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Abstract

Long document question answering is a chal-
lenging task due to its demands for complex
reasoning over long text. Previous works usu-
ally take long documents as non-structured flat
texts or only consider the local structure in long
documents. However, these methods usually
ignore the global structure of the long docu-
ment, which is essential for long-range under-
standing. To tackle this problem, we propose
Compressive Graph Selector Network (CGSN)
to capture the global structure in a compres-
sive and iterative manner. The proposed model
mainly focuses on the evidence selection phase
of long document question answering. Specifi-
cally, it consists of three modules: local graph
network, global graph network and evidence
memory network. Firstly, the local graph net-
work builds the graph structure of the chun-
ked segment in token, sentence, paragraph and
segment levels to capture the short-term depen-
dency of the text. Secondly, the global graph
network selectively receives the information of
each level from the local graph, compresses
them into the global graph nodes and applies
graph attention to the global graph nodes to
build the long-range reasoning over the entire
text in an iterative way. Thirdly, the evidence
memory network is designed to alleviate the re-
dundancy problem in the evidence selection by
saving the selected result in the previous steps.
Extensive experiments show that the proposed
model outperforms previous methods on two
datasets.1

1 Introduction

Long document question answering (LDQA) is a
task to select relevant evidence and answer ques-
tions over long text (Dasigi et al., 2021). Compared
to the traditional QA tasks, whose input is often

∗Corresponding author
1We have released our codes and data in https://github.

com/JerrryNie/CGSN.

under 512 tokens2, the input of LDQA can be more
than 20K tokens.

LDQA methods can be divided into two cate-
gories: end-to-end methods and select-then-read
methods. The end-to-end methods usually take a
question and a long text as input to select evidence
and produce the answer in one step. For exam-
ple, Dasigi et al. (2021) use Longformer-Encoder-
Decoder (LED) model to select evidence in the
encoder part and generate answers in the decoder
part. The select-then-read methods firstly apply an
evidence selection model to obtain evidence pieces
in a long document and then use an answer genera-
tion model to generate answers given the evidence
pieces and the question. These methods mainly fo-
cus on the evidence selection phase. For example,
Karpukhin et al. (2020) and Zhu et al. (2021) select
paragraphs in an open domain retrieving manner.
Zheng et al. (2020a) and Ainslie et al. (2020) build
structure on the chunked documents for evidence
selection. Gong et al. (2020) model information
flows among chunks to enhance the ability of the
model in selecting the evidence. However, most
of the two kinds of works ignore the global struc-
ture of a long document when selecting evidence
pieces, which is crucial to long-range understand-
ing. Therefore, improvement on the evidence se-
lection phase is needed.

Motivated by the human reading process: se-
lectively memorizing the important pieces of
information and integrating them, we propose
an evidence selection model in the select-then-
read method, named Compressive Graph Selector
Network (CGSN). It aims to capture the global
structural information in a compressive and itera-
tive manner. Specifically, the model is composed
of three modules: the local graph network, the
global graph network and the evidence memory

2In this paper, ‘token’ means sub-tokens split from a text
sequence by a specific pre-trained tokenizer.
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network. Firstly, the local graph takes a segment3

of the document as input and implements graph
attention among tokens, sentences, paragraphs and
the segment itself. Secondly, the global graph mod-
ule selectively receives the information from the
local graph and compresses it with the stored infor-
mation via multi-head attention. Then, the graph
attention is applied to the global graph to integrate
the global structural information, which is written
back to the local graph nodes to enhance the expres-
sion of local nodes for evidence selection. Thirdly,
the evidence memory network receives and summa-
rizes the evidence selecting results and sends them
into the global network to alleviate the evidence
redundancy problem.

Extensive experiments on two datasets show that
CGSN outperforms previous methods in the evi-
dence selection phase. Using the same answer gen-
erator as the previous methods do, CGSN further
reaches the best results in the answer generation
phase.

Our contributions are as follows:

• To the best of our knowledge, we are the first
to consider the global structure in the long
document QA task.

• With the enhancement of global structural in-
formation, the proposed model, CGSN outper-
forms previous methods.

2 Related Works

Long Document Question Answering. Long
Document question answering aims to answer the
question with the comprehension of the long doc-
ument and applies multi-hop reasoning among re-
trieved evidence paragraphs. Dasigi et al. (2021)
take advantage of the pre-trained model LED (Belt-
agy et al., 2020) and treat the input as a long se-
quence to predict the evidence paragraphs and gen-
erate the answer. Zheng et al. (2020a) and Ainslie
et al. (2020) model the structure on the chunked
document to select the evidence paragraph. Al-
though Ainslie et al. (2020) claims that they ex-
plicitly model the structure of long documents, the
input of their model is limited in 4K tokens, which
can be regarded as a relatively long chunk. Gong
et al. (2020) use the recurrent mechanism to en-
able information flow through different chunks for
evidence selection. Karpukhin et al. (2020) and
Zhu et al. (2021) search for relevant evidence from

3A ‘segment’ is a series of paragraphs in a document.

individual paragraphs in the long document. How-
ever, most of these works model the long document
as a flat sequence or consider the local structure
in the document segments while global structural
information of the document is nearly neglected.

Graph Neural Networks. Graph neural network
(GNN) is popular in various tasks (Yao et al., 2019;
Schlemper et al., 2019) due to its effectiveness in
modeling structural information. Among differ-
ent variants of GNNs, Graph Attention Network
(Velickovic et al., 2018) (GAT) can take advantage
of the attention mechanism in a graph, attending
neighborhood node features to the node by differ-
ent attention weights. Zheng et al. (2020b) make
use of a graph multi-attention network to predict
traffic conditions. Abu-El-Haija et al. (2018) take
advantage of the graph attention to automatically
guide the random walk in graph generation. In
natural language tasks, due to the limit of memory
usage, GAT is often used to model short sequences.
Therefore, modeling the graph structure of the long
sequence is nearly unexplored.

Memory Networks. Memory network (Weston
et al., 2015) is used in memorizing long-term infor-
mation via learnable reading/writing components.
It is first applied to the QA task for knowledge
base reasoning, which also achieves much progress
in summarization (Cui and Hu, 2021) and visual
question answering. To memorize plenty of infor-
mation, the memory network learns to read and
recurrently write into an external memory via at-
tention. Miller et al. (2016) propose Key-Value
Memory Network to flexibly access knowledge for
question answering. Lu et al. (2020) design a con-
text memory for cross-passage evidence reasoning.
However, these methods only consider the memory
on a single level, while structural information is
disregarded.

3 Compressive Graph Selector Network

In this section, we first formalize the long docu-
ment question answering (LDQA) task, and then
introduce the proposed evidence selection model,
i.e. Compressive Graph Selector Network (CGSN).
As for the answer generator, we use a vanilla LED
as the answer generator and describe the implemen-
tation details in Appendix C. Finally, we discuss
the advantages of the select-then-read methods over
the end-to-end methods.
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Figure 1: The architecture of CGSN.

3.1 Problem Formulation

The input to LDQA is a question q = [q1, q2, ...,
qm] coupled with a document d = [p1,p2, ...,
pn],pi = [ti1, ti2, ..., ti,ki ](1 ≤ i ≤ n) where
m denotes the length of the question, n denotes
the number of paragraphs in the document and ki
denotes the length of paragraph i. The length of
the document is defined as the sum of the length
of each paragraph: c =

∑n
i ki. In the LDQA set-

ting, the length c is often unlimited, which can be
larger than 20K. The goal of LDQA is to produce
the evidence paragraphs {pei}e

q

i=1 and generate the
free-form answer a = [a1, a2, ..., ar] based on q
and d, where pei denotes the eith paragraph in the
document (the ith paragraph in the evidence set),
eq is the number of evidence for question q.

3.2 Overview of the Model

To explore the global graph structure of long se-
quences, we propose Compressive Graph Selector
Network (CGSN), which operates in an iterative
and compressive way. CGSN is composed of three
modules, local graph network, global graph net-
work and evidence memory network. As shown
in Figure 1, firstly, in time step4 T = t, the local
graph network takes the tth segment of a document
as the input and models the graph structure in token,
sentence, paragraph and segment levels. Secondly,
the global graph selectively receives the informa-
tion from each granularity, compresses them into

4The ‘time step’ is the order of the segment to be processed.

the corresponding global graph nodes, implements
the graph attention among the global graph nodes
and sends the global-attended information back to
the local graph to enhance the expression of the lo-
cal graph nodes for evidence selection. Thirdly, the
evidence memory network receives the enhanced
paragraph nodes from the local graph, summarizes
and caches them via the predicting logits. At the
beginning of the time step T = t + 1, the stored
memory is sent and fused with the global graph
nodes in order to alleviate the redundant evidence
selection problem. The detailed architecture is de-
scribed in Appendix A.

3.3 Local Graph Network

Input Format Let Segk = [pk,1, ...,pk,Nseg
] be

the kth segment in a document, which composed of
Nseg paragraphs. To build the local graph network,
firstly, we encode the Nseg paragraphs paired with
the question. For each question-paragraph pair, the
input format is “[CLS] q [SEP] pi [SEP]”, where
1 ≤ i ≤ Nseg. We set the embeddings of each in-
put pair as E ∈ Rℓ×dw , where ℓ is the length of
the input and dw is the dimension of the embed-
ding. The Nseg embedding sequences are stacked
as Ek ∈ RNseg×ℓ×dw and sent into the encoder fe
as follows:

Hk = fe(Ek) (1)

where Hk ∈ RNseg×ℓ×dh is the contextual encod-
ing, dh denotes its dimension. In general, we use
pre-trained Transformer encoders (Devlin et al.,
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2019; Beltagy et al., 2019).

Local Graph Initialization Let hL
ti , h

L
senti , h

L
pi ,

hL
seg be the node representations of the local graph

in token, sentence, paragraph and segment level,
where ti denotes the ith token in the segment, senti
denotes the ith sentence, pi denotes the ith para-
graph. And the question-aware token hidden states
of the segment HSeg

k ∈ Rℓk×dh are used to ini-
tialize hL

ti(1 ≤ i ≤ ℓk), where ℓk is the number
of tokens in a segment. The sentence node hL

senti
is initialized by the mean-pooling of hL

ti(i ∈ Si),
where Si denotes the set of token indexes of sen-
tence i. The paragraph node hL

pi is initialized by
the encodings of “[CLS]” token and the segment
node hL

seg is initialized by the mean-pooling of all
the paragraph nodes.5

To enhance the interaction among the nodes at
the same level, we apply the BiLSTM in the token-
level, sentence-level and paragraph-level nodes,
and fuse the encoded states with the node represen-
tation by a feed-forward neural network (FFNN) to
generate the ultimate node representation:

hL
LSTM = BiLSTM(hL) (2)

hL
init = FFNN(hL

LSTM,hL) (3)

where hL = [hL
1 , ...,h

L
m] denotes the set of nodes

at the same level ordered by the text sequence.

Local Graph Attention After initialization, the
multi-hop graph attention is applied among the lo-
cal graph nodes. The aim is to capture the local
structural information for understanding the cur-
rent segment of paragraphs. Let the edge set of the
local graph GL be E = {(i, j)}(i,j)∈GL , where the
(i, j) denotes an edge from node i to node j. In the
proposed model, the edges of the local graph are
predefined as unidirectional, which can only send
information from the lower level into the neighbor-
ing higher one, including token to sentence, sen-
tence to paragraph and paragraph to the segment
node. The hidden output of the graph attention
is then fused with the graph node representation
and then used in the graph attention operation in
the next hop. Let ho

j be a node representation in
the local graph of hop o, followed Velickovic et al.
(2018), its representation in hop o+ 1 is:

eij =
(ho

jW
Q)(ho

iW
K)T

√
dz

(4)

5We also experiment CGSN with “LED Encoder”. The
input is “<s> q </s> </s> pi </s>”. We use the last “</s>”
token to initialize the paragraph node in the local graph.

where eij denotes the attention coefficients from
node i to node j. To normalize them, there is:

αij = softmaxi(eij) =
exp(eij)∑

k∈Nj
exp(ekj)

(5)

Therefore, the output of the attention operation is:

zheadm
j =

∑

i∈Nj

αijhiW
V (6)

ho+1
j = Cat[zhead1

j , ..., zheadk
j ] (7)

where WQ,WK ,WV are the parameters of the
attention query, key and value of headm, Nj is the
neighboring nodes of node j, zheadm

j is the output of
headm in the multi-head attention, and all these out-
puts are finally concatenated into the vector ho+1

j ,
which serves as the representation of node j in the
time step o+ 1.

3.4 Global Graph Network
The global graph is composed of three types of
nodes: global sentence nodes hG

sent,i (1 ≤ i ≤
NG

sent), global paragraph nodes hG
p,i (1 ≤ i ≤ NG

p )

and global document nodes hG
d,i (1 ≤ i ≤ NG

d ),
where the token-level nodes are neglected because
it’s hard to memorize a large number of the tokens
in the finite nodes. NG

sent, N
G
p and NG

d are prede-
fined node numbers in each level.

Local Information Reception and Compression
Global structural reasoning is based on the interac-
tion among local information. Therefore, to store
and process local information efficiently, each level
of global graph nodes only receives information
from one level in the local graph. The sentence-
level global graph nodes receive the information
from the sentence-level local nodes, and the same
thing happens between the two kinds of paragraph
nodes. In particular, the document-level nodes
in the global graph receive information from the
segment-level nodes in the local graph. All of the
receptions are done with the multi-head attention
mechanism. This procedure is similar to that in Sec-
tion 3.3. The only difference is that the direction
of the attention is from all of the local graph nodes
to the global graph node at the corresponding level.
For each global graph node i, let hG

i,local be its local-
aware global graph node representation. Based on
the information from the local graph nodes, a gated
network is used to fuse the representations of the
global graph node hG

i and the local-aware global
node hG

i,local:
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Models Answer F1
Extractive Abstractive Overall

LED (doc) 28.22 14.00 23.58
LED (gold) 52.41 23.44 42.97

Table 1: The answer F1 scores on the test set of Qasper.
“doc” and “gold” denote the input types: the entire long
document/gold evidence.

zGi,fuse = FFNN(hG
i ,h

G
i,local) (8)

γ = Gate(zGi,fuse) (9)

hG
i,fuse = (1− γ)hG

i + γzGi,fuse (10)

where hG
i,fuse is the representation of the updated

global graph node i.

Global Graph Attention To accomplish the
global structural reasoning process, we implement
the global graph attention. As shown in Figure 1,
for each pair of nodes between different levels of
the Global Graph, cross attention is used to extract
information from one level of nodes to the other, in-
cluding sentence-paragraph, paragraph-document
and document-sentence (not displayed). This pro-
cess is executed m times to fully extract global
structural information. The applied attention is
similar to Section 3.3.

Enhance the Local Nodes with Global Repre-
sentation To enhance the local expression, the
local paragraph nodes attend information from the
global paragraph nodes by multi-head attention and
combine the attended representations with the local
paragraph nodes via a feed-forward network. Let
the global-enhanced local representation of para-
graph j be hL←G

j . The evidence selection loss is:

L = − 1

N

N∑

i=1

ni∑

j=1

[log P (b|hL←G
j )] (11)

where N is the number of training instances, ni is
the number of paragraphs in the instance i and b is
the binary label (“1” denotes the paragraph is an
evidence paragraph, “0” otherwise).

3.5 Evidence Memory Network

The evidence memory network aims to integrate the
evidence-selecting decision and enhance the results
into the global network for the next time step. It
is composed of a cache and a writing network. To
properly update the parameters of the network, all
of the manipulations are done in the next time step,

where we assume that the current time step is t and
the next time step is t + 1. In the time step t, the
evidence predicting logits of time t are converted
via the softmax function into weights, which are
multiplied with the corresponding local paragraph
nodes, summed and cached in the time t:

αi =
exp(ei)∑n
j=1 exp(ej)

(12)

hL
sum =

n∑

i=1

αih
L←G
i (13)

where ei is the logit of paragraph i in the evidence
selection step, n is the number of paragraphs and
hL←G
i is the global-enhanced representation of

paragraph node i in the local graph.
At time t+1, hL

sum is fused with the global graph
paragraph nodes hG

p,i via the writing network:

hG
i,cat = Cat[hG

p,i,h
L
sum] (14)

hG
i,merge = FFNN(hG

i,cat) (15)

γ = Gate(hG
i,cat) (16)

hG
i,updated = (1− γ)hG

p,i + γhG
i,merge (17)

where hG
i,updated is the updated paragraph node i of

the global graph in time t+ 1.

3.6 Select-then-read Methods versus
End-to-end Methods

Intuitively, end-to-end methods can learn to pro-
duce answers and usually regard evidence selec-
tion as an auxiliary task. However, there are two
disadvantages to these methods. Firstly, evidence
selection is essential. According to Table 1, given
the gold evidence, the performance of the LED
on answer generation improves by a large margin.
Secondly, the long input is memory-consuming. In
the long input setting, with sparse attention models
(Beltagy et al., 2020), due to the relatively large
local window size, the demands for GPU memory
still become high. Meanwhile, the average token
length of gold evidence in Qasper (Dasigi et al.,
2021) is only 149.81, which shows that it’s prob-
ably memory-efficient only to regard the selected
evidence as the context to generate answers. There-
fore, a well-designed evidence selection model in
the select-then-read method can be beneficial.

4 Experimental Setup

4.1 Datasets
Qasper Qasper (Dasigi et al., 2021) is a QA
dataset for long scientific papers. It aims to select
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Figure 2: The box plots of document length distribution
on Qasper and HotpotQA-Doc.

the evidence and make multi-hop reasoning to pro-
duce answers given the long text and the question.
It contains extractive, abstractive, yes/no and unan-
swerable answers. Followed Dasigi et al. (2021),
we treat all the answers as free-form answers.

HotpotQA-Doc HotpotQA (Yang et al., 2018) is
a dataset to answer multi-hop questions based on
the supporting fact sentences.

We create a long document version of the Hot-
potQA dataset, called HotpotQA-Doc. To build
the dataset, we select all the hard-level questions
where multi-hop reasoning is required, crawl the
corresponding Wikipedia6 articles containing these
sentences and concatenate these articles as a long
document. Each paragraph with the supporting
fact sentence is regarded as a gold evidence para-
graph. We remove the QA pairs whose supporting
facts cannot be found in any article. We split the
original dev set into a new dev set and test set.
We finally collect 15,658/2,468/4,937 QA pairs in
train/dev/test set. Due to the change of the content
in the Wikipedia pages, some answers are not guar-
anteed to be the span in the content but are still
similar. Therefore, we regard all the answers as
free-form answers.

The boxplot of Qasper and HotpotQA-Doc are
shown in Figure 2.

4.2 Implementation Details

We experiment on two backbones: the SCIBERT-
SCIVOCAB-uncased version of SciBERT (Beltagy
et al., 2019) and the encoder of LED-base-16384
(Beltagy et al., 2020). In the SciBERT setting,
the local hop number is 4 while in the LED En-
coder, the local hop number is 2. For both the two
backbones, global hop is 1, paragraph number in

6https://www.wikipedia.org

a segment is 16, global graph sentence nodes are
64, paragraph nodes are 32, and document nodes
are 4. We searched over {1e-6, 5e-6, 1e-5, 5e-5}
learning rates, {5%, 10%, 20%, 30%} warmup pro-
portions, {1, 0.1, 0.01, 0.001} weight decays, {2,
4, 8} batch sizes and {1, 3, 5, 7} epochs. And
the final learning rate is 1e-5, the warmup propor-
tion is 10%, the weight decay is 0.01, the batch
size is 4 and the epoch number is 5. We train an
LED model (called LED (evidence-trained)) with
the QA pairs and gold evidence in the training set
as the answer generator (Appendix C). It receives
selected evidence pieces in the testing phase from
evidence-selecting methods (including CGSN and
other evidence selection baselines) to further eval-
uate the performance of these evidence-selection
methods on answer generation. It took 3.33 hours
to train the model on four 11GB GPUs.

5 Experiments

In this section, firstly, we discuss the main result of
the CGSN model on Qasper and HotpotQA-Doc,
and then further explore the proposed model.

5.1 Main Results

We evaluate the performance of the end-to-end
LED model (Dasigi et al., 2021) and the evidence
selection methods7, including the proposed CGSN,
the encoder of LED model8, the open domain re-
trieving method DPR (Karpukhin et al., 2020) and
AISO (Zhu et al., 2021), evidence selection part of
RCM (Gong et al., 2020), BERT-DM (Zheng et al.,
2020a) and ETC (Ainslie et al., 2020). We use
evidence F1 and answer F1 (Dasigi et al., 2021)
as the metrics. All the retrieving methods only
retrieve candidate paragraphs from the specific doc-
ument. For AISO, we remove the link retrieval and
stop evidence selection when the answer action is
taken. In RCM, BERT-DM and ETC, we keep the
evidence selection loss.

The main result of the CGSN on Qasper is shown
in Table 2. It can be found that CGSN (SciBERT)
outperforms all the baseline methods in evidence
selection and answer generation. Although the
pre-trained model ETC can deal with relatively
long sequences (4K) and construct the structure
via global-local attention, CGSN still outperforms

7These evidence selection methods are coupled with
LED(evidence-trained) to evaluate the performance on answer
generation.

8We only report its performance on HotpotQA-Doc be-
cause it is hard to converge on the training set of Qasper.

5041

https://www.wikipedia.org


Models Extractive Abstractive Yes/No Unanswerable Evidence Overall

LED (Dasigi et al., 2021)* 28.22 14.00 65.88 51.92 29.20 33.12
ETC (Ainslie et al., 2020) 32.88 13.49 58.00 62.28 51.17 35.37
DPR (Karpukhin et al., 2020) 22.69 9.73 56.10 69.02 36.98 30.22
AISO (Zhu et al., 2021) 26.66 10.79 55.56 70.72 42.74 32.52
RCM (Gong et al., 2020) 30.69 11.95 64.32 70.39 47.28 35.99
BERT-DM (Zheng et al., 2020a) 31.84 14.38 63.86 66.86 48.09 36.52

AISO (SciBERT) 28.86 11.90 60.30 71.51 45.92 34.30
RCM (SciBERT) 30.85 13.92 63.45 68.53 47.69 35.88
BERT-DM (SciBERT) 32.30 12.98 62.56 71.69 48.52 36.63

CGSN (LED Encoder) 31.11 12.52 63.00 77.90 49.55 37.21
CGSN (SciBERT) 34.75 14.39 68.14 71.84 53.98 39.44
LED (Gold Evidence) 52.41 23.44 76.96 77.91 - 52.87
Human 58.92 39.71 78.98 69.44 71.62 60.92

Table 2: The performance of F1 scores on the test set of Qasper. In the first row, “Extractive, Abstractive, Yes/No,
Unanswerable” are four types of answers. “Evidence” is the F1 score of evidence selection. “Overall” is the F1
score of all the answers. “*” denotes a reimplementation, which is slightly different from the reported result in the
original paper. “SciBERT” and “LED Encoder” are backbone models for evidence selection methods in some of our
implementations. Other implementations use the backbone models in their original papers. The last two rows are
the upperbounds of the task, where the gold evidence is used or the human expert is engaged.

Models E-F1 A-F1

LED (Dasigi et al., 2021) 68.36 51.50
LED Encoder (Beltagy et al., 2020) 76.02 53.99
ETC (Ainslie et al., 2020) 91.01 57.01
DPR (Karpukhin et al., 2020) 87.81 56.62
AISO (Zhu et al., 2021) 88.28 55.61
RCM (Gong et al., 2020) 90.03 57.20
BERT-DM (Zheng et al., 2020a) 91.45 57.63

AISO (BERT) 88.97 56.04

CGSN (LED Encoder) 92.02 57.80
CGSN (SciBERT) 92.02 57.79
CGSN (BERT) 91.88 57.92

LED (Gold Evidence) - 58.94

Table 3: The performance of Evidence F1 (E-F1) and
Answer F1 (A-F1) on the test set of HotpotQA-Doc.
“BERT” denotes the model “BERT-base-uncased”.

it. For a fair comparison, we also use SciBERT
as the backbone in AISO, RCM and BERT-DM.
The result indicates the advantages of CGSN. Be-
sides, to fairly compare CGSN with the LED, we
also take the encoder of LED as the backbone of
CGSN. Although LED Encoder is not designed as
a discriminative model, CGSN (LED Encoder) also
obtains strong performance.

Additionally, we also evaluate the proposed
model on the HotpotQA-Doc dataset. As shown in
Table 3, we notice that in evidence F1, most of the
methods can reach high scores. This is because, in
HotpotQA, sentence-level understanding is enough
to select evidence without considering the entire
Wikipedia article. Therefore, the method without

long-range modeling can get a good performance.
However, the result shows that with the enhance-
ment of the global graph, the proposed CGSN can
further improve its performance.

5.2 Ablation Study
We conduct an ablation study on components of the
CGSN model. As shown in Table 4, firstly, we can
see the performance drops when removing the local
graph, which suggests its value on segment-level
reasoning. Secondly, when the global graph edges
are ablated, the performance of the model is lower.
Furthermore, when removing the global graph, the
performance of the model is even lower, showing
the importance of the global graph. Finally, the
result in the last row shows that evidence memory
also plays a part in the CGSN model.

5.3 Effects of Paragraph Number and Global
Node Number

We conduct the experiment to explore the effec-
tiveness of the paragraph number in a segment as
well as the global graph nodes at each level. As
shown in Table 5, firstly, compared between line 1
and line 2, it can be found that with the increase of
paragraph number in a segment, the performance
of the model gains. It is intuitive because when
the number of paragraphs increases, the “percep-
tion field” of the local graph becomes larger, which
leads to better performance. Secondly, compared
to lines 1,3,4 and 5, it can be observed that line 1
is a proper setting for the global graph. Thirdly,
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Models
SciBERT LED Encoder

Evidence F1 Answer F1 Evidence F1 Answer F1
CGSN 49.72 33.20 41.55 29.76
w/o Local Graph 47.86 32.80 38.85 28.33
w/o Global Edges 48.13 31.14 39.55 27.86
w/o Global Graph 48.09 31.70 39.54 28.10
w/o Evidence Memory 49.21 32.61 40.78 29.30

Table 4: Ablation study of CGSN with SciBERT/LED Encoder, evaluating on the dev set of Qasper.

Combinations SciBERT

Nseg NG
sent NG

p NG
d E-F1 A-F1

16 64 32 4 49.72 33.20
8 64 32 4 48.33 32.85

16 48 32 4 48.18 31.95
16 64 16 4 48.66 31.72
16 64 32 2 48.57 33.01
16 64 80 4 48.86 32.13
16 64 32 48 49.08 32.45

Table 5: The Evidence F1 (E-F1)/Answer F1 (A-F1)
under different combinations of paragraph number in
a segment (Nseg), the node number in sentence (NG

sent),
paragraph (NG

p ) and document (NG
d ) levels of the global

graph, evaluated on the dev set of Qasper.

compared among lines 1,6 and 7, it suggests that it
is proper to set the number of sentence nodes larger
than that of paragraph nodes, and the same relation
maintains between paragraph nodes and document
nodes.

5.4 Effects of Graph Hop Number

We conduct the experiment on the number of at-
tention hops on the local graph and on the global
graph. The result is shown in Figure 3. We can see
an improvement in the performance from 0 to 4 (in
the local graph network) and from 0 to 1 (in the
global graph network). The experimental results
demonstrate the importance of multi-hop attention
among local and global nodes in the graph.

5.5 Effects of the Global Graph Network

To better understand the functionality of the global
graph, we conduct an experiment as shown in Fig-
ure 4. First of all, it illustrates that CGSN out-
performs any other ablated versions in each range
of “document length” or “maximum evidence dis-
tance”. Besides, when the document length and
the maximum evidence distance are large, the gap

0 2 4
Local Graph Hops

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

F1

Evidence F1
Answer F1

0 2 4
Global Graph Hops

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

Evidence F1
Answer F1

Figure 3: Evidence/Answer F1 scores of the proposed
CGSN model with varied local/global GAT hops, evalu-
ated on the dev set of Qasper.

between CGSN and other versions becomes bigger,
which demonstrates the ability of the global graph
to capture long-range dependency. Furthermore,
comparing the two ablated versions, it suggests
that the edges of the global graph can enhance the
ability of the model on long text understanding.

5.6 Effects of Evidence Memory

Redundancy is an essential problem in LDQA since
in the answer generation phase, repetitious para-
graphs could make the QA model confused (Ap-
pendix D). Therefore, it’s crucial to select impor-
tant and diverse evidence pieces for the QA model.
To this end, we explore the effects of the evidence
history module on redundancy reduction.

As shown in Table 6, we evaluate the redundancy
of the proposed model CGSN and the model “w/o
Mem”. REP (Zhong et al., 2019) is used to cal-
culate the repetitions in the generated summary.
Based on it, we introduce REPinter to evaluate the
redundancy among different paragraphs selected:

REPinter =
CountUniq

(
{ngrami}Ni=1

)
∑N

i=1 Count(ngrami)
(18)
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Figure 4: Answer F1 of the proposed CGSN model and
two ablated models on the dev set of Qasper. In the left
subfigure, we evaluate each model by the context docu-
ment length in each data instance. On the right side, the
dev set is partitioned via the number of tokens between
the first and the last gold evidence paragraphs in the
context document of each QA pair, called “Maximum
Evidence Distance”.

Models REPinter ↑ REP ↑ Scorered ↓
CGSN 0.8751 0.5708 -0.3166
w/o Mem 0.8688 0.5661 -0.3133

Gold 0.9345 0.6301 -0.5092

Table 6: Comparison between the full CGSN model
and the model without evidence memory (w/o Mem).
REP (Zhong et al., 2019), Scorered (Chen et al., 2021)
and the proposed REPinter are used to evaluate the re-
dundancy among the selected paragraphs. “↑” denotes
higher is better while “↓” means lower is better. “Mem”
denotes the evidence memory. “Gold” denotes the gold
evidence.

where N is the number of selected paragraphs,
Count(ngrami) is the number of n-grams in the
paragraph i, CountUniq

(
{ngrami}Ni=1

)
is the num-

ber of grams in all the selected paragraphs.
According to Table 6, gold evidence obtains the

least redundancy in them. Besides, it is found that
without the evidence memory module, the redun-
dancy of the proposed model gains. It demonstrates
that the evidence memory can alleviate the redun-
dancy problem in the evidence selection phase.

6 Conclusion

To solve the problem of lacking global structure in
LDQA methods, we propose Compress Graph Se-
lector Network to capture the global structure over
the long document when selecting evidence pieces.
Extensive experiments demonstrate the strong per-

formance of the model.

Limitations

Since the proposed model is applied in an iterative
way to read the long document, the limitation is the
time cost. To alleviate the problem, we pack a se-
ries of paragraphs into a segment and encode them
in parallel. However, methods better at parallelized
computing could further save the required time for
training and inference.
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Appendix

A Algorithm

We describe the detailed architecture of CGSN in
Algorithm 1.

B Analysis of Memory Usage

In this section, we analyze the memory usage of the
end-to-end method LED and the proposed CGSN.
Assuming the length of a document is L (L ≥
4K), the local window size9 is W (W ≥ 512), the
number of global tokens is Gt, the memory usage
of LED method is O (L(W +Gt)). When Gt ≪
W , the memory usage is O (LW ). For CGSN, set
the paragraph number in a segment as B. For a fair
comparison, the maximum length of a paragraph
is Whalf = ⌊W2 ⌋. Therefore, the memory usage
in CGSN is O

(
BW 2

half + flocal(B,W ) +Mglobal
)
,

9Attention to the W
2

tokens ahead and W
2

tokens behind.
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Algorithm 1: Compressive Graph Selector
Network
Data: LDQA training dataset S, CGSN

modelM, composed of a contextual
Encoder, a Local Graph Network
LGN, a Global Graph Network
GGN

Result: A fine-tuned modelM′.
1 Initialize the parameters ofM;
2 Set the evidence memory Mem←None;
3 Shuffle the dataset
S ← {(d(l), q(l), E(l), a(l))}Sl=1;

4 foreach document d(l) in S do
5 Split d(l) into segments [P1, P2, ..., PN ],

where Pl = [pl1 , ..., plN ];
6 foreach segment Pl in d(l) do
7 Time step T← l;
8 if T ̸=0 then
9 write_evidence(Mem, GGN);

10 end
11 Segment B← {(q(l), plr)}lNm=1;
12 H← Encoder(B);
13 local_graph_init(H,LGN);
14 for l← 1 to Local_hops do
15 unidirect_hops(LGN);
16 end
17 multihead_attention(LGN,GGN);
18 for l← 1 to Global_hops do
19 bidirect_hops(GGN);
20 end
21 multihead_attention(GGN,LGN);
22 p_logits, loss← cal_loss(LGN,

EPi);
23 Mem← weighted_sum(p_logits,

LGN);
24 update_params(M,loss);
25 end
26 end

where flocal is the function of memory usage in
local graph and Mglobal is the memory usage of
global graph, which is pre-defined as a constant. It
means that memory usage of CGSN is constant to
the document length while LED is nearly linear to
the length (when W becomes larger, the linearity
will convert into quadratic).

C Answer Generator

Following the ‘led_base_smaller_context’ setting10

in Dasigi et al. (2021), a vanilla LED is used as the
answer generator, which is trained with gold evi-
dence coupled with QA pairs in the training set. To

10https://github.com/allenai/qasper-led-baseline

evaluate the performance of an evidence selection
method in perspective of answer generation, for
each question and its long document. The evidence
selection method is firstly used to provide evidence
pieces given the question and the long document.
And then, the corresponding selected evidence and
the question are concatenated and fed into the LED
model. After that, the LED model generates an-
swer tokens for the question. The generated answer
tokens are then used to calculate the ‘Answer-F1’
score given the gold answer.

D Case Study

we conduct the case study in this section to in-
vestigate the effectiveness of the global graph and
the evidence memory qualitatively. As shown in
Table 7, the proposed model can correctly select
all the evidence pieces across different positions
of the text and integrate them into the complete
evidence.11 However, for the model without the
global graph, a piece of evidence is lost. It indi-
cates that in a long document, the understanding
of long-range is crucial for evidence selection and
answer generation.

Table 8 compares the proposed model and the
one without evidence memory, where the ablated
model chooses “MEDDOCAN 2019 shared task”
twice as well as adds some other noise information
(“BERT-based sequence labeling approach”) which
makes the model confused in the answer generation
phase.

11The original case in the dataset has some errors and we
correct them in Table 7.
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The proposed full model

Selected Paragraphs:
......LiLi uses a Knowledge Store (KS) for knowledge retention. KS has four components: (i)
Knowledge Graph ( INLINEFORM0 ) ...... (ii) Relation-Entity Matrix ( INLINEFORM2 ) ...... (iii)
Task Experience Store ( INLINEFORM15 ) ...... (iv) Incomplete Feature DB ( INLINEFORM29
) ...... LiLi also uses a stack, called Inference Stack ( INLINEFORM0 ) to hold query ......
Generated Answer: Knowledge Graph, Relation-Entity Matrix, Task Experience Store, Incom-
plete Feature DB, Stack

Ablated Model (w/o global graph)

Selected Paragraphs: ......LiLi uses a Knowledge Store (KS) for knowledge retention. KS has
four components: (i) Knowledge Graph ( INLINEFORM0 ) ...... (ii) Relation-Entity Matrix (
INLINEFORM2 ) ...... (iii) Task Experience Store ( INLINEFORM15 ) ...... (iv) Incomplete
Feature DB ( INLINEFORM29 ) ......
Generated Answer:
Knowledge Graph, Relation-Entity Matrix, Task Experience Store, Incomplete Feature DB

Table 7: Comparison between the proposed full model and the model ablated global graph. In this case, the length
of the document is 8768, which cannot be processed by most of the pre-trained models in one step. Matched content
is colored in blue while mismatch content is colored in red.

The proposed full model

Selected Paragraphs:
Two datasets are exploited in this article ....... NUBes BIBREF4 is a corpus of around 7,000
real medical reports ...... the second set of experiments uses the MEDDOCAN 2019 shared task
competition dataset .......
Generated Answer: NUBes BIBREF4, MEDDOCAN 2019 shared task competition dataset

Ablated Model (w/o evidence memory)

Selected Paragraphs: Two datasets are exploited in this article ....... NUBes BIBREF4 is a corpus
of around 7,000 real medical reports ...... the second set of experiments uses the MEDDOCAN
2019 shared task competition dataset ....... We have compared this BERT-based sequence labelling
against other methods and systems. One of the experiments uses the MEDDOCAN 2019 shared
task dataset......
Generated Answer: NUBes BIBREF4, MEDDOCAN 2019 shared task competition dataset
Generated Answer:
NUBes BIBREF4, BERT-based sequence labelling approach

Table 8: Comparison between the proposed full model and the model without evidence memory. Matched content is
colored in blue while redundant content is colored in red.
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