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Abstract
Transformer-based autoregressive and non-
autoregressive models have played an essen-
tial role in sequence generation tasks. The
autoregressive model can obtain excellent
performance, while the non-autoregressive
model brings fast decoding speed for infer-
ence. In this paper, we propose JANUS, a
Joint Autoregressive and Non-autoregressive
training method using aUxiliary losS to en-
hance the model performance in both AR and
NAR manner simultaneously and effectively al-
leviate the problem of distribution discrepancy.
Further, we pre-train BART with JANUS on a
large corpus with minimal cost (16 GPU days)
and make the BART-JANUS capable of non-
autoregressive generation, demonstrating that
our approach can transfer the AR knowledge to
NAR. Empirically, we show our approach and
BART-JANUS can achieve significant improve-
ment on multiple generation tasks, including
machine translation and GLGE benchmarks.
Our code is available at Github1.

1 Introduction

The transformer-based autoregressive (Vaswani
et al., 2017; So et al., 2019) (AR) generation model
has achieved high-quality results in various natural
language generation tasks. Meanwhile, the non-
autoregressive (NAR) (Gu et al., 2018; Lee et al.,
2018; Libovickỳ and Helcl, 2018; Su et al., 2021)
generation methods show great potential to reduce
the inference latency by introducing parallel decod-
ing. Especially, iterative generative paradigms like
CMLM (Wang et al., 2019a; Ghazvininejad et al.,
2019) can dynamically adapt the trade-off between
performance and latency. Recent works (Qi et al.,
2021; Guo et al., 2020; Tian et al., 2020) have suc-
cessfully combined these two mechanisms by joint
training. However, these approaches only consider
the relevance of model parameters, ignoring the cor-
relations between the two manners, which require

1https://github.com/dropreg/JANUS

Figure 1: The example of JANUS. We exhibit some
cases that show the distribution discrepancy due to the
difference in context with orange background.

efforts for improvement. Therefore, in this paper,
we attempt to leverage the merits of both AR and
NAR mechanisms while avoiding their weaknesses
to improve their performance.

The principal difference between AR and NAR
is that they use distinct attention mechanisms.
In particular, the AR uses unidirectional atten-
tion (Vaswani et al., 2017) to simplify the sentence
probability distributions by introducing Markov
Hypothesis, which outputs the next token only
depending on the previous context. This pattern
makes the output distribution of each token accu-
rate and unambiguous but also lacks diversity in
inference. The NAR introduces bi-directional at-
tention (Devlin et al., 2019) that can capture bi-
directional context by considering the whole sen-
tence information. This pattern needs to predict
multiple tokens simultaneously, which causes the
token distribution to be ambiguous, stemming from
the multi-modality problem (Zhou et al., 2019).
Inspired by knowledge distillation (Hinton et al.,
2015) and deep mutual learning (Zhang et al.,
2018b), we try to regularize the model predictions
by minimizing the distribution distance between
the output generated by the two manners. How-
ever, the conditional output probability of each
target position is inconsistent between AR and
NAR. We present an example in Figure 1 to il-
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lustrate such a discrepancy, where the AR out-
put probability PAR(y

3|X, y1,y2) for token y3 de-
pends on the context information {X, y1, y2}, and
the NAR output PNAR(y

3|X, y1,m2,y4,m5,y6)
relies on more context {X, y1,m2, y4,m5, y6}.
The PAR(y

3) lack the token y4,y6 as condition
compare to PNAR(y

3), in contrast, the PNAR(y
3)

misses the context y2. Such distinct token distri-
butions bring difficulty in directly regularizing the
prediction distances D(AR|NAR).

To tackle this issue, we introduce an auxil-
iary distribution PAUX to bridge the discrepancy
between PAR and PNAR with the help of mini-
mizing the distribution distance D(AR|AUX) and
D(NAR|AUX) rather than the direct D(AR|NAR),
as shown in Figure 1. This approach benefits
AR and NAR to learn from each other with the
following advantages: (1) The PAUX possesses
rich context information compared with AR and
NAR. For example, comparing to PAR and PNAR,
PAUX(y

3|X, y1,y2,y4,m5,y6) contains all to-
ken y2,y4,y6 as condition. (2) There is an autore-
gressive dependency between the predicted tokens,
which guarantees the accuracy of output distribu-
tion and without ambiguity for each token. (3) The
random mask mechanism applied to this distribu-
tion, similar to NAR, enables the model to learn
various token distributions. For effective implemen-
tation, we draw on the experience of two-stream
self-attention (Yang et al., 2019b) and position com-
pensation (Song et al., 2020). We build the PAUX

by altering the attention matrix of NAR, which
merely modifies the training procedure without af-
fecting the inference.

We first launched experiments on multiple NMT
datasets to verify whether JANUS can help improve
performance in two manners. Then, we explored
our method on existing autoregressive pretraining
models, in which we pre-train our BART-JANUS
initialized by BART-base on a large corpus and
fine-tuned to adapt various downstream tasks. Here
we use the GLGE datasets as our benchmark to val-
idate the model performance. Meanwhile, we also
conducted comparative ablation studies to illustrate
the effectiveness of our proposed method. Exper-
imental results show that our method can achieve
similar results to the state-of-the-art NAR model
without distillation data. It simultaneously im-
proves the AR model performance by more than 1.5
BLEU scores on average. Furthermore, our model
exceeds the non-autoregressive pretraining model

BANG on the same GLGE tasks. Perhaps surpris-
ingly, it can achieve comparable performance with
the AR manner at least two times speedup based
on the iterative inference mechanism.

2 Related Work

How to take advantage of both AR and NAR
paradigms for sequence generation has been dis-
cussed heatedly. Gu et al. (2018) and Zhou et al.
(2019) introduced knowledge distillation (Hinton
et al., 2015) into the training procedure of NAR,
which can reduce the data complexity and allow
the model to learn the variations from data. Some
approaches (Guo et al., 2020; Sun and Yang, 2020;
Hao et al., 2021) try to transfer AR knowledge
to NAR by applying some specific learning strat-
egy, which can gradually guide the model training.
Zhou et al. (2020) proposed that the NAR model
can effectively improve the AR performance by
utilizing the NAR output with slight speed degrada-
tion. Several other works (Tian et al., 2020; Wang
et al., 2022) have also proposed to improve the
NAR performance by combining multiple decod-
ing paradigms into a unified model.

The most related work is BANG (Qi et al., 2021),
which proposed a novel cross-stream visible n-
stream self-attention structure to bridge the gap
between AR and NAR generation. Specifically,
it supports different decoding manners using AR,
semi-NAR, and NAR loss functions as training ob-
jectives. Unlike it, our approach not only focuses
on joint training and parameter sharing but also
considers the inner relationship of output distri-
butions. Compared with previous work, we can
integrate the merits of two different ways while
circumventing their drawbacks by introducing an
auxiliary loss. Some works (Zhang et al., 2018b;
Shen et al., 2020; Liang et al., 2021) have explored
that distribution regularization can make the model
more robust. Nevertheless, the purpose of our work
is more inclined to constrain two distinct training
optimization objectives rather than the same. Be-
sides, the pretraining models (Raffel et al., 2020;
Fedus et al., 2022; Brown et al., 2020) can achieve
robust generalization but suffer from huge model
size. The model with massive parameters is prone
to lead the unacceptable inference latency for gen-
eration tasks. Our approach attempts to leverage an
existing autoregressive model (Lewis et al., 2020)
to make it obtain the abilities of non-autoregressive
rather than pre-train a NAR model from scratch.
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Figure 2: The overview of JANUS. The left side is the model architecture, in which we use the two-stream attention
to train the model. The query streams require different keys and values for each input. The right side is the attention
matrix of the decoder self-attention layer, and the white dots represent the masked similarity score. The symbol y is
the word embedding, and p is the position embedding for decoder modules.

3 Approach

In this section, we elaborate on the details of our
JANUS method, which supports AR and CMLM-
based NAR generation and mutually enhances their
performance. As shown in Figure 2, we introduce
the two-stream self-attention mechanism to unify
these two manners into our single model.

3.1 Model Architecture

We first introduce an auxiliary distribution (AUX)
as a bridge between AR and NAR models. Consid-
ering that the predicted tokens in CMLM are inde-
pendent of each other, ignoring their dependency,
we integrate AUX with the NAR generation pro-
cedure using the two-stream self-attention mech-
anism, which is proposed by XLNet (Yang et al.,
2019b) to overcome the limitations of MLM by
introducing autoregressive information. More con-
cretely, we use as an alternative of XLNet, i.e., MP-
Net (Song et al., 2020), to tackle the position dis-
crepancy problem by position compensation, which
inputs auxiliary position information to make the
model see the whole sentence. Unlike its orig-
inal function in addressing position discrepancy
between pre-training and fine-tuning, we introduce
MPNet to alleviate the distribution discrepancy be-
tween AR and NAR patterns.

In particular, given the training pairs (X,Y ), the
transformer encoder takes the source sentence X
as input. The decoder accepts the multiple input
sequences to build the attention matrix for differ-

ent streams. For AR, we input an original sen-
tence {b, y1, ..., y5}2 and a fully masked sentence
{m1, ...,m6} into the decoder. For NAR and AUX,
we first sample the masked target YMASK from the
original sentence Y , e.g. YMASK = {y1,m2,m3,
y4,m5, y6}. Then, we expand the masked se-
quence with the ground-truth token using position
compensation and reorder the position of the whole
sentence to obtain YMASK = {y1, y4, y6,m2,m3,
m5, y2, y3, y5}. Finally, we take the reordered sen-
tence YMASK and masked sentence {m2,m3,m5}
as decoder inputs. The decoder can output the dis-
tributions according to the corresponding genera-
tion paradigm by manipulating the attention matrix
of each decoder self-attention layer.

AR Pattern The AR decoder suffers from the
position shift of the predicted token due to sharing
parameters with the NAR decoder. That is, the
decoder is confused about whether to output the
current or the next token. So, we use the MASK
token in the query stream instead of the content
stream to generate the output distribution. Specifi-
cally, we build the lower triangular matrix for both
the query and content stream. The content stream
is responsible for encoding the context information,
and the query stream is for prediction. The content
stream takes the hidden states of {b, y1, ..., y5} as
input to ensure each position can see the previous
position. The query stream predicts each masked
token according to the previous content stream, e.g.,

2We append a special token b in front of sentence Y .

8052



m2 generates y2 according to {b, y1}.

NAR Pattern We only use the content stream for
the NAR manner and leverage the bi-directional
attention to generate the output distribution. The bi-
directional attention operation only depends on re-
ordered target sequences {y1, y4, y6,m2,m3,m5},
which is the front part of YMASK. It is worth not-
ing that the bidirectional self-attention operation is
position independent, so sentence reordering does
not affect the training procedure.

AUX Pattern We employ a specific attention
mask to build the auxiliary distribution. Specif-
ically, the content stream take the YMASK as in-
put, and split the tokens in a sequence into orig-
inal and compensation parts. For example, the
previous sentence {y1, y4, y6,m2,m3,m5} is orig-
inal parts, and {y2, y3, y5} is the compensation
part. The content stream ensures that each posi-
tion in compensation part can see the input token
instead of the MASK, e.g. y3 based on context
{y1, y4, y6, y2, y3,m5} instead of original parts.
Unlike it, the query stream predicts the next token
of masked sequence in an autoregressive manner,
e.g. m3 based on context {y1, y4, y6, y2,m3,m5},
and m5 based on context {y1, y4, y6, y2, y3,m5}.

In this way, we can generate various output dis-
tributions by switching the attention matrix, which
is a sample-aware operation because each sentence
and masked spans have an arbitrary length.

3.2 Training and Inference
AR The training objective of AR generation man-
ner is to minimize the following cross-entropy loss:

LAR = −
∑N

i
logPAR(yi|X,Y<i), (1)

where Y<i refers to the tokens before the i-th time
step, N is the target length, and the output proba-
bility P(yi) equals P(mi) generated by the query
stream. We still use the output probability of query
stream during inference to predict the results.

NAR We use span masking as a token sampling
method, which masks contiguous random spans
rather than tokens. We select each span by sam-
pling from a Poisson distribution (λ = 2) inspired
by (Joshi et al., 2020; Lewis et al., 2020), and each
token in the span is replaced with MASK token.
The training loss function is to minimize the sum
of negative log-likelihood for masked sequence:

LNAR = −
∑M

i
logPNAR(yi|X,YMASK), (2)

Figure 3: Different Span masking is applied to BART
encoder and decoder input to avoid decoder degradation.

where M is the masked sequence length. During
inference, the decoder refines the low-probability
tokens starting with a fully masked sentence by
iterative masking and prediction.

AUX The training loss function is to minimize
the sum of negative log-likelihood for masked to-
ken generated by query stream:

LAUX = −
∑M

i
logPAUX(yi|X,Y<i ∪ YMask), (3)

where the ∪ operation indicated removing duplicate
mask tokens and keeping original tokens in context.

Then, we use the auxiliary distribution PAUX as
a bridge to regularize the two distributions PAR and
PNAR by minimizing the token-level bidirectional
Kullback-Leibler divergence:

LKL = DKL(PAR||PAUX) +DKL(PAUX||PAR) (4)
+DKL(PNAR||PAUX) +DKL(PAUX||PNAR).

The final loss we used in JANUS is a combination
of cross-entropy and KL losses:

L = LAR + LNAR + LAUX + LKL. (5)

3.3 Pretraining and Finetuning
We run our approach on the second phase of pre-
training based on an existing encoder-decoder pre-
trained model like BART. Specifically, we use
span masking for decoder input when switching
to the NAR manner and replace each token with
a mask rather than each span. However, this prac-
tice causes the encoder and decoder input to be
similar, and it may force the decoder to predict
results through its own context, ignoring the infor-
mation from the encoder. In order to prevent the
phenomenon of decoder degeneration, we further
mask more spans for decoder input to ensure that
the decoder needs to combine the encoder informa-
tion to make a prediction, as shown in Figure 3.
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After pretraining, we use the traditional AR and
NAR approach to finetune it on downstream tasks.
We provide new target length prediction modules
with random initialization for NAR models, which
take this problem as a classification task. We aver-
age the encoder representations of the whole source
sentence and map it to a vector with the maximal
sentence size to obtain the target length. Then, we
apply the predicted length to initialize the decoder
input during inference.

4 Experimental Setup

4.1 Task
We validate our approach on multiple sequence
generation tasks. For neural machine translation,
we train our model from scratch. For other tasks,
we first perform pre-training using our methods on
BART-base to obtain BART-JANUS, then use the
downstream task to finetune the BART-JANUS. All
experiments are done using the fairseq3 library.

Neural Machine Translation We conduct our
experiments on three public datasets: IWSLT14
German→English, WMT14 German↔English4,
and WMT16 Romanian↔English5. We only use
the raw data instead of the distilled data to verify
the effectiveness of our method.

GLGE We use the GLGE6 (General Language
Generation Evaluation Benchmark) (Liu et al.,
2021) to evaluate the ability of BART-JANUS on
sequence generation tasks. We selected three differ-
ent tasks: Abstractive Text Summarization dataset
Xsum (Rush et al., 2015) (227K article and sum-
mary pairs), Answer-aware Question Generation
dataset SQuAD 1.1 (Rajpurkar et al., 2016) (98K
answer, passage, and question data triples), and
Conversational Question Answering dataset Per-
sonaChat (Zhang et al., 2018a) (150k persona pro-
file, conversation history, and response data triples).
In particular, we choose GLGE-Easy from different
ranks of difficulty set as our dataset. For a detailed
description, please refer to the original paper.

4.2 Implementation
For machine translation experiments, we use tra-
ditional transformer_iwslt_de_en setting for

3https://github.com/facebookresearch/fairseq
4https://github.com/facebookresearch/fairseq/

tree/main/examples/nonautoregressive_translation
5https://github.com/facebookresearch/DisCo/

issues/5
6https://github.com/microsoft/glge

IWSLT14 dataset, which contains 6 layers in both
encoder and decoder, the embedding size is 512
and the FFN layer dimension is 1, 024, the dropout
and weight decay is 0.3 and 0.0001 respectively.
We use the model configuration transformer for
WMT dataset, with 6 layers, the embedding size is
512 and the FFN layer size is 2, 048, the dropout
value is set to be 0.2 for De↔En and 0.3 for
Ro↔En. We adopt the default optimization al-
gorithm and learning rate schedule as in (Vaswani
et al., 2017), that is Adam (Kingma and Ba, 2014)
optimizer with initial learning rate 0.0005, learning
rate schedule inverse_sqrt with 10, 000 warmup
steps. Label smoothing is utilized in the loss func-
tion with a value of 0.1. The raw texts are encoded
using BPE (Sennrich et al., 2016) as the subword
units and report test set performance by measuring
BLEU (Papineni et al., 2002). Specifically, we
evaluate the final translation accuracy by averaging
5 checkpoints in both AR and NAR settings.

For pretraining experiments, we utilize BART-
base to initialize our model, which contains 6 layers
in both encoder and decoder, the embedding size
is 768 and the FFN layer size is 3072, dropout and
attention dropout is 0.1, and 140M model parame-
ters in total. We mask 30% token span for encoder
input and 50% for decoder input. We pre-train
BART-JANUS using the 16GB corpus (Wikipedia
and BookCorpus) following Qi et al. (2021) on 8
NVIDIA 40GB A100 GPUs, with a learning rate
of 1e-4 and a batch size of 1024 sentences only for
2 epochs. The total training procedure uses FP16
for speedup and needs 2 days.

For GLGE downstream tasks, we load the BART-
JANUS and finetune it with the traditional AR or
NAR strategy. For NAR settings, we use learning
rate 1e-4, warmup steps of 1000, Adam optimizer,
and a label smoothness of 0.1 for 50 epochs. We
set the maximal output length as 64, 64, and 32
for SQuAD, XSum and PersonaChat, respectively.
For AR settings, we use learning rate 3e-5, 200
warmup steps for 10 epochs. For inference stage,
we set the beam size as 5 for AR manners, and take
top-5 predicted lengths and select the translation
with the highest average token probability for NAR
manners. We save the checkpoint for every 10
epochs and select the best checkpoint based on
the performance on the validation set. The official
script7 is used to evaluate the model performance.

7https://github.com/microsoft/ProphetNet/blob/
master/GLGE_baselines/script/eval.py
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Method IWSLT’14 De→En WMT’16 En↔Ro WMT’14 En↔De Iter
De→En Ro→En En→Ro De→En En→De

Transformer (Vaswani et al., 2017) 34.74 34.46 34.16 31.06 27.74 #
Convolutional Transformer (Yang et al., 2019a) - - - - 28.2 #
Adversarial Training (Wang et al., 2019b) 35.2 - - - 28.4 #

Flowseq (Ma et al., 2019) - 32.91 32.35 28.29 23.64 1
GLAT (Qian et al., 2021) 32.49 32.00 31.19 29.84 25.21 1
CMLM (Ghazvininejad et al., 2019) 32.10 32.87 32.86 29.40 24.61 10
DisCo (Kasai et al., 2020) - 32.25 - - 25.64 4
CMLMC (Huang et al., 2021) 34.28 34.13 34.14 30.92 26.40 10
CMLM+Corr 33.90 33.98 33.75 30.55 26.10 10

JANUS-AR 37.24 † 35.84 36.01 33.09 28.72 #
JANUS-NAR 34.21 † 34.36 34.00 30.90 26.40 10

Table 1: Results of NMT dataset. The AR-based model does not use the average checkpoint, but JANUS uses it
following the NAR standard setting. ( † represent the p-value < 0.01 according to significance test).

Pattern Method Iter ROUGE-1 ROUGE-2 ROUGE-L OVERALL Latency(ms/Sample)

AR

Transformer (Vaswani et al., 2017) 30.66 10.80 24.48 21.98 262.47
ProphetNet-base (Qi et al., 2020) 39.89 17.12 32.07 29.69 N/A
BANG (Qi et al., 2021) 41.09 18.37 33.22 30.89 N/A
BART-base (Lewis et al., 2020) 38.79 16.16 30.61 28.52 N/A
BART-base (Our impl) 41.22 17.98 32.69 30.63 322.78* (1.0 ×)

BART-JANUS 41.29 18.16 32.78 30.74 332.49*

NAR

BANG semi-NAR (Qi et al., 2021) 34.71 11.71 29.16 25.19 109.77
BANG (Qi et al., 2021) 32.59 8.98 27.41 22.99 15.97

BART-JANUS

0 33.29 9.74 28.21 23.74 36.66* (8.7 ×)
1 38.05 13.50 31.18 27.57 45.51* (7.0 ×)
4 40.65 16.56 32.86 30.02 71.85* (4.5 ×)
10 41.53 17.72 33.40 30.88 128.94* (2.5 ×)

Table 2: Results on XSum dataset. We reimplemented the BART-base result, another result from BANG.(∗ represent
the result based on our environment. ms/Sample represents the number of milliseconds consumed per sample).

5 Results

5.1 Neural Machine Translation
The Results of the NMT dataset are shown in Ta-
ble 1. Our JANUS-AR model surpasses the ro-
bust baseline with the convolutional transformer
or the adversarial training strategy. Moreover,
the JANUS-NAR model achieves significant im-
provement above the CMLM baseline by nearly
1.5 BLEU points 8. We can see that JANUS-
NAR performs better than several strong baselines,
such as Flowseq, GLAT, and Disco. Our model
achieves similar results compared with the recent
SOTA NAR model CMLMC on multiple datasets
(trained with raw data) and surpasses them on
Ro→En and En→De datasets. For a fair compari-
son, CMLM+Corr is based on the CMLM model
without introducing additional parameters to ad-
dress the problem of indistinguishability of tokens,
and we consistently surpass it. At the same time,
we can see that the JANUS-AR model outperforms

8We choose the commonly used mosesdecoder-script
bootstrap-hypothesis-difference-significance.pl to conduct the
significance test.

Method Iter=1 Iter=4 Iter=10

CMLM 7.42% 1.58% 0.83%
JANUS 6.8% 1.43% 0.65%

Table 3: Token repetition of different iteration step.

all baselines with more than 1.5 BLEU scores on
average. These results all support that JANUS can
make two different manners benefit from each other
by joint training and distribution regularization.

Furthermore, the model may suffer from the
multi-modality problem when trained with raw data
because each source has multiple target candidates.
We calculate the token repetition ratio of gener-
ated results, which can reflect the degree of the
multi-modality. The results are shown in Table 3.
JANUS has low token repetition ratio than CMLM,
demonstrating that it effectively alleviates the multi-
modality problem in NAR by carrying autoregres-
sive information. We can keep inference latency
the same as CMLM since our approach only modi-
fies the training paradigm (Section 6.2 gives a more
thorough analysis).
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Pattern Method Iter ROUGE-L BLEU-4 METEOR OVERALL Latency(ms/Sample)

AR

Transformer (Vaswani et al., 2017) 29.43 4.61 9.86 14.63 159.49
ProphetNet-base (Qi et al., 2020) 48.00 19.58 23.94 30.51 N/A
BANG (Qi et al., 2021) 49.32 21.40 24.25 31.66 N/A
BART-base (Qi et al., 2021) 42.55 17.08 23.19 27.61 N/A
BART-base (Our impl) 43.02 17.57 23.52 28.03 157.49* (1.0 ×)

BART-JANUS 44.70 17.36 24.07 28.71 163.16*

NAR

BANG semi-NAR (Qi et al., 2021) 47.39 17.62 21.69 28.90 111.11
BANG (Qi et al., 2021) 44.07 12.75 18.99 25.27 15.69

BART-JANUS

0 44.99 11.18 17.89 24.68 33.52* (4.6 ×)
1 47.18 14.35 20.14 27.22 42.51* (3.7 ×)
4 47.91 16.38 21.36 28.55 68.7* (2.3 ×)
10 48.00 16.87 21.58 28.81 127.51* (1.2 ×)

Table 4: Result on SQuAD 1.1.

Pattern Method Iter BLEU-1 BLEU-2 Distinct-1 Distinct-2 OVERALL Latency(ms/Sample)

AR

Transformer (Vaswani et al., 2017) 41.56 32.95 0.3 0.8 18.90 138.31
ProphetNet-base (Qi et al., 2020) 46.00 38.40 1.3 7.3 23.25 N/A
BANG (Qi et al., 2021) 45.77 35.54 1.4 8.4 22.78 N/A
BART-base (Lewis et al., 2020) 47.60 39.36 1.1 6.1 23.54 N/A
BART-base (Our impl) 50.33 40.11 1.2 7.3 24.73 183.09* (1.0 ×)

BART-JANUS 51.16 40.32 1.2 7.2 24.97 187.77*

NAR

BANG semi-NAR (Qi et al., 2021) 39.82 30.72 1.9 14.2 21.66 109.17
BANG (Qi et al., 2021) 31.11 23.90 2.5 22.7 20.05 14.89

BART-JANUS

0 36.16 34.37 2.4 17.8 22.68 33.81* (5.4 ×)
1 42.76 37.36 2.1 16.4 24.65 41.88* (4.4 ×)
4 44.68 37.73 1.8 13.1 24.32 67.90* (2.7 ×)
10 45.21 37.90 1.6 11.1 23.95 124.42* (1.5 ×)

Table 5: Result on PersonaChat.

5.2 GLGE

We present the results of the XSum tasks in Ta-
ble 2. In AR model generation, BART-JANUS
has slightly improved compared to BART-base on
all metrics ROUGE-1, ROUGE-2, and ROUGE-
L. These results show that it is challenging to
improve the pre-trained BART model in a short
time through continual training. Moreover, our
focus is on whether BART-JANUS can gain non-
autoregressive generation capabilities. We can see
that when the number of iterations is equal to 0, the
model has exceeded the BANG-NAR 0.75 score.
Surprisingly, the NAR model outperforms the AR
model when the iteration number reaches 10. This
result implies that the bi-directional attention under
NAR can effectively use the comprehensive infor-
mation of the decoder input to obtain beneficial
representations, which is a more suitable way than
the uni-directional attention of the AR model. In
inference latency, we set batch size as 1 to calculate
the latency and see that the NAR model can surpass
the AR model with 2.5 times speedup. Furthermore,
the BART-JANUS can progressively improve the
model performance by varying the iteration size.

The results of SQuAD 1.1 are shown in Table 4.

Since our model is a two-stage pre-training with
a relatively low training cost, the AR model may
not obtain a significant improvement and limits the
upper bound of the NAR model. We can observe
that BART-JANUS does not exceed BANG in most
metrics due to the limitation of BART-base perfor-
mance. Nevertheless, our NAR model achieves
comparable results to BANG semi-NAR when the
iteration number reaches 10 with a similar speedup.

From Table 5, we can see that our model con-
sistently outperforms all baseline on all evaluation
scores for Personachat datasets. For dialog gen-
eration, the Distinct-1 and Distinct-2 metrics are
to prevent the model from generating meaningless
and boring responses. The BART-JANUS obtains
a high BLEU and Distinct value, confirming that
our model can simultaneously consider the fluency
and diversity in the generated dialog response.

6 Analysis and Discussion

6.1 Ablation Study
We present exhaustive investigations on IWSLT14
De→En and WMT16 Ro→En datasets in both AR
and NAR and use the Transformer (Vaswani et al.,
2017) and CMLM (Ghazvininejad et al., 2019) as
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Loss IWSLT De→En WMT Ro→En
AR NAR AUX KL AR NAR AR NAR

! % % % 34.74 - 34.46 -
% ! % % - 32.10 - 32.87
% % ! % 0.91 24.41 - -
! ! % % 35.25 32.12 34.50 33.01
! ! % ! 36.08 33.45 35.13 33.64
! ! ! ! 37.24 34.21 35.84 34.36

Table 6: Results and ablation study on the NMT
datasets.

Figure 4: Results by varying the number of itera-
tions (solid line is performance, dotted line is inference
speed).

corresponding training strategies for baseline. The
results are shown in Table 6. We compare the com-
binations of various losses to investigate the inter-
action between them, i.e., AR, NAR, AUX, and
KL loss. The NAR and AR models outperform the
model with joint training by using the KL regular-
ization item, proving that output space is more rea-
sonable than parameter space for enhancing each
other. The AUX can further improve the perfor-
mance (37.24 v.s. 36.80, 34.21 v.s. 33.25, 35.84
v.s. 35.13, and 34.36 v.s. 33.64) by alleviating
the distribution discrepancy between AR and NAR
patterns. Besides, we examine whether AUX is a
powerful teacher that can distill knowledge to NAR
and AR models in the third line. The results show
AUX itself is not a good teacher, which demon-
strates poor performance with both the AR and
NAR inference patterns. In short, all the above evi-
dence support that JANUS can achieve the mutual
enhancement of AR and NAR rather than distilling
the AUX knowledge for AR and NAR training in a
mutual learning fashion.

6.2 Effect of Iteration Step

The analysis of iterative refinement is shown in Fig-
ure 4. For both CMLM and JAUNS, we compute
the BLEU score at different iterations. The JANUS
can significantly improve performance in each it-

Figure 5: BLEU curves along with the model training.

Figure 6: Training loss curves along with training epoch.

eration step and surpass CMLM with only three
iterations. The inference speed is consistent with
CMLM since our solution only focuses on improv-
ing the training strategy, calculated by translating
the IWSLT14 De→En test set.

6.3 Training Analysis

To better show the training cost and performance
of JANUS, we study the model training from dif-
ferent aspects. We give detailed comparisons of
the training time on the IWSLT14 De→En dataset
when the model converges. Specifically, the total
training cost of JANUS is about 25,235 seconds
for 170 epochs on 2 GPUs, while CMLM and AR
Transformers costs about 9,852 seconds and 3,975
seconds on 1 GPU, respectively. We can see that
JANUS does require 4 or 5 times the training cost.
Although the model needs more time to converge,
JANUS has achieved significant performance im-
provement. Furthermore, we also study the training
process and visualize the performance improve-
ments in Figure 5. We plot the test BLEU curves
along with the training updates. From the curves,
we can find that JANUS exceeds the baseline at the
same epoch and can continue to grow.

As shown in Figure 6, we plot the curves of three
different training losses of the model on IWSLT14
De→En neural machine translation tasks. We can
see that the loss value belongs to the same scale
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Method ROUGLE-L BLEU-4 METEOR OVERALL

BART-base 42.45 8.92 16.42 22.59
BART-CMLM 41.93 9.01 16.86 22.60
BART-JANUS 44.99 11.18 17.89 24.68

Table 7: Results on SQuAD 1.1 with various pretraining.

Method ROUGLE-1 ROUGLE-2 ROUGLE-L OVERALL

BART-base 31.55 8.47 26.95 22.32
BART-CMLM 32.47 8.97 27.60 23.01
BART-JANUS 33.29 9.74 28.21 23.74

Table 8: Results on XSum with various pretraining

and does not require an external balance coefficient.
The auxiliary loss can keep a similar scope to AR
loss in training, showing that the AUX is more
reasonable to bridge AR and NAR distributions.

6.4 Effect of Various Pretraining

In this section, we consider the impact of model
performance for different pretrained models as ini-
tializations on the NAR model. We provide BART-
base as model initialization and then use CMLM
as finetuning method. Further, We use CMLM to
pre-train BART and keep consistent with BART-
JANUS in other settings. Results show that the
JANUS can improve NAR finetuning results sig-
nificantly in both tasks. This result demonstrates
that the proposed pretraining strategy via transfer-
ring the knowledge from AR to NAR is critical to
achieving a better performance in NAR generation.

7 Conclusion

In this work, we propose a new training strategy
named JANUS, which supports the AR, NAR, and
iterative refinement generation mechanisms. Mean-
while, we tackle the problem of distribution dis-
crepancy between the AR and NAR by introducing
an auxiliary distribution. Experiments show that
JANUS can significantly improve the AR and NAR
model performance. Further, we pre-train BART-
JANUS and achieve comparable performance with
the NAR pertained model BANG. We are also in-
terested in designing effective finetuning strategies
to apply JANUS, which leaves it as future work.

8 Limitation

Our model gains noticeable performance but suf-
fers from training costs not being neglected. How-
ever, we require a particular attention matrix to
build the auxiliary distribution. This sample-aware
matrix is different from the vanilla transformer in
terms of implementation. The vanilla transformer

attention is a 2D matrix, but JANUS needs a 3D
matrix. Consequently, it leads to a lot of time con-
sumption, as shown in section 6.3. In the future, we
hope to speed up model training by exploring a bet-
ter solution or using lower-level CUDA operators
to create this matrix.
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