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Abstract

Interpreting the reasoning process from ques-
tions to answers poses a challenge in approach-
ing explainable QA. A recently proposed struc-
tured reasoning format, entailment tree, man-
ages to offer explicit logical deductions with
entailment steps in a tree structure. To generate
entailment trees, prior single pass sequence-to-
sequence models lack visible internal decision
probability, while stepwise approaches are su-
pervised with extracted single step data and
cannot model the tree as a whole. In this work,
we propose RLET, a Reinforcement Learning
based Entailment Tree generation framework,
which is trained utilising the cumulative signals
across the whole tree. RLET iteratively per-
forms single step reasoning with sentence selec-
tion and deduction generation modules, from
which the training signal is accumulated across
the tree with elaborately designed aligned re-
ward function that is consistent with the evalu-
ation. To the best of our knowledge, we are the
first to introduce RL into the entailment tree
generation task. Experiments on three settings
of the EntailmentBank dataset demonstrate the
strength of using RL framework.

1 Introduction

Reasoning over explicitly given knowledge and
generating detailed deduction steps are important
challenges towards the goal of automated reason-
ing in AI community (McCarthy, 1960; Wos, 1985;
Mercier and Sperber, 2011). Interpreting the rea-
soning process in QA systems can provide human-
understandable inspections into the logical deduc-
tions and help ensure the soundness and reliability
of the models (Wiegreffe and Marasović, 2021). As
shown in Figure 1, given the question “What keeps
Mars in orbit around the Sun?”, a reasoning process
can explain why the answer “Gravity” is predicted,
thereby strengthening the trustworthiness.

∗Work done during internship at AWS Shanghai AI Lab.
†Corresponding authors.
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Figure 1: The entailment tree generation task. Given QA
pair, hypothesis (green boxes) and fact sentences (grey
boxes), the model needs to generate tree-structured rea-
soning chain along with natural language intermediate
conclusions (blue boxes).

Recent work in the field of explainable QA in-
cludes extracting keywords or sentences that indi-
cate the answers (Yang et al., 2018), constructing
multi-hop explanations from knowledge graph (Xu
et al., 2021; Xie et al., 2020) and generating free-
form explanations and reasoning chains (Camburu
et al., 2018; Rajani et al., 2019; Jhamtani and Clark,
2020; Wei et al., 2022; Wang et al., 2022). Among
various explanation approaches, multi-step entail-
ment trees (Dalvi et al., 2021) build tree-structured
reasoning chains and explicitly demonstrate the
deduction steps from given knowledge to the hy-
pothesis, which can offer interpretability in more
detail (Figure 1).

One line of previous work considers the en-
tailment trees as linearised sequences and adopt
sequence-to-sequence (Seq2Seq) models to gen-
erate the entire reasoning chain in a single pass
with all given sentences as input (Dalvi et al., 2021;
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Tafjord et al., 2021). In these approaches, the in-
ternal steps lack trustworthiness because the prob-
ability distribution remains invisible and not con-
trollable. Besides, each deduction step has access
to the full input so it might contain information
leaked across all input sentences instead of only
deducing over its own premises. To alleviate these
problems, subsequent work splits the tree into mul-
tiple steps and trains the model to perform single
step reasoning (Ribeiro et al., 2022; Bostrom et al.,
2022; Hong et al., 2022). These models, however,
are trained with isolated single-step data, which
ignores the dependencies between steps as a whole
chain. Since new intermediate sentences will be
generated at each step, every action poses an im-
pact on its subsequent decisions. The absence of
such consideration in training will lead to the in-
consistency with evaluation which scores the chain
in a comprehensive way.

The reasoning chain is a sequence of discrete
actions. As such, we address the above issues
by presenting RLET, a Reinforcement Learning
(RL) based Entailment Tree generation framework
that models the entire reasoning chain as a Markov
Decision Process (MDP). Specifically, we decom-
pose the task into two parts: sentence selection
and deduction generation. At each step, the model
will first select two sentences (including both given
facts and generated intermediate conclusions) for
composition, and the deduction generation will
combine them into a new intermediate conclusion
and add it to the next step. After constructing a
whole chain, each step will receive a reward de-
pending on its contribution to the overall correct-
ness and validity of the entire tree.

Enjoying the convenience of crafting reward
functions in RL, we can flexibly assign evaluation-
consistent rewards to the steps, instead of purely
relying on exact match with the gold tree. In such
a way, model behaviors can be manipulated with
more flexibility, getting rid of the rigorous chrono-
logical match with ground truth. Supervised by the
cumulative rewards, the model is encouraged to
find the optimal policy that leads to greater good.
Such advantages can not only bring improvements
on post-hoc explanation modeling, but also bene-
fit interpretable model decision making, where the
reasoning process is integrated into the inference
process. Extensive experiments on three settings
of the benchmark dataset EntailmentBank (Dalvi
et al., 2021) demonstrate that our approach outper-

forms existing baseline models on structure cor-
rectness and verify the strength of embracing the
end-to-end RL framework by modeling the entire
reasoning chain. To our knowledge, we are the first
to introduce RL framework into the task of entail-
ment tree generation, taking care of the entire chain
with the aid of flexible reward design that aligns
with the final evaluation metric, bridging the gap
between training objective and evaluation results. 1

2 Method

Our goal is to provide a step-by-step reasoning pro-
cess for commonsense science questions, with prior
knowledge of the question, the correct answer and
a set of fact sentences. We first describe the task
formulation and then explain each part in detail.

2.1 Task Formulation

We formulate the reasoning process as an entail-
ment tree construction task with each step as a
logical entailment. The inputs of our task include a
collection of fact sentences X = {x1, x2, · · · , xn}
and a hypothesis h, where X consists of both rele-
vant and non-relevant sentences. Specifically, the
hypothesis h is the combination of the question and
its correct answer, stated in a declarative form. The
task aims to construct an entailment tree T from
the bottom up, with selected facts from X as leaf
nodes, the hypothesis h as the root node and gener-
ated intermediate conclusions as internal nodes I .
Each intermediate conclusion ik ∈ I is generated
by deducing from its immediate children during the
construction of the tree. A reasoning step includes
selecting the premises and generating the interme-
diate conclusion. Following Bostrom et al. (2022),
we only consider two-sentence combination at each
reasoning step for simplicity. 2 At each reasoning
step, we further decompose it into two sub-tasks:
sentence selection and deduction generation.

Sentence Selection The goal of the sentence
selection module is to choose two sentences as
premises of single step reasoning. At step k, sen-
tence selection takes hypothesis h, fact set X
and intermediate set Ik as input, where Ik =
{i1, . . . , ik−1} denotes the intermediate conclu-
sions generated in previous k−1 steps. The desired
output includes two sentences (nodes) {ni, nj} ⊆

1Code is publicly available at: https://github.com/
tengxiaoliu/RLET.

2Given the fact that any multi-way tree can be transformed
into a binary tree, it is possible to apply this assumption.
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Figure 2: Reasoning pipeline of RLET. At each reasoning step, sentence selection module will select two sentences
from its state for composition, and the deduction generation will yield the intermediate conclusion deducted from
them. The next state will exclude the selected sentences and add the new intermediate conclusion. After generating
the full trajectory, the cumulative reward will be used to update the parameters of sentence selection module.

X ∪ Ik that will make a logical combination in the
following module.

Deduction Generation Given the selected sen-
tences as input, deduction generation outputs a new
intermediate conclusion ik deduced from these two
sentences : ik = g(ni, nj), where g denotes a
Seq2Seq model. The conclusion should be well
entailed by the premises, and reasons over the in-
formation from the given sentences only.

2.2 RL-based Sentence Selection

The design ethos of our approach is to bridge iso-
lated single steps with cumulative training signals,
which fits very well with the nature of RL. To tackle
sentence selection task, we model the entailment
tree as a Markov Decision Process, which can be
denoted as a tuple (S,A, R, T ), where S is a set
of states, A(s) is the action space at state s, R(·) is
the reward function and T (·) represents the transi-
tion function. Our goal is to learn an optimal policy
π that decides what action to take at each state.

As shown in Figure 2, at reasoning step k, the
state sk is defined as a collection of unused sen-
tences (nodes) including both facts and generated
intermediate conclusions, namely sk = {n | n ∈
X∪Ik\Uk}, where Uk is the set of used sentences
in previous steps. For example, at the very begin-
ning k = 1, the initial state s1 should contain all
the given fact sentences X . Correspondingly, the
action space A(sk) at state sk is all the potential
actions at the current step, where an action is a pair

of sentences within the state. Formally, the action
space is represented as A(sk) = sk × sk.

With a pre-trained DeBERTa (He et al., 2021)
model as the backbone encoder of the sentence se-
lection module, we encode each action candidate
in the form of [CLS] h [SEP] aik and apply a feed
forward neural network together with Softmax ac-
tivation on the [CLS] representation to obtain the
normalised probability distribution over the action
space, where aik is the concatenation of the two
sentences. Formally, the probability of each action
aik can be described as:

bik = FFN(f([h, aik])), (1)

πθ(a
i
k | sk) = Softmax({bik}), (2)

where θ is the parameters of policy π, f(·) denotes
the contextualised representation of the [CLS] to-
ken, [·] denotes concatenation, bik is the score of
action aik. At step k, we then sample one action ak
based on the probability distribution:

ak ∼ πθ(ak | Ak, sk). (3)

Given the two sentences within the sampled
action, the deduction generator performs logical
combination and outputs an intermediate conclu-
sion (i1 in Figure 2). Accordingly, the state sk
will be shifted to sk+1, with the selected sentences
being removed, and the newborn sentence added.
Meanwhile, the action space will also alter to in-
clude the action candidates composed from cur-
rent state. In our task, the state transition is
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Figure 3: Illustration of applying alignment algorithm
between a predicted tree and its gold tree. Dashed
lines represent the connected intermediate nodes are
aligned. Underlined nodes î1, î2 in predicted steps are
both aligned to gold internal node i1, which finally leads
to a positive signal in the cumulative aligned reward. γ
denotes the discount factor.

always deterministic with the transition function
T (sk, ak, sk+1) = 1.

In summary, we represent a step as (sk, ak, ik),
meaning taking action ak at state sk and generat-
ing the intermediate conclusion ik. After undergo-
ing several iterations of the sentence selection and
deduction generation, we will obtain a trajectory
denoting the reasoning steps we take to construct
the entailment tree

τ = {s1, a1, i1, s2, a2, i2, . . . , sK , aK , iK}, (4)

where K is the length of the reasoning chain.

Reward Before evaluating entailment trees, an
alignment algorithm (Dalvi et al., 2021) will be ap-
plied to guarantee the flexibility of the tree structure
evaluation. However, stepwise models in previous
work are only supervised by the exact match with
single-step ground truth in training, resulting in
inconsistency with actual evaluation.

To address this issue, we involve the alignment
algorithm in the design of our reward function. To
begin with, for each intermediate node in our tra-
jectory and the gold tree, we gather all leaf nodes in
their children respectively. We consider one gener-
ated internal conclusion (node) î is aligned to a gold
internal node i if the leaf nodes in their children
have the maximum Jaccard similarity. If î has zero
similarity with every gold internal node, we align
it to a blank node with no conclusion. We assume
the aligned nodes are similar in semantics since

they are reasoned from similar facts. As described
in Figure 3, the predicted intermediate nodes are
both aligned to the gold node i1 according to their
Jaccard similarity scores.

Rewards will be assigned to each reasoning step
after the full trajectory is generated. For each step
(sk, ak, ik), we give it an independent reward rk
based on the exact match between its action and
the premises in the aligned gold step.

rk =

{
1, if perfect match.
−1, otherwise.

(5)

Without the aid of the alignment, the predicted
steps in Figure 3 shall all receive negative exact
rewards because their chosen premises fail to have
an exact match with the gold steps. In contrast,
after aligning, the last predicted step gets a positive
reward once î2 is aligned with i1.

Then the final cumulative reward of each step is
gathered along its subsequent steps

R(sk, ak, ik) =
K∑

i=k

γi−krk, (6)

where K is the length of the trajectory, γ is a dis-
count factor. With the cumulative aligned reward,
although the lower steps are not able to get the
structure perfectly matched, the subsequent steps
can still get awarded by making correct decisions.
Correspondingly, the lower steps will get a less se-
vere penalty from the reward accumulation, which
guarantees the flexibility in adjusting training sig-
nals. Finally, by aligning the trajectory with the
gold tree, we shall get a reward R(sk, ak, ik) for
each step and a total reward for the trajectory:

R(τ) =
K∑

k=1

R(sk, ak, ik). (7)

Optimization We aim to learn a stochastic policy
of sentence selection module π parameterized by θ
which maximizes the expected cumulative reward:

Jθ = Eτ∼πθ(τ)[R(τ)]. (8)

Following Sutton et al. (1999), we are able to ap-
proximate the gradient by sampling N trajectories:

∇J̄θ = Eτ∼πθ(τ)[R(τ)∇ log πθ(τ)] (9)

≈ 1

N

N∑

n=1

Kn∑

k=1

R(snk , a
n
k , i

n
k)∇ log πθ(a

n
k | snk),

(10)
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where Kn is the length of trajectory τn, snk and ank
denote the state and action at step k in τn.

2.3 Deduction Generation

For deduction generation, the model takes in two
sentences and outputs a conclusion deduced over
the input. We design two methods to generate de-
duction: model-based and rule-based. For model-
based approach, we fine-tune a transformer-based
(Vaswani et al., 2017) Seq2Seq model to generate
deduction on the fly during training and inference.
Involving model-generated conclusions can pro-
vide more fluent and readable reasoning chains.
However, unstable generation quality will intro-
duce unexpected errors along the reasoning chains,
which confuses the sentence selection module in
the following steps. For rule-based approach, no
generation model is used in training. We simply
concatenate the chosen sentences with “and” to
form the intermediate conclusions, which guaran-
tees all information from the premises is well pre-
served. During inference, we additionally generate
model-based deduction after the tree structure is
fully predicted. By default, we use the rule-based
approach in training for the consideration of com-
putational costs. We will elaborate on this more in
Section 4.2.

2.4 Overall Model Training

Supervised learning before integrating RL in train-
ing can provide efficient parameter update with
high-quality signals (Silver et al., 2016). To help
RL algorithm better converge on our task, we
first apply supervised training on sentence selec-
tion with extracted gold sentence pairs of single
steps from the EntailmentBank training set. During
the training process of RL, we additionally apply
scheduled sampling (Bengio et al., 2015) to allevi-
ate the error propagation along the decision paths.

3 Experimental Settings

3.1 Dataset

We evaluate our approach on EntailmentBank
(Dalvi et al., 2021), a benchmark that provides
expert-annotated explanations of QA pairs in the
form of entailment trees. Table 1 shows the detailed
statistics of the dataset. EntailmentBank contains
1,840 questions along with 5,881 reasoning steps.
QA pairs are randomly sampled from ARC dataset
(Clark et al., 2018) which consists of grade-school
level science exam questions. The full fact corpus

Train Dev Test Total
QA pairs 1,313 187 340 1,840
Reasoning steps 4,175 597 1,109 5,881

Table 1: Statistics of EntailmentBank dataset split.

contains around 12K general-knowledge sentences
derived from WorldTree V2 (Xie et al., 2020).

Depending on the composition of the given fact
set X , the dataset offers three challenging settings.
In Task 1, only gold facts are provided and will
all serve as leaf nodes in the tree. In Task 2, for
each QA pair, a total of 25 sentences are provided,
including both gold facts and distractors. In Task
3, the most challenging setting, the model needs to
first retrieve relevant facts from the full fact corpus,
and then perform reasoning as in Task 2.

3.2 Baselines

EntailmentWriter (Dalvi et al., 2021) offers a
strong baseline by linearising the tree structure and
adopts sequence-to-sequence model to generate the
whole tree along with intermediate conclusions in
single pass. It has two versions, implemented on
T5-11B (11 billion parameters) and T5-Large (770
million parameters) (Raffel et al., 2020).
IRGR (Ribeiro et al., 2022) designs an iterative
retrieval-generation framework and improves the
retrieval results on Task 3. For tree generation, it
performs single step reasoning using T5-Large.

3.3 Implementation Details

The sentence selection module is built with
DeBERTa-v3-base model (He et al., 2021), which
has 184M parameters in total. For Task 1, our
model iteratively generates one-step reasoning until
all given gold leaves are used. For Task 2 and Task
3, we add a special token [END] in action space at
each step, and will stop the reasoning process once
[END] token is selected. We further apply a fact
filter trained on DeBERTa-v3-Large to help model
identify relevant facts sentences in Task 2 and
3. The default model-based deduction generation
module is implemented with BART-Large (Lewis
et al., 2020) which has 406M parameters, trained
with both ParaPattern (Bostrom et al., 2021) data
and extracted gold premises along with interme-
diate conclusions. ParaPattern contains synthetic
data collected from Wikipedia, which has two sen-
tences as input and a combined conclusion as out-
put. For details on the ParaPattern data, we refer
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Task Method Leaves Steps Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task 1

EntailmentWriter (T5-11B) 99.0 89.4 51.5 38.2 71.2 38.5 35.3
EntailmentWriter (T5-Large) 98.7 86.2 50.5 37.7 67.6 36.2 33.5
IRGR (T5-Large) 97.6 89.4 50.2 36.8 62.1 31.8 32.4
RLET (Our approach) 100.0 100.0 54.60.4 40.70.5 66.90.3 36.30.4 34.80.3

Task 2

EntailmentWriter (T5-11B) 89.1 48.8 41.4 27.7 66.2 31.5 25.6
EntailmentWriter (T5-Large) 84.3 35.6 35.5 22.9 61.8 28.5 20.9
IRGR (T5-Large) 69.9 23.8 30.5 22.4 47.7 26.5 21.8
RLET (Our approach) 81.00.9 39.01.4 38.50.3 28.40.3 56.31.1 28.60.5 25.70.3

Task 3

EntailmentWriter (T5-11B) 39.9 3.8 7.4 2.9 35.9 7.1 2.9
EntailmentWriter (T5-Large) 35.7 2.9 6.1 2.4 33.4 7.7 2.4
RLET (Our approach) 38.30.3 9.10.4 11.50.4 7.10.7 34.20.6 12.10.6 6.90.6
IRGR (T5-Large) ⋄ 46.6 10.0 11.3 8.2 38.7 20.9 8.2
RLET (Our approach)⋄ 46.20.9 11.41.3 15.20.8 9.61.1 41.40.9 17.61.7 9.41.3

Table 2: Experiment results on EntailmentBank test set. All baseline results come from published paper. ⋄ indicates
using the 25 sentences produced by IRGR-retriever (cond.). We report average results and standard deviation across
five runs.

readers to their paper (Bostrom et al., 2021). More
hyperparameters can be found in Appendix A.

3.4 Evaluation Metrics
Dalvi et al. (2021) introduces four standard metrics
to automatically evaluate the entailment tree. As
described in section 2.2, the alignment algorithm is
first applied to align the predicted tree Tpred and the
gold tree Tgold. We denote the aligned prediction
tree as T ′

pred. In the following metrics, F1 mea-
sures the micro-average of the results and AllCor-
rect scores the whole tree as 1 in its corresponding
metric if its F1 equals to 1.

Leaves (F1, AllCorrect) evaluate how well the
model performs in identifying facts that are rele-
vant to questions and answers. The F1 score is
computed based on the selected leaf nodes in Tpred

and the gold leaf nodes. AllCorrect is 1 if they are
perfectly matched, otherwise 0.

Steps (F1, AllCorrect) mainly evaluate the struc-
ture correctness of the trees. For each aligned
step in T ′

pred, we measure whether its selected sen-
tences (action in trajectory) matches the gold. F1
score is computed based on the number of perfectly
matched steps. We assign AllCorrect of 1 to a pre-
dicted tree if all steps in T ′

pred exactly match with
gold tree steps.

Intermediates (BLEURT, AllCorrect) evaluate
the generation quality of the intermediate conclu-
sions. For each aligned step in T ′

pred, we define
its intermediate conclusion i is correct if i has
a BLEURT (Sellam et al., 2020) similarity score
higher than 0.28 with the gold step conclusion. We

assign AllCorrect of 1 if all intermediate conclu-
sions in T ′

pred are correct.

Overall (AllCorrect) From the above three met-
rics, we consider a predicted tree T ′

pred as overall
correct if the AllCorrect scores of its Leaves, Steps
and Intermediates are all 1.

4 Results & Analysis

4.1 Main Results

As shown in Table 2, in Task 1 RLET outperforms
all baselines on the Steps metric, which verifies
the strength of our design in improving structure
correctness. Specifically, RLET yields an improve-
ment of Steps F1/AllCorrect by absolute 3.1/2.5.
The backbone model that constructs the tree struc-
ture is DeBERTa-base with only 184M parameters,
which is 60 times less than T5-11B. Our approach
also achieves comparable results on intermediates
and overall metrics with baselines. Note that in
our default rule-based approach, our intermediate
results come from plug-in deduction generation
module, which can be improved with a stronger
model and is out of the main scope of this work.

For Task 2 and Task 3, our framework out-
performs all baselines on the most strict metric
Overall AllCorrect, as shown in Table 2. For fair
comparison, we use the same retrieval results pro-
duced by Dalvi et al. (2021) in Task 3. Under
the most challenging setting, RLET achieves sig-
nificant improvement with 4.1/4.2 gain on Steps
F1/AllCorrect, and outperforms all baselines on
Overall AllCorrect with a score of 6.9. With bet-
ter retrieval results produced by IRGR, RLET still
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Method Leaves Steps Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

RLET 100.0 100.0 54.60.4 40.70.5 66.90.3 36.30.4 34.80.3
w/o aligned reward 100.0 100.0 53.90.2 40.20.1 66.70.4 36.20.2 34.60.2
w/o RL 100.0 100.0 50.10.4 37.80.2 64.41.0 34.60.4 33.00.4

Table 3: Ablation results of Task 1 (no distractor) on EntailmentBank test set.

achieves higher performance. Note that the IRGR
results in Table 2 come from the IRGR-w/o itera-
tion setting (Ribeiro et al., 2022), which does not
contain the iterative approach.

4.2 Ablation Study

Sentence Selection To understand how each
component contributes to our model, we conduct
ablation studies on Task 1, as shown in Table 3.
We first analyze the influence of our crafted re-
ward function with the alignment algorithm. By
removing the cumulative aligned reward and as-
signing the reward solely based on exact match
with gold trees, we witness a performance drop in
Steps F1/AllCorrect. This indicates that our aligned
reward function is effective in bridging the gap be-
tween training and evaluation. Furthermore, we test
our approach without the entire RL training proce-
dure, only keeping the supervised training model
as the sentence selection module. By training with
extracted single steps, the performance decreases
by a large margin (-4.5 in Steps-F1), which verifies
the necessity of accumulating signals in training.

Deduction Generation The deduction genera-
tion module plays an important role in ensuring
the fluency and readability of the reasoning chains.
We experiment with model-based and rule-based
approaches and find that the latter yields better re-
sults. In training, we observe that the finetuned
BART model is likely to repeat one of the input
premises thus losing useful information (Bostrom
et al., 2021), which hampers the convergence of
the sentence selection module in training.

To take a step further, we involve a stronger de-
duction generation module from MetGen (Hong
et al., 2022) into the training process, which is
trained on T5-Large (Raffel et al., 2020) with 770M
parameters. The reasoning module of MetGen is
trained with additional synthetic data and requires
the specific reasoning pattern as a prompt in its
input. To get such a pattern for each reasoning step,
we train a pattern selector with DeBERTa using
the manually annotated labels to specify the sen-

tence pair as one of substitution, conjunction or
if-then patterns. Improving the generation quality
is orthogonal to our work, so we reuse the released
weight of MetGen’s reasoning module.3 We call
this setting as “T5-deduction”. More details can
be found in Appendix D. Experiment results in
Table 4 show that simple rule-based models can
achieve comparable performance with model-based
“T5-deduction”. Including model-generated con-
clusions in training process can offer more fluent
textual reasoning chains, thus improving Interme-
diates scores. However, a large and comprehensive
deduction generation module is needed to effec-
tively retain the information in the form of natural
language without sacrificing overall performance.

4.3 In-hoc Reasoning

The original settings of EntailmentBank contain
hypothesis as the guidance of post-hoc explana-
tion generation. However, in most practical scenar-
ios where only questions are available, the model
should ideally reason over knowledge facts to de-
rive the answer while generating an explainable
reasoning path. This is defined as Open-ended
Commonsense Reasoning (OpenCSR) in Lin et al.
(2021). With this intuition, we therefore investigate
the potential of entailment trees in generating expla-
nations by substituting hypothesis with questions
in sentence selection. The model needs to addition-
ally generate the root node as the final conclusion,
instead of copying the hypothesis. We conduct in-
hoc reasoning experiments on Task 1 and Task 2,
simplifying the OpenCSR task by narrowing down
the available knowledge facts.

We evaluate the structure correctness of the gen-
erated explanations in Table 5. We observe that
baseline models (without RL) encounter a perfor-
mance drop comparing to hypothesis-guided post-
hoc setting. It suggests that the answers do of-
fer a strong guidance in generating explanations.
With RL, RLET achieves Steps AllCorrect of 38.5,
which performs on par with post-hoc Entailment-

3https://github.com/Raising-hrx/MetGen
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Task Method Leaves Steps Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task 1
RLET 100.0 100.0 54.60.4 40.70.5 66.90.3 36.30.4 34.80.3

w/ T5 100.0 100.0 54.80.2 40.50.2 67.70.1 36.10.3 34.00.3
w/ T5, w/o RL 100.0 100.0 52.40.2 38.40.1 67.10.1 34.60.3 32.70.3

Task 2
RLET 81.00.9 39.01.4 38.50.3 28.40.3 56.31.1 28.60.5 25.70.3

w/ T5 80.40.4 37.70.4 39.30.1 27.00.3 57.30.3 29.00.2 25.40.3
w/ T5, w/o RL 80.80.4 29.61.3 33.70.7 17.50.9 55.10.5 20.61.2 16.20.9

Task 3
RLET 38.30.3 9.10.4 11.50.4 7.10.7 34.20.6 12.10.6 6.90.6

w/ T5 38.70.4 7.80.4 11.90.3 6.50.2 32.70.4 10.40.4 6.50.2
w/ T5, w/o RL 36.60.3 3.70.3 8.80.3 3.40.2 33.00.1 6.90.6 3.40.2

Table 4: Ablation results on EntailmentBank test set with model-generated deduction in the training process.
“RLET” denotes using rule-based deduction in training, “w/ T5” means using T5-deduction during training, “w/ T5,
w/o RL” means using T5-deduction during inference but without RL training on the sentence selection module.

Writer results. Greater drop in Task 2 indicates that
the removal of hypothesis confounds the model in
identifying relevant sentences, resulting in a poor
performance across the board. More details can
be found in Appendix C. Our initial observations
address the difficulty of question-guided in-hoc rea-
soning. A comprehensive OpenCSR system should
further include the retrieval of relevant sentences
based on questions and proper answer evaluation.
We leave these for future work.

4.4 Data Efficiency

In practice, high-quality explanation annotations
can be costly to obtain, which makes it difficult
to train large scale models. An ideal system is ex-
pected to have great generalisability even with few
annotated explanations for training. To evaluate
how RLET can benefit from the RL algorithm un-
der this setting, we experiment with less data under
Task 1. We divide the data based on the number of
given facts for each QA pair. Detailed statistics of
the data split are shown in Table 6.

We break down the results by the length of the
gold trees in Figure 4. Results show that with only
35.6% of the total training steps, RLET (fact-4)
achieves comparable performance with the full-
data trained baselines on Steps metric, indicating
our approach can help model generalise with fewer
data. It is also indicated that RL framework is able
to offer more gains as the length increases.

5 Related Work

Tree Structured QA Explanations Existing
methods on generating entailment trees for QA
explanations can be categorized into two branches:
single pass generation and stepwise generation.

Single pass methods (Dalvi et al., 2021) model the
tree structure as a linearised chained sequence to fit
in the Seq2Seq model. Alternatively, more recent
work tends to generate step-by-step reasoning, per-
forming fine-grained deduction iteratively. Among
them, one line of stepwise methods jointly select
steps and generate intermediate conclusions. IRGR
(Ribeiro et al., 2022) puts effort in designing an iter-
ative retrieval-generation approach, where one step
reasoning is generated at a time through a Seq2Seq
model. Another line of stepwise methods handle
sentence selection and intermediate conclusion gen-
eration with separate modules, which is closely re-
lated to our approach. SCSearch (Bostrom et al.,
2022) models the tree construction as a best-first
search using heuristic guidance. However, their
approach is mainly evaluated on the accordance be-
tween final conclusions and the hypothesis, which
varies from standard evaluation metrics. One con-
current work MetGen (Hong et al., 2022) also sepa-
rates these two parts and trains the generation mod-
ule with additional human annotations and more
synthetic data from Wikipedia. While all previous
works focus on forward reasoning, MetGen further
shows the effect of backward abductive reasoning.
NLProofS (Yang et al., 2022) is another concur-
rent work that adopts an independent verifier to
ensure the validity of single step reasoning. Exist-
ing methods are all trained with individual signals
from extracted gold steps. In that light, RLET is
complementary, as it models the reasoning process
as an MDP in which the stepwise modules can be
a component.

The deduction generation module of RLET can
be connected with proof generation work that gen-
erates natural language logical deductions from
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Task Method Leaves Steps Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task 1
RLET 100.0 100.0 50.1 38.5 46.7 23.5 22.9

w/o RL 100.0 100.0 46.9 34.4 44.2 22.7 20.6

Task 2
RLET 68.1 20.9 29.4 17.7 32.5 14.7 11.8

w/o RL 70.4 18.5 25.0 11.5 32.4 10.6 7.7

Table 5: Experiment results on EntailmentBank test set under in-hoc reasoning setting.

Setting # Facts QA pair Reasoning step
fact-2 ≤2 20.6% 6.5%
fact-3 ≤3 43.9% 20.0%
fact-4 ≤4 62.3% 35.6%

full data full data 100% 100%

Table 6: Details of data efficiency settings.

1 2 3 4 >=5
Gold Tree Length

0.0

0.2

0.4

0.6

0.8

Steps-AllCorrect
RLET fact-2 w/o RL
RLET fact-2
RLET fact-3 w/o RL
RLET fact-3
RLET fact-4 w/o RL
RLET fact-4
RLET full-data w/o RL
RLET full-data
EntailmentWriter (T5-11B)

Figure 4: Results broken down by the length of the
gold trees on the test set in Task 1. Bars in the same
color represent the same data used for training. Bars
with shading indicate the removal of RL.

premises or rules (Saha et al., 2020; Tafjord et al.,
2021; Sanyal et al., 2022). To improve the genera-
tion quality, Bostrom et al. (2022) propose ParaP-
attern by creating synthetic logical deduction data
from Wikipedia, which serves as a good supple-
ment to train the generative model.

Different from existing approaches, RLET mod-
els the cumulative signals across the whole tree
in training, benefiting from our designed reward
function under reinforcement learning framework.

Path Reasoning using Reinforcement Learning
Our work also aligns well with multiple automated
reasoning tasks built with RL (Xian et al., 2019;
Liu et al., 2021; Poesia et al., 2021). Especially,
reinforcement learning has exhibited its attractive-
ness in knowledge graph reasoning (Xiong et al.,
2017; Das et al., 2018; Lin et al., 2018), where
the multi-hop path can be represented as sequential

decision problems. Similar to the above RL meth-
ods, we formulate the entailment tree generation
task as a trajectory of reasoning steps. In contrast
to KG based multi-hop reasoning path, however,
RLET generates intermediate conclusions of the
reasoning steps, providing fluent natural language
explanations in detail.

6 Conclusion

We presented RLET, a RL-based entailment tree
generation framework, which contains sentences
selection and deduction generation modules and
can be trained with cumulative signals across the
entire reasoning tree. Experiments show that RLET
outperforms existing baselines on structure correct-
ness and is applicable in practical scenarios. Future
directions include applying RL framework on other
stepwise methods with more stable and sophisti-
cated RL algorithms.

Limitations

First, sentences are likely to be used more than once
when reasoning in real practice. RLET removes
used sentences at each time step to reduce the size
of action space, which leads to a performance loss
of 9.4% on the overall All-Correct. Second, in the
sentence selection module, RLET always picks two
sentences to merge, while the original dataset con-
tains multi-sentence steps. Though this harms the
evaluation results as discussed in Appendix B, this
is a minor limitation because the reasoning format
is not strictly standardized in real practice. Fur-
thermore, adding [END] token to action space and
applying additional fact filter in distractors settings
is a naive approach and leaves room for further
improvement. Finally, as vanilla policy gradient
method is sensitive to hyperparameters and can
have large variance, we leave the exploration of
more stable RL algorithms in reasoning for future
work.
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A Hyperparameters

For pre-RL supervised training, we set a learning
rate of 2e-5, a batch size of 2 and train the model
for 20 epochs. For RL training, we set the discount
factor γ as {0.9, 0.99}, initial learning rate as 1e-
5, warmup ratio as 0.05, and train the model for
20 epochs. γ = 0.99 yields better results. The
scheduled sampling ratio decays linearly from 1.0
to 0.5. The total RL training costs 6 hours.

The fact filter in Task 2 and 3 is trained with an
initial learning rate of 1e-5, warm up ratio of 0.1,
for 10 epochs. In Task 2 we save top 5 sentences
and filter out sentences with similarity scores lower
than 0.98 in Task 3, which are selected based on
the validation set.

The deduction generation module is imple-
mented with BART-Large (Lewis et al., 2020)
which has 406M parameters. We first train it on
the ParaPattern data with an initial learning rate of
3e-5, batch size of 16 for one epoch, and further
finetune the trained model on extracted gold steps
for another two epochs with an initial learning rate
of 3e-5, batch size of 16. The learning rate decays
with linear scheduler. The total training costs 2
hours.

We use AdamW (Loshchilov and Hutter, 2019)
for optimization, with β1 = 0.9, β2 = 0.99. All
experiments are conducted on 2 Tesla T4 GPUs
with 16GB memory.

B Manual Evaluation

The automatic evaluation is an underestimation of
our approach because RLET only selects two sen-
tences per action while 25.88% trees in test set con-
tain multiple-premise (more than 2 premises) rea-
soning steps, which will result in 0 in Steps/Overall
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Method Automatic Manual
RLET 0.48 0.76
EntailmentWriter (T5-11B) 0.44 0.70

Table 7: Automatic and manual evaluation results on
structure validity of the first 50 trees in Task 1 test set.

metrics. To provide a more flexible comparison,
we manually annotate the first 50 trees in Task 1
test set on structure validity in Table 7. The auto-
matic evaluation results are the Steps-AllCorrect
scores, while we manually consider a tree is valid
in structure if the predicted tree can also perform
valid reasoning under its structure. The results in-
dicate RLET can outperform the strongest baseline
under both automatic and manual evaluation.

C Evaluation Details in Question-guided
Reasoning

In Table 5, we witness a large performance drop
comparing to hypothesis-guided reasoning, espe-
cially on Intermediate and Overall metrics. In
hypothesis-guided reasoning, the generated reason-
ing chain always ends with "hypothesis". Conse-
quently, the last step that contains "hypothesis" as
intermediate conclusion is always labeled as "cor-
rect" under Intermediates metric. In contrast, when
we remove hypothesis, the model has to generate
the last intermediate conclusion instead of directly
copying the hypothesis. Hence, the model suffers
from the errors accumulated by the deduction gen-
eration and the BLEURT evaluation method, and
struggles to draw a correct final conclusion that will
be compared with gold hypothesis. Cumbersome
as it is, our main idea lies in the structure correct-
ness under question-guided reasoning, which can
be fulfilled with Leaves and Steps metrics. How
to measure the answer correctness in the reasoning
chain remains to be further explored in future work.

D Details of T5-deduction Setting

Authors of MetGen manually annotated the reason-
ing patterns of 400 separate steps in the training set,
and 275 steps in the validation set. We adopt these
annotations to finetune a DeBERTa-Large model
as our pattern selector, which takes in two premise
sentences as input and predicts its corresponding
reasoning pattern as substitution, conjunction or
if-then. The pattern selector achieves an accuracy
of 81.5% on annotated sentences in the validation
set. In Table 8, we evaluate the generation quality

ACC BLEURT
RLET BART-Large 77.3 59.5
MetGen (w/ predicted pattern) 80.7 62.2
MetGen (w/ gold pattern) 84.3 65.5

Table 8: Generation quality of deduction generation
modules on the manually annotated sentences from val-
idation set. BLEURT denotes the average BLEURT
scores across all data.

of different deduction generation modules. Given a
pair of premise sentences, if the generated conclu-
sion has a BLEURT score greater than 0.28, then
it is considered as 1 on ACC. During training, we
save the deduction generation results into a cache to
accelerate the training process. The parameters of
both pattern selector and MetGen’s reasoning mod-
ule are frozen during the training of the sentence
selection module.

E Case Study

In this section, we illustrate some examples from
Task 1 test set in which the predicted tree can per-
form a valid reasoning in a different structure with
the gold tree.
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Q: Which of the following statements best describes how the four planets 
closest to the Sun are different from the next four planets in our solar 
system
A: The four closest planets are more dense.

Hypothesis: the four planets closest to the sun are more dense than the 
four planets farthest from the sun

𝑥!: a solid is more 
dense than a gas

𝑥": the four planets 
farthest from the 
sun are made of 
gas

𝑥#: the four planets 
closest to the sun 
are made of rock

𝑥$: a rock is 
usually a solid

𝑖!: The four planets closest to the sun 
are made of rock and the four planets 
farthest from the sun is made of gas

𝑖": A rock is more dense than 
a gas

ℎ: the four planets closest to the sun are 
more dense than the four planets farthest 
from the sun

𝑥#: the four planets 
closest to the sun are 
made of rock

𝑥$: a rock is 
usually a solid

𝑖!: the four planets closest to the 
sun are made of solids

𝑥!: a solid is more 
dense than a gas

𝑥": the four planets 
farthest from the sun 
are made of gas

ℎ: the four planets closest to the sun are 
more dense than the four planets farthest 
from the sun

Gold Tree

Predicted Tree

Figure 5: An example of misevaluation in which
the gold tree contains a three-premise reasoning step.
Though not exactly matched with gold, the predicted
tree can also fulfill the reasoning process with two-
premise steps.

Q: Which best describes the Sun?
A: medium yellow dwarf

Hypothesis: the sun is a yellow dwarf with medium size

𝑥!: the sun is a kind of 
yellow dwarf

𝑥": medium means average 𝑥#: the sun is average in size 
for a star in our galaxy

𝑖!: the sun is a medium 
sized star in our galaxy

ℎ : the sun is a yellow dwarf with 
medium size

𝑥!: the sun is a kind of 
yellow dwarf

𝑥#: the sun is average in 
size for a star in our galaxy

𝑖!: the four planets closest to the 
sun are made of solids

𝑥": medium means average

ℎ: the sun is a yellow dwarf with 
medium size

Gold Tree

Predicted Tree

Figure 6: An example of misevaluation in which gold
tree and predicted tree vary in the order of the sentence
composition. Both can provide valid explanations in the
form of binary entailment trees.
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