
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 5490–5498
December 7-11, 2022 ©2022 Association for Computational Linguistics

TABS: Efficient Textual Adversarial Attack for Pre-trained NL Code
Model Using Semantic Beam Search

YunSeok Choi, Hyojun Kim, Jee-Hyong Lee
College of Computing and Informatics

Sungkyunkwan University
Suwon, South Korea

{ys.choi, rlagywns0213, john}@skku.edu

Abstract

As pre-trained models have shown successful
performance in program language processing
as well as natural language processing, adver-
sarial attacks on these models also attract at-
tention. However, previous works on black-
box adversarial attacks generated adversarial
examples in a very inefficient way with simple
greedy search. They also failed to find out bet-
ter adversarial examples because it was hard to
reduce the search space without performance
loss. In this paper, we propose TABS, an effi-
cient beam search black-box adversarial attack
method. We adopt beam search to find out
better adversarial examples, and contextual se-
mantic filtering to effectively reduce the search
space. Contextual semantic filtering reduces
the number of candidate adversarial words con-
sidering the surrounding context and the se-
mantic similarity. Our proposed method shows
good performance in terms of attack success
rate, the number of queries, and semantic sim-
ilarity in attacking models for two tasks: NL
code search classification and retrieval tasks.

1 Introduction

Many pre-trained models have been proposed and
achieved success not only in natural language pro-
cessing (Devlin et al., 2019; Liu et al., 2019; Sanh
et al., 2019; Clark et al., 2020), but also in program
language processing (Feng et al., 2020; Guo et al.,
2021; Gotmare et al., 2021; Ahmad et al., 2021).
As pre-trained models attract attention, so do the
adversarial attacks on those models (Hsieh et al.,
2019; Jin et al., 2020; Li et al., 2020; Garg and Ra-
makrishnan, 2020; Li et al., 2021). If pre-trained
code models are attacked, they may produce in-
correct results for slightly perturbed inputs in the
sentence of natural language.

However, most of these black-box adversarial
attack methods generate adversarial examples with
inefficient greedy search. The method simply tries
every adversarial word without considering the sur-

rounding context and the contextual semantic word
similarity. Moreover, it simply replaces vulnerable
words in a sentence one by one without considering
the global context. Their attack success rates are
low, and a number of queries are required for attack
success. It is not guaranteed that the adversarial
examples are generated semantically similar to the
original examples even if the attack was successful.

In this paper, we propose the semantic beam
search method that can efficiently generate seman-
tically similar adversarial examples with fewer
queries while having higher performance. Our
proposed method selects adversarial words con-
sidering the contextual semantic similarity with
the original word as well as the word probability
predicted by the BERT masked language model
(MLM). With this contextual semantic filtering, the
number of queries is significantly reduced com-
pared to the existing methods without performance
reduction. To increase the success rate, we adopt
beam search (Wiseman and Rush, 2016) to generate
better adversarial examples. Our approach keeps
top-k candidate adversarial sentences with beam
search while attacking. It helps choose a better
adversarial sentence considering the global context.
Beam search may expand the search space, but we
can effectively reduce the search space with seman-
tic filtering. Finally, we can achieve the highest
success rate with a minimum number of queries.

We apply our approach to the NL-code search
task that searches for codes with the same mean-
ing for a given natural language sentence for the
first time. The NL code search task provided by
CodeXGLUE consists of two sub-tasks: classifica-
tion task and retrieval task (Lu et al., 2021). The
classification task is a task to classify whether or
not the text-code pair represents the same meaning,
and the retrieval task is a task that finds the most
relevant code when a text is given. We show suc-
cessful attack results for two tasks: classification
and retrieval task of NL code search task.

5490



2 Methodology

In this section, we describe TABS: Efficient Textual
Adversarial Attack using Semantic Beam Search,
that requires a very small number of queries to
generate adversarial text with very high quality for
the NL Code search tasks.

The proposed approach, TABS, is based on
BERT-Attack. We determine the order of words to
be replaced by output differences as the previous
method did. Suppose that there is a pair of text
T = [w1, w2, ..., wn] and code C, the correspond-
ing label Y , and the output logit of the classification
victim model or the output rank of the retrieval vic-
tim model, f(T,C). The word importance by the
output difference is defined as follows:

Iwi = f(T,C)− f(T\wi
, C) (1)

where wi is the i-th word in the sentence T , and
T\wi is the modified sentence that the word at the
i-th position in T is replaced with <unk> token.

BERT-Attack obtains N synonym words for a
word in T from the mask language model for a
vulnerable word in the sentence. BERT-Attack
replaces the word with each synonym word and
checks whether the modified sentence is misclas-
sified or not. If the attack is not successful even
after it tried all the N synonyms, it chooses the syn-
onym word with the lowest output logit values for
the current word and continues to attack the next
vulnerable word, which is a way of greedy search.
When a word is being attacked, the previously at-
tacked words are fixed in this greedy search, and
the adversarial examples to be generated may be
limited. Better synonym words for the previously
attacked words can be found conditionally to the
synonym of the current word, but the greedy search
cannot change previously fixed synonyms.

To address this issue, we adopt beam search
which keeps k candidate adversarial sentences
while attacking. However, if beam search is sim-
ply applied, the number of queries may increase
about k times. In order to solve this effectively,
we do not try all the synonym words chosen by
probability of the masked language model for the
current position word, but we sample M important
words among the N synonyms by considering the
contextual semantic similarity to the original word.

Contextual semantic filtering is based on the
similarity between word embeddings from BERT-
MLM. First, we replace the current word with each

Algorithm 1 TABS
Input: Text T ; Code C; Victim model f(·)
Output: Adversarial example T adv

1: for wi in T do
2: Compute the importance score Iwi using Eq. 1
3: end for
4: Initialization T adv ← T ; B ← ϕ; B = B ∪ T ;B

′ ← ϕ
5: Create a word list V sorted by descending order of impor-

tance score Iwi

6: for vi in V do
7: for b in B do
8: Predict N synonyms for b\vi based on BERT-MLM
9: Calculate each context embedding for N synonyms

10: Sort by similarity scores based on context embedd-
11: ings between the original word and N synonyms
12: Select top-M words
13: for m in M do
14: b[vi] = m

15: B
′ ← B

′ ∪ b
16: end for
17: end for
18: Sort B

′
by the logit values of the Victim model f(·)

19: if Satisfy Eq. 2 or Eq. 3 in B
′

then
20: T adv ← adversarial example in B

′
with the max-

imum sentence similarity to the original sentence T
21: return T adv

22: else
23: B ← top-K(B

′
), B

′ ← ϕ
24: end if
25: end for

synonym word obtained by probability of BERT-
MLM in the sentence. We input the modified
sentence into BERT-MLM once more, and obtain
the contextual word embedding from the last hid-
den states of BERT-MLM. Since the embeddings
are generated considering surrounding words, we
can evaluate contextual semantic similarities be-
tween words. We consider not only the probability
predicted by the masked language model but also
the contextual semantic similarity to the original
word for choosing synonym words, so we can ef-
fectively reduce the search space. We tokenize
each word into sub-words using the Bytes-Pair-
Encoding (BPE) which is the tokenizer of BERT-
MLM. We use the average pooling to obtain the
whole contextual word embedding of the original
word.

During attacking with beam search, we sort k
candidate adversarial sentences by the logit values
in ascending order, and check if there are adversar-
ial sentences that satisfy the attack success condi-
tion. If there are, the sentence most similar to the
original sentence is selected as the final adversarial
example.

The attack success conditions are defined as fol-

5491



Model ϵ = 0.2 ϵ = 0.3

Success Perturb Query USE Success Perturb Query USE

Textfooler (Jin et al., 2020) 699 15.9 67.5 0.466 578 15.1 67.8 0.511
BERT-Attack (Li et al., 2020) 792 13.9 84.2 0.474 667 13.1 83.7 0.514
CodeBERT-Attack 792 14.8 90.5 0.467 663 13.7 90.2 0.509
CLARE (Li et al., 2021) 814 13.4 923.1 0.484 689 12.8 969.7 0.525

Proposed-B 882 14.6 162.7 0.507 787 13.9 163.2 0.537
Proposed-S 780 15.2 29.2 0.461 634 14.3 29.4 0.509
Proposed-BS (TABS) 874 15.9 50.4 0.498 751 14.9 49.9 0.537

Table 1: Adversarial example generation performance in attack success (Success), change ratio (Perturb), number of
queries (Query), and text similarity (USE) on the classification task of NL code search task. The original accuracy
of the victim model on test dataset is 97.96%. The best result is in boldface, and the next best is underlined. Refer
to Appendix B for the results of other ϵ.

Model ϵ = 0.3 , original_rank ≤ 100 , target_rank = 100

Success Perturb Rank nDCG@10 nDCG@20 Query USE

Textfooler (Jin et al., 2020) 328 14.7 8.8/642.8 0.2033 0.2421 61.3 0.508
BERT-Attack (Li et al., 2020) 407 14.2 7.7/737.6 0.2007 0.2407 80.2 0.531
CLARE (Li et al., 2021) 395 13.3 8.0/725.9 0.2065 0.2496 907.9 0.537

Proposed-B 461 13.5 7.0/794.0 0.2097 0.2576 124.6 0.557
Proposed-S 405 15.0 8.0/730.7 0.1721 0.2129 27.6 0.516
Proposed-BS (TABS) 451 15.6 7.2/800.3 0.1688 0.2130 42.9 0.535

Table 2: Adversarial example generation performance in attack success (Success), change ratio (Perturb), original
rank/changed rank (Rank), top-10 nDCG (nDCG@10), top-20 nDCG (nDCG@20), number of queries (Query), and
text similarity (USE) on the retrieval task of NL code search task. The best result is in boldface, and the next best is
underlined. The results of other target_rank value can be found in Appendix C.

lows:
argmax

(
f(T adv, C)

)
̸= Y,

and Sim(T adv, T ) ≥ ϵ
(2)

f(T,C) < target_rank < f(T adv, C),
and Sim(T adv, T ) ≥ ϵ

(3)

Eq. (2) is for classification task, and Eq. (3) for
retrieval task. In the equations, T is an original sen-
tence, T adv is an adversarial sentence, C is a code
snippet, Sim(·, ·) is the cosine similarity between
embedding vectors of the original and adversarial
sentences, ϵ is the minimum similarity threshold
between the original and adversarial sentences, and
target_rank is the minimum rank for attack suc-
cess.

We summarize the proposed approach, TABS, in
Algorithm 1.

3 Experiments

3.1 Experiment Setting

We apply our approach on two NL code search
tasks: classification and retrieval tasks (Lu et al.,
2021). We fine-tune CodeBERT (Feng et al., 2020)
for each of the two tasks. We evaluate our method

on 1k test samples randomly selected from the test
dataset.

As evaluation metrics, we use attack success,
change ratio, number of queries, and text similarity
in classification task, and attack success, change
ratio, original rank/changed rank, nDCG (Wang
et al., 2013), number of queries, and text similarity
in retrieval task. Attack success is the number of
successful attacks. Change ratio is on how many
words are replaced for a successful attack, original
rank is the rank of the correct code in the recom-
mended code list by the code retrieval model, and
changed rank is the rank by the attacked model.
In the retrieval task, we need to consider not only
the rank change of the correct code but also the
change of recommended code list. We use Uni-
versal Sentence Encoder (USE) (Cer et al., 2018)
to measure the text similarity between the original
and adversarial sentences. We also observe nDCG
to measure how much the top-k retrieved code list
is changed by the adversarial text.

We use RoBERTa model (Liu et al., 2019)
as BERT masked language model for our ap-
proach. We compare our approach with Textfooler,
BERT-Attack, CodeBERT-Attack, and CLARE.

5492



0.2 0.3 0.4 0.5
Epsilon

300

400

500

600

700

800

900
Nu

m
be

r o
f A

tta
ck

 S
uc

ce
ss

0.2 0.3 0.4 0.5
Epsilon

200

400

600

800

1000

1200

Nu
m

be
r o

f Q
ue

rie
s

0.2 0.3 0.4 0.5
Epsilon

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Se
m

an
tic

 S
im

ila
rit

y

TextFooler BERTAttack CLARE Beam Search TABS

Figure 1: Comparison results of attack success, queries,
and similarity on attacking CodeBERT fine-tuned for
NL code search classification task with respect to ϵ. Our
proposed method performs better than other baselines
in all ϵ values.

CodeBERT-Attack is another type of BERT-Attack
that uses the CodeBERT-MLM model for predict-
ing synonym words. For all approaches, we set the
hyper-parameter N to 50. Refer to the Appendix
A for the NL code search dataset.

3.2 Experimental Result

Attack Result Table 1 shows the performance in
the NL code search classification task. We compare
the results at ϵ = 0.2 and 0.3. Among the base-
lines, CLARE using various attack strategies, such
as replace, insert, and merge, shows the highest
attack success and USE. However, since CLARE
calculates the importance score for 3 strategies to
determine the order of attack words, it requires
a large number of queries. BERT-Attack using
BERT-MLM model and CodeBERT-Attack using
CodeBERT-MLM show almost the same perfor-
mance in the attack success rate, query, and USE.

Proposed-B is the proposed method with only
beam search. It shows the performance of the
highest semantic similarity compared to other base-
lines because it selects the sentence most similar to
the original text among the candidates that satisfy
the attack success condition. However, compared
to the baselines such as BERT-Attack, Proposed-
B has about twice as many queries. Proposed-S
is the proposed method with only semantic filter-
ing of synonyms by word embedding similarity.
The attack success and USE are similar to BERT-
Attack and higher than Textfooler, but the number
of queries is significantly smaller than other base-
lines.

TABS (Proposed-BS), using both beam search
and semantic filtering, maintains semantic simi-
larity (USE) and attack success (Success) as high

Model ϵ = 0.2

Success Perturb Query USE

BERT-Attack 792 13.9 84.2 0.474

TABS (5, 10) 874 15.9 50.4 0.498
TABS (5, 20) 878 15.1 80.5 0.508
TABS (10, 5) 857 16.8 39.8 0.491

TABS (10, 10) 890 16.0 73.5 0.510

Table 3: Performance on the combination of beam
search candidate k and important synonym words m,
(k, m).

as Proposed-B, and significantly reduces the num-
ber of queries compared to other baselines. The
result shows that our proposed method efficiently
finds adversarial texts with semantic filtering and
increases the quality of adversarial texts with beam
search.

Table 2 shows the performance of the NL code
search retrieval task. We filter out the test data with
original_rank ≤ 100, which means the ground
truth rank is less than 100 among 1k test samples,
and we compare the results at target_rank = 100
and ϵ = 0.3 of the attack success condition. Sim-
ilar to the results of the classification task, our
approach shows significantly better performance
in terms of attack success, the number of queries,
USE, and rank change than the baseline models.
The nDCG values are also the lowest compared to
other baselines. It means that there are very few
codes overlapped in the lists by the original text
and the adversarial text.

Ablation Study We analyze the performance by
changing the value of ϵ in the attack success condi-
tion. Figure 1 shows the results of attack success,
the number of queries, and the semantic similarity
with respect to ϵ in the classification task. Our ap-
proach shows superior performance to other base-
lines with any ϵ.

In addition, we analyze the performance with
respect to k, the beam size of beam search, and
m, the number of adversarial words chosen by the
semantic filtering in Table 3. When m is doubled,
the number of queries increases less than two times,
and the success rate and USE increase slightly. The
combination of k = 10 and m = 10 has better per-
formance than k = 5 and m = 20. In comparison
to BERT-Attack, all cases show better performance
in success, query, and USE, and we select k = 5
and m = 10 that have good performance in three
metrics.

5493



Overall Efficiency The time complexity of
BERT-Attack is O(LN), and that of TABS is
O(LBM+LB×mlm×N) where L is sentence
length, B is beam size, N is the number of syn-
onyms, M is the number of important words, and
mlm is BERT-MLM inference time complexity.
We use N = 50, B = 5 and M = 10 so that
N = BM . The time for contextual semantic fil-
tering by BERT-MLM, O(LB×mlm×N), is ad-
ditionally required. However, it is possible to eval-
uate semantic similarity for N words at once if we
use GPUs. If we build a batch with N modified
sentences, we can evaluate their contextual seman-
tic similarities with one inference of BERT-MLM.
The actual time to calculate the similarity is very
small compared to the overall time in TABS. It
takes only about 3.9% of the overall average time
in our experiment setting.

4 Conclusion

In this paper, we proposed an efficient beam search
black-box adversarial attack method, TABS, that
not only replaces words by considering the context
of surrounding words but also reduces queries by
considering the similarity of generated sentences.
To the best of our knowledge, we are the first to
apply an adversarial attack to the NL code search
task. Our approach showed good performance in
terms of attack success rate, number of queries, and
semantic similarity in the classification task and
attack success rate, number of queries, semantic
similarity, rank change, and nDCG in the retrieval
task.

Limitations

Although we are the first attempt at adversarial at-
tack on the NL code search, our approach is needed
to prove its applicability to other NL tasks, such as
text classification and natural language inference,
in future work.

Acknowledgements

This work was supported by Institute of Infor-
mation & communications Technology Planning
& Evaluation (IITP) grant funded by the Ko-
rea government (MSIT) (No. 2019-0-00421,
Artificial Intelligence Graduate School Program
(Sungkyunkwan University), and No. 2022-0-
01045, Self-directed Multi-modal Intelligence for
solving unknown, open domain problems).

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text clas-
sification. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6174–6181, Online. Association for
Computational Linguistics.

Akhilesh Deepak Gotmare, Junnan Li, Shafiq Joty, and
Steven CH Hoi. 2021. Cascaded fast and slow mod-
els for efficient semantic code search. ArXiv preprint,
abs/2110.07811.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021.
Graphcodebert: Pre-training code representations
with data flow. In 9th International Conference on

5494

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://arxiv.org/abs/2110.07811
https://arxiv.org/abs/2110.07811
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ


Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On
the robustness of self-attentive models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1520–1529, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. ArXiv preprint, abs/1909.09436.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):8018–8025.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021. Con-
textualized perturbation for textual adversarial attack.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5053–5069, Online. Association for Computa-
tional Linguistics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv
preprint, abs/1910.01108.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-
Yan Liu. 2013. A theoretical analysis of NDCG type

ranking measures. In COLT 2013 - The 26th Annual
Conference on Learning Theory, June 12-14, 2013,
Princeton University, NJ, USA, volume 30 of JMLR
Workshop and Conference Proceedings, pages 25–54.
JMLR.org.

Sam Wiseman and Alexander M. Rush. 2016. Sequence-
to-sequence learning as beam-search optimization.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1296–1306, Austin, Texas. Association for Computa-
tional Linguistics.

5495

https://doi.org/10.18653/v1/P19-1147
https://doi.org/10.18653/v1/P19-1147
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
http://proceedings.mlr.press/v30/Wang13.html
http://proceedings.mlr.press/v30/Wang13.html
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/D16-1137


A Implementation Detail

We use the CodeSearchNet (Husain et al., 2019)
dataset which is specialized for NL code search
task provided by CodeXGLUE (Lu et al., 2021).
We fine-tune CodeBERT for each of the two tasks.

Dataset CodeSearchNet

Train 251,820
Valid 9,604
Test 19,210

Avg. Text Length 11
Avg. Code Length 95

Classification Accuracy 97.96%
Retrieval MRR 0.6796

Table 4: Statistics of CodeSearchNet dataset. Clas-
sification Accuracy and Retrieval MRR score are the
performance of test dataset.

B Case Study on NL Classification Task

Model ϵ = 0.4 ϵ = 0.5

Success Perturb Query USE Success Perturb Query USE

Textfooler (Jin et al., 2020) 433 14.2 69.6 0.564 292 13.0 66.7 0.619
BERT-Attack (Li et al., 2020) 500 12.3 86.2 0.568 335 11.2 87.6 0.626
CodeBERT-Attack 486 12.9 92.0 0.567 312 11.9 93.0 0.631
CLARE (Li et al., 2021) 527 12.1 1032.1 0.580 376 11.1 1106.2 0.632

Proposed-B 632 12.8 156.8 0.583 457 11.9 155.0 0.633
Proposed-S 471 13.3 30.6 0.563 317 11.9 30.8 0.617
Proposed-BS (TABS) 599 13.7 49.2 0.583 429 12.6 48.7 0.637

5496



C Case Study on Retrieval Task

Model ϵ = 0.2 , original_rank ≤ 100, target rank = 100

Success Perturb Rank nDCG@10 nDCG@20 Query USE

Textfooler (Jin et al., 2020) 404 15.6 7.8/697.8 0.1803 0.2206 62.1 0.459
BERT-Attack (Li et al., 2020) 478 15.0 6.9/766.9 0.1852 0.2243 82.6 0.489
CLARE (Li et al., 2021) 462 13.8 7.2/762.5 0.1895 0.2329 880.2 0.495

Proposed-B 516 15.1 6.6/816.0 0.1809 0.2240 144.7 0.525
Proposed-S 514 16.1 6.8/837.1 0.1552 0.1938 27.5 0.460
Proposed-BS (TABS) 525 16.6 6.5/841.9 0.1530 0.1974 45.7 0.496

Model ϵ = 0.3 , original_rank ≤ 10, target rank = 100

Success Perturb Rank nDCG@10 nDCG@20 Query USE

Textfooler (Jin et al., 2020) 259 15.6 2.1/599.0 0.1594 0.1953 64.7 0.493
BERT-Attack (Li et al., 2020) 333 14.8 2.0/741.6 0.1540 0.1984 84.2 0.512
CLARE (Li et al., 2021) 321 13.8 2.0/727.6 0.1588 0.2067 911.4 0.518

Proposed-B 386 15.1 2.0/784.9 0.1530 0.1979 148.9 0.538
Proposed-S 329 15.8 2.0/700.6 0.1337 0.1753 28.9 0.500
Proposed-BS (TABS) 378 16.4 2.0/793.3 0.1262 0.1758 47.1 0.513

Model ϵ = 0.3 , original_rank = 1, target rank = 100

Success Perturb Rank nDCG@10 nDCG@20 Query USE

Textfooler (Jin et al., 2020) 155 16.4 1.0/587.7 0.1142 0.1485 70.6 0.485
BERT-Attack (Li et al., 2020) 213 15.8 1.0/658.4 0.1255 0.1689 91.1 0.506
CLARE (Li et al., 2021) 198 14.2 1.0/619.1 0.1244 0.1741 929.8 0.510

Proposed-B 240 15.9 1.0/663.6 0.1322 0.1738 178.1 0.537
Proposed-S 209 16.6 1.0/733.1 0.1138 0.1524 30.8 0.498
Proposed-BS (TABS) 241 17.1 1.0/762.2 0.1094 0.1599 54.0 0.512

5497



D Qualitative Examples

Code def node_radius(self, node):
return self.get_idx(node) * self.scale + self.internal_radius

Ground Truth Computes the radial position of the node .

Textfooler Computes the radial position of the rope .
BERT-Attack Computes the radial position of the compass .
CLARE Computes the radial position of Z .
TABS Computes the radial position of the vectors.

(a) Example 1

Code def _build_state_value(request_handler, user):
uri = request_handler.request.url
token = xsrfutil.generate_token(xsrf_secret_key(), user.user_id(), action_id = str(uri))
return uri + ’:’ + token

Ground Truth Composes the value for the state parameter .

Textfooler Composes the value for the nations parameter .
BERT-Attack Composes the value for the n parameter .
CLARE Composes the value for the n parameter .
TABS Composes the value for the computed parameter .

(b) Example 2

Code def serialize_class (Cls):
metaclass = xtuml.get_metaclass(Cls)
attributes = [”%s %s’ % (name, ty.upper()) for name, ty in metaclass.attributes]
s = ’CREATE TABLE %s (\n’ % metaclass.kind
s += ’,\n’.join(attributes)
s += ’\n);\n’
return s

Ground Truth Serialize an xtUML metamodel class .

Textfooler Serialize an xtuml metamodel degrees .
BERT-Attack Serialize an xtuml metamodel amide .
CLARE Serialize an xtuml metamodel amide .
TABS Serialize an xtuml metamodel id .

(c) Example 3

5498


