
much syntactic information could a transformer
use while computing its attention weights?

Our results reveal that most—albeit not all—
syntactic information is extractable with this
simple attention head architecture: While we
estimate English sentences to contain on average

1Explicitly, we use the bigram could extract to refer to the
total amount of information a component is able to extract
from the representations fed into it; this upper-bounds the
information that component actually uses.

2For related work investigating whether a model uses some
information, see Ravfogel et al. (2021) and Lasri et al. (2022).
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31.2 bits of information about their syntactic tree
structure, the attentional probe can extract up to
28.0 bits. Furthermore, while these results hold for
three popular transformer-based language models
(BERT, ALBERT and RoBERTa), they do not
for a similar but untrained model. This suggests
that training a model shapes its representations to
encode syntactic information. We find this trend
holds across four typologically diverse languages
(Basque, English, Tamil, and Turkish). In contrast,
when we keep BERT’s pretrained parameters
frozen and analyze the weights of its pretrained
attention heads, we observe that they do not seem
to encode syntax under our operationalisation.
Ergo, while we know these models could use
syntactic information to compute attention weights,
whether they actually do remains an open question.

2 A Taxonomy of Probing Principles

There are many competing approaches for how
to design an effective probe (Belinkov and Glass,
2019). We taxonomise them into principles here.

1. The Linearity Principle (Alain and Bengio,
2016). A neural network’s purpose is to make
information linearly separable for its final layer.
Thus, probes should be linear models.

Focusing on how much information a model could
use in its final layer,3 Alain and Bengio (2016)
propose what we term the linearity principle; many
subsequent studies then adopted it in designing
their probes (Shi et al., 2016; Ettinger et al., 2016;
Bisazza and Tump, 2018; Liu et al., 2019a). Other
researchers, however, argued that a model’s non-
final layers do not necessarily encode information
linearly (Conneau et al., 2018; Pimentel et al.,
2020b). They then suggested that a probe should
measure the total amount of information present
in a model’s representations—independent of
whether it is actually used by the model. This led
to a second principle, which we outline below.

2. The Maximum Information Principle (Pi-
mentel et al., 2020b). A probe’s goal is to estimate
how much information is encoded in a set of rep-
resentations. Thus, probes should be as complex
as necessary to extract all relevant information.

Following this principle, some authors have found,
unsurprisingly, that non-linear probes estimate
larger amounts of information to be encoded in

3We assume throughout this paper that a model’s final layer
is a linear projection coupled with a softmax nonlinearity.

a representation than linear ones (Qian et al., 2016;
Belinkov et al., 2017; White et al., 2021). Pimentel
et al. (2020b), however, argued that all contextual
representations, e.g., the ones produced by BERT,
encode as much information about a target attribute
as the original sentence. It follows that probing
only makes sense with some constraint on probe
complexity. Taking complexity into account sug-
gests another natural principle for probe design.
3. The Easy-extraction Principle (Hewitt and
Liang, 2019). The goal of probing is to reveal how
easy it is to extract the information encoded in the
representations. Thus, probes should be as simple
as possible without sacrificing performance.
The idea of preferring simple probes goes by many
names in the literature. Some authors discuss the
complexity of probing architectures (Hewitt and
Liang, 2019; Voita and Titov, 2020; Pimentel et al.,
2020a; Cao et al., 2021), while others discuss the
amount of data required to train the probe (Pimentel
and Cotterell, 2021). None of the work above,
however, discusses how the model actually uses the
information about the target attribute (Elazar et al.,
2021; Lasri et al., 2022). If we are interested in
whether information can be used by the model, we
need a new principle. In this work, we argue that a
model’s architecture should factor into the probe’s
design, because the model’s architecture constrains
the amount of information the model can use. This
leads us to propose the following principle.
4. The Architectural Bottleneck Principle (ABP).
A probe should measure how much information a
component of a model could use. Thus, a probe’s
architecture should mirror that component.
We believe the ABP naturally connects the first
three principles. Importantly, the ABP generalises
the linearity principle: If a model employs a linear
projection coupled with a softmax in its final layer,
and our probe mirrors that layer, as linear probes
do, then the ABP will be equivalent to the linearity
principle. Furthermore, the ABP also relates to
the maximum information principle: If we probe a
component that is expressive enough, it should be
able to extract all relevant information from a set
of representations. Finally, the ABP also implicitly
controls for ease of extraction by restricting the
capacity of probes.

3 Probing with Information Theory

In this paper, we take the position that the goal of
probing is to determine how much information one
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can extract from the representations being probed.
Following Pimentel et al. (2020b), we now oper-
ationalise this value formally using information
theory, which offers us a clean framework to quan-
tify information. Specifically, the measure we are
interested in is a V-information (Xu et al., 2020).4

3.1 Mutual Information
Shannon (1948) famously quantified the amount
of information that a random variable (R) contains
about another (A) as their mutual information

I(R;A)
def
= H(A)−H(A | R) (1)

where H(A) and H(A | R) are, respectively, the
entropy of A and the conditional entropy of A
given R. Given that R is a continuous-valued
representation with values r ∈ R, and A is a
discrete-valued attribute with values a ∈ A, these
quantities are defined formally as

H(A)
def
=

∑

a∈A
p(a) log

1

p(a)
(2)

H(A | R)
def
=

∫

R

∑

a∈A
p(r,a) log

1

p(a | r)dr (3)

The maximum information principle seeks to
estimate Eq. (1). Notably, the relationship between
R and A, represented by distribution p(a | r),
may be arbitrarily complex, and this distributions’
computational complexity has no direct effect on
the conditional entropy’s value H(A | R).

3.2 V-information
Under the architectural bottleneck principle, we
are interested in how much information we can
extract from R about A, when constrained to only
using extraction functions in a set V , the set of
functions a model’s component can represent. The
V-information (Xu et al., 2020), a generalisation
of Shannon’s (1948) mutual information, naturally
operationalises this value as

IV(R → A)
def
= HV(A)−HV(A | R) (4)

where the conditional V-entropy is defined as

HV(A | R)
def
= inf

q∈V

∫

R

∑

a∈A
p(r,a) log

1

q(a |r)dr

(5)
4We operationalise our measure of interest as a V-

information here, since information is usually the term used
to describe probing questions. Our principle, however, can
be easily extended to other measures. For instance, we can
define V-UAS as the supremum unlabelled attachment score
(UAS) achievable by an architecture.

The unconditional V-entropy is defined similarly.
In words, the V-information computes the

maximum information that can be extracted by
a model with an architecture V . Notably, if V is
sufficiently expressive, i.e., if p(a | r) ∈ V , the
V-information will be equivalent to the traditional
mutual information. Further, V-information is
bounded above by the mutual information, which
leads to a new value termed here the V-coefficient

CV(A | R)
def
=

IV(R → A)

I(R;A)
(6)

In short, the V-coefficient computes the percentage
of information we can extract from a random
variable when restricted to variational family V .

4 An Attentional Probe

In our experiments, we will focus on a trans-
former’s attention mechanism. Concretely, many
researchers (e.g., Vig and Belinkov, 2019; Htut
et al., 2019; Manning et al., 2020) have asserted
that syntactic information is used by transform-
ers when computing their attention weights (al-
beit not uncontroversially; for a review, see Rogers
et al., 2021). Further, attention heads are the only
components in a transformer which have access
to multiple words at the same time. Thus, explor-
ing the ABD in the context of attention heads is a
natural starting point. Specifically, following the
ABP, we will investigate how much information a
transformer’s attention head could extract from the
representations fed into it.

Given an input sentence s, a transformer
(Vaswani et al., 2017) will generate a set of repre-
sentations r ∈ R def

=R|s|×d1 at layer ℓ. An attention
head then uses these representations to compute
the attention weights

αij = (Kri)
⊺Qrj , wij =

eαij

∑
1≤j′≤|s|

eαij′
(7)

where i and j index word positions in a sentence
s, K,Q ∈ Rd2×d1 are the key and query matri-
ces, and α,w ∈ R|s|×|s| are, respectively, the
self-attention logits and attention weights.

We now consider an attentional probe parame-
terised using the head in Eq. (7), but with randomly
initialised K and Q matrices. Our goal is to
train this probe, as we explain towards the end
of this section. We use the attention weights,
defined in Eq. (7), to compute the probability of

11461



1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30
V-

in
fo

rm
at

io
n

(b
it

s)

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

V-
in

fo
rm

at
io

n
(b

it
s)

Figure 1: V-information per layer of our probes evaluated on: (left) English using BERT, RoBERTa, ALBERT
and untrained representations; (right) Basque, Turkish, and Tamil using BERT representations. Line patterns
represent: Mutual information; Attentional V-information; Structural V-information.

a specific directed spanning tree a, which encodes
the syntactic dependencies

qθ(a | r) =
∏

(i,j)∈awij∑
a′∈A|s|

∏
(i,j)∈a′ wij

(8)

where tree a is represented as a set of pairs (i, j)
which index an edge in it, A|s| represents the
set of all directed spanning trees with a specific
number of nodes |s|, and θ = [K;Q] ∈ Rd2×(2d1)

represents the probe’s parameters. We can easily
compute the numerator in this equation for a
specific tree. The normalising factor in the
denominator is more complex, as it requires
looping through a prohibitively large sum. Luckily,
we can efficiently compute it with Koo et al.’s
(2007) variation of the matrix–tree theorem (MTT)
for root-constrained directed spanning trees (Tutte,
1984; Zmigrod et al., 2020).5

The Variational Family. The attentional probe
architecture is defined by Eqs. (7) and (8). We now
define the equivalent variational family

V =
{
qθ(a | r) | K,Q ∈ Rd2×d1

}
(9)

This variational family includes the set of all
distributions computable by an attention head
architecture. In practice, however, we cannot
compute the infimum over the set V as required
in Eq. (5). As an approximation, we train our
attentional probe to minimise a cross-entropy loss,
which gives us an estimate of the V-entropy. We
expand on this point in App. A.1.6

5Importantly, Koo et al.’s (2007) method requires a set
of weights between each word and a sentence’s root. To
handle this, we feed an extra root representation r0, initialised
as a vector with all zeros, to our attentional probe, making
our attention weights actually have shape w ∈ R|s|+1×|s|+1.
Explicitly, adding a root to an undirected dependency tree is
equivalent to making it directed. We then use Zmigrod et al.’s
(2021) implementation of the matrix–tree theorem.

6We note that Hewitt et al. (2021) first noted the equiva-
lence between estimating a V-information and probing.

5 Experiments

Data. We use the universal dependencies’ (UD)
treebanks (Zeman et al., 2020). Specifically, we
analyse results in four typologically diverse lan-
guages: Basque, English, Tamil, and Turkish. Fur-
thermore, we focus our analysis on unlabelled de-
pendency trees. We note that UD uses a particular
syntax formalism, which could impact our results
(Kuznetsov and Gurevych, 2020).

Models. Empirically, we study multilingual
BERT in all four languages under consideration
(Devlin et al., 2019) as well as RoBERTa and
ALBERT (Liu et al., 2019b; Lan et al., 2020),
which are only available in English. In line with
the ABD, we keep our probe’s hidden size the
same as in the probed architectures. Finally, we
also probe an untrained transformer model with
the same architecture as BERT as a baseline.

Training. We train our probes with AdamW
(Loshchilov and Hutter, 2019) using its default
hyper-parameters in PyTorch (Paszke et al., 2019).7

Baselines and Skylines.8 We contrast our atten-
tional probe’s V-information against two other val-
ues. First, as a baseline, we investigate a special
case of our model where K=Q, inspired by re-
cent work on structural probing (Hewitt and Liang,
2019; Maudslay et al., 2020; White et al., 2021).
Notably, this equality leads to symmetric attention
weight matrices; by modelling the root explicitly,
however, we still get a distribution over directed
trees. This baseline evaluates whether previous
work, by over-constraining their probes, has under-
estimated the amount of information available to a
transformer’s attention mechanism. We report this
value as structural V-information. Second, as
a skyline, we compare our attentional probe to an
estimate of the true mutual information I(R;A),

7The estimation of HV(A) is described in App. D.
8We describe both approaches in more detail in App. C.
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Model Layer IV I CV

BERT 7 28.0 31.2 90%
RoBERTa 9 25.5 31.2 82%
ALBERT 7 27.7 31.2 89%

Table 1: Maximum V-informations (IV ) and V-
coefficients (CV ) estimated in English in each probed
model, together with the layer in which they occur. We
also display the estimated mutual information (I).

for which we follow Pimentel et al. (2020b) in us-
ing a deep neural network (DNN) to estimate.9

6 Results

We present our main results in Fig. 1. First, our
probes estimate that most syntactic information
is extractable in the middle layers, as previously
reported by Tenney et al. (2019). Second, Fig. 1
shows that a large amount of syntactic information
is encoded in the representations fed to the atten-
tion heads. Further, while we estimate close to 31
bits of information to be encoded in English, Tamil,
and Basque sentences, we only estimate around 15
bits to be encoded in Turkish sentences; we suspect
this is due to Turkish having the shortest sentences
in the corpus (see App. I for these lengths).

Third, we find that, out of the total syntactic
information present in the sentences, nearly all is
available to the transformer-based models under
consideration. In English, for instance, we find
the V-coefficient of the most informative layer
to be 90%, 82%, and 89% in BERT, RoBERTa
and ALBERT, respectively; see Tab. 1. This
means they have access to roughly 85% of all
syntactic information in a sentence. These trends
are consistent across the four languages we have
considered. Notably, this is not the case for the
untrained BERT representations, which suggests
this structure is a byproduct of the language
models’ pretraining procedures.

Additionally, we find that our structural baseline
considerably underestimates the models’ potential
ability to reconstruct a syntax tree; the best English
structural baseline recovers only 23 bits of infor-
mation (versus 28 bits by the attentional probe).
One can see this effect in Fig. 1, where all of the
structural baseline results fall beneath their corre-
sponding attentional probe counterparts.10

9We note that, as demonstrated by Pimentel et al. (2020b),
the mutual information I(R;A) is constant across contextual
representations and equivalent to I(S;A). We thus use our sin-
gle best approximation of it in each language as our estimate.

10We provide unlabelled attachment scores in App. F.
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Figure 2: UAS of the attentional weights computed by
BERT (with its pretrained weights frozen) in English.
We also display the UAS achieved by the attentional
probe, the best head per layer of an untrained BERT,
and a right and left-branching baseline.

In a final experiment, we plug BERT’s attention
weights, as computed with its pretrained attention
heads, directly into Eq. (8) and analyse its resulting
unlabelled attachment scores. These results are
presented in Fig. 2 for English (as well as in App. H
for the other analysed languages). In short, they
reveal that, while attention heads could use a large
amount of syntactic information, none of the actual
heads compute weights that strongly resemble
syntax trees; see Htut et al. 2019 for similar results.
As BERT has 8 attention heads, however, it might
be the case that the syntactic information is used in
a distributed manner, with each head relying on a
subset of this information (see Tab. 3 in Clark et al.
2019 for results partly supporting this hypothesis).

7 Conclusions

In this paper, we have approached probing from
a new perspective. Rather than asking how much
information is encoded by the model, we ask how
much information its components could extract.
We then quantify this amount using V-information.
Evaluating the attention mechanism of popular
transformer language models, we find that the
majority of the information about the syntax tree of
a sentence is in fact extractable by the model. This,
however, is not true for randomly initialised trans-
former models. Our results, thus, lead us to con-
clude that a transformer’s training leads its attention
heads to have the potential to decode syntax trees.
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In this paper, we propose a new principled way to
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extract from a set of representations?” in terms
of a V-information. We note, however, that this
probe design principle is only applicable to answer
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actually extract from a set of representations?” In
practice, while our proposed probing method does
not answer this second question, it does offer an
upperbound for it; the amount of information a
model could extract from a set of representations
is strictly larger than the amount actually extracted.
Quantifying how tight (or loose) this upperbound
is remains future work.
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Kristina Brokaitė, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Tatiana Cav-
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Stephanie Samson, Manuela Sanguinetti, Dage Särg,
Baiba Saulı̄te, Yanin Sawanakunanon, Salvatore Scar-
lata, Nathan Schneider, Sebastian Schuster, Djamé
Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibus-
sirri, Dmitry Sichinava, Aline Silveira, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simkó,
Mária Šimková, Kiril Simov, Maria Skachedubova,
Aaron Smith, Isabela Soares-Bastos, Carolyn Spa-
dine, Antonio Stella, Milan Straka, Jana Strnadová,
Alane Suhr, Umut Sulubacak, Shingo Suzuki, Zsolt
Szántó, Dima Taji, Yuta Takahashi, Fabio Tam-
burini, Takaaki Tanaka, Samson Tella, Isabelle Tel-
lier, Guillaume Thomas, Liisi Torga, Marsida Toska,
Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Utku
Türk, Francis Tyers, Sumire Uematsu, Roman Un-
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A More on the V-information

A.1 Probing as approximating V-information

In this section, we make a similar argument to
Hewitt et al.’s (2021), who first pointed out the
equivalence between the goals of probing and esti-
mating a V-information. When probing for some
information, we typically train a probabilistic clas-
sifier qθ(a |r) (with parameters θ) to approximate
a target probability distribution p(a |r). We do this
by using an empirical cross-entropy loss function

L(Dtrain;θ)
def
=

∑

(r,a)∈Dtrain

log
1

qθ(a |r)
(10)

where Dtrain is a training set composed of (r,a)
pairs, which are assumed to be sampled from the
true distribution p(r,a). Further, we usually have
access to a development set Ddev, on which we
estimate this same loss L(Ddev;θ) and which we
use to avoid overfitting. Together, these steps aim
at making qθ(a | r) approximate the distribution
which minimises the true cross-entropy

Hθ(A | R)
def
=

∫

R

∑

a∈A
p(r,a) log

1

qθ(a |r)
dr

(11)
Minimising this cross-entropy is equivalent to find-
ing the q(a | r) ∈ V which minimises the condi-
tional V-entropy in Eq. (5). Furthermore, since
HV(A) is constant with respect to the represen-
tations R, this is also equivalent (up to an addi-
tive constant) to estimating the V-information in
Eq. (4)—where V is defined by our choice of archi-
tecture for the probing classifier.

A.2 On V , Expressivity and Learnability

Ideally, a trained probe qθ(r | a) would converge
to the infimum q ∈ V from Eq. (5). In practice,
however, limitations on the dataset size and optimi-
sation algorithms may lead to poor approximations.
Moreover, even with a trained probe, we still can-
not compute Eq. (11), but must instead empirically
approximate it with a test set and the loss function
in Eq. (10). We can thus decompose our actually
measured value into four terms

L(Dtest;θ) = H(A | R) + ϵ1 + ϵ2 + ϵ3 (12)

where

ϵ1
def
= HV(A | R)−H(A | R)︸ ︷︷ ︸

Expressivity Constraint

(13)

ϵ2
def
= Hθ(A | R)−HV(A | R)︸ ︷︷ ︸

Training Constraint

(14)

ϵ3
def
= L(Dtest;θ)−Hθ(A | R)︸ ︷︷ ︸

Measurement Error

(15)

Given a large enough testset, ϵ3 should be roughly
zero, as the empirical loss in Eq. (10) is an un-
biased estimator of the cross-entropy in Eq. (11).
This leaves ϵ1 and ϵ2. While ϵ1 is intentionally
imposed by the choice of V , which defines the ex-
pressivity constraints on the structure of the learned
information extractors, ϵ2 is a byproduct of multi-
ple factors: V itself, the optimisation algorithm and
both the train and devset sizes.

Analysing the V-information of a very expres-
sive variational family may thus be vacuous, as we
may expect ϵ1 to be relatively small compared to ϵ2;
this would likely be the case for a V resembling the
entire BERT architecture.11 For smaller variational
families, however, such as the ones we explore here,
we can expect our learning procedures to be well
behaved and for ϵ2 to be relatively small.

B Inverse Ablation Perspective

One could view our work as a reversed ablation
study. In a typical ablation experiment a compo-
nent of a model is removed to observe its effect
on the functioning of the entire model. The idea is
that the observed difference in performance of the
model will indicate the relative importance of the
component. However, with ablation it is impossi-
ble to tell what role the component plays in solving
the target task. In comparison, we freeze the en-
tire model up to a particular component we are
interested in. Instead of asking how important the
component is to the overall goal of the model, we
ask how good it is at a task we believe is important
towards achieving such goal.

C Baseline and Skyline

C.1 Structural Baseline
Hewitt and Manning (2019) propose the structural
probe to investigate the encoding of syntactic struc-
ture in contextual representations. Intuitively, they

11In these scenarios, an information-theoretic measure that
accounts for training set sizes might be more meaningful, such
as the Bayesian information (Pimentel and Cotterell, 2021).
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probe to which extent they can reconstruct a sen-
tence’s syntactic tree purely from the distance be-
tween contextual representations r. Instead of
learning separate query Q and key K matrices as
we do, however, they limit themselves to a single
projection matrix B ∈ Rd2×d1 . Their probe can
thus be written as

αij = (Bri)
⊺Brj (16)

Since we want to train the structural probe with the
same cross-entropy parsing loss as our attentional
probe, we softmax its distances

wij =
eαij

∑
1≤j′≤|s|

eαij′
(17)

making it similar to White et al.’s (2021) non-linear
structural probe. This is necessary because the
MTT we use to compute the denominator in Eq. (8)
assumes non-negative inputs. We then train it with
the same loss function as our proposed attentional
probe, also making it similar to Maudslay et al.’s
(2020) structural parser. In practice, thus, our struc-
tural baseline’s implementation can be seen as a
non-linear structural parser.

C.2 DNN Parser
To approximate the true mutual information
I(R;A), we follow Pimentel et al. (2020b) in using
more powerful feed forward neural network probes.
Specifically, we rely on a variant of Dozat and Man-
ning’s (2017) parser. We first use two multi-layer
perceptrons (MLP), one for the dependent and one
for the head token in a dependency arc

r′i = MLP(ri), r′j = MLP(rj) (18)

These MLP’s are composed of a number of lin-
ear transformations, interweaved with ReLU non-
linearities and dropout layers. We then feed both
these transformed representations into a biaffine
transformation to get the dependency logits

αij = r′ ⊺i Wr′j (19)

Finally, we again make these values non-negative
by softmaxing them

wij =
eαij

∑
1≤j′≤|s|

eαij′
(20)

We train this model with the same cross-entropy
loss function as our proposed attentional probe.

To choose the hyper-parameters of this model’s
MLP we use random search, training 50 indepen-
dent models. We random search for the number
of layers in {0, 1, 2}, dropout in [0.0, 0.5], and the
hidden size in [32; 512]. Furthermore, we note that,
as demonstrated by Pimentel et al. (2020b), the
mutual information I(R;A) is constant across con-
textual representations and equivalent to I(S;A),
where S is a random variable representing the orig-
inal input sentence. We thus use our single best ap-
proximation of it in each language as our estimate.

D Unconditional Entropy Parser

We still need to estimate the unconditional en-
tropies HV(A). As these unconditional entropies
are not conditioned on anything, however, we can-
not estimate them using the previous parsers di-
rectly. Specifically, the representations ri and rj in
Eqs. (7), (16) and (18) cannot be used. We sidestep
this issue by dropping our contextual representa-
tions from these equations and using position em-
beddings in their place. Importantly, these position
embeddings do not depend on the input sentences.
In short, we compute these equations as

αij = (Kpi)
⊺Qpj (attentional) (21)

αij = (Bpi)
⊺Bpj (structural) (22)

r′i = MLP(pi), r′j = MLP(pj) (DNN) (23)

where pi ∈ Rd1 is a randomly initialised position
embedding and is trained with the rest of the probe.

E Extra Information about Training

We use the base version of all our analysed pre-
trained models (taken from the transformers library
Wolf et al., 2020). We train the model with a batch
size of 2048, evaluate the model every 100 batches,
and stop training when the model does not im-
prove over 10 consecutive evaluations. Both the
attentional and structural probes are trained with
a dropout of 0.2 (applied both on the raw input
representations and on the key and query represen-
tations before being multiplied together) and with
a hidden size (i.e. d2) of 64—this is the size of
the query, and key representations in both BERT,
RoBERTa and ALBERT. As our data, we used the
treebanks: English EWT (Silveira et al., 2014);
Basque BDT (Aduriz et al., 2003); Turkish IMST
(Sulubacak et al., 2016); Tamil TTB (Ramasamy
and Žabokrtský, 2012).
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F UAS Results
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Figure 3: UAS of the probes evaluated on English using BERT, RoBERTa and ALBERT representations (left);
Basque, Turkish and Tamil using BERT representations (right).

G V-information by Language
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Figure 4: The estimated attentional V-information, structural V-information, and mutual information on Basque
(top-left); Turkish (top-right); and Tamil (bottom).
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H Attention Head Weights Results

We additionally compute the parsing accuracy of the attention heads with their actual weights as taken
from BERT (with its parameters as pretrained).12 In Fig. 5 (as well as Fig. 2 in the main text), we label
the heads in order of their performance (1 is always the least accurate per layer, 8 the most). These results
show that an attention head’s potential to extract syntax trees is far above what each individual head
actually extracts.
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Figure 5: UAS of all attention heads’ weights computed by BERT (with its pretrained parameters frozen) in Basque
(top-left); Turkish (top-right); and Tamil (bottom).

I Average Sentence Lengths

Language Average Sentence Length

Basque 13
English 15
Tamil 17
Turkish 10

Table 2: The average sentence length per language under consideration.

12We assign the weight between each word and the root node as zero, since it is not part of the attention weights.
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